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Home-range Asymptotes

A Method for Determining Asymptotes of Home-Range
Area Curves
Aaron M. Haines1,2, Fidel Hernández, Scott E. Henke, Ralph L. Bingham

Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville, Kingsville, 700 University Blvd., MSC 218, TX 78363, USA

Home-range area curves are used to estimate the number of locations needed to accurately estimate home
range size based on the asymptote of the curve. However, the current methodology used to identify asymp-
totes for home-range area curves is largely subjective and varies between studies. Our objective was to eval-
uate the use of exponential, Gompertz, logistic, and reciprocal function models as a means for identifying
asymptotes of home-range area curves. We radio monitored northern bobwhite (Colinus virginianus) coveys
during mid-September through November 2001-2002 in Jim Hogg County, Texas. We calculated home-range
size of radiomarked coveys using the 95% fixed kernel with least squares cross validation and minimum con-
vex polygon estimators. We fitted area observations and coefficient of variation to the number of locations
using exponential, Gompertz, logistic, and reciprocal function models to estimate the minimum number of
locations necessary to obtain a representative home range size for each home range estimator. The various
function models consistently provided a relatively good fit for home range area curves and coefficient of vari-
ation curves (0.58 ≤ R2 ≤ 0.99; P < 0.05) for both home range estimators. We used an information-theoretic
framework (AICC) to select the best model to estimate area-curve asymptotes. The use of function models
appears to provide a structured and useful approach for calculating area-curve asymptotes. We propose that
researchers consider the use of such models when determining asymptotes for home-range area curves and
that more research be conducted to validate the strength of this method.
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Introduction
Home-range size, hereafter home-range, is a pa-

rameter commonly reported in many radioteleme-
try studies (Garton et al. 2001). Home-range is af-
fected by factors such as time elapsed between con-
secutive locations (Swihart and Slade 1985a,b), tech-
niques used to collect location data (Adams and
Davis 1967), and the number of observations used
to obtain the estimate (Stickel 1954, Jennrich and
Turner 1969, Bekoff and Mech 1984, Seaman et al.
1999). Several studies have attempted to provide
guidelines for calculating home-range by compar-
ing the performance of home range estimators under
varying sample sizes (Boulanger and White 1990,
Worton 1995, Seaman and Powell 1996, Seaman et al.
1999). However, results have been disparate (Ker-
nohan et al. 2001).

Home-range area curves have been used to esti-
mate the number of locations necessary for estimat-
ing home range (Odum and Kuenzler 1955, Bond
et al. 2001, Gosselink et al. 2003). A home-range
area curve for a species plots the number of inde-
pendent locations on the x-axis against the estimated
home-range size on the y-axis for that particular
sample size. From the resulting graph, the number
of required locations is denoted when increasing the
number of locations does not result in an increasing
home range size (i.e., the asymptotes of the graph;
Odum and Kuenzler 1955). However, the method-
ology used to identify asymptotes for home-range
area curves is largely subjective and varies between
studies. For example, Odum and Kuenzler (1955)
defined an asymptote as being the point when ad-
ditional locations produced <1% change in mean

1Correspondence: hainesa@uiu.edu
2Current Address: Upper Iowa University, Division of Science and Mathematics, Baker-Hebron Room 105, Fayette, IA 52142

Gamebird 2006 | Athens, GA | USA 489 May 31 - June 4, 2006

1

Haines et al.: A Method for Determining Asymptotes of Home-Range Area Curves



Home-range Asymptotes

home range size, whereas Bond et al. (2001) iden-
tified asymptotes through visual inspection. Given
this subjective and discordant approach, a more
structured methodology is needed to determine the
optimum number of locations necessary to produce
a representative home range.

The objective of our study was to evaluate the
use of exponential, Gompertz, logistic, and recip-
rocal function models as a means for identifying
asymptotes of home-range area curves (i.e., area-
curve asymptotes). We used radio locations ob-
tained from radio marked northern bobwhites (Col-
inus virginianus; hereafter bobwhites) to develop
home-range area curves and evaluate our proposed
methodology.

Study Area
We conducted our radiotelemetry study on a

private ranch located 8 km east of Hebbronville,
Texas in Jim Hogg County. The study area is
contained within the Rio Grande Plains ecoregion
(Gould 1975). Topography within the Rio Grande
Plains is level to rolling, and the elevation ranges
from sea level to 330 m. The Rio Grande Plains
is characterized by rangeland, open prairies with a
growth of mesquite (Prosopis glandulosa), huisache
(Acacia smallii), granjeno (Acacia berlandieri), and
Texas pricklypear cactus (Optuntia lindheimeri). An-
nual rainfall ranges from 35 to 66 cm and soils range
from clays to sandy loams (Correll and Johnston
1979). Although large acreages of cultivated land
exist within the Rio Grande Plains, the predomi-
nant land use is livestock production (i.e., range-
land) (Correll and Johnston 1979).

Methods
We trapped bobwhites from mid-August

through September 2001 and 2002 using funnel traps
baited with milo (Stoddard 1931) and by night net-
ting roosting coveys (Labisky 1968) on 3 pastures
(601 ha, 1031 ha, and 1563 ha), each separated by
>3 km. We banded all captured bobwhites and
radiocollared any bobwhite weighing ≥150 g. We
fitted bobwhites with 6-7 g neck-loop radiotransmit-

ters (American Wildlife Enterprises R©, Tallahassee,
Florida).

We monitored coveys via radiotelemetry 5 times
per week from mid-September through November
2001-2002. We defined this 10-week period as the fall
season. We located coveys by homing (White and
Garrott 1990) and obtained a global positioning sys-
tem (GPS) coordinate using a hand-held unit with an
accuracy of ±5 m (Garmin 90 GPS). We monitored
coveys once or twice a day during 1 of 3 time peri-
ods: morning (0700-1000 hrs.), afternoon (1200-1500
hrs.), or evening (1600-1900 hrs.). These time pe-
riods corresponded to periods of biological activity
for bobwhites in southern Texas (i.e., morning feed-
ing, afternoon loafing, and evening feeding, respec-
tively). If 2 locations were taken during the same
day for 1 covey, then one location was taken during
a loafing period and the other during a feeding pe-
riod to obtain independent locations. However, if 2
locations were taken during the same day for a spe-
cific covey the next location taken for that covey was
not taken until 2 days later. For example, if locations
were taken on the loafing and evening-feeding pe-
riod for 1 covey on Monday, then the next location
was not taken for the same covey until Wednesday.
We followed this procedure in order that covey lo-
cation is not recorded on the same feeding or loafing
site due to temporal autocorrelation of location data.

We calculated home range size of radiomarked
coveys using the 95% fixed kernel (Worton 1989)
with the least squares cross validation (LSCV)
smoothing parameter, and minimum convex poly-
gon (Mohr 1947) home range estimators within the
animal movement extension (Hooge and Eichenlaub
1997) of the program ArcView 3.2 (Environmental
Systems Research Institute, Inc., Redlands, CA.). We
chose to use the kernel home range estimator rec-
ommended by Kernohan et al. (2001) because it has
the ability to compute home range boundaries that
included multiple centers of activity, lacks sensitiv-
ity to outliers, is based on complete utilization dis-
tribution, and is a nonparametric methodology. We
selected the fixed kernel with LSCV because it has
lower bias and better surface fit than adaptive kernel
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Table 1: Mean home range size (ha), standard error, and coefficient of variation of northern bobwhite cov-
eys over 7 location intervals using the 95% fixed kernel estimator with least squares cross validation (LSCV)
smoothing parameter, and minimum convex polygon home range estimator, Jim Hogg County, Texas, USA,
Sep-Nov, 2001-2003.

95% Fixed Minimum
Kernel (LSCV) Convex Polygon

Year Location Interval na Nb Mean S.E. CVc Mean S.E. CV

2001 Monthly 3 14 20.69 4.55 1.22 1.05 1.02 0.94
Biweekly 6 14 16.08 4.01 1.01 4.51 2.12 1.17
Weekly 11 14 17.23 4.15 0.54 8.73 2.95 0.64
2×Week 20 14 15.32 3.91 0.43 11.06 3.33 0.67
3×Week 30 14 15.96 3.99 0.36 14.04 3.75 0.5
4×Week 40 14 15.1 3.89 0.34 14.6 3.82 0.49
5×Week 50 14 15.02 3.88 0.36 15.6 3.95 0.46

2002 Monthly 3 20 22.84 4.78 0.76 1.42 1.19 1.03
Biweekly 6 20 11.18 3.34 0.74 2.74 1.66 0.53
Weekly 11 20 11.34 3.37 0.52 4.69 2.17 0.4
2×Week 20 20 10.27 3.20 0.42 6.04 2.46 0.29
3×Week 30 20 11.06 3.33 0.41 8.23 2.87 0.34
4×Week 40 20 11.34 3.37 0.39 9.45 3.07 0.31
5×Week 50 20 12.06 3.47 0.41 10.93 3.31 0.3

aNumber of locations
bNumber of bobwhite coveys observed
cCoefficient of variation

with LSCV for a selected bandwidth (Seaman and
Powell 1996, Seaman et al. 1999). We also chose min-
imum convex polygon because we wanted to assess
this commonly used estimator (Seaman et al. 1999).

We developed home-range area curves follow-
ing a protocol similar to Odum and Kuenzler (1955).
We consistently obtained 5 covey locations a week.
Based on this schedule we developed separate loca-
tion intervals to find the minimal number of loca-
tions needed to estimate bobwhite home-range size
during the fall season. Intervals consisted of 1 lo-
cation/month, 1 location every other week, 1 loca-
tion/week, 2 locations/week, 3 locations/week, 4
locations/week, and 5 locations/week, respectively.
We calculated mean, standard error, and coefficient
of variation (CV) for all covey home range estimates

for each location interval. From this data, we then
developed home-range area curves (i.e., hereafter
area curves) and CV curves for each estimator by
year.

Odum and Kuenzler (1955) defined the asymp-
tote as the first location interval at which any ad-
ditional locations produced <1% change in mean
home range size indicating a point of diminishing
return. In an attempt to provide a more objective
identification of the asymptote, we fitted mean home
range size and CV to the number of locations us-
ing a exponential, Gompertz, logistic, and reciprocal
function models and used an information-theoretic
framework (AICC) score to select the best model
(lowest AICC; Burnham and Anderson 1998). We
used the SAS procedure NLMIXED to run all mod-
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Figure 1: Asymptotes for A) mean home range size of northern bobwhite coveys calculated using 95% fixed
kernel (n = 14 coveys in 2001 and n = 20 coveys in 2002) and B) coefficients of variation (CV). Asymptotes
were determined by modeling mean home range size or CV as exponential, Gompertz, logistic, and recip-
rocal functions of the number of locations (no. locations) and then identifying the best model based on
an information-theoretic framework (AICC). Arrows denote first observed value to fall within 1 standard
error of the estimated asymptote.

els (SAS Institute, Inc. 2002-2004).
We used the asymptote obtained for the best

model to estimate the minimum number of locations
necessary to obtain a representative home range size
for each home range estimator by year. We defined
this to be the minimum number of locations when
an observed point first fell within ±1 standard error
of the estimated asymptote.

Results
We monitored 14 coveys in 2001 and 20 coveys

in 2002 (Table 1) with an average of 2 to 3 birds in
a covey. All function models provided a relatively
good fit (0.58 ≤ R2 ≤0.99; P < 0.05) for area curves
and CV curves for both home range estimators (Ta-

ble 2, 3).
Using the 95% fixed kernel estimator, AICC

scores were the lowest for the reciprocal model in
2001 with an asymptote estimate of 14.8 ± 0.38 (ha)
and scores were lowest for the exponential model
in 2002 with an asymptote estimate of 11.2 ± 0.12
(ha) for mean home range size (Table 2). Based on
these estimates we determined that ≥40 locations
were required to estimate home range size in 2001,
whereas ≥30 locations were sufficient in 2002 (Fig-
ure 1). For the CV, AICC scores were lowest for the
reciprocal model in 2001 with an asymptote estimate
of 0.30 ± 0.05 and scores were lowest for the Gom-
pertz model in 2002 with an asymptote 0.39 ± 0.01
(Table 3). Based on these estimates we determined
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Figure 2: Asymptotes for A) mean home range size of northern bobwhite coveys calculated using mini-
mum convex polygon (n = 14 coveys in 2001 and n = 20 coveys in 2002) and B) coefficients of variation
(CV). Asymptotes were determined by modeling mean home range size or CV as exponential, Gompertz,
logistic, and reciprocal functions of the number of locations (no. locations) and then identifying the best
model based on an information-theoretic framework (AICC). Arrows denote first observed value to fall
within 1 standard error of the estimated asymptote.

that ≥40 locations were required to minimize varia-
tion in home range estimation in both 2001 and 2002
(Figure 1).

Using minimum convex polygon, AICC scores
in 2001 were lowest for the exponential model with
an asymptote estimate of 15.6 ± 0.46 (ha) for mean
home range size and AICC scores were lowest for
the reciprocal model with an asymptote estimate of
0.52 ± 0.08 for the CV in 2001 (Table 2, 3). Based
on these estimates we determined that ≥50 loca-
tions were required to estimate mean home range
size while ≥30 locations were required to minimize
variation in home range estimation (Figure 2). The
AICC scores in 2002 were lowest for the exponential
model with an asymptote estimate of 14.0± 1.46 (ha)

for mean home range size and scores were lowest for
the reciprocal model with an asymptote estimate of
0.22 ± 0.02 for the CV (Table 2, 3). Based on these
estimates we determined that an asymptote could
not be reached because actual home range size and
the CV did not come within ±1 SE of the estimated
asymptote calculated by the models selected by the
AICC (Figure 2). Thus, there were not enough lo-
cations to estimate home range size using minimum
convex polygon in 2002.

Discussion
Based on our modeling simulations we found

that≥40 locations were adequate to reach an asymp-
tote for home range area estimation using the 95%
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fixed kernel estimator for our sample of bobwhite
coveys during the fall season. Our estimate using
field data is similar to Seaman et al. (1999) who re-
ported that bias and variance for the kernel estima-
tor approached an asymptote at 50 locations using
computer simulation points. They recommended
using a minimum ≥30 locations to obtain home
range estimates when using kernel estimators with
LSCV, but preferably ≥50.

Regarding the minimum convex polygon, we
documented that in 2001 ≥50 locations were nec-
essary to obtain a representative home range esti-
mate for our sample of bobwhite coveys. However,
in 2002 an area-curve asymptote was not reached to
obtain a representative home range. Home range es-
timates from the minimum convex polygon estima-
tors continued to increase with increasing locations
(a property of this estimator), though this increase
was minimal in 2001. However, CV‘s remained rela-
tively constant. This observation can occur because
CV‘s are a ratio of mean:standard deviation. There-
fore, similar CV‘s can result in spite of increasing
means if their corresponding standard deviations
also increase in similar proportion. Previous re-
search has suggested a much larger number of loca-
tions (100-200) to estimate home range size using the
minimum convex polygon (Bekoff and Mech 1984,
Laundre and Keller 1981, Harris et al. 1990). Gautes-
tad and Mysterud (1995) believed that asymptotes
using the minimal convex polygon method would
only occur when using more than several thousand
locations.

Kernohan et al. (2001) evaluated 12 home range
estimators, including the estimators used in this
study. Overall, Kernohan et al. (2001) favored the
kernel home range estimator because it required a
reasonable sample size (≥50 location points), had
the ability to compute home range boundaries that
included multiple centers of activity, was based on
complete utilization distribution, was a nonpara-
metric methodology, and lacked sensitivity to out-
liers. However, kernel estimators have no real com-
parability to other home range estimators due to its
estimate being greatly affected by bandwidth choice.

Minimum convex polygon also is a nonparametric
home range estimator, but unlike the kernel esti-
mator it is not impacted by bandwidth choice and
can be compared to other estimators. However, the
minimum convex polygon estimator requires a large
sample size (i.e., >100 locations total), does not use
utilization distribution, does not account for out-
liers, and does not calculate multiple centers of ac-
tivity (Kernohan et al. 2001, p. 140).

Regardless of the estimator used, we recommend
that verification is needed showing that an area-
curve asymptote had been reached prior to home
range estimation. However, identifying the asymp-
totes for home-range area curves has been difficult
because it generally has involved much subjectivity.
Previous studies identified asymptotes through vi-
sual inspection (e.g., Bond et al. 2001) or when ad-
ditional locations produced <1% change in mean
home range size (Odum and Kuenzler 1955). We es-
timated asymptotes by modeling mean home range
or CV as a model function of number of locations.
We identified the minimum number of locations
when the first point fell within ±1 SE of the es-
timated asymptote. We found that function mod-
els provided a relatively good fit for our data (0.58
≤ R2 ≤ 0.99) and provided a structured and use-
ful approach for calculating area-curve asymptotes.
Therefore, we recommend fitting mean home range
size and CV to the number of locations using func-
tion models and an AICC score to select the best
model in identifying area-curve asymptotes.

This manuscript presents a robust quantita-
tive approach to calculating area-curve asymptotes.
However, we recommend that this method be used
to validate estimates of area-curve asymptotes that
are based on visual inspection or the point at which
there is a <1% change in mean home range size
(Odum and Kuenzler 1955). In addition, we rec-
ommend more research be conducted to validate the
strength of this method.
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