
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2017

Co-Optimization of Gas-Electricity Integrated
Energy Systems Under Uncertainties
Linquan Bai
University of Tennessee, Knoxville, lbai3@vols.utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Bai, Linquan, "Co-Optimization of Gas-Electricity Integrated Energy Systems Under Uncertainties. " PhD diss., University of
Tennessee, 2017.
https://trace.tennessee.edu/utk_graddiss/4381

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268795031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Linquan Bai entitled "Co-Optimization of Gas-
Electricity Integrated Energy Systems Under Uncertainties." I have examined the final electronic copy of
this dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Electrical Engineering.

Fangxing (Fran) Li, Major Professor

We have read this dissertation and recommend its acceptance:

Yilu Liu, Kevin Tomsovic, Mingzhou Jin

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



 

Co-Optimization of Gas-Electricity Integrated Energy Systems 

Under Uncertainties  

 

 

 

 

A Dissertation Presented for the 

Doctor of Philosophy 

Degree 

The University of Tennessee, Knoxville 

 

 

 

Linquan Bai 

May 2017 

 



ii 

Copyright © 2017 by Linquan Bai 

All rights reserved. 

 

 

 

 

 

 

 

  



iii 

 

DEDICATION 

This dissertation is dedicated to my beloved parents, wife, and son whose love, patience and 

encouragement make it possible for me to finish my Ph. D. study and this work. 

 

 

  



iv 

ACKNOWLEDGEMENTS 

I would like to express my thanks to those who helped me with various aspects of 

conducting research and writing this dissertation. 

First and foremost, I would like to express my deepest gratitude to my major advisor, Dr. 

Fangxing (Fran) Li for his continuous guidance and persistent help for this dissertation and all 

other research works during my Ph.D. study at the University of Tennessee at Knoxville (UTK).  

I would like to thank Dr. Yilu Liu, Dr. Kevin Tomsovic, Dr. Mingzhou Jin for their time 

and efforts in serving as the members of my dissertation committee. 

I would like to thank all the professors and friends in the Center for Ultra-Wide-Area 

Resilient Electric Energy Transmission (CURENT) who create a loving and friendly atmosphere 

for conducting research.  

Last but not least, this dissertation not only represents my work, but it is also a milestone 

representing four year of works at the University of Tennessee at Knoxville (UTK).   

  



v 

ABSTRACT 

In the United States, natural gas-fired generators have gained increasing popularity in recent 

years due to low fuel cost and emission, as well as the needed large gas reserves. Consequently, it 

is worthwhile to consider the high interdependency between the gas and electricity networks. In 

this dissertation, several co-optimization models for the optimal operation and planning of gas-

electricity integrated energy systems (IES) are proposed and investigated considering uncertainties 

from wind power and load demands. 

For the coordinated operation of gas-electricity IES: 1) an interval optimization based 

coordinated operating strategy for the gas-electricity IES is proposed to improve the overall system 

energy efficiency and optimize the energy flow. The gas and electricity infrastructures are modeled 

in detail and their operation constraints are fully considered. Then, a demand response program is 

incorporated into the optimization model, and its effects on the IES operation are investigated. 

Interval optimization is applied to address wind power uncertainty in IES. 2) a stochastic optimal 

operating strategy for gas-electricity IES is proposed considering N-1 contingencies in both gas 

and electricity networks. Since gas pipeline contingencies limit the fuel deliverability to gas-fired 

units, N-1 contingencies in both gas and electricity networks are considered to ensure that the 

system operation is able to sustain any possible power transmission or gas pipeline failure. 

Moreover, wind power uncertainty is addressed by stochastic programming. 3) a robust scheduling 

model is proposed for gas-electricity IES with uncertain wind power considering both gas and 

electricity N-1 contingencies. The proposed method is robust against wind power uncertainty to 

ensure that the system can sustain possible N-1 contingency event of gas pipeline or power 

transmission. Case studies demonstrate the effectiveness of the proposed models. 
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For the co-optimization planning of gas-electricity IES:  a two-stage robust optimization 

model is proposed for expansion co-planning of gas-electricity IES. The proposed model is solved 

by the column and constraint generation (C&CG) algorithm. The locations and capacities of new 

gas-fired generators, power transmission lines, and gas pipelines are optimally determined, which 

is robust against the uncertainties from electric and gas load growth as well as wind power. 

 

Keywords: Co-optimization, coordinated operation, expansion planning, gas and electricity 

integrated energy systems, interval optimization, robust optimization, stochastic optimization. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction  

In the United States, natural gas-fired generators have gained increasing popularity in recent 

years due to low fuel cost and emission, as well as the proven large gas reserves. According to the 

US Energy Information Administration [1], the natural gas demand in the power industry in 2013 

is 8.2 Tcf, which is projected to increase to 9.4 Tcf by 2040 in the reference case. Gas-fired units 

are expected to be the largest natural gas consumer. Consequently, the interdependency between 

the gas network and power system is increased dramatically. In this work, the two energy sectors 

will be combined as the gas-electricity integrated energy system (IES). We focus on studying the 

co-optimization problems of the gas-electricity IES in the presence of renewable uncertainties. 

The gas-electricity coordination problem in terms of planning, scheduling and market is of 

interest to both industry and academia. Long and medium term planning of gas-electricity 

integrated energy systems have been studied in [2]. In [2], a detailed gas network model and DC 

power flow model are used for the expansion planning of gas-electricity integrated energy systems. 

A long-term co-optimization planning model is proposed in [3] for natural gas and electricity 

transportation infrastructures with security constraints. In [4], a multi-area and multi-stage 

expansion planning model of gas-electricity integrated energy systems is introduced with the 

considerations of natural gas flow limits. 

For the coordinated operation of combined gas-electricity networks, studies on the single-

time and multi-time period operational optimization were investigated in [5], [6]. As for a single 



2 

time period snapshot, a combined natural gas and electricity optimal power flow is presented in 

[5]. The AC power flow model and steady-state nonlinear gas flow equations are adopted in the 

optimal power flow model to optimize total social welfare. Similarly, an integrated natural gas and 

electricity optimal power flow is presented in [6] with the objective of minimizing the sum of 

generating cost and gas supply cost. Multi-time period optimal operation is discussed in [7]–[11]. 

In [7], a security constrained unit commitment problem is solved considering the operation 

constraints of coupling natural gas networks. Based on the concept of energy hub, an optimal 

power flow framework was studied in [8] with multiple energy carriers. A multi-time period 

combined gas and electricity network optimization model was developed and demonstrated on the 

Great Britain network in [9]. A multi-period generalized network flow model of the U.S. integrated 

energy system was presented in [10] for an integrated energy system including coal network, gas 

network and electricity network considering the economic interdependencies between the 

subsystems. And the simulation results were presented in [11].  

In today’s deregulated electricity and natural gas network, a utility that supplies both 

electricity and natural gas [12] should take into account the impact of the gas market and electricity 

market in the economic dispatch of gas-electricity integrated energy systems. The gas-fired 

generating units generate power to the electricity network and meanwhile consume natural gas 

provided by the gas network. They participate in both electricity and gas markets. According to 

electricity and gas prices, gas-fired generators can decide to use the gas and sell electricity in the 

power market or sell the gas in the gas market rather than producing electricity power [13]. 

Through the linkage of gas-fired generators, the locational marginal prices (LMP) in the electricity 

market are tightly interacting with the gas price in the gas market. The impact of natural-gas 
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network and market on the electricity market is of great interest to independent system operators 

(ISOs). 

In recent years, demand response [14]–[16] attracts much attention for its great potential to 

integrated energy system operation. In the electricity sector, a lot of work on demand response has 

been studied in the power system market and operation. Incentive demand response has been 

proven to be effective in improving system operation. The impact of price-based demand response 

on market clearing and the LMP of power system has been analyzed in [15]. However, only a few 

works considered the demand response model in the optimal operation of the combined gas-

electricity network. The hourly economic demand response is incorporated in the coordinated 

stochastic day-ahead scheduling model of power systems with natural gas network constraints 

[16]. Usually in the electricity network, a DC power flow model is adopted which is a linear system 

model. But the gas network model is a strong non-convex model that needs to be carefully 

addressed. From the perspective of the solution algorithm, most existing literatures tend to use 

heuristic or non-linear optimization techniques for solving the integrated energy system model, 

which takes a long computational time.  

This dissertation proposes various co-optimization models for the gas-electricity IES under 

uncertainties. The co-optimization models of optimal operation and planning of gas electricity IES 

are built. In terms of system modeling, the gas network is modeled in detail and linearization 

technique is studied to linearize the nonconvex models of gas pipelines and gas compressors. The 

demand response and system contingencies are incorporated into the co-optimization models. 

Interval optimization, stochastic optimization and robust optimization are applied to solve the 

proposed models with uncertainties, in terms of solving algorithms. The impact of wind power and 

load demand uncertainties, power transmission N-1 contingency, gas pipeline N-1 contingency, 



4 

and coordinated demand response on the system operation are investigated. Case studies 

demonstrate the effectiveness of the proposed models. The detailed organization of this 

dissertation is presented in the following subsection. 

1.2 Dissertation Outline  

This work focuses on proposing various co-optimization models of gas-electricity IES 

operation and planning in the presence of various uncertain factors in the integrated energy systems. 

The interdependency between natural gas and electricity networks is fully considered. 

Chapter 2 proposes an interval optimization based coordinated operating strategy for the 

gas-electricity integrated energy system considering demand response and wind power uncertainty. 

The gas network is modeled in detail. Then a demand response program is incorporated into the 

optimization model and its effects on the IES operation are investigated. 

Chapter 3 proposes a stochastic optimal operating strategy for gas-electricity integrated 

energy systems considering N-1 contingencies in both gas and electricity networks, in addition to 

wind uncertainty.  

Chapter 4 proposes a robust scheduling model for wind integrated energy systems with the 

considerations of both gas pipeline and power transmission N-1 contingencies.  

Chapter 5 proposes a two-stage robust expansion co-planning model for gas-electricity 

integrated energy systems considering the uncertainties of wind power, electric load, and gas load. 

Chapter 6 concludes this work and provides suggestions for future work in the co-

optimization of gas-electricity integrated energy systems. 
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1.3 Contributions 

The contributions of this work are listed as followed. 

 This work proposes an interval optimization based coordinated operating strategy 

for the gas-electricity integrated energy system considering demand response and 

wind power uncertainty.  

 This work proposes a stochastic optimal operating strategy for gas-electricity 

integrated energy systems considering N-1 contingencies in both gas and electricity 

networks, in addition to wind uncertainty. 

 This work proposes a robust scheduling model for wind integrated energy systems 

with the considerations of both gas pipeline and power transmission N-1 

contingencies.  

 This work proposes a two-stage robust optimization model for expansion co-

planning of gas-electricity integrated energy systems considering uncertainties of 

wind power, electric load and gas load growth. 
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CHAPTER 2 

INTERVAL OPTIMIZATION BASED OPERATING STRATEGY FOR 

GAS-ELECTRICITY INTEGRATED ENERGY SYSTEMS  

2.1 Introduction 

Today’s power system is evolving towards a modern and clean smart grid with increasing 

penetration of renewable energy. To address the emerging technologies introduced into modern 

power systems, tremendous work has been done in the area of wide-area measurement system 

[17]–[20], voltage stability monitoring and assessment [21]–[24], voltage regulation and control 

[25]–[29], oscillation study [30]–[32], high-performance computing [33]–[35], wind power 

generation and control [36]–[39], photovoltaics (PV) generation system control [40]–[43], reactive 

power optimization [44], [45], demand response and electric vehicle (EV) [46]–[49], energy 

storage [50]–[55], microgrid operation [56]–[60], smart distribution network operation [61]–[64], 

communication system [65]–[67], etc. Another important transform that attracts our attention in a 

broader energy perspective is that power system is increasingly tightly-coupled with natural gas 

transportation system. It is worthwhile to reveal and investigate the interdependency between the 

two energy sectors. 

In recent years, the interdependency between natural gas and electricity power energy 

systems are dramatically increasing with more natural gas utilized for electricity generation. In the 

United States, the natural gas consumption by electric power sector has increased from 32% in 

2007 to 39% in 2009 [68]. Gas-fired power plants provide a linkage between natural gas and 

electricity networks. Compared to traditional coal-fired generators, gas-fired generators are 

preferred for its competitive fuel cost, lower pollutant emissions and fast response to fluctuating 
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renewable energy [69]. In New England ISO (ISO-NE), more than 50% of electricity is now 

generated from natural gas, compared to only 15% in 2000, with even more growth in the use of 

natural gas-fired generation anticipated going forward [70]. Natural gas transmission could affect 

the security and the economics of power transmission. For the highly interdependency between 

the two energy sectors, natural gas and electricity networks are regarded as an integrated energy 

system (IES) [10]. 

Extensive research has been conducted to address the coordinated planning and operation 

in the gas and electricity network. In [2], a combined gas and electricity network expansion 

planning model is proposed to minimize gas and electricity operational cost and network expansion 

cost simultaneously. A co-optimization planning model is proposed in [3] considering the long-

term interdependency of natural gas and electricity infrastructures under security constraints. A 

long-term multi-area, multi-stage model integrated expansion planning of electricity and natural 

gas systems are presented in [4]. As for short-term economic dispatch, an operating strategy is 

proposed in [71] to coordinate the electricity and natural gas in Great Britain considering the 

uncertainty in wind power forecasts. The impact of gas network on power security and economic 

dispatch are investigated in [7], [72], [73]. In [7], [72], integrated optimization model is proposed 

to incorporate the natural gas network constraints into the optimal solution of security-constrained 

unit commitment. [73] proposes a security constrained optimal power and natural gas flow under 

N-1 contingencies. 

With the integration of variable and uncertain renewable energy, the coordination of IES 

is facing new challenges. The uncertainties are not considered in the above model so that a small 

perturbation in the wind power data may lead to non-optimality or even infeasibility. Stochastic 

programming [71], [74], [75] and robust optimization [76]–[80] are usually used to deal with wind 
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uncertainties. Several works have investigated the effect of wind power uncertainty on system 

operation. In [71], stochastic optimization is adopted in the optimization model to deal with wind 

power uncertainty, in which a large number of wind forecast scenarios are generated and a scenario 

reduction algorithm is applied. [74], [75] applied stochastic optimization to the unit commitment 

problem with a number of wind power scenarios. However, stochastic optimization requires the 

probability distribution of wind power, which is not easy to be accurately obtained in practice. In 

addition, it is time consuming to generate a large number of scenarios [76]. A robust optimization 

approach is proposed in [77] to analyze the interdependency of the IES considering wind power 

uncertainty. In this work, the wind power uncertainty is actually addressed based on scenario 

analysis with introducing a penalty coefficient for reducing variance. [76] and [78] applied robust 

optimization to unit commitment problem considering wind power uncertainty. [79] proposes a 

look-ahead robust scheduling model for wind-thermal system considering natural gas congestion, 

but the constraints of the gas pipelines are considered in a simplified manner. Actually, robust 

optimization is usually considered to be too conservative due to the fact it always tries to find the 

worst-case scenario solutions which happen at a very low probability. In addition, due to the non-

convex constraints of the pipeline and compressor model in the gas network, the robust 

optimization model for IES becomes difficult to solve. 

In this chapter, interval optimization [81], [82] is introduced to address wind power 

uncertainty, wherein the wind power is represented as interval numbers. In the interval 

mathematics, all the uncertain information will be maintained in the solving process, which is also 

easy to implement in engineering applications. The interval optimization minimizes the operating 

cost interval rather than the worst-case scenarios in robust optimization [81]. Also, it has better 

computational performance than stochastic optimization [82]. Furthermore, demand response has 
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been recognized as an effective means to enhance power system operation [83], [84], but few 

literatures considered demand response in the IES. 

Therefore, this work proposes an interval optimization based operating strategy for gas-

electricity integrated energy systems considering demand response and wind uncertainty. With the 

objective of operating cost minimization, the multi-period power and gas flow are optimally 

determined. The gas and electricity networks are modeled in detail and security operation 

constraints are imposed. Then an incentive-based demand response program is incorporated into 

the proposed model and its effects on IES operation are analyzed. With the consideration of wind 

power uncertainty, the proposed model is solved by interval optimization. Finally, a multi-scenario 

case study verifies the proposed method. 

2.2 Nomenclature 

Qw,t Production of gas well w at time t. 

Qw,max Maximum production of gas well w. 

Qw,min Minimum production of gas well w. 

fmn Gas flow from node m to node n. 

m Pressure of gas node m. 

Cmn Flow factor of pipeline m-n. 

Hj,t Horsepower of compressor j at time t. 

Qd,t Gas load d at time t. 

Qf,t Gas consumption of gas-fired unit f at t. 

Pd,t Electric load d at time t. 

Pc,t Power consumption of compressor c. 

RUg Ramp up limit of unit g. 
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RDg Ramp down limit of unit g. 

Pl,max Power flow limit of line j. 

Rk,t Spinning reserve of unit k at time t. 

Qr,t Responsive gas load r at time t. 

Cg,r,t Incentive price to gas load r at time t. 

Kg,r Elasticity of gas load r. 

g Proportion of gas DR participation. 

Qn,t Unserved gas load n at time t. 

Rj,max Maximum compression ratio of j. 

Rj,min Minimum compression ratio of j. 

Qs,t Capacity of storage s at time t. 

Qs,max Maximum capacity of storage s. 

Qs,min Minimum capacity of storage s. 

IRS Hourly inflow limit of storage s. 

ORS Hourly outflow limit of storage s. 

Pw,t Wind power w at time t. 

Pg,t Generator g output at time t. 

Pg,max Maximum output of generator g. 

Pg,min Minimum output of generator g. 

GSF Generation shift factor. 

Rt,min Required system reserve at time t. 

Pr,t Responsive electric demand r at time t. 

Ke,r Incentive price to electricity load r at t. 
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Ke,r Elasticity of electricity load r. 

e Proportion of electric DR participation. 

Pi,t Unserved electric load i at time t. 

2.3 Gas-Electricity Integrated Energy System Modeling 

2.3.1 Natural Gas network model 

The natural gas network is composed of gas well, gas pipeline, compressor, gas storage 

and gas loads. Natural gas is produced at gas wells and transmitted through pipelines propelled by 

compressors then delivered to the gas load sites. The gas storage provides a buffer to coordinate 

the usage of gas during multiple periods. The steady state mathematical models of each component 

are presented below. 

2.3.1.1 Gas Wells 

Natural gas is injected from gas wells, which are commonly located at remote sites. The 

gas suppliers are modeled as positive gas injections at the gas well nodes. In each period, upper 

and lower limits are imposed on the available production of gas suppliers limited by the physical 

characteristics and long-term, mid-term gas contracts. 

,min , ,max ,w w t w GWQ Q Q w A    (2.1) 

where Qw,max and Qw,min are the maximum and minimum gas supply of gas well w, AGW is the set 

containing all the gas well. 

2.3.1.2 Gas Pipelines 

The gas flow through the pipeline is driven by the pressure difference between the two 

ends of a pipeline. Meanwhile, the physical factors, such as the length, diameter, operating 

temperature, altitude drop, and the friction of pipelines, also affect the gas flow. 
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The gas flow from node m to node n, fmn (kcf/hr) is expressed as 

2 2sgn( , )

1
sgn( , )

1

mn m n mn m n

m n

m n

m n

f C   

 
 

 

 


 

 

 (2.2) 

where m and n are the pressures at node m and n respectively; sgn(m,n) indicates the direction 

of the gas flow, when it is 1, the gas flows from node m to n. Cmn is a constant related to the 

physical characteristic of each pipeline, given by 

5

0 mn
mn

0 mn mn a mn

T D
C =3.2387

L GF Z T
 (2.3) 

where T0 is the standard temperature, 520° R; 0 is the standard pressure, 14.65 psia; Dmn is the 

internal diameters of pipeline between nodes m and n, inch; G is the gas specific gravity (air = 1.0, 

gas = 0.6); Fmn is the friction factor of the pipeline; Za is the average gas compressibility factor; 

and Tmn is the average gas temperature. According to [5], Fmn varies as a function of the diameter 

Dmn, 

1/3

0.032
mn

mn

F =
D

 (2.4) 

2.3.1.3 Gas Compressors 

During the transmission of gas in pipelines, the gas compressor stations are installed to 

provide pressure for the gas flow to overcome friction. The gas flow from node m to node n through 

the compressor j, fmn is expressed as 

2 1

sgn( , )
max( , )

[ ]
min( , )

j

mn m n
m n

j j

m n

H
f

k k 

 
 

 




 (2.5) 

where kj1, kj2, and  are empirical parameters related to the compressor properties, Hj represents 
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the power of compressor j, subject to the physical bound of the compressor. 

,min ,maxj j jH H H   (2.6) 

where Hj,max and Hj,min are the maximum and minimum allowed pressure of the compressor. 

The compression ratio between the outlet node and inlet node is subject to the following 

constraint: 

,min ,max

max( , )

min( , )

m n
j j

m n

R R
 

 
   (2.7) 

where Rj,max, and Rj,min are the maximum and minimum allowed compressor ratio. 

The gas compressor must consume horsepower Hj to produce pressure. If the compressor 

node is coupled with an electricity node, the power will be supplied by the electricity network. In 

this case, Hj is regarded as an electricity load and will be addressed in the power flow. Otherwise, 

the compressor will consume natural gas directly from gas flow to provide Hj, expressed as 

2( )j j j jc j jQ H c b H a H    (2.8) 

where aj, bj, and cj are the coefficients of the gas consumption of the compressor j. 

2.3.1.4 Gas Storage 

Gas storage facilities provide a buffer to coordinate the gas flow during multi-period 

horizon. The gas storage level, gas withdrawal and injection amount are subject to the capacity of 

the storage and in-flow and out-flow rates limit. 

,min , ,maxs s t sQ Q Q   (2.9) 

 , , , 1s s t s t s t sIR dQ Q Q OR      (2.10) 

where Qs,max and Qs,min are the maximum and minimum operating storage capacity. IRs and ORs 

are the inflow and outflow rate limit of the storage. 
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2.3.1.5 Gas Load 

The natural gas load includes residential, commercial and industrial loads. The gas-fired 

generators are taking an increasing share of the overall gas demand. The gas load could be regarded 

as negative gas injections at the gas load nodes, denoted as Qd,t, dAGD, AGD is the set of gas load. 

2.3.1.6 Gas Flow Nodal Balance 

At each node in the gas network, the total natural gas flow injection to a node is equal to 

zero: 

( )cd F =-         
inj nw w n d ns s nf f ccnd np

Q I Q I Q I Q I Q I HIf ΔQ  (2.11) 

where Inw, Ins, Inf, Inr, Inp and Inc are the incidence matrices of gas wells, storages, gas-fired units, 

gas load, pipe lines and compressors, respectively. Q is the unserved gas load. Note that each 

incidence matrix I has a dimension of (number of nodes) by (number of components), while each 

gas quantity matrix Q has a dimension of (number of components) by (time horizon). 

2.3.2 Electricity Network Model 

A DC power flow model is adopted in this paper to represent the power flow in electricity 

network. In the electricity sector, the operation constraints are provided as follows. 

1) Power flow nodal injection 

d        w ginj lw lg ld lc cP I P I P I P I P ΔP  (2.12) 

where Pw is wind output, Pg is the thermal generator output (including gas-fired generators), Pd is 

the electrical load, and Pc is the power consumption of the gas compressor. P is the potential load 

shedding. 

2) Power generation constraints: the output power of a thermal generator is kept within its 

physical limits 
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,min , ,maxg g t gP P P   (2.13) 

where Pg,max and Pg,min are the maximum and minimum power generation of the thermal unit g. 

3) Ramping up and down constraints: the ramping up and down rates of a thermal 

generator are subjected to its physical limits 

, , 1t tg g gUP RP    (2.14) 

1, ,t t ig gP P RD    (2.15) 

where RUg and RDg are the maximum ramping up and down rates of the thermal unit g. 

4) Power transmission constraints: each transmission line in the electricity network has a 

maximum capacity. GSF is the generation shift factor with a dimension of (number of 

lines) by (number of buses), while PLmax has a dimension of (number of lines) by (time 

horizon). 

max max  L inj LP GSF P P  (2.16) 

5) Spinning reserve constraints: spinning reserve is needed to maintain the balance 

between generation and demand at all times. Traditionally, spinning reserve is usually 

equal to the capacity of the largest generator or a certain percentage of the peak load to 

address load forecasting errors. Wind power uncertainty is represented by uncertainty 

bounds, which are actually interval numbers, and addressed by interval mathematics in 

this paper. The uncertainty of wind power is addressed in the power balancing 

constraint in (2.12) through interval numbers. For deterministic model, additional 

spinning reserve is required for the wind power uncertainty. However, in this paper, 

the impact of wind power uncertainty is addressed through interval numbers. For each 

specific wind power scenario within the wind power uncertainty bounds, there is a 

corresponding optimal solution that dispatches the output power of thermal generators. 
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Thus, the uncertainties of wind forecasts are taken into account implicitly through the 

interval numbers of wind power [85], [86]. The optimal scheduling of system operation 

based on the interval mathematics is able to deal with the wind power variations within 

the uncertainty bounds. Therefore, the spinning reserve in this model only needs to 

address the load forecasting errors in a traditional way. 10% of the maximum load is 

set as the spinning reserve requirement to address the load uncertainty. 

, ,mink t t

k

R R  (2.17) 

where Rk,t is the spinning reserve of thermal unit k at time t, and Rt,min is the reserve requirement 

of the system at time t. 

It can be seen that the gas-fired generators serve as the power source in electricity network 

and natural gas load in gas network meanwhile. So, the gas-fired generators are the components 

that link the two sectors together. The model of gas-fired generators is represented by a quadratic 

function of output power with respect to the fuel consumption as expressed in (2.18). 

2

, , 2, , 1, , 0,( )g i ng i i ng i i ng i i NGP Q k Q k Q k i N      (2.18) 

where NNG is the set of gas network nodes. k2,i, k1,i, and k0,i are the fuel consumption coefficients 

of the gas-fired generator i. and Qng,i is the amount of natural gas supplied to the gas-fired generator 

i. 

2.3.3 Incentive Demand Response 

To evaluate the effects of demand response of residential consumers on electricity and 

natural gas demand, two incentive demand response programs are designed as linear functions 

with respect to the compensation price provided by utilities. At different nodes, the prices for 

demand response are different. The incentive prices for gas and electricity loads at each node are 
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taken as the decision variables in the optimization model, which could provide a reference for the 

utilities. The response from the consumers is modeled as a linear function of the compensation 

price. When the compensation is high, more consumers are willing to participate into the demand 

response.  

, ,( )r g r g,r g rQ f C =K C   (2.19) 

e, , e,( )r b e r rP f C =K C   (2.20) 

0 , , ( )r d g gGDRQ Q r A d L r      (2.21) 

0 , , ( )r d e eEDRP P r A d L r      (2.22) 

where Qr and Pr are the reduced gas and electric load under the incentive price of Cg,r and Ce,r, 

respectively. Kg,r and Ke,r are the corresponding load elasticity. AGDR and AEDR are the set of gas 

and electric load that participate in demand response programs; Lg(r) and Le(r) are the 

corresponding gas and electric load index of the rth DR participant. g and e are the proportion 

of the gas and electricity load that signed the demand response contract with the utility, assumed 

to be 10%. In this paper, our focus is to analyze the effects of demand response on the coordinated 

operation of IES, the models of demand response are designed to be linear. Actually, more accurate 

models could be adopted but may also need to decompose to piecewise linear functions when the 

optimization model is solved. With the interactions of demand response, the nodal balance 

equations of electricity and gas networks are rewritten as 

( )r

d

F =-

       

   

inj nw w ns s nf f nd

n np c

d

r nc

Q I Q I Q I Q I Q

I Q HI If ΔQ
 (2.23) 

            inj lw lg ld lr r lc c lbw g d DRP I P I P I P I P I P I P ΔP  (2.24) 

It is worth noting that the utility could implement both electricity and natural gas demand 
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response coordinately to achieve the overall economic operation of IES. 

2.4 Optimization Model for IES Considering Demand Response 

2.4.1 Deterministic Optimization Model for IES Coordinated Operation 

The total operating costs of the IES include two parts: the costs of electricity network 

consisting of the generation costs of non-gas power generators, the penalty for unserved power 

load and costs for electricity demand response; and the costs of the natural gas network consisting 

of costs of gas production, cost of compressors, and penalty for unserved gas load and cost for gas 

load demand response. It should be noted that the gas-fired generators are considered as a type of 

natural-gas load in the gas network. The generation cost of gas-fired generators mainly comes from 

the fuel cost, which is counted in the production and operation costs of gas network. The objective 

function of the optimal operation strategy in IES is given by 

, , ,

, , , e,

min ( ) ( ( )g g t g c c t g d t

t g c d

ui i t ug n t g r r r r

i n r r

J f P Q H Q

+ P Q + C Q C P

 

 


  




    



   

   

X
X ）

   (2.25) 

where  X is the control variable set: X={Pg, , H, Cg,r, Ce,r}, including power output of each thermal 

unit, pressure of each node, horsepower of each compressor, and price of demand response. 

Subject to  

Gas network constraints (2.1), (2.2), (2.5)-(2.10), (2.18), (2.20), (2.22) 

Electricity network constraints (2.13)-(2.17), (2.19), (2.21), (2.24) 

where fg(Pg,t) is the cost function of all thermal generators. Pi,t is the amount of unserved 

electricity load; Qd,t is the residential gas demand; Qn,t is the unserved amount of gas load. ul 

and ug are the penalty of unserved electricity and gas load, 1,000 $/MWh, and 200$/kcf, g is the 



19 

price for producing each kcf gas, 6.23 $/kcf. The last term is the total cost for paying the demand 

response program. 

2.4.2 Interval optimization model for IES coordinated operation 

2.4.2.1 Interval based nonlinear optimization 

As one of the effective alternatives to address uncertainties, interval analysis was firstly 

proposed by Moore [87]. The only available information is lower and upper bounds for inexact 

parameters. Then interval analysis was extended to interval mathematical programming by Huang 

[88]. The interval mathematics based optimization is able to address the uncertainties by interval 

numbers without requirements about accurate probability distribution information. It optimizes the 

output bounds regarding given input intervals with acceptable computational time. It has  already  

been  applied  in  the boundary estimation  of  power  flow  calculation with parameter uncertainty 

[82]. In this work, interval optimization is introduced to solve the optimal operation problem in 

gas-electricity IES. 

The general mathematic formulation of a nonlinear optimization based on interval analysis 

is expressed by 

min ( , )

. . ( , ) [ , ], ,

[ , ], [ , ],

I n

i i i i

I I

i i i i

f

s t g b b b i L

U U U U i Q

 

   

   

    

X
X U

X U X

U U U U

 (2.26) 

where X is an n-dimensional vector of the decision variables, U is the q-dimensional uncertain 

vector represented by interval numbers, I

ib  is the interval of the ith constraint. 

To evaluate the optimal values, an order relation of interval numbers is introduced to 

compare two intervals [89], in which an index of interval possibility degree is used to indicate the 

possibility of interval A  B. Then the uncertain constraints can be converted to deterministic 
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constraints 

( ( ) )I I

i i iP g b  X  (2.27) 

where [0,1]i  , which is a predefined possibility, and ( ) [ ( ), ( )]I

i i ig g g X X X . Different from 

interval based linear optimization, this model has to be solved by two optimization process. 

( ) min ( , ), ( ) max ( , )i i i ig = g g = g 

U U
X X U X X U  (2.28) 

Thus, all the uncertainty constraints have been transformed to deterministic constraints. 

Next step, the objective function is also needed to be transformed to a deterministic 

objective function. For the uncertain objective function ( , )f X U , let ( ) [ ( ), ( )]If f f X X X  

be represented by the mean and width of the interval as ( ), ( )m wf fX X , where 

( ) ( )
( )

2

( ) ( )
( )

2

m

w

f +f
f =

f f
f

 

 


X X
X

X X
X

 (2.29) 

The mean value indicates the expected optimal value and the width denotes the uncertainty 

level of the optimal solution. In the context of uncertainty, we are trying to find a solution with 

minimum mean as well as the width. Then the uncertain objective function can be transformed to 

a deterministic multi-objective function that minimize both the mean and width of the interval 

objective value, 

min( ( ), ( ))m wf f
X

X X  (2.30) 

Similarly, two optimization processes are applied to obtain ( )f 
X  and ( )+f X  

( ) min ( , ), ( ) max ( , )+f = f f = f

U U
X X U X X U  (2.31) 

For this deterministic objective function and constraints, a weighting factor  could be 

applied to solve this multi-objective optimization model, expressed as 
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min ( ) (1 ) ( ) ( )

. . (2.27),

m w

n

f f + f

s t

  



X
X X X

X
 (2.32) 

The above model can be solved by a two-stage optimization. The upper stage is to search 

the optimal decision variables. According to the decision variables from the upper stage, the 

intervals of objective functions and constraints are calculated at the lower stage. 

2.4.2.2 Interval optimization model for IES coordinated operation 

With the consideration of wind power uncertainty, the interval mathematics is applied to 

the above deterministic optimization model. The wind power uncertainty is represented by interval 

numbers, defined by the upper and lower bounds of wind power forecasts. 

, , , , }w t w t w t w tW {P |P P P t T     ，  (2.33) 

Eq. (2.32) represents the interval numbers of wind power for each time interval during the 

study period T. The interval numbers are the upper and lower wind power uncertainty bounds that 

are obtained by wind power forecasting. The wind power forecasting techniques are referred to 

[90]–[92], which propose statistics methods for determining the interval numbers of wind power 

prediction. In this paper, we assume that the wind power uncertainty bounds are already obtained 

based on existing wind power forecasting techniques. 

In interval optimization, with regard to the interval input of wind power, the objective value 

( , )J
wind

X P , i.e. the operating cost of the systems is obtained in the form of intervals, denoted as 

( ) , ( )= J J    X X ,  

( ) min ( , ), ( ) max ( , )
W W

J = J J J 

 


w w

w w
P P

X X P X X P  (2.34) 

The objective function of IES optimal operation in (2.24) and the constraints in terms of 

w
P  are represented in the interval form, thus we have the interval based optimization model of IES 
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optimal operation. 

, , ,

, , , e,

min ( ) ( ( )g g t g c c t g d t

t g c d

ui i t ug n t g r r r r

i n r r

J f P Q H Q

+ P Q + C Q C P

 

 


  




    



   

   

wind
X

X P， ）

 (2.35) 

W
w

P , , , ,[ , ]i w w g i d i c i r i iP P P P P P P P         (2.36) 

The constraints in the deterministic model (2.25) will be modified in terms of interval 

numbers to include the uncertainty wind power interval then this interval based IES coordinated 

operation can be solved. 

It should be noted that, in this work, the ramping limits of thermal and gas-fired generators 

(2.14)-(2.15) and capacity limits of gas storage (2.10) are involved in the multi-period constraints. 

The dimension of the optimization problem increases substantially due to the existing coupling 

between the different sub-periods of time. The optimization model is implemented in MATLAB 

with YALMIP and BONMIN solver on a PC with Intel Core i7 3.00 GHz CPU and 8 GB RAM. 

2.5 Case Study and Results 

The effectiveness of the proposed method was evaluated on two systems: a six-bus 

electricity network with seven-node natural gas network and the IEEE 118-bus with 14-node gas 

network. 

2.5.1 Six-bus Electricity Network with Seven-node Natural Gas Network 

A small IES consisting of a six-bus electricity network and a coupled seven-node gas 

network is depicted in Figure 2.1. In the electricity network, three gas-fired generators are located 

at node 1, 2 and 6 respectively; three electricity loads are at node 3, 4 and 5; a 70 MW wind turbine 

(WT) is installed on node 3. In the gas network, two gas wells are at node 6 and 7 respectively, 
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two residential gas loads are at node 1 and 3; and a compressor is installed on the pipeline between 

node 2 and 4. A gas storage is located at gas node 1. The two networks are coupled at three gas-

fired generators, corresponding to gas load 1, 3, and 5. The detailed parameter data can be found 

in [93]. The wind power forecast data and its 20% uncertain bounds are shown in Figure 2.2. The 

multipliers of total electricity and gas load are shown in Figure 2.3. The scheduling horizon is 24 

hours. The penalty for electricity load shedding is 1,000 $/MW and 200 $/kcf for gas load 

shedding. 

 

G1G1 G2G2

G3G3PL2PL2
PL3PL3

PL1PL1

77

66

4422

5533
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WTWT

 

Figure 2.1 Six-bus electricity network coupled with a seven-node gas network 
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Figure 2.2 Wind power forecast data with 20% uncertain interval 

 

Figure 2.3 Base electricity load and residential gas load 
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2.5.1.1 Deterministic IES Model 

First, the base case with wind forecast and base load data (named Case 0) is solved using 

the deterministic IES model. The results of power generation scheduling are shown in Figure 2.4, 

and the pressure at each node of the gas network is shown in Table 2.1. The gas production of gas 

wells is shown in Figure 2.5. Figure 2.6 shows the gas volume in the gas storage during the 

scheduling horizon. The storage level at the end of the day will be equal to that at the start of the 

day. No electricity load or natural gas load is shed. The output of unit 2 and 3 is very low since 

they are too expensive. By checking other results such as power flow and gas flow results, all the 

values are within corresponding security constraints of system operation.  

 

 

Figure 2.4 Optimal output of each unit in Case 0 

 



26 

 

Figure 2.5 Gas production of gas wells in Case 0 

 

Figure 2.6 Gas volume in gas storage in Case 0 
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Table 2.1 Pressure at each node of gas network in Case 0 for 1-24 h 

/psia 1 2 3 4 5 6 7 8 

Node1 116.23 113.62 112.51 110.98 109 107 105 102.7 

Node2 151.05 152.35 153.09 154.33 156 159 162 166.2 

Node3 156.16 160.07 162.23 164.74 168 172 177 182.8 

Node4 79.39 80.82 81.52 82.87 85.3 89 91 96.08 

Node5 161.2 164.45 166.15 168.7 173 177 182 188.6 

Node6 182.25 186.27 187.96 191.81 198 207 213 222.7 

Node7 102.22 103.88 104.65 106.21 109 113 116 121.5 

/psia  9 10 11 12 13 14 15 16 

Node1 101 100 100 100 100 100 100 100 

Node2 169 170 170 170 170 170 170 170 

Node3 187 188.6 188 188 189 190.4 190 189 

Node4 99 100 100 100 100 100 100 100 

Node5 193 194.6 194 194 194 195.4 195 195 

Node6 229 230.9 229 229 229 230.1 230 229 

Node7 124 126.3 127 128 127 126.4 127 130 

/psia 17 18 19 20 21 22 23 24 

Node1 100 100 100 100 100 100 100 100 

Node2 170 170 170 170 170 170 170 170 

Node3 188 187.01 185 184 184 185 188 192 

Node4 100 100 100 100 100 100 100 100 

Node5 194 193.03 192 191 191 192 194 196 

Node6 229 228.14 227 226 227 227 229 231 

Node7 132 132.11 134 134 134 134 132 131 
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To conduct a comparative study, several cases are designed to evaluate the interdependency 

between electricity and gas network. In Case 1, 2, and 3, the residential gas loads are increased by 

20%, 30%, and 50% respectively. The power output of Unit 1 in the above cased are shown in 

Figure 2.7. And the comparison results of total cost, unserved electricity and gas loads during the 

scheduling horizon are shown in Table 2.2. 

 

Figure 2.7 Power output of Unit 1 in Case 0-3 

 

Table 2.2 Comparison results of the cases 

 Total cost ($) Total unserved electricity load(MW) Total unserved gas load(kcf) 

Case 0 1435328.02 0 0 

Case 1 2197233.20 588.79 0 

Case 2 2889961.51 1163.9 461.61 

Case 3 5770446.32 1575.9 12578.0 

Comparing Case 0 and Case 1, it can be seen that when the gas load increases, at 7th hour, 

the pressure different between node 1 and node 2 reach the limit. There will be not enough gas 
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supply for the gas-fired generations, leading to large amount of electricity load shedding. When 

the gas load increases further, the gas load shedding also occurs. The operating cost increases 

dramatically with the unserved load amount due to the large penalty for energy imbalance. 

2.5.1.2 Deterministic IES Model with Demand Response 

The incentive demand response program described in 2.3 is applied to the deterministic 

IES model. Based on Case 1, three cases with electricity demand response, gas demand response, 

and gas-electricity demand response are studied, which are denoted as Case 1-DR1, Case 1-DR2, 

and Case 1-DR3 respectively.  

 

Figure 2.8 Power output of Unit 1 under different DR Cases 
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Figure 2.9 Power output of Unit 1 under different DR cases 

 

Table 2.3 Electricity DR prices at each load node in Case 1-DR1 

Price($/MW) 1 2 3 4 5 6 7 8 9 10 11 12 

Load 1 23.47  0  0  0  0  5.48  41.91  42.15  42.15  54.58  54.59  55.58  

Load 2 23.47  0  0  0  0  5.48  41.91  42.15  42.15  60.54  60.54  61.54  

Load 3 23.47  0  0  0  0  5.48  41.91  42.15  42.15  59.41  59.41  59.41  

Price($/MW) 13 14 15 16 17 18 19 20 21 22 23 24 

Load 1 54.58  54.58  55.58  54.58  54.58  54.58  62.54  71.91  56.22  55.28  42.15  42.15  

Load 2 60.54  60.54  60.54 60.54  60.54  60.54  69.36  79.75  62.35  62.35  42.15  42.15  

Load 3 59.41  59.41  59.41  59.41  59.41  59.41  68.07  78.27  61.19  60.18  42.15  42.15  
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The results of the above three cases are compared with those of Case 1, shown in Table 

2.4. 

Table 2.4 Comparison results of the DR cases 

 Total cost ($) Electricity DR cost ($) Gas DR cost ($) Operating cost ($) 

Case 1 2,197,233.20 - - 2,197,233.20 

Case 1-DR1 1,866,126.23 24,968 - 1,841,158.23 

Case 1-DR2 1,588,197.77 - 9,459.2 1,578,739.57 

Case 1-DR3 1,562,941.00 23,607 9,400.3 1,529,933.70 

 

From the comparison in Table 2.4, it can be observed that the coordinated gas-electricity 

DR program achieves better system economy than single electricity DR or natural gas DR. The 

utilities will gain more profit if they implement a coordinated DR program in the IES. 

2.5.1.3 Sensitivity analysis of incentive demand response 

A sensitivity analysis of incentive DR with respect to the price elasticity of demand is 

performed to demonstrate the impact of DR model on system operation. In this study, based on 

Case 1, the assumption that electricity DR is implemented on PL1 and the gas DR is implemented 

on gas load node 1 is used for this sensitivity analysis.  
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Figure 2.10 Sensitivity analysis of price elasticity of demand response 

 

The total operation costs with respect to the price elasticity variations of the above nodes 

are shown in Figure 2.10. Denote the price elasticity of electricity load and gas load as Ke and Kg, 

respectively. It can be observed that when Ke = 0 and Kg  = 0, that is, no DR is implemented, the 

operating cost is very high. With the increase of the elasticity, the total operating cost will decrease. 

From the viewpoint of a utility, they expect to see more consumers participate in the incentive DR 

programs. In this way, the price elasticity will be higher and the operating cost will be reduced. 

However, in real application, the elasticity is closely related to the willingness of the consumers to 

participate in the incentive DR programs. It should be noted that the scales of price e elasticity of 

electrical load and gas load are different because electrical load and gas load use different base 

units MW and kcf, respectively. 
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2.5.1.4 Interval optimization based IES model with demand response 

According to the formulations and algorithms in 2.4.2, the interval optimization is applied 

to the IES model with DR. 3 different levels of wine power uncertainty are considered based on 

Case1. 10%, 20% and 30% wind power intervals are considered in Case I1, Case I2, and Case I3 

respectively with coordinated gas-electricity DR program. Through solving the optimization 

model, the intervals of operating cost in the above three cases are summarized in Table 2.5.  

 

Table 2.5 Intervals of the operating costs of IES 

Uncertainty level (%) Maximum costs ($) Minimum costs ($) 

Case 1 (0%) 1,562,941.00 1,562,941.00 

Case I1 (10%) 1,579,311.65 1,548,089.09 

Case I2 (20%) 1,598,311.05 1,540,999.18 

Case I3 (30%) 1,620,279.62 1,541,541.58 

 

 

Form Table 2.5, it can be observed that with higher uncertainty level of wind power, the 

width of the operating cost interval is larger. The interval results will provide the decision with the 

information that the operating cost will fall in which interval under a certain level of wind power 

uncertainty. The interval power output scheduling of Unit 1 under 20% wind power uncertainty is 

shown in Figure 2.11. 
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Figure 2.11 Power output of Unit 1 under 20% wind power uncertainty 

 

2.5.2 IEEE 118-Bus System with 14-node Gas Network 

In this section, a large gas and electricity IES consisting of a modified IEEE 118-bus system 

and 14-node gas network [94] is used to demonstrate the performance of the proposed method. In 

the modified 118-bus system, a total capacity of 1460 MW wind power is distributed on node 12, 

17, 56, and 88, electricity DR program is implemented on node 3, 7, 16, 29, 40, 55, 80, 88, 95, and 

112; gas demand response is implemented on 3, 5, 10, 11 and 14. The system structure is shown 

in Figure 2.12. 
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Figure 2.12 System configurations of the IEEE 118-bus with 14-node gas network IES 

 

Using the interval based optimization method in this large IES, the optimal operating cost 

intervals at each hour under 20% wind power uncertainty are shown in Figure 2.13. 

 

 

Figure 2.13 Operating cost intervals of IES system under 20% wind power uncertainty 

 

The simulation is carried out using the BONMIN nonlinear optimization solver in 

YALMIP [95], the computational time of the algorithm on this system is 38.056 seconds, which 

perfectly satisfies the requirements of practical implementation. 
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2.6 Conclusions 

In this chapter, an interval optimization based operating strategy of gas-electricity IES is 

proposed to optimally coordinate the operations of the coupled two energy sectors considering 

demand response and wind power uncertainty. The contributions of this work are summarized as 

follows: 

1) The electricity and gas networks are modeled in details in purpose of coordinated operations 

within the security constraints of both systems.  

2) An incentive demand response program is incorporated into the model that provides utilities 

with an intelligent compensation prices for electricity and gas demand response. The utility 

companies could coordinate the peak electricity and gas load through the optimized IES 

demand response.  

3) Interval optimization is applied on the optimization model of IES coordinated operation to 

address wind power uncertainty.  

4) The proposed method is verified by two case studies. The demand response program is 

proven to be effective in improving the operation efficiency in the IES. The interval 

optimization provides profit intervals with regarding to the wind power uncertainty levels 

for the decision makers. 

The interval based optimization framework of gas-electricity IES and the demand response 

program is easy to implement for utilities or ISOs that supply both gas and electricity to customers. 

The proposed method has a promising value in engineering applications. The uncertainty of 

demand response can also be represented as interval numbers in the framework, which will be 

addressed in our future work. 
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CHAPTER 3 

STOCHASTIC OPTIMAL SCHEDULING FOR INTEGRATED ENERGY 

SYSTEMS CONSIDERING GAS-ELECTRICITY N-1 CONTINGENCIES 

AND WIND POWER UNCERTAINTY 

3.1 Introduction 

In today’s energy system, the interdependency between natural gas and electricity networks 

has increased dramatically. The natural gas network and wind power could affect the security and 

economics of power system operation. An optimal operation strategy is necessary for the gas-

electricity integrated energy systems (IES) considering security constraints of both natural gas 

network and power system.  

Extensive work has been done to analyze the effect of the interdependence between gas 

networks and power system operation and to optimally coordinate the energy flow in gas-

electricity IES. A unified gas and power flow is proposed in [69] for a steady-state analysis of 

electricity and natural gas coupled systems. In [93], the security constrained unit commitment 

(SCUC) problem is modeled including natural gas transmission constraints. A multi-period 

generalized network flow model of the U.S. integrated energy system is built in considering the 

coordination of various energy resources. An integrated optimization model is proposed in [10] to 

incorporate the impact of the interdependency of electricity and natural gas networks on power 

system dispatch. Operating strategies for the coordinated operation of electricity and gas networks 

in Great Britain are investigated in [71] considering the uncertainty in wind power forecasts. The 

short-term scheduling of integrated gas networks and hydrothermal power systems was solved in 
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[96]. In [97], the coordination of interdependent natural gas and electricity infrastructures is 

optimized for firming wind power variability in day-ahead scheduling. Further, demand response 

is incorporated into the day-ahead scheduling of coordinated natural gas and electricity networks 

in [98]-[99].  

However, few existing works addressed the contingencies in a gas-electricity IES. With 

the increasing interdependency of gas-fired generation, the impact of contingencies on the security 

of IES operation has developed to an extent that we cannot ignore. For instance, an interruption or 

pressure loss in a natural gas pipeline may lead to the loss of a generator or limit the amount of 

fuel delivered to gas-fired generators [72]. Thus, the economic and secure operation of the power 

system will be affected by the gas network contingencies. Several events have evidenced security 

issues in IES. In Texas, in 2011, some pipelines were frozen by the extreme weather, leading to 

several hours of power outages. In Colombia, in 2012, the rupture of a pipeline reduced the gas 

supply for gas-fired generators resulting in a power interruption [100]. The 2006 reliability report 

by NERC [101] pointed out that gas transmission security is important for power system reliability. 

In 2013, FERC also requested to include unexpected fuel transportation contingencies in power 

systems [102]. 

In existing literatures, [71] and [103] analyzed the impact of gas pipeline contingencies on 

power systems in the case studies but did not model the contingencies into the optimal dispatch 

problem. Reference [73] is the only work that proposed an optimal operation model considering 

N-1 contingencies for IES. In [73], a security-constrained optimal power and natural gas flow 

model is proposed, and a contingency-analysis is developed for gas network using linear sensitivity 

factors. However, this is a single-period energy flow formulation, and it does not take into account 
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the uncertainty in wind power. The uncertainty plays an important role in todays’ power systems 

due to the increasing penetration of volatile renewable energy. 

With the motivation discussed above, this work proposes a stochastic multi-period optimal 

operating strategy for gas-electricity IES considering both gas and electricity N-1 contingencies, 

as well as wind power uncertainty. The non-linear constraints of gas pipelines and compressors 

are linearized by the first-order Taylor expansion to improve their computational efficiency. The 

wind power uncertainty in IES is addressed by stochastic programming. Through solving the 

proposed optimization model, the expected operating cost is minimized considering a set of 

probabilistic wind power scenarios, and the multi-period power and gas flow are optimally 

determined. The effectiveness of the proposed method is verified by a coupled IEEE 6-bus 

electricity network and 7-node gas network. Further, the performance of the proposed method is 

evaluated by a coupled IEEE 118-bus system and 14-node gas network. The impacts of electricity 

network N-1 contingencies, gas network N-1 contingencies, and wind power uncertainty on IES 

operation are investigated.  

3.2 Nomenclature 

NG Set of natural gas-fired generators 

CG Set of coal-fired generators 

GW Set of gas wells 

ED Set of electric demands 

GD Set of gas demands 

GC Set of gas compressors 

GS Set of gas storages 

GP Set of gas pipelines 
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ET Set of power transmission lines 

GN Set of nodes in the gas network 

EN Set of nodes in the electricity network 

T Scheduling horizon 

S Set of wind power scenarios 

B Electric network DC power flow B matrix 

Qw,t Gas production of well w at time t 

Qw,max, Qw,min Maximum / Minimum gas production of well w 

fp,t Gas flow through pipeline p at time t 

fc,t Gas flow through compressor c at time t 

πi,t  Pressure of node i at time t 

πi,max, πi,min Maximum/minimum pressure limit at node i 

kc1, kc2 Coefficients of compressor c 

Hc,t Horsepower of compressor c at time t 

Rc,max, Rc,min Maximum/minimum compression ratio of compressor c 

Qc,t Gas consumption of compressor c at time t 

c, c, c Gas consumption coefficients for compressor c 

Qgs,t Stored natural gas in storage gs at time t 

dQgs,t Gas in-flow/out-flow from storage gs at time t 

Qgs,max, Qgs,min Maximum/minimum gas capacity of storage gs 

IRgs, ORgs Gas in-flow/out-flow rate limit of storage gs 

Qng,t Gas consumption of gas-fired unit ng at time t 

k0g, k1g, k2g Gas consumption coefficients of gas-fired unit g 
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fg( ) Cost function of coal-fired generator g 

λg Unit production cost of natural gas, $/kcf 

λue, λug Penalty for electric/gas load shedding 

Pw Power output of wind farm w 

Pg,t Power output of generator g at time t 

Pg,max, Pg,min Maximum/minimum output of generator g  

θj Voltage angle of bus j 

Pflow,l,t Power flow through line l at time t 

Pl,max Power flow limit of line l 

RUg, RDg Ramp up/down limit of generator g 

SRg,t Reserve capacity from generator g at time t 

SRt,min Minimum required reserve at time t 

P, Q Unserved electric load and natural gas load 

s index of wind power scenario 

s probability of scenario s 

Ilw, Ilg, Ilf, Ild Incidence matrix of wind turbines, thermal units, power transmission lines, 

and electric loads. 

Ins, Inw, Ing, Ind, Inp, Inc Incidence matrix of gas storages, gas wells, gas-fired units, 

gas loads, pipelines, and compressors. 

Other variables with a superscript of s identify the variables in wind power scenario s. 
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3.3 Nominal IES Operation Considering N-1 Contingencies In Gas and Electricity 

Networks 

The gas-electricity IES is composed of two energy sectors, the gas network and the 

electricity network. Due to the tight coupling between these two networks, it is desired to model 

them as an integrated energy system. In this section, a deterministic optimal scheduling model for 

IES is built based on the modeling of the gas and electricity networks. Then, to ensure that the IES 

is able to sustain N-1 contingencies in gas and electricity networks, N-1 contingencies in both 

networks are modeled and incorporated into the optimal scheduling model. Further, considering 

wind power uncertainty, the proposed model evolves into a stochastic optimal scheduling model 

considering both gas and electricity N-1 contingencies in IES in the presence of wind power 

uncertainty. 

3.3.1 Deterministic Optimal Scheduling Model for IES 

In this subsection, we introduce the gas-electricity coordination problem and present a 

deterministic optimal scheduling model for IES based on modeling gas and electricity networks. 

The natural gas network consists of gas wells, gas pipelines, compressors, gas storages and 

gas loads. Natural gas is produced at gas wells and transmitted through pipelines propelled by 

compressors. Then, it is delivered to the gas load sites. The gas storage provides a buffer to 

coordinate the usage of gas during multiple periods. The steady state mathematical models of gas 

networks are built. More details about the gas network model are referred to [104], [105]. The 

electricity network adopts a DC power flow model, which is applicable for high voltage-level 

transmission systems. Gas-fired generators link the gas network and electricity network together 

to form an integrated energy system. The operations of gas networks and electricity networks 

should be coordinated to achieve the optimal system economy. In the deterministic optimal 
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scheduling model for IES, the objective of IES operation is to minimize the total operation cost 

during the scheduling horizon, including minimization of the production cost of natural gas, 

generation cost of coal-fired power plants, and penalties for electricity and gas load shedding. The 

constraints of the gas network and the electricity network are imposed. The optimization model of 

the deterministic optimal scheduling of IES is formulated as follows. 
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In the above model, constraint (3.2) indicates the limits of the available production of gas 

well in a day-ahead market when they are subjected to physical capability and long-term or mid-

term contracts. Eq. (3.3) depicts the relationship between gas flow through a pipeline and the 

pressures at the two ends of the pipeline. mnGN(P) indicates that nodes m and n are the two ends 

of pipeline p. sgn(m,n) indicates the direction of the gas flow. When it is 1, the gas flows from 

node m to n. Cmn is the Weymouth factor related to the physical characteristics of each pipeline, 

such as the temperature, pipeline diameters, friction factor, etc. Eq. (3.4) imposes the bounds on 

the pressure of each node. The gas compressors are modeled as (3.5)-(3.8), where mnGN(c) 

indicates that nodes m and n are the two ends of compressor c: (3.5) represents the gas flow from 

node m to node n through the compressor c; (3.6) indicates the limits of the horse power that the 

compressor can provide; the compression ratio between the outlet node and inlet node is subject 

to (3.7); and the gas consumption of compressors is modeled as (3.8). The gas storage is modeled 

as (3.9)-(3.10), where (3.9) represents the volume capacity of gas storage operation and (3.10) 

imposes the inflow and outflow rate limits on gas storage. Finally, the nodal balance equation for 

each node in gas network is presented in (3.11). 

2) Electricity network constraints 

, , , ,( ) 0, , ( ),l j t k t flow l tB P l ET k EN j t         (3.12) 

,max , , , , ,l flow l t l maxP P P l ET t       (3.13) 

min max

, , ,j j t j j EN t        (3.14) 
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,min , ,max ,g g t gP P P g NG CG t    ,  (3.15) 

, 1, , ,g gt t gRU g NG G tP CP       (3.16) 

1, , , ,tg ggt RD g NGP P CG t       (3.17) 

, ,min , ,g t t

g

SR SR g NG CG t     (3.18) 

         
lw lg lf fw g low l dd ld e

I P I P I P I P I P  (3.19) 

A DC power flow model is adopted for all electricity networks. The generation limit of 

thermal units is shown in (3.15), and the ramping up/down limits are represented by (3.16) and 

(3.17), respectively. (3.18) indicates the spinning reserve requirement. The power flow on each 

transmission line is subject to power transmission capacity as shown in (3.13). The DC power flow 

equations are represented by (3.12) and (3.14). EN(j) is the set of nodes connected to node j. In 

(3.14), the chosen max and min bus angle values are 0.6 radians [106]. The nodal power balance 

is shown in (3.19). 

3) Linkage between gas and electricity networks 

2

, 2, , 1, , 0, ,ng t g g t g g t gQ k P k P k g NG ng GD        (3.20) 

Gas-fired units are the components that link the two energy networks together. They 

consume natural gas as a type of gas load in gas networks, and are involved in gas nodal balance 

constraint (3.11). Meanwhile, they generate electric power for electricity networks and, thus, are 

involved in power nodal balance (3.19). 

3.3.2 Modeling N-1 Contingencies 

The ability of gas delivery will be limited due to the gas pipeline trip, which will 

significantly limit the generation capability of gas-fired units. Thus, in this work, both N-1 
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contingencies in gas network and electricity network are considered in the economic dispatch of 

IES. The optimal scheduling scheme of the proposed model should be able to sustain any single 

contingency in gas and electricity networks. The worst scenario is that N-1 contingencies occur in 

gas and electricity networks at the same time. This would impact both the deliverability of the gas 

network to satisfy gas loads and gas-fired units as well as the capability of power transmission. 

The modeling of N-1 contingencies in gas and electricity networks will be introduced as follows. 

3.3.2.1 N-1 contingency in gas network 

To incorporate the N-1 contingency into the optimization model, a state matrix N1g is 

introduced to represent the states of pipelines, where “1” indicates the normal state and “0” 

indicates the contingency occurrence of a pipeline. N1g is a Np(Np+1) matrix, where Np is the 

number of gas pipelines. Each row indicates an operation state. There are Np+1 scenarios in total 

considering the normal operation state and all N-1 contingency states. The state matrix N1g is given 

by 

( 1)

1 0 1 1

1 1 0 1
1

1 1 1 0
p p

g

N N

N

 

 
 
 
 
 
 

 (3.21) 

To include every possible N-1 contingency in gas network, the pipeline constraints (3.3)-

(3.4) should be rewritten as 

2 2

, , , , ,sgn( , ) (1 ) 0p t m t n t mn m t n t gpc gpf C + N1 M         (3.22) 

2 2

, , , , ,sgn( , ) (1 ) 0p t m t n t mn m t n t gpc gpf C N1 M          (3.23) 

,gp gpc p t gp gpcM N1 f M N1    (3.24) 
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where N1gkc is the element in the pth row and cth column in the state matrix, which is a binary 

element. It indicates the status of the pth pipeline in the cth contingency. Mgp is for the pth pipeline 

constraints, which is often called the “big M” value that is large enough to make the constraint 

nonbinding. It must be larger than or at least equal to 2 2

,max ,minmn m nC   . When N1gpc = 0, the 

constraints (3.22)-(3.24) are relaxed. Then the constraints for the pipeline can be satisfied all the 

time. 

3.3.2.2 N-1 contingency in electricity network 

Similarly, a state matrix is defined for an electricity network as N1e to include N-1 

contingencies of power transmission, where Ne is the number of power transmission lines. 

( 1)

1 0 1 1

1 1 0 1
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1 1 1 0
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 (3.25) 

The elements in the matrix represent the state of the transmission lines. “0” indicates loss 

of a transmission line and “1” indicates normal operation. The transmission constraints in (3.12) 

and (3.13) are rewritten as 

, , , ,( ) (1 1 ) 0l j t k t flow l t elc elB P N M       (3.26) 

, , , ,( ) (1 1 ) 0l j t k t flow l t elc elB P N M       (3.27) 

,max , , ,max1 1l elc flow l t l elcP N P P N    (3.28) 

where N1elc is the binary element in the lth row and cth column in the state matrix. The “big M” 

value Mel for the lth transmission line flow constraints in (3.26)-(3.27) should be no less than 

max min( )lB   . 
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3.3.3 Linearization of the Gas Network Model 

It comes to our attention that the inclusion of a gas network makes the optimization model 

non-linear and non-convex due to the pipeline and compressor models, i.e., constraints (3.3), (3.5) 

and (3.22)-(3.24). The non-convexity characteristics make the solution difficult and time-

consuming. As a result, usually, only local optimums can be found. 

The Taylor-series expansion [107] is adopted in this paper to linearize the pipeline 

constraints. The first-order Taylor expansion of equation (3.3) at the given pressure values M and 

N is given in (3.29). 
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 (3.29) 

Introduce a set of Z evenly distributed points to split the range of node pressures for inlet 

and outlet nodes respectively, which gives Z tuples denoted as (πM,z, πN,z) for pipeline mn, where z 

= 1, 2,…, Z. Hence, replace the nonlinear Weymouth equation (3.3) with a set of linearized 

inequality constraints as 
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where for each pipeline p, only the Z inequality constraints that have the best approximation will 

be binding. 

The quantity of natural gas flow in pressurized pipelines is also linearized using the first-

order Taylor-series expansion at a fixed point (Hc0, πm0, πn0). Check the initial compression ratio 

R0=πm0/πn0 and make sure it is within the limits of the compressor. The linearized formulation of 

(3.5) is then given by: 



49 

 

   

, ,

,0
0

2 1 0

, ,

, 0 , 0

, ,

.
j

c t c t

c tc
c

c t c t

m t m n t n

m

c

t n t

t

fH
f H H

Hk k R

f f



   
 


    



 
     
 

 (3.31) 

where the partial derivatives can be found in Appendix B of Ref.  [93]. A 50,000-sample Monte 

Carlo simulation shows a maximum approximation error of 0.5% of the accurate value, which is 

considered to be highly satisfactory. 

In addition, the quadratic cost functions in (3.8) and (3.20) can be easily linearized by 

piece-wise linearization with the introducing of binary variables. Hence, the proposed model can 

be reformulated into a MILP problem. 

3.4 Stochastic Optimal Scheduling Model for IES Considering N-1 Contingencies 

and Wind Uncertainty 

In this paper, scenario based stochastic programming is applied to address wind power 

uncertainty. The stochastic approach is used to model decision-making problems for finding the 

optimal solution considering all possible scenarios. The stochastic optimal scheduling for IES aims 

to minimize the expected operating cost with N-1 network constraints under a set of probabilistic 

wind power forecast scenarios. 

3.4.1 Stochastic Programming 

The key steps in stochastic programming are scenario generation and reduction. A set of 

possible scenarios is generated to model wind uncertainties based on the Monte Carlo simulation 

with known probability distribution function [108][109]. For each sampling period, the main 

principle is to take a sample from a probability distribution function such that for a given value x, 

we have an associated probability p(x).  
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A large number of scenarios are required for accurate modeling of any stochastic process; 

however, this can make the optimization model intractable. Considering computational 

requirements, an effective scenario reduction technique is adopted to obtain a small number of 

scenarios with a high probability of occurrence to approximate the initial probability distribution. 

The basic idea of scenario reduction is to eliminate scenarios with very low probability and bundle 

scenarios that have a high probability. Accordingly, scenario-reduction algorithms determine a 

subset of scenarios and calculate probabilities for new scenarios, such that the reduced probability 

measure is closest to the original probability measure in terms of a certain probability distance 

between the two measures [110]. 

The scenario-reduction algorithm reduces and bundles the scenarios using the Kantorovich 

distance (KD) matrix. KD is defined as the probability distance between two different scenario sets, 

which can be used to evaluate the closeness of different scenario sets. The KD between scenario i  

and j is 

, 2
( ) , 1,2,...,KD i j i jL i j N       (3.32) 

Fast forward selection (FFS) method [111] is used in this paper. The FFS is to select a subset 

S from the original finite scenario set Ω such that S is the subset of the prescribed size that has the 

shortest distance to the remaining scenarios. Considering the probability of each scenario, the 

weighted distance of the scenario to the others is 

, 2
( ) 1,2,...,KD i j i j iWL p j N        (3.33) 

For each scenario i, the probability distance of every candidate scenario is calculated. The 

closest scenario j is obtained and marked according to the minimum weighted distance 

min{WLKD(i,j)}. Then, this scenario is deleted from Ω and added to S. The new probability of 
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preserved scenarios is equal to the sum of its former probability and the probability of deleted 

scenarios that are closest to it. The above process is repeated until the size of S reaches the 

predefined value. 

The resulting several scenarios are representative for modeling wind power uncertainties. 

3.4.2 Stochastic Optimization Model of IES Operation 

Let s, sS, denote the probability of S different wind power scenarios. The objective of 

stochastic optimal scheduling model for IES considering both gas and electricity N-1 contingencies 

and wind uncertainty is to minimize the expected total operating cost, described as (3.34). 
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 (3.34) 

s.t.  Gas network constraints in (3.2), (3.22)-(3.24), (3.5)-(3.11) 

Electricity network constraints in (3.26)-(3.28), (3.14)-(3.19) 

  All constraints are under scenario s, sS 

For each wind forecast scenario, the constraints of both the gas and the electricity networks 

should be satisfied. This optimization model will seek the optimal scheduling of the gas-electricity 

IES in the presence of wind power uncertainty which is able to maintain N-1 security in both gas 

and electricity networks. 

3.5 Case Studies 

In this section, a six-bus electricity network with a seven-node natural gas network is used 

to illustrate and verify the proposed method. Then the IEEE 118-bus with 14-node gas network is 
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adopted to evaluate the performance of the proposed method in large systems. The simulation has 

been performed in MATLAB with YALMIP [95] and CPLEX solver, which has the capability to 

solve large-scale optimization problems. The simulations are carried out on a PC with Intel Core i7 

3.00 GHz CPU and 8 GB RAM. 

3.5.1 Six-bus Electricity Network with Seven-node Gas Network 

An IES consisting of a 6-bus electricity network and a coupled 7-node gas network is 

depicted in Figure 3.1. The detailed network parameters are given in [93]. In the electricity network, 

three gas-fired generators are located at nodes 1, 2 and 6; three electricity loads are at nodes 3, 4 

and 5; and a wind turbine (WT) is installed on node 3 with the wind power forecast curve shown in 

Figure 3.2. In the gas network, two gas wells are at nodes 6 and 7; a gas storage is installed at node 

1; two residential gas loads are at nodes 1 and 3; and a compressor is installed on the pipeline 

between nodes 2 and 4. The total electricity load and residential gas load are shown in Figure 3.3. 

The scheduling horizon is 24 hours. The penalties for electric and gas load shedding are 1,000 

$/MW and 200 $/kcf. 
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Figure 3.1 Six-bus electricity network coupled with a seven-node gas network 

 

 

Figure 3.2 Wind power forecast 
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Figure 3.3 Total electricity load and residential gas load 

 

In this subsection, four cases are designed to investigate the impact of power transmission 

contingencies and gas pipeline contingencies on day-ahead scheduling of IES:  

 Case 1 (base case): IES scheduling without contingencies;  

 Case 2: IES scheduling with electricity N-1 contingencies;  

 Case 3: IES scheduling with gas pipeline N-1 contingencies; 

 Case 4: IES scheduling considering both electrical network and natural gas pipeline N-1 

contingencies.  

The above cases are discussed as follows. 

In Case 1, to analyze the impact of wind power on the economic dispatch of IES, two 

scenarios with/without wind power are compared and the results are shown in Figure 3.4. It can be 

observed that with wind power integration, the power output of the generators decreases, especially 

for the expensive units G2 and G3. Since wind power has no fuel cost, the total operating cost of 

wind-integrated system is 1.39M$, which is low compared to 1.44M$ without wind. Hence, the IES 
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could accommodate a certain level of wind power penetration, and wind power can contribute to 

the economic operation of IES. 

 

 

Figure 3.4 Comparison of unit dispatch with and without wind power 

 

To investigate the impact of N-1 contingencies on economic dispatch of IES, the optimal 

scheduling results in Cases 2, 3, and 4 are compared with deterministic wind power shown in Fig. 

2. Note that wind power uncertainty is further considered in Case 5, after the discussion of Cases 

1-4. 

Figure 3.5 shows the power scheduling of G1 in Case 1-4. Comparing Case 1 and Case 2, 

to ensure the system could sustain electric power network N-1 contingency, the output power of G1 

is limited and more power is generated by the expensive units G2 and G3. When the contingency 

occurs, the output of units can be re-dispatched within its ramping ability. If Case 1 and Case 3 are 

compared to study the impact from gas contingencies, the gas flow in the gas network is 

redistributed such that the IES could address any gas network outage while satisfying residential 
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gas loads and gas-fired generators as much as possible. Since the residential gas loads have higher 

priority, the fuel deliverability of gas network for gas-fired generators is limited, and electric load 

shedding occurs at hours 19-21 in Case 3. In Case 4, both power transmission and gas transmission 

contingencies are considered, contributing to a more conservative solution.  

 

 

Figure 3.5 Comparison of unit dispatch in Case 1-4 

 

Table 3.1 Comparison of the optimization results of Case 1-4 

Cases Case 1 Case 2 Case 3 Case 4 

Daily production cost ($) 1,394,850 1,421,623 1,436,093 1,438,951 

Load shedding cost ($) 0 0 23,529 23,529 

Total operating cost ($) 1,394,850 1,421,623 1,459,622 1,462,480 

Load shedding (MW) 0 0 23.53 23.53 
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The total operating costs for the 24-hour period and load shedding amounts in the four cases 

are summarized in Table 3.1. From Table 3.1, it can be observed that gas N-1 contingencies have a 

significant impact on the IES operation. Additional costs are incurred to improve the security of 

IES operation. With increasingly tight coupling between the two energy sectors, it may be necessary 

to consider both N-1 contingencies in IES operation to prevent possible severe consequences.  

More details of the optimization results are shown and compared in Figure 3.6, Figure 3.7 

and Figure 3.8. Figure 3.6 shows the power flow on Branch 1-4. Since the output power of G1 is 

adjusted for N-1 contingencies, the power supply from G1 to PL2 is reduced and more power is 

supplied by G2 through Branch 2-4. Hence, the power flow of Branch 1-4 decreases in Cases 2-4 

in comparison with the base case.  

The comparison of gas flow on Pipeline 2-5 (in gas network) is made in Figure 3.7. Since 

G2 and G3 consume more gas in Case 2, the gas flow from node 5 to node 2 decreases if compared 

with Case 1. It can be observed that the gas flows of Case 3 and Case 4 are basically the same, 

which means that they are both considered gas N-1 contingencies. The nodal pressures in gas 

networks play a key role in optimizing gas flow. The pressures of node 2 in the four cases are 

depicted in Figure 3.8. When gas transmission N-1 contingencies are considered, the pressures of 

node 2 in Cases 3 and 4 are lower than in Cases 1 and 2. This is to keep a certain amount of pressure 

margin to address any possible gas network contingency.  
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Figure 3.6 Power flow of Branch 1-4 in Case 1-4 

 

 

Figure 3.7 Gas flow of Pipeline 2-5 in Case 1-4 
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Figure 3.8 Pressures at node 2 in gas network in Case 1-4 

 

Another case, Case 5, is designed to study stochastic IES optimal operation considering 

wind power uncertainty and N-1 contingencies. In this case, based on the forecasted wind power, 

we randomly generated 1000 scenarios and then reduced to 5 representative scenarios with 

probabilities through the application of the scenario reduction technique. The five wind power 

forecast scenarios and their corresponding probabilities are shown in Figure 3.9. 

The optimization results of the IES considering both power transmission line and gas 

pipeline contingencies are shown in Table 3.2. The expected total operating cost of IES is 

$1,462,576 considering all probabilistic wind power forecast scenarios. With higher wind power 

penetration, the impact of wind power scenario on IES operation will be more obvious. For nominal 

IES operation model, the wind power can be fully utilized in this case. However, considering N-1 

contingencies, the wind power uncertainty affects the amount of load shedding. It indicates that 

wind power plays a more significant role in N-1 secured IES. Therefore, the proposed stochastic 
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method is effective to address wind uncertainty and N-1 contingencies (gas and electricity) in the 

IES optimal dispatch. 

 

 

Figure 3.9 Wind power scenarios 

 

Table 3.2 Optimization results of Scenarios 1-5 in Case 5 

Scenarios Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 

Production cost ($) 1,438,613 1,438,817 1,440,226 1,437,817 1,437,542 

Load shedding cost ($) 23,417 23,242 23,912 24,460 23,974 

Total operating cost ($) 1,462,031 1,462,060 1,464,139 1,462,332 1,461,516 

Load shedding (MW) 23.42 23.24 23.91 24.46 23.97 

 

3.5.2 IEEE 118-bus System with 14-node Gas Network 

To evaluate the performance of the proposed method, a large gas and electricity IES 

consisting of a modified IEEE 118-bus system and 14-node gas network [93] is used in this study. 
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In the modified 118-bus system, a total capacity of 1460 MW wind power is distributed on nodes 

12, 17, 56, and 88, the system structure is shown in Figure 3.10.  
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Figure 3.10 IEEE 118-bus system with 14-node gas network IES 

 

Table 3.3 Optimization results of Scenarios 1-5 in IEEE 118 bus with 14-node IES 

Scenarios Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 

Probability 0.04 0.27 0.38 0.18 0.13 

Total operating cost ($) 4,099,622 3,821,587 3,890,246 3,925,841 3,775,983 

 

The proposed stochastic N-1 model for this IES is solved, and the optimization results for 

each scenario are shown in Table 3.3. The expected total operating cost is $3,871,636.  

For the base case, the computational time is 1.37s for the linearized model using Taylor 

expansion in this paper. The linearization also facilitates the computation for solving stochastic N-

1 IES operation model, which requires much more computational resources. 

Similar to the previous case, 5 cases are simulated and the computational time for each case 

is summarized in Table 3.4.  
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Table 3.4 Computational time of Case 1-5 

Cases Case1 Case2 Case3 Case4 Case5 

CPU Time(s) 1.37 1736 6.34 2028 13140 

 

From Table 3.4, as expected, it can be observed that the computational time is significantly 

increased due to the N-1 constraints. The computational time is acceptable for day-ahead economic 

dispatch for IES. The computational time could be reduced by considering only several important 

or most credible contingencies based on the operators’ experience. Also, the time can be further 

lowered by using a more powerful computer. 

3.6 Conclusions 

In this chapter, an optimal scheduling model for gas-electricity IES is proposed with the 

considerations of wind uncertainty and gas-electricity N-1 contingencies. Two case studies are 

conducted to demonstrate the effectiveness and performance of the proposed method. The 

contributions of this paper are summarized as follows. 

1) Both power transmission and natural gas pipeline N-1 contingencies are modeled and 

incorporated into the optimization of IES operation. The impacts of electricity N-1 

contingency only, gas network N-1 contingency only, and both contingencies on IES 

operation are investigated. 

2) The non-convex gas network model is linearized by the first-order Taylor expansion, which 

significantly reduces the solution complexity.  

3) The impact of wind power uncertainty on gas-electricity IES is addressed by stochastic 

programming. 

4) The proposed model ensures that the IES is able to sustain any possible contingency in gas 

network or electricity network in the presence of wind power uncertainty. 



63 

5) The proposed model could coordinate various energy sources and optimize the energy flow 

in an integrated network with transmission constraints. 

With increasing natural gas being utilized for electric power generation, both gas and 

electricity networks are closely coupled as a unified IES. The proposed method has practical 

significance for the secure and economic operation of IES, especially considering the high-

penetration of wind power. 
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CHAPTER 4 

ROBUST SCHEDULING FOR WIND INTEGRATED ENERGY SYSTEMS 

CONSIDERING GAS PIPELINE AND POWER TRANSMISSION N-1 

CONTINGENCIES 

4.1 Introduction 

The significant amount of natural gas being utilized for power generation and high 

penetration of wind power has significant impact on modern power system operation. To address 

the wind power uncertainty, robust optimization has been applied to provide a robust scheduling 

that is immune to any possible scenario of the uncertainty set [76]. In [112], an affine multi-period 

robust OPF model is proposed for power network with renewables and storages. Now, there is a 

general consensus that the impact of gas network on the security of power network cannot be 

ignored. An interruption or pressure loss in natural gas pipeline may lead to a loss of generator or 

limit the amount of fuel delivered to gas-fired generators. In [93], a model for security-constrained 

unit commitment is presented to include gas network constraints. In 2013, FERC suggested to 

include unexpected fuel transportation contingencies in the power system operation [102]. 

Meanwhile, the research in power system security or contingency continues developing [113], 

[114]. However, there are few literatures that consider the impact of gas pipeline contingency and 

power system contingency simultaneously, not to mention renewable uncertainties. With this 

motivation, this work proposes a robust scheduling model considering both gas pipeline and power 

transmission line N-1 contingencies in the presence of wind uncertainty. 
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4.2 Modeling of Gas Pipeline and Power Transmission N-1 Contingencies in Gas-

Electric Networks 

The detailed gas network and power network models can be found in [93]. The gas network 

constraints have direct impacts to the dispatchability of gas-fired generators, thus affecting the 

power generation schedules. The constraints of gas pipelines and power transmission lines are 

modeled to include possible single contingency in gas-electricity systems.  

A set of binary variables for state c and gas pipeline p, N1gpc is introduced for Ng pipelines 

in the gas network. N1gpc=0 represents contingency occurring on the pipeline p. For c=0, N1gc0=1 

for Ng pipelines, indicating the normal operation state. 
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Similarly, for electricity network [115], N1elk is introduced for the state k and power 

transmission line l, lNe.  

The gas network constraints with contingencies are modeled in (4.4)-(4.6):  

2 2

, , , , ,sgn( , ) (1 ) 0mn t m t n t mn m t n t gpc gpf C N1 M          (4.4) 

2 2

, , , , ,sgn( , ) (1 ) 0mn t m t n t mn m t n t gpc gpf C N1 M          (4.5) 

,gpc gp mn t gpc gp-N1 M f N1 M     (4.6) 

where t is the time interval, fmn is the gas flow from node m to node n of pipeline p,  is the nodal 

pressure, min and max are the upper and lower pressure limits, Cmn is a physical constant for 
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pipeline p, and Mgp is for the pipeline k constraint, which is called the “big M” value which is 

larger than or at least equal to 2 2

,max ,minmn m nC    to ensure the constraint nonbinding. When 

N1gkc=0, the constraints (4.4)-(4.5) are relaxed and the pipeline constraints can be satisfied all the 

time and (4.6) forced the gas flow to zero. 

The electricity network constraints with contingencies are modeled in (4.7)-(4.9). 

, , , ,( ) (1 ) 0l i t j t flow l t elk elB P N1 M      , i, j(i) (4.7) 

, , , ,( ) (1 ) 0l i t j t flow l t elk elB P N1 M       (4.8) 

,max , , ,maxl elk flow l t l elkP N1 P P N1    (4.9) 

where B is the susceptance matrix, Pflow,l is the power flow on line l, ,maxlP  is the transmission limit, 

 is the voltage angle, Mel is a big value that is larger than max min( )lB   , and  is the set of 

buses. (i) is the set of buses connected to bus i. The first-order Taylor expansion is adopted for 

linearizing the gas pipeline and compressor constraints such that the gas-electricity network 

constraints are linearized to facilitate the implementation of robust optimization. 

4.3 Robust Scheduling Model 

Denote the set of wind farm buses as , the predicted wind power as PW, and the uncertain 

wind power as WP . The uncertainty set of wind power is defined by ={ ,W iP :PW,iPW,ii WP

PW,i+PW,ii, i}, where i is the uncertainty level. 

Considering the N-1 contingencies of gas pipelines and power transmission lines, the robust 

scheduling model for wind integrated energy systems is formulated as 
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s.t. ( , ) 0 , ,e i t    x w w Γ  (4.11) 

      ( , ) 0 ,g i NG t   x y  (4.12) 

where x is the power scheduling decisions, y is the gas network scheduling decisions, and w is the 

uncertain wind power. The objective function is to minimize the total operation cost, including 

power generation cost, gas production cost, electric load and gas load shedding cost over the 

scheduling horizon T under the worse-case wind power scenario. The quadratic generation cost 

function regarding the thermal output PGi is linearized by Nk piecewise linear segments with slop 

cik and a fixed cost ci0. G is the set of all thermal generators, G=CGNG, where CG and NG are 

the sets of coal-fired and gas-fired generators, respectively. GW, PD, and GD are the sets of gas 

wells, electric loads, and gas loads. Q, P, and Q are the gas production, electric load shedding, 

and gas load shedding, respectively. g, ps, and gs are the gas price, power load shedding penalty, 

and gas load shedding penalty, respectively. Eq. (4.11) represents the electricity network 

constraints with power transmission N-1 contingencies, and (4.12) are the gas network constraints 

considering pipeline N-1. 

The automatic generation control (AGC) for adjusting power output of units is utilized for 

accommodating wind power uncertainty. The participation factor βi is used to allocate the power 

adjustment of unit i, 1, 0,i i

i G

i 


   . According to [112], by eliminating the uncertain 

variables, the adjustable robust counterpart of this model is derived as a quadratic programming 

problem, which can be solved by available optimization software. 
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4.4 Case Studies 

A modified IEEE 6-bus electricity system coupled with a 7-node natural gas network is 

used for case study. The details of the system can be found in [78]. A wind farm is connected to 

node 2. The wind power penetration r=20%. The proposed model is implemented in MATLAB 

and solved using CPLEX on a PC with Intel Core i7 3.00 GHz CPU and 8 GB RAM. Four case 

studies are designed and discussed as follows:  

Case 1: robust scheduling with no contingencies; Case 2: robust scheduling considering 

only power transmission line N-1 contingencies; Case 3: robust scheduling considering only gas 

pipeline N-1 contingencies; Case 4: robust scheduling considering both N-1 contingencies. 

Table 4.1shows the results for all cases with r=20% and  varying from 0 to 60%, and Case 

1 under r=20% and =0 is the basis for comparison with other scenarios. Table 2 shows the results 

for all cases with  =20 and r varying from 0 to 60%, and Case 1 under =20% and r=0 is the basis 

for comparison with other scenarios. It can be observed that if compared with Case 1, Case 2 

(considering power transmission N-1 contingencies only) or Case 3 (gas pipeline contingencies 

only) leads to an increase in total generation cost. By considering both of the contingencies, the 

proposed model generates the most conservative solution (Case 4) at the highest generation cost. 

It can be easily observed that the robust scheduling raises the cost in order to address wind power 

uncertainty. This is reasonable and anticipated. Similarly, from Table 4.2, we can observe that with 

more constraints, a high-cost solution is needed. Also, the total cost reduces when more renewables 

are integrated. 
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Table 4.1 Percentage increase in expected cost under different uncertainty levels with 20% wind 

power penetration 

 Case 1 Case 2 Case 3 Case 4 

0% 0     0.0496     0.1144     0.1199 

20% 0.0076         0.0571     0.1219 0.1274 

40% 0.0171     0.0663     0.1311     0.1367 

60% 0.0280     0.0768     0.1416     0.1471 

 

 

Table 4.2 Percentage increase in expected cost with different wind penetrations under 20% 

uncertainty level 

r Case 1 Case 2 Case 3 Case 4 

0% 0 0.0900 0.2676 0.2726 

20% -0.0928 -0.0482 0.0101 0.0151 

40% -0.1363 -0.1243 -0.0940 -0.0929 

60% -0.1654 -0.1645 -0.1456 -0.1455 

 

 

Further, the proposed model is applied to a modified IEEE 118-bus system with 14-node 

gas network. A 20% penetration of wind power is distributed at nodes 12, 17, 56, and 88. The 

uncertainty level is set to 20%. Here, 5 single power transmission contingency scenarios and all 

possible gas pipeline contingencies are considered. The computational time of the four cases are 

summarized in Table 4.3. 
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Table 4.3 Computational time of robust model 

 Case 1 Case 2 Case 3 Case 4 

CPU time(s) 5.8 80.2 6.9 110.3 

 

Not surprisingly, the N-1 contingencies brings more computational burden. With more 

contingencies, the computational time increases substantially because each transmission 

contingency scenario needs a full N-1 transmission model while the gas network N-1 does not slow 

down the computation much due to the limited number of pipelines. The computational time can 

be acceptable for day-ahead power scheduling, esp., if only a few root-cause N-1 contingencies 

are modeled and a few critical lines are monitored. 
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CHAPTER 5 

ROBUST EXPANSION CO-PLANNING FOR INTEGRATED GAS AND 

ELECTRICITY ENERGY SYSTEMS CONSIDERING WIND POWER AND 

LOAD UNCERTAINTIES 

5.1 Introduction 

During the past decade, power systems have undergone significant revolutions with the 

trend moving towards low-carbon and economic energy system. The outstanding features include 

the rapid development of natural gas-fired generators and renewable generation. Under the Clean 

Power Plan [116], the development of natural gas and renewables is accelerated, altering the way 

power grids operate. Driven by large gas reserve, high efficiency, operation flexibility, and low 

emissions, natural gas-fired generators gained increasing popularity for electricity generation. In 

New England ISO (ISO-NE), more than 50% of electricity is now generated from natural gas, 

compared to only 15% in 2000 [70]. The interdependency between gas and electricity networks is 

dramatically increased. The construction of new gas-fired generators should consider not only the 

capability of electricity network to send out electric power but also the fuel supply constraints of 

gas network for power generation [117]. In addition, the operation and planning of the gas-

electricity integrated energy systems (IES) is facing more challenges that come from the 

uncertainties of increasing penetration of renewable generation and multiple energy loads, i.e., 

electric load and gas load. For future energy system planning, it necessitates a coordinated 

expansion planning model for gas and electricity IES that fully consider the interactions between 

the two energy sectors and system uncertainties [72][73].  
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There is some existing literature that addresses the coordinated operation and planning of 

gas and electricity IES. The short-term coordinated scheduling of gas and electricity IES have been 

studied in [7], [118]–[124]. For the co-planning of IES, in [2], an expansion planning model for 

combined gas and electricity networks is proposed to minimize gas and electricity operational 

costs and network expansion costs simultaneously. In [125], a reliability-based optimal planning 

model is proposed for an electricity and natural gas interconnection of energy hubs with multiple 

energy infrastructures. A long-term multi-area, multi-stage model integrated expansion planning 

of electricity and natural gas systems is presented in [4]. In [117], a linear programming approach 

is proposed for expansion co-planning in gas and electricity markets. In [126], a multi-objective 

optimization model for combined gas and electricity network expansion planning is proposed and 

solved by NSGA-II, which is a heuristic method and cannot guarantee global optimal solution. In 

[3], a security-constrained co-optimization planning model of electricity and natural gas 

transportation infrastructures is proposed. 

Extensive researches have incorporated the uncertainties into power system planning. In 

[127], a tri-level reliability-constrained robust power system expansion planning framework is 

presented modeling the uncertainties of wind power and electricity demand. A robust optimization 

approach is presented in [128] for transmission network expansion planning under uncertainties of 

renewables generation and wind power. In [129], [130], stochastic programming is applied for 

power system planning under uncertainties. However, few works comprehensively consider the 

uncertain factors in the co-planning of gas-electricity IES. For the target year, the growth of both 

electric and gas loads may not be accurately predicted and the wind generation profiles are not 

forecasted perfectly. The system adequacy of the energy systems cannot be guaranteed without 

considering those uncertainties.  
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Therefore, this work proposes a two-stage robust expansion co-planning model for gas-

electricity IES considering the uncertainties of wind power, gas load and electric loads. In the 

proposed model, the first stage minimizes the total investment cost and the second stage minimizes 

the total operation cost. The non-linear constraints of gas pipelines and compressors are linearized 

by the first-order Taylor expansion such that a mixed-integer linear programming (MILP) model 

is formulated, which can be solved efficiently. Further, to incorporate the uncertain factors, a two-

stage robust optimization model is built. The locations and capacity of new gas-fired generators, 

power transmission lines and gas pipelines are optimally determined such that the future energy 

system is able to address the uncertainties of multi-energy loads growth and wind power. The 

effectiveness of the proposed method is verified by a coupled IEEE 6-bus electricity network and 

7-node gas network.  

5.2 Nomenclature 

EG Set of existing power generators 

ENG Set of existing natural gas-fired generators 

PN Set of electricity network nodes 

GN Set of natural gas network nodes 

GW Set of gas wells 

PD Set of electric demands 

GD Set of gas demands 

GC Set of gas compressors 

GP Set of existing gas pipelines 

NPGN Set of non-power gas nodes in gas network 

EL Set of existing power transmission lines 
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CG Set of candidate gas-fired generators 

CL Set of candidate power transmission lines 

CP Set of candidate gas pipelines 

 Set of wind power nodes 

T Planning time horizon 

Ilw, Ilg, Ilf, Ild  Incidence matrix of wind turbines, thermal units, power 

transmission lines, and electric loads. 

Inw, Ing, Ind, Inp, Inc Incidence matrix of gas wells, gas-fired units, gas loads, pipelines, 

and compressors. 

B Electric network DC power flow B matrix 

Qw,max, Qw,min Maximum / Minimum gas production of well w 

Cp Pipeline p flow constant  

πm,max, πm,min Maximum/minimum pressure limit at node m 

kc1, kc2 Coefficients of compressor c 

Rc,max, Rc,min Maximum/minimum compression ratio of compressor c 

c, c, c Gas consumption coefficients for compressor c 

Qng Gas consumption of gas-fired unit ng 

fg( ) Cost function of coal-fired generator g 

λg Unit production price for natural gas, $/kcf 

λue, λug Penalty for electric/gas load shedding 

Pg,max, Pg,min Maximum/minimum output of generator g  

θmin, θmax Minimum and Maximum angle limit 

Pl,max Power flow limit of line l 
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Pw Output of wind power 

ref Phase angle of reference bus at time t 

µg Energy conversion efficiency of unit g 

i ,
i , i  Uncertainty level of wind power, electric load and gas load at node i 

EENST Target value of expected energy not supplied 

, ,G elec gas

g l px x x   Status of unit g, power transmission line l, and gas pipeline p (1 

constructed, 0 otherwise) 

Qw,t Gas production of well w at time t 

P, Q Unserved electric load and natural gas load 

Qc Natural gas consumption of compressor c 

Hc Horsepower of compressor c 

fp,t Gas flow through pipeline p at time t 

fc,t Gas flow through compressor c at time t 

πm,t  Pressure of node m at time t 

Pg,t Power output of generator g at time t 

Pflow,l,t Power flow through line l at time t 

θi Voltage angle of bus i 

 

5.3 Linearized Gas Network Model 

The natural gas network consists of gas well, gas pipeline, compressor, gas storage and gas 

loads. Natural gas is produced at gas wells and transmitted through pipelines propelled by 

compressors then delivered to the gas load sites. In this paper, two types of gas loads are 

considered: gas consumptions for gas-fired generators and residential/industrial/commercial gas 
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loads. In this section, the models of the gas network are presented. In addition, the non-convex gas 

pipeline and compressor models are linearized using the first-order Taylor expansion to make the 

optimization model in Section 5.4 computational efficient and trackable.  

5.3.1 Gas Wells 

The gas suppliers are modeled as positive gas injections at the gas well nodes. In each period, 

upper and lower limits are imposed on the available production of gas suppliers limited by the 

physical characteristics and long-term, mid-term gas contracts.  In this proposed planning model, 

both natural gas storage and gas well facilities are modeled as natural gas suppliers [3]. 

,min , ,max , ,w w t wQ Q Q w GW t      (5.1) 

5.3.2 Gas Pipeline 

The gas flow through the pipeline is driven by the pressure difference between the two ends 

of a pipeline. Meanwhile, the physical factors, such as the length, diameter, operating temperature, 

altitude drop, and the friction of pipelines, also affect the gas flow. The gas flow from node m to 

node n, fp (kcf/hr) is expressed as  

2 2
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 (5.2) 

where sgn( , )m n   indicates the direction of the gas flow, when it is 1, the gas flows from node m 

to n. 
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5.3.3 Gas Compressor 

To compensate for the pressure loss, the gas compressors utilize horse power to provide 

pressure for the gas flow. 

The gas flow from node m to node n through the compressor c, fc is expressed as 

,

, , ,
, ,

2 1

, ,

sgn( , ) , ,
max( , )

[ ]
min( , )

c t

c t m t n t
m t n t
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 (5.3) 

The horse power of gas compressor c is subject to its physical limits.  

,min , ,maxc c t cH H H          (5.4) 

The ratio between the pressures of the outlet node and inlet node is limited by (5.5).  

, ,

,min ,max

, ,

max( , )

min( , )

m t n t

c c

m t n t

R R
 

 
 

 (5.5) 

The gas consumption of compressors is expressed as 

2

, , , ,( )c t c c t c c c t c c tQ f H H H       (5.6) 

5.3.4 Gas Flow Nodal Balance 

For each node in the gas network, the total natural gas positive injections and negative 

injections are balanced at each period. 

g =-      
nw w n nng d nc cd np

I Q I Q I Q I QIf ΔQ  (5.7) 

5.3.5 Linearization of Gas Network Model 

The Taylor-series expansion is adopted in this paper to linearize the non-convex equations 

(5.2) and (5.3). The first-order Taylor expansion of equation (5.2) at the given pressure values M 

and N is given in (5.8). 
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 (5.8) 

Introduce a set of Z evenly distributed points to split the range of node pressures for inlet 

and outlet nodes respectively, which gives Z tuples denoted as (πM,z, πN,z) for pipeline p, where z = 

1, 2,…, Z. Hence, replace the nonlinear Weymouth equation (5.2) with a set of linearized inequality 

constraints as 

, ,

, ,2 2 2 2,

, , , ,

,p t p p

M z N

M z

z M z N z

N z

m t n tf C C GPp
 

 
   

   
 

 (5.9) 

where for each pipeline p (from node m to node n), only one of the Z inequality constraints that best 

approximate the original constraint (5.2) will be binding [99]. 

The natural gas flow through the gas pipeline with compressors can also be linearized using 

first-order Taylor-series expansion at a fixed point (Hc0, πm0, πn0). The linearized formulation of 

(5.3) is given by 
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 (5.10) 

The initial compression ratio R0=πm0/πn0 should be checked and make sure it is within the 

compression ratio limits. In addition, constraint (5.6) can be easily linearized by piece-wise 

linearization method. Therefore, the gas network model can be linearized to facilitate solving the 

proposed two-stage robust expansion co-planning model. 
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5.4 Mixed Integer Linear Programming for Expansion Co-planning of IES 

The framework for IES expansion co-planning can be divided into two layers where the 

upper level is to optimize the investment decisions and the lower level is the optimal operation 

layer. The objective of the planning problem is to minimize the total investment cost and the 

operation cost over the planning horizon. The investment cost results from installing new 

equipment, i.e., gas-fired generators, power transmission lines, and gas pipelines. The operation 

cost consists of the gas production cost, generation cost of non-gas fired generators, as well as 

penalty for unserved electric and gas loads. The gas network uses the linearized model presented in 

Section II and the electricity network adopts the direct current (DC) power flow model. The two 

energy sectors are linked by the gas-fired generators, which can be viewed as power sources in the 

electricity network and meanwhile gas load in the gas network. The expansion co-planning model 

for gas-electricity IES can be formulated as follows.   
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 (5.11) 

s.t. 

1) Investment variables  

{0,1}, {0,1}, {0,1}

, ,

G elec gas

g l px x x

g CG l CL p CP

  

     
 (5.12) 

2) Gas network constraints:  

(5.1), (5.4)-(5.10) 
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,

gas gas

g p p t g px M xfM      (5.14) 

,, ,0 ,i t d tQ Q i NPGN t       (5.15) 

,min , ,max , ,m m t m m GN t        (5.16) 

Power network constraints: 

        
lw lg lf flow lw g dd

I P I P I P I P P   (5.17) 

,,min , ,max ,g g t gP P P g EG t      (5.18) 

,,min , ,max ,G G

g g g t g gP x P P x g CG t        (5.19) 

,, ,0 ,i t d tP P i PN t       (5.20) 

, , , ,( ) 0, ,l i t j t flow l tB P l EL t       (5.21) 

, , , ,( ) (1 ), ,elec

l i t j t flow l t e lB P M x l CL t           (5.22) 

, , , ,( ) (1 ), ,elec

l i t j t flow l t e lB P M x l CL t           (5.23) 

,max , , , , ,l flow l t l maxP P P l EL t     (5.24) 

,max , , , , ,elec elec

l l flow l t l max lP x P P x l CL t        (5.25) 

min , max , ,i t i PN t        (5.26) 

, 0,ref t t    (5.27) 

TEENS EENS  (5.28) 

In the above model, the investment decision variables of gas-fired generators, power 

transmission lines, and gas pipelines are defined as binary variables in (5.12), where 1 indicates 
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new construction and 0 otherwise. (5.1) and (5.4)-(5.10) represent the existing network model. 

(5.13) and (5.14) model the operation constraints of candidate gas pipelines. The unserved gas load 

amount is subject to constraint (5.15) and all the nodal pressure should respect its upper and lower 

limit in (5.16). In (5.13) and (5.14), Mg is the big-M value that ensures the constraints no-binding 

when this candidate pipeline is not selected. When  gas

px  = 1, the candidate pipeline will be built 

and the gas flow through this pipeline will subject to pipeline flow equation (5.8). When gas

px  = 0, 

the candidate pipeline will not be built and (5.14) forces the pipeline flow to 0.  

(5.17)-(5.28) represent the power network constraints. (5.17) is the power nodal balance 

that includes all existing and candidate generators and power transmission lines. (5.18) and (5.19) 

is the generation limits for existing and candidate generators respectively. (5.21) is the line flow 

equation of the existing power transmission lines. (5.22)-(5.23) are the operation constraints of 

candidate power transmission lines, where the Me is the big-M value for power transmission such 

that the two constraints will be relaxed if this candidate power transmission line is not selected. 

(5.24) and (5.25) are the line flow constraints for existing and candidate transmission lines. (5.26) 

is the voltage angle limit, where the chosen max and min bus angle values are 0.6 radians. The 

phase angle of the reference bus is set to 0 in (5.27). The total expected energy not supplied (EENS) 

for the target year should meet the requirement in (5.28). 

3) Linkage between gas and electricity networks 

, , ,g t g ng tP Q g ENG t     (5.29) 

, , ,G G

g t g g ng t gP x Q x g CG t       (5.30) 

The relationship between power generation and natural gas consumption is modeled 

through an energy conversion efficiency as show in (5.29) and (5.30). A typical heat rate of natural 



82 

gas is adopted. Gas-fired units are the components that link the two energy networks together. 

They consume natural gas as a type of gas load in the gas network and are involved in gas nodal 

balance constraint (5.7). Meanwhile, they generate electric power for the electricity network and 

thus are involved in power nodal balance (5.17). It is noted that the operation cost of gas-fired 

generating units is not included in the objective function since it has been reflected by the 

production cost in the natural gas network. 

5.5 Two-stage Robust Optimization Model for Expansion Co-planning of IES 

The forecasting of wind power generation, electric load demand and gas load demand will 

directly impact the investment decision of the target planning year in the expansion co-planning 

of IES [95]. A two-stage robust optimization model is formulated in this paper to address the 

uncertainties of wind power as well as electric/gas loads. The uncertainty set is defined as  

, ,, , , ,

, ,, , , ,

, , , ,, ,

: ,

: ,

: ,

w i w iw i w i i w i w i i

d i d id i d i i d i d i i

d i d i i d i d i id i d i

P P P P P P i

P P P P P P i PD

Q Q Q Q Q Q i NPGN

 

 

 

     
  

      
 

      

Γ   (5.31) 

Firstly, the model in Section III is rewritten in a compact form incorporating the 

uncertainties of wind power and load demands. 

min  T T

X,Y
C X + B Y  (5.32) 

. .s t AY D  (5.33) 

         KY u  (5.34) 

         GX-EY H  (5.35) 

         {0,1}, X u Γ  (5.36) 

where u represents the uncertain variables, i.e. wP , dP , and dQ . X is the set of investment binary 

variables and Y is the set of operational continuous variables. The terms CTX and BTY represent 



83 

the investment cost and operation cost, respectively. (5.34) denotes the constraints that contain the 

uncertain variables. (5.35) represents the constraints that include both investment variables and 

operation variables. And (5.33) summarize all other constraints of optimal gas-electricity energy 

flow.  

Further, the model (5.32)-(5.36) can be recast as a “min-max-min” two-stage robust 

optimization model as follows. Aiming to minimize the total investment and operation cost, the 

first stage determines the optimal investment decision that is prior to the realization uncertain 

variables. The second stage optimally coordinates the operation of the gas network and electricity 

network under the worst-case realization of uncertain wind power, gas and electricity load 

demands.  

 min max min


 T T

X Y Φu Γ
C X + B Y  (5.37) 

. . , {0,1}s t  AY D X  (5.38) 

 ,  Φ KY u GX-EY H  (5.39) 

The optimal solution of this model will provide a least-cost investment decision, including 

the sites and capacity of gas-fired units, installment of gas pipelines and power transmission lines 

that is robust against the uncertainties in the co-expansion planning of IES. 

5.6 Solution Methodology 

The column and constraint generation (C&CG) algorithm [96] is applied to solve the 

proposed two-stage robust optimization model of co-expansion planning of IES. The C&CG is a 

cutting plane procedure with a master-subproblem iterative process.  It has been proven to be more 

efficient than the widely-used Bender Decomposition method [97]. The implementation of C&CG 

in solving the proposed two-stage robust optimization model will be introduced in this section. 
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Firstly, the model in (5.37)-(5.39) is decomposed into a master problem (MP) and a sub-problem 

(SP).  

5.6.1 Sub-problem 

The operation subproblem is the max-min part in (5.37), which generates the worst-case 

scenario for the master problem. The optimal objective value is used to set an upper bound for 

(5.37). For a given optimal solution of the investment master problem X*, i.e. investment decision 

variables, the subproblem is expressed as follows.  




( )

*

( ) ( ) max min : ,

,

 
  

 

*

* T

u Γ Y Φ X
SP X B Y AY D

KY u GX - EY H
 (5.40) 

To solve this bi-level problem, the inner “min” primal problem, which is a linear model, 

can be converted to the “max” dual problem according to the strong duality theory. In this way, it 

becomes a “max-max” problem. Hence, the subproblem can be transformed to a single level “max” 

problem, formulated as follows. 





( ) ( ) max : 



 

* T T * T

π,λ,z,u

T T T

SP X D π +u λ + (H -GX ) z

A π +K λ +E z D

π,λ, z 0 u Γ

 (5.41) 

where , , and z are the dual variables corresponding to each constraint in (5.40). In (5.41), both 

u and  are variables, which make the term uT, thus the whole model bi-linear. However, the 

optimal solution of this subproblem will be on either the upper or lower bound of the uncertainty 

set . Thus, by using the big-M method, this bilinear term can be eliminated. The uncertainty 

variables can be expressed as 

( )     u u u u ε  (5.42) 



85 

where u and u+ are the lower and upper bound of the uncertain variables.  is binary variable. If 

=1, the uncertain variable reaches the upper bound. Then the bilinear term uT can be represented 

as 

                
T T T

T T
u λ u u u ε λ u λ ε u u λ  (5.43) 

By introducing a new continuous variable T and big-M constraints, the bilinear term can 

be linearized as  

       
T T

T
u λ u λ u u T

 (5.44) 

(1 ) (1 )M M     λ ε T λ ε  (5.45) 

M M  ε T ε  (5.46) 

Then the model in (5.41) can be reformulated as a mix integer linear programming (MILP) 

problem as 

   

  

( ) ( )

max :

(1 ) (1 )

0,1

M M

M M

  

 

  



     

  

 

*

T T
T * T

π,λ,z,ε,T

T T T

SP X

D π + (H -GX ) z u λ u u T

A π +K λ +E z D

λ ε T λ ε

ε T ε

ε π, λ, z 0

  (5.47) 

5.6.2 Master Problem 

The investment master problem is to find the optimal investment decision, which can be 

formulated as 

, ,
( ) min


 

k

T

X Y
MP C X

 (5.48) 

. . , {0,1}s t   kBY X  (5.49) 



86 

           
k k

KY u  (5.50) 

           kGX- EY H  (5.51) 

where uk represents the worst-case scenario and Yk is the optimal solution identified by the 

subproblem in the kth iteration. 

5.6.3 Column and Constraint Generation Algorithm 

The procedure of the C&CG algorithm is descried in the following steps to illustrate the 

solving process of the proposed two stage robust model.  

Initialization: set LB=-, UB=+, k=0; Set a convergence tolerance ; 

WHILE UBLB : 

Solve the MILP master problem in (5.48)-(5.51) to obtain an optimal solution X* and * and 

update the LB=max{LB, CTX*+*}; 

For the given X*, solve the MILP subproblem in (5.47), if the subproblem is feasible, the 

optimal objective ( ) *
X , the optimal solution Yk, and the corresponding worst-case scenario (*, 

u*); otherwise, ( ) *
X  is set to +. Then update the UB= min{UB, ( )T *

C X X }; 

IF ( ) *
X <+ THEN 

Create variables Yk+1 and add the following constraints to the master problem.  

1 
k

BY  (5.52) 

1 1 
k k

KY u  (5.53) 

1 
k

GX- EY H  (5.54) 

     ELSE 

Create variables Yk+1 and add constraints (5.53) and (5.54) to the master problem; 
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END IF 

1. k=k+1; 

END WHILE 

The constraints generated in Step 4 are optimality cuts and those in Step 5 are feasibility 

cuts. When the convergence criteria is reached, the iteration process stops and the optimal solution 

is achieved. This method could converge in a small number of iterations. 

5.7 Case Studies 

In this section, the proposed robust co-planning model is validated on a six-bus electricity 

network with a seven-node natural gas network. The proposed mode is implemented in MATLAB 

with YALMIP and solved by GUROBI 6.5 [131], which has the capability to solve large-scale 

optimization problems. The simulations are carried out on a PC with Intel Core i7 3.00 GHz CPU 

and 8 GB RAM. 

A small IES consisting of a six-bus electricity network and a coupled seven-node gas 

network (denoted as the P6G7IES system) is depicted in Figure 5.1. The detailed network 

parameters are given in [7]. In the electricity network, three gas-fired generators are located at 

node 1, 2 and 6 respectively; three electricity loads are at node 3, 4 and 5; a 50-MW wind turbine 

(WT) is installed on node 3. In the gas network, two gas wells are at node 6 and 7 respectively, 

two residential gas loads are at node 1 and 3; and a compressor is installed on the pipeline between 

node 2 and 4. The penalty for electricity load shedding is 1,000 $/MW and 200 $/kcf for gas load 

shedding.  
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Figure 5.1 System topology of the P6G7IES system 

 

The load blocks in the base year is shown in Table 5.1. For the target year, the electric load 

and gas load are expected to be increased by 50% and 30% respectively. The wind power output 

is divided into ten blocks within its capacity with preset probabilities, which are obtained through 

statistics analysis of typical yearly wind power profile. Combining 4 electric load blocks, 4 gas 

load blocks, and 10 wind power blocks, there are 160 scenarios generated in total with different 

probabilities during the target year. The EENS is set to 0.02% of the total electric demand in the 

electricity system. In the C&CG algorithm, the convergence tolerance is set to 1% and the MILP 

optimality gap is set to 0.01% by default. 

 

 

Table 5.1 Load blocks in base year 

Subperiod 1 2 3 4 

Duration (%) 1 29 50 20 

Electric Load (MW) 255.2 234.8 201.16 153.4 

Gas load (kcf/hour) 6048 5565.6 4838.4 4356.0 
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The candidate power transmission line data is listed in Table 5.2. For the IES network, two 

candidate pipelines and transmission lines are considered on each corridor and two candidate 100 

MW gas-fired generating units are considered on each bus. Thus, there are 12 candidate gas-fired 

units, 10 gas pipelines and 22 power transmission lines in total in this IES. The parameters of each 

gas pipeline are the same with the existing pipeline on that corridor. The investment cost for each 

pipeline is set to $1000,000 and the cost for per 100 MW gas fired unit is $ 500, 000. All the 

investment costs are annualized. 

The uncertainties of electric load, gas load, and wind power are all set to 20% in this case 

study.  

 

Table 5.2 Candidate power transmission line data 

Line From To X(p.u.) 
Capacity 

(MW) 

Investment Cost  

($/MW) 

T1 1 2 0.17 200 5000 

T2 1 4 0.258 100 12000 

T3 2 4 0.197 100 10000 

T4 5 6 0.14 100 5000 

T5 2 3 0.037 100 12000 

T6 4 5 0.037 100 10000 

T7 3 6 0.018 100 5000 

T8 1 5 0.2 100 12000 

T9 1 6 0.48 100 10000 

T10 2 5 0.31 100 12000 

T11 2 6 0.31 100 10000 
 

 

Five cases are studied. 

Case 1 (base case): IES co-planning without considering uncertainties;  

Case 2: IES co-planning considering 20% wind power uncertainty.  

Case 3: IES co-planning considering 20% electric load uncertainty; 
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Case 4: IES co-planning considering 20% gas load uncertainty.  

Case 5: IES co-planning considering all uncertainties from wind power, electric load, and 

gas load. 

By applying the robust expansion co-planning model and C&CG algorithm, the planning 

schemes of the above five cases are optimally determined and shown in Table 5.3.  

 

Table 5.3 Optimal planning schemes of Case 1-5 in the P6G7IES system 

Case Unit 
Transmission 

Line 
Gas Pipeline Total Cost (M$) 

Case 1 Bus 6 (1-5) (1-2) 319 

Case 2 Bus 6 (1-5) (1-2) 321 

Case 3 
Bus 1 

Bus 6 
(1-4) 

2(1-2) 

(5-6) 

(4-7) 

354 

Case 4 Bus 6 (1-5) 

2(1-2) 

(3-5) 

(4-7) 

383 

Case 5 Bus 1, 6 (1-4) 

2(1-2) 

(3-5) 

(4-7) 

(5-6) 

508 

 

 

Comparing Case 1 and Case 2, it can be observed that the impact of wind power uncertainty 

is not big enough to change the investment decisions. But the operation cost of Case 2 is higher 

than Case 1 due to additional operation cost induced by the wind power uncertainty. In Case 3, 

because of the electric load uncertainty, an additional gas-fired geneartor is installed on Bus 1 

compared to Case 1. To ensure the fuel supply for the gas-fired generators, four new gas pipelines 

are invested to enhance the gas network to fullfil the capability requirement of delivering natural 

gas. This reflects the interdependency between the gas network and power system. If the gas load 

uncertainty is further included, more infrustrures are added in Case 5 to ensure the energy adequcy 
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for both electricity network and gas network. Concenquently, the total cost is increased 

significantly due to higher operation cost and investement cost. 

The compuational time of the above five cases is shown in Table 5.4. Case 1 is actually a 

deterministic model without considering any uncertainties. So the solving process is very fast 

compared to the other cases. For the robust co-planning models, the C&CG algorithm in Section 

V is applied and the optimization process is finished in two iterations. If more uncertain factors 

are considered, more binary varaibles will be introduced in the robust optimiazion model and thus 

the computational time will be raised. Therefore, the computational time of Case 5 is the highest.  

 

Table 5.4 Computational time of Case 1-5 

Case Computational Time (seconds) 

Case 1 10.97 

Case 2 106.93 

Case 3 269.34 

Case 4 274.15 

Case 5 369.56 
 

 

From what discussed above, it can be observed that if all the uncertain factors are 

considered, the most conservative solution will be obtained, which causes higher cost as well as 

compuational resources. However, this would be the most robust scheme that is immune against 

all the uncertainties and ensures the energy supply capability for all the energy demands in the 

system. 

5.8 Conclusions 

This work presents a two-stage robust expansion co-planning model for gas-electricity IES 

considering the uncertainties of wind power, electric load, and gas load. The proposed model co-

optimizes the planning decisions of both gas network and electricity network fully considering their 
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interactions and uncertain factors. The impacts of various uncertain factors are studied. The case 

studies demonstrate the interdependency between gas network and electricity network and it is 

necessary to co-plan the two energy systems together. It also shows that the robust model needs 

more computational resource and higher investment cost to address the uncertainties.  

The main contributions of this are summarized as follows. 

(1) Jointly consider the gas network and electricity network to formulate an expansion co-

planning model. The gas network model is linearized and the planning model is 

formulated as a MILP problem, which can be solved efficiently. 

(2) Address the uncertainties in future integrated system planning, such as multi-energy 

loads and wind power, by further proposing a two-stage robust expansion co-planning 

model. 

The proposed planning model comprehensively considers the system adequacy of power 

generation and transmission resource as well as fuel supply network, system economy and system 

uncertainties in future IES planning, which has practical significance for the increasingly tight-

coupled multiple energy systems. 
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CHAPTER 6 

CONCLUSION 

6.1 Main Contributions and Conclusion 

This work consists of four main parts: 1) interval optimization based operation strategy 

considering wind power uncertainty; 2) stochastic optimization based day-ahead scheduling 

considering N-1 contingency and wind uncertainty; 3) robust scheduling for wind integrated 

energy systems considering both gas pipeline and power transmission N-1 contingencies; 4) a two-

stage robust expansion co-planning model for gas-electricity IES considering uncertainties of wind 

power, electric load and gas load. 

In Chapter 2, an interval optimization based operation strategy considering wind power 

uncertainty is proposed for gas-electricity IES. Both electricity and gas networks are modeled in 

detail and their security constraints are considered in the coordinated operation of IES. An 

incentive demand response program is incorporated into the model that provides both electricity 

and gas demand response options to customers. The utility companies could coordinate the peak 

electricity and gas load through the optimized IES demand response. Interval optimization is 

applied to the optimization model of IES coordinated operation to address wind power uncertainty.  

In Chapter 3, a stochastic optimization based day-ahead scheduling model is proposed 

considering N-1 contingency and wind uncertainty. To fully consider the security issues in an 

integrated energy system, N-1 contingencies of both power transmission and natural gas pipeline 

are modeled and incorporated into the optimization of IES operation. The impacts of electricity N-

1 contingency only, gas network N-1 contingency only, and both contingencies on IES operation 

are investigated. The non-convex gas network model is linearized by the first-order Taylor 
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expansion, which significantly reduces the solution complexity. Wind power uncertainty in the IES 

is addressed by stochastic programming. The proposed model ensures that the IES is able to sustain 

any possible single contingency in gas or power transportation networks in the presence of wind 

power uncertainty. The proposed model could coordinate various energy sources and optimize the 

energy flow in an integrated network with transmission constraints.  

In Chapter 4, a robust scheduling model is proposed for wind integrated energy systems 

considering both power transmission and gas pipeline N-1 contingencies. The optimization model 

of the coordinated gas-electricity scheduling problem is reformulated to facilitate the application of 

robust optimization. Both gas pipeline and power transmission line N-1 contingencies are modeled 

and incorporated into the optimization model. The impact of various wind power penetrations and 

uncertainty levels on the optimization results is investigated. 

In Chapter 5, a robust expansion co-planning model is proposed for IES considering wind 

power and multi-energy load uncertainties. An optimization model is proposed for coordinating 

the expansion planning of gas-electricity integrated energy systems fully considering the 

interactions between gas network and power system. A two-stage robust planning model is built for 

IES with considerations of wind power, electric load and gas load uncertainties. The optimal 

investment decisions are robust against any scenario in the uncertainty set. 

6.2 Future Research Work 

In the future work, the following aspects may be worthwhile to investigate:  

1. Energy storage is playing an increasingly important role in system operation. In the future 

work, the impact of both electrical energy storage and gas storage could be studied in the 

operation of gas-electricity integrated energy systems.  
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2. The proposed co-optimization framework can also be expanded to multiple energy 

interconnections, such as district heating networks, smart transportation system and water-

energy nexus.  
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