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ABSTRACT 
 
Synthetic lipid bilayers provide models of cell membranes to study biomolecular 

interactions and signal transduction. The droplet interface bilayer (DIB) is a highly 

versatile technique for assembling planar lipid membranes between water 

droplets in oil. The DIB method thus provides a unique capability for developing 

digital, droplet-based membrane platforms for rapid membrane characterization, 

drug screening and ion channel recordings. In this work, a new microfluidic 

system is presented that automates droplet generation, sorting, and sequential 

trapping in designated locations to enable rapid assembly of arrays of DIBs along 

with in situ electrical measurements. This platform provides repeatable 

processes for forming long-lasting bilayer arrays for numerous membrane-based 

applications. Studies on asymmetric lipid membranes are performed to 

understanding the effects of peptides on the disruption of asymmetric lipid 

membranes and intramembrane potential. In addition, an automated microfluidic 

array is applied to isolate and transform single cells to improve the ability to study 

gene transformation on an individual cell basis, with greater spatial and temporal 

resolution of each cell’s response. 
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CHAPTER 1 
INTRODUCTION AND LITERATURE REVIEW 

 
The overarching goal of this work is to develop a high throughput microfluidic 

system in order to investigate numerous basic lipid bilayer studies and 

membrane-mediated processes with greater efficiency and statistical 

significance. With a high-throughput system, we can gain a better understanding 

of mechanisms governing biological functions leading to new insight to aide in 

membrane based applications such as studies of basic membrane 

characterization, membrane-mediated processes, ion channel recordings, and 

rapid drug screening assays. Not only can this platform be applied to synthetic 

systems, studies utilizing live cells can benefit as well. This dissertation presents 

a step towards developing an automated high-throughput droplet generation and 

arrangement system to create an array of DIBs or cells, which can be electrically 

interrogated, in an enclosed substrate.  

 

This chapter begins with a description of cell membranes followed by methods to 

form and characterize synthetic models of cell membranes. Topics of 

microfluidics and lipid asymmetry are also discussed. From the literature review, 

gaps and goals are defined for the work presented in this dissertation.   

1.1 Cell membrane 

The cell membrane is a biological bilayer that works as a fluid barrier in all cells, 

separating the interior of the cell from the extracellular matrix [1, 2]. Proteins [3], 

enzymes [4], cholesterols [5], and ions transfer [6, 7], across the membrane help 

the intracellular matrix to communicate with the extracellular matrix. The key 

components of these semipermeable membranes are phospholipids. As shown 

in Figure 1, the phospholipid structure contains a polar hydrophilic (i.e., water-

seeking) head group and a hydrophobic (water-repelling) tail group [8]. Lipid 
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bilayers form through the self-assembly of lipids, amphiphilic molecules with 

hydrophilic and hydrophobic regions, placed in aqueous environments.  

 

Membrane proteins are often found inserted into or through the hydrophobic core 

of membranes in cells, and these membrane proteins perform specific 

microscopic functions that affect overarching macroscopic physiological 

functions. Membrane proteins can be generally grouped into two categories: 

integral proteins span the entire thickness of the lipid bilayer while peripheral 

proteins are primarily associated with either an inserted integral membrane 

protein or the polar headgroup region of only one leaflet of the bilayer [9]. The 

bilayer-like amphiphilicity of certain proteins drive or maintain protein positioning 

relative to the membrane (note: protein amphiphilicity is affected by the polarity of 

the amino acid chain sidegroups positioned along the length of the peptide). 

Membrane proteins often perform tasks or functions [10].  For instance, 

transporter membrane proteins perform roles in moving soluble and insoluble 

species across the membrane. Examples include ion pumps, ion channels, and 

even transporters of larger molecules like sugar molecules, nucleic acids, or lipid 

 
Figure 1. Cell membrane acts as a barrier separating the interior of the cell 
from the extracellular matrix. The key components of these semipermeable 
membranes are phospholipids. Reproduced from [2].  
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headgroups [10]. Ion pumps actively expend energy to pump ions across the 

membrane while channels act as passive pores that allow the passage of solutes 

through the membrane. It should be noted that some channels form constantly 

open static pores while others only form pores in the presence of sufficient 

electrical potential (“voltage-gated”), mechanical strain (“mechanosensitive”), or 

the appropriate soluble ligands (“ligand gated”). Floppases and flippases, other 

examples of transport proteins, are integral membrane proteins that aide in 

transporting the polar headgroups of lipids from one side of the membrane to the 

other in order to help maintain desired lipid composition asymmetry [9].  

 

A number of studies have investigated the electrical [11, 12], and mechanical [13] 

properties of cell membranes; however, the complexity of natural membranes 

and the fact that they may contain multiple membrane proteins and various types 

of lipids makes them difficult to work with and to characterize them in detail; the 

techniques required to investigate natural membranes are also labor-intensive 

and time consuming. To overcome these challenges, many researchers have 

taken up the study of synthetic lipid bilayers, investigating a wide range of 

phenomena, including protein insertion [14, 15] and the permeability of cell 

membrane [16-18]. To study the cell membrane, synthetic lipid bilayers that 

mimic natural cell membrane structures are formed in-vitro [19-21] to be able to 

study the characteristics of these membranes. 

1.2 Droplet interface bilayer as model cell membranes 

Given the importance and significance of membranes to greater physiological 

function, there are benefits of technologies that allow assembly and creation of 

model membranes that mimic the composition, organization, and function of 

natural membranes. A means of constructing and accessing physical model 

membranes could provide the ability to study membrane and membrane- protein 

mediated processes to improve our understanding of membrane related 

biological and biophysical processes. There are various methods for forming 
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these synthetic bilayers that have been developed. This included lipid vesicles 

[22, 23], black lipid membranes (BLM) [24], supported lipid bilayers (SLB) [25, 

26], tethered bilayer lipid membranes (t-BLM) [27], and droplet interface bilayers 

(DIBs) [20], which the technique used in the research presented herein. 

 

The droplet interface bilayer (DIB) is highly versatile technique for constructing 

model cell membranes (i.e. lipid bilayers) between lipid-coated water droplets in 

oil (Figure 2) [20, 28, 29]. The dissolved lipids begin to self-assemble at the oil-

water interface surrounding an aqueous droplet placed into oil, and the droplets 

can be brought together after only a few minutes without coalescing and 

becoming one single droplet. Instead, the opposing monolayers on two adjacent 

droplets will spontaneously fuse and form a bimolecular layer of lipids due to a 

reduction in free energy of the system and the entropy driven exclusion of solvent 

from the otherwise constraining acyl chains of the newly formed bilayer [30]. The 

resulting interfacial film is stabilized by a balance of intermolecular forces (van 

der Waals, electrostatic, and steric interactions) [31]. As a result in spontaneous 

adhesion allow the system to reduce the total free energy and the reduction of 

free energy of the system can be shown in equation below:  

 
Figure 2. Side schematic of a droplet interface bilayer. 
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 ΔF = 2γm(cosθ −1)  (1) 

where the γm is the monolayer tension and θ is the contact angle of adhered 

droplets (Figure 3). The resulting ~3-5 nm thick lipid bilayer [32, 33] is an 

experimentally accessible model for cell membranes. Importantly, DIBs are 

formed quickly, easily, and are durable.  

 

Methods for DIB formation provide the ability to control symmetry of 

biomolecules, salt concentration, pH, or other factors included on each side of 

the lipid bilayer [34]. DIB assemblies provide a suitable environment for studying 

many aspects of membrane transport including antimicrobial peptide or pore-

forming protein insertion and gating [20, 29, 35]. DIB systems have also been 

employed recently to use biomolecular functionality for sensing [36-38], actuation 

[39], and energy conversion [40, 41] applications. Figure 4 shows a few 

examples of studies that utilize DIBs including studies on membrane properties 

and protein activation, and development of hair cell sensors.    

 

Bioinspired material systems utilize principles and functionalities found in nature 

to benefit the development of engineered systems. In recent years, the use of 

biological molecules such as phospholipids, transmembrane proteins, and ion 

channels have contributed to the development of new types of membrane-based 

 

 
Figure 3. DIB systems are stabilized by tensions of the monolayer, γm, and the 
bilayer, γb. θb is the contact angle of adhered droplets.  
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assemblies that are able to autonomously [42] and even collectively [42, 43] 

respond to internal or external physical stimuli. The development of these 

material systems utilizes a synthetic lipid membrane to house biological 

molecules that attribute specific functionality to the system [38, 44-46].  

 

There are several reported methods for forming lipid-coated droplets in oil to form 

DIBs. Common techniques include positioning droplets within the fixed geometry 

of a rigid, solid substrate [29], moving droplets via electrodes attached to 

micromanipulators [28], using mechanical force to control the compression of the 

solid substrate containing the droplets, thereby regulating contact between 

adjacent droplets [35, 47], and droplet manipulation using electric fields (i.e. 

dielectrophoresis and electrowetting on dielectrics) [48, 49], light-induced heating 

[50], magnetic fields [51], and even inkjet printing of droplets at defined positions 

[52]. While these methods are repeatable, most are not well suited for quickly 

 
Figure 4. DIB systems used to study and employ biomolecular functionality. 
Examples include (A) membrane properties such as the effect with temperature 
and other lipid types, (B) a hair cell sensor and (C) to activate protein channel 
such as Mscl a mechanically activated channel. 
 
 



 

7 
 

assembling large numbers of DIBs. Additionally, most of these techniques also 

require manual dispensing of droplets using micropipettes, which is suitable only 

for creating DIBs with large droplets (>100 µm diameter, >50 nL in volume) due 

to the minimum volume that can be readily pipetted in this manner. 

1.2.1 Electrical characterization of synthetic cell membranes 

A number of techniques exist that have been used to characterize lipid bilayer 

structure and properties (neutrons, x-ray, anisotropy, permeability). However, this 

dissertation focuses largely on electrical measurements with planar bilayers 

which are advantageous due to the ability to directly access both sides of the 

membrane and measure electrical and physical properties. 

 

 
Figure 5. Common methods to form DIBs include (A) micromanipulator to bring 
into contact individual droplets, (B) a mechanical force on the surrounding 
substrate to either promote or inhibit droplets contact, (C) a specially designed 
substrates that use fixed geometry, and (D) electric fields in the form of 
dielectrophoresis and electrowetting. 
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The electrical behavior of a lipid bilayer can be most simply represented as a 

parallel RC circuit [47, 53]. Figure 6A shows the electrical circuit configurations 

for a droplet interface bilayer where R is the membrane resistance, C is the 

membrane capacitance, and Res is the resistance of the aqueous droplets. It 

should be noted that the electrical properties of the lipid bilayer, R and C, 

represent physical aspects of the structure of the membrane. For instance, 

membrane resistance represents the portion of the membrane that acts as a 

barrier to ion transport. Alternatively, membrane capacitance stems from the 

layered structure of the membrane and the dielectric hydrophobic region, which 

provides a means of storing charge or generating and propagating capacitive 

signals. 

 

The complex impedance of a DIB, ZM (ω), has been derived elsewhere and is 

given by [53]: 

 
ZM (ω) =

R
1+ jωRC

+ Re  
(2) 

Equation 2 yields an impedance spectrum such as that shown in Figure 6B (here 

assuming R = 10 GΩ, C = 100 pF, Re = 10k Ω). The circuit is comprised of three 

basic elements (electrode-electrolyte resistance, membrane resistance, and 

membrane capacitance), and current through the membrane is frequency 

 

 
Figure 6. (A) Equivalent electrical circuit of a DIB. (B) The complex frequency 
dependent impedance of a bilayer. Modified from [52].  
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dependent whereby current follows the path of least resistance shown in Figure 

6B. Application of zero-frequency dc voltage essentially leads to an open-circuit 

condition for the path involving membrane capacitance; dc current passes 

through the electrodes, the electrolyte, and the resistive portion of the 

membrane. Given that bilayer resistance, often on the order of gigaohms, is 

significantly higher than that of the electrode-electrolyte resistance (typically, Re 

≤ 10 kΩ), current is determined via Ohm’s law and the membrane resistance 

when applying dc voltage (I=V/R). Slightly more complex behavior emerges upon 

application of ac voltage signals, however, as a lower frequency exists at which 

current through the membrane begins to be dictated by the capacitance. This 

lower corner frequency (f1 on Figure 6B) is the frequency at which the 

impedance of the membrane capacitance begins to fall below that of the 

membrane resistance. A common technique for measuring membrane 

capacitance involves application of an alternating triangle wave of constant 

amplitude (A) and frequency (f), and it can be shown that the membrane 

capacitance (C) results in square wave current amplitude (I) given by 

 I = 4AfC  (3) 

As the frequency of the input ac voltage waveform is continually increased, the 

impedance of the membrane capacitance drops below the resistance at the 

electrode-electrolyte interface. At frequencies above this upper corner frequency 

(f2 on Figure 6B), the impedance of the bilayer remains constant at Z = Res. In 

combination, the frequency-dependent impedance of the bilayer follows the path 

of the bold line drawn in Figure 6B. Knowledge of the electrical response of the 

bilayer proves to be useful in allowing precise measurements of the membrane 

resistance and the membrane capacitance by applying ac input voltages of an 

appropriate frequency. 

1.3 Droplet-based microfluidics  

Droplet-based microfluidics provide precise droplet control and manipulation to 

generate and package a multi-droplet DIB array. There are numerous techniques 
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to form and position droplets within a microfluidic device [54, 55]. Droplet 

formation usually occurs on-chip in an oil-filled channel, and the process can be 

divided into three main categories based on flow regimes: (1) droplet formation in 

cross flowing (T-junction) streams of oil and water, (2) droplet formation in flow-

focusing streams, and (3) droplet formation in co-flowing oil and water streams 

[56]. In these approaches, droplet size and production rate are dictated by 

adjusting the oil and water flow rates and the channel dimensions, which range 

from 1 µm to several hundred micrometers. Although these techniques have 

been proven successful for high-throughput droplet generation, it is known that 

steady state production of mono-disperse droplet sizes is not achieved 

immediately. This transient results in a need for downstream sorting prior to 

droplet collection in applications where droplet size is important. 

 

In addition, there are a handful of studies that have demonstrated hydrodynamic, 

or flow-induced, methods for trapping a single droplet or bead within a 

microfluidic substrate (Figure 7). Droplet positioning can be guided by intra-

channel structural elements that create parallel paths for fluid flow. For example, 

 

 
Figure 7. Microfluidic techniques used to form highly packed arrays of 
surfactant-stabilized droplets or discrete pairs of DIBs include (A) pillar arrays 
or circular traps, (B) chambers connected to the main channel, (C) stacking 
droplets in 3D to fill a channel, (D) a double droplet trap system, and (E) droplet 
printing. 
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circular traps or pillar arrays enable to position a droplet while maintaining oil flow 

through the device [57-60]. So far, this approach of hydrodynamic microarrays 

has been mainly used to capture one individual microsphere or bead per trap. 

Also, there have been reports of efforts to assemble functional arrays or 

networks of DIBs as a single unity or discrete pairs. Typically these networks are 

two-dimensional and have less than four interfaces per droplet [28, 58, 61-63]. 

More recently, a droplet-on-rail strategy was used to produce parallel droplet 

bilayer networks up to 20 interfaces [64]. Additionally, higher order three-

dimensional DIB arrays can be formed via manual techniques [52, 65] or a 

microfluidic approach [66, 67].  

 

However, the ability to electrically interrogate specific lipid bilayers in multi-layer 

droplet arrays, especially those assembled within a microfluidic device, has not 

been addressed to date. The presence and properties of lipid bilayers are 

typically quantified using electrical measurements of membrane capacitance and 

resistance [28, 32, 61, 68]. DIBs formed with large droplets (i.e. >50 nL) allow for 

wire-type electrodes to be manually inserted into the droplets. However, droplets 

formed within a microfluidic platform have the potential to be much smaller in size 

from 2-350 µm [54] and are enclosed within a sealed substrate. While, optical 

and fluorescence imaging have been employed to obtain qualitative visualization 

of bilayer presence [57, 69], they do not provide complete characterization of the 

interface such as resistivity and durability. There has been a successful effort to 

insert silver wire into a microfluidic system [70]. In that particular system, a single 

DIB is formed and measured before it is ejected and new droplet(s) occupy the 

region where electrodes are present.  

1.4 Asymmetric lipid membranes  

Synthetic lipid bilayers provide models of cell membranes to study biomolecular 

interactions and signal transduction. However many model membrane studies 

utilize symmetric, single lipid compositions, which are not as biologically relevant, 
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while there are limited number of studies using mixtures of two to four 

components. Therefore, there is still much to be learned about the effects of 

diverse and complex composition on the properties and functions of membranes 

and interactions with membrane-active proteins.  

 

In nature, cell membranes are asymmetric where the content on one side of the 

bilayer is different from the other and the lipids of the membrane itself differ from 

the inner and outer leaflets (Figure 8). One example is the plasma membranes of 

eukaryotic cells where aminophospholipids are primarily in the cytosolic leaflet 

while phosphatidylcholine and sphingomyelin dominate in the outer leaflet [71, 

72]. This transbilayer asymmetry is an important aspect of membrane-mediated 

signaling and cellular functions. It is generally understood that there are families 

of membrane proteins responsible for “flipping” and “flopping” lipid headgroups 

from one leaflet to the other. However, the mechanisms that generate and 

maintain asymmetry phospholipid flip-flop rates have been challenging to obtain 

 
 

 
Figure 8. Cell membranes are asymmetric where the content on one side of the 
bilayer is different from the other and the lipids of the membrane itself differ 
from the inner and outer leaflets. Reproduced from [72]. 
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and are the subject of ongoing research, along with the influence of composition 

including the presence of transmembrane proteins on flip-flop rates [73]. While 

there are several reports addressing the influence of bilayer composition on flip-

flop rates, these studies have problems with the method such as use of bulky 

lipid fluorescence dyes that can alter physical properties of the model membrane 

formed and discrepancies between studies [23, 73, 74]. However, there are 

techniques to examine membrane asymmetry not necessarily to determine flip-

flop rates. For instance characterization of membrane asymmetry can be 

evaluated by measuring the asymmetric surface potential via capacitance 

measurements, which has been performed and investigated by several groups 

[75-79]. However, utilizing capacitance measurements of asymmetric 

membranes can be applied over time to determine flip-flop rate. To further 

understand the complexity of cell membranes, there are studies investigating the 

effects of membrane asymmetry on the behavior of transmembrane pore and 

channels with respect to bilayer leaflet compositions [34, 80-84]. In a study by 

Hall, alamethicin appeared to induce a voltage-dependent lipid exchange 

between leaflets of a bilayer [81]. Furthermore, Vodyanoy et al. found membrane 

asymmetry can alter the asymmetry of alamethicin current-voltage curve [83].  

 

Implementing asymmetric lipid bilayers creates a more biological relevant model 

systems, and it enables the addition of a “sidedness” to the system that can be 

used to store, convert, and dissipate energy. For example, Zheng et al. 

developed an asymmetric membrane structure that is highly selective of ionic 

transport to create a concentration-gradient driven energy harvesting device [85]. 

Another study used asymmetric pH environments to control ion channel activities 

[86]. More recently there are studies investigating the effects of membrane 

asymmetry on the behavior of transmembrane pore and channels with respect to 

bilayer leaflet compositions [34, 80]. 
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1.5 Microfluidics for protoplast cell study assays   

Microfluidic devices are a relatively new method for studying the behavior and 

activities of cells; gaining popularity due to miniaturization and high-throughput 

capabilities. Cell-based microfluidics has focused primarily on cell culture growth 

and morphology [87], protoplast fusion (e.g. electrofusion and chemically-induced 

fusion) [88], dynamic environments and gradients, strain characterization and 

high-throughput analysis. For these studies, cells are typically captured in large 

chambers or flown through wide channels. Further advancements can be made 

for the single cell capture, analysis, transfection, and gene expression of 

individual cells, particularly in the field of plant biotechnology.   

 

Plant cell cultures typically require large volumes of media and it is difficult to 

maintain protoplast cultures. Studies of maintaining cultures in microfluidic 

devices show that cells remain viable for engineering purposes [87, 88].  In one 

study of tobacco protoplasts, healthy protoplasts were captured in a microfluidic 

channel and the culture medium was injected by a syringe pump at 50 to 100 

µL/hr [87].  The protoplasts began to divide after 2 days of culture and formed a 

microcolony at 2 weeks.  Cell division was found to occur 3 days earlier in the 

PDMS channel than in a petri dish due to the easier diffusion of nutrients 

throughout the channel.  Wu et. al. conducted a similar study with tobacco 

mesophyll protoplasts and found similar results of cell division after 3 days and 

the formation of small cell masses after 6 days [88].  Following cell mass growth, 

PEG-fusion of protoplasts required 3-5 min with an efficiency of 28.8%.  The 

success of these attempts illustrates that microfluidic devices provide an 

excellent platform for a wide range of cell-based studies: including growth and 

division, high-throughput screening, transformation and gene expression, and 

biomimicking.   
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Transformation of plant cells allows for the altering of DNA with the purpose of 

giving the plant a new and useful trait.  There are many methods for introducing 

the new segment of DNA to be inserted in the plant chromosome, all of which 

start with transfecting a single cell which can then be regenerated into full plants.  

Some of the methods for plant cell transformation, including PEG-mediation, can 

only be done with protoplasts. Transformation of protoplasts has a higher 

efficiency than cells with intact cell walls due to the lack of the thick barrier; 

however, the efficiency is still very low in many plant  species [89-91].  Traditional 

methods of protoplast transformation are limited by a difficulty in obtaining high 

concentrations of viable protoplasts, low transformation efficiency, the necessity 

for a large quantity of DNA, and inconsistent results across species [89-93].    

 

Microfluidics can help overcome these disadvantages by system miniaturization, 

enhanced efficiency, and the ability to study single cell transformation.  The use 

of a microfluidic device allows for fewer protoplasts, (one cell per trap instead of 

1x106 protoplasts/mL) and DNA, which is often expensive and difficult to 

produce.  By adding traps to the design of the device, individual protoplasts are 

captured for focused study at the single cell level of transformation. The 

advantage of being able to study single cell transformation is a closer 

examination of protein expression and the collection of proteins secreted from 

the plant protoplasts.   

1.6 Gaps and objectives  

1.6.1 Scientific gaps 

We define the following scientific gaps:  

 

Gap 1. To date, many of the studies involving synthetic lipid bilayers only include 

a single DIB. The most common DIB assembly method employs manual pipetting 

of aqueous volumes to form droplets, followed by positioning droplets to 
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encourage contact-initiated bilayer formation. However, manually dispensing and 

arranging droplets is best suited for creating DIBs with droplets larger than 

100µm in diameter (>~50nL) due to the minimum dispensing volume of a pipette 

(~50-100nL) and the difficulties in individually manipulating droplets smaller than 

100µm. A manual approach can also introduce unwanted variability in droplet 

size, contact area, and the quality of the lipid monolayer at the surface of a 

droplet through the use of instruments to position droplets. Therefore there is a 

technical need for an automated high-throughput droplet generation and 

arrangement system to create an array of DIBs, which can be electrically 

interrogated, in an enclosed substrate. With this high-throughput DIB system on 

hand, it would be straightforward to investigate numerous basic lipid bilayer 

studies and membrane-mediated processes with greater efficiency and statistical 

significance. 

 

Gap 2. In order to achieve a more biologically relevant model cell membrane, 

studies of lipid asymmetry are of high interest. For instance, the influence of 

bilayer composition on flip-flop rates is not well understood. Also, the effects of 

peptides on the disruption of asymmetric lipid membranes and intramembrane 

potential are not well known due to technical challenges in both assembling and 

characterizing the asymmetry of lipid membranes. 

 
Gap 3. While there are microfluidic devices capable of single cell capture and 

analysis such as drug screening and cell division, there is currently no efficient 

approaches to perform and study gene transformation on individual plant 

protoplast cells. The ability to isolate and transform single cells within an 

automated microfluidic array would thus greatly improve our ability to study gene 

transformation on an individual cell basis, with greater spatial and temporal 

resolution of each cell’s response, and enable post-collection of successfully 

transformed cells to grow whole plants containing specific genes. 
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1.6.2 Research objectives  

The following objectives attempts to address the scientific gaps mentioned 

above:  

 

Objective 1 (addressing Gap 1). Use an equivalent electrical circuit modeling 

approach to design a self-contained microfluidic device capable of generating 

monodisperse lipid-encased droplets and routing the droplets to predetermined 

locations to form an array of DIBs.  The device needs to enable the collection of 

droplets at every trap in the array, and minimize the hydrodynamic pressure 

developed across trapped droplets to prevent unwanted droplet release from 

traps or disrupt the resulting DIB, and be scalable in an array layout. 

 

Objective 2 (addressing Gap 1). Design and fabricate integrated thin-film 

electrodes within the same droplet generation and trapping microfluidic device 

fabricated in Objective 1 to permit simultaneous electrical characterization of 

multiple droplet interface bilayers to improve the efficiency of studying membrane 

properties and peptide insertion.   

 

Objective 3 (addressing Gap 2). Incorporate a method to generate alternating 

droplets to form asymmetric DIBS in the microfluidic device from Objective 1&2. 

Then, electrically characterize the intramembrane potential between bilayers 

containing asymmetric zwitterionic phospholipid leaflets (i.e. DPhPC and 

DOPhPC). This in situ measurement technique will be applied for the first time on 

an array of asymmetric DIBs to study lipid asymmetry versus time and in the 

presence of peptides.  

 

Objective 4 (addressing Gap 3). Design and fabricate a microfluidic system for 

systematic single cell capture of plant protoplast cells for the purpose of DNA 

transformation. A similar resistive modeling approach used in Objective 1 will be 

applied to design traps and array layout, and provide guidelines for device 
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operation conditions such as flow rates to maintain appropriate pressure 

throughout the system to minimize cell squeeze through. 
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CHAPTER 2 
EXPERIMENTAL METHODS AND DATA ANALYSIS  

 
This chapter describes experimental methods, as well as methods used in the 

analysis of data, that are generally applied throughout the work described in this 

dissertation. 

2.1 Materials for lipid bilayer formation  

2.1.1 Common materials  

The following phospholipids were used in these studies remained in powder form 

and stored at -20°C until further use: 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC, Avanti Polar Lipids), 1,2-di-O-phytanoyl-sn-glycero-

phosphocholine (DOPhPC, Avanti Polar Lipids), glyceryl monooleate (GMO) 

(Sigma Aldrich). Alamethicin (Alm) from Trichoderma viride is obtained in powder 

form from A.G. Scientific. 

 

Sodium chloride (NaCl), 3-(N-morpholino)propanesulfonic acid (MOPS), sodium 

hydroxide (NaOH), ethanol, squalene, hexadecane, tetradecane are acquired 

from Sigma Aldrich. Unless otherwise stated, aqueous buffer is prepared by 

titrating 1 M NaCl, 10 mM MOPS stock solution with 0.5 M NaOH solution to 

achieve pH 7.4.  

2.1.2 Preparation of liposome and peptides  

DIB formation in these studies are performed either lipid-in the aqueous phase or 

lipid-out in the solvent phase. The placement of lipids is stated for each study. 

For experiments using lipid-in, the lipids are dissolved to a concentration of 2 

mg/mL in aqueous buffer to create stock solutions of multilamellar vesicles. 

Lyophilized powder is dissolved in aqueous buffer solution followed by five 

freeze/thaw cycles. Then, aliquots of the prepared stock solution is extruded 
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through either an Avanti MiniExtruder with Whatman 100 nm polycarbonate filters 

or 100 nm LipX Extruder (T&T Scientific) to create unilamellar liposome solution 

that is stored at 4 °C. For lipid-out, lipids are dissolved in the organic phase at a 

concentration of 2 mg/mL. The oil phase used is stated for each study.  

 

Alamethicin, an antimicrobial peptide from the fungus Trichoderma viride is 

dissolved in ethanol at 10 mg/mL and diluted with aqueous buffer to a final 

concentration of 2.5 mg/mL to create a stock solution that is stored at −20 °C. 

For DIB experiments with alamethicin, the stock solution is diluted to 25 µg/mL 

with buffer and then added to 2 mg/mL unilamellar liposome solution to achieve 

the desired final alamethicin concentration. All peptide/lipid stock solutions are 

stored at 4°C and used within 2 weeks. 

2.2 Microfluidic device design and fabrication   

2.2.1 Microchip fabrication   

A single T-junction or two opposing T-junction is used for droplet production. The 

incoming droplet stream is routed through microchannels and captured using 

series of hydrodynamic traps branching from the main channel. Each trap has an 

area designed to capture droplets serially with bleed valves that serve to direct 

the droplets into the vacant trap without allowing the droplets to escape after 

capture. Bleed valves are spaced such that the trapped droplets are close 

enough to connect to form a DIB. The device dimensions are tailored for 125 µm 

diameter droplets.  

 

The microchips are fabricated using standard photo- and soft-lithography 

techniques.[94] Briefly, a silicon wafer is spin-coated with photoresist and 

exposed to UV light through a chrome photomask using a photolithography 

aligner such that unmasked areas are cross-linked. Then, a deep reactive-ion 

etching process is employed to further etch the silicon wafer to a depth of 125 
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µm. After the master wafer is stripped of remaining photoresist and silanized to 

prevent adhesion during soft-lithography, uncured Sylgard 184 (Dow-Corning) 

PDMS (10:1 wt-wt ratio of base to curing agent) is poured over the wafer, 

degassed, and baked for at least 2 hours at 80°C. Cured substrates are sliced 

and peeled off the master wafer. Inlet and outlet access holes are pierced using 

a 0.75 mm diameter biopsy punch. The PDMS substrate is bonded to a PDMS 

coated glass cover slide or a slide with deposited thin-film electrodes after an 

oxygen plasma treatment. The sealed devices are baked at 80°C for at least 48 

hours to create a hydrophobic environment. Figure 9 shows a schematic 

summary of device fabrication once a master wafer is made.  

2.2.2 Thin-film electrode fabrication  

Electrodes are placed strategically such that each pad is directly under the 

trapped droplet. Similar to the microfluidic fabrication, a chrome photomask with 

the desired electrodes design is developed followed by photolithography with a 

 
 

 
Figure 9. Schematic of microfluidic fabrication. 
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glass wafer (Borofloat). A single electrode pathway includes a 30x30 µm droplet 

pad with leads extending in width increments connecting to a large 3x3 mm pad.  

 

A dual gun electron beam evaporation chamber is used to deposit 10 nm 

adhesive layer of chrome and 300 nm of silver onto the glass wafer. Next, lift-off 

in acetone and isopropyl alcohol is performed to remove unattached metals. Prior 

to bonding with PDMS microchannels, bleach is pipetted onto the 30x30 µm 

electrode pads to form silver-silver chloride reversible electrodes. Chloride 

exposure is limited to less than 30 seconds to prevent over-bleaching. Then, the 

electrodes are thoroughly washed with deionized water. Microchips undergo 

plasma oxidation, bonded to PDMS, and baked at 80°C for at least 48 hours. 

Then, silver wire is soldered onto the 3x3 mm pads in order to connect to the 

patch clamp amplifier. Figure 10 shows the summary of the electrode fabrication 

process.  

 

 

 
Figure 10. Summary of electrode fabrication for encapsulated DIBs.  
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2.2.3 Device operations  

A dual syringe pump (Gemini 88, KD Scientific) is used to control the flow rates 

of the oil and water injections. PTFE tubing and 23 gage blunt stainless steel 

needles are used to connect syringes to inlet ports in microfluidic device. Images 

are obtained using a CCD camera (QImaging QIClick) connected to an inverted 

microscope (Olympus IX51). The device is also reusable and can be cleared via 

simple oil backwashed through the outlet.    

2.3 Electrical measurements to monitor bilayer formation, 
quantify membrane properties, and peptide insertion   

2.3.1 Electrical characterization of a bilayer 

The equivalent electrical circuit for a single lipid bilayer is a simple RC circuit. As 

described in Section 1.2.1, the bilayer can be modeled as a resistor and a 

capacitor in parallel (Figure 11A). Electrical measurements are used to monitor 

the formation of a DIB on top of thin film electrodes. As a DIB begins to form and 

approach equilibrium, capacitance of the interface also begins to increase and 

stabilize. Continuous application of a triangular voltage waveform (Figure 11B) 

results in a square current waveform whose amplitude is proportional to the area 

of the bilayer as shown in Section 1.2.1 Equation 3. Thus, square-wave 

measurements confirm bilayer formation (Figure 11C) and provide a measure of 

the bilayer area. Bilayer area (A) can be computed using a known value for the 

membrane specific capacitance (CM) since A=C/CM. 

2.3.2 Electrical recordings 

The electrical current of the lipid bilayers are monitored using an 8-channel patch 

clamp amplifier (Triton, Tecella LLC) and TecellaLab software to digitally control 

the applied voltage to the sensing electrode and measure the induced currents in 

the network. Each electrode is connected to a separate measurement channel on 

the amplifier. A picture of a device connected to the amplifier is shown in Figure 
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12. A triangular voltage waveform (40 mV, 50 Hz) is applied as needed on 

independent electrodes to monitor bilayer capacitance. Measured current is 

sampled at 2 kHz or 20 kHz for alamethicin, filtered at 1 kHz using a low-pass 

filter, and digitized using 16-bit A/D conversion within the Triton. Local shielding 

with aluminum foil around the wired electrodes attached to the amplifier is used 

to reduce the noise. The calculated RMS noise in all experiments is less than 

±10 pA, and we observe that the noise does not increase when the syringe pump 

is running and solution is flowing through the channels.  

2.3.3 Cyclic voltammetry to measure alamethicin insertion  

Alamethicin (Alm) insertion is observed in response to applied transmembrane 

voltage using electrical measurements of current through the membrane. 

Alamethicin insertion at the macroscopic level is quantified via cyclic voltammetry 

(CV), a method that involves linearly ramping the applied voltage while 

 
Figure 11. Electrical membrane characterization. (A) Schematic of an 
equivalent electrical circuit for a DIB on top of thin film electrodes. (B) 
Schematic of a triangular input voltage waveform. (C) The square wave current 
waveform used to measure membrane capacitance and area.  
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measuring current. CV waveforms are programmed in TellecaLab, which results 

in digitization of the voltage sweep. Scans are conducted in a step-wise fashion 

at an effective rate of 10 mV/sec between +170 mV and -170 mV. 

 

 

 
Figure 12. Experimental set-up of microchip with electrodes attached to a patch 
clamp amplifier.  
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CHAPTER 3 
A METHOD FOR ENCAPSULATING AN ARRAY OF DROPLET 
INTERFACE BILAYERS WITH ELECTRICAL MEASURMENTS   

 

This chapter1 addresses Objective 1 and 2 aiming towards an automated high-

throughput droplet generation and arrangement system to create an array of 

DIBs, which can be electrically interrogated, in an enclosed substrate. With this 

high-throughput DIB system on hand, it would be straightforward to investigate 

numerous basic lipid bilayer studies and membrane-mediated processes with 

greater efficiency and statistical significance. As part of Objective 1, we used an 

equivalent electrical circuit modeling approach to design a self-contained 

microfluidic device capable of generating monodisperse lipid-encased droplets 

and routing the droplets to predetermined locations to form an array of DIBs.  

This device is able to collect of droplets at every trap in the array, and minimize 

the hydrodynamic pressure developed across trapped droplets to prevent 

unwanted droplet release from traps or disrupt the resulting DIB. Also, we 

addressed Objective 2 through design and fabricate integrated thin-film 

electrodes allowing simultaneous electrical characterization of multiple droplet 

interface bilayers to improve the efficiency of studying membrane properties and 

peptide insertion.  

 

                                            
 
 
 
1 Note: This chapter is reproduced from our published work: Nguyen, M., Srijanto, B., 
Collier, C.P., Retterer, S.T., Sarles, S.A., Hydrodynamic trapping for rapid assembly and 
in situ electrical characterization of droplet interface bilayer arrays. Lab Chip, 2016, 16, 
3576-3588. 
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Here, we demonstrate a new, low-volume microfluidic system that automates 

droplet generation, sorting, and sequential trapping in designated locations to 

enable the rapid assembly of arrays of DIBs. The channel layout of the device is 

guided by an equivalent circuit model, which predicts that a serial arrangement of 

hydrodynamic DIB traps enables sequential droplet placement and minimizes the 

hydrodynamic pressure developed across filled traps to prevent squeeze-through 

of trapped droplets. Furthermore, the incorporation of thin-film electrodes 

fabricated via evaporation metal deposition onto the glass substrate beneath the 

channels allows for the first time in situ, simultaneous electrical interrogation of 

multiple DIBs within a sealed device. Combining electrical measurements with 

imaging enables measurements of membrane capacitance and resistance and 

bilayer area, and our data show that DIBs formed in different trap locations within 

the device exhibit similar sizes and transport properties. Simultaneous, single 

channel recordings of ion channel gating in multiple membranes are obtained 

when alamethicin peptides are incorporated into the captured droplets, qualifying 

the thin-film electrodes as a means for measuring stimuli-responsive functions of 

membrane-bound biomolecules. This novel microfluidic-electrophysiology 

platform provides a reproducible, high throughput method for performing 

electrical measurements to study transmembrane proteins and biomembranes in 

low-volume, droplet-based membranes. 

3.1 Introduction  

There are several methods available for generating and arranging lipid-coated 

droplets to form DIBs. The most common DIB assembly method employs manual 

pipetting of aqueous volumes to form droplets, followed by positioning droplets to 

encourage contact-initiated bilayer formation. Examples of ways to arrange 

pipetted droplets include the use of micromanipulator(s) to push and pull droplets 

via wire-type electrodes,[28] rigid, solid substrates containing adjacent wells for 

droplet positioning,[29, 95] mechanical force to control the compression of a solid 

substrate and regulate inter-droplet contact,[35] applied electrical fields to slide 
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droplets across a dielectric surface,[96, 97] and even magnetic fields to lift and 

place droplets containing magnetic species.[51, 98] While many of these 

techniques enable precise control over droplet position and even bilayer 

area,[32, 33, 99, 100] manually dispensing and arranging droplets is best suited 

for creating DIBs with droplets larger than 100µm in diameter (>~50nL) due to 

the minimum dispensing volume of a pipette (~50-100nL) and the difficulties in 

individually manipulating small droplets. 

 

Flowing oil and water through microfluidic junctions provides an alternative 

means to generate aqueous droplets in oil.[54-56] While there are multiple 

geometries for microfluidic droplet generators,[54, 55] the droplet formation 

process is generally based on the relative flow rates of oil and water supplied to 

the device and on the dimensions of the channel(s), which typically range from 1 

µm to several hundred micrometers in width and height. This approach is 

specifically well suited for generating continuous streams of low-volume 

(including fL and pL volumes) droplets. Once droplets are formed in a 

microchannel, hydrodynamic trapping can be employed to capture droplets from 

a moving stream and place them in stationary locations.[101-103] For instance, 

circular-shaped traps[57, 62, 70, 104] and pillars/rails arrays[58, 59, 63, 64] have 

been used to arrange lipid-coated water droplets to form DIBs within microfluidic 

devices.  

 

Bilayer formation and membrane properties are often confirmed and quantified, 

respectively, in DIBs (as well as for other model membrane systems) using 

electrical measurements of membrane capacitance and resistance.[28, 32, 61, 

68] Electrophysiology measurements are also standard protocol for recording ion 

transport through transmembrane peptides and proteins.[28, 105-107] DIBs 

formed with large droplets (e.g. ~1 mm diameter) allow for wire-type electrodes to 

be inserted into the droplets for applying voltage and measuring current across 

the interface. However, droplets formed in a microfluidic platform can be much 
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smaller in size (e.g. from 2-350 µm diameter[54]) than ones that are manually 

dispensed and often remain within the sealed device, which complicates 

electrode access for electrical measurements.[105] As a result, imaging 

techniques have primarily been used thus far to confirm bilayer formation and 

quantify mass-transport across membranes for DIBs in microfluidic devices.[57-

59, 63, 64, 104] 

 

Integrating electrodes into microfluidic platforms for membrane electrophysiology 

has received significant attention in recent years. For example, Behrends, et al 

developed microfluidic, parallel patch-clamp systems with thin-film surface 

electrodes for enabling simultaneous electrophysiology of multiple cells suctioned 

at separate locations in the device.[108-110] Separately, thin film electrodes 

have been used in microfluidic devices to electrically interrogate suspended lipid 

bilayers (SLBs) formed across the pores of a dividing substrate[111-116] or 

between the walls of microfluidic channels.[117] While some of these platforms 

were connected to multi-channel current measurement devices that permit 

simultaneous measurements of multiple membranes,[113-116, 118, 119] others, 

including a study of a 2-DIB array using thin film electrodes, were paired with 

digital switching circuits to cycle a single-channel measurement device across 

multiple electrode pairs.[97, 112, 117] 

 

Therefore while a few studies have included simultaneous measurements of 

multiple DIBs,[118, 120] none has demonstrated this capability within a 

microfluidic device. To address this gap, we present a new microfluidic 

architecture that is capable of producing and routing low-volume aqueous 

droplets to predetermined locations for automated DIB formation and which 

features thin-film surface electrodes located beneath droplet pairs for enabling in 

situ electrical interrogation of multiple DIBs within the sealed device. A circuit-

based modeling approach is employed to design and arrange hydrodynamic 

traps that are used for immobilizing droplets and enabling DIB formation at 
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predetermined locations. Experiments performed on prototype devices fabricated 

based on model predictions demonstrate the ability to form multiple sets of DIBs 

within an enclosed device. By connecting the built-in electrodes to a multi-

channel patch clamp amplifier, we show for the first time in a microfluidic device 

the ability to simultaneously assess bilayer capacitance during successive DIB 

formations and record stochastic, voltage-dependent ion channel gating in 

multiple membranes. 

3.2 Resistive circuit model for direct trapping and droplet sorting 

Our understanding of droplet behavior within a microfluidic device is guided by 

relating fluidic systems to electrical circuits. Using an electrical circuit analogy, a 

resistive flow model is developed to determine appropriate dimensions for the 

fluid channels used for droplet sorting and trapping as well as for designing the 

layout of a multi-trap array within the encapsulating substrate. In a single-phase 

laminar flow, the pressure difference along a section of a microchannel is equal 

to the product of the applied volumetric flow rate, Q, and the hydrodynamic 

resistance of the channel, R. The hydrodynamic resistance for Poiseulle flow in a 

rectangular channel [101] is given by  
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where L, w, and h are the length, width, and height, respectively, of a particular 

segment of the channel, and µ is the viscosity of the carrier fluid (i.e. oil for a DIB 

system). Assuming that the presence of dispersed droplets in the oil does not 

significantly affect the relationship between pressure and applied flow rate, 

Equation 4 can be used to design channels of specific dimensions to dictate the 

flow resistance in regions of a device and thereby affect the course of droplet 

travel.  

 

We seek to obtain a device that utilizes steady fluid flow to place trains of 

separated droplets into sequential hydrodynamic traps, which serve to position 
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adjacent droplets close enough to enable spontaneous bilayer formation. A 

single hydrodynamic trap can be designed to accommodate two droplets to form 

one DIB, or it can be configured to host more than two droplets to enable the 

formation of a linear multi-membrane DIB series. In our device, a trap will consist 

of a rectangular compartment that resides adjacent to the main flow channel, 

which carries lipid-coated droplets in a stream of oil. Opposite entry from the 

main channel, each trap also features narrow exit channels, which we refer to as 

bleed valves.  

 

The trap design and its ability to collect droplets carried in the main stream are 

thus based on the hydrodynamic resistance of the trap relative to that of the 

bypassing main channel. For instance, a droplet will prefer to enter an empty trap 

that has a hydrodynamic resistance, RT, less than that of the resistance offered 

by bypassing the trap and flowing through the main channel, RM. First, note that 

we approximate the hydrodynamic resistance of an n-droplet trap by dividing the 

trap into n-parallel lanes (from main channel to bleed valve) of equal 

hydrodynamic resistance (Figure 13A). These lanes represent the contribution to 

total flow resistance as would be experienced by a droplet as it travels across 

each lane of the trap from the main chain to a bleed valve.  The flow resistance 

of each lane in a trap is calculated by  

 RT = Ra + Rb , (5) 

where Ra is the portion of lane resistance due to the rectangular body of the trap 

and Rb represents the contribution to lane resistance from the bleed value. In this 

way, the total resistance for an unfilled, two-droplet trap would be given by RT/2, 

which is the parallel addition of two equal lane resistances. While a standard trap 

is designed to house two droplets for 1 DIB, the number of lanes in a trap can be 

expanded to capture more than two droplets to form multiple interfaces. This 

expansion affects the total hydrodynamic resistance of the empty trap. For 

example, the unfilled trap resistance is RT/3 for a three-droplet trap.	 
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When RT is less than RM, the first droplet in an incoming droplet train will divert 

from the main channel and come to rest in the hydrodynamic trap near one of the 

bleed valves (Figure 13B). If the total flow resistance through the remaining 

lane(s) of the trap is still less than that offered by the main channel, a second 

droplet will also preferentially flow into the open half of the same trap (Figure 

13C). The bleed valves halt the droplets within the trap as long as the resulting 

pressure drop that develops across a droplet blocking a bleed valve does not 

cause the droplet to squeeze-through and escape. Specifically, the pressure drop 

across a filled trap must remain less than the Laplace pressure, ΔPL, across the 

droplet residing at the entrance of a bleed valve, which can be calculated via 

 ΔPL = 2γ
1
wb

−
1
wt

#

$
%

&
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(
, 
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where, γ is interfacial tension of droplet-oil interface and wb and wt are widths of 

the bleed valve and trap, respectively.[101] Once a 2-droplet trap fills, the 

 
Figure 13. Schematic of hydrodynamic flow resistances in a single, 2-droplet 
trap. (A) Diagram of an unfilled trap designed for two droplets, where each lane 
of the unfilled trap has an equivalent resistance of Ra+Rb. (B) Droplet 1 enters 
the trap when the total trap resistance, RT, is less than resistance of the main 
channel, RM. (C) Droplet 2 enters the open lane of the same trap if RT through 
the remaining portion of the trap is still less than RM. (D) RT becomes greater 
than RM once two droplets are trapped, causing following droplets to bypass 
the filled trap.   
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presence of droplets at the entry to all bleed valves causes the flow resistance to 

increase significantly. As a result, the third droplet in the train bypasses the filled 

trap, preferring to remain in the main channel, which now offers a relatively lower 

resistance to flow (Figure 13D). Thus, an open trap behaves like a closed switch 

in an electrical circuit (with low resistance and high flow rate), while a filled trap 

acts like an open switch (with high resistance and low flow rate). This mechanism 

for droplet placement is known as direct trapping,[101] because the relatively 

lower trap resistance enables droplets to directly enter vacant traps and detour 

filled traps.  Indirect trapping is associated with open traps that exhibit a higher 

relative resistance compared to the main channel.[101] For these, filling of traps 

occurs when droplets present in a section of the main channel pass the trap 

momentarily increase its local resistance, thereby redirecting successive droplets 

into the open trap. 

 

The concept of direct trapping is essential for automatically filling many traps in a 

device with multiple droplets for DIB array formation. However, because the 

hydrodynamic resistance offered by both the main channel and a trap depend on 

the connection of these sections to additional traps or channels located 

downstream, designing a device to operate in a direct trapping mode must 

consider the entire fluidic resistance of the device. This information is especially 

necessary for understanding how to configure arrays of traps such that large 

networks of DIBs can be efficiently and quickly assembled in a microfluidic 

device. Thus, we develop a resistive circuit model that enables calculation of fluid 

flow rates and pressure drops between channel intersections for characterizing 

the direct trapping performance of a multiple-trap device.  

 

For this analysis, we consider three configurations of trap arrays that include both 

parallel and serial arrangements of traps within a network (Figure 14A-C). In 

Model 1, the main channel connects the entrances to successive traps arranged 

in parallel before looping back to reconnect the outlets of each trap before exiting 
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the device—we refer to the main channel as “returning” to the traps before exit. 

The second model is similar to Model 1; however, there is no return path of the 

main channel. Instead a parallel channel that conducts between the exits of the 

traps and intersects the main channel at the end of the trap array is used to route 

excess oil flow away from the traps. Finally, Model 3 showcases a serial trap 

layout, where each trap has its own return path for excess oil that intersects the 

main channel prior to the next trap.  

 

To enable sufficient comparisons of these layouts, values of channel resistances 

used in the modeling analysis are based on identical rectangular traps, each with 

a total width of 240 µm and a length of 130 µm, and using equal bleed valves 

that are 35 µm wide and 20 µm long.  These dimensions reflect the approximate 

sizes need to capture a pair of 125 µm diameter droplets in a trap. Sections of 

main channel are assigned equal widths of 125 µm and all channels have a 

depth of 125 µm. These dimensions correspond to equivalent resistances of 770 

Pa-s/µL and 1.3x103 Pa-s/µL for RT and RM, respectively. 

 

To evaluate each layout, we write Kirchoff’s Current Law for fluid flow at each 

channel intersection in an array.  This establishes a set of coupled equations as 

given by 

 R[ ]P =Q , (7) 

where [R] represents a square coefficient matrix of reciprocal hydrodynamic 

resistances (i.e. conductance values) between nodes, P is a column vector of 

unknown absolute pressures at each node, and Q is a column vector of known 

applied flow rates. Analysis is performed on arrays of up to 100 traps by 

developing the appropriate form of Equation 7 for each of the three array types 

and by applying a fixed input flow rate, Q1, at the intersection of the main channel 

and the entry to trap 1. Solving these matrix equations thus allows us to compute 

the pressure distribution in the array (i.e. analogous to the voltage at each node) 
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and calculate for each trap in an array the ratio of fluid flow entering the trap to 

that which bypasses the trap, which allows us to determine if direct trapping 

occurs. These calculations are performed sequentially for a decreasing number 

of traps in an array to predict how changes in trapping mode and pressure 

distribution can arise from sequential trap filling. Recall that once a trap is filled, it 

acts like an open circuit, which thereby eliminates it from the circuit. Additional 

details regarding the general form of these matrix equations and sample 

MATLAB scripts for the three models are provided in Section A1 of the Appendix  

 

 
Figure 14. Schematics and equivalent circuits for three trap array layouts: (A) 
Model 1 includes a main channel that returns to connect every trap’s bleed 
valves; (B) Model 2 features a lower channel that reconnects to the upper main 
channel at the end of the array; and (C) Model 3 includes an individual return 
line for each trap. (D) Calculated flow rate ratio through an empty trap versus 
the main channel as a 100-trap system is being filled. The unshaded region 
identifies when traps fill via direct trapping, while the shaded region identifies 
those filled via indirect trapping. (E) Estimated pressure drop within a filled 
trap versus location in the array, where the shaded region identifies locations 
in the array where droplets would be squeezed through the bleed valves due to 
excessive pressure. 
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The flow rate within each section of a multi-trap model is computed by dividing 

the difference in absolute pressure between nodes by the hydrodynamic 

resistance of that section. Figure 14D shows the ratio of flow rate entering the 

first trap of a section of successive unfilled traps to the flow rate bypassing that 

first trap. This calculation is performed sequentially by varying the number of 

filled traps in a 100-trap model. Therefore, the flow rate ratio reflects the 

preference of a droplet approaching the first unfilled trap to either enter the trap 

or bypass it. A ratio greater than one indicates direct trapping as marked by the 

unshaded region in Figure 14D. Only Model 3 provides constant direct trapping 

during complete filling of the 100-trap array. This result is due to the fact that the 

pathway exiting each trap rejoins the main channel prior to the next trap, which 

effectively decouples the ratio of RT to RM of a trap from the remaining portion of 

the array.  Said differently, only the local channel geometry affects the resistance 

ratio, which ensures direct trapping is maintained across all traps. Model 1 and 

Model 2 also exhibit a flow rate ratio greater than one for small numbers of filled 

traps. However their ratios of flow rates decrease steadily as traps fill, caused by 

an increase in effective trap resistance that results when the number of unfilled 

traps in the array decreases (i.e. fewer traps in parallel produces a higher 

effective resistance of flow through traps). Figure 14D shows that the threshold 

for transitioning between direct and indirect trapping is 20 and 15 traps, 

respectively, for these two models. 

 

The pressure drop across each trap is computed by determining the difference in 

absolute pressure between the entrance and exit nodes of the trap. This 

calculation is performed for all traps in a filled array to determine if droplet 

squeeze-through will occur (i.e. during filling of successive traps when the 

applied flow rate at the inlet is nonzero) for each model (Figure 14E). Arrays of 

filled traps are considered specifically since this condition represents the highest 

absolute pressure a system can experience and corresponds to when droplets 

could be squeezed through the bleed valves. The following comparison is based 
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on a filled array consisting of 100 equal traps, and the occurrence of squeeze-

through is assessed when the pressure drop across a trap is higher than a 

Laplace pressure of 84 Pa (shown as the shaded region) determined using a 

droplet surface tension of 2 mN/m and trap and bleed valve widths of 130 µm 

and 35 µm, respectively. 

 

This analysis shows that successive traps arranged in a parallel scheme (in 

Models 1 and 2) display linearly decreasing pressure drops with increasing trap 

number, where the first filled trap in a 100-trap array exhibits the highest 

pressure drop (275 Pa and 148 Pa, respectively) and the last filled trap exhibits 

the lowest pressure drop. Identifying where these two regressions cross the 

critical Laplace pressure of 84 Pa shows the maximum number (counting from 

the end of the series) of traps that can be configured in that way before squeeze-

through occurs. For example, only the last 28 traps in Model 1 will not experience 

droplet squeeze-through the bleed valve—this result can be interpreted as a 

maximum of 28 traps arranged in parallel with a return (as shown by Model 1) 

can be assembled without squeeze-through occurring when all are filled. Model 2 

exhibits a lower pressure profile, with the final 59 traps in the array being able to 

retain the captured droplets. However, in the serial model (Model 3), we find that 

the pressure drop across each trap in the series is equal (~1.5 Pa), which shows 

that the pressure across a filled trap is independent of the remaining number of 

filled traps, and far less than 84 Pa. Thus, while the absolute pressure at the inlet 

to a serial array does increase with increasing numbers of filled traps, the 

pressure across each trap is not large enough to cause squeeze-through. 

Therefore, based on the fact that direct trapping is maintained as traps are 

successively filled and that the pressure across filled traps will not cause 

squeeze-through, a microfluidic device with a serial trap layout is chosen to 

capture droplets and form DIBs in designated traps. 

 



 

38 
 

Production of droplets with uniform diameters and intra-droplet spacing is not 

instantaneous in a microfluidic device, often requiring several minutes of 

continuous injection to reach a steady state. Heterogeneous droplet production is 

problematic because hydrodynamic traps downstream can become filled with a 

variety of sizes and number of droplets, which complicates DIB formation and 

interrogation. Droplets much larger than the specified trap dimensions can also 

overfill the trap as well as clog the main channel, which disrupts the dynamics of 

droplet trapping downstream. Therefore, a pre-trap shunt can be implemented to 

remove undesired droplets from the array prior to droplet trapping. The shunt is 

designed such that when the shunt outlet is open, the shunt offers a lower 

hydrodynamic resistance (RShunt) than that of the trap array (RTrapArray), which 

causes droplets to exit the device via the shunt instead of filling the trap array 

(Figure 15).  Once droplets of desired size are obtained from the T-junction, the 

shunt outlet is manually sealed with tape, causing the droplet stream to now 

bypass the shunt and continue through the main channel to be trapped 

downstream. 

3.3 Resistance based droplet sorting  

Aqueous droplets are generated at a T-junction, where the width of the main 

 

 
Figure 15. Schematic of droplets entering the shunt when shunt resistance, 
Rshunt, is less than resistance of total trap array, RTrapArray, downstream. 
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channel for the continuous oil phase is 125 µm and the minimum width of the 

dispersed phase channel (buffer) is 30 µm. All channels in the fabricated device 

have a depth of 125 µm. With these fixed geometries, we can vary the average 

droplet diameter produced at the T-junction from 70-125 µm by varying the 

relative oil and water flow rates (see Figure A2). Flow rates of 0.4-1 µL/min for oil 

and 0.05-0.5 µL/min for aqueous phase are used to produce 90-125 µm diameter 

droplets, which is the target droplet size for the trap dimensions. The transient 

time required for the device to produce stable droplet sizes from the T-junction 

following a change in the applied flow rates is approximately 5-10 minutes. 

 

From the T-junction, the droplet stream continues through the main channel to a 

point where droplets can either enter the shunt channel or continue through the 

main channel to the trap array as shown in Figure 16A. The fabricated shunt is 

125 µm wide and 2.5 mm long, which yields a resistance of 4.2x103 Pa-s/µL from 

the intersection to the outlet. This value is an order of magnitude less than that 

offered by smallest total downstream resistance created by the 16-trap array, 

which has a value of 4.3x104 Pa-s/µL. Large droplets (i.e. slugs) are discarded 

through the outlet by keeping the shunt outlet open (Figure 16B). The shunt 

outlet is then sealed with tape to enable trapping droplets that are similar 

diameter to the width of the main channel (Figure 16C).  

3.4 Hydrodynamic traps for droplet positioning and bilayer 
formation  

Following the results of our circuit analysis, we fabricated microchips containing 

serial arrangements of either 16 or 40 identical hydrodynamic traps (Figure 16D). 

Like Model 3 in Figure 14C, the fabricated device features individual traps 

arranged in series, where the return channel for each trap re-enters the main 

channel at the entrance to the next trap (i.e. the value of Rm between traps is 

zero). However in the fabricated device, the serially connected traps are 

arranged in a zig-zag pattern rather than a linear arrangement to position more 
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traps in the viewing area of our microscope. Based on these trap dimensions, the 

fluidic resistance of a single lane of an open trap, RT, is computed to be 770 Pa-

s/µL, versus a main channel resistance, RM, of 1.1x103 Pa-s/µL. Since RT<RM, 

the fabricated devices are expected to exhibit direct trapping. Figure 17A-C 

confirms this behavior in a 16-trap microchip, by showing the sequence of filling 

events in which droplets enter traps sequentially. Additionally, we observe no 

droplet squeeze-through in either 16-trap or 40-trap devices, which confirms that 

the pressure drop across the traps remain less than the critical Laplace pressure 

of 84 Pa.  

 

Microfluidic DIBs formed in this work are constructed from either glyceryl 

monooleate (GMO) lipids dissolved in the oil or 1,2-diphytanoyl-sn-glycero-3-

phosphocholine (DPhPC) lipids incorporated as liposomes within the droplets. 

Both lipid types were found to yield stable DIB formation when the continuous 

phase is squalene, indicating that lipid monolayer assembly results in well-

 
Figure 16. (A) Top view of fabricated microchip. (B) Image of T-junction and 
droplets entering the shunt channel when outlet is open. (C) Droplets bypass 
the shunt channel when shunt channel outlet is sealed. (D) Layout of the serial 
hydrodynamic trap array. Each trap is designed for 125 µm diameter droplets, 
and the dimensions satisfy the resistance ratio for direct trapping. 
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packed monolayers around the droplets. Spontaneous bilayer formation between 

neighboring lipid-coated droplets in a trap is identified by the emergence of a 

bright, planar connection between adhered droplets.  For instance, the droplet 

pairs in the three bottom leftmost traps in Figure 17A appear to have formed 

GMO bilayers, whereas the pair of droplets in the upper leftmost trap have not 

yet formed a bilayer since the dark outline of each droplet is still present. 

Successive images of the filling processing show that a droplet enters a trap 

every 1-2 seconds and DIBs form within 2-3 seconds of adjacent droplets landing 

in a trap.  The entire capturing process takes less than 2 minutes to fill 16-40 

traps. Further, images reveal that captured DIBs are stable within the device for 

up to 12 hours after assembly, and we observe very low rupture rates during or 

immediately after trap filling, which indicates that each droplet becomes well 

 
Figure 17. (A-C) Image sequence of GMO-coated droplets being trapped 
sequentially in designated locations with no droplet squeeze-through. (D) 
Hydrodynamic traps are expanded hold multi-bilayer networks such as four 
droplets linearly to form three bilayers. 
 



 

42 
 

coated with a lipid monolayer prior to entering a trap. Note that while a 

hydrodynamic pressure develops across each trap due to continued oil flow, this 

pressure is oriented parallel to the plane of the membrane. As a result, we do not 

believe continual oil flow to affect the stability of the membrane. However, any 

residual pressure-driven oil flow through the bleed valves of a filled-trap may also 

create a localized suction that pulls droplets together.  Membrane rupture and 

droplet coalescence consistently occur after the 12-hour mark as a result of 

significant droplet shrinkage due to evaporation of water into the oil.[121, 122] 

 

Over the course of 10 droplet trapping and DIB formation experiments on 40-trap 

devices (n=400 total traps analyzed), we observed that sequential droplet and 

DIB formation is highly reproducible. Specifically, the number of droplets 

captured in a trap matched the number of bleed valves (e.g. 2 droplets enters a 

trap with 2 bleed valves) in 95% of traps analyzed. The factors that led to a trap 

not containing the correct number of droplets include too low of an oil flow rate or 

too small of a droplet based on the trap dimensions. For instance, a third droplet 

may enter a two-droplet trap and form an additional bilayer if the oil flow rate is 

low (<0.4 µL/min) or if droplet diameters are <90 µm as seen in the second from 

the top, leftmost trap in Figure 17B,C. These conditions, along with a small 

amount of oil still flowing through the bleed valves of a filled trap, can allow for a 

successive droplet to “dip” into an occupied trap and potentially form an 

additional bilayer. Once droplets were captured, successful and stable DIB 

formation occurred in 94% of traps. The success rate was lower than 100% due 

to the fact that neighboring droplets occasionally coalesce to form a large single 

droplet within a trap. When this occurs, the single volume can block only one 

bleed valve, which allows a new incoming droplet to be filtered out of the stream 

and captured to form a new membrane interface, or block both bleed valves, 

such that the trap does not attract a new droplet to form a DIB. 
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The serial arrangement of hydrodynamic traps maintains direct trapping even as 

we increase the number of droplets and bilayers in each trap. Figure 17D shows 

an image of 8 traps in a 16-trap device where each trap has been expanded to 

capture more than two droplets to form serially connected DIB clusters. In this 

device, the main channel resistance is approximately 1.3x103 Pa-s/µL compared 

to a single droplet lane trap resistance of 641 Pa-s/µL. Therefore, droplets 

entering multi-DIB traps maintain the same direct trapping mechanism as before 

and are captured sequentially. Also, the pressure drop across a four-droplet trap 

(~22 Pa) is still less than the critical Laplace pressure required to cause squeeze-

through (Table 1). 

3.5 Electrical characterization of DIB arrays  

Incorporating Ag/AgCl thin-film electrodes onto the glass surface (Figure 18A) 

beneath the droplets provides a complementary method to imaging for 

characterizing DIBs and provides a more-efficient alternative to wire-type 

electrodes inserted into the microchannel.[70] Figure 18B shows the fabricated 

electrode pattern design where each hydrodynamic trap has two electrode pads, 

with one designated as the sensing electrode and one connected to ground. A 

common ground electrode is shared between all eight pairs and is pseudo-

colored red in the image. Electrode pad placement is determined from imaging 

the positions of trapped droplets observed in prior experiments. The total 

Table 1. Hydrodynamic resistances and pressures for empty and filled trap of 1 
and 3 DIBs. 

Scenario RT 
(Pa-s/µL) 

RM 
(Pa-s/µL) 

Q 
(µL/min) 

ΔP 
(Pa) 

Empty trap - 1 DIB 770 1.1x103 1 7.6 
Filled trap - 1 DIB --- 1.1x103 1 18.4 
Empty trap - 3 DIB 641 1.3x103 1 7.17 
Filled trap - 3 DIB --- 1.3x103 1 22 
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resistance of a single thin film electrode path is approximately 204 Ω from the 

droplet pad to connector pad where a cooper wire is soldered. In addition, we 

found the Ag/AgCl thin-film electrodes to be stable during experiments lasting up 

to 15 hours.  During this time, there was no visual degradation when droplets 

containing 1 M NaCl reside on top of the electrodes. 

 

Electrical measurements of adjoined droplets residing on a pair of electrode pads 

is used to characterize both the droplet-electrode interfaces as well as the 

membrane formed between droplets. The passive electrical properties of lipid 

bilayers are well established;[25, 123] the membrane is represented by a 

resistor, Rm, in parallel with a capacitor, Cm. An additional series resistance, Re, 

 
Figure 18. Electrical characterization of microfluidic GMO DIBs: (A) Top view of 
microchip with thin-film electrodes and soldered wires. (B) Image of DIB 
residing on top of thin-film electrodes. Sensing electrodes are those on the 
outer side, while the shared ground electrode in the middle is pseudo colored 
red. (C) Equivalent electrical circuit of a DIB on top of Ag/AgCl thin-film 
electrodes. (D) Current measurements of 8 DIBs measured concurrently show 
increases in current amplitudes that correspond to the growth in bilayer 
capacitances during DIB formation. Currents are induced by a 40 mV, 50 Hz 
triangular waveform voltage. 
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accounts for the electrolyte resistance of the aqueous phases on both side of the 

membrane (Figure 18C). The resistance of a lipid bilayer is often greater than 1 

GΩ, while the electrolyte resistance is typically on the order of 1 kΩ. If the 

droplet-electrode interface is resistive (i.e. the electrode makes direct contact 

with the aqueous interior of the droplet), then the equivalent circuit shown in 

Figure 18C indicates that the dominant electrical impedance between two 

electrode pads is simply given by Rm and Cm. This condition implies that if the 

membrane fails (i.e. droplets coalesce), current flow between electrodes would 

increase significantly due to the lower value of Re. However, if oil were to remain 

between the electrode pad and the droplet, then we expect a non-conductive, 

capacitance to exist at this interface (not shown in Figure 18C). In this case, a dc 

current would remain low upon coalescence because of the capacitive contact 

with the droplets. In this study, we find that droplets form resistive connections 

with the Ag/AgCl electrode pads when n-decane or squalene are used as the oil, 

which is confirmed by a saturation of measured current when a single aqueous 

volume spans two electrodes (not shown). However, capacitive connections are 

established when hexadecane is used as the oil phase. Since electrophysiology 

of membranes typically requires a resistive connection between the electrodes 

and the electrolyte, we perform electrical measurements of microfluidic DIBs in 

squalene.  Squalene is also preferred because it is not absorbed by PDMS. 

 

Membrane formation in a DIB array is assessed electrically by simultaneously 

measuring the currents induced by an equal triangular waveform voltage applied 

between each electrode pair. When droplets are adjacent but not yet adhered, 

the presence of oil between them causes the induced current to be less than the 

background noise. As a bilayer forms, the increase in membrane capacitance 

causes a square waveform current to appear and then increase in amplitude. 

This sequence reflects the initial thinning and subsequent areal growth of the 

bilayer between droplets.[124] Figure 18D shows electrical currents recorded 

during the spontaneous formation of 8 separate GMO DIBs (B1-B8). The 3-5 
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second time lag between onsets of successive DIB formation represents the time 

required for the next trap to fill and then a bilayer to form in that trap. Each 

membrane reaches a stable capacitance within ~10 seconds of the onset of 

thinning. 

 

The raw current traces in Figure 18D are used to compute the nominal 

capacitance and resistance of the bilayer as described elsewhere.[32] In parallel 

to electrical recordings, DIB area is calculated from the projected length of 

contact between droplets, which is measured from images of the droplet pair 

(such as those in Figure 18B) using Image J software. This horizontal length of 

contact, or DIB lateral length,[33, 125] is assumed to be equal to the circular 

diameter of the interface. Table 2 shows the steady-state membrane properties 

obtained from a single experiment for 8 GMO DIBs formed using ~100 µm 

diameter droplets. Nominal capacitance and membrane resistance for an 8-DIB 

array are plotted versus time in Section S3 in the SI. From this experiment on 8 

DIBs, the average membrane capacitance is 11.0±0.02 pF and the average 

membrane resistance is 8.3±0.3 GΩ. The image analysis shows that the average 

length of contact between droplets is 42.7±2.3 µm, yielding an average circular 

area of 1431±4 µm2. Specific membrane capacitance is computed for each DIB 

by dividing Cm by DIB area. The average specific capacitance from the 8 DIBs 

formed in the microchip is 0.771±0.001 µF/cm2, which is within the range of 

values of 0.75-0.81 µF/cm2 found in literature for GMO in squalene.[126] 

Multiplying Rm by area yields an average membrane resistivity of 0.12±0.01 

MΩcm2, which is comparable to typical liquid-supported lipid bilayers.[20, 47] 

 

The low standard deviation in membrane capacitance, resistance, and area 

within a set of 8 DIBs illustrates the uniformity of the droplets produced during a 

given experiment. However, multiple DIB array formation and electrical 

characterization experiments reveal that variations in average droplet size from 

one experiment to another are the primary cause for differences in nominal DIB 
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properties between separate trials. For example, the average bilayer areas 

computed from two additional experiments (each using measurements from 8 

GMO DIBs) are 2176±4 µm2 and 1671±9 µm2, respectively (Table 2). The droplet 

sizes were ~125 µm and ~110 µm in diameter, respectively. However, the 

average values of specific capacitance and membrane resistivity for DIBs formed 

in the three trials shown are very similar, which indicates that DIBs formed in the 

device exhibit consistent values of thickness and permeability from one 

experiment to the next. Tables providing individual bilayer properties from these 

additional trials are presented in section S4 of the Appendix . 

3.6 Parallel single channel recordings  

Alamethicin peptides, which exhibit concentration- and voltage-dependent pore 

formation in membranes,[83] are incorporated into the aqueous droplets to 

demonstrate parallel single-channel recordings in multiple DIBs using the thin-

Table 2. Capacitance, resistance, area, specific capacitance, and normalized 
resistance for GMO DIBs obtained during three separate trials. 
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film electrodes. Voltage-induced gating is recorded with +170 mV applied equally 

across all 8 DPhPC DIBs; we found this level necessary to elicit pore formation 

for a final peptide concentration of 1 µM in the droplets. Simultaneous recordings 

of the resulting currents from all 8 DIBs are shown in Figure 19A. For each 

membrane, we observe that the current stochastically fluctuates between 

discrete levels, which signifies transient pore formation and closure caused by 

peptides in the membrane.[127] Figure 19B,C shows the calculated conductance 

versus time for one of the measurement channels (i.e. one of the DIBs). The 

ratios of alamethicin pore conductance relative to the subconductance level are 

found to be 1, 4.18, 8.73, and 14.07. These values are consistent with previous 

measurements of alamethicin activity in single DIBs.[47, 68, 128, 129] However, 

this platform provides for the first time a reproducible and high throughput 

microfluidic method to simultaneously measure single-channel gating responses 

in multiple DIBs.  

 

In the lipid-in[130] DIB technique used herein, liposomes contained within the 

 

 
Figure 19. (A) Simultaneous recordings of alamethicin gating activity in 8 
DPhPC DIBs at a holding potential of +170 mV. (B) Conductance versus time of 
a single measurement channel. (C) Histogram of conductance values for 
alamethicin channels computed from the multiple gating events in (B). 
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droplets must fuse at the oil-water interface to form a monolayer prior to bilayer 

formation between droplets. Therefore while vesicle fusion after membrane 

formation is one way that alamethicin peptides reach the bilayer, it is highly likely 

that many alamethicin peptides are pre-associated with the monolayers coating 

the droplets prior to DIB formation. Our experiments with alamethicin consistently 

show immediate voltage-dependent ion channel formation after bilayer formation, 

which supports the notion that peptides are present on the membrane surface 

when the membrane forms.  

  

Nonetheless, our microfluidic system to assemble and interrogate arrays of DIBs 

is equally well suited for lipid-out DIB formation, in which the lipids are 

incorporated outside of the droplets in the oil. Placing lipids in the oil ensures that 

the only bilayer membranes in the system are those that separate adjoined 

droplets. Further, incorporating the lipids in a separate phase from 

transmembrane proteins or other water-soluble species provides more control 

over the interactions between these species and the membrane[131, 132] and 

enables easier application of osmotic gradients,[133, 134] since the interiors of 

the droplets do not contain an excess of liposomes or proteoliposomes. 

3.7 Chapter summary and conclusions  

In this work, we designed and fabricated microfluidic devices developed to 

generate, sort, and trap droplets to form DIBs in designated traps. Specifically, 

hydrodynamic traps were designed using an equivalent circuit model to capture 

two, three, or four droplets to form either single bilayers or serially connected 

multi-DIB clusters in each trap. Through the circuit modeling analysis, we were 

able to design multiple-trap arrays that enable sequential droplet trapping and 

subsequent DIB formation between multiple pairs of droplets in a single device. 

The chosen serial configuration provides a constant, low-pressure drop across 

each filled trap, which is far less than the Laplace pressure across a droplet. 

Therefore, captured droplets are retained and are not pushed through the bleed 
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valves after trapping. Trapping order will be especially important in future work, 

where captured droplets of alternating compositions are desired. In contrast, our 

analysis of multi-trap arrays that feature traps arranged in a parallel fashion did 

not fulfill the maximum pressure and direct trapping criteria, which placed limits 

on the number of traps that could be included within a device.  Hence, these 

designs were not fabricated. 

 

We demonstrated the incorporation of thin-film electrodes and in situ electrical 

interrogation of multiple DIBs within an enclosed device. We used these 

conductive traces to simultaneously apply a voltage stimulus and measure the 

resulting currents through as many as 8 DIBs. Combined electrical and optical 

access allowed for measurements of membrane capacitance, resistance, and 

bilayer area for each DIB, and our experiments revealed that arrays of DIBs 

formed from a droplet stream exhibit consistent sizes and values of membrane 

resistivity. Also, parallel single channel recordings of alamethicin peptides were 

obtained via the thin-film electrodes in 8 DIBs at once. This capability for 

simultaneous electrical measurement in multiple DIBs supports the use of 

microfluidics and DIBs for high-throughput, low-volume electrophysiology 

experiments related to studying proteins, performing biosensing, and conducting 

drug-screening assays. 
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CHAPTER 4 

ASYMMETRIC DROPLET INTERFACE BILAYERS WITH IN SITU 
ELECTRICAL MEASUREMENTS  

 
In this chapter2 we address Objective 3 as a step towards understanding the 

effects of peptides on the disruption of asymmetric lipid membranes and 

intramembrane potential, which are not well known due to technical challenges in 

both assembling and characterizing the asymmetry of lipid membranes. 

Therefore as part of Objective 3, we incorporated a method to generate 

alternating droplets to form asymmetric DIBS in the microfluidic device from 

Objective 1&2. Then through thin-film electrodes, we are able to electrically 

characterize the intramembrane potential between bilayers containing 

asymmetric zwitterionic phospholipid leaflets (i.e. DPhPC and DOPhPC). This in 

situ measurement technique is applied an array of asymmetric DIBs to study lipid 

asymmetry versus time and in the presence of peptides.  

 

Here, we present a novel microfluidic platform capable of generating a stream of 

alternating droplet compositions, i.e. A-B-A-B, and sequentially capturing these 

droplets in precise locations to enable the spontaneous formation of synthetic 

lipid bilayers between droplets of different compositions (i.e. A and B) in an 

enclosed substrate. This platform preserves a key feature of the droplet interface 

bilayer method, which allows asymmetric conditions within and across the 

membrane to be prescribed by simply using droplets containing different species. 
                                            
 
 
 
2 Note: A version of this chapter was originally published by Nguyen, M., and Sarles, 
S.A., Microfluidic Generation, Encapsulation and Characterization of Asymmetric Droplet 
Interface Bilayers. ASME Conference Proceedings 2016 – Conference on Smart 
Materials, Adaptive Structures and Intelligent Systems, Stowe, VT, September 28-30, 
2016. 
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In this work, we demonstrate the ability to assemble bilayers consisting of 

asymmetric lipid compositions and, separately, show that alternating droplets 

containing the same lipid type can also be used to control the direction of ion 

channel insertion. In the first study, A and B droplet types contain liposomes 

comprised of different lipid types, which are used to establish an asymmetric 

composition of the leaflets that make up the lipid bilayer. This asymmetry results 

in a dc, non-zero membrane potential, which we measure via membrane 

capacitance versus bias voltage. Also, alamethicin peptides are included in only 

one of the droplet types, which enable voltage-dependent insertion to occur only 

at one polarity. Cyclic voltammetry measurements are performed to confirm the 

direction of insertion of alamethicin channels in bilayers. Also, these results show 

the ability to perform simultaneously electrical measurements on multiple DIB, 

which increases the experimental capacity and efficiency of a microfluidic 

approach. The ability to produce alternating droplets in a high throughput manner 

with electrical access provides a system to investigate the effects of lipid 

asymmetry on the function of membrane proteins in a controlled model system. 

4.1 Introduction 

By targeting properties of live cells found in nature, we can continue to improve 

synthetic material systems. For instance, cell membranes are asymmetric where 

the content on one side of the bilayer is different from the other and the lipids of 

the membrane itself differ from the inner and outer leaflets. One example is the 

plasma membranes of eukaryotic cells where aminophospholipids are primarily in 

the cytosolic leaflet while phosphatidylcholine and sphingomyelin dominate in the 

outer leaflet [71]. Implementing asymmetric lipid bilayers creates a more 

biological relevant model systems, and it enables the addition of a “sidedness” to 

the system.  

 

So far we have developed a device capable using hydrodynamic trapping 

method to capture droplets from a moving stream and housed in a precise 
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location. While efficient, this system lacks the ability to prescribe droplets of 

different compositions for each DIB, which limits the use of these assemblies for 

processes that specifically require asymmetric conditions such as 

transmembrane proteins inserted in only one direction, the presence of a salt 

concentration difference, or the ability to pump species in one direction.  

 

Here, we integrate opposing T-junction droplet generators [135] to enable the 

formation and characterization of asymmetric DIBs between droplets of 

alternating composition. Our revised device utilizes the previously designed 

hydrodynamic traps to form DIBs and thin-film surface electrodes beneath each 

trap to measure transmembrane ion currents in situ in multi-DIBs [136]. In place 

of symmetric droplet compositions, we believe utilizing asymmetric compositions 

of the droplets and leaflets that make up the bilayer will enhance their use for 

sensing and membrane-mediated processes studies, where the introduction of 

species on a specific side of the membrane is often required. To confirm the 

asymmetry of trapped droplets, we use alternating droplet production to produce 

asymmetric lipid bilayers comprised of different lipids in each leaflet and, 

separately, we demonstrate the ability to control the direction of insertion of 

voltage-dependent ion channels formed by alamethicin peptides added to only 

one droplet in each pair. 

4.2 Alternating droplet generation and capture  

We fabricated a PDMS microchip featuring two, directly-opposed T-junctions to 

produce binary streams of aqueous droplets of alternating compositions as 

shown in Figure 20A. The oil-filled main channel is 125 µm wide and the two T-

junctions are 40 µm at their exits. All channels have a depth of 125 µm. The flow 

rates to produce 90-120 µm diameter droplets and create alternating droplets 

range from 0.4-1 µL/min for oil and 0.05-0.5 µL/min for the aqueous phases. The 

flow conditions required to form a steady flow of alternating droplets in a 

microchannel are characterized as a function of the capillary number, Ca, and 
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water fraction, wf  [135]. The capillary number is a measurement of viscous 

stress relative to the interfacial tension stress, such that 

 
γ
µUCa =

, 
(8) 

where U and µ are the flow velocity and dynamic viscosity, respectively of the oil 

and γ is the surface tension at the interface between the aqueous droplet and the 

oil. The water fraction is computed as the ratio of the combined aqueous 

solutions flow rates to the total flow rate of the oil and aqueous phases, given by 

 
Total

Aqueous
f Q
Q

w =
. 

(9) 

 
A continuous stream of alternating droplets is produced from the opposing T-

junctions when both Ca and wf are in appropriate ranges. A prior study 

demonstrated alternating water droplet production in fluorinated oils for Ca 

between 0.001 and 0.05 and wf between 0.2 and 0.8 [135]. Our experiments at 

varying oil and water flow rates confirm that alternating droplets are produced at 

Ca values as low as  0.002 and as high as 0.04 and wf values between 0.4 and 

0.8. Using values of 12 cP and 1.2 mN/m, respectively for the viscosity of 

squalene and the surface tension of a squalene-water interface decorated with 

 
Figure 20. (A) Two opposing T-junctions producing droplet stream of 
alternating compositions. Food coloring is used to distinguish between to 
aqueous fluids. (B) Trapped asymmetric DIBs. 
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lipids [137], the water and oil flow rates mentioned for generating alternating 

droplets 90-120 µm in diameter correspond to a Ca value of 0.005 and a wf value 

of 0.6. 

 

Within the working range of droplet production, increasing the water fraction of 

the total fluid increases the droplet size and decreases the distance between 

adjacent droplets in the stream. Stable alternating droplets are produced at low 

water fractions (<0.8). When Ca is too low, aqueous volumes are dispensed from 

the opposing junctions at the same time and they coalesce upon exiting. 

Conversely, when Ca is too high, the junctions generate continuous streams 

rather than discrete droplets. Furthermore, when the water fraction is too high 

(>0.8), it is difficult to form stable alternating droplet regardless of the capillary 

number due to laminar aqueous flow that results in a single continuous stream. 

 

Alternating droplets are routed to and captured sequentially by a series of 

hydrodynamic traps. The traps in the device were the same design as previously 

described above to ensure direct trapping of droplets during the filling of all traps, 

which is necessary to maintain the alternating arrangements, and to prevent 

droplets from squeezing through the bleed valves once trapped [136]. Figure 20B 

shows a DIB formed between two different aqueous droplets in each trap. This 

result and the observation that the stream of droplets bypassing the traps is 

alternating in composition confirm that droplet production is alternating and 

droplet trapping occurs sequentially. While the prototype devices fabricated for 

this study have 16 traps, our equivalent-circuit model [136] predicts that direct 

trapping in serial layout of traps can work for any number of traps. Thus, we 

believe this approach can be applied to generate hundreds to thousands of DIBs 

in a compact device. 
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4.3 Asymmetric lipid composition characterization  

With the capability of forming asymmetric DIBs on a microfluidic platform, we are 

able to investigate leaflet asymmetry by incorporating different liposome 

compositions within each aqueous inlet. Specifically, one aqueous solution 

contains DPhPC liposomes, while the second aqueous solution contains 

liposomes consisting of DOPhPC, an ether form of the same synthetic lipid. 

Captured pairs of alternating droplets containing different liposomes will become 

encased in their monolayers of different composition and result in asymmetric 

DIB membranes with different leaflet compositions, as was shown previously with 

a non-microfluidic approach [34]. Even though both lipids used herein are 

zwitterionic (i.e. zero net headgroup charge) and have similar chemical 

structures, they exhibit different values of dipole potential, a quantity that is 

dependent on the area per lipid molecule in the monolayer. Specifically, 

Yasmann, et al. showed that DPhPC has a dipole potential of ~350 mV and 

DOPhPC exhibits a dipole potential of ~200 mV when both the lipids in both 

monolayers are maximally packed (i.e. minimum area per lipid) [138]. As a result 

of the difference in dipole potential, an asymmetric membrane exhibits a non-

zero potential difference equal to the difference in magnitudes of dipole potential 

[80]. For the two lipids considered here, an asymmetric DPhPC-DOPhPC 

membrane should exhibit a +135 mV potential with respect to the leaflet 

containing DPhPC. To confirm the asymmetry that is established when a 

DPhPC- coated droplet attaches to a DOPhPC droplet, measurements of 

membrane capacitance, C, versus DC bias, V, are performed to quantify the net 

membrane potential, Vr, as given by the following relationship [139]: 

 C =C0 (1+α(V +Vr )
2 ) . (10) 

In this expression, C0 represents the membrane capacitance at V = 0, and α is 

the fractional increase in capacitance per square volt due to electrowetting [140, 

141]. Equation 10 shows that membrane capacitance is a quadratic function of 

the applied voltage, which reaches a minimum at V = -Vr. 
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Here, asymmetric DPhPC-DOPhPC lipid bilayers are formed using the 

alternating droplet generation technique and capture methods described above 

to form 16 asymmetric DPhPC-DOPhPC lipid bilayers in a device. Due to 

limitations in the number of independent current measurement channels offered 

by the 8-channel Tecella amplifier, electrical interrogation is performed on the 8 

DIBs residing on surface electrodes (Figure 21). The electrodes are patterned 

such that each hydrodynamic trap has two electrode pads, one connected to the 

sensing input of a channel on the amplifier and the other to signal ground. A 

common ground electrode is shared between all eight pairs and is pseudo-

colored red in the image. After the droplets land in each trap and a bilayer 

spontaneously forms between them, a 40 mV, 50 Hz triangular waveform voltage 

is applied to record the capacitive current induced by the formation of the 

membrane [32, 136]. To determine the membrane potential for an asymmetric 

DIB, an applied dc offset is added to the triangle wave voltage and it is increased 

in a step-wise fashion at a rate of 10 mV at every 20 seconds until the bias 

reaches 290 mV. The procedure enables membrane capacitance at each dc 

 
Figure 21. Captured asymmetric DIBs on top of thin-film electrodes. Sensing 
electrodes are on the outer side while the ground is in the middle pseudo 
colored red. 
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voltage step to be calculated from the induced square wave current [32]. 

 

Representative capacitance data for two of the eight asymmetric DIBs are plotted 

in Figure 22 to illustrate the offset of the location of minimum capacitance due to 

membrane asymmetry resulting from binary droplet compositions. In comparison, 

measurements of capacitance versus voltage for a symmetric DPhPC DIB 

obtained using manual methods for droplet formation and positioning are also 

shown. Unlike a symmetric DIB that exhibits a zero membrane potential, our 

measurements confirm that DIBs constructed from monolayers of different lipid 

types result in a non-zero membrane potential.  Specifically, we find that there is 

a ~137 mV difference for asymmetric DIB membranes formed with DPhPC and 

DOPhPC, which is consistent with other reported experimental values [80, 138] 

 

 
Figure 22. Current plotted for two different pairs of DIBs as a function of 
voltage for asymmetric membranes of DPhPC and DOPhPC. Inset schematics 
illustrate the location of the lipids based on the transmembrane potential 
offset. A symmetric DPhPC case is included for comparison. 
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and close to the dipole potential difference. Table 3 summarizes the 

transmembrane potentials measured for each of the eight DIB pairs interrogated 

simultaneously during the same experiment.  

 

In addition to determining the magnitude of each membrane’s potential, we are 

also able to determine which lipid is on which side of a particular DIB by 

considering the polarity of the voltage where minimum capacitance occurs 

relative to the position of the sensing and ground electrodes in the device. For 

example, a positive transmembrane potential (i.e. which corresponds to minimum 

capacitance at a negative voltage of each magnitude) suggests that the droplet 

resting on the ground electrode contains DOPhPC liposomes, while the droplet 

on the sensing electrode contains DPhPC liposomes (shown in the left inset in 

Figure 22). Since the polarity of the membrane potential alternates, these results 

of an 8 DIB array in Table 3 also illustrate that in our device, the arrangements of 

DIBs formed between alternating droplets alternate with respect to the sensing 

and ground electrodes. In summary, these results showcase that a microfluidic 

approach can be used to increasing the experimental output and efficiency for 

studying asymmetric membranes formed with alternating droplet compositions.  

Table 3. Calculated transmembrane potentials for eight DIBs and locations of 
the lipids.  

Pair # Transmembrane 
potential (mV) 

Lipid on ground 
electrode 

Lipid on sensing 
electrode 

DIB 1 +137 DOPhPC DPhPC 
DIB 2 -137 DPhPC DOPhPC 
DIB 3 +137 DOPhPC DPhPC 
DIB 4 -137 DPhPC DOPhPC 
DIB 5 +137 DOPhPC DPhPC 
DIB 6 -137 DPhPC DOPhPC 
DIB 7 +137 DOPhPC DPhPC 
DIB 8 -137 DPhPC DOPhPC 
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4.4 Asymmetric transduction measurements in symmetric DIBs 

Alamethicin peptides are incorporated into one of the aqueous channels such 

that symmetric DPhPC DIBs are formed between one droplet with peptides and 

one without. This alternating placement of peptides should lead to one-side 

interactions between the membrane and the peptides. In particular, alamethicin 

peptides induce voltage-dependent current upon directional pore formation in the 

bilayer at transmembrane voltages greater than ~+70 mV with respect to the side 

of insertion [142]. Thus, we expect that pore-formation will only occur at a single 

polarity in each membrane, the sign of which depends on the position of the 

droplet containing peptides on the sensing and ground electrodes. 

 
Figure 23 shows simultaneous current measurements for four of the eight 

membrane containing alamethicin. In each trace, the current signal stochastically 

fluctuates between discrete levels signifying pore formation and closure [127]. 

Here, these gating events occur at +170 mV due to the fact that the droplets 

containing alamethicin in each of these DIBs are residing on sensing electrodes. 

While not shown, channel formation activity is only observed at -170 mV for the 

other four DIBs, where alamethicin is contained in the droplet resting on the 

ground electrode.  

 

 
Figure 23. Simultaneous recording of alamethicin ion channel activity in 4 
different DIBs with a holding potential at +170 mV.  
 



 

61 
 

The sided-ness of alamethicin pore formation is also demonstrated through cyclic 

voltammetry (CV) measurements as shown in Figure 24. During this 

measurement, the current through the membrane is recorded as the voltage is 

cycled across a range of values. The voltage in this CV sweep begins at 0 mV, 

increases at a constant rate of 10 mV/sec to +170 mV then decreases at the 

same rate to -170 mV, ending back at 0 mV. The measurement plotted in Figure 

5b shows that the current exhibits an exponential increase at positive voltages 

above ~100 mV, which confirms that that alamethicin inserts in the bilayer only 

from one side of the membrane and suggests that the droplet residing on the 

sensing electrode contains alamethicin. Because there is no current activity 

during the negative voltages of the CV sweep, we can assume there is no 

alamethicin present in other droplet. Similar to the alternating values of 

membrane potential for asymmetric DIBs, increases in membrane current at the 

opposite polarity are observed when the position of the alamethicin droplet is 

switched to the ground electrode. For instance when droplets with alamethicin is 

on the ground electrode, there is gating activity at negative voltages and no 

current present at positive voltages. This further demonstrates the traps captured 

 

 
Figure 24. Current voltage sweep response when DC step routine is applied for 
one DIB pair. The color shows the order of the cycle beginning with the blue 
and ending with red. The connecting line is included to identify the trend. 



 

62 
 

asymmetric DIBs. 

4.5 Asymmetric membrane with alamethicin  

In this study we monitored the intramembrane potential over a period of hours. 

Figure 25 shows the summary of different combinations of phospholipid leaflet 

compositions and alamethicin exposure. For the case of DPhPC-DOPhPC 

asymmetric membranes without alamethicin, we observed no change in the 

measured membrane potential of 137±1 mV over the course of 15 hours. Where 

as for symmetric membranes of DPhPC, the bilayer exhibits 0 mV. In 

experiments with alamethicin in asymmetric bilayers, the initial intramembrane 

potential after bilayer formation is the same as if there was no alamethicin 

present, exhibiting a 137±2 mV potential difference.  However, the membrane 

 

 
Figure 25. Average membrane potential versus time. Error bars represent the 
standard deviation of 40 DIBS between 5 trials of 8 DIBs.  
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potential begins to decrease after the first hour. This decrease shows that the 

difference in dipole potential for the two leaflets is reduced—possibly by lipid 

translocation. Our measurements also show that the concentration of alamethicin 

affects the membrane potential over time. When there is 2 µM of alamethicin on 

the DPhPC side of the membrane, the potential difference is approximately 

100±10 mV after 10 hours. In the same scenario with 500 nM of alamethicin, the 

membrane exhibits approximately 115±9 mV after 10 hours. In addition, we 

examined symmetric phospholipid leaflet bilayers exposed to alamethicin. The 

symmetric bilayer experienced a membrane potential of approximately 8±2 mV in 

the first hour. However over time, the potential equilibrates to 1±1 mV after 5 

hours. The symmetric bilayer measurement with alamethicin suggests that the 

peptide disrupts the membrane initially.   

 

A series of CV measurements were performed to determine the threshold voltage 

needed to drive alamethicin insertion [129] in symmetric and asymmetric DIBs. 

CV scans enable repeatable and reliable measurements of V*, which can then be 

 
 

 
Figure 26. Cyclic voltammetry curves. The current response is normalized by 
membrane area for each scan and plotted versus voltage (mV). (A) Normalized 
current for asymmetric leaflet of DPhPC and DOPhPC with alamethicin on one 
the sensing side of the membrane. (B) Normalized current for symmetric 
DPhPC membranes with alamethicin and symmetric DOPhPC bilayers with 
alamethicin. The black line is the selected specific conductance of 100 µS/cm2.  
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further analyzed to determine parameters influencing peptide insertion. Figure 26 

shows representative current-voltage (I-V) curves from DIBs exposed to 1 µM of 

alamethicin. Note that current is normalized by membrane area. As voltage 

increase during a CV sweep – during a given DIB composition – current remains 

close to zero until the increasing voltage approaches V*. Once the voltage 

exceeds the threshold for peptide insertion, the current increases exponentially 

with respect to voltage as the membrane is populated by peptide-stabilized 

pores. The shifting of an I-V curve to the left in Figure 26 indicates that peptide 

insertion is more favorable since it occurs at a lower voltage. Figure 26A and 

Figure 26B are separated based on asymmetric and symmetric leaflet, 

respectively. Table 4 shows the voltage threshold values based on a specific 

conductance of 100 µS/cm2, which corresponds to the intersection point of the 

black line and the I-V curve. Overall, symmetric DPhPC DIBs with alamethicin on 

both sides of the bilayer exhibits the highest voltage threshold of 123 mV. 

Asymmetric DIBs with alamethicin on the DPhPC side have the lowest voltage 

threshold of 101 mV, a difference of 22 mV. This shows that less voltage needs 

to be applied for alamethicin to insert and gate. The low voltage threshold 

indicates that the membrane potential of asymmetric DIBs participates in peptide 

insertion.   

4.5.1 Discussion of alamethicin on symmetric and asymmetric membranes 

For both DPhPC and DOPhPC symmetric bilayers, there is a non-zero and time 

 
Table 4: Voltage thresholds for symmetric and asymmetric membranes with 
alamethicin.   

DIB composition Voltage threshold (mv) 
@ 100 µS/cm2 

Relative voltage 
difference (mV) to DPhPC-

alm:DPhPC-alm 
DPhPC-alm:DPhPC-alm 123 0 

DPhPC-alm:DPhPC 117 -6 
DOPhPC-alm: DOPhPC 111 -12 
DPhPC-alm: DOPhPC 101 -22 
DOPhPC-alm: DPhPC 110 -13 
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dependent intramembrane potential (Figure 25) seemingly due to the presence of 

alamethicin. These results suggest that alamethicin affects either dipole or 

surface potential, or both. Also, we observe the voltage threshold for alamethicin 

insertion into symmetric bilayers is lower for leaflets comprised of DOPhPC 

(~110 mV) than for DPhPC membranes. The smaller voltage threshold suggests 

that there is a lower energy barrier for peptide insertion with DOPhPC lipids. 

Additionally, current measurements of alamethicin insertion into DPhPC 

membranes reveals that the voltage threshold is lower when alamethicin is 

introduced on only one side of the bilayer (~117 mV) compared to an equal 

concentation of peptide added to both sides (123 mV). 

 

For asymmetric membranes, the voltage threshold for insertion of alamethicin is 

dependent on the lipid composition of the leaflet side to which the peptide is 

introduced (i.e. the cis leaflet). For instance, when alamethicin is added to the 

DPhPC (cis) side, which creates a positive intramembrane potential with respect 

to the trans side, insertion and channel formation occurs at a lower voltage than 

when the cis leaflet is comprised of DOPhPC lipids, which creates a negative 

intramembrane potential with respect to the trans DPhPC side. This result is 

consistent with the notion that DPhPC (cis) :DOPhPC (trans) presents a lower 

energy barrier for insertion into the cis side due to the net positive intramembrane 

potential caused by a difference in leaflet dipole potentials (Figure 27) [80, 81, 

143]. Likewise, reversing the side of peptide incorporation presents a higher 

energy barrier to alamethicin insertion due to the negative electric field acting 

from cis to trans. Nonetheless, the values of voltage threshold for alamethicin 

insertion in asymmetric bilayers are not significantly different from those 

measured for symmetric membranes comprised of either lipid. This implies that 

the total voltage difference felt by peptides at an asymmetric membrane is not 

simply the sum of applied, surface and dipole potentials. 
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In addition, the data suggest that the changes in intramembrane potential over 

time are due to changes in dipole potential of the leaflets rather than surface 

potential. This conclusion is in part inferred by the fact that the accumulation of 

surface-bound alamethicin, which is negatively charged, would act to continue to 

lower the potential of the cis leaflet, thereby increasing the barrier to alamethicin 

insertion in either leaflet composition. In contrast, our measurements of 

asymmetric membranes exposed to alamethicin show opposite trends over a 5-

hour period of study: alamethicin added to a DPhPC leaflet increases the voltage 

threshold (i.e. the energy barrier to insertion has been raised), while alamethicin 

added to a DOPhPC leaflet decreases the voltage threshold (i.e. the energy 

barrier has been lowered) (Figure 28).  

 

 

 
Figure 27. Schematics of membrane profiles. (A) Symmetric bilayer showing a 
zero intramembrane potential (ΔΨ). (B) Asymmetric membrane with DOPhPC 
on the ground side with the intramembrane potential being the difference in 
height between the dipole potential from DPhPC and DOPhPC. (C) Asymmetric 
membrane reversed with DPhPC on the ground side.   
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Changes in the dipole potentials of the leaflets are either caused by lipid flip-flop 

or peptide rearrangement/translocation. We consider the placement of 

alamethicin because this molecule is known to have a dipole moment of 65 mD 

[81, 144] and our measurements are conducted at relatively high molar 

peptide/lipid ratios of 1/1.2-1/2.4. In Figure 29, we do not observe an increase in 

the magnitude of negative current at negative applied potentials even after 5 

hours from formation. This indicates that complete translocation of peptides 

through the bilayer, which would enable voltage-dependent channel formation in 

the membrane at negative applied potentials, is not occurring. Hall observed 

peptide translocation, but only in conditions where an applied voltage above the 

insertion threshold is maintained for many minutes [81]. In contrast, our 

measurements are conducted intermittently, between periods of zero applied 

potential. Therefore, we interpret the measured decreases in intramembrane 

potential versus time for asymmetric membranes due to lipid translocation or 

peptide rearrangement within the same leaflet. Also since the magnitude of 

 
Figure 28. Cyclic voltammetry curves at different times. The current response 
is normalized by membrane area for each scan and plotted versus voltage 
(mV). Normalized current for asymmetric DIB of (A) DPhPC-alm:DOPhPC and 
(B) DOPhPC-alm:DPhPC. The black line is the selected specific conductance of 
100 µS/cm2. 
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change in intramembrane potential is affected by peptide concentration further 

identifies alamethicin as the cause for the change in dipole potential. 

 

Not only does the intramembrane potential change over time (Figure 25), voltage 

thresholds for asymmetric membranes also shift in time. The I-V curve shows 

that voltage threshold increases for DPhPC-alm:DOPhPC (Figure 28A). This shift 

to the right suggests that the energy barrier for peptide insertion has increased 

over time. Lipid flip-flop in either direction could cause the dipole potential 

difference to decrease, thereby increasing the voltage needed for alamethicin 

insertion. This is also consistent with the opposite result found for DOPhPC-

alm:DPhPC, where the voltage threshold decreases over time indicating a lower 

insertion energy barrier (Figure 28B).  

 

While our results provide strong evidence that alamethicin induces a change in 

the intramembrane potential in asymmetric membranes, there are remaining 

gaps and questions that need to be addressed. For instance, does the dipole 

 
Figure 29. Current versus voltage curve for symmetric DIB with alamethicin on 
both sides (black line) compared to asymmetric DIB with alamethicin on the 
applied voltage side (blue line). Measurements were taken after 5 hours. 
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potential of alamethicin-doped leaflet in a symmetric membrane change over 

time? We observed a nonzero and time dependent intramembrane potential in a 

symmetric, suggesting that alamethicin affects dipole and/or surface potential 

and changes with time. However, this magnitude is only 8-10 mV whereas in 

asymmetric membranes, the change in total intramembrane potential is ~40 mV. 

While this larger magnitude difference suggests lipid flip-flop is the major role in 

the change to intramembrane potential, we have not yet measured changes in 

voltage threshold for symmetric membranes exposed on one leaflet to 

alamethicin. This experiment would determine if the effective concentration of 

alamethicin in the membrane changes with time, as well as if and how the dipole 

and/or surface potential changes with time. Another remaining question is why 

the voltage threshold for DOPhPC-alm:DPhPC is similar to that for DOPhPC-

alm:DOPhPC, for which we would expect a lower energy barrier for insertion due 

to less negative difference in dipole potential. Further cv experiments with 

symmetric alamethicin with asymmetric leaflets can help determine the 

magnitude of influence of surface and/or dipole potential of the lipids by creating 

a baseline measurements when exposed to peptides on both sides.   

4.6 Summary and future work  

This work examined a method to create streams of alternating droplet 

compositions, i.e. A-B-A-B, via two opposing T-junctions within a microfluidic 

device. In the same device, the droplets were sequentially captured in 

predetermined locations to enable the spontaneous formation of synthetic lipid 

bilayers between droplets of different compositions. Contrasting our prior work 

demonstrating microfluidic DIB formation, this revised system maintains a key 

component of the DIB technique by allowing bilayer formation to occur between 

droplets of differing compositions, which allow asymmetric conditions within and 

across the membrane to be prescribed. 
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Using this system, we then demonstrated the assembly and interrogation of 

asymmetric DIBs consisting of different lipid compositions in each leaflet of the 

bilayer. The asymmetric DPhPC-DOPhPC bilayers formed resulted in a dc, non-

zero membrane potential of |137mV| across each membrane due to the 

difference in dipole potentials of the two lipid types. Furthermore based on the 

measured polarity of this potential, we were able to determine which droplet 

contains DPhPC and DOPhPC. The observed alternating polarity of membrane 

potentials within the 8 DIB array illustrates that the arrangements of sequential 

DIBs formed between alternating droplets reverse with respect to the sensing 

and ground electrodes. 

 

In the second study, alamethicin peptides were included in only one of two 

droplets in each DIB pair, which enabled voltage-dependent insertion to occur 

only at one polarity. Cyclic voltammetry measurements confirmed the direction of 

insertion of alamethicin channels in bilayers. Because peptide insertion and 

gating occurred at a single polarity in each membrane, the sign of the voltage 

again determined the position with respect to the electrodes of the droplet 

containing the peptides. Also, these results showcase the ability to 

simultaneously perform electrical measurements on multiple DIBs, which 

motivates the use of a microfluidic approach to increase the efficiency of 

membrane studies. 

 

In the third study, intramembrane potential was monitored over a period of hours. 

For asymmetric DPhPC-DOPhPC bilayers, the intramembrane potential 

remained steady over the course of 15 hours. However when alamethicin is 

added to asymmetric DIBs, the membrane potential begins to decrease after the 

first hour. This decrease suggests that the difference in dipole potential for the 

two leaflets is reduced possibly by lipid translocation. In addition, a series of CV 

measurements were performed to determine the difference in threshold voltage 

needed to drive alamethicin insertion between symmetric and asymmetric DIBs. 
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Overall, symmetric DPhPC DIBs with alamethicin on both sides of the bilayer 

exhibits the highest voltage threshold. While asymmetric DPhPC-DOPhPC DIBs 

with alamethicin on the DPhPC side have the lowest voltage threshold. The low 

voltage threshold indicates that the membrane potential of asymmetric DIBs 

participates in peptide insertion. Additional experiments are still needed to fully 

understand the dynamics of alamethicin in asymmetric membranes. Single 

channel recording of alamethicin activity at a set dc voltage needs to be 

performed to compare conductance states between symmetric and asymmetric 

bilayers. This will help understand if the difference in membrane potential 

increases the conductance values.   
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CHAPTER 5 

MICROFLUIDIC DEVICE FOR SINGLE CELL CAPTURE  
 

While there are microfluidic devices capable of single cell capture and analysis 

such as drug screening and cell division, there is currently no efficient 

approaches to perform and study gene transformation on individual plant 

protoplast cells. The work described herein aims to address Objective 4. Here we 

designed and fabricated a microfluidic system for systematic single cell capture 

of plant protoplast cells for the purpose of DNA transformation. Specifically, a 

similar resistive modeling approach used in Chapter 3 is applied to design traps 

and array layout, and provide guidelines for device operation conditions such as 

flow rates to maintain appropriate pressure throughout the system to minimize 

cell squeeze through. The results in this chapter is a step towards improving the 

ability to study gene transformation on an individual cell basis, with greater 

spatial and temporal resolution of each cell’s response, and enable post-

collection of successfully transformed cells to grow whole plants containing 

specific genes. 

5.1 Introduction  

Transformation of plant cells allows for the altering of DNA with the purpose of 

giving the plant a new and useful trait.  There are many methods for introducing 

the new segment of DNA to be inserted in the plant chromosome, all of which 

start with transfecting a single cell which are then regenerated into full plants.  

Some of the methods for plant cell transformation, Methods for plant 

transformation such as PEG-mediated and electroporation involve creating pores 

in the cell membrane so that DNA can enter the cell, and can only be done with 

protoplasts (plant cells where the cell wall has been digested) [89-93]. While 

transformation of protoplasts has a higher efficiency due to the lack of the thick 

cell wall barrier, the efficiency of in vitro transformation is still very low in many 
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plant species [89-91]. Traditional methods of protoplast transformation are limited 

by a difficulty in obtaining high concentrations of viable protoplasts, low 

transformation efficiency, the necessity for a large quantity of DNA, and 

inconsistent results across species.   

 

Microfluidics can help overcome these disadvantages by system miniaturization, 

enhanced efficiency, and the ability to study single cell transformation.  The use 

of a microfluidic device allows for fewer protoplasts, (one cell per trap instead of 

1×106 protoplasts/mL) and amount of DNA. Captured individual protoplasts allow 

studies at the single cell level of transformation. The advantage of being able to 

study single cell transformation is a closer examination of protein expression and 

the collection of proteins secreted from the plant protoplasts, enabling a bio-

production system for medically relevant compounds as well as identifying 

stressors in plants (i.e. drought).   

 

We seek to fabricate a device that utilizes steady fluid flow to place a stream of 

protoplasts into sequential hydrodynamic traps. The device needs to enable the 

collection of cells at every trap in the array, and minimize the hydrodynamic 

pressure developed across trapped cells to prevent unwanted release from traps, 

and be scalable in an array layout. A circuit-based modeling approach is 

employed to design and arrange arrays of hydrodynamic traps.   

 

5.2 Resistive flow modeling for single cell trapping  

Similar to the device used to capture DIBs in the Chapter 3, a series of 

hydrodynamic traps branching from the main channel are designed such that 

each trap captures a single protoplast in a serially manner. We utilized the same 

electrical circuit analogy, to developed a resistive flow model to determine 

appropriate dimensions for the fluid channels used for cell trapping as well as for 

designing the layout of a multi-trap array within the encapsulating substrate. 
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Recall, in a single-phase laminar flow, the pressure difference along a section of 

a microchannel is equal to the product of the applied volumetric flow rate, Q, and 

the hydrodynamic resistance of the channel, R. The hydrodynamic resistance for 

Poiseulle flow in a rectangular channel [101] is given by   

 
R = 12µL
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where L, w, and h are the length, width, and height, respectively, of a particular 

segment of the channel, and µ is the viscosity of the carrier fluid (i.e. oil for a DIB 

system). Equation 11 can be used to design channels of specific dimensions to 

dictate the flow resistance in regions of a device and thereby affect the course of 

droplet travel. 

 

A single hydrodynamic trap is designed to accommodate a single cell. In our 

device, a trap will consist of a square compartment that resides adjacent to the 

main flow channel. Opposite entry from the main channel, each trap also features 

a narrow exit channel, which we refer to as bleed valves. The trap design and its 

ability to collect cells carried in the main stream are thus based on the 

hydrodynamic resistance of the trap relative to that of the bypassing main 

channel. For instance, a cell will prefer to enter an empty trap that has a 

hydrodynamic resistance, RT, less than that of the resistance offered by 

bypassing the trap and flowing through the main channel, RM. The flow 

resistance of each lane in a trap is calculated by 

 RT = Ra + Rb , (12) 

where Ra is the resistance due to the square portion of the trap and Rb 

represents the contribution to the resistance from the bleed value (Figure 30A). 

 

When RT is less than RM, the first protoplast cell in the stream will divert from the 

main channel and come to rest in the hydrodynamic trap near the bleed valves 

(Figure 30B). The bleed valve halts the protoplasts within the trap as long as the 
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resulting pressure drop that develops across a cell blocking the bleed valve does 

not cause the cell to squeeze-through and escape. Specifically, the pressure 

drop across a filled trap must remain less than the Laplace pressure, ΔPL, across 

the protoplast residing at the entrance of a bleed valve, which can be calculated 

via 

 ΔPL = 2γ
1
wb

−
1
wt

#

$
%

&

'
( , (3) 

where, γ is the resting tension of a protoplast cell and wb and wt are widths of the 

bleed valve and trap, respectively.[101] Once a trap fills, the presence of a cell at 

the entry to the bleed valve causes the flow resistance to increase significantly. 

As a result, the second cell in the stream bypasses the filled trap, preferring to 

remain in the main channel, which now offers a relatively lower resistance to flow 

(Figure 30C). Thus, an open trap behaves like a closed switch in an electrical 

circuit (with low resistance and high flow rate), while a filled trap acts like an open 

switch (with high resistance and low flow rate). 

 

Because the hydrodynamic resistance offered by both the main channel and a 

trap depends on the connection of these sections to additional traps or channels 

located downstream, one must consider the entire fluidic resistance of the 

 

Figure 30. Schematic of flow resistances, R, in a single trap. (A) Diagram of a 
trap where the trap resistance RT equals Ra +Rb such that total trap resistance 
RT is the sum of the parallel resistors. (B) A protoplast will enter the trap when 
trap resistance, RT, is less than resistance of the main channel, RM. (C) Once a 
cell is trapped, RT becomes greater than RM, guiding following protoplasts to 
bypass filled trap.  
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device. This information is especially necessary for understanding how to 

configure arrays of traps such that large networks of cells can be efficiently and 

quickly captured in a microfluidic device. Thus, we used a similar resistive circuit 

model from Chapter 3 to enable calculation of fluid flow rates and pressure drops 

between channel intersections for characterizing the trapping performance of a 

multiple-trap device.   

 

For this analysis, the values of channel resistance used are based on a square 

traps dimensions of 55 µm x 55 µm and using a bleed valve that is 15 µm wide 

and 10 µm long. These dimensions reflect the sizes to capture 50 µm diameter 

protoplast cell. The main channel sections are 60 µm wide and all channels have 

a depth of 60 µm. These dimensions correspond to equivalent resistances of 739 

Pa-s/µL and 1.2x103 Pa-s/µL for RT and RM, respectively.  

 

To evaluate the serial layout for single cell isolation, we use Kirchoff’s Current 

Law (KCL) for fluid flow at each channel intersection as in Chapter 3. Using the 

same matrixes for serial trapping mode, we are able to compute the pressure 

distribution in the array and calculate for each trap in an array the ratio of fluid 

flow entering the trap to that which bypasses the trap, which enables us to 

determine if direct trapping occurs. The flow rate within each section of a multi-

trap model is computed by dividing the difference in absolute pressure between 

nodes by the hydrodynamic resistance of that section. Figure 31A shows the 

ratio of flow rate entering the first trap of successive unfilled traps to the flow rate 

bypassing that first trap. This calculation is performed sequentially by varying the 

number of filled traps in a 60-trap model. Therefore, the flow rate ratio reflects the 

preference of a droplet approaching the first unfilled trap to either enter the trap 

or bypass it. A ratio greater than one indicates direct trapping as marked by the 

unshaded region in Figure 31A. The results confirm constant direct trapping 

during complete filling of the array.  
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The expected pressure drop across each trap is computed by determining the 

difference in absolute pressure between the entrance and exit nodes of the trap. 

This calculation is performed for a filled array to determine if cells will squeeze-

through the bleed valve. An array of filled traps is considered specifically since 

this condition represents the highest absolute pressure a system can experience 

and corresponds to when cells could be squeezed through the bleed valves. The 

occurrence of squeeze-through is assessed when the pressure drop across a 

trap is higher than a Laplace pressure of 96 Pa (shown as the shaded region in 

Figure 28B) determined using a membrane tension of 1 mN/m [145] and trap and 

bleed valve widths of 55 µm and 15 µm, respectively. The analysis shows the 

trap pressure drop (~20 Pa) is much lower than the Laplace pressure (Figure 

31B).   

5.3 Device operation  

The experimental realization of protoplast capture and on-chip transformation, 

requires the subsequent injection of three different aqueous solutions. Therefore, 

 

Figure 31. (A) Calculated flow rate ratio through an empty trap versus the main 
channel as a 60-trap system is being filled. Because all traps are in the 
unshaded region means the entire array fills via direct trapping. (B) Estimated 
pressure drop within a filled trap versus location in the array. The pressure 
drop is constant and does not exceed the Laplace pressure (ΔPL) to cause 
squeeze through.  
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a 5-way manual valve with four distinct inlets and one common outlet is used to 

accommodate switching between solutions for the injection protocol. 

 

First, all PTFE tubing lines from the syringe to the valve and from the valve to the 

microfluidic device are primed before the process begins to avoid air bubbles 

entering the chip. Protoplasts suspended in MMg solution (0.4 M mannitol, 15 

mM MgCl2, 4 mM MES), are injected into the device at a flow rate of 0.5 µL/min. 

Once the protoplasts are captured in the traps as seen in Figure 32, a 20% PEG 

solution is introduced also at a flow rate of 0.5 µL/min. After 30 minutes, the 

injected solution is switched to a wash buffer (0.8 M mannitol, 4 mM MES, 4 mM 

KCl) at a flow rate of 0.5 µL/min to remove any remaining PEG solution. After an 

additional 30 minutes, the flow rate of the wash buffer is reduced to 0.05 µL/min 

for overnight to monitor protoplast viability. In the near future the wash buffer will 

contain DNA for transformation. 

 
 

 
Figure 32. Captured soybean protoplast cells in hydrodynamic traps. Inset 
shows channel dimensions. Depth is 60 µm.   
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5.4 Hydrodynamic traps for single cell capture 

Based on the analysis a microfluidic device is fabricated with 60 traps for 

capturing 50 µm diameter protoplast cells. The dimension for the main channel is 

60 µm wide. For each trap, the width is 55 µm and length is also 55 µm. A bleed 

valve is placed in the center of each trap and has a length of 10 µm and width of 

15 µm. All channels in the fabricated device have a depth of 60 µm. Based on 

these trap dimensions, the computed fluidic resistance of an open trap, RT, is 

computed to be 739 Pa-s/µL, versus a main channel resistance, RM, of 1.2x103 

Pa-s/µL. The resistances are based on a viscosity of 1x10-3 Pa.s for the MMg 

solution, where the protoplasts are suspended. Since RT<RM, the fabricated 

devices is expected to exhibit direct trapping.   

 

In our experiments we observed the cells did not bypass open traps, confirming 

the array maintain direct trapping. The trapping efficiency is 100% as long as 

there is no debris blocking the traps. Debris from the solution can enter empty 

traps and block the bleed valve causing the trap resistance to increase and 

directing subsequent protoplasts to bypass the trap. Debris can be reduced 

through filtration of the protoplast solutions. In addition, we did notice that the 

protoplasts are smaller than predicted, with diameters closer to 30-40 µm. 

Therefore, there are instances when multiple cells can occupy a single trap. A 

revised device with smaller trap dimensions will be needed to address this issue. 

Nonetheless, we observe no cell squeeze-through in the devices during all 

solutions, which confirms that the pressure drop across the traps remain less 

than the critical Laplace pressure of 96 Pa. Table 5 summaries the flow rates, 

viscosities, and corresponding trap pressure of the solutions used.  

5.5 Protoplast viability within a microfluidic device  

Once protoplasts are trapped in the microfluidic, the cells are monitored for 24 

hours to confirm cell viability at the timescale necessary for transformation. Cell 

viability staining was conducted with fluorescein diacetate (FDA) and propidium 
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iodide (PI). FDA is taken up by cells, which convert the non-fluorescent FDA into 

the green fluorescent metabolite fluorescein [146]. The measured signal serves 

as indicator for viable cells. In contrast, the nuclei staining dye PI cannot pass 

through a viable cell membrane. It reaches the nucleus by passing through 

disordered areas of dead cell membranes therefore only staining dead cells or 

broken parts of cells [146]. 

 

Once protoplasts are trapped, which takes less than a minute, a wash buffer 

solution containing FDA and PI is injected into the microchip at a rate of 

0.05µL/min for 24 hours. Figure 33A shows green fluorescent protoplasts 

indicating these cells remained alive after 24 hours. In this set of protoplasts 

there is one dead (cell in upper most trap) as shown in Figure 33B since it is the 

only cell that has a fluorescent red color while the remaining cells are non 

fluorescent, signifying the PI could not penetrate the membrane. Over the course 

of 5 trials with 60 captured protoplasts in each trial, there is a 90% viability rate 

for 24 hours. A cause for cell death can be due to prolonged exposure to the 

PEG solution. Some protoplasts are less resilient than others and cannot recover 

from pores created by PEG in the cell membrane.  

5.6 Nucleus staining for proof of concept of DNA transformation  

In this study, captured protoplasts are successively exposed to: 1) FDA to 

confirm viability; 2) PI to confirm PEG has permeated the membrane; and 3) 

Table 5. Viscosity, flow rate, and trap pressure for solutions used for 
transformation.  

Solution Viscosity  

(Pa.s) 

Flow rate  

(µL/min) 

ΔP  

(Pa) 

MMg 1x10-3 0.5 9.8 

20% PEG 0.0073 0.5 71.6 

Wash buffer 1x10-3 0.5 9.8 
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DAPI (4′,6-diamidino-2-phenylindole) which is a blue-fluorescent DNA stain to 

show proof of concept for transformation and specifically location of DNA. First 

the solution with protoplasts and FDA are loaded into the chip (Figure 34A). 

Figure 34B confirms the capture protoplast is alive, since FDA only fluoresces 

when metabolized by the cell. Next, the solution containing 20% PEG and PI is 

injected. Even though PI is typically used to indicate dead cells, the stain is 

injected here to determine if PEG has permeated the membrane. Figure 34C 

shows a red stained nucleus suggesting PEG has caused defeats in the 

membrane for the PI to enter the cell. The final solution contains a wash buffer 

with DAPI. The blue stained nucleus in Figure 34D indicates DAPI was able to 

enter through the cell illustrating that when DNA is placed in the solution, 

transformation should occur on all live cells.   

5.7 Summary and future direction  

In summary, we used a resistive modeling approach to develop and fabricate a 

microfluidic device capable of direct trapping of plant protoplast cells while 

 
Figure 33. (A) Image of FDA stained protoplasts verifying that 4 of the 5 trapped 
protoplasts within view are alive. (B) PI’s red fluorescence indicates cell death 
in 1 of 5 trapped protoplasts; seen in top trap.   
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restricting the pressure across each to be less than the Laplace pressure to 

ensure the captured protoplasts remain in the traps. Also we showed proof of 

concept for DNA transformation by using fluorescent dyes to qualitatively analyze 

each step of the process.  

 

There are changes that need to be made to the current microfluidic design. A 

sorting shunt will be implemented to discard debris and small, unwanted 

protoplasts. Also to reduce the likelihood of capturing multiple protoplasts in one 

trap, the depth, trap and main channel dimensions will be reduced. In addition, 

we want to lower the overall resistance to reduce the pressure in the system. In 

order to do so, the bleed valve and bypass channel can be shorten and the trap 

length can be shorter.  

 
Figure 34. Images of two captured protoplast in (A) brightfield, (B) FDA stain, 
(C) PI stain, and (D) DAPI stain.  
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In addition we need to consider how to eventually harvest the captured 

transfected protoplast cells. For instance the resistances of the channels will 

need to be evaluated when the fluid flow is reversed. Also, concerns of 

protoplasts being trapped or stuck at the bleed valves exists during black flow 

needs to be addressed. The necessary flow rates for successful black flow will 

need to be determined to redirect the captured protoplasts into the main channel 

with minimal disruption to the cells’ viability. 
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CHAPTER 6 
SUMMARY AND CONCLUSION  

6.1 Research overview  

The overarching goal of this work is to develop a high throughput microfluidic 

system in order to investigate numerous basic lipid bilayer studies and 

membrane-mediated processes with greater efficiency and statistical 

significance. Specifically, develop an automated high-throughput droplet 

generation and arrangement system to create an array of DIBs, which can be 

electrically interrogated, in an enclosed substrate. Chapter 3 presents an 

equivalent electrical circuit modeling approach to design a self-contained 

microfluidic device capable of generating monodisperse lipid-encased droplets 

and routing the droplets to predetermined locations to form an array of DIBs.  

The microfluidic device is able to collect of droplets at every trap in the array, and 

minimize the hydrodynamic pressure developed across trapped droplets to 

prevent unwanted squeeze-through. Also, integrated thin-film electrodes allow 

simultaneous electrical characterization of multiple droplet interface bilayers to 

improve the efficiency of studying membrane properties and peptide insertion. 

Chapter 4 builds on the development of Chapter 3, by incorporating a method to 

generate alternating droplets to form asymmetric DIBS in the microfluidic device. 

Chapter continues with investigating intramembrane potential between bilayers 

containing asymmetric zwitterionic phospholipid leaflets (i.e. DPhPC and 

DOPhPC). In situ measurement technique is applied on an array of asymmetric 

DIBs to study lipid asymmetry versus time and in the presence of peptides. This 

is a step towards understanding the effects of peptides on the disruption of 

asymmetric lipid membranes and intramembrane potential, which are not well 

known. In Chapter 5, goal of developing an automated microfluidic array is 

applied to isolate and transform single cells. This would greatly improve the 

ability to study gene transformation on an individual cell basis, with greater 
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spatial and temporal resolution of each cell’s response, and enable post-

collection of successfully transformed cells to grow whole plants containing 

specific genes.  

6.2 Contributions and conclusions  

This section presents contributions from each research objective, which aimed to 

address the scientific gaps identified in Chapter 1 (objectives are restated here 

again for reference). 

6.2.1 Objective 1 (addressing Gap 1) 

Use an equivalent electrical circuit modeling approach to design a self-contained 

microfluidic device capable of generating monodisperse lipid-encased droplets 

and routing the droplets to predetermined locations to form an array of DIBs.  

The device needs to enable the collection of droplets at every trap in the array, 

and minimize the hydrodynamic pressure developed across trapped droplets to 

prevent unwanted droplet release from traps or disrupt the resulting DIB, and be 

scalable in an array layout.  

The key contributions of this research include: 

• Development and analysis of resistance-based model for designing 

scalable microfluidic devices that produce, route, and capture for DIB 

formation monodisperse aqueous droplets in oil. 

• Experimental validation that a serial arrangement (Model C in Figure 14) 

of droplet traps operates in direct trapping upon filling of all traps and 

maintains a low-pressure drop across each filled trap, so that captured 

droplets are retained and do not experience droplet squeeze-through the 

bleed valves. We demonstrated that these conditions enable large arrays 

of two-, three-, and four-droplet DIBs to be rapidly assembled at separate 

locations within a single device. 
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6.2.2 Objective 2 (addressing Gap 1) 

Design and fabricate integrated thin-film electrodes within the same droplet 

generation and trapping microfluidic device fabricated in Objective 1 to permit 

simultaneous electrical characterization of multiple droplet interface bilayers to 

improve the efficiency of studying membrane properties and peptide insertion.   

The primary contribution of this effort includes:   

• Implementation of thin film electrodes for in situ electrical characterization 

of multi-DIB arrays, which enables simultaneous single channel 

measurements of ion channels and measurements of bilayer conductance 

and capacitance over time for multiple DIBs. For the first time, this 

capability enables efficient characterization of many DIBs at once, which 

has immediate applications in creating functional material systems for 

energy conversion or sensing as well as understanding how chemical 

species and nanomaterials interact with models of biological membranes. 

6.2.3 Objective 3 (addressing Gap 2) 

Incorporate a method to generate alternating droplets to form asymmetric DIBS 

in the microfluidic device from Objective 1&2. Then, electrically characterize the 

intramembrane potential between bilayers containing asymmetric zwitterionic 

phospholipid leaflets (i.e. DPhPC and DOPhPC). This in situ measurement 

technique will be applied for the first time on an array of asymmetric DIBs to 

study lipid asymmetry versus time and in the presence of peptides. 

Technical and scientific contributions of this research include: 

• Demonstration that the use two, opposing T-junctions for droplet 

dispensing can be integrated into the microfluidic device to enable 

assembly of asymmetric DIBs.  

• Measurements via thin-film electrodes are able to record changes in 

intramembrane potential in asymmetric membranes are due to lipid flip-

flop because the shifts in voltage threshold indicate a dipole change not a 

surface potential change. Also because we do not see the peptide 
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translocating in the cv scan also supports the notion that lipids are moving 

from one side to the other.   

6.2.4 Objective 4 (addressing Gap 3) 

Design and fabricate a microfluidic system for systematic single cell capture of 

plant protoplast cells for the purpose of DNA transformation. A similar resistive 

modeling approach used in Objective 1 will be applied to design traps and array 

layout, and provide guidelines for device operation conditions such as flow rates 

to maintain appropriate pressure throughout the system to minimize cell squeeze 

through. 

Contribution to the field includes: 

• Model-based design and successful demonstration of a scalable cell 

capturing microfluidic device for enabling single cell analyses of plant 

protoplasts, such as gene transformation. 

 

Together this research contributes to a high-throughput microfluidic system for 

synthetic membranes and live-cell studies. An encapsulated device with 

embedded functionality can be a platform for numerous membrane bases 

applications.   
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A1. Derivation of network models for trap arrays 

Figure A1 shows an electrical circuit model for a 3-trap Model 1 array, which will 

be used to demonstrate the process for developing a system of equations as 

given in Chapter 3. 

 

 
Figure A1: Electrical circuit layout of a three-trap, Model 1 array with parallel 
traps and a return channel. Q is the total input fluid flow rate, Ri is resistance of 
the ith channel section, and Pi is the absolute pressure at the ith node.  

 

 

Using Kirchoff’s Current Law (KCL) for fluid flow at each channel intersection, a 

matrix of equations is developed to describe the relationship between absolute 

node pressure, channel resistances, and input fluid flow rate. For example, 

applying KCL at nodes 1 and 2 yield: 

 

P1 − P2
RT

+
P1 − P3
RM

=Q  

P1 − P2
RT

+
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RM

−
P2
ROut

= 0  

 
 
Following the same procedure for the remaining 4 nodes within this 3-trap array 

yields a total of 6 linear equations in terms of the 6 unknown pressures at all 

nodes. These equations can be rewritten in matrix form as follows: 
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The same KCL procedure is also applied for 3-trap arrays in the form of both 

Model 2 and Model 3 as shown in Figure 2B,C, respectively. For Model 2, this 

process yields are a total of 7 linear equations as written in the following matrix 

form: 
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Finally, a 3-trap version of Model 3 with 9 pressure nodes yields a total of 9 linear 

equations, which can be written in the following matrix form 
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These matrix expressions can be solved numerically in MATLAB to determine 

the values of absolute pressures at all nodes, which can then be used to 

evaluate relative flow rates in traps versus the main channel (Figure 3D) or 

compute the pressure drop across all traps in a filled array (Figure 3E).  

 

A2. Droplet size based on flow rates of aqueous buffer and oil 
A series of experiments varying the flow rates of the oil and the aqueous buffer 

was performed to determine the range of the droplet sizes the device can 

produce and to identify the flow rates required to generate ~100 µm diameter 

droplets used in the trapping experiments. Figure A2 shows the corresponding 

droplet diameters based on the flow rate ratio of buffer to oil. Note, the same flow 

rate ratios can give different sizes since different flow rates of oil and buffer can 

produce the same ratios.  
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Figure A2: Average droplet diameter versus the aqueous buffer/oil flow rate ratio. 
 
 
A3. Nominal capacitance and membrane resistance determined for an 8-
DIB array 
 
Raw current measurements as shown in Figure 7C is used to calculate bilayer 

capacitance, which is then plotted against time in Figure A3A The capacitances 

of all 8 pairs correspond to the growing membrane area. Furthermore, the 

resistivity is plotted in Figure S2B using the interface area and resistance of the 

membrane, which is calculated from the slope of the current at the peaks of the 

square-like waveform.  
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Figure A3: (A) Membrane capacitance increases upon DIB formation, 
corresponding to a growing membrane area, while (B) normalized resistances 
does not change significantly for all eight pairs of DIBs. Note start time is relative 
to each DIB pair. 
 
 
A4. Electrical measurements from 2 additional trials  
Below are tabulated results from two separate experiments using electrical 

measurements to simultaneously characterize a set of 8 GMO DIBs. 
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Table A1: Capacitance, resistance, area, specific capacitance, and normalized 

resistance for GMO DIBs obtained during Trial 2.  

DIB # 
Capacitance 
final (CF) – 

 pF 

Resistance 
final (RF) –  

GΩ 

Area final   
(AF) –  
µm2 

Specific 
capacitance (CM) 

- µF/cm2 

Normalized 
resistance (RN) - 

MΩ!cm2 

Pair 1 16.7 8.0 2173 0.769 0.17 

Pair 2 16.8 8.5 2181 0.770 0.19 

Pair 3 16.8 8.0 2181 0.770 0.17 

Pair 4 16.7 8.1 2181 0.766 0.18 

Pair 5 16.7 8.1 2173 0.769 0.18 

Pair 6 16.7 8.0 2173 0.769 0.17 

Pair 7 16.7 8.1 2173 0.769 0.18 

Pair 8 16.7 8.1 2173 0.769 0.18 

      
Averages 16.7±0.05 8.1±0.2 2176±4 0.769±0.001 0.18±0.004 

 
 
Table A2: Capacitance, resistance, area, specific capacitance, and normalized 
resistance for GMO DIBs obtained during Trial 3. 

DIB # 
Capacitance 
final (CF) – 

 pF 

Resistance 
final (RF) –  

GΩ 

Area final   
(AF) –  
µm2 

Specific 
capacitance (CM) 

- µF/cm2 

Normalized 
resistance (RN) - 

MΩ!cm2 

Pair 1 12.8 8.1 1662 0.770 0.13 

Pair 2 12.8 8.8 1662 0.770 0.15 

Pair 3 13.1 8.0 1684 0.778 0.14 

Pair 4 13.1 8.1 1684 0.778 0.14 

Pair 5 12.8 8.1 1662 0.770 0.13 

Pair 6 12.9 8.8 1669 0.773 0.15 

Pair 7 13.0 8.2 1676 0.775 0.14 

Pair 8 12.9 8.1 1669 0.773 0.13 

      
Averages 12.9±0.13 8.3±0.4 1671±9 0.773±0.003 0.14±0.01 
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