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ABSTRACT 

 

Cognitive Geography seeks to understand individual decision-making variations based on 

fundamental cognitive differences between people of varying spatial aptitudes.  Understanding 

fundamental behavioral discrepancies among individuals is an important step to improve 

navigation algorithms and the overall travel experience.  Contemporary navigation aids, although 

helpful in providing turn-by-turn directions, lack important capabilities to distinguish decision 

points for their features and importance.  Existing systems lack the ability to generate landmark 

or decision point based instructions using real-time or crowd sourced data.  Systems cannot 

customize personalized instructions for individuals based on inherent spatial ability, travel 

history, or situations. 

This dissertation presents a novel experimental setup to examine simultaneous wayfinding 

behavior for people of varying spatial abilities.  This study reveals discrepancies in the 

information processing, landmark preference and spatial information communication among 

groups possessing differing abilities. 

Empirical data is used to validate computational salience techniques that endeavor to predict the 

difficulty of decision point use from the structure of the routes.  Outlink score and outflux score, 

two meta-algorithms that derive secondary scores from existing metrics of network analysis, are 

explored.  These two algorithms approximate human cognitive variation in navigation by 

analyzing neighboring and directional effect properties of decision point nodes within a routing 

network.  The results are validated by a human wayfinding experiment, results show that these 

metrics generally improve the prediction of errors.   

In addition, a model of personalized weighting for users' characteristics is derived from a 

SVMrank machine learning method.  Such a system can effectively rank decision point difficulty 

based on user behavior and derive weighted models for navigators that reflect their individual 

tendencies.  The weights reflect certain characteristics of groups.  Such models can serve as 

personal travel profiles, and potentially be used to complement sense-of-direction surveys in 

classifying wayfinders.   

A prototype with augmented instructions for pedestrian navigation is created and tested, with 

particular focus on investigating how augmented instructions at particular decision points affect 

spatial learning.  The results demonstrate that survey knowledge acquisition is improved for 

people with low spatial ability while decreased for people of high spatial ability. 

Finally, contributions are summarized, conclusions are provided, and future implications are 

discussed.   
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1.1   Research Background and Research Questions 
 

 

Navigation relies on knowledge of environmental features (i.e., landmarks) along networks of 

interconnected routes (Ishikawa & Montello 2006, Siegel & White 1975) and can be divided into 

two sets of interrelated processes, locomotion and wayfinding (Montello, 2005).  Wayfinding 

involves reasoning about the environment in order to reach a navigational goal.  Wayfinding 

relies both on transient and enduring representations of the environment (Waller and Hodgson, 

2006) and is facilitated by representations that consist of memorable and distinctive places 

(Presson and Montello, 1988). 

 

Human beings are spatial in nature, constantly processing and communicating spatial 

information.  In an unfamiliar or novel environment, people break down information in their 

environment, create mental maps, and subsequently generate directions in natural language for 

themselves, and for others (Tversky et al., 1998).  People attempt to derive memorable, 

meaningful cues from their environment, often assigning them personal significance.  Imagine 

you are in a novel unfamiliar environment such as Tokyo Japan and you have to navigate 

through a neighborhood to reach your destination using maps on a GPS-equipped smartphone, 

using your inherent cognitive abilities.  What can you do to find your way?  Navigation systems 

are commonly used to help with wayfinding in novel environments.  Figure 1.1 displays a typical 

contemporary navigation aid that offers directions at turning points on a route.  This system can 

be helpful in many instances.  However, typical systems offers little information about 

landmarks while disregarding the personal characteristics of the user.   

 

Further imagine that scenario in Tokyo, where certain neighborhoods have no legible street signs 

to offer assistance.  You enter a destination on your phone and a route is generated for you on the 

screen.  During the navigation, you fail to reconcile the information on the phone’s map with the 

environment being traversed.  You continue to walk and make mistakes at a series of decision 

points, take subsequent wrong turns and end up being lost.  Now, imagine that the navigation 

system you are using is able to give you directions in the context of your actual experience on the 

route.  Directions that are timely and natural such as: “take a left turn after you reach the two 

story yellow building with a stop sign outside - if you see the parking garage, you have gone too 

far” or “reach the corner where there is a large crowd gathering, then turn right to cross the 

street”.  These instructions could be more appealing and valuable to the everyday user.  Such a 

system would take into consideration your navigational preferences, spatial abilities, and 

consider your potential interaction with various landmarks on your route.  To make such a 

scenario possible, more information is needed to understand how individuals navigate in space 

and how the interaction occur dynamically between people and their environment.  To make 

these design suggestions systematically possible, one should further classify individual behavior 

in the real environment and derive methods to calculate the potential guidance value of 

landmarks at decision points.   
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Figure 1.1 Displays an example of commonly used existing navigation systems, the middle 

Figure showing what pedestrians typically use – offering turn-by- turn directions at 

intersections.  (© 2017, Google Maps) 

 

In order to operate in space, humans must encode information about the environment and form 

operable mental maps.  One must gather information about the environment, and the routes - and 

subsequently synthesize spatial knowledge from them.  Spatial knowledge is classified into three 

types:  landmark knowledge (knowledge about discrete objects or scenes), route knowledge 

(sequences of landmarks and associated decisions), and survey knowledge (configurational, map-

like knowledge) (Siegel & White, 1975).  In survey knowledge, landmarks and routes are 

interrelated, and the distances and directions between them are available.  The acquisition of 

survey knowledge is considered a more sophisticated process in large-scale spaces.  Layouts and 

routes cannot be easily grasped from a single vantage point.  Therefore this typically requires 

more mental integration (Ittelson, 1973).  Due to this difficulty, large individual differences exist 

in the acquisition, interpretation, and retention accuracy of survey knowledge (Ishikawa & 

Montello, 2006).   

 

Individual differences exist in spatial information processing as well as wayfinding strategies.  

Studies have presented different wayfinding strategies employed by pedestrians such as 

landmark based, route based, or survey type navigation (Pazzaglia & De Beni, 2001).  The 

theories describing the cause for the differences in spatial knowledge acquisition are insufficient 

(Allen et al., 1996, Hegarty et al., 2006).   One theory that attempts to explain the differences is 
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based on how information in the environment is encoded and converted to spatial information, 

with memory playing a vital role.  People operate on what they can and choose to remember - 

differences in the way people remember the environment affect the way they operate in it.  This 

theory is based on the role of working memory in spatial information acquisition.  Working 

memory is a temporary storage system under near-conscious control that has the capability to 

support complex thought processing - before information is sent to long-term memory (Baddeley 

et al., 2003).  Many wayfinding tasks operate in this domain, using the working memory system 

for spatial information processing.   

 

 

Figure 1.2  Diagram of Baddeley and Hitch working memory model (Baddeley et al., 1974) - 

the central executive acts as supervisory system and controls the flow of information from and to 

its slave systems: the phonological loop and the visuo-spatial sketchpad.  The phonological loop 

stores verbal content, whereas the visuo-spatial sketchpad caters to visuo-spatial data.  Both of 

the slave systems only function as short-term storage centers.  In 2000, a third slave system was 

added to the model - the episodic buffer.   

Source:https://en.wikipedia.org/wiki/Baddeley%27s_model_of_working_memory#/media/File:

Working-memory-en.svg 

 

In the model of working memory, three capacity-limited systems have been proposed:  an 

attentional control system – the central executive, and two subsidiary storage systems – and the 

phonological loop and the visuospatial sketchpad (Baddeley & Hitch, 1974).  The concept is 

illustrated in Figure 1.2.  The phonological loop holds speech-based and acoustical information, 
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the visuospatial sketchpad, on the other hand, has two subcomponents that process visual and 

spatial information respectively (Baeyens & Bruyer, 1999).  These and other findings explore the 

underlying biological and cognitive differences that lead to varying spatial aptitudes resulting in 

differences in spatial behavior.  Spatial behavior can be measured in wayfinding tasks.  Humans' 

discussion of space can be a reflection of this internal cognitive process.  Although not fully 

understood, spatial ability is a cumulative reflection of these internal processes.  Although 

differences in cognitive processes is theoretical, actual measurements of spatial ability can be 

performed with various tests.     

 

Variations in spatial ability and spatial cognition effectively are measured by a self-administered 

sense of directions (SOD) report - with demonstrated validity (Hegarty et al., 2002).  The Santa 

Barbara Sense of Direction survey, henceforth referred to as SBSOD, is the standard survey used 

in cognitive geography research, particularly involving human subjects and navigation.  The 

acronym SBSOD will be used interchangeably with SOD in this dissertation.  Self-report tests, 

such as the SBSOD, have been shown to provide objective measures of these abilities with a 

high degree of reliability (Hegarty et al., 2002).  The SBSOD is a self-reported test, hence can 

generate a classification before navigation.  The SBSOD scale consists of fifteen 7-point Likert 

questions about spatial orientation and navigational tendencies.  Seven of the questions are stated 

positively (e.g., "I am very good at giving directions"), while the other eight are stated negatively 

(e.g., "I very easily get lost in a new city").  The SBSOD score is the basis for differentiating the 

spatial ability of participants in this dissertation.  The SBSOD questionnaire is attached in 

appendix A. 

   

What is the connection between working memory models and SOD scores in research on human 

spatial behavior?  It has been shown that people with a higher SODs tend to do better with 

"survey tasks" that require configurational understanding of environments (Hegarty et al., 2002).  

Wen, Ishikawa and Sato (2011) examined the involvement of three different components of 

working memory in the acquisition of three types of spatial knowledge, in relation to 

participants’ SOD scores.  The study showed that people with a good SOD encoding of 

landmarks and routes, retained primarily verbally and spatially, were able to integrate knowledge 

about them into survey knowledge with the support of all three components of working memory.  

In contrast, people with a poor SOD encoded landmarks, retained only verbally, tended to rely on 

the visual component of working memory in the processing of route knowledge, thus failing to 

acquire comprehensive survey knowledge.  Figure 1.3 shows the proposed model for the 

acquisition of spatial information for people of good SOD and poor SOD.  It should be noted that 

people with poor SOD do not process landmark knowledge spatially, hence lacking the ability to 

form complete survey knowledge with accurate spatial information.  Note that the acquisition of 

survey knowledge can be measured with participants performing sketch tests at the conclusion of 

targeted wayfinding tasks. 
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Figure 1.3 Model for spatial knowledge acquisition.  Black arrows indicate the encoding 

processes for the three types of spatial knowledge; white arrows indicate the integration of 

landmark and route knowledge into survey knowledge.  For good-SOD people, information 

about landmarks and routes is processed in the verbal and spatial components of working 

memory.  Knowledge thus acquired is integrated into survey knowledge being processed in all 

three components of working memory.  In contrast, for poor-SOD people, landmark knowledge is 

not spatially processed and route knowledge is visually processed.  Source:  (Wen et al., 2011). 

 

Since people of varying spatial aptitude fundamentally differ in the processing of spatial 

information, many researchers strive to understand and quantify the actual differences in spatial 

experience, wayfinding, and spatial learning in the environment.  Urban settings are particularly 

useful for these studies.  Many investigators employ empirical studies to measure the effects of 

environment on navigators.  For example, Garden et al. asked participants to learn two routes in 

a European city, with concurrent articulatory-suppression and spatial-disrupting tasks, and then 

to follow the learned route again.  Results showed that survey-type participants’ performances 

were disrupted by spatially concurrent tasks, whereas non-survey participants’ performance was 

disrupted by verbal tasks (Garden et al., 2002).  This in turn leads to varied results for people of 

differing spatial abilities.  Ishikawa et al. have shown that people with varying spatial abilities 

tend to select different landmarks during navigation (Ishikawa et al., 2008).  Höelscher, 

Tenbrink, and Wiener studied routes planned by participants who were familiar with an 

environment.  They found that the routes planned by individuals for themselves to follow, the 

routes planned for others, and the routes actually traversed through the environment were 

significantly different from each other.  This finding suggests that cogitation about wayfinding 

tasks is vitally linked to the context of the activity being carried out (Höelscher et al., 2011).   

Many studies attempt to classify user behavior and establish a relationship between spatial ability 

and wayfinding performance.  As each person and environment is inherently distinct, varying 
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experimental design can often reveal novel aspects and insight about the human wayfinding 

process.   

 

Building upon previous idea and methods in the field of cognitive geography and environmental 

psychology, the first research question in this dissertation is:  

 

 What are the differences in the perception of the environment and the 

communication of spatial information by people of varying spatial 

abilities? What differences are there during navigation between people 

of high and low spatial abilities?  What additional difficulties may be 

encountered by wayfinders if people of varying spatial abilities 

simultaneously collaborate on a spatial wayfinding task?   

 

Answering this question requires closely examining the behavior of individuals in real world 

navigation.  It will be particularly revealing to have people of varying spatial abilities perform 

wayfinding tasks simultaneously.  Spatial information is communicated through natural 

languages (Tversky et al., 1996), reflecting the internal cognitive process.  If participants are 

required to exchange and communicate spatial information with someone that perhaps processes 

the environment differently, such differences can be revealed.  When forced to process spatial 

information originating from a dissimilar cognitive process, adjustments and adaptions will be 

required.  A side-by-side comparison of behavior, as well as mistakes and discrepancies, will 

generate a useful dataset for analysis that can highlight these intrinsic differences.   

 

While many studies have examined behavior of individual users, the challenging nature of a 

simultaneous pedestrian setup has made it difficult to carry out, thus insufficiently presented in 

literature.  One reason is that researchers are still trying to elucidate the individual processes that 

affect wayfinding performance - which is not yet fully understood.  The second reason is that an 

experimental design involving multiple simultaneous wayfinders is logistically difficult to setup 

and implement.  In order to cognitively challenge an individual, it is ideal to place them in a 

culturally unfamiliar setting, with novel landmarks, and perhaps with a lack of understandable 

signs.  This setup can challenge the wayfinders and reveal more about the cognitive process and 

patterns that otherwise would have been revealed in a familiar setting.  This dissertation 

describes experiments that attempt to meet these challenges by creating an experimental setup in 

an unfamiliar environment that is non-trivial for users.   
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The phenomenon of navigation and wayfinding is a constant interaction between people and 

environment.  It is important therefore to further classify the environment traversed.  Unlike 

robots that make an instant decision to make a turn, humans have to process the environment at 

decision points before making a logical and deliberate choice for a spatial action (Klippel et al., 

2011).  Action at decision points tends to alter the course and effectiveness of navigation tasks 

(Richter et al., 2012).  Decision points are points in an environment, such as intersections, where 

navigators have to make a choice about whether to change direction or continue without 

deviation.  Decision point salience can be broken down into computational and cognitive 

salience.  Cognitive salience is related to the personal significance for humans during a 

navigation task.  Cognitive salience has been studied in relation to landmarks, structures of 

intersections, and graph connectivity (Claramunt et al. 2007).  Computational salience, on the 

other hand, is a method of classifying the importance of decision points for wayfinders with 

respect to individual differences and ability (Takemiya et al., 2013).  These saliences represent 

the difficulties in an environment.  The application for such calculations is in determining where 

people are likely to make mistakes.   

 

Mistakes are revealing relative to the navigation task, to the environment, and to the user.  In an 

experimental setup where wayfinders are expected to follow certain routes, it is possible to 

measure the location, nature, and severity of mistakes made.  Subsequent analysis can often lead 

to insights.  The second central research question of this dissertation involves classification of 

the traversed environment in the framework of wayfinder errors:     

 

 What features of the environment can help predict where people are 

likely to make mistakes?  Can difficulty of certain decision points be 

pre-determined, before navigation takes place, purely from analysis of 

topological features?  What computational methods can be applied to 

predict difficult-to-navigate decision points?  How useful are the 

predictive capacity of these metrics in the real world?   

 

Due to the dynamic and complex nature of the environment, answering these questions requires a 

data-driven analytical approach that mirrors actual human behavior.  Many computational 

methods have been established in the past.  Using computational methods, it is possible to 

generate arbitrary data, such as thousands of routes and possible deviations, to test predictions.  

Many of these predictions could be validated with actual human behavior-based data.  A 

meaningful  contribution to the field is thus being able to establish links between computational 

methods and actual wayfinding performance.    
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There are many useful metrics used in network analysis.  One prominently used computational 

method is PageRank, the foundational algorithm that powers the world’s most popular search 

engines.  PageRank is an algorithm for calculating the stationary probability distribution of an 

ergodic Markov chain (Langville et al., 2006).  It was developed originally for ranking web 

pages in Google search results, but has also been successfully applied to word-sense 

disambiguation (Aguire et al., 2009), as well as ranking popular locations in a spatial 

environment (Jiang et al., 2009).  In PageRank, the importance of a node in a graph is related to 

the importance of nodes that point to it (Page et al., 1999).  The algorithm uses direction 

information about which nodes point to each other.  In the context of wayfinding, nodes are 

decision points and the connecting nodes are streets.  The direction of the edges is determined by 

movement from a starting decision point to a goal decision point.  In iterative implementations of 

PageRank, all nodes are first initialized with the probability that a node is randomly chosen; that 

is, 1, divided by the number of decision points in the graph, |G|:   

 

 

 

PageRank applications show that decision points are not isolated, that their importance is related 

to the network.  This is an important implication for environmental psychology.  Many of the 

patterns are invisible to the human observer but can be illustrated through various computational 

methods.  Imagine traversing through different neighborhoods in a large city, given that there are 

variations in one’s spatial cognitive process.  Walking quickly through a street with many 

successively changing landmarks and different directions also has a pronounced effect on one’s 

navigation decisions.  Many subtle processes of wayfinding are not quantitatively represented.  

Computational methods that take into account these subtleties will be useful in determining 

potential mistakes in navigation.  It is a significant contribution to the field of cognitive 

geography to test existing methods, and to establish algorithms specific to pedestrian wayfinding 

that take into consideration both the graphical nature of the routes and uniqueness of decision 

points.  

 

Wayfinding is a complex task that employs intricate mental processes.  Technology often 

attempts to mimic complex natural processes.  Navigation systems can follow a similar principle 

to mirror human cognitive and communication processes, which hitherto has been a challenge.  

There are many ways to improve navigation system design.  When giving instructions to one 

another, humans tend to predominantly use landmarks, by which we understand distinctive 

objects in the environment (Lynch 1960; Denis et al., 1999).  It has been shown that the inclusion 

of landmarks into system-generated pedestrian routing instructions raises the user’s confidence 

in the system - when compared to a system that only gives relative direction instructions (Ross et 
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al., 2004).  Traditional map-based navigation data models currently cannot effectively integrate 

landmarks into pedestrian navigation instructions - therefore they often lead to inconsistent or 

incorrect spatial cognitive processing (i.e., wayfinding errors) in pedestrian navigation scenarios 

(Lin and Chien 2010).  This in turn could cause confusion to pedestrians and lead to less efficient 

routes than the route instructions provided by landmark-based navigation systems (Elias and 

Paelke 2008, Hile et al. 2008, Ishikawa et al. 2008).  In addition, humans tend to choose objects 

in the environment that are salient in certain situations, i.e., that are prominent in a way that 

makes them easily recognizable.  Many researchers have proposed computing salience values for 

landmarks (Raubal and Winter, 2002; Duckham et al., 2010; Nothegger et al., 2004).  However, 

in many of these cases, salience is determined arbitrarily and not universally applicable for the 

large population of landmarks, limiting their effectiveness and value to the individual.     

 

Contemporary systems do not quantify or rank decision points by their respective difficulty to 

individual users.  As a result, existing systems lack an effective way to determine which decision 

points can best benefit the user with additional information.  Previous classification of landmarks 

and decision points predominantly have been heuristically and manually generated, not tuned or 

determined by the actual users.  A navigation system should aim to maximize its usefulness for 

the individual and mirror the individual’s thought process when interacting with the 

environment.  It is thus important to quantify individual behavior during navigation, leading to 

the next research question: 

 

 What is an effective way to create individual models for navigation that 

can elucidate the tendencies of each individual navigator?  How to 

create weights that measure the significance of various features of an 

environment to benefit an individual user?   How to effectively 

determine decision point difficulty of a route based on the behavior of 

an individual wayfinder?     

 

 

This issue has not been sufficiently addressed in past research.  There are significant challenges 

to overcome in order to sufficiently answer the question.  The first problem is obtaining a useful 

dataset that reflects actual human behavior, including sufficient aspects of the environment to be 

simultaneously analyzed.  Such a dataset should not just contain the performance of the users, 

but also information about the environment, and perhaps the cognitive ability and preferences of 

the users themselves.  A second problem is to establish a standard to measure errors.  Errors give 

insight to the human cognitive process.  Previous research has not adequately addressed how to 

define mistakes and use methods such as machine learning to connect mistakes with human 

behavior - that is: using information about mistakes in navigation as a method to model 

individual spatial behavior.  A third problem is to find an effective method to derive weights to 
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differentiate effects of various environmental features on the wayfinder.  Navigation is complex 

and a robust quantitative method that can take into account all the factors during the wayfinding 

task has not been established.   

 

With the availability of a useful dataset, theoretically one can find a way to determine the effects 

(weights) of each parameter that represent a wayfinding profile of a wayfinder.  In a route with n 

decision points, if a person has difficulty at one decision point over another, some characteristics 

of the decision should possess predictive qualities for future as yet unseen decision points.  

Interactive salience can be determined for each user relative to decision points - defining how 

relatively difficult a decision point is for an individual.  Since people vary greatly in respect to 

their cognitive process, this is not a problem of absolute salience but relative salience ranking.  

Approaches such as SVM Ranking described by (Joachim 2002) holds potential for both creating 

ranks and weights to help differentiate decision points and wayfinders.    Ranking decision points 

on a route can help a system determine where to best provide additional information on the route, 

making navigation guidance more efficient and personal.   

 

After quantifying user behavior and the environment, the next step is to incorporate these 

insights into more effective system design.  The first step is to preliminarily test the effects of 

additional information on the users and measure their individual response.  Since a problem with 

navigation systems is their effect on spatial learning, it would be useful also to test how new 

features might affect an individual’s ability to acquire survey knowledge during wayfinding 

tasks.  The final major question of this dissertation is:   

 

 What new features can be added to the design of pedestrian navigation 

aids?  Will the improvement benefit everyone equally?  What effects 

will these improvements have on the wayfinding performance and 

spatial learning of individuals of varying spatial aptitudes?      

 

Augmented instruction at specific decision points is an established way to improve user 

experience in wayfinding (Hara et al., 2010).  The challenges of augmented instructions at 

decision points in GIS involve the design of an underlying representational database structure, as 

well as the effects of augmentation on users.  Although not the focus of this dissertation, it is 

important to discuss existing work undertaken in data structure design that is the foundation for 

improvement in GIS.  Most existing database models for GIS and navigation systems focus on 

the organization of navigation routes and navigation instructions while ignoring the cognitive 

load in the process of finding routes.  Navigation data models such as Kiwi, SDAL, and GDF 

focus on route-specific guidance data (e.g., point of interest (POI), road networks, and public 

transportation systems) and navigation instructions (e.g., distance, turn direction, and voice 

instruction).  Richter (2008) developed the generation of unambiguous, adapted route directions 

(GUARD) to generate context-specific route instructions using landmarks in which the route 
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instructions adapt to route properties and environmental characteristics.  For example, GUARD 

generates route instructions by considering "the circular order that the branches of a decision 

point form and the order of events in route following that are induced by the directedness of a 

route".  Fang et al introduced (LPNDM) to support the modeling of landmarks and use of 

landmark-based route instructions augmented on photographs for pedestrian navigation services 

(Fang et al., 2011).   

 

 

These models attempt to offer additional information for the user during wayfinding, but the 

additional information should come with consideration of the user.  The challenge therefore is to 

understand what decision points and for whom the added instructions can most benefit.  Such a 

prototype can use augmented instructions at decision points and measure the improvement of 

users or groups.  While improvement in wayfinding efficiency is expected from these new 

capabilities, it would be important to see how such improvement might vary for people of high 

versus low spatial aptitudes.  In addition, it would be insightful to measure the effects on spatial 

learning by the use of the new features, and whether it is consistent for people of varying spatial 

aptitudes.     

 

 

Figure 1.4.  Components of Navigational efficiency.  Navigation is a complex process that can be 

affected by, but not limited to, those described above.  Many of these components have not been 

sufficiently addressed in the past in terms of understanding human behavior in navigation space.  

This dissertation will attempt to address these issues and potentially quantify them in classifying 

the environment and individual behavior.     

To organize the research questions proposed for this dissertation, the following diagrams are 

provided.  Figure 1.4 shows the components that may affect navigational efficiency, many of 

which will be actively addressed in this dissertation.  Attempts will be made to differentiate these 

features and calculate their weighted effects on each individual users.  The flow chart in figure 

1.5 describes the research methodology and flow of the dissertation, the chart demonstrates that 
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cognitive studies is a dynamic and imperfect process - instead of arriving at the right answer, 

there are often unknown factors that affect the outcome.  The purpose is to arrive closer to an 

understanding while quantifying as many factors as possible regarding the human spatial 

experience.     

 

 

Figure 1.5 shows the logical flow of this dissertation and how research questions will be 

addressed.  It should be noted that it is an iterative process – a purpose driven pursuit to further 

understand individual behavior and finding features that could improve usefulness and efficiency 

of navigation systems.   

 

The dissertation will attempt to examine the previously presented questions in a various steps.  

The dissertation centers on the understanding and analyzing of difficult decision points in 

navigation - and using various analysis techniques to classify the environment and wayfinders.  

The organization of this dissertation is presented in the following section.   
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1.2   Organization of Dissertation 

 

 

This dissertation includes modified versions of three manuscripts targeted for various peer-

reviewed journals.   

 

 

Chapter two presents an empirical study that derives a rich and diverse dataset that will serve as 

the foundation of three chapters.  A novel collaborative navigation study design is carried out 

with two people simultaneously navigating and communicating in a culturally unfamiliar 

environment in Tokyo.  The setup includes 44 participants with varying spatial abilities divided 

into 22 pairs.  Subsequent analysis will reveal their ability patterns.  Communication, in terms of 

direction given and direction received, between the users will be closely examined.  This study 

endeavors to gain insight into the way people of varying spatial abilities communicate spatial 

information - particularly highlighting the difficulties faced when the pairing is far apart in 

spatial aptitude.  This experimental setup allows for the discovery of incongruence between 

users.  This incongruence can mirror the reality faced in contemporary navigation systems, 

where a system does not distinguish between users nor optimize direction generation.  This study 

also is designed to discover tendencies of people of varying spatial ability groups.  This study 

also can reveal gender specific peculiarities in wayfinding, if any, but this complex topic is not 

the focus of this dissertation.      

 

 

Chapter three searches for ways to effectively determine decision point salience using 

computational methods.  The primary computational means of this study is to combine meta-

algorithms (outlink score and outflux score) with various established methods of social network 

analysis while validating them against actual human behavior.  A goal of this study is to measure 

the effects of these algorithms on existing metrics and to find ways to further classify the 

environment.  Another purpose of this study is to determine if there are network effects in a route 

description beyond the obvious characteristics of decision point descriptions.  This study will 

determine whether these two computational metrics are more specific to navigation because they 

take into consideration certain human cognitive processes not inherent in the measurement of 

other computational metrics.     

 

 

The ability to distinguish decision points is important from a system perspective, and is a key 

step for improved navigational instructions by allowing the system to highlight potential difficult 

spots for navigation.  Computing decision point characteristics generally is the first step in 

generating a wayfinding description.  Highlighting these points can allow a system to more 

efficiently provide additional instructions.  After decision points are classified in a topological 

sense, the next step is to attempt to find personalized profiles for individual users from real world 

data. 

 

 

Chapter four consists of two parts.  This study takes the empirical dataset of real world 

wayfinder behavior and attempts to derive ranking of decision points and personal weight 
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models of the users.  Chapter four proposes to apply machine learning methods, particularly 

RankingSVM, concurrently known as SVMRank for this purpose.  SVMrank method can 

automatically derive a mathematical model to rank the difficulty of a decision point on a route 

from a combination of topological and descriptive features of the environment.  If this method is 

effective, this ranking can have many potential applications, from aggregating group behaviors to 

determining specifically difficult decision points for users of certain characteristics in an urban 

environment.   

 

 

The second part of chapter four tests a prototype of an augmented decision system.  The primary 

purpose of this prototype is to test the effects of added instructions on spatial learning.  If 

findings from this dissertation are eventually applied to navigation systems, will such systems 

actually compensate for decreased spatial learning abilities?  A post-experiment sketch test is 

used to assess the survey knowledge acquisition of the users.  The results will attest to the 

usefulness and effectiveness of augmented navigation technology and whether it affects people 

differently.  What subset population can benefit more from an augmented navigation decision 

system, and what other improvements are suggested by this study?   

 

 

Chapter five summarizes the major contributions of this dissertation research.  The contributions 

to the field of navigation, system design, spatial cognition, spatial ability, pedestrian navigation, 

decision point salience, machine learning methods, and personalization in GIS are re-iterated.   

Implications for improved model-building, GIS based navigation system design, and city 

planning will be presented.  This dissertation ends with a discussion of future research directions. 
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CHAPTER 2 

 

COLLABORATIVE NAVIGATION IN AN 

UNFAMILIAR ENVIRONMENT WITH 

PEOPLE HAVING DIFFERENT SPATIAL 

APTITUDES 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

 

This chapter is a slightly modified version of a paper published by Spatial Cognition 

& Computation Volume 15 - Issue 4 in August 2015.  Co-Authors: Toru Ishikawa & 

Makoto Takemiya. 

 

  

2.1   Abstract 

 

This study addressed the issue of collaborative navigation, by examining the types of 

information communicated in the processes of direction giving and receiving 

between people who guided each other simultaneously to a destination over the cell 

phone in a novel environment.  When paired with a partner whose sense of direction 

differed greatly from their own, people found the collaboration difficult and took a 

longer time to verbally direct the partner to the destination.  Landmarks that people 

used in giving navigational instructions differed depending on sense of direction.  

People with a good sense of direction adjusted route directions to their partners' 

wayfinding ability.  Results from a detailed qualitative analysis of participants' 

verbal protocols and implications for personalized navigation tools are discussed. 

 

Keywords:  collaboration; landmarks; navigational instructions; route directions; sense of 

direction; wayfinding 

 

 

2.2   Introduction 

 

Imagine a situation in which you and your partner are at different locations in an unfamiliar 

environment and desire to meet at a certain place.  You do not know how to get to the place from 

your current location but your partner does, or vice versa.  In such a case, in a modern setting, 

people can assist each other in finding their way in real time over the mobile phone, with one 

person describing what is seen in their surroundings so that the partner can direct them.  In 

providing navigational directions, then, would a subject select different landmarks or 

instructional strategies depending on whether the partner is a child, an older person, a foreigner, 

or a poor wayfinder?  Most likely your instructions would be dependent on your perception of 

both the environment and the partner's wayfinding ability.  Contemporary navigational aids, 
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however, take a generalized approach, primarily providing turn-by-turn route directions with 

little consideration of a user's spatial aptitudes. 

 

Such a collaboration in navigation is often encountered in daily life and constitutes an important 

part of everyday spatial cognition. To our knowledge, however, no empirical research exists 

regarding how people tackle such a common but challenging task of collaborative navigation - 

requiring having to know where they are and informing other people how to proceed.  In the 

existing literature of human wayfinding, the experimental task of navigation is set as an 

individual activity, and its simultaneous, interactive aspect has not been sufficiently investigated. 

 

One exception is the study by Forlizzi, Barley, and Seder (2010), which looked at how a person 

in the passenger seat interacted with a driver in providing navigational directions toward a 

destination.  In the study, the passenger consulted a map and other pieces of information for as 

long as desired beforehand to generate navigational directions.  Maps are a powerful tool to help 

the viewer comprehend spatial relations between places in a bird's-eye view, and the knowledge 

acquired from maps differs from knowledge acquired from direct navigational experience in the 

environment (Thorndyke & Hayes-Roth, 1982).  This study rather focuses on the acquisition and 

communication of route information in direct, real-time navigation. 

 

Another exception is the study by Reilly et al. (2009).  It looked at how pairs of travelers 

together collaborate in navigating toward destinations, by sharing a single cellphone and 

consulting information displayed on it.  Strategies employed by paired travelers changed 

dynamically with their roles (i.e., a leader or a follower) and the phases of navigation.  Although 

the study did not deal with the type of collaboration that the present research endeavors to 

examine (i.e., how people find the way together using a shared navigation tool vs. how people 

guide the partner remotely through verbal directions), it points to variations in navigational roles 

and strategies when two people interact with each other. 

 

There are some variations in the forms of collaborative navigation.  One is simply finding the 

way to a destination in a pair (or group) traveling together.  In such a case, a person who is 

deficient in wayfinding abilities (or a person with a poor sense of direction) could simply follow 

the partner and leave the wayfinding or route-planning task to the partner completely.  This is not 

an ideal setting for an experiment that is examining cognitive interactions and processes of 

collaborative navigation.  Another form is one person providing navigational directions, in 

advance, to another person who is to visit a new place.  This type of information provision has 

been examined in terms of route descriptions generated by individual participants from memory 

(e.g., Denis et al., 1999), but lacks in the simultaneous and collaborative aspect which this study 

focuses on. 
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A third form of collaborative navigation is where two people travelling and assisting each other 

in real space in real time, which is the target for the present research.  Specifically, this study 

examines peoples' collaborative navigation behavior, particularly by focusing on the difficulties 

that people have understanding the navigational directions provided by the partner and giving 

directions that are understandable to the partner.  Importantly, it takes the effects of navigators' 

spatial aptitudes into account, and looks at the types of information communicated, and the 

efficiency of navigation by people with different levels in sense of direction. 

 

2.3    Background and Objectives 

 

2.3.1  Navigation and wayfinding 

 

The goal of navigation, which is defined as consisting of wayfinding and locomotion, is to move 

through space to reach a specific destination.  Wayfinding differs from locomotion in that it 

involves purposeful cognitive processes beyond simple local movements or obstacle avoidance. 

 

In successful navigation, people need to orient themselves in space and know which direction 

they are headed, and then plan a route and execute the planned route toward the destination 

(Montello, 2005).  In these three stages, people will access stored knowledge about the 

surrounding environments (mental representations) or use navigational aid information (external 

representations).  In particular in a new environment, people may rely heavily on navigational 

aids, as well as their cognitive spatial abilities, to find their way.  Recently, modern 

communication technologies such as GPS-enabled devices and location-aware smartphones have 

been developed to assist people in navigation.  These technologies, however, are often found to 

be non-optimal - for example increasing travel time and distance compared to traditional paper 

maps or decreasing the accuracy of the users' configuration knowledge of the traveled routes 

(Ishikawa et al., 2008).  Thus there is room for improvement for such advanced systems in the 

design and format of information presentation. 

 

2.3.2  Spatial ability and sense of direction 

 

Spatial abilities are important for the daily activities of spatial learning and behavior in the 

environment, such as wayfinding, layout learning, or map reading (e.g., Hegarty et al., 2006; 

Liben & Downs, 1993; Newcombe, 2010).  Self-report tests, such as the Santa Barbara Sense-of-

Direction (SBSOD) scale, have been shown to provide objective measures of these abilities with 
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a high degree of reliability (Hegarty et al., 2002).  The SBSOD scale consists of fifteen 7-point 

Likert questions about spatial orientation and navigational tendencies.  Seven of the questions are 

stated positively (e.g., "I am very good at giving directions"), while the other eight are stated 

negatively (e.g., "I very easily get lost in a new city").  Hegarty et al. (2006) showed that sense of 

direction related more strongly with learning about large-scale spaces from direct experience 

than with learning from visual media such as a video or a virtual environment.  Ishikawa and 

Nakamura (2012) found differences in landmark selection between people with a good and poor 

sense of direction, with the former selecting fewer landmarks and focusing on commonly 

recognized landmarks.  Therefore in this research, SBSOD scores are used as a potential 

correlate with collaborative navigation performance. 

 

2.3.3  Landmarks and navigational directions 

 

Successful wayfinding requires accurate encoding of landmarks, and good mental 

representations and navigational instructions typically contain landmarks placed in a correct 

sequence (Lee & Tversky, 2005).  Although a landmark remains a somewhat elusive concept 

with a range of definitions (Presson & Montello, 1988), its major characteristic is singularity, 

which leads to its uniqueness or memorability in the environment (Lynch, 1960), typically in 

terms of visual., semantic, or structural salience (Sorrows & Hirtle, 1999).  Thus, introducing 

judiciously selected landmarks into route directions can help navigators to envision the 

environment during, or in advance of, actual traversal (e.g., Klippel & Winter, 2005; Raubal & 

Winter, 2002; Tom & Denis, 2003).  In the present study, particular focus is placed on the types 

of landmarks selected by collaborating navigators and the effectiveness of those landmarks for 

route directions in dynamic and interactive situations. 

 

2.3.4  Research objectives 

 

With these background issues in mind, we conducted an empirical study in which people guided 

each other in pairs to a destination over the cellular phone, while each person was trying to reach 

the destination on the basis of the other person's navigational directions.  This allowed us to 

study the dynamics of spatial communication in a real-time setting, beyond a static analysis of 

route descriptions generated by individual participants from memory (Lovelace, Hegarty, & 

Montello, 1999).  Also, to examine the effects of spatial ability, we divided participants into two 

groups (high and low sense-of-direction groups) based on their SBSOD scores, and looked at 

how they select and communicate information about the routes interacting with each other.  In 

particular, as pointed out by Reilly et al. (2009), behaviors and instructions during collaborative 

navigation may dynamically change, and this flexibility could relate to the travelers’ perceptions 

of the partner’s ability, as well as to their own spatial abilities.  These considerations motivate 

the present study.  In light of past studies that discussed differences in landmark selection 
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between familiar and unfamiliar people (Lovelace et al., 1999) and between recall from memory 

and identification during travel (Ishikawa & Nakamura, 2012), this research focused on 

landmark selection in situ by people unfamiliar with the environment.  This study also 

considered gender-related differences in route descriptions and navigational strategies that have 

been reported in the literature.  Specifically, since men and women tend to differ in 

configurational understanding of environments (Ishikawa & Montello, 2006) and the use of 

concrete objects versus cardinal directions as landmarks (Ward, Newcombe, & Overton, 1986; 

Allen, 2000), it might be the case that male-male or female-female pairs find navigational 

communication easier than male-female pairs.  Thus, the present study examines navigation 

performance by pairs of the same and different sex, as a possible effect of similarities in 

wayfinding tendencies. 

 

 

2.4   Method 

 

2.4.1  Participants 

 

Forty-four adults (27 male and 17 female) participated in the experiment in return for monetary 

compensation.  The mean age of the participants was 25.9 years.  They were non-Japanese 

English speakers who had been in Japan for varying lengths of time (1 week to 2 years), and 

none of them had been to the study area before the experiment.  Based on their scores on the 

SBSOD scale, which they took prior to the experiment, participants were labeled as either high 

or low through a median split at the score of 4.3 out of 7 (the larger the better).  They were then 

grouped into 22 pairs with respect to high- and low-SOD combinations: 6 high-high (H-H) pairs, 

10 high low (H-L) pairs, and 6 low-low (L-L) pairs.  Concerning sex composition, 9 pairs were 

of the same sex (7 male pairs and 2 female pairs) and 13 pairs were of different sex. 

 

2.4.2  Study Area and Routes 

 

The study area was a residential neighborhood in the proximity of a railway station in western 

Tokyo (Nakano-Sakaue).  As in many typical Japanese residential neighborhoods, there were no 

visible street-name signs in the area. 

 

Thus, instead of using street names as landmarks, participants needed to identify landmarks 

based on their perceptions, particularly under the constraints of environmental and cultural 

unfamiliarity, and the pressure of processing spatial information in real time while providing 
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navigational information to the partner.  In the area, two routes were selected that shared a 

common starting point and had respective goal locations (Figure 2.1).  It took on average 6 

minutes and 30 seconds to travel Route 1, and 7 minutes and 21 seconds to travel Route 2. 

Examples of major landmarks that participants identified along the routes are shown in Figure 

2.2. 

 

Figure 2.1:   A map of the study area.  The two routes, Routes 1 and 2, share the same starting 

point and have respective goal locations.  Map data © 2013 Google, ZENRIN. 

 

 

Figure 2.2:   Examples of major landmarks along the routes: a hospital building on Route 1 (left) 

and a temple on Route 2 (right).  Photographs taken by author.   
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2.4.3  Procedure 

 

Participants were taken to the study area in pairs (which were formed based on their SBSOD 

scores as described in section 2.1), one pair at a time, and each member was randomly assigned 

to either Route 1 or Route 2.  At the starting point, the cardinal direction of north was pointed out 

to participants, so that they could use the information if they wanted later. 

 

Then each member of the pair started to walk along the assigned route to the destination, being 

guided by a research assistant.  During the initial guided walk, participants verbalized their 

thoughts about the route into a voice recorder; they were asked to mention anything in the 

environment that they noticed and thought important in describing the route or guiding an 

unfamiliar person along the route. 

 

When reaching the destination, they retraced the traveled route to the starting point. They then 

switched routes and started to navigate the other route, now being directed by the partner rather 

than by a research assistant.  This was done by the participants helping each other navigate 

through a conversation over their mobile phones.  Namely, a person who had first traveled Route 

1 (or Route 2) traveled Route 2 (or Route 1) being guided by the other person and also guiding 

the other person along Route 1 (or Route 2).  This concurrence of traveling and guiding may 

have posed an extra cognitive load, but did not make the task too difficult, as all pairs somehow 

reached their goal destination. 

 

The navigational directions communicated between the two members over the mobile phone 

were recorded.  In giving navigational directions to the partner, participants had to rely on 

memory from the initial guided walk.  They were asked to instruct the partner to traverse the 

same route that they had been guided along, rather than finding a short cut to the destination.  In 

communicating navigational directions participants used English, in which we had previously 

verified their fluency.  

 

The research assistants walked behind the participants to record their travel behavior, and guided 

them back to the assigned route if they deviated from the route by more than 40 meters or 

wandered onto the main road (which makes an edge of the study area, shown in Figure 2.1) 

(there were six such instances observed among the 22 pairs).  In doing so, we had identified 

possible locations in the study area beforehand beyond which participants wandered off the route 

more than 40 meters.  The research assistants recorded the travel time and the route that the 
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participants took.  Distance of the route was measured on a map afterward, to give travel 

distance, inclusive of the distance traveled off-route if the participant deviated from the route and 

were taken back1.  Upon completion of the navigation tasks, the participants were interviewed 

about their experience and then debriefed about their activity.  

 

2.4.4   Coding of Verbal Protocols 

 

Audio recordings from the initial guided walk and the subsequent collaborative navigation were 

transcribed and content analyzed (or coded), with respect to the contents mentioned and the 

confidence of utterances (cf. Hsieh & Shannon, 2005). 

 

The contents mentioned were classified into the categories of landmarks (roads, permanent 

landmarks, ephemeral landmarks, and signs), additional descriptions (colors, written letters, and 

other), and navigational directions (“to go straight”, “to make a turn” or turn sequences, cardinal 

directions, distance based directions, and time-based directions).  To assess the reliability of 

coding, we asked two independent people, who did not know about the experiment, to classify 

the contents of the 22 pairs’ verbal statements, and found that their classifications of landmarks, 

descriptions, and directions into the above categories showed no discrepancy. 

 

Based on the recordings from the collaborative navigation, each statement of direction given was 

classified into four categories:  (a) giving determinate directions (e.g., “Go straight for 100 feet 

and turn left at the hospital”); (b) giving less determinate and exploratory directions (e.g., “I 

think you should turn at the sign and there should be a white building afterwards”);  (c) asking 

for cooperation (e.g., “Where are you right now?  I think there is a staircase around there 

somewhere, so tell me when you find it”); and (d) being lost (e.g., “Where are you right now?  I 

don’t know where you are”). 

 

Each statement of direction received was also classified into four categories: (a) following 

determinately the exact directions given by the partner (e.g., “Yeah I see that, I’m going there 

now”); (b) following directions in an exploratory way interacting with the partner (e.g., “I’m at 

the street corner.  I see a stop sign to my left.  What do I do now?”); (c) trying to find a place in 

                                                           
1 *1. It was possible to set the place shared by the two routes (the starting point in the current experimental design) to be the goal 

for collaborative navigation.  In that case, after the initial walk, participants need to walk an extra distance, probably along a 

circuitous path outside of the study area, so that they are not exposed to the other route when switching routes.  Also in that case, 

participants may stop navigating each other when they see their partners around the goal location, rather than directing them 

specifically up to the goal.  Thus, to keep the experimental design concise and to examine how participants initiate and terminate 

collaborative navigation processes, the current design was employed. 
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response to a request of cooperation (e.g., “I will go look for a parking lot.  Where should I turn 

after that?”); and (d) being lost (e.g., “I don’t know where I am.  I don’t understand what you 

want me to do”). 

 

For both direction giving and receiving, the categories (a) to (d) are in the decreasing order of the 

degree of confidence; that is, they show the degree to which the directions are given concisely 

and directly or received as they are without requiring additional interactions.  So, as a measure of 

the level of confidence, we gave four points to the statement classified into category (a), three 

points to category (b), two points to category (c), and one point to category (d).  

 

To assess the reliability of the coding of direction giving and receiving, three people (the first 

author and two independent people, who did not know about the experiment) were asked to score 

the confidence levels for all utterances by the 22 pairs.  Figure 2.3 shows the correspondence 

between the three independent raters’ classifications in terms of Cohen’s kappa coefficients.  

Cohen's kappa coefficient is a statistic which measures inter-rater agreement for qualitative 

(categorical) items. It is generally thought to be a more robust measure than simple 

percent agreement calculation, since κ takes into account the possibility of 

the agreement occurring by chance.  Of the 66 kappa values, one value was below .60 

(specifically .59), 45 values were between .60 and .80, and 20 values were above .80.  As a rule 

of thumb, Landis and Koch (1977) discussed that kappa values .41–.60 indicate a moderate 

fit, .61–.80 represents a substantial fit and .81–1.00 is an almost perfect fit. 

 

According to this interpretation, the three raters’ classifications show a good agreement.  For the 

protocols with a lower inter-rater agreement, conversations were exchanged in quick succession, 

back and forth, and statements such as “I think I know where I am” or “I think I found the 

building you were talking about” were observed, which the raters sometimes found difficult to 

classify.  In the analysis below, a mean of the three raters’ scores is used as the measure of 

confidence level. 
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Figure 2.3:   Cohen’s kappa coefficients for the classifications of confidence level by three 

independent raters. 

 

 

2.5   Results 

 

2.5.1 Mean Navigation Performance 

 

We first compared travel distance and time among the H-H, H-L, and L-L pairs, considering that 

a longer distance indicates more navigational errors and a longer time indicates more frequent 

stops for re-orientation and repeated communications (Figure 2.4). 

 

An analysis of variance (ANOVA) showed that the difference in travel distance among the three 

groups of pairs was not statistically significant, F(2,19) = 0.68, p = .519.  The difference in travel 

time was not significant but marginal, F(2, 19)= 3.21, p = .063, implying a tendency that pairs 
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with different SBSOD scores (the H-L pairs) took a longer time than pairs with similar SBSOD 

scores (the H-H and L-L pairs).  Concerning the effects of sex composition on travel distance 

and time, pairs of the same and different sex showed no significant differences, t(20) = 0.52, p 

= .61; and t(20) = 1.11, p = .28, respectively. 

 

 

 

Figure 2.4 Mean travel distance and time for the H-H, H-L, and L-L pairs (left) and for pairs 

with the same and different sex (right).  Vertical lines depict standard errors of the means.   

 

2.5.2  Types of Navigational Instructions by Efficient and Inefficient Groups 

 

To look at the overall navigation performance by the 22 pairs, we computed a composite 

performance score for each pair, by combining the z-scores (standardized values in terms of the 

mean and standard deviation across the 22 pairs) of the pair’s travel distance and travel time 

(lower values indicate better performance).  The 11 pairs with the smaller scores were labeled as 

the top-half (or efficient) group, and the 11 pairs with the larger scores were labeled as the 

bottom-half (or inefficient) group.  The utterances made by the two groups were counted and 

classified into the types of contents described in section 2.4 (landmarks, additional descriptions, 

and navigational directions).  Figure 2.5 shows that both groups of participants mentioned roads, 

permanent landmarks (such as buildings), and turn sequences frequently. 

 

To compare the distributions for the two groups shown in Figure 2.5, since participants 

mentioned multiple categories, we conducted a mixed analysis of variance with the group (top- 

vs. bottom-half) as a between-subject variable and the content category as a within-subject 
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variable.  The analysis yielded significant main effects, F(1, 20) = 19.18 and F(11, 220) = 

327.40, and a significant interaction, F(11, 220) = 15.38, p < .001. 

 

The bottom-half group gave larger numbers of instructions, suggesting the inefficiency of their 

instructions and difficulties with guiding their partners (see the qualitative analysis in section 

2.5.4 for more detail).  In the instructions roads, permanent landmarks, and turn sequences were 

mentioned frequently, while cardinal directions, distance, and time were rarely mentioned.  Post-

hoc t-tests with a Bonferroni correction revealed a significant difference between the top and 

bottom-half groups for roads, permanent landmarks, ephemeral landmarks, colors, and turn 

sequences, t(20) = 4.48, 4.18, 3.72, 4.28, and 4.60, respectively.  Although the difference was 

marginally significant, the top-half group mentioned cardinal directions more frequently than the 

bottom-half group, t(20) = 2.01, p = .058.  Utterances of the other types of instructions did not 

differ between the two groups. 

 

 

 

 

Figure 2.5.  Frequency distributions of the types of navigational instructions uttered by the top-

and bottom-half groups.  Bars indicate mean numbers for each group and vertical lines depict 

standard errors of the means.   

 

2.5.3 Relationships Between Navigation Performance and SBSOD Scores 

 

The two performance measures, travel distance and time, were not significantly correlated with 

the SBSOD scores when the raw scores were examined (that is, when each participant’s SBSOD 

score and travel time and distance for the second walk were examined).  When the differences in 
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SBSOD scores between the pair members were examined, however, travel time was found to be 

significantly correlated, r = .42, p = .049 (Figure 2.6).  This indicates that as the difference in 

sense of direction between the members within a pair increased, communication of navigational 

information became more difficult and required a longer time, thus increasing travel time.  In 

fact, travel time was significantly correlated negatively with confidence levels, r = 2.77, p < .001. 

 

2.5.4 Qualitative Analysis of Verbal Protocols and Conversation Dynamics 

 

To identify the types of information that the navigators communicated and to characterize the 

problem-solving processes underlying collaborative navigation, we conducted a qualitative 

analysis of the 22 pairs’ verbal protocols, by classifying the pairs in terms of the combination of 

high- and low-SOD pairing (the H-H, H-L, and L-L pairs) and composite performance scores 

(efficient and inefficient groups). 

 

Tables 2.1-2.5 illustrate the contents and processes of the dialogues between navigators from 

three selected pairs, showing the frequency with which each type of utterance was made with an 

identification of the level of confidence (see section 2.4) for every minute during navigation.   

These qualitative case analyses are important because they provide information that was not 

revealed in the quantitative analysis due to the complexity of information dynamics in real-time 

collaborative navigation and provide insights about individual differences in cognitive mapping 

discussed in the literature (Ishikawa & Montello, 2006).  

 

Efficient H-H Pairs 

 

Mean confidence level for these pairs (n = 5) was high, with a score of 3.6 for direction giving 

and 3.3 for direction receiving (on a 4-point scale, with a larger value indicating higher 

confidence as described in section 2.5).  Their conversations consisted predominantly of 

statements similar to “yeah I see that,” and only minimal feedback requests and interruptions 

were needed (see the example in Table 2.1). 
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Figure 2.6:   Relationship between travel time and the difference in SBSOD scores between pair 

members.  The bars represent aggregate numbers in different segments. Shading denotes a 95% 

confidence interval for the linear regression line.   
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Table 2.1:   Minute-by-minute breakdown of the types of navigational information communicated 

between members of one of the efficient H-H pairs.  This shows the frequency with which each 

type of utterance was made for each route (rows), and for every minute during navigation 

(columns).  Darker shades indicate larger numbers of utterances (the same in Tables 2.2 and 2.3 

below). 
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Table 2.1 continued: 

 

 

The H-H pairs performed best in terms of travel distance and time (Table 2.2), making the fewest 

navigational errors and maximizing the time that both members were continuously walking.  As 

seen in Table 2.1, the landmarks that they selected were salient and meaningful to both members, 

mostly roads and buildings.  Furthermore, their statements were minimal, efficient, and evenly 

distributed (compared to other pairs’ protocols shown in Table 2.2 and Table 2.3).  All 

instructions were given with high confidence, either “determinate” or “exploratory,” rather than 

“cooperative” or “lost.”  
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Table 2.2:   Minute-by-minute breakdown of the types of navigational information communicated 

between members of one of the inefficient H-L groups.   
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Table 2.3:   Minute-by-minute breakdown of the types of navigational information communicated 

between members of one of the inefficient L-L groups. 

 

 

The following are examples of verbal navigational directions for the six groups of pairs, broken 

down by SOD combinations and navigation performance. 
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(A) Efficient H-H pair (clear instructions with cardinal directions and landmarks): 

“You want to go left there, so your next thing after that is another left, so it should 

be basically to a point where you have to turn.  You went down the stairs, take a 

right, heading north, then you hit a T, then you went left.  It should not be toward the 

stairs.” 

“OK.” 

“Have you crossed the street?  Take the first left, on the first right, take the 

pedestrian pathway to the right around the parking lot.  When you get to the other 

side of the parking lot, make the first left, you are going in the exact same direction 

you were going, you zigzaged the same way around the parking lot, you are just 

one street over.” 

“I have crossed the street, I am standing at the corner of the large black 

building ‘Leopalace.’  So I’m looking for the parking.” 

 

(B) Inefficient H-H pair (one person giving clear directions with references to a major 

landmark and the surrounding area but the partner not finding it): 

“Go toward the main road, got it.  Did you see two motorcycles, should be on 

your left.  What’s around you?  Pink houses?  I don’t remember that.  Wait, on that 

road, if you keep walking, what’s in front of you?  A parking lot?  If you see the car 

parked, is it green?  Turn left there, facing that.  Did you see a clinic? Tomoyama 

Clinic?  Turn left at the corner of the hospital.  There is a small road there.”   

“A clinic?  I don’t see a clinic.  From the position of the poster, turn right?  Turn left 

at the hospital?  I’m not at the hospital yet.” 

“From there to the red car, is it far?  Go back there once, close to there should be 

a clinic.  Close to that red car, there is a small red traffic cone too.” 

“Now I can’t still see the sign for the clinic, I should look for the clinic, right?” 

“Can you still see the clinic?  Are there any pink posters close to you?  No?  Liberal 

Democratic Party, on your left.  Can you repeat that?” 

“Now I’m looking for the clinic.  I haven’t seen it yet.  I saw a poster, some political 
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poster, says hope.” 

 

(C) Efficient H-L pair (able to adjust and tell the partner to go backward): 

“Alright, you should be on the right path, there should be a small road coming 

up ahead, go straight then take a right.” 

“I think I’m lost, I probably took a turn too early.  I took two rights and a left as you 

described, after the house with the staircases on the outside and the Mercedes 

parked in the front.” 

“Did you see a stop sign?  No?  Where are you now, near a parking lot?  I think you 

might have walked past it, go back a few blocks and tell me when you see a red 

sign with kanjis written on it . . . . What do you see now?  Are there any lamps in front of 

you?  Go there, is a small road, follow that way.  Is like an S thing.” 

 

(D) Inefficient H-L pair (describing different things): 

“Look for a nice looking house with flowers hanging outside.  You will see a gravel 

road right next to the house.” 

“I don’t see the house with a nice look and flowers hanging outside.  The houses 

all look the same, but I did walk past a four-way crossing after turning left from where 

you last told me.” 

“OK, go back to the crossing and describe to me again what you see. 

I remember there was a left turn there, and another left should bring you to the 

house.  Just go back.” 

“Here is a poster with some kanji on it, I think it is something political., is that the 

one?” 

“I can’t read kanji.  I’m not too sure, but look for a cone close to there.” 

 

(E) Efficient L-L pair (a rare case using cardinal directions and time-based 

instructions): 

“If you are at the clinic, go straight, there is a red upside-down triangle.  The clinic 

is where you turn left, heading west, and the other side of the street should be a sign 
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with a bicycle.  Head north from there.” 

“Got it.” 

“You are going to be looking for, the easiest thing is a building faintly painted 

pink or purple, also a green car, but you are going to turn right in between the house 

and the car.” 

“I see Hossen Hall.  I’m going left, so I’ll stay on the main road for a minute or 

two.” 

 

(F) Inefficient L-L pair (simply telling the partner to search for the next visible 

landmark): 

“I think you should be coming up on a turn and you should be able to see a 

building from there, pinkish.  Then there is like a turn after that, I can’t remember.  Tell 

me what you see right now.” 

“What do I see now?  I’m coming to another junction now, is like a pinkish 

building.  There is like a notice board, I turn right at the notice board. I think you lost 

me.  A park?  There is a what?” 

“You should just try to find the main road again, just walk until you see the main 

road, the main road.  Once you get there, you want to turn left toward the Chinese 

restaurant, toward the main road. I don’t remember the turns before that, but if you 

find the main road and the Chinese restaurant, then you are good.” 

“OK, I’ll just try to find the main road. I’ll tell you when I get there.” 

 

 

Inefficient H-H Pair 

 

There was one pair in the inefficient H-H category, which is worth a detailed description because 

of its poor performance despite the members’ high sense of direction.  This pair consisted of a 

woman and a man with SBSOD scores of 4.7 and 6.3, respectively.  The woman received 

directions from the man for Route 1, and performed in the lowest 10% of all participants for that 

route, whereas the man completed Route 2 efficiently through her directions. 
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Examinations of their verbal protocols revealed that the man gave directions that he thought were 

clear and precise for Route 1 using a hospital as a landmark, but the woman did not recognize the 

hospital even though she was right next to it.  As a result, she spent much time searching for it, 

consequently confusing the partner (Table 2.2).  During the conversations, the man consistently 

referred to the hospital as an important landmark, instructing correct turn sequences, and even 

mentioned less salient or ephemeral landmarks around the area to help her look for it.  In the 

follow-up interview, she responded that she did not find the hospital because the hospital sign 

was hanging above eye-level.  This example points to the inefficiency of sticking to a specific 

type of information and failing to adjust navigational directions to the partner’s wayfinding 

ability.  Showing the difficulty that this pair had communicating with each other, the pair’s mean 

confidence level was low, with a score of 2.9 for direction giving and 2.7 for direction receiving. 

 

In light of this finding, we further examined the possibility that the recipient misunderstood 

directions even when the directions were given correctly.  Results showed that a majority of 

high-SOD participants (15 of 22) gave directions that were executed correctly at more than 75% 

of decision points (e.g., intersections), but it holds only for a minority of low-SOD participants 

(7 of 22).  This difference did not reach significance but showed a marginal trend, X2 (1, N =44) 

= 3.30, p = .069, implying a tendency that low-SOD participants misunderstood correctly given 

directions.  Chi square method was used to investigate whether distributions of categorical 

variables differ from one another.   

 

Efficient H-L Pairs 

 

Despite the good performance by the efficient H-L pairs (n = 4), their mean confidence level was 

not as high as that for the efficient H-H pairs (or the efficient L-L pairs, see later), and was low 

similar to other inefficient pairs, with a score of 3.0 for direction giving and 2.8 for direction 

receiving.  It indicates the difficulty of interacting with partners with different levels of sense of 

direction.  Verbal protocols of one of the efficient H-L pairs demonstrated a dynamic adjustment 

of navigational directions during the course of conversations. 

 

The dialogue began with the high-SOD member mentioning less-salient or ephemeral landmarks, 

cardinal directions, and written marks or letters.  When the low-SOD member replied that he 

could not identify the landmarks or understand the cardinal directions, the high-SOD member 

shifted to using predominantly color-based, permanent landmarks to instruct turn sequences 

(Table 2.2).  This phenomenon is particularly interesting because it indicates that high-SOD 

people were able not only to identify commonly recognizable landmarks (as shown by Ishikawa 

and Nakamura, 2012), but also to select from a larger repertoire of different types of landmarks 

adjusting to the partner and situation. 
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Inefficient H-L Pairs 

 

The H-L pairs generally found the task of communicating route information in collaborative 

navigation to be challenging.  Their mean confidence level (n = 6) was low, with a score of 2.9 

for direction giving and 2.7 for direction receiving. 

 

These pairs are of particular interest because their performance reveals how people with different 

levels of sense of direction interact with each other.  Five of the 10 H-L pairs performed above 

average among all the 22 pairs in terms of travel distance, and only three pairs performed above 

average in terms of travel time.  They took the longest time (Figure 2.2), possibly because the 

high-SOD members needed extra time to re-examine their mental maps and adjust their 

navigational directions upon feedback requests from their low-SOD partners.  Common 

examples of their conversations include two members referring to different things. 

 

One inefficient H-L pair consisted of a man and a woman with SBSOD scores of 5.2 and 3.3, 

respectively.  The woman directed a turn too early at one landmark, which caused the man to 

miss the landmark and thus to explore the area for as long as 5 min.  She was unable to backtrack 

her directions and simply insisted that the partner find it.  This misdirection caused the man to 

give many faulty directions eventually.  It exemplifies how interactions with a partner can affect 

the quality of one’s own navigational directions.  This pair’s communication dynamics are 

shown in the example conversations.  In comparison, it shows that their conversations took much 

longer with many inaccurate and repetitive statements being uttered, and a large percentage of 

directions were communicated with low confidence. 

 

Efficient L-L Pairs 

 

The efficient L-L pairs (n = 2) showed high confidence, comparable to the efficient H-H pairs, 

with a score of 3.5 for direction giving and 3.4 for direction receiving.  This contrasts with the 

low confidence level for the efficient H-L pairs.  There was one particularly efficient group 

among the L-L pairs.  This pair was in the top 5% of all the 22 pairs in terms of travel distance 

and time, making no navigational errors throughout the process.  The members were both male, 

with SBSOD scores of 3.3 and 3.4.  Their performance resembled that of a typical H-H pair and 

their conversations were minimal and efficient (Table 2.3). 

 

In this particular case, both members used cardinal directions, which was the only case among 

the six L-L pairs.  It points to the difference of its spatial information processing from other L-L 

pairs and the existence of variations in navigational behavior even among the L-L pairs. 
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Inefficient L-L Pairs 

 

Showing the overall difficulty that the inefficient L-L pairs had in communicating with each 

other, their mean confidence level (n = 4) was low, with a score of 2.9 for direction giving and 

3.0 for direction receiving.  The mean value for direction receiving was comparatively higher 

than that for the inefficient H-H pair or the efficient and inefficient H-L pairs, suggesting the 

inefficient L-L pairs’ insensitivity to the lack of understanding in receiving navigational 

directions. 

 

The L-L pairs in general traveled the longest distance, indicating that they made the most 

navigational errors.  They did not take the longest travel time, however (Table 2.3).  This can 

possibly be explained by the exploratory actions taken by the pairs, since many people with 

lower SBSOD scores were unable to give clear directions, even in terms of turn sequences. 

 

This phenomenon can be seen in the dialogue chart for one of the inefficient L-L pairs.  

Although many landmarks seemed to stand out in the minds of the navigators, they were not 

placed in the correct spatial context.  For example, many landmarks were repeatedly mentioned, 

sometimes in an incorrect order.  Backtracking was uncommon for the L-L pairs, and they 

typically instructed their partner to skip ahead to the next landmark with such directions as “look 

for it, tell me when you see it”.  It resulted in reduced conversation; they simply walked 

randomly, with a higher average speed in the hope of finding the next landmark. Consequently, 

some of the L-L pairs walked faster, without taking the time to properly re-orient themselves 

physically and cognitively. 

 

2.6   Discussion 

 

This article examined the important and challenging, but yet insufficiently investigated, daily 

phenomenon of collaborative navigation, through quantitative and qualitative analyses of the 

navigational information communicated between partners of different spatial aptitudes. 

 

Concerning the effects of sense of direction, no significant correlations were observed between 

navigation performance (travel distance and time) and raw SBSOD scores, but there was a 

significant correlation between travel time and the difference in SBSOD scores between paired 

members.  That is, when people are paired with partners whose sense of direction is greatly 

different, they find it harder to communicate navigational information efficiently and take a 

longer time to guide the partners to the destination.  Such inefficient communications were 
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observed when poor-SOD people misunderstood correctly given directions or confused the good-

SOD partners by incorrect directions.  Stated differently, it can be easier when two people with a 

poor sense of direction help each other (see section 2.4.5), compared to when a person with a 

good sense of direction helps someone with a poor sense of direction (section 2.4.4).  This 

difficulty is reflected by the lower level of confidence for the H-L pairs, even when they showed 

efficient navigation performance (section 2.4.3). 

 

Although having difficulty interacting with partners with a poor sense of direction, people with a 

good sense of direction are flexible in giving navigational directions and able to adjust the types 

of information to the partner.  For example, successful navigators tended to use the least amount 

of extra descriptions such as colors, and elaborated on the initial descriptions focusing on salient 

landmarks.  At the same time, many people with a good sense of direction added extra 

descriptions when prompted by their partners for more information.  They also tended to tell 

their partners to return to a previous spot (seven such instances were observed), while people 

with a poor sense of direction tended to tell the partners to proceed to the next landmark (nine 

instances observed).  Furthermore, good-SOD people referred to new landmarks not mentioned 

in their initial guided navigation, while poor-SOD people failed to mention the same landmarks.  

 

These results show that good-SOD people collect and store various information about the 

traversed environment (some of which could be redundant), and adjust their instructions to the 

needs of their partners.  In contrast, poor-SOD people know that particular landmarks exist but 

do not place them in the correct spatial setting or are unable to convey the information in a 

flexible manner tailored to their partners. 

 

People with a poor sense of direction tended to select ephemeral landmarks such as vehicles and 

pedestrians, as well as semi-permanent landmarks such as posters and signs.  This is in line with 

the finding by Ishikawa and Nakamura (2012) that people with a better sense of direction tended 

to select fewer landmarks, focusing on common and easily recognizable ones.  

 

Environmental perception may be fundamentally different for people with a poor sense of 

direction, to whom non-permanent things stand out cognitively in an unfamiliar environment.  It 

potentially causes a problem for successful navigation because of the ephemeral nature of those 

landmarks, but at the same time it may be useful as “special” landmarks targeted to poor 

navigators on real-time navigation tools. 

 

Therefore, the efficiency of collaborative navigation relates to sense of direction:  Generally, the 

H-H pairs collaboratively navigate efficiently and the L-L pairs do so inefficiently.  As indicated 

by the significant correlation between travel time and the difference in pair members’ SOD 
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scores, the H-L pairs tend to navigate inefficiently; but when the high-SOD member is able to 

adjust instructions to the low-SOD partner, they travel efficiently.  However, there are 

contributing factors other than sense of direction for collaborative navigation, as suggested by 

the observations of the inefficient H-H and efficient L-L pairs. 

 

It points to the fact that SOD taps into the ability to learn about and orient oneself in the 

environment, but not necessarily the ability to communicate route directions to other people.  An 

examination of these issues from the wayfinding and collaboration perspectives is an important 

research question for a further study. 

 

In the present research, the two persons in a pair navigated toward the goal simultaneously 

guiding each other through the mobile phone.  A comparison of H-L and L-H pairs in an 

experiment in which the pair members would once take the role of either the instructor or the 

recipient and then switch the roles (i.e., the giving and receiving of navigational directions would 

not occur simultaneously), would be interesting, particularly to examine the mental processes in 

detail in the context of different roles in collaborative navigation.  It is as an experimental design 

and analysis desirable for future research. 

 

In summary, people with different levels of sense of direction perceive the environment 

differently and prefer different types of landmarks, which they communicate to other people with 

different frequencies.  People with a better sense of direction better organize acquired spatial 

information and subsequently construct more concise and intelligible instructions based on it. 

 

The relationship between collaborative navigation performance and the difference in sense of 

direction between pair members, and the efficacy and flexibility of good-SOD peoples' 

navigational directions clarify the dynamic nature of wayfinding in collaboration.  Importantly, 

the findings corroborate and expound the existing research into individual differences (Ishikawa 

& Montello, 2006), sense of direction (Hegarty et al., 2006), route descriptions (Denis et al., 

1999), landmark selection (Ishikawa & Nakamura, 2012), and wayfinding collaboration (Reilly 

et al., 2009). 

 

This distinction can be applied to the development of navigational aids for people with lower 

spatial abilities, who comprise a significant portion of the population.  Personalized landmark-

based pedestrian navigation tools capable of selecting viable landmarks tailored to the user 

should be developed in the future.  Application devices that assist in the wayfinding in unfamiliar 

environments, and training and improving navigational habits and abilities, should also be 

considered. 
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CHAPTER 3 

 

DETERMINE COMPUTATIONAL SALIENCE 

USING VARIOUS COMPUTATIONAL METHODS 

TO IDENTIFY POTENTIAL DIFFICULT 

DECISION POINTS AND WHERE WAYFINDERS 

ARE LIKELY TO MAKE MISTAKES  
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This chapter is a modified version of a conference paper published in the Proceedings of the 23rd 

SIGSPATIAL International Conference on Advances in Geographic Information Systems Article:  

Guide me through somewhere important: decision-point salience and collaborative  

Navigation.  SIGSPATIAL/GIS 2015: 71:1-71:4   co-authors: Toru Ishikawa, Makoto Takemiya 

 

 

3.1   Abstract  

 

People often work together to collaboratively navigate in daily life.  However, people often make 

mistakes when giving directions to others, which can be especially difficult when giving 

directions via a cell phone to a distant partner.  Contemporary navigational aids could provide 

information about important landmarks and decision points in an environment.  To learn more 

about what kinds of mistakes people make in navigating and problems with route directions, the 

present study presents an empirical study on dynamic, collaborative wayfinding with emphasis 

on decision points where wayfinders made navigational errors.  Using the concept of 

computational salience, various network analysis metrics are tested to determine the importance 

of decision points in an environment to correlate with where people made mistakes in 

navigation.  Outlink and outflux scores, meta-algorithms that derive a secondary score on 

existing metrics, is validated to be an effective predictor of navigational errors.  It can be argued 

that navigational aids could highlight identified points to wayfinders, so they can pay special 

attention when giving directions traversing these points, thus eliminating errors and troublesome 

spots.   This chapter conclude by outlining how the lessons learned in this study can be applied 

to real-time navigational aids. 

 

Keywords:  navigational aids, location-based services, geospatial information, human spatial 

cognition, real-time applications 

 

 

3.2    Introduction  

 

“Where are you now?  Tell me when you get to the T-shaped intersection with the green sign and 

I’ll tell you where to go from there.”  Utterances such as these are frequently used as people 

traverse environments with help from others.  Despite assistance and guidance, people still make 

mistakes when navigating unfamiliar environments.  If decision points where people are likely to 

make mistakes could be elucidated via computational means and highlighted pre-navigation, 

wayfinders could be warned while traversing an environment, thus preventing many mistakes 

from occurring. 

 

http://dblp.uni-trier.de/db/conf/gis/gis2015.html#TakemiyaIH15
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The present study analyzes decision points where mistakes were made in a collaborative 

wayfinding task.  Focus was placed on collaborative wayfinding because it is a common yet 

under studied activity.   Collaborative navigation is in some ways more difficulty than individual 

wayfinding due to the fact that not only the person giving directions has to understand the 

environment, but the person receiving directions has to understand the directions and reconcile 

them with the environment they are in.  In our wayfinding task, participants simultaneously 

directed each other through pre-learned routes, while communicating remotely via cell phones.  

Although some of the participants were able to complete their traversals without error, many 

participants took wrong turns at decision points, thus deviating from their pre-determined routes.  

Being able to predict where wayfinders will make wrong turns by finding a computational 

method that is correlated with navigational errors at decision points. 

 

In this article, several methods for calculating the salience of decision points are outlined.  The 

concept of computational salience is applied to data from an empirical study that was conducted. 

Implications from linking computational salience to decision points in an environment where 

wayfinders made mistakes are then discussed in the context of cognitive variations among the 

wayfinders, the effects of environmental structure on navigation and improving navigational aid 

design.  Finally, a plan for future work is presented. 

 

3.2.1  Wayfinding and Decision Points 

 

Wayfinding is a directed activity to reach a destination.  Wayfinding requires both locomotive 

and cognitive skills.  Studying wayfinding can provide insights into many aspects of human 

spatial cognition.  Successful wayfinding requires that people orient themselves in an 

environment, plan a route, and execute such a route (Montello, 2005).  To traverse an 

environment to a goal location, representations of the space, such as maps, are often used.  

People develop analogous mental representations of space, often conceptualized as comprising 

the identity of landmarks (landmark knowledge), sequential order of landmarks along a route 

(route knowledge), and spatial configuration of landmarks and objects in an environment (survey 

knowledge) (Siegel & White, 1975).  Traversing an environment requires that landmarks and the 

spatial relations between them be properly encoded into a mental representation of the space 

(Lee et al., 2005). 

 

Contemporary GPS and location-aware smartphones can assist people with wayfinding by 

providing turn-by-turn directions.  Over-reliance on such devices, however, can make it difficult 

for wayfinders to cope with situations where navigational aids cannot be used (Parush et al., 

2002, Richter et al., 2007).  Contemporary GPS devices also has been shown to decrease 

wayfinders’ configurational knowledge of travelled routes, while increasing the time and 

distance required to traverse.  Thus contemporary navigational aids might actually make it harder 

for wayfinders to learn about the environment they are traversing and recover from mistakes.  

Decision points are points in an environment, such as intersections, where navigators have to 

make a decision about whether to change direction or continue without deviation.  Takemiya and 
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Ishikawa showed that using information about decision points traversed, the performance of 

wayfinders could be classified in real-time (Takemiya and Ishikawa, 2011) and future decision 

point difficulty that they would traverse could be predicted (Takemiya et al., 2013).  

 

The efficacy of classification and prediction demonstrates that the structure of an environment is 

closely related to the efficiency of wayfinding and determining where wayfinders will go, and 

that decision points are a useful conceptualization of an environment.  Additionally, decision 

points have been shown to be important for route following and providing information about 

what routes to follow (Allen et al., 2000, Daniel & Denis, 1998, Lovelace et al., 1999).  Decision 

points are often featured when providing route directions (Allen et al., 2000, Denis 1997, 

Lovelace et al., 1999) and previous work has shown that residents of Venice, Italy, for example, 

tended to select landmarks at or near decision points (Denis et al., 1999).  Decision points can 

also be important for communicating overview information on a route (Richter et al., 2007) and 

they have been shown to play an important role in mental processing during route following 

(Janzen et al., 2004).  To find ways to assist wayfinders, the present work considers mistakes that 

people make in route following at decision points in an unfamiliar environment, and focuses on 

the salience of decision points, to generate a computational method of defining points where 

wayfinders will be likely to make mistakes. 

 

3.2.2   Decision-Point Salience  

 

The salience, or importance, of decision points can be conceptualized as consisting of various 

facets, among which are cognitive salience and computational salience.  Cognitive salience is the 

importance of decision points to humans undertaking a wayfinding task, and it has been studied 

in relation to landmarks.  Visual, cognitive, and structural qualities that make a landmark and 

objects in an environment salient to humans were discussed by Sorrows and Hirtle (1999). 

Previous work also calculated the cognitive salience of landmarks (Raubal et al., 2002) and 

buildings as landmarks (Nothegger et al., 2004), with the goal of using this information in 

automatically generated route directions, and validated the fact that this approach was capable of 

extracting landmarks deemed important by human participants.  This method was then expanded 

to include environmental features such as visibility (Winter et al., 2003) and landmarks at 

decision points (Klippel & Winter, 2005).  The structure of intersections (Klippel et al., 2005) 

and graph theoretic measures of street connectivity were also found to be related to cognitive 

salience (Claramunt & Winter 2007, Tomko et al., 2008). 

 

Overall, these measures attempt to propose a method to determine the cognitive salience of 

features in an environment for people navigating.  While cognitive salience measures decision 

points that are important to humans, computational salience measures points that are important 

for computational models of wayfinders.  Computational salience was first defined by Takemiya 

and Ishikawa (Takemiya & Ishikawa, 2012) as the importance of a decision point for classifying 

wayfinders with respect to their differences in their individual abilities.  In other words, this is 

the importance of a decision point for discriminating between good and poor performing 
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wayfinders. This is an important step in determine the type of instructions to offer for the 

individual wayfinder.  Many potential algorithms for calculating computational salience were 

tested, using computationally generated routes as training input.  Computational salience was 

found to not necessarily be related to cognitive salience, although some measures of 

computational salience put forth by Takemiya and Ishikawa were found to correlate with the 

occurrence of decision points in cognitively ergonomic route directions (Takemiya et al., 2012).  

Computational salience can be a useful concept for discriminating between good and poor 

performing wayfinders, the present work applies computational salience to finding decision 

points where collaborative wayfinders are likely to make mistakes. 

 

3.3   Methods: Various Computational Salience Metrics  

 

The present work focuses on modeling the computational salience of decision points with the 

goal of eliciting points where people who engage in collaborative wayfinding are more likely to 

make mistakes.  The salience (also called saliency) of an item is the state or quality by which it 

stands out relative to its neighbors. Saliency detection is considered to key attentional 

mechanism that facilitates learning and survival by allowing organisms to focus their limited 

perceptual and cognitive resources on the most pertinent subset of available sensory data.  In 

navigation, salience help certain features stand out and can act as anchors for people finding their 

way.  The goal of this study is to enable future work to develop navigational aids that can 

prevent mistakes at salient decision points by calling attention to computationally salient points 

for human navigators.  The algorithms used for calculating computational salience in the present 

work are described in the following subsections.  The metrics include: traversal probability, 

PageRank, outflux scores, entropy difference, degree centrality, closeness centrality, 

betweenness centrality, and outlink scores. 

 

3.3.1   Traversal Probability  

 

The probability that wayfinders will traverse a decision point has meaning because points that 

are frequently traversed by wayfinders in an environment between a start and a goal are likely to 

be crucial to the wayfinding task.  For navigational aids to be practically implemented for any 

arbitrary environment, the traversal probability of decision points cannot be determined by 

empirically observing humans and recording the traversal probability.  Rather, the probability 

must be elucidated via computational means, without using empirically observed training data. 

Routes in this study were computationally generated using a modified A* heuristic search 

algorithm.  In the present work, 1000 routes were generated from the starting location to the goal 

location, for each of two routes through a real environment (Figure 3.1).  To introduce 

randomness to simulate human wayfinders taking wrong turns, 10% of the time the search 

heuristic search randomly chose between two decision points when determining which point to 

use for the next iteration of the search.  This had the effect of creating reasonable, yet imperfect 

routes between the start and goal locations.  From the computationally generated routes, the 
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traversal probability for a decision point can be calculated.  It is determined to be the fraction of 

generated routes that contained that point. 

 

3.3.2   Entropy Difference  

 

The routes generated (Figure 3.1) were used to calculate traversal probabilities for all decision 

points in the environment modeled in this study. With respect to analyzing route traversals, 

information gain measures the amount by which a decision point decreases entropy (i.e., 

increases the homogeneity) of good and poor sets of routes, bounded by whether or not they 

contain the decision point being considered. The approach of computationally generating routes 

as a prior for classifying wayfinders allows computing the entropy of each decision point with 

respect to performance classes.  These probabilities define a probability distribution over all 

decision points that can be assigned an information-theoretic entropy. Equation 1 shows the 

calculation of entropy, H, for a set of decision points d ∈ D in the environment, where P(d) is the 

probability of a decision point being traversed in the computationally generated routes, with all 

probabilities being normalized to sum to unity. 

 

 

 

Entropy was calculated for the entire graph of all decision points - so to relate this to an 

individual decision point, a new probability distribution over all decision points was created 

where an individual point’s probability was set to zero.  This distribution was then normalized to 

sum to unity and the entropy was calculated.  The absolute value of the difference between the 

entropies between the two distributions was then defined as the entropy difference.  This was 

done in turn for each decision point, and the differences in entropies were taken as a measure of 

how important decision points were to the diversity of traversals through an environment. 

 

3.3.3   PageRank  

 

PageRank is an algorithm for calculating the stationary probability distribution of an ergodic 

Markov chain (Langville et al., 2006) and was originally developed for ranking Web pages in 

Google search results.  It has also been successfully applied to studying navigation by ranking 

popular locations in a spatial environment (Jiang et al., 2009).  PageRank is a well-established 

algorithm in the field.   
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In PageRank, the importance of a decision point is related to the importance of decision points 

that lead to it.  To calculate PageRank, all decision points are first initialized with the probability 

that a point is randomly chosen, that is, 1 divided by the number of decision points in the graph, 

|G|.  PageRanks are then calculated via the power iteration method.  For each iteration, r, of the 

algorithm, the score from the previous iteration, r−1, is combined with a weight d = 0.99, 

corresponding to a 1% chance of randomly jumping to another point (this stochasticity correction 

is required to guarantee convergence of the algorithm; see (Bryan and Leise, 2006).  This is 

shown in Equation 2: 

 

 

 

where |Ojk| is the number of outlinks from the current decision point k to other points.  Direction 

of edges linking decision points was determined based on the net directionality in the 

computationally generated routes.  The algorithm continues until the change in PageRank 

between iterations is less than some small value, ε.  Decision points with higher PageRank values 

were considered to be more computationally salient. 

 

3.3.4   Degree Centrality  

 

Degree centrality is a measure of the fraction of decision points that a decision point is connected 

to.  A node’s in and out degree measure the number of in and out nodes that comes out of each 

link.  Degree Centrality Measures the number of direct neighbors at each decision point, it is 

useful in assessing which nodes are central in the spread of information.   

 

In this article, the undirected form of degree centrality was used.  Decision points with a high 

degree centrality are important to the connectivity of the street network and were thus taken to be 

more computationally salient.  

 

3.3.5   Closeness Centrality  

 

Closeness centrality measures the inverse sum of the distances to all other decision points 

(Freeman, 1978).  Closeness Centrality measures the average length of the shortest path between 

the node and all other nodes in the graph.  From a social network perspective, it is a measure of 

reach – how fast information can reach other nodes from existing nodes.  This algorithm 

https://en.wikipedia.org/wiki/Shortest_path_problem
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intuitively shows how close a decision point is to other points.  Therefore decision points with 

higher closeness centralities were considered more computationally salient. 

 

3.3.6   Betweenness Centrality  

 

Betweenness centrality for a decision point is the fraction of all-pairs shortest paths that pass 

through the decision point (Brandes 2001).  Betweenness centrality quantifies the number of 

times a node acts as a bridge along the shortest path between two other nodes.  This measures the 

importance of a decision point for enabling paths between other points.  Decision points with 

higher betweenness centrality were taken to be more computationally salient.  

 

3.3.7   Outflux Scores  

 

Outflux scores were introduced by Takemiya and Ishikawa 2012 as a meta-algorithm that takes 

computational salience scores and computes a set of scores that are derivatives of the original 

scores.  The theory behind outflux scores is that regions of similarly scored decision points are 

often clustered together;  so decision points leading into a region with very different scores may 

be important to wayfinding because these points lead to areas that are qualitatively different with 

respect to the metric being analyzed.  Outflux scores are calculated as in Equation 3: 

 

 

where ωout is the score for an outlink decision point and ω curr is the score for the current 

decision point.  The heuristic sums up all the scores for the decision points pointed to by the 

current decision point via its outlink, and calculates the salience of the current decision point as 

the absolute value of the difference between the summed scores and the current score.  The 

outfluxscore is calculated for a metric by summing up all the scores for decision points reachable 

from the current decision point via outlinks.  The absolute value of this sum and the score for the 

current point is then calculated. 

 

For outflux scores, the scores being considered must be calculated with one of the previously 

defined metrics.  For example, “outflux PageRank” was calculated by first calculating the 

PageRanks for all the decision points in a graph.  Then the outflux PageRank scores were 

calculated for each decision point by considering the PageRank score for the current point and 

the scores of decision points pointed to by the current point. 
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Ouflux score may be difficult to intuitively understand, one can use the following scenario for 

comparison.  Imagine you are walking from a farm to the edge of a city, or from a sparsely 

populated neighborhood to a densely populated one, there is a change of scenery, emotion and 

information processing associated with the change.  Existing metrics do not take that into 

consideration, however outflux score attempts to identify similar neighborhoods or clusters in a 

pre-determined route, thus taking into account human variability on the same navigational route 

that would have otherwise been unaccounted for.   

 

3.3.8   Outlink Scores  

 

The present work aim to find a way to computationally elicit decision points where wayfinders 

will make errors.  Because navigational errors entail leaving a decision point along an efficient 

route, the decision points following a given point can be seen as determining the importance of 

the point.  To model this, outlink scores were calculated for each decision point by summing the 

scores for each outlink decision point. 

 

As with outflux scores, outlink scoring is a meta-algorithm and requires the output of one of the 

other algorithms as the input.  As a concrete example, “outlink PageRank” was calculated by 

calculating PageRanks for all decision points and then summing up the PageRank scores for 

outlinking points, for each decision point in the environment.  Outlink scores are thus calculated 

similarly to outflux scores, with the only exception that the score for the current point is 

disregarded. 

 

The concept of outlink and outflux score may not be intuitive to understand.  In less technical 

terms:  Metrics such as PageRank, betweenness centrality, traversal probability, entropy, and 

closeness centrality give information about the decision points themselves - these metrics show 

something about each targeted decision point A, such as the probability of traversing through 

point A.  However, during navigation, the next point from the decision point is also important in 

influencing the outcome of the wayfinding.  During pedestrian navigation, one often does not 

realize reaching a decision point until he/she has already passed it, which means that the 

subsequent decision points (B,C,D,E…)  beyond the current decision are important for the users 

as well as the present decision point (A).    

 

Outlink and outflux meta-algorithms derive secondary scores in combination with established 

methods.  The Outflux score sets boundaries for regions of similar salience, while the derived 

score is based on the idea that similar regions have similar salience scores, and that clustered 

salience values change spatially.  Outlink scores on the other hand are meaningful for decision 
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points that have multiple links.  The derived score considers a series of actions leading to a 

decision point.  Outlink scores have an important implication for the direction of travel through a 

decision point.  These two concepts will be explained in context in the results and discussion 

sections of this chapter.        

 

3.4   Methods: Empirical Collaborative Navigation Exercise   

 

The relationship between computational salience and collaborative wayfinding tasks has not 

been studied previously.  Due to the importance and ubiquity of collaborative wayfinding 

activities, we carried out an empirical study to analyze how people work together to guide each 

other through an environment in real-time.  The participants were divided into different groups 

based on their scores on the Santa Barbara Sense-of-Direction (SBSOD) scale.  We guided pairs 

of participants along predetermined routes, then switched the routes and had the participants 

guide each other along the route previously learned.  The decision points where wayfinders made 

mistakes in following the predetermined routes can provide insights about the environment, the 

perception of the environment by people of differing spatial abilities, as well as how people of 

varying spatial abilities communicate spatial information at various decision points. 

 

3.4.1   Study Area  

 

The study took place near Nakano-Sakaue Station in western Tokyo.  This is a typical Japanese 

residential neighborhood, with no visible street names and winding, narrow streets.  Participants 

needed to distinguish landmarks visually and cognitively, place them in the correct spatial 

setting, and relay the information to their partner.  Figure 3.1 shows the two routes defined in the 

study area.  Route 1 was more complex than Route 2, but the two routes took comparable times 

to traverse (mean 6 minutes 30 seconds for Route 1, and 7 minutes 21 seconds for Route 2). 

 

3.4.2   Participants  

 

Forty-four non-Japanese participants (27 men and 17 women, mean age 25.9 years) from 15 

countries participated in our study.  All of the participants were English speaking non-native 

Japanese and had been in Japan from 1 week to 2 years.  None of the participants had been to the 

study area before.  All participants were given equal monetary compensation for participating in 

the experiment. 
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Figure 3.1.  Map of the two routes used in our empirical study (© 2013 Google, ZENRIN). 

 

3.4.3   Procedures  

 

Participants were paired into 22 groups, based on their scores on the SBSOD scale (see (Hegarty 

et al., 2002).  The groups were divided along the median score of 4.3 into high-score and low-

score groups.  The participants were then paired into 6 high-high pairs, 10 high-low pairs, and 6 

low-low pairs.  Each pair was taken to the study site on different occasions, accompanied by two 

experimenters to manage the task.  Participants were randomly assigned to either Route 1 or 

Route 2.  They were then guided along the assigned routes by an experimenter, while vocalizing 

their thoughts into a voice recorder.  Participants then returned along the same route to the 

common starting point, switched routes, and used cell phones to guide each other along the 

routes they had previously been guided along.  During the collaborative guiding, the 

experimenters followed behind each participant, recording their time, path, and behavior, and 

guiding them back to the route if they wandered too far from it. 
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3.4.4   Determining Navigational Errors  

 

From the 44 (22 each for Routes 1 and 2) route traversals in our study, we collected all decision 

points where participants deviated from the predefined routes.  Every point traversed outside of 

the predefined routes was considered an error in navigation, up until the participant returned to 

their assigned route.  Thus the decision points where errors occurred are where the participants 

made mistakes in navigating, either from bad instructions from their remote partner, or from 

misunderstanding directions. 

 

3.5   Results  

 

This article intends to investigate navigational errors in collaborative wayfinding and to find an 

optimal computational method for determining decision points where navigational errors are 

likely to occur.  Toward this end, an empirical study was conducted followed by a list of decision 

points compiled where participants made errors.  The computational metrics from section 3.2 are 

subsequently applied to calculate the salience of decision points in the environment.  Whereas 

previous work has studied the relationship between computational salience and patterns of 

people navigating unknown environments on their own (Takemiya et al., 2012), the present work 

does this for pairs of people navigating collaboratively, traversing a pre-determined route, rather 

than planning their own. 

 

3.5.1   Navigational Errors and Computational Salience  

 

Figure 3.3 shows a map of decision points where participants made navigational errors.  From 

this Figure it is apparent that more decision points in the environment for Route 1 posed 

difficulty than for Route 2 (26 vs. 14 decision points), despite the fact that Route 2 took more 

time on average to traverse.  Figure 3.3 shows Hinton diagrams of correlations (Pearson r) 

between computational salience measures and navigational errors at decision points.  The area of 

each square represents the magnitude of the correlation, with darkness representing either 

positive correlation (white squares) or negative correlation (black).  Correlations with p < .05 are 

marked with *, p < .01 with **, and p < .001 with ***.  

 

 

 



61 

 

 

 

Figure 3.2:  Often-used landmarks in the routes: a hospital in Route 1, on the left side of the 

photo (a), and a temple in Route 2 (b) 
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Figure 3.3:   Hinton Diagram of correlations between decision-point computational salience 

measures and the incidence of navigational errors at decision point ( * denotes p < 0.05, p < 

0.01 with **, and *** denotes p< 0.001 for Route 1 (top) and Route 2 (bottom).  The area of 

each square denotes the correlation magnitude.  R values for correlations along the right-hand 

side are shown for scale.   

 

As Figure 3.4 shows, outlink entropy difference scores for decision points were the most strongly 

correlated (r = .68 for Route 1, r = .50 for Route 2, p < .001 for both routes) with the incidence of 

navigational errors for both Routes 1 and 2 made by the participants in our empirical study. 

Outlink probability was also strongly correlated with where wayfinders made errors (r = .56 for 

Route 1, r = .53 for Route 2, p < .001 for both routes).  Overall, outflux scores did not correlate 

as strongly as outlink scores with the navigational errors.  This finding hints that these metrics 

are validated with actual performance and can be used to effectively predict performance on 

these routes.   
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Disregarding the outflux and outlink scores, degree centrality of decision points was the most 

strongly correlated (r = .58 for Route 1, r = .47 for Route 2, p < .001 for both routes) metric with 

navigational errors, followed by entropy difference (r = .53 for Route 1, r = .42 for Route 2, p 

< .001 for both routes).  Other measures of computational salience were not as strongly 

correlated.  One interesting pattern, however, was that for PageRank, closeness centrality, and 

betweenness centrality, the outflux and outlink measures were more strongly correlated with 

navigational errors than the original metrics, and outlink probability was more strongly 

correlated with errors than the probability metric.  

 

In addition, outlink scores correlated strongly with navigational errors for both Routes 1 and 2, 

whereas other metrics did not correlate as strongly for Route 2, compared with Route 1.  This 

can partially be explained by the structural difference between the two routes.   

 

3.6   Discussion 

 

3.6.1   Relating Environmental Structure and Navigational Errors 

 

Detailed analysis of Route 1 revealed that many participants made a mistake at the decision point 

where a hospital was located. Because participants often mentioned the hospital as a salient 

landmark, it can be inferred that the hospital was important to understanding the environment.  

The decision point where the hospital was located had the third-highest outlink entropy 

difference and the highest degree centrality score for Route 1, showing that the computational 

salience measures were able to capture the structural importance of this decision point in the 

graph.  This suggests that wayfinders made many mistakes at that decision point because of the 

structure of the street network (not only because of a failure to recognize the hospital as a 

landmark).   
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Figure 3.4:   Map showing decision points and frequencies where participants made errors for 

Route 1 (a) and Route 2 (b).  Redder circles denote more mistakes and more blue circles denote 

fewer mistakes, black lines show the predetermined routes, and white circles denote the start and 

goal locations.   
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The finding that outlink entropy difference and outlink probability were strongly correlated with 

errors made by wayfinders demonstrates the efficacy of using computationally generated routes 

to model the behavior of wayfinders and elicit decision points that are important to wayfinding.  

Both outlink entropy difference and outlink probability are based on the probability that a 

decision point will be traversed.  If a person is travelling in space, their attention span, cognitive 

ability, walking speed and other factors will invariably fluctuate, as a result, there will be a 

fluctuations and variability in the way each person navigates.  The concepts of outlink and ouflux 

takes into consideration these often subtle variabilities on a route in terms of proximity and 

direction that continued travel may have on a wayfinder.  When you travel from one 

neighborhood to another there might be slight differences in perception and cognitive processing 

of the environment.  When one changes direction or chooses one decision point over another, 

such an effect can also occur.  These are subtle yet important factors in determining the outcome 

of a navigation, this dissertation attempts to elucidate this process, setting up a foundation for 

further investigation in future research.     

 

This article validates the importance of using probabilities that decision points occur in generated 

routes to correlate with human behavior.  In addition, when attempting to predict where 

navigational errors will occur, one should consider the probabilities of outlinking decision points.  

Outlinking decision points approximates the effects of direction and subsequent decision points 

on an existing decision point.  This method reveals quantities otherwise indistinguishable with 

traditional analysis.  Given the nature of navigational errors, that they stem from deviating from 

an efficient path, the efficacy of the outlink metrics is unsurprising.  When considering where 

people will make mistakes, it is important to consider the properties of decision points that are 

outlinks from the current point.  Future work should expand using probabilities and entropy to 

consider mutual information between decision points to uncover information-theoretical 

relationships that might be useful for route prediction. 

 

3.6.2   Incorporating Decision-Point Salience into Collaborative Wayfinding and Navigational 

Aids 

 

The computational salience measures were calculated using only knowledge of the connectivity 

of decision points and computationally generated routes, rather than empirically observed data - 

yet statistically meaningful correlations with points where wayfinders made navigational errors 

were found.  The feasibility of using computationally generated data makes it possible to 

calculate computational salience scores for any arbitrary environment.  This makes the approach 

outlined in this article practically implementable for real-time navigational aids, such as location-

based services offered in cell phones.  For remote collaborative navigation where one person is 

guiding another via a phone or some other medium, knowledge of decision points where 

wayfinders are more likely to make mistakes could help the person use extra care when giving 

directions at those points.  Using this approach, it is likely that many navigational errors would 

be prevented. 
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Transcript analysis of the participants revealed that many of the navigational errors were made 

at, and not between, decision points.  The errors consisted of people either failing to mention 

necessary landmarks, mentioning landmarks in an incorrect spatial context, or the partner who 

was receiving directions not being able to recognize the landmarks despite being directed to the 

correct place.  These mistakes potentially might be avoided if a priori decision-point salience can 

point out potential places of deviation for wayfinders. 

 

Failing to mention landmarks was the most common error observed in the study and was made 

by all of the participants who made mistakes.  The hospital was an important landmark for Route 

1, so when participants guiding a partner failed to mention the hospital, the other person was 

very likely to get lost.  If the person giving directions had known that the decision point where 

the hospital was located was one of the most important in the environment, then extra care could 

have been taken there and fewer wayfinders would have made mistakes. 

 

Although not studied directly in this paper, a similar approach should also work for individual 

wayfinders navigating an environment on their own. Simply informing wayfinders about which 

points are riskier than others, with respect to making a wrong turn, could be enough to prevent a 

majority of errors.  Future work should investigate implementing an approach such as this and 

testing it with individual wayfinders. 

 

 

3.7   Conclusion and Future Work  

 

This article outlined a method for linking the computational salience of decision points and 

navigational errors made by empirically observed wayfinders.  Using salience metrics calculated 

from the probability that a decision point was traversed in computationally generated routes, 

points that are statistically correlated with navigational errors made by wayfinders were elicited. 

The method was validated with results from our empirical study featuring wayfinders 

collaboratively traversing an environment by simultaneously guiding each other along pre-

learned routes via cellphones.  It was found that outlink entropy difference and outlink 

probability, both metrics for computational salience that are original to this study, were strongly 

correlated with the incidence of navigational errors.    

 

These metrics are both tractably calculable, given a graph of the street network of an 

environment, as well as start and goal locations.  Implications for future work are to bring 

awareness of decision points where wayfinders are likely to make errors to the attention of the 

wayfinders, via real-time location-based services.  The next step should be the creation of 

ranking systems based on actual individual wayfinder behavior.  Combining a priori prediction 

of route information with real time data of actual users can lead to the creation of a more robust, 

responsive and accurate decision system for pedestrian navigation.  Improved classification of 
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decision points and wayfinders is an important step in designing more efficient navigation 

systems.      
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CHAPTER 4    

 

RANKING DECISION POINT SALIENCE AND 

CREATING INDIVIDUAL NAVIGATION 

PROFILES FOR USERS OF VARIOUS SPATIAL 

ABILITIES USING SUPPORT VECTOR 

MACHINES  
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This chapter is a modified version of a manuscript planning to be submitted to a relevant 

journal.  A separate study that tested an augmented instruction prototype is added and presented 

along side this chapter. 

 

 

4.1  Abstract   

 

This chapter presents two studies.  The first study applies a machine learning method to derive a 

mathematical model to rank the difficulty of decision points on a route from a combination of 

topological and descriptive features given by the navigator.  Each possible decision point is 

modeled as a feature vector of ten features.  The method can rank the decision points by 

difficulty while at the same time derive weights for the individuals.  The weights help create a 

preliminary wayfinding profile of individuals with varying spatial abilities.  This study proposes 

a system for optimally identifying difficult to navigate decision points, allowing pedestrian 

navigation to be improved with timely and relevant personalized instructions at difficult to 

navigate decision points while understanding which features cause specific difficulties for 

individual wayfinders. The second study tests an augmented instructions prototype with emphasis 

on measuring its effect on spatial learning.  The prototype was tested on a new group of 

participants.  Improvements in spatial learning is measured through sketch maps.  Low spatial 

aptitude group improved spatial learning with the use of augmented instructions while people of 

high spatial ability showed decreased survey knowledge acquisition. Implications for system 

improvement and future works are discussed.   

 

Keywords:  SVM, Machine Learning, Augmented Directions, Spatial Ability 

 

4.2   Introduction and Background 

 

Modern day Information and Communications Technology (ICT) is changing the way people 

interact with their environment.  People are becoming increasingly dependent on navigation 

technologies in smart phones and GIS to find destinations and to reach their goals.  Pedestrian 

navigation in particular has been increasingly gaining attention in the mobile phone industry 

(Hile et al. 2008, Roger et al. 2009).  Many advances have been made that allow users easy 

access to points of interests and provide written or verbal turning directions to help them arrive at 

their destinations.  Many improvements are being made in the pedestrian navigation applications, 

such as larger databases of points of interest, more efficient algorithms and other interactive 

functions.  However, contemporary navigation and GIS design takes little consideration peoples' 

individual tendencies, spatial abilities, or fundamental cognitive processes during navigation.  In 
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order for navigation aids to work more effectively for pedestrian navigation in the urban 

environment, there is a need to more clearly differentiate individual abilities and features of a 

route.   

 

Differences in spatial ability can translate to communication difficulties during navigation, which 

in turn affects wayfinding efficiency. People of varying spatial abilities choose different 

landmarks on a route and subsequently have difficulty guiding each other in an assigned spatial 

task.  The study suggested the need to further classify the environment, routes, and individuals as 

the basis for improved navigation system design (He et al. 2015).   

 

The previous chapter provided an approach to decide which points to consider for augmentation 

using various computational methods and establishing the concept of computational salience.  

Each decision point is inherently different and complex.  How likely a person is to make a 

mistake at a decision point and how much that mistake can cost is often not evident by purely 

examining it from a topological perspective or with landmarks.  Increased availability of big data 

can be applied to the improved modeling of individual behavior.  Machine learning has gained 

traction in the field of navigation and has been adopted to differentiate objects in space, for 

example - design automated navigation for the visually impaired (Bernabie et al., 2011).  Rousell 

et al. (2017) also applied machine learning methods, particularly image recognition for landmark 

detection in real time pedestrian navigation. 

 

Machine learning, particularly binary classification methods, can be used to understand 

differences in individual ability, perception and experience.  Support Vector Machines (SVMs) 

have been extensively researched in the data mining and machine learning communities and 

actively applied to various applications.  SVMs are typically used for learning classification, 

regression or ranking functions.  For these they are called classifying SVM, or support vector 

regression or ranking SVM (SVMrank) respectively.  Learning rank functions are distinguished 

from learning classification functions.  Unlike classification functions, which output a distinct 

class for each data object, a ranking function outputs a score for each data object, for which a 

global ordering of data is constructed.  The target function F (Xi) outputs a score such that F 

(Xi) > F (Xj) for any Xi > Xj.   

 

Many researchers have proposed systems capable of providing more natural route instruction to 

pedestrians in the city environment (Boye et al., 2014, Rehrl et al., 2010).  A pedestrian’s 

position can now be tracked using GPS on the smartphone, and can produce real-time 

instructions such as “turn right here” or “go left when you see the store”.  A challenge for such a 

model is to optimize the formulation of instructions, to minimize misunderstanding, and to cater 

to the cognitive ability and habits of the individual.  Informing navigators specifically what they 
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should look for at a decision point can reduce misunderstanding, increase navigational efficiency 

and improve the overall experience.  

 

Real-time classification, robustness and efficiency are important considerations in system design.  

If a navigation system gives too much information, providing user instruction at every turn, it 

would be counterproductive, ineffective and burdensome.  Such a system would also likely 

increase user’s reliance on the navigation aid while further hindering survey knowledge 

acquisition (Ishikawa et al., 2008).  A system should optimally exist in the background, actively 

processing information, interacting with the user and providing helpful information at the right 

time and place.  In order to find the balance from both a system and user perspective, it is 

therefore important to know which decision points to augment and for whom the best results can 

be achieved.   

 

Salient landmarks are helpful in pedestrian navigation, imagine using the Eiffel tower as a point 

of reference.  However, most human activities in novel urban settings do not involve particularly 

salient landmarks, and some are hidden or inconspicuous.  Since landmarks are essential for 

wayfinding, many researchers have focused on automatically computing salience values for 

landmarks (Raubal & Winter, 2002; Duckham et al., 2010).  These schemes typically involve 

using known features to influence salience such as size, visibility, shape and color.  Weight 

systems are used for these scores but the weights are set manually, based on various heuristic 

approaches.  In this study, the weight are to be determined by the interaction of the pedestrian 

user with the decision points, rather than preset manually.  The assumption is made that salience 

of each decision point is user-dependent: different users will experience varying degrees of 

difficulties in a novel situation.  Another novelty of this approach is the assumption that 

landmarks alone do not fully determine the difficulty of the decision point.  Rather, the actual 

interactive salience of a pedestrian navigation is a combination of landmarks, the topological 

features, the situational context, as well as personal influences.  Models can thus be created from 

existing data while reflecting real world tendencies of the users.   

  

4.3   Related Approaches 

 

Landmarks can often facilitate the communication of spatial information.  Nothegger et al. 

(2004) extended an evaluation study in which human subjects are shown panoramic views of 

intersections and are asked to choose the most prominent façade.  The automatically computed 

salience measures reflect the human choices, thus proving the suitability of the models.   Sorrows 

and Hirtle (1999) moved away from computing salience of individual landmarks, because 

necessary data is often difficult to obtain.  Sorrows and Hirtle proposed to measure salience on 

the basis of an object’s category, using heuristics to determine how suitable a certain category is 

as a landmark:  experts were asked to rate landmark categories according to a set of nine factors 
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that are proposed to describe the salience types (Sorrows & Hirtle, 1999).  Ratings were given on 

a five-point scale according to how suitable a specific instance of a category would be as a 

landmark, and how frequently such an instance occurs.  The final score of a category is 

computed as a weighted sum of these rankings.   

 

Sorrows and Hirtle (1999) proposed a widely used description of the characteristics of landmarks 

in the domain of Geographic Information Science.  The authors compared commonalities 

between real and electronic space and proposed three different characteristics of a landmark:  (1) 

Visual prominence, which describes the visual importance of a spatial feature, (2) Semantic 

salience, which describes the cultural or historical importance of the feature, and (3) Structural 

salience, which explains the role that feature plays in the configuration of the environment.  The 

concept can be combined and overall salience value of a landmark can be computed according to 

the widely used Klippel and Winter’s (2005) equation: 

 

S = wvsv + wsss + wusu;  wv + ws + wu =1   

 

Sv, Ss, and Su are the visual salience, semantic salience, and structural salience, respectively, 

and Wv, Ws, and Wu are the weights assigned to the three types of saliences.  These weight 

parameters are set by users in real-world applications.  The salience measure is the sum of the 

weighted single characteristics defining a landmark.  The approach is an attempt to generically 

describe the nature of landmarks in the real or virtual environment but no formalization is 

proposed (Caduff and Timpf, 2008).   

Burnett (2000) used a system of permanence, visibility, and location in relation to a decision 

point, and uniqueness and brevity as the aspects of landmarks - the purpose of which was to 

investigate properties of landmarks for usability in car navigation.  Two aspects of Burnett’s 

proposal correlated with aspects proposed by Sorrows and Hirtle (visual salience to visibility; 

structural salience to location in relation to a decision point).    

 

These proposals are among many approaches to delineate the complex nature of landmarks.   

These approaches are restricted to qualitative and often subjective characterizations, and often 

lack an answer on how to determine landmark salience for navigation.  In this study, the 

assumption is made that what is salient about a landmark or lack thereof, can be reflected in the 

actual performance of wayfinders.  The majority of potentially useable landmarks are not 

universally salient, what is salient to some may not be salient to others.  Saliency is a subjective 

function that can be more realistically determined by the actual performance in a spatial task.  

This approach offers a way beyond objective landmark classification to determine the difficulty 

inherent in a decision point.  The individual data derived ranking of decision points can 

subsequently lead to a better provision of resources and more timely assistance.   
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4.4    Ranking Decision Points and Creating Weights Profiles 

 

4.4.1   Study Design 

 

This study builds on the empirical study presented in chapter two of this dissertation.  Figure 4.1 

shows the study site and the routes traversed by the participants.  44 participants (27 male, 17 

female) were divided into high and low spatial abilities groups at the SBSOD median score of 

4.3.  The participants traversed two separate guided routes sharing a starting point.  Upon 

completion of the first route, the participants switched routes and guided each other using cell 

phones from memory.  The experimenters followed the participants, recorded their actions, and 

guided them back to the predetermined route.  If a wayfinder deviated by more than two decision 

points, it is counted as a mistake is recorded by the experimenter.  Deviation of two decision 

points was determined as basis for a mistake because such a setup gives the user a chance to 

make an adjustment while eliminates random errors.  The cell phone conversations were 

recorded and the conversations transcribed and analyzed. 

 

This study attempts to construct a mathematical model that can predict salience in new unseen 

situations specific to a wayfinder.  In the previous chapter, computational salience predicted 

certain mistake prone decision points.  The metrics, although validated by actual user data, are 

not matched to individual users, but worked well as a whole.  In contrast, the present study, each 

decision point can be modeled as a vector of features and attempt to further understand 

individual effects.  No assumption is made about what feature will influence salience.  The 

effects of these features is reflected in the learned weights for each individual navigator.  When a 

person makes a mistake at a decision point, it can be an indication that the decision point poses a 

salience score higher than another decision point.   
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Figure 4.1.  Map of the two routes used in our empirical study (c 2013 Google, ZENRIN).  Green 

represent Route 1, red represents route 2.  Both routes share the same starting point.     

  

This study attempts to construct a mathematical model that can predict salience in new unseen 

situations specific to a wayfinder.  In the previous chapter, computational salience predicted 

certain mistake prone decision points.  The metrics, although validated by actual user data, are 

not matched to individual users, but worked well as a whole.  In contrast, the present study, each 

decision point can be modeled as a vector of features and attempt to further understand 

individual effects.  No assumption is made about what feature will influence salience.  The 

effects of these features is reflected in the learned weights for each individual navigator.  When a 

person makes a mistake at a decision point, it can be an indication that the decision point poses a 

salience score higher than another decision point.   

 

4.4.2   Mistake Analysis 

 

In this study, mistakes form the basis of the learning method.  Each conversation is transcribed 

and the actions of the wayfinders closely examined both quantitatively and qualitatively to find 
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mistakes.  The mistakes of the participants on the assigned route and mistakes of the participants 

against the given verbal instructions of the route both count as errors.  The following are some 

examples of mistakes from the actions of the wayfinders taken from the transcribed 

conversations.   

 

Example 1:   

Participant one Instructions:  “When you get to the next crossroad, look for a hospital sign, when you 

see the hospital., make a left until you get to another crossroads.” 

Participant two actions:  Walks past the hospital.  Takes right turn, returns to hospital after walking for 

two blocks.   

Example 2:   

Participant one Instructions: “When you arrive at the building with the white staircase and a small car 

parked in the front, keep walking one block and turn left when you see the stop sign.” 

Participant two actions:  Failed to see the parked car and turns one block too early.   

Example 3: 

Participant one Instructions: “When you see the building with the flower pot at the intersection, turn 

right.” 

Participant two actions:  Goes straight, passing the decision point and turn at next intersection 

 

4.4.3   Performance inequalities represented in equations 

 

The foundation of this mathematical model is expressed as inequalities.  Whenever a person has 

difficulty at a decision point A in a route, over other decision points, i.e. (B, C, D, E), this 

indicates that A has a higher score according to the individual’s salience model than the other 

decision candidate's decision points.  When a person has difficulties at decision point A rather 

than decision point B, one can represent this as the inequality:  

 

W*(XA – XB) > 0 

 

XA and XB are vectors that represent A and B respectively, the weight can be positive or negative 

dependent on the difference between the vectors, the product of the equation is always greater 

than zero.  This inequality can attests to the fact that A is more difficult than B in the model W.  

All the factors involving the decision point thus generate a number of inequalities.   Set M as a 

set of the total number of inequalities for all decision points.  The function thus seek to find a 
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weight vector W such that W * (Xli – Xmi) > 0, for 1≤ i ≤ M. Substituting difference (di) for (Xli – 

Xmi), the goal is to find appropriate values for the weights in W that satisfy as maximum number 

of the inequalities in w*di > 0.  The slack variable ξ,, accounts for the uncertainty in the 

modeling.  This variable can be introduced into the following optimization problem as presented 

by (Joachim 2002). The slack inequality can be used to account for inconsistency in user 

performance: 

 

 

 

This optimization problem attempts to minimize discordant pairs in the equation, c allows for 

trading off of margin size for training error.  The purpose of this model is to rank the decision 

points from most to least difficult for the prospective user.  Such a model can assign a numerical 

score to each available decision point indicating its salience.  The weights gained for each user 

can be tuned and set as a profile for personalized navigation in GIS.  The numerical salience 

scores are not very important, and should not be interpreted as absolute salience.  The numbers 

themselves are simply a means to get to the ranking.  The numbers do not represent potential 

difficulty in an absolute manner nor can salience scores are be meaningfully compared across 

different situations and circumstances.  The difficult decision point might be perceived as very 

salient or not very salient at all, it is more appropriate to describe them in a relative manner. 

 

4.4.4   SVM Ranking Method 

 

SVMs were initially developed for classification (Burges, 1998) and have been extended for use 

in regression.  Using weight techniques of SVM, a global ranking function F can be learned from 

an ordering R.  Assume F is a linear ranking function such that 

 

{(xi, xj): yi < yj ε R}: F(xi) > F (xj) <=>  w · xi > w · xj 

 

A weight vector w is adjusted by a learning algorithm.  The ordering R is linearly rankable if 

there exists a function F (represented by a weight vector w) that satisfies the equation for all  

 

{(xi, xj): yi<yj ε R}. 
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There are two special properties of SVMs: 1. By maximizing margin, the system can achieve 

high generalization.  2. Kernel trick can support efficient learning of nonlinear functions.  

SVMrank is a machine learning method which deploys a pairwise approach – transforming 

ranking to pairwise classification.  Many pairwise ranking methods in machine learning have 

been developed in the past few years, these include: 

 

 Ranking SVM (Joachim 2002), which uses a pairwise classification using SVM;  

 RankBoost (Freund et al., 2003), which uses pairwise classification using boosting 

mechanisms;  

 RankNet (Burges et al., 2005), a pairwise Classification system using Neural Net 

 FRank (Tsai et al., 2007): a pairwise regression using Fidelity Loss and Neural Net 

 GBRANK (Zheng et al., 2007): Pairwise Regression Using Boosting Tree 

 IR SVM (Cao et al., 2006): Cost-sensitive pairwise classification using SVM 

 LambdaMART (Wu et el, 2010): Using Implicit Loss Function 

 

For the study at hand, all of the above methods were considered.  SVMrank was chosen for the 

ranking and weight generation prerogatives.  SVMrank uses pairwise classification on differences 

of feature vectors.  In SVMrank, corresponding positive and negative examples exist, and the 

hyperplane always passes through the origin.  This algorithm has been used for various non-

linear ranking tasks, e.g. in sentiment classification (Kennedy and Inkpen 2006), and named 

entity recognition (Bunescu and Pasca, 2006).  SVMrank is robust and implementable with the 

available dataset.   

 

4.4.5   Feature Vectors 

 

In this model, each decision point can be represented as a vector with 10 numerical features, (X 

= X1, X2, X3, …. X10), that specify scores along n dimensions.  Each dimension might represent 

scalar attributes like time, distance, or categorical attributes (assigning 1 if prominent landmark 

present, 0 if not).  The salience of s(x) of a decision point is a linear combination W * X, where 

W = (W1, W2, W3, W4….. Wn) is the salience model that specifies the relative importance of the 

different features for the user.  The features are listed below.  These ten features are selected as 

they can be derived from user data.  The following feature vectors are organized by their types.  

 

Distance  

Distance between decision points capture both the structural and visual aspects of the topology 

 distPrevious – Distance to previous decision point 
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 distNext – Distance to the next decision point 

 distfrombegin – How far the decision point is from the beginning 

 

Time 

Time is an important factor that has often been overlooked in salience calculations.  The amount 

of time spent at a decision point is an indication of potential difficulties at the location, as 

indicated by the people taking time to cognitively process the situation.  

 Time – time spent at decision point 

 

Landmark Types 

 

Ephemeral landmarks have been shown to affect navigational efficiency for people of lower 

spatial abilities (He et al., 2015). In this study, ephemeral landmarks exist alongside salient 

landmarks, in many cases, simultaneously.  Both salient and ephemeral landmarks are taken as 

feature vectors in the training.     

 

 salientLM – if a salient landmark exists 

 ephemeralLM – if an ephemeral landmark exists 

 3 arcs @node – there are three possible links at decision point 

 4 arcs @node – there are four possible links decision point 

 signs – whether signs exists at decision point 

 color – whether colors other than black and white exist at decision point 

 

The 10 features aim to capture various aspects of interaction between decision point and the user.  

No explicit assumptions about what positive or negative influences are made.  Contribution of 

each weight to the individual can be examined from the derived weights.  Group tendencies may 

be evident by aggregated analysis of group weights.   

 

4.5   Decision point ranking and individual weights profile results    

 

For analysis purposes the users are divided into four spatial ability groups: Highest Quartile: 

(SOD ≥ 4.87); Middle High Quartile: (4.3≤SOD<487.); Middle Low Quartile: (3.67≤SOD≤4.3) 

and Lowest quartile: (SOD < 3.67).  Models are assessed for training with individual users, 

aggregated quartile groups, users in high (SOD >4.3) and low (SOD≤4.3) ranges.   
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4.5.1   Ranking Results 

 

 

One instance in this ranking problem is defined as a candidate set along with its relevant 

mistake-prone decision points. For evaluation purposes, the set of all instances was split into a 

training and test set.  The training set is used to derive a salience model according to previously 

mentioned methods in section 4.4.3.  In order to evaluate w, the salience of each member of each 

instance of the test set was computed.  The machine learning metric of Mean Reciprocal Rank 

(MMR) is used to assess the effectiveness of the ranking model against actual performances.  If 

the model ranks the nth decision points in terms of difficulty, its reciprocal rank will be 1/n 

(Radev et al., 2002).  Total reciprocal rank is the sum of the reciprocal ranks of all difficult 

decision points on the route selected by the users.  To calculate the mean, this total number is 

divided by the total number of decision points. 

 

 

Table 4.1 Group Training on 65% of Data 

 

 Total  

Group Training Data Mistakes MRR 

   

Overall 237 0.49 

High SOD 96 0.44 

Low SOD 141 0.61 

Top Quartile SOD 45 0.46 

Middle High Quartile SOD 51 0.35 

Middle Low Quartile SOD 64 0.58 

Low Quartile SOD 77 0.6 

 

 

A SVM ranking method can effectively create individual models of wayfinders.  Table 4.1 and 

4.2 demonstrate the evaluation measures for a training model on 2/3 of available data.  How 

useful is this result?  The purpose of this study is to propose an interactive system that can 

quantify the importance of each decision point to an individual and thus provide instructions in 

accordance with the derived rank.   When examining the results it is noted that some individuals 

produced better results than others, and the results are unrelated to the training size.   
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Table 4.1 and 4.2 present results that compare training on aggregated group size versus training 

on individuals.  The highest Mean Reciprocal Rank is bolded and boxed.   When training size 

increases, MRR does not improve with increased training size.    

 

When training size is increased, no additional improvement is seen.  This shows the effectiveness 

of such a model, that the size is sufficient and that the availability of the data is enough using this 

method to create meaningful ranks. This also demonstrates that the model works more 

effectively on an individual level.  The overall mean reciprocal rank for training is 0.49, a 

respectable number hinting at the usefulness of such an approach.    

 

 

Table 4.2 Individual Training  

 

 MRR  MRR 

1 0.42 23 0.7 

2 0.6 24 0.38 

3 0.29 25 0.69 

4 0.35 26 0.56 

5 0.46 27 0.39 

6 0.52 28 0.43 

7 0.46 29 0.52 

8 0.34 30 0.42 

9 0.46 31 0.5 

10 0.44 32 0.42 

11 0.37 33 0.36 

12 0.6 34 0.46 

13 0.39 35 0.44 

14 0.42 36 0.32 

15 0.68 37 0.46 

16 0.35 38 0.61 

17 0.4 39 0.52 

18 0.46 40 0.38 

19 0.34 41 0.5 

20 0.5 42 0.46 

21 0.64 43 0.64 

22 0.6 44 0.6 



84 

 

4.5.2    Individual Weights in a Salience Model 

 

In the process of ranking decision points, weights are generated for the individual user.  The 

weights can serve as a basis to profile individual user tendencies.  Closer examination of the 

weights also demonstrated certain tendencies of users in various spatial ability groups, although 

such generalizations would be better served with additional testing and validation.  Table 4.3 lists 

all the individual weights derived in this study.  The weights are obtained when training on all 

instances.  When aggregating by quartile groups, some patterns emerge.  For people of very high 

spatial ability, the average time weight was the highest amongst the groups.  In other words, time 

spent at a decision point is a good indicator of potential difficulty of people with high spatial 

abilities.  People of high spatial aptitude employ a different mental model and possess greater 

capacity for spatial information processing (Wen et al., 2011).   Given ample time, people of 

higher spatial ability have the capability to rearrange their mental map and re-orient the routes 

spatially.  The high weights show that people of higher spatial ability have a tendency to take 

more time to figure out the problem, resulting in higher weights for time.  People of middle high 

spatial ability have the highest weight in making mistakes at decision points that are closer to the 

next decision point while participants within the middle low group have the highest weight on 

decision points that are farther to the next decision points.  Effects of distance on navigational 

performance merits closer investigation in future research.  It could be explained that some 

people can process information faster, while distance may decay cognitive ability, the succession 

of decision point have been shown to pose difficulties for some participants.  Chapter two 

discussed the effects of topological features on navigation tendencies, outlink and outflux scores 

were shown to improve error prediction rate due to its approximation of topological effects of 

wayfinding cognition.  It could be prudent to combine computational metrics with weights to 

more clearly understand fluctuating topological effects on wayfinding behavior.     

 

Looking at individual weights more closely, table 4.3 shows salience models of four subjects 

with sorted weights of the features.  These selected individual profiles give an example of how 

weights may differ across various groups.  For example, Subject 32 has a high weight at 

ephemeral landmarks while subject 7 had a negative weight at ephemeral landmarks.  Such 

insights would not have been derived without the SVMranking methods.  The model more 

optimally serve the purpose of understanding individual behavior.  Although SBSOD is the 

standard contemporary research protocol to differentiate users, it is not ideal in taking into 

account situational variability.  In addition, SBSOD surveys are self-assessed and given pre-

navigation.  Sense of direction surveys such as SBSOD can be complemented with the derived 

weights.  These weights are updated post navigation and can dynamically update each 

individual’s profile.  A post navigational reconciliation with weights can improve the accuracy 

and predictability of SOD surveys to better differentiate and classify individual wayfinders.   
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Table 4.3 presents the weights of all features for each individual participant, along with their 

SOD score, and group performances.  The participants are sorted by their SOD score, and 

divided into quartiles.  Average weight is calculated for each quartile group with the highest 

weight average among the four quartiles highlighted in bold.   (MH = Middle High, ML = 

Middle Low) 

 

Participant # Group # SOD Group Group TimePartner Distance distPrevious distNext Distfrombegin Time salientLM ephemeralLM 3arcs 4arcs Signs Color

43 22 6.33 highest 926 540 -1.565 -0.986 0.264 0.526 -1.68 -0.867 -0.37 0.248 0 0.56

23 7 6.27 highest 1870 1270 1.12 -0.87 -0.38 1.86 0.47 0.06 0.68 1.27 0.76 1.87

37 19 5.47 highest 1434 570 -1.25 0.85 -1.17 1.43 0.62 -1.06 1.56 0.07 -0.64 1.28

15 12 5.47 highest 591 490 -0.46 -0.76 -0.9 -0.26 0.05 0.04 0.87 -0.67 0 -1.78

31 16 5.40 highest 1677 630 0.67 1.13 -1.12 1.65 -1.42 1.25 1.67 0.65 0.87 0.78

6 3 5.27 highest 1236 433 0.256 1.09 0.37 1.35 -0.23 1.2 0.89 0.45 -0.45 0.06

16 8 5.27 highest 1060 490 1.17 1.22 -0.47 0.89 0.09 0.32 -0.26 1.14 0 0.76

12 6 5.27 highest 730 887.5 -0.46 0.12 1.14 0.021 -1.12 -0.54 -0.45 0.56 0.23 -1.61

11 6 5.27 highest 730 597.25 -0.86 -0.23 1.1 0.56 -1.02 -0.65 0.67 1.14 -0.36 -1.32

30 15 5.20 highest 1936 1311 1.12 1.35 1.13 1.12 0.97 0.35 0.68 1.08 -0.33 -0.15

14 12 4.87 highest 591 570 -1.34 -1.269 -0.0246 0.63 0.155 -0.37 -1.16 -1.123 0 0.56

Average 5.46 1161.91 708.068 -0.145 0.150 -0.006 0.889 -0.283 -0.024 0.435 0.438 0.007 0.092

Participant # Group # SOD Group Group TimePartner Distance distPrevious distNext Distfrombegin Time salientLM ephemeralLM 3arcs 4arcs Signs Color

13 4.73 MH 1306 570 0.82 1.14 -0.87 0.98 1.43 -0.78 1.32 1.43 -0.86 0.08

13 7 4.67 MH 1870 570 1.16 1.43 -1.15 1.21 1.08 -1.23 1.06 1.13 0.24 0.16

21 11 4.67 MH 1601 570 1.723 0.79 -0.72 1.13 -0.72 -0.67 1.23 0.78 0 0.24

24 8 4.67 MH 1060 570 1.156 0.36 0.27 0.35 0.65 0.72 0.45 0.45 -0.32 -0.36

40 20 4.67 MH 756 490 -0.67 -1.25 -1.92 -0.89 -0.64 -0.57 -0.52 0.34 -0.87 0.72

7 4 4.60 MH 1160 741.5 -0.74 -0.56 0.086 0.48 -0.786 0 0.346 -0.898 0.025 -0.653

39 20 4.60 MH 756 570 -1.24 -0.89 0.75 -0.48 1.43 -0.29 -0.63 0.67 0.56 -1.12

28 14 4.53 MH 1643 582 0.92 1.16 -0.84 1.24 1.32 1.15 1.43 1.54 0 -1.32

3 2 4.40 MH 1742 621.625 1.17 -0.76 -1.15 1.16 0.87 -0.58 1.255 1.62 0.43 0.24

36 18 4.40 MH 1111 570 0.97 1.17 1.12 1.08 -0.67 1.12 0.67 1.23 0.42 -0.23

44 22 4.33 MH 926 590 0.56 -1.12 0.72 0.12 0.07 0.79 0.67 0.67 -0.32 1.02

Average 4.57 1266.45 585.920 0.530 0.134 -0.337 0.580 0.367 -0.031 0.662 0.815 -0.063 -0.111

Participant # Group # SOD Group Group TimePartner Distance distPrevious distNext Distfrombegin Time salientLM ephemeralLM 3arcs 4arcs Signs Color

27 14 4.27 ML 1643 542 1.25 1.241 0.26 1.12 1.23 -0.26 1.34 1.63 -0.32 1.23

35 18 4.27 ML 1111 653 -0.6 1.154 -0.25 0.21 1.09 1.43 0.87 1.16 -0.23 0.24

10 5 4.27 ML 996 625 -1.12 1.098 -0.76 -0.32 0.89 0.34 -0.32 -0.98 0 0.67

19 10 4.13 ML 839 716.612 0.65 0.568 1.36 -0.78 0.79 -0.67 -0.23 0.78 0.78 -1.32

22 11 4.07 ML 1601 1096 0.2 0.867 0.78 1.32 1.53 1.37 1.65 1.54 0 0.89

17 9 4.07 ML 1190 760 0.56 -0.12 -0.19 1.08 1.14 -0.56 0.87 0.98 -0.32 -0.76

41 21 3.87 ML 1645 989.35 1.12 1.254 1.28 1.23 1.52 0.23 1.43 1.64 0 -0.67

5 3 3.87 ML 1236 570 0.87 1.346 0.35 1.08 1.02 -0.08 1.65 1.24 0 1.09

25 13 3.80 ML 1306 908.2 -0.4 0.867 -0.6 0.75 0.56 -1.12 1.23 1.32 -0.32 0.45

20 10 3.80 ML 839 570 0.62 1.546 -0.92 0.79 -0.23 1.23 0.35 1.12 0.23 0.08

4 2 3.67 ML 1742 692.41 1.76 1 1.76 1.16 1.08 0.31 1.45 0.98 0 1.02

Average 4.01 1286.18 738.416 0.446 0.984 0.279 0.695 0.965 0.202 0.935 1.037 -0.016 0.265

Participant # Group # SOD Group Group TimePartner Distance distPrevious distNext Distfrombegin Time salientLM ephemeralLM 3arcs 4arcs Signs Color

32 16 3.40 Lowest 1677 854 1.345 0.976 -0.15 0.01 1.55 1.523 0.785 1.136 0 -1.124

2 1 3.40 Lowest 755 490 0.87 0.67 -0.27 -1.13 -0.87 0.37 1.47 0.98 -0.64 0

29 15 3.33 Lowest 1936 1360 1.236 0.43 0.986 -0.156 1.568 -0.87 1.52 1.92 0.876 -0.57

9 5 3.33 Lowest 996 614 0.25 0.35 0.47 0.24 0.08 -0.87 0.65 -0.53 0 -0.67

42 21 3.27 Lowest 1645 570 -0.81 -0.89 -1.254 0.87 -0.67 -0.78 1.15 0.67 -0.3 0.09

1 1 3.27 Lowest 755 570 0.12 1.34 -1.15 -0.45 0.57 0.87 1.06 1.13 -0.32 0.24

38 19 3.00 Lowest 1434 803.6 -0.4 -1.12 1.25 1.24 1.65 -1.14 1.13 1.43 -0.87 0.45

18 9 3.00 Lowest 1190 960 1.265 1.123 0.547 0.079 -1.132 -1.13 1.116 1.536 0 1.158

8 4 2.80 Lowest 1160 1261.1 1.465 0.568 -0.152 0.053 1.25 0.589 1.254 0.89 -0.52 0.286

34 17 2.27 Lowest 1336 1020 1.52 0.78 1.43 0.87 1.45 0.05 0.52 0.92 0 1.12

33 17 2.00 Lowest 1336 793 0.76 -0.65 -0.8 0.76 1.22 -1.43 0.78 0.24 0.25 -0.03

Average 3.01 1292.73 845.064 0.693 0.325 0.082 0.217 0.606 -0.256 1.040 0.938 -0.139 0.086

Derived WeightsPerformance
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Table 4.4 Comparing the feature weights for four subjects models (One from each of the four  

quartile groups) 

 

Subject 14   Subject 7  Subject 35  Subject 18 

Highest Quartile  Middle High Quartile Middle Low Quartile Lowest Quartile 

Feature Weight Feature Weight Feature Weight Feature Weight 

Time 0.63 Time 0.48 ephemeralLM 1.43 4 arcs @node 1.54 

Color 0.56 3 arcs @node 0.35 4 arcs @node  1.16 distPrevious 1.27 

salientLM 0.16 Distfrombegin 0.09 distNext  1.15 Color 1.16 

Signs 0 Signs 0.03 salientLM  1.09 distNext 1.12 

Distfrombegin -0.02 ephemeralLM 0 3 arcs @node 0.87 3 arcs @node 1.12 

ephemeralLM -0.37 distNext -0.56 Color 0.21 Distfrombegin 0.55 

4 arcs @node -1.12 Color -0.65 Time  -0.23 Time 0.08 

3 arcs @node -1.16 distPrevious -0.74 Sign -0.24 Signs 0 

distNext -1.27 salientLM -0.79 Distfrombegin  -0.25 ephemeralLM -1.13 

distPrevious -1.34 4 arcs @node -0.9 distPrevious  -0.6 salientLM -1.13 

 

Table 4.4 presents four examples of sorted feature vectors, i.e. salience models. These weights 

were obtained when training on all instances of subjects.  The different orderings of the features 

reflects different preferences of these subjects in various groups during navigation.  This study 

created individual models to further understand navigation and human to environment 

interaction.  The ultimate application of these findings is to incorporate them into a more 

efficient and personalized pedestrian navigation system.  Targeted and timely navigation 

instructions such as augmented instructions at difficult decision points holds the potential to 

improve performance for the user.  The second part of this chapter presents such a prototype that 

tests this concept.  Given the increased reliance on navigation aids, special emphasis is placed on 

survey knowledge acquisition by users of this prototype.    

 

4.6    Effects of augmented instructions on spatial learning findings 

 

4.6.1   Study Design 

 

In part two of this study, a prototype is designed, coded, and installed on an Android system.  

The prototype application offers augmented directions at decision points with photos, 

information about the decision point such as intersection, identifiers, signs, and façades of the 

buildings (Figure 4.2).   A new group of 32 participants (20 male, 12 female) participated in the 

study, and divided along median score of 4.27 into high group (SOD > 4.27) and Low group 
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(SOD < 4.27) respectively.  The participants were given the mobile phone device (Samsung 

Galaxy 5) and navigated the same route as the previous study.  In the first routes, the participants 

navigated using a traditional map with the routes highlighted.  The experimenter followed the 

same protocol from earlier studies to track their progress and record mistakes at each decision 

point.  In the second route of the task the navigators used the prototype that provided augmented 

instructions at all possible decision points.  At the end of each navigation, the participants were 

asked to conduct a map sketching task, which is designed to assess their survey knowledge 

acquisition from their recently completed wayfinding task. No time limit was imposed on the 

task.  In the map-sketching task, participants drew sketch maps of the traveled routes in as much 

detail as possible from memory on a blank A4 sheet of paper (Figure 4.4), this study is designed 

to assess the effects of augmented instructions on participant’s survey knowledge acquisition.   

 

Figure 4.2. Screenshot of the decision point augmentation system used by the participants.  This 

system displays information about the decision point to the users upon approach to those 

decision points.  The information includes structural salient landmarks, non-structurally salient 

landmarks, events observed by participants in study one, and signs and other relevant 

information.  The prototype is intended to give the users guidance at these decision points.   
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Spatial learning is an important skill for general learning and scientific reasoning (Newcombe, 

2014).  Increased reliance on technology is decreasing spatial learning, particularly in children.  

Survey knowledge acquisition can be measured by sketch tests and has been applied in many 

studies.  For example, Meneghtti examined cognitive processes in children with Down syndrome 

where children listened to route or survey descriptions with or without creating a corresponding 

sketch map (Meneghetti et al., 2007).  Sketch maps, when applied in a post navigational exercise 

can serve as an useful indicator of survey knowledge acquisition.   

 

 

To assess the map-sketching task, the accuracy of drawn maps is examined in terms of a bi-

dimensional regression coefficient (Tobler 1994).  To complete this analysis, 10 locations on 

each route (the start, goal and 8 other decision points) were selected as “anchor” points, and the 

actual map and a sketch map were overlaid so that the anchor points on the two maps matched as 

closely as possible.  The value for bi-dimensional correlation was computed, which gives the 

degree of correspondence between the two maps ranging in value from 0 to 1 (the larger, the 

better correspondence).  Correlation values were are subsequently transformed through 

Fisher's r-to-z transformation, with the alpha level of 0.05 used for statistical purposes. (Silver & 

Dunlap, 1987).  In addition, the overall number of correct sketch maps and proportion of correct 

turns are calculated.   

 

4.6.2   Effects of augmented instructions on map learning results 

 

Intuitively, improvement is anticipated with additional instructions at decision points.  However, 

it is interesting to see whether everyone can benefit equally from these additional instructions.  

Paired t-test of two samples for means revealed a significant increase for people with lower 

spatial abilities when using the prototype compared with people of higher spatial abilities 

(T(15)=2.13, p < 0.05), showing that people of lower spatial ability benefits more from such 

instructions.   

 



89 

 

 

Figure 4.3 Bi-dimensional correlation map of two sessions, the first using traditional map and 

the second with the prototype.  Improvement is seen for people of low SOD while decrease in 

spatial ability is seen by people of high spatial aptitude. 

 

Table 4.6 Number of correct turns correctly recalled by the participants using the prototype. 

This analysis is simply counting how many turns the user recalled correctly in their exercise 

 
 

.   
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Figure 4.4.  Examples of sketch map testing results for people of high and low SOD groups by 

method.  A is done by participant 12 (middle low quartile SOD) in an augmented route, B is done 

by participant 7 (lowest spatial quartile SOD) in a route without prototype, and C is done by 

participant 21 (middle high quartile SOD) with prototype.     

  

Bi-dimensional correlation showed that the number of correct sketch maps decreased for people 

using the prototype for people with high SOD.  There were significant effects of augmented 

instructions for people of poor SOD.  (Mlow = .82).  F(2, 32) = 5.21, p < .05.  For map sketching, 

low SOD participants did better with augmented directions while the good SOD group did worse 

in the second session with augmented instructions.  When examining proportion of correct turns, 

the results showed a slight decrease in percentage for people with higher spatial abilities.  Table 

4.6 shows the proportion of correct turns recalled by the participants on the sketch test, this 

showed similar trends as the bi-dimensional correlation analysis.  Improvement in proportion of 

correct turns recalled is statistically significant for the low spatial ability group.     

 

 

4.6.3 Discussion 

 

Results from the sketch map tests point to an uneven benefit from augmented instructions.  

People of lower spatial aptitude improved in performance disproportionally than people of higher 

spatial ability while at the same, spatial learning actually decreased for people of higher spatial 

abilities.  This is an interesting finding, and could be explained by people of higher spatial 

aptitude relying less on the directions and trusting instead their own cognitive processes.  People 

on the other spectrum however, are more reliant on the system to complement their own 

cognitive processes with the additional information.  This is consistent with finding from other 
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researchers (Ishikawa et al, 2008).  It is interesting to observe this pattern with the prototype.  

Greater sample size and machines with more advanced personalization algorithms can perhaps 

further validate this finding.  The results of this study suggests that augmented instructions can 

make people with high SOD more passive while making people of poor SOD more active in their 

wayfinding tasks.  This perhaps can affect how people view augmented instructions and hold 

implications for the adoption of augmented reality.    

 

4.7   Conclusion and Future Directions 

 

A novel approach is presented to determine difficult to navigate spots for people of varying 

spatial abilities while creating personalized models for individual users.  This is an important 

step for creating efficient individualized navigation systems using landmark, topological features 

and behavioral data that is easily computable from readily available crowd sourced data.  The 

weights calculated for each individual attest to our uniqueness and stresses the need to recognize 

our fundamental differences in wayfinding tendencies.  As with all models, it is not perfect, 

while there is room for improvement, the proposed method will be a useful addition to existing 

methods to compute salience for various features.  Many existing methods use heuristically or 

arbitrarily predetermined weights, the weights used in this study are derived from actual data, an 

important step for making the system more responsive and dynamic.  Other data that can be 

incorporated into the system, including more complex data about human behavior, past travel 

experiences, information about landmarks, topological information, traffic, and surveillance data 

- all represented in the structure of a spatial database.  The following is a rudimentary concept of 

combined data derived from these weights, a very basic information product that aggregates 

some of the findings of the study.  This map can be used to highlight decision points that are 

difficult for wayfinders of certain characteristics, a similar purpose as presented in the previous 

chapter.       

 

The decision point difficulty map (Figure 4.5) demonstrates the concept of aggregating the 

weights at each decision point.  Such a map shows potential difficult spots for certain group of 

wayfinders.  Decision point difficulty analysis can be expanded to metropolitan level with the 

availability of larger datasets.  Potential data sources include telecom data or movement data 

from social media platforms such as Wechat.  Finding specific difficult decision points or 

various hotspots in an urban environment may have particular usefulness for special groups such 

as the elderly, children and foreigners in their daily lives and travels.  From understanding the 

user on a personal level to identifying difficult spot on urban sized implementation, there are 

many potential economic and social implications to such a design.       
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Figure 4.5.  This map is an example of a decision point difficulty map that aggregates the 

findings of the study.  The map highlights decision point with particular difficulties for certain 

groups. This information product can potentially give useful insights to the decision points in this 

study. 

 

Constructing salience models of navigation is an important step toward personalization of GIS 

and adoption of its functions for individual users.  There have been many suggestions in the 

improvement in the personalization of GIS, predominantly through additional information and 

profiles stored in a relational SQL database.  Aoidh et al., (2012) proposed an implicit approach 

for personalizing mobile GIS to suit user preference and needs.  The approach is based on 

generating an individual user profile containing information related to user movement and 

preferences.  In this system, user preferences are extracted implicitly through interactions of the 

user with system.  McArdle et al., (2010) proposed an approach for recommending personalized 

content to the user. The approach creates two types of profiles: personal profiles and region-

based profiles, which are combined to personalize the content of the GIS according to the users' 

needs and interests.  This study set the basis for personalized navigation system design by 

delineating the relationship between improvement in performance and personal and 

environmental characteristics of the user.  The weights of the models can be viewed as precursor 

“profiles” of users that can fit into the vision of these authors.  Such a profile can be integrated 

into existing GIS to improve its functionality while trending GIS towards a more personal 

direction.    

 

Finally, this data driven approach has the potential to offer a more complete and accurate 

classification of individual navigation behavior and cognitive process.  Such a system can serve 

as a complementary tool to established method of Santa Barbara sense of direction survey in 
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cognitive research.  This approach can give more empirically based ratings of individuals to 

provide valuable insights to both research and industry.      
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CHAPTER 5 

 

CONCLUSIONS  
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5.1   Summary of Dissertation Research  

 

Wayfinding research typically emphasizes either the user (Hegarty et al 2002; Schinazi & 

Epstein 2010) or the environment (Hillier & Hanson, 1984, Penn, 2003).  User centered research 

focuses on the influence of individuals (such as self-reported spatial ability, well-being, 

experience (Hegarty et al., 2002) and group differences such as culture (Levinson 1999; 

Mainwaring et al., 2009), and factors on the choices made during wayfinding (Schinazi et al., 

2010).  Navigation is an intrinsically complex process involving constant interplay between 

individual cognitive functions and environmental features.   

 

This dissertation aims to understand the dynamics of people of varying spatial ability interacting 

with the environment, and how specific tendencies differ between people of high versus low 

spatial aptitude.  This dissertation offers relatable examples of difficulties in everyday life faced 

by pedestrian navigation.  The major findings and contributions are summarized as follows: 

 

Chapter two presented a novel experimental design to explore the dynamics of collaborative 

navigation, a common but under-studied phenomenon.  The results from this study differ with 

many previous studies.  Ishikawa et al. (2008) showed that people of varying spatial abilities use 

different landmarks during navigation.  Forlizzi, Barley, & Seder (2010) looked at how a person 

in the passenger seat interacted with a driver in providing navigational directions collaboratively 

toward a destination, in an automobile.  Reilly et al. (2009) looked at how pairs of travelers 

collaborate in navigating toward destinations together, by sharing a single cellphone and 

consulting information shown on it with continuous role reversals.  Previous studies used similar 

experimental setups, revealing different aspects of wayfinding behavior.   

 

This study combines quantitative and qualitative methods to understand the underlying cognitive 

and communication processes during shared navigation tasks.  The difficulties demonstrated in 

the interaction elucidate the discrepancies between users of varying spatial aptitudes that 

previously has been overlooked.  One prominent finding is that a pair in which both individuals 

had low spatial ability outperformed groups with high and low spatial ability pairing.  Time 

increases were found to be statistically correlated with increased difference in score between 

group members.  Through close examination of conversation and user behavior, reasons for this 

emerged.    

 

People of lower spatial ability were discovered to use less salient landmarks in their navigation 

strategy and tended to make more mistakes at decision points that have prominent landmarks.  

People of lower spatial abilities not only use less salient landmarks, but also employ more 

ephemeral landmarks and non-conventional landmarks.  In addition, people of lower spatial 

ability rely on the strategy of “let’s go until we find it” when faced with difficult decision points.  

These users tend to simply keep going when lost until they find the next recognizable decision 
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point.  These tendencies make it difficult for people of varying spatial aptitudes to effectively 

communicate.      

      

People of higher spatial ability, in contrast, use more conventional landmarks plus the strategy of 

retracing their steps to reprocessing the environment spatially.  Pairing of two high spatial ability 

people demonstrated the greatest efficiency and least amount of spatial communication.  This is 

consistent with the model proposed by (Wen et al. 2011).  Thoroughly examining the 

involvement of the three different components of working memory in the acquisition of three 

types of spatial knowledge, in relation to participants’ SOD, showed that people with a good 

SOD encoded landmarks and routes primarily verbally and spatially, and were able to integrate 

knowledge about them into survey knowledge with the support of all three components of 

working memory.  In contrast, people with a poor SOD encoded landmarks only verbally, not 

spatially and tended to rely on the visual component of working memory in the processing of 

route knowledge, thus failing to acquire survey knowledge.  Gender differences also contributed 

to differences in strategy.  Different partner parings demonstrated improvement in efficiency is 

some of the users who were able to adapt their strategy to the perceived ability of their partners.     

 

Chapter three builds on the same empirical experiment and dataset as chapter two.  This study 

centers around the question - how can we predict where people are likely to make mistakes on a 

route and offer them additional directions, in advance, in these places?  Salience of decision 

points influence wayfinding task efficiency.  Likely salience levels can be determined by 

computational methods.  Computational salience was first defined as the importance of decision 

points for classifying wayfinders with respect to their and individual differences (Takemiya et 

al., 2012).  Chapter three builds on the previous work by Takemiya & Ishikawa testing the 

validity of these methods using the empirical dataset from real world navigators.   

 

 

Computational methods involve analyzing thousands of randomly generated routes.  Some 

established methods are examined in this study.  The methods include:  traversal probability, 

entropy difference, PageRank, degree centrality, closeness centrality, and betweenness centrality. 

The concepts of outlink and outflux scores - meta-algorithms that combine the features of the 

previous methods with clustering and linking effects based on the graphical nature of the routes - 

are novel computational methods pertinent to measuring wayfinding performance.  Ouflux and 

outlink scores are combined with each of the established methods for calculating the likelihood 

of mistakes prior to navigation.  Meta-algorithms derived secondary scores are compared with 

the original metrics of computational saliences.  The ouflux score measures regions of similar 

salience values, while outlink scoring highlights the effects of the previous decision point 

outcomes on the decision point in question.   

 

 

PageRank has been a widely used method in network analysis, partially due to its popularity as 

the Google Search Engine algorithm.  One important finding of the research is that the outlink 

entropy difference and outlink probability correlate more strongly to actual user error, and thus is 

a more effective measurements than original metrics such as PageRank for wayfinding 
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applications.  These two meta-algorithms, which intuitively takes into account changing user 

behavior during navigation in complex environments is thus an improvement over existing 

metrics.  These two meta-algorithms take into account not just the decision points themselves, 

but the overall relationships to the surrounding area enclosing the overall route.  In other words, 

decision points alone do not account for overall wayfinding performance.  Successively difficult 

decision points, or the clustering of difficult decision points, leads to greater cognitive load on 

the users.  Being able to identify these spots through computational means gives more 

information about a route not visible through human observation alone.  The finding that outlink 

entropy difference and outlink probability were strongly correlated with errors made by 

wayfinders demonstrates the efficacy of using computationally generated routes to model the 

behavior of wayfinders and elicit decision points that are important to wayfinding.   

 

The approaches tested can be practically implementable for real-time navigational aids, such as 

location-based services offered in cell phone applications.  Calculating the computational 

salience of a decision point can help navigational algorithms detect where users are most likely 

to make mistakes.  These points of difficulty can be enhanced to a degree dictated by the 

performance class of wayfinders, allowing assistance to be rendered effectively.  

Computationally salient points can be used to improve a user’s configurational knowledge of the 

routes traveled. 

 

Computational methods can be used to predict navigational without actual data, but real data 

should also be included to rank decision points effectively.  Machine learning can be used to 

classify and understand the structural features of an environment, and rank the decision points on 

a route.  Chapter four applies machine learning support vector machine (SVM) ranking methods 

to derive individual weights for the users based on their performance while ranking the decision 

points.  Machine learning has gained major traction in the last decade in learning human 

behavior and environmental cues, in applicable fields such as Robotic design (Breazeal et al., 

2009), learning driving patterns (Mitrovic et al., 2001), and image recognition (Liu et al., 2012).  

This study applies machine learning methods to analyze spatial tasks in order to further 

understand the effects of various features of the environment on pedestrian navigation.  SVMrank 

method can be adopted to understand user behavior and improve direction generation.  In 

ranking decision points on a route, pairwise method is used to determine the most difficult 

decision points for the user.  Metrics show that such an approach works more effectively for 

individuals than for groups, as evidenced by the lack of improvement with increased training 

size.  The second useful feature of SVMrank is the ability to derive unique weights for individuals' 

characteristics that are similar to “profiles” for individual navigators.  The weights can 

potentially be used to complement existing Santa Barbara sense of direction surveys in 

differentiating wayfinders.  For example, the weights of user A show that he or she is more like 

to make mistakes at decision points with certain features such as far from previous decision point 

and less likely to make mistakes at decision points with another feature such as having less than 

4 nodes.  The weights in the models show glimpses of tendencies for some individual users in 

particular spatial ability groups.  Time was a significant parameter for people of high spatial 

abilities.  Decision points with characteristics of large distances to next decision point and having 

four nodes caused problems for middle low spatial ability individuals.  People of lowest spatial 
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ability had the highest weight at decision points with three arcs and long distance to previous 

decision point.  These tendencies can be taken into consideration and further research with larger 

sample size can be conducted to validate these findings.     

 

In addition to analysis of empirical data, this dissertation designed and tested a prototype in the 

same neighborhood in Tokyo Japan.  The prototype offered additional instructions at decision 

points.  The prototype demonstrated improvement in navigational efficiency and survey 

knowledge acquisition for certain spatial ability groups.  The results from the prototype show 

that low spatial aptitude groups benefit more from enhanced navigation features.  This is 

intuitive and expected.  People who need assistance will naturally reach out and use more 

navigation aids, and having a lower baseline performance also means greater yields in 

improvement.  What is important from the prototype testing is that people of lower spatial ability 

improved their spatial learning, as demonstrated by analysis of sketch tests, while high aptitude 

people decreased their spatial learning.  The research demonstrates that augmented directions 

during the navigation process can influence wayfinding by making people of higher spatial 

ability more passive while making people of lower spatial ability more active.  This study 

showed great promise in using augmented instructions - this is important in designing such 

systems to improve spatial learning. Applying these advantages to teaching spatial reasoning in 

children is a concept worth further investigation.    

 

In summary, this dissertation showed that people of varying spatial abilities navigate differently 

in the real world.  Wayfinding is not only determined by landmarks and turns, but by the 

structure of the environment, the density of decision points, and the proximity of difficult 

decision points to each other.  Individual models can be created and refined to generate 

predictive information, creating profiles for personalized navigation systems.  Using augmented 

instructions at decision points can improve navigation, low spatial groups can benefit while 

people of high spatial ability may find their abilities attenuated.  There are many suggestions 

from this dissertation that can be applied to future research to improve navigation guidance 

systems.    

  

5.2   Future Research Directions  

 

5.2.1   Limitations 

 

It is important to address some limitations in these studies.  For the study presented in chapter 

two, a primary limitation is the small sample size.  44 participants were recruited and divided 

into 22 groups.  Being an empirical study, with the nature of the study requiring simultaneous 

pairing of participants, and having two experimenters present - the logistics to complete such a 

study design in a foreign country in a limited time span required an extraordinary amount of 

effort and planning.  Fortunately, the study yielded useful results that serve as the foundation of 
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this dissertation.  The population investigated was diverse while satisfying the English fluency 

and non-Japanese requirements.  Future experiments should address the limitation of sample size 

by maintaining a similar design but with a larger and more diverse sample.  Conducting 

experiments of this type can generate important contributions in the field of cognitive geography. 

The initial publication of our experiment influenced others to subsequently setup additional 

novel experiments.   

 

Chapter three measures computational salience and uses outlink entropy and outlink probability 

to predict the prominence of decision points.  Sample size is again a limitation particularly when 

it is used to validate large computationally generated datasets.  The main limitation in chapter 

three is the limited number of features for n-dimensional training.  Structural prominence has 

been shown to exhibit great influence in the performance of users on routes during navigation 

tasks (Frankenstein et al., 2010).  If more information can be derived from physical features of 

landmarks, the training and modeling could be more interesting and insightful.  The next step 

should be to incorporate the learned models in our pedestrian navigation system, and test new 

situations with more participants.     

 

5.2.2   Future Research Extensions 

 

This dissertation research serves as the starting point for investigating individual mobility habits 

in order to improve pedestrian navigation models.  Personally, I have many follow-up questions 

that can be extended from this study, as I am sure readers will as well.  I have listed some 

possible follow-up questions.    

 

Spatial language: which aspects of spatial language lead to improved spatial performance; what 

types of instructions are more useful for certain groups in certain contexts?    

Spatial cognition: can people of higher spatial abilities benefit from enhanced navigation 

systems, or are they already near the peak performance possible?    

Urban geography:  what road design and ordering of landmarks affects pedestrian navigation in 

urban environments?  Can urban design be improved based on these concepts?  

Database design:  what is a more effective way for a machine to interactively communicate 

spatial information for people of lower spatial ability?  How to specifically mirror the designs 

proposed in this dissertation, to increase the interactive nature of navigation systems. 

Spatial learning:  is it possible to incorporate spatial learning activities into navigation aids 

particularly for children using these systems? 

 

The most natural extension of this work, in addition to more empirical studies and larger 

populations, is to apply the findings in the design of navigation and GIS databases.  Future work 
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should expand the use of probabilities and entropy to consider mutual information between 

decision points.  Future implementations also should strive to bring awareness of decision points 

where wayfinders are likely to make errors - to the attention of the wayfinders, via real-time 

location-based services.  The effect of this on both collaborative and individual wayfinding 

efficiency should be validated empirically on a continuing basis. 

 

The insight and data gathered from the prototype can be aggregated for improvement in 

transportation, tourism and urban planning.  Decision point difficulty analysis that aggregate 

difficult spots will identify otherwise unnoticeable difficult spots in transportation and daily 

activities.  Gathering where people tend to linger for longer periods of time will have economic 

implications for store location and advertising.  Better signage and understanding of the urban 

landscape will also result from its use. 

 

In the process of this research, I have noticed in my daily travels that large landmarks in an urban 

space often do not serve an optimal purpose in guidance.  For example, if the landmark is very 

large and prominent, it helps to guide a person in getting there, but does not always help guiding 

a person in a closer environment.  Although the landmark can be highly visually salient, it is 

harder to be integrated into a mental map.  Imagine trying to fit a giant puzzle piece (the 

landmark) to fit with a bunch of smaller ones.  Large landmarks can take up multiple places at 

once, making it difficult to mentally orient.  This study placed great emphasis on landmarks, it is 

worth considering that size does not necessarily mean greater salience and value for spatial 

knowledge acquisition, rather, specificity and context that holds greater importance.  This is 

something worth considering in future research.       

 

Another important issue is the actual use of navigation aids in spatial learning of humans.  While 

navigation aids are improving navigational efficiency, an often overlooked consequence of our 

growing reliance on navigation technology is that it decreases environmental awareness and 

spatial learning for the users (Ishikawa et al., 2012).  Spatial learning is not only important for 

navigation, but spatial thinking has been shown to helps us structure, integrate, and recall ideas.  

Spatial thinking is a fundamental life-long skill important in various branches of science and 

engineering and in everyday life (Newcombe, 2010).  Active navigation is perhaps one of the 

best incubators of that ability.  Various studies have shown negative effects on spatial learning 

by overreliance on technology, particularly for young children.  Ishikawa et al. 2012 has 

demonstrated that contemporary GPS devices actually decreased wayfinders’ configurational 

knowledge of travelled routes, while increasing the time and distance required to traverse.  Other 

existing research agrees that guided navigation impairs spatial memory (Aporta and Higgs, 

2005), and that reliance on guidance technology can make it difficult for wayfinders to be self-

reliant in situations where navigational aids cannot be used (Parush et al., 2007).  Girardin & 

Blat, (2010) cited decreased environmental engagement while other cognitive researchers 

implicated lack of active investment in terms of mental effort and control (Parush et al., 2007, 

Peruch and Wilson, 2004), and divided attention (Fenech et al., 2010), as other effects.  An 

important step to improve spatial learning while continuing to improve navigational efficiency is 

an increase in engagement between system and user.   
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It is important to lessen our total reliance on navigation systems, which should offer help when 

needed.  Future research should emphasize the importance of spatial learning and 

acquisition of spatial ability.  Geographical education should be designed not only to imbue 

technical skills and knowledge, but to develop spatial logic and thinking.  An optimized 

system catering to the individual user will have that effect and its application should be 

considered in the future, giving the user a chance to learn from the environment while  

improving spatial cognitive abilities.      

 

Another area of focus should be navigation system design that considers not only the shortest 

route but the most effective route.  There exists significant differences between perceived 

benefits and actual use of information technology.  Nielsen and Levy (1994) have highlighted 

that the perceived usability does not always correlate with actual efficiency of an information 

technology.  Moreover, Frøkjær et al. (2000) have found that usability has a complex 

dependency on efficiency, effectiveness, and satisfaction.  It is common for pedestrians to select 

the “optimal” paths by considering multiple criteria, such as safety, traffic, weather, season, 

levels of noise, and accessibility, but contemporary digital maps only account for the “shortest” 

distance path (Armeni et al., 2013).  Future research that takes human cognitive factors into 

consideration, that further classify human behavior, spatial ability and additional aspects of 

landmarks in the real environment can lend to increased criteria that will allow for human-centric 

“happiest”, “safest”, and “most useful” routes.  In order for this to happen, one must determine 

what is ideally happy or efficient on a user level.  This dissertation sets the foundation for such 

an approach and provides methods that can derive metrics for such a system.   

 

 

I wish my findings can be applied in future development of responsive and intelligent 

personalized systems.  This study demonstrates that available data can be applied in a relatively 

simple, quick and useful manner to these ends.  Many approaches can be taken to improve 

navigational efficiency, travel experience, and spatial learning.  The implementation of such 

concepts will be an important step in upgrading navigation systems from a general guidance 

system to a personalized decision system.  
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Appendix 1.  Santa Barbara Sense of Direction Survey 
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Appendix 2.  Examples of computational methods used in Chapter 3 

Traversal Probability:  How statistically likely someone is to traverse a certain decision point on 

route.  

 

Degree Centrality: 

A node’s in and out degree measure the number of in and out nodes that comes out of each link.   

Degree Centrality Measures the number of direct neighbors at each decision point.  It is useful in 

assessing which nodes are central in the spread of information.   
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Betweenness Centrality: 

Betweenness centrality quantifies the number of times a node acts as a bridge along the 

shortest path between two other nodes.  

Example Betweeness Centrality graph: 

 

 

Closeness Centrality: 

Closeness Centrality measures the average length of the shortest path between the node 

and all other nodes in the graph.  It is a measure of reach – how fast information can reach 

other nodes from existing nodes.   

Example Closeness Centrality Graph: 

 

 

https://en.wikipedia.org/wiki/Shortest_path_problem
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Appendix 3.  Explanation of SVMrank algorithm   

 

SVMrank learns an unbiased linear classification rule (i.e. a rule w*x without explicit 

threshold). The loss function to be optimized is selected using the '-l' option. Loss 

function '1' is identical to the one used in the ranking mode of SVMlight, and it 

optimizes the total number of swapped pairs. Loss function '2' is a normalized version 

of  '1'. For each query, it divides the number of swapped pairs by the maximum 

number of possibly swapped pairs for that query. 
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