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Abstract

Continuum models in computational material science require the choice of a surface

energy function, based on properties of the material of interest. This work shows how

to use atomistic bond-counting models and crystal geometry to inform this choice

as well as to make predictions regarding dendritic growth behavior in bond-counting

models. We will examine some of the difficulties that arise in the comparison between

these models due to differing types of truncation. New crystal geometry methods are

required when considering materials with non-Bravais lattice structure, resulting in a

multi-valued surface energy. These methods will then be presented in the context of

the two-dimensional material graphene in a way that correctly predicts its equilibrium

shape.
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Chapter 1

Introduction

Surface energy is defined as the difference between the total energy of a crystal and

the energy within the interior of the crystal. This difference is a result of the fact

that interior atoms are fully bonded and surface atoms have open bonds yielding a

higher energy value. Surface energy is an important attribute of a crystal growth

model. Some models require the choice of a surface energy function in terms of facet

orientation, or edge energy for two-dimensional models, at the onset to determine the

crystal’s growth behavior. Other models may not require this choice, but still surface

energy can be calculated and utilized to predict growth, as will be demonstrated in

this work.

In a crystal bond-counting model, the potential energy depends only on the

number of bonds in a system in which each atom can have a small number of bonds

with nearby atoms. This is a huge simplification compared to a model with an

empirical potential in which all atoms interact with every other atom in the system,

but it is important for computability when modelling large atomic systems.

A crystal is any solid which assumes a periodic lattice structure at the atomic level.

This includes not only what we colloquially refer to as crystal, but also most metals

and ice. The lattice structure of a crystal encourages the use of a discrete lattice

as a domain for our model. I will examine the use of two classifications of lattices
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in the calculation and use of surface energy: Bravais and non-Bravais, to be defined

later. The computation of surface energy for Bravais lattice models is straightforward

and has been understood for a while, but I will demonstrate its utility in exploring

growth behavior. For non-Bravais lattice models, however, surface energy is much

more interesting and I will offer a thorough picture of the calculation of energy for

graphene which assumes a non-Bravais lattice structure.
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Chapter 2

Preliminary Information

2.1 Lattices

All of the models considered in this work are defined on a discrete lattice. In

this section I will review some of the information on lattices that will be utilized

throughout the rest of the sections.

Definition 1. An n-dimensional Bravais lattice is defined as one in which every node

is given by some integer combination of the vectors of a basis in Rn. The vectors

comprising this basis are referred to as primitive vectors.

Bravais lattices are well understood and all Bravais lattices in R2 and R3 have been

identified and classified. A property of Bravais lattices that we will take full advantage

of is that the entire lattice is identical when viewed from the perspective of any lattice

node. In other words, after translating the entire lattice in the direction of an integer

combination of the primitive vectors, the result is identical to the original lattice. The

primitive cell of a 2-dimensional Bravais lattice is defined as the parallelogram with

the lattice primitive vectors as sides. The area of the primitive cell is given by detA

where the columns of A are the primitive vectors of the lattice.

3



2.1.1 2-Dimensional Lattices

A 2-dimensional Bravais lattice is defined by a set of two linearly dependent vectors.

The simplest example is the regular square lattice with primitive vectors {(1, 0), (0, 1)}

shown in Fig. 2.1a. Any two-dimensional Bravais lattice is a linear transformation of

the regular square lattice by skewing, rotating and/or scaling as shown in 2.1b.

(a)
(b)

Figure 2.1: Two examples of 2-dimensional Bravais lattices.

An interesting example of a 2-dimensional Bravais lattice is the regular triangular

lattice (also called the hexagonal or penny-packing lattice) defined by primitive

vectors {a1 = (
√

3/2, 1/2), a2 = (0, 1)}. Note that the |a1 − a2| = 1, meaning that

each node has an additional two nearest neighbors compared to the square lattice.

Non-Bravais lattices form a much more broad and interesting class of lattices.

In crystallography, a crystal lattice is considered a “lattice with a basis” if it can

be constructed by translating copies of a bounded set of nodes at each node of

some Bravais lattice. The 2-Dimensional example used extensively in Chapter 2

is the graphene lattice. It is not Bravais because some nodes have nearest neighbors

in directions {(±
√

3/2, 1/2), (0, 1)} while other nodes have neighbors in directions

{(±
√

3/2,−1/2), (0,−1)}. It is, however, a lattice with a basis because the graphene

4



(a) (b)

Figure 2.2: The triangular lattice is the only 2-dimensional Bravais lattice with six
nearest-neighbor directions. The graphene lattice is not Bravais as there are two sets
of neighbor directions differentiated by A and B atoms in this figure.

lattice can be constructed by translating a copy of a node and one of its neighbors on

the Bravais lattice with primitive vectors {(
√

3, 0), (
√

3/2, 3/2} as shown in Fig. 2.3.

2.1.2 3-Dimensional Lattices

Similarly, the simplest 3-Dimensional lattice is the simple cubic lattice with primitive

vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and any 3-D Bravais lattice is a linear transforma-

tion of this lattice. One of the most common 3-Dimensional Bravais lattices seen in

nature is the face-centered cubic (FCC) lattice shown in Fig. 2.4 with primitive vec-

tors the edges of a regular tetrahedron: {(1, 0, 0), (1/2,
√

3/2), (1/2, 1/
√

12,
√

2/3)}.

This lattice can be visualized as layers of the regular triangular lattice offset so as to

give each node twelve nearest neighbors: six in its own layer, three in the layer above

and three in the layer below. In every fourth layer, the nodes lie directly above the

nodes of the first.

The hexagonally close-packed (HCP) lattice is non-Bravais but closely related

to the FCC lattice. HCP again consists of layers of the triangular lattice offset

to give each node twelve nearest neighbors but rather than use the same vector to

generate the third layer, nodes in the third layer lie directly above the first layer

5



Figure 2.3: The graphene lattice is a lattice with a basis consisting of two atoms
copied over a Bravais lattice.

as in Fig. 2.5. This results in a lattice with a basis where the basis consists of

two nodes {(0, 0, 0), (1/2, 1/
√

12,
√

2/3)} copied on the lattice with primitive vectors

{(1, 0, 0), (1/2,
√

3/2), (0, 0, 2
√

2/3)}.

2.2 Kinetic Monte Carlo Models

A Monte Carlo method is any mathematical algorithm that utilize series of random

samplings to obtain results. They have been studied for centuries, though it is

only with the advent of modern computing that they have truly become useful and

interesting. A dynamic Monte Carlo model is one in which a system evolves randomly

in time. A Kinetic Monte Carlo model is specifically an atomistic material model in

which one atom is randomly selected and moves each iteration.

Monte Carlo models are not the most accurate of atomistic models. Other models

such as molecular dynamics and density functional theory are much more detailed in

terms of interactions between atoms and assume interactions between all particles in

the system. KMC models sacrifice much of this detail in favor computability, by using

6



Figure 2.4: The face-centered cubic lattice with unit primitive vectors, which can
be constructed as layers of the 2D triangular lattice.

Figure 2.5: The hexagonal close-packed lattice. Like FCC, this lattice can also be
constructed with sheets of the triangular lattice, but is not Bravais. Atoms in the top
and bottom sheets shown here have nearest neighbors in directions that differ from
those of the middle layer.

simple pair potential interactions and only between an atom and its near neighbors

which drastically simplifies the model’s state-space. The computability gains are

significant and KMC can be used for much larger systems and broader time scales

than molecular dynamics and other atomistic models.

On the other hand, macroscale simulations are usually done with continuum

techniques such as phase-field modelling. These models drop atomistic interactions

altogether and instead seek a time evolution of crystal growth by solving a system

of PDEs to determine a curve/manifold that represents the crystal surface. These

7



models are widely studied but it is not clear in the literature how the accuracy of

these models is affected by the exclusion of atomistic effects.

In this work, I will focus on the study of on-lattice KMC in which all atoms occur

at the discrete nodes of a periodic lattice running through the domain. For example,

the face-centered cubic or FCC lattice is the result of placing a new node on each face

of a unit cell in the simple cubic lattice in R3. This is a useful lattice for materials

science modelling, as many metals solidify with an FCC lattice structure. Within this

structure, each atom has 12 nearest neighbors and 6 next-nearest neighbors.

A KMC simulation on an FCC lattice records for each atom the number of nearest-

neighbor nodes also occupied by an atom. This is then used to determine the atoms

probability of hopping to an open neighboring node. The hopping rate of an atom to

one of its open neighbor nodes is given by

R = K exp

(
−E − ET

kbT

)

where E is the system energy, ET is the energy of a transition state, kb is the

Boltzmann constant, T is a constant temperature term, and K is a normalizing

constant. The transition state is defined as the current state without the moving

atom and any bonds it shares. By summing up over the possible hop events for a

particular atom, we see that its total movement rate is

Ra = (12−Na) exp

(
− Na

kbT

)

where Na ∈ {0, 1, 2, . . . , 12} is the number of neighbors of atom a. Therefore, the

hopping rate of an atom in this model solely depends on its number of neighbors as

shown in Fig. 2.6.

The rates for all atoms in the system are summed up for a total rate which can

be used to normalize the rates and construct a discrete probability distribution. This

distribution is used to select the movement event and the selected atom is moved to

8



Figure 2.6: The selected atom in this 2D example has two neighbors and four
unoccupied neighbor sites. Its hopping rate is then Ra = 4 exp (−2/(kbT )).

one of its unoccupied neighbor sites. At each iteration of the simulation, an atom

moves which changes the rates of neighboring atoms as well. Thus the probability

distribution changes at each step as well. This model is then a Markov process that

transitions between configurations at each iteration, and each iteration’s distribution

can be represented by a sparse transition matrix.

As mentioned earlier, KMC models time evolution of crystals and generally only

for cold temperatures. An atom in the system moves at every iteration but in the

physical scenario, this will not occur at uniform time increments. Thus, we model the

passage of time as a Poisson process. Time is updated at the end of each simulation

step by picking a random number r in (0, 1) and setting

T = T + ln(1/r)/P

where P =
∑

aRa.

However, if we are only interested in the qualitative behavior of the system being

simulated, we may not need to track simulation time at all. In this case, in the

interest of optimizing speed, it’s worth omitting this calculation altogether.

9



2.2.1 Computational Considerations

A basic KMC code is not overly difficult to write. However, some measures must be

taken if the simulation is optimized to the point that systems containing millions of

atoms can be simulated for a sufficient amount of time. However, with such large

systems, it can be easy to rely too much on computer memory and overload RAM. A

successful KMC program optimizes speed without significant memory redundancy.

Data Structures

In order to optimize execution speed, several large data structures must be used.

These data structures require some intensive bookkeeping as well, and I provide the

details here. All the code used as part of this work has been programmed in Fortran

95, which has the benefits of running very quickly (especially in a Linux environment)

and easy management of data structures. I will refer to specific data structures in

this section using the same name I’ve used in the code and written in italics.

Many of the structures used in my KMC code are paired with associated inverse

arrays. For example, two of the primary arrays are state and atomlist. The domain is

represented by state, which in the FCC KMC simulation is a three-dimensional array

such that every lattice node within the model domain is represented by an entry in

state. One way to assign the required geometry to state is to let the state location

with index (i, j, k) correspond to the lattice node given by +iv1 + jv2 + kv3 where

v1,v2, and v3 are the primitive vectors of the FCC lattice. This is a straightforward

choice because the FCC lattice is Bravais. The entries of state take integer values

with positive integers indicating an occupied node, 0 indicating an unoccupied node,

and negative integers indicating any nodes that are outside of the domain boundaries.

The inverse data structure of state is atomlist. atomlist has three columns and

enough rows so as to never overflow throughout the simulation. Every atom’s state

coordinates are stored in the three entries of the row corresponding to that atom so

calling atomlist(a,:) returns the location of the atom corresponding to row a which will

10



be referred to as the atom number. Also, the value of state at an occupied node is equal

to the atom number a of the occupying atom. These two structures are considered

inverses because state(atomlist(a, :)) = a and atomlist(state(i, j, k)) = (i, j, k).

Another primary data structure is called list. list is important in the selection of

the moving atom and is analagous to sorting events by event label as described by

Schulze (2008a). When using the FCC lattice, it is a 2-dimensional array with 12

rows (sorted by coordination number from 0 to 11) and enough columns to fit a large

portion of the maximum number of particles. The rows are indexed from 0 to 11 and

within each row are the atom numbers of atoms with the same number of neighbors,

referred to as the atom’s coordination number. It is possible to write a KMC code

without the use of a list array. However, it allows us to first select the coordination

number of the moving atom and then select a random atom from the corresponding

list row. The use of list is a necessary part of ensuring that the mode;’s computational

cost is independent of system size.

It is not necessary to store atoms with twelve neighbors in a list row since these

atoms have no unoccupied neighbor nodes and therefore can’t move. This saves a

good deal of memory associated with list especially in a crystal growth simulation

because most atoms will have 12 neighbors. This decision does require extra care in

terms of bookkeeping, though, since fully coordinated atoms can become 11-neighbor

atoms when a neighbor moves, and need to be introduced back into list row 11.

Atoms change coordination numbers as they or their neighbors move, so we need

a way to find where a particular atom appears in list to be able to keep it updated.

This requires an inverse array called inv list which returns the coordination number

and spot in the corresponding list row for atom a. Both list and inv list need to be

updated for each atom affected by any move. Also, as part of this selection scheme,

we must keep track of the number of atoms within each list row in a small array I

call census.
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Reduction of Random Number Generation

We can exploit the discreteness of this model in order to minimize the number of

random number generations per step. Anytime a random number chosen from an

interval is used to select an event from a finite set, we can extract a new random

variable from the difference rather than generating a new one. For example, consider

the algorithm for selecting the event type at the beginning of each iteration:

1. Calculate partial sums given by Pj =
∑j

i=0 rates(i) · census(j) for j = 0, ..., 11.

2. Let P = P11 + genrate where genrate is the atom generation rate at the

boundary.

3. Randomly generate a number r in (0, P ).

4. Compare r to Pj.

• If r > P11, a new atom will generate at the boundary during the current

iteration.

• If Pj−1 < r ≤ Pj, an atom with coordination number j will move during

the current iteration.

5. Randomly select one of the atoms with coordination j using list .

This algorithm requires two random variables. Of course we can generate a new

random number each time, but if this code is to be run for trillions of iterations it

loses a significant amount of efficiency. A more efficient method involves using the

difference r−Pj−1, which is a uniform random variable on the interval (0, Pj −Pj−1],

as the second random number to select either the atom to move or the generation site

to use. If moving an atom, this overshot technique can be used again to select the

moving atoms new site from the list of unoccupied neighbor nodes. This technique

does have its limitations due to finite precision and can thus only be used a few times

per step.
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Local Updates

A naive approach to programming an on-lattice KMC model might involve counting

bonds for each atom in the system at each step in order to find the hopping rates.

This is extremely computationally intensive for large systems but is also completely

unnecessary. Because each move only affects the rates of the moving atom, its

neighbors before moving, and its neighbors after moving, we can store neighbor counts

in a data structure and only update these lists for the affected atoms during each step.

This can be easily managed within the process of moving an atom:

1. Once the moving atom is selected, check each neighboring site for occupancy.

• If occupied, decrease the neighbor’s neighbor count in inv list by one and

move the neighbor to the correct column in list.

• If unoccupied, record this direction in the temporary array movedir as a

potential move direction.

2. Pick a new site for the moving atom at random using movedir.

3. After moving, check each new neighboring site for occupancy.

• If occupied, increase the neighbor’s neighbor count in inv list by one and

move the neighbor to the correct column inlist.

When done correctly, the selected atom has moved to an unoccupied neighbor site

and all of the affected data structures are updated.

Equilibrium Shape Variation

The model described thus far has flux at the boundary, since new atoms are generated

on the boundary and diffusive atoms that move past the boundary are terminated.

This leads to crystal growth behavior and for certain parameters yields a dendritic

growth shape. We can change the boundary conditions to reflect atoms at the
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boundary instead, which would model a crystal in equilibrium and converge to the

crystal’s equilibrium shape. Perhaps the simplest way to implement this change is

to simply reject any move outside of the domain boundary and move on to the next

iteration.

The Full Algorithm

Initialization:

1. Set necessary parameters (domain size, temperature, generation rate, max

particles).

2. Build state array.

3. Place atoms within a small radius of the center of the domain by building

atomlist and updating state.

4. Build list, inv list and census by counting neighbors for each atom.

5. Calculate rates for each coordination number using the given temperature and

store in rates.

Iteration:

1. Calculate partial sums of the entries of census and the generation rate and let

the total be P .

2. Randomly generate a number r in (0, P ).

3. Compare r to the partial sums to select the coordination number of the moving

atom, or to generate a new atom at the boundary.

4. If moving an existing atom:

(a) Use the overshot of r to pick a random atom from the corresponding list

row.
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(b) Follow Local Updates algorithm to move the selected atom and update

data structures. Use overshot of r again to randomly pick the atoms

direction.

(c) Check to see if the atom is leaving the domain. If so, terminate and update

the data structures.

5. If generating a new atom:

(a) Use the overshot of r to select a boundary node.

(b) Generate a new atom at the boundary node. Update data structures

accordingly.

6. Update simulation time.
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Chapter 3

Dendritic Growth Shapes in

Bravais Lattice Models

3.1 Introduction

Dendritic growth has been studied extensively from both an experimental and

theoretical point of view. This intense study is due to fundamental scientific interest

as well as the importance of this striking phenomenon from a technological point of

view. The vast majority of dendrite simulations have used continuum models aimed

at macroscale solid-liquid interfaces, e.g. a pure solid growing into its melt. In this

work, I seek to build upon the smaller body of work that has examined dendritic

growth on atomistic length scales using KMC simulation. These models are best

suited to growth from vapor with low concentrations of the growth species. Interfaces

where a solid is in equilibrium with its melt tend to be at much higher temperature

and pressure than interfaces where a vapor is in equilibrium with a solid. Thus, our

simulations correspond to lower temperatures, with a correspondingly lower entropic

contribution to the surface free energy and crystal surfaces that tend to be more

faceted.
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While the growth of a snowflake is a familiar example of this regime, KMC studies

have tended to focus on more idealized systems, most often the growth of simple cubic

crystals. These studies include the work of Witten and Sander on diffusion limited

aggregation (Witten and Sander, 1981). To simulate more structured dendritic growth

one must include a surface diffusion mechanism. For simple cubic growth, this has

been examined in a number of two-dimensional studies (Vicsek, 1984; O. Shochet and

Muller-Krumbhaar, 1992; Harris and Grant, 1990; Saito and Ueta, 1989), and at least

one study of three-dimensional growth (L. Jorgenson and Guo, 1993).

More recently, Schulze (2008b) has examined KMC simulation of FCC dendrites.

This model aims to examine the growth of a dendrite into an under-cooled melt using

a hybrid KMC-continuum model where the thermal diffusion was simulated using the

heat equation discretized on the FCC lattice. From the nanoscale perspective, this

has the disadvantage of removing thermal fluctuations from the model. In contrast,

our present work will consider instead the growth of a dendrite from a super-saturated

vapor, modeled as a lattice gas at constant temperature. The bulk diffusion of

the precipitating species is then readily simulated with a random walk, so that the

fluctuations in the growth process can be more consistently modeled.

The aim here is to examine a broader class of KMC models capable of capturing

a wider range of dendrite morphology. This was initially motivated by the work

of T. Haxhimali and Rappaz (2006) who have pointed out that the vast majority

of work using continuum models has been aimed at the growth of FCC and other

cubic dendrites with primary growth occurring along the six faces of the cubic unit

cell. In particular, their work emphasizes the potential for moving continuously

from 〈100〉- to 〈110〉-oriented growth as one varies composition-dependent surface

energy parameters. According to their model, this would result in a transition from

six- to twelve-armed dendrites with a variety of complicated and fascinating hybrid

structures in between.

T. Haxhimali and Rappaz (2006) base their conclusions on phase field simulations

of a continuum model with a truncated expansion of the anisotropy in the interfacial
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free-energy, γ(θ, φ), in terms of “cubic harmonics”, K1 and K2, which are formed

from linear combinations of spherical harmonics Ylm(θ, φ) to reflect the symmetry of

cubic crystals:

γ(θ, φ) ≈ γ0[1 + ε1K1(θ, φ) + ε2K2(θ, φ)]. (3.1)

The coefficients, ε1 and ε2, are material-dependent anisotropy parameters. The

authors note that essentially all prior studies retain only the ε1K1-term that favors the

ubiquitous 〈100〉 dendrite, and point to an earlier Molecular Dynamics (MD) study

of J.J. Hoyt and Karma (2003) that suggests the ε2K2-term, which favors 〈110〉-

oriented growth, is significant for a wide range of FCC metals. They support their

theory with both simulations of the continuum model for dendritic growth into an

under-cooled melt and directional solidification experiments of Al − Zn alloys. The

experiments study the surface energy anisotropy by considering varying amounts of

Zn, and support the numerical study. We seek a similar generalization for KMC

studies of crystal growth aimed at the nanoscale.

In the next section we start with a more general and formal approach to KMC

than the previous chapter before turning to the specific model used for the present

study. In Section 3 we derive the surface energy for our model, and in Section 4

we examine the corresponding equilibrium shapes as well as the growth shapes that

emerge as the result of simulation. In Section 5 we discuss the relationship with the

work of Haxhimali et al. and some important distinctions between the continuum

and KMC models.

3.2 Kinetic Monte-Carlo

KMC models usually take the form of discrete-space, continuous-time Markov

processes, where the system passes through a sequence of states {xαn ∈ X} drawn

from a model dependent state-space X = {xα = {xijk ∈ {0, 1}}} at transition times

{tn}. Here α is a discrete index used to enumerate the possible states. The states
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themselves, xα, take the form of an occupation array for some set of lattice points,

with 1 signifying occupied and 0 unoccupied. In this paper, for example, we consider

an arbitrary Bravais lattice {ia1 + ja2 + ka3} defined by a set of primitive vectors

{a1, a2, a3}.

In KMC, the transition matrix for the Markov process is typically sparse, with

rates Rαβ = 0 except for certain local transitions. In this paper, we consider models

that are mostly limited to the exchange of neighboring occupied and unoccupied

lattice sites. In other words, every transition on the interior of the domain consists

of a single atom moving to an unoccupied site. The transition rates Rαβ are chosen

so that an equilibrium simulation will achieve the Boltzmann distribution:

ρ(x) = Z−1 exp

(
−E(x)

kbT

)
, Z =

∑
x∈X

exp

(
−E(x)

kbT

)
, (3.2)

where ρ(x) is the probability of finding the system in state x, E(x) is a discrete

Hamiltonian associating an energy with each possible state, Z is the canonical

partition function, kb is the Boltzmann constant, and T is the temperature, which we

take to be uniform across the system.

A simple and conventional way of enforcing the correct equilibrium distribution

in (3.2) is to impose a condition of detailed balance:

ρ(xα)Rαβ = ρ(xβ)Rβα, (3.3)

which matches the flux between any two states. A common choice for the rates Rα,β

that satisfies (3.3) and that is motivated by Transition State Theory (Voter, 2007) is

Rαβ = K exp

(
−E(xα)− Eαβ

kbT

)
, (3.4)

where the prefactor K is normally taken to be a constant and Eαβ is the energy of

the “transition state”. In a model based on an empirical potential, where particles
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can occupy an arbitrary point in configuration space, the transition state is identified

with the energy at saddle points on the energy landscape. In a lattice-based model,

there are no such points and we simply define Eαβ to play an analogous role. In many

bond-counting models, including those considered here, Eαβ can be thought of as the

energy of the system with the transitioning atom removed. Equivalently, the energy

barrier E(xα)− Eαβ is defined to be the interaction energy between the atom being

moved and the rest of the system.

3.2.1 KMC Simulation of Dendritic Growth

For the present simulations, we imagine a vapor solution initially at a uniform

concentration and a temperature that will remain constant. The domain is a sphere

of fixed radius, large enough that this concentration may be assumed fixed at the

boundary of the sphere. The precipitate is nucleated in a much smaller sphere at the

center of the domain (see Fig. 3.1). Growth occurs as particles precipitate and diffuse

along the surface of the crystal, which depletes the concentration of the solidifying

species in a boundary layer that conforms to the crystal surface. This depletion of the

precipitating species provides the driving force for the morphological instability, as

protruding portions of the surface have access to a richer concentration of the growth

species in the far-field.

More specifically, these simulations use a large FCC lattice within a spherical

domain with a radius of approximately 200 lattice spacings. An occupied lattice

site represents an atom of the growth species, whereas an empty site represents the

solution from which the dendrite is growing. The diffusion of the growth species from

the far-field to the crystal surface is modeled as a random walk on an FCC lattice

with subsequent attachment and surface diffusion. An alternative model with an off-

lattice random walk was also considered, but rejected in favor of the more readily

implemented discrete model. Initially, all nodes within five lattice spacings from the

center are considered occupied, constructing a small cluster with about 600 atoms.

20



Figure 3.1: An illustration of the simulation domain, nucleated growth species in
the center, and adatoms diffusing through the far-field.

In principle, each atom shares interactions with all other atoms in the system.

However, in our simulations, interactions are limited to a finite number of pairwise

“bonds.” Since every node in a Bravais lattice has neighbors in the same directions,

each bond can be represented by a vector between nodes of the lattice: v = v1a1 +

v2a2 + v3a3 with vi ∈ Z. Without loss of generality, we will arbitrarily associate these

bonds with one of the two interacting atoms by choosing an orientation for v, and

denote the set of bonds for a given model as {vj}.

The energy E(x) is given by

E(x) = −1

2

na∑
i=1

nb∑
j=1

wjNj(i), (3.5)

where na is the number of atoms, nb is the number of bond types {vj}, wj is the

weight corresponding to vj or the energy value of a vj bond, and Nj ∈ {0, 1, 2} is the

number of bonds an atom shares with its neighbors with either vj or −vj orientation.

The transition rate Rαβ for the surface diffusion process depends solely on how

many bonds it shares with neighbors. The rate for an atom moving to an open site
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is given by

R = K exp

(
− 1

kbT

nb∑
j=1

wjNj

)
.

In the models we will consider, many of the bonds share the same weight.

At each iteration of the simulation either a single atom moves to an adjacent site

on the lattice or a new atom is generated on the domain boundary. The rates for

the single atom moves are a function of the number of occupied nearest- and next-

nearest-neighbor sites denoted Rn1n2 . Additionally, we need a counter an1n2 telling

us the number of events with rate Rn1n2 in the current configuration. Finally, there

is one additional rate g representing the uniform flux of the growth species from the

far-field.

These simulations are performed with two different boundary conditions. When

growing a dendrite, atoms are deposited onto boundary sites at a uniform rate

and annihilated upon moving onto a boundary site, so that a uniform far-field

concentration is maintained. When finding equilibrium shapes, all flux at the

boundary is removed by setting g = 0 and reflecting atoms that move onto a boundary

site, so that the number of atoms na is conserved.

3.3 Surface Energy in Bond-Counting Models

To gain insight into the equilibrium behavior of the bond-counting model just

described, we first derive the corresponding surface energy function, γb(n̂), which

we define as the number of broken bonds per unit area along a surface with normal n̂.

Note that, in contrast to (3.1) this is a zero-temperature surface energy rather than

a free-energy. In the KMC simulations, the entropic effects due to finite temperature

are controlled via the rates (3.4), whereas in a continuum model they are modeled

through the choice of γ, e.g. (3.1). Derivation of the surface energy function of bond-

counting models for FCC metals has been demonstrated in previous studies for bonds

up to a specified truncation radius (J.K. Mackenzie and Nicholas, 1962; Y. Luo, 2014;
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Herring, 1951). I offer an alternative derivation for surface energies of models on any

Bravais lattice with an arbitrary set of bonds of any length.

We calculate the total surface energy for a facet with normal n̂ by computing the

contribution of each v ∈ {vj} individually. A 2D example of this is shown in Fig. 3.2,

along with a facet cutting bonds associated with the same vector v. It’s important

to note that, depending on the length of v, bonds between atoms may overlap. This

happens if and only if z ≡ gcd(v1, v2, v3) > 1, since the bond given by v crosses that

many atoms (this is also the density of overlapping bonds).

Figure 3.2: An illustration in two dimensions of a Bravais lattice, its two primitive
vectors, a single bond corresponding to v, a facet with normal n̂, and the collection
of bond-facet intersections. The latter forms Bravais lattice in one fewer dimensions
along the facet.

First, we show that on a 3D Bravais lattice, the intersections of bonds correspond-

ing to a vector v with a planar facet form a 2D Bravais lattice on the facet. Choose

vectors ã1, ã2 such that the set {v, ã1, ã2} spans the crystal lattice. Each of the bonds

corresponding to v lies on a line of the form {tv + k1ã1 + k2ã2 + kv | k, ki ∈ Z, t ∈ R}

as shown in Fig. 3.2. To find the intersections of these lines and the facet given by

{x | n̂ · (x− x0) = 0} we solve the equation

n̂ · (tv +
2∑
i=1

kiãi + kv − x0) = 0.
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Solving for t gives

t =
n̂ · x0

n̂ · v
+ k −

2∑
i=1

ki
(n̂ · ãi)
n̂ · v

.

Then the set of intersections can be written{
2∑
i=1

ki
(n̂ · v)ãi − (n̂ · ãi)v

n̂ · v
+

n̂ · x0

n̂ · v
v

∣∣∣∣∣ ki ∈ Z

}
.

Therefore, the set of intersections is generated by integer combinations of the two

vectors
{

(n̂·v)ãi−(n̂·ãi)v
n̂·v

}
and is then a 2D Bravais lattice.

Now, consider a bond-counting model on a Bravais lattice with bonds correspond-

ing to a vector v. In the case z = 1, i.e. bonds do not overlap. From above, we

know that the bond intersections on the facet form a Bravais lattice so the area on

the facet per intersection equals the area of a Voronoi cell of this lattice. Construct

a prism centered on each v bond with the 2D Voronoi cell as its base and spanning

the length of the bond. This is illustrated in a 2D analog for easier viewing in Fig.

3.3. These prisms tile R3 and correspond to exactly one atom of the 3D lattice and

are therefore primitive cells and have volume V = | detA|. The height of each cell in

the direction of n̂ is h = projn̂ v = |n̂ · v|. Therefore, the area per bond intersection

on the facet is given by h−1V = | detA|
|n̂·v| .

When bonds do overlap, z = gcd(v1, v2, v3) > 1. Following the construction above

yields prisms that overlap with density z. By dividing these cells into z disjoint prisms

each with height h = z−1|n̂ · v|, we arrive at a cell that tiles R3 without overlapping

and contains one node of the lattice. This cell is then a primitive cell with volume

V = | detA|, which determines the area of a Voronoi cell on the facet: h−1V = z detA
|n̂·v| .

Then, since there are z bonds cut at each intersection, the number of bonds cut per

unit area on a facet with normal n̂ is z |n̂·v|
z| detA| = |n̂·v|

| detA| .

Therefore, for z ≥ 1, the bonds cut per unit area by a planar facet with normal n̂

is given by

γb(n̂) =
|n̂ · v|
| detA|

(3.6)
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Figure 3.3: A 2D illustration of an arbitrary bond and a prismatic primitive cell
with base parallel to a facet with normal n̂. In this case the Voronoi cell of facet
intersections consists of a line segment and is shaded in the figure.

where A = [a1, a2, a3] and z is the bond density.

In a model with multiple types of bonds, we can superimpose the contribution of

each bond vj using the corresponding weight wj. Then the total surface energy for a

facet with normal n̂ is

γb(n̂) =

nb∑
j=1

wj|n̂ · vj|

| detA|
. (3.7)

In the FCC examples that follow, the nearest-neighbor bonds share the weight w1

and the next-nearest-neighbor bonds share the weight w2. Surface energies for these

examples take the form

γb(n̂) =
1

| detA|

(
w1

6∑
i=1

|n̂ · v1i|+ w2

3∑
i=1

|n̂ · v2i|

)
, (3.8)

where {v1i} represent the bonds between FCC nearest-neighbors and {v2i} the bonds

between FCC next-nearest neighbors.

Fig. 3.4 contains examples of three-dimensional surface energies. Fig. 3.4a is the

surface energy for a model counting nearest-neighbor bonds on a cubic lattice, each

with weight w = 1. Fig. 3.4b counts nearest-neighbor bonds on a FCC lattice with
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weights w1 = 1, w2 = 0. Fig. 3.4b counts nearest- and next-nearest-neighbor on a

FCC lattice with equal weights w1 = 1, w2 = 1.

(a) γb(n̂) for nearest-
neighbor bonds on a cubic
lattice

(b) γb(n̂) for nearest-
neighbor bonds on a FCC
lattice

(c) γb(n̂) for nearest-
and next-nearest-neighbor
bonds on a FCC lattice

Figure 3.4: Examples of Surface Energies

3.4 Equilibrium and Growth Shape

A crystal in equilibrium is not subject to conditions that will drive its growth. The

equilibrium shape minimizes the total surface energy among competitors with fixed

volume:

min
|Ω|=V

∫
x∈∂Ω

γ(n̂(x))dS. (3.9)

The minimizer is also known as the Wulff shape and is given by the well-known

formula (Fonseca, 1991):

W = {x ∈ R3|x · n̂ ≤ γ(n̂) ∀n̂}. (3.10)

The surface of the Wulff shape can be described with the function

w(d̂) = min
d̂·n̂>0

[
γ(n̂)

d̂ · n̂

]
(3.11)
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where
{

d̂
}

is the set of all unit vectors. This shape is constructed by drawing planes

which are orthogonal to the radius vector at each point on the spherical plot of γ(n̂)

and taking the inner envelope of those planes. A 2-dimensional example is illustrated

in Fig. 3.5.

Figure 3.5: A 2-dimensional example of the Wulff construction using the edge energy
function of nearest-neighbor bonds on the regular triangular lattice.

As noted previously, the surface energy γb that we have derived for our bond-

counting model is the zero-temperature surface energy. One result of this is that

surface energies of the form (3.7) have several cusps. These cusps are local minima

of the surface energies and lead to the faceted Wulff shapes seen in Fig. 3.7a &

b. At nonzero temperatures, these cusps and the corresponding sharp edges in the

equilibrium shapes become rounded. While we cannot directly compute this entropic

contribution to the surface energy, we can simulate its effect on the equilibrium shape,

as illustrated in Fig. 3.6. Note that the qualitative shape of the crystal can be

determined from the calculation of the Wulff shape for γb. Calculating the Wulff
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shape is a useful tool for exploring the range of morphologies attainable within a given

bond-counting model, as such calculations can be done with little effort compared to

the lengthy simulations needed to generate the shapes shown in Fig. 3.6.

(a) Equilibrium Shape for T = 351.7
K (b) Equilibrium Shape for T = 580.2

K

Figure 3.6: KMC simulations of an FCC crystal’s equilibrium shape under
two different temperatures, with energy scaled such that w1 = 0.1 eV. Higher
temperatures lead to softer edges as seen in b.

When a growing crystal is sufficiently small, surface diffusion will dominate the

diffusive effects driving growth, so that the crystal evolves toward its equilibrium

shape. The subsequent growth shape is more difficult to predict, but is heavily

influenced by the equilibrium shape in that the crystal tends to grow more quickly

in regions that are closest to the driving force in the far-field. In many cases, these

fast growth directions, which are often easily predicted by inspection, continue to

dominate the shape of the crystal. This effect is illustrated for six-armed dendrite in

Fig. 3.7. The dendrite in Fig. 3.7c has six arms corresponding to square 〈100〉 facets

of Fig. 3.7a, which are the furthest facets from the center of the Wulff shape. In

Fig. 3.7d the eight arms correspond to the hexagonal 〈111〉 facets seen in Fig. 3.7b,

but here we start to see that there are more complex mechanisms at play since the

rectangular 〈110〉 facets are further away from the center and do not correspond to

growth directions.
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(a) Weights w1 = 1, w2 = 0 (b) Weights w1 = w2 = 1

(c) Six-armed dendrite (d) Eight-armed dendrite

Figure 3.7: FCC Wulff shapes and the corresponding results of a KMC simulation
on a FCC lattice. The Wulff shapes in a & b correspond to the surface energies in
Fig. 3.4b and c, which are both on a FCC lattice. The dendrite shown in c & d use
the same parameters as the Wulff shapes in a & b respectively. These crystals each
contain approximately 5 × 106 atoms, with the inset showing an atomic resolution
close-up.

3.5 Discussion and Conclusion

The aim here is to explore the role of anisotropic surface energy in our KMC model,

denoted γb, guided by what is known about the influence of surface energy in the

context of continuum models, which we now will denote γc. Due to significant

differences between the two models and the physical scenarios they represent, no

direct comparison is intended here. Rather, our focus is on the class of morphologies

that can be exhibited within each model at a given level of approximation.

We start by reiterating the differences between the two models. For the most part,

the dendritic growth of a pure material into its own melt is modeled using the heat
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equation along with appropriate boundary conditions. With some approximation, this

can also be viewed as a model where the growth is occurring from a supersaturated

vapor, a scenario that is more directly analogous to the KMC simulations described

in the previous section. There is an extensive literature that examines the effects of

both solute and heat diffusion on such processes (Davis, 2001). More significantly, we

have already commented on the important distinction that γb is a zero-temperature

surface energy, while γc represents the free energy at the melting temperature.

Another important distinction between the KMC simulations and simulations based

on the continuum model, is that the former are necessarily restricted to atomistic

length scales due to computational requirements, whereas the latter are largely

aimed at the macroscale. While most studies of dendritic growth are done on

scales larger than can be simulated with KMC, there are experimental results that

exhibit nanodendrites with highly developed branches with length scales similar to

our simulations (W. Wang, 2013; Gh. Jiang, 2005).

Despite these differences, it is natural to wonder whether or not similar growth

shapes can be exhibited in both models and, if not, why? Of particular interest is the

possibility of 12-armed and 24-armed dendrites. While I was able to find evidence

for the latter,I was not able to exhibit 12-armed dendrites using a nearest- and next-

nearest-neighbor bond-counting model, i.e. longer range or multi-body interactions

would appear to be necessary.

Recall that T. Haxhimali and Rappaz (2006) examined the effects of anisotropy

in the solid-liquid interfacial free-energy for a class of functions given by a truncated

expansion in terms of cubic harmonics:

γc(θ, φ) = γ0[1 + ε1K1(θ, φ) + ε2K2(θ, φ)], (3.12)
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where the first three normalized cubic harmonic functions are (J.J. Hoyt and Karma,

2003):

K0(n̂) = 1,

K1(n̂) =
√

21
4

[5(n4
1 + n4

2 + n4
3)− 3],

K2(n̂) =
√

13
128

[21(n4
1 + n4

2 + n4
3) + 462(n1n2n3)2 − 17].

One of the more intriguing shapes uncovered in these simulations, was a twelve armed

dendrite that occurred when the K1 contribution was absent, specifically for γc(n̂) =

1− 0.02K2(n̂).

In an attempt to grow a crystal with a similar morphology using a KMC model,

we first sought parameters that would give a similar functional form for γb. Like

the spherical harmonics, cubic harmonics are orthonormal with respect to the inner

product 〈f, g〉 = 1
4π

∫
∂B(0,1)

f · g dS. This means any γ-plot, including γb of a bond-

counting model, can be projected onto the cubic harmonics by:

γb(n̂) = γ0(1 + ε1K1(n̂) + ε2K2(n̂) + · · · ), (3.13)

where γ0 = 〈γ, 1〉 is the average value of γb and εi = 1
γ0
〈γ,Ki〉. Thus, we computed

ε1 and ε2 for energies of the form (3.7) as a function of the nearest-neighbor bond

strength (with the weight for nearest-neighbor bonds fixed at 1). The bond strength

w2 = 0.353553 gives ε1 = 0 and ε2 = −0.0219097, and therefore seems to be a good

candidate for growing a twelve-armed dendrite.

Next, we consider a KMC simulation using this value of w2. The result shown

in Fig. 3.8 is a dendrite containing approximately 5 × 106 atoms. Rather than a

12-armed dendrite, there are 24 primary branches that eventually merge in groups

of four to form six larger branches. While Haxhimali et al. did exhibit some 24-

branched structures, these were computed using non-zero values of ε1, and the 12-

armed structure in their model seemed to correlate with small values of ε1.

To understand why this might be the case, in Fig. 3.9, we examine the Wulff

shapes corresponding to the surface energy functions for both models. The first (a)
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Figure 3.8: Kinetic Monte-Carlo simulation using the value w2 = 0.353553, which
has been chosen to eliminate ε1 in the cubic harmonic expansion of the surface energy
(3.13). This dendrite contains approximately 5 million atoms. Note that there are
24 primary branches (six groups of four) that seem to be merging into six larger
branches.

corresponds to γc(n̂) = 1 − 0.2K2(n̂), where ε1 = 0 and all harmonics beyond ε2 are

also zero. This surface energy matches that used by T. Haxhimali and Rappaz (2006)

for the 12-armed dendrite shown in their Fig. 2(e). The second (b) corresponds to

γb(n̂) = 1−0.2K2(n̂) + · · · , which is a surface energy for a bond-counting model with

ε1 = 0 as a result of the choice w2 = 0.353553. Note that the higher order harmonics

are not necessarily zero, which accounts for the significant qualitative change in shape.

In case (a) there are twelve cusps while case (b) is faceted with twelve smaller facets

corresponding to the cusps in (a).

First we note that, since the first two cubic harmonic terms match in the two

energies, the difference must be in the higher-order terms. Since the continuum model

truncates after the second term, all higher-order coefficients are 0. In the expansion

of γb, however, we can compute these coefficients directly:

ε3 =

∫
γb(n̂)K3(n̂) = −0.0150347
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(a) (b)

Figure 3.9: Wulff shapes corresponding to two surface energy functions. The first (a)
corresponds to γc(n̂) = 1−0.02K2(n̂). The second (b) corresponds to the FCC bond-
counting model with w1 = 1, w2 = 0.353553 and has the cubic harmonic expansion
γb(n̂) = 1− 0.02K2(n̂) + · · · .

ε4 =

∫
γb(n̂)K4(n̂) = 0.00150363

ε5 =

∫
γb(n̂)K5(n̂) = −0.00665085

While these coefficients demonstrate the difference in the two energies, they are not

very helpful in explaining exactly why the behaviors differ. Using numerical methods

to determine the net flux of atoms onto the surface of the Wulff shape in Fig. 3.9b on

an FCC lattice illustrates that there are two distinct high-flux regions on each of the

shape’s twelve small, rectangular 〈110〉 facets which seems to explain the 24-armed

growth behavior. Similar analysis on the Wulff shape in Fig. 3.9a suggests that there

is only one high flux region for each of its twelve 〈110〉 cusps, although the shape

is too singular to get clear results on the lattice at the same resolution. Therefore,

even though this bond-counting surface energy approximates the surface energy in

Haxhimali et al., it appears that the difference between the corresponding surface

energies is still too great to achieve the same behavior.

I have also considered how many terms the expansion of γc would need in order

to see a Wulff shape for a continuum model similar to that of bond-counting models.
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Using the computed coefficients of the cubic harmonic expansion of γb above, we

computed the Wulff shapes for energies of the form
∑n

i=1 εiKi(n̂) for n > 2. It is

interesting that just by adding the third term in the expansion, the Wulff shape is

significantly more faceted, as seen in Fig. 3.10. However, it is only when the expansion

includes the first five terms that the Wulff shape becomes fully faceted and a very

good approximation of γb.

Figure 3.10: Wulff shape corresponding to surface energy γ(n̂) = 1 − 0.02K2 −
0.0150347K3.

Ultimately, we conclude that, at any finite level of approximation, both models

exhibit a type of truncation error that makes them incompatible. In the continuum

models, surface energy is modeled by truncating after one or more cubic harmonic

terms. In bond-counting models, surface energy is the result of interactions between

nearest-neighbors lying within some cutoff radius. It appears that a surface energy

function within one of these families may lead to growth behavior not exhibited by

functions in the other family using their respective models.
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Chapter 4

Graphene Edge Energy

Analagous to the surface energy of 3D crystals of the previous section, a 2D crystal’s

bond-counting edge energy is calculated by counting the number of bonds intersected

along an edge with normal n̂. Edge energy for different edge orientations of a graphene

lattice have been studied in multiple works since the discovery of graphene sheets

at room temperature in 2009 (C. K. Gan, 2009; Y. Liu, 2010; P. Branicio, 2011).

These papers all identify what is referred to as the ’zigzag’ orientation as the edge

orientation with minimum energy for non-stressed graphene sheet. This is consistent

with experimental results that show that it is the preferred orientation for graphene

nano ribbons. However, the minimum value of edge energy may not be the only

energy value of a graphene edge with the same orientation.

The fact that some graphene edges have variable edge energy is illustrated in Fig.

4.1. For some edges, edge energy when counting nearest-neighbor bonds is invariant

under translation but for others, edge energy does change on translation of the edge.

In this example, there are only two discrete values of the energy and we will see that

this is true for all graphene edges with multi-valued edge energy.
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(a) (b)

Figure 4.1: In (a), we see two edges with the same normal n̂ = (−1/2,
√

3/2) that
also share the edge energy γ(n̂) = 2/3. Any edge with this same normal will also have
that same edge energy. However, in (b), two edges are shown with normal n̂ = (1, 0)
and yet have different energies. These are the only two edge energy values exhibited
by edges with this normal.

Recall the formula for the calculation of surface energy for models on a Bravais

lattice, which works for 2D Bravais lattices as well:

γ(n̂) =
∑
i

wi
|n̂ · vi|
| detA|

(4.1)

where n̂ is normal to the edge, {vi} is the set of bonds considered, and A is the matrix

with lattice primitive vectors as columns.

Bond-counting models on a Bravais lattice have the useful property that any two

edges with the same orientation have the same edge energy. However, crystals on a

non-Bravais lattice do not share this property and graphene is not a Bravais lattice.

We seek the tools to be able to calculate the edge energy not only for the nearest-

neighbor bond-counting model of graphene, but for more generalized models counting

more bonds and/or occuring on different non-Bravais lattices in 2 or 3 dimensions.

While the graphene lattice is not a Bravais lattice, it is what is referred to as

a lattice with a basis. The basis consists of two atoms, one of type A and one of
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type B which can then be used to tile the plane in a Bravais lattice. Atoms of type

A have one set of nearest-neighbor directions while atoms of type B have another.

For the purposes of this work, let atoms with nearest-neighbors in the directions

{(0, 1), (±
√

3/2,−1/2)} be of type A and let atoms with nearest-neighbor directions

{(0,−1), (±
√

3/2, 1/2)} be type B.

In order to fully characterize edge energy on a non-Bravais lattice, we divide the

set of all edge orientations into three cases:

1. Commensurate edge orientations for which edge energy is invariant under

translation. We will refer to these as “uniform” orientations.

2. Commensurate edge orientations for which edge energy is multi-valued under

translation, hereafter referred to as “funny” orientations.

3. Orientations such that if the edge passes through one atom, it doesn’t pass

through another, or “noncommensurate” directions.

Before we proceed, it’s important to note how this work relates to other studies on

the edge energy of graphene. For the most part, other works measure the energy for a

small set of discrete orientations related to the symmetries of the lattice, using either

physical experimentation or high-powered computing methods like density functional

theory. Afterwards, various interpolation methods are used to estimate the whole

curve. While the bond-counting model used in this work is more simplistic, we can

essentially compute the entire picture and discover some interesting effects lost in the

process of only using a small set of orientations.

4.1 Edge Energy Calculation

In this section, we derive the edge energy for graphene only counting nearest neighbor

bonds. As with Bravais lattice models, we can compute energy values for a particular

bond orientation and sum over the whole bond set to derive the total surface energy.
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Now each type of graphene atom has a different set of bonds, but for each bond v

in one set, −v is a bond in the other. Therefore, we only need to use one of the two

sets of bonds to count all bonds cut per unit length along an edge.

Pick a bond orientation vector v and rotate the lattice such that v · (1, 0) = 0. We

start by defining the sequence α = {α1, α2, . . . } where αn takes values in the interval

[0, 3] corresponding to where the edge intersects each bond-line period. A bond is cut

at the nth bond-line if αn ∈ (0, 1) as shown in Fig. 4.2.

Figure 4.2: An example of an edge and its sequence α.

With the lattice oriented this way, we can directly calculate each αn. Let the

slope of the edge be given by s and without loss of generality, let the origin be at

a node of the lattice. For all n ∈ N, αn is the remainder when dividing nC by 3,

where C =
(
s
√

3
2

+ 3
2

)
. C can be understood as the signed distance from the point

(
√

3/2,−3/2) to the edge’s intersection with the first bond-line.

Note that an edge with slope s is commensurate if and only if
√

3s ∈ Q. This is

readily apparent since
√

3s ∈ Q implies C ∈ Q and nC ∈ Z for some n. And when

nC ∈ Z the bond-line intersection corresponding to αn occurs at a node of the refined

Bravais lattice, making the edge commensurate.
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Another important observation is that an α sequence for a commensurate edge

repeats values over a finite period. This is a consequence of the existence of the

refined Bravais lattice. Any commensurate edge on a Bravais lattice that can be

drawn through one node passes through an infinite number of atoms and each

atom is indistinguishable from another. On the graphene lattice, not only must a

commensurate edge pass through an infinite number of atoms, it passes through an

infinite number of atoms of the same type as the first. If we let the origin atom be of

Type A, we can translate the entire lattice so that some other Type A atom lying on

the edge is mapped to the origin and the result of recalculating α would be identical

to the original. Thus α is repeating and let bv ∈ Z be the period of α.

4.1.1 Bravais Refined Lattice

In the previous chapter, I have detailed the calculation of edge energies for an ideal

crystal on any Bravais lattice. The graphene lattice has a nice relationship with the

Bravais lattice generated by primitive vectors (
√

3/2, 1/2) and (0, 1), namely that you

can construct the Bravais lattice by placing a node at the center of each hexagonal

cell of the graphene lattice as shown in Fig. 4.3. As a result, these two lattices share

a property that makes our job in trying to calculate the edge energy of the graphene

lattice much easier: they share the same bond-lines. Any bond-line constructed on

one coincides with a bond-line on the other. The set of bond-lines on each lattice

is the same, but the difference in edge energy arises as a consequence of the gaps

between bonds within bond-lines on the graphene lattice. The density of bonds along

a bond-line on a Bravais lattice is always constant but on a non-Bravais lattice it

need not be.

Consider three classes of nodes on this Bravais refined lattice: type A and B nodes

which coincide with type A and B atoms respectively on the graphene lattice and a

third type C which were placed as part of the Bravais lattice’s construction at the

centers of the hexagonal cells of graphene. If we were to extend a line in the direction
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Figure 4.3: The construction of the graphene lattice’s corresponding Bravais refined
lattice.

of a funny edge through a node of the refined lattice, it would pass through an infinite

number of nodes of the same type and not through any other nodes. Consider the

collection of all such lines. Note that since these lines lie on a Bravais lattice, they

are all equally spaced. Lines that pass through type A and B atoms are the borders

of energy bands on the graphene lattice since each bond that has funny directions is

shared by one type A atom and one type B atom. Thus, as a funny edge is translated

through one of these lines it either loses or gains a bond and changes energy values.

Let Γv(n̂) be the number of v bonds cut by an edge on the Bravais refined lattice

per unit length and let Γ(n̂) =
∑

v∈V Γv(n̂). I will compute the graphene energy for

an edge with normal n̂ in terms of Γ(n̂).

4.1.2 Uniform Edges

Theorem 4.1. An edge orientation of graphene is uniform with respect to nearest-

neighbor bonds if and only if 3 | bv or equivalently, if when the edge passes through an

atom of type A, it must also pass through an atom of type B.

If 3|bv then αn = 1 and αm = 2 for some m,n < bv, corresponding to intersections

at a type-A node and a type-B node respectively as shown in Fig. 4.4. This leads to

a uniform edge because when translating such an edge across the lattice, whenever

the edge ceases to cut a particular v-bond by passing through a type A atom, it picks
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up another v-bond by passing through a type B atom. Since a new bond is picked

up every time a bond is lost, the number of bonds cut per unit length never varies.

(a) (b)

Figure 4.4: Here the bond intersections on one period of a uniform edge are
illustrated.

Note that since the values of α within a period are evenly distributed in [0, 3], for

a uniform edge, one third of the αn values in a period lie in the interval (0, 1] and

correspond to a bond crossing. Thus one third of bond-line intersections occur at

bonds on the graphene implying that the edge energy is one third that of the same

edge on the Bravais refined lattice. Therefore the edge energy for a uniform direction

is given by

γ(n̂) =
1

3
Γ(n̂) =

2

3
√

3

3∑
i=1

|n̂ · vi| (4.2)

where v1 = (
√

3/2, 1/2),v2 = (−
√

3/2, 1/2),v3 = (0, 1). For the armchair orientation

(e.g. n̂ = (1, 0)), this gives an edge energy value of 2/3.

One thing to note here is that the edge energy 1
3
Γ(n̂) has a hexagonal Wulff shape

with edges in the armchair orientation, since those are the minimal energy directions

in Γ. However in simulations and experimental results alike, the equilibrium shape

of graphene is a hexagon with zigzag edges, which is a funny orientation. In fact, in

KMC simulations in which atoms are arranged in an armchair hexagon, the crystal

still seeks zigzag orientation edges in equilibrium as shown in Figure 4.5.
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(a) (b) (c) (d)

Figure 4.5: Results of equilibrium KMC simulation on a hexagonal lattice. In (a),
atoms are initially arranged as a hexagon with armchair orientation edges. In (b),
the crystal seeks zigzag edges very quickly and eventually achieves a hexagonal shape
in (d) with fully zigzag orientation edges.

4.1.3 Funny Edges

Zigzag orientation edges can only pass through one type of atom, making it a funny

direction. As shown above, there are two distinct edge energy values for zigzag edges.

The minimum value is 1/
√

3, which is lower than armchair energy, but the maximum

value is 2/
√

3. The fact that graphene seeks zigzag orientation edges at equilibrium

suggests that the minimum edge energy value for a funny orientation drives growth

behavior.

Now we calculate edge energy for all funny edges of graphene. Since they are

commensurate, funny edges have a repeating sequence α but in the case of funny

edges, bv ≡ 1 or 2 mod 3. Then there is no way to have exactly one third of the αn

values occur in (0, 1] and, depending on the position of the edge, the energy will take

a value above or below Γv. For example, the funny edge in Fig. 4.6 has bv = 5 and

in its current position two of the five distinct αn take values in (0, 1] but if the edge

were translated a slight distance down, only one αn would be in (0, 1].

Define the edge’s period length p to be the distance between atoms of the same

type along the facet. If bv ≡ 1 mod 3, the number of intersections on a bond per

length p is (n− 1)/3. Therefore the lesser of the two edge energies is given by

γ−v (n̂) =
n− 1

3p
=
pΓv(n̂)− 1

3p
=

1

3
Γv(n̂)− 1

3p
.
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(a)

(b)

Figure 4.6: Here the bond intersections on one period of a funny edge is illustrated.

Similarly the greater edge energy which occurs for one third of the possible

translations is

γ+
v (n̂) =

1

3
Γv(n̂) +

2

3p
.

And if bv ≡ 2 mod 3, the two edge energy values are

γ−v (n̂) =
1

3
Γv(n̂)− 2

3p
, γ+

v (n̂) =
1

3
Γv(n̂) +

1

3p
.

Since each funny direction has two distinct edge energy values, we can identify

“bands” on the lattice in which each edge has the same energy value, as shown in Fig.

4.7. The edge energy within a single band is invariant under translation regardless

of the choice of bonds. However, within a band, some bonds may contribute the

maximum value γ+
v while others contribute the minimum value γ−v . In order to

calculate the total edge energy within any band for any funny orientation, we present

methods for determining whether a bond’s energy takes γ+
v or γ−v for a particular

bond.

Proposition 1. For any funny orientation, bands take on two different widths, one

being twice as wide as the other.

Proof. Consider the graphene lattice’s corresponding Bravais lattice: the regular

triangular lattice and the collection of lines that pass through each lattice node in
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the direction of the facet as above. Lines that pass through type C atoms on the

triangular lattice lie equally spaced between A and B lines, meaning that they lie in

the middle of half of the bands. These bands are then twice as wide as the others.

(a) (b)

Figure 4.7: Energy bands for two different funny edge orientations. The edges in (a)

have normal n̂ = (−
√

3/2, 1/2) and the edges in (b) have normal n̂ =
(
− 3

2
√

2
, 5

2
√

7

)
.

Proposition 2. The number of funny edge lines on the triangular lattice crossed by

a single v bond is equal to bv.

Proof. On the corresponding Bravais lattice, the number of bond intersections per

unit length is γ(n̂). Then bv = pγ(n̂). And since this is a funny edge, it only intersects

one atom on a length of p, meaning that each intersection on a bond corresponds to

one intersection on a edge segment of length p.

This is important because each of these bonds cross bands of the same width at

each end of the band and it is within these bands that the edge energy takes the value

γ+
v . If bv ≡ 1 mod 3, the thin bands give the value γ+

v and the wide bands give the

value γ−v . The opposite holds if bv ≡ 2 mod 3.

Therefore we can determine the total edge energy for a funny edge within each of

the two energy bands given any set of bonds vi. The edge energy for a edge within a

thin band is given by

γ1(n̂) =
∑

bvi≡1 mod 3

γ+
vi

(n̂) +
∑

bvi≡2 mod 3

γ−vi
(n̂) =

1

3
Γ(n̂) +

2

3p
(m1 −m2) (4.3)
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where mi is the number of bonds in {v} for which bv ≡ i mod 3. Similarly, the edge

energy for a edge within a thick band is

γ2(n̂) =
1

3
Γ(n̂) +

1

3p
(m2 −m1). (4.4)

Note that |γ1 − 1
3
Γ| = 2

3p
|m1 −m2| and |γ2 − 1

3
Γ| = 1

3p
|m1 −m2| which means that

limp→∞ |γ1 − 1
3
Γ| = limp→∞ |γ2 − 1

3
Γ| = 0.

Let γ−(n̂) = min{γ1(n̂), γ2(n̂)} and γ+(n̂) = max{γ1(n̂), γ2(n̂)}. We can confirm

that zigzag orientations minimize γ− by calculating γ− along all funny directions with

p below some threshhold value, as shown in Fig. 4.8. For large p, both edge energies

are close to Γ so as long as the minimum value of γ− for low p is less than Γ for all n̂,

it is the minimum edge energy value for all edges on the crystal. It is interesting that

if we perform the classical Wulff construction using γ− as the edge energy, we get

a hexagon with zigzag orientation edges, coinciding with the graphene equilibrium

shape, as shown in Fig. 4.8b.

(a)

(b)

Figure 4.8: A graph of γ− in blue and γ+ in gold is shown in (a). In (b), we show
the result of the Wulff construction using γ−.
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4.1.4 Non-Commensurate Edges

Edge energy along an edge with non-commensurate orientation is a different beast

altogether. Commensurate edges are periodic in that they break the same number of

bonds over some period all along the edge. A non-commensurate edge however, can

only pass through one atom at once and does not have any sense of periodicity. The

edge energy is meaningful only if defined as the mean number of bonds cut across the

entire edge.

A natural hypothesis for this mean is the same value as uniform edge energies:

1
3
Γ(n̂). This would be good news, as edge energies are simple to calculate on a Bravais

lattice, even for non-commensurate directions. We demonstrate that this is in fact

the edge energy for all non-commensurate directions.

Theorem 4.2. The energy along a non-commensurate edge, defined as the mean

number of bonds cut per unit length by the edge, is given by γ(n̂) = 1
3
Γ(n̂).

Proof. For a non-commensurate edge,
√

3s ∈ I, meaning that C is irrational;

otherwise, Cn would take integer values for some n and the edge would pass through

another atom and be commensurate. In this case, not only does α not repeat, but

all of the infinite αn values are distinct. Then, by Weyl’s equidistribution theorem

(Weyl, 1916), the set of all αn is uniformly distributed in [0, 3]. This implies that one

third of all αn are in (0, 1] and therefore, one third of all bond-line intersections occur

at a bond.

The same result holds for each v ∈ {vi} and therefore

γ(n̂) =
∑
i

1

3
Γv̂i

(n̂) =
1

3
Γ(n̂).
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4.2 Generalization for All Graphene Bonds

Bonds between graphene atoms can be classified as follows:

1. Bonds between atoms of the same type.

2. Bonds between a type A atom and a type B atom

A bond corresponding to a vector v that occurs between atoms of the same type

has the property that each atom shares two bonds with orientation v. This means

that each bond-line has a constant bond density which further implies that there are

no funny directions with respect to such a bond.

Figure 4.9: Next-nearest-neighbor bonds occur between atoms of the same type.

However, in the case of graphene these bond-lines are no longer equally spaced, as

shown in Fig. 4.9. To see this, consider the Bravais refined lattice discussed earlier.

If we plot the v bond-lines on the Bravais lattice, one third of the lines are formed

by bonds between type C atoms and thus only intersect type C atoms. The graphene

lattice doesn’t contain any type C atoms and therefore has two-thirds the number of

bond-lines and the edge energy for v bonds is given by

γv(n̂) =
2

3
Γv(n̂)
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for all edge orientations.

Bonds with a vector v between atoms of differing types are more complicated.

Nearest-neighbor bonds are in this class and we’ve demonstrated that it’s energy is

given by

γ(n̂) =
1

3
(Γv(n̂)± E)

where E = 0 for uniform edges. This formula holds for all v between type A and

type B atoms including those shown in Fig. 4.10.

(a) (b)

Figure 4.10: Next-next- and next-next-next-nearest neighbor bonds. Next-next-
nearest-neighbor bonds shown in (a) do occur between A-type and B-type atoms, but
they are in the same direction as nearest-neighbor bonds. Next-next-next-nearest-
neighbor bonds with v = (

√
3, 2) are shown in (b).

The bond direction v illustrated in Fig. 4.10a is an interesting case. Note that v =

2(
√

3/2, 1/2) and that v′ = (
√

3/2, 1/2) is a nearest-neighbor direction. Their bond-

lines are obviously the same and thus have the same funny edges. The continuous

part of γ is still given by γv(n̂) = 1
3
Γv, although note that |v| = 2|v′| implies that

Γv = 2Γv′ . However, γv takes max and min values in bands opposite those of γv′ .

These two bond directions might well be denoted complimentary bonds.
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4.3 Comparison with Graphene Literature

C. K. Gan (2009) were the first to address the issue of edge energy for individual

graphene flakes. They use DFT calculations for a collection of graphene ribbons

at seven different orientations to interpolate an edge energy function. They consider

unreconstructed graphene with both non-terminated and hydrogen terminated bonds,

as well as a model for re-constructed graphene. They find that the unreconstructed

graphene edge energy function has maxima at zigzag orientations, unlike the

edge energy function calculated in this work. This inconsistency is due to the

simplicity of the bond-counting model we’ve used and the much more accurate energy

measurements of DFT. However, the existence of funny directions is a consequence

of the lattice structure of graphene and not the energy potential used in the

model. Interestingly, Gan and Srolovitz later demonstrate a shift in orientation as

an unreconstructed graphene flake is allowed to relax and reconstruct, giving an

equilibrium shape identical to those shown earlier in this chapter.

Y. Liu (2010) revisit the problem and first consider an arbitrarily oriented

graphene edge that can be decomposed into a number of zigzag and armchair

components, so that the edge energy can be represented using two energies of these

primary configurations along with zigzag and armchair densities that can be computed

from simple geometric considerations yielding a continuous energy function. Again,

this function differs from those calculated here due to differences in the models. They

include as parameters the terms εA and εZ defined as the edge energy contribution

from each atom in an armchair or in a zigzag component respectively. The values

they used for these terms are derived from DFT calculations which show εA < εZ . In

bond-counting models, we assume that each bond contributes equally to edge energy

and since both zigzag and armchair atoms are two-coordinated, εA = εZ in a graphene

bond-counting model.
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The edge energy function used by Liu et al. is given by

γL(n̂) = (4/
√

3)εA sin(π/6− θn̂) + 2εZ sin(θn̂)

for θn̂ ∈ [−π/6, π/6] and the rest of the function is determined by symmetry. The

result of overlaying γL onto the edge energy plot of this chapter, setting εA = εZ

and scaling so that γL((1, 0)) = γ((1, 0)), is shown in Fig. 4.11. Note that some of

the γ− values are coincide with γL values. These orientations correspond with all

edges for which the minimum energy configuration does not have any singly-bonded

atoms. In fact, in Liu et al.’s derivation of this function, the zigzag and armchair

components do not contain any singly-bonded atoms. This implies that their edge

energy function is for graphene edges after the removal of any such atoms, leading to

a single-valued function. They do not seem to justify this choice. It may be due to

the idea that any singly-bonded atom is too weakly connected to a graphene flake to

stay in equilibrium. However, these atoms do occur in an atomistic growth model of

graphene and funny directions should have an effect on growth behavior.

4.4 KMC Experimentation

We have established the existence of funny edge orientations for graphene and

identified the effect thereof on graphene edge energy but what effect, if any, do funny

edges have on the growth behavior of graphene. We have already seen the qualitative

results of a KMC simulation for the equilibrium shape of a graphene flake in Fig. 4.5,

but let us now compare similar simulations on both the graphene and the triangular

lattice.

In Fig. 4.12 we see two KMC equilibrium shape simulations. The top row shows

the time evolution of a flake with regular triangular lattice structure with w/(kbT ) =

10 and the bottom row depicts a simulation of a graphene flake with w/(kbT ) = 15.
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Figure 4.11: The edge energy function of Liu et al. is shown in red and overlaid on
the plot of funny edge energies γ.
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The lattices are oriented so that the Wulff shapes are both hexagons with the same

orientation for easy comparison.

Figure 4.12: Two 2-dimensional KMC simulations with reflective boundary
conditions yielding equilibrium shapes. The top row is the time evolution of a flake
of material with triangular lattice structure. The bottom row is that of a graphene
flake, rotated so that both simulations have identically oriented equilibrium shapes.
s is the number of KMC iterations.

There are a couple of critical observations in comparing these two simulations.

First, the initial hexagons have the same area, implying that the system size of the

triangular simulation is 1.5 times that of the graphene simulation (60,000 vs 40,000),

due to there being more nodes in the lattice per area. Next, the equilibrium shape

in the graphene simulation is more rounded than the triangular equilibrium shape

despite having a greater value for w/(kbT ). Recall from the previous chapter that

higher temperature simulation leads to a greater difference between the edge energy

and the edge free energy and a rounder equilibrium shape. The effective temperature

in this graphene simulation is actually higher than the triangular, because of a smaller

set of nearest-neighbor directions leading to less-coordinated atoms.

Normally, a simulation with lower system size and higher temperature should

reach equilibrium faster. However, the graphene flake takes a dramatically greater

amount of time to reach equilibrium. It is likely that this is a result of the existence

of funny directions for graphene. Remember that graphene edge energy in this model
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is minimized at a funny direction and note in Fig. 4.8 that in a neighborhood around

the zigzag orientation there are no other orientations with an energy value close to

that of zigzag. Kinetic Monte Carlo simulations seek lower-energy configurations

locally around the current configuration. Without funny directions, this sampling

quickly finds lower energy configurations along a continuous edge energy curve. On a

non-Bravais lattice however, funny directions give discontinuities in the edge energy

which appear to make it harder for the simulation to find lower energy configurations.

4.5 Conclusion

We have demonstrated how to calculate the edge energy for any commensurate

graphene edge in a bond-counting model given any set of bonds. The methods used

in this paper can be applied to a wide set of 2D and 3D crystal lattices. As new

materials are discovered everyday, it is important to be able to calculate edge/surface

energies and equilibrium shapes. While there are difficulties that may arise when

trying to do this for lattices in general, graphene provides a solid foundation and

most of the tools needed to be able to examine any crystal lattice of interest.

We have also observed that a material that assumes a non-Bravais lattice structure

may have a fundamental difference of behavior when compared to a Bravais material,

at least in the time required to find low energy configurations. There is still much

more work to investigate and corroborate this hypothesis.
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Chapter 5

More Non-Bravais Lattice

Examples

The same techniques used earlier for calculating graphene edge energy can also be

used for a wide array of non-Bravais lattices. In this chapter I offer a short list.

5.1 Bravais Alloys

Define a Bravais alloy to be a multi-species material in which all atoms lie on the

same Bravais lattice. In other words the atom at each node can be one of a small set

of distinct types. Presumably this implies that the strengths of bonds vary between

each pair of atom types. Additionally, we require that the alloy is a lattice with a

basis as defined in Chapter 2, so that all atoms on the basis Bravais lattice originating

from one atom are all of the same type. Note that while the lattice itself may be

Bravais, the model can be considered non-Bravais due to the fact that atoms are no

longer indistinguishable.

For example, consider the regular triangular Bravais lattice defined by primitive

vectors a1 = (0, 1) and a2 = (
√

3/2, 1/2). A simple Bravais alloy with three species

(A, B, C) can be constructed by placing an A atom at each node of the Bravais lattice
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with primitive vectors a1 + a2 and 2a2 − a1. Similarly, species B and species C are

arranged on the same lattice as species A only offset by the vectors a2 and a2 − a1

respectively as shown in Fig. 5.1.

Figure 5.1: An example of a three-species Bravais alloy on the regular triangular
lattice. Each species, differentiated by red, yellow and blue nodes, is arrayed in a
coarser Bravais lattice. The bonds between each pair of species have a different bond
strength indicated by color: orange, green and purple.

In this example there are three different bond strengths of nearest-neighbor bonds;

let the strength of a bond between species i and j be denoted wij. Note that the

Bravais lattice formed by all the atoms of a single species is identical to that of all

the atoms of one type in the graphene lattice. In fact, mathematically the graphene

lattice is a specific instance of this Bravais alloy with atom types treated as the three

species and weights w12 = 1, w13 = 0 and w23 = 0.

The set of uniform directions of this alloy is identical to that of graphene, since

any facet that passes through both A and B atoms must also pass through C atoms.

We observe here that plotting all bonds of weight wij yields the edges of the graphene

lattice offset from those of the other two weights but with the same orientation. Thus

the contribution of each bond type to the edge energy of a uniform edge is
wij

3
Γ and

the total uniform edge energy is given by:

γ(n̂) =
w12 + w13 + w23

3
Γ(n̂).
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Note that this gives the correct values for the regular triangular lattice (w12 = w13 =

w23 = 1) as well as the graphene lattice ((w12 = 1, w13 = w23 = 0).

Funny directions on the alloy are more complicated. Recall the use of bands to

calculate funny edge energy in the previous chapter. In the alloy, there are now three

categories of bands each with potentially distinct edge energy. Within each band,

one of the bond types contributes its thin-band energy value to the energy total and

the other two types contribute their thick-band values. Assuming without loss of

generality that the bonds contributing graphene thin band value are those between

species A and B, the edge energy contribution for a particular bond-direction v can

be written:

γv(n̂) =
w12 + w13 + w23

3
Γv(n̂) +

1

3p
(2w12 − w13 − w23) if bv ≡ 1 mod 3

or

γv(n̂) =
w12 + w13 + w23

3
Γv(n̂) +

1

3p
(w13 + w23 − 2w12) if bv ≡ 2 mod 3.

Then the total edge energy is calculated by summing over all v.

For example, consider the armchair edge with normal n̂ = (0, 1) on an alloy with

weights w12 = 0.5, w13 = 1.0 and w23 = 1.5. The set of nearest-neighbor bonds is

given by V = {v1 = (0, 1),v2 = (
√

3/2, 1/2),v3 = (−
√

3/2, 1/2)}. Then bv1 = 2 and

bv2 = bv3 = 1. Since Γ(n̂) = 4/
√

3, the edge energy in the band in which AB bonds

contribute thin band values is given by:

γ1(n̂) =
∑
V

γv(n̂) =
w12 + w13 + w23

3
Γ(n̂)+

1

3
√

3
[(w13 + w23 − 2w12) + 2(2w12 − w13 − w23)]

= Γ(n̂) +
1

3
√

3
(2w12 − w13 − w23) =

3.5√
3
.
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Similarly,

γ2(n̂) = Γ(n̂) +
1

3
√

3
(2w13 − w12 − w23) =

4√
3

and

γ2(n̂) = Γ(n̂) +
1

3
√

3
(2w23 − w12 − w13) =

4.5√
3
.

5.2 The Hexagonal Close-Packed Lattice

Recall that the hexagonal close-packed (HCP) lattice is a three-dimensional non-

Bravais lattice closely related to the face-centered cubic lattice. Similar to the

graphene lattice, there are two sets of nearest-neighbor bond directions, although

it is only the neighbor directions between sheets of the triangular lattice that differ.

Calculating the surface energy for an HCP material is very similar to the

computation of graphene edge energy. The corresponding Bravais refined lattice can

be constructed by placing new nodes at the center of each triangle formed by nearest-

neighbor bonds within each sheet of the HCP lattice as shown in Fig. 5.2. Every

sheet is a two-dimensional triangonal lattice so each of the bond-directions within

a sheet do not have any funny orientations. The calculation of funny facet energies

then only depend on the contributions of bonds between sheets of the lattice. The

associated bond-lines only coincide with bonds for one sixth of their lengths, yielding

γ =
1

6
Γ

where Γ is the surface energy on the Bravais refined lattice. The remaining work here

is to find a set of funny facet orientations with period below some area threshold and

calculate the energy values for each.

More non-Bravais lattices with a basis have further complications. Most of these

lattices, for example, have more than two atoms within a basis cell. Others have

bonds that do not lie on commensurate bond lines. For the most part, these lattices

will require case by case inspection to overcome the associated difficulties, although
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Figure 5.2: The Bravais refined lattice corresponding to the HCP lattice.

there is more work that can be done on calculation of surface energy for this class of

lattices in general.
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Chapter 6

Conclusion

Within this dissertation are two main results:

1. I have demonstrated that there is an inherent difference in the truncation of

surface energy between KMC bond-counting models and continuum crystal

growth models. This leads to growth behaviors that may manifest in one model

but not the other.

2. I have demonstrated the computation of a discontinuous, multi-valued edge

energy function for the graphene lattice and shown that the existence of funny

edges may affect graphene growth behavior.

I have also shown areas in which this work can be generalized to more materials with

more exotic lattice structures. I plan on continuing this research to build the theory

of surface energy calculation and dendritic growth.

These ideas are important to anyone using KMC or other atomistic modelling

methods to study crystal growth, as an improved understanding of surface energy

lends itself to a greater understanding of growth behavior. However, the methods

for calculating surface energy directly from a material’s lattice structure can be used

to implement atomistic effects in a continuum crystal growth model by informing

the choice of surface energy function. In particular, if funny directions do greatly
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influence growth behavior, there is work needed to understand how one can introduce

this influence into continuum models. Hopefully, the work done here will be expanded

upon by myself and others and both continuum and atomistic models will benefit as

a result.
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