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Abstract

Feral Hogs (Sus scrofa) are an invasive species that have occupied the Great Smoky

Mountains National Park since the early 1900s. Recent studies have revitalized interest in the

pest and have produced useful data. The Park has kept detailed records on mast abundance

as well as every removal since 1980 including geographic location and disease sampling. Data

obtained via Lidar includes both overstory as well as understory vegetation information.

In this dissertation, three models were created and analyzed using the detailed data on

vegetation, mast, and harvest history. The first model is discrete in time and space and was

formulated to represent hog dynamics in the park. The second is a spatial model of the niche

of the population that relates known presence locations to environmental predictors. The

third model is a compartmental disease model for pseudorabies in the population. Together,

these projects assess the importance of the existing control program, predict suitable locations

for hog presence in the Park, and quantify possible transmission routes for Pseudorabies.
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Chapter 1

Introduction

Invasive species are among the world’s most significant and urgent environmental concerns

as they inflict ecological and economic damages that are both costly as well as detrimental to

the environment (Olson et al., 2006). These concerns are exacerbated as an invasive species

becomes established in an area (Epanchin-Niell and Hastings, 2010). European Wild Boar

(Sus scrofa) were brought to the United States in the early 1900s by settlers as a source

of food. Since their introduction, feral hogs have been expanding their range, increasing in

density, disrupting natural ecosystems, and posing a significant disease threat to livestock

and native animals (Witmer et al., 2003). See Engeman et al. (2003), Engeman et al. (2004),

Engeman et al. (2007) and Olson et al. (2006) for more details on economic and ecological

impacts of feral hogs in the United States.

In 1912, hunters near Hoopers Bald, North Carolina, imported European wild boar (Sus

scrofa) to populate a hunting preserve and were left to breed and expand their population

for a span of 8-10 years (Jones, 1957). During this time a number escaped and dispersed

throughout the surrounding area (Stegeman, 1938). They bred with hogs of domestic ancestry

and have since spread throughout the Great Smoky Mountains National Park (GSMNP). We

refer to this hybrid population using the term “feral hogs”.

Great Smoky Mountains National Park is a 2,080 km2 plot of land that straddles the

border between Tennessee and North Carolina, the vast majority of which is undeveloped
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forest. GSMNP is surrounded by 3 National Forests, the eastern border of a Cherokee

Indian reservation, and Fontana reservoir (Stiver and DeLozier, 2005). Elevation throughout

the park ranges from as low as 270 m to as high as 2,024 m. The park is characterized

by a high elevation ridgeline that runs diagonally through the center of the park and by

its unique and flourishing habitats. Due to its undeveloped nature, elevation gradient and

rich environmental viability, GSMNP is home to over 6,000 flora and 400 fauna (Stiver and

DeLozier, 2005).

Feral hogs in the Park consume acorns, known as hard mast, which fall from oak trees

at the end of the summer. They also scavenge for tubers, roots and other food that can be

found underground (Scott and Pelton, 1975). We refer to these additional food sources as the

base food source. Since the feral hogs depend heavily on oak mast, it plays a significant role

in their life cycle affecting reproduction and movement patterns (Johnson et al., 1982; Singer

et al., 1981). We capture these dynamics by updating the corresponding mast-dependent

parameters each month in our model.

One main concern about the presence of the invasive species Sus scrofa in GSMNP is

that they compete with native species and are destructive to the surrounding environment.

Rooting activities are extremely disruptive to vegetative communities, alter nutrient cycles

and may even alter forest succession patterns in the long term (Bratton, 1974; Howe and

Bratton, 1976). Feral hogs are in direct competition for oak mast with black bears and are

known to scavenge for and consume salamanders (Singer, 1981). There are several National

Park policies that state that the control or eradication of non-native species is necessary

when such species endanger the protection and interpretation of natural resources in the

park. Since the Park is considered the salamander capitol of the world and the black bear is

perhaps the most beloved and publicized species in the park, in addition to the damage done

to the grounds, direct negative impacts on these species by feral hogs is of great concern.

Another impact of Sus scrofa is the potential for transmission of Porcine parvovirus,

leptospirosis, toxoplasmosis and pseudorabies, as each were found during various serological
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surveys of feral hogs in GSMNP (Cavendish et al., 2008; Sandfoss et al., 2012). More alarm-

ing, the prevalence of pseudorabies has increased dramatically in recent years (Cavendish

et al., 2008; Sandfoss et al., 2012). The spread of these diseases have serious implications

for a large number of domestic and wild animals throughout the region. For example,

although studies have shown the impact of pseudorabies on feral hogs is minor, clinical

signs in commercial swine is well documented (Miller et al., 2013). Further, park officials

believe the transportation of feral hogs due to illegal hunting interests may be increasing the

presence and spread of these various diseases.

Due to the aforementioned concerns, Great Smoky Mountains National Park implemented

a feral hog control program beginning in 1959. Although the program’s procedures have

varied since its implementation, recent efforts to control the feral hog population have been

both opportunistic as well as active. Opportunistic activities include dispatching feral hogs

when encountered by park rangers as well as setting traps in suspected high activity areas

that are convenient for park employees to access and maintain. The Park also hires seasonal

employees to actively search for and harvest feral hogs. Most of the active hunting takes

place between January and May, as this is a time during which bears are hibernating, foliage

is at a minimum and the feral hog population is concentrated in the lower elevation regions.

Throughout the remainder of the year harvesting is much more limited taking place only in

the absence of more pressing park needs. Hunting laws in both Tennessee and North Carolina

have changed a number of times over the last 30 years and we have no data to measure its

impact outside the park.

The negative impacts that feral hogs have on natural resources, in addition to the fact

that feral hogs are hosts for infectious diseases, has resulted in government and park officials

having a vested interest in knowing the whereabouts, threat levels and optimal management

strategies for controlling the feral hog population (Stiver, 2012a,b). These factors and

others propelled the creation of a working group at the National Institute for Mathematical

and Biological Synthesis (NIMBioS) entitled “Feral swine/pseudo-rabies in Great Smoky
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Mountains National Park.” This group provided data, background information and input

relevant to the formulation of our model.

Its pristine conditions and biodiversity has prompted a great deal of scientific research

and documentation related to the Park. Important to this project are detailed vegetation

data and corresponding records of yearly acorn crop levels over the last 30 years. We also

make use of the harvest data that has resulted from the control efforts conducted by GSMNP

(National-Park-Service, 1980). As a result, the main goals of this work was to use modeling

in coordination with available harvest and mast data to estimate the population, to assess

the effect of harvesting on the population, to create a habitat suitability map to help guide

control efforts, and to model the presence of Pseudorabies in the population.

The remainder of the document will take the following form: First, the formulation of a

data-driven metapopulation model will be discussed. This chapter will include a description

of the data used, an overview of the study area, a summary of the population dynamics,

the assumptions made, and how all of components combine in a mathematical formulation.

Discussion of parameters being used will follow and will include how we estimated their values

using the harvest data. A discussion of the results and any conclusions that can be made

will also be presented, which will include specific uses of the model and future work related

to modeling feral hogs in the Park. This project is in collaboration with Suzanne Lenhart,

Charles Collins, Marguerite Madden, Joseph Corn, Rene Salinas, and William Stiver. Second,

a niche model will be presented for the population in the Park which relates the harvest

data and ecological variables using statistical techniques. An environmental niche factor

analysis is used to relate presence locations to environmental predictors in order to spatially

model locations within GSMNP that are suitable for hog presence. This project produces

results that will guide control efforts using scientific analysis. This project is in collaboration

with Suzanne Lenhart, Charles Collins, and William Stiver. The final chapter will discuss

building a compartmental disease model for pseudorabies into the metapopulation model

that is discrete is both time and space. The goal of this project is to explore possible

transmission routes, estimate transmission parameters, and model the spread of the disease
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in the population. This project is in collaboration with Suzanne Lenhart, Charles Collins,

and William Stiver.
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Chapter 2

Metapopulation Model

2.1 Introduction

There has been previous work modeling feral hogs in different parts of the world, each

of which differs depending on the specific goal of the research. Spatially explicit models

using partial differential equations have been formulated to model feral hog populations in

different geographic areas (Clayton et al., 1997; Gaines et al., 2005; Keeling et al., 1999).

Though insightful, these initial models are centered around basic ecological concepts such

as logistic growth and contain limited feral hog features. An age structured model (without

spatial features) has also been considered in an attempt to determine the structure and

characteristics of specific population dynamics (Focardi et al., 1996). Most recently, an

individual-based model was constructed for feral hogs in GSMNP that resulted from the

same NIMBioS working group and is based on the similar harvest data (Salinas et al., 2015).

In the individual-based model, the annual total of the harvest data was only used to estimate

constant harvest and mortality rates. Models constructed with differential equations, agent-

based models and discrete formulations each have benefits and drawbacks that depend upon

the available information and specific goals of a project.

With the harvest and mast data (National-Park-Service, 1980, 1981) given in monthly

intervals, we were able to carefully estimate a range for monthly mast-dependent parameters
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to best match the observations of feral hog behavior in the Park. We fit yearly harvest rates

in each region over two season per year. With our goals of analyzing general population

dynamics and measuring the importance of the control program, we formulate a discrete,

data-driven metapopulation model to describe the feral hog population in the Park.

2.2 Model Formulation

2.2.1 Data and Regions

Increased interest and technological advances have made research relating to feral hogs in

GSMNP more tractable in recent years. One key contribution from the working group was

data expressing vegetation types and distributions obtained through remote sensing (Madden

et al., 2004). The data were used to create a digital vegetation map and database of overstory

and understory flora found throughout GSMNP. This information is used to divide the Park

and its immediate surrounding area into 8 regions as determined by vegetation type and also

to establish where oak trees and other food sources are located.

Other significant data for our model were provided by GSMNP officials. The Park

provided harvest and oak mast data in GSMNP from 1980-2010 (National-Park-Service, 1981,

1980). The harvest data contains over 11,000 entries and includes quantity, age, month and

geographical location of feral hogs harvested. Mast index data consists of visual estimations

of white and red oak acorns that existed throughout the Park in each given year. Values range

from 0.45 to 5.1 with a higher value indicating a more bountiful year. We use the harvest

data to set an initial distribution of feral hogs throughout the Park, to estimate parameter

values and to check the accuracy of the model. The driving force behind feral hog behavior is

their primary diet of oak acorns (Scott and Pelton, 1975; Singer, 1981). Therefore, knowing

the quantity and location of the key food supply is ideal for this model. The aforementioned

data was paramount in the formulation of our data-driven metapopulation model that is

discrete is both time and space.
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The discrete time step is 1 month as we wish to model several discrete events that occur

on a scale that is not less than a month including births, mast deployment and seasonal

movement.

The current month is denoted by t. We take t = 1 to be January. To denote any periodic

or other type of time based events, we use m for the month (1-12) and y for the year.

The model spatial domain is divided into 8 regions based on overstory vegetation types as

they produce the food that drives population dynamics (See Figure 2.1) (Scott and Pelton,

1975). The overstory data are from (Madden et al., 2004) and is detailed in Table 2.2. There

are six regions inside the park (regions 1− 6) with region 6 constituting an upper-elevation

ridge line that runs diagonally through the center of the park. Two of the regions are outside

the park, one on the north side (region 8) and one on the south side (region 7).

For each region r, we record the area in acres (Ar) and the length of boundary between

connected regions r and s (given in BLr,s). These are used in determining yearly food

supplies and governing movement between regions, each of which be explained in detail in

later sections.

There is a feral hog population in each region that varies over time and is not differentiated

by sex nor by age. The initial conditions for the model are based on harvest data from 1988

(National-Park-Service, 1980). The initial population in each region is reconstructed by

dividing the number of feral hogs harvested from each region in 1988 by rough estimates

from the Park of yearly on- and off-season monthly harvest rate of 0.03 and 0.01.

The population in region r at time t is denoted by Pr,t. The specific population in a given

region r at time t depends on all of the parameters and variables that comprise the model.

2.2.2 Order of Events

The order of events in a discrete model is very important as it impacts the dynamics of the

system (Bodine et al., 2012). Given the Mast supply (Mr,t) and the Populations (Pr,t) from

the previous month, the events proceed in the following order:
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Figure 2.1: The Great Smoky Mountains National Park is broken into 8 regions based on
overstory vegetation types.

1. Update the Mast for the month since many of the parameters that govern feral hog

dynamics in GSMNP are driven by hard mast availability (Singer, 1981; Scott and

Pelton, 1975).

2. Harvest at a rate determined by the month.

3. Compute the portion of the post-harvest population that survives. We do this before

adding births because only surviving adults can reproduce.

4. If the month is January, we then compute the number of births based on the surviving

population and mast supplies. We keep track of the births and apply a different survival

rate before adding them into the general population.

5. Perform movement, using either general movement or seasonal movement, dependent

upon the time of year.
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Mast Dynamics

Each region has two food sources- the base food source and hard mast. The hard mast

source is from white and red oak trees, which is believed to be preferred by feral hogs in

GSMNP (Scott and Pelton, 1975). Hard mast becomes available in August, but varies in

amount from year to year. The amount of hard mast in each region in each year is measured

in kilocalories and based on a hard mast index for years 1981-2010 produced by (National-

Park-Service, 1981). The mast index ranges from 0.45−5.1 with lower values indicating poor

mast years and higher values for ample mast years. See Table 2.1 for a list of the 25 overstory

types found in GSMNP, their total acreage and corresponding kilocalorie per acre (Inman,

1997). Of course, the location of hard mast is an important driver of the population and

the top four overstory types in each region by total area covered can be seen in Table 2.2.

Hard mast levels in a given year and region are derived by pairing the distribution of the

25 overstory types in each region with the assumed kilocalorie per acre of each to create

a baseline level of hard mast. This value is scaled further according to the recorded hard

mast data from 1981 to 2010 to properly model the impact changes in food levels has on

the population (National-Park-Service, 1981). With the aforementioned data in hand, the

available kilocalories of hard mast that becomes available each year in August in each region

is calculated.

The other food source is tubers, roots, small animals and other items feral hogs can

scavenge off the ground, which we refer to as the base food source (Scott and Pelton, 1975).

The amount of available kilocalories of the base food source is assumed to be available in each

region at the constant rate of 1000 kilocalories per acre. We consider this food source as a

constant amount proportional to region size because at any given time there are an unknown

level of renewable food sources found on the forest floor in each region and because the base

food source plays a minor role in a hogs diet. The reduced role it plays compared to hard

mast is because it is less nutritious as well as less abundant and is thus less desirable. The

role of the base food source in the life cycle of feral hogs is to ensure minimal sustenance
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in times and regions where there is not sufficient hard mast. This is modeled by including

a smaller amount of soft mast in the model which allows hard mast to more significantly

influence parameter values that govern population dynamics.

Feral hog behavior and movement are believed to be driven by hard mast availability

(Singer, 1981). Denote the time varying hard mast in region r at time t by HMr,t. Hard

mast is dropped from trees at the end of August and decreases over time due to feeding by

feral hogs and competitors as well as natural decay. We will initialize the model in August

using available mast, vegetation and harvest data for this month from (Madden et al., 2004;

National-Park-Service, 1980, 1981). The hard mast index is a single number that indicates

the level of oak mast in a given year. This single number is paired with the known acreage

of oak trees in each region to produce MIr,y, the amount of oak mast produced in region r

in year y. After mast is dropped in August we assume each feral hog consumes at rate CP ,

which takes the value of 5000 kilocalories per day (Inman, 1997). Hard mast also depletes as

a result of natural decay and consumption by other animals at rate δ, which is assumed to be

8% per month to ensure most food is consumed each year. To be ecologically consistent, we

ensure the hard mast value in each region does not become negative. All of the previous years

hard mast is entirely depleted before the following August when the next hard mast drop

occurs. Thus, the specific amount of hard mast available in region r at time t is dependent

on time, the specific region, the hard mast index value for the given year and the number of

feral hogs in the region and is given by

HMr,t+1 =

 MIr,y m = 8,

((1− δ)HMr,t − CPPr,t)+ m 6= 8.

Denote the constant amount of the base food source in region r by SMr. Since the base

food source is assumed to exist at the constant rate of 1000 kilocalories per acre, SMr =

1000Ar.
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The total mast in each region r and time t is denoted by Mr,t and is given by

Mr,t = HMr,t + SMr. (2.1)

The specific amount of total mast available in each region influences parameter values at

each time step as determined by the scale function.

Table 2.1: Overstory Vegetation Types. Listed above are the 25 overstory types that exist
in Great Smoky Mountains National Park, their corresponding total acreage and kilocalorie
per acre.

Overstory Type Abbreviation Total Acreage Kilocalorie per Acre
Bare Ground Bare 1,223 0
Cove Hardwood Forest CHx 78,655 19,154
Dead Dd 335 0
Human Influence Hi 4,828 0
Rhododendrom Rhd 8,054 0
Mixed Hardwood Forest Hx 34,781 15,465
Montane Alluvial Forest MAL 6,605 4,000
Montane Oak Forest- White Oak MOa 2,414 8,000
Montane Oak Forets- Red Oak MOr 18,554 8,000
Northern Hardwood (Birch) NHx 77,184 4,066
Meisic Chestnut Oak Forest OcH 9,163 8,000
Meisic Oak Forest (Red Oak) OmH 103,221 8,337
Xeric Oak Forest (Red &White Oak) OzH 79,886 8,127
Xeric Oak Forest (Pine Mix) OzH-P 1,447 6,000
Yellow Pine Forest P 27,283 7,117
Meisic Oak Forest Mix (Oak & Pine) P-OmH 548 5,915
Xeric Oak Forest Mix (Oak & Pine) P-OzH 22,678 5,915
Pasture Pa 449 0
Rock Rk 528 0
Spruce-Fir Mix S-F 37,278 4,578
Shrub Sb 2,363 0
Hemlock T 15,762 6,000
Vines V 1,116 0
Water W 7,498 0
Wetland Wtl 108 0
Total 219,440 542,015
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Table 2.2: Dominant Overstory Type by Region. This table displays the top four overstory
types by total acreage in each region, with percentage of total area covered in parenthesis
(Madden et al., 2004).

Region Total Acreage Type 1 (% area) Type 2 (% area) Type 3 (% area) Type 4 (% area)
1 13,091 OzH (32.2) P-OzH (21.5) OmH (16.3) CHx (15)
2 18,546 OmH (21.9) CHx (21.7) OzH (11.9) Sb (10.4)
3 18,546 OmH (21.9) CHx (21.7) OzH (11.9) Sb (10.4)
4 44,441 OcH (38) OzH (19.7) CHx (13.9) Hx (7.1)
5 55,412 OzH (24.4) OmH (21.5) CHx (20.1) Hx (9.8)
6 74,988 NHx (39) S-F (20.1) CHx (10.2) MOr (6.6)
7 22,220 OcH (38) OzH (19.7) CHx (13.9) Hx (7.1)
8 27,706 OzH (24.4) OmH (21.5) CHx (20.1) Hx (9.8)

The Scale Function

Many of the parameters that comprise the model vary in time and space and are based

on mast availability. Such parameters include percentage of adults that survive (Surv), how

likely it is that feral hogs will move to an adjacent region during general movement (Move) as

well as the yearly birth rate (BR). Due to this fact, each of these parameters are determined

at each time step via a scaling function that produces appropriate values for each parameter

based on the mast availability.

Let Paramr,t denote one of the above mentioned mast-dependent parameters in region r

at time t.

We will obtain the value of a given parameter in the current time step dependent upon the

mast availability according to the following scale function (called F ):

F (M,Param0, ParamMax,Mh) =
Param0 ·Mh + ParamMax ·M

M +Mh

, (2.2)

where M = Mr,t is the mast value in region r at time t, Param0 is the value of Paramr,t

when M = 0, and ParamMax is the value of Paramr,t as M → ∞. The Mh is the half-

saturation mast constant such that if M = Mh, then F = Param0+ParamMax
2

. At the beginning

of each month the specific value of mast-dependent parameters values is determined by the
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scale function. See Figure 2.2 for a depiction of the form and asymptotic nature of the scale

function.

Figure 2.2: A number of the parameters that comprise the model are mast-dependent.
The rational scale function ranges between a maximum and minimum parameter value as
determined by the current mast level in each region.

2.2.3 Population Dynamics

The population dynamics are driven in each region by 3 factors, which occur in the order

listed: survival, birth and movement. The remainder of the section is presented in the

order in which the events take place in each region r at time t. Throughout the process

we calculate how many feral hogs survive each step and update the population accordingly.

After movement takes place, Pr,t+1, the population that will start out in each region in the

next month, is calculated.

Survival
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Although park rangers are constantly making some effort to harvest feral hogs, the most

opportune time to hunt is when the bears are hibernating, the foliage is at a minimum and

the feral hogs are at lower elevations. Due to this fact, the park hires additional employees to

actively seek feral hogs from January through May. During the remaining months, harvesting

is limited to convenient, and thus less frequent, harvesting. To reflect this recurring trend we

have an relatively low off-season harvest rate between months 6−12, a much higher on-season

harvesting rate from months 1− 5. Since we have no data on harvesting outside of GSMNP

we only model harvesting within its boundaries. Let Hrate denote the seasonal harvest rate

given by

Hrate =


rate1, m = 1, ..., 5 & r = 1, ..., 6

rate2, m = 6, ..., 12 & r = 1, ..., 6

0, r = 7, 8

.

To find parameter values and assess the general harvest trend, we initially assume that

Hrate is uniform in space and only varies in time according to the season. After estimating

parameter values, we then vary harvesting in time and space in order to more accurately

model the system and evaluate the effects the Park’s efforts have the population.

The number of feral hogs harvested at time t in region r = 1, ..., 6 is denoted by

Hr,t = Hrate · Pr,t. (2.3)

The number of feral hogs that survive harvesting in each region continue on to the

subsequent mast-dependent survival step.

The number of feral hogs that die due to natural causes is mast dependent and

independent of piglet survival. We assume that there is an alternative food supply available

(base food source) but that it is less desirable, less prevalent, and less nutritious than hard

mast. Thus the feral hogs don’t die when the primary supply is consumed, but they also don’t

survive as easily. These dynamics are captured by the previously mentioned scale function,

paired with a constant, but significantly less, amount of the base food source. The adequacy
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of the food supply is also related to the current population as more feral hogs need more

available mast.

The percent of feral hogs that do not perish due to natural causes is given by Survr,t, the

survival rate in region r at time t. Survr,t is dependent on the available mast in the region in

the given month and has a minimum value of Surv0 given no available mast and approaches

a maximum value of SurvMax as mast availability increases. Since the percent that survive

is dependent on mast availability we first determine Survr,t via the scale function,

Survr,t = F (Mr,t, Surv0, SurvMax,Mh), (2.4)

and apply both the survival rate as well as the harvest rate to the existing population:

Pr,t · (1−Hrate) · Survr,t. (2.5)

Individuals that make it through harvesting and mast-dependent survival move on to the

birth stage of the model.

Birth:

Female feral hogs go into estrus as soon as they can and usually give birth in January

(Singer, 1981). The number of piglets produced per population in our model depends on the

following factors:

1. Percent of the population that are mature females: We assume that 50% of the

population is female, but that only 90% are mature. This means that 45% of the

population are able to give birth, denoted by BF .

2. Average litter size: Typical litter size is 3-8, so we will take it as 6, denoted by LA

(Singer, 1981).

3. Percent that are pregnant: Even if a feral hog reproduced in the previous year, they can

still go into estrus. In each regions, we assume there are enough males to impregnate

nearly all the available females but that the actual number of the mature females that
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become pregnant is mast dependent (Stegeman, 1938; Stiver, 2014).

4. Percent of the pregnant females that give birth: Inevitably, a portion of the females

that become pregnant will not successfully give birth. This portion depends on the

mast level during the pregnancy. In a low mast years, the percent of pregnant females

that will come to term is very low compared to high mast years where a much larger

percentage of pregnant females will give birth (Singer, 1981).

5. Percent of the litter that survives the first month: This also depends on current mast

level and is comparable to the survival for the population in general, but lower as there

is a higher mortality for piglets in the first 6 months.

The last three factors are heavily mast dependent with inadequate mast causing

production of far fewer births than when there is plentiful mast. Although the amount

of mast available in each region in the months surrounding January determine these

birth parameters, we use the amount of mast remaining in January in each region as

an indication of the presence of mast before and after feral hogs give birth. Thus the

percent of mature females that become pregnant is determined by the scale function and

is dependent on the amount of mast available in each region in the month of January.

In our model we assume births only take place in January, denote m∗ to be the month

of January (Singer, 1981). When m = m∗, a percentage of the population in each

region are pregnant females. Of those pregnancies, a portion actually come to term

and produce piglets and then a fraction of the births survive their first month of life

and are added into the general population. Denote the number of piglets produced by

each individual in the in region r at time t by BRr,t. The value of BRr,t is the product

of the birth rate with the average litter size and number of mature females. Since the

birth rate is highly dependent on mast availability, the exact level is determined by the

17



scale function:

BRr,t =

 BF · LA · F (Mr,t, BR0, BRMax,Mh) m = 1

0 m 6= 1.

The total number of births in each region will then be a product of BRr,t and the

number of adult feral hogs that have lived through both survival stages. This value can

immediately be added into the general population since the birth rate only includes

piglets that survive. Let SHr,t denote the surviving feral hog population in region r at

time t, which is composed of all individuals that have lived through the survival stage

as well as any new births into the population given by

SHr,t = Pr,t · (1−Hrate) · Survr,t · (1 +BRr,t).

General and Seasonal Movement:

The reasons feral hogs move throughout GSMNP can be characterized in two ways:

between areas of the park searching for food as well as making use of the topography of

the park by moving up in elevation during the spring and down in elevation in the fall

(Singer, 1981). The movement toward higher elevations takes place in the warmer months

and is caused by the decline in mast availability paired with increasing temperatures in lower

elevations. The movement towards lower elevations is a result of mast becoming available

in these regions at the end of the summer. Independent of this seasonal movement, the

food-based movement is hard mast dependent(Scott and Pelton, 1975; Singer, 1981).

General movement of the feral hogs refers to the movement between the various regions

independent of the intrinsic characteristics of the region themselves or time of year, but

instead as a result of food availability. Each month a percentage of the population will
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move out of each region depending on the mast availability in each region. Lower food levels

increase the percent of feral hogs moving out of that region where high levels of food results

in limited movement. The specific level of general movement in each region is governed by

the scale function. We assume that the local population density is low enough that it does

not directly impact movement, but rather indirectly impacts general movement through mast

availability. Feral hogs moving out of a region move to a neighboring region proportional to

shared boundary length, which is a well studied and accepted method of modeling movement

of a population (Holland et al., 2007). The proportions of shared boundary length is captured

in this connectivity matrix:

BL =



0 0 0 0.106 0.316 0.20 0 0.378

0 0 0.189 0.055 0 0.20 0.555 0

0 0.366 0 0 0.006 0.20 0 0.428

0.044 0.031 0 0 0 0.20 0.725 0

0.093 0 0.001 0 0 0.20 0 0.706

0.017 0.157 0.073 0.326 0.427 0 0 0

0 0.316 0 0.684 0 0 0 0

0.141 0 0.107 0 0.751 0 0 0



(2.6)

where BLi,j is the percent of feral hogs moving out of region i that will move into region

j. The matrix BL is a connectivity matrix derived from the proportion of shared boundary

between regions.

For example, since BL2,4 = 0.055, this implies that region 2 shares a boundary with

region 4 and that the length of their shared boundary constitutes 5.5% of the total boundary

of region 2. As a result, when general movement takes place, 5.5% of feral hogs moving out

of region 2 will move into region 4. All entries of BLi,j that are 0 imply that regions i and j

do not share a boundary.

There are several clarifications that must be made regarding general movement as it

relates to this matrix. First, recall that region 6 is the high-elevation region, which does not
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contain any hard mast producing trees. Since general movement is entirely mast-driven, in

practice, we limit the amount of general movement from the lower-elevation regions 1 − 5

to region 6 by allowing only 20% of all feral hogs marked to move from each interior region

to move up to region 6. To ensure rows of BL sum to 1, the adjusted decrease in shared

boundary length between each interior region with region 6 was re-distributed to the other

neighbors proportionally . Also reflected in BL is that all interior regions border region 6

while the two exterior regions do not.

Seasonal movement takes place when the population changes their location based on

elevation from March through June and again in August (Singer, 1981).

There are two forms of seasonal movement: from the higher regions to the lower regions

in the fall (August) and from the lower regions to the higher regions during the spring (March

through June). Since the high to low movement culminates with the drop of the hard mast

paired with decreasing temperatures, we assume all feral hogs will move down in elevation

during the month of August (Singer, 1981). The low to high movement takes place from

March through June as hard mast in the lower regions become depleted and temperatures

increase (Singer, 1981). With this in mind, we have additional feral hogs move from each

low region to the high region beginning in March at a rate which increases as we approach

June. This ensures nearly all feral hogs reach the higher regions by mid-summer.

Although these movement patterns were derived from a previous study (Singer, 1981),

a more recent telemetry study is currently being formulated by GSMNP that makes use of

advanced collaring and tracking techniques (Stiver, 2012a). The data will be used to either

confirm these movement dynamics or re-shape our current assumptions.

The number of feral hogs moving out of region r at time t is denoted by MHr,t. In practice

general movement and seasonal movement follow the same pattern of first deciding how many

feral hogs will move out of each region, removing them from the surviving population and

then re-distributing them to neighboring regions.

General movement is less of a driver than seasonal movement thus general movement

occurs only in the absence of seasonal movement. In months when there is only general
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movement the percent of feral hogs moving out of each region, Mover,t, is dependent on the

mast level in the region, Mr,t. Using the scale function we have

Mover,t = F (Mr,t,Move0,MoveMax,Mh), (2.7)

from which the number of surviving feral hogs moving out of each region can be computed:

MHr,t = Mover,t · SHr,t. (2.8)

During general movement, feral hogs marked to move out of lower elevation regions

1, 2, 3, 4, 5, 7, 8 and travel to adjacent regions according to the proportions given in BL.

However, movement from the high elevation region 6 to lower-elevation regions is controlled

differently. After spending the warmer months in region 6, at the end of August the entire

upper elevation population simply move regions 1, ..., 5 proportional by boundary length.

Otherwise, during general movement months we employ a mechanism for region 6 that

accounts for the low elevation region from which the feral hogs came. We achieve this

by having feral hogs move down to one of regions 1, ..., 5 weighted by the number of feral

hogs that have moved out of each of those regions to the upper region over the past year.

To achieve these movement patterns, we define MPi,j as the proportion of feral hogs moving

out of region i and into region j as

MPi,j,t =

 BLi,j i 6= 6 & m = 1, 2, 7, 9, 10, 11, 12

MP ∗j,t i = 6 & m = 1, 2, 7, 9, 10, 11, 12
.

where

MP ∗j,t =


BL6,j 1 ≤ j ≤ 5 & m = 8
MP ∗6,t−1+0.2·MHj,t−1∑5

j=1MP ∗j,t
1 ≤ j ≤ 5 & m = 1, 2, 7, 9, 10, 11, 12

0 j ≥ 7

.
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The feral hogs marked to move from each region during general movement are then removed

from the surviving population and then redistributed given by

Pr,t+1 = Pr,t · (1−Hrate) · Survr,t · (1 +BRr,t)−MHr,t +
8∑
i=1

MPi,r,t ·MHi,t for r = 1, ..., 8.

(2.9)

Seasonal movement takes place from March through June when depleted mast supplies

and increasing temperatures cause feral hogs to move from lower elevation regions 1, ..., 5 to

higher elevation region 6. During this time we calculate an initial number of feral hogs that

will move out of the lower regions by applying the scale function and then add an additional

increase to the general movement amount in each subsequent month. This results in feral

hogs migrating in increasing proportions to the high elevation region in the center of the

park while allowing a small population to remain at a lower elevation. For the month of

July, general movement then applies again as discussed previously. Since the understory is

the only food source in the high elevation region, the scale function produces relatively high

general movement rates in this month, which simulates the start of the migration back down

to lower regions. Then, in August, hard mast falls from oak trees and draws remaining feral

hogs back down to the lower the elevation regions. During this month we move all remaining

feral hogs in region 6 to regions 1, ..., 5 proportional to shared boundary length. Although

the specific number of feral hogs moving to and from each region changes during this time

from year to year, the proportions and distribution locations are deterministic and based on

the specific month.

We first determine how many feral hogs will be moving out of each region:

MHr,t =



Mover,t · SHr,t + m−2
5

(SHr,t −Mover,t · SHr,t) r 6= 6 & 3 ≤ m ≤ 6

0 r = 6 & 3 ≤ m ≤ 6

Mover,t · SHr,t r 6= 6 & m = 8

SHr,t r = 6 & m = 8.
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Table 2.3: A list and description of variables found in the model.

Name Description
t Time (in months), start with t=1 in January and run for 20 years
m Month in the given year
y Number of years
N Number of regions
r Region number

BLi,j Proportional boundary length between regions i and j
MIr,y Hard mast produced in region r in August in year y (in kilocalories)
SMr,t Base food source in region r at time t in kilocalories
Mr,t Total mast in region r at time t in kilocalories

BRr,m=1 Births in regions r. Occur in January
Pr,t Feral hog population in region r at time t
Hr,t Feral hog population harvested in region r at time t
SHr,t Number of surviving feral hogs in region r at time t
MHr,t The number of feral hogs moving out of region r at time t
F Scale function that determines mast-dependent parameters

We again define MPi,j as the proportion of feral hogs moving out of region i and into region

j which will account for the migration of feral hogs to upper elevations during the warmer

months by increasing the proportion of feral hogs moving from regions 1, ..., 5 to region 6

from March through June:

MPi,j,t =



BLi,j 1 ≤ i, j ≤ 8 & m = 8

MPi,j,t−1 + m−3
5

1 ≤ j ≤ 5 & j = 6 & 3 ≤ m ≤ 6

MPi,j,t−1 − m−3
5
· BLi,j∑

r 6=6BLi,r
1 ≤ j ≤ 5 & j 6= 6 & 3 ≤ m ≤ 6

BLi,j i ≥ 7 & 3 ≤ m ≤ 6

0 i = 6 & j 6= 6 & 3 ≤ m ≤ 6.

Then, feral hogs moving out of each region are removed from the surviving population and

re-distributed during seasonal movement given by:

Pr,t+1 = Pr,t · (1−Hrate) · Survr,t · (1 +BRr,t)−MHr,t +
8∑
i=1

MPi,r,t ·MHi,t for r = 1, ..., 8.
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Table 2.4: A list and description of parameters found in the model.

Name Value Description
Ar 13-55 Area of region r in thousands of acres
δ 0.08 Monthly food loss percentage due to decay and competitors
CP 5000 Calories consumed per feral hog per day
Mh 150, 000 Half saturation mast constant
BF 0.45 Percent of population that are mature females
BP 0.95 Percent of female population that are mature

and can give birth
LA 6 Average size of a litter

Surv0 0.88 Survival factor if there is no mast
SurvMax 0.97 Survival factor as mast approaches a maximum level
BR0 0.27 Percent of population that give birth and whose piglets

survive the first month given no mast
BRMax 0.89 Percent of population that give birth and whose piglets survive

the first month as mast approaches a maximum level
Move0 0.51 Percent of feral hogs moving with no available mast

MoveMax 0.16 Percent of feral hogs moving as mast approaches a maximum level
rate1 0.35 On-Season harvest rate, from January through May
rate2 0.15 Off-Season harvest rate, from June through December
Survr,t 0.88− 0.97 Percent of feral hogs that survive in region r at time t. Mast dependent
BRr,t 0.27− 0.89 Percent of population that give birth and whose piglets survive

the first month in region r at time t. Mast dependent
Mover,t 0.16− 0.51 Percent of feral hogs that move out of region r at time t
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2.3 Parameter Estimation

Feral hog population dynamics vary across space. The dynamics of a specific feral hog

population greatly depends on the local environment. Most research conducted on the feral

hog population in GSMNP is outdated and thus many of the parameter values are unknown.

Our metapopulation model contains the following eight unknown parameters as described in

Table 2.4 Surv0, SurvMax, BR0, BRMax, Move0, MoveMax, rate1 and rate2.

It is important to note that all of the above parameters, except rate1 and rate2, are mast

dependent and thus get updated each month using the scale function. With this in mind

each “0” value will not ever be achieved due to a constant amount of available the base food

source and each “Max” value shown above are approached asymptotically as a result of the

rational form of the scale function.

We wish to find the parameter values that, when used in our model, produce harvest

levels that best match the available harvest data. We use data from 1989 through 2000 since

the harvesting strategies that took place during this time period were most consistent.

More specifically, the problem can be stated as

Minimize
x

J(x) =

√∑
y

∑
r

(Hr,y −H∗r,y)2√∑
y

∑
r

(H∗r,y)
2

r represents all interior regions

y is the year ranging from 1989-2000

x represents all possible parameter values

H∗r,y is harvest data from region r in year y

Hr,y is the computed harvest from region r in year y
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In addition, we need to make sure that the parameters reflect conditions found in the Park.

Specifically, minimum survival rate should be significantly less than maximum survival rate

and on-season harvesting produces much higher yields than off-season rates. As a result, the

above problem is also restricted by the following linear constraints order to ensure that the

resulting values reflect these trends and the parameters are ordered correctly:

11

10
Surv0 ≤ SurvMax

BR0 ≤ BRMax

MoveMax ≤Move0

3

2
rate2 ≤ rate1

All parameters were constrained within the interval [0, 1].

(2.10)

To solve the above optimization problem, we made use of the Global Optimization

Toolbox from MATLABTM. Since our model contains a large number of complicated implicit

functions, we employed a method that did not require input of any derivatives. Furthermore,

given the overwhelming number of possible parameter combinations, we needed our local

solver to work in concert with an algorithm that would test a large number of starting

points. Thus, we chose to use the MultiStart Algorithm with fmincon as its local solver.

The MultiStart Algorithm was most appropriate for our problem as it allowed us to

test a large number of evenly distributed starting points and stores all local solutions in a

manageable way using the built-in manymins function. The MultiStart Algorithm generates

uniformly distributed random starting points within the given bounds and passes them one-

by-one to the local solver, fmincon, which attempts to find a local basin of attraction relative

to each given start values. Any solution that is found is then stored increasing order of

objective function output for later review using the manymins function.

The fmincon local solver was most appropriate for our problem as it accepts smooth,

nonlinear objective functions, is a derivative-free solver and allows enforcement of the linear
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inequality constraints and bounds given in (2.10). Instead of inputting a derivative, fmincon

approximates the gradient numerically in order to move towards the basin of attraction

given each starting point. In all of our trials, the exit flag produced by fmincon indicated

that a convergent run occurred. Exit flags are integers that range from −3 to 5 with zero

and negative values indicating poor or no solution and positive values indicating different

strengths of quality solutions. More specifically, negative exit flags correspond to termination

by the script itself, no feasible point found or a constraint violation and zero indicates

the maximum number of iterations was exceeded. On the other hand, positive exit values

correspond to various appropriate reasons for termination of the algorithm.

2.4 Results and Discussion

Recall that the initial population in the model is set using harvest data in each region from

1988 paired with a presumed yearly harvest rate. Due to the fact that our goal was to

determine parameters based on how well they produced harvest numbers that matched our

data, the initial population being used in the model greatly affected the computed harvest

rates. In changing the initial population one also runs the risk of altering various parameter

values. Due to this potential sensitivity to initial values, the previously stated optimization

problem was run with the following differing initial populations: 454, 774, 1410 and 2924.

These values were obtained the same way initial conditions were described previously except

by assuming different uniform harvest rates.

After the initial population was set in each scenario, the optimal harvest values were then

included in the parameter estimation.

After a number of exploratory runs of the MultiStart Algorithm with fmincon as a local

solver, it became obvious that there were a great number of viable solutions that both satisfy

the constraints and produce comparable error outputs. These initial trials also imparted

some intuition about the appropriate range for each parameter. This allowed us to repeat

our process with more confined constraints to improve the speed and accuracy of the results.
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Table 2.5: Results optimizing over all parameters for different initial population values. In
the table, P0 is the initial population value used in the optimization procedure. The average
value and variance for the results of each initial population are also shown.

P0 Surv0 SurvMax BR0 BRMax Move0 MoveMax rate1 rate2

454
Mean 0.867 0.959 0.712 0.975 0.695 0.015 0.982 0.575

Variance 0.00006 0.00001 0.03 0.002 0.002 0.0009 0.001 0.003

774
Mean 0.863 0.965 0.460 0.749 0.636 0.068 0.685 0.369

Variance 0.0003 0.0001 0.01 0.02 0.008 0.001 0.003 0.005

1410
Mean 0.859 0.955 0.575 0.738 0.515 0.059 0.393 0.190

Variance 0.00004 0.00001 0.005 0.002 0.005 0.004 0.0006 0.0006

2924
Mean 0.845 0.963 0.508 0.728 0.620 0.111 0.206 0.090

Variance 0.0002 0.00003 0.007 0.004 0.006 0.001 0.0001 0.00007

With the above in mind, given each of the four initial populations, we used 500 starting

values and tested both the less constrained as well as more constrained bounds. In all 500

trials a convergent local solution for all 8 parameters were found. Of these 500 values we only

considered those within 20% of the lowest error output. As a result we were able to narrow

down the values to more reasonable candidates from which an average was calculated, as

shown in Table 2.5.

The second column displays the lowest output of the objective function J(x) in the given

trial. The third column of the table indicated how many of the 500 starting points produced

an error within 20% of the lowest error output and thus were considered when calculating the

mean. The displayed mean values are very consistent between trials with the only values that

are not clustered across trials being the harvest values, which are directly related to the initial

population in a given trial. In fact, each harvest solution settled very close to the presumed

harvest rates that set the initial value in the first place. Also, notice that while values for

Surv0 and SurvMax needed to be manually forced to be different from each other using the

inequalities shown in 2.10, the values for BR0, BRMax,Move0, and MoveMax naturally

settled on starkly different values. This fact further supports the notion that accurate and

meaningful parameter values were estimated.
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We chose the parameters from the third line in Table 2.5 because values were consistent

across initial populations and Park officials believe that the current population of feral hogs

in GSMNP is nearest to 1410 (Conversation with William Stiver, May 2012). Figure 2.3a

illustrates the resulting computed harvest values when compared to the harvest data using

these parameters. Keep in mind that harvest values were estimated using only the 1989−2000

data and that any similarities between computed harvest and harvest data past the year 2000

are an indication that the model is capturing historical population dynamics. Furthermore,

since we have assumed the same uniform harvest rate in each region that only varies by

season, the computed harvest values only capture the general behavior of the data rather

than closely approximating it, as shown in Figure 2.3b. For the purposes of estimating the

non-harvest parameters we only wanted to mimic general historical population trends and

thus we were satisfied with the resulting values. We used these results to estimate values for

the survival, birth and movement parameters.

In reality, the Park’s harvesting levels and locations vary week-to-week or even day-to-

day. In fact, when using the estimated non-harvest parameters in a similar optimization

scheme but instead varying the harvest values by region and by year, we are able to match

the harvest data nearly exactly as illustrated in Figure 2.3c. These harvest values more

closely match historical efforts, and thus from our interest in evaluating the importance of

the control program, the rest of our analysis will be based on this set of parameters.

Although the Park has had a control program in place for over 50 years, little is known

about the effectiveness of their efforts. Since a significant amount of time and money is

spent on the control program throughout the year, there is question to whether there should

be fewer resources spent harvesting feral hogs in GSMNP. Using the yearly harvest values

for each region we derived, we are in a unique position to evaluate what would happen if

harvest efforts were reduced for a period. The values were shown to match the data very

closely (see Figure 2.3c). To evaluate the effects of having applied a different level of effort

from 1994-2000, we tested what would happen if the Park had either reduced or increased
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(a) (b)

(c)

Figure 2.3: Each figure displays total computed harvest values produced by the model
compared with the harvest data provided by GSMNP. Figure 2.3a depicts a model simulation
using parameter values obtained from the trials that used 1410 as an initial population. Figure
2.3b displays the output from the same parameter values compared to a smoothed version of
the harvest data where yearly values were derived from a three year average surrounding each
data point. Figure 2.3c was produced from a model simulation using yearly harvest values for
each region and illustrates how we are able to accurately quantify historical harvest efforts.

the harvest rates by 50% or 100%. The results are shown in Figure 2.4a and illustrate that

historical Park efforts have been successful in limiting the size of the population. As Figure

2.4a shows, eliminating harvesting altogether for a six year period would result in an increase

in the population by much as 260%. On the other hand, doubling harvest rates from 1994-

2000 could have reduced the historical population by more than 60%. Supposing that the

control program never existed and that instead the population was left to grow, the model

levels off at a total population of nearly 10,000 individuals in and around GSMNP. This

apparent carrying capacity is depicted in Figure 2.4b and was derived by a model simulation

without harvest starting in 1988.

As previously mentioned, an individual-based model (IBM) was recently constructed for

feral hogs in GSMNP. Our project and (Salinas et al., 2015) estimate a similar annual
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(a)

(b)

Figure 2.4: Both figures began with, and use parameter values derived from, an initial
population of 1410. Figure 2.4a shows the effects varying the estimated harvesting rates from
1994-2000. In just 6 years, decreasing the harvest rate can result in an increase in population
by as much as 260%. The model shows that doubling the harvesting rate over 6 years could
reduce the population by over 60%. Figure 2.4b illustrates that without harvesting the
population could increase to nearly 10,000 feral hogs.

harvest rate, predict a similar population level and both emphasize the importance of

the control program. Although based on similar data, the two models also differ in a

number of ways. For instance, the individual-based model implements a density-dependent

form of movement while the metapopulation model mimics believed movement patterns

through mast-dependent and seasonal forms of movement. The distinctions in movement

characteristics could account for the differences in estimated population growth and carrying

capacity for feral hogs in GSMNP that the two models predict in the absence of harvesting. A

telemetry study is currently being conducted by GSMNP where feral hogs are being tracked
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via GPS collars. Information from this project can be used to refine movement mechanisms

in both models to best reflect the system.

The structure of the metapopulation model also allowed us to carefully estimate

parameters against available data, providing an accurate global perspective of the system.

Although both models allow acorn availability to influence mast-dependent responses

in birthrates and movement rates, the metapopulation model is well suited to handle

population level responses with limited empirical data and thus may better model survival.

While the IBM reveals how individual behavior influences the population as a whole, the

metapopulation model captures large scale dynamics and trends.

2.5 Conclusions and Future Work

We formulated a metapopulation model for feral hogs in GSMNP. The parameters in this

discrete model (in space and time) were carefully estimated using data involving harvest (of

feral hogs), hard mast, understory and geographic size of the regions. Seasonal movement

and appropriate demographic processes were included.

The structure of our model was shown to accurately estimate the amount of feral hogs

harvested in the Park over the last 35 years. We can conclude that if the Park would

reduce harvest levels in the future, the feral hog population can increase dramatically with

an expected result of further habitat damage and negative impact on other species. Park

official recognize that these results emphasize the need to continue the control program.

Seeing how their efforts has reduced the population also provides support for future funding.

The strong dependence of estimating harvest rates on an uncertain initial population is a

limitation of our work. We used expert opinion from Park officials to guide our choices about

the initial population levels and other features of the model. Also, though we only consider

births in January, a second birth pulse in the summer has been documented in feral hogs in

the event of extreme food conditions (Johnson et al., 1982). This behavior was not deemed

important to general dynamics and was thus not included in this model.
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With the model in place we are in position to make use of the available data to learn

more about feral hog behavior in the GSMNP. More specifically, we intend to consider a cost

effective management strategy and analyze potential disease threats that feral hogs pose to

the area. These endeavors will be aided further by new data resulting from ongoing related

research and help guide control efforts.

One challenge in modeling feral hogs is that each population behaves differently depending

on the local environment. Limited accessibility to most areas of the Park has deterred

locating, tracking, eradication efforts, and the general study of the feral hogs in this region.

However, three new grants were awarded related to feral hogs in GSMNP. Two of the grants

provided funds to continue with a control and disease monitoring program in GSMNP that

has provided the most current data for feral hogs locations(Stiver, 2011, 2012b). The third

grant will fund a study in which the location and movement patterns of feral hogs in GSMNP

and Big South Fork National River and Recreation Area. Feral hogs will be tracked using

radio collars, which will provide more detailed information related to the movement of feral

hogs throughout the Park (Stiver, 2012a). This unprecedented data about the movement

and home range of feral hogs in GSMNP can be used to include more detailed movement

structure in future models.

Since the implementation of the feral hog control program, over 13,000 harvest entries

have been logged that can provide insight into the types of habitat in GSMNP that feral hogs

prefer and can be used to determine potential locations of the invasive pest in the Park. Since

the data we have is presence data only, it can be used to create a habitat suitability map

via an Environmental Niche Factor Analysis (ENFA) or Maximum Entropy theory. Both

approaches require only presence data and aim to find the relationship between known feral

hog locations and environmental factors that drive the population.

This research related to feral hog dynamics in GSMNP provides the framework necessary

to conduct additional analyses. To improve the efficiency of their efforts, we intend to use

the model to consider an optimal harvest strategy. This may include specific regions, months

and strategies that will maximize harvest yields. A habitat suitability map will contribute
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to this process as it illustrates areas in the Park that have a high probability of containing

feral hogs.

Another meaningful project related to feral hogs in GSMNP is to consider the threats and

implications of feral hogs as a vessel for pseudorabies (Cavendish et al., 2008). Pseudorabies

poses significant threats for animals such as canines and commercial livestock (Cavendish

et al., 2008). Since feral hogs are currently the only reservoirs of pseudorabies, they are

the only source of future outbreaks (Miller et al., 2013). A disease analysis will involve a

compartmental model with spatial and temporal elements while considering the possibility

of pseudorabies suddenly appearing in far reaches of the Park as a result of illegal feral hog

release by hunters.
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Chapter 3

Spatial Niche Model

3.1 Background and Theory

3.1.1 Problems with Multiple Correlations and Predictors

A common area of interest in mathematics is to determine the relationship between two

of more predictor variables and a single criterion variable. Many related methods involve

linear combinations of the predictor variable in order to explain the criterion variable. Such

methods include simple and multiple linear regression, general linear models, least squares

estimation and maximum likelihood estimation to name a few. Many of the aforementioned

theory has applications in distribution modeling under the correct assumptions.

To illustrate the issues that correlations between predictor variables present to this

problem, consider the following hypothetical scenario: Suppose we wish to predict the

probability p̂ that a focal species exists in cell j based on number of environmental variables

Zi for i = 1, ..., k − 1. We can view this situation as attempting to relate k − 1 predictors

(environmental variables) to explain the criterion variable (probability of focal species

existence) in k-dimensional space. That is, after learning about the interrelationships between

the k elements in the vector space where a species is found, k − 1 predictor scores can be

computed that can be used to obtain the probability that the focal species exists in a new
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cell j in the study area as a linear combination of the predictor scores and predictor values

on cell j, i.e.,

p̂j = b1z1,j + b2z2,j + ...+ bk−1zk−1,j

where bj are the regression weights and zi,j is the value of environmental factor i in cell j.

Of course, this calculation is subject to some error, e, which can be used to adjust the

weights, bi. Since e is the difference between the actual and computed probability that the

species exists in cell j, it can be quantified as

ej = pj − p̂j.

Naturally, for the purpose of regression and ultimately prediction, we wish to minimize this

error. Formally, we can pose this problem as

Min
b
f(e(b))

where f(e(b)) =

N∑
j=1

e2j

N
=

N∑
j=1

(pj − p̂j)2

N
,

for b = (b1, ..., bk−1) and where N is a normalization factor and the square is introduced to

account for negative values that might occur from the difference. Substituting the formula

for p̂j yields

f(e(b)) =

N∑
j=1

[pj − (b1z1,j + b2z2,j + ...+ bk−1zk−1,j)]
2

N
.

Differential calculus can be used to solve this minimization problem (Cooley and Lohnes,

1962). Let ri,j represent the value explaining the inter correlation between environmental

variables (predictor variables) i and j, and ri,k be the correlation of environmental variable

(predictor variable) i with the criterion variable (probability of focal species existence)
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(Cooley and Lohnes, 1962). After taking partial derivatives and setting equal to zero, the

problem can be represented in matrix form by

R1,1b = R1,2

where

R1,1 =



1 r1,2 r1,3 · · · r1,k−1

r2,1 1 r2,3 · · · r2,k−1

r3,1 r3,2 1 · · · r3,k−1
...

...
...

...
...

rk−1,1 rk−1,2 rk−1,3 · · · rk−1,k


,

b =



b1

b2

b3
...

bk−1


and

R1,2 =



r1, k

r2,k

r3,k
...

rk−1,k


.

It becomes clear that in order to solve for the regression weights in the matrix b, one

needs to invert the matrix R1,1 so that

b = R1,1
−1R1,2.
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It is shown in (Cooley and Lohnes, 1962) that the squared multiple correlation coefficient

R2 is given by

R2 = b′R1,2 =

p−1∑
j=1

bjrjp.

To illustrate this complication consider a two predictor system where

R2 = b21 + b22 + 2b1b2r12.

This is extremely problematic because interpreting the regression weights now relies upon

the interaction between the predictors and if the predictors are correlated, understanding the

relationship is impossible (Cooley and Lohnes, 1962). This and a number of other problems

illustrates a general need for uncorrelated variables (Cooley and Lohnes, 1962).

However, using uncorrelated variables is not always an option when conducting a

regression. For example, it is generally accepted that environmental variables tend to be

correlated. Thus, if we wish to predict the presence of a species based on the conditions

in a study area, we need a way to transform the environmental variables into uncorrelated

predictors.

3.1.2 Principal Component Analysis

We just saw how correlations between predictor variables is a confounding issue when

conducting a linear regression. This fact can also be extended to many non-linear regression

models as well as nearly all of the existing multivariate prediction models involve interpreting

the regression weights, which is clouded by the correlations between predictors. This issue

is made worse when considering environmental variables to predict a species distribution as

most environmental variables are inherently correlated in many ways (Hirzel et al., 2002).

Thus, if we want uncorrelated predictors, we need to construct them via a transformation

that also preserves the information the data conveys. We will start by first describing the
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concept of Principal Component Analysis (PCA) for a general case (and general dispersion

matrix) before discussing the application to Environmental Niche Factor Analysis.

Conceptually, PCA aims to resolve correlation issues in m predictors by applying an

orthogonal transformation to convert a set of potentially correlated observations into a set

of linearly uncorrelated variables known as principal components. As an added bonus, we

can achieve a reduction in dimensions as m predictors can typically be represented by k < m

principal components: those that are most important in explaining the data (Legendre and

Legendre, 2012). Let Z be an mxn matrix of standardized data in which correlations between

predictors exist. Standardized means that the data in Z has been transformed to have mean

zero. This can be achieved via

zi,j =
xi,j − x̄j
σxj

,

where xi,j is the value of data j in cell i, x̄j is the mean of predictor j and σxj is its standard

deviation.

Since the correlations that exist within the data cause problems, the general concept is

to perform a linear transformation on the data via matrix P to re-express the information

given in Z in an uncorrelated matrix Y:

PZ = Y.

The matrix P is what is of interest to us as its rows are a basis for the columns of Z that

will determine the important dynamics of the predictors and filter out redundancies. We

call the rows of P the principal components of Z. Further clarification of the goals of the

transformation must be made in order to find a unique P.

While we wish to transform the information given by Z into an uncorrelated matrix Y,

it needs to be done in a way that best expresses the data. The concept of determining how

exactly to “best express” the data was pioneered by Karl Pearson in 1902. Since his time

others, including Truman Lee Kelley, Harold Hotelling and T.W. Anderson, have pondered
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this question and agreed upon a general solution to maximize the variance in the data (Shlens,

2014). The reason for this decision stems from the at least two potential problems with the

poor data in Z: Either the data has noise, or it contains redundant information.

A common method to measure noise in data is the signal-to-noise ratio (SNR) which is

achieved by dividing the variance of the signal (or global distribution), σ2
s , by the variance

of the noise (or predictor distribution), σ2
n:

SNR =
σ2
s

σ2
n

.

Since we have already assumed that the data set characterizes the dynamics of the system,

σ2
n should be less than σ2

s . Thus, the more SNR exceeds 1, the more precise (less noisy)

the data is. To reduce noise and best express the data in Z, each principal component in P

should aim to maximize the variance in Y.

The second possible problem with the data in Z is redundancy. That is, one row of Z

is strongly correlated with a different row and thus two rows provide essentially the same

information. To combat this issue and ensure the transformed matrix is uncorrelated, we

require that the columns of P be orthogonal to each other:

pipj = 0 for i 6= j.

A further requirement on P is that its columns must be normalized. Doing so does not

change the information gained from P and will allow us to implement relevant linear algebra

techniques that require orthonormal matrices later on.

Now that we have more specific information of our goals we can state the problem we

wish to solve as “find an orthonormal P such that PZ = Y, the variance in Y is maximized

and the rows of Y are uncorrelated”.
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The question then becomes how to maximize variance between a set of predictors. The

variance of vector a = (a1, a2, ..., an) with average µ is given by

σ2
a =

1

n

n∑
i=1

(ai − µ)2,

Since normalized vectors have mean zero, their variance is simply

σ2
a =

1

n

n∑
i=1

a2i .

Extending this concept to multiple vectors introduces the concept of covariance. Given

vectors a = (a1, a2, ..., an) and b = (b1, b2, ..., bn), the covariance of a and b is a measurement

of how the two variables change together and is the best representation of variance between

two vectors. Covariance between vectors a and b, σ2
ab, is calculated as

σ2
ab =

1

n− 1

n∑
i=1

aibi =
1

n− 1
abT . (3.1)

Note that if σ2
ab = 0 then a and b are completely uncorrelated, whereas σ2

ab = σ2
a or σ2

ab = σ2
b

implies a = b.

Considering 3.1, it is clear that the covariance matrix, SZ, that describes the interactions

between all predictors can be found through

SZ =
1

n− 1
ZZT,

since components SZi,j
= zizj

T (Legendre and Legendre, 2012). The diagonal terms, SZi,i,

are the variance of the specific predictor and off-diagonal terms SZi,j describe the covariance

between different predictors. Thus, since we wish to maximize variance, in addition to each

principal component pi being orthogonal to another, we require that each pi maximize the

variance in Y. Furthermore, since one of our goals is to express the data given in Z as

uncorrelated data in Y, we need the covariance matrix for Y to be diagonal.
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Generally speaking, a matrix is diagonalizable if it is similar to a diagonal matrix. That

is, matrix A is diagonalizable if there exists non-singular matrix B such that matrix B−1AB

is diagonal. In finite-dimensional space F , A is diagonalizable if and only if there exists an

ordered basis of F that consists of the eigenvectors of A. Also applicable here is the fact that

a matrix is symmetric if and only if it can be diagonalized by a matrix of its orthonormal

eigenvectors. That is, given symmetric matrix K,

D = ETKE,

where D is a diagonal matrix containing eigenvalues of K and the columns of E are

the orthonormal eigenvectors of K (Legendre and Legendre, 2012). Since ZZT is clearly

symmetric,

D = ET(ZZT)E

for diagonal eigenvalue matrix D. Since E is orthonormal, EET = ETE = I, where I is the

identity matrix. Thus, we can derive the relationship

ZZT = EDET. (3.2)

Notice that substituting Y = PZ into SY = 1
n−1YYT yields

SY =
1

n− 1
YYT (3.3)

=
1

n− 1
(PZ)(PZ)T (3.4)

=
1

n− 1
PZZTPT (3.5)

=
1

n− 1
P(ZZT)PT, (3.6)

For this reason we will make the choice that the rows of matrix P should consist of the

eigenvectors of matrix ZZT where eigenvalues λi and associated eigenvector pi are arranged
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in descending order. Thus

P ≡ ET (3.7)

where matrix E contains eigenvectors of ZZT as columns. Note that the eigenvalues are all

positive due to the fact that all dispersion matrices are positive definite. Additionally, by

construction λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. Substituting 3.7 and 3.2 into 3.6 results in

SY =
1

n− 1
ET(ZZT)E

=
1

n− 1
ET(EDET)E

=
1

n− 1
IDI

=
1

n− 1
D.

As one can see, this particular choice of P diagonalizes SY like we wanted. The principal

components of the original predictor matrix Z are eigenvectors of ZZT and SYii indicates the

variance of Z along principal component pi. Furthermore, since each pi aimed to maximize

variance along each axis, the principal components and corresponding variance are arranged

in decreasing order.

It should be clear at this point that the specific choice of P linearly transforms correlated

data Z into uncorrelated data in Y (Legendre and Legendre, 2012). However, we still need

to show that the resulting matrix Y best expresses the transformed data. That is, we wish

to show that the variance in Y has been maximized while preserving its uncorrelated nature.

To prove that eigenvectors pi = eT
i and corresponding eigenvalues λi indeed maximize the

variance of each row of Y, consider the following. Let zi represent column i in matrix Z and

pi be row i in matrix P. Recall that, as a result of the proposed linear transformation on

the data in Z,

y1,i = p1zi.
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Since we wish to maximize the variance in Y, we want the first principal component, p1, to

maximize the variance in the first row of Y:

Maximize
1

n

n∑
i=1

y2
1,i

where

p1p
T
1 = 1,

due to the fact that we have restricted the columns of P to be the orthonormal eigenvectors

of ZZT. However, notice that

1

n

n∑
i=1

y2
1,i =

1

n

n∑
i=1

(p1zi)
2

=
1

n

n∑
i=1

(p1zi)(p1zi)
T

=
1

n

n∑
i=1

(p1zi)(z
T
i pT

1 )

= p1SZpT
1 .

To maximize p1SZpT
1 subject to p1p

T
1 = 1, the method of Lagrange multipliers can be

used (Legendre and Legendre, 2012). This results in the following scalar equation

φ1 = p1SZpT
1 − λ1(p1p

T
1 − 1),

where λ1 is a Lagrange multiplier. We wish the variance in the first row of Y, which is

expressed by φ, to be maximized by the first principal component pi and thus we consider

the partial derivative
∂φ1

∂p1

= 2SZpT
1 − 2λ1p

T
1 .
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Setting this expression equal to 0 and simplifying yields

(SZ − λ1I)pT
1 = 0,

or

SZpT
1 = λ1p

T
1 ,

which is clearly the eigenstructure relating leading Lagrange multiplier and eigenvalue λ1

with corresponding eigenvector p1 (Cooley and Lohnes, 1962). Multiplying on the left by p1

results in

p1SZpT
1 = λ1p1p

T
1 = λ1,

We wanted to maximize 1
n

n∑
i=1

y2
1,i = p1SZpT

1 , which has clearly been achieved by construction,

this value is equal to the leading eigenvalue of ZZT = SZ.

Subsequent principal components are found in a similar manner, only with more

restrictions required. For the second principal component we wish to maximize the

variance in the second row of Y while assuring that the transformed data is uncorrelated.

Mathematically, this translates into

Maximize
1

n

n∑
i=1

y2
2,i = p2SZpT

2

subject to

p2p
T
2 = 1,

where

y2,i = p2zi.

The requirement that the rows of Y remain uncorrelated means

1

n

n∑
i=1

y2,iy1,i = 0.
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Notice that

1

n

n∑
i=1

y2,iy1,i =
1

n

n∑
i=1

(p2zi)(p1zi)

=
1

n

n∑
i=1

(p2zi)(z
T
i pT

1 )

= p2
1

n

n∑
i=1

(ziz
T
i )pT

1

= p2
1

n
ZZTpT

1

= p2SZpT
1

= p2p
T
1 λ1.

This implies that

p2p
T
1 = 0, (3.8)

emphasizing our assumption of orthogonal eigenvectors.

We can again use a Lagrange multiplier approach and derive the scalar equation

φ2 = p2SZpT
2 − λ2(p2p

T
2 − 1)−m1p2SZpT

1 (3.9)

where λ2 and m1 are Lagrange multipliers (Legendre and Legendre, 2012). Differentiating

3.9 with respect to p2, multiplying on the left by p1, setting equal to zero, and considering

3.8 results in

p1
∂φ

∂p2

= 2p1SZpT
2 − 2λ2p1p

T
2 − 2m1p1SZpT

1 = 0. (3.10)

Equation 3.10 implies that

−2m1p1SZpT
1 = 0

and thus

m1 = 0.
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As a result, eigenvector p2 and associated second largest eigenvalue λ2 maximize the variance

in the second row of Y (Cooley and Lohnes, 1962).

This process is continued for each subsequent eigenvector and principal component pi.

By the end of the process, the rows of P contain the eigenvectors associated with the ordered

eigenvectors λi. This structure is the subject of the next section where we discuss how the

number of predictors can be reduced, adding value to the process of principal component

analysis.

3.1.3 Dimension Reduction

The structure that results from a principal component analysis is extremely useful in a number

of ways. First, the eigenvectors pi of the dispersion matrix SZ = ZZT are the basis for the

linear transformation PZ = Y (Legendre and Legendre, 2012). Furthermore, p1 describes

the direction of maximum variance in the predictors and each subsequent pi for i = 2...n

gives the direction of the next largest variance orthogonal to each of the previous directions.

The construction of this transformation is what results in uncorrelated predictors. Second,

the descending positive eigenvalues λi that correspond to eigenvectors pi tell the variance

that exist in the direction of each principal axis. This is immensely important as their values

decrease rapidly, which indicates that the transformed information from Z can be summarized

in far fewer dimensions via the axes described by the eigenvectors of its dispersion matrix

(Legendre and Legendre, 2012).

Since it is generally agreed upon that maximizing variance best represents the transformed

data and that the percent of variance being represented by principal axes pi for i = 1...n is

given by
λi
n∑
j=1

λi

,

where the magnitude of each eigenvalue gives us a clue of how many principal components

should be used. There are several methods to determine how many axis are significant

including the Kaiser-Guttman criterion (Kaiser, 1991) and the broken stick method (Frontier,
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1976). The Kaiser-Guttman criterion indicates that only principal components with

corresponding eigenvalues that are larger than the mean of all eigenvalues should be used. The

broken stick method compares the values of decreasing eigenvalues to the decreasing values

in the broken stick model to make a choice of which principal components are significant and

should be used (Frontier, 1976).

In either case, usually only the first several principal components are deemed meaningful.

This has profound implications for analysis as not only does PCA produce uncorrelated data,

but it allows one to reduce the dimensions being used in subsequent analysis, which can

greatly reduce computation time and lead to easier interpretation of results. Environmental

Niche Factor Analysis modifies this theory and methodology for predictors that indicate the

how likely an area is to support a given focal species.

3.2 Environmental Niche Factor Analysis

3.2.1 Conceptual Information

Distribution modeling of species is an exciting topic with numerous applications. From

determining the precise areas a species inhabits to quantifying suitable conditions in an area

that could support a specific species, researchers have been making use of distribution theory

to explore what environmental factors are important for a given species’ presence. However,

each method is based on different assumptions and requires various inputs. For example,

general linear models and additive models all require both presence and absence data. That

is, one needs data relating to the conditions that result in a habitat being suitable for a

species as well as those conditions that are unsuitable. While the applications of such models

have been wide spread, absence data is not always obtainable and, even if it is, it often cannot

be trusted. For this reason approaches such as Environmental Niche Factor Analysis (ENFA)

and Maximum Entropy were developed to allow analysis using presence data only. Here we

focus on ENFA, which is based on the concept that a species inhabits a certain niche, or

areas where environmental variables interact to form a suitable habitat.
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In order for a species to maintain a viable population, they need to inhabit an area where

the interaction between environmental factors allows for sustained existence. Furthermore,

when considering presence data of a species, their locations will be in areas with appropriate

living conditions. Such areas are found within a species niche, which is explored through

topic of niche theory (Hutchinson, 1957). Niche theory relies on the belief that species have

unimodal distributions along environmental variables in that a given species has greater

abundance along a single interval within important environmental factors. Practically, this

corresponds to the average value of a given environmental variable in which a focal species can

be found representing the optimum value for that species with respect to the given predictor.

Comparing this average to the average of a global test space across number of environmental

predictors provides the framework for quantifying the types of conditions that result in a

suitable habitat for the focal species.

The theory is based on the concept that the species is not randomly distributed in a

given area, but instead exist in locations based on the conditions that exist in the local

environment. What makes this methodology particularly useful and robust is the need for

presence data only. Given a set of presence points that have been collected as a result of a

uniform process, information related to what constitutes the species niche can be extracted

from the ecological conditions that exist in the specific geographical presence locations. Using

the information conveyed by presence points only, ecological conditions in other locations in

the study area can be examined to determine whether or not their interaction constitutes

a habitable location (Hirzel et al., 2002). As a result, applications of ENFA are bountiful

and can be applied to many situations including a hunted species, invasive species, or other

populations where presence data is obtainable but absence data is unavailable or unreliable.

Each individual factor will hereafter be referred to as a ecogeographical variable (EGV)

and a species will often require a specific combination of these variables in order for a

particular area to be deemed a suitable habitat. For example, a species may require certain

temperature, food, climate, or other important factors. The factors that are relevant for a

given population depends on the particular species, the study area being considered, and the
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environment found within the study area. One way explore how a species niche is the result

of ecogeographical variables interacting in an environment to produce a preferred habitat,

is to examine the distribution of ecogeographical variables in the areas where a species is

located compared to the global distribution. The concept of marginality and specialization

are introduced in order to help quantify a species niche.

Marginality is a quantification of how the average environmental conditions on the cells

where a species is known to inhabit compare to that of the average on the global distribution.

Since the average value of an EGV on known presence locations can be considered optimal

for a species, marginality aims to describe the distance of the species optimum from the

ecological condition in the study area. Specifically, the marginality (M) is stated as the

absolute value of the difference between the global mean of an ecogeographical variable (mG)

and the mean in cells where species are present (mS) (Hirzel et al., 2002). This value is then

normalized by dividing by 1.96 standard deviations of the variance of the global distribution

(σG):

M =
| mg −ms |

1.96σG
. (3.11)

Due to the fact that a randomly chosen value from the global distribution would be expected

to lie σG away from the mean, dividing by 1.96 σG ensures that marginality will most always

be between zero and one, with a value closer to one indicating the species has specific

environmental preferences relative to the global set. Of course, any species niche will depend

on the interaction between a number of ecogeographical variables, and thus a multivariate

version of equation 3.11 will be given in a later section.

Specialization is a measurement of how the standard deviation of the cells with

species presence compares to the standard deviation of the global ecogeographical variable.

Specialization (S) is quantified by dividing the standard deviation of the global distribution

(σG) with that of the focal species (σS) (Hirzel et al., 2002):

S =
σG
σS
.
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A randomly chosen set of cells would be expected to have the standard deviation of the global

distribution and thus would have a specialization value close to 1. Similarly, a specialization

value grater than 1 would mean that σS < σG, indicating the focal species is sensitive to

changes in their preferences with respect to the given ecogeographical variable. Note again

that this formula would only apply when considering a single ecogeographical and that the

multidimensional version will be provided later.

The way we will describe the niche of a species in an area is the subset of the area

where the species has a reasonable probability to occur, which can be quantified using the

concepts of marginality and specialization. However, ecological variables are not necessarily

independent. At least two will almost certainly be correlated with each other, and it is

difficult to relate two correlated variables to quantify a species niche. This issue is especially

worrisome as a species’ niche depends on the interaction between a significant number of such

variables. To circumvent this issue, a principle component analysis is applied from which a

reduced number of predictors can be selected as explained previously.

Many problems in multivariate analysis are aided by methods of describing relevant

information in the original observations with a reduced test space (Cooley and Lohnes, 1962).

Principle components is one such method and, since it does not require a criterion variable,

it is applicable for ENFA’s purpose. As described in the previous section, in PCA , axes are

generally chosen in to maximize the variance of the distribution. A key distinction in the

principal component analysis performed by ENFA is that the first axis is chosen to account for

all marginality of the species and the subsequent axes are chosen to maximize specialization.

Data used in ENFA are obtained using Geographical Information Systems.

Geographical Information Systems (GIS) is a powerful tool that allows one to explore

the connection between a species and its habitat. Environmental data paired with presence

points allows one to explore the dynamic between the cells that contain a presence point and

those that do not. In short, GIS data is the tool from which one can quantify environmental

conditions in an area. This data can then be used explicitly in Environmental Niche Factor

Analysis in order to determine the suitable habitat for a species in a given area.
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Raster maps are the preferred format in this type of study and can be thought of as a

partitioning of the study area in to smaller square pieces called cells, each of which contains

a value relevant to the specific map. A raster map can be quantitative, such as elevation,

average temperature or frequency of vegetation type, or qualitative such as road maps, soil

type or land use. Practically, a raster map can be thought of as an m × n matrix of values

where each i, j entry corresponds to a geographic location. Note that a fine scale could

result in a more detailed analysis, but also means more entries in each raster map and higher

computation time. One must choose the most relevant scale based on goals of the project,

available resources, and computation power (Hirzel et al., 2002). In ENFA, raster maps for

relevant ecogeographical variables that cover the whole study area are paired with a raster

map of presence data indicating which cells have been known to support the species. After

a particular focal species and study area have been determined, one must first obtain the

relevant data.

Which ecogeographical variables one chooses are determined by the focal species and

study area in question. For example, the distribution of the primary food source(s) of the

focal species is usually related to their niche. Specifically, if considering the existence of panda

bears one should have information related to the locations of bamboo (not acorns), whereas

a study of feral hogs in the Smoky Mountains would instead require data on the distribution

of oak trees (not bamboo). The size and composition of the study area can play a factor

as well. For example, while ecological factors need always influence species distributions,

considering areas with human inhabitants requires the need to measure human influence.

Human influence can be quantified by locations and frequencies of roads, impervious surfaces,

buildings, land use and other similar metrics.

Prior to conducting an analysis, knowledge of the focal species and what key factors

determine their distribution helps choose relevant EGVs. However, since we will apply a

principal component analysis that will extract most of the relevant information from the

data in far fewer factors by transforming the data to uncorrelated axes, ENFA is rather

robust with respect to redundant information in the data and correlations between predictors
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(Hirzel et al., 2006). Thus many EGVs should be used initially and only need to be removed

if extreme correlations exist. Of course, again due to the principal component analysis,

removing an overly correlated EGV does not result in any loss of information as the same

relationships will instead be derived from the correlated EGVs that remain. This is contrary

to other methods, such as Maxent, in which removing EGVs to reduce correlations between

predictors is often required and results in a loss of information (Hirzel et al., 2002).

Assume that we have partitioned the study area represented by an m × n raster matrix

totaling N square cells. The species presence map should be obtained by unbiased sampling

and a lack of evidence in a location is simply entered as a 0. Presence can be represented

with a 1 or an integer value in cells that warrant weighting. A relatively small number of

presence points are required to quantify a species niche and increasing the number of points

does not generally provide much additional information (Hirzel et al., 2002).

Assume we have V ecogeographical variables that are relevant to the particular focal

species and study area. The EGVs need to be arranged in raster maps that are overlay-able to

the species presence/absence map. This means that each EGV has the same number of cells,

which are the same size and the extent covers the exact same geographical space. Quantitative

data, such as average rainfall or slope are ready to be used in their current form to understand

the key characteristics of the locations with known species presence. Qualitative data, such

as vegetation type and many human disturbances, must first be quantified. This is due

to the fact that marginality is dependent on the mean of each EGV and if the current

value of an EGV is not a meaningful numerical value, then the average is also meaningless

and the marginality factor will be invalid. Given a raster map containing the location and

characteristic of a qualitative variable there are a number of ways to translate the information

into a quantitative format including measuring the frequency of occurrence centered around

each cell within a certain radius or to calculate the nearest distance from the each cell to the

each qualitative feature.

As previously mentioned niche theory relies on the fact that species distributions are

unimodal. This comes into play in ENFA as the mean of each EGV is thought to represent

53



the optimal value and used as such. Though the method is robust to deviations from

multinormality, it is theoretically needed in each EGV (Glass and Hopkins, 1970). A common

box-cox transformation is performed on all EGVs in order to render them more normally

distributed (Sokal et al., 1969).

Once all EGVs are quantitative and transformed via box-cox or a similar transformation,

they can then be normalized further to prepare them for the principal component analysis.

As mentioned previously, in order to ensure the multinormal data has mean zero we must

subtract off the mean of each EGV from the value of each cell and divide by the standard

deviation

zi,j =
xi,j − x̄j
σxj

,

where xi,j is the value of variable xj in cell i, x̄j is the mean of this variable over all cells and

σxj is its standard deviation. What results is an N × V matrix Z of multinormal data with

mean zero and standard deviation of 1.

With the normalized matrix environmental variables Z in hand, one can compute the

matrix

RG =
1

N
ZTZ.

Due to its standardization, the V ×V matrix RG is a covariance matrix as well as a correlation

matrix which describes the interactions between predictors (Hirzel et al., 2002). Letting S

be a subset of matrix Z where focal species presence is known results in an NS × V matrix.

Using S, the V × V species covariance matrix can be obtained through

RS =
1

NS − 1
STS.

Note that RS is not a correlation matrix as standardization was performed on the global set

using global values and not on the species subset using their respective values.

Recall that we wish to perform a principal component analysis to reduce the number

of dimensions and uncorrelate the data found in Z and that PCA is essentially a linear
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transformation on the data of the form

PZ = Y.

However, in the general descriptions of PCA, axes are chosen in the direction that maximizes

variance. Here, we require the first axis to maximize marginality and the subsequent axes to

maximize specialization. The data in Z by construction already represents of the marginality

of the species on a specific variable. Thus, the vector that describes all marginality, m, is

given by

mj =
1

NS

NS∑
i=1

zi,j .

In practice, one calculates this vector first and then sets it aside for later use. Specifically,

since we want our predictors to be uncorrelated, we need the remaining axes to be orthogonal

to m. This orthogonality requirement will result in the PCA producing p−1 non-zero factors

for the p predictors and m will become the pth value by being substituted into the first column

of the factor matrix. Before doing this, however, the other factors need to be computed which

each maximize the specialization of the species on axes orthogonal to m (Hirzel et al., 2002).

Letting u be a normalized vector of the EGV space, the variance of the global distribution

on this vector is given by

uTRGu.

Similarly, the variance of this vector on the species distribution is

uTRSu.

Thus, referring back to the definition of specialization, maximizing specialization clearly

means maximizing Θ(u) where

Θ(u) =
uTRGu

uTRSu
. (3.12)
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The need for uncorrelated principal components results in the additional constraint mTu = 0.

As a result, the previous problem can be stated as

Find a u such that such that

mTu = 0

uTRSu = 1

uTRGu is as large as possible, which is needed to maximize specialization.

A change of variables is applied to this system with v = R.5
S u, W = R−.5S RGR−.5S and

y = z
(zTz).5

where z = R−.5S m. The exponents with .5 are needed to obtain the square root

of the matrix. Doing so results in the translated problem

Find a v such that such that

vTy = 0

vTv = 1

vTWv is as large as possible.

The above, and each subsequent, problem is solved by successive eigenvectors of the matrix

H = (I− yyT)W(I = yyT), the proof of which is similar to that in the principal component

section and can be found in (Hirzel et al., 2002). After solving for the eigenstructure of H,

the eigenvectors can be transformed back into vectors ui for i = 1...V that solve the original

problem. The matrix U is then constructed, whose columns contain solutions ui. Recall that,

since each ui must be orthogonal to the marginality factor m, up is null and thus removed

while m is substituted into the first column of U.

Recall that in a general PCA, eigenvectors of the dispersion matrix maximize variance

and are thus the principal components and the corresponding eigenvalues describe how each

direction contributes to the variance. Here, by design, the first factor accounts for 100% of

the marginality of the species. To represent how much of the specialization of the species is
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accounted for by each factor, we obtain each factor ui’s contribution to specialization. This

is achieved by substituting each factor ui into equation 3.12 and comparing output. From

this, values λi for i = 1...p are computed which represent the amount of specialization that

each factor accounts for, including the marginality factor. In many cases, the marginality

factor can account for more than the specialization factors combined (Hirzel et al., 2002).

3.2.2 Interpreting the Results

After completing all the necessary transformations and calculations with respect to the data

one has all the tools to make meaningful statement regarding the focal species niche.

Matrix U, also referred to as the factor matrix or score matrix, contains vital information

about marginality and specialization of the species and how they are related to each

predictors. Since the first column u1 accounts for 100% of the marginality of the species, the

interpretation of this factor is easy. Values near 0 indicate the species is found in average

conditions with respect to the global EGV where positive values means the species can be

found in higher than average conditions and negative values show that the species is found

in locations with lower than average values. The eigenvalue associated with this factor,

λ1, describes its contribution to explaining the specialization of the species. An overall

marginality condition for the entire study area can be computed as

M =

√
V∑
i=1

m2
i

1.96
,

which is only useful to compare marginality between different species.

The remaining factors ui for i = 2, ..., p maximize specialization in orthogonal directions.

Since specialization of the species is spread across the remaining p−1 factors, interpretation is

not as straightforward as the first. The sign for these factors is arbitrary and thus values the

farther from 0 simply indicate that the species is more restricted on the values it considers

suitable with respect to the given variable. The eigenvalues associated with each factor

57



describe its given contribution to explaining the specialization of the species. Similar to

marginality, a global specialization factor can be computed for the entire study area in order

to compare between species. Global specialization is characterized by

S =

√
V∑
i=1

λi

V
.

Similar to the general PCA case, eigenvalues usually decrease rapidly allowing for

significant reduction in dimensions. In fact, 100% of the marginality and nearly all of the

specialization of a species are typically expressed by only the first several factors. Also

similar to a PCA, how many factors to keep can be determined by one of several criterion.

The creators of ENFA recommend using the Broken Stick Method (Wilson, 1991).

3.2.3 Creating a Habitat Suitability Map

One could think of a number of ways to use the aforementioned derived information to

determine which cells in the entire study area are suitable to support the species. The

authors of (Hirzel et al., 2002) considered a number of methods and have included four in

their BIOMAPPER software (Hirzel and Perrin, 2002). We will discuss one of the four as it

is the most robust and is what we used in our analysis.

We use the method referred to as the distance geometric-mean algorithm to determine a

habitat suitability value for each cell in the study area. This method aims to measure the

distance between each given cell and each observation points in the factor space (Hirzel et al.,

2006). Specifically, for any point P in the transformed factor space, the geometric mean of

the distances (HG) to all observations Oi is calculated as

HG(P ) = Ns

√√√√ Ns∏
i=1

δ(P,Oi),
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where δ represents the distance in the factor space (Hirzel et al., 2006). Since areas with dense

presence points are thought to best represent the species niche, these locations reinforce the

environmental conditions that exist in those locations and result in higher habitat suitability

values. Furthermore, unlike the medians algorithm, the geometric mean algorithm makes no

assumption about the shape of the species distribution and results in a more smooth map

(Hirzel et al., 2006). Though this method is more computationally intensive and thus takes

longer compared to other options, its results provide a good generalization of the species

niche and is thus preferred. We also achieved far superior validation results when using the

geometric mean algorithm.

3.2.4 Validating a Habitat Suitability Map

Most evaluation measures previously used were based on presence/absence (or pres-

ence/pseudoabsence) data and strongly depend on a subjective habitat suitability cutoff

threshold. Since presence data used in ENFA is typically accompanied by nonexistent, or

untrustworthy, absence data the authors of (Hirzel et al., 2002) developed a new approach

that has gone through several stages of evolution. We will focus here on the evaluation

techniques that currently exist in BIOMAPPER 3.0. These techniques include calculating

an absolute validation index (AVI) and corresponding contrast validation index (CVI) in

addition to the preferred method of the continuous Boyce index (Boyce et al., 2002).

The AVI and CVI metrics were originally derived for BIOMAPPER 1.0. The absolute

validation index is described as the proportion of presence evaluation points falling above

some fixed threshold (e.g. 0.5) and varies from 0 to 1. The contrast validation index is the

difference between the AVI and a chance model that predicts presence everywhere. Similar

to other validation approaches, the AVI and CVI values suffer from the fact that an arbitrary

threshold must be chosen. Due to this fact the authors of (Hirzel et al., 2006) implement the

a continuous version of the Boyce index.
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Instead of enforcing a cutoff threshold, the Boyce index partitions the habitat suitability

range into b classes. For each class i, the predicted frequency of evaluation points, Pi, and the

expected frequency of evaluation points, Ei are calculated. Let pi be the number of presence

points predicted by the model to fall in habitat suitability class i and let ai be the number

of cells belonging to habitat suitability class i. Then

Pi =
pi
b∑

j=1

pj

and

Ei =
ai
b∑

j=1

aj

.

Then, for each class i, a predicted-to-expected (P/E) ratio Fi can be calculated as

Fi =
Pi
Ei
.

If a habitat suitability model is functioning properly, it will correctly categorize areas with

low, moderate and high suitability. Since low suitability areas should contain few presence

points, one should expect Fi < 1 when i represents a low suitability class. Similarly, adequate

suitability classes should have Fi values monotonically increasing past 1 as i increases. This

monotonic increase is quantified by the Spearman rank correlation coefficient between Fi and

class i and is referred to as the “Boyce Index”, Bb (Boyce et al., 2002). Boyce index values

range from -1 to 1 with positive values resulting from predictions that are consistent with

the presence distribution, a value of 0 means the model does not differ from a chance model

and negative values indicate an incorrect model is being used. The main shortcoming of this

method as described is that it is sensitive to the number of classes b and to their boundaries.

To combat this, a continuous version of the Boyce index was formulated. Instead of using

fixed classes, a moving window approach is used where computation of the F curve is carried

out on a small class size, say [0,W ] for W = 0.1, before the window is gradually increased
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to 1 by a fixed, small step size. At each window size, the P/E curve is plotted against the

average suitability value of the class, W/2. Thus, instead of a discrete curve subject to class

size and boundary issues, a smooth and continuous curve is created from which a continuous

Boyce index can be computed. This process is expanded further by performing a variance

analysis via a cross-validation method.

A k-fold cross-validation method is a resampling approach that allows assessment of the

robustness of the above measure (Hirzel et al., 2006). The approach begins by dividing the

data set into k independent partitions. Then k − 1 of them are used to calibrate the model

and the final partition is used to evaluate the model. This process is repeated k times,

using each partition sequentially to evaluate the model. What results is k estimations of the

evaluator which allows one to determine the tendency of the model and calculate its variance

(Hirzel et al., 2006). Since a variance calculation was one of the things lacking from ENFA,

this new approach was a welcome addition to the BIOMAPPER software.

3.3 Habitat Suitability of Feral Hogs in Great Smoky

Mountains National Park

3.3.1 Introduction

We now create a habitat suitability map for Feral Hogs in Great Smoky Mountains National

Park using the previously described methodology. Two recent papers were written about

wild hogs in GSMNP using removal data provided by the Park and vegetation data obtained

via LIDAR (National-Park-Service, 1980; Madden et al., 2004). The first paper contains

an agent based model in which individual hog behavior is modeled in order to examine

population dynamics (Salinas et al., 2015). The second paper has a discrete metapopulation

model that uses parameters that were carefully estimated using available data (Levy et al.,

2015). Historical effort levels of the control program were carefully estimated by comparing

output of the metapopulation model with the removal data. Model simulations indicate that
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the control program is important in limiting the population (Levy et al., 2015). One aim of

this paper is to scientifically inform control efforts by illustrating locations where hogs can

be effectively and efficiently removed from the Park.

The control data only conveys information related to the presence (not absence) of hogs

in the Park. For this reason the harvset data lends itself to presence-only methods such

as Environmental Niche Factor Analysis (ENFA) (Hirzel et al., 2002). The theory aims

to quantify a species niche by relating presence points to ecogeographic variables. We can

then scientifically and mathematically assess potential wild hog locations with the goal of

limiting their population within Great Smoky Mountains National Park (GSMNP). Using

this approach we are able to derive a detailed map of suitable locations for hog presence, as

well as a map showing locations where one would be most likely to encounter hogs. Thus,

results produced from this method have applications in illustrating wild hog habitat in the

Park while also suggesting potentially bountiful places to hunt. This information can be used

to increase our understanding of the population, evaluate historical hunt sites, and provide

insight into other potentially fruitful locations. This methodology could also prove to be

useful for other species found in GSMNP such as flying squirrels and Indiana bats. Since

both of these species are threatened, understanding and protecting the geographic locations

of their habitat could be invaluable to their recovery.

A description of Environmental Niche Factor Analysis will first be presented. Then our

methods and the data used in the analysis will be discussed. A Niche Factor Analysis will the

be applied to the data in order to assess wild hog preferences in GSMNP. Using the resulting

information, two map products are produced and validated using a continuous Boyce index

(Boyce et al., 2002; Hirzel et al., 2006). Finally, we present conclusions from our map products

and analysis.

3.3.2 Methods and Data

An Environmental Niche Factor Analysis uses the concepts of marginality and specialization

to determine habitat preferences and model them spatially (Hirzel et al., 2002). Marginality
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can be measured as the difference between the average conditions where the species is found

and the average conditions of the study area. Specialization is the ratio of the variance

of the conditions where the species can be found and the variance of the conditions of the

study area. Together, marginality determines the types of conditions the species prefers and

specialization measures how sensitive the species is to deviations from their preferences.

In order to measure these multiple variable dependent values, the powerful theory

of principal component analysis is used in an innovative way to produce uncorrelated

environmental predictors and conduct a factor analysis (Hirzel et al., 2002). Ecogeographic

preferences can then be determined and used to create two maps relevant to hog presence

in the Park. Results of these maps are validated using a predicted-to-expected ratio and a

continuous Boyce index, which will be explained later.

Since each data point represents a location where a hog was removed, the conditions are

suitable for both hog presence as well as a successful hunt. For this reason even though the

presence-only data is likely biased by the behavior of hunters, a distribution map derived

from successful hunting locations using ENFA conveys important information for the control

program.

The study location is GSMNP, which is almost entirely undeveloped which limits the

number of human-related ecogeographical variables to roads, trails and buildings. All of the

data was initially processed into raster maps using ESRI ArcMap 10.1. All maps were re-

projected to NAD 1983 UTM Zone 17N using a GSMNP boundary file to set the extent of

each map and to clip the data to the study area. Given the size of the study area, available

data and goals of the project, each raster map was constructed with a cell size of 30m by

30m. This resulted in 2899 columns and 1308 rows for a total of 3,791,892 cells. Some data

preparation and all analysis were then completed in BIOMAPPER 4.0, a software developed

for ENFA (Hirzel and Perrin, 2002).

All human related data was provided by GSMNP (National-Park-Service, 2011). Roads

and buildings are fairly uncommon within the Park and these variables were quantified in each

cell with a closest Euclidean distance analysis performed in ArcMap 10.1. Trails, however,
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are more bountiful with certain areas of the Park containing larger densities of trails than

others. Due to this fact, trails in the Park were quantified by the area covered by trails within

a 2 km diameter centered on each cell using the frequency tool in BIOMAPPER (Hirzel and

Perrin, 2002). Using a user supplied radius, the frequency tool measures the fraction of total

area covered by the feature in a circle surrounding each cell. A 2 km radius was chosen after

reviewing results using a number of different values.

Geographic data includes slope and elevation. Elevation was obtained from the National

Elevation Dataset (NED) (Gesch et al., 2002). The digital elevation map was then used to

derive the slope within the Park.

Not only is GSMNP almost entirely undeveloped, it is surrounded by national forests

increasing the sheer magnitude of wilderness. As a result, it makes sense that hog preferences

in the Park would be driven primarily by environmental factors related to vegetation, climate,

food and water. A GIS vector map of locations of streams from GSMNP was quantified using

the frequency tool in BIOMAPPER described previously (National-Park-Service, 2011).

Vegetative data includes understory vegetation and food preferences, as well as general

growing conditions expressed by the normalized difference vegetation index. Detailed data

related to the types of vegetation growth found throughout the Park was obtained via lidar

and provided by (Madden et al., 2004). This data includes overstory and understory values,

both of which were used in the model. Since hogs root for part of their food source, ground

vegetation is an important part of a hog habitat. Understory vegetation was extracted

from this source into three major categories that collectively cover 85% of the park. These

categories include Rhododendron, Kalmia and Herbaceous and Deciduous understory. A

frequency map was derived from each understory category in ArcMap. Another indication of

ground vegetation is given by the normalized difference vegetation index (NDVI), which was

developed by Rouse et al. (1974) and is commonly used to assess the growing condition of

green vegetation. The NDVI is numeric data and was obtained from the Global Land Cover

Facility (Carroll et al., 2003).
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As previously discussed, food sources are believed to play a large role in the behavior and

life cycle of hogs (Scott and Pelton, 1975; Singer et al., 1981). As such, overstory vegetation

information from (Kirkpatrick and Pekins, 2002) was used to create a food preference map

based on the amount of kilocalories produced per acre in each cell during the fall months

when food is most bountiful. Categorical values range from 1 to 5 the summary of which

can be seen in Table 3.1. As each of these maps is categorical, they were quantified using

the same frequency method.

Table 3.1: Categorizing food sources based on the average amount of kilocalories produced
per acre in the Fall. There is no category 4 as there are no locations in GSMNP produce
between 9, 000− 11, 000 kilocalories per acre.

Category Kilocalories per Acre Dominant Species
1 < 5, 000 Spruce Fir
2 5, 000− 7, 000 Oak, Pine and Northern Hardwoods
3 7, 000− 9, 000 Oak and Pine
5 > 11, 000 Cove Hardwoods

To consider the influence the climate found in GSMNP has on the hog habitat, 19 variables

derived from temperature and rainfall data over the last 50 years were obtained from (Hijmans

et al., 2005). Since our study area is relatively small, temperature and rainfall values are

similar across the Park which results in many of the maps being highly correlated. This

results in most of the maps producing similar data in the factor analysis, requiring most

maps to be discarded. Due to this fact, we only used average precipitation and average

temperatures in the model. Even though most of the 19 variables could not be used, the two

that were kept were the largest contributors to marginality and specialization. Furthermore,

the high correlation between temperature and/or precipitation with the other variables mean

they convey essentially the same information in the factor analysis.

Hog location data was provided by Great Smoky Mountains National Park and consists

of the age, sex and geographic location of nearly all hogs removed in the Park since 1980

(National-Park-Service, 1980). The data can be categorized by hogs that were trapped or

hunted. Traps draw hogs into certain locations and thus may not accurately represent the
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species niche. However, hunted hog locations result from park employees hiking through the

backcountry throughout the park in search of hogs and thus better represent the species niche.

With this in mind we chose to use locations of hunted hogs as our presence points, which

results in 1,553 unique entries. See Figure 3.1 for a map of the locations. Note that even

if this data is biased due to hunter preferences and behavior, it is suitable for this analysis

since we wish to determine hunting locations that best limit the population. Also, hunting

takes place at all locations where a trap is placed. Thus, although we are not considering

trap locations explicitly, our results can be used to determine appropriate locations to place

traps as well.

Figure 3.1: Locations of hunted hogs from 1980-2014 used as presence points in the analysis
equals 1,553 in total.

Although all the data was obtained in ESRI format, BIOMAPPER requires Idrisi format.

Converting into Idrisi format was carried out using Global Mapper and final preparation as

well as analysis was conducted in BIOMAPPER 4.0. A summary of all EGVs used in our

analysis can be found in Table 3.2. The mean and standard deviation values are useful when

considering the results of the factor analysis in Table 3.3. In order to ensure the data took

a Gaussian shape, the Box-Cox transformation was applied to all EGVs as recommended by

(Hirzel et al., 2002). This assists in ensuring the data take a Gaussian shape, though the

method is robust to deviations from normality (Hirzel et al., 2002).
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Table 3.2: List of the 16 ecogeographical variables used in the analysis. Precipitation values
are measured in mm, distances in m and frequency values in percent covered.

EGV Minimum Maximum Mean S.D.
Elevation 270 2,026 1,005 460

Slope 0 61 15 283
Distance to Roads 0 13,114 3,210 2,748

Distance to Buildings 0 24,306 7,191 4,863
Frequency of Trails 0 99 17 18

Frequency of Rhododendron 0 98 30 23
Frequency of Herbaceous Veg.

& Deciduous Shrubs Understory 0 100 46 24
Frequency of Kalmia Understory 0 100 48 33

Calorie Level #1 Freq. 0 100 28 33
Calorie Level #2 Freq. 0 91 22 19
Calorie Level #3 Freq. 0 92 29 20
Calorie Level #5 Freq. 0 96 21 17

NDVI 20 250 162 23
Frequency of Streams 0 19 7 2
Average Temperature 6 14 11 1.5
Average Precipitation 100 148 129 9
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3.3.3 ENFA Results

After performing the niche factor analysis relating our EGVs to presence locations, we wanted

to retain enough factors to explain at least 80% of the total information in the data. The

values of the EGVs on each of the 8 factors is shown below in Table 3.3. The first factor

explains 100% of the marginality and factors 1-8 account for 70% of specialization for a

combined 85% of total information explained by the model. Thus, eight factors were used

to compute the habitat suitability map. For the marginality factor values, positive values

indicate the data points are found in locations that contain higher than average values with

respect to the given variable, values near zero indicate a preference for average conditions

and negative values indicate presence in locations with lower than average values. Table 3.3

is ordered by decreasing absolute marginality values to illustrate the strongest preferences for

feral hogs in GSMNP. Only the magnitude of the specialization factor values is important,

not their sign. Larger magnitude indicate restricted ecological tolerance compared with the

overall range of conditions in the study area, and magnitude closer to zero indicates that the

population deviates from their preference.

The largest contributors to marginality are slope, frequency of rhododendron and

frequency of herbaceous vegetation and deciduous shrubs. As Table 3.3 indicates, hogs

prefer areas with slope and frequency of rhododendron values far less than average (-0.510

and -0.399). Furthermore, they prefer locations with a higher than average frequency of

herbaceous vegetation and deciduous shrubs (0.365). Factors 2-8 each accounted for between

9-12% of the specialization in the model. Since one factor did not dominate, in order to

interpret the information the average magnitude of each EGV was calculated weighted by

the amount of specialization explained by each factor. The weighted average indicated that

wild hogs in GSMNP are most sensitive to changes in elevation and average temperature.

The weighted average of all other specialization values were fairly low relative to temperature

and elevation, indicating that hogs are not highly specialized animals. These findings are

consistent with the widespread and resilient nature of the species and agree with past research

(Scott and Pelton, 1975; Singer et al., 1981).
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3.3.4 Map Creation and Validation

Two map products were produced from the niche factor analysis. The first is a habitat

suitability map that ranks each cell in the study area from unsuitable to most suitable (Figure

3.3). This map was derived based on hog preferences evident from the factor analysis and

categorizes the areas in GSMNP in terms of conditions needed to support wild hogs. The

second map product was constructed using validation results and labels each cell in the

Park with the likelihood of encountering a hog at the given location (Figure 3.6). This

is accomplished by emphasizing the regions within the suitable classes that contain the

most predicted presence points by the model. Both maps convey information related to

hog presence in the Park, but each with a different purpose. While the habitat suitability

map ranks locations in terms of environmental conditions, the likelihood map may be more

appropriate for finding hogs to remove for the control program.

The first map product was derived using the results of the factor analysis paired with

the geometric mean algorithm in BIOMAPPER (see Figure 3.3) (Hirzel and Perrin, 2002).

In order to estimate a habitat suitability value at each cell in the study area the geometric

mean algorithm measures the cumulative distance, in the factor space, of the environmental

conditions at each cell from the conditions at all presence locations. The performance of the

model was evaluated using a k-fold cross-validation procedure that produces k estimates of

the number of predicted points (P ) and expected points(E) for increasing habitat suitability

levels. The value of E is proportional to the area of the map covered by the given habitat

suitability range. The value of P is derived from the number of presence points predicted

by the model to fall within the given habitat suitability range. The ratio of these values

can be represented as a continuous plot for increasing habitat suitability levels and is known

as the P/E curve. We took k = 10 partitions along with a random seed following the

method described in (Hirzel et al., 2006). The method produces 10 estimates of the P/E

curve, which allows us to determine the accuracy and consistency of the model. A model

is deemed accurate if the P/E ratio is less than 1 for low habitat suitability values and

increases monotonically past 1 as the habitat suitability range is expanded. The Boyce index
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ranges from -1 to 1 and measures this monotonic trend (Boyce et al., 2002; Hirzel et al.,

2006). Positive values indicate the model predictions are consistent with the distribution of

presence points with values near 1 indicating the most accurate models (Hirzel et al., 2006).

Values near zero indicate the model’s predictions are no better than chance. Negative Boyce

index values indicates the model predicts too many presence points fall within poor suitability

areas. As a measurement of the consistency of the model, a variance can be calculated using

all 10 trials and appended to the Boyce index value. See Figure 3.2 to view the general

trend of the P/E curve surrounded by the variance derived from all 10 trials. The curve is

generally monotonic with any decrease reasonably within the displayed variance. A Boyce

index value of 0.936 ± 0.049 measures this trend and indicates that the habitat suitability

map is both accurate and consistent.

Figure 3.2: Ratio of predicted presence points to expected presence points for increasing
habitat suitability values.

The P/E curve was then used to re-classify the suitability map into the 5 classes seen

in Figure 3.3. Since the confidence interval surrounding the curve was fairly uniform,

distinctions between classes were solely based on the shape and values of the curve. How

each class was partitioned is shown in Table 3.3. By comparing presence locations to model

output, Figure 3.7 allows one to visually verify the trend of the P/E curve and Boyce index

values.
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Table 3.3: Explanation of how each class in Figure 3.3 was partitioned using the information
in Figure 3.2.

Classification Habitat Suitability Range Reasoning
Unsuitable 0− 10 No presence points

Mildly Suitable 10− 25 P < E in this range
Moderately Suitable 25− 50 P slightly larger than E in this range

Suitable 50− 70 P significantly larger than E in this range
Most Suitable > 70 Steepest part of the P/E curve

Figure 3.3: The 5 classes were partitioned using trends and standard deviation of the P/E
validation curve shown in Figure 3.2.
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In addition to a reaffirming continuous Boyce index value indicating an accurate and

precise model, the suitability map is also consistent with past research and qualitative

information received by Park rangers (Scott and Pelton, 1975; Singer, 1981; Singer et al.,

1981; Stiver, 2014). The unsuitable class is predominately located in areas of the Park that

exhibit high elevation. High elevation is related to lower average temperatures as well as

the types of vegetation and food sources that hogs do not prefer (Scott and Pelton, 1975;

Singer et al., 1981). Although hogs are believed to range into the higher elevations during

the summer months, it is out of necessity, not preference. In contrast, the top three suitable

classes are at low elevations where the slope is relatively flat and where oak trees, their

favorite food source, are dominant. These locations are also where herbaceous vegetation

and deciduous shrubs understory are most prevalent. Due to their lower elevation, these

areas have a higher average temperature and precipitation as well, for which hogs evidently

have a preference based on their values in the marginality factor.

One can see the implications of ENFA results when examining the output from our model.

For example, the highest contributions to marginality were shown to be preferences for slope

and two understory categories. When carefully examining the habitat suitability map it is

clear that slope is significant in determining suitable locations (see Figure 3.5a compared

to Figure 3.5b). Further distinctions between appropriately flat mild/moderate suitability

locations and appropriately flat suitable/high suitability locations are being made in part

due to understory values (see Figure 3.5a compared to Figure 3.5b and Figure 3.5c). Though

some results can be deciphered using the naked eye, some cannot. For example, it is not

obvious how the red areas in the likelihood map are determined and is likely a result of the

model picking up on important and complex relationships that exist between the population

and the environment. For this reason, in order to learn more about the wild hog population,

these locations in the habitat likelihood map should be investigated in person in order to

further validate the results of the model.

Another useful result from this analysis is the creation of a map depicting where one is

most likely to encounter hogs based on the model findings. Again using the P/E curve,
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Figure 3.4: The likelihood of encountering a hog map superimposed with hunted hog data.

we partition the results into locations where one is less likely to encounter a hog compared

with random chance (P/E ≤ 1), cells where one is 1-2 times as likely to encounter a hog

compared with random chance (1 < P/E < 2) and locations where one is 2-3 times as likely

to encounter a hog (2 ≤ P/E ≤ 3). This map in Figure 3.6 illustrates subsections within

the suitable areas in Figure 3.3 that one is most likely to encounter a wild hog. These areas

could potentially have the highest hog densities in the Park, which would shed light on hog

preferences while also being invaluable to park officials in terms of informing management

strategies.

3.3.5 Conclusions

The presence of wild hogs (Sus scrofa) has been a concern to officials of Great Smoky

Mountain National Park since the late 1940s. Their destructive nature and status as disease

74



(a) Habitat Suitability

(b) Slope

(c) Understory

Figure 3.5: A zoomed view of the northwest corner of Great Smoky Mountains National Park
for three different maps. The oval region is a high-elevation cove known as Cades Cove.
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Figure 3.6: Map showing the likelihood of encountering a hog throughout Great Smoky
Mountains National Park partitioned using the P/E curve shown in Figure 3.2.
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carriers prompted the creation of a control program over 50 years ago with records that

have aided this research. However, since little is known about the population, locations

of focused control efforts have been based solely on historical success and recent reports

of hog presence. We have used control data from hunted hogs over the past 34 years and

relevant ecogeographical variables to create two maps to assist the understanding of wild hog

preferences and help determine good locations to hunt. We are able to make use of the two

map products when assessing each objective.

Both maps increase our understanding of the preferences and whereabouts of this invasive

exotic species. Since successful hunt locations convey adequate conditions for wild hog

presence, we are able to create a general habitat suitability map for the population in

the Park. The model examines the presence location across all EGVs and illustrates other

locations throughout the park whose environmental conditions are also deemed to be suitable

for hog presence, shown in Figure 3.3. This can be explored further by looking at Figure

3.6, as this second map displays areas throughout GSMNP that may harbor a high density

of hogs. These apparent hot spots of hog activity may convey unknown information related

to the behaviors and preferences of this population.

The map products can also directly relate to the control program as they allow us to

evaluate past hunting locations while also highlighting other potentially fruitful areas to

explore for hog presence. As you can see in Figure 3.7, while there are a number of additional

habitats for hunters to explore, the vast majority of removals lie within the cells deemed most

suitable by the habitat suitability model. The second map we created (Figure 3.6) is also

highly relevant to hunting efforts. Notice that all cells are a subset of the locations from

the general habitat suitability map with the red areas illustrating possibly the best places

to hunt as the model has deemed them most likely to contain hogs. Similar to the previous

map, the red areas contain many of the historic removals with plenty of additional untapped

locations being clearly displayed as well (see Figure 3.4). Thus, historic hunting sites can

be appreciated while also examining alternative locations for future hunts in the orange/red

areas throughout the park that have yet to result in a hog kill.
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Figure 3.7: The habitat suitability map superimposed with hunted hog data.

One might argue that the results presented here are skewed because of bias that may exist

in the data points as a result of hunter preferences. However, even if this were true, the bias

introduced by the hunters will still produce results relevant to the control program. That is,

whatever bias that exists is a result of the preferences intrinsic to hunters and each location

lies in the intersection of locations that are both accessible to hunters as well as suitable for

hog presence. For example, though the model indicates that presence locations occur in cells

with below average frequency of rhododendron, it is not clear whether this is due to hog

preferences or hunter behavior. Nevertheless what is apparent is how kills are more likely to

occur in locations that lack rhododendron, which is a useful piece of information regardless

of its driving cause. In this light, the hunting data may even better lend itself to evaluating

hunting choices compared with unbiased presence data.
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We can view both maps and make recommendations for future control activities. For

example, Figure 3.4 shows that the total area where the likelihood of encountering a hog

is 1 − 3 times as likely compared with random chance dwarfs the area where control efforts

have historical taken place illustrating additional potential hunting sites. It is also clear that

a number of areas near the edge of the Park generally contain more suitable conditions and

should to be exploited. Furthermore, since many of the suitable locations are on the edge of

the Park, it begs the question of the hog-related activities taking place directly adjacent to

these locations but on the outside of the Park. Areas of particular interest include Nantahala

National Forest, Cherokee Reservation and the Cosby/Gatlinburg area. Although few historic

removals have taken place in the northwest corner and far eastern border of the Park, Figure

3.6 suggests a high likelihood of encountering a hog in these areas indicating that they may

be effective and efficient places to hunt. Finally, although many kills occur in open fields in

areas such as Cades Cove and Cataloochee, the model indicates the wooded areas surrounding

these fields are the suitable habitat for wild hogs (see Figure 3.5). For this reason, efforts

should continue in the woods surrounding these fields.

It is easy to understand why some of locations that the model predicts to be highly

suitable for hog presence have yet to produce kills, while other locations need to be studied

further. For example, it is easy to understand that although the region in the northwest

corner of GSMNP has good conditions for hog presence, not a single control kill has been

produced in this area of the Park as it very remote with few trails and only a single dirt

road. On the other hand, locations such as the far eastern border that are in fact accessible

but are yet to produce hog kills are particularly interesting and may be worth exploring

for signs of wild hogs. Such inaccessible or unexploited locations where the model indicates

quality conditions for wild hog presence are concerning as they may serve as reservoirs for

the population that work against the control efforts of the Park. The only way to determine

this for sure is to carefully examine such locations for hog presence.
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Chapter 4

Modeling Pseudorabies in the

Population

4.1 introduction

Hogs are a vessel for disease with porcine parvovirus, leptospirosis, toxoplasmosis and

pseudorabies each found in various serological surveys of hogs in GSMNP (Cavendish et al.,

2008; Sandfoss et al., 2012). Beginning in 2001, GSMNP partnered with the North Carolina

Department of Agriculture and Consumer Services (NCDACS) as well as the Tennessee

Department of Agriculture (TDA) and the U.S. Department of Agriculture, Animal and

Plant Health Inspection Service, Veterinary Services (APHIS) to begin monitoring wild hogs

in the Park for disease. Specifically, 42.5% of harvested hogs from 2001-2013 were tested for

pseudorabies and brucellosis, as they pose the greatest threat to humans and the domestic

swine industry (Cavendish et al., 2008). Though no hogs have tested positive for brucellosis,

an increasing number have tested positive for pseudorabies over the years.

From 2001-2004, all blood samples taken from harvested hogs in GSMNP tested negative

for pseudorabies (PRV). However, hogs began testing positive for PRV starting in 2005 with

the prevalence increasing steadily reaching as high as 56.9% (see Figure 4.1 and Table 4.1)

(Cavendish et al., 2008; National-Park-Service, 1980).
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Figure 4.1: Depiction of the 42.5% of hog harvests tested for pseudorabies from 2001-2013.
Although the disease is concentrated in the western half of the Park, a small pocket of disease
is present in the far eastern regions.

It is the aim of this study to model pseudorabies in the population in order to better

understand transmission routes and important dynamics of the disease. This is achieved by

building a compartmental disease model into the existing metapopulation framework from

Chapter 2.

4.2 Disease Dynamics

Pseudorabies, or Aujeszky’s Disease, was first identified in 1902. This herpes viral infection

is highly contagious and causes respiratory illness in adult and high mortality rate for piglets
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Table 4.1: Number of blood samples taken, amount that positive tests for pseudorabies and
resulting prevalence from 2005-2013. Though a relatively small number of samples were taken
each year, an general trend of increasing prevalence can be seen in the data (National-Park-
Service, 1980).

Year 2005 2006 2007 2009 2009 2010 2011 2012 2013
Blood Samples 150 208 64 106 155 105 90 58 69

Positive for Pseudorabies 2 4 10 9 9 4 19 33 20
Prevalence 0.013 0.019 0.156 0.085 0.058 0.038 0.211 0.569 0.290

in domestic swine (Müller et al., 2011). The disease is usually spread by nose-to-nose contact

and through venereal transmission. Transmission via dead carcasses can also contribute to

new infections. Transmission of antibodies to piglets during nursing and close contact with

mothers is also possible. Since this transmission route has not been well studied, we will

use the terminology “close contact with mothers” to represent all possible mother-to-piglet

transmission routes, including vertical transmission. After an initial shedding period of about

7 days, adults recover but carry the disease for life in a latent form and can shed the virions

periodically as a result of stress (Müller et al., 2011). Thus all hosts who contract PRV will

test positive for life. Although the disease is not a significant threat to feral swine, it is

can be contracted by other animals such as bear and coyotes, and is especially deadly for

canines (Cavendish et al., 2008). Furthermore, decreases in birthrate due to the disease pose

a threat to the domestic swine industry. Since the U.S. swine industry become PRV-free in

2004, there is vested interest in limiting the spread of the disease (Müller et al., 2011; Smith,

2012).

To model the transmission of PRV in feral swine, we first turn to the work done by Gary

Smith (Smith, 2012). Dr. Smith participated in the working group “Feral swine/pseudo-

rabies in Great Smoky Mountains National Park” at the National Institute for Mathematical

and Biological Synthesis (NIMBioS) and his work analyzed what modes of transmission

could account for the reported seroprevalence of pseudorabies found throughout the United

States. His findings show that simply nose-to-nose transmission (direct transmission) can

alone account for the reported seroprevalence, but sexual transmission alone cannot (Smith,

2012). We initially simply tried a different direct transmission rate for each region, but
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results did not closely match the data with this approach. We then considered an increased

transmission during mating season, transmission from mothers to piglets, and the possibility

that carriers would become reinfected. By considering one additional transmission route at

a time, we tested to see if a single mode of transmission could account for the prevalence

of pseuodrabies seen in the data. However, each transmission route alone was not able to

approximate disease dynamics present in the data. Only after including all transmission

routes together were we able to mimic the correct dynamics. As such, we will apply a

model for pseudorabies within the framework of our existing metapopulation model with

nose-to-nose transmission, increased transmission during mating season, transmission from

dead carcasses, reinfection of recovered individuals carrying the virus, and transmission from

mothers to piglets.

4.3 Modeling Pseudorabies

Since the disease has an infectious period of one week, we first adapt the metapopulation

model described previously from a one month time step to a one week time step. This was

achieved by estimating all parameters in a similar manner as before as described in Chapter

2. Resulting estimated weekly parameter values can be see in Table 4.2, including average

weekly on-season and off-season harvest rates. Following the methodology in Chapter 2, we

then fix non-harvest parameters and the same optimization procedure was carried out to

estimate harvest rates that varied by region and year. Results allowed the new model with a

time step of one week to almost identically mimic the model with a time step of one month

described in Chapter 2.

We consider three classes within each population in the 8 regions: Susceptibles (S),

Infected (I), and Carriers (C). Susceptible individuals have never contracted the disease and

are vulnerable to infection. Infected individuals are those who are symptomatic and are able

to transmit the disease. Carriers have recovered from the disease and are no longer infectious

but, since they still carry the virus, could experience symptoms again and transition to
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infected at rate φ. To clarify, in our model carriers do not transmit the disease, but piglet

born to carriers and infecteds can become carriers. Since each region has a different total

area and will contain different numbers of individuals, we will apply a unique transmission

rate to each region, denoted by βr. We also keep track of all dead carcasses from infected

individuals that result from harvesting as well as natural death as they can also transmit the

disease at rate βD. We only include deaths from infected individuals as they are more likely

to transmit the virus. We also include an increased transmission rate (γβr) during mating

season in September under the assumption of increased contact between individuals during

this time. All parameters and variables that are found in this pseudorabies model that were

not previously described in Chapter 2 can be see in Table 4.3.

Table 4.2: A list and description of estimated weekly parameters found in the pseudorabies
model.

Name Value Description
Surv0 0.96 Survival factor if there is no mast

SurvMax 0.99 Survival factor as mast approaches a maximum level
BR0 0.10 Percent of population that give birth and whose piglets

survive the first month given no mast
BRMax 0.13 Percent of population that give birth and whose piglets survive

the first month as mast approaches a maximum level
Move0 0.14 Percent of feral hogs moving with no available mast

MoveMax 0.01 Percent of feral hogs moving as mast approaches a maximum level
rate1 0.09 On-Season harvest rate, from January through May
rate2 0.06 Off-Season harvest rate, from June through December

Similar to Chapter 2, we will have the following order of events with the addition of

a disease transmission event taking place between births and movement, as well as the

characteristic that the population is partitioned into three classes and that we must keep

track of dead carcasses from the infected that can transmit the virus.
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The model described in Chapter 2 therefore takes the following altered form:

1. Update the mast for the month since many of the parameters that govern feral hog

dynamics in GSMNP are driven by hard mast availability (Singer, 1981; Scott and

Pelton, 1975). We also consider a constant amount of soft mast per acre in each region.

Let HMr,t and SMr,t represent all hard mast and soft mast that exists in region r at

time t:

HMr,t+1 =

 MIr,y m = 8,

((1− δ)HMr,t − CPPr,t)+ m 6= 8.

Mr,t = HMr,t + SMr. (4.1)

2. Harvest at a rate determined by the specific region and time:

Hr,t = Hrater,t(Sr,t + Ir,t + Cr,t)

3. Compute the portion of the post-harvest population that survives. We do this before

adding births because only surviving adults can reproduce:

Survr,t = F (Mr,t, Surv0, SurvMax,Mh)

Sr,t·(1−Hrater,t) · Survr,t

Ir,t·(1−Hrater,t) · Survr,t

Cr,t·(1−Hrater,t) · Survr,t

4. Update dead carcasses (D) that are capable of spreading the virus. Since Park

employees leave harvested hogs to decay where they were destroyed, this will include

both harvested hogs as well as those that die during the survival step. We assume the
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carcasses decay at a rate of .5 at each time step:

Dr,t = .5Dr,t−1 + Ir,t · (1−Hrater,t) · (1− Survr,t)

5. If the month is January, we then compute the number of births based on the surviving

population and mast supplies. A percent of piglets (α) will contract a latent form of the

infection from the C and I compartments via close contact with mothers and become

members of the carrier class. We assume piglets are equally as likely to contract the

disease from either class. We note the number of surviving susceptibles (S̃), surviving

infected (Ĩ), and surviving carriers (C̃):

BRr,t =

 BF · LA · F (Mr,t, BR0, BRMax,Mh) m = 1

0 m 6= 1.

S̃r,t = Sr,t · (1−Hrater,t) · Survr,t

+ (Sr,t + Ir,t + Cr,t) · (1− α) · (1−Hrater,t) · Survr,t ·BRr,t

Ĩr,t = Ir,t · (1−Hrater,t) · Survr,t

C̃r,t = Cr.t(1−Hrater,t) · Survr,t + (Ir,t + Cr,t) · α · (1−Hrater,t) · Survr,t ·BRr,t

6. Disease transmission for the given time step is based on the surviving populations for

each class (S̃, Ĩ, and C̃). Note that since we reduced the model to a weekly time step,

new additions to the carrier class (C) are simply those who survived from the infected

class (Ĩ):

βr =

 βr m 6= 9.

γβr m = 9
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Sr,t = S̃r,te
−βr Ĩr,t−βDrDr,t

Ir,t = S̃r,t(1− e−βr Ĩr,t−βDrDr,t) + C̃r,tφ

Cr,t = C̃r,t(1− φ) + Ĩr,t

where S̃, Ĩ, and C̃ are the number of individuals in each class that have lived through

the survival events, βr is the transmission rate in region r, βDr is the transmission

rate in region r due to dead carcasses, and φ is the percent of carriers that become

reinfected.

7. Perform movement, using either general movement or seasonal movement, dependent

upon the time of year. This is carried out exactly as described in Chapter 2 by applying

movement rates equally to each class. Note that we obtain Sr,t+1, Ir,t+1, and Cr,t+1

during this event.

Since pseudorabies was not detected in GSMNP until February of 2005, we will initialize

the model in 2004, introduce 5 infected individuals into region 4 in February 2005, and run

the model until 2013, which is the most recent year of which we have disease data. We choose

5 infected individuals since this number most closely reproduced observed prevalence values

obtained in 2005.

4.4 Parameter Estimation

For a complete list of parameters and variables not found in the metapopulation model see

Table 4.3. Park officials began sampling harvested hogs for disease in 2001 and the first case

of pseudorabies was detected in region 4 in February 2005 (Cavendish et al., 2008). Although

as many as 208 hogs were tested in a given year, the vast majority of tests were conducted

on hogs found in regions 4 and 5 with very few hogs tested from other regions (see Table
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4.4). For this reason, when estimating parameters we will use data from only regions 4 and

5 to estimate β4 and β5.

Scaling transmission rates is necessary when using a parameter estimated from one

geographic location for use in a different geographic location (Hu et al., 2013). Since the

regions in our model have different sizes, the contact rate of hogs varies between each discrete

area. We will therefore scale β4 by relative area of each region to determine a transmission

rate for other regions in the model. This method allows us to use a different transmission

rate for each region relative to the area of the given region, and also reduces the number of

parameters to be estimated. Specifically,

βr = β4
A4

Ar
,

for rε{1, 2, 3, 6, 7, 8} where Ar represents the area of region r. The transmission rate for

infected carcasses (βD) will be implemented in a similar manner where we will estimate a

value for region 4 and scale it for use in other regions.

Table 4.3: A list and description of new parameters and variables found in the pseudorabies
model.

Name Description
βr Transmission rate from infected class in region r
βD,r Transmission rate from dead infected carcasses in region r
α Percent piglets that become carriers as a result of

close contact with mothers
γ Percent increase in transmission rate during mating season
φ Percent of carrier class that becomes reinfected at each time step
Dr,t Number of dead carcasses that carry the pseudorabies virus in region r at time t

Our pseudorabies model contains the following six unknown parameters as described in

Table 4.3: β4, β5, βD, α, γ, and φ. We wish to find the parameter values that, when used in

our model, produce harvest prevalence levels that best match the available harvest prevalence

data. Since carriers test positive for the disease, they are considered infected for the purposes

of a prevalence calculation. We use data from 2005 through 2013 and we will only attempt
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Table 4.4: Blood samples, detected cases and resulting prevalence for pseudorabies in each
region of GSMNP.

Disease Samples from Region 1
2005 2006 2007 2008 2009 2010 2011 2012 2013

Total Blood Samples 0 3 1 1 6 1 7 5 1
Detected Cases 0 0 0 0 0 0 1 2 1
Prevalence 0 0 0 0 0 0 0.14 0.4 1

Disease Samples from Region 2
2005 2006 2007 2008 2009 2010 2011 2012 2013

Total Blood Samples 0 0 0 0 0 0 0 33 10
Detected Cases 0 0 0 0 0 0 0 1 0
Prevalence 0 0 0 0 0 0 0 .03 0

Disease Samples from Region 3
2005 2006 2007 2008 2009 2010 2011 2012 2013

Total Blood Samples 0 0 0 0 0 25 24 0 4
Detected Cases 0 0 0 0 0 1 1 0 0
Prevalence 0 0 0 0 0 .03 .04 0 0

Disease Samples from Region 4
2005 2006 2007 2008 2009 2010 2011 2012 2013

Total Blood Samples 19 49 71 39 26 36 53 63 35
Detected Cases 2 4 6 2 1 3 11 15 12
Prevalence 0.11 0.082 0.085 0.052 0.038 0.083 0.21 0.24 0.34

Disease Samples from Region 5
2005 2006 2007 2008 2009 2010 2011 2012 2013

Total Blood Samples 0 48 53 34 78 19 31 50 19
Detected Cases 0 1 2 2 8 1 4 16 5
Prevalence 0 0.021 0.038 0.059 0.10 0.053 0.13 0.32 0.26

Disease Samples from Region 6
2005 2006 2007 2008 2009 2010 2011 2012 2013

Total Blood Samples 10 13 11 35 26 16 18 22 21
Detected Cases 0 1 2 7 4 2 0 1 2
Prevalence 0 0.077 0.18 0.2 0.15 0.13 0 0.045 0.095

89



to match data from regions 4 and 5 as the majority of tests were conducted on hogs found

in these regions. Even within regions 4 and 5, a consistent number of disease tests were not

conducted year-to-year. We will therefore weight prevalence values by the number of disease

samples in each region. In doing so our parameter estimates will better approximate the

most reliable data. Let sr represent the vector containing the number of hogs sampled for

disease in region r in each year from 2005-2013, let HIr represent the vector containing the

prevalence of hogs harvested in the model from region r in each year from 2005-2013, and

let HI∗r represent the vector containing the prevalence of infected hogs from region r in the

harvest data from 2005-2013. Each of these vectors is 1× 9 as we are using yearly data from

2005 through 2013. The optimization problem for parameter estimation can be stated as

Minimize
x

J(x) = ||s4 ·HI4 − s4 ·HI∗4 ||2 + ||s5 ·HI5 − s5 ·HI∗5 ||2,

where x represents all values of β4, β5, βD, α, γ, and φ in our own chosen range.

Additionally, we require that the parameters reflect conditions found in the Park. Similar

to other transmission rates, β5 should have an appropriate scale relative β4, βD should be less

than both β4 and β5, and all parameters should fall within a reasonable range. As a result,

the above problem is also restricted by the following linear constraints:

1.25β4 = β5

βD ≤ β4

α ≤ 1

φ ≤ 1

γ ≥ 1.

(4.2)

To solve the above optimization problem we use the Global Optimization Toolbox from

MATLABTM. Specifically, we use the fmincon local solver in coordination with the MultiStart

Algorithm. The fmincon solver is a derivative-free solver, which accepts smooth, nonlinear
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objective functions, and allows enforcement of the linear constraints and bounds given in

(4.2). Since fmincon will only find local minimums, the MultiStart Algorithm allowed us to

test a large number of evenly distributed starting points and store all local solutions in a

manageable way using the built-in manymins option. The MultiStart Algorithm generates

uniformly distributed random starting points within the given bounds and passes them one-

by-one to the local solver, fmincon, which attempts to find a local basin of attraction relative

to each given start values. Any solution that is found is then stored in increasing order of

objective function output for later review using the manymins function.

4.5 Results and Discussion

Results from the optimization procedure described above yielded the estimated parameters

shown in Table 4.5. Resulting output from the parameters can be seen in Figure 4.2 and

Figure 4.3. In Figure 4.2, we compare the weighted model prevalence and weighted prevalence

data in regions 4 and 5. Notice in Figure 4.2 that the weighted output fits the data fairly

well, which results in the non-weighted output matching the general prevalence trend. From

Figure 4.2, the years that do not match well such as 2005 and 2009 in region 4, and 2010

and 2011 in region 5 are years where the fewest samples were taken from each region. The

overall prevalence trend in GSMNP is also generally followed as seen in Figure 4.3. The

years where the prevalence in the model does not match as well in the whole Park such as

2007 and 2012 are also years where the fewest samples were taken overall. In general, by

matching prevalence values weighted by the number of observations we succeeded in closely

approximating the prevalence values that were best supported by the data.
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Table 4.5: Estimated values for new parameters and variables found in the pseudorabies
model.

Name Estimated Value
β4 6.8× 10−4

β5 8.52× 10−4

βD 6.8× 10−4

α 0.8
γ 1.5
φ 0.1

Figure 4.2: Model output using the parameter estimates shown in Table 4.5. The top two
plots show the weighted prevalence in the model and weighted prevalence in the data weighted
by the number of observations in each year. The bottom two plots show the unweighted
prevalence in the model and prevalence in the data.

4.6 Conclusions

Since the model incorporates discrete regions, each with a different area and fluctuating

population size, we needed to apply a different transmission rate for each region. We achieved

this by estimating a transmission rate for regions 4 and 5 using available data for these
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Figure 4.3: Model output using the parameter estimates shown in Table 4.5 comparing model
prevalence in the entire Park compared to the prevalence data.

regions and then scaling the rate for region 4 for use in other regions by the relative area of

other regions. All possible transmission routes were considered when fitting this model for

pseudorabies in feral hogs in GSMNP. We initially tried simply a different direct transmission

rate for each region, but were not able to match the data with this approach. We then

considered increased transmission during mating season, piglets becoming carriers due to

close contact with infected mothers, and the possibility that carriers would become reinfected.

We added one of each additional parameter at a time, but also were not able to match disease

dynamics present in the data. Only after including all additional parameters together were

we able to mimic the correct dynamics. This is evidence that all the transmission routes used

in the model are indeed present in the population within GSMNP.
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Chapter 5

Conclusions

Feral hogs have occupied within Great Smoky Mountains National Park since the early 1900s.

They are in direct competition with native flora and fauna, their rooting behavior causes

significant ecological damage, and they are a reservoir for diseases such as pseudorabies.

To limit these negative impacts, the Park has had a control program in place since 1959

where hogs are harvested via traps and active hunting. Since the population is relatively

understudied, a working group at the National Institute of Mathematical and Biological

Synthesis was formed to begin studying and addressing the negative impacts caused by feral

hogs in the Park.

Key information was shared during the working group including data on vegetation, oak

mast levels, and harvest records within GSMNP. These different forms of data were used

to study the feral hog population in GSMNP by formulating a discrete metapopulation

model, a spatial niche model, and a compartmental disease model for pseudorabies. The

data was instrumental in each project as it was used to estimate key parameters, account for

mast variability found in the system, and serve as predictor variables for potential presence

locations. While much of the data was carefully obtained using scientific sampling techniques

(Madden et al., 2004; National-Park-Service, 1981), the harvest data is a product of the

control program and is therefore subject to sampling bias and error (National-Park-Service,
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1980). Nevertheless, the harvest data conveys a great deal of information and proved to be

useful in each project.

The purpose of the metapopulation model was to simulate mast-dependent population

dynamics and analyze the effectiveness of the Park’s control program. We achieved this

by integrating mast index values with vegetation data to replicate seasonality in oak mast,

by allowing mast-dependent parameters to vary in each region at each time step depending

on food availability, and by estimating harvest efforts using the control data. Key results

from this project include parameter estimates for the population rates in GSMNP and a

clear indication that the control program has effectively limited the population. Specifically,

model output indicates the population of feral hogs in GSMNP ranges between 1,000-2,000

individuals with the presence of the control program, but can approach a carrying capacity

of nearly 10,000 individuals without the control program in place. Park officials have cited

these findings when applying for future control program funding.

While many features of the metapopulation model are tailored to Great Smoky Mountains

National Park, it can be adapted to model other feral hog populations. The dynamics

between oak acorn availability and population growth can inform other populations models

where seasonality impacts the life cycle of the animal. Additionally, the parameter estimation

techniques can be used in numerous modeling scenarios.

Since the control program was found to be important in limiting feral hog presence, the

purpose of the spatial niche model was to guide harvesting efforts by categorizing each cell

within GSMNP with one of five options ranging from unsuitable for hog presence to most

suitable for hog presence. To achieve this, hunting locations obtained via the control program

were related to environmental predictors to quantify the niche conveyed by the presence data

using a methodology known as an Environmental Niche Factor Analysis. While the control

data provides a representation of the species’ niche, bias exists in the data due to hunter

preferences. However, since we wish to depict suitable hunting locations, the control data

contain important and relevant information. Key results from this project quantify feral

hog preferences with respect to each predictor variable and how sensitive the population is
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to changes in its preferences. Specifically, presence locations exhibit the more significant

preferences for below average values of slope and rhododendron, and above average levels

of herbaceous vegetation and deciduous shrubs. Moreover, the presence points were most

sensitive to changes in elevation and temperature. These and other preferences were used

to derive a habitat suitability map for the species. This map can be used to validate past

hunting locations and to exploit new regions in the Park that may contain bountiful hog

presence.

The spatial niche model provides insight into the preferences of the population with

respect to environmental variables. The technique presented can be applied to better

understand any harvested population. Specific results can be used to analyze similar areas

occupied by feral hogs, especially those where a control program is in place. The information

can also be applied when considering new areas suitable for invasion. This is particularly

useful for the population in and around GSMNP as feral hogs are not as wide spread in this

area compared to other parts of the country (Singer, 1981).

To test the relevance of seasonality with respect to suitable locations, two distinct groups

of data were analyzed: one where hogs are concentrated in the lower regions and one where

they are concentrated in the upper regions. From August through February, oak acorns

are available in lower elevations and the population remains in these regions. From March

through June, the depletion of oak acorns paired with increasing temperatures cause the

hogs to move up in elevation. Despite this general trend, each analysis produced very

similar results and habitat suitability maps. This may be evidence that seasonality is not

as important to the population as we originally thought. The telemetry study currently

being conducted in the Park should be used to clarify the seasonal movement patterns of the

population.

Pseudorabies is well studied in domestic pigs but understudied in wild pigs. Specifically,

transmission routes for the disease in wild populations is not understood. Due to this fact,

the pseudorabies model aimed to analyze potential transmission routes that exist in the feral

hog population in GSMNP. To achieve this, the metapopulation model described in Chapter
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2 was adapted to a one week time step to accommodate a compartmental disease model

for pseudorabies. We include a different basic transmission rate in each region and consider

increased transmission during mating season, transmission from mothers to piglets, and the

possibility that carriers become reinfected and able to transmit the disease. Parameters for

the model were estimated using the pseudorabies prevalence found in the harvest data. Each

transmission possibility was considered separately as well as in combination with every other

potential transmission route. Only after incorporating all potential transmission routes were

we able to accurately mimic the disease dynamics present in the data. This provides evidence

that an increased transmission during mating season, transmission from mothers to piglets,

and carriers becoming reinfected all exist within GSMNP.

Both the structure as well as the results of the disease model contribute to the

pseudorabies literature. Adjusting a transmission rate estimated for one location and using

it in a different region is a useful concept in disease modeling (Hu et al., 2013). By scaling a

transmission rate for region 4 for use in other regions, we add to this undeveloped concept.

Support for the existence of numerous transmission routes for pseuodrabies in wild pig

populations encourages empirical tests to clearly define transmission routes so we can better

understand disease dynamics.

The results of the collective study are broadly applicable. First and foremost, they

contribute to our knowledge of the understudied feral hog population in GSMNP. Our work

encourages the existence of a control program, informs removal efforts, and warns about the

potential risks of pseudorabies. Furthermore, we have illustrated how to combine different

data sources and methods to address a broad question. In doing so, the techniques applied in

this project can be used to inform similar research that incorporate numerous data sources.
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