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Abstract 

Three-phase voltage-source power inverters are widely used for energy conversion in three-

phase ac systems, such as renewable energy systems and microgrids. These three-phase inverter-

based ac systems may suffer from small-signal instability issues due to the dynamic interactions 

among inverters and passive components in the systems. It is crucial for system integrators to 

analyze the system stability and design the inverter controller parameters during system planning 

and maintenance periods to guarantee stable system operation. The impedance-based approach 

can analyze the stability of source-load systems, by applying the Nyquist stability criterion or the 

generalized Nyquist stability criterion (GNC) to the impedance ratio of the source and load 

impedances. This dissertation investigates the impedance-based methods for stability analysis 

and inverter controller design of three-phase inverter-based multi-bus ac systems. 

Improved sequence impedance and d-q impedance models of both three-phase voltage-

controlled inverters and current-controlled inverters are developed. A simple method for 

sequence impedance measurement of three-phase inverters is developed by using another 

inverter as the measurement unit, connected in a paralleled structure with common-dc and 

common-ac sides. 

For three-phase radial-line renewable systems with multiple current-controlled inverters, an 

impedance-based sufficient stability criterion is proposed in the d-q frame, without the need for 

pole calculation of the return-ratio matrices. An inverter controller parameter design method is 

developed based on the phase margin information obtained from the stability analysis. 

For general three-phase multi-bus ac power systems consisting of both voltage-controlled 

inverters and current-controlled inverters, several impedance-based stability analysis methods 
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and inverter controller parameter design approaches are further proposed, based on the sequence 

impedances, the d-q impedances and the measured terminal characteristics, to avoid the unstable 

harmonic resonance, the low-frequency oscillation and the oscillation of the fundamental 

frequency, respectively. All these proposed stability analysis methods enable the system stability 

assessment without the need for the internal control information of inverters. 

Moreover, an impedance-based adaptive control strategy of inverters with online resonance 

detection and passivity or phase compensation is proposed for stable integration of both voltage-

controlled inverters and current-controlled inverters into unknown grid-connected or islanded 

systems with other existing inverters in operation.  
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1 Introduction 

1.1 Background and Motivation 

Due to the benefits of reduced environmental impacts, better energy security and potential 

economic aspects, renewable energy sources such as wind and solar are penetrating into the 

power system with an unprecedented speed. Figure 1-1 shows the installed wind generating 

capacity for U.S. states at end of 2015. The capacity was nearly 75 GW at the end of 2015 [1]. 

The U.S. Department of Energy has envisioned that wind power will supply 20% of all U.S. 

electricity by 2030 [2]. Figure 1-2 shows the solar photovoltaic (PV) installations in U.S. over 

the past decades. In 2015, over 26 GW of capacity was installed, and 30% of all new electricity 

generation capacity in the country came from solar [3]. These renewable energy sources are not 

intrinsically able to connect with the power system directly. A power electronics converter has to 

act as an interface to convert the dc voltage from the solar panel, and the variable frequency ac 

voltage from the wind turbine to the grid. Figure 1-3 shows the one-line diagram of multiple PV 

interface inverters connected to a feeder in a distribution power grid. 

Microgrids are localized power networks that incorporate with distributed energy resources 

(DER), energy storages, and local critical and non-critical loads. With proper control, microgrids 

can operate in the grid-connected mode with the main power system, or stand-alone in the 

islanded mode. This can significantly improve reliability of the electricity services. Since the 

concept was proposed not more than two decades ago [4], microgrids has attracted a lot 

attentions. Over 13,400.5 MW of operating, under development, and proposed microgrid 

capacity had been identified over the world as of the end of 2015 [5]. Power converters are 

essential components in a microgrid. The energy sources and storages like the wind, PV, or  
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Figure 1-1. Map illustrating installed wind generating capacity for U.S. states at end of 2015. 

 

 

Figure 1-2. Annual U.S. solar PV installation, 2000-2015. 
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Figure 1-3. Simplified one-line diagram of a grid-connected radial-line PV system with multiple 

PV inverters. 

 

battery all require power converters to transform electric power to the utility grid. 

With a high control bandwidth, power electronic inverters can be controlled to behave like 

various power system components, by tracking the corresponding models. Figure 1-4 shows the 

architecture of an inverter-based power grid emulation system, named Hardware Test-bed (HTB) 

in the CURENT center at the University of Tennessee [6]–[10]. It can emulate the power system 

performance, by using each of the inverters in parallel to emulate the power system components, 

such as synchronous generators, induction motor loads, and static loads, etc. 

Thanks to the features of controllability, flexibility and high efficiency, three-phase voltage-

source inverters are widely used for energy conversion in three-phase ac systems, such as electric 

railway systems [11], electric aircrafts [12], [13] and modern electric ships [14], [15], in addition 

to the aforementioned renewable energy systems [16], [17], microgrids [18] and CURENT’s 

power grid emulation system. 
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Figure 1-4. Structure of Hardware Test-bed for power grid emulation. 

 

However, these voltage-source inverters based three-phase ac systems may suffer from 

small-signal instability issues [19]. Due to the high-frequency Pulse Width Modulation (PWM) 

of semiconductor devices and the dead-time inserted in the duty-cycles of semiconductor devices 

to avoid shoot-through, the inverters introduce harmonics in a wide spectrum. Passive filters are 

normally used in inverters for filtering switching frequency harmonics, but the interaction 

between passive filters and other passive components in the system leads to more resonance 

frequencies. In addition, because of the high control bandwidth of the inverters, there are 

dynamic interactions among inverters and the passive components in the system in a wide 

frequency range. The instability phenomena have been reported in renewable energy systems 

[20]–[23], microgrids [24] and electric railway systems [11]. 

These small-signal instability issues in these three-phase inverter-based ac systems can be 

divided into two categories in different frequency ranges [23]: 1) unstable harmonic resonances, 
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which result from the interactions among the fast inner current or voltage control loops, 

converter output filters and network passive components [23]–[26]; 2) low-frequency oscillations, 

which arise from the interactions among the slow outer power control loops and grid 

synchronization loops [27]–[29]. It is crucial for system integrators to analyze the system 

stability and design the converter controller parameters during system planning and maintenance 

periods to guarantee stable system operation [29], [30]. 

The impedance-based approach, originally introduced for the stability analysis and design of 

dc systems, can analyze the stability of systems with interconnections, by applying the Nyquist 

stability criterion [31]–[33] or the generalized Nyquist stability criterion (GNC) [34]–[36] to the 

impedance ratio of two subsystems separated at one interface of the whole system. Compared 

with the state-space-based approach and the transfer-function-based approach for system stability 

analysis and control parameter design, the impedance-based approach has several advantages.  

1) The measured impedances of system components can be directly used to evaluate the 

system stability, without the need for the detailed physical or control information of the 

inverter components [37].  

2) The impact of individual components or subsystems on the system stability can be 

clearly interpreted [23].  

3) For source-load systems, practical conservative impedance-based stability criteria [38], 

such as the Middlebrook criterion [39], can be used to define the specifications of the 

source and load impedances separately. 

The impedance-based approach is promising to solve the problems regarding the stability 

analysis and controller design of three-phase inverter-based ac systems. However, there are still 
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some challenges in the application of the impedance-based approach. 

1) Impedance modeling of three-inverters is important for impedance-based stability 

analysis and controller design. It is necessary to accurately model the admittance or 

impedance of both current-controlled inverters and voltage-controlled inverters, with the 

consideration of the specific applications, such as the static load emulation in 

CURENT’s inverter-based power grid emulation system.  

2) The inverter impedance measurement usually requires dedicated equipment, which is not 

easy to set up. Thus, a simple and effective set up for inverter impedance measurement 

would be beneficial for system integrators to assess the system stability during the 

system planning stage. 

3) The examination of the right-half-plane (RHP) poles of the impedance ratio is a 

necessary prerequisite for the application of the Nyquist stability criterion or the GNC. 

The RHP pole examination can be avoided for the source-load systems with a simple 

single-bus structure, but it is still inevitable for complicated inverter-based ac systems 

with multiple buses. The RHP pole calculation requires detailed transfer function models 

of system components and would result in a heavy computation burden for complicated 

systems. It is critical to develop impedance-based stability criteria to avoid RHP pole 

examination for inverter-based ac systems. 

4) For inverter-based multi-bus ac systems with definite structures, it is not easy to design 

the controller parameters of each inverter individually due to the inter-connection of all 

inverters. 

5) When integrating inverters to a weak grid or a microgrid with existing inverters in 
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operation, the impedance of the existing system is complicated and the information of 

existing system is not always readily available. This remains an obstacle for controller 

design of inverters for stable integration to an unknown system. 

The objectives of the research are to improve impedance models of three-phase inverters, 

develop a simple approach for inverter impedance measurement, propose stability criteria to 

avoid the RHP pole calculation and controller design methods for inverter-based ac systems with 

definite structures, and propose controller design methods of inverters for stable integration into 

an unknown system. 

1.2 Dissertation Organization 

The organization of the chapters in this dissertation is described as follows. 

Chapter 2 summarizes and compares the existing stability analysis approaches and explains 

the selection of the impedance-based approach for stability analysis and controller design of 

three-phase inverter-based ac systems. The remaining part of this chapter reviews the research 

activities in the impedance modeling and measurement of three-phase inverters, impedance-

based stability analysis and inverter controller design of inverter-based ac systems with definite 

structure, as well as the impedance-based controller design of inverters for stable integration into 

an unknown system. Based on the review, the research challenges in these areas and the 

objectives of this dissertation are pointed out. 

Chapter 3 improves the modeling of the sequence impedances and d-q impedances for both 

current-controlled inverters and voltage-controlled inverters, with the consideration of the 

generator and static load emulation in CURENT’s inverter-based power grid emulation system. 

 Chapter 4 develops a simple method for sequence impedance measurement of three-phase 
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inverters by using another inverter connected in a paralleled structure with common-dc and 

common-ac sides. 

Chapter 5 proposes an impedance-based sufficient stability criterion, without the need for 

the pole calculation of return-ratio matrices, for general radial-line renewable systems with 

multiple current-controlled inverters in the d-q domain, and a corresponding controller parameter 

design method based on the phase margin. 

Chapter 6 proposes two sequence-impedance-based harmonic stability analysis methods and 

an inverter controller parameter design approach for stable operation of a three-phase inverter-

based two-area system, with the benefits of avoiding the examination of RHP poles of 

impedance ratios and reducing the computation effort, as compared with the existing impedance-

based stability analysis method using the Nyquist stability criterion once. 

Chapter 7 proposes a stability analysis method and an inverter parameter design approach, 

based on the d-q impedances, the Component Connection Method (CCM) and the determinant-

based generalized Nyquist stability criterion (GNC), for the inverter-based two-area system with 

generator and static load emulation. The examination of RHP poles of the return-ratio matrix is 

avoided, as compared with the existing impedance-based analysis method using the GNC once. 

Chapter 8 proposes a stability analysis method for the low-frequency oscillation of the 

fundamental frequency in three-phase inverter-based islanded multi-bus ac microgrids, based on 

the measured terminal characteristics of system components with the fundamental frequency as 

an additional variable, without the need for the internal information of inverters. 

Chapter 9 proposes an impedance-based adaptive control strategy of both voltage-controlled 

inverters and current-controlled inverters for stable integration into unknown systems. The 
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proposed strategy is based on the online resonance detection by using the online fast Fourier 

transform (FFT) and passivity or phase compensation by integrating a BPF or a notch filter into 

the control loops of inverters. 

Chapter 10 summarizes the work that has been done in this dissertation and recommends 

some future work.  
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2 Literature Review and Challenges 

This chapter reviews the research activities in the corresponding areas of impedance-based 

stability analysis and controller design of three-phase inverter-based ac systems. The research 

challenges and objectives are presented to identify the originality of the work. 

2.1 Stability Analysis Approaches 

This section briefly summarizes different kinds of stability problems, and introduces and 

compares three major small-signal stability analysis approaches, in order to justify the selection 

of the impedance-based approach for the small-signal stability analysis of three-phase inverter-

based ac systems. 

2.1.1 Stability Problems 

The stability of a system is the ability to reach and remain at the operating equilibrium point 

under a disturbance [40]. For example, Reference [41] provided a formal definition of power 

system stability: “Power system stability is the ability of an electric power system, for a given 

initial operating condition, to regain a state of operating equilibrium after being subjected to a 

physical disturbance, with most system variables bounded so that practically the entire system 

remains intact.” 

Generally, there are three different kinds of system stability problems, namely, steady-state 

stability, small-signal stability and large-signal stability problems [40]. The steady-state stability 

is about the existence of the equilibrium point. The small-signal stability is the ability to go back 

to the operating equilibrium point under small disturbances, which are sufficiently small so that 

the linearized system equations are still applicable. The large-signal stability is the ability to 
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transit from one operating equilibrium point to a new operating equilibrium point after a severe 

disturbance. The large-signal stability is usually analyzed in the sense of Lyapunov stability [40]. 

This study only focuses on the small-signal stability of three-phase inverter-based ac systems. 

2.1.2 Small-Signal Stability Analysis Approaches 

There are several approaches to analyze the small-signal stability of three-phase ac systems, 

including the state-space-based approach, the transfer-function-based approach and the recently 

proposed impedance-based approach.  

A. The state-space-based approach 

The state-space-based approach has been widely used in the stability analysis of the 

traditional power systems [42]. When using the state-space model of the power system, the 

system eigenvalues and eigenvectors can be extracted from the system state matrix. The 

eigenvalues contain the frequency and damping ratio information of the oscillatory modes, while 

the eigenvectors indicate mode shape, mode composition and participation factors. In addition, 

for the small-signal stability analysis of traditional power systems, the stability of the system 

states, such as the synchronous machine rotor angles, bus voltages and system frequency are of 

great concern. Therefore, the state-space and eigenvalue based approach is more preferable than 

the transfer-function-based approach, which only describes the input-output relationship but does 

not reveal the conditions of internal states. Moreover, the small-signal stability analysis of 

traditional power systems using the state-space-based approach can be readily accomplished with 

commercial software, such as Power System Simulation for Engineering (PSS/E) and Dynamic 

Security Assessment Software (DSATools) [9].   

The state-space-based approach was introduced to the small-signal stability analysis and 
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controller parameter design of inverter-based ac power systems [43], [44]. The dynamics of 

traditional power systems are mainly determined by the synchronous machines, and the 

frequencies of concerned system oscillatory modes are normally low (less than 10 Hz). However, 

due to the small time constant and high control bandwidth of power electronics inverters, the 

dynamic interactions among inverters and grid could occur in a wide frequency range. Therefore, 

full detailed models of inverters and connection network dynamics are required for the small-

signal stability analysis of inverter-based ac systems, such as inverter-based microgrids [27], [43]. 

Consequently, the state-space-based approach is complicated to use, owing to the high order of 

the system state matrix, and not flexible in use, considering that the system model needs to be 

derived again for any change of system physical and control parameters. The modes of the 

inverter-based ac power systems exhibit a frequency-scale separation [43], [45]. In order to 

reduce the computational burden, model order reduction techniques, such as the neglect of the 

inner loop dynamics [46], the singular perturbations technique [47], [48] and the participation 

analysis [49], are usually adopted to study the stability issues related with either the low 

frequency modes [46]–[48] or the medium and high frequency modes [49]. 

A special form of state-space-based approach, the Component Connection Method (CCM) 

has been proposed to decompose the traditional power systems into components and the 

connection network and thus simplify the formulation of system state equations thanks to the 

model sparsity [23], [50]–[53]. The CCM can also reveal the impact of components on the 

system oscillatory modes [23]. The CCM was recently adopted in the state-space-based 

harmonic stability analysis of inverter-based ac systems [54]. However, the state-space-based 

approach requires the detailed internal control information of each inverter in the system, which 

is not convenient to obtain in practical applications. 
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B. The transfer-function-based approach 

While the state-space-based approach, regarded as the modern control theory, reveals the 

inner state dynamics using state equations, the transfer-function-based approach, referred to as 

the conventional control theory, focuses on the input-output relationship [55]. The transfer-

function-based approach can analyze the system stability by the Bode plot or Nyquist plot of the 

open-loop transfer function or the pole-zero maps of the closed-loop transfer function.  

Regarding the dynamic control of power electronics inverters, the input-output relationship 

is a major concern, including the relationship between the reference and the output as well as the 

relationship between the disturbance and the output, in order to achieve good (voltage, current 

and power) reference tracking performance and good disturbance rejection performance. In 

addition, in view of the high control bandwidth of inverters, the frequency response 

characteristics in a wide frequency range are concerned, which can be easily analyzed using the 

open loop gain of the feedback control system. Therefore, the transfer-function-based approach 

is commonly applied to the study of the stability of a power electronics inverter. For example, 

the open-loop gain and root locus are normally used in the design of passive damping circuits 

and active damping control parameters, to ensure the current control loop stability of grid-

connected inverters with output LCL filters [56]–[59].  

The transfer-function-based approach is effective in the stability analysis and controller 

design of a three-phase inverter individually with the assumption of ideal external conditions. 

However, its application in the stability analysis and controller design of inverter-based ac 

systems, such as paralleled multiple inverters connected to a weak grid and inverter-based 

islanded power systems, is complicated, because mutual interactions of system components are 

embedded in the input-output control loop. A multi-input-multi-output (MIMO) closed-loop 
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transfer function matrix model of the whole system is normally used, and Bode plots and pole-

zero maps of each closed-loop transfer function element are adopted for stability analysis [60]. In 

order to simplify the stability analysis based on transfer functions, simplification or aggregation 

of the system structure is usually utilized. Reference [20] uses a simplified passive circuit model 

to investigate the parallel resonance and series resonance caused by the capacitance and the 

inductance inside a distribution network, without including the effect of power inverter 

controllers. An equivalent inverter model of N-paralleled inverter is developed in [61] by 

assuming the physical and controller parameters of all inverters are identical. Also, an 

aggregated model of a wind farm is derived in [21] by assuming all the wind turbines are 

identical and all collector feeders are the same. Although effective in some applications, this 

simplification process might conceal some instability mechanism of the system.  

In addition to the aforementioned limits of the state-space-based approach and the transfer-

function-based approach, both approaches require the detailed physical and internal control 

information of all inverter components in order to formulate the state equation or transfer 

function matrix of the whole system for stability analysis. However, this proprietary information 

is not always available from the vendors of inverters, which could hinder the system integrator 

from system stability assessment [37]. 

C. The impedance-based approach 

The impedance-based approach, originally introduced for the stability analysis and design of 

dc systems, can analyze the stability of systems with interconnections in a practical way. 

Different from the reference-to-output relationship of each individual inverter component, which 

can be regarded as the “internal” stability, in the transfer-function-based approach, the 

impedance-based approach focuses on the stability caused by the interconnections of system 
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components, which can be regarded as the “external” stability, by taking advantage of the 

terminal behaviors, in other words, the impedance or admittance of inverter components [19]. By 

dividing the system into two subsystems at one interface, the impedance ratio of the impedances 

of two subsystems represents the minor loop gain of the connection of these two subsystems. In 

addition, the Nyquist stability criterion can be applied to the impedance ratio to determine the 

“external” stability related with the connection. 

The Nyquist stability criterion can be stated as follows [19], [31]–[33], [36], [55], [62]: 

“For a closed-loop system to be stable, the encirclement, if any, of the (−1, j0) point by the 

Nyquist plot of the open-loop transfer function (as s moves along the Nyquist path) must be anti-

clockwise, and the number of such encirclements must be equal to the number of poles of the 

open-loop transfer function that lie on the right-half-plane (RHP).” 

For example, Figure 2-1(a) shows the small-signal impedance-based representation of a 

grid-connected current-controlled single-phase inverter system [19]. The expression of the 

inverter current it in terms of the inverter current reference *

ti  and the grid voltage vg is shown in 

(2-1). The corresponding configuration of the feedback loop can be illustrated in Figure 2-1(b). It 

can be seen that the inverter current reference to output closed loop gain Gcl(s) and the inverter 

output admittance Yoc(s) represent the “internal” stability of the inverter when connected to an 

ideal grid, while the impedance ratio Tm(s) defined as (2-2), also called the minor loop gain of the 

minor feedback loop, indicates the “external” stability related with the grid impedance Zg(s). The 

Nyquist plot of the impedance ratio Tm(s) is depicted in Figure 2-2, from which the number of 

encirclements of the (−1, j0) point as well as the gain margin and phase margin can be obtained. 

Tm(s) in Figure 2-2(a) is stable without encirclement of the (−1, j0) point, but Tm(s) in Figure 

2-2(b) is unstable with two encirclements of the (−1, j0) point.  
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(a) 

 

(b) 

Figure 2-1. A grid-connected current-controlled single-phase inverter system. (a) Impedance-

based equivalent circuit; (b) the feedback control loop. 

 

 

(a) 

 

(b) 

Figure 2-2. Nyquist plot of the impedance ratio Tm(s): (a) stable; (b) unstable. 
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(2-1)  
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(2-2)  ( ) ( ) ( )m oc gT s Y s Z s   (2-2)  

As demonstrated in the above example, the impedance ratio can be readily utilized to assess 

the system stability. As for three-phase ac systems, the inverter impedance can be modeled as 

sequence impedances and the Nyquist stability criterion can be applied. The inverter impedance 

can also be modeled as the d-q impedance in the synchronous d-q frame, and in this case the 

generalized Nyquist stability criterion (GNC) for multi-input-multi-output (MIMO) systems 

should be used. 

 

 

Figure 2-3. Generic multivariable closed-loop configuration. 

 

Consider L(s) as the return-ratio matrix of the generic multivariable closed-loop system 

depicted in Figure 2-3. The eigenvalue-based GNC can be stated as follows [34]–[36]: 

“Let L(s) have no open-loop uncontrollable and/or unobservable modes whose 

corresponding characteristic frequencies lie in the right-half plane. The closed-loop system is 

stable if and only if the net sum of anti-clockwise encirclements of the critical point (−1, j0) by 
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the set of characteristic loci of L(s) is equal to the total number of right-half plane poles of L(s).” 

The determinant-based GNC can be stated as follows [34]–[36]: 

“Let N denote the number of open-loop unstable poles in L(s). The closed-loop system with 

loop transfer function L(s) and negative feedback is stable if and only if the Nyquist plot of 

det(I+L(s)) a) makes N anticlockwise encirclements of the origin, and b) does not pass through 

the origin.” 

An impedance-based conservative stability criterion was proposed in [63]–[66], on the basis 

of the frequency-domain passivity theory, which states that: “a linear, continuous system G(s) is 

passive if 1) G(s) is stable without RHP poles and 2) the real part of G(jω) is non-negative or the 

angle of G(jω) is within [-90°, 90°], for the whole range of the frequency ω [19].” For the grid-

connected current-controlled single-phase inverter system as shown in Figure 2-1(a), if both the 

inverter output admittance Yoc(s) and the grid impedance Zg(s) are passive, the system is stable 

with the Nyquist plot of the impedance ratio Tm(s) illustrated in Figure 2-4. 

 

 

Figure 2-4. Nyquist plot of the impedance ratio Tm(s) when both Yoc(s) and Zg(s) are passive. 
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Compared with the state-space-based approach and the transfer-function-based approach, 

the impedance-based approach, based on the impedance ratio of two subsystems at the interface, 

has several advantages: 

(1)  The measured impedances of system components can be directly used to assess the 

system stability, without the need to know the detailed physical or control information of the 

inverter components [37]. Thus, it enables the system integrator to easily analyze the stability 

during the system planning stage without the need for the inverter internal information from the 

vendors. 

(2) This approach can clearly interpret the impact of individual components or subsystems 

on the system stability [23]. 

(3) For source-load systems, practical conservative impedance-based stability criteria [38], 

such as the Middlebrook criterion [39], can be used to define the forbidden regions in the 

complex plane for the locus of the source and load impedance ratio [37]. Thus, given the source 

(or load) impedance, the specifications of the load (or source) impedance can be defined to 

design the controller parameters separately. 

Considering the above advantages, the impedance-based approach is adopted in this study to 

facilitate the stability analysis and controller design of three-phase inverter-based ac systems. 

2.2 Impedance Modeling of Three-Phase Inverters 

There are generally two kinds of impedance models for three-phase balanced ac systems 

[66]–[68], that is, the d-q impedance matrix model in the synchronous d-q frame [69] and the 

harmonic-linearization-based sequence impedance model [70]. The d-q impedance models can 

be used to assess both the harmonic instability and low-frequency oscillation problems by using 
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the generalized Nyquist stability criterion (GNC) [34], [71]. As reported in [72] and [73], the 

positive-sequence and negative-sequence impedances of inverters are decoupled, if 1) only inner 

current or voltage loops with symmetric structures and equal parameters in d- and q-axis are 

considered, and 2) no phase locked loop (PLL) is adopted or the PLL has negligible impact due 

to a sufficiently low bandwidth. Under these conditions of decoupling, the sequence impedance 

models have been proven to be effective in analyzing the harmonic stability based on Nyquist 

stability criterion [23], [25], [31], [70]. While the manipulation of d-q impedance matrices is 

complicated, the scalar computation of decoupled positive-sequence and negative-sequence 

impedances under above conditions is simpler.  

The sequence admittance model of current-controlled three-phase inverters with an output L 

filter is developed in [70], with the consideration of the voltage feed-forward control in the phase 

domain. Nevertheless, the sequence admittance model of current-controlled inverters with the 

voltage feed-forward control in the d-q frame is not discussed. In addition, the impact of the dead 

time inserted in duty-cycles of phase-leg switches on the inverter sequence admittance is not 

considered. Moreover, the sequence impedance modeling of voltage-controlled three-phase 

inverters has not been studied in the literature yet. 

For the small-signal stability analysis in the d-q domain, models of system components need 

to be built in a common d-q frame [74]. The d-q impedance model of voltage-controlled inverters 

with droop control in a common d-q frame has been developed in [74]. But the output admittance 

model of current-controlled inverters is usually expressed in the d-q frame aligned to the inverter 

terminal voltage [69], while the model in an arbitrary d-q frame has not been discussed in 

references yet. 

In CURENT’s power electronics inverter based Hardware Testbed for transmission-level 
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power grid emulation, static load emulators using current-controlled three-phase inverters are 

developed for emulation of ZIP loads [6], [7], which are the combination of constant impedance 

(Z), constant current (I) and constant power (P) loads in both real and reactive power, in order to 

provide flexible loading conditions for steady-state and transient emulation. The static load 

emulation changes the dynamic performance of the current-controlled inverters in the low 

frequency range, and thus the inverter output admittance in the d-q frame is also changed and 

needs to be modeled to assist in the impedance-based stability analysis of the inverter-based 

systems. 

The aforementioned d-q impedance models and sequence impedance models assume that the 

system fundamental frequency ω1 is a constant value. If the slow dynamics of the fundamental 

frequency ω1 is also concerned in three-phase ac systems, such as a microgrid consisting of 

multiple droop-controlled inverters, the fundamental frequency ω1 should also be treated as a 

variable in the terminal characteristics modeling of inverters and system passive components. 

The terminal characteristics models of three-phase current-controlled inverters and voltage-

controlled inverters with the droop control loop were developed in [75] and [76], by further 

including the transfer function between the fundamental frequency ω1 and the inverter current. 

However, the terminal characteristics models of passive components, such as transmission lines, 

inductive and resistive loads and shunt capacitors, have not been discussed in the literature yet. 

2.3 Impedance Measurement of Three-Phase Inverters 

Several methods exist for impedance measurement of three-phase ac systems. Generally, the 

measurement objects include three types: online grid impedance [77]–[79], general three-phase 

ac source impedance and load impedance [80], [81], and the power converter impedance [82], 

[83]. The impedance can be measured either in a passive way by utilizing the existing noise [77], 
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or in an active way by injecting a single-frequency signal [80], [81], [84] and sweeping the 

frequency or by injecting wide-band signals [78], [82], [85].  

As for measurement setup, aside from online grid impedance measurement, which can be 

implemented by grid-connected inverters [78], the other two types of impedance measurement 

usually require dedicated equipment [80], [81], [83], such as the frequency response analyzer, 

power amplifier, isolation transformer and chopper circuit, which are not easy to set up. It has 

been reported that it is convenient to use existing three-phase inverters in shunt or in series or in 

grid-connected mode to create perturbations for online source or load impedance measurement 

[86]–[88]. However, since the inverter only serves as the power amplifier of the injection signal, 

both the external source and load are needed to create the desired operating point. Therefore, the 

ratio between the source and load impedance will impact the perturbation distribution and 

weaken the effective perturbation level. The impedance measurement accuracy also suffers from 

the background harmonics. On the other hand, most of the existing methods focus on 

measurement of the impedance in the d-q domain [89], while the sequence impedance 

measurement is only discussed in [83], which still uses dedicated equipment. 

2.4 Impedance-Based Stability Analysis of Inverter-Based Ac Systems 

When using the Nyquist stability criterion or the GNC, not only the encirclement of the 

Nyquist plot around (−1, j0) should be examined, but also the right-half-plane (RHP) poles of the 

impedance ratio or return-ratio matrix should be checked [34], [62]. For converter-based ac 

systems that could be divided into a stable source subsystem and a stable load subsystem, the 

ratio of two subsystems’ impedances does not have RHP poles, and thus the pole examination is 

avoided in the stability analysis. This applies to the systems with simple structures, such as grids 

with a single inverter [67], [70] or directly paralleled multiple inverters [25], [29], [90] and 
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source-load systems with one common ac bus [30], [37], [71], [91]–[94]. However, for 

complicated inverter-based ac systems with multiple buses, such as meshed power systems [23] 

and microgrids [27], normally they could not be easily divided into two stable subsystems during 

the system planning stage, and therefore it is necessary to examine the RHP poles of the 

impedance ratio when using the Nyquist stability or the GNC for system stability analysis, which 

requires detailed transfer function models of system components and would result in a heavy 

computation burden for complicated systems. 

A number of research efforts have been made to avoid the pole calculation of the impedance 

ratio and facilitate the impedance-based stability analysis of inverter-based multi-bus ac systems. 

The harmonic stability of a three-phase meshed ac power system made up of multiple voltage-

controlled and current-controlled converters was evaluated in [23], by analyzing the Nyquist plot 

of the impedance ratio at each point of connection (PoC) for each component. However, the 

stability analysis at different PoCs of components could reveal conflictive results [90]. Some 

stability criteria have also been reported, such as the Impedance-Sum-Type Criterion [95] based 

on Cauchy’s theorem and the Nyquist criterion for multi-loop system [96]. In addition, a 

sufficient-but-not-necessary stability condition for a radial distribution network with multiple 

current-controlled converters has been proposed in [97] by analyzing the stability step by step 

from the simplest entity to the entire network. However, these methods are only applicable to 

paralleled source-source converter systems with only voltage-controlled converters or only 

current-controlled converters instead of the mix of both types. 

The authors of [95] further considered applying Cauchy’s theorem to the stability analysis of 

single-bus systems, in which both voltage-controlled and current-controlled converters are 

directly connected to the common bus in parallel [98], [99]. However, the derived two-step 
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stability criterion is not an extension of the Impedance-Sum-Type criterion. In addition, the 

application of Cauchy’s theorem to a multi-bus general ac system with both voltage-controlled 

and current-controlled inverters and complicated connections including mesh has not been 

reported in the existing literature yet. And the underlying principle of the impedance-based 

stability analysis using Cauchy’s theorem has not been clearly described yet. 

The CCM has also been reported in the multivariable frequency domain and the eigenvalue-

based GNC is applied to the resultant transfer function matrix model to analyze the stability of 

traditional interconnected power systems [100]. By utilizing the algebraic properties, including 

Y-symmetry and the ability to be decoupled, of the frequency characteristic matrices of power 

systems, two uncoupled eigenvalue systems are derived for the original system, and several 

simplified stability criterion based on the eigenvalue-based GNC have been proposed in [100]. 

Later on, the small gain theory and the structured singular value (μ)-based analysis have been 

applied to derive a stability criterion regarding the structure singular value of the connection 

network and the singular value of each component [101], but such criterion is conservative. The 

μ-based analysis has also been applied to the stability analysis of a source-load system and a 

microgrid with multiple inverter-based distributed energy resource (DER) units to establish a 

robust stability margin in terms of load parameter perturbations in [102], but this method is 

conservative and not based on the CCM.  

In the application of the frequency-domain CCM to conventional power systems [100], all 

the components are treated as voltage-controlled current sources with voltage as input and 

current as output, and thus the transfer function matrix (or impedance matrix) of the connection 

network is simply the inverse of the system nodal admittance matrix. In contrast, in inverter-

based autonomous ac systems, the inverter-interfaced power sources and loads could be either 
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voltage-controlled type or current-controlled type. As a result, the impedance matrix of the 

connection network could not be obviously obtained. Reference [23] reviewed the application of 

the CCM in the frequency domain to the harmonic stability analysis of a three-phase inverter-

based meshed ac power system in the stationary α-β frame. But the impedance matrix of the 

connection network was not derived, and thus the application of the CCM was not demonstrated 

on the studied system. A literature survey indicates that the stability analysis of three-phase 

inverter-based ac systems based on d-q impedances and the CCM in the frequency domain has 

not been demonstrated in the existing literature yet. Moreover, the stability analysis using the 

CCM and the determinant-based GNC, which is another type of GNC criteria besides the 

eigenvalue-based GNC [103], has not been discussed in the literature yet. 

As for the stability analysis of the low-frequency oscillation of the fundamental frequency in 

three-phase inverter-based islanded ac microgrids, a stability criterion based on the terminal 

characteristics of droop-controlled inverters modeled in [75] and [76] was proposed in [104] for 

a single-bus microgrid with two droop-controlled inverters in parallel sharing a common load. 

However, such stability criterion cannot be applied to the low-frequency stability of complicated 

ac micrgrids with multiple buses. 

2.5 Impedance-Based Controller Design of Inverters for System Stability  

It is important to properly design the controllers of inverters to ensure the stability of an 

inverter-based ac system with a definite structure, during the system planning stage. 

There are several impedance-based methods of inverter controller design for system stability. 

One way is to shape the converter impedance by emulating virtual impedance [105]–[108] or 

inserting filters into control loops [109]–[111], which relies on the knowledge of system 
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impedances or resonance frequency information. Another way is to make the converter 

impedance passive based on the frequency-domain passivity theory, by adjusting controller 

parameters or adding special controllers [63]–[66], [112]–[114]. But the passivity-based design 

requires a trade-off between dynamic performance and passivity. A third way is to select proper 

controller parameters based on the system stability analysis [37], [115], [116]. Proper controller 

parameter ranges can be determined to meet the specified stability margin requirements [116], 

[117], or they can be presented as stability regions and boundaries in the parameter space [28], 

[40]. For simple source-load systems, given the load-side impedance, it is relatively easy to 

design the controller parameters of the source side by adjusting its impedance to meet the 

impedance-based stability criteria, or vice versa [37], [115], [116]. However, for inverter-based 

multi-bus ac systems, it is not easy to design the controller parameters of each inverter 

individually due to the inter-connection of all inverters. 

2.6 Impedance-Based Controller Design of Inverters for Stable Integration into an 

Unknown System  

Unlike the planning of an inverter-based ac system with a definite structure, there are 

situations when the inverters need to be integrated into a system with unknown information or a 

time-varying structure, such as integration of multiple renewable interface inverters into a weak 

grid, and plug-and-play of inverter-based distributed energy resources (DER) in a microgrid. 

There are several impedance-based approaches for controller design of inverters for stable 

integration into an unknown system. The first approach is to design the inverter impedance to be 

passive based on the frequency-domain passivity theory. If the potential resonance frequencies of 

the system are known and time-invariant, such as the sub-synchronous resonances due to the 

torsional modes of nearby generators [110], the inverter integration can be stable when the 
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inverter impedance is designed to be passive around these resonance frequencies. However, the 

resonance frequencies are uncertain in the multiple-inverter-based ac systems due to the 

wideband dynamic interactions among the inverters and the grid. Thus, the ideal solution is to 

make the inverter impedance passive in the whole frequency range except the fundamental 

frequency. Euler-derivative-based control has been proposed in [112] to make the admittances of 

current-controlled renewable interface inverters passive in the most frequency range. 

Nevertheless, the voltage feed-forward control, which could contribute to non-passive 

admittances, is not considered in [112]. 

The second approach is based on online resonance frequency detection. Reference [111] 

proposed a self-commissioning notch filter technique through exciting and detecting the LCL-

filter resonance frequency by using Fourier analysis. But it is only for active damping of the 

LCL-filter resonance, while the low-order harmonic resonance caused by the current/voltage 

control loops as well as voltage feed-forward control is not discussed. The active damper concept 

has been put forward in [25], [118], [119] that an additional power converter with a high 

bandwidth is used to detect the resonance frequencies and reshape the grid impedance at 

resonance frequencies. However, this method requires additional hardware setup, and it is 

difficult to design the virtual resistance value due to its dependence on the system structure and 

location of the active damper [120]. 

The third approach is based on online grid impedance measurement. There are several 

methods for online grid impedance measurement in existing literatures [77]–[79], based on 

single-frequency, or impulse-type or sequence-type current disturbance injection and Fourier 

analysis. The adaptive control methods based on online grid impedance measurement proposed 

in existing references [121]–[123], usually simply assumed the grid impedance as a series of 
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inductance and resistance, and extracted the L and R parameters from the measured frequency 

response. However, for the inverter-based ac systems, the grid impedance could be rather 

complicated due to the existence of other inverters, and therefore could not be simplified as pure 

passive impedance. Reference [124] proposed an impedance-phase compensation strategy by 

using the phase information of the measured grid impedance. However, a simple inductive grid 

was used in the verification, and the voltage feed-forward was not included in the current control 

loop. 

Therefore, there are still problems regarding the impedance-based controller design of 

inverters to stably integrate into a weak grid or microgrid with unknown system information. 

2.7 Research Objectives 

According to the literature review above, many issues are still unsolved on the impedance-

based stability analysis and controller design of three-phase inverter-based ac systems. The main 

challenges include: 

(1) Sequence impedance modeling of three-phase voltage-controlled inverters, and the 

d-q admittance modeling of three-phase current-controlled inverters in an arbitrary 

d-q frame, and the d-q admittance modeling of the static load emulator in 

CURENT’s power grid emulation platform. 

(2) Lack of a simple setup for sequence impedance measurement of inverters. 

(3) Impedance-based stability analysis of ac systems consisting of both voltage-

controlled and current-controlled inverters without the need for the RHP pole 

calculation of the impedance ratio. 

(4) Impedance-based controller parameter design of inverters in inverter-based ac 
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systems with definite structures. 

(5) Impedance-based controller design of inverters to stably integrate into an unknown 

system with existing inverters in operation. 

Corresponding to the challenges listed above, the main tasks of this dissertation are 

identified as follows. 

(1) Develop the sequence impedance model of three-phase voltage-controlled inverters, 

and the d-q admittance model of three-phase current-controlled inverters in an 

arbitrary d-q frame, and the d-q admittance model of the static load emulator in 

CURENT’s power grid emulation platform. 

(2) Propose a simple setup for sequence impedance measurement of three-phase 

inverters by using an existing inverter connected in a paralleled structure. 

(3) Propose impedance-based stability criteria for grid-connected radial-line renewable 

energy systems and general inverter-based multi-bus ac systems without the need for 

the RHP pole calculation of the impedance ratio. 

(4) Propose a method for controller parameter design of inverters in inverter-based ac 

systems with definite structures. 

(5) Propose an adaptive controller design method of inverters for stable integration to an 

unknown system with existing inverters in operation. 
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3 Impedance Modeling of Three-Phase Inverters 

In this chapter, the output admittance of current-controlled three-phase inverters and the 

output impedance of voltage-controlled three-phase inverters are modeled in both the sequence 

domain and the synchronous rotating d-q frame. Only the high-bandwidth inner current or 

voltage control loops and grid-synchronization phase-locked loop (PLL) are considered in the 

sequence impedance modeling for the harmonic stability analysis. In contrast, the d-q impedance 

modeling considers all the control loops, including the low-bandwidth outer loops, such as 

generator and static load emulation loops, which enable the analysis of low-frequency stability. 

The block diagram of the three-phase inverter with an output L filter is shown in Figure 3-1, 

where it is the inverter output current, vM is the inverter output voltage and vt is the inverter 

terminal voltage. In this study, it is assumed that the dc-link voltage vdc is regulated by a front-

end converter and can be regarded as a constant value Vdc. 

 

 

Figure 3-1. Block diagram of a three-phase inverter with an output L filter. 
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3.1 Sequence Admittance of Current-Controlled Inverters with Voltage Feed-Forward 

Control in the D-Q Frame and Dead Time 

Reference [70] presented the sequence admittance modeling of current-controlled three-

phase inverters with an output L filter, considering the voltage feed-forward control in the phase 

domain. However, the case with voltage feed-forward control in the d-q frame is not discussed. 

In addition, the dead time inserted in duty-cycles of phase-leg switches is not considered. 

Following the modeling method in [70], this section improves the sequence admittance models 

of current-controlled three-phase inverters by including the voltage feed-forward control in the d-

q frame and the impact of the dead time [125]. 

A. Modeling of the current control loop with the voltage feed-forward control 

For current-controlled inverters, the inverter output current it is usually controlled with a 

proportional-resonant (PR) controller in the stationary α-β frame or a proportional-integral (PI) 

controller in the synchronous d-q frame. In addition, a phase-locked loop (PLL) unit is adopted 

to obtain the angle θ1 and frequency ω1 information of the inverter terminal voltage vt. The block 

diagram of the commonly used synchronous rotating reference frame PLL (SRF-PLL) is shown 

in Figure 3-2. For the current control in the α-β frame, the angle θ1 is used to transform the 

current references *

ti  from the d-q frame to the α-β frame. For the current control in the d-q 

frame, the angle θ1 is used to transform the inverter terminal voltage vt, the output current it and 

controller output vC between the three-phase abc frame and the d-q frame. 

The block diagram of the current control loop in the sequence domain can be generally 

depicted in Figure 3-3, for the inverters with a PR current controller and the voltage feed-forward 

control in α-β frame, or a PI current controller and the voltage feed-forward control in d-q frame.  
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Figure 3-2. Block diagram of the PLL loop. 

 

 

Figure 3-3. Block diagram of the current control loop in the sequence domain with the PLL 

impact on both the control in d-q frame and the control in α-β frame. 

 

Assuming It is the inverter output current, VM is the inverter output voltage and Vt is the 

inverter terminal voltage in the sequence domain, the frequency behavior of the output L filter 

can be modeled by two admittances YM and Yo represented by (3-1), where Lf and RLf are the 

inductance and resistance of the L filter. Both the voltage and current are sampled four times in 

equal time intervals in each switching period (Ts) and the average of the four samples is used as 

the final measurement value.  So the sampling processes of the voltage and current are modeled 

approximately as a 0.5Ts delay unit as shown in (3-2). The approximately 1.5 switching period 
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delay, including the computation delay of Ts and the PWM generation delay of 0.5Ts, is 

introduced in the digital control and modeled in (3-3). These delay units can be represented by a 

second-order Pade approximation as shown in (3-4). 
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The transfer functions of the control gains inside the “Inverter Controller” block are 

explained as follows. The transfer function of the PR or PI controller Gc(s) is expressed in (3-5), 

where Kcp is the proportional gain and Kci is the resonant or integral gain. The transfer function 

of the decoupling term Gcdec(s) used in the control in the d-q frame is represented by (3-6). A 

first-order low-pass filter is used as the voltage feed-forward gain Gffv (s) in (3-7), where ωffv is 

the cut-off frequency. In the block diagram of the PLL shown in Figure 3-2, GPLL(s) is a PI 

controller with the proportional gain KPLLp and the integral gain KPLLi as expressed in (3-8), and 

GLPF_ω is a low-pass filter with the cut-off frequency ωPLL, as expressed in (3-9). The open-loop 

gain HPLL(s) and the closed-loop gain TPLL(s) of the PLL loop are expressed in (3-10) and (3-11).  

(3-5)  2 2

1

PR : ( ) ; PI : ( )ci ci
c cp c cp

K s K
G s K G s K

s s
   


  (3-5)  
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(3-6)  1( )cdec fG s L    (3-6)  

(3-7)  
1

( )
1

ffv

ffv

G s
s 




  (3-7)  

(3-8)  ( ) PLLi
PLL PLLp

K
G s K

s
    (3-8)  

(3-9)  _

1
( )

1
LPF

PLL

G s
s







  (3-9)  

(3-10)  1 _

1
( ) ( ) ( )PLL t PLL LPFH s V G s G s

s
      (3-10)  

(3-11)  
( )

( )
1 ( )

PLL
PLL

PLL

H s
T s

H s



  (3-11)  

To derive the output admittance of the inverter in the sequence domain, all the control gains 

with transfer functions in the d-q frame need to be converted to their corresponding transfer 

functions in the sequence domain. Therefore, for current control in the α-β frame, the transfer 

functions of the control gains are expressed in (3-12) in the positive sequence domain and in (3-

13) in the negative sequence domain. Similarly, for the current control in the d-q frame, the 

control gains are expressed in (3-14) in the positive sequence domain and in (3-15) in the 

negative sequence domain. 

(3-12)  1( ); ( ); ( )c c ffv ffv PLL PLLG G s G G s T T s j   -   (3-12)  

(3-13)  1( ); ( ); ( )c c ffv ffv PLL PLLG G s G G s T T s j      (3-13)  
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(3-14)  1 1 1 1( ); ; ( ); ( )c c cdec f ffv ffv PLL PLLG G s j G j L G G s j T T s j    -   -  -   (3-14)  

(3-15)  1 1 1 1( ); ; ( ); ( )c c cdec f ffv ffv PLL PLLG G s j G j L G G s j T T s j      -    

 
(3-15)  

The PLL impact on the current control in the α-β frame can be seen as the additional voltage 

feed-forward component to the current reference ( *

tI ), and the feed-forward gain GPLL_It* is 

expressed in (3-16) in the positive sequence domain. The PLL impact on the current control in 

the d-q frame can be seen as the additional voltage feed-forward components to the inverter 

terminal voltage measurement (∆Vt), the current feedback (∆It ) and the controller output (∆VC), 

and the feed-forward gains are defined as GPLL_Vt, G PLL_It and G PLL_VC respectively, as expressed 

in (3-16) in the positive sequence domain. In these equations, Vt1, It1and VC1 are the steady-state 

phasors at the fundamental frequency of Vt , It and VC, with Vt1, It1 and VC1 as the magnitudes and 

ϕt1, ϕt1 and ϕC1 as the phases, respectively, as expressed in (3-17). In the negative sequence 

domain, *

1tV , *

1tI , and *

1CV  should be used in (3-17), which are the complex conjugates of Vt1, 

It1and VC1, respectively. By neglecting the impact of measurement and delay, VC1 can be 

approximately expressed as (3-18). 

(3-16)  _ * 1 _ 1 _ 1 _ 1

1 1 1 1

; ; ;PLL PLL PLL PLL
PLL It t PLL Vt t PLL It t PLL VC C

t t t t

T T T T
G G G G

V V V V
   I V I V   (3-16)  

(3-17)  

1 1 1

1 1 1

1 1 1
1 1 1

* * *1 1 1
1 1 1

; ;
2 2 2

; ;
2 2 2

Vt It VC

Vt It VC

j j jt t C
t t C

j j jt t C
t t C

V I V
e e e

V I V
e e e

  

  - - -


  


   


V I V

V I V

  (3-17)  
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(3-18)   1 1 1 1C t t f Lfj L R   V V I   (3-18)  

B. Modeling of the dead time effect 

In real applications, a dead time is usually introduced in the PWM signals to prevent a 

shoot-through condition across the dc link. The dead-time effect will create a voltage difference 

(vdt_ph) on the inverter output phase voltage, the value of which depends on the direction of the 

inverter output current it_ph in each phase. Assuming the voltage drops of the power 

semiconductors are negligible and the dc link voltage Vdc is constant, vdt_ph can be expressed as: 

(3-19)   _ _sgn
2

dt don doff dc
dt ph t ph

s

T T T V
v i

T

 -
 -     (3-19)  

where Tdt, Tdon and Tdoff are the dead time, turn-on time and turn-off time of the power 

semiconductors. By approximating it_ph with its fundamental component it1_ph, the output of the 

signum function will be a square waveform in the steady state, which can be further 

approximated with its fundamental component [126]: 

(3-20)      1_ _

_ 1_

1 1

4 4
sgn sgn

t ph t ph

t ph t ph

t t

i i
i i

I I 
      . (3-20)  

Assuming all three phases are affected by the dead time, in the sequence domains, the 

relationship between the inverter output voltage difference Vdt caused by the dead time and the 

inverter output current It can be derived as 

(3-21)  
1

4 1

2

dt don doff dc
dt t dt t

s t

T T T V
V I G I

T I

 -
 -         (3-21)  

where Gdt is the transfer function. It can be seen that the dead-time effect can be approximated as 
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a virtual series resistor of the L filter, and the resistance value is −Gdt , which is dependent on the 

magnitude of the inverter output current. The block diagram of the current control loop with the 

dead-time effect is shown in Figure 3-3. By considering the dead-time effect, the two 

admittances YM and Yo represented by (3-1) in the model of the output L filter should be modified 

as 

(3-22)   
1

M o

f Lf dt

Y Y
L s R G

 
 -

 . (3-22)  

C. Modeling of the sequence admittance  

According to the above analysis, the open-loop gain Tc and the closed-loop gain Gclc of the 

current-control loop as defined in (3-23) and (3-24), respectively, as well as the closed-loop 

output admittance Yoc of the inverter, as defined in (3-25) for the current control in the α-β frame 

and in (3-26) for the current control in the d-q frame, can be derived from the block diagram 

shown in Figure 3-3 in both the positive sequence domain and the negative sequence domain. 

The Norton equivalent circuit of a current-controlled inverter is depicted in Figure 3-4. Then the 

positive sequence admittance Yoc_p(s) and the negative sequence admittance Yoc_n(s) of the 

current controlled inverter can be derived for both the current control in the α-β frame and the 

current control in the d-q frame. 

(3-23)   c c cdec d M scT G G G Y G -   (3-23)  

(3-24)  * 1

t c d M
clc

t c

I G G Y
G

I T
 


  (3-24)  
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(3-25)  
 _ *

1

o sv d M ffv c PLL Itt
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t c

Y G G Y G G GI
Y

V T

- 
 - 


  (3-25)  

(3-26)  
   _ _ _1

1

o sv d M ffv PLL Vt c cdec PLL It PLL VC
t
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t c

Y G G Y G G G G G GI
Y

V T

 - -  - 
  - 


  (3-26)  

 

 

Figure 3-4. The Norton equivalent circuit of a current-controlled inverter in the sequence 

domain. 

 

D. Examples  

For the inverter under study in this chapter, the electrical parameters are summarized in 

Table 3-1, and the main controller parameters are listed in Table 3-2. The analytical results of the 

sequence admittances of the inverter with PR control in the α-β frame are shown in Figure 3-5(a) 

for the current output (Id = 15 A, Iq = 0 A) and Figure 3-5(b) for the current output (Id = –15 A, Iq 

= 0 A). The sequence admittances of the inverter with PI control in the d-q frame under the same 

conditions of current outputs are shown in Figure 3-6. In Figure 3-5 and Figure 3-6, red curves 

are positive sequence admittances Yoc_p(s) and blue curves are negative sequence admittances 

Yoc_n(s). Yoc_p(s) and Yoc_n(s) are different due to the different transfer functions of control gains.  

It

Vt

+

-
Yoc

Inverter

*

clc tG I
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(a) 

 

(b) 

Figure 3-5. Sequence admittances of the inverter with PR control in the α-β frame. Output 

current is (a)  Id=15 A, Iq=0 A; (b) Id= –15 A, Iq=0 A. 

 

 

(a) 

 

(b) 

Figure 3-6. Sequence admittances of the inverter with PI control in the d-q frame. Output current 

is (a)  Id=15 A, Iq=0 A; (b) Id= –15 A, Iq=0 A. 
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Table 3-1. Electrical parameters of the inverter. 

Electrical Parameters Values 

L filter 
Lf 0.575  mH 

RLf 0.2 Ω 

Dc-link voltage Vdc 130 V 

Ac voltage base Vbase 50 V (phase peak) 

Ac current base Ibase 17.36 A (phase peak) 

Ac power base Sbase 1302 W 

Fundamental frequency ω1 60×2π rad/s 

 

 

Table 3-2. Controller parameters of current-controlled inverters. 

Controller Parameters Values 

Switching frequency fs 10 kHz 

Switching period Ts 100 µs 

Current controller 
Kcp 2.6 

Kci 2275 

Voltage feed-forward ωffv 50×2π rad/s 

PLL 

KPLLp 1.06 

KPLLi 18 

ωPLL 25×2π rad/s 

Dead time Tdt 1.5 µs 
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3.2 Sequence Impedance of Voltage-Controlled Inverters  

The sequence impedance modeling of voltage-controlled three-phase inverters have not been 

studied in literature yet. This section develops the sequence impedance model of voltage-

controlled three-phase inverters. 

 

 

Figure 3-7. Block diagram of the voltage control loop in the sequence domain. 

 

For voltage-controlled three-phase inverters with a PI voltage controller and the current-

feedforward control in the synchronous d-q frame [8], the block diagram of the voltage control 

loop in the sequence domain can be illustrated in Figure 3-7. The output L filter can be modeled 

by a voltage gain GVo and an impedance Zo represented by (3-27) and (3-28). The transfer 

functions of the control gains inside the “Inverter Controller” block in the d-q frame are 

explained as follows. The transfer function of the PI voltage controller Gv(s) is modeled by (3-

29), where Kvp is the proportional gain and Kvi is the integral gain. The transfer function of the 

decoupling term Gvdec(s) is represented by (3-30). The first-order low-pass voltage filter Gfv(s) 
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and current filter Gfc(s) are expressed as (3-31) and (3-32), with ωfv and ωfc as the cut-off 

frequencies respectively. The current feed-forward gain Gffc(s) is represented by (3-33). The 

corresponding transfer functions of these control gains are expressed in (3-34) in the positive 

sequence domain and expressed in (3-35) in the negative sequence domain. 

(3-27)  1VoG    (3-27)  

(3-28)  o f LfZ L s R    (3-28)  

(3-29)  ( ) vi
v vp

K
G s K

s
    (3-29)  

(3-30)  1( )vdec fG s L   (3-30)  

(3-31)  
1

( )
1

fv

fv

G s
s 




  (3-31)  

(3-32)  
1

( )
1

fc

fc

G s
s 




  (3-32)  

(3-33)  ( )ffc fG s L s   (3-33)  

(3-34)  1 1 1 1 1( ); ; ( ); ( ); ( )v v vdec f fv fv fc fc ffc ffcG G s j G j L G G s j G G s j G G s j     -   -  -  -   (3-34)  

(3-35)  1 1 1 1 1( ); ; ( ); ( ); ( )v v vdec f fv fv fc fc ffc ffcG G s j G j L G G s j G G s j G G s j       -         (3-35)  

Based on the above analysis, the open-loop gain Tv and the closed-loop gain Gclv of the 

voltage-control loop as well as the closed-loop output impedance Zov of the inverter can be 

derived as (3-36), (3-37) and (3-38), respectively, in both the positive sequence domain and the 
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negative sequence domain. The Thevenin equivalent circuit of a voltage-controlled inverter is 

shown in Figure 3-8. For an inverter with parameters listed in Table 3-1 and Table 3-3 and 

output voltage Vtd= 50 V, Vtq= 0 V, Figure 3-9 shows the analytical results and simulation 

measurement results of the positive-sequence impedance Zov_p(s) and negative-sequence 

admittance Zov_n(s). The difference between Zov_p(s) and Zov_n(s) is mainly due to the different 

transfer functions of control gains in the positive- and negative- sequence domains. 

(3-36)  v v d Vo sv fvT G G G G G   (3-36)  

(3-37)  * 1

t v d Vo
clv

t v

V G G G
G

V T
 


  (3-37)  

(3-38)  
 

1

o sc d Vo vdec fc ffct
ov

t v

Z G G G G G GV
Z

I T

- 
 - 


  (3-38)  

 

Table 3-3. Controller parameters of voltage-controlled inverters. 

Controller Parameters Values 

Switching frequency fs 10 kHz 

Switching period Ts 100 µs 

Voltage controller 
Kvp 1.04 

Kvi 325 

Current filter in current 

feed-forward 
ωfc 1000×2π rad/s 

Voltage filter ωfv 300×2π rad/s 

Dead time Tdt 1.5 µs 
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Figure 3-8. The Thevenin equivalent circuit of a voltage-controlled inverter in the sequence 

domain. 

 

 

Figure 3-9. Positive and negative sequence impedances of an inverter with PI voltage control in 

the d-q frame. 
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3.3 Discussion on Sequence Impedance Models  

3.3.1 Coupling in Balanced Systems 

It was reported recently in [72] and [73] that there are couplings between positive-sequence 

and negative-sequence impedances with a shift of twice the fundamental frequency even in 

three-phase balanced systems, but the positive-sequence and the negative-sequence are 

decoupled if the inverters meet the following conditions: 1) with only inner current or voltage 

loops and no outer loops, 2) current or voltage controllers with symmetric structures and equal 

parameters in d- and q-axis, 3) without PLL. Since the voltage-controlled inverters investigated 

in this study for the harmonic stability analysis meet all the above conditions, their positive- and 

negative- sequence impedances are decoupled. The only violation is the adoption of the PLL in 

current-controlled inverters. Nevertheless, as pointed out in [72] and [73], the coupling terms are 

directly proportional to the closed-loop gain of PLL, TPLL. Therefore, if the PLL bandwidth is 

very small (such as 10 Hz used in this study, as shown in Figure 3-10), the PLL has a negligible 

impact on the sequence admittances of current-controlled inverters in the frequency range above 

100 Hz, as shown in Figure 3-11. In addition, when the focus is only on the harmonic instability 

issues instead of the low-frequency oscillation problems, the positive- and negative- sequence 

impedances or admittances of inverters can be regarded as decoupled for harmonic stability 

analysis. 

3.3.2 Sequence Impedance Models in the Full Frequency Range 

As expressed in (3-25), (3-26) and (3-38), the positive-sequence and negative-sequence 

admittances (Yoc_p(s) and Yoc_n(s)) or impedances (Zov_p(s) and Zov_n(s)) of inverters are complex 

transfer functions.  
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Figure 3-10. Bode plots of the closed-loop gains of PLL: TPLL_p(s) in the positive-sequence 

domain and TPLL_n(s) in negative-sequence domain. 

 

 

Figure 3-11. Positive and negative sequence admittances of a current-controlled inverter with 

and without PLL. 
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Figure 3-5, Figure 3-6 and Figure 3-9 only show the Bode plots of sequence admittances or 

impedances of inverters in the positive frequency range (0, +∞). Figure 3-12 and Figure 3-13 

further depict the sequence admittances or impedances of inverters in the full frequency range 

(−∞, +∞). It can be observed that the Bode plot of each of Yoc_p(s), Yoc_n(s), Zov_p(s) and Zov_n(s) is 

approximately anti-symmetric in the full frequency range (−∞, +∞), with approximately equal 

magnitudes but opposite phases. For the harmonic stability analysis, Nyquist diagrams of an 

impedance ratio in the sequence domains can be drawn in the full frequency range (−∞, +∞), in 

order to clearly illustrate the encirclement of the critical point (−1, j0). Nevertheless, considering 

the approximate anti-symmetric Bode plots of sequence impedances, Bode plots of a function of 

sequence impedances can be drawn only in the positive frequency range (0, +∞), to clearly 

demonstrate the net phase change or the encirclement of the origin point (0, j0). 

 

 

Figure 3-12. Positive- and negative- sequence admittances of a current-controlled inverter in the 

full frequency range. 
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Figure 3-13. Positive- and negative- sequence impedances of a voltage-controlled inverter in the 

full frequency range. 

 

3.3.3 Coupling Due to Unbalanced Filters 

As reported in [127], if the three-phase systems are unbalanced, the positive- and negative- 

sequence impedances are also coupled, and 2-by-2 sequence admittance or impedance matrices, 

Yoc and Zov, are expressed in (3-39). The three-phase filters might have slight unbalance, due to 

the toleration of about 10% in physical inductors. Figure 3-14 shows the analytical results and 

simulation measurement results of sequence-admittance magnitudes of current-controlled 

inverters with (a) three-phase balanced L filters and (b) unbalanced L filters where phase-A is 

100%, phase-B is 110% and phase-C is 90% of the rated value. Even with ±10% deviations in 
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Yoc_n . Therefore, the small couplings introduced by slightly unbalanced filters can be neglected. 
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(a) 

 

(b) 

Figure 3-14. Analytical results and simulation measurement results of sequence admittances of 

current-controlled inverters with (a) balanced L filters and (b) unbalanced L filters (phase-A: 

100%, phase-B: 110%, phase-C: 90%). 
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3.3.4 With LCL Filters 

Due to the actual experimental setup, only the L filters are considered in this dissertation. 

Other high-order filters with small volumes, such as LCL filters, are also commonly used in 

practice. The output sequence impedance models of inverters with LCL filters are different from 

the models presented here, but they were studied in the existing literature [23], [128]. In addition, 

the focus of this chapter is on the system-level harmonic stability analysis, the analysis and 

parameter design methods developed in the chapter are applicable to the systems consisting of 

inverters with LCL filters. 
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3.4 D-Q Admittance of Current-Controlled Inverters in an Arbitrary D-Q Frame  

The output admittance model of current-controlled inverters in an arbitrary d-q frame is 

derived in this section to facilitate the system stability analysis in a common d-q frame. 

 

 

Figure 3-15. Block diagram of a three-phase inverter with an output L filter, and the relationship 

between different d-q frames. 

 

Take a PV inverter connected to the point of common coupling (PCC) through a feeder line 

as an example, as shown in Figure 3-15. Assume the arbitrary d-q frame is chosen to be aligned 

with the voltage at PCC vPCC, and it is selected as the common system d-q frame with the 

superscript s. In the following analysis, the dc-link voltage Vdc is assumed constant. The inverter 

d-q frame with the superscript c is aligned with the inverter terminal voltage vt. Let the angle 

between the inverter terminal voltage vt and vPCC be θ, then the relationship between c

tv  and s

tv  

can be expressed as (3-40). By adding small-signal perturbation and considering cos 1   and 

sin  , the small-signal model is derived in (3-41), where the symbol ~ denotes small-signal 

variables. Considering the open-loop relationship (3-42) and the closed-loop relationship (3-43) 
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of the conventional phase-locked loop (PLL) in the synchronous reference (d-q) frame (SRF) as 

shown in Figure 3-16, the small-signal model can be further derived as (3-44) and (3-45). 

Similarly, the relationships for currents ( ci  and si ) and inverter controller outputs (
c

cv  and 
s

cv ) 

can be obtained in (3-46). 

 

 

Figure 3-16. Block diagram of the SRF PLL loop. 
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  (3-46)  

Then the control block diagram of the current-controlled inverter can be depicted in Figure 

3-17.  

 

 

Figure 3-17. Control block diagram of the current-controlled inverter. 
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Yo is the admittance matrix of the inverter output L filter. Gc represents the proportional plus 

integral (PI) current controller matrix and Gcdec is the decoupling term. A first-order low-pass 

filter with the cut-off frequency ωffv is adopted in the voltage feed-forward transfer function 

matrix Gffv. The PWM modulation and the computation delay are modelled as a delay 

component Gd. Gsc and Gsv are the transfer function matrices for current and voltage 

measurement. The current open-loop gain Tc, closed-loop gain Gclc and output admittance Yoc in 

the arbitrary d-q frame can be derived. Figure 3-18 illustrates the Bode plots of Yoc for the 

inverter with parameters listed in Table 3-4 and Table 3-5, ωffv=20×2π rad/s and the output 

current (Id =10 A, Iq =0 A) in its own inverter d-q frame, considering three different values of θ 

(namely, 0°, 10° and 20°). It can be seen that the inverter terminal voltage angle θ mainly affects 

the inverter admittances in the low frequency range. 
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(3-52)   1- -
c o d θ c cdec θ sc

T Y G T G G T G   (3-52)  

(3-53)   
1 1- - 

clc c o d θ c
G I T Y G T G   (3-53)  

(3-54)      
1 1- -   - - - -  oc c o d θ ffv vt c cdec i vc θ sv

Y I T Y I G T G G G G G G T G   (3-54)  

 

 

(a) 

 

(b) 

Figure 3-18. Output admittances of the inverter: (a) Ydd, Yqq; (b) Ydq, Yqd. 
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Table 3-4. Electrical parameters of the inverter. 

Electrical Parameters Values 

L filter 
Lf 0.575  mH 

RLf 0.2 Ω 

Dc-link voltage Vdc 400 V 

Ac voltage base Vbase 170 V (phase peak) 

Fundamental frequency ω1 60×2π rad/s 

 

 

Table 3-5. Controller parameters of current-controlled inverters. 

Controller Parameters Values 

Switching frequency fs 10 kHz 

Switching period Ts 100 µs 

Current controller 
Kcp 2.6 

Kci 2275 

PLL 
KPLLp 0.312 

KPLLi 5.294 

Delay time Td 150 µs 
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3.5 D-Q Admittance of Current-Controlled Inverters with Static Load Emulation  

The output admittance of the current-controlled inverters with static load emulation in the d-

q frame is modeled in this section to assist in the impedance-based stability analysis of the 

inverter-based systems in CURENT’s Hardware Testbed. 

The mathematical equations of ZIP loads are expressed as (3-55) and (3-56), considering the 

effects of minor grid voltage fluctuation and frequency variation. P0, Q0 and V0 represent the real 

and reactive power base values and nominal grid voltage value, respectively. PZIP and QZIP 

represent actual real and reactive power values of the ZIP load, respectively, in terms of the load 

voltage v and grid frequency deviation ∆f. The coefficients (kp1, kp2, kp3) and (kq1, kq2, kq3) are for 

constant impedance (Z) portions, constant current (I) portions and constant power (P) portions 

for voltage-dependent real and reactive power, respectively, while the coefficients kpf and kqf 

stand for the frequency-dependent characteristics, which are neglected in the following 

admittance modeling considering the small frequency variation in the steady-state. 

(3-55)   
2

0 1 2 3

0 0

1ZIP p p p pf

v v
P P k k k k f

V V

    
         
     

  (3-55)  

(3-56)   
2

0 1 2 3

0 0

1ZIP q q q qf

v v
Q Q k k k k f

V V

    
         
     

  (3-56)  

Taking into account the definition of the current direction as flowing out of the inverter as 

shown in Figure 3-1, the values of P0, Q0, PZIP and QZIP are negative for power assumption and 

positive for power generation from the load. According to the power equations in terms of the 

load currents and voltages in the d-q frame as described in (3-57), the expression of load currents 
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can be derived with the power and voltages as the inputs, as shown in (3-58). By applying small 

perturbation to (3-58), the linearized small-signal model can be achieved as in (3-59), where YZIP 

and GZIP are the d-q admittance matrix and the current gain matrix of the ZIP load, respectively, 

and they are functions of P0, Q0, V0 as well as steady-state voltages (Vd and Vq) and currents (Id 

and Iq) in the d-q frame. Four elements of YZIP are expressed in (3-60), (3-61), (3-62) and (3-63), 

respectively. 
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(3-63)  
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  (3-63)  

In the implementation of the static ZIP load emulation, the measured and filtered inverter 

terminal voltage vector 
cv  in the d-q domain and the external real and reactive load power 

commands P0 and Q0 are used as the inputs to the ZIP load emulation model. The output current 

vector of the ZIP load emulation is filtered through a first-order low pass filter GfZIP as expressed 

in (3-64) with the cut-off frequency ωfZIP, and the filter current vector is set as the inverter 

current reference *ci , which will be achieved by the inner current control loop. Figure 3-19 

depicts the block diagram of the control loop with ZIP load emulation for the current-controlled 

three-phase inverter in the common system d-q frame. Consequently, the d-q admittance of a 

current-controlled inverter with static ZIP load emulation can be derived as (3-65), according to 

Figure 3-19. The total model of the inverter with ZIP load emulation can be expressed as (3-66). 

 

 

Figure 3-19. Control block diagram of the current-controlled inverter with ZIP load emulation. 
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(3-64)  
1

1 fZIPs 



fZIP

G I  (3-64)  

(3-65)        1 1- -   -   - - -  oc c o d θ c fZIP ZIP ffv vt c cdec i vc θ svY I T Y I G T I G G Y G G G G G G T G   (3-65)  

(3-66)   
T

0 0

s s

t ti P Q v  - clc fZIP ZIP ocG G G Y   (3-66)  

The electrical and control parameters of the current-controlled inverter are shown in Table 

3-1 and Table 3-2. Assume the inverter terminal voltage magnitude is 49.3 V and the angle 

difference between the inverter terminal d-q frame and the system common d-q frame is −22.4°. 

With the parameters of the ZIP load emulation as listed in Table 3-6 and load power commands 

(P0 = −1393.1 W, Q0 = 481.7 Var) as well as the voltage base V0 = 50 V, the steady-state values 

of current and voltage are expressed in (3-67), and the admittance of the ZIP load can be 

calculated as (3-68), and the Bode plots of the inverter output d-q admittance in both the inverter 

terminal d-q frame and the common system d-q frame are illustrated in Figure 3-20. The Bode 

plot of the d-q admittance of the inverter without the ZIP load emulation but with the equivalent 

current reference as expressed in (3-69) in the inverter terminal d-q frame, is also drawn in 

Figure 3-20. The ZIP load emulation mainly changes the d-q admittance below 200 Hz. 

(3-67)     
T TT T

, 49.3V,0V ; , 18.7A, 6.5Ad q d qV V I I     - -      (3-67)  

(3-68)  
0.155 0.131

0.054 0.379

 
  

- 
ZIP

Y   (3-68)  

(3-69)   
T T* *, 18.7A, 6.5Ad qI I   - -    (3-69)  
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Table 3-6. Parameters of ZIP load emulation. 

Parameters Values Parameters Values 

kp1 0.2 kq1 0.2 

kp2 0.2 kq2 0.2 

kp3 0.6 kq3 0.6 

kpf 0 kqf 0 

ωfZIP 300×2π rad/s   

 

 

 

Figure 3-20. Bode plot of d-q admittance of the inverter with ZIP load emulation. 
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3.6 D-Q Impedance of Voltage-Controlled Inverters with Generator Emulation  

The synchronous generator (SG) emulator in CURENT’s Hardware Testbed is developed 

using a voltage-controlled three-phase inverter. The d-q impedance of a voltage controlled-

inverter with the generator emulation has been analyzed in [8], [9], and thus it is briefly 

described in this section, in order to assist in the impedance-based stability analysis of the 

inverter-based two-area power system implemented in the power grid emulation platform. 

The fourth-order SG model in the generator rotor reference d-q frame with the quadrature 

axis leading the direct axis by 90 degrees, which is widely used in large-scale power system 

calculation, are expressed in (3-70), where id, iq, vd and vq are SG stator currents and terminal 

voltages, respectively, Efg is the field voltage, Ra is the armature resistance per phase, Xd and Xq 

are self-reactance, X’d and X’q are transient reactance, T’d0 and T’q0 are transient open-circuit 

time constants, Ggf is the voltage gain and Zg is the generator output impedance. 

(3-70)  
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T s
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-            -  -                    

   

gf g= G Z   (3-70)  

It should be noted that the generator emulation also includes governor, droop control, 

automatic generation control (AGC), power system stabilizer (PSS), and excitation system with 

automatic voltage regulator (AVR) [8], [9]. The bandwidths of these control loops are usually 

very low (below 10 Hz). The focus of this study is on the small-signal instability issues due to 

the interactions among inverters and passive connection networks in the power grid emulation 

platform, instead of the small-disturbance rotor angle stability or voltage stability of the emulated 

power system. Considering the frequency-scale separation among system modes [45] and mode 
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reduction techniques [49], the generator mechanical model and generator control loops are 

neglected in the d-q impedance modeling of inverters with SG emulation. The system 

fundamental frequency ω1 is assumed as constant. 

The control block diagram of the voltage-controlled inverter with the fourth-order SG 

emulation is depicted in Figure 3-21. A first-order LPF Gfcg with the cut-off frequency ωfcg, as 

expressed in (3-71), is applied to the current input of the SG electrical model. Gfv, Gfc and Gffc 

are the voltage filter, current filter and current feed-forward gain, respectively, as expressed in 

(3-72). Gv , Gvdec , GVo and Zo are shown in (3-73). The open-loop gain Tc and closed-loop gain 

Gclv of the voltage-control loop are expressed in (3-74) and (3-75), respectively. The d-q output 

impedances of the voltage-controlled inverter without generator emulation (Zv) and with 

generator emulation (Zov) in the common system d-q frame are expressed in (3-76) and (3-77), 

respectively. The total model of the inverter with generator emulation is expressed in (3-78). 

 

 

Figure 3-21. Control block diagram of the voltage-controlled inverter with generator emulation. 
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(3-71)  
1

1 fcgs 



fcg

G I   (3-71)  

(3-72)  , ,
fv fc

f

fv fc

L s
s s

 

 
  

 
fv fc ffcG I G I G I   (3-72)  

(3-73)    1, , ,vp viK K s -    v vdec cdec Vo o oG I G G G I Z Y   (3-73)  

(3-74)  v Vo d v fv svT G G G G G   (3-74)  

(3-75)   
11 -- 

clv θ v Vo d v
G T I T G G G   (3-75)  

(3-76)     
11 --  -  v θ v o Vo d ffc fc vdec sc θ

Z T I T Z G G G G +G G T   (3-76)  

(3-77)   ov v clv g fcg sc θZ Z G Z G G T   (3-77)  

(3-78)   s s

t fd tv E i -
clv gf ov

G G Z   (3-78)  

The parameters of the scaled-down emulated generator with the same per unit (p.u.) values 

as those in the original two-area system [42] are listed in Table 3-7. The parameters of the 

voltage-controlled inverters are listed in Table 3-1 and Table 3-3. The Bode plots of d-q output 

impedances of the voltage-controlled inverter without generator emulation (Zv) and with 

generator emulation (Zov) as well as the generator impedance (Zg) are depicted in Figure 3-22. 

As observed, the output impedance (Zov) of the generator emulator can track the generator 

impedance in the low frequency range.  
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Figure 3-22. Bode plot of d-q impedance of the inverter with generator emulation. 

 

Table 3-7. Parameters of generator emulation 

Parameters Values Parameters Values 

Original power Pgen 900 MVA Ra 0.0025 p.u. 

Original voltage Vgen 20 kV Xd 1.8 p.u. 

fbase 60 Hz Xq 1.7 p.u. 

Rescaled power Pgen 1302 W X’d 0.3 p.u. 

Rescaled voltage Vgen 61.2 V X’q 0.55 p.u. 

Impedance base Zbase 2.88 Ω T’d0 8 s 

H 
6.5 p.u. for G1, G2 

6.175 p.u. for G3, G4 

T’q0 0.4 s 

ωfcg 1000×2π rad/s 
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There are some minor discrepancies between (Zov) and (Zg) in the d-d channel and the q-q 

channel, due to the delay effect introduced by the current measurement Gsc. The d-q output 

impedance of the voltage-controlled inverter with generator emulation (Zov2) neglecting the 

impact of the current measurement is also plotted in Figure 3-22. It can be seen that (Zov2) can 

track (Zg) very well in the d-d channel and the q-q channel. 

3.7 Conclusion 

The sequence-admittance model of current-controlled three-phase inverters is improved, 

considering the voltage feed-forward control in the d-q domain and the dead time effect. The 

sequence-impedance model of voltage-controlled three-phase inverters is also developed. 

Sequence impedance models can facilitate the harmonic stability analysis of three-phase 

inverter-based ac systems. However, in order to analyze the low-frequency oscillation problems 

in three-phase inverter-based ac system, the d-q impedances in the synchronous rotating d-q 

frame are preferred. Since the system model should be established in a common system d-q 

frame, the d-q admittance model of current-controlled inverters in an arbitrary d-q frame is 

developed. In addition, the d-q admittance model of current-controlled inverters with static load 

emulation and the d-q impedance model of voltage-controlled inverters with generator emulation 

are presented. 
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4 Sequence Impedance Measurement of Three-Phase Inverters 

Using a Paralleled Structure 

For the only consideration of the impedance measurement of three-phase inverters, this 

chapter proposes a sequence impedance measurement method by using another inverter 

connected in a paralleled structure with common-dc and common-ac sides. The measurement 

setup is simple, because the inverter as the measurement unit not only injects perturbations but 

also serves as the voltage source or the current load at the fundamental frequency to create the 

desired operating conditions for the inverter under test. Several issues about this measurement 

setup are discussed and solved, including the zero-sequence circulating current and the 

discrepancy due to the voltage drop on the output filter. Simulation and experimental results 

demonstrate the effectiveness of this approach. 

4.1 Sequence Impedance Measurement 

4.1.1 Impedance Measurement Setup 

In order to measure the impedance of inverters in an easy way without the need of additional 

equipment or a complicated setup, this chapter proposes to use another inverter with the same 

design or similar power rating, which can be easily obtained in the laboratory, to measure the 

impedance of the inverter under test, by connecting these two inverters in parallel with common-

dc and common-ac sides [8], [129]. The impedance measurement setup is depicted in Figure 4-1. 

The inverter as the measurement unit not only serves as the power amplifier of the injection 

signal for impedance measurement, but also serves as the voltage source (for current-controlled 

inverter under test) or current load (for voltage-controlled inverter under test) at the fundamental 
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frequency to run at the desired operating point. This chapter focuses on the sequence admittance 

measurement of the current-controlled inverters, and thus the inverter as the measurement unit is 

controlled as a voltage source. 

 

 

Figure 4-1. Impedance measurement setup with a paralleled structure. 

 

Due to the limited switching frequency fs (e.g. 10 kHz) and limited control bandwidth of the 

measurement unit, open-loop control is used and the injection signal 
*

_t injV  is directly added to 

the fundamental voltage reference *

1tV , as shown in Figure 4-2. The identifiable frequency can be 

up to the half of the switching frequency (e.g. 5 kHz).  

An oscilloscope is adopted to acquire the response data of the output phase currents and the 

Inverter

vdc

+

-

Inverter

vdc

+

-

Measurement unit

Inverter under test

ia

Filter Common-mode 

Filter

Filter Common-mode 

Filter

ib

vab vca
+-

-

+

Oscilloscope

DC 

power 

supply



68 

 

line-to-line terminal voltages of the inverter under test during the measurement process, and the 

sampling rate is set as 1 MS/s. The data from the oscilloscope is processed offline in MATLAB 

using FFT to get the impedance or admittance. 

        

 

Figure 4-2. The open-loop voltage control with voltage compensation in the inverter as the 

measurement unit. 

 

4.1.2 Injection and Sequence Impedance Measurement 

The relationships between the phase components and the sequence components of both the 
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 (4-3)  

The sinusoidal signal injection method is used here, due to its higher noise immunity over 

wide-band signal injection methods, such as impulse signal, binary sequence signal and chirp 

signal. By using another inverter as the measurement unit, the positive sequence voltage 

disturbance signals in (4-4) can be injected solely for positive sequence impedance measurement, 

and similarly the negative sequence voltage disturbance signals in (4-5) can be injected solely for 

the negative sequence impedance measurement.  

Further, if there is no zero-sequence current during either the positive sequence injection or 

the negative sequence injection, then the positive/negative sequence impedance or admittance is 

equal to the phase-A impedance or admittance, as shown in (4-6). That means only phase-A 

current measurement (ia) along with two line-to-line voltage measurements (vab, vca), which are 

used for phase-A voltage calculation, are necessary to identify the sequence impedance or 

admittance. 
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1 1

1 1

1 1

( ) cos( ) cos( )

2 2
( ) cos( ) cos( )

3 3

2 2
( ) cos( ) cos( )

3 3

a p inj

b p inj

c p inj

v t V t V t

v t V t V t

v t V t V t

 

 
 

 
 


 




 -  -



   

  (4-4)  

(4-5)  

1 1

1 1

1 1

( ) cos( ) cos( )

2 2
( ) cos( ) cos( )

3 3

2 2
( ) cos( ) cos( )

3 3

a n inj

b n inj

c n inj

v t V t V t

v t V t V t

v t V t V t

 

 
 

 
 


 




 -  



   -

  (4-5)  

(4-6)  

( )
( ) , for pos-seq

( )

( )
( ) , for neg-seq

( )

a inj

p inj

a inj

a inj

n inj

a inj

I j
Y j

V j

I j
Y j

V j
















 



  (4-6)  

4.1.3 Zero-sequence Circulating Current Reduction 

There are different types of unnecessary circulating current in this common-dc and 

common-ac paralleled structure [129], which will influence the impedance measurement. The 

switching period circulating current can be minimized by synchronizing the carrier waves of the 

inverters. The dc component of the zero-sequence circulating current can be mitigated by the 

zero-sequence current control with a PI controller. The third order and other low order harmonic 

zero-sequence circulating current can be reduced by inserting common-mode (CM) filters in 

series with the original inverter filters, as shown in Figure 4-1. The CM filters can be regarded as 

large zero-sequence impedances in the current path between two inverters, and thus help 

mitigating the zero-sequence current. The parameter Lcm of the CM filters is 17.73 mH. The 
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injected sinusoidal voltage signals at the measurement frequencies finj will also induce additional 

frequency components in the zero-sequence circulating current. However, it is observed that the 

frequencies of the additional components are (finj − f1) and (fsw − finj + f1), so the magnitude of the 

phase current and inverter admittance at the injection frequency finj will not be influenced. For 

instance, when the injection frequency is finj = 1000 Hz, two frequency components of 940 Hz 

and 9060 Hz show up in the spectrum of the zero-sequence current, according to the simulation 

results as shown in Figure 4-3. The CM filters can also reduce the magnitudes of these two 

frequency components, compared with the spectrum without using the CM filters. Therefore, 

they will not cause additional difference between the phase admittance measurement result and 

the sequence admittance measurement result. For example, based on the simulation results as 

shown in Figure 4-4, the differences between the phase admittances (Ya, Yb and Yc) and the 

positive sequence admittance (Yp) are very small with above zero-sequence circulating current 

reduction methods, so the phase admittance (Ya) can be measured to represent the sequence 

admittances (Yp and Yn). 

4.1.4 Open Loop Control with Voltage Compensation 

Since open-loop control of the measurement unit is used for impedance measurement, there 

is a voltage drop on the output filter of the measurement unit. It will change the fundamental 

terminal voltage, which makes the inverter under test away from the desired operating point. And 

it will also cause the injected voltage amplitudes of the terminal voltage different for different 

injection frequencies. Therefore, a voltage compensation method is proposed here, by adding 

compensation voltage components at both the fundamental frequency ( *

1tV ) and the injection 

frequency (
*

_t injV ) to the open-loop voltage reference ( *

tV ) as shown in Figure 4-2, where L and  
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Figure 4-3. Spectrum of zero-sequence current in simulation: (a) without and (b) with CM filters. 

 

 

Figure 4-4. Difference between the simulation measurement results of phase admittances (Ya, Yb 

and Yc) and the simulation measurement result of positive-sequence admittance (Yp). 
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R are the inductance and resistance of the L filter of the inverter as the measurement unit. 

Fundamental and injection-frequency components of the output current of the measurement 

unit are extracted based on the multiple reference frame (MRF)-based band-pass filters [130]. 

The impedance emulation is implemented by the multiplication of space vectors [131]. The time-

delay compensation is achieved through a frequency-dependent constant phase lead during the d-

q to α-β transformation [132]. For example, according to the simulation results of the terminal 

voltage of the inverter under test during the frequency injection from 100 Hz to 5 kHz as shown 

in Figure 4-5, without the voltage compensation the fundamental terminal voltage is away from 

the desired value (50 V), while by only enabling the voltage compensation at the fundamental 

frequency, the terminal voltage can be controlled to be the desired value during the injection. 

 

 

Figure 4-5. Effect of the voltage compensation at the fundamental frequency: (a) without and (b) 

with compensation. 
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4.2 Practical Considerations 

A. Fundamental frequency component and background harmonics 

Since the inverter under test is running under a certain operating condition during the 

admittance measurement process, if the injection frequency is the fundamental frequency, the 

injected voltage and the current response cannot be differentiated from the operating positive-

sequence voltage and current at the fundamental frequency [83]. Therefore, the fundamental 

frequency is omitted, and the sequence admittances at the fundamental frequency can be 

approximately interpolated by using the measurement results at the nearby frequency points. 

Because the additional ac source, such as power supply and utility grid, or ac load banks are not 

needed in the proposed measurement setup, the proposed method is not obviously affected by the 

background harmonic issue. 

B. Level of injection and selection of dc-link voltage 

To avoid deviation from the required operating condition during the measurement process, 

the injected voltage magnitude should not be too large. The injected voltage magnitude is 

selected as 10% of the normal operating voltage (50 V) for both the simulation and the 

experiments. As for compensating the impact of the output filter of the measurement unit, for 

simplicity, the voltage compensation at the injection frequency is not adopted in the experiments, 

while the injected voltage magnitude is simply increased to 30% for high frequency injection 

(above 2 kHz). 

Because both the normal operating voltage at the fundamental frequency and the injected 

voltage for admittance measurement are provided by the paralleled inverter with a common dc-

link, the dc-link voltage should be high enough for the measurement unit to generate the required 
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voltage *

tV  as shown in Figure 4-1. The dc-link voltage is increased from the normal value 130 

V as listed in Table 3-1 to 160 V during the measurement process. In addition, according to the 

analysis in 3.1, the dc-link voltage value does not affect the sequence admittances of the inverter 

under test, except through the dead time effect. 

C.  Period selection of the injected signals 

In this experimental setup, the currents and voltages are measured by probes and the 

measurement data is acquired through an oscilloscope, the data precision of which is usually 

limited. Therefore, multiple periods of the sinusoidal signal at each injection frequency are used 

to improve the measurement accuracy. By also considering the FFT calculation accuracy, in the 

simulation and experiments, 1 second of signal injection is used for each frequency point in the 

range of [10 Hz, 95 Hz], while 0.2 seconds of signal injection is used for each frequency point in 

the range of [100 Hz, 5 kHz]. 

D. Measurement of coupled sequence impedances 

In the above description of the proposed sequence impedance measurement method, only 

uncoupled sequence impedance measurement is considered. However, this proposed 

measurement setup can be extended to measure the coupled sequence impedances as express in 

(4-7). At least two different tests are required to measure the two-by-two impedance matrix [83]. 

Therefore, the inverter as the measurement unit can inject one positive sequence signal and 

another negative sequence signal, or it can inject two sets of unbalanced voltage signals. In this 

case, assuming the zero-sequence current can also be mitigated, two phase currents instead of 

one should be measured in addition to the measurements of two line-to-line voltages. 
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(a) 

 

(b) 

Figure 4-6. Simulation measurement results of the sequence admittances of the inverter with PI 

control in the d-q frame, for (a) the operation with the current output (Id = 15 A, Iq = 0 A) and (b) 

the operation with the current output (Id = –15 A, Iq = 0 A) 
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simulation measurement results match with the theoretical analysis very well, which verifies the 

effectiveness of the proposed sequence impedance measurement method by using a paralleled 

structure. 

 

 

Figure 4-7. Phase currents of the inverter under test during (a) low frequency injection and (b) 

high frequency injection. 

 

As for sequence admittance measurement in experiments, Figure 4-7 shows the inverter 

output current waveforms acquired in a Tektronix oscilloscope during the injections of both the 

low frequency signals and the high frequency signals. Figure 4-8(a) shows the experimental 

measurement results of the positive sequence admittance and the negative sequence admittance 

of the inverter with PI control in the d-q frame with the current output (Id = –15 A, Iq = 0 A). 

Figure 4-8(b) shows the experimental measurement results of the positive sequence admittance 
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current output (Id = –15 A, Iq = 0 A). The analytical results of the sequence admittances are re-

calculated by including the model of the dead-time effect, and are drawn in Figure 4-8 for 

comparison with the experimental measurement results. These experimental results match with 

the theoretical analysis very well, except some small differences around 1 kHz, which might be 

due to the assumptions and approximations made in the model of the dead-time effect. 

 

 

(a) 

 

(b) 

Figure 4-8. Experimental measurement results of the sequence admittances of the inverter with 

(a) PI control in the d-q frame and (b) PR control in the α-β frame, for the operation with the 

current output (Id = –15 A, Iq = 0 A). 
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same controller parameters as in Table 3-2 are used, except that voltage feed-forward cut-off 

frequency is a little different (ωff = 25×2π rad/s). The experimental measurement results of the 

positive sequence admittances in the frequency range of [100 Hz, 2 kHz] for both operating 

conditions are shown in Figure 4-9. The analytical results with and without the dead-time effect 

are also drawn in Figure 4-9 for comparison. It can be seen that the dead time brings more 

obvious damping effect when the output current is lower (Id = 2 A), which is consistent with the 

dead-time model. The experimental results further verified the effectiveness of the proposed 

sequence impedance measurement method. 

 

 

Figure 4-9. Experimental measurement results of the positive sequence admittances of the 

inverter with PI control in the d-q frame, for two operation conditions: (Id = 2 A, Iq = 0 A) and (Id 

= 15 A, Iq = 0 A). 
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4.4 Conclusion 

In this chapter, a sequence impedance measurement method of three-phase inverters by 

using another inverter connected in parallel with common-dc and common-ac sides has been 

proposed. Zero-sequence circulating current reduction and open-loop voltage compensation 

improve the measurement accuracy. The proposed method is verified by both simulation and 

experiments. 
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5 Stability Analysis and Controller Parameter Design of Radial-

Line Renewable Systems  

In this chapter, an impedance-based sufficient stability criterion of general radial-line 

renewable systems with multiple current-controlled inverters in the d-q domain is proposed. The 

system stability can be examined by checking the encirclements of the point (−1, j0) by the 

characteristic loci of the return-ratio matrix at each bus successively from the farthest bus to the 

PCC, without the need for pole calculation of the return-ratio matrices. The phase margin of the 

system can also be obtained while applying the proposed stability criterion, based on which some 

design rules of the controller parameters are proposed. 

5.1 Calculation of the Steady-State Point 

Assume the arbitrary d-q frame is chosen to be aligned with the voltage at PCC vPCC, and it 

is selected as the common system d-q frame with the superscript s. The steady-state point 

regarding bus voltage vn, inverter current in and current iLn through the line impedance Zn (with 

inductance Ln and resistance Rn) in this common d-q frame can be obtained by solving the 

steady-state equations of the radial-line system as shown in Figure 5-1, including KCL equation 

(5-1), feeder line equation (5-2), inverter output current and voltage equations (5-3) and (5-4) 

(assuming unity power factor), PCC voltage equation (5-5) as well as the grid voltage equation 

(5-6). Then, the bus angle θn can be calculated in (5-7). 

(5-1)  
( 1)

( 1)

Lnd L n d nd

Lnq L n q nq

I I I

I I I





     
      

     
  (5-1)  
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Figure 5-1. Simplified one-line diagram of a grid-connected radial-line PV system with multiple 

PV inverters. 
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Table 5-1. System electrical parameters. 

Electrical Parameters Values 

L filter 
Lf 0.575  mH 

RLf 0.2 Ω 

Dc-link voltage Vdc 400 V 

Ac grid voltage Vg 170 V (phase peak) 

Inverter rated current Irated 10 A (phase peak) 

Fundamental frequency ω1 60×2π rad/s 

Grid impedance Lg 0.575  mH 

Each line impedance LLine 0.7  mH 

 

 

5.2 Small-Signal Stability Criterion 

The parameters of the radial-line system with three current-controlled inverters under study 

in this chapter are listed in Table 3-5 and Table 5-1. Three inverters have the same electrical and 

controller parameters. The impedance-based system equivalent circuit can be obtained in the 

system d-q domain, as shown in Figure 5-2. The grid current Ig can be expressed as (5-8), and 

the system stability can be examined by analyzing the poles of the transfer function matrices A, 

B1, B2 and B3.  

(5-8)     * * *

g g 1 1 2 2 3 3
I AV B I B I B I   (5-8)  
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Figure 5-2. Impedance-based system equivalent circuit showing stability check at each bus. 

 

These matrices can be obtained by deriving the equivalent Norton circuit at each bus and 

simplifying the system structure successively from the farthest point (Inverter 3) to the PCC 

(Inverter 1), as shown in Figure 5-3. 

The result is expressed in (5-9), where the equivalent admittances are defined in (5-10) and 

the return-ratio matrix Tm_x and its closed-loop gain Tclm_x at each bus are defined in (5-11). The 

grid or line impedance Zn is expressed in (5-12). 

(5-9)  
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(a) 

 

(b) 

 

(c) 

Figure 5-3. Derivation of the equivalent Norton circuit at each bus: (a) Bus 2, (b) Bus 1, (c) Bus 

PCC. 
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(5-11)  
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 (5-11)  

(5-12)  
1

1

n n n

n n n

L s R L

L L s R





 - 
  

 
nZ   (5-12)  

According to the GNC, Tm_B3 has no RHP poles. If the characteristic loci of Tm_B3 have zero 

encirclement around (−1, j0), Tclm_B3, Yeq3 and YB2R are stable. As a result, Tm_B2 has no RHP 

poles. The analysis can be extended to other return-ratio matrices. Therefore, if the characteristic 

loci of all the return-ratio matrices Tm_x at all buses have zero encirclement around (−1, j0), all 

the transfer function matrices A, B1,  B2  and B3 are stable, and thus the grid current Ig and the 

total system are stable. Also, there is no need to calculate the poles of the return-ratio matrices. It 

should be noted that all the inverters are assumed to be stable stand alone, and thus the current 

closed-loop gains Gclcn and output admittances Yocn are stable. 

The result can be generalized to the proposed impedance-based sufficient stability criterion 

of radial-line systems with N current-controlled inverters as follows: 

(1) Assume PCC is Bus B0, the ideal grid is Bus B−1, and the grid impedance is Z0. Define 

the return-ratio matrix Tm_Bn at each bus Bn (n=0−N) as Tm_Bn = YBnRZn, where Zn is the line 

impedance between Bus Bn−1 and Bus Bn on the left-side and YBnR is the total admittance on the 

right side of Bus Bn. 

(2) The checking sequence of the return-ratio matrices at all buses is from the farthest bus 

BN to the PCC bus B0. 
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(3) If the characteristic loci of each return-ratio matrix have zero encirclement around (−1, 

j0), the total system is stable. If the characteristic loci of the return-ratio matrix at Bus Bn have 

non-zero encirclement around (−1, j0), the total system is probably unstable, and there is no need 

to check the remaining buses. It should be noted that, if the subsystem checked at Bus Bn is 

unstable, it is possible that the inclusion of additional inverter and passive components could 

stabilize the subsystem checked at Bus Bn-1. The proposed stability criterion is conservative 

because it requires all subsystems checked at all buses to be stable. 

For the radial-line system with three current-controlled inverters under study in this chapter, 

assume the grid voltage magnitude is Vg =170 V, and the output currents of all inverters are the 

same: Id =10 A, Iq =0 A in their own inverter d-q frames. According to the steady-state point 

calculation in Section 5.1, the magnitude and phase angle of each bus in the common d-q frame 

aligned with the PCC voltage vPCC are as follows: V1 =175.91 V, θ1 =2.83°; V2 =176.46 V, θ2 

=4.63°; V3 =176.77 V, θ3 =5.51°.  

The cut-off frequency parameter ωff of the first-order low-pass filter in the voltage feed-

forward gain Gffv, as shown in Figure 3-17, is selected as an example to investigate its effect on 

the system stability. Three cases are investigated by the proposed stability criterion. Case 1: 

ωff=20×2π rad/s; Case 2: ωff=50×2π rad/s; Case 3: ωff=300×2π rad/s. The Nyquist plots of the 

characteristic loci (λ1 and λ2) of the return-ratio matrix at each bus are shown in Figure 5-4. For 

Case 1 and Case 2, all the characteristic loci have zero encirclement around (−1, j0), so the 

system is stable. For Case 3, λ1 of the return-ratio matrix Tm_B2 at Bus 2 has two encirclements 

around (−1, j0), so the system is probably unstable. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 5-4. The characteristic loci of the return-ratio matrices. (a) Tm_B3 at Bus 3; (b) Tm_B2 at 

Bus 2; (c) Tm_B1 at Bus 1; (d) Tm_PCC at PCC. 
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5.3 Controller Parameter Design for Stability 

5.3.1 Controller Parameter Design for Normal Operation 

In addition to the requirement of stable operation, stability margin is also an important 

concern when designing the controller parameters of the inverters for good system dynamic 

performance. While using the proposed stability criterion for stability checking, the phase margin 

m  of the return-ratio matrix at each bus can also be obtained, which is the angle difference 

between the unit-circle intersection point and the negative real axis, as shown in Figure 5-4. 

Considering that there are two characteristic loci (λ1 and λ2), the smaller angle of these two 

intersection points is chosen as m . It can be seen from Figure 5-4(d) that Case 1 is a stable case 

with enough phase margin and good oscillation damping performance, and Case 2 is a stable 

case with limited phase margin and poor oscillation damping performance, while Case 3 is an 

unstable case with negative phase margin and resonance.   

The impact of the increase of the voltage-feedforward cut-off frequency ωff on the stability 

and phase margin m  at each bus is further investigated, as shown in Figure 5-5. Several 

characteristics can be observed and used as controller parameter design rules:   

(1) With the increase of ωff, the phase margin of each return-ratio matrix deceases. So, ωff 

should be selected sufficiently small to achieve stability and good oscillation damping 

performance. 

(2) The phase margin gradually decreases from the farthest bus (Bus 3) to the nearest bus 

(Bus 1). When assuming all the line impedances (Z1−ZN) are the same and the size and 

parameters of all the inverters are the same (such as the system under study in this chapter), the 

decrease of phase margin is generally linear with the bus number (or equivalently the increase in 
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the number of inverters), as shown in Figure 5-5(b). Therefore, the phase margins ( mN  and 

( 1)m N -
) obtained from the first and second stability checks of return-ratio matrices at Bus BN and 

Bus BN−1 can be utilized to predict the approximate phase margin 1m  at Bus B1 as (5-13). 

Conversely, a sufficient phase margin 1m  at Bus B1 (e.g. 30°) can be required to keep stability at 

PCC under the grid impedance variation, and then the phase margin mN  at Bus BN and the 

controller parameter (ωff) can be designed. For example, as shown in Figure 5-5(b), when 

ωff=300×2π rad/s, the phase margin 2m  at Bus 2 is already 0°, so the system is unstable even 

when only two inverters are connected to PCC, and ωff should be re-designed. 

(5-13)       1 ( 1)N 1 N 1m mN m mN mN m N      - - -   - - -   (5-13)  

 

 

(a) 

 

(b) 

Figure 5-5. Impact of voltage-feedforward ωff on stability and phase margin m  at each bus: (a) 

m  versus ωff ; (b) m  versus Bus number (or the number of inverters). 
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5.3.2 Design Considering Inverter Disconnection 

During the system operation, there is a possibility that one or several inverters are not in 

service and disconnected from the system, and the system stability and margin might change 

when still using the designed parameters. Assuming Inverter 2 is disconnected as illustrated in 

Figure 5-6, the stability and phase margin of the return-ratio matrix at each bus are examined 

again by applying the stability criterion proposed in Section 5.2, as shown in Figure 5-7.  

 

 

Figure 5-6. Ilustration of the disconnection of Inverter 2.  

 

The phase margins at Bus 2, Bus 3 and PCC are improved under the same controller 

parameter (ωff) with Inverter 2 disconnected, compared with Figure 5-5(a). It can be understood 

in the following way. If Inverter #n is disconnected from Bus Bn, the magnitude of the right-side 

admittance YBnR of Bus Bn is reduced. Then the magnitude interaction between the left-side line 

admittance Yn ( 1-
n n

Y Z ) and YBnR is weakened, or the magnitude intersection point moves to a 

higher frequency where the angle of YBnR is closer to the passive region (−90°~90°) as shown in 

Figure 5-8 and the phase difference between YBnR and Yn at the intersection point is reduced.  

+-

Zg

Grid

Vg

*

clc1 1G IYoc1

i1 (v1)

Z1 Z2

*

clc3 3G IYoc3

i3 (v3)

Z3

PCC

Bus 1 Bus 2 Bus 3

Yeq3YB2R

At Bus 2

Z2

ig 

(vPCC)

iL3
iL2iL1

Inverter 1 Inverter 3
PV



92 

 

 

Figure 5-7. Impact of ωff on stability and phase margin m  at each bus, when Inverte 2 is 

disconnected.  

 

 

Figure 5-8. Impact of the disconnection of one inverter on the impedance interaction.  
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Therefore, the proposed controller parameter design method can guarantee the stable 

operation of the system even with the disconnection of several inverters. 

5.3.3 Impact of Operating Point Changes 

The system is not always at the rated operating point due to the output power or current 

variations of the PV inverters as well as the possible disconnection of several inverters. Strictly 

speaking, for controller parameter design, the system stability should be examined using the 

proposed criterion multiple times for all the possible operating points. Nevertheless, the 

operating point changes (such as inverter output current changes and bus voltage angle changes) 

mainly affect the inverter output admittances in the low frequency range within the PLL 

bandwidth or outer power control loop bandwidth as shown in Figure 3-18. Therefore, the impact 

of operating point changes on grid synchronization stability and low frequency oscillation should 

be considered, while the impact on inner control loop parameter design is small when only the 

harmonic stability is concerned. The impact and design of other controller parameters (such as 

current controller bandwidth ωc, and active damping parameters if LCL filters are used) can be 

analyzed in a similar way. 

5.4 Simulation and Experimental Verification 

The radial-line system in the above analysis is simulated using MATLAB/Simulink. The 

aforementioned cases are investigated. Figure 5-9(a) shows that with the change of ωff from Case 

1 to Case 3, the inverter currents change from stable to unstable. Figure 5-9(b) shows that Case 1 

has a better oscillation damping performance than Case 2 under the d-axis current reference 

change of Inverter 3 from 5 A to 10 A. Figure 5-9(c) shows that the oscillation damping 

performance in Case 4 with Inverter 2 disconnected is improved as compared to Case 2. 
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(a) 

 

(b) 

 

(c) 

Figure 5-9. Simulation results. (a) Change from Case 1 to Case 3. (b) Comparison between Case 

1 and Case 2 under current reference change of Inverter 3. (c) Impact of disconnection of 

Inverter 2: Case 2 versus Case 4. 
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The same radial-line system has been set up and investigated in experiments. Figure 5-10 

shows that the phase-A currents of three inverters go from stable to unstable when ωff changes 

from 20×2π rad/s (Case 1) to 300×2π rad/s (Case 3). Figure 5-11 and Figure 5-12 display the 

comparison of the phase current and d-axis current responses of Case 1, Case 2 and Case 4 under 

the step change of the Inverter 3 d-axis current reference from 5 A to 10 A. With a higher voltage 

feed-forward cut-off frequency, the current response in Case 2 is worse with a longer oscillation 

period than that in Case 1. In addition, the disconnection of Inverter 2 results in better oscillation 

damping performance in Case 4 in contrast to Case 2.  These simulation and experimental results 

have verified the above analysis. 

 

 

 

Figure 5-10. Experimental results of the radial-line system with three inverters when ωff changes 

from 20×2π rad/s (Case 1) to 300×2π rad/s (Case 3).  
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(a) 

 

(b) 

 

(c) 

Figure 5-11. Experimental results of the radial-line system during the step change of the d-axis 

current reference *

3di  of Inverter 3 from 5 A to 10 A. (a) Case 1, ωff = 20×2π rad/s; (b) Case 2, ωff 

= 50×2π rad/s; (3) Case 4, ωff = 50×2π rad/s. 
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Figure 5-12. Comparison of the Inverter 3 d-axis current i3d responses in Cases 1, 2 and 4. 
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6 Sequence Impedance Based Harmonic Stability Analysis and 

Controller Parameter Design of Multi-Bus Ac Power Systems  

Three-phase inverter-based multi-bus ac power systems could suffer from the harmonic 

instability issue. The existing impedance-based stability analysis method using the Nyquist 

stability criterion once requires the calculation of right-half-plane (RHP) poles of impedance 

ratios, which would require the detailed internal control information of inverters and result in a 

heavy computation burden for complicated systems. In order to analyze the harmonic stability of 

multi-bus ac systems consisting of both voltage-controlled and current-controlled inverters 

without the need for RHP pole calculation, this chapter proposes two sequence-impedance-based 

harmonic stability analysis methods. Based on the summary of all major connection types 

including mesh, the proposed Method 1 can analyze the harmonic stability of multi-bus ac 

systems by adding the components one by one from nodes in the lowest level to areas in the 

highest system level, and accordingly, applying the stability criteria multiple times in succession. 

The proposed Method 2 is a generalized extension of the Impedance-Sum-Type criterion to be 

used for the harmonic stability analysis of any multi-bus ac systems based on Cauchy’s theorem. 

The inverter controller parameters can be designed in the forms of stability regions in the 

parameter space, by repetitively applying the proposed harmonic stability analysis methods. 

Experimental results of inverter-based multi-bus ac systems validate the effectiveness of the 

proposed harmonic stability analysis methods and parameter design approach. 
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6.1 Small-Signal Stability Analysis of Inverter-Based Multi-Bus Systems 

6.1.1 System Description 

Figure 6-1 depicts the one-line diagram of a two-area system [42], which is a typical system 

used for power-system related research. Figure 6-2 illustrates a one-line diagram of an inverter-

based multi-bus system for scaled-down emulation of the two-area system, where four generators 

G1–G4 are replaced by four voltage-controlled inverters [8] and two loads L7 and L9 are 

replaced by two current-controlled inverters [6]. The dc-link voltages of all inverters are 

regulated as constant by front-end dc power supplies. The parameters of the inverters are the 

same, which are shown in Table 3-1, Table 3-2 and Table 3-3. The main circuit parameters and 

operating points of the system are given in Table 6-1 and Table 6-2. It should be noted that only 

the inner voltage and current control loops of these inverters are considered in this chapter, while 

the low-bandwidth outer generator emulation and load emulation control loops [6], [8] are 

neglected. 

 

 

 

Figure 6-1. One-line diagram of the original two-area system. 
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Figure 6-2. One-line diagram of the inverter-based multi-bus ac system for scaled-down 

emulation of the two-area system. 

 

Table 6-1. Electrical parameters of the scaled-down two-area system. 

Electrical Parameters Values 

Ac voltage base Vbase 50 V (phase peak) 

Ac current base Ibase 17.36 A (phase peak) 

Ac power base Sbase 1302 W 

Line impedances 

Z1-6 (L1-6, R1-6) 2.45 mH, 0.12 Ω 

Z2-6 (L2-6, R2-6) 1.2 mH, 0.04 Ω 

Z6-7 (L6-7, R6-7) 0.7 mH, 0.035 Ω 

Z7-9 (L7-9, R7-9) 10.7 mH, 0.65 Ω 

Z3-10 (L3-10, R3-10) 2.5 mH, 0.12 Ω 

Z4-10 (L4-10, R4-10) 0.7 mH, 0.04 Ω 

Z9-10 (L9-10, R9-10) 0.7 mH, 0.035 Ω 
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Table 6-2. Operating point of the scaled-down two-area system.  

Operating Point Values 

Current references of 

each current-controlled 

inverter 

Id  −10 A 

Iq  0 A 

Voltage references of 

each voltage-controlled 

inverter 

Vd  50 V 

Vq 0 V 

 

 

6.1.2 Existing Stability Analysis Method: Using Nyquist Stability Criterion Once 

The impedance-based equivalent circuit of the studied inverter-based multi-bus ac system in 

the sequence domain is shown in Figure 6-3. The multi-bus system can be divided into two 

subsystems at any bus, where the rank of the controllability and observability matrices is full 

[34], such as Bus 1 or Bus 7, for harmonic stability analysis using the impedance-based Nyquist 

stability criterion.  

For example, assume the system is divided at Bus 7. The total sequence admittance YB7L of 

the left-side subsystem and the total sequence admittance YB7R of the right-side subsystem can be 

obtained by forcing the voltage sources and current sources to zero. The expressions of YB7L and 

YB7R are shown in (6-1) and (6-2), the impedance ratio Tm_B7 (also called the minor loop gain) is 

expressed in (6-3), and the closed minor loop gain Tclm_B7 of the impedance ratio is expressed in 

(6-4). The impedance Zlk of each line is expressed in (6-5) with the line inductance Llk and 

resistance Rlk. 

 



102 

 

 

Figure 6-3. Impedance-based equivalent circuit of the studied system in the sequence domain. 
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(6-5)  lk lk lkZ L s R    (6-5)  

Then the system stability can be assessed by applying the Nyquist stability criterion to the 

impedance ratio, which can be described in  

(6-6)         _ 7 _ 7 _ 7 ( 1, 0) _ 71clm B m B m B j m BP T Z T P T N T-   -   (6-6)  

where P( ) and Z( ) denote the numbers of RHP poles and zeros respectively, N(−1, j0)( ) is the 

number of times that the Nyquist trajectory encircles the critical point (−1, j0) in anti-clockwise 

direction. The system is stable if and only if Z(1+Tm_B7) is zero. According to the Nyquist 

stability criterion, not only the Nyquist diagram but also the RHP poles of the impedance ratio 

should be examined to evaluate the system stability. Furthermore, since the system is represented 

by two independent systems in the sequence domains, namely, the positive-sequence system and 

the negative-sequence system, the stability of both the positive-sequence impedance ratio 

Tm_B7_p(s) and the negative-sequence impedance ratio Tm_B7_n(s) should be examined. The total 

system is stable only if both sequence systems are stable. It should be noted that the system 

stability can also be assessed by the RHP poles of the closed-loop gain Tclm_B7 of the impedance 

ratio in the both the positive sequence domain Tclm_B7_p(s) and the negative sequence domain 

Tclm_B7_n(s). 

The voltage feed-forward control has a potential destabilizing effect on the inverter stability 

[64], [117], [133], [134]. The cut-off frequency ωffv of the first-order low-pass filter in the 

voltage feed-forward gain Gffv of all the current-controlled inverters is selected as an example to 

investigate the parameter’s impact on the system stability. Two cases are investigated by the 

Nyquist stability criterion in the sequence domain. Case 1: ωffv=200×2π rad/s; Case 2: 
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ωffv=1000×2π rad/s. Figure 6-4 and Figure 6-5 show the Nyquist diagrams of Tm_B7_p(s) and 

Tm_B7_n(s) in the full frequency range (−∞, +∞) and in the positive frequency range (0, +∞), 

respectively. As mentioned in Section 3.3.2, the Nyquist diagrams of both Tm_B7_p(s) and 

Tm_B7_n(s) are approximately symmetrical in the full frequency range (−∞, +∞). Figure 6-6 shows 

the pole-zero maps of Tm_B7_p(s) and Tm_B7_n(s), respectively. There is zero encirclement of the 

point (−1, j0) in both cases, but there are two RHP poles in Case 2. Therefore, according to the 

Nyquist stability criterion, the system is stable in Case 1, but unstable in Case 2. The same 

stability results can be obtained from the pole-zero maps of Tclm_B7_p(s) and Tclm_B7_n(s) as shown 

in Figure 6-7. 

 

 

(a) 

 

(b) 

Figure 6-4. Nyquist diagrams of the impedance ratios in Case 1 and Case 2 in the full frequency 

range: (a) Tm_B7_p(s) and (b) Tm_B7_n(s). 
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(a) 

 

(b) 

Figure 6-5. Nyquist diagrams of the impedance ratios in Case 1 and Case 2 in the positive 

frequency range: (a) Tm_B7_p(s) and (b) Tm_B7_n(s). 

 

 

(a) 

 

(b) 

Figure 6-6. Pole-zero maps of the impedance ratios in Case 1 and Case 2: (a) Tm_B7_p(s) and (b) 

Tm_B7_n(s). 
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(a) 

 

(b) 

Figure 6-7. Pole-zero maps of the closed loop gains of impedance ratios in Case 1 and Case 2: 

(a) Tclm_B7_p(s) and (b) Tclm_B7_n(s). 
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inverters. The first proposed method is to add the system components one by one from nodes in 

the lowest level to areas in the highest system level and accordingly apply the stability criteria 

multiple times in succession, and the system is stable if all the stability check results indicate 

stability.  

The terminal characteristics of system components can be classified into two types: 

impedance (Z) type and admittance (Y) type [95], [135], [136]. The terminal characteristic of 

passive components can be considered as Z-type in series connections and Y-type in parallel or 

meshed connections.  

The terminal characteristics of current-controlled inverters and voltage-controlled inverters 

can be regarded as Y-type and Z-type without RHP poles, respectively, when the current and 

voltage control loops are designed as stable. 

Except for mesh-type connections, the majority of the connection among these passive and 

active components in inverter-based ac systems can be categorized into the following groups. 

1) Type 1: Y+Y parallel-type connection. It includes the parallel connection among 

current-controlled inverters, passive components as well as Y-type subsystems, as shown in 

Figure 6-8(a).  

The equivalent admittance of the total subsystem Yeqc is expressed in (6-7). Since the 

addition operation does not introduce extra RHP poles, Y+Y parallel-type connection is naturally 

stable, and the equivalent total subsystem is also Y-type as depicted in Figure 6-8(c). 

(6-7)  1 2 1eqc l oc oc syscY Y Y Y Y      (6-7)  

 



108 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6-8. System connection and equivalent circuit. (a) Y+Y parallel-type connection; (b) Y+Z 

series-type connection; (c) Y-type equivalent subsystem. 

 

2) Type 2: Y+Z series-type connection. It includes the series connection between a current-

controlled inverter or a Y-type subsystem and a passive component, as shown in Figure 6-8(b). 

This type of connection is stable if and only if the impedance ratio Tm at the connection interface 

as expressed in (6-8) meets the Nyquist stability criterion [31]. The equivalent total subsystem is 

Y-type as depicted in Figure 6-8(c), with equivalent admittance Yeqc as expressed in (6-9). 
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3) Type 3: Z+Z series-type connection. It includes the series connection of a voltage-

controlled inverter or a Z-type subsystem with a passive component, as shown in Figure 6-9(a). 

The equivalent impedance of the total subsystem Zeqv is expressed in (6-10). Considering that the 

addition operation does not introduce extra RHP poles, Z+Z series-type connection is naturally 

stable, and the equivalent total subsystem is also Z-type as illustrated in Figure 6-9(d). 
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(6-10)  1eqv l ovZ Z Z    (6-10)  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6-9. System connection and equivalent circuit. (a) Z+Z series-type connection; (b) Z+Z 

parallel-type connection; (c) Z+Y parallel-type connection; (d) Z-type equivalent subsystem. 

 

4) Type 4: Z+Z parallel-type connection. It includes the parallel connection of voltage-

controlled inverters and Z-type subsystems, as shown in Figure 6-9(b). This type of connection is 

stable if and only if the sum of the impedances meets the Impedance-Sum-Type Criterion [95], 

which is briefly described here. The Nyquist stability criterion is based on Cauchy’s theorem, 

which is also called the principle of argument [55]. The impedance ratio Tm at the connection 

interface is expressed in (6-11), and the closed minor loop gain Tclm is expressed in (6-12). 

(6-11)  
1

1

ov
m

sysv

Z
T

Z
   (6-11)  

(6-12)  
1

1 1

1

1

sysv

clm

m ov sysv

Z
T

T Z Z
 

 
  (6-12)  

The system stability is related to the RHP zeros of the denominator of Tclm, which can be 

Zov1

*

1 1clvG V +
-

Zl

Passive 
component

Z-type 
inverter 1

Zov1

*

1 1clvG V +
-

Zsysv1

*

1 1sysv sysvG V +
-

Z-type 
subsystem 1

Z-type 
inverter 1

Zov1

*

1 1clvG V +
-

Z-type 
inverter 1

*

1 1sysc syscG IYsysc1

Y-type 
subsystem 1

Zeqv

*

eqv eqvG V +
-

Z-type equivalent 
subsystem 



110 

 

estimated by the trajectory of the denominator in the complex plane according to Cauchy’s 

theorem as shown in (6-13) or (6-14): 

(6-13)       (0, 0)1 1 1m m j mZ T P T N T   -    (6-13)  

(6-14)       1 1 1 1 (0, 0) 1 1ov sysv ov sysv j ov sysvZ Z Z P Z Z N Z Z   -    (6-14)  

where N(0, j0)( ) denotes the number of times that the Nyquist trajectory encircles the critical point 

(0, j0) in anti-clockwise direction, and N(0, j0)(1+Tm) is equal to N(−1, j0)(Tm). The system is stable 

if and only if Z(1+Tm) is zero or Z(Zov1+Zsysv1) is zero. The direct application of Cauchy’s 

theorem on (6-13) is equivalent to the application of Nyquist stability criterion on (6-11), which 

means that the RHP poles of the impedance ratio Tm still need to be checked. However, the 

application of Cauchy’s theorem on (6-14) avoids the RHP pole calculation because P(Zov1+ 

Zsysv1) is 0. 

The equivalent total subsystem is also Z-type as shown in Figure 6-9(d), and the total 

equivalent impedance Zeqv is expressed in (6-15). 

(6-15)  
1 1

1 1

ov sysv

eqv

ov sysv

Z Z
Z

Z Z



  (6-15)  

5) Type 5: Z+Y parallel-type connection. It includes the parallel connection between a 

voltage-controlled inverter or a Z-type subsystem and a passive component or a current-

controlled inverter or a Y-type subsystem, as shown in Figure 6-9(c). The connected system is 

stable if and only if the impedance ratio at the connection interface as described in (6-16) meets 

the Nyquist stability criterion. The equivalent total subsystem is a Z-type subsystem as shown in 

Figure 6-9(d), and the total equivalent impedance Zeqv is expressed in (6-17). 
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(6-16)  1 1m sysc ovT Y Z   (6-16)  

(6-17)  
1

1 11

ov
eqv

sysc ov

Z
Z

Y Z



  (6-17)  

The harmonic stability of meshed-type connections can be analyzed by using the proposed 

Method 2 which will be described in Section 6.1.4 to avoid the RHP pole calculation of 

impedance ratios, and one example will be given in Section 6.1.5. 

Based on the aforementioned summary of all the connection types, the analysis procedure of 

the proposed Method 1 can be illustrated in Figure 6-10. The analysis is conducted from the 

lowest level (Level 1) to the highest level (system level). The sequence of adding components on 

each level is from the farthest terminal to the connection point with the higher level. And the 

harmonic stability of system-level meshed interconnections can be analyzed by the proposed 

Method 2 that will be presented in Section 6.1.4.  

It should be mentioned that the subsystem assembled in the previous step should be stable 

before adding the next component. Therefore, the proposed Method 1 is conservative. There is a 

possibility that the addition of the next component can stabilize an unstable subsystem assembled 

in the previous step. However, such case can be avoided by the proposed Method 1. 

The two-area system under study can be partitioned and re-assembled in five steps, and 

correspondingly the system harmonic stability can be assessed by five successive stability checks, 

as illustrated in Figure 6-11. For conciseness, only the stability analysis results in the positive-

sequence domain are presented here. 
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(a) 

 

 

 

(b) 

Figure 6-10. Illustration of analysis procedure for a general inverter-based multi-area system: (a) 

within one area, (b) system level. 

 

 

Figure 6-11. Stability analysis of the two-area system by five stability checks in succession. 
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(a) 

 

(b) 

 

(c) 

Figure 6-12. (a) Bode plot and (b) Nyquist diagram of the denominator Dclm_C1_p(s) in Case 1 and 

Case 2. (c) Nyquist contour Γs in the s-plane. 

 

Figure 6-12 shows the Bode plot and Nyquist diagram of the denominator Dclm_C1_p(s) of the 

closed minor loop gain Tclm_C1_p(s) as expressed in (6-18) for Check #1 at Bus 6 in both Case 1 
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observed in Figure 3-9. And the order difference is 1 for the inductive line impedance Zlk_p(s). 
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(6-19)  
_C1_

_C1_

_C1_

( )
( )

( )

Num

clm p

clm p Den

clm p

D s
D s

D s
   (6-19)  

When drawing the Nyquist plot, the Nyquist trajectory segment corresponding to the infinite 

semi-circle in clockwise direction of the Nyquist contour Γs in the s-plane ([s]) as shown in 

Figure 6-12(c) should also be considered. When the numerator order is higher than the 

denominator order, such Nyquist trajectory segment is also an infinite semi-circle in clockwise 

direction in the Nyquist complex plane, as illustrated in Figure 6-12(b) and also presented as 

dash lines with phase angle changes of −90° between ω=10
4
×2π rad/s and ω=+∞ in the Bode 

plot in Figure 6-12(a) to assist the explanation. By examining the positive frequency range of the 

Bode plot, 180° increase in the phase angle means encircling the (0, j0) point once in anti-

clockwise direction while 180° decrease in the phase angle means encircling the (0, j0) point 

once in clockwise direction. According to the Bode plot of Dclm_C1_p(s) in Figure 6-12(a), N(0, 

j0)(Dclm_C1_p(s))=0 and thus Z(Dclm_ C1_p(s))=0 based on Cauchy’s theorem. Therefore, the 

connection at Bus 6 for Check #1 is stable in both Case 1 and Case 2 in the positive-sequence 

domain. 

Figure 6-13(a) shows the Nyquist diagram of the impedance ratio Tm_C2_p(s) for Check #2 at 

Bus 7 in the two cases. The trajectory in Case 1 does not encircle the point (−1, j0) but the 

trajectory in Case 2 encircles the point (−1, j0) twice in the clockwise direction. Therefore, the 

connection at Bus 7 for Check #2 is stable in Case 1 but unstable in Case 2 in the positive-

sequence domain. According to the Nyquist trajectories, the gain margin is 5.9 dB and phase 

margin is 9.2° in Case 1, while the gain margin is −11.9 dB and phase margin is −11.6° in Case 2. 

Similar to Area 1, the Area 2 subsystem is stable in Case 1 but unstable in Case 2. Bode plot of 

the denominator Dclm_C5_p(s) of the closed minor loop gain Tclm_C5_p(s) for Check #5 at Bus 7 has 
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zero encirclement around the point (0, j0) in both cases, as shown in Figure 6-13(b). Therefore, 

the total two-area system is stable in Case 1 but unstable in Case 2. 

 

 

(a) 

 

(b) 

Figure 6-13. (a) Nyquist diagram of the impedance ratio Tm_C2_p(s) and (b) Bode plot of the 

denominator Dclm_C5_p(s) in Case 1 and Case 2. 
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reduces the computation burden as compared to the stability analysis using the Nyquist criterion 

once. However, the proposed Method 1 is conservative, due to the requirement that the 

subsystem for every stability check should be stable. And the multi-step process could be tedious 
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6.1.4 Proposed Stability Analysis Method 2: Using Proposed Stability Criterion Based on 

Cauchy’s Theorem Once 

A new impedance-based stability criterion is proposed here to assess the harmonic stability 

of inverter-based multi-bus systems without the need for the examination of the RHP poles of the 

impedance ratios. And it only needs one stability examination and the consequent stability 

condition is necessary and sufficient. 

The closed minor loop gain Tclm_B7 can be re-arranged to the form in 

(6-20)  
 
 

_ 7

_ 7

_ 7

, ,

, ,

clm B oci ovj lk

clm B

clm B oci ovj lk

N Y Z Z
T

D Y Z Z
   (6-20)  

where the numerator Nclm_B7 and the denominator Dclm_B7 in the modified form are functions of 

the impedances or admittances of all individual components, including the admittances of 

current-controlled inverters Yoci (i=7, 9), the impedances of voltage-controlled inverters Zovj 

(j=1−4), and the line impedances Zlk . More importantly, these functions only involve 

multiplication and addition operations. To be clear, examples of this modified form include the 

second expression of YB7L in (6-1) and the expression of Tclm_C1_p(s) in (6-18).  

The underlying principle of the impedance-based stability analysis using Cauchy’s theorem 

is explained as follows. Because each inverter is designed to operate stably alone, Yoci and Zovj 

are all stable without RHP poles. The line impedances Zlk are passive and thus stable without 

RHP poles. Since the multiplication and addition operations do not introduce additional RHP 

poles, both Nclm_B7 and Dclm_B7 have zero RHP poles. Therefore, the system stability is 

determined by the RHP zeros of Dclm_B7, which can be estimated by (6-21) based on Cauchy’s 

theorem. The system is stable if and only if N(0, j0)(Dclm_B7) is zero. By using the modified form of 
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Tclm_B7 for stability analysis, the RHP pole calculation is avoided. 

(6-21)         _ 7 _ 7 (0, 0) _ 7 (0, 0) _ 7clm B clm B j clm B j clm BZ D P D N D N D -  -   (6-21)  

The previous two cases are analyzed again using the proposed stability criterion. Figure 6-14 

displays the Bode plots of the denominators Dclm_B7 in the modified form in Case 1 and Case 2 in 

both the positive-sequence domain Dclm_B7_p(s) and the negative-sequence domain Dclm_B7_n(s). 

The corresponding Nyquist diagrams are presented in Figure 6-15. The phase angles of 

Dclm_B7_p(s) in Case 1 remain around 270° when the frequency is high, because the order of the 

numerator _ 7_ ( )Num

clm B pD s  of Dclm_B7_p(s), as defined in (6-22), is higher than the order of the 

denominator _ 7_ ( )Den

clm B pD s , and the order difference is 3. The same goes for Dclm_B7_n(s) in the 

negative-sequence domain. Considering the infinite semi-circle segments of Nyquist trajectories, 

the phase angles decrease by 90°×3=270° from ω=10
4
×2π rad/s to ω=+∞ in Figure 6-14. 

(6-22)  
_ 7 _ _ 7 _

_ 7 _ _ 7 _

_ 7 _ _ 7 _

( ) ( )
( ) ; ( )

( ) ( )

Num Num

clm B p clm B n

clm B p clm B nDen Den

clm B p clm B n

D s D s
D s D s

D s D s
    (6-22)  

According to the Bode plots of Dclm_B7_p(s) in Figure 6-14(a), the overall net phase variations 

in the frequency range of [0, +∞) are 0° in Case 1 but −180°×4=−720° in Case 2. It means that 

N(0, j0)(Dclm_B7_p(s))=0 and thus Z(Dclm_B7_p(s))=0 in Case 1, while N(0, j0)(Dclm_B7_p(s))= −4 and 

thus Z(Dclm_B7_p(s))=4 in Case 2. As for the Bode plots of Dclm_B7_n(s) in Figure 6-14(b), N(0, 

j0)(Dclm_B7_n(s))=0 and thus Z(Dclm_B7_n(s))=0 in both Case 1 and Case 2. Therefore, the multi-bus 

ac system under study is stable in Case 1, while it is unstable in Case 2 and the instability occurs 

in the positive-sequence system. 
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(a) 

 

(b) 

Figure 6-14. Bode plots of denominators in the modified form in Case 1 and Case 2: (a) 

Dclm_B7_p(s) and (b) Dclm_B7_n(s). 

 

 

(a) 

 

(b) 

Figure 6-15. Nyquist diagrams of denominators in the modified form in Case 1 and Case 2: (a) 

Dclm_B7_p(s) and (b) Dclm_B7_n(s). 
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In summary, the proposed stability criterion based on Cauchy’s theorem can be described as 

follows: 

Step 1: Get the frequency responses of stable sequence admittances Yi or impedances Zj of 

all components in the system, which can be obtained by impedance measurement, or from the 

Bode plots of the transfer functions of the sequence admittances or impedances. Determine the 

order difference between the numerator and the denominator of each Yi or Zj. 

Step 2: Divide the total system into two subsystems at any bus, and derive the expression of 

the closed-loop gain Tclm of the impedance ratio Tm as functions of Yi and Zj. 

Step 3: Change the form of Tclm into Tclm = Nclm / Dclm , where Nclm and Dclm are functions of 

Yi and Zj with only multiplication and addition operations. 

Step 4: Check the order difference between the numerator and denominator of Dclm, by 

examining each summation term in Dclm, in order to determine the phase angle change of Dclm 

corresponding to the infinite semi-circle segments of Nyquist trajectories. 

Step 5: Draw the Nyquist or Bode plots of Dclm and count the encirclement of the point (0, j0) 

in anti-clockwise direction, N(0, j0)(Dclm). The system is stable if and only if N(0, j0)(Dclm) is zero. 

The above steps should be executed in both the positive-sequence domain and the negative-

sequence domain. The proposed stability criterion is a necessary and sufficient condition and the 

RHP poles calculation is avoided, which reduces the computation effort and enables the stability 

assessment when the component impedances can only be measured. It is worth noting that the 

reformation in Step 3 can be done in MATLAB using the collect command for symbolic 

expressions. 
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6.1.5 Application of Proposed Method 2 to Meshed Systems 

In order to demonstrate the effectiveness of the proposed Method 2 in the harmonic stability 

analysis of meshed systems, one three-bus meshed system is configured with two voltage-

controlled inverters G1 and G3 and one current-controlled inverter L2 connected to Bus 1, Bus 3 

and Bus 2, respectively, as shown in Figure 6-16(a).  

The inverter parameters are the same as those listed in Table 3-1, Table 3-2 and Table 3-3, 

except the values of ωffv in Case 11 (ωffv=200×2π rad/s) and Case 12 (ωffv=1000×2π rad/s). The 

impedances of three lines are Z1=Z1-6, Z2=Z2-6, and Z3=Z6-7, respectively, where Z1-6, Z2-6, and Z6-7 

are given in Table 6-1. The operating point of the meshed system is the same as that listed in 

Table 6-2. 

 

 

(a) 

 

(b) 

Figure 6-16. Impedance-based circuits of the meshed system: (a) original circuit and (b) 

equivalent Norton circuit. 
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The application of the proposed Method 2 is described as follows. For conciseness, only the 

harmonic stability analysis in the positive-sequence domain is presented. 

Step 1: The sequence impedances Zov1 and Zov3 of G1 and G3 and the sequence admittance 

Yoc2 of L2 are described in Section 3.1 and Section 3.2. The sequence impedances of lines are 

presented in Section 6.1.2. 

Step 2: The meshed system is divided into two subsystems with impedances Zov1 and Zlv1, 

respectively, at Bus 1. The impedance ratio Tm_B1 and the closed minor loop gain Tclm_B1 at Bus 1 

are expressed in (6-23) and (6-24), which can be derived based on the method developed in [23]. 

(6-23)  
1

_ 1

1 _ 1

1
1ov

m B

lv clm B

Z
T

Z T
  -   (6-23)  

(6-24)  
_ 1

1_ 1

1

1 1

1
1

clm B
ovm B

lv

T
ZT

Z

 




  
(6-24)  

By replacing the Thevenin models of G1 and G3 with their equivalent Norton models, the 

system impedance-based circuit is depicted in Figure 6-16(b) with some variables defined in (6-

25) and (6-26). 

(6-25)  1 3

1 3

1 1
,ov ov

ov ov

Y Y
Z Z

    (6-25)  

(6-26)  1 2 3 1

1 2 3 1

1 1 1 1
, , , lv

lv

Y Y Y Y
Z Z Z Z

      (6-26)  

Based on the system nodal admittance matrix Ync , Tclm_B1 can be obtained as (6-27), where 

Ynom is expressed in (6-28). Then Tm_B1 can be derived by substituting (6-27) into (6-23). 
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(6-27)  
   1 1 2 1 3 2 3 2 3 2 1 2 2 3

_ 1

ov oc oc ov

clm B

nom

Y YY YY Y Y Y Y Y Y Y Y Y
T

Y

        
   (6-27)  

(6-28)  
  

     

1 2 1 3 2 3 1 3 2

1 2 2 1 3 2 3 1 1 3 3 2

nom ov ov oc

oc ov ov ov ov oc

Y YY YY Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y

    

        

  (6-28)  

As illustrated in Figure 6-17, although the Nyquist plot of the positive-sequence impedance 

ratio Tm_B1_p(s) has zero encirclement of the critical point (−1, j0) in both cases, one RHP pole 

exists in Case 12. It should be noted that another conjugate RHP pole exists in the negative-

sequence domain in Case 12. Therefore, the meshed system is stable in Case 11 but unstable in 

Case 12. According to the pole-zero maps of the positive-sequence closed minor loop gain 

Tclm_B1_p(s) as shown in Figure 6-18(a), the unstable frequency of the system RHP pole in Case 

12 is 443 Hz in the positive-sequence domain. 

Step 3: After substituting (6-25) into (6-27), the closed minor loop gain Tclm_B1 is reformatted 

as (6-29), with the numerator Nclm_B1 and the denominator Dclm_B1 in the modified forms as 

expressed in (6-30) and (6-31). 

(6-29)  
_ 1

_ 1

_ 1

clm B

clm B

clm B

N
T

D
   (6-29)  

(6-30)     _ 1 1 2 2 1 2 1 3 2 3 3 2 3 2 3clm B oc ov oc ovN Y Y Y YY YY Y Y Z Y Y Y Z          (6-30)  

(6-31)    

   

_ 1 1 2 2

1 2 1 3 2 3 1 3 2 1 3

1 3 1 2 3 3 2

clm B oc

ov ov oc ov ov

ov ov oc

D Y Y Y

YY YY Y Y Z Z Y Z Z

Y Y Z Y Y Z Y

  

    

     

  (6-31)  
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(a) 

 

(b) 

Figure 6-17. (a) Nyquist diagrams and (b) pole-zero maps of the positive-sequence impedance 

ratios Tm_B1_p(s) at Bus 1 of the meshed system in Case 11 and Case 12. 

 

 

(a) 

 

(b) 

Figure 6-18. (a) Pole-zero maps of the positive-sequence closed-loop gains Tclm_B1_p(s) and (b) 

Bode plots of the denominators Dclm_B1_p(s) in the modified form in Case 11 and Case 12.  
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Step 4: There is one more Y-type variable than Z-type variables in each summation term in 

Dclm_B1. Therefore, the order difference between the numerator and the denominator of Dclm_B1(s) 

is −1, and the phase angle change of Dclm_B1(s) is an increment of 90°, corresponding to the 

infinite semi-circle segments of Nyquist trajectories. 

Step 5:  According to the Bode plots of the positive-sequence denominator Dclm_B1_p(s) of 

Tclm_B1_p(s) as illustrated in Figure 6-18(b), the overall net phase variations in the frequency range 

of [0, +∞) are 0° in Case 11 but −180°×2=−360° in Case 12. It indicates that N(0, j0)( Dclm_B1_p(s)) 

is 0 in Case 11 but −2 in Case 12, and the meshed system is stable in Case 11 but unstable in 

Case 12 with two RHP poles. 

The aforementioned analysis shows that the proposed Method 2 can correctly analyze the 

harmonic stability of meshed systems without the need for the RHP pole calculation of the 

impedance ratios. The experimental verification will be presented in Section 6.3.4. 

6.1.6 Comparison of Stability Analysis Methods 

The aforementioned three methods for stability analysis of inverter-based multi-bus systems 

have been compared regarding 1) necessity and sufficiency, 2) requirement on impedance model 

details, 3) RHP pole calculation of the impedance ratio, 4) number of stability checks, 5) 

computation time and 6) stability margins (gain margin and phase margin), as shown in Table 

6-3. As compared with the existing method, the proposed Method 1 and Method 2 not only have 

less strict requirements on the impedance models, which enables the stability assessment using 

measured impedances, but also take significantly less computation time by avoiding formulating 

the transfer function of the impedance ratio and calculating the RHP poles of the impedance ratio. 
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Table 6-3. Comparison of different stability analysis methods.  

 Existing method 

(using Nyquist 

stability criterion 

once) 

Proposed Method 1 

(using stability 

criteria multiple 

times in succession) 

Proposed Method 2 

(using proposed 

stability criterion 

based on Cauchy’s 

theorem once) 

Necessity and 

sufficiency 

Necessary and 

sufficient 

Sufficient Necessary and 

sufficient 

Requirement on 

impedance model 

details 

Transfer function 

models of 

impedances, which 

require the detailed 

internal control 

information of 

inverters. 

Frequency response 

data of impedances, 

which can be 

generated by the 

transfer function 

models or measured 

without the need for 

internal control 

details. 

Frequency response 

data of impedances, 

which can be 

generated by the 

transfer function 

models or measured 

without the need for 

internal control 

details. 

RHP pole calculation 

of the impedance 

ratio 

Required Avoided Avoided 

Number of stability 

checks 

One Multiple One 

Computation time* 169.0 s 6.5 s 2.5 s 

Stability margins 

(gain margin and 

phase margin) 

Can tell the stability 

margins if the Nyquist 

trajectory intersects 

the unit circle. 

(1) For stability 

checks using Nyquist 

criterion: can tell the 

stability margins if the 

Nyquist trajectory 

intersects the unit 

circle. 

(2) For stability 

checks using 

Cauchy’s theorem: 

cannot tell the 

stability margins. 

Cannot tell the 

stability margins. 

*: Frequency response data: 10000 logarithmically equally spaced points between 10
-2

 Hz and 10
5
 Hz. Computation 

time listed here is an average value for computation with MATLAB using a second generation Intel
®
 Core

TM
 i7 

quad-core CPU. 
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6.2 Controller Parameter Design of Inverter-Based Multi-Bus Systems 

6.2.1 Controller Parameter Design Process 

For inverter-based multi-bus ac systems with multiple voltage-controlled and current-

controlled inverters, it is not easy to design the controller parameters of each inverter 

individually because the system stability is determined by the inter-connection of all inverters.  

Before interconnecting all inverters to construct the system, each individual inverter should 

be designed to be stable internally (with ideal external conditions), and the parameter range for 

internal stability of each inverter can be obtained. The aforementioned harmonic stability 

analysis methods can be repetitively applied for all the parameter sets within the parameters 

ranges with internal stability, in order to obtain the stable regions, unstable regions and stability 

boundaries in the parameter space for the multi-bus system stability or external interconnection 

stability of all inverters. Considering that the existing method is time-consuming, the proposed 

Method 1 and Method 2 can be used for this iteration-type design process. It is worth noting that, 

although the proposed Method 2 cannot tell the traditional gain or phase margins, the achieved 

stability boundary in the parameter space can still tell the stability margin from a different aspect, 

that is, the distance from the stability boundary. 

For simplicity, it is assumed that all voltage-controlled inverters have same controller 

parameters and all current-controlled inverters have same controller parameters in the two-area 

system. And the cut-off frequency ωffv of the voltage feed-forward control and the current loop 

bandwidth ωc of all current-controlled inverters as well as the voltage loop bandwidth ωv of all 

voltage-controlled inverters are chosen to be designed. The values of ωc and ωv are achieved by 

setting the PI controller parameters as (6-32). 
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(6-32)  

, 875

1
2 ,

cp c f ci cp

vp v s vi v

fv

K L K K

K T K



 


 


 
     

 

  (6-32)  

According to the Bode plots of the stable open-loop gains of the current-controlled inverters, 

Tc_p(s), and the voltage-controlled inverters, Tv_p(s), in the positive-sequence domain as shown in 

Figure 6-19, the value of ωc is confined in the range of [100×2π rad/s, 1000×2π rad/s] for 

internal stability of current-controlled inverters, and the value of ωv is confined in the range of 

[50×2π rad/s, 500×2π rad/s] for internal stability of voltage-controlled inverters. Since ωffv only 

changes the sequence admittances but does not change the current-loop stability of current-

controlled inverters, the value of ωffv is confined in the range of [100×2π rad/s, 1000×2π rad/s]. 

 

 

(a) 

 

(b) 

Figure 6-19. Bode plots of the open-loop gains of (a) the current-controlled inverters Tc_p(s) and 

(b) voltage-controlled inverters Tv_p(s) in the positive-sequence domain. 

 

 

Frequency [Hz]

P
h
as

e 
[D

eg
re

e]
M

ag
n
it

u
d
e 

[d
B

]

-50

0

50

100

-180

-90

0

90

180

101 102 103

ωc =100 Hz 
ωc =1000 Hz

Frequency [Hz]

P
h

as
e 

[D
eg

re
e]

M
ag

n
it

u
d

e 
[d

B
]

-50

0

50

100

-180

-90

0

90

180

101 102 103

ωv =50 Hz 
ωv =500 Hz



128 

 

6.2.2 Design Results of the Two-Area System 

The design results of the parameter pair (ωffv and ωc) are presented in the two-dimensional 

maps in Figure 6-20 with ωv equal to 170×2π rad/s.  The design results of the parameter pair (ωv 

and ωc) are shown in Figure 6-21(a) with ωffv equal to 100×2π rad/s and Figure 6-21(b) with ωffv 

equal to 200×2π rad/s.  

Since the system in the negative-sequence domain in the selected parameter space happens 

to be always stable, only the design results for the system in the positive-sequence domain are 

presented here. 

 

 

(a) 

 

(b) 

Figure 6-20. (a) Stability regions and stability boundaries in the map of the parameter pair (ωffv 

and ωc) using the proposed Method 2. (b) Comparison of the stability boundaries generated using 

the proposed Method 1 and Method 2.  
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(a) 

 

(b) 

Figure 6-21. Stability regions and stability boundaries in the map of the parameter pair (ωv and 

ωc) using the proposed Method 2. (a) ωffv is 100×2π rad/s, (b) ωffv is 200×2π rad/s. 

 

Figure 6-20(b) shows that the stability region generated using Method 1 (limited by Check 

#2) is relatively smaller than that generated using Method 2, which exhibits the conservativeness 

of Method 1. In addition, some general design rules for the studied two-area system can be 

derived. 1) The cut-off frequency ωffv of the voltage feedforward control cannot be very large. 

Larger ωffv makes the system more prone to instability. 2) The cut-off frequency ωffv of the 

voltage feedforward control should be smaller than the current loop bandwidth ωc. 3) The 

stability is mainly affected by the parameter ωffv instead of ωv. 

The stability boundaries obtained from the simulation results using MATLAB/Simulink are 

also shown in Figure 6-20(a). The small but acceptable discrepancy between the analysis results 

and the simulation results near the stability boundaries is due to the limitation of the model 

accuracy described in Section 3.3. 
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6.3 Experimental Verification 

6.3.1 Experimental Setup 

The experimental platform for scaled-down emulation of the two-area system using three-

phase inverters and inductors has been set up, as shown in Figure 6-22. The three-phase inverter 

as the emulator consists of the 75 kW-power stage from Vacon company and a customized 

interface board with TMS320F28335 DSP of Texas Instruments.  

In the following experiments, the inverters run under a condition with power lower than 

their listed power rating. The parameters of the inverters and inductors as well as the system 

operating points are the same as those listed in Table 3-1, Table 6-1 and Table 6-2. 

 

 

(a) 

 

(b) 

Figure 6-22. Experimental setup of the inverter-based multi-bus ac system. (a) Photo of the total 

system. (b) Photo of the three-phase inverter. 
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6.3.2 Design Verification of the Parameter Pair (ωffv and ωc) 

In order to verify the design results of the parameter pair (ωffv and ωc) presented in the 

parameter map in Figure 6-20(a), several experimental cases have been carried out, which are 

also marked as purple squares and green diamonds in Figure 6-20(a). 

In the first case group (purple squares), ωc is 700×2π rad/s and ωv is 170×2π rad/s, while ωffv 

has four different values: 200×2π rad/s (Case 1), 1000×2π rad/s (Case 2), 800×2π rad/s (Case 3) 

and 600×2π rad/s (Case 4).  

Figure 6-23 shows the experimental waveforms of the phase-A currents of G2, G4, L7 and 

L9 in the two-area system when ωffv changes from 200×2π rad/s to 1000×2π rad/s. It can be seen 

that the system changes from a stable state to an unstable state, which verifies the stability 

analysis in Section 6.1.  

Figure 6-24(a) and Figure 6-24(b) display the experimental results of the system in the 

unstable state when ωffv is 800×2π rad/s and 600×2π rad/s, respectively, which verifies the 

parameter design results shown in Figure 6-20(a). 

In the second case group (green diamonds), ωv is 170×2π rad/s and ωffv is 200×2π rad/s, 

while ωc has two different values: 1000×2π rad/s (Case 5) and 200×2π rad/s (Case 6).  

Figure 6-25 illustrates the experimental results when ωc changes from 1000×2π rad/s to 

200×2π rad/s. The system changes from a stable state to an unstable state, which verifies the 

parameter design results shown in Figure 6-20(a). 
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(a) 

 

(b) 

 

(c) 

Figure 6-23. Experimental results when ωffv changes from 200×2π rad/s to 1000×2π rad/s. (a) 

System transition from stable state to unstable state. (b) System in stable state when ωffv is 

200×2π rad/s. (c) System in unstable state when ωffv is 1000×2π rad/s. 
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(a) 

 

(b) 

Figure 6-24. Experimental results of the system in unstable state. (a) ωffv is 800×2π rad/s. (b) ωffv 

is 600×2π rad/s. 

 

 

(a) 

 

(b) 

Figure 6-25. Experimental results when ωc changes from 1000×2π rad/s to 200×2π rad/s. (a) 

System transition from a stable state to an unstable state. (b) System in unstable state when ωc is 

200×2π rad/s. 
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6.3.3 Design Verification of the Parameter Pair (ωv and ωc) 

Additional four experimental cases, marked as purple squares in Figure 6-21, have been 

performed to verify the design results of the parameter pair (ωv and ωc) presented in the 

parameter maps in Figure 6-21. In the first case group, ωv is 200×2π rad/s and ωffv is 100×2π 

rad/s, while ωc changes from 300×2π rad/s (Case 7) to 200×2π rad/s (Case 8). The experimental 

results presented in Figure 6-26(a) show that the system changes from a stable state to an 

unstable state, which verifies the parameter design results shown in Figure 6-21(a). In the second 

case group, ωv is still 200×2π rad/s, but ωffv is changed to 200×2π rad/s, while ωc changes from 

600×2π rad/s (Case 9) to 300×2π rad/s (Case 10). As illustrated in Figure 6-26(b), the system 

changes from a stable state to an unstable state, which verifies the parameter design results 

shown in Figure 6-21(b). 

 

 

(a) 

 

(b) 

Figure 6-26. Experimental results of system transition from stable state to unstable state: (a) ωc 

changes from 300×2π rad/s to 200×2π rad/s, ωv is 200×2π rad/s and ωffv is 100×2π rad/s; (b) ωc 

changes from 600×2π rad/s to 300×2π rad/s, ωv is 200×2π rad/s and ωffv is 200×2π rad/s. 
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6.3.4 Verification of the Meshed System 

The experimental platform has been reconfigured as the meshed system as depicted in 

Figure 6-16. Case 11 and Case 12 have been verified in experiments. Figure 6-27 shows the 

phase-A currents of inverters G1, G3 and L2 in the meshed system. It can be seen that the system 

changes from a stable state to an unstable state when the parameter ωffv changes from 200×2π 

rad/s in Case 11 to 1000×2π rad/s in Case 12. 

 

 

(a) 

 

(b) 

Figure 6-27. Experimental results of  the meshed system when ωffv changes from 200×2π rad/s to 

1000×2π rad/s. (a) Transition from a stable state to an unstable state. (b) Unstable state when ωffv 

is 1000×2π rad/s. 

 

6.3.5 Resonance Frequencies in Unstable Cases 

When the system transits from a stable state to an unstable state, initially the d-q currents 

have small diverging oscillations around the operating points. Then, similar to the phenomenon 

presented in [91], large diverging currents make the system reach the saturation state with 
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restricted current oscillation magnitudes due to the saturation of controller outputs, so the 

resonance frequency could be slightly different from that in the aforementioned small-signal 

harmonic stability analysis. 

The resonance frequencies in unstable cases are summarized in Table 6-4. The differences 

between the major resonance frequencies in the initial states in simulation and the resonance 

frequencies in the analysis results are mostly within ±15 Hz, while the differences between the 

major resonance frequencies in the saturation states in both simulation and experiments and the 

resonance frequencies in the analysis results are mostly within ±25 Hz. 

In summary, the experimental results have verified the harmonic stability analysis methods 

described in Section 6.1 and the controller parameter design results presented in Section 6.2. 

 

Table 6-4. Electrical parameters of the scaled-down two-area system. 

Case No. Analysis 

Major Resonances in Simulation Major 

Resonances in 

Experiments in 

Saturation States 
In Initial States 

In Saturation 

State 

Case 2 366 Hz, 403 Hz 354 Hz 345 Hz, 364 Hz 352 Hz 

Case 3 355 Hz, 391 Hz 343 Hz 338Hz, 356 Hz 342 Hz 

Case 4 340 Hz 340 Hz 326 Hz, 345 Hz 300 Hz, 325 Hz 

Case 6 172 Hz, 183 Hz 171 Hz 169 Hz, 176 Hz 152 Hz, 162 Hz 

Case 8 155 Hz 155 Hz 153 Hz 140 Hz 

Case 10 197 Hz 197 Hz 195 Hz, 205 Hz 184 Hz 

Case 12 443 Hz 420 Hz 405 Hz 420 Hz 
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6.4 Conclusion 

In this chapter, two sequence-impedance-based methods for harmonic stability analysis of 

three-phase inverter-based multi-bus ac power systems have been proposed to avoid the 

examination of RHP poles of impedance ratios and reduce the computation effort, as compared 

with the existing stability analysis method using the Nyquist stability criterion once. The 

proposed methods also enable the system harmonic stability assessment using only measured 

sequence impedances of components, without the need for detailed internal control information 

of them. 

The novelty of the proposed Method 1 is: 1) all the major connection types and the meshed 

connection are summarized, regarding the stability criteria and total equivalent terminal 

characteristics; 2) a sequential procedure of applying stability criteria to the harmonic stability 

analysis of general inverter-based multi-area ac systems is proposed to avoid the RHP pole 

calculation; 3) the proposed Method 1 is applicable to the harmonic stability analysis of any ac 

systems, which are composed of both current-controlled and voltage-controlled inverters with 

any structures including all the major connection types and meshed connections. 

The novelty of the proposed Method 2 is: 1) the underlying principle of the impedance-

based stability analysis using Cauchy’s theorem is clearly identified; 2) the proposed Method 2 is 

a generalized extension of the Impedance-Sum-Type criterion to be used for the harmonic 

stability analysis of any multi-bus ac systems based on Cauchy’s theorem; 3) the approach of 

using Bode plots in the positive frequency range with the consideration of the order difference 

between the numerator and denominator to determine the encirclement of the origin point (0, j0) 

is demonstrated. 
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Thanks to the low computation burden, the inverter controller parameters of multi-bus ac 

systems can be designed by repetitively applying the proposed harmonic stability methods, and 

presented as stability regions in the parameter space. The proposed analysis and design methods 

are verified by experiments of a two-area system and a meshed system with both voltage-

controlled and current-controlled inverters. 
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7 D-Q Impedance Based Stability Analysis and Controller 

Parameter Design of Multi-Bus Ac Power Systems 

In order to address the low-frequency oscillation issues in three-phase inverter-based ac 

systems, d-q impedances are preferable than sequence impedances for small-signal stability 

analysis. The impedance-based approach based on the generalized Nyquist stability criterion 

(GNC) can assess both the harmonic instability and the low-frequency oscillation problems of 

the systems. However, the GNC involves the right-half-plane (RHP) pole calculation of return-

ratio transfer function matrices, which cannot be avoided for stability analysis of complicated ac 

power systems. Therefore, it necessitates the detailed internal control information of the inverters, 

which is not normally available for commercial inverters. To address this issue, this chapter 

introduces the Component Connection Method (CCM) in the frequency domain for stability 

analysis in the synchronous d-q frame, by proposing a method of deriving the impedance matrix 

of the connection networks of inverter-based ac power systems. Demonstration on a two-area 

system consisting of inverters with generator and static load emulation shows that: the CCM-

enabled approach can avoid the RHP pole calculation of return-ratio matrices and enables the 

stability analysis by using only the impedances of system components, which could be measured 

without the need for the internal information. A stability analysis method based on d-q 

impedances, the CCM, and the determinant-based GNC is also proposed to further simplify the 

analysis process. Inverter controller parameters can be designed as stability regions in parameter 

spaces, by repetitively applying the proposed stability analysis method. Simulation and 

experimental results verify the validity of the proposed stability analysis method and the 

parameter design approach. 
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7.1 System Description 

The same three-phase inverter-based multi-bus ac system for scaled-down emulation of the 

two-area system as depicted in Figure 6-2 is under study here. The generator emulation using the 

4
th

 order model of synchronous generator is enabled in the voltage-controlled inverters G1−G4, 

and the static ZIP load emulation is enabled in the current-controlled inverters L7 and L9. The 

system base values and line parameters are listed in Table 6-1. The inductance and resistance 

parameters of transmission lines are scaled down with same per unit (p.u.) values from the 

original two-area system [137]. The parameters of the generators G1−G4 are shown in Table 3-7. 

The generator emulation also includes governor, droop control, automatic generation control 

(AGC), power system stabilizer (PSS), and excitation system with automatic voltage regulator 

(AVR) [8], [9]. The static ZIP load parameters are listed in Table 3-6. The operating point of the 

two-area system is shown in Table 7-1.  

As shown in Figure 3-15, each inverter is usually modeled and controlled in its own terminal 

d-q frame with the superscript c. The current-controlled inverters with ZIP load emulation 

synchronize with the grid frequency by using the PLL. The grid frequency synchronization of the 

voltage-controlled inverters with SG emulation is achieved by the swing equation in the 

generator mechanical model [8], [9], [138]. In order to facilitate the system stability analysis in 

the synchronous d-q frame, a common d-q frame with the superscript s is chosen to be aligned 

with the Bus 1 voltage, that is, the Bus 1 voltage angle is assumed as 0°. Based on power flow 

calculation, the voltage magnitudes and angles of buses with direct inverter connections are 

summarized in Table 7-2.  

It should be noted that the emulation of SGs and ZIP loads is implemented by the outer 

control loops of inverters. Although this inverter-based ac power system is for emulation of 
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electromechanical phenomena with dynamics of up to 100 Hz in transmission-level power 

systems [10], [42], the inner voltage and current control loops of inverters still dominate the 

characteristics of the system in the frequency range above 100 Hz. Therefore, this inverter-based 

power system under study is significantly different from conventional power systems [139]. 

 

 

Table 7-1. Generator and load operating point in the two-area system. 

Parameters Values Parameters Values 

G1 active power 0.78 p.u. L7 active power 1.07 p.u. 

G2 active power 0.78 p.u. L7 reactive power −0.37 p.u. 

G3 active power 0.8 p.u. L9 active power 1.96 p.u. 

G4 active power 0.78 p.u. L9 reactive power −0.37 p.u. 

 

 

Table 7-2. Bus voltage magnitudes and angles in the two-area system. 

Bus Number Bus 1 Bus 2 Bus 3 Bus 4 Bus 7 Bus 9 

Voltage Magnitude 

V (p.u.) 
1.03 p.u. 1.01 p.u. 1.03 p.u. 1.01 p.u. 0.99 p.u. 0.97 p.u. 

Voltage Angle θ (°) 0° −7.0° −38.2° −48.9° −22.4° −61.5° 
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In addition, the focus of this chapter is on the system-level impedance-based stability 

analysis. Although a specific inverter-based ac system is studied here, the stability analysis and 

controller parameter design approaches discussed in this chapter can be readily applied to other 

inverter-based ac systems, such as distribution systems with photovoltaic (PV) inverters, wind 

turbine generators and distribution lines or a microgrid with droop-controlled inverters, by 

simply adapting the d-q impedance models of inverter components and the connection network. 

 

 

Figure 7-1. Impedance-based equivalent circuit of the two-area system in the common system d-

q frame. 

 

7.2 Stability Analysis Based on the GNC 

The impedance-based equivalent circuit of the two-area system in the common system d-q 

frame is illustrated in Figure 7-1. Four voltage-controlled inverters G1−G4 with generator 

emulation are represented by their equivalent Thevenin circuits, where the inverter output 
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impedance matrices Zovj (j=1−4) are derived in Section 3.6 considering only the electrical circuit 

of the 4
th

 order generator model. Two current-controlled inverters L7 and L9 with static ZIP load 

emulation are modeled by their equivalent Norton circuits, where the inverter output admittance 

matrices Yoci (i=7, 9) are derived in Section 3.5. The voltage and current references of inverters 

are defined in (7-1) and (7-2), respectively. The d-q impedance Zlk of each transmission line, 

with inductance Llk and resistance Rlk in series, can be modeled by (7-3), where ω1 is the 

fundamental angular frequency, and its corresponding d-q admittance Ylk can be expressed by 

(7-4). 

(7-1)  ( ) ( 1 4)fdjs E j  -*

j gfj
V G   (7-1)  

(7-2)  
T

( ) ( 7,9)i is P Q i   
*

i fZIPi ZIPi
I G G   (7-2)  

(7-3)  
1

1

lk lk lk

lk lk lk

L s R L

L L s R





 - 
  

 
lkZ   (7-3)  

(7-4)  
1-lk lkY Z   (7-4)  

When using the generalized Nyquist stability criterion (GNC) for stability analysis, the 

multi-bus system can be divided into two sub-systems at any bus, where the rank of the 

controllability and observability matrices is full [34], such as Bus 1 or Bus 7. If the system is 

divided at Bus 7, the total impedance ZB7L of the left-side subsystem and the total admittance 

YB7R (or the inverse of the total impedance ZB7R) of the right-side subsystem can be obtained, as 

expressed in (7-5) and (7-6). The system return-ratio matrix (or the minor loop gain) Tm_B7 at 

Bus 7 is defined by the ratio of the left-side subsystem impedance over the right-side subsystem 
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impedance as shown in (7-7). The return-difference matrix Fm_B7 is defined as the sum of the 2-

by-2 identity matrix I and Tm_B7, as expressed in (7-8). The closed minor loop gain Tclm_B7 of the 

return-ratio matrix is defined by (7-9). 

(7-5)      
1

1
1

1 1

-
-

-
- -            

B7L ov1 1-6 ov2 2-6 6-7 oc7
Z Z Z Z Z Z Y  (7-5)  

(7-6)      
1

1
1

1
1 1

-
-

-
-

- -
                  

B7R ov3 3-10 ov4 4-10 9-10 oc9 7-9Y Z Z Z Z Z Y Z  (7-6)  

(7-7)  m_B7 B7R B7LT Y Z   (7-7)  

(7-8)   m_B7 m_B7F I T   (7-8)  

(7-9)   
1

1
-

-  
clm_B7 m_B7 m_B7

T I T F   (7-9)  

The system stability can be determined by applying the GNC to the return-ratio matrix 

Tm_B7, as described in  

(7-10)         ( 1, 0)jP Z P N -  -clm_B7 m_B7 m_B7 m_B7T I + T T T   (7-10)  

where P( ) and Z( ) denote the numbers of RHP poles and zeros respectively, N(−1, j0)( ) is the net 

sum of anticlockwise encirclements of the critical point (−1, j0) by the set of characteristic loci 

(in other words, the Nyquist plots of the eigenvalues) of the return-ratio matrix. The system is 

stable if and only if P(Tm_B7) is equal to N(−1, j0)(Tm_B7). According to the GNC, not only the 

characteristic loci but also the RHP poles of the return-ratio matrix should be examined to 

evaluate the system stability. Notice that the system stability can also be assessed by the RHP 
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poles of the closed-loop gain Tclm_B7 of the return-ratio matrix.  

In addition to the aforementioned eigenvalue-based GNC, the system stability can also be 

predicted by applying the determinant-based GNC to the to the return-difference matrix Fm_B7, as 

expressed in 

(7-11)        (0, 0) detjP P N -
clm_B7 m_B7 m_B7

T T F   (7-11)  

where det(Fm_B7) means the determinant of Fm_B7, and N(0, j0)( ) denotes the number of 

anticlockwise encirclements of the origin point (0, j0) by the Nyquist plot. The system is stable 

when the encirclements are equal to the number of RHP poles of Tm_B7. 

As discussed in [9], when a single integral controller instead of a PI controller is applied in 

the voltage-controlled inverters, instability happens in a two-generation system owing to the 

combination of the 4
th

-order synchronous generator model and the voltage controller in the 

inverter. Such instability phenomenon is investigated here for the two-area system. Two cases 

with different voltage controller parameters are analyzed by the GNC: Case 1 with a PI 

controller (Kvp=1.04 and Kvi=325), and Case 2 with an integral controller (Kvp=0 and Kvi=325).  

Figure 7-2(a) shows the characteristic loci of the return-ratio matrix Tm_B7 for both cases. As 

shown, none of the characteristic loci encircles the critical point (−1, j0). Alternatively, the Bode 

plots of the determinant of the return-difference matrix Fm_B7 as illustrated in Figure 7-2(b) 

exhibit zero net phase change, in other words, zero encirclements around the origin point (0, j0). 

However, the pole-zero map of Tm_B7 as shown in Figure 7-3(a) indicates that it has zero RHP 

poles in Case 1 but two pairs of RHP poles in Case 2. Therefore, the system is stable in Case 1 

but unstable in Case 2 according to the eigenvalue-based GNC or determinant-based GNC.  
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(a) 

 

(b) 

Figure 7-2. Characteristic loci of Tm_B7 (a) and Nyquist plot of det(Fm_B7) (b) in both cases. 

 

 

(a) 

 

(b) 

Figure 7-3. Pole-zero maps of Tm_B7 (a) and Tclm_B7 (b) in both Case 1 and Case 2. 
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The stability analysis results can be confirmed by the pole-zero map of the closed minor 

loop gain Tclm_B7 as depicted in Figure 7-3(b), where no RHP pole exists in Case 1 but two pairs 

of RHP poles with oscillation frequencies of 87 Hz and 89.7 Hz can be found in Case 2.  

The above example demonstrates that, when applying the GNC, it is necessary to check the 

RHP pole of the return-ratio matrix, which cannot be obtained when detailed models of inverters 

are not available due to the lack of internal control structure and controller parameter information. 

7.3 Proposed Stability Analysis Method Based on the CCM 

7.3.1 System Model Based on the CCM 

Based the Component Connection Method (CCM), the inverter-based two-area system can 

be decomposed into individual inverter components and the connection network [23], as 

illustrated in Figure 7-4. The detailed block diagram of the CCM applied to the inverter-based 

two-area system is depicted in Figure 7-5(a).  

The composite model of all inverter components can be expressed as (7-12). The output 

vector Y(s), reference vector U(s) and disturbance vector D(s) of inverters are expressed in (7-

13), respectively. Gcl(s) is the closed-loop transfer function matrix from the reference to the 

output, as described in (7-14). Gcd(s) is the closed-loop transfer function matrix from the 

disturbance to the output with inverter output impedances or admittances as the diagonal 

elements, as shown in (7-15), which can be also seen as the overall impedance matrix model of 

all inverter components.  

(7-12)  ( ) ( ) ( ) ( ) ( )s s s s s -cl cdY G U G D   (7-12)  
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Figure 7-4. Circuit diagram of the CCM applied to the inverter-based two-area system. 

 

 

(a) 

 

(b) 

Figure 7-5. Diagrams of the CCM applied to the inverter-based two-area system: (a) detailed 

diagram, (b) equivalent MIMO feedback system. 
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(7-13)  

T

T

T

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]

s s s s s s s

s s s s s s s

s s s s s s s

 







1 2 3 4 7 9

* * * * * *

1 2 3 4 7 9

1 2 3 4 7 9

Y V V V V I I

U V V V V I I

D I I I I V V

  (7-13)  

(7-14)  ( ) diag[ ( ), ( ), ( ), ( ), ( ), ( )]s s s s s s scl clv1 clv2 clv3 clv4 clc7 clc9G G G G G G G   (7-14)  

(7-15)  ( ) diag[ ( ), ( ), ( ), ( ), ( ), ( )]s s s s s s scd ov1 ov2 ov3 ov4 oc7 oc9G Z Z Z Z Y Y   (7-15)  

In addition, the connection network can be modeled by (7-16) with Gnw(s) representing the 

transfer function matrix from the output to the disturbance, which can also be regarded as a 

multi-input-multi-output (MIMO) impedance matrix model of the connection network. Then, the 

overall system model can be obtained as (7-17) and it can be regarded as a MIMO negative 

feedback system as shown in Figure 7-5(b). The transfer functions Ggfj(s), GZIPi(s) and GfZIPi(s) 

are determined by the emulated SG and ZIP load, so they are stable. Each inverter is designed to 

be stable individually with ideal external conditions, so Gcl(s) is stable. Therefore, the system 

stability is determined by the transfer function matrix [I+ Gcd(s)Gnw(s)]
-1

. For the MIMO 

feedback system, the open-loop transfer function L(s) (also called return-ratio matrix or minor 

loop gain) is expressed in (7-18) and the return-difference matrix F(s) is expressed in (7-19). 

Therefore, the system stability can be analyzed by applying the GNC to L(s) or F(s). It is worth 

noting that, when using the traditional analysis method in Section 7.2, the 2-by-2 return-ratio 

matrix is defined as the ratio of two impedances in the d-q frame. Nevertheless, the return-ratio 

matrix L(s) derived based on CCM is 12-by-12, defined as the product of the 12-by-12 

impedance matrix Gcd(s) of all components and the 12-by-12 impedance matrix Gnw(s) of the 

connection network. 
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(7-16)  ( ) ( ) ( )s s s nwD G Y   (7-16)  

(7-17)   
1

( ) ( ) ( ) ( ) ( )s s s s s
-

 
cd nw cl

Y I G G G U   (7-17)  

(7-18)  ( ) ( ) ( )s s s cd nwL G G   (7-18)  

(7-19)  ( ) ( ) ( )s s s  cd nwF I G G   (7-19)  

7.3.2 Proposed Method for Derivation of the Impedance Matrix of Connection Network  

A method for derivation of the connection network impedance matrix in multi-bus ac 

systems composed of both voltage-controlled and current-controlled inverters is developed here 

to facilitate the CCM-based stability analysis. Each variable is frequency-dependent, but the 

symbols “(s)” or “(jω)” are omitted for simplicity. The derivation contains two steps. 

Step 1: eliminate the buses without inverter connections (also known as Kron reduction 

[140]) 

The nodal admittance matrix of the connection work of the two-area system is expressed as 

a partitioned matrix in (7-20), and simplified as (7-21), by dividing the current vector / voltage 

vector into the current vector Im / voltage vector Vm for buses with direct connection of inverter 

components and the current vector In / voltage vector Vn for buses without direct component 

connection, as expressed in (7-22) and (7-23), respectively. Considering In =[0, 0]
T
, the 

relationship between Im and Vm can be derived as (7-24) with the admittance matrix Ybus .  

Step 2: given Vv and Ic , solve Iv and Vc, to obtain Gnw 

Ybus can be reformatted as (7-25), by further partitioning Im and Vm into the current vector Iv 
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/ voltage vector Vv for buses connected with voltage-controlled inverters and the current vector 

Ic / voltage vector Vc for buses with the connection of current-controlled inverters, as shown in 

(7-26) and (7-27), respectively. Because Vv and Ic are inputs from the inverter components to the 

connection network, the outputs of the connection network (Iv and Vc) can be solved from (7-25), 

as expressed in (7-28), and thus the impedance matrix Gnw of the connection network is derived. 

(7-20)  

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0

- 
 

-
 
  -
 

- 


   - -
 

-  - 
  - - -  
 
  - - 

1 1-6 1-6

2 2-6 2-6

3 3-10 3-10

4 4-10 4-10

7 6-7 7-9 7-9 6-7

9 7-9 7-9 9-10 9-10

6 1-6 2-6 6-7 1-6 2-6 6-7

10 3-10

I Y Y

I Y Y

I Y Y

I Y Y

I Y Y Y Y

I Y Y Y Y

I Y Y Y Y Y Y

I Y 0 0

   
   
   
   
   
   
   
   
   
   
   
   -     

1

2

3

4

7

9

6

4-10 9-10 3-10 4-10 9-10 10

V

V

V

V

V

V

V

Y Y Y Y Y V

  

(7-20)  

(7-21)  
     

     
     

m mm mn m

n nm nn n

I Y Y V

I Y Y V
  (7-21)  

(7-22)     
T T


m n 1 2 3 4 7 9 6 10
I I I I I I I I I I   (7-22)  

(7-23)     
T T


m n 1 2 3 4 7 9 6 10
V V V V V V V V V V   (7-23)  

(7-24)   1- - m mm mn nn nm m bus mI Y Y Y Y V Y V   (7-24)  

(7-25)  

   
   
   
         

           
         
   
   
      

1 1

2 2

v vv vc v3 3

bus
c cv cc c4 4

7 7

9 9

I V

I V

I Y Y VI V
Y

I Y Y VI V

I V

I V

   (7-25)  
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(7-26)     
T TT  

m v c 1 2 3 4 7 9
I I I I I I I I I   (7-26)  

(7-27)     
T TT  

m v c 1 2 3 4 7 9
V V V V V V V V V   (7-27)  

(7-28)  

1 1

1 1

- -

- -

 -     
       

-       

v v vvv vc cc cv vc cc

nw
c c ccc cv cc

I V VY Y Y Y Y Y
G

V I IY Y Y
  (7-28)  

7.3.3 Stability Analysis Based on the CCM and the Eigenvalue-Based GNC  

Reference [100] presented a stability criterion for traditional power systems based on the 

CCM and the eigenvalue-based GNC, which was applied to the system return-ratio matrix. 

Likewise, with the derived impedance matrix Gnw(s) of the connection network in Section 7.3.2, 

the stability of the inverter-based two-area system can also be analyzed by applying the 

eigenvalue-based GNC to the return-ratio matrix L(s), as expressed in (7-29).  

(7-29)  

  

       ( 1, 0) ( 1, 0)j jZ P N N- - -  -F L L L   (7-29)  

Because the connection network consists of only passive elements, its impedance matrix 

Gnw(s) does not have RHP poles, as demonstrated in Figure 7-6. Taking the stable matrix Gcd(s) 

into account, L(s) does not have RHP poles, that is, P(L) = 0. Therefore, the system is stable if 

and only if N(−1, j0)(L) = 0. L has 12 frequency-dependent eigenvalues (λ1 to λ12). Figure 7-7 and 

Figure 7-8 illustrate the characteristic loci of L in Case 1 and Case 2, respectively. 

Corresponding Bode plots of these eigenvalues for both cases are shown in Figure 7-9. None of 

the characteristic loci encircles the critical point (−1, j0) in Case 1. However, each of the 

eigenvalues λ1 and λ2 encircles the critical point (−1, j0) clockwise twice in Case 2. 
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Figure 7-6. Pole-zero map of the impedance matrix Gnw(s). 

 

 

(a) 

 

(b) 

Figure 7-7. Characteristic loci of L in Case 1. (a) Full view; (b) zoomed-in view. 
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(a) 

 

(b) 

Figure 7-8. Characteristic loci of L in Case 2. (a) Full view; (b) zoomed-in view. 

 

 

(a) 

 

(b) 

Figure 7-9. Bode plots of eigenvalues of L in (a) Case 1 and (b) Case 2. 
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Therefore, N(−1, j0)(L) = 0 and Z(F) = 0 in Case 1, but N(−1, j0)(L) = −4 and Z(F) = 4 in Case 2, 

which indicates that the system has four RHP poles in Case 2. The stability analysis result is the 

same with that presented in Section 7.2, and the analysis method based on the CCM and the 

GNC can avoid the examination of the RHP poles of the return-ratio matrix. In addition, it only 

needs the frequency-dependent impedance characteristics L(jω) instead of the detailed transfer 

function models L(s) of the system. Thus, it enables the system integrators to predict the stability 

of systems by using the measured impedances of purchased commercial inverters. 

7.3.4 Proposed Stability Analysis Based on the CCM and the Determinant-Based GNC  

For a large system with many inverters, it will be tedious to examine each characteristic 

locus of L when applying the eigenvalue-based GNC. Another stability analysis method for the 

system model based on the CCM is proposed here, that is, to predict the system stability by 

applying the determinant-based GNC to the return-difference matrix F. The stability criterion is 

expressed in (7-30). The system is stable if and only if N(0, j0)(det(F)) is 0. Because the 

determinant of F, det(F), is a frequency-dependent scalar variable, there is only one Nyquist plot 

to be examined. Thus, the stability judging process using the determinant-based GNC is simpler 

than that using the eigenvalue-based GNC, which can be demonstrated as follows.  

(7-30)  

  

         (0, 0) (0, 0)det detj jZ P N N -  -F L F F   (7-30)  

Figure 7-10 shows the Nyquist diagrams and Bode plots of det(F) in both cases. Considering 

the large magnitude variation, the Bode plot is an easier way than the Nyquist diagram to count 

the encirclements around the origin (0, j0). Note that the Nyquist plot in the full frequency range 

of (−∞, +∞) should be considered. Therefore, considering the symmetrical Nyquist plots, when 
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only examining the positive frequency range of the Bode plot, 180° increase in the phase angle 

means encircling the (0, j0) point once in anti-clockwise direction while 180° decrease in the 

phase angle means encircling the (0, j0) point once in clockwise direction. According to the 

Bode plots, the overall phase variation values in the full positive frequency range are 0° in Case 

1 but −180°×4=−720° in Case 2. It indicates that N(0, j0)(det(F)) = 0 in Case 1 but N(0, j0)(det(F)) = 

−4 in Case 2. Therefore, the closed-loop system is stable in Case 1 but unstable in Case 2 with 4 

RHP poles. The analysis result agrees with the results using aforementioned other two methods.  

It is worth noting that, although the determinant-based GNC can simplify the analysis, the 

eigenvalue-based GNC still has some advantages, such as 1) the gain margin and phase margin 

can be easily observed for stable cases (e.g. 2.8 dB and 2.7° in Case 1, as shown in Figure 

7-7(b)), and 2) the approximate resonance frequencies can be determined for unstable cases (e.g. 

102 Hz and 106 Hz in Case 2, as illustrated in Figure 7-8(d)). 

 

 

(a) 

 

(b) 

Figure 7-10. Nyquist diagrams (a) and Bode plots of det(F) (b) in both cases. 
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7.4 Controller Parameter Design 

Since the multi-bus system stability can be determined using the aforementioned stability 

analysis methods given a set of selected controller parameters, the inverter controller parameter 

can be designed in two steps for the system stability. 

Step 1: design each individual inverter to be stable with ideal external conditions, and obtain 

the parameter range for internal stability of each isolated inverter to form parameter spaces. 

Step 2: repetitively apply the stability analysis methods for all the parameter sets within the 

parameters spaces, in order to obtain the stable regions, unstable regions and stability boundaries 

for external interconnection stability of the system. 

When using the traditional stability analysis method based on the GNC, the formulation and 

RHP pole calculation of the return-ratio transfer function matrix Tm_B7(s) should be executed for 

each parameter set, which is cumbersome. On the other hand, when using the stability analysis 

methods based on the CCM and the GNC, the impedance matrix Gnw(jω) of the connection 

network only needs calculation once as long as the system topology remains the same, and only 

the combined impedance matrix Gcd(jω) of all inverters requires an update for each parameter set, 

which makes the analysis process easier. In addition, considering that the examination of many 

characteristic loci of the MIMO return-ratio matrix in the method based on the CCM and the 

eigenvalue-based GNC is still tedious, the proposed stability analysis method based on the CCM 

and the determinant-based GNC is adopted here for this iteration-type design process. 

For simplicity, it is assumed in the following analysis that all voltage-controlled inverters 

have the same controller parameters and all current-controlled inverters have the same controller 

parameters. The cut-off frequency ωffv of the voltage feed-forward control and the current loop 
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bandwidth ωc of all current-controlled inverters are chosen to be designed. And the cut-off 

frequency ωfc of the current filter in the current feed-forward control and the voltage PI control 

parameters (Kvp, Kvi) are selected to be designed for all voltage-controlled inverters.  

The current PI controller parameters are set as (7-31), where the coefficient 875 is tuned to 

make the current loop bandwidth as ωc. The voltage PI control parameters (Kvp, Kvi) are defined 

by (7-32), where the coefficients 1.04 and 325 are from Table 3-3 and used in aforementioned 

Case 1 and Case 2.  

(7-31)  , 875cp c f ci cpK L K K    (7-31)  

(7-32)  

   

1.04

325

vp vpgain

vi vigain

K k

K k

 


 

  (7-32)  

According to the Bode plots of the stable open-loop gains of the current-controlled inverters, 

Tc_dd(s), and the voltage-controlled inverters, Tv_dd(s), in the d-d channel as shown in Figure 7-11, 

the value of ωc is confined in the range of [100×2π rad/s, 1000×2π rad/s] for internal stability of 

current-controlled inverters when connected to an ideal voltage source, and the value of kvpgain 

and kvigain are confined in the range from 0 to 5 for internal stability of voltage-controlled 

inverters with open-circuit.  

Since ωffv and ωfc only change the output admittance or impedance but do not change the 

stability of the current or voltage loops, the values of ωffv and ωfc are confined in the ranges of 

[50×2π rad/s, 1000×2π rad/s] and [100×2π rad/s, 1000×2π rad/s], respectively. Other parameters 

are the same as those listed in Table 3-1, Table 3-2 and Table 3-3. 
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(a) 

 

(b) 

Figure 7-11. Bode plots of open-loop gains of (a) current-controlled inverters Tc_dd (s) and (b) 

voltage-controlled inverters Tv_dd (s) in the d-d channel. 
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voltage controller in the voltage-controlled inverters; 2) the system is prone to instability when 

the voltage proportional parameter Kvp is low (kvpgain ≤ 1). 

For comparison, the design results for the inverter-based two-area system without generator 

emulation are presented in Figure 7-12(b), which shows that the system is stable in the whole 

parameter range. The difference between these two sets of design results is consistent with the 

conclusion drawn in [9] that the instability with a single integral voltage controller is due to the 

combination of the 4
th

-order synchronous generator model and the voltage controller in the 

inverter. 

 

 

(a) 

 

(b) 

Figure 7-12. Stability regions and boundary in the map of the parameter pair (kvpgain and kvigain): 

(a) for system with generator emulation; (b) for system without generator emulation. 
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7.4.2 Design of Current Feed-Forward Parameter ωfc  

Assume the voltage PI control parameters (Kvp, Kvi) are defined by (7-33), where kvgain is an 

adjustable gain. The parameter pair of the current feed-forward parameter ωfc and the voltage PI 

parameter gain kvgain is designed here. The value of kvgain is confined in the range from 1 to 5. The 

value of ωfc is confined in the range of [100×2π rad/s, 1000×2π rad/s] with ten linearly equally 

spaced points, and the cases without current feed-forward control (CFF) are also considered. All 

the other parameters of the inverters remain the same as those listed in Table 3-1, Table 3-2 and 

Table 3-3. The design result is shown in Figure 7-13.  

(7-33)  

   

1.04

325

vp vgain

vi vgain

K k

K k

 


 

  (7-33)  

 

 

 

Figure 7-13. Stability regions and boundary in the map of the parameter pair (ωfc and kvgain). 

Without 
CFF

100 200 300 400 500 600 700 800 900 1000 1100
0

1

2

3

4

5

6

Stable

Unstable Simulation stability boundary
Analysis stability boundary
Experiment cases

Current-feedforward ωfc [Hz]

V
o

lt
ag

e 
P

I 
p

ar
am

et
er

 c
o

ef
fi

ci
en

t 
k v

g
a
in

 



162 

 

It can be noticed that, when the voltage PI parameters are small, the current feed-forward 

control of the voltage-controlled inverters should be adopted and the parameter ωfc should be 

designed high enough to avoid system instability. The small but acceptable discrepancy between 

the analysis results and the simulation results near the stability boundaries is due to the limitation 

of the model accuracy. 

7.4.3 Design of the Parameter Pair (ωffv, ωc) 

Figure 7-14 depicts the design result. Some general design rules for the studied system can 

be derived. 1) The cut-off frequency ωffv of the voltage feedforward control cannot be very large. 

Larger ωffv makes the system more prone to instability. 2) The cut-off frequency ωffv of the 

voltage feedforward control should be smaller than the current loop bandwidth ωc.  

 

  

Figure 7-14. Stability regions and boundary in the map of the parameter pair (ωffv and ωc). 
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7.5 Experimental Verification 

The same experimental platform for scaled-down emulation of the two-area system is used 

here, but with generator emulation and static load emulation enabled in the inverters. The system 

parameters and operating point are the same as those described in Section 7.1. Experiments are 

carried out to verify the stability analysis presented in Section 7.2 and 7.3 as well as the 

controller parameter design results given in Section 7.4. 

7.5.1 Design Verification of Voltage PI Control Parameters (Kvp, Kvi) 

In order to verify the aforementioned stability analysis as well as the design results of the 

voltage PI control parameters (Kvp, Kvi) presented in the map of the parameter pair (kvpgain and 

kvigain) in Figure 7-12(a), two experimental cases (Case 1 and Case 2) have been carried out, 

which are also marked as purple squares in Figure 7-12(a). Figure 7-15 shows the experimental 

waveforms of the phase-A currents ia of inverters (G1, G3, L7 and L9) and line-to-line voltages 

vab of inverters (G1−G4) in the two-area system in the stable steady state with parameters (kvpgain 

=1 and kvigain=1). Since the system is composed of only inverters and inductors without any 

capacitors, the voltages vab have large switching-frequency harmonics. Thus, the digital low-

pass-filter (LPF) with the cut-off frequency of 2 kHz is enabled in the Teledyne LeCroy 

oscilloscope, and the filtered line-to-line voltages vabf are also shown in Figure 7-15. Figure 7-16 

depicts the response of ia and vabf when the parameter change of kvpgain from 1 to 0 is triggered. 

Figure 7-17 shows the corresponding waveforms of inverter currents (id and iq) in their own d-q 

frames saved in inverter DSP controllers immediately after the trigger. As observed, the system 

changes from a stable state to an unstable state. The initial unstable oscillation frequency is about 

85 Hz, which matches very well with the analytical results. Then, the large divergent currents 

cause over-current (OC) protection in inverters G1−G4. 
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Figure 7-15. Experimental waveforms of the phase-A currents, original and filtered line-to-line 

voltages of inverters in the two-area system in the stable steady state. 

 

 

Figure 7-16. Experimental waveforms of the responses of the inverter phase-A currents and 

filtered line-to-line voltages when the change of kvpgain from 1 to 0 is triggered. 
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Figure 7-17. DSP-saved data of the d-q currents of inverters after the trigger. 
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Figure 7-19 shows the FFT analysis results of currents and voltages of inverters G1 and G3 

in the unstable state without current feed-forward control, which indicates oscillations of 40 Hz 

and 160 Hz in the phase domain or equivalently 100 Hz in the d-q frame.  

Figure 7-20 illustrates the system response when the parameters change from Case 3 to Case 

5, from which obvious oscillations can be observed after the trigger. FFT analysis results of 

inverter G1 current and voltage in Figure 7-21 display harmonics of 50 Hz and 170 Hz in the 

phase domain or equivalently 110 Hz in the d-q frame when current feed-forward parameter ωfc 

is 200×2π rad/s. 

 

 

Figure 7-18. Experimental waveforms of the inverter phase-A currents and filtered line-to-line 

voltages when the disabling of current feed-forward control is triggered. 
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Figure 7-19. FFT analysis of the inverter phase-A currents and filtered line-to-line voltages in the 

unstable state without current feed-forward control. 

 

 

Figure 7-20. Experimental waveforms of the inverter phase-A currents and filtered line-to-line 

voltages when the change of ωfc from 1000×2π rad/s to 200×2π rad/s is triggered. 
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Figure 7-21. FFT analysis of the inverter phase-A currents and filtered line-to-line voltages with 

current feed-forward parameter ωfc = 200×2π rad/s. 
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Figure 7-22. Experimental waveforms of the responses of the inverter phase-A currents and 

filtered line-to-line voltages when ωffv changes from 50×2π rad/s to 800×2π rad/s. 

 

 

Figure 7-23. FFT analysis of inverter phase-A currents of inverters L7 and L9 with voltage feed-

forward parameter ωffv = 800×2π rad/s. 
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7.6 Conclusion 

This chapter addresses the stability issues and controller parameters design of three-phase 

inverter-based multi-bus ac systems, including both the harmonic stability and low-frequency 

stability. This chapter demonstrates, for the first time, the application of the CCM in the 

frequency domain and d-q impedances to the small-signal stability analysis of three-phase 

inverter-based ac power systems in the d-q frame, by proposing a method for deriving the 

impedance matrix of the connection network for systems with both voltage-controlled and 

current-controlled inverter components. 

Compared with stability analysis using the GNC only, the analysis methods based on the 

CCM, d-q impedances and the GNC do not need to check the RHP poles of the return-ratio 

matrix. They only need the frequency-dependent impedance characteristics instead of the 

detailed transfer function models of system components, so system integrators can assess system 

stability using only the measured impedances of inverters. 

Compared with the stability criterion based on the CCM and the eigenvalue-based GNC for 

conventional power systems, the proposed stability analysis method based on the CCM and the 

determinant-based GNC, requires only one Nyquist plot examination of the determinant of the 

return-difference matrix, and thus simplifies the stability judging process. 

Controller parameters of both voltage-controlled and current-controlled inverters can be 

designed by repetitively applying the proposed stability method, and presented as stability 

regions in the parameter space. The proposed analysis and design method is verified by 

experiments of a two-area system with four voltage-controlled inverters with generator 

emulation and two current-controlled inverters with static load emulation.  
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8 Measured Terminal Characteristics Based Low Frequency 

Stability Analysis of Islanded Multi-Bus Ac Microgrids 

In order to analyze the low-frequency stability of three-phase inverter-based islanded multi-

bus ac microgrids when the fundamental frequency is not constant but dynamically regulated, 

this chapter proposed a stability analysis method based on the measured terminal characteristics 

of system components. An extended system model based on the CCM is proposed by including 

the fundamental frequency as an additional variable. The terminal-characteristics matrix of the 

connection network is also derived. The GNC is applied to the return-ratio or return-difference 

matrices for stability assessment.  

8.1 System Description 

In order to investigate the low-frequency unstable oscillation problem in three-phase 

inverter-based multi-bus ac microgrids in the islanded mode, a microgrid is established by 

modifying the IEEE 37-bus test system [48], [140] in the islanded mode. As shown in Figure 8-1, 

the microgrid consists of 4 inverters (VI1−VI4) with inner voltage control loop and outer droop 

control loop, another 3 inverters (CI1−CI3) with inner current control loop and outer power 

control loop, 25 RL loads and 3 shunt capacitors (Cp). The parameters of the network branches 

and loads are the same as those listed in Tables V and VI in [140], and thus not presented here. 

The shunt capacitor parameters are Cp1=150 μF, Cp2=300 μF and Cp3=100 μF, respectively. 

Figure 8-2 shows the block diagram of the three-phase inverter with an output L filter. it is 

the inverter output current, vM is the inverter output voltage and vt is the inverter terminal voltage. 

The dc-link voltage vdc is regulated by a front-end converter and regarded as a constant value Vdc. 
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Figure 8-1. One-line diagram of the modified IEEE 37-bus test system in the islanded mode. 

 

 

Figure 8-2. Block diagram of a three-phase inverter with an output L filter, and the relationship 

between different d-q frames. 
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As shown in Figure 8-2, the inverter terminal d-q frame with the superscript c is usually 

adopted for modeling and control of each inverter. The current-controlled inverters utilize the 

PLL for grid frequency synchronization. The voltage-controlled inverters use the droop 

controller to synchronize with the grid frequency. For the system stability analysis in the 

synchronous d-q frame, a common d-q frame with the superscript s is chosen to be aligned with 

the Bus 34 voltage, as shown in Figure 8-2. δ is the angle between these two d-q frames. 

Figure 8-3(a) and (b) show the control block diagrams of current-controlled inverters 

(CI1−CI3) and voltage-controlled inverters (VI1−VI4), respectively. Figure 8-3(c) depicts the 

detailed diagram of the droop controller adopted by inverters (VI1−VI4). The instantaneous real 

power p and reactive power q are calculated from the measured inverter terminal voltage c

tv  and 

current c

ti  in the inverter d-q frame. The average real power P and reactive power Q are obtained 

by using the low-pass filters (LPF) with the cut-off frequency ωfp = 5×2π rad/s. Then based on 

the droop equations in (8-1), the inverter frequency reference ω
c
 and the voltage references ( *c

tdv  

and *c

tqv ) in the inverter d-q frame are generated, according to the nominal set points of the power 

(P0 and Q0), voltage and frequency (V0 and ω0) as well as the droop coefficients (mP and nQ) as 

listed in Table 8-1. The angle difference δ between the individual inverter reference frame and 

the common reference frame rotating at the common fundamental frequency ω
s
 can be derived as 

(8-2). Inverter parameters are the same as those listed in Table 3-1, Table 3-2 and Table 3-3. 

(8-1)     * *

0 0 0 0, , 0c c c

P td Q tqm P P v V n Q Q v  - -  - -    (8-1)  

(8-2)   c s dt   -   (8-2)  
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(a) 

 

(b) 

 

(c) 

Figure 8-3. Control block diagrams: (a) inverters with inner current loop and outer power loop, 

(b) inverters with inner voltage loop and outer droop loop, and (c) the droop controller. 

 

Table 8-1. Parameters of inverters in the modified IEEE 37-bus system. 

Inverter P0 (W) Q0 (Var) V0 (V) ω0 (rad/s) mP nQ 

VI1−VI4 250 0 50 60×2π 0.0025 0.0067 

CI1−CI3 250 150 N/A N/A N/A N/A 
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8.2 Terminal-Characteristics Modeling of Three-Phase Inverters 

For three-phase inverter-based ac microgrids in the islanded mode, the fundamental 

frequency of the system is not a constant value but regulated dynamically and cooperatively by 

all the droop-controlled inverters. As reported in [75], [76], [104], in order to fully represent the 

dynamics, especially the low-frequency variation of the fundamental angular frequency ω, of 

three-phase droop-controlled inverters, the terminal characteristics modeling of inverters should 

also include a transfer function between the fundamental angular frequency ω and the current or 

voltage, in addition to the transfer functions (impedance or admittance) between the current and 

voltage. 

By introducing the fundamental angular frequency vector s  defined in (8-3), Figure 8-4 

depicts the small-signal block diagrams of inverters based on terminal characteristics in the 

common system d-q frame. For the current-controlled inverters (CI1−CI3) with outer power 

control loop as shown in Figure 8-4(a), the complete small-signal model can be expressed as (8-

4), where Gclcp(s) is the current closed-loop gain, Yocp(s) is the closed-loop output d-q admittance, 

and Giω(s) is the closed-loop frequency-to-current transfer function matrix, as expressed in (8-5). 

(8-3)  
T

0s s       (8-3)  

(8-4)  *( ) ( ) ( )s s s s

t ti s i s v s  - -clcp ocp iωG Y G   (8-4)  

(8-5)  
_

_

( ) ( ) ( ) 0
( ) , ( )

( ) ( ) ( ) 0

ocp_dd ocp_dq i d

ocp_qd ocp_qq i q

Y s Y s G s
s s

Y s Y s G s





   
    
   

ocp iωY G   (8-5)  
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(a) 

 

(b) 

 

 

(c) 

Figure 8-4. Small-signal diagrams of inverters based on terminal characteristics in the common 

system d-q frame: (a) current-controlled inverter, (b) voltage-controlled inverter which provides 

the common system fundamental frequency ω
s
, and (c) other voltage-controlled inverters. 

 

For the voltage-controlled inverter with outer droop control loop (VI1 is selected in this 

study), which provides the common system fundamental frequency ω
s
 as shown in Figure 8-4(b), 

the complete small-signal model can be expressed as (8-6), where Gclvv(s) is the voltage closed-

loop gain, Zovp(s) is the closed-loop output d-q impedance, and Goωi(s) and Goωv(s) are the 

closed-loop current-to-frequency transfer function matrix and the reference-to-frequency transfer 

function matrix, respectively, as expressed in (8-7). 

(8-6)  *

*

( ) ( )

( ) ( )

s s s

t t

s s s

t

v s v s i

s v s i

  -


 -

clvv ovp

oωv oωi

G Z

G G
  (8-6)  

(8-7)  

_ _ _ _

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( ) , ( )

0 0 0 0
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o i d o i q o v d o v q

Z s Z s
s

Z s Z s

G s G s G s G s
s s
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  
  

  
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   
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G G

  (8-7)  

Gclcp(s)
+

-

-

*si

Yocp(s)

Giω(s)

s

tv s

ti

s

Gclvv(s)
+

-
Zovp(s)

Goωi(s)

s

tv

s

s

ti

*sv

Goωv(s)
+

-

Gvv(s)
+

-

-

Gvi(s)

Gvω(s)

s

tv

s

s

ti

*sv



177 

 

For other voltage-controlled inverters (VI2−VI4) with outer droop control loop as shown in 

Figure 8-4(c), the complete small-signal model can be expressed as (8-8), where Gvv(s) is the 

voltage closed-loop gain, Gvi(s) is the closed-loop output d-q impedance, and Gvω(s) is the 

closed-loop frequency-to-voltage transfer function matrix as expressed in (8-9). 

(8-8)  *( ) ( ) ( )s s s s

t tv s v s i s  - -
vv vi vω

G G G   (8-8)  

(8-9)  
_

_

( ) ( ) ( ) 0
( ) , ( )

( ) ( ) ( ) 0

vi_dd vi_dq v d

vi_qd vi_qq v q

G s G s G s
s s

G s G s G s





   
    
   

vi vωG G   (8-9)  

8.3 Terminal-Characteristics Measurement of Three-Phase Inverters 

8.3.1 Measurement Setup and Algorithm 

The basic principle of terminal-characteristics measurement is still based on injection of 

sinusoidal perturbation signals with certain frequency, measurement of responses of the inverter 

under test, and calculation of frequency responses by using fast Fourier transform (FFT). Figure 

8-5(a) shows the setup for terminal-characteristics measurement of current-controlled inverters 

(CI1−CI3). A three-phase controlled voltage source is adopted not only for generating the three-

phase voltage at the fundamental frequency ω
s
 to establish the desired operating condition for the 

inverter under test, but also for injecting three perturbation signals, including the voltage 

perturbation signals ( s

pdv  and s

pqv ) in the common system d-q frame and the perturbation signal 

of the common system fundamental frequency s

p . The terminal voltage vt and current il of the 

inverter under test are measured and transformed to the values in the common system d-q frame, 

namely, s

tdv , s

tqv , s

ldi  and s

lqi .  
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(a) 

 

(b) 

Figure 8-5. Terminal-characteristics measurement setups: (a) for current-controlled inverters, and 

(b) for voltage-controlled inverters. 
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In order to solve the six unknown values in the terminal characteristics Yocp(jω) and Giω(jω) 

of a current-controlled inverter, three groups of independent perturbations with the subscripts 1, 

2 and 3, respectively, are required. Then, the terminal characteristics can be calculated as (8-10). 

By sweeping the frequency of the injected signals and repeating the measurement process, the 

frequency response of the terminal characteristics of a current-controlled inverter in the desired 

frequency range can be obtained.  

(8-10)  1

1 2 3

_ 1 2 3

1 2 3

_ 1 2 3

1 2 3

s s s

td td tds s s
ocp_dd ocp_dq i d ld ld ld s s s

tq tq tqs s s
ocp_qd ocp_qq i q lq lq lq s s s

p p p

v v v
Y Y G i i i

v v v
Y Y G i i i




  

-

 
    

     
      

 

  (8-10)  

  Similarly, Figure 8-5(b) shows the setup for terminal-characteristics measurement of 

voltage-controlled inverters (VI1−VI4).  A three-phase passive RLC load is used to make the 

inverter under test operate in the desired operating point. Another three-phase shunt controlled 

current source is utilized to inject current perturbations.  

For VI1 which provides the common system fundamental frequency ω
s
, perturbation signals 

include the currents ( s

pdi  and s

pqi ) in the common system d-q frame. The measured signals 

include the common system fundamental frequency ω
s
 and the terminal voltages and currents 

( s

tdv , s

tqv , s

sdi  and s

sqi ) of the inverter under test in the common system d-q frame. Through two 

independent perturbations, the terminal characteristics of VI1 can be obtained as (8-11). For 

VI2−VI4, the common system fundamental frequency s

p  becomes another perturbation signal, 

and their terminal characteristics can be solved as (8-12), by three independent perturbations. 
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(8-11)   
11 2

1 2

1 2

1 2

_ _ 1 2

s s

ovp_dd ovp_dq td td s s

sd sds s

ovp_qd ovp_qq tq tq s s

sq sqs s

o i d o i q

Z Z v v
i i

Z Z v v
i i

G G   

-  
   

     
    

   

  (8-11)  

(8-12)  1

1 2 3

_ 1 2 3

1 2 3

_ 1 2 3

1 2 3

s s s

sd sd sds s s
vi_dd vi_dq v d td td td s s s

sq sq sqs s s
vi_qd vi_qq v q tq tq tq s s s

p p p

i i i
G G G v v v

i i i
G G G v v v




  

-

 
    

     
      

 

  (8-12)  

8.3.2 Measurement Results in Simulation 

Due to the limitation of the experimental setup, the terminal-characteristics measurement 

setups are only implemented in simulation by using MATLAB/Simulink. Figure 8-6, Figure 8-7 

and Figure 8-8 present the Bode plots of the measured terminal characteristics of the current-

controlled inverter CI1, the droop-controlled inverter VI1 and the droop-controlled inverter VI2, 

respectively.  

The impact of the droop controller parameters on the terminal characteristics of voltage-

controlled inverters with the outer droop control loop is also investigated. Two cases with 

different droop controller parameters are considered, namely, Case 1: mP = 0.0025 and nQ = 

0.0067, and Case 2: mP = 0.0050 and nQ = 0.0133.  

It can be observed that the droop parameters mainly influence the terminal characteristics of 

the droop-controlled inverters (VI1 and VI2) in the low-frequency range below 100 Hz. In 

addition, larger droop parameter values would result in larger magnitudes of the terminal 

characteristics. 
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Figure 8-6. Bode plots of the terminal characteristics of the current-controlled inverter CI1. 

 

 

Figure 8-7. Bode plots of the terminal characteristics of the droop-controlled inverter VI1. 
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Figure 8-8. Bode plots of the terminal characteristics of the droop-controlled inverter VI2. 
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inverter (VI1) is selected as the common system fundamental frequency, and all other droop-

controlled inverters and current-controlled inverters are modeled or measured in the common 

reference d-q frame. Therefore, VI1 can be separated at first to facilitate the modeling, while all 

other inverters can be modeled in a composite model as expressed in (8-13). The output vector 

( )Y s , reference vector ( )U s  and disturbance vector ( )D s  of inverters are expressed in (8-14), 

respectively. Gcl(s) is the closed-loop transfer function matrix from the reference to the output as 

described in (8-15). Gcd(s) is the closed-loop transfer function matrix from the disturbance to the 

output with inverter output impedances or admittances as the diagonal elements, as shown in (8-

16). Gcω(s) is the closed-loop transfer function matrix from the common system fundamental 

frequency to the output with the fundamental frequency related terminal characteristics of 

inverters as the diagonal elements, as shown in (8-17). 

(8-13)  ( ) ( ) ( ) ( ) ( ) ( ) ( )sY s s U s s D s s s - -
cl cd cω

G G G   (8-13)  

(8-14)  T

,VI2 ,VI3 ,VI4 ,CI1 ,CI2 ,CI3

* * * * * * T

VI2 VI3 VI4 CI1 CI2 CI3

,VI2 ,VI3

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]

( ) [ ( ), ( ),

s s s s s s

t t t t t t

s s s s s s

s s

t t

Y s v s v s v s i s i s i s

U s v s v s v s i s i s i s

D s i s i s





 T

,VI4 ,CI1 ,CI2 ,CI3( ), ( ), ( ), ( )]s s s s

t t t ti s v s v s v s









  (8-14)  

(8-15)  
,VI2 ,VI3 ,VI4 ,CI1 ,CI2 ,CI3( ) diag[ ( ), ( ), ( ), ( ), ( ), ( )]s s s s s s scl vv vv vv clcp clcp clcpG G G G G G G   (8-15)  

(8-16)  
,VI2 ,VI3 ,VI4 ,CI1 ,CI2 ,CI3( ) diag[ ( ), ( ), ( ), ( ), ( ), ( )]s s s s s s scd vi vi vi ocp ocp ocpG G G G Y Y Y   (8-16)  

(8-17)  
,VI2 ,VI3 ,VI4 ,CI1 ,CI2 ,CI3( ) diag[ ( ), ( ), ( ), ( ), ( ), ( )]s s s s s s scω vω vω vω iω iω iωG G G G G G G   (8-17)  

Then, the model of the inverter VI1 can be further combined with the composite model of all 

other inverters to create the extended composite model of all inverters, by including the common 
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system fundamental frequency vector s  in both the extended output vector ( )exY s  and the 

extended disturbance vector ( )exD s , and the extended reference vector ( )exU s  is defined 

accordingly, as expressed in (8-18). Correspondingly, the extended closed-loop transfer function 

matrix from the reference to the output Gclex(s) is derived in (8-19), and the extended closed-loop 

transfer function matrix from the disturbance to the output Gcdex(s) is derived in (8-20). 

(8-18)  T

,VI1

* * T

VI1 VI1

T

,VI1

( ) [ ( ), ( ), ( )]

( ) [ ( ), ( ), ( )]

( ) [ ( ), ( ), ( )]

s s

ex t

s s

ex

s s

ex t

Y s v s Y s s

U s v s U s v s

D s i s D s s





 







  (8-18)  

(8-19)  ( ) diag[ ( ), ( ), ( )]s s s sclex clvv cl oωvG G G G   (8-19)  

(8-20)  ( )

( ) ( ) ( )

( )

s

s s s

s

 
 


 
  

ovp

cdex cd cω

oωi

Z 0 0

G 0 G G

G 0 0

  (8-20)  

Next, the connection network can be modeled by (8-21) with Gnwex(s) representing the 

extended transfer function matrix from the output to the disturbance, which can also be regarded 

as a MIMO terminal-characteristics matrix model of the connection network. The expression of 

Gnwex(s) is shown in (8-22), where Gnw(s) is the traditional impedance matrix model of the 

connection network without considering the variation of the fundamental frequency ω
s
, while 

Gnwω(s) is the fundamental-frequency-related terminal-characteristics matrix model of the 

connection network. 

(8-21)  ( ) ( ) ( )ex exD s s Y s
nwex

G   (8-21)  
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(8-22)  ( ) ( )
( )

s s
s

 
  
 

nw nwω

nwex

G G
G

0 1
  (8-22)  

Then, the overall system model can be obtained as (8-23) and also shown in Figure 8-9. 

Because each inverter is designed to be stable individually, Gclex(s) is stable, and the system 

stability is determined by the transfer function matrix [I+Gcdex(s)Gnwex(s)]
-1

, which can be treated 

as the closed-loop transfer function matrix of a MIMO negative feedback system with the return-

ratio transfer function matrix Lex(s) as expressed in (8-24) and the return-difference matrix Fex(s) 

as expressed in (8-25). Therefore, the system stability can be analyzed by applying the GNC to 

Lex(s) or Fex(s). The system model is established in the common system d-q frame, and there are 

totally seven inverters. Moreover, the common system fundamental frequency vector s is also 

considered. Therefore, the sizes of both Lex(s) and Fex(s) are 16-by-16. 

(8-23)   
1

( ) ( ) ( ) ( ) ( )ex exY s s s s U s
-

 
cdex nwex clex

I G G G   (8-23)  

(8-24)  ( ) ( ) ( )s s sex cdex nwexL G G   (8-24)  

(8-25)  ( ) ( ) ( )s s s ex cdex nwexF I G G   (8-25)  

8.4.2 Proposed Method for Derivation of the Terminal-Characteristics Matrix of 

Connection Network  

In order to model the terminal-characteristics matrix of the connection network considering 

the variation of the fundamental frequency, the terminal characteristics of passive components, 

such as the branches, RL loads and shunt capacitors in the ac microgrids, should also be derived. 
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(a) 

 

 

 (b) 

Figure 8-9. Small-signal diagrams of the CCM applied to the inverter-based microgrid: (a) 

detailed diagram, (b) equivalent MIMO feedback system. 

 

The small-signal block diagrams of passive components in the common system d-q frame 

are illustrated in Figure 8-10. Yb(s), Yld(s) and YCp(s) are the d-q admittance matrices of a 

branch, a RL load and a shunt capacitor, respectively, in the common system d-q frame. Giωb(s), 

Giωld(s) and GiωCp(s) are the fundamental-frequency-related terminal-characteristics matrices of a 

branch, a RL load and a shunt capacitor, respectively. 
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(a) 

 

(b) 

 

(c) 

Figure 8-10. Small-signal block diagrams of passive components in the common system d-q 

frame: (a) a branch, (b) a RL load, and (c) a shunt capacitor. 

 

The complete small-signal model of a branch is expressed in (8-26), where Lb and Rb are the 

inductance and resistance of the branch, respectively, and s

bdI  and s

bqI  are the steady-state values 

of the branch current in the common system d-q frame.  The complete small-signal model of a 

RL load is expressed in (8-27), where Lld and Rld are the inductance and resistance of the load, 

respectively, and s

lddI  and s

ldqI  are the steady-state values of the load current in the common 

system d-q frame. The complete small-signal model of a shunt capacitor is expressed in (8-28), 

where Cp is the capacitance, and s

CpdV  and s

CpqV  are the steady-state values of the capacitor 

voltage in the common system d-q frame. 

(8-26)   1 2
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( ) , ( ) ( )
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s s
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s s
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i s v v s
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s s s

L L s R L I


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  - 

     -
     

 -    

b iωb

b iωb b

Y G

Y G Y

  (8-26)  
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(8-27)  

1

( ) ( )

0
( ) , ( ) ( )

0

s s s

ld B

s s

ld ld ld ld ldq

s s

ld ld ld ld ldd

i s v s

L s R L L I
s s s

L L s R L I







-

  

     -

     
 -    

ld iωld

ld iωld ld

Y G

Y G Y
  (8-27)  

(8-28)  
( ) ( )

0
( ) , ( )

0

s s s

Cp B

s s

p p p Cpq

s s

p p p Cpd

i s v s

C s C C V
s s

C C s C V







  

    - -

     
       

Cp iωCp

Cp iωCp

Y G

Y G
  (8-28)  

The extended nodal admittance equation of the connection network is defined in (8-29), 

where Isys is the current vector flowing into all the nodes, Vsys is the voltage vector of all the 

nodes, Ysys is the nodal admittance matrix of the connection work and Giωsys is the fundamental-

frequency-related nodal terminal-characteristics matrix of the connection work. Ysys can be 

easily derived as in the normal nodal admittance equation, while Giωsys can be derived in (8-30). 

Assume the numbers of the nodes, the branches, the RL loads and the shunt capacitors are M, N, 

L and K, respectively. The mapping matrix Mnet is of size 2M×2N, and it maps the branches onto 

the nodes of the connection network. The elements of Mnet are 2×2 identity matrix I for the 

branch current leaving the node or −I for the branch current entering the node or 2×2 zero matrix 

0 if the specific branch is not connected to the node. The mapping matrix Mload of size 2M×2L 

maps the loads onto the nodes, and its elements are I if the specific load is connected to the node 

or 0 if the specific load is not connected to the node. The mapping matrix Mcap of size 2M×2K 

maps the shunt capacitors onto the nodes, and its elements are similar to those in Mload. 

(8-29)  ( ) ( ) ss s  
sys sys sys iωsys

I Y V G   (8-29)  
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(8-30)  

T

1 2

T

1 2
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1 2
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( ) [ ( ), ( ), , ( )]
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s s s s

s s s s

s s s s

s s s s
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
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
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 

iωsys net iωbN load iωldL cap iωCpK
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iωldL iωld iωld iωld

iωCpK iωCp iωCp iωCp

G M G M G M G

G G G G

G G G G

G G G G

  (8-30)  

Similar to the derivation method of the impedance matrix of the connection network 

presented in Section 7.3.2, the proposed method for the derivation of the terminal-characteristics 

matrix of the connection network considering the variation of the fundamental frequency also 

contains two steps. 

Step 1: eliminate the buses without inverter connections  

Ysys and Giωsys can be expressed as partitioned matrices in (8-31), by dividing the current 

vector Isys / voltage vector Vsys into the current vector Im / voltage vector Vm for buses with 

direct connection of inverter components and the current vector In / voltage vector Vn for buses 

without component connection. Considering In = [0, 0]
T
, the relationship between Im and Vm can 

be derived as (8-32) with the admittance matrix Ybus and the fundamental-frequency-related 

terminal-characteristics matrix Giωbus. 

(8-31)  
( ) ( ) s ss s  

       
           

       

m mm mn m iωm

sys sys sys iωsys
n nm nn n iωn

I Y Y V G
I Y V G

I Y Y V G
  (8-31)  

(8-32)     1 1 s s - - -  -  m mm mn nn nm m iωm mn nn iωn bus m iωbusI Y Y Y Y V G Y Y G Y V G   (8-32)  

Step 2: given Vv and Ic , solve Iv and Vc, to obtain Gnw and Gnwω 

Ybus and Giωbus can be reformatted as (8-33), by further partitioning Im and Vm into vectors 

Iv / Vv for buses connected with voltage-controlled inverters and vectors Ic / Vc for buses with 
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the connection of current-controlled inverters, as shown in (8-34) and (8-35), respectively. 

Because Vv and Ic are inputs from the inverter components to the connection network, the 

outputs of the connection network (Iv and Vc) can be solved from (8-33), as expressed in (8-36), 

and thus the impedance matrix Gnw and the fundamental-frequency-related terminal-

characteristics matrix Gnwω of the connection network are derived. 

(8-33)  
s

       
        

       

v vv vc v iωv

c cv cc c iωc

I Y Y V G

I Y Y V G
  (8-33)  

(8-34)  
 

T
TT

,VI1 ,VI2 ,VI3 ,VI4 ,CI1 ,CI2 ,CI3

s s s s s s s

t t t t t t ti i i i i i i  
 m v cI I I   (8-34)  

(8-35)   
TTT

,VI1 ,VI2 ,VI3 ,VI4 ,CI1 ,CI2 ,CI3

s s s s s s s

t t t t t t tv v v v v v v    m v c
V V V   (8-35)  

(8-36)  1 1 1

1 1 1

s

s





- - -

- - -

   - -   
       

- -         

 
  

 

v vvv vc cc cv vc cc iωv vc cc iωc

c ccc cv cc cc iωc

v

nw nwω
c

I VY Y Y Y Y Y G Y Y G

V IY Y Y Y G

V
G G

I

  (8-36)  

8.4.3 Stability Analysis Based on the CCM and the GNC  

The impact of droop controller parameters on system stability is analyzed here. The 

aforementioned two cases, namely Case 1 and Case 2, are considered. 

The stability of the islanded ac microgrid can be analyzed by applying the eigenvalue-based 

GNC to the return-ratio matrix Lex(s), as expressed in (8-37). The connection network consists of 

only passive elements, so Gnwex(s) does not have RHP poles. Considering the stable matrix 

Gcdex(s), Lex(s) does not have RHP poles, that is, P(Lex) = 0. Therefore, the system is stable if 
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and only if N(−1, j0)(Lex) = 0.  

(8-37)         ( 1, 0) ( 1, 0)j jZ P N N- - -  -
ex ex ex ex

F L L L   (8-37)  

Because only N(−1, j0)(Lex) is required for stability analysis, the detailed transfer function 

matrix of Lex(s) is not needed, and the stability can be readily assessed by the frequency-

dependent characteristics Lex(jω). Moreover, Lex(jω) can be obtained by the aforementioned 

measured terminal characteristics of inverters and the frequency response data Gnwex(jω) 

generated by the terminal characteristics transfer function matrix Gnwex(s) of the connection 

network, assuming the parameters of the connection network are known. Lex(jω) has 16 

frequency-dependent eigenvalues (λ1 to λ16). 

Figure 8-11(a) and (b) illustrate the characteristic loci of Lex(jω) in Case 1. None of the 

characteristic loci encircles the critical point (−1, j0). However, in Case 2 as depicted in Figure 

8-12(a) and (b), the characteristic locus λ3 encircles the critical point (−1, j0) clockwise twice. 

Thus, N(−1, j0)(Lex) = 0 and Z(Fex) = 0 in Case 1, but N(−1, j0)(Lex) = −2 and Z(Fex) = 2 in Case 2, 

which indicates that Case 2 is unstable with two RHP poles. In addition, λ3 intersects the unit 

circle at about 3.63 Hz in Case 1 and the phase margin is 19.4°. In Case 2, the frequency of the 

intersection point is about 8.59 Hz and the phase margin is −4°. 

The microgrid stability can also be evaluated by applying the determinant-based GNC to the 

return-difference matrix Fex(jω). The stability criterion is expressed in (8-38). The system is 

stable if and only if N(0, j0)(det(Fex)) is 0.  

(8-38)           (0, 0) (0, 0)det detj jZ P N N -  -
ex ex ex ex

F L F F   (8-38)  
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(a) 

 

(b) 

Figure 8-11. Characteristic loci of Lex(jω) in Case 1. (a) Full view; (b) zoomed-in view. 

 

 

(a) 

 

(b) 

Figure 8-12. Characteristic loci of Lex(jω) in Case 2. (a) Full view; (b) zoomed-in view. 
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Figure 8-13 shows the Bode plots of det(Fex) in both cases. It can be implied that there are 

three integral elements in the system, so when drawing the Nyquist plot, the Nyquist trajectory 

segment corresponding to the infinitesimal semi-circle around the origin point in anti-clockwise 

direction of the Nyquist contour Γs in the s-plane ([s]) as shown in Figure 8-14(a) should also be 

considered, as illustrated in Figure 8-14(b).  

According to the Bode plots in Figure 8-13, the overall phase variation values in the full 

positive frequency range are 0° in Case 1 but −180°×2=−360° in Case 2. It indicates that N(0, 

j0)(det(Fex)) = 0 in Case 1 but N(0, j0)(det(Fex)) = −2 in Case 2. Therefore, the system is stable in 

Case 1 but unstable in Case 2 with 2 RHP poles. 

 

 

Figure 8-13. Bode plots of det(Fex) in both cases. 
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(a) 

 

(b) 

Figure 8-14. (a) Nyquist contour Γs in the s-plane and (b) Nyquist contour in the plane of det(Fex) 

when there are three integral elements in det(Fex). 

 

8.5 Simulation Verification 

The simulation model of the islanded microgrid under study has been built in 

MATLAB/Simulink. Figure 8-15 illustrates the simulation results. Initially, the droop controller 

parameters are mP = 0.0025 and nQ = 0.0067 as in Case 1, and the output power of inverters 

CI1−CI3 is 0, while only inverters VI1−VI4 share the loads in the microgrid. At t1=1 s, inverters 

CI1−CI3 are enabled to track the output power references (P0 =250 W and Q0=150 Var), and the 

output active power of VI1−VI4 drops to equally share the remaining loads, due to the droop 

control. The dynamic responses of the real power P, reactive power Q, fundamental frequency f 

and terminal voltage magnitude V of each inverter show quickly damped oscillations with a 

frequency of 3.7 Hz, which matches very well with the analysis result of 3.63 Hz. 
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(a) 

 

(b) 

Figure 8-15. Simulation results of the modified IEEE 37-bus system in the islanded mode in 

Case 1. (a) P, Q, f and V of seven inverters during the power change of CIs. (b) Zoomed-in 

waveforms of P and f during the power change. 

 

At t2=2 s, the droop controller parameters became mP = 0.0050 and nQ = 0.0133 as in Case 2, 

and the system becomes unstable. As shown in Figure 8-16, the FFT analysis of P, Q, f and V of 

Inverter VI1 indicates that the major unstable resonance frequencies are 8 Hz and 8.5 Hz in the 

d-q frame. Figure 8-17 further depicts the simulation waveforms of three-phase voltages vVI1 and 

current iVI1 of Inverter VI1 (a) in Case 1 and (b) during the change from Case 1 to Case 2. An 

obvious 8.5 Hz oscillation in the magnitude of phase voltages and currents can be observed in 

Case 2. This agrees with the analysis results and validates the effectiveness of the proposed low-

frequency stability analysis method based on measured terminal characteristics of inverters in the 

common system d-q frame. 
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(a) 

 

(b) 

Figure 8-16. Simulation results during the change from Case 1 to Case 2. (a) P, Q, f and V of 

seven inverters. (b) FFT analysis of P, Q, f and V of VI1 in Case 2. 

 

 

(a) 

 

(b) 

Figure 8-17. Simulation waveforms of three-phase voltages vVI1 and current iVI1 of Inverter VI1 

(a) in Case 1 and (b) during the change from Case 1 to Case 2. 
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8.6 Conclusion 

This chapter proposed a stability analysis method to analyze the low-frequency oscillation of 

the fundamental frequency in three-phase inverter-based islanded multi-bus ac microgrids, based 

on the measured terminal characteristics of system components. The CCM-enabled extended 

system model is presented by including the fundamental frequency as an additional variable. The 

derivation of the terminal-characteristics matrix of the connection network is proposed. 

Simulation results verify that the proposed method can effectively assess the low-frequency 

stability related with the droop controllers and the system fundamental frequency, by using only 

the measured terminal characteristics of inverters without the need for their internal information. 
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9 Impedance-Based Controller Design of Inverters for Stable 

Integration into an Unknown System 

According to the literature review in Section 2.6, it is still a challenge how to design the 

controller of inverters for stable integration into an unknown system, especially considering the 

following situations. (1) The voltage feed-forward control is enabled in three-phase current-

controlled inverters to improve the voltage disturbance rejection performance. (2) There are 

existing inverters in operation in the system with unknown information. Due to wideband 

dynamic interactions among existing inverters, the impedance of the grid or the rest of the 

system is complicated, and could not be assumed to be simple inductive impedance. So it is not 

easy to design the inverter controller for stable integration. 

This chapter proposes an impedance-based adaptive control strategy of both current-

controlled inverters and voltage-controlled inverters for stable integration into an unknown 

system with the aforementioned two situations. Specifically, two systems are considered: (1) a 

radial-line renewable energy system with multiple current-controlled interface inverters 

connected to a weak grid; (2) an islanded inverter-based ac power system. 

9.1 Proposed Passivity Compensation of Current-Controlled Inverters 

According to the Bode plot of the positive-sequence admittance of a current-controlled 

inverter with the voltage feed-forward control as shown in Figure 9-1, the voltage feed-forward 

control could cause the inverter admittance phase to be outside of the passive range [−90°, 90°] 

within the voltage feed-forward control bandwidth. Therefore, it may trigger low-order harmonic 

resonances. Note that the PLL is not included in the sequence admittance model in this chapter. 
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Figure 9-1. Bode plots of the inverter admittance without / with voltage feed-forward (VFF) and 

compensation. 

 

Due to the adoption of the voltage feed-forward control, it is difficult to design the output 

admittance of the three-phase current-controlled inverter to be passive within the voltage feed-

forward control bandwidth. However, a post remedy measure after the occurrence of instable 

resonance could be employed to damp the harmonic resonance. A passivity compensation 

method is proposed here to make the inverter admittance passive at the resonance frequency 

based on online detection of the resonance frequency. Also, the passivity compensation is 

achieved by the virtual resistor emulation through an additional band-pass filter (BPF) (Gcmp) 

based voltage feed-forward, as shown in Figure 9-2. 

The concept of the passivity compensation for the inverter admittance is illustrated in Figure 
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Figure 9-2. Block diagram of the current-control loop with band-pass filter based passivity 

compensation. 

 

 

(a) 

 

(b) 

Figure 9-3. Passivity compensation concept: (a) equivalent impedance-based circuit of the 

inverter, and (b) the admittances at the resonance frequency in the complex plane. 
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compensation, Yoc_no is the inverter admittance without the VFF control or compensation, Yvp is 

the virtual resistance, and Yoc_cmp is the inverter admittance with both the VFF control and the 

compensation. The magnitude of Yvp is determined by making the magnitudes of Yoc_cmp and Yoc 

equal to each other at the resonance frequency ωres, while ideally the impedance Yoc_cmp remains 

the same at other frequencies, as expressed in (9-1), (9-2) and (9-3). Therefore, the phase of the 

admittance Yoc_cmp can be significantly reduced and shaped into the passive range [−90°, 90°] at 

the resonance frequency ωres.  
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  (9-3)  

The transfer function of the BPF filter Gcmp is expressed in (9-4), where Kcmp, ξBPF and ωBPF 

are the compensator gain, the damping ratio and the operating frequency of the BPF, respectively. 

According to the sequence admittance model of a current-controlled inverter presented in Section 

3.1, the transfer function of the actual emulated virtual parallel admittance Yvp can be derived as 

(9-5), where the impact of the current closed-loop gain Gclc and the voltage sampling gain Gsv is 

neglected within the current control loop bandwidth. Kcmp is set as the absolute value of the 

virtual resistance and ωBPF is set as the resonance frequency ωres, as expressed in (9-6). 

Considering that the compensation effect of the BPF would still cause a slight magnitude change 
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of Yoc_cmp around the resonance frequency ωres, the design rule of ξBPF is to make the bandwidth 

of the BPF large enough, so that the phase of the compensated admittance Yoc_cmp is still within 

the passive range at the frequency of the new intersection point between Yoc_cmp and the 

admittance of the external system. A conservative design of ξBPF is to make the phase of Yoc_cmp 

within the passive range in the frequency range above ωres, as illustrated in Figure 9-1. 

(9-4)  2 2

2

2

BPF BPF
cmp cmp

BPF BPF BPF

s
G K

s s

 

  


 
  (9-4)  

(9-5)  vp cmp sv clc cmpY G G G G    (9-5)  

(9-6)   2Re ,cmp oc res BPF resK Y j   -      (9-6)  

The corresponding Bode plots of the inverter admittance are shown in Figure 9-1. As 

observed, the phase of Yoc at the resonance frequency 240 Hz is outside of the passive region 

([−90°, 90°]), but the phase of Yoc_cmp at 240 Hz is within the passive range. The magnitude of 

Yoc_cmp remains the same at 240 Hz while the magnitude change around 240 Hz is small. 

9.2 Proposed Phase Compensation of Voltage-Controlled Inverters 

Figure 9-4 shows the Bode plot of the positive-sequence impedance of a voltage-controlled 

inverter with or without the current feed-forward (CFF) control. The phase of the inverter 

impedance without the CFF control is already outside of the passive range in the majority of the 

full frequency range. Fortunately, the phase deviation from the passive range is not large. In 

contrast, with the CFF control, the phase of the inverter impedance is significantly increased and 

far away from the passive range. It is difficult to compensate the passivity of the inverter 

impedance at a certain frequency by emulating an additional series resistance based on a BPF. 
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Figure 9-4. Bode plots of the inverter impedance without / with current feed-forward (CFF) and 

compensation. 

 

Considering that the phase of the inverter impedance without the CFF control has a much 

smaller deviation from the passive range, as compared with that with the CFF control, it is 

feasible to disable the effect of the CFF at the resonance frequency, so that the phase of the 
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phase margin of the system can be increased. A phase compensation method is proposed here to 
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inserting a notch filter GN into the current feed-forward path to block the effect of the CFF on the 

phase of the inverter impedance, as depicted in Figure 9-5. The concept of the proposed strategy 
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Figure 9-5. Block diagram of the voltage-control loop with notch filter based phase 

compensation. 

 

 

(a) 

 

(b) 

Figure 9-6. Phase compensation concept: (a) equivalent impedance-based circuit of the inverter, 

and (b) the impedances at the resonance frequency in the complex plane. 
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Zov is the inverter impedance with the CFF control but without compensation, Zov_no is the 

inverter impedance without the CFF control or compensation, Zov_cmp is the inverter impedance 

with both the CFF control and the compensation, and Zvs is equivalent virtual series impedance 

introduced by the phase compensation. Both the magnitudes and phases of Zov_cmp and Zov_no are 

identical at the resonance frequency, which means that, equivalently, there is no CFF control at 

the resonance frequency. 

The transfer function of the notch filter GN is expressed in (9-7), where ξN and ωN are the 

damping ratio and the operating frequency of the notch filter, respectively. According to the 

sequence impedance model of a voltage-controlled inverter presented in Section 3.2, the transfer 

function of Zov_cmp can be derived as (9-8). The value of ωN is set as the resonance frequency ωres, 

as expressed in (9-9). The design of ξN is to make the effective frequency range of the 

compensation large enough to cover the variation in the magnitude of Zov_cmp around the 

resonance frequency ωres and the variation of the intersection frequency between Zov_cmp and the 

impedance of the external system. 

(9-7)  
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(9-9)  N res    (9-9)  

The corresponding Bode plots of the inverter impedance with the proposed phase 

compensation are drawn in Figure 9-4. As shown, the phase of Zov at the resonance frequency 

560 Hz is 170.4°, but the phases of Zov_cmp and Zov_no are both 119.3°at 560 Hz, which is much 
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closer to the passive range. Aside from the phase compensation, the proposed strategy only 

brings a slight change in the magnitude of the inverter impedance, so the drift of the magnitude 

intersection point between the inverter impedance and the external system impedance is small 

and still within the compensated range. 

9.3 Adaptive Compensation Based on Online Resonance Detection 

The process of the online resonance detection is depicted in Figure 9-7. The measured 

inverter d-axis currents (id) in the d-q frame are analyzed by FFT online at a certain execution 

rate in the DSP controllers of the inverters to detect the magnitude ires and frequency fres of the 

resonant current component in the d-q frame. The resonance frequency fres is set as the operating 

frequency of the BPF Gcmp for passivity compensation and resonance damping of current-

controlled inverters, or set as the operating frequency of the notch filter GN for phase 

compensation and resonance damping of voltage-controlled inverters.  

The effectiveness of the online detection and compensation is illustrated by an example 

radial-line system with 2 PV inverters as depicted in Figure 9-8. The parameters of both inverters 

are the same as those listed in Table 3-1 and Table 3-2, except that the cut-off frequency ωffv of 

the voltage feedforward control is 300×2π rad/s. Inverter 1 is originally connected, while Inverter 

2 is connected at time t1 . The simulation results of inverter currents and resonance detection are 

shown in Figure 9-9. The FFT executes every 0.25 s. The connection of Inverter 2 at time t1 

results in unstable resonance. 0.25 s later, at time t2, the resonance frequency is detected as 170 

Hz in the d-q frame and the BPF-based compensation is enabled in both inverters. Then, the 

resonance is quickly damped. Another 0.25 s later, at time t3, the detected resonance magnitude 

is nearly zero, indicating that the resonance has been completely damped. 
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(a) 

 

(b) 

Figure 9-7. Diagrams of online resonance detection for (a) BPF-based passivity compensation, 

and (b) notch filter based phase compensation. 

 

 

Figure 9-8. Single-line diagram of a radial-line system with 2 PV inverters.  
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Figure 9-9. Simulation results of inverter currents and resonance detection. 

 

9.4 Experimental Verification 

An experimental setup consisting of three three-phase inverters and multiple inductors is 

established, as shown in Figure 9-10. The experimental setup is configured as two systems: (1) a 

radial-line renewable energy system with two current-controlled interface inverters (Inverter 1 

and Inverter 2) connected to a weak grid; (2) an islanded inverter-based ac power system 
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current-controlled inverter load (Inverter CI1). 
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Figure 9-10. Experimental setup. 

 

9.4.1 A Radial-Line Renewable Energy System 

The diagram of the system is the same as that in the simulation as shown in Figure 9-8. The 

parameters of both inverters are the same as those listed in Table 3-1 and Table 3-2, except that 
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operation. Then, the Inverter 2 is connected to the system at time t1 and starts increasing the 

current injection at a ramp rate of 10 A/s. Figure 9-11 shows the experimental waveforms of the 
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Figure 9-11. Experimental waveforms of the phase-A current of the grid and two inverters during 

the connection of Inverter 2 while the compensation is not enabled. 

 

 

Figure 9-12. Experimental waveforms of the phase-A current of the grid and two inverters in the 

unstable state. 
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Figure 9-13. Recorded data in the DSP of Inverter 2 during the connection of Inverter 2. 
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shown in Figure 9-14, Figure 9-15 and Figure 9-16. After connecting the Inverter 2, the system 

becomes unstable and the resonance current starts increasing. With the online FFT executing 

every 0.01 s in the DSP controller of Inverter 2, when the detected resonance magnitude ires in 

the d-axis current i2d reaches the threshold value (1 A), the resonance frequency fres is detected as 

175.8 Hz, the parameter of the BPF Gcmp are updated as Kcmp =0.1145, ξBPF =0.25, and ωBPF = 

2πfres, and the passivity compensation is enabled. Then, the resonance is quickly damped. The 

whole integration process is only about 0.13 s, and the resonance current magnitude can be 

restricted below a safe value during the integration process. 

 Therefore, the effectiveness of the proposed adaptive passivity compensation strategy of 

current-controlled inverter for stable integration into an unknown system is verified. 

 

 

Figure 9-14. Experimental waveforms of the phase-A current of the grid and two inverters during 

the connection of Inverter 2 while the compensation is enabled. 
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Figure 9-15. Experimental waveforms of the phase-A current of the grid and two inverters in the 

stable state with the compensation. 

 

 

Figure 9-16. Recorded data in the DSP of Inverter 2 with compensation during the connection. 
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9.4.2 An Islanded Inverter-Based Ac Power System 

The diagram of the islanded inverter-based ac power system is shown in Figure 9-17. 

Initially, the system only consists of the voltage-controlled inverter VI1 as the source and the 

current-controlled inverter CI1 as the load. Then, at time t1, another voltage-controlled inverter 

VI2 connects to the system to share the load with VI1 under the help of droop controllers. 

The parameters of these three inverters are the same as the values listed in Table 3-1, Table 

3-2 and Table 3-3, except that ωffv is 25×2π rad/s in Inverter CI1. The d-q currents of CI1 are id= 

−20 A and iq=0A. The parameters of the notch filter GN are set as ξN =0.3 and ωN = 2πfres, where 

fres is the detected resonance frequency by the online FFT executing every 0.01 s in the DSP 

controllers of Inverter VI1 and VI2. 

 

 

Figure 9-17. Single-line diagram of the islanded inverter-based ac power system, in which 

Inverter VI2 is connected at time t1 .  
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Figure 9-18 shows the experimental waveforms of the phase-A currents of Inverter VI1 

(iVI1a), Inverter CI1 (iCI1a) and Inverter VI2 (iVI2a) during the connection of Inverter 2 while the 

compensation is not enabled. It can be seen that the system is stable without Inverter VI2, but the 

integration of Inverter VI2 makes the system unstable with a resonance frequency of 560 Hz in 

the phase domain or equivalently 500 Hz in the d-q frame, as shown in Figure 9-19. When the 

proposed adaptive phase compensation is enabled in both Inverter VI1 and Inverter VI2, the 

oscillation is quickly damped and the system is restored to stability, as shown in Figure 9-20. 

Therefore, the effectiveness of the proposed adaptive phase compensation strategy of voltage-

controlled inverter for stable integration into an unknown system is verified. 

 

 

Figure 9-18. Experimental waveforms of the phase-A current of three inverters during the 

connection of Inverter VI2 while the compensation is not enabled. 
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Figure 9-19. Experimental waveforms of the phase-A current of three inverters in the unstable 

state. 

 

 

Figure 9-20. Experimental waveforms of the phase-A current of three inverters when the 

compensation is enabled. 
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9.5 Conclusion 

This chapter proposed an impedance-based adaptive control strategy of both current-

controlled inverters and voltage-controlled inverters for stable integration into unknown systems 

including: (1) a radial-line renewable energy system with multiple current-controlled interface 

inverters connected to a weak grid; (2) an islanded inverter-based ac power system. The passivity 

compensation of current-controlled inverters is achieved by the virtual resistor emulation through 

additional band-pass filter based voltage feed-forward. The phase compensation of voltage-

controlled inverters is achieved by inserting a notch filter into the current feed-forward path. 

Experimental results verify the effectiveness of the proposed adaptive compensation methods 

based on online resonance detection. 
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10 Conclusion and Future Work 

This chapter summarizes the work in this dissertation and recommends some future work. 

10.1 Conclusion 

The impedance-based stability analysis and inverter controller design of three-phase 

inverter-based ac systems have been investigated in this dissertation. The conclusions can be 

drawn as follows. 

 The sequence-admittance model of current-controlled three-phase inverters is improved, 

considering the voltage feed-forward control in the d-q domain and the dead time effect. 

The sequence-impedance model of voltage-controlled three-phase inverters is developed. 

The d-q admittance model of current-controlled inverters in an arbitrary d-q frame is 

developed with the consideration for static load emulation. 

 A method for sequence impedance measurement of three-phase inverters by using 

another inverter connected in parallel with common-dc and common-ac sides is 

proposed. The measurement setup is simple, because the inverter as the measurement 

unit not only injects perturbations but also serves as the voltage source or the current 

load at the fundamental frequency to create the desired operating conditions for the 

inverter under test. Zero-sequence circulating current reduction and open-loop voltage 

compensation improve the measurement accuracy. 

 An impedance-based sufficient stability criterion is proposed to analyze the small-signal 

stability of radial-line systems with multiple current-controlled inverters in the d-q 

domain. The system stability can be examined by checking the encirclements of the 
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point (−1, j0) by the characteristic loci of the return-ratio matrix at each bus successively 

from the farthest bus to the PCC. The pole calculation of return-ratio matrices is 

avoided, compared to the generalized Nyquist stability criterion (GNC), while the phase 

margin of the system can still be obtained for inverter controller parameter design. 

 Two methods for harmonic stability analysis of three-phase inverter-based ac power 

systems are proposed to avoid the examination of RHP poles of impedance ratios and 

reduce the computation effort, as compared with the existing impedance-based stability 

analysis method using Nyquist stability criterion once. The proposed stability analysis 

methods also enable the system stability assessment using only measured component 

impedance characteristics, without the need for detailed internal control information of 

the components. The inverter controller parameters of multi-bus ac systems can be 

designed by repetitively applying the proposed stability methods, and presented as 

stability regions in the parameter space. 

 A stability analysis method, based on the d-q impedances, the Component Connection 

Method (CCM) and the determinant-based GNC, is proposed for assessing both the 

harmonic stability and low-frequency stability of three-phase inverter-based multi-bus ac 

systems. The proposed method does not need to check the RHP poles of the return-ratio 

matrix. It only requires one Nyquist plot examination of the determinant of the return-

difference matrix, and thus the stability judging process is simpler than the existing 

method based on the CCM and the eigenvalue-based GNC. Controller parameters of 

both voltage-controlled and current-controlled inverters can be designed by repetitively 

applying the proposed stability methods, and presented as stability regions in the 

parameter space. 
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 A low-frequency stability analysis method of three-phase inverter-based islanded multi-

bus ac microgrids based on the measured terminal characteristics of system components 

is proposed. The CCM-enabled extended system model including the terminal-

characteristics matrix of the connection network is proposed. The proposed method can 

effectively assess the low-frequency stability related with the droop controllers and the 

system fundamental frequency, by using only the measured terminal characteristics of 

inverters without the need for their internal information. 

 An impedance-based adaptive control strategy of both current-controlled inverters and 

voltage-controlled inverters for stable integration into unknown systems is proposed. 

The proposed strategy is based on online resonance detection by using online FFT and 

passivity or phase compensation by integrating a BPF or a notch filter into the control 

loops of inverters. 

10.2 Recommended Future Work 

Some recommended future work is listed as follows. 

(1) Design of power-electronics-based hardware for resonance mitigation in renewable 

energy systems 

The stability research work in this dissertation focuses on the controller design of the 

renewable interface inverters to guarantee the stability of renewable energy systems. However, 

there are still limitations in stability improvement by only changing the inverter controller design, 

due to some inherent issues of the inverter control, such as the limited control bandwidth and the 

control time delay. In addition to the control of inverters themselves, it is also possible to use 

external power-electronics-based hardware to help resonance mitigation and stability 
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improvement in renewable energy systems. This additional measure creates another degree of 

freedom, which could overcome the limitation of the inverter control. 

(2) Stability analysis and controller design of renewable interface inverters for stable 

operation under unbalanced conditions 

The stability research work in this dissertation only considers the balanced three-phase 

systems. But it is very common that renewable energy systems sometimes operate under 

unbalanced conditions, such as unbalanced faults. Therefore, it is important to ensure the stable 

operation under unbalanced conditions. There are not enough studies on stability under 

unbalanced conditions in the existing literature. It is challenging to analyze the system stability 

and design inverter controller for stability under unbalanced conditions. 

(3) Design of inverter passive filters and power-electronics-based hardware for power 

quality improvement in renewable energy systems 

Power quality is another major concern in renewable energy systems. There are some 

existing approaches to improve the power quality in normal power systems, such as passive 

filters and active power filters. The adoption of high frequency power electronics converters also 

generates harmonics. These harmonics can be reduced to some extent by introducing harmonic 

control in renewable interface inverters. For systems with high penetration of renewable energy 

sources, the harmonic mitigation is more difficult than systems with only a few converters. It is 

crucial to build design methodology of inverter passive filters and additional power-electronics-

based hardware in a coordinated way to improve and optimize the power quality of high-

penetration renewable energy systems. 
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