
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2017

Understanding three-body interactions in hexagonal close packed Understanding three-body interactions in hexagonal close packed

solid He-4 solid He-4

Ashleigh Locke Barnes
University of Tennessee, Knoxville, alocke5@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Condensed Matter Physics Commons, and the Physical Chemistry Commons

Recommended Citation Recommended Citation
Barnes, Ashleigh Locke, "Understanding three-body interactions in hexagonal close packed solid He-4. "
PhD diss., University of Tennessee, 2017.
https://trace.tennessee.edu/utk_graddiss/4383

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F4383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=trace.tennessee.edu%2Futk_graddiss%2F4383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=trace.tennessee.edu%2Futk_graddiss%2F4383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Ashleigh Locke Barnes entitled

"Understanding three-body interactions in hexagonal close packed solid He-4." I have examined

the final electronic copy of this dissertation for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a

major in Chemistry.

Robert J. Hinde, Major Professor

We have read this dissertation and recommend its acceptance:

John Z. Larese, Tessa R. Calhoun, Thomas Papenbrock

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Understanding three-body

interactions in hexagonal close

packed solid He-4

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Ashleigh Locke Barnes

May 2017

© by Ashleigh Locke Barnes, 2017

All Rights Reserved.

ii

This dissertation is dedicated to my best friend and loving husband, Austin Barnes,

for seeing me through the best and worst times

iii

Acknowledgements

This dissertation would not have been possible without the guidance of my advisor,

Dr. Robert Hinde. Thank you, Dr. Hinde, for encouraging me to take advantage of

every opportunity to grow in this field through conferences, symposia, and summer

schools. I will never forget the knowledge I’ve gained and the people I’ve met from

those experiences, which would not have been possible without your support. I would

like to thank the members of my committee for giving of their time and e↵ort to see

me through my graduate studies, and I acknowledge the University of Tennessee and

the National Science Foundation for funding this research.

To the current and former members of the Hinde group: you have made grad

school a fun and memorable experience. You are simultaneously the ones who will

laugh first when I make a mistake, and encourage me when I find out I have to redo

the last three months of work. Matt Dutra, Kiran Dhah, Dan D’Andrea, Randi Beil,

Paul Mott, and James Smith, you have become my wonderfully sarcastic, entertaining

family and I don’t think I could have made it through the toughest semesters without

all of you.

I would like to thank my incredibly supportive husband, Austin, who always

encouraged me to put school first while he managed his career and our home. Thank

you for taking care of pretty much everything during the semesters when I was too

stressed and busy to get the laundry done. You help me to take everything one day

at a time, and you have motivated me to keep working when I felt like I was burned

out. Coming home to you, Ron, and Scout always makes the worst days better.

iv

To my friends and family, thank you for listening to me ramble on about research

and providing reassurance when I felt overwhelmed. But more than that, thank you

for reminding me to enjoy this time of my life. Samantha, thank you for being the

one person who always understands my anxiety and who can help me put things into

perspective (and for giving me the cutest niece and nephew on the planet). Dad

and Leslie, thank you for encouraging me and understanding when I’m too busy to

come visit, and for always being willing to provide a much needed escape to the

mountains. Mom and James, thank you for always letting me know you are proud

of me (and Mom, thanks for sharing my love of the X-Files). Jamie and Robert,

Knoxville became home when you decided to move here. From roommates in Waco

to neighbors in Knoxville, you will always be a part of our family, no matter where

life takes us next.

I could fill a novel listing all the many friends, family members, and teachers

who have helped me get here, and I wouldn’t be who I am without each of you:

David, Meg, Adam, Jenn, Nicole, Hana, my grandparents, aunts, uncles, cousins,

my wonderful in-laws who made me feel like part of the family since day one, Brian

Dalak, Kevin Pinney, Darrin Bellert, Bob Compton, and so many others. “Thank

you” doesn’t begin to express how much I appreciate having you in my life.

v

It is evident that an acquaintance with natural laws

means no less than an acquaintance with

the mind of God therein expressed.

- James Joule

vi

Abstract

The ground state properties of hexagonal close packed (hcp) solid 4He [He-4] are

dominated by large atomic zero point motions which make the primary contribution

to the solid’s low-temperature Debye-Waller (DW) factors. Preliminary investigations

have also suggested that three-body interactions can play an important role in this

system, particularly at higher densities. However, due to their computational cost,

these interactions are not generally incorporated into theoretical models of solid

4He [He-4]. In order to accurately treat both zero point motion and three-body

interactions, we have developed a perturbative treatment in which the three-body

energy is added as a correction to the two-body energy obtained from variational

quantum Monte Carlo (VMC) and variational path integral Monte Carlo (VPI)

simulations. The accuracy of this approach is verified via comparison to simulations

in which a three-body potential energy function is fully incorporated into the

potential energy calculations throughout the simulations. These methods are used

to calculate the ground state energy and DW factors of hcp 4He [He-4] over a range

of molar volumes from 2.5 cm3/mol [cubic centimeters/mol] to 21.3 cm3/mol [cubic

centimeters/mol] at T = 0 K. DW factors from two-body simulations are found to be

in good agreement with existing two-body models; however, neither two- nor three-

body simulations can account for the 20% anisotropy in the DW factors recently

reported by Blackburn, et al. Pressure-volume equations of state (EOSs) are derived

from the energies obtained from all simulations. Incorporating three-body interactions

brings the calculated pressures into much closer agreement with experimental values,

vii

and EOSs derived from both the perturbative and full-incorporation treatments of

three-body interactions are nearly indistinguishable. This indicates that over this

molar volume range, the computationally e�cient perturbative method is su�cient

to account for three-body interactions. Finally, the nonzero elastic constants are

calculated via the bulk modulus, K, and the three pure shear constants C
0

[C 0],

C
66

[C 66], and C
44

[C 44] which are obtained from simulations of distorted hcp 4He

[He-4] lattices. The results show that while three-body interactions a↵ect the pure

shear constants at higher densities, their influence on K is non-negligible even at low

densities.

viii

Table of Contents

1 Introduction and Overview 1

1.1 The hcp 4He System . 2

1.2 Three-Body Interactions . 4

1.2.1 Survey of Earlier Studies of Three-Body Interactions in Con-

densed Phase 4He . 5

1.2.2 The Cencek Three-Body Potential 7

1.3 Overview . 8

1.4 References . 11

2 Computational Methods 14

2.1 Introduction . 15

2.2 VMC . 15

2.2.1 Reweighting . 19

2.2.2 The Debye-Waller Factors and Atomic Probability Density . . 21

2.2.3 Long-Range Corrections . 22

2.3 VPI . 25

2.4 Three-Body Interactions . 30

2.4.1 Perturbative Treatment . 30

2.4.2 Full Incorporation Method . 31

2.5 Equations of State . 32

2.6 Elastic Constants . 33

ix

2.7 References . 36

3 Search for Anisotropy in the Debye-Waller Factors of hcp 4He 38

Abstract . 40

3.1 Introduction . 40

3.2 Computational Methods . 41

3.2.1 VMC . 41

3.2.2 hu2i Calculation . 45

3.2.3 Long-Range Corrections . 48

3.2.4 Reweighting . 53

3.3 Results and Discussion . 55

3.3.1 Ideal Lattice, Blackburn Density 55

3.3.2 Distorted Lattices, Blackburn Density 63

3.3.3 Ideal Lattice, Higher Densities 63

3.3.4 Equation of State . 68

3.4 Summary and Conclusions . 70

3.5 References . 76

3.6 Appendix . 78

3.6.1 Additional Calculation of the DW Factors Using a Three-Body

Potential . 80

4 E↵ect of Three-Body Interactions on the Zero-Temperature Equa-

tion of State of hcp Solid 4He 82

Abstract . 84

4.1 Introduction . 84

4.2 Computational Methods . 86

4.2.1 VMC . 87

4.2.2 VPI . 88

4.2.3 Three-Body Interactions . 92

4.2.4 Equation of State Calculations 96

x

4.3 Results and Discussion . 96

4.3.1 Energy-Volume Equations of State 96

4.3.2 Evaluation of the Perturbative Treatment 101

4.3.3 Pressure-Volume Equations of State 107

4.4 Conclusion . 116

4.5 References . 122

4.6 Appendix . 124

5 Three-Body Interactions and the Elastic Constants of hcp Solid 4He127

Abstract . 128

5.1 Introduction . 128

5.2 Computational Methods . 131

5.2.1 Definition of the Elastic Constants for hcp 4He 131

5.2.2 Energy Calculations in the Distorted Lattices 133

5.3 Results and Discussion . 141

5.3.1 The Bulk Modulus . 141

5.3.2 Calculation of Pure Shear Constants 143

5.3.3 Dependence of Three-Body Energy on the

Heterogeneous Strain Variables 154

5.3.4 Remaining Nonzero Elastic Constants 158

5.4 Summary and Conclusion . 159

5.5 References . 164

6 Conclusion 166

6.1 References . 170

Appendix 171

A VMC Programs 172

A.1 VMC 2-Body Program (VMC-2B) . 172

xi

A.1.1 VMC Long-Range Correction Program 212

A.2 VMC Perturbative 3-body Correction Program (VMC(3B)) 225

A.3 VMC Fully-Incorporated 3-body Program

(VMC+3B) . 230

B VPI Programs 269

B.1 VPI 2-Body Program (VPI-2B) . 269

B.2 VPI Perturbative 3-body Correction Program (VPI-3B) 302

B.3 VPI Fully-Incorporated 3-body Program

(VPI+3B) . 314

Vita 356

xii

List of Tables

3.1 Rnn and S⇤
6

values determined for lattices with various c/a ratios. . . 54

3.2 Summary of optimized wavefunctions for various densities and c/a ratios. 62

3.3 Fitting parameters for the P(Vm) equation of state shown in Eq. 3.19. 71

3.4 Comparison of previously reported hu2i values to those found in this

study. 74

3.5 Mean squared displacements calculated from VMC+3B simulations. . 81

4.1 Summary of the six di↵erent simulation methods implemented in this

study and their associated labels. 98

4.2 Fitting parameter values for the low density EV-EOS. 102

4.3 Fitting parameter values for the high density EV-EOS. 103

4.4 Comparison of E
tot

, V
2

, and V
3

energies from VMC(3B) and VMC+3B. 104

4.5 Comparison of E
tot

, V
2

, and V
3

energies from VPI(3B) and VPI+3B. 105

4.6 RMS error and maximum absolute error (r
max

) for each pressure-

volume EOS. 110

4.7 Bulk compressibility K (bar) calculated from either the VPI-2B or

VPI(3B) EOS at selected molar volumes. 121

4.8 Optimized wavefunction parameters from VMC-2B and VMC+3B

simulations. 124

4.9 Summary of energies calculated from VMC and VPI simulations. . . 125

4.10 Summary of three-body energies calculated from VMC(3B), VMC+3B,

VPI(3B), and VPI+3B simulations. 126

xiii

5.1 Second derivative of V (✏) with respect to ✏ in the absence of zero point

motion. 140

5.2 Bulk moduli K (bar) calculated from either the VPI-2B or VPI(3B)

EOS at selected molar volumes. 142

5.3 Ranges of ⌘, �, and ✏ values used to calculate the pure shear constants. 145

5.4 Pure shear constants C
0

, C
66

, and C
44

(bar) calculated from VPI-2B

and VPI(3B) energies. 150

5.5 Change in trimer geometry and energy (V
3

) with change in one of the

heterogeneous strain variables. 157

5.6 Nonzero elastic constants C
11

, C
12

, C
13

, and C
33

(bar) calculated from

VPI-2B and VPI(3B) pure shear constants and bulk moduli. 160

xiv

List of Figures

2.1 Truncated lattice sum S
6

vs. number of interacting pairs considered in

an ideal hcp lattice. 26

2.2 Truncated lattice sum S
6

vs. the number of interacting pairs cosidered

in distorted hcp lattices. 27

3.1 Correlation in the potential energy of atom 1 during VMC simulations. 46

3.2 (a) Histogram of atom 1 x-displacements over 6.4x105 MCCs. (b)

Quantile-quantile plot of atom 1 x-displacements. 49

3.3 (a) Comparison of the Gauss-Hermite calculation of hVlrci including

ZPM (red dots) to �C
6

/R6 calculated without ZPM (black line). The

di↵erence between these two calculations is shown in (b). 52

3.4 Contour plot of reweighted energies at a density of 0.0041896a�3

o from

the centering point axy = az = 0.13a�2

o 57

3.5 Reweighting results for various centering points at the Blackburn density. 58

3.6 Contour plot of energy vs. b and a = axy = az at the Blackburn density. 61

3.7 Mean squared displacements for lattices with various c/a ratios after

the first a-parameter optimization. 64

3.8 Contour plot of energy vs. b and a = axy = az parameters at density

= 0.0113198a�3

o . 65

3.9 Variational parameter dependence on density. 67

3.10 Energy vs. molar volume (Vm) for an ideal lattice. 69

xv

3.11 Pressure-Volume equation of state derived from VMC energies (blue)

in the (a) low density and (b) high density regions. 72

3.12 Optimization scheme for low density (high density) region. 78

3.13 Optimization scheme for middle density region. 79

4.1 Average two-body potential energy, V
2

, vs. replica number from VPI

simulations with Vm = 2.50 cm3/mol. 91

4.2 Di↵erence in the three-body potential energy from the average calcu-

lated using various central atoms. 94

4.3 Energy vs. molar volume from VPI(3B) simulations. 99

4.4 Comparison of average first nearest neighbor distances from VPI(3B)

(red) and VPI+3B (green) simulations where Vm = 4.00 cm3/mol. . . 108

4.5 Comparison of all pressure-volume equations of state obtained for each

simulation set. 109

4.6 Cencek nonadditive three-body potential energy for equilateral trimer

configurations. 112

4.7 � Pressure vs. Vm where � Pressure ⌘ P
Driessen

� P
VPI-2B

(blue) or

P
Driessen

� P
VPI(3B)

(red). 113

4.8 Di↵erence in predicted pressure from VMC(3B) and VMC+3B equa-

tions of state. 117

5.1 Potential energy vs. ✏ with various interacting pair cuto↵ distances. . 139

5.2 Comparison of bulk modulus functions calculated from the VPI-2B and

VPI(3B) EOSs to experimental and theoretical values. 144

5.3 Energy vs. ⌘ (a), � (b), and ✏ (c) at a molar volume of 13.73 cm3/mol. 147

5.4 (a) C
0

, (b) C
66

, and (c) C
44

vs. Vm. 151

5.5 �V
3

vs. change in the ⌘, �, and ✏ parameters at a molar volume of

13.73 cm3/mol. 155

5.6 Comparison of the low density values of C
11

, C
12

, C
13

, and C
33

elastic

constants calculated from VPI-2B and VPI(3B) simulations. 161

xvi

5.7 Comparison of the high density values of C
11

, C
12

, C
13

, and C
33

elastic

constants calculated from VPI-2B and VPI(3B) simulations. 162

xvii

Chapter 1

Introduction and Overview

1

1.1 The hcp 4He System

Solid 4He has been a topic of experimental and theoretical interest due to its

highly quantum nature and the simplicity of the 4He atoms which make accurate

quantum calculations feasible. In addition, recent controvery over the possibility of a

supersolid state has increased interest in studying solid 4He both experimentally and

theoretically[1]. Rare gas solids including solid 4He have also been utilized as inert

matrices for stabilizing reactive species for spectroscopic analysis[2, 3]. The data from

these experiments can only be accurately interpreted if the influence of the matrix on

the dopant is well understood, which requires well characterized properties of the pure

solid. Beyond this application, interest in solid 4He stems from the fact that large zero

point motions, which arise due to the lightness of the 4He atoms, result in expanded

yet highly compressible lattices and have earned this material the classification of a

“quantum solid”[4]. This unique class of materials includes solid H
2

, D
2

, and LiH,

among others, which are characterized by reduced vibrational amplitudes (defined to

be the square root of the mean squared displacement divided by the nearest neighbor

distance) which exceed the Lindemann melting criterion[5]. This lends interesting

properties to quantum solids such as high di↵usion and exchange rates not commonly

observed in classical solids at low temperatures. In fact, it is these large zero point

motions which are responsible for keeping 4He in the liquid phase at absolute zero

and atmospheric pressure. It is only at pressures above approximately 25.2 bar that

4He exists as a solid in the hexagonal close packed (hcp) phase[8].

As the simplest member of the quantum solids, solid 4He is a sensible starting

point for the development of e�cient quantum mechanical models for the larger class

of quantum solids. Reliable models of solid 4He require accurate treatment of the zero

point motions which dominate the low-temperature properties and are responsible for

the nonzero kinetic contribution to the ground state energy. In addition, correlation

of the atomic motions must be taken into consideration. This has generally been

accomplished using quantum Monte Carlo (QMC) simulation methods which utilize

2

a trial wavefunction with a two-body correlation term to calculate the system’s

properties. Commonly used trial wavefunctions for solid 4He in QMC simulations

generally follow the Jastrow-Nosanow form[6] shown in Eq. 1.1,

 =
Y

i

g(i)
Y

i<j

f(i, j), (1.1)

where g(i) is a (typically Gaussian) function that depends only on the displacement of

atom i. The two-body function f(i, j) is a function of the instantaneous interatomic

distance between atoms i and j (Rij) and accounts for correlation in the atomic zero

point motions. As atoms get farther apart, their motions are less correlated and

therefore this function goes to 1 at long interatomic distances. A well-established

form of this function is the McMillan form[7] shown in Eq. 1.2,

f(i, j) = e�
1
2 (b/Rij

)

5
(1.2)

where b is a variational parameter which can be tuned along with the Gaussian

parameters in g(i) to optimize the trial wavefunction. Using approximate ground

state methods such as variational quantum Monte Carlo (VMC)[8] or exact methods

such as Green’s Function Monte Carlo (GFMC)[9], di↵usion Monte Carlo (DMC)[10],

or variational path integral Monte Carlo (VPI)[8], this wavefunction can be used

to calculate approximate or exact ground state properties, respectively. In these

simulations, the ground state potential energy is often calculated using a pairwise-

additive model[11, 12, 13] described by Eq. 1.3,

V =
X

i

X

j<i

V
2

(Rij), (1.3)

where V
2

is a two-body potential energy function which depends only on the

interatomic distance between atoms i and j. The delocalization of the 4He atoms,

however, also results in atoms coming into closer contact than their average lattice

3

spacing suggests, which increases the probability that three 4He atoms will be in close

contact simultaneously. It is therefore possible that even at low densities, three-body

interactions may play a significant role in this and other quantum solids. In the next

section, we present a brief survey of the current theoretical models of three-body

interactions in solid 4He and review a recently reported three-body potential.

1.2 Three-Body Interactions

It is first useful to define what is meant by “three-body interactions”. This term

refers to the additional contribution to the potential energy associated with three

particles interacting simultaneously that cannot be accounted for in the sum of

pairwise contributions to the potential energy. Mathematically, this is described by

Eq. 1.4.

V
3

= V
tot

�
3X

i

3X

j<i

V
2

(Rij) (1.4)

where V
2

is the the pair potential and V
3

is the nonadditive three-body contribution.

In any condensed phase system, three-body and higher many-body interactions

have the potential to make a significant contribution to the potential energy[14].

However, many-body contributions to the potential energy are often computationally

challenging and expensive to incorporate into simulations of large, dense systems.

Therefore, in systems such as solid 4He where three-body interactions are relatively

weak compared to the pairwise-additive potential contribution[15], these interactions

are often omitted for the sake of computational e�ciency. However, a number

of theoretical investigations have been performed that suggest that three-body

interactions are neccessary in order to calculate properties of solid 4He that are

in agreement with experimental data. Here we provide a brief survey of those

investigations.

4

1.2.1 Survey of Earlier Studies of Three-Body Interactions

in Condensed Phase 4He

Initial calculations of the three-body contribution to the properties of solid 4He

utilized the Axilrod-Teller (AT) three-body dispersion potential[16], ignoring three-

body exchange contributions. VMC and GFMC studies of liquid as well as face

centered cubic (fcc) and hcp solid 4He by Whitlock and coworkers[17, 18] in 1979 and

1980 utilized a Lennard-Jones 12-6 4He-4He interatomic potential[19] with pertur-

bative three-body corrections using the AT three-body potential. They concluded

in these investigations that the three-body interactions resulted in no significant

change in the calculated melting and freezing densities, although better agreement

in the energies from VMC simulations with those from GFMC could be obtained by

including an explicit three-body correlation term in the wavefunction. Soon after,

a nonadditive three-body potential was developed by Bruch and McGee[20] which

included a three-body exchange term along with the AT contribution (referred to

hereafter as the BM potential). Analysis of this three-body potential by Loubeyre in

1987 using Self Consistent Phonon as well as Monte Carlo calculations showed that the

incorporation of the exchange term brought the calculated pressure-volume equations

of state in both the liquid and solid phases at 300 K into much better agreement with

experimental data[21]. This was later contradicted by Boronat and Casulleras who

utilized quadratic DMC simulations to evaluate two di↵erent pair potentials as well as

the AT and BM three-body potentials in liquid 4He. Utilizing the same perturbative

method as in Ref. [17], they found that the energies calculated with the AT and

BM potentials often made the agreement with experimental data worse. However,

when the exchange contribution to the BM three-body potential was reduced by a

factor of three the calculated energies agreed very well with experiment[22]. A similar

conclusion was reached by Boninsegni, et al.[23], who found that a prefactor of 2

3

in

the exchange term of the BM potential was necessary to accurately reproduce the

isotopic shift in the melting pressure.

5

These early investigations shed light on the need for more careful parameterization

of the exchange contribution to the nonadditive three-body energy. In 1996, Cohen

and Murrell[24] published a new nonadditive three-body potential (CM) which was

parameterized using high level ab initio energy calculations of 53 4He
3

configurations,

all with C
2V

symmetry. The resulting potential was the sum of a exchange term

and a product of a damping function and the AT potential. A comparison of both

the CM and BM potentials using path integral Monte Carlo (PIMC) simulations at

300 K by Chang and Boninsegni, however, once again concluded that in the low

density region, accurate agreement with the experimental pressure-volume equation

of state could only be obtained by using a prefactor of 2

3

before the exchange term

in both potentials[25]. At higher densities, this correction no longer resulted in

perfect agreement with experiment. Instead, the adjusted CM potential was found to

underestimate the experimental pressure, while the BM potential overestimated the

pressure. Additional DMC investigations by Ujevic and Vitiello called into question

the validity of the CM potential in solid phase 4He when no combination of two-body

potentials with this three-body potential could accurately reproduce experimental

binding energies[26]. This lead to a follow-up study in which the CM potential was

adjusted by introducing two phenomenological parameters to scale up and dampen

the exchange and dispersion terms, respectively[27]. While this method resulted in

significantly improved calculations of energetic and elastic data, it also shed light on

the problems in the CM potential.

More recently, due to the uncertainty in the available three-body potentials, DMC

simulations have been carried out by Cazorla and Boronat in which contributions from

all many-body interactions were accounted for perturbatively using density functional

theory (DFT) calculations in the generalized and local gradient approximations[28].

This computationally e�cient correction resulted in much better agreement in the

high density pressure-volume equation of state in hcp solid 4He with experimental

pressure-volume data compared to simulations without the many-body correction.

However, individual contributions from three-body interactions apart from four-

6

and higher many-body interactions could not be determined, and therefore it was

unclear at what densities three-body interactions are important and when they

become insu�cient for an accurate description of the system. Later calculations by

the same group utilized e↵ective three-body potentials parameterized in the Slater-

Kirkwood form (related to the form of the BM potential) from DFT calculations[29].

Forms of the potential parameterized from trimer energies, atomic forces, or a

combination of the two quantities were added to the two-body potential throughout

the DMC simulations and were used to calculate the high pressure equation of state,

bulk compressibility, classical shear modulus (in the absence of zero point motion),

and kinetic contribution to the total energy. These e↵ective three-body potentials

typically resulted in calculated quantities which were in better agreement with

experiment than the two-body values, however the relative accuracy of each potential

varied depending on the quantity being calculated. Therefore, the conclusion of all

of these investigations was that three-body interactions do have a real impact on

the calculated properites of condensed phase 4He, though the reliability of existing

three-body potentials is still up for debate.

1.2.2 The Cencek Three-Body Potential

In the midst of these reparameterizations of the CM potential and development of

DFT-based e↵ective three-body potentials, a new nonadditive three-body potential

was published by Cencek, et al., seemingly without being noticed by the condensed

phase 4He community[15]. This new potential was developed with the intention of

accounting for correlation e↵ects in the nonadditive three-body energy beyond the

CCSD(T) level of theory by expanding to the full-configuration-interaction (FCI) level

of theory. The total trimer energy was evaluated for 253 di↵erent trimer configurations

with both C
2V

and C
s

symmetries according to Eq. 1.5,

EFCI
int [3] = EHF

int [3] + �E
CCSD(T)
int [3] + �EFCI

int [3], (1.5)

7

where EFCI
int [3] is the total nonadditive three-body potential energy at the FCI level

of theory, EHF
int [3] is the Hartree-Fock nonadditive three-body energy, �ECCSD(T)

int [3] is

the correlation contribution to the CCSD(T) three-body energy not accounted for

in the Hartree-Fock energy, and �EFCI
int [3] is the correlation contribution to the FCI

three-body energy not accounted for at the CCSD(T) level of theory[15]. Using this

relationship, Cencek and coworkers were able to calculate the various terms of Eq.

1.5 independently, allowing for the use of smaller basis sets as the level of theory

increased in order to maintain computational feasibility of the calculations.

The resulting potential was able to calculate the nonadditive three-body potential

energy in an equilateral trimer with side lengths R = 5.6 ao (approximately the

minimum of the two-body potential well) to within 1.7 mK, a significant improvement

over the 10 mK error calculated from an earlier three-body potential parameterized

by the same group at the CCSD(T) level of theory[30]. Moreover, the new Cencek

potential was found to have an overall uncertainty equal to one-fifth of that of their

earlier potential.

To our knowledge, the Cencek nonadditive three-body potential represents the

highest level of theory yet implemented in the derivation of the 4He three-body energy.

However, it has so far only been used in a handfull of gas-phase simulations where

three-body interactions do not make a significant contribution[31, 32, 33, 34, 35]. It

therefore remains for this potential to be implemented in condensed phase simulations

in order to verify its reliability.

1.3 Overview

The following chapters detail the development and evaluation of a theoretical

model of hcp solid 4He which incorporates three-body interactions as a perturbative

correction to the two-body energy of the system. Two-body energies are calculated

from VMC and VPI simulations and the atomic positions recorded throughout are

used to calculate a three-body correction using the recently developed three-body

8

potential of Cencek, et al.[15] discussed above. This study constitutes the first

implementation of the Cencek three-body potential in simulations of condensed phase

4He. The perturbative treatment utilized here is evaluated against a full-incorporation

treatment where the Cencek nonadditive three-body potential is added to the two-

body potential energy function throughout the VMC and VPI simulations. This is

done to confirm that the perturbative treatment does not result in any significant loss

of accuracy.

The reliability of these models is assessed against existing experimental and

theoretical data. To date, hcp solid 4He has been investigated using a number of ex-

perimental techniques such as neutron di↵raction[36], neutron inelastic scattering[37],

x-ray di↵raction[38], torsional oscillator experiments[39], and isochoric pressure

measurements[40], among others methods. From these experiments the Debye-Waller

(DW) factors, equations of state, and (to some extent) the elastic constants have been

calculated. The theoretical models of hcp solid 4He established here are therefore used

to calculate these properties to verify that they produce results in good agreement

with experiment. The same properties are calculated from two-body simulations in

order to quantify the e↵ect of three-body interactions on the system. We note that

the initial motivation for the calculation of the DW factors stems from a discrepancy

in the experimental data. In 2007, a low temperature neutron scattering study of hcp

solid 4He reported DW factors parallel and perpendicular to the basal plane of the

crystal which di↵ered by nearly 20%[36]. This is in contrast to a number of neutron

scattering and x-ray di↵raction studies performed at higher temperatures which found

no evidence of anisotropy[37, 38, 41, 42, 43]. This anisotropy has not been explained

by existing two-body models, and therefore we utilize both our two-body and three-

body simulations in order to investigate this di↵erence.

In the next chapter, the computational methods employed in the development of

the three-body theoretical models of hcp solid 4He are discussed. In addition, we

describe the calculation of the DW factors, equations of state, and elastic constants.

Chapter 3 presents the evaluation of the two-body model to which the three-body

9

perturbative correction will be added. Specifically, this chapter investigates trends in

the VMC trial wavefunction parameters, the two-body DW factors, and a preliminary

equation of state. Within the appendix of Chapter 3 we also report DW factors

calculated from full-incorporation VMC simulations. Chapter 4 provides an in-depth

comparison of the pressure-volume equations of state derived from both VMC and

VPI simulations with and without three-body interactions to existing experimental

and theoretical data. Finally, in Chapter 5 we evaluate the elastic constants calculated

from VPI simulations with and without a perturbative three-body correction in order

to determine the significance of three-body interactions in the elastic properties of

hcp solid 4He. Chapter 6 provides a brief summary of the conclusions drawn from

these studies as well as suggestions for future investigations.

10

1.4 References

[1] M. H. W. Chan, R. B. Hallock, and L. Reatto, Journal of Low Temperature Physics

172, 317 (2013). 2

[2] E. B. Gordon, G. Frossati, A. Usenko, Y. Aratono, and T. Kumada, Physica B:

Condensed Matter 329-333, 404 (2003). 2

[3] M. E. Jacox, International Journal of Mass Spectrometry 267, 268 (2007). 2

[4] E. Polturak and N. Gov, Contemporary Physics 44, 145 (2003). 2

[5] F. Lindemann, Physikalische Zeitschrift 11, 609 (1910). 2

[6] L. H. Nosanow, Phys. Rev. Lett. 13, 270 (1964). 3

[7] W. L. McMillan, Phys. Rev. 138, A442 (1965). 3

[8] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995). 2, 3

[9] M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A 9, 2178 (1974). 3

[10] P. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Journal of Chemical

Physics 77, 5593 (1982). 3

[11] E. W. Draeger and D. M. Ceperley, Phys. Rev. B 61, 12094 (2000). 3

[12] C. Cazorla, Y. Lutsyshyn, and J. Boronat, Phys. Rev. B 85, 024101 (2012). 3

[13] R. Pessoa, M. De Koning, and S. A. Vitiello, Journal of Low Temperature Physics 173,

143 (2013). 3

[14] K. Szalewicz, R. Bukowski, and B. Jeziorski, Chapter 33 - On the importance of many-

body forces in clusters and condensed phase, in Theory and Applications of Computational

Chemistry, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria, pp.

919 – 962, Elsevier, Amsterdam, 2005. 4

[15] W. Cencek, K. Patkowski, and K. Szalewicz, The Journal of Chemical Physics 131,

064105 (2009). 4, 7, 8, 9

[16] B. M. Axilrod and E. Teller, The Journal of Chemical Physics 11, 299 (1943). 5

11

[17] P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 19,

5598 (1979). 5

[18] P. A. Whitlock, M. H. Kalos, G. V. Chester, and D. M. Ceperley, Phys. Rev. B 21,

999 (1980). 5

[19] J. De Boer and A. Michels, Physica V (1938). 5

[20] L. W. Bruch and I. J. McGee, The Journal of Chemical Physics 59, 409 (1973). 5

[21] P. Loubeyre, Physical Review Letters 58, 1857 (1987). 5

[22] J. Boronat and J. Casulleras, Physical Review B 49, 8920 (1994). 5

[23] M. Boninsegni, C. Pierleoni, and D. M. Ceperley, Physical Review Letters 72, 1854

(1994). 5

[24] M. J. Cohen and J. N. Murrell, Chemical Physics Letters 260, 371 (1996). 6

[25] S.-Y. Chang and M. Boninsegni, The Journal of Chemical Physics 115, 2629 (2001). 6

[26] S. Ujevic and S. A. Vitiello, Physical Review B - Condensed Matter and Materials Physics

71, 1 (2005). 6

[27] S. Ujevic and S. A. Vitiello, Journal of Physics: Condensed Matter 19, 116212 (2007). 6

[28] C. Cazorla and J. Boronat, Journal of Physics: Condensed Matter 20, 015223 (2008). 6

[29] C. Cazorla and J. Boronat, Phys. Rev. B 92, 224113 (2015). 7

[30] W. Cencek, M. Jeziorska, O. Akin-Ojo, and K. Szalewicz, The Journal of Physical

Chemistry A 111, 11311 (2007), PMID: 17595067. 8

[31] G. Garberoglio and A. H. Harvey, Journal of Research of the National Institute of

Standards and Technology 114, 249 (2009). 8

[32] G. Garberoglio, M. R. Moldover, and A. H. Harvey, Journal of research of the National

Institute of Standards and Technology 116, 729 (2011). 8

[33] G. Garberoglio and A. H. Harvey, The Journal of chemical physics 134, 134106 (2011).

8

12

[34] K. R. S. Shaul, A. J. Schultz, and D. A. Kofke, The Journal of Chemical Physics 137,

184101 (2012). 8

[35] K. R. Shaul, A. J. Schultz, D. A. Kofke, and M. R. Moldover, Chemical Physics

Letters 531, 11 (2012). 8

[36] E. Blackburn, J. M. Goodkind, S. K. Sinha, J. Hudis, C. Broholm, J. van Duijn,

C. D. Frost, O. Kirichek, and R. B. E. Down, Phys. Rev. B 76, 024523 (2007). 9

[37] J. Eckert, W. Thomlinson, and G. Shirane, Phys. Rev. B 18, 3074 (1978). 9

[38] D. A. Arms, R. S. Shah, and R. O. Simmons, Phys. Rev. B 67, 094303 (2003). 9

[39] E. Kim and M. H. W. Chan, Nature 427, 225 (2004). 9

[40] A. Driessen, E. van der Poll, and I. F. Silvera, Phys. Rev. B 33, 3269 (1986). 9

[41] C. T. Venkataraman and R. O. Simmons, Phys. Rev. B 68, 224303 (2003). 9

[42] C. A. Burns and E. D. Isaacs, Phys. Rev. B 55, 5767 (1997). 9

[43] C. Stassis, D. Khatamlan, and G. Kline, Solid State Communications 25, 531 (1978). 9

13

Chapter 2

Computational Methods

14

2.1 Introduction

This chapter provides an overview of the computational methods employed in this

work. First, the two methods used to calculate the energy and coordinate-space

observables of the hcp solid 4He system – variational quantum Monte Carlo (VMC)

and variational path integral Monte Carlo (VPI) – are discussed. This includes

the reweighting procedure implemented to facilitate wavefunction optimization in

the VMC simulations, as well as the calculation of the long-range correction to

the potential energy in both VMC and VPI. Additionally, two di↵erent methods

of incorporating three-body interactions into the VMC and VPI simulations are

described. This is followed by a description of the energy-volume and pressure-volume

equations of state. Finally, the implementation of shear distortions in the hcp lattice

and the subsequent calculation of the nonzero elastic constants is detailed.

In general, it can be assumed that the calculations performed on ideal hcp systems

(c/a = 1.633) utilize a nearly cubic hcp 4He simulation cell with a fixed number of

atoms in which periodic boundary conditions have been applied in all directions.

Distortions are applied to this lattice while maintaining constant volume and number

of atoms. All simulations are performed at T = 0 K. Details specific to each part of this

work can also be found in the Computational Methods sections of the corresponding

chapters.

2.2 VMC

We have previously reported the VMC method discussed in this section in Ref.

[1] (Chapter 3). VMC is a quantum Monte Carlo method in which configurations

of atomic positions are generated from a fixed trial wavefunction. The sequence

of configurations generated throughout the simulations is used to calculate average

values of the energy along with any other coordinate-space observables such as the

Debye-Waller (DW) factors (see Sec. 2.2.2). For su�ciently long simulations, these

15

averages converge to the expectation values for the given trial wavefunction, within

statistical uncertainty.

For these simulations, we employ a modified Jastrow-McMillan[2] style trial

wavefunction of the form shown in Eq. 2.1,

 = A
Y

i

e�a
xy

(s2
i,x

+s2
i,y

)e�a
z

s2
i,z

Y

(i,j)2IPs

e�
1
2 (b/Rij

)

5
, (2.1)

where A is a normalization factor, ~si = (si,x, si,y, si,z) is the displacement vector of

atom i from its average lattice site, Rij is the instantaneous distance between atoms i

and j , and axy, az, and b are variational parameters. The original Jastrow-McMillan

wavefunction utilized a single a parameter[2], however due to the possibility of

anisotropy in an hcp lattice, we have introduced two parameters which independently

govern zero point motion in the x, y-plane and along the z-azis, corresponding to

motion in and perpendicular to the basal plane of the crystal, respectively. The two ai

parameters a↵ect the delocalization of the 4He atoms, which are assumed to be loosely

bound to their average lattice sites. This “tethering” has been previously implemented

in the study of solid 4He[3] and prevents the need to consider Bose-Einstein exchange

statistics, instead allowing us to treat each atom as a Boltzmann particle[4]. The

b parameter, however, accounts for correlation in the atomic displacements by

preventing neighboring atoms from coming into close contact with one another. The

term IPs in the product governed by the b parameter denotes the set of atoms which

are considered to be interacting pairs. For these investigations, this includes all pairs

of atoms whose average lattice sites are separated by < 2.05Rnn, where Rnn is the

nearest neighbor distance. Unless otherwise specified, Rnn is determined from the

ideal lattice at a given density before distortions are applied. Beyond this cuto↵

distance, correlation in the atomic motions is negligible, and therefore only pairs of

atoms in the set of IPs contribute to the the two-body part of the wavefunction.

Throughout the VMC simulations, new atomic positions are selected from the

atomic wavefunction which can be written by collecting all terms involving a

16

particular atom i in Eq. 2.1 above. This equation then becomes

 i = Ae�a
xy

(s2
i,x

+s2
i,y

)e�a
z

s2
i,z

Y

j2IP
i

e�
1
2 (b/Rij

)

5
, (2.2)

which can be further grouped into a product of one-body and two-body terms:

 i = 1

2

. (2.3)

where
1

contains the ai terms and
2

contains the product of b terms. Metropolis-

style Monte Carlo moves[5] are used to generate new atomic configurations for each

atom in the system sequentially by randomly sampling the one-body probability

density |
1

|2 using the random number generator detailed in Ref. [6]. For each atom,

the new configuration is accepted or rejected according to the two-body probability

density, |
2

|2. If the two-body probability density of the new configuration is higher

than that of the old configuration, the move is accepted and the atomic position

is updated. Otherwise, the move is conditionally accepted with the probability

|
2

(Q0)|2/|
2

(Q)|2 where Q and Q0 correspond to the old and new configurations,

respectively. After the move is accepted or rejected, the process is repeated for the

next atom in the system. A single Monte Carlo cycle (MCC) in these simulations

corresponds to attempting to move each atom in the ensemble once.

The atomic configurations can be used to calculate the instantaneous kinetic and

potential energies of the system. However, because not every atomic move is accepted

in a given MCC (in practice, approximately 45% of the total moves are accepted[1]),

there is strong correlation in the ensemble configurations from one MCC to the next

which must be taken into account when evaluating the statistical uncertainty of the

average energies obtained from the instantaneous values. In order to eliminate this

correlation, snapshots of the atomic positions are only recorded every 50 MCCs. The

use of this interval is justified in Chapter 3, Sec. 3.2.1[1] where it is demonstrated

17

that there is negligible correlation between the potential energies calculated from

sequential snapshots.

The instantaneous kinetic and potential energies of the system are therefore

evaluated only when snapshots of the atomic positions are recorded. The kinetic

energy is calculated according to Eq. 2.4,

T = T
1

+ T
2

= N
~2(2axy + az)

2mHe

+
X

(i,j)2IP

5~2b5
2µi,jR7

ij

, (2.4)

where T
1

and T
2

are the one- and two-body contributions to the total kinetic energy

T , N is the total number of atoms in the ensemble, mHe is the mass of a single He

atom, and µi,j = mHe/2. Because T
1

does not depend on the atomic positions, its

value can be determined exactly. In our initial simulations, the potential energy is

assumed to be pairwise-additive, following the relationship

V =
X

(i,j)2IP

VA2

(Rij), (2.5)

where VA2

refers to the Aziz HFD-B(He) pair potential[7]. This formula assumes no

contribution to the potential energy from pairs of atoms outside of the set of IPs.

However, their contribution is accounted for via a long-range correction procedure

detailed below in Sec. 2.2.3. Three-body interactions are also eventually incorporated

into these calculations throughout the simulations, however this will be discussed in

Sec. 2.4.

The instantaneous total energy of the system is then calculated from the sum of

the kinetic and potential energies. When averaged over the total number of snapshots,

p, this average total energy (in the absence of the long-range correction) is given by

Eq. 2.6:

hEi = T
1

+
1

p

pX

n=1

(T
2

(Qn) + V (Qn)). (2.6)

18

The expectation values in Eq. 2.6 are functions of the three variational parameters

which are optimized to find the values which minimize the average total energy per

atom.

2.2.1 Reweighting

The VMC wavefunction optimization procedure involves varying the axy and az

parameters simultaneously while the b parameter is held fixed until a minimum energy

per atom is found, after which point the b parameter is varied while the axy and

az parameters remain fixed. This process is repeated until an additional round of

optimization shows no significant change in the variational parameters. However,

manual scanning of the variational parameters can be computationally expensive and

requires longer VMC simulations in order to see statistically significant di↵erences in

the energy for smaller changes in the variational parameters. Therefore, in order to

more precisely determine the optimized parameters without significantly increasing

the computational cost, we implement a reweighting method during the optimization

procedure. This method takes advantage of the fact that for small changes in

the variational parameters, the distributions of the atomic configurations do not

change significantly. Snapshots generated from one set of wavefunction parameters

can therefore be used to estimate the average energy associated with a new set of

parameters by reweighting the observables according to Eq. 2.7,

h 0|Ĥ| 0i =
Z

| 0(Q)|2E 0(Q)dQ =

Z
| (Q)|2w(Q)E 0(Q)dQ, (2.7)

where w(Q) =
���

0
(Q)

 (Q)

���
2

, is the original wavefunction, 0 is the wavefunction with

the new set of parameters, and E 0 is the local energy of the wavefunction with the

new parameters. Using this relationship, the average energy associated with the new

19

parameters is given by Eq. 2.8,

hEi ⇡

P
Q

E 0(Q)w(Q)

!

P
Q

w(Q)
, (2.8)

which is essentially a weighted average over all of the configurations sampled based

on the overlap between the old and the new wavefunctions.

The VMC optimization procedure begins with a manual scanning of the axy and az

parameters until an approximate minimum energy is determined, at which point the

reweighting method is used to estimate the energies of wavefunctions with parameters

axy = a0xy ± dxy and az = a0z ± dz where a0xy and a0z are the approximate optimal

parameters and dxy and dz are small changes applied to these parameters. Three

di↵erent values of dxy and dz are used to evaluate the reweighted energies. When a0xy

and a0z are close to the exact optimized parameters, the energy contours fitting the

reweighted energies are found to be described by ellipses according to Eq. 2.9.

E(axy, az) = C
1

(axy � aoxy)
2 + 2C

2

(axy � aoxy)(az � aoz)

+ C
3

(az � aoz)
2 + E(aoxy, a

o
z), (2.9)

where aoxy and aoz are the optimized parameters and E(aoxy, a
o
z) is the minimum energy.

Fitting the reweighted energies to this equation therefore provides an improved

estimate of the optimal parameters. VMC snapshots are then generated using these

updated parameters and the reweighting procedure is repeated once more. The

motivation behind multiple applications of the reweighting method is explained in

detail in Chapter 3, Sec. 3.2.4.

After two rounds of reweighting, the final set of optimized axy and az parameters

are fixed and the b parameter is manually adjusted in the VMC simulations until an

approximate minimum energy per atom is determined. The reweighting procedure is

then applied to the b parameter and the reweighted energies are fit to a quadratic

20

equation in order to determine the optimal b parameter. Again, two rounds of this

reweighting procedure are performed in order to determine the next set of optimized

parameters.

Optimization of the VMC trial wavefunctions always begins and ends with the

ai parameters, and therefore ai optimization is repeated after the b parameter is

optimized. After these three optimization steps, if a reweighting calculation of

the b parameter shows no significant change, the wavefunction is considered to be

optimized. Otherwise the b parameter is reoptimized, followed by the ai parameters.

Once the wavefunction has been fully optimized, another VMC simulation is

performed using the optimal parameters in order to calculate the approximate ground

state energy per atom.

2.2.2 The Debye-Waller Factors and Atomic Probability

Density

Using snapshots of atomic configurations from the optimized wavefunction, the DW

factors corresponding to motion in and perpendicular to the basal plane of the crystal

can be calculated. The many di↵erent forms of the DW factor can all be reduced

to the mean squared displacement, hu2

ji and therefore this quantity will be used in

place of the DW factor to allow for a more direct comparison to previously published

results. The formula for hu2

ji is given by Eq. 2.10,

hu2

ji =
1

N
· 1

M

NX

n=1

MX

m=1

(smn,j)
2, (2.10)

where smn,j is a Cartesian component (j = x, y, or z) of the displacement vector of

atom n in configuration m. hu2

ji is therefore equal to the square of the displacement

vector along direction j over N atoms and M configurations sampled in the VMC

simulations.

21

The VMC atomic snapshots can also be used to determine the form of the atomic

probability density function for our simulations. In Chapter 3, Fig. 3.2 we present a

histogram of the atomic displacements of atom 1 in the x-direction which appear to

follow a Gaussian distribution. Similar histograms are observed for displacements in

the y and z-directions as well. Analysis of the atomic displacements in Chapter 3,

Sec. 3.2.2 confirms that the distributions of the atomic displacements in the x, y, and

z directions are well represented by Gaussian functions, and that these distributions

are independent of one another[1].

Assuming a Gaussian form of the probability density given in Eq. 2.11,

Pj =

p
↵jp
⇡
e�2↵

j

(s
j

)

2
, (2.11)

the Gaussian parameter ↵j for a given Cartesian direction j can be calculated from

hu2

ji according to Eq. 2.12,

↵j =
1

4hu2

ji2
. (2.12)

Further justification for the use of a Gaussian probability density function can be

found in Chapter 3, Sec. 3.2.2.

In the ideal hcp lattice and those which are distorted only by compression or

expansion along the z-axis, symmetry in the x,y-plane results in ↵x = ↵y and therefore

this quantity will be called ↵xy. Using this notation and the independent nature of

the one-dimensional probability density functions, the three-dimensional probability

density function can be written as the product of Px, Py, and Pz, as shown in Eq.

2.13.

P =
↵xy

p
↵z

(
p
⇡)3

e�2↵
xy

(s2
x

+s2
y

)�2↵
z

(s2
z

) (2.13)

2.2.3 Long-Range Corrections

The average energy calculated from the optimized wavefunction includes only

contributions from atomic pairs that are considered to be interacting. Atomic pairs

22

separated by a distance larger than the cuto↵ distance of 2.05Rnn, however, make a

non-negligible contribution to the potential energy and therefore must be accounted

for. Because all atoms in the 4He system are identical, we can arbitrarily choose a

central atom from which to calculate the long-range correction (LRC) to the potential

energy without loss of accuracy. For our purposes, we consider all atoms outside of

the interacting pair cuto↵ distance from atom 1 for these calculations.

The LRC procedure considers two di↵erent regions of atoms: those atoms within

the N atom simulation cell which fall outside of the 2.05Rnn cuto↵ distance from

atom 1 (region 1), and the infinite number of atoms beyond the finite simulation cell

represented by the periodic boundary conditions (region 2).

For large interatomic distances R, the Aziz HFD-B(He) potential energy used in

the VMC simulations[7] becomes

Vlrc(R) = �C
6

R6

� C
8

R8

� C
10

R10

. (2.14)

Contributions to the potential energy from atoms in region 1 can be calculated by

evaluating the following integral for each of these atoms paired with atom 1:

hVlrci =
Z Z

P
1

Vlrc(R)Pid~s1d~si, (2.15)

where ~s
1

and ~si are the instantaneous displacement vectors of atoms 1 and i from their

average lattice positions, P
1

and Pi are the three-dimensional probability densities of

atoms 1 and i (Eq. 2.13), and R = |~R| is the interatomic distance corresponding to

the instantaneous interatomic vector

~R = ~Rlatt + ~si � ~s
1

, (2.16)

where the component in the j-direction is Rj = Rlatt,j + si,j � s
1,j. ~Rlatt is the vector

from the average lattice position of atom 1 to atom i and is constant. Rj is therefore

a function of only the displacement vector components s
1,j and si,j.

23

The atomic pairs considered in the LRC are not defined to be interacting, and

therefore correlation in the atomic motion is not considered. Taking advantage of

the separable form of the probability densities, the integral above can be written as a

product of six Gaussian terms and the potential energy function Vlrc(R). Rewriting

si,j as xi,j/
p

2↵j in Eq. 2.13 allows us to evaluate the integral in Eq. 2.15 using

Gaussian quadrature according to the relationship shown in Eq. 2.17,

Z 1

�1
exp (�x2)f(x)dx ⇡

N
GX

k=1

wkf(xk), (2.17)

where the weights, wk, and abscissas, xk, are determined by the number of nodes

used, NG. For our calculations, 8 nodes are su�cient to reach the converged value of

hVlrci for region 1.

While this treatment is computationally e�cient for the atoms in region 1, a

di↵erent approach must be used to treat the infinite number of atoms in region 2.

For this region, we make use of the fact that as the interatomic separation between

two atoms increases, the zero point motions of the atoms change the interatomic

distance negligibly, and therefore region 2 atoms can be treated by considering only

their average lattice positions (see Chapter 3, Sec. 3.2.3). In addition, at longer

interatomic distances, the 1/R6 term makes the primary contribution to the potential

energy, and therefore only this term is calculated for the atoms in region 2.

The sum of the 1/R6 contributions for an infinite number of atoms in an ideal hcp

lattice has previously been reported by Hirchfelder, Curtiss, and Bird[8] as a lattice

sum, S⇤
6

=
1P
i=2

R6
nn

R6
1i
, times 1/R6

nn. Therefore in an ideal lattice, the contribution of

region 2 atoms to the LRC is calculated by subtracting contributions of interacting

pairs of atom 1 and those atoms in region 1 from the sum S⇤
6

C
6

/R6

nn so that these

atoms are not accounted for twice.

In simulations which consider distorted lattices, however, the S⇤
6

sum has not

been previously calculated, and therefore we have developed a method to derive this

value for any distortion of the hcp lattice. Fig. 2.1 shows how a finite sum over

24

 14.15

 14.2

 14.25

 14.3

 14.35

 14.4

 14.45

 14.5

 500 1000 1500 2000 2500 3000 3500 4000

S
6

Number of Interacting Pairs

Finite lattice sum, ideal crystal

Infinite lattice sum, S6
*

Figure 2.1: Truncated lattice sum S
6

vs. the number of interacting pairs considered
in an ideal hcp lattice (red line). The infinite sum from Hirschfelder, Curtiss, and
Bird[8] is provided for comparison (blue line).

26

1/R6 contributions, S
6

, approaches that of the inifinite lattice sum S⇤
6

in an ideal

lattice. For each point at which S
6

was evaluated, a correction factor of S⇤
6

/S
6

can be

calculated to quantify the di↵erence between the truncated and infinite sums. Similar

truncated sums in lattices with varying c/a ratios are shown in Fig. 2.2 where care

has been taken to ensure that the same atoms are included in the distorted lattice

calculations as were used for ideal lattice. We found that correcting these truncated

sums at each point using the same correction factor from the ideal hcp lattice results

in corrected sums which agree to within 5.0x10�4. This corrected sum is taken to

be S⇤
6

for these distorted lattices. We have reported these values for a number of

distorted lattices with varying c/a ratios[1]. However this method is not limited to

distortions of the c/a ratio and is in fact used to calculate the LRC in all simulations

with distorted lattices. Using this procedure, the total LRC is given by the sum of

the region 1 Gaussian quadrature calculation and the �C
6

/R6 contribution of the

region 2 atoms.

2.3 VPI

The VMC method described above allows for the calculation of the average energy

of a selected trial wavefunction which can be optimized in order to approximate

the ground state wavefunction. However, this method is limited by the variational

principle, and as such the minimum energies from the VMC simulations will always

be higher than the true ground state energies. In order to eliminate error due to

the variational principle, we utilize VPI[9], also known as the path integral ground

state method (PIGS)[10], which is an exact method from which exact ground state

energies and other coordinate-space observables can be obtained, within statistical

uncertainty. We have previously reported the VPI method described below in Ref.

[11] (Chapter 4, Sec. 4.2.2).

In the VPI method, the hcp 4He system is modeled as a p-bead polymer chain

where each bead is a replica of the full N atom system. Progression down the chain

25

 11.8

 11.85

 11.9

 11.95

 12

 12.05

 12.1

 500 1000 1500 2000 2500 3000 3500 4000

S
6

Number of Interacting Pairs

c/a = 90%

c/a = 110%

Figure 2.2: Truncated lattice sum S
6

vs. the number of interacting pairs considered
in distorted hcp lattices with c/a ratios of 90% (red) and 110% (blue) of the ideal c/a
ratio.

27

in either direction corresponds to the evolution of the trial wavefunction in imaginary

time according to the imaginary time propagator exp[�Ĥ�⌧/~][4]. The links between

adjacent beads therefore represent the evolution of the wavefunction through�⌧ units

of imaginary time.

This method takes advantage of the fact that a trial wavefunction tr can be

written as a linear combination of the eigenfunctions (i) of the exact Hamiltonian

as shown in Eq. 2.18, where the eigenfunctions are ordered according to their

corresponding eigenvalues from lowest energy to highest.

 tr =
1X

i=0

ci i (2.18)

Application of the imaginary time propagator to this trial wavefunction will project

out the lowest energy eigenfunction of the Hamiltonian,
0

, which corresponds to the

ground state wavefunction of the system, provided that c
0

is not too small. We will

refer to this wavefunction as gs. As the coe�cient c
0

increases, indicating a greater

overlap between the trial and ground state wavefunctions, fewer applications of the

imaginary time propagator are required for tr to converge to gs. We therefore use

the optimized wavefunctions from VMC as our starting trial wavefunctions as these

closely approximate the ground state wavefunction.

Our VPI simulations are performed using the QSATS code[4] which we have

altered to accept independent axy and az parameters for the trial wavefunction as

well as lattice distortion parameters, where necessary. This implementation samples

configurations of the beads in the polymer chain using Metropolis Monte Carlo

moves[5] according to the probability density in Eq. 2.19,

P (C) = A tr(Q
1

) tr(Qp)exp
⇣
� �⌧

~

p�1X

j=1

F (Qj,Qj+1

)
⌘
, (2.19)

where C = Q
1

, Q
2

, ..., Qp is the configuration of the entire polymer chain and Qj

represents the configuration in the jth replica[4]. The function F (Qj,Qj+1

) is given

28

by Eq. 2.20[4],

F (Qj,Qj+1

) =
V (Qj) + V (Qj+1

)

2
+

1

2(�⌧)2

NX

n=1

mHe(rn;j+1

� rn;j)
2 (2.20)

where V (Qj) is the full potential energy of the of the jth replica, and rn;j is the

instantaneous position of atom n in replica j. The exponential term in Eq. 2.19 is

related to the Trotter factorization[12] of the imaginary time propagator shown in

Eq. 2.21.

exp(��⌧Ĥ/~) ⇡ exp(��⌧ V̂ /2~)⇥ exp(��⌧ T̂ /~)⇥ exp(��⌧ V̂ /2~) (2.21)

The probability density in Eq. 2.19 therefore represents the evolution of two trial

wavefunctions at either end of the polymer chain (i.e., the j = 1 and j = p beads) in

either direction along the chain. For su�ciently large p and short �⌧ , the distribution

of the interior beads approaches | gs|2 while the terminal beads sample the probability

density | tr gs|. Atomic snapshots generated from the interior beads can therefore

be used to calculate the average ground state properties of the system.

Similar to the VMC simulations, a single MCC in these simulations corresponds

to an attempt to move each atom in each replica once, sequentially. The QSATS

algorithm automatically calculates all contributions to the probability density in Eq.

2.19 except for the potential energy contribution to the F function. This quantity,

referred to as V , is evaluated in the old and new configuration for each attempted

move. If �V is negative, the move is accepted and the atomic position is updated.

Otherwise, the move is conditionally accepted with the probability e��V�⌧/~.

These simulations utilize the same cuto↵ criterion when determining interacting

pairs as the VMC method above, and as before only atoms defined to be interacting

pairs contribute to the potential energy calculated throughout the simulations. In

order to calculate the true ground state energy, then, the same LRC procedure

reported above is used to calculate a correction to the potential energy for every

29

bead in the ensemble. This requires calculating the ↵xy and ↵z Gaussian parameters

separately for each bead.

2.4 Three-Body Interactions

Investigations into the role of three-body interactions in hcp solid 4He presented

here make use of the nonadditive three-body potential reported by Cencek, et

al. in 2009[13]. As mentioned in Chapter 1, 253 individual 4He
3

configurations

with side lengths as small as R = 1.75ao were used to parameterize the Cencek

potential which approaches full-configuration-interaction accuracy. This nonadditive

three-body contribution to the potential energy is incorporated into our VMC

and VPI simulations using two di↵erent methods: a computationally e�cient

perturbative approach where snapshots of atomic configurations from the two-

body QMC simulations are used to calculate a three-body correction, and a full-

incorporation method where the nonadditive three-body potential is added to the

Aziz two-body potential throughout the simulations. In both cases, only contributions

from interacting trimers (ITs) are considered, where an interacting trimer is defined

to consist of a central atom and two of its twelve nearest neighbors. The details of

both methods, discussed below, have been previously reported in Ref. [11] (Chapter

4, Sec 4.2.3).

2.4.1 Perturbative Treatment

The perturbative treatment of three-body interactions in the hcp 4He system relies on

the assumption that three-body interactions do not significantly impact the ground

state wavefunction of the system, and therefore snapshots generated from a two-body

wavefunction can be used to calculate the three-body energy. This is essentially a

first order perturbation of the two-body energy (Eq. 2.22).

E = E
2

+ hV
3

i (2.22)

30

In our VMC simulations, the calculation of hV
3

i can be further simplified by

considering the trimer geometries formed by a central atom and its twelve nearest

neighbors in their equilibrium lattice positions. The resulting 66 trimers can be

classified based on their central angles as follows: 60°(24), 90°(12), 109.47°(3),

120°(18), 146.44°(6), and 180°(3)[14], where the number in parentheses denotes the

number of occurrences of that trimer geometry. The average three-body energy per

atom can therefore be calculated by adding contributions from one representative of

each trimer geometry, weighted by the number of times they occur in the 66 ITs. The

three-body contribution from equilateral trimers is divided by three because these

trimers would appear in the set of ITs for each of the three atoms involved. Because

every 4He atom in the hcp lattice is identical, this calculation is only performed for

one central atom (atom 1). We show in Chapter 4, Sec. 4.2.3.1 that both the choice

of this central atom and the use of the representative trimers result in no loss of

accuracy compared to treating each IT in the system individually[11]. Although the

uncertainty in the three-body energy is increased when this method is employed, the

added uncertainty is still significantly lower than the error due to the variational

principle (calculated as the di↵erence between the VMC and VPI total energies).

VPI, however, is an exact method which does not su↵er from variational error, and

therefore all of the ITs for each central atom are accounted for in the calculation of hV
3

i

in order to reduce the uncertainty, again being careful to avoid triple counting. Using

this perturbative treatment, the computational cost (quantified in CPU hours) of the

VMC and VPI simulations increases by approximately 0.2% and 5.0%, respectively.

2.4.2 Full Incorporation Method

In order to evaluate the assumption that three-body interactions do not have a strong

e↵ect on the ground state wavefunction, we fully incorporate the Cencek three-body

31

potential into the VMC and VPI simulations. This requires substituting the pairwise-

additive model of the potential energy given by Eq. 2.5 with Eq. 2.23:

V =
X

(i,j)2IPs

VA2

(Rij) +
X

(i,j,k)2ITs

V
3

(Rij, Rjk, Rik) (2.23)

where V
3

is the Cencek nonadditive three-body potential[13]. The three-body energy

of all ITs is therefore evaluated any time the two-body potential energy is calculated.

In the VMC simulations, this equates to every 50 MCCs when the atomic snapshots

are recorded. This additional three-body calculation increases the computational cost

eight-fold. VPI simulations, however, require the calculation of the potential energy

in order to accept or reject every attempted Monte Carlo move. Full incorporation

of the three-body potential into these simulations increases the computational cost

approximately 256-fold. For this reason, full-incorporation VPI simulations are only

performed at four higher densities where three-body interactions are more significant

and are therefore expected to make a greater contribution to the ground state

wavefunction.

2.5 Equations of State

The ground state energies calculated from the simulations decribed above are used

to derive the zero-temperature energy-volume and pressure-volume equations of state

(EOSs). These calculations are detailed in Chapter 4 and were previously reported

in Ref. [11]. The form of the EOS employed was taken from the experimental EOS

reported by Driessen, et al.[15],

E(Vm) = Eo � PoVm + aV
� 8

3
m + bV �2

m + cV
� 4

3
m + dV

� 2
3

m (2.24)

where Eq. 2.24 is a modified Birch EOS that has been rearranged so that the equation

is linear with respect to the fitting parameters Eo, Po, a, b, c, and d. This is

32

done simply to allow for faster convergence of the Levenberg-Marquardt[16] fitting

algorithm employed in Gnuplot version 4.2[17]. As in the experimental EOS[15], no

single set of parameters is able to accurately fit the data across the full density range

studied here, and therefore we divide the data into high and low density regions.

For our calculations, 11.02 cm3/mol is used as the transition point between the two

regions. We find that uncertainties in the fitting parameters are significantly reduced

by constraining Po = 0 in the high density region, and a = 0 in the low density region.

These constraints have a negligible impact on the residuals for each fit.

Using Eq. 2.24 above, the pressure-volume EOS is described by Eq. 2.25,

P (Vm) = � �E

�Vm

= Po +
8

3
aV

� 11
3

m + 2bV �3

m +
4

3
cV

� 7
3

m +
2

3
dV

� 5
3

m . (2.25)

For each data set, the resulting P (Vm) equation is compared to the experimental

pressure-volume data from Driessen, et al.[15] in Chapter 4, Sec. 4.3.3.

2.6 Elastic Constants

The impact of three-body interactions on the elastic properties of hcp solid 4He is

also investigated by calculating the elastic constants at T = 0 K with and without

three-body interactions. An hcp lattice has five nonzero elastic constants: C
11

, C
12

,

C
13

, C
33

, and C
44

, also known as the shear modulus. Following the procedure reported

by Cazorla and Boronat[18], these quantities depend on the the derivative of the c/a

ratio with respect to volume, as well as the second derivative of energy with respect

to volume (i.e., the bulk modulus K) and the three heterogeneous strain variables, ⌘,

�, and ✏ which correspond to the pure shear constants C
0

, C
66

, and C
44

, respectively.

Changing ⌘, �, and ✏ corresponds to changing the c/a ratio, the angle between the x-

and y-axes in the basal plane of the crystal, and the angle between the basal plane of

the crystal and the z-axis, respectively, at a constant volume.

33

Following Ref. [18], the c/a ratio in the equilibrium geometry is assumed to

be constant and therefore
� �ln c/a

�V

�
V=V0

= C33�C11�C12+C13
C0

= 0, where the subscript

V = V
0

refers to the equilibrium geometry of the system at a given molar volume.

The bulk modulus and pure shear constants can then be defined according to Eqs.

2.26-2.29,

K = �V
0

⇣�P
�V

⌘

V=V0

(2.26)

C
0

=
2

V
0

⇣�2E
�⌘2

⌘

V=V0

(2.27)

C
66

=
1

V
0

⇣�2E
��2

⌘

V=V0

(2.28)

C
44

=
1

V
0

⇣�2E
�✏2

⌘

V=V0

(2.29)

where the primitive lattice vectors of the hcp 4He unit cell are defined in Eq. 2.30,

a
1

= a��1�1/2(��1

p
3

2

i+ 1

2

j+ ✏
2

k)

a
2

= a��1�1/2(��1

p
3

2

i� 1

2

j+ ✏
2

k)

a
3

= c�2k,

(2.30)

where a and c are the standard hcp lattice parameters in and perpendicular to the

basal plane of the crystal and � =
p
1 + ⌘. When ⌘ = ✏ = 0 and � = 1, these primitive

lattice vectors correspond to the equilibrium hcp geometry. For practical purposes in

our simulations, changing ⌘, �, and ✏ is more easily thought of in terms of changes in

the atomic x, y, and z coordinates, shown in Eq. 2.31.

x ! x��1/2��1

y ! y�1/2��1

z ! z�2 + y✏

(2.31)

By changing one of the three heterogeneous strain variables at a time and fitting

the resulting responses in the ground state energy to appropriate functions, we

34

can calculate C
0

, C
66

, and C
44

above. Taking advantage of previously determined

relationships between the elastic constants of an hcp system[18], the remaining four

nonzero elastic constants can be calculated according to Eqs. 2.32-2.35.

C
11

= K + C
66

+
1

18
C

0

(2.32)

C
12

= K � C
66

+
1

18
C

0

(2.33)

C
13

= K � 1

9
C

0

(2.34)

C
33

= K +
2

9
C

0

(2.35)

We calculate the elastic constants as well as the bulk modulus and pure strain

constants at a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol using

VPI simulations with and without perturbatively corrected three-body interactions.

For each of the pure strains, simulations are performed using eight di↵erent values

of the corresponding heterogeneous strain variable in addition to the equilibrium

value. Additional details for these calculations as well as their results are discussed

in Chapter 5.

35

2.7 References

[1] A. L. Barnes and R. J. Hinde, The Journal of Chemical Physics 144, 084505 (2016). 15,

17, 22, 25

[2] J.-P. Hansen and D. Levesque, Physical Review 165, 293 (1968). 16

[3] E. W. Draeger and D. M. Ceperley, Phys. Rev. B 61, 12094 (2000). 16

[4] R. J. Hinde, Computer Physics Communications 182, 2339 (2011). 16, 28, 29

[5] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

The Journal of Chemical Physics 21, 1087 (1953). 17, 28

[6] P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, Operations Research 50, pp.

1073 (2002). 17

[7] R. A. Aziz, F. R. McCourt, and C. C. Wong, Molecular Physics 61, 1487 (1987). 18, 23

[8] J. Hirschfelder, C. Curtiss, and R. Bird, Molecular theory of gases and liquids, Structure

of matter series, Wiley, 1954. 24, 26

[9] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995). 25

[10] A. Sarsa, K. E. Schmidt, and W. R. Magro, The Journal of Chemical Physics 113, 1366

(2000). 25

[11] A. L. Barnes and R. J. Hinde, The Journal of Chemical Physics 146, 094510 (2017). 25,

30, 31, 32

[12] H. F. Trotter, Proceedings of the American Mathematical Society 10, 545 (1959). 29

[13] W. Cencek, K. Patkowski, and K. Szalewicz, The Journal of Chemical Physics 131,

064105 (2009). 30, 32

[14] R. J. Hinde, Chemical Physics Letters 460, 141 (2008). 31

[15] A. Driessen, E. van der Poll, and I. F. Silvera, Phys. Rev. B 33, 3269 (1986). 32, 33

[16] J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in Numerical

Analysis, edited by G. Watson, volume 630 of Lecture Notes in Mathematics, pp. 105–116,

Springer Berlin Heidelberg, 1978. 33

36

[17] T. Williams, C. Kelley, and many others, Gnuplot 4.2: an interactive plotting program,

http://gnuplot.sourceforge.net/, 2009. 33

[18] C. Cazorla, Y. Lutsyshyn, and J. Boronat, Phys. Rev. B 85, 024101 (2012). 33, 34, 35

37

Chapter 3

Search for Anisotropy in the

Debye-Waller Factors of hcp 4He

38

A version of this chapter was originally published in The Journal of Chemical

Physics in 2016 by Ashleigh Barnes and Robert Hinde. Only minor revisions have

been made to allow for consistency of formatting. The original citation is given below.

Ashleigh L. Barnes and Robert J. Hinde. The Journal of

Chemical Physics, 144(8), 084505 (2016).

The article was written by Ashleigh Barnes with revision suggestions from Robert

Hinde.

The Journal of Chemical Physics is an AIP publication. The AIP policy on article

reproduction is as follows:

“AIP Publishing permits authors to include their published articles in a thesis

or dissertation. It is understood that the thesis or dissertation may be published in

print and/or electronic form and o↵ered for sale on demand, as well as included in a

university’s repository. Formal permission from AIP Publishing is not needed. If the

university requires written permission, however, we are happy to supply it.”

39

Abstract

The properties of hexagonal close packed (hcp) solid 4He are dominated by

large atomic zero point motions. An accurate description of these motions is

therefore necessary in order to accurately calculate the properties of the system,

such as the Debye-Waller (DW) factors. A recent neutron scattering experiment

reported significant anisotropy in the in-plane and out-of-plane DW factors for

hcp solid 4He at low temperatures, where thermal e↵ects are negligible and only

zero point motions are expected to contribute. By contrast, no such anisotropy

was observed either in earlier experiments or in path integral Monte Carlo

(PIMC) simulations of solid hcp 4He. However, the earlier experiments and

the PIMC simulations were both carried out at higher temperatures where

thermal e↵ects could be substantial. We seek to understand the cause of

this discrepancy through variational quantum Monte Carlo (VMC) simulations

utilizing an accurate pair potential and a modified trial wavefunction which

allows for anisotropy. Near the melting density, we find no anisotropy in an ideal

hcp 4He crystal. A theoretical equation of state is derived from the calculated

energies of the ideal crystal over a range of molar volumes from 7.88 to 21.3

cm3, and is found to be in good qualitative agreement with experimental data.

3.1 Introduction

Solid 4He is the simplest quantum solid, and therefore provides a reasonable starting

point for the development of theoretical models to better describe this unique class

of solids. At absolute zero and pressures above approximately 25 bar, solid 4He is

found in the hexagonal close packed (hcp) phase; however at higher temperatures and

pressures body centered cubic and face centered cubic phases are also accessible[1].

For the purpose of this investigation, only the hcp phase is of interest. Because hcp

4He is a quantum solid, its properties are dominated by large zero point motions

of the atoms about their average lattice positions[2]. An accurate description

of these zero point motions, therefore, is essential to better understanding and

40

predicting the properties of this material. Previous neutron scattering[3, 4] and x-ray

di↵raction[5, 6, 7] studies have reported no significant di↵erence between atomic zero

point motions parallel or perpendicular to the crystal’s c axis. Finite temperature

path integral Monte Carlo (PIMC) simulations[8], as well as Green’s-function Monte

Carlo (GFMC) investigations[9, 10] conducted at T = 0 K, have suggested the same.

This is surprising because of the inherent anisotropy in the hcp lattice, and goes

against predictions of the properties of quantum solids reported by Chui[11]. More

recently, however, a low temperature (0.14 K < T < 1 K) neutron di↵raction study

was published by Blackburn et al.[12] in which a di↵erence of approximately 20% in

the Debye-Waller (DW) factors for in-plane and out-of-plane zero point motions was

observed. The DW factors were temperature independent over the temperature range

in the study, indicating that the authors were observing quantum contributions to the

DW factors only. In order to determine the reason for the discrepancy between these

experimental findings and the earlier simulations, we begin by utilizing variational

quantum Monte Carlo (VMC) simulations with a realistic pair potential in order

to determine the DW factors for in- and out-of-plane zero point motions in hcp

4He. VMC simulations will be performed at T = 0 K, in contrast to the previous

finite temperature PIMC calculations, utilizing a more reliable two-body potential

energy function than was employed in earlier GFMC studies at absolute zero. We

will demonstrate that when only two-body interactions are considered, our results

agree with previous theoretical and experimental findings in that no anisotropy is

observed.

3.2 Computational Methods

3.2.1 VMC

VMC is a quantum Monte Carlo simulation technique used to generate a sequence of

configurations of a many-particle system. The probability that a given configuration

41

appears in the sequence is given by the probability density function associated

with a trial wavefunction. Expectation values of the energy and other coordinate-

space observables are calculated by averaging the appropriate functions of the

particles’ coordinates over the sequence of configurations. In the limit of infinitely

long simulations these expectation values converge to the exact values for the

trial wavefunction. For finite-length simulations, statistical uncertainties in the

expectation values can be estimated using standard statistical methods.

For our system, we employ a Jastrow-Mcmillan[13] style trial wavefunction of the

form:

 = A
Y

i

e�a
xy

(s2
i,x

+s2
i,y

)e�a
z

s2
i,z

Y

i<j

e�
1
2 (b/Rij

)

5
, (3.1)

where A is a normalization factor, ~si = (si,x, si,y, si,z) is the displacement vector of

atom i from its average lattice site, and Rij is the instantaneous distance between

atoms i and j . The one-body terms keep atoms localized around their lattice sites

according to the variational axy and az parameters, while the two-body terms prevent

neighboring atoms from coming into close contact, as determined by the b parameter.

In an hcp crystal, axy and az can have di↵erent values, and therefore we make a

distinction between the one-body terms for motions parallel (x,y) or perpendicular

(z) to the basal plane.

When atoms are far apart from one another, there is negligible correlation in their

motions, and therefore their contribution to the two-body part of the wavefunction

can be ignored. We therefore include in the two-body term only pairs of atoms defined

to be interacting pairs (IPs) based on a distance-dependent criterion that is described

in detail below. The wavefunction then becomes

 = A
Y

i

e�a
xy

(s2
i,x

+s2
i,y

)e�a
z

s2
i,z

Y

(i,j)2IPs

e�
1
2 (b/Rij

)

5
. (3.2)

42

If we collect all terms in the wavefunction involving some atom i, we obtain the

atomic wavefunction in Eq. 3.3:

 i = Ae�a
xy

(s2
i,x

+s2
i,y

)e�a
z

s2
i,z

Y

j2IP
i

e�
1
2 (b/Rij

)

5
, (3.3)

which we can think of as a product of a one-body term and a set of two-body terms,

 i = 1

2

. (3.4)

In this study, Metropolis-style[14] Monte Carlo moves are used to generate new

configurations. The fundamental event is a single-atom update in which a provisional

new position for atom i is chosen by sampling directly from the one-body probability

density |
1

|2. The random number generator utilized in this step is detailed in

Ref. [15]. Each movement is then accepted or rejected according to the two-body

contribution
2

in Eq. 3.4. If | 2(Q0
)|2

| 2(Q)|2 > 1, where Q0 and Q are the new and

old configurations, respectively, the move is accepted, otherwise it is conditionally

accepted with the probability |
2

(Q0)|2/|
2

(Q)|2. A single Monte Carlo cycle (MCC)

consists of attempting to move each atom in the ensemble once in this manner.

For each configuration, the instantaneous energy is calculated as the sum of the

potential and kinetic energies. In this study, the potential energy is assumed to follow

a pairwise-additive relationship:

V =
X

(i,j)2IP

VA2

(Rij), (3.5)

where VA2

is the Aziz HFD-B(He) potential energy[16] between atoms i and j .

Potential energy contributions from those atoms not considered to be interacting

pairs are accounted for using a long-range correction procedure detailed below. The

43

instantaneous kinetic energy is calculated according to

T = T
1

+ T
2

= N
~2(2axy + az)

2mHe

+
X

(i,j)2IP

5~2b5
2µi,jR7

i,j

, (3.6)

where µi,j = mHe/2[17]. The one-body contribution to the kinetic energy, T
1

, is

independent of the atomic positions, and therefore its value is exactly known. The

expectation value of the total energy, assuming no contribution from atoms outside of

the interacting-pair cuto↵, is then found by averaging the instantaneous energy over

all configurations (Eq. 3.7).

hEi = T
1

+
1

p

pX

n=1

(T
2

(Qn) + V (Qn)). (3.7)

These expectation values are functions of the three variational parameters axy, az,

and b. The optimal parameter values are those for which the average energy per atom

is minimized.

Our simulations make use of an ensemble of N=448 atoms arranged in an hcp

lattice with an ideal c/a ratio of 1.633. This corresponds to a cell consisting of 8 layers

of atoms parallel to the basal plane, each containing 56 atoms, where the basal plane

is taken to be perpendicular to the z-axis. Periodic boundary conditions are applied

in all three directions. The nearest neighbor distance, Rnn, is determined from the

average lattice positions scaled to the desired density, and atoms whose lattice sites

are separated by the distance 2.05Rnn or less are considered to be interacting pairs. In

the ideal crystal each atom belongs to 56 interacting pairs. Densities studied include

the experimental density from the Blackburn study (4.1896x10�3a�3

o), corresponding

to an experimental external pressure of approximately 25.2 bar[18], as well as higher

densities corresponding to pressures of up to 8 kbar. Cell dimensions at the Blackburn

density are 48.23934ao x 48.73935ao x 45.48050ao with a nearest neighbor distance of

Rnn = 6.96ao.

44

Crystals with distorted lattices (c/a 6= 1.633) are also investigated at the

Blackburn density. These simulations are initialized using the same cell parameters

as above, and various c/a ratios are achieved by scaling the z coordinates and

proportionally adjusting the x and y coordinates to obtain the desired c/a ratio while

maintaining constant cell volume. Rnn is then calculated from the distorted lattice

positions. In lattices with c/a < 1.633, Rnn is the distance between nearest neighbors

in adjacent planes, otherwise Rnn is the distance between nearest neighbors in the

same plane. The same distance criterion used to determine interacting pairs in the

ideal crystal is used with distorted lattices. As the crystal is distorted fewer pairs

are included within this cuto↵ region, however the configuration of interacting pairs

retains hexagonal symmetry, and contributions to the potential energy from atoms

excluded from this region are accounted for in the long-range correction procedure.

In order to minimize sequential correlation, new atomic positions are chosen

randomly from the one-body probability density rather than as a shift from the

previous position. Additionally, configurations are only recorded every 50 MCCs.

In a typical simulation, approximately 45% of all moves are accepted, indicating that

on average an atom will move 22 times between these snapshot recordings. Fig.

3.1 investigates sequential correlation in the Monte Carlo simulation by comparing

the potential energy felt by atom 1 for consecutive snapshots. The distribution

has a Pearson correlation coe�cient of -0.0017, indicating no significant relationship

between consecutive values. This allows for easy determination of the statistical

uncertainties in our observables without the need to account for sequential correlation.

3.2.2 hu2i Calculation

Once the wavefunction is optimized, the DW factor can be calculated. Since there are

many formulations of the DW factor, which can all be related to the mean squared

displacement, hu2i, we calculate hu2i for in-plane and out-of-plane zero point motions

for easier comparison to previously published results.

45

-100

 0

 100

 200

 1000

-100 0 100 200 1000

V
1
,j+

1
 (

K
)

V1,j (K)

Figure 3.1: Correlation in the potential energy of atom 1 during VMC simulations.
V
1,j corresponds to the potential energy (K) felt by atom 1 in the jth configuration

sampled. Energies beyond 200 K have been scaled for improved visualization.

46

Snapshots are generated from the optimized wavefunction, and hu2i is calculated

in each direction by averaging the square of the atomic displacements over all N

atoms and all M configurations (Eq. 3.8),

hu2

ji =
1

N
· 1

M

NX

n=1

MX

m=1

(smn,j)
2, (3.8)

where smn,j is a Cartesian component (j = x, y, or z) of the displacement vector of

atom n in configuration m. For these calculations, 2.56x106 snapshots were used.

These snapshots are also used to calculate the probability density function for

the atomic displacements in each direction. Fig. 3.2a shows a histogram of the x-

displacements of an atom in the ideal lattice, which appear to follow a Gaussian

distribution. Similar histograms were generated in which only atomic snapshots

having a z-displacement between 0.0 and 1.0, 1.0 and 1.5, 1.5 and 2.0, and 2.0 and

3.0ao were considered. The means of these distributions agreed with that of the

full distribution within 0.018ao, and statistical variances di↵ered from that of the full

distribution by less than 10%. This suggests that sx and sz are not strongly correlated,

which was further confirmed by calculating Pearson correlation coe�cients. The

Pearson correlation coe�cient for sx and sz was found to be on the order of 10�3.

Similar values were observed for correlation between sx and sy, as well as sy and

sz. This allows us to treat the distributions of displacements in each direction as

independent from one another.

To determine the analytical form of the probability density function, the kurtosis

is first calculated according to Eq. 3.9:

 =
hu4

ji
hu2

ji2
. (3.9)

At each density, the distributions in the x, y, and z directions are found to have

a kurtosis of approximately 3, which is consistent with a one-dimensional Gaussian

distribution. From hu2

ji we can calculate the corresponding ↵j for the one-dimensional

47

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
re

q
u

e
n

cy
 (

a
o

-1
)

x-displacement (ao)

(a)
atom 1 x-displacement

-4

-2

0

2

4

-4 -2 0 2 4

S
a

m
p

le
 Q

u
a

n
til

e
s

(a
o
)

Theoretical Quantiles (ao)

(b)

Figure 3.2: (a) Histogram of atom 1 x-displacements over 6.4x105 MCCs. For ease
of visualization, only the positive half of the probability density is shown, however
the negative half demonstrates the same behavior. (b) Quantile-quantile plot of
atom 1 x-displacements. In both figures, the best-fit Gaussian, Px, is shown in black
for comparison. Atomic displacements are taken from VMC simulations using the
optimized wavefunction at the Blackburn density.

49

Gaussian probability density Pj in Eq. 3.10:

Pj =

p
↵jp
⇡
e�2↵

j

(s
j

)

2
. (3.10)

Px determined from the optimized wavefunction at the Blackburn density is shown

in black in Fig. 3.2a, along with a quantile-quantile plot of the x-displacements

compared to Px in Fig. 3.2b. The calculated best-fit Gaussian agrees very well with

the observed frequencies, di↵ering by less than 0.012 a�1

o across the distribution. The

quantile-quantile plot also shows that only slight deviations from Gaussian behavior

occur in the wings of the distribution where these values make a relatively small

contribution to the overall probability density. Similar agreement is found for the y-

and z-distributions at the Blackburn density, as well as higher densities. The e↵ects

of the slight deviation from Gaussian behavior are investigated in Section 3.2.3.

The independence of the distributions in the x-, y-, and z-directions has already

been demonstrated. Therefore, the three-dimensional probability density is just the

product of Px, Py, and Pz (Eq. 3.11). Because of symmetry in the x,y-plane, ↵x and

↵y are the same and will be denoted ↵xy.

P =
↵xy

p
↵z

(
p
⇡)3

e�2↵
xy

(s2
x

+s2
y

)�2↵
z

(s2
z

). (3.11)

We note that the three-dimensional probability density looks similar to the square

of the one-body part of the atomic wavefunction in Eq. 3.3. The ↵j values are in fact

related to the aj variational parameters, however the ↵j values also depend on the

density and b variational parameter.

3.2.3 Long-Range Corrections

Atoms outside of the interacting pair region still make a small contribution to the

overall energy of the crystal that must be accounted for. Corrections to the potential

energy are made by considering all of those atoms outside of the interacting pair cuto↵

48

from atom 1, though, due to symmetry, selection of the center atom is arbitrary and

does not a↵ect the results.

The long-range correction calculations focus on two regions: those atoms in the

448-atom cell outside of the interacting-pair cuto↵ (region 1), and the infinite number

of atoms beyond these 448 represented in the periodic boundary conditions applied

to our model (region 2).

In the limit of long-range interactions, the potential energy function becomes

Vlrc(R) = �C
6

R6

� C
8

R8

� C
10

R10

. (3.12)

In order to treat the atoms in region 1, we must evaluate the following integral for

each of these atoms paired with atom 1:

hVlrci =
Z Z

P
1

Vlrc(R)Pid~s1d~si, (3.13)

where ~s
1

and ~si are the instantaneous displacement vectors of atoms 1 and i from their

average lattice positions, P
1

and Pi are the three-dimensional probability densities

of atoms 1 and i defined in Eq. 3.11, and R = |~R| is the interatomic distance

corresponding to the instantaneous interatomic vector

~R = ~Rlatt + ~si � ~s
1

, (3.14)

where the component in the j-direction is Rj = Rlatt,j + si,j � s
1,j. ~Rlatt is the vector

from the average lattice position of atom 1 to atom i and is constant. The interatomic

distance is therefore a function of the six displacement vector components s
1,x, s1,y,

s
1,z, si,x, si,y, and si,z.

Because the atomic pairs considered are separated by a distance greater than

the interacting pair cuto↵, correlation in the atomic motions does not need to be

considered. This along with the separable form of the probability densities allows the

integral to be written as a product of six Gaussian terms and the potential energy

50

function Vlrc(R). By rewriting si,j as xi,j/
p
2↵j in Eq. 3.11 we can make use of

Gaussian quadrature to evaluate the integral using the relationship shown in Eq.

3.15,
Z 1

�1
exp (�x2)f(x)dx ⇡

NX

k=1

wkf(xk), (3.15)

where the weights, wk, and abscissas, xk, are determined by the number of nodes

used, N . For our calculations, convergence within the statistical uncertainty of the

energy expectation value is reached using 8 nodes.

We investigated the e↵ects of using the best-fit Gaussian approximation for our

atomic distributions in these calculations by comparing the average pair energies

calculated using Gaussian quadrature and VMC snapshots for six representative

interatomic distances in region 1 ranging from 2.24Rnn to 4.87Rnn. For each distance,

10 atomic pairs were selected and the pair potential energy was computed from the

Gaussian approximation and compared with that obtained directly from VMC. The

di↵erence between these values was found to decrease as the interatomic distance

increased, and at the largest distance the error is below 10�6 K/pair. Using this

method, the maximum error estimated for Vlrc at the Blackburn density was only

0.005 K/atom, approximately 0.4% of the long-range correction energy.

As atomic separations increase, we expect that zero point motions change the

interatomic distance negligibly, and that the C
6

/R6 term constitutes the dominant

contribution to the potential energy. Both of these trends are demonstrated in Fig. 3.3

where the potential energy of a pair of atoms calculated using Gaussian quadrature is

compared to the C
6

/R6 term calculated from average lattice positions (not considering

zero point motions). As the distance between atoms increases, the di↵erence between

the two values becomes negligible (Fig. 3.3b). This allows for a simplified treatment

of region 2 atoms in which only the C
6

/R6 contributions from each pair in the absence

of zero point motions are added.

The sum of 1/R6 contributions for an infinite number of atoms in an hcp lattice

has been previously reported[19] in terms of a lattice sum, S⇤
6

, times 1/R6

nn. The

51

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 15 20 25 30 35 40

P
a

ir
 E

n
e

rg
y

(K
)

Interatomic Distance, R (ao)

(a)

〈Vlrc〉 (Gauss-Hermite)

-C6/R6

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 15 20 25 30 35 40

P
a

ir
 E

n
e

rg
y

(K
)

Interatomic Distance, R (ao)

(b)

〈Vlrc〉 + C6/R6

Figure 3.3: (a) Comparison of the Gauss-Hermite calculation of hVlrci including
ZPM (red dots) to �C

6

/R6 calculated without ZPM (black line). The di↵erence
between these two calculations is shown in (b). Gaussian parameters used in the
Gauss-Hermite integration are obtained from VMC simulations using the optimized
wavefunction at the Blackburn density

52

value for S⇤
6

includes contributions from interacting pairs and region 1 atoms, which

we have treated more carefully, and therefore these atoms’ contribution to the rigid

lattice 1/R6 sum is subtracted to get the total long-range correction from region 2.

However, the value of S⇤
6

has not yet been reported for non-ideal hcp lattices.

For these distorted lattices, the equivalent value was found as follows, using a lattice

containing 7920 atoms (20 atoms x 18 atoms x 22 atoms). We first identify the

central atom in the lattice with an ideal c/a ratio and construct a series of spheres of

increasing radius centered on that atom. For each sphere we calculate the truncated

1/R6 sum as a product of 1/R6

nn times a constant S
6

, which should converge to

the exact value (S⇤
6

) as the sphere gets infinitely large. We then calculate the ratio

between the truncated sum and the exact value for each of the finite spheres. The

lattice is then distorted as described in Section 3.2.1 to achieve non-ideal c/a ratios.

We distort the spheres in the same way so that we end up with ellipsoids containing

the same lattice sites as in the case of the ideal c/a ratio. The truncated sum for each

ellipsoid is calculated and the S
6

/S⇤
6

ratio from the corresponding sphere in the ideal

lattice is used to extrapolate the estimated S⇤
6

for the distorted lattice. We observe

that this approach leads to estimated S⇤
6

values for the distorted lattices that agree

to three decimal places, or about 1 part in 105. Results are shown in Table 3.1.

The final long-range correction to the potential energy is calculated from the sum

of the Gaussian quadrature calculations from region 1 atoms and the rigid lattice R�6

contributions from region 2 atoms.

3.2.4 Reweighting

A reweighting method is used to determine the optimized wavefunction parameters

to a greater precision without significantly impacting computing time. This method

takes advantage of the fact that, although the energy depends on both the variational

parameters and the atomic positions, for small changes in parameter values, the

distribution of the snapshots changes only slightly. The e↵ect of this small change can

53

Table 3.1: Rnn and S⇤
6

values determined for lattices with various c/a ratios. The
value for c/a = 100% is taken from Ref. 19.

c/a Rnn S⇤
6

(% of ideal value) (ao)

90 6.739 12.0259
93.33 6.812 12.7388
96.67 6.886 13.5470
100 6.963 14.45485

103.33 6.887 13.5553
106.67 6.814 12.7687
110 6.745 12.0834

54

be approximated by reweighting observables calculated from the original snapshots.

Therefore, the energy of a wavefunction with a new set of parameter values can

be calculated from snapshots taken from a di↵erent wavefunction according to the

following equation:

h 0|Ĥ| 0i =
Z

| 0(Q)|2E 0(Q)dQ =

Z
| (Q)|2w(Q)E 0(Q)dQ, (3.16)

where w(Q) =
���

0
(Q)

 (Q)

���
2

, is the original wavefunction, 0 is the wavefunction with

the new set of parameters, and E 0 is the local energy of the wavefunction with the

new parameters.

This relationship shows that the local energy of a new wavefunction can be

evaluated at a given configuration Q from the old wavefunction via the weighting

factor w. Therefore the expectation value of the total energy essentially becomes a

weighted average over all configurations sampled:

hEi ⇡

P
Q

E 0(Q)w(Q)

!

P
Q

w(Q)
. (3.17)

Statistical errors are present in both the numerator and denominator in Eq. 3.17,

and correlations in the two errors due to the common w(Q) terms must be taken

into account when determining the uncertainty in hEi. This is done according to the

procedure reported in Ref. [20].

3.3 Results and Discussion

3.3.1 Ideal Lattice, Blackburn Density

Initial simulations focused on the optimization of the ai parameters while the b

parameter was held constant at 5.6029ao. Using 8x104 MCCs, approximate optimized

axy and az values were determined to the nearest 0.02a�2

o by scanning through values

55

of the ai parameters and calculating their VMC energies. At these near-optimal

parameters, referred to below as centering points, 2.56x106 snapshots were generated

to use in reweighting in order to obtain more precise optimized parameters.

Energies obtained from Eq. 3.17 were determined by scanning over a fine grid of

(axy, az) values in the vicinity of the centering point; increments of 0.005a�2

o were used

in the scans. A representative set of results is shown in Fig. 3.4. Near the optimal

parameter values, the contours can be approximated by ellipses:

E(axy, az) = C
1

(axy � aoxy)
2 + 2C

2

(axy � aoxy)(az � aoz)

+ C
3

(az � aoz)
2 + E(aoxy, a

o
z), (3.18)

where aoxy and aoz are the optimized parameters and E(aoxy, a
o
z) is the minimum energy.

At the minimum energy, the first derivatives of E must be zero, and therefore we can

assume that for axy, az near the optimal parameters, E(axy, az) behaves quadratically.

This simplifies calculations of the first and second partial derivatives of E with

respect to the parameters axy and az, from which we can easily calculate the six

constants C
1

, C
2

, C
3

, aoxy, a
o
z, and E(aoxy, a

o
z). Overall, this analysis requires only nine

reweighted energies to complete. We use this method to calculate estimates of the six

constants. These estimates are then used to initiate a Levenberg-Marquardt fit[21]

(as implemented in gnuplot version 4.2[22]) in order to obtain more accurate values

which also take into account the uncertainties in the energies.

Fig. 3.5 shows a series of slices through contour plots of the form in Eq. 3.18 in

which the az parameter is held constant while axy is altered. The slices were generated

using three di↵erent sets of centering points. These figures show the 95% confidence

interval of the energies obtained from reweighting, as well as VMC energies where

available. In each of the slices in Fig. 3.5, the values determined from reweighting

and VMC agree within their mutual 95% confidence intervals. However, while the

results agree with one another, we see that as the di↵erence between the reweighting

parameters and the centering point values increases, so does the uncertainty in the

56

0.115 0.120 0.125 0.130 0.135 0.140 0.145

axy (ao
-2)

0.115

0.120

0.125

0.130

0.135

0.140

0.145

a
z

(a
o
-2

)

Figure 3.4: Contour plot of reweighted energies at a density of 0.0041896a�3

o from
the centering point axy = az = 0.13a�2

o . The innermost contour corresponds to an
energy of -3.76 K/atom, and each successive contour is 0.01 K/atom higher in energy.

57

-3.77

-3.76

-3.75

-3.74

-3.73

-3.72

-3.71

-3.7

 0.115 0.12 0.125 0.13 0.135 0.14 0.145

E
n
e
rg

y/
a
to

m
 (

K
)

axy (ao
-2)

(a) 95% Confidence Interval
VMC results

-3.77

-3.76

-3.75

-3.74

-3.73

-3.72

-3.71

-3.7

 0.115 0.12 0.125 0.13 0.135 0.14 0.145

E
n
e
rg

y/
a
to

m
 (

K
)

axy (ao
-2)

(b) 95% Confidence Interval
VMC results

-3.77

-3.76

-3.75

-3.74

-3.73

-3.72

-3.71

-3.7

-3.69

 0.115 0.12 0.125 0.13 0.135 0.14 0.145

E
n
e
rg

y/
a
to

m
 (

K
)

axy (ao
-2)

(c) 95% Confidence Interval
VMC results

Figure 3.5: Reweighting results for various centering points at the Blackburn
density. (a) axy = 0.12a�2

o , az = 0.13a�2

o ; (b) axy = 0.13a�2

o , az = 0.13a�2

o ; (c)
axy = 0.14a�2

o , az = 0.13a�2

o .

58

energy. This indicates that reweighting from points far from the optimal parameter

values can bring us closer to the true values, however the uncertainty will be much

greater. Therefore performing two rounds of reweighting, in which the snapshots

for the second round are generated from the improved parameters determined in

the first round, allows for more accurate and precise determination of the optimal

parameter values. For the second round of reweighting, we decreased the step size

to 0.001a�2

o in order to improve the precision of our reweighting calculations and

optimized parameters. The initial scanning of the ai parameters along with the two

rounds of reweighting constitute a single optimization step.

The second optimization step focused on changing the b parameter while the ai

parameters were held fixed at the values determined in the first step. A similar

scanning procedure was used to determine the approximate optimized b parameter

to the nearest 0.02ao, after which 2.56x106 VMC snapshots were generated from

this wavefunction. Using the near-optimal b parameter as the centering point, the

first round of reweighting calculations were performed using a step size of 0.002ao.

Energies from 10 reweighting calculations were fit to a parabola in order to estimate

the minimum energy b value. Snapshots generated using this b value were then used

for the second round of reweighting. For this round, the step size was decreased to

0.001ao. This whole process constitutes the second optimization step.

Following the second optimization step, a third step was performed in which the ai

parameters were reoptimized in exactly the same manner as in the first optimization

step. 2.56x106 snapshots were generated from the optimized wavefunction after

the three optimization steps. In order to determine if the wavefunction was fully

optimized, an additional b-parameter reweighting calculation was performed using

these snapshots and the optimized parameters as the centering point. The estimated

optimal b parameter from this calculation was about 0.05ao lower than the centering

point b, corresponding to a 0.6% change in the minimum energy. This prompted

reoptimization of the b and ai parameters by repeating optimization steps two and

59

three (see Appendix, Fig. 3.12). The optimized wavefunction parameters are given in

Table 3.2.

Fig. 3.6 shows a contour plot of the energy as a function of the b and a parameters

(where a = axy = az) determined by reweighting from snapshots from the new

optimized wavefunction. We see in this figure that the optimal parameters determined

from our five optimization steps are just outside of the minimum energy contour,

di↵ering in energy from the predicted minimum by less than 0.15%, or about 0.005

K/atom. As this is the greatest improvement that could be expected from additional

steps, and because VMC is an approximate method that carries inherent error due

to the variational principle, no further optimization was performed. A fit of the data

in Fig. 3.6 to an equation analogous to Eq. 3.18 estimates the uncertainty in the

ai and b parameters at the end of the optimization procedure to be approximately

± 0.004a�2

o and ± 0.034ao, respectively. Over the range of parameters included in

Fig. 3.6, the LRC energy (determined via reweighting) changed by less than 0.005

K/atom, confirming that omission of this correction during reweighting does not shift

the minimum energy considerably. We also note that the orientation of the contours

(nearly aligned with the axes) indicates that there is very little correlation in the a and

b variational parameters at this density. This simplifies the optimization procedure

by allowing a relatively small number of optimization steps to achieve the optimal

parameters.

2.56x106 snapshots were generated from the fully optimized wavefunction and used

to calculate the mean squared displacements for in-plane and out-of-plane motions as

described above. The results are shown in Table 3.2. Only a slight di↵erence of 0.14%

between hu2

xyi and hu2

zi is observed at this density, in contrast to the 20% di↵erence

reported by Blackburn, et al. Additionally, the di↵erence between the axy and az

parameters is very small, as is expected in the absence of anisotropy. Therefore with

our current model, anisotropy is not detected at the Blackburn density in an ideal

hcp crystal.

60

Table 3.2: Summary of optimized wavefunctions for various densities and c/a
ratios. Statistical uncertainties in the average energy per atom and mean squared
displacement are less than ± 5x10�4 K/atom and ± 3x10�5Å2, respectively, for
densities below 8.0x10�3a�3

o , and less than ± 1x10�3 K/atom and ± 6x10�6Å2 for all
higher densities.

Density c/a axy az b E Vlrc Etot hu2

xyi hu2

zi
(10�3a�3

o) (% of ideal value) (a�2

o) (a�2

o) (ao) (K/atom) (K/atom) (K/atom) (Å2) (Å2)

90 0.1374 0.1649 5.435 -3.404 -1.393 -4.797 0.3052 0.2461
4.1896 100 0.1481 0.1476 5.422 -4.026 -1.229 -5.255 0.2793 0.2789

110 0.1601 0.1309 5.425 -3.107 -1.656 -4.763 0.2572 0.3321

4.2943 100 0.1555 0.1549 5.418 -3.811 -1.291 -5.102 0.2650 0.2647
4.3991 100 0.1630 0.1624 5.414 -3.559 -1.354 -4.913 0.2519 0.2516
4.5038 100 0.1706 0.1701 5.410 -3.266 -1.418 -4.684 0.2399 0.2395
4.6086 100 0.1785 0.1779 5.405 -2.932 -1.485 -4.417 0.2286 0.2283
4.7133 100 0.1864 0.1857 5.402 -2.554 -1.552 -4.106 0.2182 0.2180
4.8180 100 0.1945 0.1937 5.399 -2.128 -1.622 -3.750 0.2085 0.2083
4.9228 100 0.2026 0.2021 5.395 -1.656 -1.692 -3.348 0.1996 0.1992
5.0275 100 0.2114 0.2109 5.392 -1.132 -1.765 -2.897 0.1909 0.1905
5.5000 100 0.2595 0.2589 5.334 1.895 -2.109 -0.214 0.1571 0.1568
6.0000 100 0.3090 0.3082 5.310 6.543 -2.508 4.035 0.1314 0.1312
6.5000 100 0.3620 0.3617 5.289 12.922 -2.942 9.980 0.1118 0.1115
7.0000 100 0.4186 0.4180 5.269 21.317 -3.411 17.906 0.09636 0.09613
7.5000 100 0.4791 0.4786 5.250 32.014 -3.914 28.100 0.08398 0.08376
8.0985 100 0.5556 0.5548 5.226 48.250 -4.563 43.687 0.07223 0.07206
9.2112 100 0.7046 0.7040 5.192 90.006 -5.901 84.105 0.05645 0.05630
10.467 100 0.8824 0.8819 5.157 158.507 -7.621 150.886 0.04452 0.04438
11.320 100 1.010 1.009 5.133 219.937 -8.913 211.024 0.03860 0.03850

62

5.37 5.38 5.39 5.40 5.41 5.42 5.43

b (ao)

0.140

0.145

0.150

0.155

0.160

a
 (

a
o

-2
)

Figure 3.6: Contour plot of energy vs. b and a = axy = az parameters where
energies are determined through reweighting calculations at the Blackburn density
using the optimized wavefunction parameters b = 5.422ao and a = 0.148a�2

o as the
centering point. The innermost contour corresponds to an energy of -4.03 K/atom,
and each successive contour is 0.01 K/atom higher in energy.

61

3.3.2 Distorted Lattices, Blackburn Density

In order to determine the e↵ects of forced anisotropy on our model’s predictions,

the same optimization procedure was used for a series of distorted lattices. Initially

crystals with six di↵erent c/a ratios equal to 90%, 93.33%, 96.67%, 103.33%, 106.67%,

and 110% of the ideal c/a ratio were considered. Again, the b parameter was held

constant at 5.6029ao while the a parameters were optimized. After the optimal a

parameters were obtained, the hu2i values were calculated; they are shown in Fig.

3.7. We see that at the ideal c/a ratio, there is no significant di↵erence between hu2

xyi

and hu2

zi; however, even the smallest of the lattice distortions leads to a considerable

di↵erence between the two mean squared displacements, indicating that our model is

able to detect anisotropy when we explicitly force it on the system.

Once we determined that our model was responding to distortions of the lattice, we

continued to fully optimize the wavefunctions of those lattices with c/a ratios of 90%

and 110% of the ideal value. As with the ideal lattice, this required five optimization

steps overall (see Appendix, Fig. 3.12). The fully optimized wavefunction parameters

and the in- and out-of-plane hu2i values are included in Table 3.2. We note that in

our current model, a 10% change in the c/a ratio results in a di↵erence between hu2

xyi

and hu2

zi comparable to that reported by Blackburn et al.

3.3.3 Ideal Lattice, Higher Densities

The system was also studied at higher densities to determine what e↵ect density

has on the wavefunction parameters, as well as to observe whether the degree of

anisotropy in the zero point motions is density-dependent. For the low density region,

the original Blackburn density was increased by up to 20% in increments of 2.5% and

the wavefunction was fully optimized as before. Wavefunctions were also optimized in

the middle (0.0055a�3

o to 0.0075a�3

o) and high (0.0080985a�3

o to 0.0113198a�3

o) density

regions following a similar procedure. The full range of densities studied corresponds

to experimental pressures of approximately 25.2 to 7885 bar.

63

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0.35

 0.36

 90 93.33 96.67 100 103.33 106.67 110

<u
2 >

(Å
2)

% Ideal c/a ratio

<uxy
2>

<uz
2>

Figure 3.7: Mean squared displacements in the x,y-plane (red) and along the z-axis
(blue) for lattices with various c/a ratios after first a-parameter optimization at the
Blackburn density. The b-parameters have all been held constant at 5.6029ao. Error
bars are included but are smaller than the data points.

64

In order to bring the initial parameters closer to the true optimal values, initial

scanning of the ai parameters at the new densities was performed with the b parameter

fixed at the optimal value from the second optimization step at the Blackburn density

(5.4709ao), rather than at the initial value of 5.6029ao. At the lower densities, this b

parameter was close enough to the optimal value that only three optimization steps

were necessary. In the high density region another round of b and ai optimization

were required. Additionally, in the high density region scanning could only determine

the optimal ai parameters to the nearest 0.05a�2

o due to greater uncertainties in the

VMC energies, and therefore step sizes in the first and second rounds of reweighting

of the ai parameters were increased to 0.01a�2

o and 0.005a�2

o , respectively. Step sizes

for the b parameter reweighting were kept at 0.002ao for both rounds of reweighting.

The middle density region was the last region investigated, and we determined

that the VMC scanning at the beginning of each optimization step could be replaced

with an additional round of reweighting (see Appendix, Fig. 3.13), reducing the

computational cost. This initial round of reweighting used step sizes of 0.01a�2

o and

0.005ao for ai and b parameter reweighting, respectively. With this method only

three optimization steps were necessary in this density region. Optimization results

are included in Table 3.2. We observe that at all densities studied, the hu2

xyi and hu2

zi

di↵er by less than 0.32%, indicating no significant anisotropy in the atoms’ zero point

motions.

The need for additional rounds of optimization in the high density region is

partially due to the fact that the initial scanning parameters were farther away from

the true optimal values. However another reason for this can be deduced from Fig.

3.8, which shows the estimated minimum energy at the highest density as a function

of the a = axy = az and b parameters. From this figure, it is apparent that the

contours are more angled with respect to the axes than was observed at the Blackburn

density (Fig. 3.6). Therefore, the degree of correlation between ai and b is slightly

greater in this high density range, resulting in more optimization steps. We also note

that the energy at our optimal parameters shown in Table 3.2 is again not located

66

5.05 5.10 5.15 5.20

b (ao)

0.95

0.97

0.99

1.01

1.03

a
 (

a
o

-2
)

Figure 3.8: Contour plot of energy vs. b and a = axy = az parameters at density
= 0.0113198a�3

o . Energies are determined through reweighting calculations using b =
5.132ao and a = 1.01a�2

o as the centering point. The innermost contour corresponds
to an energy of 219.8 K/atom, and each successive contour is 0.05 K/atom higher in
energy.

65

within the minimum energy contour, but the predicted change in energy with an

additional reweighting step is less than 0.1%, and therefore further optimization was

not performed. Analysis of the data in Fig. 3.8 estimates the uncertainties in ai and

b at this highest density to be approximately ± 0.08a�2

o and ± 0.10ao, respectively.

Fig. 3.9 shows the dependence of the variational parameters on density. There is

a slight jump in the b parameter between the low and middle density regions which

could be smoothed out if more optimization steps were used, however this changes the

calculated observables only slightly. The di↵erence between the b values on either side

of the jump in Fig. 3.9b (corresponding to the densities 5.0275x10�3 and 5.5x10�3a�3

o)

is less than 0.06ao. If we consider the contour plot in Fig. 3.6, a similar change in the

b value corresponds to only a 0.01K/atom change in the energy. The di↵erence in the

a parameter between the same two densities considered above is about 0.05a�2

o , which

is twice as large as the range of a values studied in Fig. 3.6. This di↵erence, therefore,

corresponds to a much more significant change in energy. This indicates that there is

a wider range of acceptable b values that would give approximately the same energy,

resulting in greater uncertainty in the b parameter, whereas the ai parameters can

be determined more precisely. This is in accord with the uncertainties obtained by

analysis of the data in Figs. 3.6 and 3.8.

3.3.4 Equation of State

The energy dependence on molar volume is shown in Fig. 3.10. Where available,

experimental energies per atom [23] have been provided. We see good agreement

with experiment in the shape of our energy–volume curve, though there is a constant

di↵erence of about 0.77 K/atom between our calculated energies and the experimental

values in the low density range.

In order to more accurately compare our results to experimental data, we used

the computed energy–volume data to derive a pressure–volume equation of state

(EOS) following the procedure outlined in Ref. [24]. This was done by first fitting a

68

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 5 6 7 8 9 10 11 12

a
i (

a
o

-2
)

Density (10-3 ao
-3)

(a)

axy
az

 5

 5.05

 5.1

 5.15

 5.2

 5.25

 5.3

 5.35

 5.4

 5.45

 5.5

 4 5 6 7 8 9 10 11 12

b
 (

a
o
)

Density (10-3 ao
-3)

(b)

Figure 3.9: Variational parameter dependence on density: (a) axy, az vs. Density,
(b) b vs. Density. Estimated error bars are shown for the highest and lowest densities.

67

-50

 0

 50

 100

 150

 200

 250

 6 8 10 12 14 16 18 20 22

E
n

e
rg

y
(K

/a
to

m
)

Molar Volume, Vm (cm3/mol)

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0
E

n
e

rg
y

(K
/a

to
m

)

Molar Volume, Vm (cm3/mol)

Figure 3.10: Energy vs. molar volume (Vm) for an ideal lattice (red). Error bars are
smaller than the data points. Experimental data from [23] (black squares) is provided
where available.

69

fourth order polynomial of (1

V
m

) to the energy–volume data to obtain E(Vm). This

polynomial fit the data with less than 0.6% error at all points where |E(Vm)| �

0.5 K/atom. The EOS (P (Vm)) was then found by taking the negative derivative

of E(Vm) with respect to Vm (Eq. 3.19). The parameters obtained from this fitting

procedure are given in Table 3.3. Fig. 3.11 compares the derived EOS to experimental

data reported by Driessen et al.[18].

P (Vm) =
1

V 2

m

✓
4a

V 3

m

+
3b

V 2

m

+
2c

V 1

m

+ d

◆
(3.19)

Overall the EOS agrees qualitatively with the experimental data, however as the

molar volume decreases, we see that the theoretical EOS begins to diverge from

experiment. At the lowest molar volume considered, our predicted pressure di↵ers

from the experimental pressure by approximately 1.1 kbar or about 12%. This

suggests that improvements to our current model are necessary in order to better

predict experimental observables, particularly at higher densities.

3.4 Summary and Conclusions

From the various simulations performed in this study, we have shown that our model

behaves as expected when the density is changed. Increasing density was shown to

cause an increase in the ai parameters and a decrease in the b parameter. Both of

these trends are expected when atoms are forced into closer contact with one another,

reducing the amount of available space in which an atom can move without exchange

occurring. An increase in the ai parameters leads to greater localization of the atoms,

and a decrease in b causes the two-body term to take e↵ect at smaller distances.

Additionally, we have shown that correlation between the variational parameters is

small but increases with increasing density, and that the atomic wavefunction utilized

in these simulations is more sensitive to changes in the b parameter than the ai

70

Table 3.3: Fitting parameters for the P(Vm) equation of state shown in Eq. 3.19.

Parameter Value (⇥106)

a -17.339 ± 6.609 bar(cm3/mol)5

b 27.639 ± 2.180 bar(cm3/mol)4

c -2.827 ± 0.261 bar(cm3/mol)3

d 0.1010 ± 0.0134bar(cm3/mol)2

71

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 14 15 16 17 18 19 20 21 22

P
 (

b
a

r)

Vm (cm3/mol)

(a) Driessen
VMC

0

2

4

6

8

10

12

 8 9 10 11 12 13 14

P
 (

kb
a

r)

Vm (cm3/mol)

(b) Driessen
VMC

Figure 3.11: Pressure-Volume equation of state derived from VMC energies (blue)
in the (a) low density and (b) high density regions. Experimental data from Driessen
et al. [18] is shown in red for comparison.

72

parameters, i.e. a 1% change in the b parameter has a greater impact on the calculated

energy than a 1% change in the ai parameters.

A comparison of the hu2i values calculated in this study to previously reported

values is given in Table 3.4. We see that our values are in fairly good agreement with

earlier PIMC [8] and GFMC [10] results, however we report values approximately

twice as large as those found in the Blackburn study [12]. Anisotropy was also not

detected in the ideal hcp 4He crystal at the Blackburn density of 0.0041896a�3

o , nor at

the higher densities studied. The hu2i values for in-plane and out-of-plane zero point

motions in ideal crystals given in Table 3.2 di↵er by less than 0.32%, which does not

agree with the approximate 20% di↵erence reported by Blackburn et al. However,

using our model it was possible to induce anisotropy of that magnitude in the zero

point motions by uniaxially compressing or expanding the crystal in order to change

the c/a ratio by ± 10%. Further investigation is needed in order to understand the

discrepancies between our results and the experimental findings of Blackburn et al .

Where available, we have compared our calculated energies with experimental

results [23] in Fig. 3.10. In this region, our values agree qualitatively with experiment,

though the calculated energies are consistently about 0.77 K/atom higher than the

experimental values. We were also able to derive an EOS relating the molar volume

of our simulation cells to experimental pressures. Although qualitatively similar,

comparison to experimental data from Driessen et al. shows better agreement in

the low density range than at higher densities. We acknowledge two sources of error

which may contribute to these di↵erences, namely that VMC energies are bound

by the variational principle and will therefore always be higher in energy than the

exact ground state, and also that three-body interactions have not been taken into

account. An exact ground state method such as variational path integral Monte Carlo

(VPI) is necessary in order to remove error associated with the variational principle.

Using the optimized wavefunctions from this VMC study as the trial wavefunctions,

the uncertainty and projection time for these VPI simulations could be significantly

73

Table 3.4: Comparison of previously reported hu2i values to those found in this
study. An asterisk represents data obtained via interpolation of directly calculated
results.

Ref Method Vm T c/a hu2

xyi hu2

zi
(cm3/mol) (K) (Å2) (Å2)

[12]
Neutron
scattering

21.3 <1 1.638(5) 0.122(1) 0.150(1)

This work VMC 21.3 0 1.633 0.2793(1) 0.2789(1)
This work VMC 21.3 0 1.470 0.3052(1) 0.2461(1)
This work VMC 21.3 0 1.796 0.2572(1) 0.3321(1)

[10] GFMC 19.12 0 1.633 0.261(9)
This work VMC 19.36 0 1.633 0.2286(1) 0.2283(1)
This work⇤ VMC 19.12 0 1.633 0.2228 0.2225

[8] PIMC 10.98 5 1.633 0.0778(3)
This work VMC 11.02 0 1.633 0.07223(1) 0.07206(1)
This work⇤ VMC 10.98 0 1.633 0.07173 0.07157

[8] PIMC 12.12 5 1.633 0.0952(5)
This work VMC 12.75 0 1.633 0.09636(1) 0.09613(1)
This work⇤ VMC 12.12 0 1.633 0.08709 0.08687

74

reduced, making elimination of variational error fairly simple. Additionally, we expect

that, particularly at the higher densities, three-body interactions make a significant

contribution to the overall energy of solid 4He and must be incorporated in some

way by considering one of the available three-body potential energy surfaces for 4He

[25, 26]. Previous theoretical results which have reported no evidence of anisotropy

have relied on a pairwise additive potential energy function, and therefore it is not

certain what impact the incorporation of non-additive three-body interactions might

have on the DW factors. Future e↵orts will focus on addressing both of these sources

of error in order to develop a more reliable model for the zero point motions in hcp

4He, in addition to calculating the theoretical elastic constants for solid 4He in order

to shed light on the importance of three-body interactions in the system. Some of

the solid’s elastic constants are associated with anisotropic distortions of the crystal

lattice and therefore reliable trial wavefunctions for these distorted lattices will be

needed to carry out the VPI energy calculations from which elastic constants can

be derived. The reweighting method presented above provides a computationally

e�cient means of optimizing these wavefunctions while allowing axy and az to be

di↵erent.

75

3.5 References

[1] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995). 40

[2] E. Polturak and N. Gov, Contemporary Physics 44, 145 (2003). 40

[3] J. Eckert, W. Thomlinson, and G. Shirane, Phys. Rev. B 18, 3074 (1978). 41

[4] C. Stassis, D. Khatamlan, and G. Kline, Solid State Communications 25, 531 (1978). 41

[5] D. A. Arms, R. S. Shah, and R. O. Simmons, Phys. Rev. B 67, 094303 (2003). 41

[6] C. T. Venkataraman and R. O. Simmons, Phys. Rev. B 68, 224303 (2003). 41

[7] C. A. Burns and E. D. Isaacs, Phys. Rev. B 55, 5767 (1997). 41

[8] E. W. Draeger and D. M. Ceperley, Phys. Rev. B 61, 12094 (2000). 41, 73, 74

[9] P. A. Whitlock, D. M. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 19,

5598 (1979). 41

[10] P. A. Whitlock, M. H. Kalos, G. V. Chester, and D. M. Ceperley, Phys. Rev. B 21,

999 (1980). 41, 73, 74

[11] S. T. Chui, Phys. Rev. B 41, 796 (1990). 41

[12] E. Blackburn, J. M. Goodkind, S. K. Sinha, J. Hudis, C. Broholm, J. van Duijn,

C. D. Frost, O. Kirichek, and R. B. E. Down, Phys. Rev. B 76, 024523 (2007). 41, 73,

74, 80

[13] J.-P. Hansen and D. Levesque, Physical Review 165, 293 (1968). 42

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

The Journal of Chemical Physics 21, 1087 (1953). 43

[15] P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, Operations Research 50, pp.

1073 (2002). 43

[16] R. A. Aziz, F. R. McCourt, and C. C. Wong, Molecular Physics 61, 1487 (1987). 43, 80

[17] J.-P. Hansen, Phys. Rev. 172, 919 (1968). 44

76

[18] A. Driessen, E. van der Poll, and I. F. Silvera, Phys. Rev. B 33, 3269 (1986). 44, 70,

72

[19] J. Hirschfelder, C. Curtiss, and R. Bird, Molecular theory of gases and liquids, Structure

of matter series, Wiley, 1954. 51

[20] A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen, Physical Review E 51, 5092

(1995). 55

[21] J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in Numerical

Analysis, edited by G. Watson, volume 630 of Lecture Notes in Mathematics, pp. 105–116,

Springer Berlin Heidelberg, 1978. 56

[22] T. Williams, C. Kelley, and many others, Gnuplot 4.2: an interactive plotting program,

http://gnuplot.sourceforge.net/, 2009. 56

[23] D. O. Edwards and R. C. Pandorf, Phys. Rev. 140, A816 (1965). 68, 69, 73

[24] C. Cazorla and J. Boronat, Journal of Physics: Condensed Matter 20, 015223 (2008). 68

[25] W. Cencek, K. Patkowski, and K. Szalewicz, The Journal of Chemical Physics 131,

064105 (2009). 75, 80

[26] M. J. Cohen and J. N. Murrell, Chemical Physics Letters 260, 371 (1996). 75

77

3.6 Appendix

 Generate 2.56x106 VMC snapshots 
from near optimal axy, az

Scan axy, az ± 0.02ao-2 (± 0.05ao-2), b fixed,  
8x104 VMC snapshots

Reweight, ∆axy, ∆az = ±0.005ao-2 (±0.01ao-2)

Generate 2.56x106 VMC snapshots 
from improved axy, az

Reweight, ∆axy, ∆az = ±0.001ao-2 (±0.005ao-2)

Generate 2.56x106 VMC snapshots 
from improved axy, az

Step 1

Scan b = ±0.002ao (±0.002ao), axy, az fixed
8x104 VMC snapshots

Generate 2.56x106 VMC snapshots 
from near optimal b

Reweight, ∆b = ±0.002ao (±0.002ao)

Generate 2.56x106 VMC snapshots 
from improved b

Reweight, ∆b = ±0.001ao (±0.002ao)

Generate 2.56x106 VMC snapshots 
from improved b

Step 2/4

Step 3/5
Repeat Step 1

Figure 3.12: Optimization scheme for low density (high density) region.

78

 Generate 2.56x106 VMC snapshots 
from near optimal axy, az

Scan axy, az ± 0.02ao-2 , b fixed, 
8x104 VMC snapshots

Reweight, ∆axy, ∆az = ±0.005ao-2

Generate 2.56x106 VMC snapshots 
from improved axy, az

Reweight, ∆axy, ∆az = ±0.001ao-2

Generate 2.56x106 VMC snapshots 
from improved axy, az

Step 1

Reweight, ∆b = ±0.005ao

Generate 2.56x106 VMC snapshots 
from improved b

Reweight, ∆b = ±0.002ao

Generate 2.56x106 VMC snapshots 
from improved b

Reweight, ∆b = ±0.001ao

Generate 2.56x106 VMC snapshots 
from improved b

Step 2/4

Reweight, ∆axy, ∆az = ±0.01ao-2

Step 3/5

Repeat Step 1 from *

*

Figure 3.13: Optimization scheme for middle density region.

79

3.6.1 Additional Calculation of the DW Factors Using a

Three-Body Potential

In order to determine if three-body interactions are responsible for the anisotropy in

the low-temperature DW factors reported by Blackburn, et al.[12], trial wavefunctions

have been reoptimized for an ideal hcp lattice at each of the densities reported above

using the same VMC optimization procedure as before with a three-body potential

in place of the pairwise additive potential (Eq. 3.20). These calculations are referred

to as VMC+3B simulations. The three-body potential used in these optimizations

is the sum of the Aziz HFD-B(He) pair potential[16] and the Cencek nonadditive

three-body potential[25],

V =
X

(i,j)2IPs

VA2

(Rij) +
X

(i,j,k)2ITs

V
3

(Rij, Rjk, Rik). (3.20)

As in the two-body simulations, only those atoms which are defined to be interacting

pairs are accounted for in the evaluation of the pair potential. Similarly, the

nonadditive three-body potential is only evaluated for the set of interacting trimers

(ITs), defined to be all trimers formed from a central atom and two of its nearest

neighbors. In order to reduce the number of optimization steps, optimized axy, az,

and b variational parameters from the two-body optimizations are used as the starting

trial wavefunction parameters.

The in-plane and out-of-plane mean squared displacements are calculated from

2.56x106 VMC snapshots as before, and are tabulated in Table 3.5 along with their

percent di↵erences. From this data, we can conclude that the incorporation of three-

body interactions does not result in any significant increase in the di↵erence between

hu2

xyi and hu2

zi. In fact, the percent di↵erence decreases at the experimental density

from the Blackburn study compared to the two-body simulation results. In addition,

a comparison with Table 3.2 indicates that the mean squared displacements calculated

from VMC optimization using a three-body potential do not di↵er significantly from

80

those obtained from the two-body simulations. This suggests that the incorporation

of three-body interactions does not strongly a↵ect the optimized wavefunction, and

therefore a perturbative treatment of three-body interactions may be a viable option

for modeling this system.

Table 3.5: Mean squared displacements calculated from VMC+3B simulations.
Statistical uncertainties in the mean squared displacements are less than ± 3x10�5Å2,
for densities below 8.0x10�3a�3

o , and less than ± 6x10�6Å2 for all higher densities.

Density hu2

xyi hu2

zi % Di↵erence
(10�3a�3

o) (Å2) (Å2)

4.1896 0.2776 0.2776 0.00
4.2943 0.2635 0.2632 0.11
4.3991 0.2506 0.2502 0.16
4.5038 0.2384 0.2381 0.13
4.6086 0.2271 0.2269 0.09
4.7133 0.2168 0.2166 0.09
4.8180 0.2070 0.2067 0.15
4.9228 0.1979 0.1974 0.25
5.0275 0.1895 0.1893 0.11
5.5000 0.1568 0.1564 0.26
6.0000 0.1312 0.1309 0.23
6.5000 0.1117 0.1114 0.27
7.0000 0.09636 0.09614 0.23
7.5000 0.08409 0.08392 0.20
8.0985 0.07286 0.07269 0.23
9.2112 0.05709 0.05695 0.25
10.467 0.04519 0.04506 0.29
11.320 0.03929 0.03919 0.25

81

Chapter 4

E↵ect of Three-Body Interactions

on the Zero-Temperature Equation

of State of hcp Solid 4He

82

A version of this chapter was originally published in The Journal of Chemical

Physics in 2017 by Ashleigh Barnes and Robert Hinde. Only minor revisions have

been made to allow for consistency of formatting. The original citation is given below.

Ashleigh L. Barnes and Robert J. Hinde. The Journal of

Chemical Physics 146(9), 094510 (2017).

The article was written by Ashleigh Barnes with revision suggestions from Robert

Hinde.

The Journal of Chemical Physics is an AIP publication. The AIP policy on article

reproduction is as follows:

“AIP Publishing permits authors to include their published articles in a thesis

or dissertation. It is understood that the thesis or dissertation may be published in

print and/or electronic form and o↵ered for sale on demand, as well as included in a

university’s repository. Formal permission from AIP Publishing is not needed. If the

university requires written permission, however, we are happy to supply it.”

83

Abstract

Previous studies have pointed to the importance of three-body interactions

in high density 4He solids. However the computational cost often makes

it unfeasible to incorporate these interactions into the simulation of large

systems. We report the implementation and evaluation of a computationally

e�cient perturbative treatment of three-body interactions in hexagonal close

packed (hcp) solid 4He utilizing the recently developed nonadditive three-

body potential of Cencek, et al. This study represents the first application

of the Cencek three-body potential to condensed phase 4He systems. Ground

state energies from quantum Monte Carlo simulations, with either fully

incorporated or perturbatively treated three-body interactions, are calculated

in systems with molar volumes ranging from 21.3 cm3/mol down to 2.5

cm3/mol. These energies are used to derive the zero-temperature equation of

state for comparison against existing experimental and theoretical data. The

equations of state derived from both perturbative and fully incorporated three-

body interactions are found to be in very good agreement with one another,

and reproduce the experimental pressure-volume data with significantly better

accuracy than is obtained when only two-body interactions are considered.

At molar volumes below approximately 4.0 cm3/mol, neither two-body nor

three-body equations of state are able to accurately reproduce the experimental

pressure-volume data, suggesting that below this molar volume four-body and

higher many-body interactions are becoming important.

4.1 Introduction

The highly quantum nature of condensed phase 4He makes it an interesting system

for the study and development of quantum mechanical models. Existing at absolute

zero and pressures above 25 bar[1], hcp solid 4He is a quantum solid whose properties

are dominated by large atomic zero point motions. These zero point motions lead to

atoms coming into much closer contact than the average lattice spacing at a given

84

density would ordinarily suggest, thereby increasing the probability of three atoms

simultaneously coming into close contact with one another. Typical simulations of

this system employ a pairwise-additive model of the potential energy, as described by

Eq. 4.1,

V =
1

2

NX

i

NX

j 6=i

V
2

(Rij), (4.1)

where V
2

is any of the reliable two-body potential energy functions known for 4He.

This approach reduces computational cost by ignoring contributions to the total

energy from three-body and higher many-body interactions. However, previous work

by Ujevic and Vitiello[2] utilizing the three-body potential energy function developed

by Cohen and Murrell[3] suggests that three-body interactions can have a significant

impact on the calculated properties of both solid and liquid 4He including the melting

and freezing densities.

The high computational cost of evaluating these interactions can make full

incorporation of a three-body potential intractable even for moderately small system

sizes. However, there have been some attempts to account for these contributions

perturbatively[4]. Shortly after the findings of Ujevic and Vitiello[2] were published,

another study was reported by Cazorla and Boronat[5] in which electronic density

functional theory (DFT) calculations were used to perturbatively correct two-

body energies from di↵usion Monte Carlo (DMC) simulations for all many-body

interactions, resulting in a pressure-volume equation of state (EOS) which was

able to predict experimental pressures at molar volumes down to 2.5 cm3/mol

with much greater accuracy than previously obtained from two-body simulations.

These calculations, however, did not di↵erentiate between three-body contributions

and four-body or higher many-body contributions. Following this study, another

investigation from the same group utilized DFT with Grimme-D2 van der Waals

corrections (DFT-D2)[6] to parameterize e↵ective three-body potentials based on an

original model publised by Bruch and McGee[7] which were then incorporated into

85

DMC simulations[8]. These e↵ective potentials were shown to improve agreement

with experimental equations of state and bulk moduli, among other properties,

over traditional two-body models. However, the e↵ective three-body models were

parameterized from calculations of a relatively small number of configurations (16) of

a system of 96 4He atoms, and relied on the assumption that any discrepancy between

the DFT-D2 potential energy and the pairwise additive potential energy calculated

from the Aziz HFD-B(He) potential[9] can be attributed to three-body interactions

alone.

In order to more carefully examine the contributions of three-body interactions and

to understand at which densities these contributions become significant, we perform

quantum Monte Carlo (QMC) simulations which incorporate a three-body potential

either through a perturbative treatment or by fully incorporating it into the potential

energy calculations throughout the simulation. This study utilizies a newer three-

body potential developed by Cencek, et al.[10] using the full configuration interaction

method. A number of recent investigations have applied this non-additive three-body

function to the study of the gas phase properties of 4He[11, 12, 13, 14, 15], however

it has not yet been implemented in the studies of condensed phases.

In Sec. 4.2 and 4.3 below we will briefly discuss the computational methods

employed, including the proposed perturbative treatment of three-body interactions,

and assess the accuracy of our treatment and the Cencek potential by comparing the

calculated energies and pressure-volume EOS to existing theoretical and experimental

data.

4.2 Computational Methods

The following sections detail the computational methods employed in this investi-

gation. In the first section, we review the previously reported variational Monte

Carlo (VMC) simulation technique utilized to optimize trial wavefunctions[16] from

which approximate ground state energies can be calculated. Next, we introduce

86

the variational path integral Monte Carlo (VPI) method that was implemented in

order to obtain exact ground state properties, within statistical uncertainty, from the

VMC-optimized trial wavefunctions. In the VMC and VPI simulations, three-body

interactions are treated both perturbatively and by fully incorporating the Cencek

non-additive three-body potential[10] into the potential energy function throughout

the simulation. These two approaches to the treatment of three-body interactions

are discussed next. Finally, we present the procedure used to derive energy-volume

and pressure-volume equations of state from the VMC and VPI energies with and

without three-body interactions.

4.2.1 VMC

Trial wavefunctions are optimized using VMC[1] in order to obtain approximate

ground state wavefunctions. The VMC simulations reported here make use of a

Jastrow-McMillan style trial wavefunction[17] of the following form:

 = A
Y

i

e�a
xy

(s2
i,x

+s2
i,y

)e�a
z

s2
i,z

Y

(i,j)2IPs

e�
1
2 (b/Rij

)

5
, (4.2)

where A is a normalization factor, ~si = (si,x, si,y, si,z) is the displacement vector

of atom i from its average lattice site, Rij is the instantaneous distance between

atoms i and j, and axy, az, and b are variational parameters which are optimized to

give the minimum average energy per atom. Eq. 4.2 adopts the convention that

the basal plane of the crystal lies parallel to the (x, y) plane and perpendicular

to the z azis. In the second term, IPs denote the set of interacting pairs of

atoms defined as those whose average lattice sites are separated by a distance less

than 2.05Rnn, where Rnn is the nearest neighbor distance. Only those atoms in

the set of IPs contribute to the two-body potential energy calculated throughout

the VMC simulations. Two-body contributions from all other atomic pairs are

accounted for using a long-range correction precedure[16]. VMC provides a means

87

of statistically sampling atomic configurations from the probability density of the

fixed trial wavefunction, and therefore the wavefunction does not evolve throughout

the simulation. Instead, the simulation progresses through a specified number of

Monte Carlo cycles (MCC), where one MCC is defined as an attempt to displace

each of the atoms once sequentially. Snapshots of the atomic positions and the

average observables are recorded every 50 MCCs. We have previously verified that

this interval is adequate to eliminate correlation between sequential snapshots[16].

The axy, az, and b variational parameters are optimized for a range of molar volumes

from 2.5 cm3/mol to 21.3 cm3/mol following the previously reported method[16] using

a simulation cell of N
VMC

= 448 4He atoms with periodic boundary conditions applied

in all directions. Snapshots from 2.56x106 MCCs are generated from each optimized

wavefunction and used to calculate the average total energy utilizing the Aziz HFD-

B(He) pair potential[9].

4.2.2 VPI

VMC is an approximate method and therefore su↵ers from systematic error due to

the variational principle. In order to account for this error and observe its e↵ect

on the calculated equations of state, simulations are also performed at each density

using VPI as implemented in QSATS[18], where the QSATS code has been modified

to accept independent axy and az wavefunction parameters.

Also known as the path integral ground state method (PIGS)[19], VPI allows for

the determination, within statistical uncertainty, of the exact ground state properties

of a quantum system at T = 0 K. The system is modeled as a p-bead polymer chain

where each bead is a replica of the hcp 4He system consisting of N
VPI

atoms. For these

simulations, N
VPI

= 180. Progression down the chain in either direction corresponds

to the evolution of the wavefunction in imaginary time as described by the imaginary

time propagator exp[�Ĥ�⌧/~], where the links between adjacent beads represent

the evolution of the system for �⌧ units of imaginary time. A trial wavefunction is

88

initialized at each end of the polymer chain. Given that the trial wavefunction can be

written as a linear combination of the eigenfunctions of Ĥ, applying the imaginary

time propagator with each step along the chain projects out the lowest energy state

of the system (gs) from the trial wavefunction while contributions from all higher

energy states decay to zero.

The configurations of the p-bead polymer chain are generated using conventional

Metropolis Monte Carlo moves[20] and can be described by the probability density

in the following equation:

P (C) = A tr(Q
1

) tr(Qp)exp
⇣
� �⌧

~

p�1X

j=1

F (Qj,Qj+1

)
⌘

(4.3)

where C = Q
1

, Q
2

, ..., Qp is the configuration of the entire polymer chain and Qj

represents the configuration in the jth replica[18]. In the above equation,
tr

(Q)

represents the trial wavefunction which approximates the ground state wavefunction,

and F (Qj,Qj+1

) is a function which depends on the potential energy of the total

N -particle system, particle mass, and the displacement of each particle from bead j

to bead j+1[18]. When multiplied by the factor ��⌧
~ this term can be related to the

Trotter factorization[21] of the imaginary time propagator.

The form of the probability density in Eq. 4.3 indicates that the two trial

wavefunctions at beads j = 1 and j = p are being propagated through imaginary

time along the chain in either direction. As the number of replicas p increases and

the imaginary time step �⌧ decreases, the distributions of the interior beads approach

that of the exact ground state probability density, | gs|2, while terminal beads sample

the probability density | tr gs|. By sampling the interior beads’ distributions we are

able to calculate the average ground state properties of the system. This is true as

long as the overlap between the trial and exact ground state wavefunctions is not

too small; however, convergence can be significantly improved with the use of a more

accurate trial wavefunction. For this reason, optimized wavefunctions from VMC are

89

used as the starting trial wavefunctions for the VPI simulations. For a more in-depth

description of this simulation method, the reader is referred to Refs. [1] and [19].

A single MCC in these simulations corresponds to an attempt to move each

atom in each replica once, in sequential fashion. The moves are carried out using

an algorithm that automatically incorporates all contributions to the F function of

Eq. 4.3 except for those related to the many-body potential energy V . If V in the

new configuration is lower than the previous configuration, the move is accepted,

otherwise it is conditionally rejected with the probability e��V�⌧/~. Each simulation

begins with a 1x105 MCC warmup run, followed by a 1x106 MCC production run,

from which snapshots of atomic positions are recorded every 1000 MCCs. In this

study, 430 replicas and a time step �⌧ = 200 au are used. The time step is consistent

with previous simulations of hcp solid 4He using the QSATS code which found the

calculated observables to be independent of the time step parameter for 200 au  �⌧

 500 au[18].

Fig. 4.1 shows how the average two-body potential energy (V
2

) changes with

progression along the replica chain in the VPI simulations when Vm = 2.50 cm3/mol.

V
2

is expected to converge to the exact ground state potential energy in the center

replicas when p is su�ciently large. In Fig. 4.1 we observe that in all but the

end replicas shown, the average two-body potential energies agree within their 95%

confidence intervals. Using the VMC optimized wavefunction as the trial wavefunction

at this molar volume, V
2

is considered to be converged after 23 replicas, corresponding

to an imaginary time of 4600 au. At the remaining molar volumes studied here,

similar behavior is observed, though the VMC trial wavefunction is occassionally

close enough to the ground state wavefunction that even the end replicas’ V
2

values

agree with the interior replicas within their 95% confidence intervals. This indicates

that the optimized wavefunctions from VMC are very close to the exact ground

state wavefunctions. However in order to ensure that the potential energies are

representative of the true ground state wavefunctions, an interior subset of these

converged replicas is used to calculate the average potenial energy. In most cases,

90

 9005

 9010

 9015

 9020

 9025

 9030

 9035

 9040

 1 34 67 100 133 166 199 232 265 298 331 364 397 430

V
2
 (

K
/a

to
m

)

Replica

〈V2〉

Figure 4.1: Average two-body potential energy, V
2

, vs. replica number from VPI
simulations with Vm = 2.50 cm3/mol. Error bars represent the 95% confidence
intervals. The grey box shows the replicas used to calculate the total average two-
body potential energy, hV

2

i, whose value is given by the black dashed line.

91

this subset encompasses replicas 100 to 331, however the interval is occasionally

adjusted if the starting trial wavefunction is further from the exact ground state

at a given density, based on the observed convergence of V
2

. In order to reduce

correlation between the replicas, every 11th replica within this subset is included

in the calculation of the average potential energy and any other position-dependent

observables.

4.2.3 Three-Body Interactions

This study utilizes the 4He nonadditive three-body potential reported by Cencek, et

al.[10], which was developed using electronic structure methods that included large

atom-centered basis sets and approach full-configuration-interaction accuracy. Two

methods are employed to incorporate three-body interactions in our quantum Monte

Carlo simulations: a computationally e�cient perturbative treatment, and a full-

incorporation method in which the nonadditive three-body potential is added to the

Aziz pair potential throughout the simulation. Both methods consider only those

trimers formed by an atom and two of its nearest neighbors. The implementation of

these two methods is explained below.

4.2.3.1 Perturbative Treatment

A perturbative treatment of three-body interactions makes the assumption that

three-body interactions do not have a significant impact on the distribution of the

4He atomic positions throughout the QMC simulations. The three-body correction

to the potential energy can therefore be calculated by evaluating a three-body

potential energy function using snapshots of atomic positions obtained from two-

body simulations. For VMC simulations, the three-body correction makes use of

the fact that a central atom can form 66 di↵erent trimers with its 12 nearest

neighbors, which can be further categorized into 6 di↵erent geometries based on the

central angle when the atoms are in their equilibrium positions: 60°(24), 90°(12),

92

109.47°(3), 120°(18), 146.44°(6), and 180°(3)[22]. The number in parentheses is the

number of trimers with the given central angle. The average three-body energy can

therefore be calculated from VMC snapshots from one representative trimer of each

geometry, weighted by the number of times it occurs in the 66 trimers. Although

the representative trimers are selected based on their equilibrium geometry, deviation

from this configuration throughout the three-body energy calculation due to atomic

delocalization is accounted for by applying the atomic displacements recorded in the

VMC snapshots. The selection of the six trimers simply ensures that each of the

possible trimer environments are accounted for in the three-body energy calculation

while maintaining computational e�ciency. This does not result in any significant

loss of accuracy compared to treating each trimer individually (as shown in Fig.

4.2 for a system with Vm = 16.22 cm3/mol). Additionally, the resulting increase in

uncertainty is significantly less than the uncertainty in the two-body energies due to

variational error, which is on the order of 1 K/atom at the density represented in Fig.

4.2 (see Appendix, Table 4.9). In order to prevent triple counting, contributions from

equilateral trimers (which contain three nearest neighbor pairs and would therefore

appear in the trimer list for three di↵erent central atoms) are divided by three. The

final three-body correction is reported as the average three-body energy per atom.

The added computational cost of this perturbative correction is negligible compared

to the VMC snapshot generation steps, amounting to an increase in CPU time of

approximately 0.2%. (This treatment is referred to as the perturbative treatment

because the total energy of the system is evaluated using a first order perturbation of

the two-body Hamiltonian to account for three-body interactions: E = E
2

+ hV
3

i.)

VPI is an exact method which does not su↵er from variational error, and therefore

a more precise approach is implemented in order to reduce the uncertainty in the

perturbative three-body energy correction. All nearest neighbor trimers from all

central atoms are evaluated individually at each VPI snapshot, again being sure to

account for triple counting of equilateral trimers, and the average three-body energy

per atom is reported. The consideration of each of the trimers individually increases

93

-0.0010

-0.0005

0

0.0005

0.0010

 48 144 240 336

∆
V

3
 (

K
/a

to
m

)

Central Atom

full calculation
short calculation

Figure 4.2: Di↵erence in the three-body potential energy from the average
calculated using various central atoms considering all 66 trimers individually (blue) or
considering only one representative of each trimer geometry (red) when Vm = 16.22
cm3/mol. Though only four data points are shown here, these calculations were
repeated for 21 di↵erent central atoms. The average (black dashed line) (�V

3

= 0)
was determined from the average of the full calculation over all central atoms. Error
bars represent 95% confidence intervals.

94

the computational cost of the perturbative treatment moreso than the implementation

in the VMC simulations, however the increase in total CPU time is less than 5%.

Convergence of V
3

with replica count is also considered in these simulations, and

we find that V
3

converges slower than V
2

in most cases, requiring approximately 55

replicas, or 11000 au time to converge.

4.2.3.2 Full-Incorporation Method

In the perturbative treatment above, three-body interactions are not considered until

the wavefunction has been fully optimized using only two-body interactions. This

does not allow for the influence of three-body interactions on the wavefunction or

the generated atomic configurations. In order to determine if this is a reliable

approach, three-body interactions must be fully incorporated into the wavefunction

optimizations. In the VMC simulations, the Cencek three-body potential must then

be evaluated for all nearest neighbor trimers whenever the Aziz pair potential is calcu-

lated. This increases the computational cost of the VMC simulations approximately

eight-fold. In order to reduce the number of optimization steps required for these

full-incorporation simulations, the optimized wavefunction parameters from the VMC

two-body simulations are used as starting parameter values. Full-incorporation VMC

optimizations are performed at every molar volume for which two-body optimized

parameters have been determined.

Because the accept/reject criterion for MCC moves in VPI depends on the

potential energy, in full-incorporation simulations the full three-body energy must be

calculated with each attempted move rather than after each snapshot collection. The

increase in computational cost is therefore significantly higher than in VMC. For this

reason, these simulations are only performed at the highest densities where three-body

interactions are most important and thus where discrepancies between perturbative

and full-incorporation treatments are most probable. Similar convergence of the

potential energy is observed in these simulations as in the two-body simulations.

95

4.2.4 Equation of State Calculations

From each set of simulation data, we derive the zero-temperature EOS. This is done

by first fitting an equation to the energy-volume relationship for each data set using

the gnuplot fitting routine[23]. The form of the equation used is shown in Eq. 4.4

below and is a rearrangement of the E(Vm) relationship obtained from the modified

Birch EOS reported by Driessen, et al.[24] in their study of solid 4He.

E(Vm) = Eo � PoVm + aV
� 8

3
m + bV �2

m + cV
� 4

3
m + dV

� 2
3

m (4.4)

This representation simply removes dependencies between the fitting parameters,

allowing for faster convergence of the fitting algorithm[25]. Following the procedure

of Driessen, et al., the data are divided into high and low density regions using Vm =

11.02 cm3/mol as the dividing point. In the high density region, uncertainties in the

fitting parameters are significantly reduced with negligible impact on the residuals

when Po is constrained at the value Po = 0. Similarly, in the low density region

uncertainties in the parameters are improved by setting a = 0 for each data set. The

final pressure-volume EOS is then derived as shown in the following:

P (Vm) = � �E

�Vm

= Po +
8

3
aV

� 11
3

m + 2bV �3

m +
4

3
cV

� 7
3

m +
2

3
dV

� 5
3

m (4.5)

4.3 Results and Discussion

4.3.1 Energy-Volume Equations of State

The energies calculated according to the above methods result in five sets of simulation

data spanning the 2.5 cm3/mol to 21.3 cm3/mol molar volume range: VMC two-body

simulations (VMC-2B), VMC with perturbatively treated three-body interactions

(VMC(3B)), VMC with fully incorporated three-body interactions (VMC+3B), VPI

two-body simulations (VPI-2B), and VPI with perturbatively treated three-body

96

interactions (VPI(3B)). In addition, energies from VPI with fully incorporated three-

body interactions (VPI+3B) are reported at four selected densities. For reference,

the six di↵erent energy calculation methods and their associated labels are also

summarized in Table 4.1. The VMC optimized wavefunction parameters, along with

the calculated total and three-body energies for each set of simulations are tabulated

in Appendix Tables 4.8, 4.9, and 4.10. From all but the VPI+3B simulations, there are

enough data to derive reliable equations of state. Of these five data sets, the VPI(3B)

data represents the highest level of theory, addressing error due to both the variational

principle and many-body interactions. These calculated energies are shown below in

Figs. 4.3a and b, separated into low and high density regions, respectively.

The energies from each of the simulations are used to fit energy-volume equations

of state (EV-EOS) in the form of Eq. 4.4. Values of the fitting parameters determined

for each data set are tabulated in Tables 4.2 and 4.3 below. The resulting EV-EOS

fit the calculated energies within 0.35% in the low density region, with most data

points fitting within 0.001-0.1%. In the high density region, the largest error in the

fit is 1.14% with the majority of data points fitting the EV-EOS within 0.001-0.15%.

Simulations which include three-body interactions have much lower residuals in the

high density region with a maximum error of 0.47%. For all energy-volume equations

of state, the statistical uncertainties in the fitting parameters are less than 10%.

Fig. 4.3 shows the energy-volume relationship obtained from the VPI(3B) simulation

data, with the di↵erence between the calculated EV-EOS from both VPI(3B) and

VPI-2B and previously reported experimental[26] and theoretical[5] energies shown

in Fig. 4.3c. From this figure we see that at our highest level of theory we are able

to reproduce experimental findings to better than 2.5 J/mol (energies in this region

range from about -55 to -20 J/mol). The calculated EV-EOS from the VPI(3B) data

is also in good agreement with the DMC energies reported by Cazorla and Boronat

in Ref. [5]. However, the energies from Ref. [5] in this molar volume region do not

include contributions from three-body interactions and are therefore expected to be

97

Table 4.1: Summary of the six di↵erent simulation methods implemented in this
study and their associated labels.

Label Method description

VMC-2B VMC simulations utilizing the Aziz HFD-B(He) pair potential[9]
VMC(3B) VMC simulations utilizing the Aziz HFD-B(He) pair potential

with perturbative three-body corrections using the Cencek three-
body potential[10]

VMC+3B VMC simulations utilizing the Aziz HFD-B(He) pair potential
with fully incorporated three-body interactions using the Cencek
three-body potential

VPI-2B VPI simulations utilizing the Aziz HFD-B(He) pair potential
VPI(3B) VPI simulations utilizing the Aziz HFD-B(He) pair potential with

perturbative three-body corrections using the Cencek three-body
potential

VPI+3B VPI simulations utilizing the Aziz HFD-B(He) pair potential with
fully incorporated three-body interactions using the Cencek three-
body potential

98

Figure 4.3: Energy vs. molar volume from VPI(3B) simulations in the (a) low and
(b) high density regions along with the best fit Birch energy-volume EOS (blue line).
Experimental data from [26] is provided for comparison in the low density region
(black squares). (c) Di↵erence between energies reported by [26] and [5] and the best
fit Birch equation from VPI-2B and VPI(3B). In most cases, statistical uncertainties
are smaller than the symbol size. Continued on next page.

99

 0

 50

 100

 150

 200

 250

 300

 350

 11 12 13 14 15

E
 (

J/
m

o
l)

Vm (cm3/mol)

(a) VPI(3B)
Birch Fit

 16 17 18 19 20 21
-60

-50

-40

-30

-20

-10

 0

 10

E
 (

J/
m

o
l)

VPI(3B)
Birch Fit
Edwards

 0

 10

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9 10

E
 (

kJ
/m

o
l)

Vm (cm3/mol)

(b)
VPI(3B)
Birch Fit

 -2

 -1

 0

 1

 2

 3

 4

 5

 6

 14 15 16 17 18 19 20 21

∆
E

 (
J/

m
o
l)

(c) Edwards - VPI(3B)
Edwards - VPI-2B
Cazorla - VPI(3B)
Cazorla - VPI-2B

Figure 4.3: Continued

100

Table 4.2: Fitting parameter values for the low density (Vm � 11.02 cm3/mol) EV-
EOS for each simulation set. In this density range, a = 0. The reported equations
fit the energies in this density range with RMS error of 0.05 J/mol and a maximum
residual (r

max

) of 0.13 J/mol.

Simulation Eo Po b c d
(J/mol) (bar) (bar(cm3/mol)3) (bar(cm3/mol)7/3) (bar(cm3/mol)5/3)

VMC-2B -5589.6 ± 226.8 -398.8 ± 21.9 10550998.1 ± 179253.8 -4727328.6 ± 112551.3 797386.7 ± 25456.7
VMC(3B) -4357.9 ± 304.5 -299.4 ± 28.5 8994196.1 ± 256993.2 -3906621.8 ± 157778.9 638657.9 ± 34912.7
VMC+3B -4726.9 ± 193.7 -335.9 ± 18.7 9267951.2 ± 153323.1 -4082828.0 ± 96216.8 679339.9 ± 21751.1
VPI-2B -5783.3 ± 198.2 -419.1 ± 19.1 10644347.1 ± 157538.9 -4801254.9 ± 98722.4 816351.9 ± 22288.8
VPI(3B) -4441.2 ± 207.3 -309.8 ± 20.0 8981022.4 ± 164722.4 -3918818.9 ± 103222.5 644507.7 ± 23304.5

102

Table 4.3: Fitting parameter values for the high density (Vm  11.02 cm3/mol) EV-
EOS for each simulation set. In this density range, Po = 0. The reported equations
fit the energies in this density range with RMS error of 17.1 J/mol and a maximum
residual (r

max

) of 73.8 J/mol.

Simulation Eo a b c d
(J/mol) (bar(cm3/mol)11/3) (bar(cm3/mol)3) (bar(cm3/mol)7/3) (bar(cm3/mol)5/3)

VMC-2B -12868.2 ± 911.9 -7652817.0 ± 804833.2 23652401.4 ± 1112120.0 -11063674.4 ± 553938.0 1987749.0 ± 118101.6
VMC(3B) -10064.6 ± 733.8 -18041859.9 ± 931792.3 27527260.9 ± 1174835.5 -10763538.2 ± 533173.9 1715066.5 ± 103753.1
VMC+3B -11033.1 ± 283.3 -19116327.0 ± 258296.3 28919163.1 ± 353839.5 -11420539.5 ± 174765.3 1847733.0 ± 36963.4
VPI-2B -12934.8 ± 952.9 -7685758.7 ± 810681.7 23700628.5 ± 1128983.9 -11095794.5 ± 567531.1 1995188.6 ± 122217.9
VPI(3B) -10951.6 ± 233.6 -18980798.8 ± 200662.4 28780753.6 ± 278766.9 -11365828.5 ± 139785.4 1836496.6 ± 30030.1

103

in better agreement with the VPI-2B data from this study, which is shown to be the

case in Fig. 4.3c.

4.3.2 Evaluation of the Perturbative Treatment

The accuracy of the perturbative treatment of three-body interactions in the VMC

and VPI simulations is assessed by comparing the two- and three-body potential

energies to those obtained from VMC and VPI full-incorporation calculations. Due

to the high computational cost, VPI+3B calculations are only performed at the

first density in the high density region, as well as three of the highest densities,

corresponding to molar volumes of 11.02 cm3/mol, 7.88 cm3/mol, 6.00 cm3/mol, and

4.00 cm3/mol. At these molar volumes, three-body interactions are more significant

and are therefore more likely to impact the optimized wavefunction and ground

state energies. The total energy with long-range corrections (E
tot

), two-body (V
2

),

and three-body (V
3

) potential energies at these molar volumes from the VMC(3B)

and VMC+3B data sets are tabulated below in Table 4.4 along with the percent

di↵erences. Corresponding quantities from the VPI(3B) and VPI+3B simulations

are given in Table 4.5.

The data in Tables 4.4 and 4.5 indicate that even at these low molar volumes,

the total energies and three-body potential energies obtained from perturbative and

full-incorporation simulations are in very good agreement with one another, di↵ering

by less than 0.26% and 2.5%, respectively. Interestingly, there is a more significant

di↵erence in the average two-body potential energies calculated from the perturbative

and full-incorporation treatments. This suggests that the full incorporation of three-

body interactions has a non-negligible e↵ect on the ground state wavefunction. The

percent di↵erences in the VMC variational parameters are provided in the Appendix,

Table 4.8. Though the optimized parameters are expected to change slightly from

VMC-2B to VMC+3B simulations due to the additional round of optimization[16],

from this data it is apparent that the percent di↵erence in the b parameter arising from

101

Table 4.4: Comparison of E
tot

, V
2

, and V
3

energies from VMC(3B) and VMC+3B.

Vm Simulation E
tot

V
2

V
3

(cm3/mol) (J/mol) (J/mol) (J/mol)

11.02 VMC(3B) 344.68 ± 0.01 -283.98 ± 0.03 -18.54 ± 0.07
VMC+3B 344.17 ± 0.01 -278.16 ± 0.03 -18.94 ± 0.01

% di↵erence 0.148% 2.07% 2.13%
7.88 VMC(3B) 1598.43 ± 0.28 570.65 ± 0.06 -156.02 ± 0.28

VMC+3B 1595.81 ± 0.02 592.91 ± 0.05 -158.09 ± 0.01
% di↵erence 0.164% 3.83% 1.32%

6.00 VMC(3B) 4432.68 ± 0.82 3270.75 ± 0.09 -696.53 ± 0.83
VMC+3B 4425.92 ± 0.02 3335.38 ± 0.09 -704.38 ± 0.01

% di↵erence 0.153% 1.96% 1.12%
4.00 VMC(3B) 15802.56 ± 3.55 17124.93 ± 0.16 -4795.29 ± 3.55

VMC+3B 15765.70 ± 0.04 17327.61 ± 0.16 -4836.25 ± 0.03
% di↵erence 0.234% 1.18% 0.851%

104

Table 4.5: Comparison of E
tot

, V
2

, and V
3

energies from VPI(3B) and VPI+3B.

Vm Simulation E
tot

V
2

V
3

(cm3/mol) (J/mol) (J/mol) (J/mol)

11.02 VPI(3B) 330.5 ± 0.7 -284.6 ± 2.6 -19.8 ± 0.1
VPI+3B 330.1 ± 0.8 -277.1± 3.0 -20.3 ± 0.1

% di↵erence 0.121% 2.67% 2.49%
7.88 VPI(3B) 1574.1 ± 0.8 575.5 ± 1.1 -160.0 ± 0.1

VPI+3B 1572.5 ± 1.0 603.5 ± 1.1 -162.8 ± 0.1
% di↵erence 0.107% 4.75% 1.73%

6.00 VPI(3B) 4401.4 ± 1.5 3255.9 ± 1.7 -701.0 ± 0.2
VPI+3B 4394.9 ± 1.5 3323.7 ± 1.7 -711.3 ± 0.2

% di↵erence 0.148% 2.06% 1.46%
4.00 VPI(3B) 15736.4 ± 3.2 17058.9 ± 4.0 -4806.6 ± 0.8

VPI+3B 15695.8 ± 2.5 17270.4 ± 4.4 -4862.6 ± 0.9
% di↵erence 0.258% 1.23% 1.16%

105

the inclusion of three-body interactions increases significantly at lower molar volumes.

It has been demonstrated that changes in the b variational parameter have a greater

impact on the wavefunction than changes in the ai parameters[16], and therefore larger

percent di↵erences in the b parameter at lower molar volumes indicate an increasing

influence of three-body interactions on the ground state wavefunction. One possible

interpretation of the greater influence of the b parameter on the wavefunction is that

changing the ai parameters a↵ects the delocalization of the 4He atoms, which results

in opposing changes in the kinetic and potential energies. Therefore the e↵ects of

the ai parameters cancel out to an extent. Changes in the b parameter, however,

influence which interatomic distances may be sampled. This significantly impacts the

potential energy of the system without strong compensation from the kinetic energy.

The e↵ect of three-body interactions in the VPI simulations can be analyzed by

considering the sampled atomic configurations. The distribution of nearest neighbor

distances in the VPI(3B) and VPI+3B simulations is visualized in Fig. 4.4 for

simulations where Vm = 4.0 cm3/mol. From this figure, we see that the VPI+3B

simulations tend to sample shorter 4He-4He distances. This is due to the more

attractive three-body energies at these interatomic distances which help to stabilize

configurations that are energetically unfavorable when only two-body interactions are

considered. This is consistent with the more repulsive values of V
2

and more attractive

values of V
3

in the VPI+3B simulations reported in Table 4.5. The close agreement

between the total energies for the two sets of simulations given the di↵erence in V
2

values is therefore the result of a compensating change in the kinetic energy. It

is worth noting that the kinetic energy in this molar volume region ranges from

approximately 600 to 3500 J/mol, and therefore makes a non-negligible contribution

to the total energy. This illuminates the need for methods such as QMC which

can accurately treat zero point motion and its e↵ects on the kinetic and potential

energies. Overall, the results of this analysis show that properties depending on the

total energy, or derivatives thereof, can be calculated using the faster perturbative

approach without significant loss of accuracy. However, accurate analysis of the

106

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2.5 3 3.5 4 4.5 5 5.5

F
re

q
u

e
n

cy
 (

a
o
-1

)

Rnn (ao)

VPI(3B)
VPI+3B

Figure 4.4: Comparison of average first nearest neighbor distances from VPI(3B)
(red) and VPI+3B (green) simulations where Vm = 4.00 cm3/mol.

108

potential and kinetic contributions to the total energy may require fully incorporating

three-body interactions at higher densities.

4.3.3 Pressure-Volume Equations of State

The pressure-volume EOS for each of the simulation sets is constructed according to

Eq. 4.5 from the fitting parameters reported above. The five resulting equations are

shown in Fig. 4.5, along with experimental data from Driessen, et al.[24], and the

theoretical EOS reported by Cazorla and Boronat derived from DMC energies[5].

The EOS reported in Ref. [5] included a perturbative correction for all many-

body interactions from DFT calculations in the high density region. In Fig. 4.5,

the equations of state derived in the present study appear to separate into two

classes of overlaying equations: ones that include three-body interactions (VMC(3B),

VMC+3B, and VPI(3B)), and ones that consider only two-body interactions (VMC-

2B, VPI-2B). In addition to a visual comparison, the RMS error and maximum

residual of each EOS compared to the Driessen data[24], provided in Table 4.6, are

also quite similar within these two groups. Therefore, we will refer to three-body

equations and two-body equations in general for simplicity.

At the lowest densities shown in Fig. 4.5a, where three-body interactions are

not expected to be significant, each EOS agrees well with the experimental pressures

reported in [24]. However, even at moderate densities when the molar volume is less

than about 14.0 cm3/mol, the two-body equations begin to diverge from the three-

body equations, with the latter lying closer to the experimental data. Interestingly,

the Cazorla and Boronat EOS diverges from the experimental data more rapidly than

the VMC-2B or VPI-2B EOS from this study, resulting in an error of approximately

1 kbar near Vm = 11 cm3/mol. In the high density region (Fig. 4.5b), the di↵erences

between simulations with and without three-body interactions become more obvious

as two-body equations predict significantly higher pressures than the experimental

values at molar volumes below about 7.0 cm3/mol. The three-body simulations,

107

 0

 500

 1000

 1500

 2000

 2500

 3000

 12 14 16 18 20

P
re

ss
u

re
 (

b
a

r)

Vm (cm3/mol)

(a) Driessen
VMC-2B

VMC(3B)
VMC+3B

VPI-2B
VPI(3B)

Cazorla DMC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 3 4 5 6 7 8 9 10 11

P
re

ss
u

re
 (

kb
a

r)

Vm (cm3/mol)

(b) Driessen
VMC-2B

VMC(3B)
VMC+3B

VPI-2B
VPI(3B)

Cazorla DMC+GGA(v dW)

Figure 4.5: Comparison of all pressure-volume equations of state obtained for
each simulation set in the (a) low and (b) high density regions. For comparison,
experimental data from Ref. [24] is provided (red pluses) along with the theoretical
EOS reported in Ref. [5] (dotted black line). In the high density region, this
theoretical EOS is based on energies corrected for many-body interactions using DFT
calculations[5] and was parameterized for molar volumes below 8.5 cm3/mol. In both
density regions, the VMC-2B and VPI-2B equations overlay one another, as do the
VMC(3B), VMC+3B, and VPI(3B) equations.

109

Table 4.6: RMS error and maximum absolute error (r
max

) for each pressure-volume
EOS compared to experimental values from Driessen et al.[24] In the high density
region, the RMS error is calculated for Vm � 4.0 cm3/mol. At lower molar volumes,
four-body interactions are beginning to become significant and therefore both the
two-body and three-body equations of state diverge from experimental values.

Simulation Low Density EOS High Density EOS
RMSE, r

max

RMSE, r
max

(bar) (kbar)

VMC-2B 27.918, 73.51 15.113, 52.62
VMC(3B) 6.096, 28.58 0.826, 2.037
VMC+3B 6.228, 28.98 0.821, 2.043
VPI-2B 22.754, 60.69 15.031, 52.39
VPI(3B) 1.279, 45.82 0.811, 2.019

110

however, are in good agreement with experiment down to Vm = 4.0 cm3/mol. This

can be understood from the attractive nature of three-body interactions in this molar

volume range (Fig. 4.6). The attractive three-body potential for configurations

close to that of an equilateral triangle lowers the total energy, e↵ectively making

the system more compressible. The pressures calculated from three-body data are

therefore lower than the corresponding pressures obtained from two-body simulations.

At molar volumes near Vm = 2.5 cm3/mol, the Cazorla and Boronat EOS, which has

been corrected for all many-body interactions using DFT calculations, provides better

agreement with experiment. This sheds light on the increasing importance of 4-body

and higher many-body interactions as the density increases and suggests that below

4.0 cm3/mol, three-body interactions alone may not be su�cient for an accurate

model of this system.

The e↵ect of three-body interactions on the EOS is considered in greater detail

in Fig. 4.7, divided into low, middle, and high density regions. Here, the di↵erences

between the Driessen experimental pressure and both the VPI-2B and VPI(3B) EOS

are shown. Experimental error, estimated by Driessen et al. to be ± 0.3% Vm, is

shown on selected data points, as well as estimated uncertainties in the predicted

pressures. These uncertainties are estimated by sequentially fixing each parameter

from Eq. 4.4 at its fitted value ±1� or 2�, where � is the reported uncertainty in the

parameter value given in Tables 4.2 and 4.3, and refitting the remaining parameters,

resulting in 21 equations of state for each data set including the original EOS. At

each point where vertical error bars are reported, the lower and upper bounds have

been determined from the minimum and maximum values of these 21 equations at

that density.

In general, these figures show that in every density region, the inclusion of

three-body interactions using the Cencek, et al. potential[10] improves agreement

with experiment. In addition, we see that two-body simulations consistently

overestimate the pressure of the system. However, when the Cencek three-body

potential energy is incorporated, the calculated pressures are typically slightly lower

111

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

4.5 5.0 5.5 6.0 6.5

V
3
 (

K
/a

to
m

)

Rnn (ao)

Figure 4.6: Nonadditive three-body potential energy for a 4He equilateral trimer
with side lengths Rnn calculated using the three-body potential from Cencek, et

al.[10]. The energy is attractive where Rnn < 6.0 ao, corresponding to a molar volume
of approximately 13.6 cm3/mol.

112

Figure 4.7: � Pressure vs. Vm where � Pressure ⌘ P
Driessen

� P
VPI-2B

(blue) or
P
Driessen

� P
VPI(3B)

(red) calculated from the reported pressure-volume EOS. (a) Low
density region. Vertical error bars are smaller than the symbol size for Vm > 14.0
cm3/mol. (b) Middle density region. Vertical error bars are smaller than the symbol
size at all molar volumes for the VPI(3B) EOS, and where Vm > 7.0 cm3/mol for
the VPI-2B EOS. (c) High density region. Vertical error bars are smaller than the
symbol size at all molar volumes above 2.5 cm3/mol. Continued on next page.

113

 -80

 -60

 -40

 -20

 0

 20

 40

 60

 80

 12 14 16 18 20

∆
P

re
ss

u
re

 (
b

a
r)

Vm (cm3/mol)

(a)
VPI(3B)
VPI-2B

 -20

 -18

 -16

 -14

 -12

 -10

 -8

 -6

 -4

 -2

 0

 2

 5 6 7 8 9 10 11

∆
P

re
ss

u
re

 (
kb

a
r)

Vm (cm3/mol)

(b)
VPI(3B)
VPI-2B

Figure 4.7: Continued.

114

-350

-300

-250

-200

-150

-100

 -50

 0

 50

 100

 150

 200

 2.5 3 3.5 4 4.5 5 5.5 6

∆
P

re
ss

u
re

 (
kb

a
r)

Vm (cm3/mol)

(c)
VPI(3B)
VPI-2B

Figure 4.7: Continued.

115

than the experimental values, though still in good agreement. Although these

di↵erences in behavior appear most pronounced in the middle and high density

regions, the significant di↵erence in curvature of the two trends in Fig. 4.7a

suggests that properties such as the bulk compressibility, which depends on the

derivative of pressure with respect to volume, will change significantly when three-

body interactions are incorporated, even at relatively low densities. Therefore, when

these properties are of interest, three-body interactions should be accounted for in

some manner at all densities.

Fig. 4.8 assesses the relative accuracy of the perturbative treatment via

comparison to the full-incorporation EOS. Here, both of the VMC three-body

equations of state are used to allow for a more direct comparison of the di↵erent

three-body treatments. Vertical error bars have been calculated in the same

manner as before, and in the majority of cases the pressures predicted from the

VMC perturbative and full-incorporation treatments agree within their statistical

uncertainties. Overall, the di↵erence between the two treatments is at least an order of

magnitude less than the error compared to experimental data[24], indicating that the

more computationally e�cient perturbative treatment does not result in a significant

loss of accuracy over the full-incorporation method in the molar volume range studied

here.

4.4 Conclusion

In the above study we have demonstrated that the addition of the Cencek et al. three-

body 4He potential[10] into QMC simulations of high pressure hcp solid 4He improves

agreement with experimental energies, and results in more reliable equations of state

from both VMC and VPI simulations than those obtained from corresponding two-

body simulations at molar volumes from 21.3 cm3/mol down to 4.0 cm3/mol. Even

at low densities where three-body interactions make a relatively small contribution

the total energy, the e↵ects of three-body interactions on the EOS are non-negligible.

116

Figure 4.8: Di↵erence in predicted pressure from VMC(3B) and VMC+3B equations
of state vs. Vm in the (a) low, (b) middle, and (c) high density regions. Uncertainties
in the pressure are shown at selected molar volumes. Continued on next page.

117

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 12 14 16 18 20

P
V

M
C

(3
B

)-
P

V
M

C
+

3
B
 (

b
a

r)

Vm (cm3/mol)

(a)

-0.3

-0.2

-0.1

 0.0

 0.1

 0.2

 0.3

 5 6 7 8 9 10 11

P
V

M
C

(3
B

)-
P

V
M

C
+

3
B
 (

kb
a

r)

Vm (cm3/mol)

(b)

Figure 4.8: Continued.

118

 -10

 -5

 0

 5

 10

 15

 20

 2.5 3 3.5 4 4.5 5 5.5 6

P
V

M
C

(3
B

)-
P

V
M

C
+

3
B
 (

kb
a

r)

Vm (cm3/mol)

(c)

Figure 4.8: Continued.

119

Although the absolute errors in the predicted pressures are similar at low densities

for simulations with and without three-body interactions, the di↵erence in curvature

of the pressure-volume relationships can a↵ect the elastic properties of the system.

For example, bulk compressibilities K calculated from the VPI-2B or VPI(3B) EOS

(Table 4.7) di↵er by 3-5% in the molar volume range from Vm = 16.22 cm3/mol to

20.78 cm3/mol. At lower molar volumes the calculatedK values are shown to di↵er by

as much as 17.9% at Vm = 7.88 cm3/mol. This, however, does not indicate the need

for a computationally expensive incorporation of the Cencek potential throughout

the simulations. From Fig. 4.8, we can conclude that the more e�cient perturbative

implementation is su�cient to accurately describe the 4He system in the studied

density range without significantly increasing computational cost.

Overall, the proposed perturbative treatment of three-body interactions utilizing

the Cencek et al. three-body potential[10] has been shown to provide an e�cient and

reliable description of the ground state properties of hcp solid 4He at lower molar

volumes than can be described by two-body models. The equations of state derived

here from three-body simulations are in closer agreement with experimental data

than either equations of state based on two-body simulations or the DFT-corrected

EOS reported by Cazorla and Boronat[5], except at the highest densities. The better

agreement from the Cazorla and Boronat EOS at these densities indicates that at

molar volumes below 4.0 cm3/mol, higher many-body interactions are becoming

important, and therefore we would need to go beyond the three-body model in order

to accurately describe the hcp 4He system at higher densities.

120

Table 4.7: Bulk compressibility K (bar) calculated from either the VPI-2B or
VPI(3B) EOS at selected molar volumes.

Vm VPI-2B VPI(3B) % Di↵erence
(cm3/mol)

20.78 310.3 294.9 5.089
19.36 457.7 442.3 3.422
18.13 668.0 646.7 3.240
16.22 1264 1210 4.365
13.73 3106 2907 6.619
11.90 6321 5812 8.390
9.69 16010 14604 9.185
7.88 43514 36360 17.910

121

4.5 References

[1] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995). 84, 87, 90

[2] S. Ujevic and S. A. Vitiello, Journal of Physics: Condensed Matter 19, 116212 (2007). 85

[3] M. J. Cohen and J. N. Murrell, Chemical Physics Letters 260, 371 (1996). 85

[4] S.-Y. Chang and M. Boninsegni, The Journal of Chemical Physics 115, 2629 (2001). 85

[5] C. Cazorla and J. Boronat, Journal of Physics: Condensed Matter 20, 015223 (2008). 85,

97, 99, 107, 109, 120

[6] S. Grimme, Journal of Computational Chemistry 27, 1787 (2006). 85

[7] L. W. Bruch and I. J. McGee, The Journal of Chemical Physics 59, 409 (1973). 85

[8] C. Cazorla and J. Boronat, Phys. Rev. B 92, 224113 (2015). 86

[9] R. A. Aziz, F. R. McCourt, and C. C. Wong, Molecular Physics 61, 1487 (1987). 86, 88,

98

[10] W. Cencek, K. Patkowski, and K. Szalewicz, The Journal of Chemical Physics 131,

064105 (2009). 86, 87, 92, 98, 111, 112, 116, 120

[11] G. Garberoglio and A. H. Harvey, Journal of Research of the National Institute of

Standards and Technology 114, 249 (2009). 86

[12] G. Garberoglio, M. R. Moldover, and A. H. Harvey, Journal of research of the National

Institute of Standards and Technology 116, 729 (2011). 86

[13] G. Garberoglio and A. H. Harvey, The Journal of chemical physics 134, 134106 (2011).

86

[14] K. R. S. Shaul, A. J. Schultz, and D. A. Kofke, The Journal of Chemical Physics 137,

184101 (2012). 86

[15] K. R. Shaul, A. J. Schultz, D. A. Kofke, and M. R. Moldover, Chemical Physics

Letters 531, 11 (2012). 86

[16] A. L. Barnes and R. J. Hinde, The Journal of Chemical Physics 144, 084505 (2016). 86,

87, 88, 101, 106

122

[17] J.-P. Hansen and D. Levesque, Physical Review 165, 293 (1968). 87

[18] R. J. Hinde, Computer Physics Communications 182, 2339 (2011). 88, 89, 90

[19] A. Sarsa, K. E. Schmidt, and W. R. Magro, The Journal of Chemical Physics 113, 1366

(2000). 88, 90

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

The Journal of Chemical Physics 21, 1087 (1953). 89

[21] H. F. Trotter, Proceedings of the American Mathematical Society 10, 545 (1959). 89

[22] R. J. Hinde, Chemical Physics Letters 460, 141 (2008). 93

[23] T. Williams, C. Kelley, and many others, Gnuplot 4.2: an interactive plotting program,

http://gnuplot.sourceforge.net/, 2009. 96

[24] A. Driessen, E. van der Poll, and I. F. Silvera, Phys. Rev. B 33, 3269 (1986). 96, 107,

109, 110, 116

[25] J. J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in Numerical

Analysis, edited by G. Watson, volume 630 of Lecture Notes in Mathematics, pp. 105–116,

Springer Berlin Heidelberg, 1978. 96

[26] D. O. Edwards and R. C. Pandorf, Phys. Rev. 140, A816 (1965). 97, 99

123

4.6 Appendix

Table 4.8: Optimized wavefunction parameters from VMC-2B and VMC+3B
simulations.

VMC-2B VMC+3B % Di↵erence
Vm axy az b axy az b axy az b

(cm3/mol) (a�2

o) (a�2

o) (ao) (a�2

o) (a�2

o) (ao) (%) (%) (%)

21.30 0.1481 0.1476 5.42202 0.1502 0.1494 5.40018 1.408 1.212 0.404
20.78 0.1555 0.1549 5.41794 0.1578 0.1572 5.39434 1.468 1.474 0.437
20.29 0.1630 0.1624 5.41374 0.1655 0.1650 5.38778 1.522 1.588 0.481
19.81 0.1706 0.1701 5.40969 0.1736 0.1730 5.38161 1.743 1.690 0.520
19.36 0.1785 0.1779 5.40542 0.1818 0.1811 5.37616 1.832 1.783 0.543
18.93 0.1864 0.1857 5.40214 0.1901 0.1894 5.36994 1.965 1.973 0.598
18.52 0.1945 0.1937 5.39881 0.1987 0.1981 5.36448 2.136 2.246 0.638
18.13 0.2026 0.2021 5.39492 0.2075 0.2072 5.35875 2.390 2.492 0.673
17.75 0.2114 0.2109 5.39169 0.2164 0.2157 5.35342 2.338 2.250 0.712
16.22 0.2595 0.2589 5.33359 0.2625 0.2621 5.31010 1.149 1.228 0.441
14.87 0.3090 0.3082 5.31036 0.3130 0.3125 5.28218 1.286 1.386 0.532
13.73 0.3620 0.3617 5.28892 0.3672 0.3667 5.25619 1.426 1.373 0.621
12.75 0.4186 0.4180 5.26881 0.4252 0.4247 5.23152 1.564 1.590 0.710
11.90 0.4791 0.4786 5.24982 0.4870 0.4862 5.20764 1.635 1.575 0.807
11.02 0.5556 0.5548 5.22638 0.5522 0.5516 5.21126 0.614 0.578 0.290
9.69 0.7046 0.7040 5.19194 0.6994 0.6986 5.17165 0.741 0.770 0.392
8.53 0.8824 0.8819 5.15733 0.8739 0.8733 5.13124 0.968 0.980 0.507
7.88 1.0100 1.0090 5.13252 0.9985 0.9972 5.10224 1.145 1.176 0.592
6.00 1.6841 1.6821 4.93175 1.6823 1.6788 4.86071 0.107 0.196 1.451
5.00 2.2082 2.2057 4.83922 2.2121 2.2068 4.74770 0.176 0.050 1.909
4.00 2.9683 2.9668 4.71054 3.0068 2.9986 4.59011 1.289 1.066 2.590
3.00 4.1245 4.1228 4.51362 4.2840 4.2747 4.35534 3.794 3.618 3.569
2.50 5.4508 5.4476 4.27625 5.5501 5.5329 4.13400 1.805 1.554 3.383

124

Table 4.9: Summary of energies calculated from VMC and VPI simulations.
Uncertainties represent the 95% confidence interval.

Vm E
VMC-2B

E
VMC(3B)

E
VMC+3B

E
VPI-2B

E
VPI(3B)

E
VPI+3B

(cm3/mol) (K/atom) (K/atom) (K/atom) (K/atom) (K/atom) (K/atom)

21.30 -5.255 ± 0.001 -5.135 ± 0.001 -5.142 ± 0.001 -6.264 ± 0.032 -6.161 ± 0.032
20.78 -5.102 ± 0.001 -4.979 ± 0.001 -4.988 ± 0.001 -6.134 ± 0.035 -6.032 ± 0.035
20.29 -4.913 ± 0.001 -4.790 ± 0.001 -4.799 ± 0.001 -5.951 ± 0.035 -5.849 ± 0.035
19.81 -4.685 ± 0.001 -4.561 ± 0.001 -4.574 ± 0.001 -5.734 ± 0.035 -5.634 ± 0.035
19.36 -4.416 ± 0.001 -4.294 ± 0.001 -4.309 ± 0.001 -5.476 ± 0.036 -5.379 ± 0.036
18.93 -4.106 ± 0.001 -3.985 ± 0.001 -4.003 ± 0.001 -5.172 ± 0.037 -5.079 ± 0.037
18.52 -3.750 ± 0.001 -3.633 ± 0.001 -3.654 ± 0.001 -4.823 ± 0.037 -4.737 ± 0.037
18.13 -3.348 ± 0.001 -3.236 ± 0.002 -3.259 ± 0.001 -4.435 ± 0.038 -4.356 ± 0.038
17.75 -2.897 ± 0.001 -2.791 ± 0.002 -2.818 ± 0.001 -3.992 ± 0.039 -3.923 ± 0.039
16.22 -0.214 ± 0.001 -0.174 ± 0.002 -0.187 ± 0.001 -1.351 ± 0.040 -1.354 ± 0.040
14.87 4.035 ± 0.001 3.941 ± 0.003 3.920 ± 0.001 2.839 ± 0.045 2.689 ± 0.045
13.73 9.980 ± 0.001 9.657 ± 0.004 9.621 ± 0.001 8.712 ± 0.047 8.312 ± 0.048
12.75 17.906 ± 0.001 17.214 ± 0.005 17.160 ± 0.001 16.564 ± 0.051 15.774 ± 0.052
11.90 28.100 ± 0.001 26.848 ± 0.007 26.778 ± 0.001 26.670 ± 0.055 25.302 ± 0.056
11.02 43.688 ± 0.001 41.458 ± 0.009 41.397 ± 0.001 42.139 ± 0.086 39.754 ± 0.089 39.701 ± 0.100
9.69 84.105 ± 0.001 78.741 ± 0.015 78.634 ± 0.001 82.291 ± 0.107 76.699 ± 0.109
8.53 150.887 ± 0.002 139.033 ± 0.025 138.826 ± 0.002 148.678 ± 0.132 136.459 ± 0.136
7.88 211.024 ± 0.002 192.258 ± 0.034 191.942 ± 0.002 208.586 ± 0.131 189.338 ± 0.135 189.137 ± 0.117
6.00 616.937 ± 0.002 533.159 ± 0.100 532.345 ± 0.002 613.489 ± 0.135 529.165 ± 0.153 528.619 ± 0.178
5.00 1183.929 ± 0.003 976.864 ± 0.196 974.933 ± 0.003 1179.240 ± 0.183 971.176 ± 0.219
4.00 2477.490 ± 0.004 1900.717 ± 0.427 1896.283 ± 0.005 2470.558 ± 0.254 1892.415 ± 0.333 1887.88 ± 0.303
3.00 5888.382 ± 0.007 3986.885 ± 1.072 3975.837 ± 0.009 5877.281 ± 0.413 3974.841 ± 0.577
2.50 9733.440 ± 0.007 5949.746 ± 1.852 5935.463 ± 0.011 9718.597 ± 0.428 5941.117 ± 0.714

125

Table 4.10: Summary of three-body energies calculated from VMC(3B), VMC+3B,
VPI(3B), and VPI+3B simulations. Uncertainties represent the 95% confidence
interval.

Vm V
3,VMC(3B)

V
3,VMC+3B

V
3,VPI(3B)

V
3,VPI+3B

(cm3/mol) (K/atom) (K/atom) (K/atom) (K/atom)

21.30 0.1203 ± 0.0009 0.1192 ± 0.0001 0.1027 ± 0.0003
20.78 0.1227 ± 0.0009 0.1209 ± 0.0001 0.1029 ± 0.0004
20.29 0.1229 ± 0.0010 0.1215 ± 0.0001 0.1021 ± 0.0004
19.81 0.1240 ± 0.0010 0.1212 ± 0.0001 0.1002 ± 0.0004
19.36 0.1219 ± 0.0011 0.1197 ± 0.0001 0.0971 ± 0.0005
18.93 0.1209 ± 0.0012 0.1169 ± 0.0001 0.0926 ± 0.0005
18.52 0.1166 ± 0.0013 0.1126 ± 0.0001 0.0866 ± 0.0005
18.13 0.1123 ± 0.0014 0.1068 ± 0.0001 0.0789 ± 0.0006
17.75 0.1057 ± 0.0015 0.0990 ± 0.0001 0.0692 ± 0.0006
16.22 0.0406 ± 0.0020 0.0332 ± 0.0001 -0.0035 ± 0.0008
14.87 -0.0936 ± 0.0028 -0.1040 ± 0.0001 -0.1499 ± 0.0011
13.73 -0.3226 ± 0.0038 -0.3433 ± 0.0001 -0.3995 ± 0.0014
12.75 -0.6926 ± 0.0050 -0.7240 ± 0.0001 -0.7897 ± 0.0019
11.90 -1.2515 ± 0.0065 -1.2925 ± 0.0001 -1.3684 ± 0.0024
11.02 -2.2295 ± 0.0088 -2.2781 ± 0.0002 -2.3840 ± 0.0137 -2.4391 ± 0.0159
9.69 -5.3636 ± 0.0147 -5.4443 ± 0.0002 -5.5900 ± 0.0048
8.53 -11.8542 ± 0.0246 -12.0114 ± 0.0004 -12.2186 ± 0.0337
7.88 -18.7659 ± 0.0336 -19.0148 ± 0.0005 -19.2482 ± 0.0096 -19.5856 ± 0.0104
6.00 -83.7784 ± 0.0998 -84.7215 ± 0.0013 -84.3239 ± 0.0228 -85.5579 ± 0.0254
5.00 -207.065 ± 0.196 -209.265 ± 0.002 -208.064 ± 0.038
4.00 -576.773 ± 0.427 -581.699 ± 0.004 -578.143 ± 0.068 -584.905 ± 0.0796
3.00 -1901.50 ± 1.07 -1913.43 ± 0.01 -1902.44 ± 0.13
2.50 -3783.69 ± 1.85 -3802.16 ± 0.01 -3777.48 ± 0.18

126

Chapter 5

Three-Body Interactions and the

Elastic Constants of hcp Solid 4He

127

Abstract

The e↵ect of three-body interactions on the elastic properties of hexagonal

close packed (hcp) solid 4He is investigated using variational path integral

Monte Carlo (VPI) simulations. The nonzero elastic constants are calculated,

at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to

20.78 cm3/mol, from the bulk modulus and the three pure shear constants

C
0

, C
66

, and C
44

. Three-body interactions are accounted for using our

recently reported perturbative treatment with the Cencek nonadditive three-

body potential. Previous studies have attempted to account for the e↵ect of

three-body interactions on the elastic properties of solid 4He; however, these

calculations have treated zero point motions using either the Einstein or Debye

approximations, which are insu�cient in the molar volume range where solid

4He is characterized as a quantum solid. Our VPI calculations allow for a more

accurate treatment of the zero point motions which include atomic correlation.

From these calculations we find that agreement with the experimental bulk

modulus is significantly improved when three-body interactions are considered.

In addition, three-body interactions result in non-negligible di↵erences in the

calculated pure shear constants and nonzero elastic constants, particularly at

higher densities, where di↵erences of up to 26.5% are observed when three-body

interactions are included. We compare to available experimental data and find

that our results are generally in as good or better agreement with experiment

as previous theoretical investigations.

5.1 Introduction

For many decades, solid 4He has been a material of interest in the quantum chemical

community due to the highly quantum nature of the 4He atoms. The lightness of

the 4He atoms results in large zero point motions which dominate the material’s low-

temperature properties. These zero point motions are responsible for the persistence

of the 4He liquid phase at absolute zero and atmospheric pressure, and for an expanded

128

yet highly compressible lattice in the hexagonal close packed (hcp) solid phase[1]

which exists at pressures above 25.2 bar[2]. It follows that accurate treatment of

these zero point motions is necessary in order to predict reliable elastic properties of

this system. Previous theoretical investigations have employed quantum Monte Carlo

(QMC) methods such as variational QMC (VMC)[3, 4] and di↵usion QMC (DMC)[5]

in order to calculate the elastic constants at T = 0 K. In each of these studies the

potential energy was assumed to be pairwise additive. However, recently we have

shown that three-body interactions play an important role in the zero-temperature

equation of state (EOS), which can in turn greatly a↵ect the compressibility and

elastic constants of the system[6]. Although these e↵ects were most dramatic at high

densities, the curvature of the EOS was noticeably di↵erent in the low density region

for simulations with and without three-body interactions. Properties which depend

on the derivative of pressure with respect to volume, such as the bulk modulus, are

therefore influenced by three-body interactions even at low densities.

In light of the demonstrated influence of three-body interactions on the system’s

response to isotropic compression, it is of interest to determine what e↵ect three-

body interactions may have when other types of stress are applied. Recently, a

DMC investigation was reported by Cazorla and Boronat[7] in which e↵ective three-

body potentials parameterized using density functional theory (DFT) were fully

incorporated into the DMC simulations. These simulations were used to calculate

the zero temperature EOS and the bulk modulus, among other properties. Although

incorporation of the three-body potentials improved agreement with experimental

data compared to two-body simulations, the calculated properties varied depending on

whether the potential was parameterized from atomic forces or energies, with di↵erent

potentials performing better for di↵erent properties. The same e↵ective three-body

potentials were also used to calculate the classical shear modulus (C
44

) of the system

in the absence of zero point motion. The authors compared the classical C
44

values

to quantum values calculated from the DMC simulations (though the quantum C
44

values were not reported) and found that at a molar volume of approximately 4.5

129

cm3/mol this di↵erence amounted to about 2 GPa, or roughly 5% of the reported

classical value. However, at higher densities the crystal becomes more classical, and

therefore it is expected that a classical approach would result in larger errors at lower

densities.

In the same year, Grechnev and coworkers published a study in which semiem-

pirical calculations utilizing a reparameterized version of the three-body potential

from Bruch and McGee[8] were used to derive the elastic constants at pressures as

high as 100 GPa[9]. This study, however, treated the zero point motions within the

Debye approximation which has been shown to be unreliable in the modeling of solid

4He[10]. Similar studies by the same group calculated the theoretical sound velocities,

as well as the elastic response of hcp 4He to anisotropic compression, using the same

reparameterized three-body potential while treating zero point motion within the

Einstein model[11, 12]. The results of these investigations suggested that three-body

interactions do substantially impact the elastic properties of solid 4He beyond what is

predicted when only two-body interactions are considered. However, to truly quantify

this e↵ect at lower densities where 4He behaves as a quantum crystal, a more accurate

treatment of the three-body interactions which dominate the crystal’s properties must

be implemented.

It is our aim to calculate the elastic constants using methods which accurately

treat the zero point motions as well as three-body interactions. In our previous

investigation[6] we demonstrated that accurate ground state properties can be

calculated using variational path integral Monte Carlo (VPI)[2] two-body energies

with a perturbative three-body correction calculated from the nonadditive three-

body potential reported by Cencek, et al.[13]. We will therefore utilize this approach

in order to e�ciently incorporate three-body interactions into calculations of the

elastic properties of hcp solid 4He while accurately treating zero point motion. This

investigation constitutes the first implementation of the Cencek three-body potential

in the calculation of the elastic properties of hcp 4He.

130

In the following section we review the relationships between the bulk modulus and

nonzero elastic constants in hcp solid 4He as well as the QMC simulation methods

employed in this study. Next, the bulk moduli, pure shear constants, and elastic

constants calculated with and without three-body contributions are evaluated against

one another as well as against previous experimental and theoretical calculations.

5.2 Computational Methods

5.2.1 Definition of the Elastic Constants for hcp 4He

The zero-temperature elastic constants of hcp 4He were calculated following the

method prescribed by Cazorla and Boronat[5]. For an hcp crystal, there are five

nonzero elastic constants: C
11

, C
12

, C
13

, C
33

, and C
44

(the shear modulus). Each

of the nonzero elastic constants can be determined through calculation of the pure

shear constants (C
0

, C
66

, and C
44

) along with the bulk modulus, K, and the c/a ratio

dependence on molar volume. Previous experimental and theoretical investigations

have concluded that the optimal c/a ratio in hcp 4He is independent of molar

volume and very close to the ideal value of c/a = 1.633 for an hcp lattice[5, 11, 14].

Therefore,
� �ln c/a

�V

�
V=V0

= C33�C11�C12+C13
C0

= 0, where here and elsewhere V
0

refers

to the equilibrium geometry of the system with a given molar volume. Taking

advantage of previously determined relationships between the elastic constants in

an hcp lattice[5, 14, 15], the remaining nonzero elastic constants can be calculated

according to Eqs. 5.1-5.4[5].

C
11

= K + C
66

+
1

18
C

0

(5.1)

C
12

= K � C
66

+
1

18
C

0

(5.2)

C
13

= K � 1

9
C

0

(5.3)

C
33

= K +
2

9
C

0

(5.4)

131

K is calculated in a straightforward manner from the previously reported pressure-

volume EOS[6] following Eq. 5.5:

K = �V
⇣�P
�V

⌘

V=V0

=
C

33

(C
11

+ C
12

)� 2C2

13

C
11

+ C
12

+ 2C
33

� 4C
13

. (5.5)

The three pure shear constants quantify the response of the hcp 4He crystal to

changes in the c/a ratio (C
0

), the angle between the x- and y-axes in the basal plane

(C
66

), and the angle between the z-axis and the basal plane (C
44

). They are calculated

from the second derivatives of the internal energy with respect to the deformation

parameters ⌘, �, and ✏ (also refered to as heterogeneous strain variables[5]) applied

to the primitive lattice vectors of the crystal, respectively. In the undistorted crystal,

the primitive lattice vectors are given by

a
1

= a(
p
3

2

i+ 1

2

j)

a
2

= a(
p
3

2

i� 1

2

j)

a
3

= ck.

(5.6)

where a and c are the hcp lattice parameters. We note that our primitive lattice

vectors di↵er from those reported by Cazorla and Boronat due to di↵erences in the

orientation of our unit cell. These vectors can be generalized to the form shown below:

a
1

= a��1�1/2(��1

p
3

2

i+ 1

2

j+ ✏
2

k)

a
2

= a��1�1/2(��1

p
3

2

i� 1

2

j+ ✏
2

k)

a
3

= c�2k.

(5.7)

where � =
p

(1 + ⌘). This construction of the primitive lattice vectors maintains

constant volume of the unit cell when the deformation parameters are changed. The

system is in the equilibrium geometry when ⌘ = ✏ = 0 and � = 1. In the calculation

of the pure shears, only one parameter is allowed to vary from equilibrium in a given

simulation. The values of the pure shear constants can then be determined according

132

the relationships in Eqs. 5.8-5.10.

C
0

=
2

V
0

(�2E/�⌘2)V=V0 = C
11

+ C
12

+ 2C
33

� 4C
13

(5.8)

C
66

=
1

V
0

(�2E/��2)V=V0 =
1

2
(C

11

� C
12

) (5.9)

C
44

=
1

V
0

(�2E/�✏2)V=V0 (5.10)

5.2.2 Energy Calculations in the Distorted Lattices

5.2.2.1 VMC

Approximate ground state wavefunctions for a range of molar volumes are obtained

from VMC optimizations following the previously reported procedure[16] in which

a Jastrow-McMillan style trial wavefunction (Eq. 5.11 below) is optimized by

determining the values of axy, az, and b which minimize the total energy per atom.

 = A
Y

i

e�a
xy

(s2
i,x

+s2
i,y

)e�a
z

s2
i,z

Y

(i,j)2IPs

e�
1
2 (b/Rij

)

5
(5.11)

In the above equation, A is a normalization factor, ~si is the displacement vector of

atom i from its average lattice site, and Rij is the instantaneous interatomic distance

between atoms i and j. IPs in Eq. 5.11 denotes the set of interacting pairs of atoms,

defined to be those atoms whose average lattice positions in the ideal lattice are

separated by less than 2.05Rnn. Only atomic pairs in the set of IPs are accounted for

in the potential energy calculations throughout the VMC simulations. Neighbor lists

are constructed from the lattice in its equilibrium geometry before changing ⌘, �, or

✏, thereby ensuring that the same interacting pairs are employed in each simulation.

Throughout the VMC simulation, new atomic coordinates are selected for each

atom using Metropolis Monte Carlo moves[17] by sampling the probability density

of the trial wavefunction. The pairwise-additive potential energy is evaluated for all

133

interacting pairs every 50 Monte Carlo cycles (MCCs) as shown in Eq. 5.12,

V =
X

(i,j)2IPs

V
2

(Rij), (5.12)

where V
2

is taken to be the Aziz HFD-B(He) pair potential[18]. In these simulations

one MCC represents an attempt to move each atom in the lattice once in sequential

fashion. The kinetic energy and total energy are also recorded every 50 MCCs, along

with snapshots of the atomic positions. We have previously shown that this snapshot

interval is useful for eliminating correlation between sequential snapshots, allowing for

a simplified calculation of the statistical uncertainties of the average energies. For a

su�ciently long simulation, the average energy converges to the expectation value for

the trial wavefunction within statistical uncertainty. For this investigation, 3.2x107

MCCs are performed, corresponding to 6.4x105 snapshots which are then utilized in

a reweighting procedure[16] in order to allow for a more precise determination of the

optimal wavefunction parameters. This is a smaller number of snapshots than was

utilized in the previous study in which both VMC and VPI energies were used to derive

pressure-volume equations of state (EOSs)[6], and therefore leads to more uncertainty

in the optimized wavefunction parameters. However, for this investigation, the VMC

optimized wavefunctions are used solely as starting trial wavefunctions for VPI,

which is relatively insensitive to small changes in the trial wavefunction parameters.

Therefore we can reduce the number of snapshots used in our VMC optimizations

without greatly a↵ecting convergence in the VPI simulations.

Wavefunctions are optimized for hcp 4He systems consisting of 448 atoms with

molar volumes ranging from 7.88 cm3/mol to 20.78 cm3/mol with periodic boundary

conditions applied in all directions. In addition to the equilibrium geometry,

wavefunctions are optimized for 4 to 6 di↵erent values of ⌘, �, and ✏ at each molar

volume. Optimal parameters from ideal lattices at each molar volume are used to

initialize the trial wavefunctions of the distorted systems. We then alternate between

optimization of the ai parameters and optimization of the b parameter until the

134

estimated next change in b is less than 0.1%. Linear interpolation of the optimized

axy, az, and b variational parameters as a function of the deformation parameters is

also used to obtain approximate optimized wavefunctions for a total of 8 di↵erent

values of each of the deformation parameters at each density.

5.2.2.2 VPI

The approximate ground state wavefunctions from VMC are used as starting trial

wavefunctions for VPI simulations[2] (also referred to as the path integral ground

state method, or PIGS[19]). This is an exact method which eliminates error due

to the variational principle in our ground state energies. In this method, the hcp

4He system is modeled as a p-bead polymer chain where each bead represents a

replica of the full N
VPI

atom system. Progression down the chain in either direction

corresponds to evolution of the trial wavefunction tr in imaginary time. Specifically,

links between the beads in the chain correspond to evolution of the wavefunction

through �⌧ units of imaginary time via application of the imaginary time propagator,

exp[�Ĥ�⌧/~][20]. This method relies on the fact that for a given Hamiltonian, Ĥ,

any tr can be written as a linear combination of the eigenfunctions of Ĥ. Given a

su�ciently long chain (large p) and small �⌧ , the imaginary time propagator projects

out the lowest energy eigenstate from this linear combination, corresponding to the

exact ground state wavefunction gs, provided that the overlap between tr and gs

is not negligible.

Our VPI simulations are carried out using the QSATS code[20] which has been

modified to use independent axy and az parameters as well as nonequilibrium values

of ⌘, �, and ✏. This program utilizes Metropolis Monte Carlo moves to generate

atomic configurations in the system by sampling the probability density for each

bead according to Eq. 5.13,

P (C) = A tr(Q
1

) tr(Qp)exp
⇣
� �⌧

~

p�1X

j=1

F (Qj,Qj+1

)
⌘
, (5.13)

135

where C = Q
1

, Q
2

, ..., Qp is the configuration of the entire polymer chain and Qj

represents the configuration in the jth replica[20]. The function F (Qj,Qj+1

) in Eq.

5.13 is related to the Trotter factorization[21] of the imaginary time propagator and

depends on the potential energy of the N
VPI

atom system, the mass of each atom,

and the displacement of each particle from bead j to j + 1[20]. Eq. 5.13 indicates

that as the number of beads p increases and the imaginary time step �⌧ decreases,

the probability density of the interior beads converges to | gs|2 while the terminal

beads sample | tr gs|. From the distribution of the interior beads we can sample

the ground state values of any coordinate-space observables. For a more in depth

description of this method and the QSATS code, the reader is directed to Refs. [20],

[2], and [6].

Due to the greater computational cost of VPI simulations, the lattice is reduced to

180 4He atoms. A single MCC in these simulations now refers to an attempt to move

each of the atoms in each replica once, sequentially. For each attempted move, the

QSATS algorithm automatically incorporates all contributions to the F function in

Eq. 5.13 except for contributions from the potential energy, V . The move is accepted

if the new potential energy is lower than in the previous configuration, otherwise it

is conditionally rejected with the probability e��V�⌧/~. The simulations reported

here make use of p = 430 replicas and a time step �⌧ = 200 a.u., along with the

same Aziz pair potential used above. Earlier investigations of the hcp 4He system

using the QSATS code determined that the calculated properties of the system agreed

within their statistical uncertainties when 200 a.u.  �⌧  500 a.u., and therefore

the observables are independent of the time step in this range. In addition, we

have previously shown that the use of VMC-optimized wavefunctions in our VPI

simulations results in rapid convergence to the ground state wavefunction[6]. The

average two-body potential energy was found to converge at most densities after

only 23 replicas, corresponding to an imaginary time of 4600 a.u. Our 430 replica

(86000 a.u.) simulations are therefore su�cient to achieve convergence to the ground

state. Average energies for each replica are calculated from 6000 snapshots which

136

were obtained every 1000 MCCs (after a 1x105 MCC warmup) in order to eliminate

serial correlation in the configurations. In addition, to reduce correlation between

sequential replicas, the average observables are only calculated for every 11th replica.

As in VMC, potential energy calculations from the VPI snapshots consider only

those atomic pairs considered to be interacting pairs according to the cuto↵ criterion

defined above. Contributions from atomic pairs separated by greater distances

are accounted for in the VPI simulations using a previously reported long-range

correction (LRC) procedure[16]. As before, atoms within the 180 4He atom crystal but

beyond the interacting pair cuto↵ (region 1) are treated using Gaussian quadrature.

For these distorted lattices, however, it is necessary to allow for an independent

Gaussian distribution along each Cartesian direction. The parameters describing

these Gaussian distributions are chosen so that the distributions reproduce the mean

squared displacements hu2

ji along each direction.

The infinite number of atoms beyond the 180 represented in the periodic boundary

conditions (region 2) are treated in the same manner as before by subtracting the

contributions from the interacting pairs and region 1 atoms from the infinite lattice

sum S⇤
6

/R6

nn, where the value of S⇤
6

=
1P
i=2

R6
nn

R6
1i

has been previously reported for an

ideal hcp lattice[22]. For the distorted hcp lattices in this study, S⇤
6

is calculated

for each value of the deformation parameters according to the procedure described

in Ref. [16]. In these simulations, Rnn refers to the nearest neighbor distance in the

undistorted lattice. Multiplication of the region 2 contribution to S⇤
6

/R6

nn by the C
6

parameter of the Aziz potential gives the region 2 LRC.

Previous calculations of elastic constants by Cazorla and Boronat[5] did not

include long-range corrections in the calculation of C
0

, C
66

, and C
44

. This was

justified by the fact that the distortion imposed by the heterogeneous strain variables

maintained the volume of the unit cell and therefore kept the solid’s density constant.

They concluded that the long-range correction would be constant and would not a↵ect

the second derivative from which the pure shear constants are calculated. We tested

this assumption by calculating the potential energy of our system with a molar volume

137

of 7.88 cm3/mol in the absence of zero point motion using various cuto↵ distances

while changing ✏. The potential energies calculated from each cuto↵ distance as well

as the potential energy containing the long-range correction are shown in Fig. 5.1.

For these calculations, a simulation cell consisting of 7920 4He atoms was used.

These data are found to be well described by the function V (✏) = a + b✏2. The

second derivative of V (✏) for each cuto↵ distance considered is provided in Table 5.1.

Using a cuto↵ distance of 2.05Rnn introduces an error in �2V/�✏2 of approximately

1.3% when the atoms are localized to their lattice sites. Even at the largest cuto↵

distance considered, 4.05Rnn, �2V/�✏2 di↵ers from the long-range correction value by

more than the statistical uncertainty. It is possible that in the presence of zero point

motion these di↵erences could have a bigger impact on the calculated pure shear

constants, and therefore we include long-range corrections to the potential energy in

all of our calculations.

5.2.2.3 Three-Body Interactions

Three-body contributions to the potential energy are calculated as a perturbative

correction to the total energy obtained from the two-body VPI simulations following

our previously reported method[6]. This correction is calculated by evaluating the

nonadditive three-body potential reported by Cencek et al.[13] at each recorded VPI

snapshot for all trimers formed by an atom and two of its nearest neighbors (referred

to as “interacting trimers”). Using this method, trimers composed of three nearest

neighbor pairs will appear in the interacting trimer list three times, and therefore care

is taken to avoid triple counting. We have previously used this method to calculate the

zero-temperature EOS for hcp solid 4He using both VMC and VPI simulations, and

found that this perturbative treatment produced EOSs in much closer agreement with

the experimental pressure-volume data from Driessen, et al.[6, 23]. The results from

this perturbative treatment were also in very good agreement with those obtained

from fully incorporating the Cencek potential into the many-body potential energy

function throughout the simulations[6], and therefore we do not expect any significant

138

-48

-46

-44

-42

-40

-38

-36

-34

-32

-30

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

V
 (

K
/a

to
m

)

ε

2.05Rnn
3.05Rnn
4.05Rnn

LRC

Figure 5.1: Potential energy vs. ✏ considering interacting pairs defined by cuto↵
distances of 2.05Rnn, 3.05Rnn, and 4.05Rnn in the absence of zero point motion in
a simulation cell of 7920 4He atoms with a molar volume Vm = 7.88 cm3/mol. The
potential energy including the full long-range correction is also shown.

139

Table 5.1: Second derivative of V (✏) with respect to ✏ at ✏ = 0 in the absence of zero
point motion for various interacting pair cuto↵ distances in a 7920 atom simulation
cell with a molar volume Vm = 7.88 cm3/mol. Units are in K/atom.

Cuto↵ Distance �2V/�✏2

2.05Rnn 966.68 ± 0.42
3.05Rnn 958.93 ± 0.42
4.05Rnn 955.90 ± 0.42

LRC 954.41 ± 0.42

140

loss of accuracy in our calculation of the elastic constants using energies calculated

from this computationally e�cient treatment of three-body interactions. As before,

the average three-body correction is found to converge after approximately 55 replicas

or 11000 a.u. time in most simulations. However, to ensure that the three-body

correction is truly representative of the ground state, only those values from the two

innermost replicas (corresponding to replicas 210 and 221 after the 11-replica interval

is applied) are used to calculate the final three-body correction.

5.3 Results and Discussion

The following sections compare the elastic properties of the hcp solid 4He system

calculated from the VPI simulations described above with and without perturbatively

corrected three-body interactions. For simplicity, we will refer to results from

simulations without three-body interactions as VPI-2B results, and those with three-

body interactions as VPI(3B) results.

5.3.1 The Bulk Modulus

The bulk modulus is calculated from the previously reported VPI-2B and VPI(3B)

pressure-volume EOSs[6] according to Eq. 5.5, above. The values of the bulk modulus

from both EOSs are reported in Table 5.2, along with the bulk modulus calculated

from the experimental EOS reported by Driessen, et al.[23].

From Table 5.2, we see that even at the lowest densities investigated, the

incorporation of three-body interactions has a significant e↵ect on the bulk modulus.

This impact amounts to a 3-5% di↵erence at molar volumes above 16 cm3/mol,

and as much as 17.9% at the lowest molar volume investigated here, 7.88 cm3/mol.

Recalling Eqs. 5.1-5.4, four of the five nonzero elastic constants depend on K and

therefore this influence of three-body interactions on the bulk modulus cannot be

ignored. In addition, the VPI(3B) bulk moduli are typically in better agreement

141

Table 5.2: Bulk moduli K (bar) calculated from either the VPI-2B or VPI(3B) EOS
at selected molar volumes, along with the corresponding bulk moduli calculated from
the Driessen experimental EOS[23].

Vm VPI-2B VPI(3B) % Di↵erence Driessen
(cm3/mol) bar bar bar

20.78 310.27 ± 8.64 294.93 ± 9.06 5.07 288.4
19.36 457.25 ± 5.01 441.87 ± 5.25 3.42 445.2
18.13 668.60 ± 1.64 647.20 ± 1.71 3.25 652.3
16.22 1262.21 ± 3.17 1208.88 ± 1.71 4.32 1212
13.73 3107.58 ± 2.03 2908.11 ± 1.71 6.63 2938
11.90 6325.28 ± 19.92 5815.84 ± 20.97 8.39 6110
9.69 16028.80 ± 440.97 14620.32 ± 120.39 9.19 16180
7.88 43433.61 ± 409.33 36298.91 ± 101.43 17.90 35424

with the experimental values than the corresponding VPI-2B bulk moduli. The

exception to this occurs at molar volumes of 11.90 cm3/mol and 9.69 cm3/mol where

the VPI-2B results are found to be in better agreement with experiment. There is

no physical interpretation which can explain why a two-body model would result in

better agreement with experimental data than a three-body model over this small

range of molar volumes. Instead, this behavior likely results from the fact that our

theoretical EOSs and the experimental EOS of Driessen, et al.[23] were parameterized

independently in the high and low density regions, with the transition from low density

to high density regions occuring at 11.02 cm3/mol for our theoretical EOSs. Attempts

to refit our VPI energy-volume data in the middle density region in order to remove

any discontinuity in the EOSs did not result in a significant change in the calculated

bulk moduli reported here. In addition, we note that the experimental EOS of Ref.

[23] was parameterized to reproduce experimental pressure-volume data extrapolated

to T = 0 K, rather than experimental bulk moduli. We therefore suggest that the

anomalous better agreement of the VPI-2B data with experiment near the transtion

molar volume may be due to the piecewise fitting of the experimental EOS or possibly

due to the extrapolation of experimental pressure-volume data to absolute zero.

142

Fig. 5.2 provides a visual comparison of the bulk modulus functions derived from

our VPI-2B and VPI(3B) EOSs compared to the Driessen bulk modulus, where we see

the experimental bulk modulus diverging from the VPI(3B) results near the transition

from the high to low molar volume region. However, at molar volumes below about 9.0

cm3/mol, we once again see significantly better agreement with experiment from the

VPI(3B) results. At higher molar volumes, we also compare the bulk moduli used in

this investigation to those calculated from the EOS utilized by Cazorla and Boronat[5,

24], as well as the bulk modulus calculated from the VMC study of Pessoa, et al.[4]

(Fig. 5.2a inset). In Ref. [4], all of the nonzero elastic constants were calculated

independently rather than from the bulk modulus and pure shear constants, and

therefore the bulk modulus from Pessoa, et al. plotted here was obtained from the

reported elastic constants using the relationship in Eq. 5.5[5].

This figure shows that, in general, the bulk moduli used in this investigation from

either VPI-2B or VPI(3B) simulations are in closer agreement with the experimental

data from Driessen, et al.[23] than are the values from either Cazorla and Boronat or

Pessoa, et al. In addition, the values calculated from the Pessoa VMC results using

Eq. 5.5 do not appear to follow a clear relationship with respect to molar volume.

5.3.2 Calculation of Pure Shear Constants

Ground state energies, including long-range corrections, are obtained from VPI

simulations using eight non-equilibrium values of each deformation parameter at

every molar volume. The range of parameter values used for each molar volume

can be found in Table 5.3. Smaller ranges of ⌘ and ✏ parameters are used at higher

densities because it was determined that imposing greater distortion resulted in VPI

calculations which would not converge to a ground state energy, suggesting that these

highly distorted configurations are unstable at higher densities.

Fig. 5.3 shows the dependence of the VPI-2B and VPI(3B) energy on each of the

three heterogeneous strain variables at a molar volume of 13.73 cm3/mol. Similar

143

 0

 2

 4

 6

 8

 10

 12

 11 12 13 14 15 16 17 18 19 20 21

K
 (

kb
a

r)

Vm (cm3/mol)

(a) VPI-2B
VPI(3B)

Driessen
DMC (Cazorla)
VMC (Pessoa)

0.3

0.4

0.5

0.6

0.7

18.0 19.0 20.0

K
 (

kb
a

r)

Vm (cm3/mol)

VPI-2B
VPI(3B)

Driessen

 0

100

200

300

400

500

600

700

 4 5 6 7 8 9 10

K
 (

kb
a

r)

Vm (cm3/mol)

(b)
VPI-2B

VPI(3B)
Driessen

Figure 5.2: Comparison of bulk modulus functions calculated from the VPI-2B (red
line) and VPI(3B) (green line) EOSs used in the current study[6] to the bulk modulus
function from the experimental EOS reported by Driessen, et al.[23] (blue line) in the
(a) low denstiy and (b) high density regions. In the low density region, theoretical
bulk moduli from the Cazorla and Boronat DMC studies[5] (black squares) and the
Pessoa, et al.[4] VMC studies (pink squares) are also included.

144

Table 5.3: Ranges of ⌘, �, and ✏ values used to calculate the pure shear constants.

Vm ⌘ � ✏
(cm3/mol)

20.78 -0.15, 0.15 0.90, 1.10 -0.15, 0.15
19.36 -0.15, 0.15 0.90, 1.10 -0.15, 0.15
18.13 -0.10, 0.10 0.90, 1.10 -0.15, 0.15
16.22 -0.10, 0.10 0.90, 1.10 -0.15, 0.15
13.73 -0.08, 0.08 0.90, 1.10 -0.10, 0.10
11.90 -0.08, 0.08 0.90, 1.10 -0.08, 0.08
9.69 -0.065, 0.065 0.90, 1.10 -0.065, 0.065
7.88 -0.065, 0.065 0.90, 1.10 -0.065, 0.065

145

Figure 5.3: Energy vs. ⌘ (a), � (b), and ✏ (c) at a molar volume of 13.73 cm3/mol.
Results from VPI-2B (red circles) and VPI(3B) (green triangles) are shown along
with their best fit equations (solid and dashed black lines, respectively). Continued

on next page.

147

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

E
 (

K
/a

to
m

)

η

(a)
VPI-2B

VPI(3B)

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

E
 (

K
/a

to
m

)

γ-1

(b)
VPI-2B

VPI(3B)

Figure 5.3: Continued.

148

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

E
 (

K
/a

to
m

)

ε

(c)
VPI-2B

VPI(3B)

Figure 5.3: Continued.

149

relationships are observed at every molar volume. At molar volumes above 13.73

cm3/mol, the total energy as a function of ⌘ and ✏ is best described by a quartic

equation of the form E(x) = a + bx2 + cx3 + dx4 where x = ⌘ or ✏. However at

lower molar volumes, the value of the quartic term is less than the uncertainty in the

total energies, and therefore the corresponding fitting parameter cannot be accurately

determined. In these cases, a quadratic equation of the form E(x) = a + bx + cx2

is found to fit the data best. The same results are obtained at both high and low

densities when the odd-powered terms in E(x) are omitted, however the uncertainty in

the fitted parameters and the residuals improve when these terms are included. At all

molar volumes, E(�) is best described by the cubic equation E(�) = a+b�+c�2+d�3.

The pure shear constants C
0

, C
66

, and C
44

are calculated from the second

derivatives of these best-fit functions according to Eqs. 5.8-5.10 and are tabulated

in Table 5.4. Errors in the pure shear constants are determined from errors in the

fitting parameters. In Fig. 5.4 we compare the results obtained from both VPI-2B

and VPI(3B) simulations to previous results from Cazorla and Boronat[5] and Pessoa,

et al.[4]. In addition, experimental data from Franck and Wanner[14], Crepeau[25],

and Greywall[26] are included where available.

Fig. 5.4 considers pure shear constants calculated with and without long-range

corrections to the two-body potential energy in the low density range where previous

theoretical results have been reported. At these low densities, the pure shear constants

are not strongly influenced by the three-body interactions. However, it is clear that

the incorporation of the long-range corrections has a non-negligible impact on the

calculated pure shear constants. In many cases, omitting these long-range corrections

brings our results into closer agreement with previous theoretical results, however this

is not strictly true for the full set of data. In addition, we find that the values of

C
66

calculated in this study are in much closer agreement with the VMC results

from Pessoa, et al. and experimental values than the values reported by Cazorla and

Boronat. As this pure shear constant is used to calculate two of the four remaining

146

Table 5.4: Pure shear constants C
0

, C
66

, and C
44

(bar) calculated from VPI-2B and
VPI(3B) energies.

Vm C
0

(bar) C
66

(bar) C
44

(bar)
(cm3/mol) VPI-2B VPI(3B) % Di↵erence VPI-2B VPI(3B) % Di↵erence VPI-2B VPI(3B) % Di↵erence

20.78 1454.64 ± 30.37 1445.25 ± 30.81 0.65 114.54 ± 0.68 114.93 ± 0.67 0.34 128.86 ± 0.70 128.75 ± 0.70 0.08
19.36 2141.59 ± 49.78 2127.41 ± 50.91 0.66 171.36 ± 0.76 172.25 ± 0.76 0.52 192.41 ± 1.36 192.46 ± 1.36 0.02
18.13 2885.59 ± 45.95 2864.29 ± 45.75 0.74 245.98 ± 0.79 247.69 ± 0.78 0.69 273.17 ± 0.80 273.49 ± 0.82 0.12
16.22 4979.05 ± 51.82 4938.08 ± 51.85 0.83 442.37 ± 1.24 446.83 ± 1.22 1.00 489.78 ± 8.94 491.25 ± 8.99 0.30
13.73 10710.76 ± 83.77 10604.76 ± 90.65 0.99 1036.70 ± 0.98 1052.43 ± 0.96 1.51 981.54 ± 7.39 985.83 ± 7.54 0.44
11.90 20865.33 ± 131.36 20615.10 ± 149.10 1.21 2036.20 ± 4.10 2078.56 ± 3.92 2.06 1937.79 ± 4.84 1952.26 ± 5.00 0.74
9.69 52974.26 ± 150.68 52146.51 ± 202.32 1.57 5076.92 ± 21.76 5236.33 ± 21.16 3.09 4810.86 ± 11.90 4871.87 ± 12.05 1.26
7.88 126469.28 ± 216.71 124058.95 ± 361.74 1.92 11890.79 ± 57.19 12447.42 ± 55.62 4.57 11176.89 ± 18.46 11402.79 ± 18.79 2.00

150

Figure 5.4: (a) C
0

, (b) C
66

, and (c) C
44

vs. Vm calculated from VPI-2B and VPI(3B)
simulations with and without long-range corrections. Values from DMC simulations
by Cazorla and Boronat[5] and VMC simulations from Pessoa, et al.[4] are shown as
solid triangles. Where available, experimental data from Refs. [14], [25], and [26] are
also shown. Continued on next page.

151

1000

1500

2000

2500

3000

3500

 18 18.5 19 19.5 20 20.5 21

C
0
 (

b
a
r)

Vm (cm3/mol)

(a) VPI-2B
VPI(3B)

VPI-2B no LRC
VPI(3B) no LRC

DMC (Cazorla et al.)
VMC (Pessoa et al.)

Expt (Franck and Wanner)
Expt (Crepeau)

 50

 100

 150

 200

 250

 300

 350

 18 18.5 19 19.5 20 20.5 21

C
6

6
 (

b
a
r)

Vm (cm3/mol)

(b) VPI-2B
VPI(3B)

VPI-2B no LRC
VPI(3B) no LRC

DMC (Cazorla et al.)
VMC (Pessoa et al.)

Expt (Franck and Wanner)
Expt (Crepeau)
Expt (Greywall)

Figure 5.4: Continued.

152

 100

 150

 200

 250

 300

 18 18.5 19 19.5 20 20.5 21

C
4

4
 (

b
a
r)

Vm (cm3/mol)

(c) VPI-2B
VPI(3B)

VPI-2B no LRC
VPI(3B) no LRC

DMC (Cazorla et al.)
VMC (Pessoa et al.)

Expt (Franck and Wanner)
Expt (Crepeau)
Expt (Greywall)

Figure 5.4: Continued.

153

nonzero elastic constants, we expect our calculated values of C
11

and C
12

to di↵er

from those reported in Ref. [5].

5.3.3 Dependence of Three-Body Energy on the

Heterogeneous Strain Variables

It is also of interest to consider the e↵ect of the three deformation parameters on the

average three-body energy. The change in the three-body energy with each parameter

is shown in Fig. 5.5 at a molar volume of 13.73 cm3/mol where �↵ = 0 represents

the equilibrium value for each parameter. From this figure it is clear that the three-

body energy is most strongly influenced by the ⌘ parameter, and therefore we would

expect to see the biggest di↵erence between the VPI-2B and VPI(3B) results when

the C
0

pure shear constant is evaluated. The � parameter also causes changes in

the three-body energy greater than the uncertainty in the V
3

at the equilibrium

geometry, indicating that C
66

should also be influenced by the addition of the three-

body correction, though to a lesser extent than C
0

. It is only in the ✏ parameter

that we see changes in V
3

which are within the statistical uncertainty of V
3

at the

equilibrium geometry, and therefore little di↵erence is expected between the VPI-2B

and VPI(3B) calculated values of C
44

.

The greater e↵ect of the ⌘ parameter on the three-body energy compared to � and

✏ is made clearer by considering the e↵ect of this distortion on the equilateral trimers.

Equilateral trimers make a higher contribution to the total three-body energy than

any other trimer geometry by an order of magnitude or more, and therefore changes

in their conformations and energies will dominate the three-body response to each

of the strain variables. For reference, the Cencek three-body potential energy as a

function of side length Rnn of an equilateral trimer is provided in Fig. 4.6. Table

5.5 summarizes the change in the conformation and energy of an equilateral trimer

oriented parallel to the basal plane of the crystal (in-plane) and perpendicular to the

basal plane (out-of-plane) when one of the heterogeneous strain variables is fixed at

154

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-0.10 -0.05 0 0.05 0.10

∆
V

3
 (

K
/a

to
m

)

∆α

α = ε
α = η
α = γ

Figure 5.5: Change in the three-body correction (�V
3

) vs. change in the ⌘ (green
circles), � (red squares), and ✏ (blue triangles) parameters at a molar volume of 13.73
cm3/mol. Similar trends were observed at every molar volume.

155

Table 5.5: Change in trimer geometry and energy (V
3

) with change in one of the
heterogeneous strain variables for an in-plane and out-of-plane equilateral trimer at
a molar volume of 13.73 cm3/mol. All other variables are fixed at the equilibrium
values. The central angle ✓ is reported in degrees. Side lengths R

1

, R
2

, and R
3

are provided in units of Rnn. At equilibrium, all side lengths are equal to 1.0Rnn

and both in-plane and out-of-plane equilateral trimers have energies of 2.14x10�2

K/trimer and make contributions of 4.28x10�2 K/atom and 12.85x10�2 K/atom to
the total three-body energy, respectively.

In-plane trimer

Parameter ✓ R
1

R
2

R
3

V
3

% Change V
3,tot

(�) (Rnn) (Rnn) (Rnn) (K/trimer) (K/atom)

⌘ = -0.08 60.00 1.04257 1.04257 1.04257 2.89x10�2 34.93 5.78x10�2

⌘ = 0.08 60.00 0.96225 0.96225 0.96225 -1.26x10�2 -158.78 -2.52x10�2

� = 0.90 62.54 1.02875 0.94868 1.02875 2.34x10�2 9.11 4.67x10�2

� = 1.10 57.58 0.97817 1.04881 0.97817 2.28x10�2 6.33 4.55x10�2

✏ = -0.10 59.88 1.00125 1.00499 1.00125 2.25x10�2 4.86 4.49x10�2

✏ = 0.10 59.88 1.00125 1.00499 1.00125 2.25x10�2 4.86 4.49x10�2

Out-of-plane trimer

Parameter ✓ R
1

R
2

R
3

V
3

% Change V
3,tot

(�) (Rnn) (Rnn) (Rnn) (K/trimer) (K/atom)

⌘ = -0.08 57.21 1.04257 0.96259 0.96259 1.66x10�2 -22.37 9.97x10�2

⌘ = 0.08 62.51 0.96225 1.04223 1.04223 2.72x10�2 27.14 16.34x10�2

� = 0.90 57.97 1.02875 1.01835 0.99210 2.59x10�2 21.11 11.73x10�2

� = 1.10 61.84 0.97817 0.98473 1.00868 1.66x10�2 -22.69 12.16x10�2

✏ = -0.10 62.70 1.00125 1.00000 1.04123 2.62x10�2 22.52 12.75x10�2

✏ = 0.10 57.31 1.00125 1.00000 0.95961 1.44x10�2 -32.78 12.75x10�2

157

the maximum or minimum value. In addition, the total contribution to the three-

body energy from all in-plane and out-of-plane trimers is provided in the final column

in order to account for orientation-dependent changes in the three-body energy. As

in the perturbative calculation, these energies have been divided by three to avoid

triple counting. The results in Table 5.5 are obtained from calculations at a molar

volume of 13.73 cm3/mol in the absence of zero point motion. At this molar volume,

Rnn = 6.014 ao, which is very close to the distance at which the three-body energy

becomes attractive in an equilateral trimer.

Table 5.5 shows a fairly consistent, non-negligible response to each of the strain

variables from the out-of-plane equilateral trimer; however, it is clear that the in-plane

equilateral trimer is influenced much more strongly by the ⌘ parameter. Changing ⌘

changes the c/a ratio of the crystal by compressing or expanding the lattice spacing

along the z-axis with a corresponding compensation in the lattice spacing in the x, y-

plane to maintain constant volume. Therefore, for the in-plane equilateral trimer,

increasing ⌘ results in isotropic compression of the equilateral trimer, simultaneously

bringing all three atoms into closer contact. Noting the steep decline in Fig. 4.6, we see

that a small compression in the equilateral trimer results in a much larger change in

V
3

than an equivalent expansion in the trimer, accounting for the anisotropic response

of �V
3

to the ⌘ parameter in Fig. 5.5. Although the energy is seen to increase in the

in-plane trimer when ⌘ = -0.08, the opposite e↵ect is seen in the out-of-plane trimer.

Because there are three out-of-plane equilateral trimers for every in-plane equilateral

trimer, the net response to any change in ⌘ is a more attractive V
3

. This explains the

consistently lower VPI(3B) values of C
0

in Table 5.4.

Analysis of the responses to � and ✏ is more complicated because these will result

in di↵erent responses depending on the orientation of the selected trimer. In the

two representative trimers selected for Table 5.5, the � parameter results in greater

changes in V
3

for the in-plane equilateral trimer, while ✏ has a stronger impact on the

out-of-plane trimer. Due to the greater number of out-of-plane equilateral trimers,

it would seem that not only should �V
3

show a greater dependence on ✏, but that

156

�V
3

should become more attractive for positive values of ✏ and more repulsive for

negative values. Neither of these are shown to be true in Fig. 5.5, and therefore it

is helpful to consider the change in the total energy for all in-plane and out-of-plane

equilateral trimers. From the V
3,tot values in Table 5.5, it is clearer that the changes in

the total three-body contribution from the two types of equilateral trimers considered

here are significantly lower when � and ✏ are changed than when ⌘ is changed, which

manifests in smaller absolute di↵erences between the VPI-2B and VPI(3B) C
66

and

C
44

constants in comparison to the di↵erences in C
0

reported in Table 5.4. The

changes in the total three-body energy contribution from the in-plane and out-of-

plane trimers also cancel out to an extent, with the in-plane V
3,tot becoming more

repulsive when the out-of-plane contribution becomes more attractive. Although

these exact energies will change when zero point motion is accounted for, this helps

to explain the lower (though not insignificant) dependence of �V
3

on � and ✏.

5.3.4 Remaining Nonzero Elastic Constants

The remaining four nonzero elastic constants C
11

, C
12

, C
13

, and C
33

are calculated

from K, C
0

, and C
66

using Eqs. 5.1-5.4 above. The results of these calculations are

tabulated in Table 5.6. In Fig. 5.6, we compare our elastic constants to previous

experimental and theoretical results. As expected, di↵erences in the bulk moduli and

C
66

constant result in disagreement between our calculated elastic constants and those

of Ref. [5]. However, in general our results are in similar or better agreement with

the experimental data from Refs. [14] and [26] compared to the results from Cazorla

and Boronat. The variability and uncertainty in the experimental data makes it

di�cult to determine whether or not the incorporation of three-body interactions

results in better agreement with experiment in this molar volume range. In addition,

impurities and thermal contributions in the finite-temperature experiments, as well as

uncertainty in the determination of the molar volume from the experimental pressure,

can easily lead to di↵erences between experimental and theoretical results. However,

158

Table 5.6: Nonzero elastic constants C
11

, C
12

, C
13

, and C
33

(bar) calculated from
VPI-2B and VPI(3B) pure shear constants and bulk moduli.

Vm C
13

(bar) C
12

(bar) C
13

(bar) C
33

(bar)
(cm3/mol) VPI-2B VPI(3B) VPI-2B VPI(3B) VPI-2B VPI(3B) VPI-2B VPI(3B)

20.78 505.62 ± 8.83 490.15 ± 9.24 276.55 ± 8.83 260.29 ± 9.24 148.64 ± 9.28 134.35 ± 9.68 633.52 ± 10.96 616.10 ± 11.35
19.36 747.58 ± 5.78 732.31 ± 6.01 404.87 ± 5.78 387.80 ± 6.01 219.29 ± 7.46 205.49 ± 7.72 933.16 ± 12.14 914.62 ± 12.47
18.13 1074.89 ± 3.13 1054.02 ± 3.16 582.93 ± 3.13 558.64 ± 3.16 347.98 ± 5.36 328.95 ± 5.36 1309.84 ± 10.34 1283.71 ± 10.31
16.22 1981.19 ± 4.46 1930.04 ± 3.56 1096.46 ± 4.46 1036.39 ± 3.56 708.99 ± 6.57 660.20 ± 6.01 2368.67 ± 11.94 2306.23 ± 11.65
13.73 4739.32 ± 5.17 4549.69 ± 5.40 2665.93 ± 5.17 2444.84 ± 5.40 1917.50 ± 9.53 1729.81 ± 10.22 5487.75 ± 18.73 5264.73 ± 20.22
11.90 9520.67 ± 21.61 9039.68 ± 22.89 5448.27 ± 21.61 4882.56 ± 22.89 4006.91 ± 24.70 3525.27 ± 26.73 10962.02 ± 35.34 10396.97 ± 39.21
9.69 24048.73 ± 441.59 22753.68 ± 122.75 13894.89 ± 441.59 12281.01 ± 122.75 10142.77 ± 441.29 8826.26 ± 122.47 27800.86 ± 442.24 26208.43 ± 128.51
7.88 62350.48 ± 413.48 55638.50 ± 117.41 38568.89 ± 413.48 30743.66 ± 117.41 29381.47 ± 410.04 22514.58 ± 109.10 71537.90 ± 412.16 63867.57 ± 129.42

160

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 18 18.5 19 19.5 20 20.5 21

C
1

2
 (

b
a

r)

Vm (cm3/mol)

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

C
1

1
 (

b
a

r)

Vm (cm3/mol)

18 18.5 19 19.5 20 20.5 21

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

C
3

3
 (

b
a

r)

Vm (cm3/mol)

 50

 100

 150

 200

 250

 300

 350

 400

 450

C
1

3
 (

b
a

r)

Vm (cm3/mol)

VPI-2B
VPI(3B)

DMC (Cazorla et al.)
VMC (Pessoa et al.)
Expt (Franck et al.)

Expt (Crepeau et al.)
Expt (Greywall)

Figure 5.6: Comparison of the low density values of C
11

, C
12

, C
13

, and C
33

elastic
constants calculated from VPI-2B and VPI(3B) simulations. In many cases, error bars
are smaller than the symbol size. Existing experimental[14, 25, 26] and theoretical[4,
5] data is included where available.

161

we can conclude that even at the high molar volumes, the incorporation of three-body

interactions has a non-negligible e↵ect on the calculated elastic constants. At molar

volumes below 18.13 cm3/mol, the VPI-2B and VPI(3B) calculated results no longer

agree within their statistical uncertainties for any of the elastic constants in Table 5.6,

and the di↵erences in C
11

and C
12

are statistically significant even at higher molar

volumes.

The e↵ect of three-body interactions becomes much more pronounced at lower

molar volumes (see Fig. 5.7). At the lowest molar volume studied here, the

di↵erence in the elastic constants ranges from 11.3-26.5%. This is a significant

contribution which should not be ignored. However, to our knowledge, experimental

low-temperature elastic constant measurements have not been reported at these

densities, and therefore a direct comparison to experimental results is not currently

possible. More high-pressure, low-temperature experimental determinations of the

elastic constants are necessary to assess the accuracy of the current study.

5.4 Summary and Conclusion

Elastic constants for hcp solid 4He have been calculated at T = 0 K using VPI

simulations with and without perturbative three-body corrections. These calculations

also include long-range corrections to the two-body potential energy which were

not accounted for in a previous DMC study[5]. The nonzero elastic constants

were calculated from the bulk modulus and pure shear constants C
0

, C
66

, and

C
44

at each molar volume of interest. The bulk modulus was calculated from our

previously reported pressure-volume EOSs[6] and it is determined that for all but the

molar volumes closest to the transition from the high to low density regions, much

better agreement with the experimental bulk modulus is obtained from the VPI(3B)

simulations. For the most part, omission of the long-range correction brings our

calculated C
0

, C
66

and C
44

values into better agreement with the previously reported

theoretical values from Ref. [5], however this was not strictly true. In the case of

159

 5

 10

 15

 20

 25

 30

 35

 40

 8 10 12 14 16

C
1

2
 (

b
a

r)

Vm (cm3/mol)

 10

 20

 30

 40

 50

 60

C
1

1
 (

kb
a

r)

Vm (cm3/mol)

8 10 12 14 16

 10

 20

 30

 40

 50

 60

 70

C
3

3
 (

kb
a

r)
Vm (cm3/mol)

 5

 10

 15

 20

 25

 30

C
1

3
 (

kb
a

r)
Vm (cm3/mol)

VPI-2B

VPI(3B)

Figure 5.7: Comparison of the high density values of C
11

, C
12

, C
13

, and C
33

elastic
constants calculated from VPI-2B and VPI(3B) simulations. Error bars are smaller
than the symbol size.

162

C
66

, neither set of values (with or without the long-range corrections) agrees well

with Ref. [5], though better agreement with experiment is obtained from the current

study. Analysis of the change in the three-body correction with each of the pure

shear constants demonstrates that three-body interactions play a more significant

role in the C
0

and C
66

constants than in the C
44

shear modulus. These e↵ects can

largely be understood by considering the deformation of the in-plane and out-of-plane

equilateral trimers which make the largest contribution to the three-body correction.

C
11

, C
12

, C
13

, and C
33

constants calculated from the pure shear constants and K

are found to agree qualitatively with the available theoretical and experimental values.

Although low-temperature experimental data is lacking at high densities, we can

conclude that three-body interactions have a non-negligible e↵ect on the calculated

elastic constants, particularly at lower molar volumes. Our results suggest that three-

body interactions cannot be ignored in the calculation of the bulk modulus or the

elastic constants at high densities. We hope that the results of this investigation will

inspire further experimental determinations of the low-temperature elastic constants

of high-density hcp solid 4He in order to further validate the results obtained here.

163

5.5 References

[1] E. Polturak and N. Gov, Contemporary Physics 44, 145 (2003). 129

[2] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995). 129, 130, 135, 136

[3] R. Pessoa, M. de Koning, and S. A. Vitiello, arXiv:1203.0456v1 [cond-matt.other] , 1

(2012). 129

[4] R. Pessoa, M. De Koning, and S. A. Vitiello, Journal of Low Temperature Physics 173,

143 (2013). 129, 143, 144, 146, 151, 161

[5] C. Cazorla, Y. Lutsyshyn, and J. Boronat, Phys. Rev. B 85, 024101 (2012). 129, 131,

132, 137, 143, 144, 146, 151, 154, 158, 159, 161, 163

[6] A. L. Barnes and R. J. Hinde, The Journal of Chemical Physics 146, 094510 (2017). 129,

130, 132, 134, 136, 138, 141, 144, 159

[7] C. Cazorla and J. Boronat, Phys. Rev. B 92, 224113 (2015). 129

[8] L. W. Bruch and I. J. McGee, The Journal of Chemical Physics 59, 409 (1973). 130

[9] A. Grechnev, S. M. Tretyak, Y. A. Freiman, A. F. Goncharov, and E. Gregoryanz,

Physical Review B 92, 024102 (2015). 130

[10] C. Cazorla and J. Boronat, Physical Review B - Condensed Matter and Materials Physics

91, 1 (2015). 130

[11] Y. A. Freiman, S. M. Tretyak, A. Grechnev, A. F. Goncharov, J. S. Tse,

D. Errandonea, H. K. Mao, and R. J. Hemley, Physical Review B - Condensed Matter

and Materials Physics 80, 3 (2009). 130, 131

[12] Y. A. Freiman, A. Grechnev, S. M. Tretyak, A. F. Goncharov, C. S. Zha, and R. J.

Hemley, Physical Review B - Condensed Matter and Materials Physics 88, 1 (2013). 130

[13] W. Cencek, K. Patkowski, and K. Szalewicz, The Journal of Chemical Physics 131,

064105 (2009). 130, 138

[14] J. P. Franck and R. Wanner, Physical Review Letters 25, 345 (1970). 131, 146, 151, 158,

161

[15] W. F. King and P. H. Cutler, J. Phys. Chem. Solids 32, 761 (1971). 131

164

[16] A. L. Barnes and R. J. Hinde, The Journal of Chemical Physics 144, 084505 (2016). 133,

134, 137

[17] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

The Journal of Chemical Physics 21, 1087 (1953). 133

[18] R. A. Aziz, F. R. McCourt, and C. C. Wong, Molecular Physics 61, 1487 (1987). 134

[19] A. Sarsa, K. E. Schmidt, and W. R. Magro, The Journal of Chemical Physics 113, 1366

(2000). 135

[20] R. J. Hinde, Computer Physics Communications 182, 2339 (2011). 135, 136

[21] H. F. Trotter, Proceedings of the American Mathematical Society 10, 545 (1959). 136

[22] J. Hirschfelder, C. Curtiss, and R. Bird, Molecular theory of gases and liquids, Structure

of matter series, Wiley, 1954. 137

[23] A. Driessen, E. van der Poll, and I. F. Silvera, Phys. Rev. B 33, 3269 (1986). 138, 141,

142, 143, 144

[24] Y. Lutsyshyn, C. Cazorla, G. E. Astrakharchik, and J. Boronat, Physical Review B

- Condensed Matter and Materials Physics 82, 3 (2010). 143

[25] R. H. Crepeau, O. Heybey, D. M. Lee, and S. A. Strauss, Physical Review A 3, 1162

(1971). 146, 151, 161

[26] D. S. Greywall, Physical Review B 16, 5127 (1977). 146, 151, 158, 161

165

Chapter 6

Conclusion

166

Taken as a whole, the results of these investigations further confirm that three-

body interactions do make a significant contribution to the T = 0 K properties

of hcp solid 4He, even at low densities, and should not be ignored. Although

the incorporation of a three-body potential into quantum Monte Carlo simulations

could not corroborate the anomolous anisotropy in the Debye-Waller factors reported

by Blackburn et al.[1], simulations which accounted for both variational error and

three-body interactions produced ground state energies in closer agreement with

experimental energies from Edwards and Pandorf[2] than two-body simulations at

low densities. Moreover, the pressure-volume equations of state derived from both

VMC and VPI three-body simulations have been shown to agree much better with

the experimental EOS reported by Driessen, et al.[3]. Di↵erences in the two-body and

three-body EOSs also impact the calculated elastic properties of the system, as four of

the five nonzero elastic constants depend on the bulk modulus, which is related to the

derivative of the pressure-volume EOS. Beyond this, we have shown that three-body

interactions also make a non-negligible contribution to the three pure shear constants,

C
0

, C
66

, and C
44

, a contribution that increases steadily with increasing density. One

of the fundamental characteristics of a quantum solid is its high compressibility, and

therefore accurate calculations of the elastic properties of this system are important

to understanding the properties of this and other quantum solids.

In addition to the evidence we have presented to support the importance of three-

body interactions, we have also demonstrated that, in many cases, these interactions

can be accounted for using a simple perturbative approach which allows us to maintain

computational e�ciency while increasing the accuracy of our model compared to

two-body simulations. The applicability of this perturbative treatment hinges on

the small contribution of three-body interactions to the ground state wavefunction,

such that the zero point motions of the 4He atoms are not strongly a↵ected by

their incorporation. The close agreement between the mean squared displacements

calculated from the VMC-2B and VMC+3B simulations first suggested that three-

body interactions may be treated using the perturbative approach[4] (Chapter 3).

167

This hypothesis was further supported when comparing the pressure-volume EOS

derived from the VMC(3B) and VMC+3B energies which were shown to agree within

their statistical uncertainties at most points throughout the full molar volume region.

A closer inspection of the two-body and three-body contributions to the potential

energy in the four VPI+3B simulations and their corresponding VPI(3B) results,

however, suggests that at higher densities the individual contribution of the potential

energy to the total energy is underestimated in the perturbative treatment while the

kinetic contribution is overestimated[5].

It is therefore important to determine which properties and what molar volume

ranges are of interest when choosing between the perturbative and full-incorporation

treatments. Properties which depend only on the total energy, such as the elastic

constants, appear to be well characterized by the perturbative treatment. In addition,

at low molar volumes, we have shown that three-body interactions make a small

contribution to the pure shear constants, and therefore it is possible that accurate

elastic properties of hcp 4He can be obtained by considering three-body interactions

only in the equilibrium geometry, making the incorporation of three-body interactions

into these calculations even more e�cient.

It stands to reason that the reliability of this perturbative treatment also depends

on the accuracy of the three-body potential employed. Previous perturbative

treatments of three-body interactions utilizing the Bruch-McGee[6] or Cohen and

Murrell[7] potentials did not result in significantly improved agreement with ex-

perimental energies or pressures, and indeed, often worse agreement was produced

if phenomenological scaling factors were not introduced[8, 9, 10]. The nonadditive

three-body potential reported by Cencek, et al.[11] implemented in this investigation

resulted in a significant improvement in the pressure-volume EOS, ground state

energies, and bulk moduli without the need for further parameterization at molar

volumes as low as 4.0 cm3/mol. We therefore find the perturbative incorporation

of this three-body potential to be a computationally e�cient and reliable means of

accounting for three-body interactions in the hcp 4He system.

168

Future work in this area might investigate the use of a reweighing method such

as that proposed (though not implemented) in Ref. [8] in order to account for

the e↵ect of three-body interactions on the potential and kinetic energies, among

other observables, within the framework of a perturbative treatment. This could

help to eliminate the discrepancy between the V
2

potential energies calculated from

VPI+3B and VPI(3B) simulations, thereby extending the region of validity for our

perturbative treatment. Further verification of the Cencek three-body potential in

finite-temperature simulations would also be useful in order to allow for a more direct

comparison to experimental results. Additionally, it remains to be determined what

e↵ect three-body interactions might have on the dynamical properties of hcp 4He,

and therefore the calculation of the experimentally well-studied Raman spectrum

of hcp 4He[12, 13, 14] using the Cencek potential would prove valuable in further

understanding the role of many-body interactions in this system. Beyond this, more

experimental investigations in the T < 1 K range achieved by Blackburn, et al.[1]

would be very helpful in the continued evaluation and improvement of theoretical

models such as the ones presented here.

169

6.1 References

[1] E. Blackburn, J. M. Goodkind, S. K. Sinha, J. Hudis, C. Broholm, J. van Duijn,

C. D. Frost, O. Kirichek, and R. B. E. Down, Phys. Rev. B 76, 024523 (2007). 167, 169

[2] D. O. Edwards and R. C. Pandorf, Phys. Rev. 140, A816 (1965). 167

[3] A. Driessen, E. van der Poll, and I. F. Silvera, Phys. Rev. B 33, 3269 (1986). 167

[4] A. L. Barnes and R. J. Hinde, The Journal of Chemical Physics 144, 084505 (2016). 167

[5] A. L. Barnes and R. J. Hinde, The Journal of Chemical Physics 146, 094510 (2017). 168

[6] L. W. Bruch and I. J. McGee, The Journal of Chemical Physics 59, 409 (1973). 168

[7] M. J. Cohen and J. N. Murrell, Chemical Physics Letters 260, 371 (1996). 168

[8] S.-Y. Chang and M. Boninsegni, The Journal of Chemical Physics 115, 2629 (2001). 168,

169

[9] S. Ujevic and S. A. Vitiello, Physical Review B - Condensed Matter and Materials Physics

71, 1 (2005). 168

[10] S. Ujevic and S. A. Vitiello, Journal of Physics: Condensed Matter 19, 116212 (2007). 168

[11] W. Cencek, K. Patkowski, and K. Szalewicz, The Journal of Chemical Physics 131,

064105 (2009). 168

[12] N. Ogita, M. Udagawa, and K. Ohbayashi, Phys. Rev. B 47, 11810 (1993). 169

[13] R. E. Slusher and C. M. Surko, Phys. Rev. Lett. 27, 1699 (1971). 169

[14] C. M. Surko and R. E. Slusher, Phys. Rev. B 13, 1095 (1976). 169

170

Appendix

171

Appendix A

VMC Programs

A.1 VMC 2-Body Program (VMC-2B)

The VMC program files used to sample fixed trial wavefunctions as well as calculate

the reweighted energies from wavefunctions with di↵erent parameters are included

below. The parent-child setup was largely adapted from the QSATS code (Robert

J. Hinde, Computer Physics Communications, 182(11), 2339 (2011)). A number

of the subroutines are the same as the QSATS code and have therefore not been

included. This program implements MPI parallelization and requires the following

files for compilation:

main.f Main program that determines whether a node is a parent or child node.
It is responsible for initializing and terminating the full VMC code.

cmrg.f Random number generator which is called to randomly generate new atomic
positions from the trial wavefunction and advances the random number
generator state vector.

rsetup.f Initializes the random number generator state vector for each child.

parent.f Parent process which runs on node 0 and sets up the 4He lattice, interacting
pair list, and potential energy surface. It also sends tasks to the child
processes and calculates the final reweighted energies when the simulation
is complete.

input.f Reads in the input and output file names, debugging level, and simulation
parameters.

vinit.f Sets up the linear interpolation arrays for the Aziz HFD-B(He) pair
potential.

172

child.f Child process that performs the Metropolis Monte Carlo moves and
evaluates the instantaneous kinetic, potential, and total energies every 50
MCCs. This information is sent back to the parent along with the snapshot
of the atomic positions.

allrep.f Calls the subroutine that sends data to the child from the parent and
receives data from the child. This subroutine calculates the running
averages of the potential, kinetic, and total energies and writes these
energies and the atomic snapshots to the output files. It also calculates
the reweighted kinetic, potential, and total energies.

send.f Sends the old atomic configuration and random number generator state
vector to the designated child.

kinetic-rw.f Calculates the reweighted kinetic energy for a given atomic configuration
and set of wavefunction parameters.

paramest.f Estimates initial values of the parameters of the fitting functions for the
reweighted energies from either the a

xy

and a
z

reweighting calculations or
the b reweighting calculations and generates a gnuplot script which can be
used to generate an accurate fit.

tstamp.f Generates output that states when the file was last compiled. Requires the
file tstamp.master.

sizes.h Contains fixed parameters of the system including the number of atoms,
number of interacting pairs, child processes allowed, MCCs assigned to each
child process with each send statement from the parent, etc.

vmc-448.com Contains the common block variables used by the parent and all parent-
called subroutines. Child subroutines contain their own versions of these
variables.

Program files that can be found in the QSATS code and are not reproduced here: main.f,
cmrg.f, vinit.f, send.f, tstamp.f

In addition, an input file containg the file names read in input.f and a parameter

file containing the parameter values read in input.f are required to run the job, along

with a lattice file which specifies the total number of atoms, lengths of the simulation

cell in the x, y, and z directions, and the atomic coordinates in the simulation cell.

These are not provided.

rsetup.f
c --

c this subroutine initializes the pseudo random number generators
c for the replicas. it also initializes the value of the rscale
c variable, which is needed to convert integer pseudo random
c numbers, which are the raw output of the generators, to floating
c point pseudo random numbers.

c --

subroutine rsetup

implicit double precision (a-h, o-z)

173

include ’sizes.h’
include ’vmc-448.com’

dimension rseed(6)

rscale=1.0d0/4294967088.0d0
write (6, 6000)

6000 format (’INITIALIZING random number seeds’/)

do i=1, 6
rseed(i)=12345.0d0

end do

c --- for each child, skip ahead in the random number stream using rskip
do i=1, NCH

do j=1, 6
rstatv(j, i)=rseed(j)

end do
rstatv(7, i)=-1.0d0
rstatv(8, i)=0.0d0
call rskip(rseed)

end do

c --- write out debugging info
if (idebug.ge.3) then

write (6, 6001)
6001 format (’rstatv(1) values:’/)

do i=1, NCH
write (6, 6100) i, rstatv(1, i)

6100 format (i5, 1x, f20.1)
end do

write (6, *) ’’

end if

return
end

parent.f
c --

c this is the parent process that runs on node 0.

c errchk is a subroutine called after every MPI subroutine that
c checks the MPI error code and reports any errors.

c --

subroutine parent(ierror)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’vmc-448.com’
include ’mpif.h’

c --- istat = MPI status array
c --- imsg = array of integer values to send to child

174

c --- fmsg = array of floating point values to send to child
c --- rw_sums = array of reweighted energies for parameter estimation
c --- rstate = random number state vector

dimension istat(MPI_STATUS_SIZE)
dimension imsg(9), fmsg(7)
dimension isent(NCHUNKS), psi(NATOM3)
dimension rw_sums(4, 9)
dimension rstate(8)

c --- hart = conversion from hartree to K/atom
parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)
parameter (hart=315774.65d0)

c ==
c PART ONE: INITIALIZATION
c ==

ierror=0

c --- read input file.
write (6, *) "parent calling input"
call input

write (6, 6100) ltfile, dump, dfile, ofile, rwfile
6100 format (’lattice file name = ’, a16/,

+ ’snapshot file name = ’, a16/,
+ ’dfile file name = ’, a16/,
+ ’ofile file name = ’, a16/,
+ ’rwfile file name = ’, a16)

if (idebug.eq.0) write (6, 6110) idebug, ’NONE’
if (idebug.eq.1) write (6, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (6, 6110) idebug, ’LOW’
if (idebug.eq.3) write (6, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (6, 6110) idebug, ’HIGH’

6110 format (’debug level = ’, i1,’ or ’, a8/)
c --- calculate phi distortion parameter from eta
c --- this changes the c/a ratio

phi = sqrt(1.0d0+eta)

c --- read the potential energy curve.

call vinit(r2min, bin)

c --- read crystal lattice points.

write (6, 6200) ltfile
6200 format (’READING crystal lattice from ’, a16/)

open (8, file=ltfile, status=’old’, err=901)

read (8, *, err=902) nlpts

if (nlpts.ne.NATOMS) then
write (6, *) ’ERROR: number of atoms in lattice file = ’, nlpts
write (6, *) ’number of atoms in source code = ’, NATOMS
call quit

end if

c --- read the edge lengths of the supercell.

175

read (8, *, err=903) xlen, ylen, zlen

den0=dble(NATOMS)/(xlen*ylen*zlen)

xlen = xlen
ylen = ylen
zlen = zlen

c --- compute a distance scaling factor.

scale=exp(dlog(den/den0)/3.0d0)

write (6, 6300) scale
6300 format (’supercell scaling factor computed from density = ’,

+ f12.8/)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

dxmax=half*xlen
dymax=half*ylen
dzmax=half*zlen

do i=1, NATOMS

read (8, *, err=904) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (8)

c --- this helps us remember the nearest-neighbor distance.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

176

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

write (6, 6310) rnnmin
6310 format (’nearest neighbor (NN) distance [bohr] = ’, f10.5/)

write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2),
+ xtal(NATOMS, 3)

6320 format (’final lattice point [bohr] = ’, 3f10.5/)

write (6, 6330) xlen, ylen, zlen
6330 format (’supercell edge lengths [bohr] = ’, 3f10.5/)

write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin
6340 format (’supercell edge lengths [NN distances] = ’, 3f10.5/)

c --- compute interacting pairs from the atomic positions of the
c undistorted lattice

do i=1, NATOMS
npair(i)=0

end do

nvpair=0

do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

177

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount.
c --------- we determine the interacting pairs from the undistorted
c then use our values of eta (phi), gamma, and epsilon to
c impose the distortions for the elastic constant
c calculations.

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

c ------------ these transformations impose the lattice distortions
c They reduce to dx, dy, and dz for eta = 0 (phi = 1),
c gamma = 1 and epsilon = 0.

vpvec(1, nvpair)=dx/(sqrt(gam)*phi)
vpvec(2, nvpair)=dy*sqrt(gam)/phi
vpvec(3, nvpair)=dz*phi**2+dy*eps

npair(i)=npair(i)+1

ipairs(npair(i), i)=nvpair

end if

end if

end do
end do

c --- Now loop back through the coordinates in the xtal array and
c transform them appropriately

do i=1, NATOMS

xtal(i, 1)=xtal(i, 1)/(sqrt(gam)*phi)
xtal(i, 2)=xtal(i, 2)*sqrt(gam)/phi
xtal(i, 3)=xtal(i, 3)*phi**2+eps*xtal(i, 2)

end do

c --- write out the interacting pair information

write (6, 6400) npair(1), nvpair
6400 format (’atom 1 interacts with ’, i3, ’ other atoms’//,

+ ’total number of interacting pairs = ’, i6)

if (idebug.ge.2) then

write (6, 6401)
6401 format (/’interaction pair vectors for atom 1 ’,

+ ’[NN distances]:’/)

do i=1, npair(1)
ip=ipairs(i, 1)
d=sqrt(vpvec(1, ip)**2+vpvec(2, ip)**2+vpvec(3, ip)**2)/

+ rnnmin
write (6, 6410) ip, ivpair(2, ip), vpvec(1, ip)/rnnmin,

+ vpvec(2, ip)/rnnmin, vpvec(3, ip)/rnnmin, d
6410 format (’vector # ’, i3, ’ to atom ’, i4, ’: ’,

+ 3(1x, f9.5), ’ length = ’, f8.5)
end do

178

end if

c --- set the displacement vectors for all children to zero.

write (6, 6500)
6500 format (/’SETTING initial configuration to zero’/)

do j=1, NCH
do i=1, NATOM3

path(i,j)=0.0d0
end do
end do

c --- initialize random number generator.
call rsetup

c --- this is the output file where snapshots of the atoms will be
c stored for analysis by another program.

open (10, file=dump, form=’unformatted’)
c --- this is the output file where the instantaneous potential
c energy and running averages of all energies are stored.

c --- initialize MPI.

MPI_R=MPI_DOUBLE_PRECISION

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierr)

call errchk(0, ierr, 100000)

write (6, 6600) ntasks-1
6600 format (’number of child processes = ’, i3/)

c --- now see if there is an old set of displacement vectors from a
c previous run. if not, jump head to line 200.

if (irrst.eq.1) then
open (8, file=dfile, form=’unformatted’, status=’old’, err=200)

write (6, 6510) dfile
6510 format (’READING initial configuration from ’, a16/)

read (8) nchildren ! make sure we have the same number as before
do k = 1, nchildren

read (8) (rstatv(i, k), i=1, 8)
read (8) (path(i,k), i=1, NATOM3)

end do
close (8)

end if

200 if (idebug.ge.3) then

write (6, 6170)
6170 format (’x(1) and rstatv(1) values:’/)

do k = 1, ntasks-1
write (6, 6180) path(1,k), rstatv(1,k)

6180 format (1x, f15.9, 1x, f20.1)
end do

write (6, *) ’’
end if

if(irrst.eq.1) then
if(nchildren.ne.ntasks-1) then

179

write (6, 6605) nchildren+1
6605 format (’attempting to start calculation from previous run’/

+ ’with a different number of child processors than’/
+ ’the current run. To start from these snapshots, use’,
+ 1x, i3, 1x, ’processors.’)

end if
end if

if (ntasks-1.gt.NCH) then

write (6, 6610)
6610 format (’too many child processes; expand the iwork, path, and

+rstatv arrays.’/
+ ’also note that write statements for HIGH ’
+ ’debugging level may fail on some systems.’)

call quit

end if
c --- this array just counts how evenly the workload was spread among
c the child processes.

do i=1, ntasks-1
iwork(i)=0

end do
c --- broadcast integer constants to all child processes.

imsg(1)=NATOMS
imsg(2)=NATOM3
imsg(3)=NATOM6
imsg(4)=NATOM7
imsg(5)=NIP
imsg(6)=NPAIRS
imsg(7)=NVBINS
imsg(8)=idebug
imsg(9)=nprint

do itask=1, ntasks-1

call MPI_SEND(imsg,
+ 9,
+ MPI_INTEGER,
+ itask,
+ 0101,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100101)

end do

if (idebug.ne.0) open (9, file=’debug.log’)

if (idebug.eq.1) write (9, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (9, 6110) idebug, ’LOW’
if (idebug.eq.3) write (9, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (9, 6110) idebug, ’HIGH’
call flush(9)

c --- broadcast floating-point constants to all child processes.

fmsg(1)=den
fmsg(2)=bin
fmsg(3)=r2min
fmsg(4)=aaxy

180

fmsg(5)=aaz
fmsg(6)=bb
fmsg(7)=zmhe

do itask=1, ntasks-1

call MPI_SEND(fmsg,
+ 7,
+ MPI_R,
+ itask,
+ 0102,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100102)

end do
c --- broadcast the interacting-pair vectors to all child processes.

do itask=1, ntasks-1

call MPI_SEND(vpvec,
+ 3*NPAIRS,
+ MPI_R,
+ itask,
+ 0103,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100103)

end do
c --- broadcast the list of atom id numbers for the interacting pairs
c to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ itask,
+ 0104,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100104)

end do
c --- broadcast the size of each stencil to all child processes. all
c stencils should be the same size, but we treat this as a variable.

do itask=1, ntasks-1

call MPI_SEND(npair,
+ NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0105,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100105)

end do
c --- broadcast the list of interacting pair id numbers that define the

181

c stencils to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0106,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100106)

end do
c --- broadcast the potential energy curve V(R) to all child processes.

do itask=1, ntasks-1

call MPI_SEND(v,
+ 2*NVBINS,
+ MPI_R,
+ itask,
+ 0107,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100107)

end do
if (idebug.gt.0) write (9, *) ’end parent PART ONE’
if (idebug.gt.0) write (9, *) ’’
call flush(9)

c ==
c PART TWO: PERFORMING THE SIMULATION
c ==

c --- open the output files: ofile, dump, and rwfile

open (10, file=dump, form=’unformatted’)

write (10) bb, aaxy, aaz, eta, gam, eps
open (11, file=ofile)
open (12, file=rwfile)

c --- Check that NCHUNKS evenly divides nloop/nprint
ncalc = nloop/nprint
if(mod(ncalc,NCHUNKS).ne.0) then

write (6, 5000)
5000 format (’MCCs not divisble by NCHUNKS. Change NCHUNKS’

+ ’or nloops’)
call quit

end if

c --- initialization of various progress counters.

denom = 0.0d0
vsum = 0.0d0
v2sum = 0.0d0
esum = 0.0d0
e2sum = 0.0d0
tsum = 0.0d0
t2sum = 0.0d0

c --- also need to keep counters for the reweighting calculations

182

c --- these values are required for error estimation in reweighting
do i = 1, 9

rw_vsum(i) = 0.0d0
rw_tsum(i) = 0.0d0
rw_esum(i) = 0.0d0
rw_wsum(i) = 0.0d0
rw_wsqsum(i) = 0.0d0
rw_vwsum(i) = 0.0d0
rw_ewsum(i) = 0.0d0
rw_twsum(i) = 0.0d0
rw_vvsum(i) = 0.0d0
rw_eesum(i) = 0.0d0
rw_ttsum(i) = 0.0d0

end do

c --- this is how many iterations we have done.
c --- for the vmc program, all loop counting is essentially handled
c in allrep.f where snapshots are received. This just initializes
c loop for us.

loop=0

c --- these tell us about the acceptance ratio for the atom moves.

ztacc=0.0d0
ztrej=0.0d0

c --- these counters make sure that we don’t lose a chunk of snapshots somewhere
c in the ether. we use them to count how many chunks have been sent and
c received.

300 nsent=0
nrcvd=0

c --- this is a list of flags that are zero for chunks that haven’t yet
c been sent to a child for processing, positive for chunks that have
c been sent, and negative for chunks that have been processed and
c returned to the parent.

c isent(n) is set to the (positive) task id of the receiving child
c process when a chunk is sent. this is basically leaving a trail
c of crumbs so that we can track down the chunks and ask the children
c to return them to us.

do nchunk=1, NCHUNKS
isent(nchunk)=0

end do
c allrep distributes chunks of snapshots to children. Once this command has
c has been called and returns, all loops will have been performed,
c so all chunks should have been sent and received.

call allrep(nsent, nrcvd, loops, MPI_R)
loop = loop + loops

c --- check for lost chunks.

if (nsent.ne.NCHUNKS.or.nrcvd.ne.NCHUNKS) then
write (6, *) ’chunks have been lost!’
write (6, *) ’nsent = ’, nsent
write (6, *) ’nrcvd = ’, nrcvd
ierror=1

end if

c --- Want to save a checkpoint every 1000 chunks in case job stops
c before completion. If we need to run more passes, go back to line
c 300.

183

if(loop.lt.nloop) then

open(8, file=dfile, form=’unformatted’)

write (8) loop
do k=1, ntasks-1

write (8) (rstatv(i, k), i=1, 8)
write (8) (path(i, k), i=1, NATOM3)

end do
close(8)

goto 300

else if(loop.eq.nloop) then

write (6, 6810) dfile
6810 format (’SAVING final configuration to ’, a16/)

open(8, file=dfile, form=’unformatted’)

write (8) loop
do k=1, ntasks-1

write (8) (rstatv(i, k), i=1, 8)
write (8) (path(i, k), i=1, NATOM3)

end do
close(8)

c ------ write out reweighting results
c ------ Calculate sums for standard deviation of each energy.
c Ref: A.M. Ferrenberg, et. al. Phys. Rev. E 51, 5092 (1995).

rwaxy = aaxy-da
rwaz = aaz-da
rwb = bb-3.0d0*db
do i = 1, 9

vsum2 = rw_vsum(i)*rw_vsum(i)
tsum2 = rw_tsum(i)*rw_tsum(i)
esum2 = rw_esum(i)*rw_esum(i)
wsum2 = rw_wsum(i)*rw_wsum(i)

vsumw = rw_vsum(i)*rw_wsum(i)
tsumw = rw_tsum(i)*rw_wsum(i)
esumw = rw_esum(i)*rw_wsum(i)

rw_uavg = rw_vsum(i)/rw_wsum(i)
rw_tavg = rw_tsum(i)/rw_wsum(i)
rw_eavg = rw_esum(i)/rw_wsum(i)

rw_uavgsq = rw_vvsum(i)/rw_wsum(i)
rw_tavgsq = rw_ttsum(i)/rw_wsum(i)
rw_eavgsq = rw_eesum(i)/rw_wsum(i)

rw_uavgvar = denom*((rw_vvsum(i)/vsum2)+(rw_wsqsum(i)/wsum2)
+ -2*(rw_vwsum(i)/vsumw))*rw_uavg*rw_uavg

rw_tavgvar = denom*((rw_ttsum(i)/tsum2)+(rw_wsqsum(i)/wsum2)
+ -2*(rw_twsum(i)/tsumw))*rw_tavg*rw_tavg

rw_eavgvar = denom*((rw_eesum(i)/esum2)+(rw_wsqsum(i)/wsum2)
+ -2*(rw_ewsum(i)/esumw))*rw_eavg*rw_eavg

rw_uavgsd = sqrt(rw_uavgvar)
rw_tavgsd = sqrt(rw_tavgvar)
rw_eavgsd = sqrt(rw_eavgvar)

c -------- Save necessary information for parameter estimation to
c rw_sum

rw_sums(1, i) = rwb
rw_sums(2, i) = rwaxy

184

rw_sums(3, i) = rwaz
rw_sums(4, i) = rw_eavg*hart/dble(NATOMS)
write (12, 900) rwb, rwaxy, rwaz,

+ rw_uavg*hart/dble(NATOMS),
+ rw_uavgsd*hart/dble(NATOMS),
+ rw_eavg*hart/dble(NATOMS),
+ rw_eavgsd*hart/dble(NATOMS),
+ rw_tavg*hart/dble(NATOMS),
+ rw_tavgsd*hart/dble(NATOMS)

900 format (3(1x, F10.8), 6(1x, 1pe20.13))

call flush (12)
if (mod(i,3).eq.0) then

rwaxy = rwaxy + da
rwaz = aaz-da

else
rwaz = rwaz+da

end if
rwb = rwb+db

end do
if(da.eq.0.0d0) then

call param_est_bb(rw_sums)
else if(db.eq.0.0d0) then

call param_est_aa(rw_sums)
else

write (6, *) "No paramest program called"
end if

end if

c --- Now all chunks have run

if (idebug.gt.0) then
write (9, *) ’’
write (9, *) ’QSATS is done!’
write (9, *) ’’

end if

c --- close output files

close(10)
close(11)

c --- show how much work every child did.

if (idebug.gt.0) then
do i=1, ntasks-1

write (9, 9100) i, iwork(i)
9100 format (’task ’, i3, ’ received ’, i9, ’ chunks’)

end do
end if

c --- tell the children we’re all done.

do itask=1, ntasks-1

imsg(1)=0

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ itask,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

185

call errchk(0, ierr, 100204)

end do

write (6, 6900) ztacc
6900 format (’total number of accepted moves = ’, f20.1)

write (6, 6901) ztrej
6901 format (’total number of rejected moves = ’, f20.1/)

if (idebug.gt.0) write (9, *) ’’
if (idebug.gt.0) write (9, *) ’end parent PART TWO’

return

901 write (6, *) ’error opening lattice file’
goto 999

902 write (6, *) ’error reading number of atoms from lattice file’
goto 999

903 write (6, *) ’error reading (unscaled) supercell edge lengths’
goto 999

904 write (6, *) ’error reading atom number ’, i
goto 999

999 call quit

return
end

input.f
c --
c this inputs the names of various I/O files and also reads in the
c parameters for the simulation.
c --

subroutine input

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’vmc-448.com’
character*8 inword

c --- read in filenames.
c ltfile = lattice file containing total # atoms and x,y,z
c coordinates
c pfile = parameter file, read next
c ofile = energy output file
c dfile = snapshot checkpoint file
c dump = snapshot file
c rwfile = reweighted energy output file

read (5, 5000, err=922) ltfile
5000 format (a20)

read (5, 5000, err=923) pfile
read (5, 5000, err=924) ofile
read (5, 5000, err=925) dfile
read (5, 5000, err=926) dump
read (5, 5000, err=927) rwfile

186

c --- set debug level.

read (5, 5001, err=931) inword
5001 format (a8)

if (inword.eq.’NONE’) then
idebug=0

else if (inword.eq.’MINIMAL’) then
idebug=1

else if (inword.eq.’LOW’) then
idebug=2

else if (inword.eq.’MEDIUM’) then
idebug=3

else if (inword.eq.’HIGH’) then
idebug=4

else
write (6, *) ’invalid debug level’

end if

c --- define some masses. amu = the unified mass unit in terms of
c atomic units.
c zmh and zmhe are the hydrogen and helium atomic masses.

zmh=1837.1526d0
amu=zmh/1.007825d0
zmhe=4.0026d0*amu

c --- read in the simulation parameters.
c nloop = total # of MCCS
c nprint = snapshot interval
c den = number density in atoms per cubic bohr
c bb = trial wavefunction b parameter
c aaxy = trial wavefunction a_xy parameter
c aaz = trial wavefunction a_z parameter
c irrst = restart variable
c eta = deformation parameter for C0 (c/a ratio)
c gam = deformation parameter for C66
c eps = deformation parameter for C44
c da = a_i parameter interval used for reweighting
c db = b parameter interval used for reweighting

open (7, file=pfile)
read (7, *, err=901) nloop
read (7, *, err=902) nprint
read (7, *, err=903) den
read (7, *, err=904) bb
read (7, *, err=905) aaxy
read (7, *, err=906) aaz
read (7, *, err=907) irrst
read (7, *, err=908) eta
read (7, *, err=909) gam
read (7, *, err=910) eps
read (7, *, err=911) da
read (7, *, err=912) db

write (6, 6000) NATOMS
6000 format (’REPEATING input parameters’//,

+ ’atom count = ’, i6/)

write (6, 6001) den, aaxy, aaz, bb, eta, gam, eps
6001 format (’density = ’, f14.7, ’ atoms per cubic bohr’/,

+ ’a_xy parameter = ’, f14.7, ’ bohr**(-2)’/,
+ ’a_z parameter = ’, f14.7, ’ bohr**(-2)’/,
+ ’B parameter = ’, f14.7, ’ bohr’/,

187

+ ’eta factor = ’, f14.7, /,
+ ’gamma factor = ’, f14.7, /,
+ ’epsilon = ’, f14.7, /)

write (6, 6002) nloop, nprint
6002 format (’number of simulation steps = ’, i8/,

+ ’snapshot interval = ’, i8/)

return

c --- error handling
901 write (6, *) ’error reading number of loops’

goto 999
902 write (6, *) ’error reading nprint’

goto 999
903 write (6, *) ’error reading density’

goto 999
904 write (6, *) ’error reading bb’

goto 999
905 write (6, *) ’error reading axy’

goto 999
906 write (6, *) ’error reading az’

goto 999
907 write (6, *) ’error reading irrst value’

goto 999
908 write (6, *) ’error reading eta value’

goto 999
909 write (6, *) ’error reading gamma value’

goto 999
910 write (6, *) ’error reading eps value’

goto 999
911 write (6, *) ’error reading da value’

goto 999
912 write (6, *) ’error reading db value’

goto 999
921 write (6, *) ’error reading RNG file name’

goto 999
922 write (6, *) ’error reading lattice file name’

goto 999
923 write (6, *) ’error reading parameter file name’

goto 999
924 write (6, *) ’error reading ofile file name’

goto 999
925 write (6, *) ’error reading dfile file name’

goto 999
926 write (6, *) ’error reading dump file name’

goto 999
927 write (6, *) ’error reading rwfile file name’

goto 999
931 write (6, *) ’error reading debug level’

goto 999
932 write (6, *) ’error reading RNG initialization mode’

goto 999
999 call quit

return
end

188

child.f
c --
c this is the child process that runs on all nodes except node 0
c (which is running the parent process).
c --

subroutine child(MPI_R)

implicit double precision (a-h, o-z)

include ’mpif.h’
include ’sizes.h’

c --- child processes don’t include common block, all variables are
c local and must be defined below. Prevents child processes from
c overwriting global variables

common /rancm1/ rscale

dimension psi(NATOM6), npair(NATOMS), rv(NATOM3)
dimension istat(MPI_STATUS_SIZE)
dimension ipairs(NIP, NATOMS)
dimension vpvec(3, NPAIRS)
dimension ivpair(2, NPAIRS)
dimension r2old(NATOMS), r2new(NATOMS), v1(NATOMS), v2(NATOMS)
dimension v(2, NVBINS)
dimension imsg(9), fmsg(7), emsg(2), imsg2(3)
dimension rstate(8), qsave(3)
dimension dlng(NATOM3), d2lng(NATOM3)

parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)

c ==
c PART ONE: INITIALIZATION
c ==

MPI_R=MPI_DOUBLE_PRECISION

c --- numerical factor for random number generator.

rscale=1.0d0/4294967088.0d0

c --- determine which process this is and store it in myid.

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

c --- receive all of the information that is broadcast by the parent
c process.

c --- first receive some integer constants. these are primarily used to
c check that the arrays are properly dimensioned.

call MPI_RECV(imsg,
+ 9,
+ MPI_INTEGER,
+ 0,
+ 0101,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)
call errchk(myid, ierr, 200101)

istop=0

189

if (imsg(1).ne.NATOMS) then
write (6, *) ’size mismatch 1: ’, imsg(1)
istop=1

end if
if (imsg(2).ne.NATOM3) then

write (6, *) ’size mismatch 2: ’, imsg(2)
istop=1

end if
if (imsg(3).ne.NATOM6) then

write (6, *) ’size mismatch 3: ’, imsg(3)
istop=1

end if
if (imsg(4).ne.NATOM7) then

write (6, *) ’size mismatch 4: ’, imsg(4)
istop=1

end if
if (imsg(5).ne.NIP) then

write (6, *) ’size mismatch 5: ’, imsg(5)
istop=1

end if
if (imsg(6).ne.NPAIRS) then

write (6, *) ’size mismatch 6: ’, imsg(6)
istop=1

end if
if (imsg(7).ne.NVBINS) then

write (6, *) ’size mismatch 7: ’, imsg(7)
istop=1

end if

if (istop.eq.1) call quit

nvpair = imsg(6)
idebug=imsg(8)
nprint = imsg(9)

c --- debugging output.

if (idebug.eq.4) write (30+myid, *) ’idebug = ’, idebug
call flush(30+myid)

c --- next receive some floating-point constants.

call MPI_RECV(fmsg,
+ 7,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0102,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200102)

den=fmsg(1)
bin=fmsg(2)
r2min=fmsg(3)
aaxy=fmsg(4)
aaz=fmsg(5)
bb=fmsg(6)
zmhe=fmsg(7)

if (idebug.eq.4) then
write (30+myid, *) ’den = ’, den
write (30+myid, *) ’bin = ’, bin
write (30+myid, *) ’r2min = ’, r2min

190

write (30+myid, *) ’aaxy = ’, aaxy
write (30+myid, *) ’aaz = ’, aaz
write (30+myid, *) ’bb = ’, bb

end if
call flush(30+myid)

c --- compute the inverse of the potential energy V(R) bin width, to
c avoid unnecessary divisions.

binvrs=one/bin

c --- next receive the vectors that connect pairs of atoms in a stencil.

call MPI_RECV(vpvec,
+ 3*NPAIRS,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0103,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200103)

c --- next receive the list of pairs of atoms.

call MPI_RECV(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ 0,
+ 0104,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200104)

c --- next receive the number of atoms that belong to each atom’s stencil.
c this should really be the same for every atom for a regular crystal
c lattice, but we treat it as a variable.

call MPI_RECV(npair,
+ NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0105,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200105)
c --- next receive the pairs that constitute each atom’s stencil.

call MPI_RECV(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0106,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200106)
c --- next receive the potential energy curve V(R) for interpolation.

call MPI_RECV(v,

191

+ 2*NVBINS,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0107,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200107)
if (idebug.eq.4) then

write (30+myid, *) ’child moving to PART TWO’
call flush(30+myid)

end if

c ==
c PART TWO: PERFORMING THE SIMULATION
c ==
c --- initialize running totals
100 idchunk=0

nacc=0
nrej=0
pot = 0.0d0
tloc = 0.0d0

c --- send request for data (message type 1201) to parent. the first
c time through, or if we are waiting for all children to sync up,
c there are no results to send back to the parent, so we indicate
c this by setting idchunk=0 just above, and then sending this to
c the parent in imsg2(1).

200 imsg2(1)=idchunk
imsg2(2)=nacc
imsg2(3)=nrej

emsg(1) = pot
emsg(2) = tloc
call MPI_SEND(imsg2,
+ 3,
+ MPI_INTEGER,
+ 0,
+ 1201,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201201)
c --- on the other hand, if there are results to send back, then we
c do so here.

if (idchunk.gt.0) then
c ------ first we send a message of type 1202 that contains the atoms’
c new positions.

call MPI_SEND(psi,
+ NATOM3,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 1202,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201202)
c ------ then we send a message of type 1203 that contains the updated
c random number generator state vector.

call MPI_SEND(rstate,

192

+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 1203,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201203)
c ------ and a message of type 1204 that contains the instantaneous
c potential and kinetic energies (2-body only)

call MPI_SEND(emsg,
+ 2,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 1204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 201204)
end if

c --- wait for acknowledgement (message type 0204) from parent. the
c parent also uses this to signal the child that more input will
c be sent.

c if imsg(1) is positive, it is a idchunk number that represents the
c next chunk of snapshots that this child should process.
c if imsg(1) is negative, then this child needs to wait for the
c other children to sync up, and so the child goes back to the top
c of PART TWO.

c if imsg(1) is zero, there is no more work to be done.

call MPI_RECV(imsg2,
+ 1,
+ MPI_INTEGER,
+ 0,
+ 0204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200204)

c --- loop back and wait for more input if instructed by parent.

if (imsg2(1).lt.0) goto 100

c --- terminate if the simulation is complete.

if (imsg2(1).eq.0) then
if (idebug.eq.4) write (30+myid, *) ’child is done!’
call flush(30+myid)
return

end if

c --- if there is a new chunk to process, then receive data from
c the parent.
c --- we need to save the replica number that we are about to work on.

idchunk=imsg2(1)
c --- next receive the old atomic coordinates in a message of type 0205.

call MPI_RECV(psi,
+ NATOM3,

193

+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0205,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200205)
c --- next receive the random number generator state vector, in
c a message of type 0206.

call MPI_RECV(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0206,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200206)
c ==
c --- this is the actual VMC simulation
c ==
c --- this counts the simulation loop that we’re on. For every chunk
c received by the child, we run through nprint loops

loop = 0

c --- this is the number of accepted (nacc) and rejected (nrej) moves
c in the current set of nprint loops.

nacc=0
nrej=0

c --- this is the denominator that we will use to compute the average
c potential energy for each set of nprint loops.

denom=0.0

c --- energy adjustment loop.

300 loop=loop+1

c --- try to move each atom once.

do k=1, NATOMS
c ----- compute ln of the trial wave function squared when the
c atom is in its current location. (in the serial version
c of the code these were in separate subroutines)

glog=0.0d0
do nn=1, npair(k)

n=ipairs(nn, k)
i=ivpair(1, n)
j=ivpair(2, n)

dx=(psi(3*j-2))+(-psi(3*i-2))+
+ vpvec(1, n)

dy=(psi(3*j-1))+(-psi(3*i-1))+
+ vpvec(2, n)

dz=(psi(3*j)) +(-psi(3*i))+
+ vpvec(3, n)

r2=dx*dx+dy*dy+dz*dz

194

br2=bb*bb/r2
br5=br2*br2*sqrt(br2)
glog=glog-0.5d0*br5

end do
c ------ multiplying the ln by 2 is like computing the ln of the square.

g1=2.0d0*glog

c ----- save the old position of this atom.

qsave(1)=psi(3*k-2)
qsave(2)=psi(3*k-1)
qsave(3)=psi(3*k)

c ----- pick three gaussian random numbers and scale them.

call gstep(rstate, gauss, rscale)
psi(3*k-2)=gauss/sqrt(2.0*2.0*aaxy)

call gstep(rstate, gauss, rscale)
psi(3*k-1)=gauss/sqrt(2.0*2.0*aaxy)

call gstep(rstate, gauss, rscale)
psi(3*k)=gauss/sqrt(2.0*2.0*aaz)

c ----- compute ln of the trial wave function squared after the atom moves
c to its new location.

glog=0.0d0
do nn=1, npair(k)

n=ipairs(nn, k)

i=ivpair(1, n)
j=ivpair(2, n)
dx=(psi(3*j-2))+(-psi(3*i-2))+

+ vpvec(1, n)
dy=(psi(3*j-1))+(-psi(3*i-1))+

+ vpvec(2, n)
dz=(psi(3*j)) +(-psi(3*i))+

+ vpvec(3, n)

r2=dx*dx+dy*dy+dz*dz
br2=bb*bb/r2
br5=br2*br2*sqrt(br2)
glog=glog-0.5d0*br5

end do
c ------ multiplying the ln by 2 is like computing the ln of the square.

g2=2.0d0*glog

c ----- decide whether to accept or reject the move.

c ----- if the new trial wave function is lower than the old, we
c conditionally accept the move.

if (g2.lt.g1) then
gratio=exp(g2-g1)
call rstep(rstate, z, rscale)

if (z.lt.gratio) then
nacc = nacc+1

else

psi(3*k-2)=qsave(1)

195

psi(3*k-1)=qsave(2)
psi(3*k)=qsave(3)

nrej = nrej+1
end if

c --- if the new trial wave function is larger, we always accept the
c move.

else
nacc = nacc+1

end if
end do

c --- check whether it’s time to calculate energies and
c send info back to the parent

if (loop.eq.nprint) then

c ===
c Calculate the energy
c ===
c ----- pot is the instantaneous "snapshot" potential energy

potl=0.0d0

c ----- loop over all of the interacting pairs.
do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

dx=(psi(3*j-2))+(-psi(3*i-2))+
+ vpvec(1, n)

dy=(psi(3*j-1))+(-psi(3*i-1))+
+ vpvec(2, n)

dz=(psi(3*j)) +(-psi(3*i))+
+ vpvec(3, n)

r2=dx*dx+dy*dy+dz*dz
c -------- compute the potential energy by interpolating between two grid
c points.

ibin=int((r2-r2min)*binvrs)+1

if (ibin.gt.0) then
dr=(r2-r2min)-bin*dble(ibin-1)
p= v(1, ibin)+ v(2, ibin)*dr
potl=potl+p

else
potl=potl+v(1, 1)

end if

end do
c ----- divide by 2 to get energy per atom

pot = potl*0.5d0

c ----- tloc is the instantaneous "snapshot" kinetic energy

do i=1, NATOM3
dlng(i)=0.0
d2lng(i)=0.0

end do

c ----- first compute the one-atom contributions to the kinetic energy.
do i=1, NATOMS

xx=psi(3*i-2)

196

yy=psi(3*i-1)
zz=psi(3*i)

dlng(3*i-2)= dlng(3*i-2)-2.0*aaxy*xx
dlng(3*i-1)= dlng(3*i-1)-2.0*aaxy*yy
dlng(3*i) = dlng(3*i)-2.0*aaz*zz

d2lng(3*i-2)= d2lng(3*i-2)-2.0*aaxy
d2lng(3*i-1)= d2lng(3*i-1)-2.0*aaxy
d2lng(3*i) = d2lng(3*i)-2.0*aaz

end do

c ----- loop over all interacting pairs.

do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

dx=-((psi(3*j-2))+vpvec(1, n)+(-psi(3*i-2)))
dy=-((psi(3*j-1))+vpvec(2, n)+(-psi(3*i-1)))
dz=-((psi(3*j)) +vpvec(3, n)+(-psi(3*i)))

r2=dx*dx+dy*dy+dz*dz

if (r2.le.0.0) write (6, *) ’i, j, r2 = ’, i, j, r2

br2=bb*bb/r2

br5=br2*br2*sqrt(br2)

dlng(3*i-2)=dlng(3*i-2)+2.5*br5*dx/r2
dlng(3*i-1)=dlng(3*i-1)+2.5*br5*dy/r2
dlng(3*i) =dlng(3*i) +2.5*br5*dz/r2

d2lng(3*i-2)=d2lng(3*i-2)+2.5*br5*
* (1.0-7.0*dx**2/r2)/r2

d2lng(3*i-1)=d2lng(3*i-1)+2.5*br5*
* (1.0-7.0*dy**2/r2)/r2

d2lng(3*i) =d2lng(3*i) +2.5*br5*
* (1.0-7.0*dz**2/r2)/r2

end do
c ----- now add up all of the contributions to the kinetic energy.

tloc=0.0

do i=1, NATOM3
tloc=tloc+d2lng(i)+dlng(i)**2

end do

c ----- divide by (two times the mass) and negate the result. this is
c minus hbar squared divided by twice the mass

tloc=-0.5*tloc/zmhe

goto 200
else
goto 300

end if

end

197

allrep.f
c --

c this subroutine distributes chunks of iterations to the child
c processes, waits for them to be processed, and then returns
c control to the main parent subroutine. Running averages are
c also calculated and printed here, along with the snapshots.

c errchk is a subroutine called after every MPI subroutine that
c checks the MPI error code and reports any errors.

c --

subroutine allrep(nsent, nrcvd, loops, MPI_R)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’vmc-448.com’
include ’mpif.h’

parameter (hart=315774.65d0)

dimension istat(MPI_STATUS_SIZE)
dimension imsg(3), emsg(2)
dimension isent(NCHUNKS), psi(NATOM3)
dimension rstate(8)

c --- loop over all chunks.

MPI_R=MPI_DOUBLE_PRECISION

loops = 0
do nchunk=1, NCHUNKS

if (idebug.eq.4)
+ write (9, *) ’finding child who can receive chunk= ’, nchunk

call flush(9)
c ------ wait for data request from a child.

call MPI_PROBE(MPI_ANY_SOURCE,
+ 1201,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111201)

nchild=istat(MPI_SOURCE)
call MPI_RECV(imsg,

+ 3,
+ MPI_INTEGER,
+ nchild,
+ 1201,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 151201)
if (idebug.eq.4)

+ write (9, *) ’sending chunk = ’, nchunk, ’ to ’, nchild
call flush(9)

c ------ check whether the child is returning results. if so, then
c receive the results.

198

if (imsg(1).gt.0) then
idchunk=imsg(1)
if (idebug.eq.4)

+ write (9, *) ’child ’, nchild, ’ returning chunk ’,
+ idchunk

call flush(9)
c --------- keep track of acceptances and rejections.

ztacc=ztacc+imsg(2)
ztrej=ztrej+imsg(3)
loops = loops+nprint ! whenever a child returns, 50 loops done
denom = denom+1.0d0
call MPI_RECV(psi,

+ NATOM3,
+ MPI_R,
+ nchild,
+ 1202,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111202)

c --------- receive updated random number state vector and energies
call MPI_RECV(rstate,

+ 8,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1203,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111203)

call MPI_RECV(emsg,
+ 2,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111204)
c --------- here, print out the snapshots as we get them, update running
c average energies, and print out the energies to the ofile

write (10) (psi(i), i=1, NATOM3)

potl = emsg(1)
tloc = emsg(2)

vsum = vsum+potl
v2sum = v2sum+potl*potl
esum = esum+potl+tloc
e2sum = e2sum+(potl+tloc)**2
tsum = tsum+tloc
t2sum = t2sum+tloc*tloc

c --------- calculate current averages and standard deviations

uavg = vsum/denom
u2avg = v2sum/denom
usd = sqrt(u2avg-uavg*uavg)

199

eavg = esum/denom
e2avg = e2sum/denom
esd = sqrt(e2avg-eavg*eavg)

tavg = tsum/denom
t2avg = t2sum/denom
tsd = sqrt(t2avg-tavg*tavg)

c --------- Print energies for this snapshot to the ofile (also want to
c inclue nacc, nrej, and nchild for this chunk)

write(11, 8400) potl*hart/dble(NATOMS),
+ uavg*hart/dble(NATOMS),
+ usd*hart/dble(NATOMS),
+ eavg*hart/dble(NATOMS),
+ esd*hart/dble(NATOMS),
+ tavg*hart/dble(NATOMS),
+ tsd*hart/dble(NATOMS),
+ imsg(2), imsg(3), nchild

8400 format (7(1x, 1pe13.6), 1x, i7, 1x, i7, 1x, i3)

c --------- perform the calculations for reweighting
nrw = 0
rwaxy = aaxy-da
rwaz = aaz-da
rwb = bb-3.0d0*db

do ii = 1, 9
nrw = nrw+1

c ------------ Calculate 2*log(psi’) and 2*log(psi) (called pnewsq
c and poldsq, respectively).

dx2sum=0.0d0
dy2sum=0.0d0
dz2sum=0.0d0
do l=1, NATOMS

dx=psi(3*l-2)
dy=psi(3*l-1)
dz=psi(3*l)
dx2sum=dx2sum+dx*dx
dy2sum=dy2sum+dy*dy
dz2sum=dz2sum+dz*dz

end do
c ------------ This is the one body contribution to 2*log(psi’) and
c 2*log(psi):

p1oldsq=-2.0d0*(aaxy*dx2sum+aaxy*dy2sum+aaz*dz2sum)
p1newsq=-2.0d0*(rwaxy*dx2sum+rwaxy*dy2sum+rwaz*dz2sum)

c ------------ calcilate the same for the two body term:
psi2old = 0.0d0
psi2new = 0.0d0
do n= 1, nvpair

j=ivpair(1,n)
m=ivpair(2,n)
if (m.gt.j) then

dx = (psi(3*m-2))+vpvec(1, n) +(-psi(3*j-2))
dy = (psi(3*m-1))+vpvec(2, n) +(-psi(3*j-1))
dz = (psi(3*m))+vpvec(3, n) +(-psi(3*j))

r2 = dx*dx+dy*dy+dz*dz
br2old = bb*bb/r2
br2new = rwb*rwb/r2

200

br5old = br2old*br2old*sqrt(br2old)
br5new = br2new*br2new*sqrt(br2new)

psi2old = psi2old - 0.5d0*br5old
psi2new = psi2new - 0.5d0*br5new

end if
end do

psi2oldsq = 2.0d0*psi2old
psi2newsq = 2.0d0*psi2new

c ------------ Add one and two body terms for total 2*log(psi) and
c 2*log(psi’)

poldsq = p1oldsq + psi2oldsq
pnewsq = p1newsq + psi2newsq

c ------------ calculate the reweighting factor, w = |psi’ˆ2|/|psiˆ2|
c = exp|2*log(psi’) - 2*log(psi)|

w=exp(pnewsq-poldsq)
rw_wsum(ii) = rw_wsum(ii)+w
rw_wsqsum(ii) = rw_wsqsum(ii) + (w*w)

c ------------ calculate the reweighted potential
pot=w*potl
rw_vsum(ii) = rw_vsum(ii)+pot
rw_vwsum(ii) = rw_vwsum(ii) + (pot*w)
rw_vvsum(ii) = rw_vvsum(ii) + (pot*pot)

c ----------- The subroutine kinrw(psi, tloc) calculates the kinetic
c energy using the new parameters of psi prime.

call kinrw(psi, rwaxy, rwaz, rwb, tloc)

tloc = w*tloc
rw_tsum(ii) = rw_tsum(ii)+tloc
rw_twsum(ii) = rw_twsum(ii) + (tloc*w)
rw_ttsum(ii) = rw_ttsum(ii) + (tloc*tloc)

c ----------- Calculate the total energy from the sum of potential and
c kinetic.

etot = pot + tloc
rw_esum(ii) = rw_esum(ii) + etot
rw_ewsum(ii) = rw_ewsum(ii) + (etot*w)
rw_eesum(ii) = rw_eesum(ii) + (etot*etot)

c ----------- increment reweighting parameters (rwaxy incremeted in if
c statement above)

rwb = rwb + db
if (mod(ii,3).eq.0) then

rwaxy = rwaxy + da
rwaz = aaz-da

else
rwaz = rwaz+da

end if
end do

c --------- update the random number generator state vector for this
c child.

do i=1, 8
rstatv(i, nchild)=rstate(i)

end do

c --------- update the atom positions.

do i=1, NATOM3
path(i, nchild)=psi(i)

201

end do

c --------- update the number of received chunks.

nrcvd=nrcvd+1

c --------- indicate that this chunk has been processed and returned.

isent(idchunk)=-nchild

end if

c ------ send a new chunk to child. first tell the child which chunk
c it is going to receive.

imsg(1)=nchunk

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ nchild,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 110204)

c ------ send the chunk.

if (idebug.eq.4)
+ write (9, *) ’calling send for child ’, nchild

call flush(9)
call send(nchild, MPI_R)

if (idebug.eq.4)
+ write (9, *) ’chunk ’, nchunk, ’ sent to child ’, nchild

call flush(9)
c ------ update how many chunks have been sent.

nsent=nsent+1

c ------ leave the trail of crumbs!

isent(nchunk)=nchild

c ------ update how much work has been sent to this child.

iwork(nchild)=iwork(nchild)+1

end do

c --- at this point we don’t have any more iterations to send to the
c children, but we need to retrieve any processed iterations that the
c children are still holding to send back to the parent. this
c flushes out all of those chunks.

do i=1, NCHUNKS

if (isent(i).gt.0) then

nchild=isent(i)

call MPI_RECV(imsg,
+ 3,
+ MPI_INTEGER,

202

+ nchild,
+ 1201,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121201)

c --------- check whether the child is returning results. if so, get
c the results and update the atomic positions.

if (imsg(1).gt.0) then

idchunk=imsg(1)

if (idebug.eq.4)
+ write (9, *) ’child ’, nchild,
+ ’ returning chunk ’, idchunk

c ------------ keep track of acceptances and rejections.

ztacc=ztacc+imsg(2)
ztrej=ztrej+imsg(3)
loops = loops+nprint
denom = denom+1.0d0

call MPI_RECV(psi,
+ NATOM3,
+ MPI_R,
+ nchild,
+ 1202,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121202)

call MPI_RECV(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1203,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121203)

call MPI_RECV(emsg,
+ 2,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121204)

c --------- here, print out the snapshots as we get them, update running
c average energies, and print out the energies to the ofile

write (10) (psi(ii), ii=1, NATOM3)

potl = emsg(1)

203

tloc = emsg(2)
vsum = vsum+potl
v2sum = v2sum+potl*potl
esum = esum+potl+tloc
e2sum = e2sum+(potl+tloc)**2
tsum = tsum+tloc
t2sum = t2sum+tloc*tloc

c --------- calculate current averages and standard deviations

uavg = vsum/denom
u2avg = v2sum/denom
usd = sqrt(u2avg-uavg*uavg)

eavg = esum/denom
e2avg = e2sum/denom
esd = sqrt(e2avg-eavg*eavg)

tavg = tsum/denom
t2avg = t2sum/denom
tsd = sqrt(t2avg-tavg*tavg)

c --------- Print energies for this snapshot to the ofile (also want to
c inclue nacc, nrej, and nchild for this chunk)

write(11, 8400) potl*hart/dble(NATOMS),
+ uavg*hart/dble(NATOMS),
+ usd*hart/dble(NATOMS),
+ eavg*hart/dble(NATOMS),
+ esd*hart/dble(NATOMS),
+ tavg*hart/dble(NATOMS),
+ tsd*hart/dble(NATOMS),
+ imsg(2), imsg(3), nchild

c --------- perform the calculations for reweighting
rwaxy = aaxy-da
rwaz = aaz-da
rwb = bb-3.0d0*db

do ii = 1, 9
nrw = nrw+1

c ------------ Calculate 2*log(psi’) and 2*log(psi) (called pnewsq
c and poldsq, respectively).

dx2sum=0.0d0
dy2sum=0.0d0
dz2sum=0.0d0
do l=1, NATOMS

dx=psi(3*l-2)
dy=psi(3*l-1)
dz=psi(3*l)
dx2sum=dx2sum+dx*dx
dy2sum=dy2sum+dy*dy
dz2sum=dz2sum+dz*dz

end do
c ------------ This is the one body contribution to 2*log(psi’) and
c 2*log(psi):

p1oldsq=-2.0d0*(aaxy*dx2sum+aaxy*dy2sum+aaz*dz2sum)
p1newsq=-2.0d0*(rwaxy*dx2sum+rwaxy*dy2sum+rwaz*dz2sum)

c ------------ calcilate the same for the two body term:
psi2old = 0.0d0
psi2new = 0.0d0
do n= 1, nvpair

j=ivpair(1,n)
m=ivpair(2,n)

204

if (m.gt.j) then
dx = (psi(3*m-2))+vpvec(1, n) +(-psi(3*j-2))
dy = (psi(3*m-1))+vpvec(2, n) +(-psi(3*j-1))
dz = (psi(3*m))+vpvec(3, n) +(-psi(3*j))

r2 = dx*dx+dy*dy+dz*dz
br2old = bb*bb/r2
br2new = rwb*rwb/r2

br5old = br2old*br2old*sqrt(br2old)
br5new = br2new*br2new*sqrt(br2new)

psi2old = psi2old - 0.5d0*br5old
psi2new = psi2new - 0.5d0*br5new

end if
end do

psi2oldsq = 2.0d0*psi2old
psi2newsq = 2.0d0*psi2new

c ------------ Add one and two body terms for total 2*log(psi) and
c 2*log(psi’)

poldsq = p1oldsq + psi2oldsq
pnewsq = p1newsq + psi2newsq

c ------------ calculate the reweighting factor, w = |psi’ˆ2|/|psiˆ2|
c = exp|2*log(psi’) - 2*log(psi)|

w=exp(pnewsq-poldsq)
rw_wsum(ii) = rw_wsum(ii)+w
rw_wsqsum(ii) = rw_wsqsum(ii) + (w*w)

c ------------ calculate the reweighted potential
pot=w*potl
rw_vsum(ii) = rw_vsum(ii)+pot
rw_vwsum(ii) = rw_vwsum(ii) + (pot*w)
rw_vvsum(ii) = rw_vvsum(ii) + (pot*pot)

c ----------- The subroutine kinrw(psi, tloc) calculates the kinetic
c energy using the new parameters of psi prime.

call kinrw(psi, rwaxy, rwaz, rwb, tloc)

tloc = w*tloc
rw_tsum(ii) = rw_tsum(ii)+tloc
rw_twsum(ii) = rw_twsum(ii) + (tloc*w)
rw_ttsum(ii) = rw_ttsum(ii) + (tloc*tloc)

c ----------- Calculate the total energy from the sum of potential and
c kinetic.

etot = pot + tloc
rw_esum(ii) = rw_esum(ii) + etot
rw_ewsum(ii) = rw_ewsum(ii) + (etot*w)
rw_eesum(ii) = rw_eesum(ii) + (etot*etot)

c ----------- increment reweighting parameters (rwaxy incremeted in if
c statement above)

rwb = rwb + db
if (mod(ii,3).eq.0) then

rwaxy = rwaxy + da
rwaz = aaz-da

else
rwaz = rwaz+da

end if
end do

c ------------ update the random number generator state vector for this

205

c child.

do k=1, 8
rstatv(k, nchild)=rstate(k)

end do

c ------------ update the atom positions for this child.

do n=1, NATOM3
path(n, nchild)=psi(n)

end do

c ------------ update the number of received chunks.

nrcvd=nrcvd+1

c ------------ indicate that this chunk has been processed and returned.

isent(idchunk)=-nchild
end if

c --------- now tell the child to wait until all of the children are done
c and more work is available.

imsg(1)=-1

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ nchild,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 121204)

end if

end do
return
end

kinetic-rw.f
c --
c This subroutine calculates the new kinetic energy of the new
c wavefunction with a new set of axy, az, and b parameters using the
c displacements from the old wavefunction, psi
c --

subroutine kinrw(psi, axy, az, b, tloc)

implicit real*8 (a-h, o-z)

include ’sizes.h’
include ’vmc-448.com’

dimension psi(NATOM3), dlng(NATOM3), d2lng(NATOM3)

do i=1, NATOM3
dlng(i)=0.0
d2lng(i)=0.0

end do

206

c --- first compute the one-atom contributions to the kinetic energy.

do i=1, NATOMS

xx=psi(3*i-2)
yy=psi(3*i-1)
zz=psi(3*i)

dlng(3*i-2)=dlng(3*i-2)-2.0*axy*xx
dlng(3*i-1)=dlng(3*i-1)-2.0*axy*yy
dlng(3*i) =dlng(3*i) -2.0*az*zz

d2lng(3*i-2)=d2lng(3*i-2)-2.0*axy
d2lng(3*i-1)=d2lng(3*i-1)-2.0*axy
d2lng(3*i) =d2lng(3*i) -2.0*az

end do

c --- loop over all interacting pairs.

do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

dx=-((psi(3*j-2))+vpvec(1, n)+(-psi(3*i-2)))
dy=-((psi(3*j-1))+vpvec(2, n)+(-psi(3*i-1)))
dz=-((psi(3*j)) +vpvec(3, n)+(-psi(3*i)))

r2=dx*dx+dy*dy+dz*dz

br2=b*b/r2

br5=br2*br2*sqrt(br2)

dlng(3*i-2)=dlng(3*i-2)+2.5*br5*dx/r2
dlng(3*i-1)=dlng(3*i-1)+2.5*br5*dy/r2
dlng(3*i) =dlng(3*i) +2.5*br5*dz/r2

d2lng(3*i-2)=d2lng(3*i-2)+2.5*br5*
* (1.0-7.0*dx**2/r2)/r2

d2lng(3*i-1)=d2lng(3*i-1)+2.5*br5*
* (1.0-7.0*dy**2/r2)/r2

d2lng(3*i) =d2lng(3*i) +2.5*br5*
* (1.0-7.0*dz**2/r2)/r2

end do

c --- now add up all of the contributions to the kinetic energy.
tloc=0.0

do i=1, NATOM3
tloc=tloc+d2lng(i)+dlng(i)**2

end do

c --- divide by (two times the mass) and negate the result. this is
c minus hbar squared divided by twice the mass

tloc=-0.5*tloc/zmhe

return
end

207

paramest.f
c==
c
c This program determines the 6 unknown parameters
c which define the predicted contour plots from
c reweighting: Cxx, Cyy, Cxy, x, y, and E(x,y)
c where x and y are the optimal aaxy and aaz values,
c respectively.
c The output is a gnuplot ".p" file that can be loaded
c and used to set initial parameter values for fitting

c==
subroutine param_est_aa(rw_sums)

implicit real*8 (a-h, o-z)

dimension rw_sums(4, 9)
dimension p11(3), p12(3), p13(3), p21(3), p22(3), p23(3)
dimension p31(3), p32(3), p33(3)
dimension system(2,3)

c ---

c --- This is set up to read the two paramester values and energy from a
c 3x3 (or 3x4) grid (4th column being std. dev. or confidence interval,
c which is not included in these calculations). The two parameter values
c are in the first two columns (corresponding to x and y) and the energy
c is in the third.

do i = 1, 3
p11(i) = rw_sums(i+1, 1)
p12(i) = rw_sums(i+1, 2)
p13(i) = rw_sums(i+1, 3)
p21(i) = rw_sums(i+1, 4)
p22(i) = rw_sums(i+1, 5)
p23(i) = rw_sums(i+1, 6)
p31(i) = rw_sums(i+1, 7)
p32(i) = rw_sums(i+1, 8)
p33(i) = rw_sums(i+1, 9)

end do
c --- Define fitting function for gnuplot

open(17, file=’paramest.p’)
write(17,*) "f(x,y) = cxx*(x-x0)**2+2*cxy*(x-x0)*(y-y0)+",
+"cyy*(y-y0)**2+E0"

c --- store data to appropriate variables
dEdx = (p32(3)-p12(3))/(p32(1)-p12(1))
dEdy = (p23(3)-p21(3))/(p23(2)-p21(2))

dEdx1 = (p32(3)-p22(3))/(p32(1)-p22(1))
dEdx2 = (p22(3)-p12(3))/(p22(1)-p12(1))
d2Edx2 =2.0d0*(dEdx1-dEdx2)/(p32(1)-p12(1))

dEdy1 = (p23(3)-p22(3))/(p23(2)-p22(2))
dEdy2 = (p22(3)-p21(3))/(p22(2)-p21(2))
d2Edy2 =2.0d0*(dEdy1-dEdy2)/(p23(2)-p21(2))

dEdx32 = (p33(3)-p13(3))/(p33(1)-p13(1))
dEdx12 = (p31(3)-p11(3))/(p31(1)-p11(1))
d2Edxdy = (dEdx32-dEdx12)/(p23(2)-p21(2))

cxx = 0.5d0*d2Edx2
cyy = 0.5d0*d2Edy2
cxy = 0.5d0*d2Edxdy

208

write(17, 700) cxx
write(17, 710) cxy
write(17, 720) cyy

700 format(’cxx = ’, f12.2)
710 format(’cxy = ’, f12.2)
720 format(’cyy = ’, f12.2)

c --- set up 2x2 system of equations as augmented matrix system and solve

system(1,1) = 2.0d0*cxx
system(1,2) = 2.0d0*cxy
system(1,3) = 2.0d0*cxx*p22(1)+2.0d0*cxy*p22(2)-dEdx
system(2,1) = 2.0d0*cxy
system(2,2) = 2.0d0*cyy
system(2,3) = 2.0d0*cxy*p22(1)+2.0d0*cyy*p22(2)-dEdy

c --- solve matrix system using gaussian elimination and backward substitution

c --- Gaussian Elimination:
r = system(2,1)/system(1,1)
system(2,2) = system(2,2)-r*system(1,2)
system(2,3) = system(2,3)-r*system(1,3)

c --- Back substitution

y = system(2,3)/system(2,2)
x = (system(1,3)-system(1,2)*y)/system(1,1)

write(17,750) x
write(17,760) y

750 format(’x0= ’, f15.8)
760 format(’y0= ’, f15.8)
c --- Solve for the final unknown, E(x,y)

a = p22(1)-x
b = p22(2)-y

Exy = p22(3)-cxx*a*a-cyy*b*b-2.0d0*cxy*a*b

write(17, 800) Exy
800 format(’E0= ’, 1pe13.6)

close(17)
end

c==
c
c This program determines the 3 unknown parameters
c which define the predicted quadratic fit from bb
c reweighting: a, b, c
c where b is the estimated new b-parameter
c The output is a gnuplot ".p" file that can be loaded
c and used to set initial parameter values for fitting

c==
subroutine param_est_bb(rw_sums)

implicit real*8 (a-h, o-z)

dimension rw_sums(4, 9)
dimension p1(2), p2(2), p3(2)

c --- Read in three data points from reweighting.

p1(1) = rw_sums(1, 4)

209

p2(1) = rw_sums(1, 5)
p3(1) = rw_sums(1, 6)
p1(2) = rw_sums(4, 4)
p2(2) = rw_sums(4, 5)
p3(2) = rw_sums(4, 6)

c --- Calculate first and second derivatives

E = p2(2)
dEdx = (p1(2)-p3(2))/(p1(1)-p3(1))

c --- second derivative:

dEdx1 = (p1(2)-p2(2))/(p1(1)-p2(1))
dEdx2 = (p2(2)-p3(2))/(p2(1)-p3(1))

d2Edx2 = 2.0d0*(dEdx1-dEdx2)/(p1(1)-p3(1))

c --- Solve equations for function parameters

a = d2Edx2/2.0d0

b = (-dEdx+2.0d0*a*p2(1))/(2.0d0*a)

c = p2(2) - a*((p2(1)-b)**2)

c --- Write out the results
open(17, file=’paramest.p’)
write (17, *) "f(x) = a*(x-b)**2+c"
write (17, *) "a = ", a
write (17, *) "b = ", b
write (17, *) "c = ", c
close(17)
end

sizes.h

c --- number of atoms in the system.

parameter (NATOMS=448)

c --- various multiples of NATOMS.

parameter (NATOM3=NATOMS*3)
parameter (NATOM6=NATOMS*6)
parameter (NATOM7=NATOMS*7)

c --- number of points on the interatomic potential energy curve, for
c linear interpolation of the potential energy function.

parameter (NVBINS=20000)

c --- "radius" of the interacting-pair region, in nearest-neighbor distances.

parameter (RATIO=2.05)

c --- number of interacting pairs for each atom.

parameter (NIP=56)

c --- number of interacting trimers for each atom.

210

parameter (NIT = 66)

c --- total number of interacting pairs in the simulation box.

parameter (NPAIRS=NATOMS*NIP)

c --- Maximum number of child processors allowed at time of compilation

parameter (NCH = 64)

c --- Number of chunks of iterations sent with each pass of the parent loop

parameter (NCHUNKS = 1000)

vmc-448.com
c --- internal units are atomic units.
c --- hartrees per electron volt.

parameter (evconv=3.67495735d-2)

c --- hartrees per wavenumber.

parameter (cmconv=4.55636866d-6)

c --- QMC variables.

common /monte/ ztacc, ztrej,
+ zmh, zmhe, den, step,
+ nloop, nequil, nprint, nrst

common /param/ bb, aaxy, aaz, dzscale, phi,
+ eta, gam, eps, da, db, idebug

c --- random number variables.

double precision zm1, zm2, rm1, rm2, rscale, rstatv

common /moduli/ zm1, zm2, rm1, rm2

common /rancom/ rstatv(8, NCH), rscale, irrst, nrskip

c --- potential energy curve

common /potcom/ v(2, NVBINS)

c --- filenames.

character*20 ltfile, pfile, sfile, ofile, dfile, dump,
+ rwfile

common /files/ ltfile, pfile, sfile, ofile, dfile, dump,
+ rwfile

c --- crystal lattice.

common /crystl/ xtal(NATOMS, 3), path(NATOM3, NCH),
+ npair(NATOMS), ipairs(NIP, NATOMS)

common /vpairs/ vpvec(3, NPAIRS), ivpair(2, NPAIRS),
+ nvpair

c --- energy sums.

211

common /energy_vec/ rw_vsum(9), rw_tsum(9), rw_esum(9),
+ rw_wsqsum(9), rw_vwsum(9), rw_ewsum(9),
+ rw_twsum(9), rw_vvsum(9), rw_eesum(9),
+ rw_ttsum(9), rw_wsum(9)

common /energy/ vsum, v2sum, esum, e2sum, tsum, t2sum, denom

c --- counters to monitor load balancing.

common /parcom/ iwork(NCH)

A.1.1 VMC Long-Range Correction Program

The program files necessary to compute the long-range correction to the potential

energy as well as the mean squared displacement are included below. This version

of the program takes the density, deformation parameters, number of snapshot files,

number of MCCs used to generate each file, and the name of each snapshot file as

input. In order to allow for the possibility of a distorted lattice, independent Gaussian

parameters are calculated in the x and y directions, though for an ideal lattice they

should be approximately the same. The program files required to compile and run

this program are as follows:

msd.f Main program that reads in the input data and the atomic snapshots
and calculates the mean squared displacements and Gaussian parameters
of the atomic distributions. This program also calls the lrc subroutine
which calculates the long-range correction to the total energy.

lrc-3d-sub.f Subroutine which calculates the contribution of region 1 and region
2 atoms to the long-range correction in an ideal or distorted lattice.
Calculating the region 2 contribution requires calling the c6sub subroutine
in c6-sub.f.

c6-sub.f Contains the c6sub subroutine which calculates the infinite lattice sum S⇤6
from the nearest neighbor distance and the deformation parameters. For
an ideal lattice this returns the value published by Hirschfelder, Curtiss,
and Bird. This calculation requires the file ‘lattice-file-7920’ which is a
file containing the lattice positions of 7920 atoms in an hcp configuration.

Gauss-Hermite.dat Data file containing the weights and abcissas for Gaussian quadrature
calculations for di↵erent numbers of nodes.

sizes.h See Sec. A.1.

vmc-448.com See Sec. A.1.

212

msd.f
c ===
c This program calculates the mean
c square displacement from the lattic
c position for each atom in each direction
c
c It also calculated the gaussian parameters
c of the atomic probability densities and
c calculates the long range correction to
c the potential energy
c ===

implicit real*8 (a-h, o-z)
real*8 lrctot
include ’sizes.h’
include ’vmc-448.com’

dimension u(NATOM3), ux(NATOMS), uy(NATOMS), uz(NATOMS)
parameter (bohr=0.529177249d0)
character*30 file1, file2, file3, file4, file5

common /files/ file1, file2, file3, file4, file5
c --- Read in density, number of files, number of MCCs per file
c and distortion parameters eta gam and eps

read(5, *) den
read(5, *) eta
read(5, *) gam
read(5, *) eps
read(5, *) nfiles
read(5, *) nloops

55 format(a30)

phi = sqrt(1.0d0+eta)
ncalc = nloops/50

c --- use lattice parameters to calculate nearest neighbor distance for
c long-range correction

open (1, file="lattice-file-448")
read (1, *) nat

read (1, *) xlen, ylen, zlen

den0=dble(NATOMS)/(xlen*ylen*zlen)

xlen = xlen
ylen = ylen
zlen = zlen

c --- compute a distance scaling factor.

scale=exp(dlog(den/den0)/3.0d0)

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

dxmax=0.50d0*xlen
dymax=0.50d0*ylen
dzmax=0.50d0*zlen

do i=1, NATOMS

read (1, *) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale

213

xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (1)

c --- this helps us remember the nearest-neighbor distance.
c --- notice that the nearest neighbor distance is calculated
c from the undistorted lattice as in the main program.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do
c --- compute interacting pairs from the atomic positions of the
c undistorted lattice

do i=1, NATOMS
npair(i)=0

end do

nvpair=0

do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

214

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount.
c --------- we determine the interacting pairs from the undistorted
c then use our values of eta (phi), gamma, and epsilon to
c impose the distortions for the elastic constant
c calculations.

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

c ------------ these transformations impose the lattice distortions
c They reduce to dx, dy, and dz for eta = 0 (phi = 1),
c gamma = 1 and epsilon = 0.

vpvec(1, nvpair)=dx/(sqrt(gam)*phi)
vpvec(2, nvpair)=dy*sqrt(gam)/phi
vpvec(3, nvpair)=dz*phi**2+dy*eps

npair(i)=npair(i)+1

ipairs(npair(i), i)=nvpair

end if

end if

end do
end do

c --- Now loop back through the coordinates in the xtal array and
c transform them appropriately

do i=1, NATOMS

xtal(i, 1)=xtal(i, 1)/(sqrt(gam)*phi)
xtal(i, 2)=xtal(i, 2)*sqrt(gam)/phi
xtal(i, 3)=xtal(i, 3)*phi**2+eps*xtal(i, 2)

end do

215

c --- initilize running totals
u2xtot = 0.0d0
u2ytot = 0.0d0
u2xtot = 0.0d0

u4xtot = 0.0d0
u4ytot = 0.0d0
u4ztot = 0.0d0

c --- Read in lattice positions from the snapshot files
do k = 1, nfiles

read (5, 55) file1
open (1, file=file1, form=’unformatted’, status=’old’,

+ access=’sequential’, recl=NATOM3*8)

read(1) bb, aaxy, aaz

u2x = 0.0d0
u2y = 0.0d0
u2z = 0.0d0

u4x = 0.0d0
u4y = 0.0d0
u4z = 0.0d0

do i = 1, ncalc
read(1) (u(j), j=1, NATOM3)

do l = 1, NATOMS
u2x = u2x + (u(3*l-2)**2)
u4x = u4x + (u(3*l-2)**4)

u2y = u2y + (u(3*l-1)**2)
u4y = u4y + (u(3*l-1)**4)

u2z = u2z + (u(3*l)**2)
u4z = u4z + (u(3*l)**4)

end do
end do

u2xtot = u2xtot + u2x
u2ytot = u2ytot + u2y
u2ztot = u2ztot + u2z

u4xtot = u4xtot + u4x
u4ytot = u4ytot + u4y
u4ztot = u4ztot + u4z

close(1)
end do

u2xavg = u2xtot/(dble(nfiles)*dble(ncalc)*dble(NATOMS))
u4xavg = u4xtot/(dble(nfiles)*dble(ncalc)*dble(NATOMS))

u2yavg = u2ytot/(dble(nfiles)*dble(ncalc)*dble(NATOMS))
u4yavg = u4ytot/(dble(nfiles)*dble(ncalc)*dble(NATOMS))

u2zavg = u2ztot/(dble(nfiles)*dble(ncalc)*dble(NATOMS))
u4zavg = u4ztot/(dble(nfiles)*dble(ncalc)*dble(NATOMS))

u2xsd = sqrt(u4xavg - (u2xavg)**2)
u2ysd = sqrt(u4yavg - (u2yavg)**2)

216

u2zsd = sqrt(u4zavg - (u2zavg)**2)

u2xCI = 1.96d0*u2xsd/sqrt(dble(nfiles)*dble(ncalc)*dble(NATOMS))
u2yCI = 1.96d0*u2ysd/sqrt(dble(nfiles)*dble(ncalc)*dble(NATOMS))
u2zCI = 1.96d0*u2zsd/sqrt(dble(nfiles)*dble(ncalc)*dble(NATOMS))

c --- Use mean squared displacement to calculate the apparent gaussian
c parameters and their uncertainties using propagation of error

ax = 1.0d0/(4.0d0*u2xavg)
ay = 1.0d0/(4.0d0*u2yavg)
az = 1.0d0/(4.0d0*u2zavg)

axsd = (1.0d0/(4.0d0*u2xavg*u2xavg))*u2xsd
aysd = (1.0d0/(4.0d0*u2yavg*u2yavg))*u2ysd
azsd = (1.0d0/(4.0d0*u2zavg*u2zavg))*u2zsd

c --- in order to allow for distorted lattice we allow ax and ay to
c be used independently rather than combining them as before:
c axy = (ax+ay)/2.0d0
c axysd = sqrt((axsd**2+aysd**2)/2.0d0)

write(6, 650) NATOMS, aaxy, aaz, bb, den, ax,
+ axsd*1.96d0/sqrt(dble(ncalc*nfiles*NATOMS)),
+ ay, aysd*1.96d0/sqrt(dble(ncalc*nfiles*NATOMS)),
+ az, azsd*1.96d0/sqrt(dble(ncalc*nfiles*NATOMS))

650 format(1x, i3, 3(1x, f9.6), 1x, f10.8,
+ 3(4x, f10.7, 1x, ’+/-’, 1x, f10.7))

b2 = bohr*bohr

write(6, 300) u2xavg*b2, u2xsd*b2, u2xCI*b2
write(6, 310) u2yavg*b2, u2ysd*b2, u2yCI*b2
write(6, 320) u2zavg*b2, u2zsd*b2, u2zCI*b2

write(6, 330) u4xavg/(u2xavg*u2yavg)
write(6, 340) u4yavg/(u2yavg*u2yavg)
write(6, 350) u4zavg/(u2zavg*u2zavg)

300 format(’x: ’, 3(1x, 1pe13.6), " Ang**2")
310 format(’y: ’, 3(1x, 1pe13.6), " Ang**2")
320 format(’z: ’, 3(1x, 1pe13.6), " Ang**2")
330 format(’u4x/(u2x)ˆ2 = ’, 1pe13.6)
340 format(’u4y/(u2y)ˆ2 = ’, 1pe13.6)
350 format(’u4z/(u2z)ˆ2 = ’, 1pe13.6)

call lrc(ax, ay, az, rnnmin, lrctot)
write(6, 360) lrctot

360 format(’V_lrc (K/atom) = ’, 1pe13.6)

end

lrc-3d-sub.f
c ===
c This subroutine takes the ax, ay, az, and rnnmin
c parameters as arguments and returns the total long
c range correction to the potential energy.
c ===

subroutine lrc(ax, ay, az, rnnmin, lrctot)

implicit real*8 (a-h, o-z)
real*8 lrctot

217

include ’sizes.h’
include ’vmc-448.com’

dimension x(20), w(20)
dimension znpvec(3, NATOMS), nonvec(NATOMS)

parameter (hart = 315774.65d0)
parameter (c6 = 1.461d0)
parameter (c8 = 14.11d0)
parameter (c10 = 183.5d0)
parameter (pi = 3.14159265358979323846d0)

phi = sqrt(1.0d0+eta)
c --- define number of nodes to use for gaussian quadrature. This was arrived at by
c considering 2 up to 20 nodes and determining where the change becaem negligible

nodes = 8
nlskip = 29
nread = 4

c --- Calculate the infinite lattice sum needed to calculate the
c contribution from region 2 atoms.

call c6sub(den, eta, gam, eps, c6hcb)
c --- read positions and weights from Guass-Hermite.dat

open(1, file="Gauss-Hermite.dat", status="old")
do i=1, nlskip

read(1,*)
end do

do i=1, nread
read(1,*) x(i), w(i)
x(i+nread) = -1.0d0*x(i)
w(i+nread) = w(i)

end do
close(1)

c --- from the lattice file, read in number of atoms, calculate which are
c non-interacting, and store displacement vector. For this calculation,
c we are centering on atom 1, so we need only to calculate the displacement
c of all atoms from atom 1.

nonpair = 0
do j=2, NATOMS

i=1
dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- If we are dealing with a distorted lattice, we need to
c "undistort" the dx, dy, and dz to get the proper noninteracting pairs.

dx = dx*sqrt(gam)*phi
dy = dy*phi/sqrt(gam)
dz = (dz-dy*eps)/phi**2

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

218

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz
r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount, defined as RATIO times the nearest-
c neighbor distance.

if (r/rnnmin.ge.RATIO) then
nonpair = nonpair+1
nonvec(nonpair) = j
znpvec(1, nonpair)=dx/(sqrt(gam)*phi)
znpvec(2, nonpair)=dy*sqrt(gam)/phi
znpvec(3, nonpair)=dz*phi**2+dy*eps

end if
end do

c --- Now we have our vector components from atom 1 to all of the remaining 448 atoms
c with which it has only long range interactions. We can cycle through these to
c calculate the total long range correction

c --- set up the seven nested do-loops. These will loop over u1x, u1y, u1z
c u2x, u2y, and u2z. For each one we will calculate the C6/Rˆ6, C8/Rˆ8,
c and C10/Rˆ10 terms separately.

c --- calculate scaling factors for xy and z coordinates:
factor = 1.0d0/(pi**3.0d0)
ysc = 1.0d0/sqrt(2.0d0*ax)
ysc = 1.0d0/sqrt(2.0d0*ay)
zsc = 1.0d0/sqrt(2.0d0*az)
ghvtot = 0.0d0
R6nonpair = 0.0d0

do ii = 1, nonpair
Rx = znpvec(1, ii)
Ry = znpvec(2, ii)
Rz = znpvec(3, ii)

id = nonvec(ii)

fr6 = 0.0d0
fr8 = 0.0d0
fr10 = 0.0d0

r2latt = Rx**2.0d0+Ry**2.0d0+Rz**2.0d0
R6nonpair = R6nonpair + c6/(r2latt**3.0d0)
dist = sqrt(r2latt)
do i = 1, nodes

u1x = x(i)
w1x = w(i)
do j = 1, nodes

u2x = x(j)
w2x = w(j)
do k = 1, nodes

u1y = x(k)
w1y = w(k)

219

do l = 1, nodes
u2y = x(l)
w2y = w(l)
do m = 1, nodes

u1z = x(m)
w1z = w(m)
do n = 1, nodes

u2z = x(n)
w2z = w(n)

r2x = (Rx+u2x*xsc-u1x*xsc)**2.0d0
r2y = (Ry+u2y*ysc-u1y*ysc)**2.0d0
r2z = (Rz+u2z*zsc-u1z*zsc)**2.0d0

rr2 = r2x+r2y+r2z
r6 = rr2*rr2*rr2
r8 = r6*rr2
r10 = r8*rr2
wtot = w1x*w2x*w1y*w2y*w1z*w2z

fr6 = fr6+wtot*c6/r6
fr8 = fr8+wtot*c8/r8
fr10 = fr10+wtot*c10/r10

end do
end do

end do
end do

end do
end do
vcor = factor*(fr6+fr8+fr10)
ghvtot = ghvtot+vcor
end do

c --- to calculate LRC beyond the 448 atoms, we reference Hirschfelder, Curtiss and Bird
c who tabulated C6 contribution for the potential energy of a crystal as the sum over
c an infinite number of atoms. The contribution from the 448 atoms we have considered
c in the initial energy calculation and the gauss-hermite integration above must be
c subtracted from this term.

r6ipairs = 0.0d0

do i = 1, npair(1)
rxnew = vpvec(1, i)
rynew = vpvec(2, i)
rznew = vpvec(3, i)
r2lattnew = rxnew**2.0d0+rynew**2.0d0+rznew**2.0d0
r6ipairs = r6ipairs+1.0d0/(r2lattnew*r2lattnew*r2lattnew)

end do

region1 = (r6ipairs*c6)+R6nonpair
vcoradd = c6hcb*c6/(rnnmin**6.0d0)-region1

c --- This is works for an ideal crystal only. For non-ideal c/a ratios, we need to
c adjust c6hcb.

lrctot = -0.5d0*(ghvtot+vcoradd)*hart
return
end

c6-sub.f
c ==

c This program calculates the sum of the 1/Rˆ6 terms
c of all pairs contained within a distorted sphere of a
c rad=60.2 centered on atom 1. The truncated sums

220

c are corrected to the hypothesized exact value using the
c previously determined corrections from the ideal crystal
c (based on the exact sum from Hirschfelder, Curtiss, and Bird).

c This version accounts for the three typs of distortion
c needed to calculated the elastic constants, governed by
c epsilon, gamma, and eta.

c ==
subroutine c6sub (den, eta, gam, eps, c6_param)
implicit real*8 (a-h, o-z)

c --- set up a larger xtal array than is used in the main program
c this allows us to use the 7920 atom lattice file

real*8 xtal(7920, 3)

c --- Scale the radius of interest (should still give us 3838 pairs)
den1 = 0.0041896d0 !reference density where 60.2 radius was used
radius = 60.2d0*exp(dlog(den1/den)/3.0d0)

c --- initialize some values we will need
phi = sqrt(1.0d0+eta)

error = 0.063761d0/100.0d0 !error from ideal study at this radius
corr = 1.0d0/(1.0d0-error) !correction factor

c --- read the edge lengths of the supercell and scale them
c based on the density provided.

open (1, file="lattice-file-7920")
read (1, *) NATOMS

read (1, *, err=903) xlen, ylen, zlen

den0=dble(NATOMS)/(xlen*ylen*zlen)

xlen = xlen
ylen = ylen
zlen = zlen

c --- compute a distance scaling factor.

scale=exp(dlog(den/den0)/3.0d0)

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

dxmax=0.50d0*xlen
dymax=0.50d0*ylen
dzmax=0.50d0*zlen

do i=1, NATOMS

read (1, *, err=904) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (1)

c --- this helps us remember the nearest-neighbor distance.
c --- notice that the nearest neighbor distance is calculated
c from the undistorted lattice as in the main program.

221

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do
rnn2 = rnnmin*rnnmin
rnn6 = rnn2*rnn2*rnn2

c --- compute interacting pairs.
nvpair = 0
c6_param = 0.0d0
do j=2, NATOMS

i=1

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

222

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- we determine the interacting pairs from the undistorted lat.
c then use our values of eta (phi), gamma, and epsilon to
c impose the distortions for the elastic constant
c calculations.

if (r.lt.radius) then
nvpair = nvpair+1
dxnew=dx/(sqrt(gam)*phi)
dynew=dy*sqrt(gam)/phi
dznew=dz*phi**2+dy*eps

r2 = dxnew*dxnew+dynew*dynew+dznew*dznew
r6 = r2*r2*r2
r6i = 1.0d0/r6
c6_param = c6_param+rnn6*r6i

end if
end if

end do

if(nvpair.ne.3838) goto 905

c6_param = c6_param*corr
return

903 write(6, *) "Error reading side lengths"
904 write(6, *) "Error reading atomic positions"
905 write(6, *) "Error: Not enough pairs considered in C6 calc"

return
end

Gauss-Hermite.dat
+/- x_i w_i

n=2
0.707106781186548 8.862269254528E-01

n=3
0.000000000000000 1.181635900604E+00
1.224744871391589 2.954089751509E-01

n=4
0.524647623275290 8.049140900055E-01
1.650680123885785 8.131283544725E-02

n=5
0.000000000000000 9.453087204829E-01
0.958572464613819 3.936193231522E-01
2.020182870456086 1.995324205905E-02

n=6
0.436077411927617 7.246295952244E-01
1.335849074013697 1.570673203229E-01
2.350604973674492 4.530009905509E-03

n=7
0.000000000000000 8.102646175568E-01

223

0.816287882858965 4.256072526101E-01
1.673551628767471 5.451558281913E-02
2.651961356835233 9.717812450995E-04

n=8
0.381186990207322 6.611470125582E-01
1.157193712446780 2.078023258149E-01
1.981656756695843 1.707798300741E-02
2.930637420257244 1.996040722114E-04

n=9
0.000000000000000 7.202352156061E-01
0.723551018752838 4.326515590026E-01
1.468553289216668 8.847452739438E-02
2.266580584531843 4.943624274437E-03
3.190993201781528 3.960697726326E-05

n=10
0.342901327223705 6.108626337353E-01
1.036610829789514 2.401386110823E-01
1.756683649299882 3.387439445548E-02
2.532731674232790 1.343645746781E-03
3.436159118837738 7.640432855233E-06

n=12
0.314240376254359 5.701352362625E-01
0.947788391240164 2.604923102642E-01
1.597682635152605 5.160798561588E-02
2.279507080501060 3.905390584629E-03
3.020637025120890 8.573687043588E-05
3.889724897869782 2.658551684356E-07

n=16
0.27348104613815 5.079294790166E-01
0.82295144914466 2.806474585285E-01
1.38025853919888 8.381004139899E-02
1.95178799091625 1.288031153551E-02
2.54620215784748 9.322840086242E-04
3.17699916197996 2.711860092538E-05
3.86944790486012 2.320980844865E-07
4.68873893930582 2.654807474011E-10

n=20
0.2453407083009 4.622436696006E-01
0.7374737285454 2.866755053628E-01
1.2340762153953 1.090172060200E-01
1.7385377121166 2.481052088746E-02
2.2549740020893 3.243773342238E-03
2.7888060584281 2.283386360163E-04
3.3478545673832 7.802556478532E-06
3.9447640401156 1.086069370769E-07
4.6036824495507 4.399340992273E-10
5.3874808900112 2.229393645534E-13

224

A.2 VMC Perturbative 3-body Correction Pro-

gram (VMC(3B))

The VMC(3B) program reported below calculates the perturbative three-body

correction to the VMC-2B energies from six representative 4He trimers. This approach

assumes an ideal crystal. In the case of distorted lattices, each of the 66 trimers

formed by a central atom and two of its nearest neighbors should be accounted for

individually. The three-body correction calculation reads in atomic snapshots from

the unformatted VMC snapshot files, taking the density, number of files, MCCs per

file, and names of the snapshot files as input. This is a serial program that requires

the following files to compile and run:

3body-cencek.f Performs the VMC perturbative three-body energy calculation by
calculating the new trimer side lengths of each of the six representative
trimers from the VMC snapshots. The three-body energy is calculated by
calling the He3 subroutine in he3fci.f.

he3fci.f Calculates the Cencek nonadditive potential and can be found in the
supplementary material of the original publication (Wojciech Cencek,
Konrad Patkowski, and Krzysztof Szalewicz, J. Chem. Phys., 131(6),
2009). It calls on data in the file ‘E3.dat’ which is also found in the
supplementary material. These files are not reproduced below.

trimers.dat Data file containing the atoms in each representative trimer in the first 3
columns, and an integer corresponding to the central angle in the fourth
column.

sizes.h See Sec. A.1.

vmc-448.com See Sec. A.1.

3body-cencek.f
c ==
c This program takes an unformatted snapshot
c file and calculates the three body energy by
c averaging over one representation of each of
c the six nearest neighbor trimer geometries
c using atom 1 as the central atom
c
c The point of this program is to calculate the
c perturbative three-body energy
c ==

implicit real*8 (a-h, o-z)

include ’sizes.h’

225

include ’vmc-448.com’

dimension psi(NATOM3), ntrimer(6, 4)
dimension vect(6, 6)
parameter (hart=315774.65d0)

c --- define common block files names

character*30 snapfile
common /files/ snapfile

c --- Read in central atom, input file names, one with x,y,z vectors from
c central atom, one with trimers and central angles.

read (5, *) den
read (5, *) nfiles ! number of snapshot files to read
read (5, *) nloop !number of MCCs used in VMC simulation

100 format(a30)

ncalc = nloop/50

c --- First define the trimers we are using for each geometry
c to simplify we will specify each geometry by an integer
c based on the central angle: 60 = 1, 90 = 2, 109.4 = 3,
c 120 = 4, 146.4 = 5, 180 = 6.
c we read these in from a timer file. The first three columns
c in the file are the atoms in the trimer, the next is the
c integer specifying the central angle

open(1, file=’trimers.dat’)
do i=1, 6

read(1, *) (ntrimer(i, j), j=1,4)
end do

c --- Open the lattice file, scale, and read in atomic positions.

open(2, file = "lattice-file-448", status="old")
read(2, *) nlpts
read(2, *) xlen, ylen, zlen

den0=dble(NATOMS)/(xlen*ylen*zlen)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

scale=exp(dlog(den/den0)/3.0d0)

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

c --- these are the maximum distance in the x, y, or z directions before
c we have to invoke periodic boundary conditions.

dxmax=0.5d0*xlen
dymax=0.5d0*ylen
dzmax=0.5d0*zlen

c --- read in the lattice points and scale them.

do i=1, NATOMS

read (2, *) xtal(i, 1), xtal(i, 2), xtal(i, 3)
xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

226

end do

close (2)

c --- this helps us remember the nearest-neighbor distance.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

c ------ update the minimum nearest-neighbor distance if needed.

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

c --- Calculate vectors from atom 1 to each atom in each trimer

do i=1, 6
j = ntrimer(i, 2)
k = ntrimer(i, 3)

dx1=xtal(j, 1)-xtal(1, 1)
dy1=xtal(j, 2)-xtal(1, 2)
dz1=xtal(j, 3)-xtal(1, 3)

dx2=xtal(k, 1)-xtal(1, 1)
dy2=xtal(k, 2)-xtal(1, 2)
dz2=xtal(k, 3)-xtal(1, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx1.gt.dxmax) then
dx1=dx1-xlen

else if (dx1.lt.-dxmax) then
dx1=dx1+xlen

end if

227

if (dy1.gt.dymax) then
dy1=dy1-ylen

else if (dy1.lt.-dymax) then
dy1=dy1+ylen

end if

if (dz1.gt.dzmax) then
dz1=dz1-zlen

else if (dz1.lt.-dzmax) then
dz1=dz1+zlen

end if

if (dx2.gt.dxmax) then
dx2=dx2-xlen

else if (dx2.lt.-dxmax) then
dx2=dx2+xlen

end if

if (dy2.gt.dymax) then
dy2=dy2-ylen

else if (dy2.lt.-dymax) then
dy2=dy2+ylen

end if

if (dz2.gt.dzmax) then
dz2=dz2-zlen

else if (dz2.lt.-dzmax) then
dz2=dz2+zlen

end if

c ------ Save the vectors to trimer atoms in the vect vector

vect(i, 1) = dx1
vect(i, 2) = dy1
vect(i, 3) = dz1
vect(i, 4) = dx2
vect(i, 5) = dy2
vect(i, 6) = dz2

end do

c --- initialize running totals
potl3b = 0.0d0
potl3bsq = 0.0d0

do ii = 1, nfiles
read (5, 100) snapfile
open (3, file=snapfile, form=’unformatted’,

+ status=’old’, access=’sequential’, recl=NATOM3*8)
read(3) bb, aaxy, aaz

c --- now for each snapshot, loop over all trimers, calculate new
c distance and get three body energy

do i = 1, ncalc
read(3) (psi(j), j = 1, NATOM3)

c --- For each snapshot, reset the running total for each trimer type
c but not for the total 3body energy.

tri1=0.0d0
tri2=0.0d0
tri3=0.0d0
tri4=0.0d0
tri5=0.0d0
tri6=0.0d0
do l = 1, 6

228

n1 = ntrimer(l, 2)
n2 = ntrimer(l, 3)

c --- Now that the three atoms have been identified
c (the central atom, ncent, was specified in the
c input), we can calculate the new side lengths
c starting from the vectors. Distances between
c central atoms and nearest neighbors are labeled
c with 01 or 02, third distance is labeled 12

dx01 = vect(l, 1)+psi(3*n1-2)-psi(1)
dy01 = vect(l, 2)+psi(3*n1-1)-psi(2)
dz01 = vect(l, 3)+psi(3*n1)-psi(3)
side1 = sqrt(dx01*dx01+dy01*dy01+dz01*dz01)

dx02 = vect(l, 4)+psi(3*n2-2)-psi(1)
dy02 = vect(l, 5)+psi(3*n2-1)-psi(2)
dz02 = vect(l, 6)+psi(3*n2)-psi(3)
side2 = sqrt(dx02*dx02+dy02*dy02+dz02*dz02)

dx12 = vect(l, 4)+psi(3*n2-2)-vect(l, 1)-psi(3*n1-2)
dy12 = vect(l, 5)+psi(3*n2-1)-vect(l, 2)-psi(3*n1-1)
dz12 = vect(l, 6)+psi(3*n2)-vect(l, 3)-psi(3*n1)
side3 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

c ------------ calculate instantaneous triangles
call He3(side1, side2, side3, E3)
if(ntrimer(l, 4).eq.1) tri1=tri1+E3
if(ntrimer(l, 4).eq.2) tri2 = tri2+E3
if(ntrimer(l, 4).eq.3) tri3 = tri3+E3
if(ntrimer(l, 4).eq.4) tri4 = tri4+E3
if(ntrimer(l, 4).eq.5) tri5 = tri5+E3
if(ntrimer(l, 4).eq.6) tri6 = tri6+E3

end do
c ------ There are 24 tri1, 12 tri2, 3 tri3, 18 tri4,
c 6 tri5, and 3 tri6. We need to also divide the energy
c of each equilateral trimer by 3 bc of triple counting.

pot = 8.0d0*tri1+12.0d0*tri2+3.0d0*tri3+18.0d0*tri4+6.0d0*tri5+
+ 3.0d0*tri6

pot2 = pot*pot

c ------ keep track of the running total of the 3 body energy and the
c <3BEˆ2> to calculate standard deviation

potl3b = potl3b+pot
potl3bsq = potl3bsq+pot2

end do
close(3)
end do

potl3b = potl3b*hart/dble(nfiles*ncalc)
potl3bsq = potl3bsq*hart*hart/dble(nfiles*ncalc)

sd = sqrt(potl3bsq-potl3b*potl3b)
write(6, *) ’Average three-body energy from central atom : ’,
+ ’1 at density: ’, den
write(6, *)
write(6, 9500) potl3b, sd, 1.96*sd/sqrt(dble(4*ncalc))

9500 format(’Avg 3B energy: ’, 1pe13.6, 1x, ’St. Dev.: ’,
+ 1pe13.6, 1x, ’ 95% CI: +/- ’, 1pe13.6, 1x)

999 stop
end

229

A.3 VMC Fully-Incorporated 3-body Program

(VMC+3B)

The VMC+3B version of the VMC program incorporates three-body interactions by

calculating the three-body potential from all interacting trimers whenever snapshots

of atomic positions are recorded and was adapted from the VMC-2B program

described above. Many of the subroutines are unchanged. The current version of

this code does not allow for non-ideal lattice geometries, however it can be easily

modified to accept and implement nonequilibrium values of ⌘, �, and ✏ following the

implementation in the VMC-2B code. The files required to compile and run this

program are as follows:

main.f See Sec. A.1.

cmrg.f See Sec. A.1.

rsetup.f See Sec. A.1.

parent-3b.f Replaces parent.f in Sec. A.1. In addition to the tasks in parent.f, parent-
3b.f also sets up the interacting trimer list.

input-3b.f Replaces input.f in Sec. A.1. Reads in the input and output file names,
debugging level, and simulation parameters, but is not currently formatted
to read deformation parameters.

vinit.f See Sec. A.1.

he3fci.f See Sec. A.2.

child-3b.f Replaces child.f in Sec. A.1. In addition to the tasks of child.f, child-3b.f
calculates the instantaneous three-body energy and sends this back to the
parent.

allrep-3b.f Replaces allrep.f in Sec. A.1. In addition to the tasks of allrep.f, allrep-3b.f
includes the three-body potential energy in the total energy and reweighting
calculations.

send.f See Sec. A.1.

kinetic-rw.f See Sec. A.1.

paramest.f See Sec. A.1.

tstamp.f See Sec. A.1.

sizes.h Replaces sizes.h in Sec. A.1. This version of sizes.h also includes parameters
necessary for calculating the total number of interacting trimers.

vmc-448.com Replaces vmc-448.com in Sec. A.1. This version of vmc-448.com also
includes all parameters related to the interacting trimers.

Program files that can be found in the QSATS code and are not reproduced here: main.f,
cmrg.f, vinit.f, send.f, tstamp.f

230

Each subroutine that di↵ers from the VMC-2B program in Sec. A.1 is reproduced

in its entirety below.

parent-3b.f
c --
c this is the parent process that runs on node 0.

c errchk is a subroutine called after every MPI subroutine that
c checks the MPI error code and reports any errors.
c This version sets up the interacting trimer list to account for
c three-body interactions.
c --

subroutine parent(ierror)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’vmc-448.com’
include ’mpif.h’

dimension istat(MPI_STATUS_SIZE)
dimension imsg(11), fmsg(7)
dimension isent(NCHUNKS), psi(NATOM3)
dimension rw_sums(4, 9)
dimension rstate(8)

c --- hart = conversion from hartree to K/atom
parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)
parameter (hart=315774.65d0)

c ==
c PART ONE: INITIALIZATION
c ==

ierror=0

c --- read input file.
write (6, *) "parent calling input"
call input

write (6, 6100) ltfile, dump, dfile, ofile
6100 format (’lattice file name = ’, a16/,

+ ’snapshot file name = ’, a16/,
+ ’dfile file name = ’, a16/,
+ ’ofile file name = ’, a16/)

if (idebug.eq.0) write (6, 6110) idebug, ’NONE’
if (idebug.eq.1) write (6, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (6, 6110) idebug, ’LOW’
if (idebug.eq.3) write (6, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (6, 6110) idebug, ’HIGH’

6110 format (’debug level = ’, i1,’ or ’, a8/)

c --- read the potential energy curve.

call vinit(r2min, bin)

c --- read crystal lattice points.

231

write (6, 6200) ltfile
6200 format (’READING crystal lattice from ’, a16/)

open (8, file=ltfile, status=’old’, err=901)
read (8, *, err=902) nlpts

if (nlpts.ne.NATOMS) then
write (6, *) ’ERROR: number of atoms in lattice file = ’, nlpts
write (6, *) ’number of atoms in source code = ’, NATOMS
call quit

end if

c --- read the edge lengths of the supercell.

read (8, *, err=903) xlen, ylen, zlen
den0=dble(NATOMS)/(xlen*ylen*zlen)

c --- compute a distance scaling factor.

scale=exp(dlog(den/den0)/3.0d0)

write (6, 6300) scale
6300 format (’supercell scaling factor computed from density = ’,

+ f12.8/)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

dxmax=half*xlen
dymax=half*ylen
dzmax=half*zlen

do i=1, NATOMS

read (8, *, err=904) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (8)

c --- this helps us remember the nearest-neighbor distance.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

232

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

write (6, 6310) rnnmin
6310 format (’nearest neighbor (NN) distance [bohr] = ’, f10.5/)

write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2),
+ xtal(NATOMS, 3)

6320 format (’final lattice point [bohr] = ’, 3f10.5/)

write (6, 6330) xlen, ylen, zlen
6330 format (’supercell edge lengths [bohr] = ’, 3f10.5/)

write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin
6340 format (’supercell edge lengths [NN distances] = ’, 3f10.5/)

c --- compute interacting pairs.

do i=1, NATOMS
npair(i)=0

end do

nvpair=0
nvpair1=0
do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

233

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount.

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

vpvec(1, nvpair)=dx
vpvec(2, nvpair)=dy
vpvec(3, nvpair)=dz

npair(i)=npair(i)+1

ipairs(npair(i), i)=nvpair
c ------------ for three-body calculations, keep track of only first
c nearest neighbors.

if (r/rnnmin.lt.1.05) then

nvpair1=nvpair1+1

c ------------ store information about this pair (i->j) in arrays.

ivpair1(1, nvpair1)=i
ivpair1(2, nvpair1)=j

vpvec1(1, nvpair1)=dx
vpvec1(2, nvpair1)=dy
vpvec1(3, nvpair1)=dz

npair1(i)=npair1(i)+1

ipairs1(npair1(i), i)=nvpair1
end if

end if

end if

end do
end do

c --- To save time later, we are going to calculate all of the first
c nearest neighbor trimers now, along with angles and vectors

nvtrim=0

do i = 1, NATOMS
ntrim(i) = 0
do j = 1, npair1(i)-1
do k = j+1, npair1(i)

c--------- keep running count of all trimers
nvtrim = nvtrim+1

c -------- record vector from central atom to two neighbors

234

npairA = ipairs1(j, i) !tells us the nvpair reference number
npairB = ipairs1(k, i) ! for each of the atoms in the trimer

c--------- keep record of atoms in trimer
ivtrim(1, nvtrim) = i !central atom
ivtrim(2, nvtrim) = ivpair1(2, npairA)
ivtrim(3, nvtrim) = ivpair1(2, npairB)

vpvectri(1, nvtrim) = vpvec1(1, npairA)
vpvectri(2, nvtrim) = vpvec1(2, npairA)
vpvectri(3, nvtrim) = vpvec1(3, npairA)

vpvectri(4, nvtrim) = vpvec1(1, npairB)
vpvectri(5, nvtrim) = vpvec1(2, npairB)
vpvectri(6, nvtrim) = vpvec1(3, npairB)

c -------- calculate and store side lenghts and central angle
dx1 = vpvectri(1, nvtrim)
dy1 = vpvectri(2, nvtrim)
dz1 = vpvectri(3, nvtrim)

dx2 = vpvectri(4, nvtrim)
dy2 = vpvectri(5, nvtrim)
dz2 = vpvectri(6, nvtrim)

dx12 = dx2-dx1
dy12 = dy2-dy1
dz12 = dz2-dz1

side1 = sqrt(dx1*dx1+dy1*dy1+dz1*dz1)
side2 = sqrt(dx2*dx2+dy2*dy2+dz2*dz2)
side3 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

vpvectri(7, nvtrim) = side1
vpvectri(8, nvtrim) = side2
vpvectri(9, nvtrim) = side3

c -------- We know sides 1 and 2 = Rnn. If side 3 is lt or
c equal to Rnn, trimer will be triple counted

ivtrim(4, nvtrim) = 1
if((side3/Rnnmin).lt.1.05) ivtrim(4, nvtrim) = 3

c -------- Update number of trimers for given central atom
ntrim(i) = ntrim(i)+1

itrims(ntrim(i), i) = nvtrim
end do
end do

end do

c --- write out interacting pair and interacting trimer information
write (6, 6400) npair(1), nvpair

6400 format (’atom 1 interacts with ’, i3, ’ other atoms’//,
+ ’total number of interacting pairs = ’, i6)

write (6, 6403) ntrim(1), nvtrim
6403 format (’atom 1 forms ’, i3, ’ trimers with interacting

+ neighbors’//, ’ total number of interacting trimers = ’, i9)

if (idebug.ge.2) then

write (6, 6401)
6401 format (/’interaction pair vectors for atom 1 ’,

+ ’[NN distances]:’/)

do i=1, npair(1)
ip=ipairs(i, 1)

235

d=sqrt(vpvec(1, ip)**2+vpvec(2, ip)**2+vpvec(3, ip)**2)/
+ rnnmin

write (6, 6410) ip, ivpair(2, ip), vpvec(1, ip)/rnnmin,
+ vpvec(2, ip)/rnnmin, vpvec(3, ip)/rnnmin, d

6410 format (’vector # ’, i3, ’ to atom ’, i4, ’: ’,
+ 3(1x, f9.5), ’ length = ’, f8.5)

end do

write (6, 6402)
6402 format (/’interaction trimer side lengths for atom 1 ’,

+ ’[NN distances]:’/)
do i=1, ntrim(1)

itri = itrims(i, 1)
write(6, 6411) itri, ivtrim(2, itri), ivtrim(3, itri),

+ vpvectri(7, itri)/rnnmin, vpvectri(8,
+ itri)/rnnmin, vpvectri(9, itri)/rnnmin,
+ ivtrim(4, itri)

6411 format(’trimer # ’, i3, ’incuding atoms ’, i4, 1x, i4,’: ’,
+ ’side lengths: ’, 3(1x, f8.5), ’ counted: ’,
+ i1, 1x, ’times’)

end do

end if

c --- set the displacement vectors for all children to zero.

write (6, 6500)
6500 format (/’SETTING initial configuration to zero’/)

do j=1, NCH
do i=1, NATOM3

path(i,j)=0.0d0
end do
end do

c --- initialize random number generator.
call rsetup

c --- this is the output file where snapshots of the atoms will be
c stored for analysis by another program.

open (10, file=dump, form=’unformatted’)
c --- this is the output file where the instantaneous potential
c energy and running averages of all energies are stored.

c --- initialize MPI.

MPI_R=MPI_DOUBLE_PRECISION

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierr)

call errchk(0, ierr, 100000)

write (6, 6600) ntasks-1
6600 format (’number of child processes = ’, i3/)

c --- now see if there is an old set of displacement vectors from a
c previous run. if not, jump head to line 200.

if (irrst.eq.1) then
open (8, file=dfile, form=’unformatted’, status=’old’, err=200)

write (6, 6510) dfile
6510 format (’READING initial configuration from ’, a16/)

read (8) nchildren ! make sure we have the same number as before
do k = 1, nchildren

236

read (8) (rstatv(i, k), i=1, 8)
read (8) (path(i,k), i=1, NATOM3)

end do
close (8)

end if

200 if (idebug.ge.3) then

write (6, 6170)
6170 format (’x(1) and rstatv(1) values:’/)

do k = 1, ntasks-1
write (6, 6180) path(1,k), rstatv(1,k)

6180 format (1x, f15.9, 1x, f20.1)

end do

write (6, *) ’’

end if

if(irrst.eq.1) then
if(nchildren.ne.ntasks-1) then

write (6, 6605) nchildren+1
6605 format (’attempting to start calculation from previous run’/

+ ’with a different number of child processors than’/
+ ’the current run. To start from these snapshots, use’,
+ 1x, i3, 1x, ’processors.’)

end if
end if

if (ntasks-1.gt.NCH) then

write (6, 6610)
6610 format (’too many child processes; expand the iwork, path, and

+rstatv arrays.’/
+ ’also note that write statements for HIGH ’
+ ’debugging level may fail on some systems.’)

call quit

end if
c --- this array just counts how evenly the workload was spread among
c the child processes.

do i=1, ntasks-1
iwork(i)=0

end do
c --- broadcast integer constants to all child processes.

imsg(1)=NATOMS
imsg(2)=NATOM3
imsg(3)=NATOM6
imsg(4)=NATOM7
imsg(5)=NIP
imsg(6)=NPAIRS
imsg(7)=NIT
imsg(8)=NTRIMS
imsg(9)=NVBINS
imsg(10)=idebug
imsg(11)=nprint

do itask=1, ntasks-1

237

call MPI_SEND(imsg,
+ 11,
+ MPI_INTEGER,
+ itask,
+ 0101,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100101)

end do

if (idebug.ne.0) open (9, file=’debug.log’)

if (idebug.eq.1) write (9, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (9, 6110) idebug, ’LOW’
if (idebug.eq.3) write (9, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (9, 6110) idebug, ’HIGH’
call flush(9)

c --- broadcast floating-point constants to all child processes.

fmsg(1)=den
fmsg(2)=bin
fmsg(3)=r2min
fmsg(4)=aaxy
fmsg(5)=aaz
fmsg(6)=bb
fmsg(7)=zmhe

do itask=1, ntasks-1

call MPI_SEND(fmsg,
+ 7,
+ MPI_R,
+ itask,
+ 0102,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100102)

end do
c --- broadcast the interacting-pair vectors to all child processes.

do itask=1, ntasks-1

call MPI_SEND(vpvec,
+ 3*NPAIRS,
+ MPI_R,
+ itask,
+ 0103,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100103)

end do

c --- broadcast the interacting-trimer vectors to all child processes.

do itask=1, ntasks-1

call MPI_SEND(vpvectri,
+ 9*NTRIMS,

238

+ MPI_R,
+ itask,
+ 0113,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100113)

end do

c --- broadcast the list of atom id numbers for the interacting pairs
c to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ itask,
+ 0104,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100104)

end do

c --- broadcast the list of atom id numbers for the interacting trimers
c to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ivtrim,
+ 4*NTRIMS,
+ MPI_INTEGER,
+ itask,
+ 0114,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100114)

end do

c --- broadcast the size of each stencil to all child processes. all
c stencils should be the same size, but we treat this as a variable.

do itask=1, ntasks-1

call MPI_SEND(npair,
+ NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0105,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100105)

end do

c --- broadcast the size of each trimer stencil to all child processes. all
c stencils should be the same size, but we treat this as a variable.

do itask=1, ntasks-1

239

call MPI_SEND(ntrim,
+ NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0115,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100115)

end do
c --- broadcast the list of interacting pair id numbers that define the
c stencils to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0106,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100106)

end do

c --- broadcast the list of interacting trimer id numbers that define the
c stencils to all child processes.

do itask=1, ntasks-1

call MPI_SEND(itrims,
+ NIT*NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0116,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100116)

end do
c --- broadcast the potential energy curve V(R) to all child processes.

do itask=1, ntasks-1

call MPI_SEND(v,
+ 2*NVBINS,
+ MPI_R,
+ itask,
+ 0107,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100107)

end do
if (idebug.gt.0) write (9, *) ’end parent PART ONE’
if (idebug.gt.0) write (9, *) ’’
call flush(9)

c ==
c PART TWO: PERFORMING THE SIMULATION

240

c ==

c --- open the output files: ofile, dump, and rwfile

open (10, file=dump, form=’unformatted’)

write (10) bb, aaxy, aaz
open (11, file=ofile)
open (12, file=rwfile)

c --- Check that NCHUNKS evenly divides nloop/nprint
ncalc = nloop/nprint
if(mod(ncalc,NCHUNKS).ne.0) then

write (6, 5000)
5000 format (’MCCs not divisble by NCHUNKS. Change NCHUNKS’

+ ’or nloops’)

call quit

end if
c --- initialization of various progress counters.

denom = 0.0d0
vsum = 0.0d0
v2sum = 0.0d0
esum = 0.0d0
e2sum = 0.0d0
tsum = 0.0d0
t2sum = 0.0d0

c --- these values are required for error estimation in reweighting
do i = 1, 9

rw_vsum(i) = 0.0d0
rw_tsum(i) = 0.0d0
rw_esum(i) = 0.0d0
rw_wsum(i) = 0.0d0
rw_wsqsum(i) = 0.0d0
rw_vwsum(i) = 0.0d0
rw_ewsum(i) = 0.0d0
rw_twsum(i) = 0.0d0
rw_vvsum(i) = 0.0d0
rw_eesum(i) = 0.0d0
rw_ttsum(i) = 0.0d0

end do
c --- this is how many iterations we have done.
c --- for the vmc program, all loop counting is essentially handled
c in allrep.f where snapshots are received. This just initializes
c loop for us.

loop=0

c --- these tell us about the acceptance ratio for the atom moves.

ztacc=0.0d0
ztrej=0.0d0

c --- these counters make sure that we don’t lose a chunk of snapshots somewhere in
c the ether. we use them to count how many chunks have been sent and
c received.

300 nsent=0
nrcvd=0

c --- this is a list of flags that are zero for chunks that haven’t yet

241

c been sent to a child for processing, positive for chunks that have
c been sent, and negative for chunks that have been processed and
c returned to the parent.

c isent(n) is set to the (positive) task id of the receiving child
c process when a chunk is sent. this is basically leaving a trail
c of crumbs so that we can track down the chunks and ask the children
c to return them to us.

do nchunk=1, NCHUNKS
isent(nchunk)=0

end do
c allrep distributes chunks to children. Once this command has been called
c and returns, all loops will have been performed, so all
c chunks should have been sent and received.

call allrep(nsent, nrcvd, loops, MPI_R)
loop = loop + loops

c --- check for lost chunks.

if (nsent.ne.NCHUNKS.or.nrcvd.ne.NCHUNKS) then
write (6, *) ’chunks have been lost!’
write (6, *) ’nsent = ’, nsent
write (6, *) ’nrcvd = ’, nrcvd
ierror=1

end if

c --- Want to save a checkpoint every 1000 chunks in case job stops
c before completion. If we need to run more passes, go back to line
c 300.

if(loop.lt.nloop) then

open(8, file=dfile, form=’unformatted’)

write (8) loop
do k=1, ntasks-1

write (8) (rstatv(i, k), i=1, 8)
write (8) (path(i, k), i=1, NATOM3)

end do
close(8)

goto 300

else if(loop.eq.nloop) then

write (6, 6810) dfile
6810 format (’SAVING final configuration to ’, a16/)

open(8, file=dfile, form=’unformatted’)

write (8) loop
do k=1, ntasks-1

write (8) (rstatv(i, k), i=1, 8)
write (8) (path(i, k), i=1, NATOM3)

end do
close(8)

c ------ Calculate sums for standard deviation of each energy.
c Ref: A.M. Ferrenberg, et. al. Phys. Rev. E 51, 5092 (1995).

rwaxy = aaxy-da
rwaz = aaz-da
rwb = bb-3.0d0*db
do i = 1, 9

vsum2 = rw_vsum(i)*rw_vsum(i)

242

tsum2 = rw_tsum(i)*rw_tsum(i)
esum2 = rw_esum(i)*rw_esum(i)
wsum2 = rw_wsum(i)*rw_wsum(i)

vsumw = rw_vsum(i)*rw_wsum(i)
tsumw = rw_tsum(i)*rw_wsum(i)
esumw = rw_esum(i)*rw_wsum(i)

rw_uavg = rw_vsum(i)/rw_wsum(i)
rw_tavg = rw_tsum(i)/rw_wsum(i)
rw_eavg = rw_esum(i)/rw_wsum(i)

rw_uavgsq = rw_vvsum(i)/rw_wsum(i)
rw_tavgsq = rw_ttsum(i)/rw_wsum(i)
rw_eavgsq = rw_eesum(i)/rw_wsum(i)

rw_uavgvar = denom*((rw_vvsum(i)/vsum2)+(rw_wsqsum(i)/wsum2)
+ -2*(rw_vwsum(i)/vsumw))*rw_uavg*rw_uavg

rw_tavgvar = denom*((rw_ttsum(i)/tsum2)+(rw_wsqsum(i)/wsum2)
+ -2*(rw_twsum(i)/tsumw))*rw_tavg*rw_tavg

rw_eavgvar = denom*((rw_eesum(i)/esum2)+(rw_wsqsum(i)/wsum2)
+ -2*(rw_ewsum(i)/esumw))*rw_eavg*rw_eavg

rw_uavgsd = sqrt(rw_uavgvar)
rw_tavgsd = sqrt(rw_tavgvar)
rw_eavgsd = sqrt(rw_eavgvar)

c -------- Save necessary information for parameter estimation to
c rw_sum

rw_sums(1, i) = rwb
rw_sums(2, i) = rwaxy
rw_sums(3, i) = rwaz
rw_sums(4, i) = rw_eavg*hart/dble(NATOMS)

c -------- write out the reweighted energies to rwfile
write (12, 900) rwb, rwaxy, rwaz,

+ rw_uavg*hart/dble(NATOMS),
+ rw_uavgsd*hart/dble(NATOMS),
+ rw_eavg*hart/dble(NATOMS),
+ rw_eavgsd*hart/dble(NATOMS),
+ rw_tavg*hart/dble(NATOMS),
+ rw_tavgsd*hart/dble(NATOMS)

900 format (3(1x, F10.8), 6(1x, 1pe20.13))

call flush (12)
if (mod(i,3).eq.0) then

rwaxy = rwaxy + da
rwaz = aaz-da

else
rwaz = rwaz+da

end if
rwb = rwb+db

end do
if(da.eq.0.0d0) then

call param_est_bb(rw_sums)
else if(db.eq.0.0d0) then

call param_est_aa(rw_sums)
else

write (6, *) "No paramest program called"
end if

end if

c --- Now all chunks have run

if (idebug.gt.0) then

243

write (9, *) ’’
write (9, *) ’QSATS is done!’
write (9, *) ’’

end if

c --- close output files

close(10)
close(11)

c --- show how much work every child did.

if (idebug.gt.0) then
do i=1, ntasks-1

write (9, 9100) i, iwork(i)
9100 format (’task ’, i3, ’ received ’, i9, ’ chunks’)

end do
end if

c --- tell the children we’re all done.

do itask=1, ntasks-1

imsg(1)=0

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ itask,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100204)

end do

write (6, 6900) ztacc
6900 format (’total number of accepted moves = ’, f20.1)

write (6, 6901) ztrej
6901 format (’total number of rejected moves = ’, f20.1/)

if (idebug.gt.0) write (9, *) ’’
if (idebug.gt.0) write (9, *) ’end parent PART TWO’

return

c --- error handling
901 write (6, *) ’error opening lattice file’

goto 999
902 write (6, *) ’error reading number of atoms from lattice file’

goto 999
903 write (6, *) ’error reading (unscaled) supercell edge lengths’

goto 999
904 write (6, *) ’error reading atom number ’, i

goto 999

999 call quit

return
end

244

input-3b.f
c --
c this inputs the names of various I/O files and also reads in the
c parameters for the simulation.
c This program is not currently set up to accept deformation parameters
c --

subroutine input

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’vmc-448.com’
character*8 inword

c --- read in filenames.
c ltfile = lattice file containing total # atoms and coordinates
c pfile = parameter file, read next
c ofile = energy output file
c dfile = snapshot checkpoint file
c dump = snapshot file
c rwfile = reweighted energy output file

read (5, 5000, err=922) ltfile
5000 format (a20)

read (5, 5000, err=923) pfile
read (5, 5000, err=924) ofile
read (5, 5000, err=925) dfile
read (5, 5000, err=926) dump
read (5, 5000, err=927) rwfile

c --- set debug level.
read (5, 5001, err=931) inword

5001 format (a8)
if (inword.eq.’NONE’) then

idebug=0
else if (inword.eq.’MINIMAL’) then

idebug=1
else if (inword.eq.’LOW’) then

idebug=2
else if (inword.eq.’MEDIUM’) then

idebug=3
else if (inword.eq.’HIGH’) then

idebug=4
else

write (6, *) ’invalid debug level’
end if

c --- define some masses. amu = the unified mass unit in terms of atomic units.
c zmh and zmhe are the hydrogen and helium atomic masses.

zmh=1837.1526d0
amu=zmh/1.007825d0
zmhe=4.0026d0*amu

c --- read in the simulation parameters.
c nloop = total # of MCCS
c nprint = snapshot interval
c den = number density in atoms per cubic bohr
c bb = trial wavefunction b parameter
c aaxy = trial wavefunction a_xy parameter
c aaz = trial wavefunction a_z parameter
c irrst = restart variable
c da = a_i parameter interval used for reweighting
c db = b parameter interval used for reweighting

open (7, file=pfile)
read (7, *, err=901) nloop

245

read (7, *, err=902) nprint
read (7, *, err=903) den
read (7, *, err=904) bb
read (7, *, err=905) aaxy
read (7, *, err=906) aaz
read (7, *, err=907) irrst
read (7, *, err=909) da
read (7, *, err=910) db

write (6, 6000) NATOMS
6000 format (’REPEATING input parameters’//,

+ ’atom count = ’, i6/)

write (6, 6001) den, aaxy, aaz, bb, dzscale
6001 format (’density = ’, f14.7, ’ atoms per cubic bohr’/,

+ ’a_xy parameter = ’, f14.7, ’ bohr**(-2)’/,
+ ’a_z parameter = ’, f14.7, ’ bohr**(-2)’/,
+ ’B parameter = ’, f14.7, ’ bohr’/)

write (6, 6002) nloop, nprint
6002 format (’number of simulation steps = ’, i9/,

+ ’snapshot interval = ’, i8/)
return

901 write (6, *) ’error reading number of loops’
goto 999

902 write (6, *) ’error reading nprint’
goto 999

903 write (6, *) ’error reading density’
goto 999

904 write (6, *) ’error reading bb’
goto 999

905 write (6, *) ’error reading axy’
goto 999

906 write (6, *) ’error reading az’
goto 999

907 write (6, *) ’error reading irrst value’
goto 999

908 write (6, *) ’error reading dzscale value’
goto 999

909 write (6, *) ’error reading da value’
goto 999

910 write (6, *) ’error reading db value’
goto 999

921 write (6, *) ’error reading RNG file name’
goto 999

922 write (6, *) ’error reading lattice file name’
goto 999

923 write (6, *) ’error reading parameter file name’
goto 999

924 write (6, *) ’error reading ofile file name’
goto 999

925 write (6, *) ’error reading dfile file name’
goto 999

926 write (6, *) ’error reading dump file name’
goto 999

927 write (6, *) ’error reading reweighting file name’
goto 999

931 write (6, *) ’error reading debug level’
goto 999

932 write (6, *) ’error reading RNG initialization mode’
goto 999

999 call quit
return
end

246

child-3b.f
c --
c this is the child process that runs on all nodes except node 0
c (which is running the parent process).
c --

subroutine child(MPI_R)

implicit double precision (a-h, o-z)

include ’mpif.h’
include ’sizes.h’

c --- child processes don’t include common block, all variables are
c local and must be defined below. Prevents child processes from
c overwriting global variables

common /rancm1/ rscale

dimension psi(NATOM6), npair(NATOMS), rv(NATOM3)
dimension istat(MPI_STATUS_SIZE)
dimension ipairs(NIP, NATOMS)
dimension itrims(NIT, NATOMS)
dimension vpvec(3, NPAIRS)
dimension ivpair(2, NPAIRS)
dimension ivtrim(4, NTRIMS)
dimension vpvectri(9, NTRIMS)
dimension ntrim(NATOMS)

dimension r2old(NATOMS), r2new(NATOMS), v1(NATOMS), v2(NATOMS)
dimension v(2, NVBINS)
dimension imsg(11), fmsg(7), emsg(3), imsg2(3)
dimension rstate(8), qsave(3)
dimension dlng(NATOM3), d2lng(NATOM3)

parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)

c ==
c PART ONE: INITIALIZATION
c ==

MPI_R=MPI_DOUBLE_PRECISION

c --- numerical factor for random number generator.

rscale=1.0d0/4294967088.0d0

c --- determine which process this is and store it in myid.

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

c --- receive all of the information that is broadcast by the parent
c process.

c --- first receive some integer constants. these are primarily used to
c check that the arrays are properly dimensioned.

call MPI_RECV(imsg,
+ 11,
+ MPI_INTEGER,
+ 0,
+ 0101,
+ MPI_COMM_WORLD,

247

+ istat,
+ ierr)

call errchk(myid, ierr, 200101)

istop=0

if (imsg(1).ne.NATOMS) then
write (6, *) ’size mismatch 1: ’, imsg(1)
istop=1

end if

if (imsg(2).ne.NATOM3) then
write (6, *) ’size mismatch 2: ’, imsg(2)
istop=1

end if

if (imsg(3).ne.NATOM6) then
write (6, *) ’size mismatch 3: ’, imsg(3)
istop=1

end if

if (imsg(4).ne.NATOM7) then
write (6, *) ’size mismatch 4: ’, imsg(4)
istop=1

end if

if (imsg(5).ne.NIP) then
write (6, *) ’size mismatch 5: ’, imsg(5)
istop=1

end if

if (imsg(6).ne.NPAIRS) then
write (6, *) ’size mismatch 6: ’, imsg(6)
istop=1

end if

if (imsg(7).ne.NIT) then
write (6, *) ’size mismatch 5: ’, imsg(5)
istop=1

end if

if (imsg(8).ne.NTRIMS) then
write (6, *) ’size mismatch 6: ’, imsg(6)
istop=1

end if

if (imsg(9).ne.NVBINS) then
write (6, *) ’size mismatch 7: ’, imsg(7)
istop=1

end if

if (istop.eq.1) call quit

nvpair = imsg(6)
idebug=imsg(10)
nprint = imsg(11)

c --- debugging output.

if (idebug.eq.4) write (30+myid, *) ’idebug = ’, idebug
call flush(30+myid)

c --- next receive some floating-point constants.

248

call MPI_RECV(fmsg,
+ 7,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0102,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200102)

den=fmsg(1)
bin=fmsg(2)
r2min=fmsg(3)
aaxy=fmsg(4)
aaz=fmsg(5)
bb=fmsg(6)
zmhe=fmsg(7)

if (idebug.eq.4) then
write (30+myid, *) ’den = ’, den
write (30+myid, *) ’bin = ’, bin
write (30+myid, *) ’r2min = ’, r2min
write (30+myid, *) ’aaxy = ’, aaxy
write (30+myid, *) ’aaz = ’, aaz
write (30+myid, *) ’bb = ’, bb

end if
call flush(30+myid)

c --- compute the inverse of the potential energy V(R) bin width, to
c avoid unnecessary divisions.

binvrs=one/bin

c --- next receive the vectors that connect pairs of atoms in a stencil.

call MPI_RECV(vpvec,
+ 3*NPAIRS,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0103,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200103)

c --- receive the interacting-trimer vectors to all child processes.

call MPI_RECV(vpvectri,
+ 9*NTRIMS,
+ MPI_R,
+ 0,
+ 0113,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200113)

c --- next receive the list of pairs of atoms.

call MPI_RECV(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ 0,

249

+ 0104,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200104)

c --- receive the list of atom id numbers for the interacting trimers
c to all child processes.

call MPI_RECV(ivtrim,
+ 4*NTRIMS,
+ MPI_INTEGER,
+ 0,
+ 0114,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200114)

c --- next receive the number of atoms that belong to each atom’s stencil.
c this should really be the same for every atom for a regular crystal
c lattice, but we treat it as a variable.

call MPI_RECV(npair,
+ NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0105,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200105)

c --- receive the size of each trimer stencil to all child processes.all
c stencils should be the same size, but we treat this as a variable.

call MPI_RECV(ntrim,
+ NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0115,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200115)

c --- next receive the pairs that constitute each atom’s stencil.

call MPI_RECV(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0106,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200106)

c --- receive the list of interacting trimer id numbers that define

250

c the stencils to all child processes.

call MPI_RECV(itrims,
+ NIT*NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0116,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200116)

c --- next receive the potential energy curve V(R) for interpolation.

call MPI_RECV(v,
+ 2*NVBINS,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0107,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200107)
if (idebug.eq.4) then

write (30+myid, *) ’child moving to PART TWO’
call flush(30+myid)

end if

c ==
c PART TWO: PERFORMING THE SIMULATION
c ==

100 idchunk=0

nacc=0
nrej=0
pot = 0.0d0
tloc = 0.0d0

c --- send request for data (message type 1201) to parent. the first
c time through, or if we are waiting for all children to sync up,
c there are no results to send back to the parent, so we indicate
c this by setting idchunk=0 just above, and then sending this to
c the parent in imsg2(1).

200 imsg2(1)=idchunk

imsg2(2)=nacc
imsg2(3)=nrej

emsg(1) = pot
emsg(2) = tloc
emsg(3) = potl3b
call MPI_SEND(imsg2,
+ 3,
+ MPI_INTEGER,
+ 0,
+ 1201,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201201)
c --- on the other hand, if there are results to send back, then we

251

c do so here.

if (idchunk.gt.0) then
c ------ first we send a message of type 1202 that contains the atoms’
c new positions.

call MPI_SEND(psi,
+ NATOM3,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 1202,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201202)
c ------ then we send a message of type 1203 that contains the updated
c random number generator state vector.

call MPI_SEND(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 1203,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201203)
call MPI_SEND(emsg,

+ 3,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 1204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 201204)
end if

c --- wait for acknowledgement (message type 0204) from parent. the
c parent also uses this to signal the child that more input will
c be sent.

c if imsg(1) is positive, it is a replica number that represents the
c next replica that this child should process.

c if imsg(1) is negative, then this child needs to wait for the
c other children to sync up, and so the child goes back to the top
c of PART TWO.

c if imsg(1) is zero, there is no more work to be done.

call MPI_RECV(imsg2,
+ 1,
+ MPI_INTEGER,
+ 0,
+ 0204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200204)

c --- loop back and wait for more input if instructed by parent.

if (imsg2(1).lt.0) goto 100

252

c --- terminate if the simulation is complete.

if (imsg2(1).eq.0) then
if (idebug.eq.4) write (30+myid, *) ’child is done!’
call flush(30+myid)
return

end if

c --- if there is a new replica to process, then receive data from
c the parent.

c --- we need to save the replica number that we are about to work on.

idchunk=imsg2(1)
c --- next receive the old atomic coordinates in a message of type 0205.

call MPI_RECV(psi,
+ NATOM3,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0205,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200205)
c --- next receive the random number generator state vector, in
c a message of type 0206.

call MPI_RECV(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0206,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200206)
c ==
c --- this is the actual VMC simulation
c ==
c --- this counts the simulation loop that we’re on. For every chunk
c received by the child, we run through nprint loops

loop = 0

c --- this is the number of accepted (nacc) and rejected (nrej) moves
c in the current set of nprint loops.

nacc=0
nrej=0

c --- this is the denominator that we will use to compute the average
c potential energy for each set of nprint loops.

denom=0.0

c --- energy adjustment loop.

300 loop=loop+1

c --- try to move each atom once.

do k=1, NATOMS

253

c ----- this replaces calling pick.f
c ----- compute ln of the trial wave function squared when the
c atom is in its current location. (replaces call trial)

glog=0.0d0
do nn=1, npair(k)

n=ipairs(nn, k)

i=ivpair(1, n)
j=ivpair(2, n)

dx=(psi(3*j-2))+(-psi(3*i-2))+
+ vpvec(1, n)

dy=(psi(3*j-1))+(-psi(3*i-1))+
+ vpvec(2, n)

dz=(psi(3*j)) +(-psi(3*i))+
+ vpvec(3, n)

r2=dx*dx+dy*dy+dz*dz

br2=bb*bb/r2

br5=br2*br2*sqrt(br2)
glog=glog-0.5d0*br5

end do
c ------ multiplying the ln by 2 is like computing the ln of the square.

g1=2.0d0*glog

c ----- save the old position of this atom.

qsave(1)=psi(3*k-2)
qsave(2)=psi(3*k-1)
qsave(3)=psi(3*k)

c ----- pick three gaussian random numbers and scale them.
call gstep(rstate, gauss, rscale)

psi(3*k-2)=gauss/sqrt(2.0*2.0*aaxy)

call gstep(rstate, gauss, rscale)

psi(3*k-1)=gauss/sqrt(2.0*2.0*aaxy)

call gstep(rstate, gauss, rscale)

psi(3*k)=gauss/sqrt(2.0*2.0*aaz)

c ----- compute ln of the trial wave function squared after the atom moves
c to its new location.
c this replaces the second "call trial"

glog=0.0d0
do nn=1, npair(k)

n=ipairs(nn, k)

i=ivpair(1, n)
j=ivpair(2, n)
dx=(psi(3*j-2))+(-psi(3*i-2))+

+ vpvec(1, n)
dy=(psi(3*j-1))+(-psi(3*i-1))+

+ vpvec(2, n)
dz=(psi(3*j)) +(-psi(3*i))+

254

+ vpvec(3, n)

r2=dx*dx+dy*dy+dz*dz
br2=bb*bb/r2

br5=br2*br2*sqrt(br2)
glog=glog-0.5d0*br5

end do
c ------ multiplying the ln by 2 is like computing the ln of the square.

g2=2.0d0*glog

c ----- decide whether to accept or reject the move.

c ----- if the new trial wave function is lower than the old, we
conditionally
c accept the move.

if (g2.lt.g1) then

gratio=exp(g2-g1)

call rstep(rstate, z, rscale)

if (z.lt.gratio) then

nacc = nacc+1

else

psi(3*k-2)=qsave(1)
psi(3*k-1)=qsave(2)
psi(3*k)=qsave(3)

nrej = nrej+1

end if

c --- if the new trial wave function is larger, we always accept the
c move.

else

nacc = nacc+1

end if
end do

c --- check whether it’s time to calculate energies and
c send info back to the parent

if (loop.eq.nprint) then

c ===
c Calculate the energy
c ===
c ----- pot is the instantaneous "snapshot" potential energy

potl=0.0d0

c ----- loop over all of the interacting pairs.
do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

dx=(psi(3*j-2))+(-psi(3*i-2))+
+ vpvec(1, n)

255

dy=(psi(3*j-1))+(-psi(3*i-1))+
+ vpvec(2, n)

dz=(psi(3*j)) +(-psi(3*i))+
+ vpvec(3, n)

r2=dx*dx+dy*dy+dz*dz
c -------- compute the 2body potential energy by interpolating between two grid
c points.

ibin=int((r2-r2min)*binvrs)+1

if (ibin.gt.0) then
dr=(r2-r2min)-bin*dble(ibin-1)
p= v(1, ibin)+ v(2, ibin)*dr
potl=potl+p

else
potl=potl+v(1, 1)

end if

end do
pot = potl*0.5d0

c ----- compute the 3body potential energy

potl3b = 0.0d0

c ------ loop over all nearest neighbor trimers

do n=1, NTRIMS
i= ivtrim(1, n)
j= ivtrim(2, n)
k= ivtrim(3, n)
ndiv = ivtrim(4, n)

dx1 = vpvectri(1, n)+psi(3*j-2)-psi(3*i-2)
dy1 = vpvectri(2, n)+psi(3*j-1)-psi(3*i-1)
dz1 = vpvectri(3, n)+psi(3*j)-psi(3*i)

dx2 = vpvectri(4, n)+psi(3*k-2)-psi(3*i-2)
dy2 = vpvectri(5, n)+psi(3*k-1)-psi(3*i-1)
dz2 = vpvectri(6, n)+psi(3*k)-psi(3*i)

dx12 = dx2-dx1
dy12 = dy2-dy1
dz12 = dz2-dz1

r1 = sqrt(dx1*dx1+dy1*dy1+dz1*dz1)
r2 = sqrt(dx2*dx2+dy2*dy2+dz2*dz2)
r12 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

c --------- get 3B energy and add to correct total
call He3(r1, r2, r12, E3)
E3 = E3/dble(ndiv)
potl3b = potl3b+E3

end do
c ----- tloc is the instantaneous "snapshot" kinetic energy

do i=1, NATOM3
dlng(i)=0.0
d2lng(i)=0.0

end do

c ----- first compute the one-atom contributions to the kinetic energy.
do i=1, NATOMS

xx=psi(3*i-2)
yy=psi(3*i-1)

256

zz=psi(3*i)

dlng(3*i-2)= dlng(3*i-2)-2.0*aaxy*xx
dlng(3*i-1)= dlng(3*i-1)-2.0*aaxy*yy
dlng(3*i) = dlng(3*i)-2.0*aaz*zz

d2lng(3*i-2)= d2lng(3*i-2)-2.0*aaxy
d2lng(3*i-1)= d2lng(3*i-1)-2.0*aaxy
d2lng(3*i) = d2lng(3*i)-2.0*aaz

end do

c ----- loop over all interacting pairs.

do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

dx=-((psi(3*j-2))+vpvec(1, n)+(-psi(3*i-2)))
dy=-((psi(3*j-1))+vpvec(2, n)+(-psi(3*i-1)))
dz=-((psi(3*j)) +vpvec(3, n)+(-psi(3*i)))

r2=dx*dx+dy*dy+dz*dz

if (r2.le.0.0) write (6, *) ’i, j, r2 = ’, i, j, r2

br2=bb*bb/r2

br5=br2*br2*sqrt(br2)

dlng(3*i-2)=dlng(3*i-2)+2.5*br5*dx/r2
dlng(3*i-1)=dlng(3*i-1)+2.5*br5*dy/r2
dlng(3*i) =dlng(3*i) +2.5*br5*dz/r2

d2lng(3*i-2)=d2lng(3*i-2)+2.5*br5*
* (1.0-7.0*dx**2/r2)/r2

d2lng(3*i-1)=d2lng(3*i-1)+2.5*br5*
* (1.0-7.0*dy**2/r2)/r2

d2lng(3*i) =d2lng(3*i) +2.5*br5*
* (1.0-7.0*dz**2/r2)/r2

end do

c ----- now add up all of the contributions to the kinetic energy.
tloc=0.0

do i=1, NATOM3

tloc=tloc+d2lng(i)+dlng(i)**2

end do

c ----- divide by (two times the mass) and negate the result. this is
c minus hbar squared divided by twice the mass...

tloc=-0.5*tloc/zmhe

goto 200
else
goto 300

end if

end

257

allrep-3b.f
c --
c this subroutine distributes chunks of iterations to the child
c processes, waits for them to be processed, and then returns
c control to the main parent subroutine. Running averages are
c also calculated and printed here, along with the snapshots.
c The running average of the potential and total energies
c include contributions from first nearest neighbor trimers.
c --

subroutine allrep(nsent, nrcvd, loops, MPI_R)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’vmc-448.com’
include ’mpif.h’

parameter (hart=315774.65d0)

dimension istat(MPI_STATUS_SIZE)
dimension imsg(3), emsg(3)
dimension isent(NCHUNKS), psi(NATOM3)
dimension rstate(8)

c --- loop over all chunks.

MPI_R=MPI_DOUBLE_PRECISION

loops = 0
do nchunk=1, NCHUNKS

if (idebug.eq.4)
+ write (9, *) ’finding child who can receive chunk= ’, nchunk

call flush(9)
c ------ wait for data request from a child.

call MPI_PROBE(MPI_ANY_SOURCE,
+ 1201,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111201)

nchild=istat(MPI_SOURCE)
call MPI_RECV(imsg,

+ 3,
+ MPI_INTEGER,
+ nchild,
+ 1201,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 151201)
if (idebug.eq.4)

+ write (9, *) ’sending chunk = ’, nchunk, ’ to ’, nchild
call flush(9)

c ------ check whether the child is returning results. if so, then
c receive the results.

if (imsg(1).gt.0) then
idchunk=imsg(1)

258

if (idebug.eq.4)
+ write (9, *) ’child ’, nchild, ’ returning chunk ’,
+ idchunk

call flush(9)
c --------- keep track of acceptances and rejections.

ztacc=ztacc+imsg(2)
ztrej=ztrej+imsg(3)
loops = loops+nprint ! whenever a child returns, 50 loops done
denom = denom+1.0d0

c --------- Receive new configurations, rstate vectors, and energies
call MPI_RECV(psi,

+ NATOM3,
+ MPI_R,
+ nchild,
+ 1202,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111202)

call MPI_RECV(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1203,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111203)

call MPI_RECV(emsg,
+ 3,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 111204)
c --------- here, print out the snapshots as we get them, update running
c average energies, and print out the energies to the ofile

write (10) (psi(i), i=1, NATOM3)

potl = emsg(1)
tloc = emsg(2)
pot3b = emsg(3)

vsum = vsum+potl+pot3b
v2sum = v2sum+(potl+pot3b)**2
esum = esum+potl+tloc+pot3b
e2sum = e2sum+(potl+pot3b+tloc)**2
tsum = tsum+tloc
t2sum = t2sum+tloc*tloc

c --------- calculate current averages and standard deviations

uavg = vsum/denom
u2avg = v2sum/denom
usd = sqrt(u2avg-uavg*uavg)

259

eavg = esum/denom
e2avg = e2sum/denom
esd = sqrt(e2avg-eavg*eavg)

tavg = tsum/denom
t2avg = t2sum/denom
tsd = sqrt(t2avg-tavg*tavg)

c --------- Print energies for this snapshot to the ofile (also want to
c inclue nacc, nrej, and nchild for this chunk)

write(11, 8400) potl*hart/dble(NATOMS),
+ pot3b*hart/dble(NATOMS),
+ uavg*hart/dble(NATOMS),
+ usd*hart/dble(NATOMS),
+ eavg*hart/dble(NATOMS),
+ esd*hart/dble(NATOMS),
+ tavg*hart/dble(NATOMS),
+ tsd*hart/dble(NATOMS),
+ imsg(2), imsg(3), nchild

8400 format (8(1x, 1pe13.6), 1x, i7, 1x, i7, 1x, i3)

c --------- perform the calculations for reweighting
rwaxy = aaxy-da
rwaz = aaz-da
rwb = bb-3.0d0*db

do ii = 1, 9
c ------------ Calculate 2*log(psi’) and 2*log(psi) (called pnewsq
c and poldsq, respectively).

dx2sum=0.0d0
dy2sum=0.0d0
dz2sum=0.0d0
do l=1, NATOMS

dx=psi(3*l-2)
dy=psi(3*l-1)
dz=psi(3*l)
dx2sum=dx2sum+dx*dx
dy2sum=dy2sum+dy*dy
dz2sum=dz2sum+dz*dz

end do
c ------------ This is the one body contribution to 2*log(psi’) and
c 2*log(psi):

p1oldsq=-2.0d0*(aaxy*dx2sum+aaxy*dy2sum+aaz*dz2sum)
p1newsq=-2.0d0*(rwaxy*dx2sum+rwaxy*dy2sum+rwaz*dz2sum)

c ------------ calculate the same for the two body term:
psi2old = 0.0d0
psi2new = 0.0d0
do n= 1, nvpair

j=ivpair(1,n)
m=ivpair(2,n)
if (m.gt.j) then

dx = (psi(3*m-2))+vpvec(1, n) +(-psi(3*j-2))
dy = (psi(3*m-1))+vpvec(2, n) +(-psi(3*j-1))
dz = (psi(3*m))+vpvec(3, n) +(-psi(3*j))

r2 = dx*dx+dy*dy+dz*dz
br2old = bb*bb/r2
br2new = rwb*rwb/r2

br5old = br2old*br2old*sqrt(br2old)

260

br5new = br2new*br2new*sqrt(br2new)

psi2old = psi2old - 0.5d0*br5old
psi2new = psi2new - 0.5d0*br5new

end if
end do

psi2oldsq = 2.0d0*psi2old
psi2newsq = 2.0d0*psi2new

c ------------ Add one and two body terms for total 2*log(psi) and
c 2*log(psi’)

poldsq = p1oldsq + psi2oldsq
pnewsq = p1newsq + psi2newsq

c ------------ calculate the reweighting factor, w = |psi’ˆ2|/|psiˆ2|
c = exp|2*log(psi’) - 2*log(psi)|

w=exp(pnewsq-poldsq)
rw_wsum(ii) = rw_wsum(ii)+w
rw_wsqsum(ii) = rw_wsqsum(ii) + (w*w)

c ------------ calculate the reweighted potential
pot=w*(potl+pot3b)
rw_vsum(ii) = rw_vsum(ii)+pot
rw_vwsum(ii) = rw_vwsum(ii) + (pot*w)
rw_vvsum(ii) = rw_vvsum(ii) + (pot*pot)

c ----------- The subroutine kinrw(psi, tloc) calculates the kinetic
c energy using the new parameters of psi prime.

call kinrw(psi, rwaxy, rwaz, rwb, tloc)

tloc = w*tloc
rw_tsum(ii) = rw_tsum(ii)+tloc
rw_twsum(ii) = rw_twsum(ii) + (tloc*w)
rw_ttsum(ii) = rw_ttsum(ii) + (tloc*tloc)

c ----------- Calculate the total energy from the sum of potential and
c kinetic.

etot = pot + tloc
rw_esum(ii) = rw_esum(ii) + etot
rw_ewsum(ii) = rw_ewsum(ii) + (etot*w)
rw_eesum(ii) = rw_eesum(ii) + (etot*etot)

c ----------- increment reweighting parameters (rwaxy incremeted in if
c statement above)

rwb = rwb + db
if (mod(ii,3).eq.0) then

rwaxy = rwaxy + da
rwaz = aaz-da

else
rwaz = rwaz+da

end if
end do

c --------- update the random number generator state vector for this
c child.

do i=1, 8
rstatv(i, nchild)=rstate(i)

end do

c --------- update the atom positions.

do i=1, NATOM3
path(i, nchild)=psi(i)

end do

261

c --------- update the number of received chunks.

nrcvd=nrcvd+1

c --------- indicate that this chunk has been processed and returned.

isent(idchunk)=-nchild

end if

c ------ send a new chunk to child. first tell the child which chunk
c it is going to receive.

imsg(1)=nchunk

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ nchild,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 110204)

c ------ send the chunk.

if (idebug.eq.4)
+ write (9, *) ’calling send for child ’, nchild

call flush(9)
call send(nchild, MPI_R)

if (idebug.eq.4)
+ write (9, *) ’chunk ’, nchunk, ’ sent to child ’, nchild

call flush(9)
c ------ update how many chunks have been sent.

nsent=nsent+1

c ------ leave the trail of crumbs!

isent(nchunk)=nchild

c ------ update how much work has been sent to this child.

iwork(nchild)=iwork(nchild)+1

end do

c --- at this point we don’t have any more iterations to send to the
c children, but we need to retrieve any processed iterations that the
c children are still holding to send back to the parent. this
c flushes out all of those chunks.

do i=1, NCHUNKS

if (isent(i).gt.0) then

nchild=isent(i)

call MPI_RECV(imsg,
+ 3,
+ MPI_INTEGER,
+ nchild,
+ 1201,

262

+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121201)

c --------- check whether the child is returning results. if so, get
c the results and update the atomic positions.

if (imsg(1).gt.0) then

idchunk=imsg(1)

if (idebug.eq.4)
+ write (9, *) ’child ’, nchild,
+ ’ returning chunk ’, idchunk

c ------------ keep track of acceptances and rejections.

ztacc=ztacc+imsg(2)
ztrej=ztrej+imsg(3)
loops = loops+nprint
denom = denom+1.0d0

call MPI_RECV(psi,
+ NATOM3,
+ MPI_R,
+ nchild,
+ 1202,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121202)

call MPI_RECV(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1203,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121203)

call MPI_RECV(emsg,
+ 3,
+ MPI_DOUBLE_PRECISION,
+ nchild,
+ 1204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(0, ierr, 121204)

c --------- here, print out the snapshots as we get them, update running
c average energies, and print out the energies to the ofile

write (10) (psi(ii), ii=1, NATOM3)

potl = emsg(1)
tloc = emsg(2)
pot3b = emsg(3)

263

vsum = vsum+potl+pot3b
v2sum = v2sum+(potl+pot3b)**2
esum = esum+potl+tloc+pot3b
e2sum = e2sum+(potl+pot3b+tloc)**2
tsum = tsum+tloc
t2sum = t2sum+tloc*tloc

c --------- calculate current averages and standard deviations

uavg = vsum/denom
u2avg = v2sum/denom
usd = sqrt(u2avg-uavg*uavg)

eavg = esum/denom
e2avg = e2sum/denom
esd = sqrt(e2avg-eavg*eavg)

tavg = tsum/denom
t2avg = t2sum/denom
tsd = sqrt(t2avg-tavg*tavg)

c --------- Print energies for this snapshot to the ofile (also want to
c inclue nacc, nrej, and nchild for this chunk)

write(11, 8400) potl*hart/dble(NATOMS),
+ pot3b*hart/dble(NATOMS),
+ uavg*hart/dble(NATOMS),
+ usd*hart/dble(NATOMS),
+ eavg*hart/dble(NATOMS),
+ esd*hart/dble(NATOMS),
+ tavg*hart/dble(NATOMS),
+ tsd*hart/dble(NATOMS),
+ imsg(2), imsg(3), nchild

c --------- perform the calculations for reweighting
rwaxy = aaxy-da
rwaz = aaz-da
rwb = bb-3.0d0*db

do ii = 1, 9
c ------------ Calculate 2*log(psi’) and 2*log(psi) (called pnewsq
c and poldsq, respectively).

dx2sum=0.0d0
dy2sum=0.0d0
dz2sum=0.0d0
do l=1, NATOMS

dx=psi(3*l-2)
dy=psi(3*l-1)
dz=psi(3*l)
dx2sum=dx2sum+dx*dx
dy2sum=dy2sum+dy*dy
dz2sum=dz2sum+dz*dz

end do
c ------------ This is the one body contribution to 2*log(psi’) and
c 2*log(psi):

p1oldsq=-2.0d0*(aaxy*dx2sum+aaxy*dy2sum+aaz*dz2sum)
p1newsq=-2.0d0*(rwaxy*dx2sum+rwaxy*dy2sum+rwaz*dz2sum)

c ------------ calculate the same for the two body term:
psi2old = 0.0d0
psi2new = 0.0d0
do n= 1, nvpair

j=ivpair(1,n)
m=ivpair(2,n)

264

if (m.gt.j) then
dx = (psi(3*m-2))+vpvec(1, n) +(-psi(3*j-2))
dy = (psi(3*m-1))+vpvec(2, n) +(-psi(3*j-1))
dz = (psi(3*m))+vpvec(3, n) +(-psi(3*j))

r2 = dx*dx+dy*dy+dz*dz
br2old = bb*bb/r2
br2new = rwb*rwb/r2

br5old = br2old*br2old*sqrt(br2old)
br5new = br2new*br2new*sqrt(br2new)

psi2old = psi2old - 0.5d0*br5old
psi2new = psi2new - 0.5d0*br5new

end if
end do

psi2oldsq = 2.0d0*psi2old
psi2newsq = 2.0d0*psi2new

c ------------ Add one and two body terms for total 2*log(psi) and
c 2*log(psi’)

poldsq = p1oldsq + psi2oldsq
pnewsq = p1newsq + psi2newsq

c ------------ calculate the reweighting factor, w = |psi’ˆ2|/|psiˆ2|
c = exp|2*log(psi’) - 2*log(psi)|

w=exp(pnewsq-poldsq)
rw_wsum(ii) = rw_wsum(ii)+w
rw_wsqsum(ii) = rw_wsqsum(ii) + (w*w)

c ------------ calculate the reweighted potential
pot=w*(potl+pot3b)
rw_vsum(ii) = rw_vsum(ii)+pot
rw_vwsum(ii) = rw_vwsum(ii) + (pot*w)
rw_vvsum(ii) = rw_vvsum(ii) + (pot*pot)

c ----------- The subroutine kinrw(psi, tloc) calculates the kinetic
c energy using the new parameters of psi prime.

call kinrw(psi, rwaxy, rwaz, rwb, tloc)

tloc = w*tloc
rw_tsum(ii) = rw_tsum(ii)+tloc
rw_twsum(ii) = rw_twsum(ii) + (tloc*w)
rw_ttsum(ii) = rw_ttsum(ii) + (tloc*tloc)

c ----------- Calculate the total energy from the sum of potential and
c kinetic.

etot = pot + tloc
rw_esum(ii) = rw_esum(ii) + etot
rw_ewsum(ii) = rw_ewsum(ii) + (etot*w)
rw_eesum(ii) = rw_eesum(ii) + (etot*etot)

c ----------- increment reweighting parameters (rwaxy incremeted in if
c statement above)

rwb = rwb + db
if (mod(ii,3).eq.0) then

rwaxy = rwaxy + da
rwaz = aaz-da

else
rwaz = rwaz+da

end if
end do

c ------------ update the random number generator state vector for this
c child.

265

do k=1, 8
rstatv(k, nchild)=rstate(k)

end do

c ------------ update the atom positions for this child.

do n=1, NATOM3
path(n, nchild)=psi(n)

end do

c ------------ update the number of received chunks.

nrcvd=nrcvd+1

c ------------ indicate that this chunk has been processed and returned.

isent(idchunk)=-nchild

end if

c --------- now tell the child to wait until all of the children are done
c and more work is available.

imsg(1)=-1

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ nchild,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 121204)

end if

end do

return
end

sizes.h
c --- number of atoms in the system.

parameter (NATOMS=448)

c --- various multiples of NATOMS.

parameter (NATOM3=NATOMS*3)
parameter (NATOM6=NATOMS*6)
parameter (NATOM7=NATOMS*7)

c --- number of points on the interatomic potential energy curve, for
c linear interpolation of the potential energy function.

parameter (NVBINS=20000)

c --- "radius" of the interacting-pair region, in nearest-neighbor distances.

parameter (RATIO=2.05)

266

c --- number of interacting pairs for each atom.

parameter (NIP=56)

c --- number of first nearest neighbors for each atom.

parameter (NIP1=12)

c --- number of interacting trimers for each atom.

parameter (NIT = 66)

c --- total number of interacting pairs in the simulation box.

parameter (NPAIRS=NATOMS*NIP)

c --- total number of nearest neighbor pairs (for calculating trimers)

parameter (NPAIRS1=NATOMS*NIP1)

c --- total number of nearest neighbor trimers

parameter (NTRIMS = NIT*NATOMS)

c --- Maximum number of child processors allowed at time of compilation

parameter (NCH = 64)

c --- Number of chunks of iterations sent with each pass of the parent loop

parameter (NCHUNKS = 10)

vmc-448.com
c --- internal units are atomic units.
c --- hartrees per electron volt.

parameter (evconv=3.67495735d-2)

c --- hartrees per wavenumber.

parameter (cmconv=4.55636866d-6)

c --- QMC variables.

common /monte/ ztacc, ztrej,
+ zmh, zmhe, den, step,
+ nloop, nequil, nprint, nrst

common /param/ bb, aaxy, aaz, dzscale, da, db, idebug

c --- random number variables.

double precision zm1, zm2, rm1, rm2, rscale, rstatv

common /moduli/ zm1, zm2, rm1, rm2

common /rancom/ rstatv(8, NCH), rscale, irrst, nrskip

c --- potential energy curve

common /potcom/ v(2, NVBINS)

267

c --- filenames.

character*20 ltfile, pfile, sfile, ofile, dfile, dump,
+ rwfile
common /files/ ltfile, pfile, sfile, ofile, dfile, dump,
+ rwfile

c --- crystal lattice.

common /crystl/ xtal(NATOMS, 3), path(NATOM3, NCH),
+ npair(NATOMS), ipairs(NIP, NATOMS),
+ npair1(NATOMS), ntrim(NATOMS),
+ ipairs1(NIP1, NATOMS), itrims(NIT, NATOMS)

common /vpairs/ vpvec(3, NPAIRS), vpvec1(3, NPAIRS1),
+ vpvectri(9, NTRIMS), ivtrim(4, NTRIMS),
+ ivpair(2, NPAIRS), ivpair1(2, NPAIRS1),
+ nvpair, nvpair1, nvtrim

c --- energy sums.

common /energy/ vsum, v2sum, esum, e2sum, tsum, t2sum, denom

c --- reweighting energy sums.

common /energy_vec/ rw_vsum(9), rw_tsum(9), rw_esum(9),
+ rw_wsqsum(9), rw_vwsum(9), rw_ewsum(9),
+ rw_twsum(9), rw_vvsum(9), rw_eesum(9),
+ rw_ttsum(9), rw_wsum(9)

c --- counters to monitor load balancing.

common /parcom/ iwork(NCH)

268

Appendix B

VPI Programs

B.1 VPI 2-Body Program (VPI-2B)

VPI 2-body simulations were performed using a modified version of the QSATS code

(Robert J. Hinde, Computer Physics Communications, 182(11), 2339 (2011)). Only

those subroutines which di↵er from the published QSATS code are included below.

This version allows for independent axy and az trial wavefunction parameters as well

as nonequilibrium values of ⌘, �, and ✏. The files required to compile and run the

code are as follows:

main.f Main program that determines whether the processor is the parent or a
child processor.

cmrg.f See Sec. A.1.

rsetup.f See Sec. A.1.

parent-distortion.f Parent process which runs on node 0. This sets up the interacting pair
list, accounts for distortion e↵ects on the lattice postions, and sends tasks
to the child processes.

input-distortion.f Reads in important file names as well as simulation parameters, including
deformation parameters.

vinit.f See Sec. A.1.

child.f Child process that generates new configurations for the atoms in each
replica using Metropolis Monte Carlo moves. The potential energy is
calculated after each move after which an accept/reject decision is made
and information is sent back to the parent.

even.f Divides up even numbered replicas among the child processes.

odd.f Divides up odd numbered replicas among the child processes.

rpsend.f Sends a replica to a child proccess to update the atomic configuration.

269

tstamp.f See Sec. A.1.

sizes.h Contains fixed parameters for the simulation including number of atoms,
interacting pairs, and the maximum number of child processors.

qsats.h Sets up the common block variables for the VPI simulation.

Program files that can be found in the QSATS code and are not reproduced here: main.f,
cmrg.f, rsetup.f, vinit.f, even.f, odd.f, rpsend.f, tstamp.f, sizes.f

The snapshots generated from the VPI-2B simulation are then used to calculate

the average potential (2-body), kinetic, and total energies for each replica, along with

the long-range correction to the two-body energy. This is accomplished using eloc-

distortion.f program which allows for distorted lattices and calls on many of the same

subroutines as the VPI main program. The files required to compile and run this

program are listed below:

eloc-distortion.f Main program which calls the input subroutine and calculates the average
energies for each replica from the VPI snapshot file.

input-distortion.f See input-distortion.f above.

vinit.f See Sec. A.1.

lrc-3d-sub.f See Sec. A.1.1. This subroutine is identical to the VMC subroutine,
except that the line “include ‘vmc-448.com”’ is replaced by “include
‘qsats.h”’.

c6-sub.f See Sec. A.1.1. This subroutine is identical to the VMC subroutine,
except that the line “include ‘vmc-448.com”’ is replaced by “include
‘qsats.h”’.

tstamp.f See Sec. A.1.

Gauss-Hermite.dat See Sec. A.1.1.

sizes.h See sizes.h above.

qsats.h See qsats.h above.

parent-distortion.f
c --
c this is the parent process tha
c errchk is a subroutine called after every MPI subroutine that
c checks the MPI error code and reports any errors.
c This version allows for non-equilibrium values of the three
c distortion parameters eta, gam, and epsil
c --

subroutine parent(ierror)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’qsats.h’

270

include ’mpif.h’

dimension istat(MPI_STATUS_SIZE)
dimension imsg(9), fmsg(7)
dimension isent(NREPS), ikeep(NATOMS), replic(NATOM7)
dimension rstate(8)

parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)

c ==
c PART ONE: INITIALIZATION
c ==

ierror=0

c --- read input file.

call input

write (6, 6100) ltfile, spfile, svfile
6100 format (’lattice file name = ’, a17/,

+ ’snapshot file name = ’, a17/,
+ ’save file name = ’, a17/)

if (idebug.eq.0) write (6, 6110) idebug, ’NONE’
if (idebug.eq.1) write (6, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (6, 6110) idebug, ’LOW’
if (idebug.eq.3) write (6, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (6, 6110) idebug, ’HIGH’

6110 format (’debug level = ’, i1,’ or ’, a8/)

phi = sqrt(1.0d0+eta)

c --- read the potential energy curve.

call vinit(r2min, bin)

c --- read crystal lattice points.

write (6, 6200) ltfile
6200 format (’READING crystal lattice from ’, a17/)

open (8, file=ltfile, status=’old’, err=901)

read (8, *, err=902) nlpts
if (nlpts.ne.NATOMS) then

write (6, *) ’ERROR: number of atoms in lattice file = ’, nlpts
write (6, *) ’number of atoms in source code = ’, NATOMS
call quit

end if

c --- read the edge lengths of the supercell.

read (8, *, err=903) xlen, ylen, zlen
den0=dble(NATOMS)/(xlen*ylen*zlen)

xlen = xlen
ylen = ylen
zlen = zlen

c --- compute a distance scaling factor.

scale=exp(dlog(den/den0)/3.0d0)

271

write (6, 6300) scale
6300 format (’supercell scaling factor computed from density = ’,

+ f12.8/)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

dxmax=half*xlen
dymax=half*ylen
dzmax=half*zlen

do i=1, NATOMS

read (8, *, err=904) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (8)
c --- this helps us remember the nearest-neighbor distance.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

write (6, 6310) rnnmin

272

6310 format (’nearest neighbor (NN) distance [bohr] = ’, f10.5/)

write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2),
+ xtal(NATOMS, 3)

6320 format (’final lattice point [bohr] = ’, 3f10.5/)

write (6, 6330) xlen, ylen, zlen
6330 format (’supercell edge lengths [bohr] = ’, 3f10.5/)

write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin
6340 format (’supercell edge lengths [NN distances] = ’, 3f10.5/)

c --- compute interacting pairs.

do i=1, NATOMS
npair(i)=0
ntrim(i)=0

end do

nvpair=0

do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then
dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount.
c --------- we determine the interacting pairs from the undistorted
c then use our values of eta (phi), gamma, and epsilon to
c impose the distortions for the elastic constant
c calculations.

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

273

c ------------ these transformations impose the lattice distortions
c They reduce to dx, dy, and dz for eta = 0 (phi = 1),
c gamma = 1 and epsilon = 0.

vpvec(1, nvpair)=dx/(sqrt(gam)*phi)
vpvec(2, nvpair)=dy*sqrt(gam)/phi
vpvec(3, nvpair)=dz*phi**2+dy*epsil

npair(i)=npair(i)+1
ipairs(npair(i), i)=nvpair

end if
end if

end do
end do

c --- Now loop back through the coordinates in the xtal array and
c transform them appropriately

do i=1, NATOMS
xtal(i, 1)=xtal(i, 1)/(sqrt(gam)*phi)
xtal(i, 2)=xtal(i, 2)*sqrt(gam)/phi
xtal(i, 3)=xtal(i, 3)*phi**2+epsil*xtal(i, 2)

end do

write (6, 6400) npair(1), nvpair
6400 format (’atom 1 interacts with ’, i3, ’ other atoms’//,

+ ’total number of interacting pairs = ’, i6)

write (6, 6401)
6401 format (/’interaction pair vectors for atom 1 ’,

+ ’[NN distances]:’/)

do i=1, npair(1)
ip=ipairs(i, 1)
d=sqrt(vpvec(1, ip)**2+vpvec(2, ip)**2+vpvec(3, ip)**2)/

+ rnnmin
write (6, 6410) ip, ivpair(2, ip), vpvec(1, ip)/rnnmin,

+ vpvec(2, ip)/rnnmin, vpvec(3, ip)/rnnmin, d
6410 format (’vector # ’, i3, ’ to atom ’, i4, ’: ’,

+ 3(1x, f9.5), ’ length = ’, f8.5)
end do

c --- set the displacement vectors for all replicas to zero.

write (6, 6500)
6500 format (/’SETTING initial configuration to zero’/)

do j=1, NREPS
do i=1, NATOM3

path(i, j)=0.0
end do
end do

c --- initialize random number generator.

call rsetup

c --- now see if there is an old set of displacement vectors from a
c previous run. if not, jump head to line 200.

open (8, file=svfile, form=’unformatted’, status=’old’, err=200)

274

write (6, 6510) svfile
6510 format (’READING initial configuration from ’, a17/)

do j=1, NREPS
read (8) (rstatv(i, j), i=1, 8)
read (8) (path(i, j), i=1, NATOM3)

end do

close (8)

200 if (idebug.ge.3) then

write (6, 6170)
6170 format (’x(1) and rstatv(1) values for each replica:’/)

do j=1, NREPS
write (6, 6180) j, path(1, j), rstatv(1, j)

6180 format (i5, 1x, f15.9, 1x, f20.1)
end do

write (6, *) ’’

end if

c --- this is the output file where snapshots of the replicas will be
c stored for analysis by another program.

open (10, file=spfile, form=’unformatted’)

c --- initialize MPI.

MPI_R=MPI_DOUBLE_PRECISION

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierr)

call errchk(0, ierr, 100000)

write (6, 6600) ntasks-1
6600 format (’number of child processes = ’, i3/)

if (ntasks-1.gt.130) then
write (6, 6610)

6610 format (’too many child processes; expand the iwork array.’/
+ ’also note that write statements for HIGH ’
+ ’debugging level may fail on some systems.’)

call quit
end if

c --- this array just counts how evenly the workload was spread among
c the child processes.

do i=1, ntasks-1
iwork(i)=0

end do

c --- broadcast integer constants to all child processes.

imsg(1)=NATOMS
imsg(2)=NATOM3
imsg(3)=NATOM6
imsg(4)=NATOM7
imsg(5)=NREPS
imsg(6)=NIP
imsg(7)=NPAIRS
imsg(8)=NVBINS

275

imsg(9)=idebug

do itask=1, ntasks-1

call MPI_SEND(imsg,
+ 9,
+ MPI_INTEGER,
+ itask,
+ 0101,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100101)

end do

if (idebug.gt.0) open (9, file=’debug.log’)

if (idebug.eq.1) write (9, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (9, 6110) idebug, ’LOW’
if (idebug.eq.3) write (9, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (9, 6110) idebug, ’HIGH’

c --- broadcast floating-point constants to all child processes.

fmsg(1)=tau
fmsg(2)=bin
fmsg(3)=r2min
fmsg(4)=amass
fmsg(5)=aaxy
fmsg(6)=aaz
fmsg(7)=bb

do itask=1, ntasks-1

call MPI_SEND(fmsg,
+ 7,
+ MPI_R,
+ itask,
+ 0102,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100102)

end do

c --- broadcast the interacting-pair vectors to all child processes.

do itask=1, ntasks-1

call MPI_SEND(vpvec,
+ 3*NPAIRS,
+ MPI_R,
+ itask,
+ 0103,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100103)

end do

c --- broadcast the list of atom id numbers for the interacting pairs
c to all child processes.

276

do itask=1, ntasks-1

call MPI_SEND(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ itask,
+ 0104,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100104)

end do

c --- broadcast the size of each stencil to all child processes. all
c stencils should be the same size, but we treat this as a variable.

do itask=1, ntasks-1

call MPI_SEND(npair,
+ NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0105,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100105)

end do

c --- broadcast the list of interacting pair id numbers that define the
c stencils to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0106,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100106)

end do

c --- broadcast the potential energy curve V(R) to all child processes.

do itask=1, ntasks-1

call MPI_SEND(v,
+ 2*NVBINS,
+ MPI_R,
+ itask,
+ 0107,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100107)

end do

277

c --- Now begin broadcasting interacting trimer information

if (idebug.gt.0) write (9, *) ’end parent PART ONE’
if (idebug.gt.0) write (9, *) ’’

c ==
c PART TWO: PERFORMING THE SIMULATION
c ==

c --- initialization of various progress counters.

c --- this is how many iterations we have done.

loop=0

c --- these tell us about the acceptance ratio for the atom moves.

ztacc=0.0d0
ztrej=0.0d0

ztacc0=0.0d0
ztrej0=0.0d0

300 loop=loop+1

c --- these counters make sure that we don’t lose a replica somewhere in
c the ether. we use them to count how many replicas have been sent and
c received.

nsent=0
nrcvd=0

c --- this is a list of flags that are zero for replicas that haven’t yet
c been sent to a child for processing, positive for replicas that have
c been sent, and negative for replicas that have been processed and
c returned to the parent.

c isent(n) is set to the (positive) task id of the receiving child
c process when a replica is sent. this is basically leaving a trail
c of crumbs so that we can track down the replicas and ask the children
c to return them to us.

do nrep=1, NREPS
isent(nrep)=0

end do

c --- first do all odd replicas.

call oddrep(loop, nsent, nrcvd, MPI_R)

c --- then do all even replicas.

call evnrep(loop, nsent, nrcvd, MPI_R)

c --- check for lost replicas.

if (nsent.ne.NREPS.or.nrcvd.ne.NREPS) then
write (6, *) ’replicas have been lost!’
write (6, *) ’nsent = ’, nsent
write (6, *) ’nrcvd = ’, nrcvd
ierror=1

end if

c --- take a snapshot every so often.

if (mod(loop, nprint).eq.0) then

278

zacc=ztacc-ztacc0
zrej=ztrej-ztrej0

ztacc0=ztacc
ztrej0=ztrej

if (idebug.gt.0) then
write (9, 9400) zacc, zrej, 100.0d0*zacc/(zacc+zrej)

9400 format (’accepted = ’, f11.0, 1x,
+ ’rejected = ’, f11.0, 3x,
+ ’% accepted = ’, f6.2)

call flush(9)
end if

c ------ we only actually take snapshots of every 11th replica.

do k=1, NREPS, 11
write (10) (path(i, k), i=1, NATOM3)

end do

end if

c --- do the next loop if needed.

if (loop.lt.nloop) goto 300

c --- otherwise save a checkpoint file.

write (6, 6810) svfile
6810 format (’SAVING final configuration to ’, a17/)

open (8, file=svfile, form=’unformatted’)

do k=1, NREPS
write (8) (rstatv(i, k), i=1, 8)
write (8) (path(i, k), i=1, NATOM3)

end do

if (idebug.ge.3) then

write (6, 6170)

do k=1, NREPS
write (6, 6180) k, path(1, k), rstatv(1, k)

end do

write (6, *) ’’

end if

close (8)

close (10)

if (idebug.gt.0) then
write (9, *) ’’
write (9, *) ’QSATS is done!’
write (9, *) ’’

end if

c --- show how much work every child did.

if (idebug.gt.0) then
do i=1, ntasks-1

279

write (9, 9100) i, iwork(i)
9100 format (’task ’, i3, ’ received ’, i9, ’ replicas’)

end do
end if

c --- tell the children we’re all done.

do itask=1, ntasks-1

imsg(1)=0

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ itask,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100204)

end do

write (6, 6900) ztacc
6900 format (’total number of accepted moves = ’, f20.1)

write (6, 6901) ztrej
6901 format (’total number of rejected moves = ’, f20.1/)

if (idebug.gt.0) write (9, *) ’’
if (idebug.gt.0) write (9, *) ’end parent PART TWO’

return

901 write (6, *) ’error opening lattice file’
goto 999

902 write (6, *) ’error reading number of atoms from lattice file’
goto 999

903 write (6, *) ’error reading (unscaled) supercell edge lengths’
goto 999

904 write (6, *) ’error reading atom number ’, i
goto 999

999 call quit

return
end

input-distortion.f
c --
c this inputs the names of various I/O files and also reads in the
c parameters for the simulation.
c This version has been modified to accept nonequilibrium values
c of the distortion parameters eta, gam, and epsil
c --

subroutine input

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’qsats.h’

character*8 inword

280

c --- read in filenames.
c spfile = snapshot file
c svfile = checkpoint "save" file in the main VPI program
c = tabulated output datafile in the eloc file
c ltfile = lattice file

read (5, 5000, err=922) spfile
5000 format (a17)

read (5, 5000, err=923) svfile
read (5, 5000, err=924) ltfile

c --- set debug level.
read (5, 5001, err=931) inword

5001 format (a8)

if (inword.eq.’NONE’) then
idebug=0

else if (inword.eq.’MINIMAL’) then
idebug=1

else if (inword.eq.’LOW’) then
idebug=2

else if (inword.eq.’MEDIUM’) then
idebug=3

else if (inword.eq.’HIGH’) then
idebug=4

else
write (6, *) ’invalid debug level’

end if

c --- read in the simulation parameters.
c tau = imaginary time step in a.u.
c den = number density in atoms per cubic bohr
c amass = atomic mass of the He-4 atoms
c aaxy = trial wavefunction a_xy parameter
c aaz = trial wavefunction a_z parameter
c bb = trial wavefunction b parameter
c nloop = total MCCs
c nprint = snapshot interval
c eta = distortion parameter for C0 (change c/a ratio)
c gam = distortion parameter for C66
c epsil = distortion parameter for C44

read (5, *, err=901) tau
read (5, *, err=902) den
read (5, *, err=903) amass
read (5, *, err=904) aaxy
read (5, *, err=904) aaz
read (5, *, err=905) bb
read (5, *, err=906) nloop
read (5, *, err=907) nprint
read (5, *, err=909) eta
read (5, *, err=910) gam
read (5, *, err=911) epsil

write (6, 6000) NATOMS, NREPS
6000 format (’REPEATING input parameters’//,

+ ’atom count = ’, i6/,
+ ’replica count = ’, i6/)

write (6, 6001) tau, den, amass, aaxy, aaz, bb, eta, gam,
+ epsil

6001 format (’tau = ’, f14.7, ’ au time’/,
+ ’density = ’, f14.7, ’ atoms per cubic bohr’/,
+ ’atomic mass = ’, f14.7, ’ electron masses’/,
+ ’alpha-xy parameter = ’, f14.7, ’ bohr**(-2)’/,

281

+ ’alpha-z parameter = ’, f14.7, ’ bohr**(-2)’/,
+ ’B parameter = ’, f14.7, ’ bohr’/,
+ ’eta value = ’, f5.2, /,
+ ’gamma value = ’, f5.2, /,
+ ’epsilon value = ’, f5.2, /)

write (6, 6002) nloop, nprint
6002 format (’number of simulation steps = ’, i8/,

+ ’snapshot interval = ’, i8/)
return

901 write (6, *) ’error reading time step value’
goto 999

902 write (6, *) ’error reading density value’
goto 999

903 write (6, *) ’error reading atomic mass value’
goto 999

904 write (6, *) ’error reading aa value’
goto 999

905 write (6, *) ’error reading bb value’
goto 999

906 write (6, *) ’error reading nloop value’
goto 999

907 write (6, *) ’error reading nprint value’
goto 999

908 write (6, *) ’error reading dzscale value’
goto 999

909 write (6, *) ’error reading eta value’
goto 999

910 write (6, *) ’error reading gamma value’
goto 999

911 write (6, *) ’error reading epsilon value’
goto 999

921 write (6, *) ’error reading RNG file name’
goto 999

922 write (6, *) ’error reading snapshot file name’
goto 999

923 write (6, *) ’error reading save file name’
goto 999

924 write (6, *) ’error reading lattice file name’
goto 999

931 write (6, *) ’error reading debug level’
goto 999

932 write (6, *) ’error reading RNG initialization mode’
goto 999

999 call quit
return
end

child.f
c --
c this is the child process that runs on all nodes except node 0
c (which is running the parent process).
c --

subroutine child(MPI_R)

implicit double precision (a-h, o-z)

include ’mpif.h’
include ’sizes.h’

282

c --- child processes don’t include common block, all variables are
c local and must be defined below. Prevents child processes from
c overwriting global variables

common /rancm1/ rscale

dimension replic(NATOM6), npair(NATOMS), rv(NATOM3)
dimension istat(MPI_STATUS_SIZE)
dimension vpvec(3, NPAIRS)
dimension ivpair(2, NPAIRS)
dimension ipairs(NIP, NATOMS)
dimension xx(NATOMS), yy(NATOMS), zz(NATOMS)
dimension r2old(NATOMS), r2new(NATOMS), v1(NATOMS), v2(NATOMS)
dimension v(2, NVBINS)
dimension imsg(9), fmsg(7)
dimension rstate(8)

parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)

c ==
c PART ONE: INITIALIZATION
c ==

c --- numerical factor for random number generator.

rscale=1.0d0/4294967088.0d0

c --- determine which process this is and store it in myid.

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

c --- receive all of the information that is broadcast by the parent
c process.

c --- first receive some integer constants. these are primarily used to
c check that the arrays are properly dimensioned.

call MPI_RECV(imsg,
+ 9,
+ MPI_INTEGER,
+ 0,
+ 0101,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200101)

istop=0

if (imsg(1).ne.NATOMS) then
write (6, *) ’size mismatch 1: ’, imsg(1)
istop=1

end if
if (imsg(2).ne.NATOM3) then

write (6, *) ’size mismatch 2: ’, imsg(2)
istop=1

end if
if (imsg(3).ne.NATOM6) then

write (6, *) ’size mismatch 3: ’, imsg(3)
istop=1

end if
if (imsg(4).ne.NATOM7) then

283

write (6, *) ’size mismatch 4: ’, imsg(4)
istop=1

end if
if (imsg(5).ne.NREPS) then

write (6, *) ’size mismatch 5: ’, imsg(5)
istop=1

end if
if (imsg(6).ne.NIP) then

write (6, *) ’size mismatch 6: ’, imsg(6)
istop=1

end if
if (imsg(7).ne.NPAIRS) then

write (6, *) ’size mismatch 7: ’, imsg(7)
istop=1

end if
if (imsg(8).ne.NVBINS) then

write (6, *) ’size mismatch 8: ’, imsg(8)
istop=1

end if

if (istop.eq.1) call quit

idebug=imsg(9)

c --- debugging output.

if (idebug.eq.4) write (30+myid, *) ’idebug = ’, idebug

c --- next receive some floating-point constants.

call MPI_RECV(fmsg,
+ 7,
+ MPI_R,
+ 0,
+ 0102,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200102)

tau=fmsg(1)
bin=fmsg(2)
r2min=fmsg(3)
amass=fmsg(4)
aaxy=fmsg(5)
aaz=fmsg(6)
bb=fmsg(7)

if (idebug.eq.4) then
write (30+myid, *) ’tau = ’, tau
write (30+myid, *) ’bin = ’, bin
write (30+myid, *) ’r2min = ’, r2min
write (30+myid, *) ’amass = ’, amass
write (30+myid, *) ’aaxy = ’, aaxy
write (30+myid, *) ’aaz = ’, aaz
write (30+myid, *) ’bb = ’, bb

end if

c --- compute the inverse of the potential energy V(R) bin width, to
c avoid unnecessary divisions.

binvrs=one/bin

c --- compute gaussian scaling parameters.

284

gscale=sqrt(half*tau/amass)
gscal2=sqrt(tau/amass)

c --- next receive the vectors that connect pairs of atoms in a stencil.

call MPI_RECV(vpvec,
+ 3*NPAIRS,
+ MPI_R,
+ 0,
+ 0103,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200103)

c --- next receive the list of pairs of atoms.

call MPI_RECV(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ 0,
+ 0104,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200104)

c --- next receive the number of atoms that belong to each atom’s stencil.
c this should really be the same for every atom for a regular crystal
c lattice, but we treat it as a variable.

call MPI_RECV(npair,
+ NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0105,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200105)

c --- next receive the pairs that constitute each atom’s stencil.

call MPI_RECV(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0106,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200106)

c --- next receive the potential energy curve V(R) for interpolation.

call MPI_RECV(v,
+ 2*NVBINS,
+ MPI_R,
+ 0,
+ 0107,

285

+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200107)

if (idebug.eq.4) then
write (30+myid, *) ’child moving to PART TWO’
call flush(30+myid)

end if
c ==
c PART TWO: PERFORMING THE SIMULATION
c ==

100 idrep=0

nacc=0
nrej=0

c --- send request for data (message type 1201) to parent. the first
c time through, or if we are waiting for all children to sync up,
c there are no results to send back to the parent, so we indicate
c this by setting idrep=0 just above, and then sending this to
c the parent in imsg(1).

200 imsg(1)=idrep

imsg(2)=nacc
imsg(3)=nrej

call MPI_SEND(imsg,
+ 3,
+ MPI_INTEGER,
+ 0,
+ 1201,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201201)

c --- on the other hand, if there are results to send back, then we
c do so here.

if (idrep.gt.0) then

c ------ first we send a message of type 1202 that contains the atoms’
c new positions.

call MPI_SEND(replic,
+ NATOM3,
+ MPI_R,
+ 0,
+ 1202,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201202)

c ------ then we send a message of type 1203 that contains the updated
c random number generator state vector.

call MPI_SEND(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,

286

+ 1203,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201203)

end if

c --- wait for acknowledgement (message type 0204) from parent. the
c parent also uses this to signal the child that more input will
c be sent.

c if imsg(1) is positive, it is a replica number that represents the
c next replica that this child should process.

c if imsg(1) is negative, then this child needs to wait for the
c other children to sync up, and so the child goes back to the top
c of PART TWO.

c if imsg(1) is zero, there is no more work to be done.

call MPI_RECV(imsg,
+ 1,
+ MPI_INTEGER,
+ 0,
+ 0204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200204)

c --- loop back and wait for more input if instructed by parent.

if (imsg(1).lt.0) goto 100

c --- terminate if the simulation is complete.

if (imsg(1).eq.0) then
if (idebug.eq.4) write (30+myid, *) ’child is done!’
return

end if

c --- if there is a new replica to process, then receive data from
c the parent.

c --- we need to save the replica number that we are about to work on.

idrep=imsg(1)

c --- first receive the loop number, in a message of type 0207.

call MPI_RECV(loop,
+ 1,
+ MPI_INTEGER,
+ 0,
+ 0207,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200207)

c --- next receive the old atomic coordinates and the means of the
c neighboring replicas’ coordinates, in a message of type 0205.

287

call MPI_RECV(replic,
+ NATOM6,
+ MPI_R,
+ 0,
+ 0205,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200205)

c --- next receive the random number generator state vector, in
c a message of type 0206.

call MPI_RECV(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0206,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200206)

c --- generate provisional new atomic positions by adding gaussian
c displacements.

c --- first choose the appropriate gaussian scaling factor.

if (idrep.eq.1.or.idrep.eq.NREPS) then
gsc=gscal2

else
gsc=gscale

end if

c --- then add the gaussian displacements.

do nn=1, NATOM3
call gstep(rstate, gg, rscale)
replic(NATOM3+nn)=replic(NATOM3+nn)+gg*gsc

end do

c --- attempt to move each atom in turn.

nacc=0
nrej=0

do nn=1, NATOMS

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’moving atom 1’
call flush(30+myid)

end if
end if

c ------ set up the coordinates of the atoms that are in this atom’s
c stencil.

do i=1, npair(nn)

288

ip=ipairs(i, nn)
j=ivpair(2, ip)

xx(i)=replic(3*j-2)+vpvec(1, ip)
yy(i)=replic(3*j-1)+vpvec(2, ip)
zz(i)=replic(3*j-0)+vpvec(3, ip)

end do

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’after do loop, xx(1) = ’, xx(1)
call flush(30+myid)

end if
end if

c ------ get the old and new coordinates of the atom that we’re about
c to try to move.

xold=replic(3*nn-2)
yold=replic(3*nn-1)
zold=replic(3*nn-0)

xnew=replic(3*nn-2+NATOM3)
ynew=replic(3*nn-1+NATOM3)
znew=replic(3*nn-0+NATOM3)

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’xold, xnew = ’, xold, xnew
call flush(30+myid)

end if
end if

c ------ compute the old and new distances between this atom and all
c of the atoms in the stencil.

c ------ the do loops are split up to promote vectorization, although
c i’m not sure this is necessary.

do i=1, npair(nn)
r2old(i)=(xx(i)-xold)**2

end do

do i=1, npair(nn)
r2old(i)=r2old(i)+(yy(i)-yold)**2

end do

do i=1, npair(nn)
r2old(i)=r2old(i)+(zz(i)-zold)**2

end do

do i=1, npair(nn)
r2new(i)=(xx(i)-xnew)**2

end do

do i=1, npair(nn)
r2new(i)=r2new(i)+(yy(i)-ynew)**2

end do

do i=1, npair(nn)

289

r2new(i)=r2new(i)+(zz(i)-znew)**2
end do

c ------ compute the change in potential energy.

do i=1, npair(nn)

c --------- use linear interpolation.

ibin1=int((r2old(i)-r2min)*binvrs)+1
ibin2=int((r2new(i)-r2min)*binvrs)+1

if (ibin1.gt.0) then
dr1=(r2old(i)-r2min)-bin*dble(ibin1-1)
v1(i)=v(1, ibin1)+v(2, ibin1)*dr1

else
v1(i)=v(1, 1)

end if

if (ibin2.gt.0) then
dr2=(r2new(i)-r2min)-bin*dble(ibin2-1)
v2(i)=v(1, ibin2)+v(2, ibin2)*dr2

else
v2(i)=v(1, 1)

end if

end do

dv=0.0

do i=1, npair(nn)
dv=dv+v1(i)-v2(i)

end do

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’dv = ’, dv
call flush(30+myid)

end if
end if

dv=dv*tau

c ------ deal with trial function for first and last replicas.

if (idrep.eq.1.or.idrep.eq.NREPS) then

dpsi=0.0

do i=1, npair(nn)
dpsi=dpsi+

+ (1.0d0/sqrt(r2old(i)))**5-
- (1.0d0/sqrt(r2new(i)))**5

end do

soldxy=xold**2+yold**2
snewxy=xnew**2+ynew**2

dpsi=0.5d0*bb**5*dpsi+aaxy*(soldxy-snewxy)+
+ aaz*(zold**2-znew**2)

c --------- debugging output.

290

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’evaluating trial function’
write (30+myid, *) ’dpsi = ’, dpsi
call flush(30+myid)

end if
end if

c --------- also remember to scale the change in potential energy by
c one-half for the end replicas.

dv=half*dv+dpsi
end if

c ------ choose whether to accept the new position.

call rstep(rstate, zran, rscale)
if (dv.ge.0.0) then

c --------- accept this move.

replic(3*nn-2)=xnew
replic(3*nn-1)=ynew
replic(3*nn-0)=znew

nacc=nacc+1

else if (zran.lt.exp(dv)) then

c --------- accept this move.

replic(3*nn-2)=xnew
replic(3*nn-1)=ynew
replic(3*nn-0)=znew

nacc=nacc+1
else

c --------- reject this move.

nrej=nrej+1
end if

c --- end of loop over atoms.

end do

c --- go back to send these results back to the parent.

goto 200
end

291

qsats.h
c --

c this file contains the common blocks used by QSATS.

c --

c --- parameters and counters for the VPI simulation.

common /monte/ zaccv(NREPS, NATOMS), zrejv(NREPS, NATOMS),
+ naccv(NATOMS), nrejv(NATOMS), zm,
+ tau, den, scale, amass, ztacc, ztrej,
+ nph2, nloop, nprint, nacc, nrej, irrst, idebug

c --- trial wave function parameters.

common /psitri/ aaxy, aaz, bb, eta, gam, epsil, phi

c --- random number generator variables.

double precision zm1, zm2, rm1, rm2, rscale, rstatv

common /moduli/ zm1, zm2, rm1, rm2

common /rancm1/ rscale

common /rancm2/ rstatv(8, NREPS)

c --- potential energy lookup table.

common /potcom/ v(2, NVBINS)

c --- VPI replicas and atomic masses.

common /vpi/ path(NATOM3, NREPS),
+ pathnu(NATOM3, NREPS),
+ zmass(NATOM3)

c --- filenames.

character*17 spfile, svfile, ltfile

common /files/ spfile, svfile, ltfile

c --- description of the crystal lattice.

common /crystl/ xtal(NATOMS, 3)

common /box/ xlen, ylen, zlen, dxmax, dymax, dzmax

c --- arrays dealing with interacting pairs and trimers.

common /vpairs/ vpvec(3, NPAIRS),
+ ivpair(2, NPAIRS), ivpair1(2, NPAIRS),
+ ipairs(NIP, NATOMS),
+ npair(NATOMS),
+ nvpair

c --- counters to monitor load balancing.

common /parcom/ iwork(130)

292

eloc-distortion.f
c --
c this computes the total energy and the expectation value of the
c potential energy from the snapshots recorded by QSATS.
c This version of the code accounts for strain applied to the
c lattice as determined by the eta, gamma, and epsilon parameters
c (see Cazorla, Phys. Rev. B 85, 024101 (2012)) for the purpose
c of calculating elastic constants.
c --

program eloc

implicit double precision (a-h, o-z)
real*8 lrctot

include ’sizes.h’
include ’qsats.h’

parameter (bohr=0.529177249d0)
c --- this common block is used to enable interpolation in the potential
c energy lookup table in the subroutine local below.

common /bincom/ bin, binvrs, r2min

dimension q(NATOM3), vtavg(NREPS), vtavg2(NREPS),
+ etavg(NREPS), etavg2(NREPS), u2xavg(NREPS),
+ u2yavg(NREPS), u2zavg(NREPS), u4xavg(NREPS),
+ u4yavg(NREPS), u4zavg(NREPS)

parameter (half=0.5d0)
parameter (one=1.0d0)

c --- initialization.

call tstamp

write (6, 6001) NREPS, NATOMS, NATOM3, NATOM6, NATOM7,
+ NVBINS, RATIO, NIP, NPAIRS

6001 format (’compile-time parameters:’//,
+ ’NREPS = ’, i6/,
+ ’NATOMS = ’, i6/,
+ ’NATOM3 = ’, i6/,
+ ’NATOM6 = ’, i6/,
+ ’NATOM7 = ’, i6/,
+ ’NVBINS = ’, i6/,
+ ’RATIO = ’, f6.4/,
+ ’NIP = ’, i6/,
+ ’NPAIRS = ’, i6/)

call input

call vinit(r2min, bin)

binvrs=one/bin

c --- read crystal lattice points.

write (6, 6200) ltfile
6200 format (’READING crystal lattice from ’, a16/)

open (8, file=ltfile, status=’old’)

read (8, *) nlpts

293

if (nlpts.ne.NATOMS) then
write (6, *) ’ERROR: number of atoms in lattice file = ’, nlpts
write (6, *) ’number of atoms in source code = ’, NATOMS
stop

end if

c --- define strain parameter phi from eta (read in input)

phi = sqrt(1+eta)

c --- read the edge lengths of the supercell.

read (8, *) xlen, ylen, zlen

c --- compute a distance scaling factor.
den0=dble(NATOMS)/(xlen*ylen*zlen)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

scale=exp(dlog(den/den0)/3.0d0)

write (6, 6300) scale
6300 format (’supercell scaling factor computed from density = ’,

+ f12.8/)

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

write (6, 6310) xlen, ylen, zlen
6310 format (’supercell edge lengths [bohr] = ’, 3f10.5/)

dxmax=half*xlen
dymax=half*ylen
dzmax=half*zlen

do i=1, NATOMS

read (8, *) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (8)

write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2),
+ xtal(NATOMS, 3)

6320 format (’final lattice point [bohr] = ’, 3f10.5/)

c --- this variable helps us remember the nearest-neighbor distance.
c --- The nearest neighbor distance and interacting pairs are determined
c from the undistorted lattice and then distortion is applied after.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

294

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

write (6, 6330) rnnmin
6330 format (’nearest neighbor (NN) distance [bohr] = ’, f10.5/)

write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin
6340 format (’supercell edge lengths [NN distances] = ’, 3f10.5/)

c --- compute interacting pairs.

do i=1, NATOMS
npair(i)=0

end do

nvpair=0

do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

295

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount.

c --------- we determine the interacting pairs from the undistorted
c then use our values of eta (phi), gamma, and epsilon to
c impose the distortions for the elastic constant
c calculations.

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

c ------------ these transformations impose the lattice distortions
c They reduce to dx, dy, and dz for eta = 0 (phi = 1),
c gamma = 1 and epsilon = 0.

vpvec(1, nvpair)=dx/(sqrt(gam)*phi)
vpvec(2, nvpair)=dy*sqrt(gam)/phi
vpvec(3, nvpair)=dz*phi**2+dy*epsil

npair(i)=npair(i)+1

ipairs(npair(i), i)=nvpair

end if

end if

end do
end do

c --- Now loop back through the coordinates in the xtal array and
c transform them appropriately

do i=1, NATOMS

xtal(i, 1)=xtal(i, 1)/(sqrt(gam)*phi)
xtal(i, 2)=xtal(i, 2)*sqrt(gam)/phi
xtal(i, 3)=xtal(i, 3)*phi**2+epsil*xtal(i, 2)

end do

c --- write out interacting pair information

write (6, 6400) npair(1), nvpair
6400 format (’atom 1 interacts with ’, i3, ’ other atoms’//,

+ ’total number of interacting pairs = ’, i6/)

c --- initialization.

loop=0
do k=1, NREPS

vtavg(k)=0.0d0

296

etavg(k)=0.0d0
vtavg2(k)=0.0d0
etavg2(k)=0.0d0
u2xavg(k)=0.0d0
u2yavg(k)=0.0d0
u2zavg(k)=0.0d0
u4xavg(k)=0.0d0
u4yavg(k)=0.0d0
u4zavg(k)=0.0d0

end do

open (10, file=spfile, form=’unformatted’)

c --- this loops reads the snapshots saved by QSATS.

300 loop=loop+1

do k=1, NREPS, 11

read (10, end=600) (path(i, k), i=1, NATOM3)

c ------ compute the local energy and the potential energy.

do i=1, NATOM3
q(i)=path(i, k)

end do

call local(q, tloc, vloc)

c ------ convert to kelvin per atom.

tloc=tloc/(3.1668513d-6*dble(NATOMS))
vloc=vloc/(3.1668513d-6*dble(NATOMS))

c ------ accumulate the results.

vtavg(k)=vtavg(k)+vloc
vtavg2(k)=vtavg2(k)+(vloc)**2
etavg(k)=etavg(k)+tloc+vloc
etavg2(k)=etavg2(k)+(tloc+vloc)**2

c ------ compute <uˆ2> in all three directions

call msd(q, u2x, u2y, u2z, u4x, u4y, u4z)
u2xavg(k) = u2xavg(k)+u2x
u2yavg(k) = u2yavg(k)+u2y
u2zavg(k) = u2zavg(k)+u2z

u4xavg(k) = u4xavg(k)+u4x
u4yavg(k) = u4yavg(k)+u4y
u4zavg(k) = u4zavg(k)+u4z

350 continue

end do

goto 300

c --- account for overshooting.

600 loop=loop-1

write (6, 6600) loop
6600 format (’number of snapshots = ’, i6/)

297

c --- compute the averages and standard deviations.

b2 = bohr*bohr
open (4, file=svfile)
do k=1, NREPS, 11

vtavg(k)=vtavg(k)/dble(loop)
vtavg2(k)=vtavg2(k)/dble(loop)
etavg(k)=etavg(k)/dble(loop)
etavg2(k)=etavg2(k)/dble(loop)

vsd=sqrt(vtavg2(k)-vtavg(k)**2)
esd=sqrt(etavg2(k)-etavg(k)**2)

u2xavg(k)=u2xavg(k)/dble(loop)
u2yavg(k)=u2yavg(k)/dble(loop)
u2zavg(k)=u2zavg(k)/dble(loop)

u4xavg(k)=u4xavg(k)/dble(loop)
u4yavg(k)=u4yavg(k)/dble(loop)
u4zavg(k)=u4zavg(k)/dble(loop)

u2xsd=sqrt(u4xavg(k)-u2xavg(k)**2)
u2ysd=sqrt(u4yavg(k)-u2yavg(k)**2)
u2zsd=sqrt(u4zavg(k)-u2zavg(k)**2)

c --- calculate gaussian parameters for each replica for use in
c the long-range correction calculation

axprm = b2/(4.0d0*u2xavg(k))
ayprm = b2/(4.0d0*u2yavg(k))
azprm = b2/(4.0d0*u2zavg(k))

axsd = b2*sqrt((1.0d0/(16.0d0*u2xavg(k)**2))*u2xsd**2)
aysd = b2*sqrt((1.0d0/(16.0d0*u2yavg(k)**2))*u2ysd**2)
azsd = b2*sqrt((1.0d0/(16.0d0*u2zavg(k)**2))*u2zsd**2)

call lrc(axprm, ayprm, azprm, rnnmin, vlrc)

write (6, 6610) k, ’VAVG = ’, vtavg(k)
6610 format (’replica ’, i3, 1x, a9, f10.5, ’ Kelvin’)
6620 format (’replica ’, i3, 1x, a9, 1pe13.6, ’ Angstrom**2’)

write (6, 6610) k, ’V SD = ’, vsd

write (6, 6610) k, ’EAVG = ’, etavg(k)

write (6, 6610) k, ’E SD = ’, esd

write (6, 6620) k, ’u2x = ’, u2xavg(k)

write (6, 6620) k, ’u2x sd = ’, u2xsd

write (6, 6620) k, ’u2y = ’, u2yavg(k)

write (6, 6620) k, ’u2y sd = ’, u2ysd

write (6, 6620) k, ’u2z = ’, u2zavg(k)

write (6, 6620) k, ’u2z sd = ’, u2zsd

write (4, 6630) k, vtavg(k), vsd,
+ etavg(k), esd, u2xavg(k), u2xsd,
+ u2yavg(k), u2ysd, u2zavg(k), u2zsd,
+ axprm, axsd, ayprm, aysd, azprm, azsd, vlrc

298

6630 format(1x, i3, 4(1x, 1pe13.6), 6(1x, 1pe13.6), 6(1x, 1pe13.6),
+ 1x, 1pe13.6)

end do

stop
end

c --

c this subroutine computes the local energy and potential energy
c of a configuration.

c --

subroutine local(q, tloc, vloc)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’qsats.h’

common /bincom/ bin, binvrs, r2min

c --- alpha is the exponential parameter in psi:

c psi = N * exp(-alpha*(r-r0)**2) * Jastrow

c --- bb is the exponential parameter in Jastrow:

c ln Jastrow(ij) = -0.5 * (bb/rij)**5

dimension q(NATOM3), dlng(NATOM3), d2lng(NATOM3)

do i=1, NATOM3
dlng(i)=0.0d0
d2lng(i)=0.0d0

end do

do i=1, NATOMS

xx=q(3*i-2)
yy=q(3*i-1)
zz=q(3*i)

dlng(3*i-2)=dlng(3*i-2)-2.0d0*aaxy*xx
dlng(3*i-1)=dlng(3*i-1)-2.0d0*aaxy*yy
dlng(3*i) =dlng(3*i) -2.0d0*aaz*zz

d2lng(3*i-2)=d2lng(3*i-2)-2.0d0*aaxy
d2lng(3*i-1)=d2lng(3*i-1)-2.0d0*aaxy
d2lng(3*i) =d2lng(3*i) -2.0d0*aaz

end do

c --- loop over all interacting pairs.

vloc=0.0d0
tloc=0.0d0

do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

299

dx=-((q(3*j-2))+vpvec(1, n)+(-q(3*i-2)))
dy=-((q(3*j-1))+vpvec(2, n)+(-q(3*i-1)))
dz=-((q(3*j)) +vpvec(3, n)+(-q(3*i)))

r2=dx*dx+dy*dy+dz*dz

ibin=int((r2-r2min)*binvrs)+1

if (ibin.gt.0) then
dr=(r2-r2min)-bin*dble(ibin-1)
vloc=vloc+v(1, ibin)+v(2, ibin)*dr

else
vloc=vloc+v(1, 1)

end if

br2=bb*bb/r2

br5=br2*br2*sqrt(br2)

br52=br5/r2

dlng(3*i-2)=dlng(3*i-2)+2.5d0*br52*dx
dlng(3*i-1)=dlng(3*i-1)+2.5d0*br52*dy
dlng(3*i) =dlng(3*i) +2.5d0*br52*dz

d2lng(3*i-2)=d2lng(3*i-2)+2.5d0*br52*
* (1.0d0-7.0d0*dx**2/r2)

d2lng(3*i-1)=d2lng(3*i-1)+2.5d0*br52*
* (1.0d0-7.0d0*dy**2/r2)

d2lng(3*i) =d2lng(3*i) +2.5d0*br52*
* (1.0d0-7.0d0*dz**2/r2)

end do

c --- now sum up the kinetic energy components.

do i=1, NATOM3
tloc=tloc+d2lng(i)+dlng(i)**2

end do

c --- account for mass factor and for double-counting of pairs.

tloc=-0.5d0*tloc/amass
vloc=0.5d0*vloc

return
end

c --

c msd is a subroutine that calculates the mean squared displacement
c in all three directions from the snapshots.

c --

subroutine msd(q, u2x, u2y, u2z, u4x, u4y, u4z)

implicit real*8 (a-h, o-z)

include ’sizes.h’

include ’qsats.h’

dimension q(NATOM3)
parameter (bohr=0.529177249d0)

300

u2x = 0.0d0
u2y = 0.0d0
u2z = 0.0d0

u4x = 0.0d0
u4y = 0.0d0
u4z = 0.0d0

do l = 1, NATOMS
u2x = u2x + (q(3*l-2)**2)
u4x = u4x + (q(3*l-2)**4)

u2y = u2y + (q(3*l-1)**2)
u4y = u4y + (q(3*l-1)**4)

u2z = u2z + (q(3*l)**2)
u4z = u4z + (q(3*l)**4)

end do

c --- conversion factor from bohr**2 to angstrom**2

b2=bohr*bohr

u2x = u2x*b2/dble(NATOMS)
u2y = u2y*b2/dble(NATOMS)
u2z = u2z*b2/dble(NATOMS)

u4x = u4x*b2*b2/dble(NATOMS)
u4y = u4y*b2*b2/dble(NATOMS)
u4z = u4z*b2*b2/dble(NATOMS)

return
end

c --

c quit is a subroutine used to terminate execution if there is
c an error.

c it is needed here because the subroutine that reads the parameters
c (subroutine input) may call it.

c --

subroutine quit

write (6, *) ’termination via subroutine quit’

stop

return
end

301

B.2 VPI Perturbative 3-body Correction Program

(VPI-3B)

The perturbative three-body correction to the VPI-2B energy is calculated using

the VPI-3B program described below. This replaces the eloc-distortion.f program

associated with the VPI-2B program above and uses the same input. The files required

to compile and run this program are listed below:

eloc-3b-distortion.f Main program which calls the input subroutine and calculates the
average energies for each replica from the VPI snapshot file.

input-distortion.f See input-distortion.f above.

vinit.f See Sec. A.1.

he3fci.f See Sec. A.2.

lrc-3d-sub.f See Sec. B.1.

c6-sub.f See Sec. B.1.

tstamp.f See Sec. A.1.

Gauss-Hermite.dat See Sec. A.1.1.

sizes.h Replaces sizes.h in Sec. B.1. This version of sizes.h also includes
parameters necessary for calculating the total number of interacting
trimers.

qsats.h Replaces qsats.h in Sec. B.1. This version of qsats.h also includes all
parameters related to the interacting trimers.

eloc-3b-distortion.f
c --

c this computes the total energy and the expectation value of the
c potential energy from the snapshots recorded by QSATS.
c The three-body energy is calculated here considering only those
c trimers formed by first nearest neighbors.
c The pairwise additive potential energy and total energy are
c reported in the absence of three-body interactions, but the
c perturbative three-body contribution is also reported.

c This version of the code accounts for strain applied to the
c lattice as determined by the eta, gamma, and epsilon parameters
c (see Cazorla, Phys. Rev. B 85, 024101 (2012)) for the purpose
c of calculating elastic constants. The dzscale parameter is no
c longer used in this version of the code, though it is still read
c into input.
c --

program eloc3bdistortion

implicit double precision (a-h, o-z)
real*8 lrctot

302

include ’sizes.h’
include ’qsats.h’

parameter (bohr=0.529177249d0)

c --- this common block is used to enable interpolation in the potential
c energy lookup table in the subroutine local below.

common /bincom/ bin, binvrs, r2min

c --- set up arrays to calculate potential (2 and 3 body), kinetic,
c and total energy per atom for each replica, as well as mean
c squared displacement and all uncertainties.

dimension q(NATOM3), vtavg(NREPS), vtavg2(NREPS),
+ etavg(NREPS), etavg2(NREPS), v3avg(NREPS),
+ v3avg2(NREPS), u2xavg(NREPS),
+ u2yavg(NREPS), u2zavg(NREPS), u4xavg(NREPS),
+ u4yavg(NREPS), u4zavg(NREPS)

parameter (half=0.5d0)
parameter (one=1.0d0)

c --- initialization.

call tstamp

write (6, 6001) NREPS, NATOMS, NATOM3, NATOM6, NATOM7,
+ NVBINS, RATIO, NIP, NPAIRS

6001 format (’compile-time parameters:’//,
+ ’NREPS = ’, i6/,
+ ’NATOMS = ’, i6/,
+ ’NATOM3 = ’, i6/,
+ ’NATOM6 = ’, i6/,
+ ’NATOM7 = ’, i6/,
+ ’NVBINS = ’, i6/,
+ ’RATIO = ’, f6.4/,
+ ’NIP = ’, i6/,
+ ’NPAIRS = ’, i6/)

call input

call vinit(r2min, bin)

binvrs=one/bin

c --- read crystal lattice points.

write (6, 6200) ltfile
6200 format (’READING crystal lattice from ’, a17/)

open (8, file=ltfile, status=’old’)

read (8, *) nlpts

if (nlpts.ne.NATOMS) then
write (6, *) ’ERROR: number of atoms in lattice file = ’, nlpts
write (6, *) ’number of atoms in source code = ’, NATOMS
stop

end if

c --- calculate distortion parameter phi from eta
phi = sqrt(1+eta)

c --- read the edge lengths of the supercell.

303

read (8, *) xlen, ylen, zlen

c --- compute a distance scaling factor.
den0=dble(NATOMS)/(xlen*ylen*zlen)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

scale=exp(dlog(den/den0)/3.0d0)

write (6, 6300) scale
6300 format (’supercell scaling factor computed from density = ’,

+ f12.8/)

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

write (6, 6310) xlen, ylen, zlen
6310 format (’supercell edge lengths [bohr] = ’, 3f10.5/)

dxmax=half*xlen
dymax=half*ylen
dzmax=half*zlen

do i=1, NATOMS

read (8, *) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (8)

write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2),
+ xtal(NATOMS, 3)

6320 format (’final lattice point [bohr] = ’, 3f10.5/)

c --- this variable helps us remember the nearest-neighbor distance.
c --- The nearest neighbor distance and interacting pairs/trimers are determined
c from the undistorted lattice and then distortion is applied after.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

304

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

write (6, 6330) rnnmin
6330 format (’nearest neighbor (NN) distance [bohr] = ’, f10.5/)

write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin
6340 format (’supercell edge lengths [NN distances] = ’, 3f10.5/)

c --- compute interacting pairs.

do i=1, NATOMS
npair(i)=0

end do

nvpair=0

do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount. Nearest neighbors are determined
c before distortion is applied.

305

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

c ----------- account for distortion in displacement vectors
vpvec(1, nvpair)=dx/(sqrt(gam)*phi)
vpvec(2, nvpair)=dy*sqrt(gam)/phi
vpvec(3, nvpair)=dz*phi**2+dy*epsil

npair(i)=npair(i)+1

ipairs(npair(i), i)=nvpair
c ------------ for three-body calculations, keep track of only first
c nearest neighbors.

if (r/rnnmin.lt.1.05) then

nvpair1=nvpair1+1

c ------------ store information about this pair (i->j) in arrays.

ivpair1(1, nvpair1)=i
ivpair1(2, nvpair1)=j

vpvec1(1, nvpair1)=dx/(sqrt(gam)*phi)
vpvec1(2, nvpair1)=dy*sqrt(gam)/phi
vpvec1(3, nvpair1)=dz*phi**2+dy*epsil

npair1(i)=npair1(i)+1

ipairs1(npair1(i), i)=nvpair1

end if
end if
end if

end do
end do

c --- Now loop back through the coordinates in the xtal array and
c transform them appropriately

do i=1, NATOMS

xtal(i, 1)=xtal(i, 1)/(sqrt(gam)*phi)
xtal(i, 2)=xtal(i, 2)*sqrt(gam)/phi
xtal(i, 3)=xtal(i, 3)*phi**2+epsil*xtal(i, 2)

end do

c --- write out interacting pair information

write (6, 6400) npair(1), nvpair
6400 format (’atom 1 interacts with ’, i3, ’ other atoms’//,

+ ’total number of interacting pairs = ’, i6/)

c --- To save time later, we are going to calculate all of the first
c nearest neighbor trimers now, along with angles and vectors.

nvtrim=0

do i = 1, NATOMS
do j = 1, npair1(i)-1

306

do k = j+1, npair1(i)
c--------- keep running count of all trimers

nvtrim = nvtrim+1
c -------- record vector from central atom to two neighbors

npairA = ipairs1(j, i) !tells us the nvpair reference number
npairB = ipairs1(k, i) ! for each of the atoms in the trimer

c--------- keep record of atoms in trimer
ivtrim(1, nvtrim) = i !central atom
ivtrim(2, nvtrim) = ivpair1(2, npairA)
ivtrim(3, nvtrim) = ivpair1(2, npairB)

vpvectri(1, nvtrim) = vpvec1(1, npairA)
vpvectri(2, nvtrim) = vpvec1(2, npairA)
vpvectri(3, nvtrim) = vpvec1(3, npairA)

vpvectri(4, nvtrim) = vpvec1(1, npairB)
vpvectri(5, nvtrim) = vpvec1(2, npairB)
vpvectri(6, nvtrim) = vpvec1(3, npairB)

c -------- calculate and store side lenghts and central angle
dx1 = vpvectri(1, nvtrim)
dy1 = vpvectri(2, nvtrim)
dz1 = vpvectri(3, nvtrim)

dx2 = vpvectri(4, nvtrim)
dy2 = vpvectri(5, nvtrim)
dz2 = vpvectri(6, nvtrim)

dx12 = dx2-dx1
dy12 = dy2-dy1
dz12 = dz2-dz1

side1 = sqrt(dx1*dx1+dy1*dy1+dz1*dz1)
side2 = sqrt(dx2*dx2+dy2*dy2+dz2*dz2)
side3 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

vpvectri(7, nvtrim) = side1
vpvectri(8, nvtrim) = side2
vpvectri(9, nvtrim) = side3

c -------- We know sides 1 and 2 = Rnn. If side 3 is lt or
c equal to Rnn, trimer will be triple counted
c -------- first calculate undistorted side 3 length

dx12_und = dx12*phi*sqrt(gam)
dy12_und = dy12*phi/sqrt(gam)
dz12_und = (dz12-dy12_und*epsil)/(phi**2)

side3_und = sqrt(dx12_und*dx12_und+dy12_und*dy12_und+
+ dz12_und*dz12_und)

c -------- Test side 3 to see if it is less than 1.05*Rnn (approx = Rnn)
c If it is, then we have an equilateral timer in the
c undistorted lattice which will be triple counted.

ivtrim(4, nvtrim) = 1

if (side3_und/rnnmin.lt.1.05) then
ivtrim(4, nvtrim) = 3

end if

c -------- Update number of trimers for given central atom
ntrim(i) = ntrim(i)+1

itrims(ntrim(i), i) = nvtrim
end do
end do

307

end do

write (6, 6403) ntrim(1), nvtrim
6403 format (’atom 1 forms ’, i3, ’trimers with interacting

+ neighbors’//, ’total number of interacting trimers = ’, i9)

do i=1, npair(1)
ip=ipairs(i, 1)
d=sqrt(vpvec(1, ip)**2+vpvec(2, ip)**2+vpvec(3, ip)**2)/

+ rnnmin
write (6, 6410) ip, ivpair(2, ip), vpvec(1, ip)/rnnmin,

+ vpvec(2, ip)/rnnmin, vpvec(3, ip)/rnnmin, d
6410 format (’vector # ’, i3, ’ to atom ’, i4, ’: ’,

+ 3(1x, f9.5), ’ length = ’, f8.5)
end do

write (6, 6402)
6402 format (/’interaction trimer side lengths for atom 1 ’,

+ ’[NN distances]:’/)
do i=1, ntrim(1)

itri = itrims(i, 1)
write(6, 6411) itri, ivtrim(2, itri), ivtrim(3, itri),

+ vpvectri(7, itri)/rnnmin, vpvectri(8,
+ itri)/rnnmin, vpvectri(9, itri)/rnnmin,
+ ivtrim(4, itri)

6411 format(’trimer # ’, i3, ’incuding atoms ’, i4, 1x, i4, ’:’,
+ ’side lengths: ’, 3(1x, f8.5), ’ counted: ’,
+ i1, 1x, ’times’)

end do

c --- initialization.

loop=0
do k=1, NREPS

vtavg(k)=0.0d0
etavg(k)=0.0d0
vtavg2(k)=0.0d0
etavg2(k)=0.0d0
u2xavg(k)=0.0d0
u2yavg(k)=0.0d0
u2zavg(k)=0.0d0
u4xavg(k)=0.0d0
u4yavg(k)=0.0d0
u4zavg(k)=0.0d0

end do

open (10, file=spfile, form=’unformatted’)

c --- this loops reads the snapshots saved by QSATS.

300 loop=loop+1

do k=1, NREPS, 11

read (10, end=600) (path(i, k), i=1, NATOM3)

c ------ compute the local energy and the potential energy.

do i=1, NATOM3
q(i)=path(i, k)

end do

call local(q, tloc, vloc, pot3b)

c ------ convert to kelvin per atom.

308

tloc=tloc/(3.1668513d-6*dble(NATOMS))
vloc=vloc/(3.1668513d-6*dble(NATOMS))
pot3b=pot3b/(3.1668513d-6*dble(NATOMS))

c ------ accumulate the results.
c ------ note, vloc does not include pot3b

v3avg(k)=v3avg(k)+pot3b
v3avg2(k)=v3avg2(k)+(pot3b)**2

c ------ note: these following energies do not contain three-body
c contributions

vtavg(k)=vtavg(k)+vloc
vtavg2(k)=vtavg2(k)+(vloc)**2
etavg(k)=etavg(k)+tloc+vloc
etavg2(k)=etavg2(k)+(tloc+vloc)**2

c ------ compute <uˆ2> in all three directions

call msd(q, u2x, u2y, u2z, u4x, u4y, u4z)

u2xavg(k) = u2xavg(k)+u2x
u2yavg(k) = u2yavg(k)+u2y
u2zavg(k) = u2zavg(k)+u2z

u4xavg(k) = u4xavg(k)+u4x
u4yavg(k) = u4yavg(k)+u4y
u4zavg(k) = u4zavg(k)+u4z

350 continue

end do

goto 300

c --- account for overshooting.

600 loop=loop-1

write (6, 6600) loop
6600 format (’number of snapshots = ’, i6/)

c --- compute the averages and standard deviations.
b2 = bohr*bohr
open (4, file=svfile)
do k=1, NREPS, 11

v3avg(k)=v3avg(k)/dble(loop)
v3avg2(k)=v3avg2(k)/dble(loop)
vtavg(k)=vtavg(k)/dble(loop)
vtavg2(k)=vtavg2(k)/dble(loop)
etavg(k)=etavg(k)/dble(loop)
etavg2(k)=etavg2(k)/dble(loop)

v3sd=sqrt(v3avg2(k)-v3avg(k)**2)
vsd=sqrt(vtavg2(k)-vtavg(k)**2)
esd=sqrt(etavg2(k)-etavg(k)**2)

u2xavg(k)=u2xavg(k)/dble(loop)
u2yavg(k)=u2yavg(k)/dble(loop)
u2zavg(k)=u2zavg(k)/dble(loop)

u4xavg(k)=u4xavg(k)/dble(loop)
u4yavg(k)=u4yavg(k)/dble(loop)
u4zavg(k)=u4zavg(k)/dble(loop)

309

u2xsd=sqrt(u4xavg(k)-u2xavg(k)**2)
u2ysd=sqrt(u4yavg(k)-u2yavg(k)**2)
u2zsd=sqrt(u4zavg(k)-u2zavg(k)**2)

c --- calculate apparent gaussian parameters for each replica

axprm = b2*1.0d0/(4.0d0*u2xavg(k))
ayprm = b2*1.0d0/(4.0d0*u2yavg(k))
azprm = b2*1.0d0/(4.0d0*u2zavg(k))

axsd = b2*sqrt((1.0d0/(16.0d0*u2xavg(k)**2))*u2xsd**2)
aysd = b2*sqrt((1.0d0/(16.0d0*u2yavg(k)**2))*u2ysd**2)
azsd = b2*sqrt((1.0d0/(16.0d0*u2zavg(k)**2))*u2zsd**2)

call lrc(axprm, ayprm, azprm, rnnmin, lrctot)
print *, lrctot

write (6, 6610) k, ’V2AVG = ’, vtavg(k)
6610 format (’replica ’, i3, 1x, a9, f10.5, ’ Kelvin’)
6620 format (’replica ’, i3, 1x, a9, 1pe13.6, ’ Angstrom**2’)

write (6, 6610) k, ’V2 SD = ’, vsd

write (6, 6610) k, ’V3AVG = ’, v3avg(k)

write (6, 6610) k, ’V3 SD = ’, v3sd

write (6, 6610) k, ’E2AVG = ’, etavg(k)

write (6, 6610) k, ’E2 SD = ’, esd

write (6, 6620) k, ’u2x = ’, u2xavg(k)

write (6, 6620) k, ’u2x sd = ’, u2xsd

write (6, 6620) k, ’u2y = ’, u2yavg(k)

write (6, 6620) k, ’u2y sd = ’, u2ysd

write (6, 6620) k, ’u2z = ’, u2zavg(k)

write (6, 6620) k, ’u2z sd = ’, u2zsd

write (4, 6630) k, vtavg(k), vsd, v3avg(k), v3sd,
+ etavg(k), esd, u2xavg(k), u2xsd,
+ u2yavg(k), u2ysd, u2zavg(k), u2zsd,
+ axprm, axsd, ayprm, aysd, azprm, azsd, lrctot,
+ loop

6630 format(1x, i3, 6(1x, 1pe13.6), 6(1x, 1pe13.6), 6(1x, 1pe13.6)
+ 1x, 1pe13.6, 1x, i5)
end do

flush (4)
stop
end

c --

c this subroutine computes the local energy and potential energy
c of a configuration.

c --

subroutine local(q, tloc, vloc, pot3b)

310

implicit double precision (a-h, o-z)

include ’sizes.h’

include ’qsats.h’

common /bincom/ bin, binvrs, r2min

c --- alpha is the exponential parameter in psi:

c psi = N * exp(-alpha*(r-r0)**2) * Jastrow

c --- bb is the exponential parameter in Jastrow:

c ln Jastrow(ij) = -0.5 * (bb/rij)**5

dimension q(NATOM3), dlng(NATOM3), d2lng(NATOM3)

do i=1, NATOM3
dlng(i)=0.0d0
d2lng(i)=0.0d0

end do

do i=1, NATOMS

xx=q(3*i-2)
yy=q(3*i-1)
zz=q(3*i)

dlng(3*i-2)=dlng(3*i-2)-2.0d0*aaxy*xx
dlng(3*i-1)=dlng(3*i-1)-2.0d0*aaxy*yy
dlng(3*i) =dlng(3*i) -2.0d0*aaz*zz

d2lng(3*i-2)=d2lng(3*i-2)-2.0d0*aaxy
d2lng(3*i-1)=d2lng(3*i-1)-2.0d0*aaxy
d2lng(3*i) =d2lng(3*i) -2.0d0*aaz

end do

c --- loop over all interacting pairs.

vloc=0.0d0
tloc=0.0d0

do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

dx=-((q(3*j-2))+vpvec(1, n)+(-q(3*i-2)))
dy=-((q(3*j-1))+vpvec(2, n)+(-q(3*i-1)))
dz=-((q(3*j)) +vpvec(3, n)+(-q(3*i)))

r2=dx*dx+dy*dy+dz*dz

ibin=int((r2-r2min)*binvrs)+1

if (ibin.gt.0) then
dr=(r2-r2min)-bin*dble(ibin-1)
vloc=vloc+v(1, ibin)+v(2, ibin)*dr

else
vloc=vloc+v(1, 1)

end if

311

br2=bb*bb/r2

br5=br2*br2*sqrt(br2)

br52=br5/r2

dlng(3*i-2)=dlng(3*i-2)+2.5d0*br52*dx
dlng(3*i-1)=dlng(3*i-1)+2.5d0*br52*dy
dlng(3*i) =dlng(3*i) +2.5d0*br52*dz

d2lng(3*i-2)=d2lng(3*i-2)+2.5d0*br52*
* (1.0d0-7.0d0*dx**2/r2)

d2lng(3*i-1)=d2lng(3*i-1)+2.5d0*br52*
* (1.0d0-7.0d0*dy**2/r2)

d2lng(3*i) =d2lng(3*i) +2.5d0*br52*
* (1.0d0-7.0d0*dz**2/r2)

end do

c --- now sum up the kinetic energy components.

do i=1, NATOM3
tloc=tloc+d2lng(i)+dlng(i)**2

end do

c --- account for mass factor and for double-counting of pairs.

tloc=-0.5d0*tloc/amass
vloc=0.5d0*vloc

c --- add in 3body energy

pot3b = potl3b(q)

c vloc=vloc+pot3b

return
end

c ===

c This function calculates the three-body contribution to the
c potential energy

c ===

double precision function potl3b(q)

c --- evaluates the three-body potential energy of the system

implicit real*8 (a-h, o-z)
include ’sizes.h’
include ’qsats.h’

dimension q(NATOM3)

potl3b = 0.0d0

c --- loop over all nearest neighbor trimers

do n=1, nvtrim
i= ivtrim(1, n)
j= ivtrim(2, n)
k= ivtrim(3, n)
ndiv = ivtrim(4, n)

312

dx1 = vpvectri(1, n)+q(3*j-2)-q(3*i-2)
dy1 = vpvectri(2, n)+q(3*j-1)-q(3*i-1)
dz1 = vpvectri(3, n)+q(3*j)-q(3*i)

dx2 = vpvectri(4, n)+q(3*k-2)-q(3*i-2)
dy2 = vpvectri(5, n)+q(3*k-1)-q(3*i-1)
dz2 = vpvectri(6, n)+q(3*k)-q(3*i)

dx12 = dx2-dx1
dy12 = dy2-dy1
dz12 = dz2-dz1

r1 = sqrt(dx1*dx1+dy1*dy1+dz1*dz1)
r2 = sqrt(dx2*dx2+dy2*dy2+dz2*dz2)
r12 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

c print *, "side lengths", r1, r2, r12
c ------ get 3B energy and add to correct total

call He3(r1, r2, r12, E3)
c ------ ndiv accounts for triple counting

E3 = E3/dble(ndiv)
potl3b = potl3b+E3

end do
c9500 format(7(1x, 1pe13.6))

return
end

c --

c msd is a subroutine that calculates the mean squared displacement
c in all three directions from the snapshots.

c --

subroutine msd(q, u2x, u2y, u2z, u4x, u4y, u4z)

implicit real*8 (a-h, o-z)

include ’sizes.h’

include ’qsats.h’

dimension q(NATOM3)
parameter (bohr=0.529177249d0)

u2x = 0.0d0
u2y = 0.0d0
u2z = 0.0d0

u4x = 0.0d0
u4y = 0.0d0
u4z = 0.0d0

do l = 1, NATOMS
u2x = u2x + (q(3*l-2)**2)
u4x = u4x + (q(3*l-2)**4)

u2y = u2y + (q(3*l-1)**2)
u4y = u4y + (q(3*l-1)**4)

u2z = u2z + (q(3*l)**2)
u4z = u4z + (q(3*l)**4)

end do

c --- conversion factor from bohr**2 to angstrom**2

313

b2=bohr*bohr
u2x = u2x*b2/dble(NATOMS)
u2y = u2y*b2/dble(NATOMS)
u2z = u2z*b2/dble(NATOMS)

u4x = u4x*b2*b2/dble(NATOMS)
u4y = u4y*b2*b2/dble(NATOMS)
u4z = u4z*b2*b2/dble(NATOMS)

return
end

c --

c quit is a subroutine used to terminate execution if there is
c an error.

c it is needed here because the subroutine that reads the parameters
c (subroutine input) may call it.

c --

subroutine quit

write (6, *) ’termination via subroutine quit’

stop

return
end

B.3 VPI Fully-Incorporated 3-body Program

(VPI+3B)

The VPI+3B program with fully-incorporated three-body interactions modifies the

VPI-2B code to set up interacting trimer lists in the parent subroutine and use the

trimers to calculate the change in three-body energy in the child subroutine. This

program takes the same input parameters as VPI-2B, however this program is not

set up to accept nonequilibrium values of ⌘, �, and ✏. The files required to compile

and run this program are listed below:

main.f Main program that determines whether the processor is the parent or a
child processor.

cmrg.f See Sec. A.1.

rsetup-3b-full.f Replaces rsetup.f in Sec. B.1. This version allows you to skip ahead in the
random number generator to allow for multiple simultaneous simulation
runs which sample di↵erent parts of the random number stream.

314

parent-3b-full.f Replaces parent.f in Sec. B.1. This version sets up the interacting trimer
list and does not allow for distorted lattices.

input-3b-full.f Replaces input.f in Sec. B.1. This version does not read in deformation
parameters.

vinit.f See Sec. A.1.

child-3b-full.f Replaces child.f in Sec. B.1. This version calculates the three-body energy
from all nearest neighbor trimers for each accept/reject decision.

he3fci.f See Sec. A.2.

even.f See Sec. B.1.

odd.f See Sec. B.1.

rpsend.f See Sec. B.1.

tstamp.f See Sec. A.1.

sizes.h See Sec. B.2.

qsats.h See Sec. B.2.

Program files that can be found in the QSATS code and are not reproduced here: main.f,
cmrg.f, vinit.f, even.f, odd.f, rpsend.f, tstamp.f, sizes.f

The snapshots generated from the VPI+3B simulations are then used to calculate

the average potential (2+3-body), kinetic, and total energies for each replica, along

with the long-range correction to the two-body energy. This is accomplished using

eloc-3b-full.f program which currently does not allow for distorted lattices. This

program calls on many of the same subroutines as the VPI+3B main program and

the VPI(3B) eloc-3b-distortion.f program. The files required to compile and run this

program are listed below:

eloc-3b-full.f Replaces eloc-distortion.f in Sec. B.1. This version adds the three-body
energy to the total energy for each replica and does not allow for distorted
lattices. It is currently configured to read through 10 sequentially numbered
snapshot files of the form “svfile#” where “svfile” is read in the input
subroutine.

input-3b-full.f See input-3b-full.f above.

vinit.f See Sec. A.1.

he3fci.f See Sec. A.2.

lrc-3d-sub.f See Sec. B.1.

c6-sub.f See Sec. B.1.

tstamp.f See Sec. A.1.

Gauss-
Hermite.dat

See Sec. A.1.1.

sizes.h See Sec. B.2.

qsats.h Replaces qsats.h in Sec. B.2. This version does not include the deformation
parameters and adds an additonal parameter “nskip”.

315

rsetup-3b-full.f
c --
c this subroutine initializes the pseudo random number generators
c for the replicas. it also initializes the value of the rscale
c variable, which is needed to convert integer pseudo random
c numbers, which are the raw output of the generators, to floating
c point pseudo random numbers.
c --

subroutine rsetup

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’qsats.h’

dimension rseed(6)

rscale=1.0d0/4294967088.0d0

write (6, 6000)
6000 format (’INITIALIZING random number seeds’/)

do i=1, 6
rseed(i)=12345.0d0

end do

c --- To impliment simulatneous runs, this is where you call rskip
c Each replica just needs to have a different starting seed
c than its counterpart in the other simulation. Skipping ahead by
c 10 rskips or so should be enough.

do i = 1, nskip*10
call rskip(rseed)

end do

do i=1, NREPS

do j=1, 6
rstatv(j, i)=rseed(j)

end do

rstatv(7, i)=-1.0d0
rstatv(8, i)=0.0d0

call rskip(rseed)

end do

if (idebug.ge.3) then

write (6, 6001)
6001 format (’rstatv(1) values:’/)

do i=1, NREPS
write (6, 6100) i, rstatv(1, i)

6100 format (i5, 1x, f20.1)
end do

write (6, *) ’’
end if

return
end

316

parent-3b-full.f
c --
c this is the parent process that runs on node 0.

c errchk is a subroutine called after every MPI subroutine that
c checks the MPI error code and reports any errors.

c This version of the program also sets up the interating trimer
c list to account for three-body interactions.
c --

subroutine parent(ierror)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’qsats.h’
include ’mpif.h’

dimension istat(MPI_STATUS_SIZE)
dimension imsg(9), fmsg(7)
dimension isent(NREPS), ikeep(NATOMS), replic(NATOM7)
dimension rstate(8)

parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)

c ==
c PART ONE: INITIALIZATION
c ==

ierror=0

c --- read input file.

call input

write (6, 6100) ltfile, spfile, svfile
6100 format (’lattice file name = ’, a16/,

+ ’snapshot file name = ’, a16/,
+ ’save file name = ’, a16/)

if (idebug.eq.0) write (6, 6110) idebug, ’NONE’
if (idebug.eq.1) write (6, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (6, 6110) idebug, ’LOW’
if (idebug.eq.3) write (6, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (6, 6110) idebug, ’HIGH’

6110 format (’debug level = ’, i1,’ or ’, a8/)

c --- read the potential energy curve.

call vinit(r2min, bin)

c --- read crystal lattice points.

write (6, 6200) ltfile
6200 format (’READING crystal lattice from ’, a16/)

open (8, file=ltfile, status=’old’, err=901)

read (8, *, err=902) nlpts

317

if (nlpts.ne.NATOMS) then
write (6, *) ’ERROR: number of atoms in lattice file = ’, nlpts
write (6, *) ’number of atoms in source code = ’, NATOMS
call quit

end if

c --- read the edge lengths of the supercell.

read (8, *, err=903) xlen, ylen, zlen

den0=dble(NATOMS)/(xlen*ylen*zlen)

c --- compute a distance scaling factor.

scale=exp(dlog(den/den0)/3.0d0)

write (6, 6300) scale
6300 format (’supercell scaling factor computed from density = ’,

+ f12.8/)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

dxmax=half*xlen
dymax=half*ylen
dzmax=half*zlen

do i=1, NATOMS

read (8, *, err=904) xtal(i, 1), xtal(i, 2), xtal(i, 3)

xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (8)

c --- this helps us remember the nearest-neighbor distance.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then

318

dy=dy+ylen
end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)

if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

write (6, 6310) rnnmin
6310 format (’nearest neighbor (NN) distance [bohr] = ’, f10.5/)

write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2),
+ xtal(NATOMS, 3)

6320 format (’final lattice point [bohr] = ’, 3f10.5/)

write (6, 6330) xlen, ylen, zlen
6330 format (’supercell edge lengths [bohr] = ’, 3f10.5/)

write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin
6340 format (’supercell edge lengths [NN distances] = ’, 3f10.5/)

c --- compute interacting pairs.

do i=1, NATOMS
npair(i)=0
ntrim(i)=0

end do

nvpair=0
nvpair1 = 0

do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then

319

dz=dz+zlen
end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount.

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

vpvec(1, nvpair)=dx
vpvec(2, nvpair)=dy
vpvec(3, nvpair)=dz

npair(i)=npair(i)+1

ipairs(npair(i), i)=nvpair

c ------------ keep track of first nearest neighbors to construct
c interacting trimers.

if (r/rnnmin.lt.1.05d0) then
nvpair1 = nvpair1+1

ivpair1(1, nvpair1) = i
ivpair1(2, nvpair1) = j

vpvec1(1, nvpair1) = dx
vpvec1(2, nvpair1) = dy
vpvec1(3, nvpair1) = dz

npair1(i) = npair1(i)+1

ipairs1(npair1(i), i)=nvpair1

end if

end if

end if

end do
end do

c --- From the interacting pairs, calculate interacting trimers
nvtrim=0
do i = 1, NATOMS

do j = 1, npair1(i)-1
do k = j+1, npair1(i)

c--------- keep running count of all trimers
nvtrim = nvtrim+1

npairA = ipairs1(j, i) ! gives us our npair ref. number
npairB = ipairs1(k, i) ! for other 2 atoms in the trimer

c--------- keep record of atoms in trimer (will also use this array to
c store side how many times trimer is counted)

ivtrim(1, nvtrim) = i
ivtrim(2, nvtrim) = ivpair1(2, npairA)
ivtrim(3, nvtrim) = ivpair1(2, npairB)

320

c -------- record vector from central atom to two neighbors

vpvectri(1, nvtrim) = vpvec1(1, npairA)
vpvectri(2, nvtrim) = vpvec1(2, npairA)
vpvectri(3, nvtrim) = vpvec1(3, npairA)

vpvectri(4, nvtrim) = vpvec1(1, npairB)
vpvectri(5, nvtrim) = vpvec1(2, npairB)
vpvectri(6, nvtrim) = vpvec1(3, npairB)

c -------- calculate and store side lenghts and central angle
dx1 = vpvectri(1, nvtrim)
dy1 = vpvectri(2, nvtrim)
dz1 = vpvectri(3, nvtrim)

dx2 = vpvectri(4, nvtrim)
dy2 = vpvectri(5, nvtrim)
dz2 = vpvectri(6, nvtrim)

dx12 = dx2-dx1
dy12 = dy2-dy1
dz12 = dz2-dz1

side1 = sqrt(dx1*dx1+dy1*dy1+dz1*dz1)
side2 = sqrt(dx2*dx2+dy2*dy2+dz2*dz2)
side3 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

vpvectri(7, nvtrim) = side1
vpvectri(8, nvtrim) = side2
vpvectri(9, nvtrim) = side3

c -------- Now evaluate to see if this trimer will be triple counted

sidenn = 0
c -------- Keep track of sides greater than 1 NN distances
c We know sides 1 and 2 will be <= 1NN, only have to
c test side 3

ivtrim(4, nvtrim) = 1 ! initially assume it is counted 1x
if(side3/Rnnmin.gt.1.05) then

ivtrim(4, nvtrim) = 3
end if

c -------- Update number of trimers for given central atom
ntrim(i) = ntrim(i)+1

itrims(ntrim(i), i) = nvtrim

end do
end do

end do

write (6, 6400) npair(1), nvpair
6400 format (’atom 1 interacts with ’, i3, ’ other atoms’//,

+ ’total number of interacting pairs = ’, i6)

write (6, 6403) ntrim(1), nvtrim
6403 format (’atom 1 forms ’, i5, ’ trimers with interacting

+ neighbors’//, ’total number of interacting trimers = ’, i9)
if (idebug.ge.2) then

write (6, 6401)
6401 format (/’interaction pair vectors for atom 1 ’,

+ ’[NN distances]:’/)

do i=1, npair(1)

321

ip=ipairs(i, 1)
d=sqrt(vpvec(1, ip)**2+vpvec(2, ip)**2+vpvec(3, ip)**2)/

+ rnnmin
write (6, 6410) ip, ivpair(2, ip), vpvec(1, ip)/rnnmin,

+ vpvec(2, ip)/rnnmin, vpvec(3, ip)/rnnmin, d
6410 format (’vector # ’, i3, ’ to atom ’, i4, ’: ’,

+ 3(1x, f9.5), ’ length = ’, f8.5)
end do

write (6, 6402)
6402 format (/’interaction trimer side lengths for atom 1 ’,

+ ’[NN distances]:’/)
do i=1, ntrim(1)

itri = itrims(i, 1)
write(6, 6411) itri, ivtrim(2, itri), ivtrim(3, itri),

+ vpvectri(7, itri)/rnnmin, vpvectri(8,
+ itri)/rnnmin, vpvectri(9, itri)/rnnmin,
+ ivtrim(4, itri)

6411 format(’trimer # ’, i5, ’ incuding atoms ’, i4, 1x, i4,
+ ’ : side lengths: ’, 3(1x, f8.5), ’ counted ’, i1,
+ ’ times’)

end do
end if

c --- set the displacement vectors for all replicas to zero.

write (6, 6500)
6500 format (/’SETTING initial configuration to zero’/)

do j=1, NREPS
do i=1, NATOM3

path(i, j)=0.0
end do
end do

c --- initialize random number generator.

call rsetup

c --- now see if there is an old set of displacement vectors from a
c previous run. if not, jump head to line 200.

open (8, file=svfile, form=’unformatted’, status=’old’, err=200)

write (6, 6510) svfile
6510 format (’READING initial configuration from ’, a16/)

do j=1, NREPS

read (8) (rstatv(i, j), i=1, 8)
read (8) (path(i, j), i=1, NATOM3)

end do

close (8)

200 if (idebug.ge.3) then

write (6, 6170)
6170 format (’x(1) and rstatv(1) values for each replica:’/)

do j=1, NREPS

write (6, 6180) j, path(1, j), rstatv(1, j)
6180 format (i5, 1x, f15.9, 1x, f20.1)

322

end do

write (6, *) ’’

end if

c --- this is the output file where snapshots of the replicas will be
c stored for analysis by another program.

open (10, file=spfile, form=’unformatted’)

c --- initialize MPI.

MPI_R=MPI_DOUBLE_PRECISION

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierr)

call errchk(0, ierr, 100000)

write (6, 6600) ntasks-1
6600 format (’number of child processes = ’, i3/)

if (ntasks-1.gt.size(iwork)) then

write (6, 6610)
6610 format (’too many child processes; expand the iwork array.’/

+ ’also note that write statements for HIGH ’
+ ’debugging level may fail on some systems.’)

call quit

end if

c --- this array just counts how evenly the workload was spread among
c the child processes.

do i=1, ntasks-1
iwork(i)=0

end do

c --- broadcast integer constants to all child processes.

imsg(1)=NATOMS
imsg(2)=NATOM3
imsg(3)=NATOM6
imsg(4)=NATOM7
imsg(5)=NREPS
imsg(6)=NIP
imsg(7)=NPAIRS
imsg(8)=NVBINS
imsg(9)=idebug

do itask=1, ntasks-1

call MPI_SEND(imsg,
+ 9,
+ MPI_INTEGER,
+ itask,
+ 0101,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100101)

323

end do

if (idebug.gt.0) open (9, file=’debug.log’)

if (idebug.eq.1) write (9, 6110) idebug, ’MINIMAL’
if (idebug.eq.2) write (9, 6110) idebug, ’LOW’
if (idebug.eq.3) write (9, 6110) idebug, ’MEDIUM’
if (idebug.eq.4) write (9, 6110) idebug, ’HIGH’

c --- broadcast floating-point constants to all child processes.

fmsg(1)=tau
fmsg(2)=bin
fmsg(3)=r2min
fmsg(4)=amass
fmsg(5)=aaxy
fmsg(6)=aaz
fmsg(7)=bb

do itask=1, ntasks-1

call MPI_SEND(fmsg,
+ 8,
+ MPI_R,
+ itask,
+ 0102,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100102)

end do

c --- broadcast the interacting-pair vectors to all child processes.

do itask=1, ntasks-1

call MPI_SEND(vpvec,
+ 3*NPAIRS,
+ MPI_R,
+ itask,
+ 0103,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100103)

end do

c --- broadcast the list of atom id numbers for the interacting pairs
c to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ itask,
+ 0104,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100104)

end do

324

c --- broadcast the size of each stencil to all child processes. all
c stencils should be the same size, but we treat this as a variable.

do itask=1, ntasks-1

call MPI_SEND(npair,
+ NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0105,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100105)

end do

c --- broadcast the list of interacting pair id numbers that define the
c stencils to all child processes.

do itask=1, ntasks-1

call MPI_SEND(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0106,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100106)

end do

c --- broadcast the potential energy curve V(R) to all child processes.

do itask=1, ntasks-1

call MPI_SEND(v,
+ 2*NVBINS,
+ MPI_R,
+ itask,
+ 0107,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100107)

end do

c --- Now begin broadcasting interacting trimer information

c --- broadcast the interacting trimer vectors (with side lengths and
c angles) to all child processes

do itask=1, ntasks-1

call MPI_SEND(vpvectri,
+ 9*NTRIMS,
+ MPI_R,
+ itask,
+ 0108,
+ MPI_COMM_WORLD,
+ ierr)

325

call errchk(0, ierr, 100108)

end do
c --- broadcast the list of atom id numbers for all interacting trimers
c to all child processes

do itask=1, ntasks-1

call MPI_SEND(ivtrim,
+ 4*NTRIMS,
+ MPI_INTEGER,
+ itask,
+ 0109,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100109)

end do
c --- broadcast the size of each trimer stencil to all child processes. all
c stencils should be the same size, but we treat this as a variable.

do itask=1, ntasks-1

call MPI_SEND(ntrim,
+ NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0110,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100110)

end do
c --- broadcast the list of interacting trimer id numbers that define the
c stencils to all child processes.

do itask=1, ntasks-1

call MPI_SEND(itrims,
+ NIT*NATOMS,
+ MPI_INTEGER,
+ itask,
+ 0111,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100111)

end do

if (idebug.gt.0) write (9, *) ’end parent PART ONE’
if (idebug.gt.0) write (9, *) ’’

c ==
c PART TWO: PERFORMING THE SIMULATION
c ==

c --- initialization of various progress counters.

c --- this is how many iterations we have done.

loop=0

326

c --- these tell us about the acceptance ratio for the atom moves.

ztacc=0.0d0
ztrej=0.0d0

ztacc0=0.0d0
ztrej0=0.0d0

300 loop=loop+1
c --- these counters make sure that we don’t lose a replica somewhere in
c the ether. we use them to count how many replicas have been sent and
c received.

nsent=0
nrcvd=0

c --- this is a list of flags that are zero for replicas that haven’t yet
c been sent to a child for processing, positive for replicas that have
c been sent, and negative for replicas that have been processed and
c returned to the parent.

c isent(n) is set to the (positive) task id of the receiving child
c process when a replica is sent. this is basically leaving a trail
c of crumbs so that we can track down the replicas and ask the children
c to return them to us.

do nrep=1, NREPS
isent(nrep)=0

end do

c --- first do all odd replicas.

call oddrep(loop, nsent, nrcvd, MPI_R)

c --- then do all even replicas.

call evnrep(loop, nsent, nrcvd, MPI_R)

c --- check for lost replicas.

if (nsent.ne.NREPS.or.nrcvd.ne.NREPS) then
write (6, *) ’replicas have been lost!’
write (6, *) ’nsent = ’, nsent
write (6, *) ’nrcvd = ’, nrcvd
ierror=1

end if

c --- take a snapshot every so often.

if (mod(loop, nprint).eq.0) then

zacc=ztacc-ztacc0
zrej=ztrej-ztrej0

ztacc0=ztacc
ztrej0=ztrej

if (idebug.gt.0) then
write (9, 9400) zacc, zrej, 100.0d0*zacc/(zacc+zrej)

9400 format (’accepted = ’, f11.0, 1x,
+ ’rejected = ’, f11.0, 3x,
+ ’% accepted = ’, f6.2)

call flush(9)
end if

327

c ------ we only actually take snapshots of every 11th replica.

do k=1, NREPS, 11
write (10) (path(i, k), i=1, NATOM3)

end do

end if

c --- do the next loop if needed.

if (loop.lt.nloop) goto 300

open (12, file = ’nacc-atoms.dat’)
do i = 1, NREPS

do j = 1, NATOMS
acct =dble(zaccv(i, j))
rejt =dble(zrejv(i, j))
write (12, *) i, j, 100.0d0*acct/(rejt+acct)

end do
end do
close(12)

c --- otherwise save a checkpoint file.

write (6, 6810) svfile
6810 format (’SAVING final configuration to ’, a16/)

open (8, file=svfile, form=’unformatted’)

do k=1, NREPS
write (8) (rstatv(i, k), i=1, 8)
write (8) (path(i, k), i=1, NATOM3)

end do

if (idebug.ge.3) then

write (6, 6170)

do k=1, NREPS
write (6, 6180) k, path(1, k), rstatv(1, k)

end do

write (6, *) ’’

end if

close (8)

close (10)

if (idebug.gt.0) then
write (9, *) ’’
write (9, *) ’QSATS is done!’
write (9, *) ’’

end if

c --- show how much work every child did.

if (idebug.gt.0) then
do i=1, ntasks-1

write (9, 9100) i, iwork(i)
9100 format (’task ’, i3, ’ received ’, i9, ’ replicas’)

end do
end if

328

c --- tell the children we’re all done.

do itask=1, ntasks-1

imsg(1)=0

call MPI_SEND(imsg,
+ 1,
+ MPI_INTEGER,
+ itask,
+ 0204,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(0, ierr, 100204)

end do

write (6, 6900) ztacc
6900 format (’total number of accepted moves = ’, f20.1)

write (6, 6901) ztrej
6901 format (’total number of rejected moves = ’, f20.1/)

if (idebug.gt.0) write (9, *) ’’
if (idebug.gt.0) write (9, *) ’end parent PART TWO’

return

901 write (6, *) ’error opening lattice file’
goto 999

902 write (6, *) ’error reading number of atoms from lattice file’
goto 999

903 write (6, *) ’error reading (unscaled) supercell edge lengths’
goto 999

904 write (6, *) ’error reading atom number ’, i
goto 999

999 call quit

return
end

329

input-3b-full.f
c --
c this inputs the names of various I/O files and also reads in the
c parameters for the simulation

c This version does not account for distorted lattices.
c --

subroutine input

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’qsats.h’

character*8 inword

c --- read in filenames.
c spfile = snapshot file
c svfile = checkpoint "save" file in the main VPI program
c = tabulated output datafile in the eloc file
c ltfile = lattice file

read (5, 5000, err=922) spfile
5000 format (a30)

read (5, 5000, err=923) svfile
read (5, 5000, err=924) ltfile

c --- set debug level.

read (5, 5001, err=931) inword
5001 format (a8)

if (inword.eq.’NONE’) then
idebug=0

else if (inword.eq.’MINIMAL’) then
idebug=1

else if (inword.eq.’LOW’) then
idebug=2

else if (inword.eq.’MEDIUM’) then
idebug=3

else if (inword.eq.’HIGH’) then
idebug=4

else
write (6, *) ’invalid debug level’

end if

c --- read in the simulation parameters.
c tau = imaginary time step in a.u.
c den = number density in atoms per cubic bohr
c amass = atomic mass of the He-4 atoms
c aaxy = trial wavefunction a_xy parameter
c aaz = trial wavefunction a_z parameter
c bb = trial wavefunction b parameter
c nloop = total MCCs
c nprint = snapshot interval
c nskip = number of calls to rskip in rsetup.f
c this allows for sequential runs

read (5, *, err=901) tau
read (5, *, err=902) den
read (5, *, err=903) amass
read (5, *, err=904) aaxy
read (5, *, err=904) aaz

330

read (5, *, err=905) bb
read (5, *, err=906) nloop
read (5, *, err=907) nprint
read (5, *, err=908) nskip

write (6, 6000) NATOMS, NREPS
6000 format (’REPEATING input parameters’//,

+ ’atom count = ’, i6/,
+ ’replica count = ’, i6/)

write (6, 6001) tau, den, amass, aaxy, aaz, bb, dzscale
6001 format (’tau = ’, f14.7, ’ au time’/,

+ ’density = ’, f14.7, ’ atoms per cubic bohr’/,
+ ’atomic mass = ’, f14.7, ’ electron masses’/,
+ ’alpha-xy parameter = ’, f14.7, ’ bohr**(-2)’/,
+ ’alpha-z parameter = ’, f14.7, ’ bohr**(-2)’/,
+ ’B parameter = ’, f14.7, ’ bohr’/)

write (6, 6002) nloop, nprint
6002 format (’number of simulation steps = ’, i8/,

+ ’snapshot interval = ’, i8/)

return

901 write (6, *) ’error reading time step value’
goto 999

902 write (6, *) ’error reading density value’
goto 999

903 write (6, *) ’error reading atomic mass value’
goto 999

904 write (6, *) ’error reading aa value’
goto 999

905 write (6, *) ’error reading bb value’
goto 999

906 write (6, *) ’error reading nloop value’
goto 999

907 write (6, *) ’error reading nprint value’
goto 999

908 write (6, *) ’error reading nskip value’
goto 999

909 write (6, *) ’error reading nskip value’
goto 999

921 write (6, *) ’error reading RNG file name’
goto 999

922 write (6, *) ’error reading snapshot file name’
goto 999

923 write (6, *) ’error reading save file name’
goto 999

924 write (6, *) ’error reading lattice file name’
goto 999

931 write (6, *) ’error reading debug level’
goto 999

932 write (6, *) ’error reading RNG initialization mode’
goto 999

999 call quit

return
end

331

child-3b-full.f
c --
c this is the child process that runs on all nodes except node 0
c (which is running the parent process).

c This version of code accounts for three-body interactions in the
c accept/reject decision
c --

subroutine child(MPI_R)

implicit double precision (a-h, o-z)

include ’mpif.h’

include ’sizes.h’

common /rancm1/ rscale

dimension replic(NATOM6), npair(NATOMS), rv(NATOM3)
dimension ntrim(NATOMS)

dimension istat(MPI_STATUS_SIZE)

dimension vpvec(3, NPAIRS)
dimension ivpair(2, NPAIRS)
dimension ipairs(NIP, NATOMS)
dimension vpvectri(9, NTRIMS)
dimension ivtrim(4, NTRIMS)
dimension itrims(NIT, NATOMS)

dimension xx(NATOMS), yy(NATOMS), zz(NATOMS)
dimension xtri(NIT, 2), ytri(NIT,2), ztri(NIT, 2)

dimension r2old(NATOMS), r2new(NATOMS), v1(NATOMS), v2(NATOMS)

dimension v(2, NVBINS)

dimension imsg(9), fmsg(7)
dimension naccv(NREPS, NATOMS), nrejv(NREPS, NATOMS)
dimension rstate(8)

parameter (half=0.5d0)
parameter (two=2.0d0)
parameter (one=1.0d0)

c ==
c PART ONE: INITIALIZATION
c ==

c --- numerical factor for random number generator.

rscale=1.0d0/4294967088.0d0

c --- determine which process this is and store it in myid.

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

c --- receive all of the information that is broadcast by the parent
c process.

c --- first receive some integer constants. these are primarily used to
c check that the arrays are properly dimensioned.

332

call MPI_RECV(imsg,
+ 9,
+ MPI_INTEGER,
+ 0,
+ 0101,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200101)

istop=0

if (imsg(1).ne.NATOMS) then
write (6, *) ’size mismatch 1: ’, imsg(1)
istop=1

end if

if (imsg(2).ne.NATOM3) then
write (6, *) ’size mismatch 2: ’, imsg(2)
istop=1

end if

if (imsg(3).ne.NATOM6) then
write (6, *) ’size mismatch 3: ’, imsg(3)
istop=1

end if

if (imsg(4).ne.NATOM7) then
write (6, *) ’size mismatch 4: ’, imsg(4)
istop=1

end if

if (imsg(5).ne.NREPS) then
write (6, *) ’size mismatch 5: ’, imsg(5)
istop=1

end if

if (imsg(6).ne.NIP) then
write (6, *) ’size mismatch 6: ’, imsg(6)
istop=1

end if

if (imsg(7).ne.NPAIRS) then
write (6, *) ’size mismatch 7: ’, imsg(7)
istop=1

end if

if (imsg(8).ne.NVBINS) then
write (6, *) ’size mismatch 8: ’, imsg(8)
istop=1

end if

if (istop.eq.1) call quit

idebug=imsg(9)

c --- debugging output.

if (idebug.eq.4) write (30+myid, *) ’idebug = ’, idebug

c --- next receive some floating-point constants.

call MPI_RECV(fmsg,
+ 7,

333

+ MPI_R,
+ 0,
+ 0102,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200102)

tau=fmsg(1)
bin=fmsg(2)
r2min=fmsg(3)
amass=fmsg(4)
aaxy=fmsg(5)
aaz=fmsg(6)
bb=fmsg(7)

if (idebug.eq.4) then
write (30+myid, *) ’tau = ’, tau
write (30+myid, *) ’bin = ’, bin
write (30+myid, *) ’r2min = ’, r2min
write (30+myid, *) ’amass = ’, amass
write (30+myid, *) ’aaxy = ’, aaxy
write (30+myid, *) ’aaz = ’, aaz
write (30+myid, *) ’bb = ’, bb

end if

c --- compute the inverse of the potential energy V(R) bin width, to
c avoid unnecessary divisions.

binvrs=one/bin

c --- compute gaussian scaling parameters.

gscale=sqrt(half*tau/amass)
gscal2=sqrt(tau/amass)

c --- next receive the vectors that connect pairs of atoms in a stencil.

call MPI_RECV(vpvec,
+ 3*NPAIRS,
+ MPI_R,
+ 0,
+ 0103,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200103)

c --- next receive the list of pairs of atoms.

call MPI_RECV(ivpair,
+ 2*NPAIRS,
+ MPI_INTEGER,
+ 0,
+ 0104,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200104)

c --- next receive the number of atoms that belong to each atom’s stencil.
c this should really be the same for every atom for a regular crystal

334

c lattice, but we treat it as a variable.

call MPI_RECV(npair,
+ NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0105,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200105)

c --- next receive the pairs that constitute each atom’s stencil.

call MPI_RECV(ipairs,
+ NIP*NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0106,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200106)

c --- next receive the potential energy curve V(R) for interpolation.

call MPI_RECV(v,
+ 2*NVBINS,
+ MPI_R,
+ 0,
+ 0107,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200107)

c --- next receive the vectors of atoms in each trimer, along with
c side lengths and central angles

call MPI_RECV(vpvectri,
+ 9*NTRIMS,
+ MPI_R,
+ 0,
+ 0108,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200108)
c --- next receive the list of atom id numbers for all interacting
c trimers

call MPI_RECV(ivtrim,
+ 4*NTRIMS,
+ MPI_INTEGER,
+ 0,
+ 0109,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200109)

335

c --- next receive the size of each trimer stencil

call MPI_RECV(ntrim,
+ NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0110,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200110)
c --- next receive the list of interacting trimer id numbers that define
c the stencils

call MPI_RECV(itrims,
+ NIT*NATOMS,
+ MPI_INTEGER,
+ 0,
+ 0111,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200111)

if (idebug.eq.4) then
write (30+myid, *) ’child moving to PART TWO’
call flush(30+myid)

end if

c ==
c PART TWO: PERFORMING THE SIMULATION
c ==

100 idrep=0

nacc=0
nrej=0

c --- send request for data (message type 1201) to parent. the first
c time through, or if we are waiting for all children to sync up,
c there are no results to send back to the parent, so we indicate
c this by setting idrep=0 just above, and then sending this to
c the parent in imsg(1).

200 imsg(1)=idrep

imsg(2)=nacc
imsg(3)=nrej

call MPI_SEND(imsg,
+ 3,
+ MPI_INTEGER,
+ 0,
+ 1201,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201201)

c --- on the other hand, if there are results to send back, then we
c do so here.

if (idrep.gt.0) then

336

c ------ first we send a message of type 1202 that contains the atoms’
c new positions.

call MPI_SEND(replic,
+ NATOM3,
+ MPI_R,
+ 0,
+ 1202,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201202)

c ------ then we send a message of type 1203 that contains the updated
c random number generator state vector.

call MPI_SEND(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 1203,
+ MPI_COMM_WORLD,
+ ierr)

call errchk(myid, ierr, 201203)

end if

c --- wait for acknowledgement (message type 0204) from parent. the
c parent also uses this to signal the child that more input will
c be sent.

c if imsg(1) is positive, it is a replica number that represents the
c next replica that this child should process.

c if imsg(1) is negative, then this child needs to wait for the
c other children to sync up, and so the child goes back to the top
c of PART TWO.

c if imsg(1) is zero, there is no more work to be done.

call MPI_RECV(imsg,
+ 1,
+ MPI_INTEGER,
+ 0,
+ 0204,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200204)

c --- loop back and wait for more input if instructed by parent.

if (imsg(1).lt.0) goto 100

c --- terminate if the simulation is complete.

if (imsg(1).eq.0) then
if (idebug.eq.4) write (30+myid, *) ’child is done!’
return

end if

c --- if there is a new replica to process, then receive data from

337

c the parent.

c --- we need to save the replica number that we are about to work on.

idrep=imsg(1)

c --- first receive the loop number, in a message of type 0207.

call MPI_RECV(loop,
+ 1,
+ MPI_INTEGER,
+ 0,
+ 0207,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200207)

c --- next receive the old atomic coordinates and the means of the
c neighboring replicas’ coordinates, in a message of type 0205.

call MPI_RECV(replic,
+ NATOM6,
+ MPI_R,
+ 0,
+ 0205,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200205)

c --- next receive the random number generator state vector, in
c a message of type 0206.

call MPI_RECV(rstate,
+ 8,
+ MPI_DOUBLE_PRECISION,
+ 0,
+ 0206,
+ MPI_COMM_WORLD,
+ istat,
+ ierr)

call errchk(myid, ierr, 200206)

c --- generate provisional new atomic positions by adding gaussian
c displacements.

c --- first choose the appropriate gaussian scaling factor.

if (idrep.eq.1.or.idrep.eq.NREPS) then
gsc=gscal2

else
gsc=gscale

end if

c --- then add the gaussian displacements.

do nn=1, NATOM3
call gstep(rstate, gg, rscale)
replic(NATOM3+nn)=replic(NATOM3+nn)+gg*gsc

end do

338

c --- attempt to move each atom in turn.

nacc=0
nrej=0

do nn=1, NATOMS

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’moving atom 1’
call flush(30+myid)

end if
end if

c ------ set up the coordinates of the atoms that are in this atom’s
c stencil.

do i=1, npair(nn)

ip=ipairs(i, nn)
j=ivpair(2, ip)

xx(i)=replic(3*j-2)+vpvec(1, ip)
yy(i)=replic(3*j-1)+vpvec(2, ip)
zz(i)=replic(3*j-0)+vpvec(3, ip)

end do

do i = 1, ntrim(nn)

itri = itrims(i, nn)
j = ivtrim(2, itri)
k = ivtrim(3, itri)

xtri(i,1) = replic(3*j-2)+vpvectri(1, itri)
ytri(i,1) = replic(3*j-1)+vpvectri(2, itri)
ztri(i,1) = replic(3*j)+vpvectri(3, itri)

xtri(i, 2) = replic(3*k-2)+vpvectri(4, itri)
ytri(i, 2) = replic(3*k-1)+vpvectri(5, itri)
ztri(i, 2) = replic(3*k)+vpvectri(6, itri)

end do

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’after do loop, xx(1) = ’, xx(1)
call flush(30+myid)

end if
end if

c ------ get the old and new coordinates of the atom that we’re about
c to try to move.

xold=replic(3*nn-2)
yold=replic(3*nn-1)
zold=replic(3*nn-0)

xnew=replic(3*nn-2+NATOM3)
ynew=replic(3*nn-1+NATOM3)
znew=replic(3*nn-0+NATOM3)

339

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’xold, xnew = ’, xold, xnew
call flush(30+myid)

end if
end if

c ------ compute the old and new distances between this atom and all
c of the atoms in the stencil.

c ------ the do loops are split up to promote vectorization, although
c i’m not sure this is necessary.

do i=1, npair(nn)
r2old(i)=(xx(i)-xold)**2

end do

do i=1, npair(nn)
r2old(i)=r2old(i)+(yy(i)-yold)**2

end do

do i=1, npair(nn)
r2old(i)=r2old(i)+(zz(i)-zold)**2

end do

do i=1, npair(nn)
r2new(i)=(xx(i)-xnew)**2

end do

do i=1, npair(nn)
r2new(i)=r2new(i)+(yy(i)-ynew)**2

end do

do i=1, npair(nn)
r2new(i)=r2new(i)+(zz(i)-znew)**2

end do

c ------ compute the change in potential energy.

do i=1, npair(nn)

c --------- use linear interpolation.

ibin1=int((r2old(i)-r2min)*binvrs)+1
ibin2=int((r2new(i)-r2min)*binvrs)+1

if (ibin1.gt.0) then
dr1=(r2old(i)-r2min)-bin*dble(ibin1-1)
v1(i)=v(1, ibin1)+v(2, ibin1)*dr1

else
v1(i)=v(1, 1)

end if

if (ibin2.gt.0) then
dr2=(r2new(i)-r2min)-bin*dble(ibin2-1)
v2(i)=v(1, ibin2)+v(2, ibin2)*dr2

else
v2(i)=v(1, 1)

end if

end do

340

dv=0.0

do i=1, npair(nn)
dv=dv+v1(i)-v2(i)

end do

c ------ Calculate the three body energy. Looping through all
c trimers formed by atom of interest and two of its 56 neighbors.

v3old = 0.0d0
v3new = 0.0d0

do i= 1, ntrim(nn)
itri = itrims(i, nn)
x01old = xtri(i, 1)-xold
y01old = ytri(i, 1)-yold
z01old = ztri(i, 1)-zold

side1old = sqrt(x01old**2+y01old**2+z01old**2)

x02old = xtri(i, 2)-xold
y02old = ytri(i, 2)-yold
z02old = ztri(i, 2)-zold

side2old = sqrt(x02old**2+y02old**2+z02old**2)

x12old = x02old-x01old
y12old = y02old-y01old
z12old = z02old-z01old

side3old = sqrt(x12old**2+y12old**2+z12old**2)

x01new = xtri(i, 1)-xnew
y01new = ytri(i, 1)-ynew
z01new = ztri(i, 1)-znew

side1new = sqrt(x01new**2+y01new**2+z01new**2)

x02new = xtri(i, 2)-xnew
y02new = ytri(i, 2)-ynew
z02new = ztri(i, 2)-znew

side2new = sqrt(x02new**2+y02new**2+z02new**2)

x12new = x02new-x01new
y12new = y02new-y01new
z12new = z02new-z01new

side3new = sqrt(x12new**2+y12new**2+z12new**2)

call He3(side1old, side2old, side3old, E3old)
call He3(side1new, side2new, side3new, E3new)

c --------- Account for all cases which result in triple counting
c All situations depends on average positions, not
c instantaneous snapshots

ndiv = ivtrim(4, itri)

E3old = E3old/dble(ndiv)
E3new = E3new/dble(ndiv)

v3old = v3old+E3old
v3new = v3new+E3new

end do

341

dv3 = v3old-v3new
dv = dv+dv3

c ------ debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’dv = ’, dv
call flush(30+myid)

end if
end if

dv=dv*tau

c ------ deal with trial function for first and last replicas.

if (idrep.eq.1.or.idrep.eq.NREPS) then

dpsi=0.0

do i=1, npair(nn)
dpsi=dpsi+

+ (1.0d0/sqrt(r2old(i)))**5-
- (1.0d0/sqrt(r2new(i)))**5

end do

soldxy=xold**2+yold**2
snewxy=xnew**2+ynew**2

dpsi=0.5d0*bb**5*dpsi+aaxy*(soldxy-snewxy)+
+ aaz*(zold**2-znew**2)

c --------- debugging output.

if (nn.eq.1) then
if (idebug.eq.4) then

write (30+myid, *) ’evaluating trial function’
write (30+myid, *) ’dpsi = ’, dpsi
call flush(30+myid)

end if
end if

c --------- also remember to scale the change in potential energy by
c one-half for the end replicas.

dv=half*dv+dpsi

end if

c ------ choose whether to accept the new position.

call rstep(rstate, zran, rscale)

if (dv.ge.0.0) then

c --------- accept this move.

replic(3*nn-2)=xnew
replic(3*nn-1)=ynew
replic(3*nn-0)=znew

nacc=nacc+1

else if (zran.lt.exp(dv)) then

c --------- accept this move.

342

replic(3*nn-2)=xnew
replic(3*nn-1)=ynew
replic(3*nn-0)=znew

nacc=nacc+1

else

c --------- reject this move.

nrej=nrej+1

end if

c --- end of loop over atoms.

end do

c --- go back to send these results back to the parent.

goto 200

end

qsats.h
c --- parameters and counters for the VPI simulation.

common /monte/ zaccv(NREPS, NATOMS), zrejv(NREPS, NATOMS),
+ naccv(NATOMS), nrejv(NATOMS), zm,
+ tau, den, scale, amass, ztacc, ztrej,
+ nloop, nprint, nacc, nrej, irrst, idebug,
+ nskip

c --- trial wave function parameters.

common /psitri/ aaxy, aaz, dzscale, bb

c --- random number generator variables.

double precision zm1, zm2, rm1, rm2, rscale, rstatv

common /moduli/ zm1, zm2, rm1, rm2

common /rancm1/ rscale

common /rancm2/ rstatv(8, NREPS)

c --- potential energy lookup table.

common /potcom/ v(2, NVBINS)

c --- VPI replicas and atomic masses.

common /vpi/ path(NATOM3, NREPS),
+ pathnu(NATOM3, NREPS),
+ zmass(NATOM3)

c --- filenames.

character*30 spfile, svfile, ltfile

343

common /files/ spfile, svfile, ltfile

c --- description of the crystal lattice.

common /crystl/ xtal(NATOMS, 3)

common /box/ xlen, ylen, zlen, dxmax, dymax, dzmax

c --- arrays dealing with interacting pairs and trimers.

common /vpairs/ vpvec(3, NPAIRS), vpvec1(3, NPAIRS),
+ vpvectri(9, NTRIMS),
+ ivpair(2, NPAIRS), ivpair1(2, NPAIRS),
+ ivtrim(4, NTRIMS),
+ ipairs(NIP, NATOMS), ipairs1(NIP, NATOMS),
+ itrims(NIT, NATOMS),
+ npair(NATOMS), npair1(NATOMS),
+ ntrim(NATOMS),
+ nvpair, nvpair1, nvtrim

c --- counters to monitor load balancing.

common /parcom/ iwork(255)

eloc-3b-full.f
c --

c this computes the total energy and the expectation value of the
c potential energy from the snapshots recorded by QSATS.
c The three-body energy is calculated here considering on those
c trimers formed by first nearest neighbors.
c The total energy is
c reported including three body interactions which have been fully
c incorporated into the wavefunction optimization.
c This program is set up to read snapshot files from 10 subsequent
c VPI jobs with 100 snapshots each.
c --

program eloc3b10files

implicit double precision (a-h, o-z)
real*8 lrctot
include ’sizes.h’
include ’qsats.h’

parameter (bohr=0.529177249d0)

c --- this common block is used to enable interpolation in the potential
c energy lookup table in the subroutine local below.

common /bincom/ bin, binvrs, r2min

c --- set up arrays needed for average energies and mean
c squared displacement calculations

dimension q(NATOM3), vtavg(NREPS), vtavg2(NREPS),
+ etavg(NREPS), etavg2(NREPS), v3avg(NREPS),
+ v3avg2(NREPS), u2xavg(NREPS),
+ u2yavg(NREPS), u2zavg(NREPS), u4xavg(NREPS),
+ u4yavg(NREPS), u4zavg(NREPS)

c --- This is necessary to alternate between files

344

c Assumes sequential numbering of files
character(len=2) :: nfile_string
parameter (half=0.5d0)
parameter (one=1.0d0)

c --- initialization.

call tstamp

write (6, 6001) NREPS, NATOMS, NATOM3, NATOM6, NATOM7,
+ NVBINS, RATIO, NIP, NPAIRS

6001 format (’compile-time parameters:’//,
+ ’NREPS = ’, i6/,
+ ’NATOMS = ’, i6/,
+ ’NATOM3 = ’, i6/,
+ ’NATOM6 = ’, i6/,
+ ’NATOM7 = ’, i6/,
+ ’NVBINS = ’, i6/,
+ ’RATIO = ’, f6.4/,
+ ’NIP = ’, i6/,
+ ’NPAIRS = ’, i6/)

call input
call vinit(r2min, bin)
binvrs=one/bin

c --- read crystal lattice points.

write (6, 6200) ltfile
6200 format (’READING crystal lattice from ’, a16/)

open (8, file=ltfile, status=’old’)

read (8, *) nlpts
if (nlpts.ne.NATOMS) then

write (6, *) ’ERROR: number of atoms in lattice file = ’, nlpts
write (6, *) ’number of atoms in source code = ’, NATOMS
stop

end if

c --- read the edge lengths of the supercell.

read (8, *) xlen, ylen, zlen

c --- compute a distance scaling factor.
den0=dble(NATOMS)/(xlen*ylen*zlen)

c --- scale is a distance scaling factor, computed from the atomic
c number density specified by the user.

scale=exp(dlog(den/den0)/3.0d0)

write (6, 6300) scale
6300 format (’supercell scaling factor computed from density = ’,

+ f12.8/)

xlen=xlen/scale
ylen=ylen/scale
zlen=zlen/scale

write (6, 6310) xlen, ylen, zlen
6310 format (’supercell edge lengths [bohr] = ’, 3f10.5/)

dxmax=half*xlen
dymax=half*ylen

345

dzmax=half*zlen

do i=1, NATOMS

read (8, *) xtal(i, 1), xtal(i, 2), xtal(i, 3)
xtal(i, 1)=xtal(i, 1)/scale
xtal(i, 2)=xtal(i, 2)/scale
xtal(i, 3)=xtal(i, 3)/scale

end do

close (8)

write (6, 6320) xtal(NATOMS, 1), xtal(NATOMS, 2),
+ xtal(NATOMS, 3)

6320 format (’final lattice point [bohr] = ’, 3f10.5/)

c --- this variable helps us remember the nearest-neighbor distance.

rnnmin=-1.0d0

do j=2, NATOMS

dx=xtal(j, 1)-xtal(1, 1)
dy=xtal(j, 2)-xtal(1, 2)
dz=xtal(j, 3)-xtal(1, 3)

c ------ this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r=sqrt(dx*dx+dy*dy+dz*dz)
if (r.lt.rnnmin.or.rnnmin.le.0.0d0) rnnmin=r

end do

write (6, 6330) rnnmin
6330 format (’nearest neighbor (NN) distance [bohr] = ’, f10.5/)

write (6, 6340) xlen/rnnmin, ylen/rnnmin, zlen/rnnmin
6340 format (’supercell edge lengths [NN distances] = ’, 3f10.5/)

c --- compute interacting pairs.

do i=1, NATOMS
npair(i)=0
npair1(i)=0

end do

346

nvpair=0
nvpair1=0
do i=1, NATOMS
do j=1, NATOMS

if (j.ne.i) then

dx=xtal(j, 1)-xtal(i, 1)
dy=xtal(j, 2)-xtal(i, 2)
dz=xtal(j, 3)-xtal(i, 3)

c --------- this sequence of if-then-else statements enforces the
c minimum image convention.

if (dx.gt.dxmax) then
dx=dx-xlen

else if (dx.lt.-dxmax) then
dx=dx+xlen

end if

if (dy.gt.dymax) then
dy=dy-ylen

else if (dy.lt.-dymax) then
dy=dy+ylen

end if

if (dz.gt.dzmax) then
dz=dz-zlen

else if (dz.lt.-dzmax) then
dz=dz+zlen

end if

r2=dx*dx+dy*dy+dz*dz

r=sqrt(r2)

c --------- interacting pairs are those for which r is less than a
c certain cutoff amount.

if (r/rnnmin.lt.RATIO) then

nvpair=nvpair+1

ivpair(1, nvpair)=i
ivpair(2, nvpair)=j

vpvec(1, nvpair)=dx
vpvec(2, nvpair)=dy
vpvec(3, nvpair)=dz

npair(i)=npair(i)+1

ipairs(npair(i), i)=nvpair
c ------------ for three-body calculations, keep track of only first
c nearest neighbors.

if (r/rnnmin.lt.1.05) then

nvpair1=nvpair1+1

c -------------- store information about this pair (i->j) in arrays.

ivpair1(1, nvpair1)=i
ivpair1(2, nvpair1)=j

347

vpvec1(1, nvpair1)=dx
vpvec1(2, nvpair1)=dy
vpvec1(3, nvpair1)=dz

npair1(i)=npair1(i)+1
ipairs1(npair1(i), i)=nvpair1

end if
end if

end if
end do
end do

write (6, 6400) npair(1), nvpair
6400 format (’atom 1 interacts with ’, i3, ’ other atoms’//,

+ ’total number of interacting pairs = ’, i6/)

c --- To save time later, we are going to calculate all of the first
c nearest neighbor trimers now, along with angles and vectors

nvtrim=0

do i = 1, NATOMS
do j = 1, npair1(i)-1
do k = j+1, npair1(i)

c--------- keep running count of all trimers
nvtrim = nvtrim+1

c -------- record vector from central atom to two neighbors

npairA = ipairs1(j, i) !tells us the nvpair reference number
npairB = ipairs1(k, i) ! for each of the atoms in the trimer

c--------- keep record of atoms in trimer
ivtrim(1, nvtrim) = i !central atom
ivtrim(2, nvtrim) = ivpair1(2, npairA)
ivtrim(3, nvtrim) = ivpair1(2, npairB)

vpvectri(1, nvtrim) = vpvec1(1, npairA)
vpvectri(2, nvtrim) = vpvec1(2, npairA)
vpvectri(3, nvtrim) = vpvec1(3, npairA)

vpvectri(4, nvtrim) = vpvec1(1, npairB)
vpvectri(5, nvtrim) = vpvec1(2, npairB)
vpvectri(6, nvtrim) = vpvec1(3, npairB)

c -------- calculate and store side lenghts and central angle
dx1 = vpvectri(1, nvtrim)
dy1 = vpvectri(2, nvtrim)
dz1 = vpvectri(3, nvtrim)

dx2 = vpvectri(4, nvtrim)
dy2 = vpvectri(5, nvtrim)
dz2 = vpvectri(6, nvtrim)

dx12 = dx2-dx1
dy12 = dy2-dy1
dz12 = dz2-dz1

side1 = sqrt(dx1*dx1+dy1*dy1+dz1*dz1)
side2 = sqrt(dx2*dx2+dy2*dy2+dz2*dz2)
side3 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

vpvectri(7, nvtrim) = side1
vpvectri(8, nvtrim) = side2
vpvectri(9, nvtrim) = side3

c -------- We know sides 1 and 2 = Rnn. If side 3 is lt or
c equal to Rnn, trimer will be triple counted

348

ivtrim(4, nvtrim) = 1

s3test = side3/rnnmin

if (s3test.lt.1.05) then !if side is within 1.05Rnn, trimer
! will be triple counted

ivtrim(4, nvtrim) = 3
end if

c -------- Update number of trimers for given central atom
ntrim(i) = ntrim(i)+1

itrims(ntrim(i), i) = nvtrim
end do
end do

end do

write (6, 6403) ntrim(1), nvtrim
6403 format (’atom 1 forms ’, i3, ’trimers with interacting

+ neighbors’//, ’total number of interacting trimers = ’, i9)

do i=1, npair(1)
ip=ipairs(i, 1)
d=sqrt(vpvec(1, ip)**2+vpvec(2, ip)**2+vpvec(3, ip)**2)/

+ rnnmin
write (6, 6410) ip, ivpair(2, ip), vpvec(1, ip)/rnnmin,

+ vpvec(2, ip)/rnnmin, vpvec(3, ip)/rnnmin, d
6410 format (’vector # ’, i3, ’ to atom ’, i4, ’: ’,

+ 3(1x, f9.5), ’ length = ’, f8.5)
end do

write (6, 6402)
6402 format (/’interaction trimer side lengths for atom 1 ’,

+ ’[NN distances]:’/)
do i=1, ntrim(1)

itri = itrims(i, 1)
write(6, 6411) itri, ivtrim(2, itri), ivtrim(3, itri),

+ vpvectri(7, itri)/rnnmin, vpvectri(8,
+ itri)/rnnmin, vpvectri(9, itri)/rnnmin,
+ ivtrim(4, itri)

6411 format(’trimer # ’, i3, ’incuding atoms ’, i4, 1x, i4, ’:’,
+ ’side lengths: ’, 3(1x, f8.5), ’ counted: ’,
+ i1, 1x, ’times’)

end do

c --- initialization.

loop=0
nfile = 1
do k=1, NREPS

vtavg(k)=0.0d0
etavg(k)=0.0d0
vtavg2(k)=0.0d0
etavg2(k)=0.0d0
u2xavg(k)=0.0d0
u2yavg(k)=0.0d0
u2zavg(k)=0.0d0
u4xavg(k)=0.0d0
u4yavg(k)=0.0d0
u4zavg(k)=0.0d0

end do
nl = LENGTH(spfile)

c ---- the snapshot files are assumed to follow the format
c ’spfile##’ where spfile is read in input.f

349

299 write(nfile_string, ’(I2)’) nfile
if(nfile.lt.10) nfile_string = nfile_string(2:2)
open (10, file=spfile(1:nl)//nfile_string, form=’unformatted’)
print *, spfile(1:nl)//nfile_string

c --- this loops reads the snapshots saved by QSATS.

300 loop=loop+1

do k=1, NREPS, 11

read (10, end=600) (path(i, k), i=1, NATOM3)

c ------ compute the local energy and the potential energy.

do i=1, NATOM3
q(i)=path(i, k)

end do
call local(q, tloc, vloc, pot3b)

c ------ convert to kelvin per atom.

tloc=tloc/(3.1668513d-6*dble(NATOMS))
vloc=vloc/(3.1668513d-6*dble(NATOMS))
pot3b=pot3b/(3.1668513d-6*dble(NATOMS))

c ------ accumulate the results.
c ------ note, vloc does not include pot3b

v3avg(k)=v3avg(k)+pot3b
v3avg2(k)=v3avg2(k)+(pot3b)**2

vtavg(k)=vtavg(k)+vloc
vtavg2(k)=vtavg2(k)+(vloc)**2
etavg(k)=etavg(k)+tloc+vloc+pot3b
etavg2(k)=etavg2(k)+(tloc+vloc+pot3b)**2

c ------ compute <uˆ2> in all three directions
call msd(q, u2x, u2y, u2z, u4x, u4y, u4z)

u2xavg(k) = u2xavg(k)+u2x
u2yavg(k) = u2yavg(k)+u2y
u2zavg(k) = u2zavg(k)+u2z

u4xavg(k) = u4xavg(k)+u4x
u4yavg(k) = u4yavg(k)+u4y
u4zavg(k) = u4zavg(k)+u4z

350 continue

end do

goto 300

c --- account for overshooting.

600 loop = loop-1
nfile = nfile+1
close(10)
print *, "file closed"
if(nfile.le.10) goto 299

write (6, 6600) loop
6600 format (’number of snapshots = ’, i6/)

c --- compute the averages and standard deviations.
b2 = bohr*bohr
open (4, file=’eloc-3b.dat’)

350

do k=1, NREPS, 11

v3avg(k)=v3avg(k)/dble(loop)
v3avg2(k)=v3avg2(k)/dble(loop)
vtavg(k)=vtavg(k)/dble(loop)
vtavg2(k)=vtavg2(k)/dble(loop)
etavg(k)=etavg(k)/dble(loop)
etavg2(k)=etavg2(k)/dble(loop)

v3sd=sqrt(v3avg2(k)-v3avg(k)**2)
vsd=sqrt(vtavg2(k)-vtavg(k)**2)
esd=sqrt(etavg2(k)-etavg(k)**2)

u2xavg(k)=u2xavg(k)/dble(loop)
u2yavg(k)=u2yavg(k)/dble(loop)
u2zavg(k)=u2zavg(k)/dble(loop)

u4xavg(k)=u4xavg(k)/dble(loop)
u4yavg(k)=u4yavg(k)/dble(loop)
u4zavg(k)=u4zavg(k)/dble(loop)

u2xsd=sqrt(u4xavg(k)-u2xavg(k)**2)
u2ysd=sqrt(u4yavg(k)-u2yavg(k)**2)
u2zsd=sqrt(u4zavg(k)-u2zavg(k)**2)

c --- calculate apparent gaussian parameters for each replica

axprm = b2*1.0d0/(4.0d0*u2xavg(k))
ayprm = b2*1.0d0/(4.0d0*u2yavg(k))
azprm = b2*1.0d0/(4.0d0*u2zavg(k))

axsd = b2*sqrt((1.0d0/(16.0d0*u2xavg(k)**2))*u2xsd**2)
aysd = b2*sqrt((1.0d0/(16.0d0*u2yavg(k)**2))*u2ysd**2)
azsd = b2*sqrt((1.0d0/(16.0d0*u2zavg(k)**2))*u2zsd**2)

call lrc(axprm, ayprm, azprm, rnnmin, lrctot)

write (6, 6610) k, ’V2AVG = ’, vtavg(k)
6610 format (’replica ’, i3, 1x, a9, f10.5, ’ Kelvin’)
6620 format (’replica ’, i3, 1x, a9, 1pe13.6, ’ Angstrom**2’)

write (6, 6610) k, ’V2 SD = ’, vsd
write (6, 6610) k, ’V3AVG = ’, v3avg(k)
write (6, 6610) k, ’V3 SD = ’, v3sd
write (6, 6610) k, ’E2AVG = ’, etavg(k)
write (6, 6610) k, ’E2 SD = ’, esd
write (6, 6620) k, ’u2x = ’, u2xavg(k)
write (6, 6620) k, ’u2x sd = ’, u2xsd
write (6, 6620) k, ’u2y = ’, u2yavg(k)
write (6, 6620) k, ’u2y sd = ’, u2ysd
write (6, 6620) k, ’u2z = ’, u2zavg(k)
write (6, 6620) k, ’u2z sd = ’, u2zsd

write (4, 6630) k, vtavg(k), vsd, v3avg(k), v3sd,
+ etavg(k), esd, u2xavg(k), u2xsd,
+ u2yavg(k), u2ysd, u2zavg(k), u2zsd,
+ axprm, axsd, ayprm, aysd, azprm, azsd, lrctot

6630 format(1x, i3, 6(1x, 1pe13.6), 6(1x, 1pe13.6), 6(1x, 1pe13.6)
+ 1x, 1pe13.6)
end do

flush (4)
stop

351

end

c --

c this subroutine computes the local energy and potential energy
c of a configuration.

c --

subroutine local(q, tloc, vloc, pot3b)

implicit double precision (a-h, o-z)

include ’sizes.h’
include ’qsats.h’

common /bincom/ bin, binvrs, r2min

c --- alpha is the exponential parameter in psi:

c psi = N * exp(-alpha*(r-r0)**2) * Jastrow

c --- bb is the exponential parameter in Jastrow:

c ln Jastrow(ij) = -0.5 * (bb/rij)**5

dimension q(NATOM3), dlng(NATOM3), d2lng(NATOM3)

do i=1, NATOM3
dlng(i)=0.0d0
d2lng(i)=0.0d0

end do

do i=1, NATOMS

xx=q(3*i-2)
yy=q(3*i-1)
zz=q(3*i)

dlng(3*i-2)=dlng(3*i-2)-2.0d0*aaxy*xx
dlng(3*i-1)=dlng(3*i-1)-2.0d0*aaxy*yy
dlng(3*i) =dlng(3*i) -2.0d0*aaz*zz

d2lng(3*i-2)=d2lng(3*i-2)-2.0d0*aaxy
d2lng(3*i-1)=d2lng(3*i-1)-2.0d0*aaxy
d2lng(3*i) =d2lng(3*i) -2.0d0*aaz

end do

c --- loop over all interacting pairs.

vloc=0.0d0
tloc=0.0d0

do n=1, nvpair

i=ivpair(1, n)
j=ivpair(2, n)

dx=-((q(3*j-2))+vpvec(1, n)+(-q(3*i-2)))
dy=-((q(3*j-1))+vpvec(2, n)+(-q(3*i-1)))
dz=-((q(3*j)) +vpvec(3, n)+(-q(3*i)))

r2=dx*dx+dy*dy+dz*dz

352

ibin=int((r2-r2min)*binvrs)+1

if (ibin.gt.0) then
dr=(r2-r2min)-bin*dble(ibin-1)
vloc=vloc+v(1, ibin)+v(2, ibin)*dr

else
vloc=vloc+v(1, 1)

end if

br2=bb*bb/r2

br5=br2*br2*sqrt(br2)

br52=br5/r2

dlng(3*i-2)=dlng(3*i-2)+2.5d0*br52*dx
dlng(3*i-1)=dlng(3*i-1)+2.5d0*br52*dy
dlng(3*i) =dlng(3*i) +2.5d0*br52*dz

d2lng(3*i-2)=d2lng(3*i-2)+2.5d0*br52*
* (1.0d0-7.0d0*dx**2/r2)

d2lng(3*i-1)=d2lng(3*i-1)+2.5d0*br52*
* (1.0d0-7.0d0*dy**2/r2)

d2lng(3*i) =d2lng(3*i) +2.5d0*br52*
* (1.0d0-7.0d0*dz**2/r2)

end do

c --- now sum up the kinetic energy components.

do i=1, NATOM3
tloc=tloc+d2lng(i)+dlng(i)**2

end do

c --- account for mass factor and for double-counting of pairs.

tloc=-0.5d0*tloc/amass
vloc=0.5d0*vloc

c --- add in 3body energy

pot3b = potl3b(q)

return
end

c ===

c This function calculates the three-body contribution to the
c potential energy

c ===

double precision function potl3b(q)

c --- evaluates the three-body potential energy of the system

implicit real*8 (a-h, o-z)
include ’sizes.h’
include ’qsats.h’

dimension q(NATOM3)

potl3b = 0.0d0

353

c --- loop over all nearest neighbor trimers

do n=1, nvtrim
i= ivtrim(1, n)
j= ivtrim(2, n)
k= ivtrim(3, n)
ndiv = ivtrim(4, n)

dx1 = vpvectri(1, n)+q(3*j-2)-q(3*i-2)
dy1 = vpvectri(2, n)+q(3*j-1)-q(3*i-1)
dz1 = vpvectri(3, n)+q(3*j)-q(3*i)

dx2 = vpvectri(4, n)+q(3*k-2)-q(3*i-2)
dy2 = vpvectri(5, n)+q(3*k-1)-q(3*i-1)
dz2 = vpvectri(6, n)+q(3*k)-q(3*i)

dx12 = dx2-dx1
dy12 = dy2-dy1
dz12 = dz2-dz1

r1 = sqrt(dx1*dx1+dy1*dy1+dz1*dz1)
r2 = sqrt(dx2*dx2+dy2*dy2+dz2*dz2)
r12 = sqrt(dx12*dx12+dy12*dy12+dz12*dz12)

c ------ get 3B energy and add to total
c ------ ndiv accounts for triple counting

call He3(r1, r2, r12, E3)
E3 = E3/dble(ndiv)
potl3b = potl3b+E3

end do
return
end

c --

c msd is a subroutine that calculates the mean squared displacement
c in all three directions from the snapshots.

c --

subroutine msd(q, u2x, u2y, u2z, u4x, u4y, u4z)

implicit real*8 (a-h, o-z)

include ’sizes.h’
include ’qsats.h’

dimension q(NATOM3)
parameter (bohr=0.529177249d0)

u2x = 0.0d0
u2y = 0.0d0
u2z = 0.0d0

u4x = 0.0d0
u4y = 0.0d0
u4z = 0.0d0

do l = 1, NATOMS
u2x = u2x + (q(3*l-2)**2)
u4x = u4x + (q(3*l-2)**4)

u2y = u2y + (q(3*l-1)**2)
u4y = u4y + (q(3*l-1)**4)

u2z = u2z + (q(3*l)**2)

354

u4z = u4z + (q(3*l)**4)
end do

c --- conversion factor from bohr**2 to angstrom**2

b2=bohr*bohr
u2x = u2x*b2/dble(NATOMS)
u2y = u2y*b2/dble(NATOMS)
u2z = u2z*b2/dble(NATOMS)

u4x = u4x*b2*b2/dble(NATOMS)
u4y = u4y*b2*b2/dble(NATOMS)
u4z = u4z*b2*b2/dble(NATOMS)

return
end

c --
c This function calculates the length of a string without trailing
c blanks. This is necessary to use variable input snapshot files.
c --

INTEGER FUNCTION LENGTH(string)
CHARACTER*(*) STRING
DO 15, I = LEN(STRING), 1, -1
IF(STRING(I:I) .NE. ’ ’) GO TO 20

15 CONTINUE
20 LENGTH = I

END
c --

c quit is a subroutine used to terminate execution if there is
c an error.

c it is needed here because the subroutine that reads the parameters
c (subroutine input) may call it.

c --

subroutine quit

write (6, *) ’termination via subroutine quit’

stop

return
end

355

Vita

Ashleigh Locke Barnes (born Ashleigh Rebecca Locke) was born to her loving parents

Lisa and James in 1990. She attended Flower Mound High School in Flower Mound,

Texas, and graduated as Salutatorian in 2008. After high school, she studied at Baylor

University in Waco, Texas, and performed research in medicinal organic chemistry

under Dr. Kevin Pinney. In 2012, she graduated Summa Cum Laude from Baylor

with her B.S. in Chemistry. She married Austin Robert Barnes in the summer of

2012 before starting the Ph.D. program in physical chemistry at the University of

Tennessee, with a concentration in theoretical chemistry. Ashleigh plans to continue

her education through postdoctoral research, with the ultimate goal of teaching

chemistry at the college level where she hopes to give undergraduate students early

exposure to the theoretical sciences.

356

	Understanding three-body interactions in hexagonal close packed solid He-4
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction and Overview
	1.1 The hcp 4He System
	1.2 Three-Body Interactions
	1.2.1 Survey of Earlier Studies of Three-Body Interactions in Condensed Phase 4He
	1.2.2 The Cencek Three-Body Potential

	1.3 Overview
	1.4 References

	2 Computational Methods
	2.1 Introduction
	2.2 VMC
	2.2.1 Reweighting
	2.2.2 The Debye-Waller Factors and Atomic Probability Density
	2.2.3 Long-Range Corrections

	2.3 VPI
	2.4 Three-Body Interactions
	2.4.1 Perturbative Treatment
	2.4.2 Full Incorporation Method

	2.5 Equations of State
	2.6 Elastic Constants
	2.7 References

	3 Search for Anisotropy in the Debye-Waller Factors of hcp 4He
	Abstract
	3.1 Introduction
	3.2 Computational Methods
	3.2.1 VMC
	3.2.2 "426830A u2 "526930B Calculation
	3.2.3 Long-Range Corrections
	3.2.4 Reweighting

	3.3 Results and Discussion
	3.3.1 Ideal Lattice, Blackburn Density
	3.3.2 Distorted Lattices, Blackburn Density
	3.3.3 Ideal Lattice, Higher Densities
	3.3.4 Equation of State

	3.4 Summary and Conclusions
	3.5 References
	3.6 Appendix
	3.6.1 Additional Calculation of the DW Factors Using a Three-Body Potential

	4 Effect of Three-Body Interactions on the Zero-Temperature Equation of State of hcp Solid 4He
	Abstract
	4.1 Introduction
	4.2 Computational Methods
	4.2.1 VMC
	4.2.2 VPI
	4.2.3 Three-Body Interactions
	4.2.4 Equation of State Calculations

	4.3 Results and Discussion
	4.3.1 Energy-Volume Equations of State
	4.3.2 Evaluation of the Perturbative Treatment
	4.3.3 Pressure-Volume Equations of State

	4.4 Conclusion
	4.5 References
	4.6 Appendix

	5 Three-Body Interactions and the Elastic Constants of hcp Solid 4He
	Abstract
	5.1 Introduction
	5.2 Computational Methods
	5.2.1 Definition of the Elastic Constants for hcp 4He
	5.2.2 Energy Calculations in the Distorted Lattices

	5.3 Results and Discussion
	5.3.1 The Bulk Modulus
	5.3.2 Calculation of Pure Shear Constants
	5.3.3 Dependence of Three-Body Energy on theHeterogeneous Strain Variables
	5.3.4 Remaining Nonzero Elastic Constants

	5.4 Summary and Conclusion
	5.5 References

	6 Conclusion
	6.1 References

	Appendix
	A VMC Programs
	A.1 VMC 2-Body Program (VMC-2B)
	A.1.1 VMC Long-Range Correction Program

	A.2 VMC Perturbative 3-body Correction Program (VMC(3B))
	A.3 VMC Fully-Incorporated 3-body Program(VMC+3B)

	B VPI Programs
	B.1 VPI 2-Body Program (VPI-2B)
	B.2 VPI Perturbative 3-body Correction Program (VPI-3B)
	B.3 VPI Fully-Incorporated 3-body Program(VPI+3B)

	Vita

