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ABSTRACT 

 

We are currently experiencing an explosive growth in data collection technology that 

threatens to dwarf the commensurate gains in computational power predicted by Moore’s 

Law. At the same time, researchers across numerous domain sciences are finding success 

using network models to represent their data. Graph algorithms are then applied to study 

the topological structure and tease out latent relationships between variables. 

Unfortunately, the problems of interest, such as finding dense subgraphs, are often the 

most difficult to solve from a computational point of view. Together, these issues 

motivate the need for novel algorithmic techniques in the study of graphs derived from 

large, complex, data sources. This dissertation describes the development and application 

of graph theoretic tools for the study of complex networks. Algorithms are presented that 

leverage efficient, exact solutions to difficult combinatorial problems for epigenetic 

biomarker detection and disease subtyping based on gene expression signatures. 

Extensive testing on publicly available data is presented supporting the efficacy of these 

approaches. To address efficient algorithm design, a study of the two core tenets of fixed 

parameter tractability (branching and kernelization) is considered in the context of a 

parallel implementation of vertex cover. Results of testing on a wide variety of graphs 

derived from both real and synthetic data are presented. It is shown that the relative 

success of kernelization versus branching is found to be largely dependent on the degree 

distribution of the graph. Throughout, an emphasis is placed upon the practicality of 

resulting implementations to advance the limits of effective computation. 
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CHAPTER ONE INTRODUCTION AND BACKGROUND 

 

Recent years have witnessed an explosive growth in the amount of raw data available for 

researchers. Access to such vast stores of data provides exciting opportunities for new 

discovery, while the very size of the datasets of interest creates ever evolving 

computational challenges. Even though growth in computing power has continued to 

observe Moore’s Law and double roughly every two years, the gains are being offset, and 

in many cases dwarfed, by a corresponding growth in data size. In fact, it was estimated 

in 2013 that 90% of the data available in the world had been generated in the two 

preceding years alone [1]. 

 

At the same time, the study of complex networks such as biological, transportation, 

social, and communication networks has become ubiquitous across the domain sciences. 

For example, network models have been used in the elucidation of putative gene 

networks [2, 3], the study of protein-protein interactions [4], examining the spread of 

influence through social networks [5], and studying the organization of the human brain 

[6]. Central to the understanding of such networks are their topological structures. As 

such, the study of complex networks is intimately interwoven with graph theory and 

graph algorithms. 

 

In the study of complex networks, we must deal with two distinct hurdles. First, we are 

faced with the ever-increasing rate of growth of available data sets. The second, and 

perhaps more insidious challenge, is that the problems we often wish to solve are among 

the most difficult from a computational point of view. For example, the problem of 

finding the maximum clique in a graph, its largest fully connected subgraph, is in fact 

NP-complete. Overcoming these difficulties will require the use of novel algorithmic 

techniques such as Fixed Parameter Tractability (FPT) and the development of scalable 

parallel solutions. 



2 

 

The primary focus of this dissertation is the development of novel graph-theoretical 

approaches utilizing exact solutions for classical NP-complete problems to analyze the 

structure of complex networks. The specific settings considered in chapters two and three 

are from the biological sciences, but the applications transfer easily to other domains. To 

address the computational challenges the quest for such exact solutions impose, chapter 

four investigates the relative importance of the two key components of a parallel FPT 

implementation of vertex cover – kernelization and branching. Finally, chapter five 

summarizes the results and main contributions, as well as suggesting some avenues for 

further research. 

 

Data Types 

Gene Expression 

 

The history of modern DNA microarrays traces back to the colony hybridization method 

of Grunstein and Hogness in 1975 [7]. In the roughly four decades since, microarray 

technologies have proven to play a central role in advancing biological research. 

Microarrays measure gene expression levels using chips with a set of hybridization 

probes designed to target and bond to a specific sequence of mRNA. The technology has 

advanced to the point that platforms such as the Affymetrix Exon 1.0 ST array are 

capable of exon level resolution of expression with approximately 1.4 million probesets 

comprised of over 5 million individual probes. For an excellent review of the history, 

types, and applications of DNA microarrays see [8]. 

 

Epigenetic Data 

 

When the Human Genome Project undertook its mission to map the entire DNA sequence 

of the human genome in 1990, it carried the hope of transforming our understanding of 
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biology. In 2001 it was even chronicled in an episode of NOVA on PBS entitled 

“Cracking the Code of Life [9].” While certainly representing a great leap forward in our 

fundamental knowledge of genetics, it has become clear since its completion in 2003 that 

there are mechanisms at play in the actual expression of genes that go far beyond the 

physical arrangement of the underlying genetic code. These discoveries have led to the 

establishment of a new branch of research – epigenetics. This fledgling field was defined 

in 1990 by Robin Holiday as “the study of the mechanisms of temporal and spatial 

control of gene activity during the development of complex organisms [10].” In recent 

years, however, there has been some disagreement over whether the definition of an 

epigenetic trait should be limited to those that are heritable [11]. 

 

A variety of epigenetic mechanisms have been discovered. Two of the major classes of 

epigenetic modifications are DNA methylation and histone modification. 

 

DNA methylation generally occurs when a methyl group is added at the 5’ position of the 

cytosine ring, transforming the cytosine to 5-methylcytosine. Usually this occurs at CpG 

dinucleotides, although non-CpG methylation has been seen to occur more frequently in 

specific contexts such as neural development and in embryonic stem cells [12]. The 

process is believed to be regulated by DNA methyltransferases including DNMT1, 

DMNT3a, and DMNT3b. DNMT1 works to maintain methylation patterns by 

recognizing and copying them to the unmethylated daughter strands during DNA 

replication. DNMT3a and DMNT3b are thought to be responsible for de novo 

methylation events. Mutations in the DNMT3b gene have been found to be responsible 

for ICF (Immunodeficiency, centromeric instability, facial anomalies) syndrome [13], 

while mutations to any of DNMT1, DNMT3a, or DNMT3b have been found to be 

embryonically lethal in mice [14, 15].  

 

In humans, some 70% of CpG dinucleotides throughout the genome are methylated [16]. 

At the same time, there are genomic regions with a heavy concentration of CpG content 
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that can be found in the promoter regions of many genes. The cytosines in these CpG rich 

regions, termed CpG islands, tend normally to be unmethylated with exceptions in the 

context of the inactive X chromosome [17] and imprinted genes [18, 19]. Aberrant 

methylation patterns have been found to play a role in many diseases. In particular, it has 

been shown to play a dual role in many forms of cancer through both a pattern of global 

hypomethylation, allowing aberrant overexpression and ensuing oncogenesis, together 

with hypermethylation of CpG islands in the promoter regions of tumor suppressor genes, 

leading to their silencing [20-22]. 

 

Histone acetylation occurs when an acetyl group is added to the NH3+ group on Lysine. 

The process takes place at the N-terminal of histone tails. Acetylation and deacetylation 

are generally catalyzed by histone acetyltransferase (HAT) or histone deacetylase 

(HDAC) enzymes respectively. Acetylation acts to transform the overall positive charge 

of the histone tail to neutral, weakening the binding of the nucleosomal components and 

making the DNA more accessible to transcriptional agents. Thus, hyperacetylation is 

positively correlated with actively transcribed genes. 

 

The lysine and arginine residues of the histone tails can be methylated, but it is most 

commonly observed on the lysine residues of the tails of H3 and H4. Lysine can be 

mono-, di-, or trimethylated with a methyl group replacing a hydrogen of its NH3+ 

group. Arginine has a free NH2 and NH2+ group and can be mono- or dimethylated. A 

demethylation of arginine can occur on a single group, or with an asymmetric 

methylation of each group. 

 

Although DNA methylation and histone modifications are perhaps the most studied and 

well known epigenetic mechanisms, a vast amount of ongoing research is also being 

invested in other post-translational modifications such as phosphorylation, ubiquitination, 

and somoylation. 
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Other Amenable Data Types 

 

While the applications we consider in the next two chapters are drawn from the biological 

domain, our methods are based on abstract models. As such, they can be applied to 

virtually any type of data that admits such a model. The only requirements are that there 

must be some entities that can be represented by nodes and we must be able to calculate 

some similarity metric between them. Data can be continuous like the biological data 

already considered, or categorical. For example, other work at the Langston Lab has used 

graph algorithms to examine categorical data from the health disparities domain [23]. 

 

Translation to Graphs 

Creation of Graphs 

 

In seeking to analyze vast networks, we model the interactions as a graph so that we can 

apply graph algorithms to better our understanding of the latent relationships. Nodes can 

then be used to represent entities of interest, be they genes in a gene network, proteins in 

a protein-protein interaction network, locations in a transportation network, or people in a 

social network. In order to model the relationships between the actors represented by the 

nodes, we must have some concept of how to place edges between them. In some 

contexts, this is as straightforward as connecting “related” nodes, such as placing edges 

between nodes in a social network if the people they represent are acquaintances or 

between nodes in a road network if the locations they represent are connected by a road. 

In others, we need a more mathematical or technical idea of a similarity measure such as 

correlation coefficients or Jaccard similarity. 

 

In the context of gene expression networks, we often build graphs with nodes 

representing individual genes. Pearson correlation coefficients are then calculated for 

each pair of genes taken across the measures for each sample. An edge is then placed 
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connecting the nodes if the correlation level (in absolute value) exceeds some 

thresholding value. 

 

Thresholding 

 

There are a variety of methods that can be employed to select a suitable threshold value 

to use. Often times, we may use methods based on experimentation. For example, when 

building graphs for a paraclique analysis as in [24, 25], we may build a series of graphs 

that gradually reduce the threshold until we encounter an inflection point in the number 

of paracliques produced. Another approach is to use the spectral method introduced in 

[26], which uses the eigenstructure of the adjacency matrix. 

 

Relevant Graph Theory and Algorithms 

Notations 

 

A graph is an abstract representation of a network consisting of a set of vertices and a set 

of edges that connect pairs of vertices. Formally, a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) consists of a vertex set 

𝑉𝑉 and an edge set 𝐸𝐸 containing ordered pairs of vertices from 𝑉𝑉 such that (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 

indicates the presence of an edge between 𝑢𝑢 and 𝑣𝑣. A graph is said to be simple if it 

contains no self-loops or multiple edges. That is to say, there is no vertex with an edge 

back to itself, and there is at most one edge connecting any particular pair of vertices. A 

graph can be weighted by adding weight properties to its vertices, its edges, or both. In 

this dissertation, all graphs considered are simple, finite, undirected and unweighted 

unless explicitly noted otherwise. 
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A pair of vertices 𝑢𝑢 and 𝑣𝑣 are said to be adjacent if (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸. The size, or order, of a 

graph is taken to be its number of vertices, |𝑉𝑉|. The degree of a vertex 𝑣𝑣 is the number of 

vertices to which 𝑣𝑣 is adjacent, or equivalently, the number of edges with 𝑣𝑣 as an 

endpoint. The neighborhood of a vertex 𝑣𝑣 in 𝐺𝐺, denoted by 𝑁𝑁𝐺𝐺(𝑣𝑣) or, when the graph is 

clear in context simply by 𝑁𝑁(𝑣𝑣), is the set of vertices that are adjacent to 𝑣𝑣. A subgraph 

of a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) is a graph 𝐺𝐺′(𝑉𝑉′,𝐸𝐸′) such that  𝑉𝑉′ ⊆ 𝑉𝑉 and  𝐸𝐸′ ⊆ 𝐸𝐸, with the 

requirement that if (𝑢𝑢′, 𝑣𝑣′) ∈ 𝐸𝐸′ , both 𝑢𝑢′ and 𝑣𝑣′ belong to 𝑉𝑉′. A subset of vertices can be 

used to identify a subgraph of 𝐺𝐺 called an induced subgraph. An induced subgraph 

contains the inducing vertices as its vertex set, and all the edges between those vertices 

that were present in 𝐺𝐺. The complement of a graph 𝐺𝐺, denoted �̅�𝐺, is formed by removing 

the existing edges, and adding those that were not originally present. Examples of an 

induced subgraph and the complement of a graph can be seen in figure 1. 

 

 

 
 

Figure 1. Induced subgraphs and graph complements. Suppose 𝐺𝐺 is the graph shown in 
(a). Then (b) is its subgraph induced by the set of vertices {1,3,4,6}, and (c) is �̅�𝐺, its 
complement. 
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The Clique Problem and the Paraclique Algorithm 

 

A clique in a graph is a fully connected subgraph. In other words, a clique is simply a 

subgraph containing all of its possible edges. The usual notation for a clique with 𝑛𝑛 

vertices is 𝐾𝐾𝑛𝑛. An example of a 𝐾𝐾5 can be seen in figure 2. 

 

The identification of cliques has found a wide variety of applications, from identifying 

putative gene pathways [27] to detecting collusive trading patterns in the stock market 

[28]. The maximum clique problem is one of the most studied in graph theory. The 

decision version, simply deciding if a graph contains a clique of a given input size, is one 

of the original 21 NP-complete problems listed in Karp’s seminal work [29]. 

 

In practice, focusing solely on searching for cliques often proves too stringent a 

requirement. The presence of noise in real world data often leads to missing edges in our 

graphs. As the loss of even a single edge destroys a clique, such noise results in a higher 

than desirable number of false negatives when examining the data for signal. 

 

 

 
Figure 2.  𝐾𝐾5, a clique on 5 vertices. 
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In order to provide more robust resistance to the effects of noise, the paraclique algorithm 

was introduced in [25]. The basic idea is that we start with a maximum clique and grow it 

to a paraclique by successively adding in, or glomming onto, vertices that are adjacent to 

all but some acceptable number of vertices present at the current stage. The number of 

edges allowed to be missed at each iteration is governed by a constant called the glom 

term. An example of a paraclique can be seen in figure 3. 

 

The paraclique algorithm has proven to be highly effective, and shown to outperform 

other popular clustering techniques in terms of density and ontological enrichment [30]. 

Although most of the work involving the algorithm has to this point focused on its 

application, theoretical work can be found in [25, 31]. 

 

The Dominating Set Problem 

 

We can speak of both edge-dominating and vertex-dominating sets for a graph G. In this 

dissertation, by a dominating set, we will mean a vertex-dominating set, that is, a subset S 

of the vertex set V such that for every v in V, either v is in S or at least one of its 

neighbors is in S. In particular, we will be interested in a variant of Dominating Set, 

namely Red-Blue Dominating Set, in which the nodes of a graph are colored either red or 

blue and we seek the smallest set of red vertices that dominate all the blue vertices (or 

vice versa). See figure 4 for an example. 

 

Fixed Parameter Tractability 

 

In the past few decades, fixed parameter tractability has emerged as a powerful approach 

to the design and implementation of practical algorithms for solving problems once 
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Figure 3. An example of a paraclique. This example was produced with glom term g=2 
from a maximum clique of size four {1,2,3,4} (a) and progressively adding vertices 5 (b), 
6 (c), and 7 (d). 
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Figure 4. An example of red-blue dominating set. A minimum red-blue dominating set is 
formed by the set of vertices {1,4}. Note that any such set must contain vertex 4 as it is 
the only one to cover vertex 6. The covering edges as highlighted for clarity. 
 

 

deemed hopelessly intractable. The origins of FPT trace back at least to the foundational 

work of Fellows and Langston in the area of well-quasi-orderings and nonconstructive 

tools for proving polynomial time computability [32-34]. Around the same time, 

Robertson and Seymour proved the graph minor theorem, showing that undirected graphs 

are well-quasi-ordered under the graph minor relationship [35]. These results provided 

the impetus for the establishment of a new area of research, which would be termed Fixed 

Parameter Tractability, in the seminal work by Downey and Fellows [36]. 

 

One goal of FPT is to provide a more fine-grained approach to classifying the difficulty 

of a problem than that taken in classical complexity theory. Not all NP-complete 

problems are created equally after all, and perhaps even more importantly, some 

“difficult” problems may be solved very quickly in practice if we are only interested in 

solutions of a particular size. The central idea is that if there is some parameter k in the 

problem that, when held fixed, will allow the problem to be solved in time with any 

super-exponential dependence being only in k, then the problem is in the class FPT. In  

other words, a problem is FPT if it can be solved in time 𝑂𝑂(𝑓𝑓(𝑘𝑘)𝑛𝑛𝑐𝑐) where n is the 

problem size, k is an input parameter, and c is a constant independent of both k and n. 
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There are two core tenets to Fixed Parameter Tractability – kernelization and branching. 

Kernelization refers to a process of reducing the problem size to a compute kernel whose 

size depends only on the fixed parameter k. This reduction must also be doable in 

polynomial time with regards to the problem size. In [37] it is shown that a problem 

being kernelizable is in fact equivalent to it being FPT. 

 

Once the problem has been reduced to a compute-intensive kernel, it remains to explore 

the resulting reduced search space. Various branching techniques aim to explore this 

space as efficiently as possible. Whereas kernelization techniques aim to reduce the 

impact of the original problem size in algorithm runtimes, improved branching aims to 

reduce the remaining, often exponential, dependence on the size of the parameter k. 

  



13 

 

CHAPTER TWO NOVEL ALGORITHMIC DEVELOPMENT: 

EPIGENETIC BIOMARKER DISCOVERY 

        

In this chapter, we investigate the use of a combination of statistical scoring methods 

with a red-blue dominating set filter for the elucidation of novel methylation biomarkers. 

Parts of the material in this section have appeared previously in preliminary form in 

posters or in papers currently submitted for publication. These will be cited as such 

wherever appropriate. 

 

Introduction and Overview of Methods 

 

Previous work in the Langston Lab has produced innovative graph-theoretical tools for 

mining gene co-expression data for transcriptomic biomarkers. In this study, we 

investigate extensions and applications of these tools to the analysis of differential DNA 

methylation data. Sites are scored with a statistical metric that gauges their potential 

effectiveness for separating case data from control. Results are then filtered using red 

blue dominating set. Inter-sample scores are calculated for sites passing this filter using a 

custom scoring function that, based on site quality, favors homogeneous case-case and 

control-control pairs over case-control pairs. This general line of research can be traced 

back to the seminal toolchain first employed in [39]. 

 

Site Merit Scores 

 

To begin, each methylation site is assigned a merit score by means of the following 

function: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠) = |𝜇𝜇𝑖𝑖(𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠) − 𝜇𝜇𝑖𝑖(𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐)| − 𝛼𝛼|𝜎𝜎𝑖𝑖(𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠) + 𝜎𝜎𝑖𝑖(𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐)| 
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Where 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 are the mean and standard deviations, respectively, of the indicated 

sample group and 𝛼𝛼 is a constant used as a tuning factor with 0 < 𝛼𝛼 ≤ 1. We start with 

𝛼𝛼 = 1 and adjust it downward as necessary until we are able to identify sites with 

positive merit scores. 

 

Inter-sample Discrimination Scores 

 

Ultimately the goal is to be able to identify sites that are capable of providing a clean 

separation between case and control. To that end, we next calculate inter-sample scores. 

The score comparing sample 𝑠𝑠 and sample 𝑗𝑗 is assigned via: 

 

∑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘) ∙ �1 − �𝑚𝑚𝑠𝑠𝑠𝑠ℎ𝑦𝑦𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛_𝑣𝑣𝑐𝑐𝑐𝑐𝑢𝑢𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑠𝑠𝑠𝑠ℎ𝑦𝑦𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛_𝑣𝑣𝑐𝑐𝑐𝑐𝑢𝑢𝑠𝑠𝑗𝑗𝑖𝑖��. 

 

This metric is designed in such a way so as to favor homogeneous over heterogeneous 

sample pairs. Thus, case-case pairs and control-control matched pairs will tend to receive 

higher scores than mismatched case-control pairs. Presented with an unknown sample, 

the user can then compute its scores against the training set and classify it based on the 

group to which it most closely aligns. 

 

Dominating Set Filter 

 

Our scoring function has the potential to return a large number of sites with positive merit 

scores. In practice, we would like to be able to winnow these sites down to those with the 

best potential as discriminatory markers. In such situations, we apply a filter based on 

red-blue dominating set.  
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We first construct a bipartite graph with sites as red vertices forming one partite set and 

samples as blue vertices in the other. For each site, we calculate the p-value of its 

observed methylation level for each sample. This p-value is calculated in the distribution 

of the levels at that site across all the group samples of the same type, be it case or 

control. A site is said to cover a sample and an edge is added between them in the graph 

if the p-value is greater than .05. This culls from the tails of the distributions and leaves 

us with observed methylation values that are in some sense “normal” for the sample 

within its group at each site. 

 

Unfortunately, a straight application of minimum dominating set might sacrifice sites 

with high merit scores for those with lower discriminatory power based solely on the size 

of the returned set. To guard against this, we begin with the top scoring site and 

iteratively add the next highest scoring until the set built up forms a dominating set. We 

then take a minimum set from among this collection. 

 

In order to visualize the effectiveness of our reduced set in discriminating between case 

and control samples, we examine the distribution of the inter-sample scores. Presented 

with an unknown sample, we could then compute its scores against the training set and 

classify it based on which group it most closely aligns. That is, if it scores highly against 

case, with lower scores against control, it would be classified as case and vice-versa. 

 

Application: Biomarker Discovery in Human Disease 

 

Parts of this section have appeared in preliminary form in the following research poster: 

“Methylation Biomarker Discovery in Age-Related Diseases”, Ronald D. Hagan, Michael 

A. Langston, Keystone Symposia Conference on Epigenetic Aging and Aging Related 

Diseases, May 1-May 5, 2016, Santa Fe, New Mexico. 
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Age is the single greatest risk known for developing a host of diseases including cancer, 

dementia and osteoarthritis. Recent research has shown that epigenetic mechanisms too 

seem to play a key role in these afflictions. Aberrant DNA methylation patterns in 

particular have been associated with nearly all forms of human cancer. These discoveries 

provide a compelling impetus for the development of methods for the discovery of novel 

methylation biomarkers capable of differentiating between healthy and diseased states. 

Such markers could then potentially be used in screening and diagnosis, and as guides for 

the selection of therapeutic targets for DNA-demethylating agents. 

  

We applied our method to eight sets of publicly available data obtained from GEO, the 

Gene Expression Omnibus. These sets were chosen to span a variety of diseases, have a 

relatively large number of case and control samples, and to come from a common 

platform. All the sets are from the Illumina Infinium HumanMethylation450 BeadChip 

array, often referred to as the Illumina 450k methylation array. The data sets are 

summarized in Table 1.  

 

Osteoarthritis 

 

According to the Arthritis Foundation, osteoarthritis is the most common chronic 

condition of the joints. Sometimes called degenerative joint disease, it has no specific 

cause, but is influenced by several factors including age, occupation, obesity, injury and 

overuse. As well as having a known genetic component, several studies have been 

conducted that point to epigenetic mechanisms such as DNA methylation [40, 41] and 

histone modifications [42, 43]. The GEO series GSE63695 consists of methylation data 

from chondrocyte DNA samples drawn from the hip cartilage of 23 patients with 

osteoarthritis, knee cartilage of 73 osteoarthritis patients, and 21 hip samples from 

healthy controls. For the purpose of this study, we discarded the data from the knee 

cartilage in order to avoid possible confounding issues due to a mixture of tissue types. 
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Table 1. An overview of our methylation datasets. All sets consist of publicly available 
data obtained from GEO – the Gene Expression Omnibus. 
 
GEO Series Number Disease Case Samples Control Samples 

GSE63695 Osteoarthritis 23 21 

GSE66695 Breast Cancer 80 40 

GSE54503 Liver Cancer 66 66 

GSE61107 Schizophrenia 24 24 

GSE52588 Down Syndrome 29 29 

GSE40360 Multiple Sclerosis 28 19 

GSE62003 Dementia in T2D 18 18 

GSE75679 Sjogren’s Syndrome 24 24 
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With α = 1, we identified 777 sites with positive merit scores for separation. The top 

scoring sites mapped to the genes ALX4, ANK1, and ARNT2. Differential expression of, 

or differential methylation in the promoter regions for, each of these genes has been 

indicated in the literature as playing a role in the development of osteoarthritis [44-46]. 

 

Our dominating set filter identified a set of three methylation sites that covered all 

samples. As seen in Figure 5, the homogeneous sample pairs clearly  

cluster toward the high end of the inter-sample scores giving a nice separation and a 

classifier built to train on the data using our three sites should perform rather well. 

 

In order to verify our hypothesis, we used the Multi-layer Perceptron model available in 

the scikit-learn python package to construct a fully connected artificial neural net with 

three hidden layers as illustrated in Figure 6. Using our three sites as the feature set, we 

then conduct five-fold cross validation testing on the data set. For this Osteoarthritis data, 

we obtained a mean accuracy of 0.89 indicating that our selected sites are indeed 

effective for the purpose of classification. 

 

Breast Cancer 

 

Breast cancer in women accounts for one in ten of all new cancers diagnosed worldwide 

annually [47]. As with all cancers, DNA methylation is known to play a large role in its 

progression. A host of studies have been undertaken in efforts to improve our 

understanding of that relationship. For example, see [48-50]. Series GSE66695 consists 

of methylation data drawn from 40 normal and 80 breast cancer tissue samples. 

 

In the breast cancer data, our scoring metric produced 12,107 sites with positive merit 

scores for 𝛼𝛼 = 1. The top scoring sites mapped to ZFP106, MXRA7, and the tumor 

suppressor gene ST7. MXRA7 has been found to be differentially expressed in a number  
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Figure 5. Distribution of Osteoarthritis inter-sample scores. 
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Figure 6. A fully connected neural network with three inputs and three hidden layers. The 
input layer consists of a set of neurons {x1, x2, x3} representing the input features. Each 
neuron in the hidden layers applies a weighted linear transform, followed by a nonlinear 
activation function to the values it receives and feeds the result forward through the 
network. From the results of the final hidden layer, the output layer calculates a result 
classifying the original input. 
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of cancers [51]. We were able to uncover a dominating set consisting of five sites 

separating the data. The distribution of inter-sample scores shows a near total separation 

of the homogeneous and heterogeneous sample pairs, lending strong evidence to support 

the utility of our five sites as biomarkers for breast cancer. See Figure 7. 

 

Once again we went a step further, seeking to validate our method using an artificial 

neural net. Using scikit-learn once again with the same configuration as for the 

osteoarthritis data, we used the five sites identified by our dominating set reduction as 

features and conducted five-fold cross validation. In this case, we achieved a mean 

accuracy of 0.96, strongly supporting our conclusions and also providing good anecdotal 

evidence that the better the visual separation in the distribution of inter-sample scores, the 

better the performance of the identified sites as features for classification. 

 

 

 
Figure 7. Distribution of Breast Cancer inter-sample scores. 
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Liver Cancer 

 

The most common type of primary liver cancer is hepatocellular carcinoma or HCC. It 

ranks as the fifth most common type of cancer globally and is responsible for the third  

most deaths due to cancers. Despite its high global rankings, the distribution of cases is 

strongly centred in sub-Saharan Africa and Eastern Asia with China accounting for more 

than 50% of all cases worldwide [52]. GSE54503 is made up of methylation data drawn 

from 66 pairs of hepatocellular carcinoma (HCC) liver tumors and adjacent non-tumor 

tissues. 

 

With 𝛼𝛼 = 1, our scoring produced a set of 30,576 methylation sites having positive merit 

scores. Dominating set filtering produced a set of four probes covering all samples. These 

sites map to the genes KCNQ2, C1orf70, GRASP, and PTPRN2. All four can be found in 

the literature as being involved in HCC, see [53-55]. As can be seen in Figure 8, the 

distribution of inter-sample scores again provides a nearly ideal separation between like 

and mixed sample pairs. 

 

 
Figure 8. Distribution of HCC inter-sample scores. 
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Schizophrenia 

 

GSE61107 comes from a genome-wide methylation analysis of brain tissue in 

schizophrenia patients [56]. It is made up of data drawn from frontal cortex post-mortem  

tissue from 24 individuals diagnosed with schizophrenia and 24 controls. The tissue 

samples themselves were provided by the Human Brain and Spinal Fluid Resource 

Centre. 

 

With 𝛼𝛼 = 1, only four sites were identified with positive merit scores. Three of these 

sites mapped to TNRC6C, ZNF787, and HOXA13, while the fourth mapped to an 

intragenic region on chromosome 6. HOXA13 appears repeatedly as a potential 

biomarker for schizophrenia in the literature. See for example [57-59]. While the 

separation we obtain in this case is not to the level observed with the cancer datasets, we 

still observe a marked upshift in the distribution of homogeneous inter-sample scores as 

can be seen in Figure 9. 

 

Down Syndrome 

 

GEO series GSE52588 arises from a study aiming to identify a DNA methylation 

signature of Down Syndrome in whole blood cells [60]. Data comes from whole 

peripheral blood samples taken from 29 subjects affected by Down Syndrome as well as 

29 matched samples taken from healthy familial controls (either mothers or unaffected 

siblings). 

 

While the cause of Down Syndrome is established as a trisomy of chromosome 21, the 

underlying mechanisms influencing the variety of physical and mental manifestations of 

the phenotype are largely unknown. Perhaps unsurprisingly, recent research has begun to  
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Figure 9. Distribution of Schizophrenia inter-sample scores. 
 
 
 
show a strong link to global patterns of aberrant methylation [61]. It has even been 

suggested that methylation biomarkers could form the basis for non-invasive prenatal 

screening [62]. 

 

With 𝛼𝛼 = 1, we initially obtained 2897 sites with positive merit scores. Interestingly, 

only 42 of these sites map to chromosome 21. As can be seen in figure 10, these sites 

produce a perfect separation between like and unlike sample pairs. 

Multiple Sclerosis 

 

GSE40360 originated from a study seeking to identify differences in methylation patterns 

in pathology-free regions of brain tissue in persons affected by multiple sclerosis [63]. 

Drawn from brain bank samples of normal appearing white matter dissected from the 

frontal lobe, it consists of post-mortem samples from 28 multiple sclerosis patients as 

well as 19 healthy controls. This particular set turned out to be quite dirty, with numerous  
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Figure 10. Distribution of Down Syndrome inter-sample scores. 

 

 

missing values. As such, an initial preprocessing step was required. We chose to discard 

records for all probes missing entries for a sample, leaving us with data for 460,421 

probes. 

 

This is our first dataset that returned no positive scores for a tuning factor of 1. Reducing 

to 𝛼𝛼 = 0.9, we obtained a set of seven sites with positive merit scores. As can be seen in 

figure 11, we start to see a decreased separation in the distribution commiserate with the 

need to lower 𝛼𝛼. Notice however, that the homogeneous sample pairs still produce scores 

that fall primarily in the top third of the distribution. 

Dementia in Type 2 Diabetes 

 

Along with the primary challenges associated with their disease, those suffering from 

Type 2 Diabetes are at elevated risks for a host of other maladies including Alzheimer’s 

disease. GSE62003 is taken from a study looking for methylation signatures  
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Figure 11. Distribution of Multiple Sclerosis inter-sample scores. 

 

 

differentiating between risk for developing dementia in elderly T2D patients [64]. It 

consists of data taken from peripheral blood samples drawn from 18 individuals with 

T2D who developed pre-symptomatic dementia within 18 months of undergoing a 

baseline assessment and 18 controls who maintained normal cognitive function. Samples 

are matched based on age, sex and education. 

 

Initially we were unable to produce sites with a positive merit score for separation. 

Reducing the tuning factor to 𝛼𝛼 = 0.8 produced 14 such sites. A look at the distribution 

of inter-sample scores in figure 12 again shows a pattern that, while providing a less ideal 

separation than observed in some previous cases, clearly segregates the majority of 

homogeneous sample pairs into the top third. 
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Figure 12. Distribution of inter-sample scores for dementia in Type 2 Diabetes. 

 

 

Sjogren’s Syndrome 

 

Sjogren’s syndrome is a systemic autoimmune disorder that affects the entire body, but 

generally presents initially by attacking the moisture producing glands of the eyes and 

mouth. Among the many possible complications for those suffering from primary 

Sjogren’s syndrome (pSS) is background chronic fatigue. In [65], the authors study 

methylation patterns associated with such concurrent fatigue. The associated dataset, 

GSE75679, consists of methylation data measured in whole blood samples from 24 pSS 

patients with high fatigue and 24 identified as low fatigue. 

 

Once again, the initial run identified no sites having positive merit scores. Dropping the 

tuning factor to 𝛼𝛼 = 0.7 produced eight sites. As can be seen in figure 13, in this case we 
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Figure 13. Distribution of inter-sample scores for chronic fatigue in Sjogren’s. 

 

 

 

scores. This leads us to believe that methylation based biomarkers might not be feasible 

for identification of susceptibility to chronic fatigue in Sjogren’s Syndrome, at least not 

when drawn from peripheral whole blood. 

Summary and Discussion 

 

Ongoing research by the biological community has established that epigenetic 

mechanisms play a central role in the development of a variety of human diseases, 

including most known forms of cancer. In this study, we examined the extension of a 

method previously developed for biomarker discovery in gene expression data to a 

similar role for use with DNA methylation data. Using a combination of statistical 

scoring functions and graph-theoretical based filtering methods, our methods identify a 

set of methylation sites that are putatively best suited to distinguish between case and 

control samples. 
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We applied our methods to eight publicly available data sets obtained from the Gene 

Expression Omnibus that together represent a broad cross-section of human disease. Each 

set consists of both case and associated control samples. Our results show that our 

methods have great promise in successfully identifying sets of putative biomarkers. 

Beyond visual validation via observable separations in the distributions of inter-sample 

scores, we also tested two of our resultant sets for efficacy as feature sets in the 

construction of artificial neural network models. These models show the capacity for a 

high degree of fidelity. Using five-fold cross validation we obtained mean accuracies of 

0.96 and 0.89 for models for breast cancer and osteoarthritis respectively. 

 

 

Application: Obesity Related Biomarkers for Adipose Tissue 

Differentiation 

 

Most of this section has appeared previously in either a joint paper submitted for 

publication: “Genome-wide DNA Methylation Analysis Reveals Loci that Distinguish 

Different Types of Adipose Tissue in Obese Individuals”, Donia Macartney-Coxson, 

Miles C. Benton, Ray Blick, Richard S. Stibs, Ronald D. Hagan, Michael A. Langston 

or in preliminary form in the poster: “Adipose Tissue DNA Methylation Markers 

Associated with Weight-loss and Tissue Specificity”, Donia Macartney-Coxson, Miles 

Benton, Alice Johnstone, Richard Stubbs, Ronald D. Hagan, Michael A. Langston, 

Keystone Symposia Conference on Epigenetic Programming and Inheritance, April 6 – 

April 10, 2014, Boston, Massachusetts. 

 

My contributions include running experiments, enhancing our biomarker toolchain, 

preparing figures, and writing up the results. 
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Background 

 

 In humans, white adipose tissue consists of two main types, subcutaneous and visceral 

(including omentum), that are distributed throughout the body in distinct depots. 

Mitochondria rich brown adipose tissue depots, on the other hand, were once thought to 

be found only in early development. Recent studies, however, have found higher than 

expected levels of such depots in adults [66-68]. White adipose tissue can also undergo a 

process of ‘browning’ or ‘beiging’ [69, 70]. Each of these types of adipose tissues have 

distinct structural and biochemical properties [71-73], and both body fat distribution and 

function influence metabolic risk [74-81]. Various studies have been undertaken 

investigating the different developmental origins of subcutaneous and visceral adipose 

tissue based on gene expression [73, 82-84], with recent evidence suggesting a 

mesothelial origin for visceral adipose [85]. In addition, studies have begun to focus on 

the role of DNA methylation in the differentiation and development of the various types 

of adipose tissue [86, 87]. 

 

My co-authors previously performed DNA methylation analyses of paired subcutaneous 

and omental adipose from obese individuals undergoing gastric bypass, seeking to 

identify within-tissue differences before and after significant weight-loss (defined as a 

subject losing more than 27% of their initial weight) [88]. In the current study, we 

compare methylation levels between subcutaneous adipose and omentum tissue in an 

effort to identify methylation biomarkers suitable for differentiating between the tissue 

types both before and after weight-loss. 
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Identification of Tissue Differentiation Markers 

 

Applying our tools to the pre-operative samples produced 4900 CpG sites, mapping to 

2309 genes, with positive merit scores for separating adipose tissue types and passing 

initial filtering. As can be seen in figure 14, the distribution of inter-sample scores using 

all 4900 sites produces an appealing, but not quite complete, separation of the tissues. For 

the post-operative group, we identified 8624 CpG sites, mapping to 4066 genes, such 

sites having positive merit scores. Once again, the identified sites produce an attractive 

separation of tissue types, see figure 15. Of the sites identified in the two groups of 

samples, 1022 produced positive merit scores for separation at both time points (pre- and 

post-operative).  

 

 

 
Figure 14. Distribution of inter-sample scores for pre-operative tissue differentiation 
using all 4900 sites with positive merit scores. Here and in the following figures legends, 
omental tissue is denoted Om while subcutaneous adipose tissue is denoted by Ab. 
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Figure 15. Distribution of inter-sample scores for post-operative tissue differentiation 
using all 8624 sites with positive merit scores 
 
 
Our initial analysis considered all sites with positive merit scores. As an ideal biomarker 

panel would include the fewest markers needed for clean separation between case and 

control groups, we examined the discriminatory power of a reduced number of sites at 

each time point. We found that using only the 10 highest ranked sites was sufficient to  

obtain good separation between the tissue types for both the before and after weight-loss 

groups, see figure 16 and 17, respectively. We then reduced to the top scoring site for 

each group. While a single site did not perform as well in the pre-operative group, we 

found that the top site provided full discriminatory power in the post-operative samples. 

See figures 18 and 19. An overview of the ten highest ranked sites at each time point can 

be seen in Table 2. 

 

Validation of Tissue Differentiation Markers 

 

We performed a technical validation of our observations using pyrosequencing of robust 

tissue discriminators from each analysis, i.e. the top 10 ranking sites from the before  
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Figure 16. Distribution of inter-sample scores for pre-operative tissue differentiation 
using the ten sites with highest merit scores. 
 
 
 

 
Figure 17. Distribution of inter-sample scores for post-operative tissue differentiation 
using the ten sites with highest merit scores. 
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Figure 18. Distribution of inter-sample scores for pre-operative tissue differentiation 
using the single site with the highest merit score. 
 
 

 
Figure 19. Distribution of inter-sample scores for post-operative tissue differentiation 
using the single site with the highest merit score. 
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Table 2. Top 10 CpG sites ranked by merit score. 

Illumina 
probe ID 

Mean beta AB 
(+/- standard 

deviation) 

Mean beta OM 
(+/- standard 

deviation) 

UCSC 
Gene Name 

CpG site 
chromosome 
and position+ 

Before 
weight-loss 
analysis 

    

cg02245004 0.12 (+/- 0.08) 0.64 (+/- 0.11) Intergenic 15:76634887 
cg03923561 0.45 (+/- 0.07) 0.04 (+/- 0.02) HOXC4 12:54447220 
cg22747076 0.42 (+/- 0.09 0.02 (+/- 0.02) HOXC4 12:54447873 
cg09400037 0.42 (+/- 0.06) 0.82 (+/- 0.07) Intergenic 16:84822801 
cg24376776 0.03 (+/- 0.01) 0.33 (+/- 0.03) Intergenic 10:101297245 
cg11797364 0.59 (+/- 0.1) 0.97 (+/- 0.02) Intergenic 6:436969 
cg17496661 0.65 (+/- 0.08) 0.99 (+/- 0.01) Intergenic 5:3326343 
cg09720701 0.37 (+/- 0.05) 0.06 (+/- 0.01) HOXC4 12:54447283 
cg02264990 0.35 (+/- 0.06) 0.03 (+/- 0.02) HOXC4 12:54447243 
cg01524853 0.43 (+/- 0.05) 0.12 (+/- 0.03) HOXC4 12:54447807 
     
After weight-
loss analysis 

    

cg00838040 0.34 (+/- 0.07) 0.97 (+/- 0.03) ATP2C2 16:84446919 
cg21917524 0.31 (+/- 0.07) 0.81 (+/- 0.04) Intergenic 11:74200334 
cg24145118 0.84 (+/- 0.07) 0.31 (+/- 0.16) Intergenic 10:2777041 
cg12984729 0.09 (+/- 0.03) 0.59 (+/- 0.16) ISL2 15:76633817 
cg12437821 0.46 (+/- 0.04) 0.05 (+/- 0.09) Intergenic 12:114852027 
cg01184975 0.53 (+/- 0.05) 0.10 (+/- 0.11) Intergenic 12:114852091 
cg20291855 0.03 (+/- 0.03) 0.44 (+/- 0.11) Intergenic 4:13524143 
cg25365014 0.79 (+/- 0.05) 0.41 (+/- 0.05) Intergenic 5:2727713 
cg16297011 0.07 (+/- 0.04) 0.48 (+/- 0.11) Intergenic 4:13539023 
cg21982455 0.56 (+/- 0.04) 0.19 (+/- 0.07) Intergenic 5:2757976 
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weight-loss and the top site from the after weight-loss analyses. This revealed an 

excellent agreement between the two methylation assays; before weight-loss (R2 = 0.91-

0.98, P = 1.2x10-15–8.3x10-25), and the single site after weight-loss (R2 = 0.97, P = 4.9 x 

10-14).  

 

Next, we sought to test the performance of our candidate biomarkers in additional, 

independent samples. DNA was available for a further 15 individuals before weight-loss 

and 13 of these 15 individuals after weight-loss. Principal component analysis (PCA) 

revealed a strong agreement between the discovery and validation samples for the before  

weight-loss comparison, with no significant variation observed between genders in the 

validation samples as can be seen in figure 20. 

 

 

 
Figure 20. PCA analysis of the top 10 CpG sites from the before weight-loss tissue 
samples. Analysis was performed on pyrosequence data. Tissue type is indicated by OM 
(omentum) and subcutaneous abdominal adipose (AB), with Dis indicating the discovery 
and Val the validation samples. 
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We were able to obtain publicly available Illumina 450K data for a number of adipose 

samples. Samples accessible through MARMAL-AID [89] included samples from 6 lean 

male individuals with both subcutaneous and omental adipose tissue collected ≤ 12h post-

mortem (GSE48472 [90]), 14 visceral adipose samples from severely obese men, 7 of 

which had metabolic syndrome (GSE54776 [91]), as well as 6 paired subcutaneous 

adipose and gluteal adipose samples from lean females (GSE47513 [86]). Illumina 450K 

data was also available for 642 subcutaneous adipose samples from individuals with an 

average BMI of 26.7 (and a standard deviation of 4.9) [92] from the MuTHER (multiple 

tissue human expression resource) project [93]. In examining the methylation profile of 

all 11 strong discriminators from the before and after weight-loss groups in these publicly 

available datasets, we observed good agreement within a tissue type irrespective of 

gender and/or obesity phenotype.  

 

In general, omental samples showed a tighter distribution of methylation for a given 

probe than the subcutaneous adipose samples, and for the majority of probes a strongly 

hyper-methylated (mean methylation beta >0.8, cg00838040, cg17496661, cg17496661) 

or hypo-methylated (mean methylation beta <0.2, cg09720701, cg02264990, 

cg22747076, cg03923561, cg22747076) phenotype. Given that the biomarker analysis 

was trained on data from subcutaneous and omental adipose it is interesting to note that 

the samples of subcutaneous gluteal adipose tissue from lean females showed a 

methylation profile similar to that of the subcutaneous abdominal adipose samples and 

clearly distinct from the omental samples. 

 

Summary and Discussion 

 

In this study, we applied our methylation biomarker tools to isolate CpG sites capable of 

differentiating between white adipose tissue in human subjects both before and after 

undergoing gastric bypass surgery. We identified a large set of sites with positive merit 
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scores that we filtered to reveal 10 CpG sites before weight-loss and a single site after 

weight-loss that strongly separated the tissue types. Additional confidence in our results 

is provided by an excellent overlap between the pyrosequence methylation profiles of the 

11 CpG sites in the discovery and validation cohorts and from publicly available 

subcutaneous and omental adipose Illumina 450K data from lean, overweight and obese 

individuals.  

 

While there is no clinical utility in a marker to differentiate subcutaneous and omental 

adipose, this study provides further support for the potential of DNA methylation as a 

biomarker. Combined with the promising results of our work with disease data described 

in the previous section, we believe future work to translate our combinatorial approach to 

the detection of clinically applicable DNA methylation biomarkers is warranted, and may 

have particular merit for situations in which robust differentiators are still urgently 

required. Furthermore, because epigenetic mechanisms are dynamic and as such 

potentially reversible, these types of analyses may also highlight innovative new avenues 

for clinical treatment. Such analyses should take account of practicability concerns such 

as ease of sample/tissue collection, and whether there is a biological argument for 

potential DNA methylation differences between sample groups.  
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CHAPTER THREE NOVEL ALGORITHMIC DEVELOPMENT: 

SUBTYPING 

 

In this chapter, we turn to gene co-expression data and the development of a method 

based on the paraclique algorithm to identify unknown subtypes in human disease. A 

portion of the material in this section appear in [94]. My contributions to this paper 

include algorithm development, data aggregation, and experimentation and document 

preparation. 

 

Introduction 

 

The ability to identify disease subtypes accurately and efficiently is a central pursuit in 

the drive to individualized medicine. In the case of cancer patients, knowledge of a 

genetic propensity towards chemo-resistance or towards early response can be used to 

tailor treatment to be more, or less, aggressive. Early responders, for example, might 

require less aggressive treatment, mitigating the long-term risks of adverse effects of 

radiation therapy or chemotherapy associated toxicity. For example, studies have 

identified gene expression signatures for chemo-resistance in both acute myeloid 

leukemia and breast cancer [95, 96].  

 

While techniques grounded in graph theory have been used to great effect in the pursuit 

of genetic biomarkers for human disease and the discovery of novel gene networks, little 

work has been done in trying to extend such tools to subtyping. The existing research has 

primarily centered on the use of basic statistical or machine learning clustering methods 

such as k-means, latent variable models, or mixture models [97-99].  

 

Clique-centric methods have often been used for the discovery and modeling of coherent 

networks. Unfortunately, clique finders are inherently prone to high false negative rates. 
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Indeed, an entire clique will be lost if even a single edge is missing. The paraclique 

algorithm was introduced to address the difficulties presented by signal loss due to noise 

in the data. While paracliques can be constructed in different ways, the basic idea is to 

take a maximum clique as a core, then expand it to a paraclique by adding vertices 

adjacent to all but some allowable number g of its vertices. 

 

Here, we present a method for subtyping based on the paraclique algorithm. The 

remainder of this chapter is organized as follows. An overview of our method and the 

data sets initially used for experimentation are provided in the next section. We then 

discuss the initial validation testing and examine additional steps taken to verify the 

biological relevance of our results. Finally, we provide avenues for continued research. 

 

Methods and Data 

 

 In an effort to limit the effects of confounding factors, we use an initial filtering step. 

FDR corrected p-values for differential expression of genes between case and control sets 

are calculated, and only those with p-values less than 0.1 are retained. The idea being that 

this technique will limit our attention to those genes of interest only in the case group. 

After all, we are not interested in subgroups based on age, ethnicity, or hair color. The p-

values are calculated using the EntropyExplorer R package [100]. After filtering, the data 

tables are transposed and we calculate the pairwise Pearson correlation coefficients 

between samples across the expression levels. Thresholding the correlation matrix, we 

then create an unweighted graph with vertices representing individual samples and edges 

between vertices if the corresponding samples are correlated above the thresholding level 

(in absolute value). Once the graph is built, we run the paraclique algorithm to extract 

dense subgraphs of patients representing putative subtypes in the case samples. Finally, 

we separate the groups, return the tables to their original configuration, and calculate 

differential expression across subtypes. Here, the level of differential expression is taken 
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to be simply the difference in the mean expression levels between the groups. An 

overview of our method can be found in Figure 21. 

 

We initially applied or methods to 12 sets of publicly available gene expression data 

obtained from the Gene Expression Omnibus (GEO). The data sets were selected to 

provide a wide cross-section of human disease and to have information on both a case 

and control group for initial filtering. Table 3 gives an overview of the datasets used. 

 

Initial Validation and Discussion 

 

Our investigation into the effectiveness of our proposed method was focused on two 

guiding questions. First, is the method capable of reliably identifying putative subtypes? 

Second, is there biological evidence confirming or at least supporting these subtypes as 

being biologically relevant to the associated disease? 

 

We found that the answer to the first question is unequivocally yes. As summarized in 

Table 4, we found putative subtypes in 10 of our datasets. In the other two cases, we 

hypothesize that our method fails due to limiting conditions present in the data. First, the 

sizes of the datasets are relatively small (only 10 samples in both cases) and may not give 

a true representation of the underlying populations. Secondly, the disease in question 

might not have meaningful subtypes based on differential gene expression. 

 

The second question is considerably more difficult to answer. In order to address it, we 

followed a two-prong approach in examining the top differentially expressed genes 

between subgroups. To begin, we calculated the GO enrichments of the top 100 genes  
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Preprocessing

Graph Creation Metric: sample-sample 
correlations 

Paraclique Extraction

Putative Subgroups

 
Figure 21. Suptyping method overview. A greatly simplified view of our subtyping 
workflow. Gene expression data is preprocessed with an initial filtering step. A graph is 
created using the pairwise sample correlation scores taken across the expression scores. 
Paracliques are then extracted that represent putative subtypes. 
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Table 3. Subtyping datasets. An overview of the datasets used in this study. 

Disease 
GEO 

Accession 
Probes 

Probes After 

Filtering 
Case Control 

Asthma GSE4302 54675 2322 42 28 

Breast Cancer GSE10810 18382 11531 31 27 

CLL GSE8835 22283 1338 24 12 

Colorectal Cancer GSE9348 54675 22968 70 12 

Lung Cancer GSE7670 22283 7458 27 27 

Multiple Sclerosis GDS3920 54674 9844 14 15 

Pancreatic Cancer GDS4102 54613 23711 36 16 

Parkinson’s  GSE20141 54674 6625 10 8 

Prostate Cancer GSE6919 12625 1531 61 63 

Psoriasis GSE13355 54675 29407 58 58 

Schizophrenia GSE17612 54675 4250 28 23 

T2 Diabetes GSE20966 61294 93 10 10 
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Table 4. Subgroups identified. Summary of the number and sizes of putative subgroups 
identified by our methods in the test data. 
 

Disease Number of Subgroups 

Identified 

Size of Subgroups 

Identified 

Asthma 2 32,8 

Breast Cancer 2 22,5 

CLL 2 4,18 

Colorectal Cancer 2 63,5 

Lung Cancer 2 21,5 

Multiple Sclerosis 2 11,3 

Pancreatic Cancer 2 31,5 

Parkinson’s 1 8 

Prostate Cancer 2 56,3 

Psoriasis 2 49,5 

Schizophrenia 2 19,6 

T2 Diabetes 1 9 
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and the associated enrichment p-value. The results, along with the associated enriched 

GO categories, are summarized in Table 5. We next performed a literature search to 

check the lists of the top genes for involvement in known subtypes. We were able to find 

strong empirical evidence to support having successfully identified known groups in four 

of our datasets: Asthma, Breast Cancer, CLL, and Colorectal Cancer. Before we go 

further, let us look at these four cases in more detail. 

 

Asthma 

 

The incidence of asthma in the U.S has been on the rise for two decades. It is currently 

estimated that 9.6% of children under 18 are asthmatic, with the risks for some groups 

based on ethnicity (particularly African American and Puerto Rican) and stratification by 

lower socioeconomic status rising as high as 16% [101]. 

 

The GEO series GSE4302 is derived from a study designed to identify genes associated 

with response in asthmatics to treatment with corticosteroids [102]. It consists of 

expression data derived from epithelial airway brushings taken from 42 asthmatics and a 

control group consisting of 28 healthy subjects and 16 smokers. For our analysis, we used 

only the healthy subjects as control, discarding the smokers. Data is derived from a 

microarray analysis using the Affymetrix Human Genome U133 Plus 2.0 Array. 

 

Our initial filtering step reduced the original 54,676 probes to a set of 2322 having FDR 

corrected p-values < 0.1 for differential expression between the case and control groups. 

With the reduced set of variables and a threshold of 0.93, our method produced three 

putative subgroups of size 31,8, and 3. The 100 most differentially expressed genes 

between the groups included CLCA1, periostin, and ovalbumin. All three of these genes 

were reported in [103] to be markers of a Th2-high endotype of asthma. 
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Table 5. GO enrichment. The GO term category with the lowest p-value for the 
enrichment of the 100 most differentially expressed genes across identified subgroups. 
 
Data Set Category p-value 

Asthma GSE4302 Oxireductase 1.1E-4 

Breast Cancer GSE10810 Secreted 1.0E-13 

CLL GSE8835 Mhc ii 2.4E-15 

Colorectal Cancer GSE9348 Translational elongation 2.8E-28 

Lung Cancer GSE7670 Secreted 7.7E-10 

Multiple Sclerosis GDS3920 Translational elongation 1.9E-34 

Pancreatic Cancer GDS4102 Signal 4.59E-15 

Prostate Cancer GSE6919 Translational elongation 4.92E-46 

Psoriasis GSE13355 Immune response 3.5E-15 

Schizophrenia GSE17612 Organelle membrane 5.24E-4 
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Breast Cancer 

 

Genetic factors have long been known to play a significant role in breast cancer. In 

families that have had at least 4 cases of breast cancer, studies have shown the majority 

of cases can be linked to mutations in either BRCA1 or BRCA2 genes [104, 105]. In 

addition, breast cancer has a variety of known subtypes that significantly impact 

prognosis and treatment. For example, tumors negative for estrogen receptors, 

progesterone receptors, and the expression of HER2 are indicative of triple-negative 

breast cancer, a subtype identified with higher risk of recurrence and 5-year mortality 

[106]. 

 

GSE10810 comes from a study aiming to investigate more fully the links between gene 

expression and phenotypic differences in breast cancer [107]. It consists of gene 

expression data for 31 tumor samples and a control set of 27 healthy tissue samples. The 

platform used for the study was again the Affymetrix Human Genome U133 Plus 2.0 

Array, although only data for 18,382 probes was provided. 

 

The number of probes was reduced to 11,531 with false discovery rate adjusted p-values 

for differential expression between the case and control groups < 0.1. Using a threshold 

of 0.8, our tools produced 2 putative subgroups of size 22 and 5. The 100 most 

differentially expressed genes between these subgroups include SLC39A6, S100a4, 

AGR3, Cd24, and epcam. All of these genes have been reported in the literature as being 

markers for different phenotypes of breast cancer [108-112]. 

 

Chronic Lymphocytic Leukemia 

 

Chronic Lymphocytic Leukemia (CLL) is one of the most common types of leukemia 

with pathogenesis presenting as an overproduction of neoplastic B cells in the 
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bloodstream. The median age at diagnosis is 65, and more commonly affects males [113]. 

It typically presents with a slow progression, with patients living out a normal life 

expectancy. In some cases, however, it can be aggressive, with death occurring less than 

5 years after onset. 

 

The dataset GSE8835 was provided by a study with the aim of examining the effects of 

CLL on the expression levels in peripheral blood T cells [114]. It is made up of 24 CD4 

cell samples from CLL patients and a control group of 12 CD4 cell samples from healthy, 

age matched donors. The Affymetrix Human Genome U133A Array with 22,283 probes 

was used. 

 

Filtering reduced the initial probes to a set of 1338 having p-values less than 0.1 (again 

FDR corrected). A threshold of 0.8 produced two subgroups of size 4 and 18. The most 

differentially expressed genes across the two groups included ZAP-70, previously 

identified as the best discriminator of Ig-mutated and Ig-unmutated CLL [115]. 

 

Colorectal Cancer 

 

The incidence of colorectal cancer (CRC) has been in decline since the mid 1980’s [116]. 

Despite this significant drop in prevalence, it still annually accounts for both the third 

highest number of new cases of cancer, and the third highest number of cancer deaths 

[117]. As in breast cancer, there are known hereditary links to CRC. For example, a 

mutation of the gene APC is responsible for two syndromes, Familial Adenomatous 

Polyposis and Hereditary Nonpolyposis Colorectal Cancer, that each carry a significant 

increase in the risk of developing CRC [118]. 

 

GSE9348 was derived from a study aiming to find a gene expression signature for cases 

of early stage CRC that are prone to metastasis [119]. It consists of gene expression data 
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derived from tumors of 70 patients and tissue from 12 healthy controls. The samples are 

age and ethnicity matched. The study utilized the Affymetrix U133 Plus 2 array. 

 

Our filtering reduced the 54675 probes in the original set to 22968 with FDR corrected p-

values < 0.1 for differential expression between the case and control groups. With a 

threshold of 0.87, our tools produced two paracliques representing putative subgroups in 

the tumor samples of size 63 and 5. The list of 100 genes most differentially expressed 

between these two groups include Cd24, identified as a prognostic marker for CRC [120] 

as well as OLFM4, indicated in as a marker for tumor differentiation and progression 

[121, 122]. 

 

Further Validation: Testing with Known Subtypes 

 

While our initial validation efforts indicate that our methods indeed have the potential to 

identify both known and novel subtypes based on biologically relevant genetic signatures, 

the lack of an established ground truth is a distinct limitation for our testing. In order to 

address this point, we identified two additional sets of publicly available data on GEO 

that included labeling for membership into distinct subtypes. The goal of course being to 

apply our tools in a search for evidence that we could identify subgroups appropriately 

stratifying the samples. 

 

Gastric Cancer 

 

The first set is GSE35809, consisting of gene expression data from 70 primary gastric 

tumors used as a validation set for testing of a classifier for tumor subtypes [123-125]. 

The samples are identified in the data as belonging to one of three subtypes: proliferative, 

invasive, or metabolic. The number of samples for each type in the original data are 29, 

26, and 15 respectively. 
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As this set does not contain accompanying control data, we forgo the initial filtering 

phase. Applying the remainder of our toolchain and using a threshold of 0.955, we 

identified two subgroups that, while both contained a mixture of metabolic tumors, nearly 

perfectly segregated the invasive and proliferative types. See Table 6. 

   

Non-Small Cell Lung Cancer 

 

Non-small cell lung cancer, or NSCLC, has two major known subtypes – 

adenocarcinoma (AC), and squamous cell carcinoma (SCC). GSE10245 is made up of 

gene expression data for 40 adenocarcinoma, and 18 squamous cell carcinoma NSCLC 

tumors and was provided from a study examining differential expression between the two 

types [126]. 

 

 

 

Table 6. Known subtype results. A breakdown of the composition of the subtypes 
obtained from the cases with included subtype labeling. In both cases, we obtained 
putative subgraphs that cleanly segregated the samples according to subtype. 
 

Gastric Cancer NSCLC 

 Paraclique Sizes  Paraclique Sizes 

 29 16   26 12 8 

Subtype    Subtype    

proliferative 1 12  AC 23 0 8 

invasive 19 1  SCC 3 12 0 

metabolic 9 3      
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Once again, the set lacks control data, so the initial filtering must be skipped. For this 

dataset, our tools, with a threshold of 0.94, identifies 3 putative subgroups that show a 

remarkable separation between the subtypes. Referring once again to Table 6, we see that 

two of the three groups are completely homogeneous, while the third consists of 23 AC 

tumors with a crossover of only 3 SCCs. 

 

Subtyping Summary 

 

In this chapter, we have described a method based on the paraclique algorithm to identify 

putative subtypes separating samples based on signatures in their gene expression 

profiles. We applied our methods to a variety of publicly available data starting with 12 

sets obtained from the Gene Expression Omnibus. Of those 12, our tools identified 

putative subtypes for 10. We sought to validate the relevance of our findings by 

reviewing the literature and examining the GO enrichment for biological relevance of 

genes differentially expressed across our potential subtypes. We also performed 

additional testing with two sets data containing phenotypic information for known 

subtypes, also obtained from GEO. The results of our testing indicate a strong potential 

for our approach to be highly effective in the discovery of novel subtypes. 
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CHAPTER FOUR CRITICAL ALGORITHMIC ANALYSIS:  

KERNELIZATION VERSUS BRANCHING 

 

 

 

Most of this chapter appeared previously in [127]. My contributions include 

implementing the full degree 2 rule, collecting testbed graphs, running experiments and 

writing the paper. 

 

In this chapter, we investigate the relative significance of kernelization versus branching 

for parallel FPT implementations. Using the well-known vertex cover problem as a 

familiar example, we build and experiment with a testbed of five different classes of 

difficult graphs. For some, we find that kernelization alone obviates the need for 

parallelism. For others, we show that kernelization and branching work in synergy to 

produce efficient implementations. And yet for others, kernelization fails completely, 

leaving branching to solve the entire problem. Structural graph properties are studied in 

an effort to explicate this trichotomy. The NP-completeness of vertex cover makes 

scalability an extreme challenge.  

 

Introduction 

 

Fixed-Parameter Tractability (FPT) has become a popular and powerful technique for 

dealing with the recalcitrance of NP-completeness. An amenable problem is FPT if it has 

an algorithm that runs in O(f(k)nc) time, where n is the problem size, k is the input 

parameter, and c is a constant independent of n and k. Representative citations include 

[36] for theoretical development, [128] for previous work on parallel implementations, 

and [129] for historical perspective. 
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Vertex cover is probably the best known and most widely studied FPT problem. In its 

usual decision formulation, we are given a simple undirected graph G of order n and an 

integer k, and asked whether G contains a set S of at most k vertices so that every edge in 

G has at least one endpoint in S. Minimum vertex cover and its complementary dual, 

maximum clique, are highly appreciated for both their prominence in complexity theory 

and their wealth of practical applications. 

 

Two tenets of FPT are kernelization, in which an input of size n is reduced to a compute 

core whose size depends only on k, and branching, whereby an efficient tree structure is 

used to explore the solution space. It would not be a gross oversimplification to say that 

kernelization is generally fast, while branching is not. That some part of the solution 

process is slow and exhaustive should not come as a surprise. After all, we are trying to 

solve enormous NP-complete problems exactly. On the other hand, the relative speed of 

kernelization should not belie its importance. Only by reducing the problem size 

dramatically can we hope for runtimes polynomial in n. 

 

In recent work [130], it has been shown that one can often obtain excellent parallel 

speedup on large-scale biological graphs, as primarily derived from transcriptomic data. 

These sorts of graphs tend to be relatively sparse, more or less scale free, and contain 

many highly overlapping cliques of various sizes. It was found that kernelization and 

branching tend to work together quite well for these types of inputs. Methods were in fact 

often interleaved [131]. 

 

In this chapter, we study these and other input domains in an effort to elucidate the 

relative significance of kernelization versus branching and the need for parallel FPT 

computation. To this end, we use reasonably straightforward sequential and parallel FPT 

vertex cover implementations and examine performance on large graphs of five general 

classes: physical infrastructure, social interaction, high-throughput biological, pseudo-

random, and regularly structured. Despite their notoriety, we find that infrastructure and 
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social graphs tend to succumb to mere kernelization. Biological graphs, meanwhile, 

benefit from both kernelization and branching. On the other hand, regularly structured 

and, to a lesser extent, pseudo-random graphs tend to be resistant to kernelization. Thus 

they benefit from highly efficient branching, parallelized implementations and effective 

load balancing strategies. 

 

In the next two sections, we detail important relevant features of kernelization and 

branching. Section 4 contains descriptions and discussions of the various sources and 

sorts of domain data we use in this study. We also present sample timings for each. In 

Sections 5 and 6 we analyze these results and discuss directions for future study. 

 

Kernelization Rules 

 

Let us briefly review standard vertex cover kernelization reductions. The easiest to apply 

are the low degree rule, the high degree rule, and the degree two rule. It is noteworthy 

that the high degree rule alone ensures an O(k2) kernel. Given G, n and k, we iteratively 

apply these rules, at each stage creating a new graph G′ with n′ ≤ n and k′ ≤ k. 

 

The Low Degree Rule: Any isolated vertex cannot cover any edges and may be 

removed, reducing n′ by 1. In the case of a vertex of degree one, we can cover no fewer 

edges by discarding it and removing its parent and putting it in the cover. This reduces n′ 

by 2 and k′ by 1. 

 

The High Degree Rule: If a vertex has degree greater than k then it must be included in 

an acceptable cover. Otherwise there would be at least k+1 edges, which could only be 

covered by including all its neighbors. Removing such a vertex and putting it in the cover 

reduces n′ by 1 and k′ by 1. 
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The Degree Two Rule: This rule is considerably more complicated. There are two 

separate cases to consider. Suppose u has degree two, with neighbors v and w. 

 

Case 1: v and w are neighbors. In this case, at least two of u, v, and w must be included in 

any satisfying cover in order to account for the edges of the triangle they form. Including 

u would cover only two edges, while v and w both cover at least two and possibly more. 

Thus, we are best served by removing all three vertices and including v and w in the 

cover. This reduces n′ by 3 and k′ by 2. 

 

Case 2: v and w are not neighbors. In this case, we form G′ by folding u, v, and w into a 

new vertex, u′, whose neighborhood consists of the union of the other neighbors of v and 

w. It turns out that G′ contains a vertex cover of size k′ = k – 1 if and only if G contains a 

vertex cover of size k. See Figure 22 for an example. (For completeness, we note that 

there are actually two options. If the cover of G′ contains u′, then v and w will be in the 

cover for G while u may be discarded. If the cover of G′ does not contain u′, then u will 

be in the cover for G while v and w may be discarded. With either option, n′ is reduced by 

2 and k′ is reduced by 1. The specific option to choose is only relevant in backtracking, 

when solving the search not the decision version of the problem.) 

 

After applying these rules, we have reduced our original question of the existence of a 

cover for G of size no more than k to the search for a cover of G′ of size less than or equal 

to k′. 
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Figure 22. Kernelization. An example of Case 2 of the degree two rule. Vertices u, v, and 
w are folded into u′. 
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Branching Strategies 

 

After kernelization, we are left with the computationally imposing task of exploring a 

search space whose size is exponential in k. The best current theoretical running time can 

be found in [132]. There, a limit of O(1.2738k + kn) is achieved, but at the cost of  

excruciating branching techniques, some of which may actually work against us on 

average. Thus, we employ instead a relatively simple search tree strategy to traverse the 

possible covers. At each level in the tree, we choose the vertex, v, of highest degree and 

branch in two directions. For the left branch, we add v to the candidate cover. For the 

right branch, we discard v and place all of v’s neighbors in the cover. This 

straightforward but easily parallelized technique is illustrated in Figure 23. 

 

The search along each branch proceeds until either k vertices have been added to the 

candidate solution or all edges are covered. At that point, the validity of the cover is 

checked. If a satisfying cover has indeed been found, then all search paths are terminated 

and we return a “yes” decision. On the other hand, if the candidate cover is not a 

satisfying cover, then branching must continue until we find a solution or exhaust the 

search space. At each branching stage, we include at least one more vertex in the 

candidate solution. Thus, this process results in a search tree of depth bounded by k. 

Kernelization times are generally insignificant. Branching tends to be exhaustive, 

however, and so it is the usual focus for parallel FPT speedups. 

 

Each branching path reduces graph size and complexity. It is therefore sometimes 

possible to re-kernelize at branch points. We use this technique, known as interleaving 

[133], in our implementations in an effort to reduce overall run times and enhance 

parallel speedups. 
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Figure 23. Branching. Dark vertices are placed into a candidate cover. 
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For parallel implementations, we perform search tree decomposition in MPI, using a 

master-slave paradigm. Each processor is initially assigned an independent branch to 

search. Without some form of load balancing, however, a processor may starve should it 

finish its branch early. Thus, we employ dynamic load balancing to keep all processors 

busy. Our approach designates a highest degree branch as a donor. When any branch 

completes, it receives additional work from the donor. Should the donor itself terminate 

early, a new donor is selected again based on highest degree. For a thorough description 

of the approach and an analysis of its effectiveness, see [128, 130]. 

 

Data and Experiments 

 

Large-scale experiments were conducted on DOE’s Hopper supercomputer, named after 

the remarkable computing pioneer Admiral Grace Murray Hopper. Part of the National 

Energy Research Scientific Computing (NERSC) Center, the Hopper platform was 

ranked 16th fastest in the world according to the TOP500 list for June, 2012. It is a 

CrayXE6 system rated at a peak speed of 1.28 PetaFLOPS, which it attains with 6,384 

nodes made up of two 2.1 GHz twelve-core AMD ‘MagnyCours’ processors, for a total 

of 153,216 compute cores. Hopper is maintained at the Lawrence Berkeley National 

Laboratory. 

 

We sought to test graphs from a broad variety of application domains. Our interest 

focused on finding graphs that are enormous and/or difficult enough to pose a challenge, 

even for our streamlined vertex cover FPT implementations. The graphs we selected fall 

into five general categories: physical infrastructure, social interaction, high-throughput 

biological, pseudo-random, and regularly structured. Three representative graphs were 

selected from each class. For each such graph, we computed the minimum vertex cover in 

the complement, and employed a simple binary search to determine the optimum 

parameter value. To identify the hardest instances, we report timings for the largest “no” 
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parameter value. (Had we used instead the smallest “yes” value, runs could have 

encountered a satisfying solution early, biasing the results, whereas a “no” instance must 

exhaust the entire search tree.) Every graph was sequentially kernelized. As expected, no 

bottleneck was encountered during this process. Branching was performed sequentially 

and, when sequential times were sizable, in parallel. For standard comparisons, all 

parallel runs were timed on 24 cores. 

 

Physical Infrastructure Graphs 

 

We were able to obtain large-scale connectivity information on road systems, airport 

networks and power grids. The Road Graph comes to us from California. Its vertices 

denote intersections and destinations. Its edges represent connections between these sites. 

The Airport Graph is based on direct flight connectivity in the United States. The Power 

Graph was obtained from the high voltage power grid for the western states. All three sets 

of data were obtained from the Stanford Large Network Dataset Collection. 

 

Both the Road Graph and the Airport Graph produce very small kernels, which complete 

branching in under a hundredth of a second. The Power Graph was solved completely 

through kernelization, requiring no branching whatsoever. We note that our physical 

infrastructure graphs have modest clique sizes and low average degree, and many of their 

cliques are disjoint. Therefore, the high degree rule applies to many vertices in their 

complements. The graphs are rapidly decomposed almost entirely. This sort of 

algorithmic behavior highlights the power of kernelization, and eliminates the need for 

heavyweight computations during branching. See Table 7. 
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Table 7. Computational experience with large physical infrastructure graphs. Run times 
are reported in seconds. The graph derived from power networks was solved completely 
during kernelization, and thus needed no branching at all. 
 

Graph Road Airport Power 

|V| 30000 1858 4941 

|E| 87628 17215 6594 

Density 0.00019 0.00998 0.00054 

Kernel Size 147 126 7 

Clique Size 3 56 6 

Sequential Branching  0.00363 0.00598 unneeded 

 

 

 

Social Interaction Graphs 

 

We obtained interaction graphs to cover three more or less unrelated social areas. The 

Enron Graph represents emails during the company’s financial crisis. The arXiv Graph 

denotes a collaboration network, mainly for high-energy physics, whose edges link 

electrical preprint co-authorship. Finally, the Wiki-Vote Graph depicts votes for 

Wikipedia moderators. As before, all three sets of data were obtained from the Stanford 

collection. 

 

As with the physical infrastructure graphs, social graphs kernelize so well that they can 

be solved easily by branching sequentially. There is no need for parallelism. In fact, the 

arXiv graph was solved completely through kernelization alone. It seems that low 

average degree again leads to a very effective application of the high degree rule in the 

complement. See Table 8. 
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Table 8. Computational experience with large social interaction graphs. Run times are 
reported in seconds. The graph derived from electronic preprints was solved completely 
during kernelization, and thus needed no branching at all. 
 

Graph Enron arXiv Wiki-Vote 

|V| 36692 12008 7115 

|E| 183831 118521 100656 

Density 0.00027 0.00164 0.00398 

Kernel Size 2276 240 2226 

Clique Size 20 239 17 

Sequential Branching 118.3 unneeded 111.1 

 

 

 

High-Throughput Biological Graphs 

 

We tried to focus on markedly different sorts of biological graphs, and ended up 

employing data about human proteomics, methylation and transcriptomics. PPI was 

created from a curated protein-protein interaction database. Colitis.98 was created using 

genomic methylation data from a study on Ulcerative Colitis while LRMS.8 was created 

from gene expression microarray data concerning Low-Risk Myelodysplastic Syndrome. 

Both data sets are publicly available on the Gene Expression Omnibus (GEO). The 

associated datasets are GSE27899 and GSE41130 respectively. For Colitis.98 a weighted 

graph was first created using methylation sites as vertices with edges weighted by p-

values of the Pearson correlation between the methylation levels. The same was done for 

LRMS.8 using genes and gene expression levels. In each case, the graph was then 

converted to an unweighted graph by removing all edges whose weights fall below a 

certain threshold (p = .98 and p = .8 respectively). 

As with our physical infrastructure and social interaction experiences, kernelization 

nearly solved PPI. The other two graphs, Colitis.98 and LRMS.8, were each left with a 
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fairly formidable kernel. Although effective parallel vertex cover algorithms have been 

tailored to such graphs in previous work [134, 135], it is notable here that, like in the 

cases of the Enron and Wiki-Vote graphs, the kernels produced were such that sequential 

branching finished in a matter of a very few minutes without the need for parallelism. See 

Table 9. 

 

Pseudo-Random Graphs 

 

We created a pair of pseudo-random graphs using standard random graph models, the 

Erdös-Rényi model [136] and the Watts-Strogatz model [137]. The Erdös-Rényi graph, 

ER_5k, was constructed using an edge density of 0.1. Each potential edge was either 

present or absent based on this probability. The Watts-Strogatz graph, WS_800, began 

with a regular ring lattice, where every vertex had degree 300. One endpoint of each edge 

was then randomly rewired with probability 0.2. We tried to use the Barabási-Albert 

preferential attachment model [138] for a third pseudo-random graph. Unfortunately, this 

simple model never yields a clique of size greater than x+1, where x is the number of 

edges connecting each new node to the existing graph. For instance, when x=2, we obtain 

a graph with a maximum clique of size 3. Such graphs and their complements are solved 

very quickly by standard clique and vertex cover implementations. We therefore chose to 

create the graph Norm_900 by choosing normally distributed random degrees for the 

vertices and then setting edges with uniform probability. 
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Table 9. Computational experience with large high-throughput biological graphs. Run 
times are reported in seconds. 
 

Graph PPI Colitis.98 LRMS.8 

|V| 9314 12755 14977 

|E| 39473 107205 178377 

Density 0.00091 0.00132 0.00159 

Kernel Size 344 2040 1795 

Clique Size 13 19 30 

Sequential Branching 0.75154 264.87 229.99 

 

 

 

The structure of these pseudo-random graphs seems to be such that some reasonable 

modicum of speedup is possible with our balanced tree search. In the case of ER_5k, 

speedup seems to have been limited by its low density. Both the Erdös-Rényi and the 

Watts-Strogatz models produce graphs whose degree distribution is roughly normal, with 

mean centered at the average degree of the graph. We will say more about this issue in 

the next section. See Table 10. 

 

Regularly Structured Graphs 

 

We loosely define regularly structured graphs to be those with a narrow degree range. 

The limiting case is of course truly regular graphs, whose vertices all have the same 

degree. In fact two of the graphs we tested, 5x50_C and 90_Cycle_C, are truly regular. 

The third, a subgraph of a Hamming graph, is highly but not truly regular, with vertex 

degrees in the range [247,270]. 5x50_C is the complement of the graph obtained by 

arranging 50 5-cliques in a circle and connecting the corresponding adjacent clique  
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Table 10. Computational experience with large pseudo-random graphs. Run times are 
reported in seconds. 
 

Graph ER_5k WS_800 Norm_900 

|V| 5000 800 900 

|E| 1250505 120000 158221 

Density 0.10006 0.37547 0.39110 

Kernel Size 5000 800 900 

Clique Size 7 26 20 

Sequential 

Branching 
7635 8894.45 13027.7 

Parallel Branching 4260 646.5 844.9 

 

 

 

vertices. 90_Cycle_C was constructed by starting with an even cycle, connecting its 

opposite vertices, then taking its complement. That is, beginning with a cycle of length n, 

with vertices labeled 0,1,2,...,n-1, add edges (0,n/2), (1, n/2 + 1), (2, n/2 + 2), ... , (n/2-1, 

n-1). Figure 24 illustrates this notion with an example for n = 10. 

 

Ham_9_4 was obtained as a 350-node subgraph of a standard Hamming graph, 

constructed using parameters n=9 and d=4. In such a graph, vertices are viewed as binary 

vectors of length n, and an edge is present if and only if the Hamming distance between 

the two vectors is greater than or equal to d.  

 

Because low and high degree vertices are absent, regularly structured graphs are 

notoriously difficult, and generally show no benefit whatsoever from kernelization. 

Moreover, such graphs tend to have topological symmetry and fill many branches of the  
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Figure 24. A regularly structured graph. 90_Cycle_C is the complement of this graph of 
order 90. 
 

 

 

search tree with near-optimal solutions. Thus, many branches must be fully explored. 

Ironically, however, the very topological symmetry that makes such instances difficult 

makes them amenable to parallelization. In this study, regularly structured graphs 

produced the best speedup we see. 

 

We emphasize that this efficiency is relative. These are not linear-time systolic problems 

that easily yield linear speedups. Instead, these are NP-compete problems. Their kernels 

require exhaustive search. They generally incur several penalties with respect to 

communication overhead, non-uniform memory access and so forth. Thus, we must 

temper our enthusiasm and lower our expectations. Nevertheless, the efficiencies we see 

are respectable for problems of this ilk. See Table 11.  
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Table 11. Computational experience with large regularly structured graphs. Run times are 
reported in seconds. 
 
Graph 5x50_C 90_Cycle_C Ham_9_4 

|V| 250 180 350 

|E| 6500 15390 44842 

Density 0.75155 0.95531 0.73421 

Kernel Size 250 180 350 

Clique Size 5 90 18 

Sequential Branching 369 3802 15686 

Parallel Branching 23.75 236 1011.1 

 

 

 

Parallel Utilization 

 

There seem to be at least two major factors influencing the relative effectiveness of our 

parallel branching strategy: average vertex degree and vertex degree distribution. If the 

average vertex degree in the complement is very high, then each time a vertex is added to 

a possible cover in a left branch, its many neighbors will be added to a possible cover in 

the right branch. This may result in a highly unbalanced search tree, and thus poor 

parallel speedup. In Table 4, for example, we see that the density of ER_5k is 0.10006. 

Therefore the average degree in its complement is very high, and we witnessed only a 

modest speedup. In order to produce a balanced search tree without excessive load 

balancing, it seems from these experiments that the complement must exhibit a relatively 

tight vertex degree distribution about the mean, with the mean itself relatively low. This 

is precisely the case with the regularly structured graphs and with Norm_900. 

 



67 

 

We also note that graph size will naturally limit the scalability we can expect to see. On 

Ham_9_4, for example, we saw speedups up to 48 cores that then leveled out quickly. On 

the other hand, we were able to scale up to 720 cores before leveling out on the larger 

Norm_900 graph. See Figures 25 and 26. 

 

Summary 

 

We have studied the significance of kernelization versus branching when solving the 

classic vertex cover decision problem on large graphs from five different application 

domains. For some, we found that kernelization alone sufficed. For others, we found that 

kernelization and branching could work together to find solutions quickly. And yet for 

others, we discovered that kernelization fails completely, leaving branching to solve the 

entire problem. 

 

An important hallmark of problems amenable to kernelization appears to be a 

complement whose degree structure follows an inverse power law distribution. Such a 

graph may benefit from reductions by the high degree rule, while its compute kernel may 

have a similar distribution, which in turn increases the effectiveness of interleaving. Our 

physical infrastructure, social communication, and high throughput biological graphs all 

have this type of structure. See, for example, Figure 27. On the other hand, graphs that do 

not kernelize were either pseudo-regular or those whose complements’ degree 

distributions clustered tightly about a mean value low enough to avoid the high degree 

rule. See Figure 28.  

 

Turning now to branching, graphs benefiting most from our parallel strategy were those 

that had a relatively tight vertex degree distribution about a relatively low mean. It 

remains to be seen whether different branching strategies will behave in markedly  
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Figure 25. Speedup for Ham_9_4. Relatively small graph size limits scalability.  

 

 

 
Figure 26. Speedup for Norm_900. Larger graphs provide enhanced opportunities for 
scalability. 
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Figure 27. Degree distribution of Enron’s complement. Kernelization and sequential 
branching proved most effective on graphs whose complements show an inverse power 
law degree distribution. 
 

 

 

 
Figure 28. Degree distribution of ER_5k. A normalesque distribution combined with a 
sufficiently low mean reduces the benefits of kernelization.  
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different ways. In previous work, it has been shown that parallel vertex cover can be 

tailored to transcriptomic and other specific classes of graphs [128, 130, 135]. For a given 

branching strategy, it might prove fruitful to trace through numerous search trees in an 

attempt to identify cases for which the strategy is ideal and those for which it fails. 
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CHAPTER FIVE CONCLUSIONS AND DIRECTIONS FOR 

FURTHER RESEARCH 

 

We have examined both the application and efficiency of graph-theoretical algorithms to 

the study of complex networks. We considered the use of exact solvers for two NP-

complete problems, primarily dominating set and clique, and their utility in solving 

difficult biological problems. This work required novel approaches to algorithm 

development, as well as implementation and testing on a wide variety of publicly 

available data. We also detailed our efforts to analyze the interplay between the two 

critical components of fixed parameter tractable implementations. In this final section, we 

review the primary contributions of this dissertation and avenues for further research. 

 

Summary of Contributions 

 

The effort has focused on the development of combinatorial tools for the analysis of 

complex networks. Its primary contributions are the adaptation of a graph-based 

toolchain for biomarker discovery to DNA methylation data, with improvements to the 

method, a novel method for identifying subtypes of complex disease from gene 

expression data using the paraclique algorithm, and an empirical study of the relative 

significance of kernelization compared to branching on different graph classes for the 

vertex cover problem on parallel platforms. Although the application focus in the 

development of these algorithms was mainly on microbiology, their foundation is set in 

the mathematical abstraction of graph theory. As such, their applications transfer easily to 

other domains. Together, these results provide algorithmic advances for the study of 

complex networks as well as insight into the design of efficient algorithms through the 

use of fixed parameter tractability. 
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Originally, the graph-based toolchain for biomarker discovery was designed for gene 

expression data. Our contributions expanded and improved it in several key ways: 

• Its adaptation to methylation data required scaling to a ten-fold increase in the 

number of variables. 

•  We introduced a tuning factor to address initial runs not identifying sites with 

positive merit scores. 

•  We employed an exact rather than an approximate dominating set filter. 

•  We added a neural net classifier to the toolchain. 

We then tested the improved method on eight data sets obtained from GEO representing a 

variety of complex human disease. With the exception of chronic fatigue associated with 

Sjogren’s syndrome, our method performed well in all cases. For instance, in breast 

cancer data, it identified a set of only five methylation sites that the neural net classifier 

used to discriminate between tumor and healthy tissue samples with an accuracy of 0.96. 

We note that our method is of course reliant on the data provided. Methylation 

biomarkers may be observable in one type of tissue, but not others. For example, the 

inability to identify markers in the Sjogren’s syndrome data may indicate the absence of a 

link between associated chronic fatigue and methylation levels, or only that such markers 

are not carried in peripheral blood.  

 

The method we developed for using the paraclique algorithm to identify putative 

subgroups in gene expression data has several key features:  

• It reduces the effects of confounding factors by introducing an initial filtering 

step when accompanying control data is available. 

•  It transposes the correlation matrices typically used in a gene network analysis, 

computing sample-sample correlations to which a threshold is applied to build a 

graph. 

•  It then applies the paraclique algorithm to identify dense subgraphs representing 

potential subtypes. 
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We applied the method to twelve publicly available data sets obtained from GEO 

representing a range of human disease. Our method identified putative subtypes in ten of 

those cases. In the other two cases, we feel that either there is no discernable molecular 

subtype associated with the disease, or perhaps more likely, the available data set was too 

small to allow its discovery. To help validate the putative subtypes produced by our 

method, we conducted a literature review for the involvement of genes differentially 

expressed between paracliques having known biological relevance. We also conducted 

GO enrichment to determine whether the method differentiated between known 

molecular subtypes. Despite our efforts at validation, we recognize that this work is 

somewhat limited by a lack of ground truth. Further investigation into the biological role 

of the genes driving the separation of our putative subtypes is needed.  

 

To investigate the relative significance of kernelization compared to branching in a 

parallel FPT version of a vertex cover solver, we implemented several reduction rules, 

including the low degree, high degree and full degree rules. We performed extensive 

testing on a variety of large graphs with different structural characteristics drawn from 

five classes. The tests were ran on the Hopper machine at the NERSC facility, at the time 

the 16th fastest supercomputer for academic research in the world. Our testing revealed 

wide disparities between classes of graphs. Graphs whose degree structure follow a 

power law or inverse power law distribution can be almost completely solved with 

kernelization, while pseudo-regular graphs gain little benefit from kernelization, and must 

rely entirely on branching. The parallel speedup obtained by our algorithm relies greatly 

on the structure of the input graph. Potential steps to reduce this dependence and improve 

scalability include investigating alternative branching strategies and improving load 

balancing. 
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Possible New Directions for Future Work 

 

The work presented in this dissertation represents a stepping stone in the path to 

harnessing the power of exact solutions to NP-complete graph problems for the practical 

exploration of large, complex networks. As such, it leaves open a variety of avenues for 

further research. 

 

The work on methylation biomarker discovery could potentially form the basis for the 

analysis of other types of epigenetic data. Given the success of using our dominating set 

filter for feature selection, future work is warranted to investigate potential synergies 

between classical graph algorithms and traditional machine learning approaches. 

Additionally, work remains to be done improving the current state of the art 

implementations of dominating set. 

 

The subtyping work can also be applied to other types of data rather than gene 

expression, such as epigenetic data. In particular, it would be interesting to see how well 

the approach adapts to categorical data. An open area is the development of automatic 

validation metrics to judge the “goodness” of putative subtypes. 

 

Finally, the work on FPT vertex cover in chapter four opens several paths forward. 

Perhaps most promising would be the development of structural metrics that predict 

scalability and performance of various vertex cover/clique finders. With such metrics in 

hand, one could then design a targeted solver that would select the best approach based 

on the input graph. As we observed, satisfactory parallel speedup in our current 

implementation often depends on the structure of the input graph. As such, much work 

remains in developing parallel graph algorithms for problems such as vertex cover that 

require highly randomized memory access.  
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