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ABSTRACT 
 

Molecular human identification has conventionally focused on DNA sampling from 

dense, weight-bearing cortical bone tissue from femora or tibiae. A comparison of skeletal 

elements from three contemporary individuals demonstrated that elements with high quantities of 

cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially 

sampling cortical bone is suboptimal (Mundorff & Davoren, 2014). Despite these findings, the 

reason for the differential DNA yields between cortical and cancellous bone tissues remains 

unknown.  

The primary goal of this research is to ascertain whether differences in bone 

microstructure can be used to explain differential nuclear DNA yield among bone tissue types, 

with a focus on osteocytes and the 3D quantification of their associated lacunae. Osteocytes and 

other bone cells are recognized to house DNA in bone tissue, thus examining the density of their 

lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Methods 

included: (1) quantifying cortical and cancellous bone volume from each bone-sampling site 

using Computed Tomography (CT), and (2) visualizing and quantifying osteocyte lacunae using 

synchrotron radiation micro-Computed Tomographic imaging (SR micro-CT). Regions of 

interest (ROIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed 

from the three skeletons sampled for Mundorff and Davoren’s (2014) study. Analyses tested

the primary hypothesis that the abundance and density of bone’s cellular spaces vary between 

cortical and cancellous bone tissue types. 

Results demonstrated that osteocyte lacunar abundance and density vary between cortical 

and cancellous bone tissue types, with cortical bone ROIs containing a higher lacunar abundance 
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and density. The osteocyte lacunar density values are independent of nuclear DNA yield, 

suggesting an alternative explanation for the higher nuclear DNA yields from predominantly 

cancellous bones. It is hypothesized that soft tissue remnants within the medullary cavities of 

primarily cancellous skeletal elements are driving the high nuclear DNA yields.  

These findings have significant implications for bone-sample selection for nuclear DNA 

analysis in a forensic context. The procurement of small, primarily cancellous bones with 

associated soft tissues should be preferentially sampled, and no longer dismissed as potential 

DNA sources in favor of cortical bone tissue. 
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CHAPTER ONE: INTRODUCTION 
	
  
 Molecular human identification has long focused on extracting nuclear DNA from 

sampling sites containing dense cortical bone, such as areas in the femur or tibia. A recent 

comparison of modern skeletal elements from three individuals demonstrated that elements with 

high quantities of cancellous bone yield nuclear DNA at the highest rates, suggesting that 

preferentially sampling cortical bone is suboptimal (Mundorff & Davoren, 2014). This finding 

has significant implications in the context of human identification since cancellous bone is 

typically dismissed as a potential DNA source in favor of cortical bone. As DNA is increasingly 

relied upon for human identification, the development of- and an understanding behind- 

improved sample-selection are paramount. Following a mass disaster or grave excavation, 

human remains may be fragmentary, commingled, degraded, or otherwise compromised, limiting 

the choice of elements that can be DNA sampled. If small elements such as phalanges, tarsals, 

and patellae are recoverable, their intact removal has the potential to simplify collection and 

processing as higher levels of DNA often allow for successful extraction. While recent research 

by Mundorff and Davoren (2014) indicated that bones with high cancellous quantity yield DNA 

at higher rates, the reason remains unknown. Evidence from bone microarchitecture may help 

explain this variation and enrich our understanding of the density and morphology of bone 

microstructural features.  

Biological anthropologists have evaluated human cortical bone tissue to gain insight into 

the lives of past and current populations. Bone’s unique properties make it an ideal tissue for 

histological investigations since it maintains a dynamic structure throughout an individual’s 

lifespan, providing a temporal record of remodeling events. This continuous response allows for 
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the maintenance of bone’s microstructural organization when exposed to various physiological, 

mechanical, and metabolic demands. Because of this remodeling process, microscopic features 

accumulate in bone tissue that are believed to aid in understanding circumstances encountered 

during life. Histological studies have focused on the influences of physical activity, metabolism, 

nutrition, and age-related change (Agarwal, 2008; Ruff, 2008; Kerley, 1965). Such analyses have 

been applied in forensic, archaeological, and ancient contexts and thus have great potential for 

new research endeavors in anthropology and forensic identification. Despite the various 

applications of bone histological methods in anthropology, they are infrequently employed. The 

lack of applied histology in anthropology has been attributed to recognized methodological and 

theoretical issues, and a lack of instructional texts, both of which have hindered its advancement 

(Crowder et al., 2012). As such, improvements to bone histological methods are necessary in 

order to increase its utility in anthropological investigations.  

Applications of three-dimensional (3D) imaging modalities to cortical bone 

microstructure have provided researchers with a more comprehensive understanding of bone 

histology than was possible using two-dimensional (2D) techniques (Cooper et al., 2003; 2006). 

Micro-Computed Tomography (micro-CT) technology has allowed for the quantitative analysis 

of minute microscopic features, including osteocyte lacunae, in 3D. As soft tissue structures, 

osteocytes cannot be visualized using currently available x-ray imaging techniques (Carter et al., 

2013a). As such, their associated cellular spaces (lacunae) are used as substitutes. Osteocytes and 

their lacunae have been studied in both human and non-human animals. However, quantifying 

osteocyte population density has been problematic due to limitations of traditional lower-

resolution imaging techniques (Qiu et al., 2003b; Carter et al., 2013a).  
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Recent approaches for visualizing cortical and cancellous bone tissue including 

synchrotron radiation micro-Computed Tomographic imaging (SR micro-CT) offer an avenue 

for studying bone microarchitecture, bone quality, and microstructural features. SR micro-CT is 

a proven method for visualizing osteocyte lacunar density, morphology and orientation in 

cortical bone from human femora (Carter et al., 2013a; 2013b; 2014a). Carter and colleagues 

(2013a) revealed a higher number of osteocyte lacunae present in human femoral bone than had 

been recorded previously using 2D methods. Osteocyte lacunar densities in many other skeletal 

elements, and bones with high cancellous content, have yet to be examined using high-resolution 

3D imaging.  

The preservation and quantification of osteocytes have been further examined in a 

forensic identification context. For example, Soler and colleagues (2011) compared the number 

of osteocytes present in compact femoral bone to nuclear DNA yield. Osteocytes and other bone 

cells are recognized to house DNA in bone tissue (Campos et al., 2012), thus, examining the 

density of their lacunae may explain why DNA yield rates differ among bone tissue types. The 

current study will further investigate the potential correlation of osteocyte density and 

recoverable nuclear DNA using SR micro-CT. It will be the first study to focus extensively on 

inter-element variation in osteocyte lacunar parameters using SR micro-CT in human bone 

tissue. 

Research Purpose and Questions 
	
  

The purpose of this study is to ascertain whether differences in bone microstructure can 

be used to explain differential nuclear DNA yield among bone tissue types, with a focus on 

osteocytes and the 3D quantification of their associated lacunae.  
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Three central research questions are posed in this dissertation: 1) How does osteocyte 

lacunar density and the amount of bone matrix surrounding osteocytes compare between cortical 

and cancellous bone tissue types? 2) Can osteocyte lacunar density in cortical and cancellous 

bone be used to explain differential nuclear DNA yield? 3) Do the relative volumes of cortical 

and cancellous bone procured by Mundorff and Davoren (2014) vary between each sampling 

sites to achieve the desired testing weight for nuclear DNA analysis? 

The following hypotheses and background chapters will focus on the proposed research 

questions, with the background sections providing justification for the hypotheses.  

Hypotheses 

 
The following section introduces four hypotheses that were tested to determine whether 

the 3D histomorphometric examination of modern human bone microstructure can be used to 

explain differential nuclear DNA yield among bone tissue types previously tested for DNA. The 

first set of hypotheses were concerned with differences in osteocyte lacunar abundance and 

density in cortical and cancellous bone tissues. Hypotheses three and four pertained to the 

relationship between the clinical CT and SR micro-CT histomorphometric variables and nuclear 

DNA yield. 

1. There will be differences in osteocyte lacunar density between cortical and cancellous 
bone. 
 

2. Cancellous bone will have greater osteocyte lacunar densities. 
 

3. The osteocyte lacunar density in cortical and cancellous bone is correlated with 
differential DNA yield. 

 
4. The relative volumes of cortical and cancellous bone procured by Mundorff and Davoren 

(2014) will vary between sampling sites to achieve the desired testing weight for nuclear 
DNA analysis. 
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Organization of the Dissertation 

 
 The current research details a study conducted over the past three years (2012-2015) at 

The Canadian Light Source, Saskatchewan (SK), Canada, and University of Tennessee, 

Knoxville. Chapter two documents broad issues associated with DNA bone sampling protocols 

in the forensic identification literature, and reviews previous studies examining DNA yield rate 

by skeletal element. Chapter three provides a comprehensive overview of basic bone biological 

principles including normal human bone gross composition, histomorphology and basic 

mechanisms of bone turnover. Chapter four introduces 3D imaging modalities as alternatives to 

traditional 2D methods, provides a brief history of 3D imaging techniques, and describes various 

imaging modalities used in both clinical and anthropological research. Chapter five details the 

study’s skeletal sample and the unique bone preparation methodology necessary for this type of 

analysis. This chapter also presents an overview of data collection using 3D imaging modalities 

and the process for their subsequent analyses. Chapter six presents the results. Chapter seven is a 

discussion of the results and how they apply to human DNA identification, including the 

perspectives gained from the study and the potential for future research as they relate to 

anthropology and bone biology. Chapter eight is a brief conclusion, which summarizes the 

conclusions drawn from the current work in response to the three research questions posed in 

Chapter 1.  
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CHAPTER TWO: DNA ANALYSIS AND HUMAN IDENTIFICATION 

Despite growing reliance on nuclear DNA extraction as a preferred method for human 

identification of skeletonized remains, few studies exist that examine differential DNA yield by 

bone tissue or skeletal element type to inform sampling guidelines. This chapter discusses broad 

issues associated with current DNA bone sampling protocols in the forensic identification 

literature, and reviews previous studies examining DNA yield rate by bone tissue type or skeletal 

element. To contextualize the proposed problem of extracting usable DNA from skeletal 

remains, the following topics will be discussed: (1) general difficulties associated with obtaining 

DNA profiles from degraded skeletal remains, (2) the influence of the postmortem environment 

on bone preservation, and (3) the ability to extract usable DNA for human identification. 

Obtaining Genetic Profiles from DNA for Human Identification 
	
  

DNA extraction from human tissues has been extensively relied upon to identify 

deceased individuals, mass fatality victims, and victims of mass atrocity often characterized by 

skeletonized or otherwise compromised remains. As such, its utility is invaluable to the 

medicolegal community.  

DNA profiling is the dominant forensic identification modality used to positively identify 

fragmentary, damaged, or commingled human remains (Mundorff et al., 2009). Nuclear DNA is 

the preferred type for forensic identification because the genetic information is derived from both 

parents. It is individually specific and powerfully discriminating (Marjanovic et al., 2007), Many 

biological tissues have been used for testing, often successfully, despite decomposition and other 

environmental conditions. Moreover, antemortem reference samples are often available for 

comparative purposes (Weedn & Baum, 2011).  
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Mitochondrial DNA (mtDNA) is not as discriminatory as nuclear DNA and therefore is 

rarely employed in forensic identification efforts (Misner et al., 2009), though it may be used for 

exclusionary purposes if a matrilineal reference sample is available. mtDNA has different 

properties than nuclear DNA. It resides in the mitochondria of cells instead of the nucleus, and is 

only maternally inherited. mtDNA has a ‘high copy number’, which refers to the presence of 

thousands of copies of mtDNA for every copy of nuclear DNA, thus increasing the likelihood of 

retrieving sufficient amounts from compromised samples (Weedn & Baum, 2011). mtDNA 

remains viable in cells for longer time periods than nuclear DNA, and has proven valuable for 

typing ancient or degraded samples (Shook & Smith, 2008). As this study focuses on the 

quantity of nuclear DNA as it relates to bone microarchitecture, mtDNA will not be further 

considered here.  

Overall, obtaining genetic profiles from forensic samples can prove difficult if the sample 

is highly degraded. Degradation diminishes the amount of viable nuclear DNA available for 

extraction, resulting in amounts that fall below the amplification kit’s specified concentrations 

(Marjanovic et al., 2007; Just et al., 2009). Thus, a number of techniques have been devised to 

improve profiling success from extracted DNA, and a general overview is presented below.  

Methods Employed in DNA Analysis 
	
  

Though many methods for DNA sequencing exist, not all are acceptable or possible if 

DNA is degraded. A traditional DNA sequencing method, Restricted Fragment Length 

Polymorphisms (RFLPs), requires high DNA quantities (Parsons & Weedn, 1997). RFLPs 

involve using restriction enzymes to segment portions of DNA, which are then sized using gels. 

If DNA is degraded, the enzymes will fail at determining where to make cuts and the fragment 

lengths will be inaccurate and thus inappropriate for use with fragmented DNA.  
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Short Tandem Repeat (STR) analysis has the advantage of requiring less DNA overall, 

and is one of many methods that make use of Polymerase Chain Reaction (PCR) to amplify the 

sample for sequencing. PCR is a sensitive, repetitive, cyclical process that allows for DNA 

amplification. This form of analysis involves commercial test kits for specific STR genetic loci. 

STR typically performs well despite suspected DNA degradation.  

If STR is unsuccessful, Mini-STRs can be applied to amplify smaller DNA fragments. 

Single Nucleotide Polymorphisms (SNPs) can be utilized for very degraded samples since it can 

identify small changes, such as a single base pair alteration, but it is not robust enough to 

establish a forensic identification. Overall, STR is the preferred testing method, followed by 

Mini-STRs, mtDNA, and SNPs (Weedn & Baum, 2011). However, success of postmortem DNA 

extraction largely depends on the specific remains recovered and their condition.   

DNA Degradation 
	
  

DNA begins to degrade directly following an organism’s death. Cellular autolysis and 

bacterial digestion are the primary agents in DNA degradation, and with progressive 

putrefaction, DNA integrity rapidly breaks down (Schwark et al., 2011; Weedn & Baum, 2011). 

Though the relationship between DNA degradation and environmental exposure is not fully 

understood, taphonomic factors that promote human decomposition are recognized as 

influencing bone preservation and DNA degradation. Numerous studies implicate common 

environmental agents including ground water, fungi, pH balance, exposure to ultraviolet (UV) 

light exposure, temperature, humidity, bacteria, and cyanobacteria (Jans et al., 2004; Turner-

Walker & Jans, 2008; Turner-Walker, 2008; Golubic et al., 2005; Bell, 1990; Graw et al., 2000; 

Jackes et al., 2001; Bell & Elkerton, 2008). 

The ability to extract usable DNA from human tissues is generally presented in terms of 
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success or failure. Failure is often attributed to degraded samples. Genetic material may 

deteriorate more slowly in hard tissue, such as bones and teeth, than in soft tissues, such as skin 

and organs, because the composition of hard tissue structures can act as a physical barrier to 

external influences (Campos et al., 2012; Graw et al., 2000; Ye et al., 2004). The resilient 

structure of skeletal tissue can be attributed in part to bone density and microarchitectural 

composition. In cortical bone, osteocytes embedded between concentric layers of lamellae within 

the periphery of osteons (~250 µm in diameter), and in interstitial bone, are further away from 

the larger surface area of the trabecular network and thus may be isolated and/or protected from 

environmental insults (Qiu et al., 2002; D.M.L. Cooper, personal communication). In cancellous 

bone, however, osteocytes are likely closer to the larger surface area of the trabecular network 

(i.e. trabecular thickness of 100-150 µm). As such, the open-nature of cancellous bone may result 

in an easier introduction of microorganisms, and other chemical destructive entities of DNA.  

DNA degradation in hard tissue has been linked to collagen and crystallinity loss of the 

hydroxyapatite, which both play a crucial role in DNA preservation (Gotherstrom et al., 2002). 

Taphonomic factors, specifically diagenesis, can affect the integrity and appearance of bone 

microstructure and affect the reliability of DNA extraction, histological age estimation methods, 

and biomechanical analyses. Understanding DNA preservation and degradation in hard tissue 

necessitates understanding diagenetic alterations to bone microstructural integrity.  

The Influence of the Postmortem Environment on Bone Preservation 

Following decomposition, bone and teeth are often the only remaining tissues of an 

organism. These hard tissues can provide excellent sources of DNA for human identification. A 

phenomenon called diagenesis, however, can alter the chemical and physical environment within 
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bone that surrounds DNA. The following section will define diagenesis as it applies to bone, and 

consider various diagenetic agents that may hinder successful DNA extraction.  

Defining Diagenesis 
	
  
 Diagenesis is a term borrowed from geology referring to physical, biochemical and 

physico-chemical processes that occur during the formation of a sedimentary deposit (Bell, 1990; 

1995; Turner-Walker & Jans, 2008; Hedges, 2002; Hedges & Millard, 1995). Diagenesis adapted 

to skeletal material describes a complex of alterations to bone tissue in the burial environment 

(Hedges & Millard, 1995; Hedges, 2002). These processes include, but are not limited to, 

desiccation, bleaching, mineral replacement, compaction, and decomposition of organic 

compounds (Bell, 1995). 

Autolysis and hydrolysis are chemical processes associated with soft tissue 

decomposition and also includes degrading bone collagen (Jans, 2008). These reactions, or 

diagenetic alterations, are extremely variable from one environment to another. Diagenetic 

agents such as ground water, fungi, pH balance, bacteria, and cyanobacteria that can potentially 

alter bone microstructure will be reviewed below (Jans et al., 2004; Turner-Walker & Jans, 2008; 

Turner-Walker, 2008; Bell, 1990; Jackes et al., 2001; Bell & Elkerton, 2008). 

The Presence of Water 
	
  
 Water’s presence and movement within a burial may influence the microstructural 

preservation of bone (Turner-Walker, 2008; Bell & Elkerton, 2008). Water flow can penetrate 

submerged bone through the network of vascular canals. Repeating cycles of wetting and drying 

leach calcium and phosphate from bones and they become porous and weak. Water is also the 

medium for almost all chemical reactions that occur within the soil (Turner-Walker, 2008). In the 
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body, bone is in a relatively closed system surrounded by fluid with a strictly controlled pH 

(Ortner & Turner-Walker, 2003; Turner-Walker, 2008). In contrast, the soil is an open, 

unregulated system and bone is vulnerable to its degradative influences. The presence of water 

also supports microbial activity and metabolism.  

Damp or wet conditions can be detrimental to DNA survivability in skeletal remains 

(Graw et al., 2000; Iwamura et al., 2005; Schwark et al., 2011; Ye et al., 2004). For example, 

Graw and colleagues (2000) found that bones and teeth exposed to damp conditions are subject 

to rapid DNA degradation. Iwamura and colleagues (2005) reported on DNA degradation of 

skeletal material after submersion in fresh water. Schwark and colleagues (2011) evaluated DNA 

extracted from soft tissues such as the aorta, kidney, muscle, and liver from individuals of 

various decompositional stages. The authors found that DNA yield was poor from individuals in 

advanced stages of decomposition that were wet and/or damp from decompositional fluids.  

Bone Degradation in Soil 
	
  

Two mechanisms of degradation affect skeletal material recovered from within a soil 

context: (1) chemical hydrolysis, and (2) microbial degradation (Turner-Walker, 2008; Turner-

Walker & Jans, 2008). These processes can occur concurrently. Various agents of decay work in 

concert with these diagenetic trajectories within a soil burial environment. Decomposition is 

generally governed by external microflora commonly present in ground soil (Bell et al., 1996). 

During decomposition, microbes found within a cadaver and the surrounding soils invade bone 

and degrade organic molecules, and presumably DNA (Mundorff & DeBruyn, 2015). For 

example, a recent study by Lauber and colleagues (2014) described the effects of various soil 

microbial communities on vertebrate decomposition using a mouse model. The authors noted a 
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much quicker rate of decomposition for subjects placed on soil with intact microbial 

communities compared to those placed on sterile soil.  

Taphonomic factors such as temperature, pH balance and the availability of groundwater, 

influences the types of soil microorganisms present, which then affects the amount of tissue 

decay that occurs (Turner-Walker, 2008; Henderson, 1987). Higgins and colleagues (2015) 

found that soil temperatures within burials had a substantial impact on DNA preservation in 

different tissues of the tooth (Higgins et al., 2015). Their results further demonstrated variable 

postmortem preservation of both nuclear and mtDNA in single teeth, with varying degradation 

rates for each tissue type. Pulp tissue was found to decay quickly, while cementum maintained 

its structural integrity over an extended period of time (Higgins et al., 2015).  

Further, the pH of groundwater has been shown to affect the degree of microstructural 

degradation of bone (Tibbet & Carter, 2008; Jans et al., 2004). If grave soil has a neutral alkaline 

pH balance, the destruction of bone microstructure is not as severe. Bones recovered from 

alkaline soils tend to be white, or cream in color since metal ions present in the groundwater are 

insoluble at a neutral pH (Turner-Walker, 2008). If the soil condition is acidic, the inorganic 

components of bone tissue will deteriorate. Bones recovered from these environments tend to be 

brown in color due to the presence of soluble transition-metal ions (Turner-Walker, 2008), and 

microstructural features such as osteons are often soil stained.  

Microbial Diagenesis of Bone 
	
  
 Microbes can speed the rate of decomposition and alter both the surface and interior 

structures of bone. Bacteria infiltrate the vascular networks, and seem to follow the course of 

collagen fibers, creating tunnel structures (Bell et al., 1996; Jans, 2008; Turner-Walker, 2008). 
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Two broad classes of bacteria have been identified: (1) aerobic, and (2) cyanobacteria (Bell, 

1990).  

 Fungi have also been implicated in the postmortem alteration of bone tissues 

(Piepenbrink, 1986; Turner-Walker, 2008; Jans, 2008). Piepenbrink (1986) successfully isolated 

and identified various species of fungi from samples of excavated archeological human material. 

Fungi penetrate the cortex of bone and infiltrate the bone matrix with branching tunnel structures 

(Jans, 2008). These are referred to as Wedl’s tunnels. 

  A distinct form of micro-boring has been identified by Bell and Elkerton (2008). Boring 

microbes are associated with microstructural degradation of bone recovered from aquatic 

environments and include: fungi, bacteria and cyanobacteria (Raghukumar et al., 2001). Aquatic 

microbes are known degraders of various calcareous marine substrates (Raghukumar et al., 

2001), and tunnel inside skeletal remains for use as dwellings (Turner-Walker, 2008; Bell et al., 

1996).  

 Networks of microscopic tunnels have been observed that occur peripherally in 

distribution on prepared thin sections, referred to as endolithic tunnels (Bell & Elkerton, 2008). 

No boundary of remineralization is evident in this type of structural modification. The 

microorganism’s activities vary depending on temperature, depth, and light exposure (Bell & 

Elkerton, 2008). Microbial endoliths can occupy a variety of niches, including human bone, and 

the tunnels created vary depending on whether the organisms are phototrophic or heterotrophic 

(Golubic et al., 2005). Heterotrophic organisms, such as species of fungi, tend to invade bone in 

the marine environment. The organic components of bone provide a nutrient rich food source for 

these fungi. Heterotrophic organisms show variable boring patterns, but the tunnels created are 

fairly consistent in diameter (Golubic et al., 2005).  
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Particular extrinsic factors including temperature affect microbial activity, and in turn, 

DNA and bone microstructural and DNA preservation (Burger et al., 1999; Lee et al., 2010; 

Iwamura et al., 2005). Burger and colleagues (1999) investigated the effect of various 

environmental factors on the preservation of nuclear DNA. Through simulation of various 

environmental conditions, the authors documented that high humidity and heat resulted in the 

most severe decreases in DNA quantity and quality. Further, Lee and colleagues (2010) analyzed 

human skeletal remains for nuclear DNA following exposure to various maceration techniques. 

Overall, the authors found that maceration for longer periods of time in hot water resulted in the 

poorest DNA amplification rates. A study conducted by Iwamura and colleagues (2005) 

investigated the presence of osteocytes using two-dimensional (2D) histologic sections following 

bone maceration. They reported that DNA extracted from previously boiled femoral bone 

samples was either unattainable or severely degraded. The authors further discovered that boiling 

bones appeared to remove and/or destroy osteocytes, which are recognized to contain DNA 

(Hedges, 2002; Soler et al., 2011).  

Conversely, a recent study by Frank and colleagues (2015) investigated the effects of 

three common processing techniques commonly employed prior to skeletal analyses: (1) 

maceration in hot water, (2) Computed Tomography (CT) scanning, and (3) X-ray imaging. The 

authors aimed to determine if these commonly used practices impacted nuclear DNA yield 

success rates. Data revealed that DNA yields from bone were highly variable following hot water 

maceration, but that none of the three processes in isolation caused a statistically significant 

reduction in profile completeness. However, the combined effects of hot water maceration, CT 

scanning, and X-ray imaging revealed statistically significant decreases in DNA success rates 

(Frank et al., 2015), suggesting an additive effect from these processing techniques.  
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In sum, the above works demonstrate the influence of microbial activity on hard tissues 

and the potential effects high-heat and humidity have on microbes. In general, these variables are 

shown to assault DNA by increasing microbial activity, which may influence the destruction of 

bone microstructure including DNA-housing bone cells (Hedges, 2002).  

Modeling Bone Diagenesis 
	
  

The diagenesis literature typically documents qualitative features in which degenerative 

change has been identified (Bell, 1990; Hackett, 1981; Jans, 2008). Hedges and colleagues have 

accomplished a considerable amount of qualitative work in the realm of bone diagenesis 

(Hedges, 2002; Hedges & Millard, 1995a; 1995b). The authors have enhanced our understanding 

of diagenetic processes and provide a histological index for the possible quantification of 

diagenetic features. Hedges and Millard (1995) also discuss how concepts developed from soil 

studies can be applied to the examination of buried bone and our understanding of diagenesis. 

They identified modes of interaction between soil and bone based on local hydrology. 

Considering certain variables such as increased crystallinity in bone, porosity, and uptake of 

uranium, the authors model bone diagenesis. The authors further demonstrated that soil structure 

and moisture, the resulting physical state of bone, and bone chemistry can provide evidence for 

the manner of the diagenetic process experienced.  

Due to the wide range of factors influencing the chemical and physical changes to bone, 

however, a valid mathematical method does not exist for quantifying bone diagenesis. As these 

alterations ultimately affect skeletal preservation, the integrity of bone microstructure must be 

considered prior to histological analyses. All areas of bone cortex are not always affected by 

diagenesis, and so areas displaying less microscopic damage may still be suitable for histological 

assessment. 
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DNA Survivability 
	
  

Significant technological advances in molecular analyses of skeletal remains have 

emerged in recent years. Nevertheless, DNA survivability remains affected by taphonomic 

factors that encourage bone and DNA degradation, creating challenges for DNA analysis. Early 

studies have ranked these factors according to their adverse effects on DNA preservation 

(Hochmeister et al., 1991; Parsons & Weedn, 1997; Burger et al., 1999; Graw et al., 2000; 

Crainic et al., 2002; Imaizumi et al., 2004; Ye et al., 2004; Cockle et al., 2005; Iwamura et al., 

2005), providing a foundation for more recent works (Putkonen et al., 2010; Schwark et al., 

2011; Mameli et al., 2014).  

Environmental Effects on DNA Yield 
	
  

Case studies and actualistic research have been used to demonstrate that high heat and 

humidity, damp and wet conditions, or submersion in water, are detrimental to DNA 

survivability in bone. For example, Hochmeister and colleagues (1991) documented the 

difficulties associated with DNA extraction and amplification from human remains submerged in 

a river. The researchers could not recover amplifiable DNA from decedents immersed in water 

for multiple months prior to recovery. Graw and colleagues (2000) also found that human 

remains exposed to damp conditions were subject to rapid DNA degradation. In each skeletal 

case recovered from a damp environment, DNA typing from hard tissues was impossible. Burger 

and colleagues (1999) further investigated the effect of various environmental factors on the 

preservation of nuclear DNA extracted from archaeological tooth samples. Various 

environmental conditions were simulated experimentally, and included temperature, humidity, 

pH value, and presence of bacteria. Overall, the authors documented that high humidity and heat 

resulted in decreased DNA quantity and greatly reduced DNA quality. 
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A case study by Crainic and colleagues (2002) addressed the challenges of extracting and 

amplifying DNA from human tissue retrieved from a dam. The authors sampled decomposing 

muscle tissue and a clavicular fragment for nuclear and mtDNA analyses. The clavicle was 

chosen since significant portions of the recovered remains were missing (Crainic et al., 2002). 

The degraded soft tissues failed to produce a successful DNA profile, though the bone sample 

proved to be suitable following positive PCR amplifications. Further, Imaizumi and colleagues 

(2004) examined PCR assays that were applied to different human tissues (i.e. bone, nails, hair) 

exposed to various environmental contexts. Results indicated that strong PCR inhibition was 

observed in the DNA extracted from bones buried in soil, with the most rapid decrease in DNA 

yield seen in tissues immersed in water. The authors found that exposure to various 

environmental stimuli greatly affect the quantity and quality of recoverable DNA.  

More recent studies further indicate that varying taphonomic factors result in differing 

levels of DNA degradation. Schwark and colleagues (2011) evaluated procedures for the 

extraction and amplification of DNA from soft tissues such as the aorta, kidney, skeletal muscle, 

and liver from individuals of various decompositional stages. DNA quality and quantity results 

indicated high variability in DNA preservation from individual to individual. DNA yield was 

poorer from individuals in advanced stages of decomposition. Mummified individuals, or those 

who displayed adipocere formation, yielded better DNA results than those who were wet and/or 

damp from decompositional fluids or processes. 

To improve DNA extraction modalities from skeletal remains recovered from aquatic 

environments, Mameli and colleagues (2014) developed a method specifically for DNA profiling 

human remains submerged in seawater. The study was inspired by a case in which a decedent 

was retrieved from seawater after approximately eight months. The authors retrieved sections of 
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a well-preserved mandibular body, and employed three DNA extraction protocols. Two 

techniques were created specifically for bones retrieved from freshwater environments (Mameli 

et al., 2014). Extracted DNA was quantified using PCR and STR profiles generated. No 

measurable amounts of DNA were usable from the first and second freshwater protocols. The 

third method was successful in recovering low copy number DNA from the mandible, although it 

was highly degraded. This technique used additional bone powder and included an additional 

concentration step (Mameli et al., 2014). This case highlights advancements in DNA profiling 

techniques that have increased the likelihood of extracting adequate DNA from poorly preserved 

samples.  

Overall, the quantity and quality of nuclear DNA that can be extracted and amplified 

highly depends on the deposition environment. The above review demonstrated that bones 

exposed to high-heat and wet environments show a reduction in the quantity and quality of 

extractable DNA. Conversely, certain conditions demonstrate the ability to limit or slow bacterial 

growth and thus inhibit the degradation of DNA. As such, bones recovered from temperate, 

relatively cold, or dry environments exhibit better preserved collagen and nuclear DNA for 

extraction (Sosa et al., 2013; Iwamura et al., 2005; Leney, 2006). For example, Leney (2006) 

documented that skeletal elements recovered from temperate environments promoted DNA 

preservation. He further demonstrates that remains recovered from a temperate environment, 

even from a prolonged postmortem interval, yielded better results than those recovered from a 

wet environment with a short postmortem interval.  

Storage and Preservation Following Mass Disasters 
	
  

Few mass fatality incidents (MFIs) occur in environments that encourage DNA 

preservation, and scene processing is often impossible before the onset of decomposition. 
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Therefore, the storage and preservation of human biological material can further challenge the 

identification process. As such, various researchers have developed procedures for short- and 

long-term human tissue storage to preserve the quality of DNA and delay the effects of 

degradation (Caputo et al., 2011; Michaud & Foran, 2011; Graham et al., 2008; Holland et al., 

2003; Li, 2006). These efforts are essential, especially in disaster situations where subsequent 

DNA analysis for victim identification is critical.  

Typically, DNA samples for human identification are often stored at -20 C to halt the 

DNA degradation process. However, when the tissue thaws, endogenous enzymes are released 

that may threaten to degrade DNA (Caputo et al., 2011). In temporary mortuary sites following a 

mass disaster, even immediate sample refrigeration is often not possible.  

Caputo and colleagues (2011) proposed the use of table salt (NaCl) for rapid dehydration 

of tissue samples to allow for reliable DNA extraction. Graham and colleagues (2008) 

investigated the use of various buffer solutions for the preservation of soft tissue samples to aid 

in conservation of nuclear DNA in the context of disaster victim identification. Using this 

method, samples can be stored at room temperature for up to six months. Based on their work on 

the World Trade Center remains, Holland and colleagues (2003) developed a high quality DNA 

extraction procedure for bone and two new STR multiplexes, thus enhancing the ability to obtain 

DNA results from very challenging samples.  

Michaud and Foran (2011) compared different techniques for field-preservation of tissues 

for later DNA analysis. Swine skin and muscle tissues were preserved using cold storage, 

desiccation, or room temperature storage in preservation fluid for a maximum of six months. 

DNA was extracted shortly after and amplified via PCR. Results indicated that simple 
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preservation in solutions such as rubbing alcohol and ethanol result in substantially better DNA 

quality than delaying preservation.  

Allouche and colleagues (2008) investigated nail clippings as an alternative nuclear DNA 

source from decomposed cadavers. Though nails are not often used as a DNA source, the authors 

determined the amount of nail clippings required to establish nuclear DNA profiles (5-50 

milligrams), and evaluated the quality of nail-derived DNA. Overall, they found that nails 

demonstrate a satisfactory resistance to decay and are straightforward to sample.  

Li (2006) developed a straightforward sample processing method for nuclear DNA 

isolation to address difficulties in cleaning and extracting DNA from bone, especially in cases 

where only small amounts of DNA are present. This method involved the use of trypsin, a 

digestive enzyme, to degrade various types of proteins found on the bone’s surface. Li (2006) 

further examined the effects trypsin had on subsequent DNA yields and on the quality of the 

DNA obtained. Light microscopy and SEM revealed that trypsin did not have any adverse effects 

on the bone, and the DNA extracted following treatment was sufficient for amplification and 

analysis.  

Conclusions 
	
  

Overall, there appears to be consensus in the literature regarding the application of 

inexpensive and easily employable preservation methods for delaying decomposition and 

subsequent DNA degradation in human tissues recovered in MFIs. It should be noted, however, 

that there are no consistent rules indicating whether a particular approach will be successful since 

every case or context is unique. 
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Current DNA Sampling Protocols for Human Identification 
	
  

Hard tissues, such as bones and teeth, are often the only remaining suitable material 

available for DNA extraction. Sampling and cleaning strategies for bone and teeth are typically 

specialized and time consuming particularly when the material has been exposed to harsh 

environmental conditions (Li, 2006; Davoren et al., 2007; Milos et al., 2007). Contamination 

issues must be considered as it interferes with DNA analysis. Generally speaking, contamination 

can result from the introduction of extraneous DNA from physical contact, or occur via cross-

contamination between samples.  

The improvement of DNA extraction and amplification techniques has altered the human 

identification standards and protocols, particularly following MFIs characterized by small and 

degraded samples. DNA sampling techniques used in recent MFIs are highly variable, however, 

and are often tailored to each unique circumstance (Mundorff et al., 2009). Until recently, there 

were few detailed guidelines outlining bone-sampling protocols for DNA analysis following 

MFIs. For example, in the 2004 Thailand tsunami disaster, ribs and teeth were initially sampled 

for DNA (Cockle et al., 2005), and for victims of the 2005 Hurricane Katrina, anterior mid-shaft 

portions of tibiae were procured. To speak to these disparities in DNA sampling strategies, 

specialists in mass fatality management have begun collaborating to produce manuals containing 

general human identification guidelines. Agencies such as the International Commission on 

Missing Persons, the National Institute of Justice, the National Association of Medical 

Examiners, Interpol, and the International Society for Forensic Genetics have devised sampling 

recommendations for DNA specimen collection.  

 



	
  

	
   22 

International Commission on Missing Persons (ICMP) 
	
  

The International Commission on Missing Persons (ICMP) uses an effective DNA 

extraction protocol developed by Amory and colleagues (2012). This method involves 

demineralization and purification of bone samples and appears to limit environmental impacts 

(Hines et al., 2014). Based on results of an extensive analysis of DNA extractions from 

numerous skeletal elements (n=11,650) by Hines and colleagues (2014), the ICMP outline 

suggestions for effective sampling strategies for incomplete human remains.  

The ICMP prioritizes sampling teeth for DNA analysis, followed by femora, tibiae, and 

os coxae (ICMP, 2015). Tarsals were found to yield consistently high DNA STR profiles in the 

study by Hines and colleagues (2014), however, it was determined that these elements are not 

ideal to sample from a commingled mass grave as they may be difficult to reassociate with other 

skeletal remains. 

In addition to prioritizing elements for sampling based on DNA success rates, ICMP 

advises practitioners to consider the circumstances surrounding the skeletal recovery, and the 

durability and simplicity involved in removing the sample (Hines et al., 2014). Completeness and 

preservation of the specimen should also be considered. More detailed guidelines can be found in 

the publication (Hines et al., 2014).  

National Institute of Justice (NIJ) 
	
  

The Mass Fatality Incidents: A Guide for Forensic Human Identification (2005) was 

designed for medical examiners and coroners to aid in the creation of mass disaster plans. 

Overall, this guide provides a comprehensive section on DNA sampling. NIJ provides twelve 

general tissue extraction guidelines. The preferred samples from human remains listed in order of 

preference include: (1) blood, (2) soft tissues such as skeletal muscle, organ tissue, and skin, and 
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(3) hard tissues such as cortical bone tissue and teeth. In terms of sampling bone for DNA, NIJ 

encourages a preference for sampling dense cortical bone from weight-bearing lower limb bones 

yet neglect to include citations that lead to this determination.  

The National Association of Medical Examiners (NAME) 
	
  

The National Association of Medical Examiners (NAME) mass fatality plan is generally 

directed towards coroner and medical examiner offices to aid in developing disaster response 

plans. It is comprehensive and contains additional pages of forms for the recording of 

postmortem data. The NAME mass fatality plan addresses DNA sampling procedures in the 

section titled DNA Specimen Collection Guidelines. These recommendations specify that hard 

tissues such as long bones (either intact or 6 inches of the diaphysis), rib cuttings, or teeth with 

intact roots be retrieved when sampling decomposed human remains (National Association of 

Medical Examiners, 2010).  

Interpol 
	
  

The Interpol Disaster Victim Identification (DVI) manual is arguably the most 

comprehensive guide available for professionals involved in mass fatality management. It is 

updated regularly in response to the experiences of Interpol DVI personnel during disaster 

situations. Additionally, the information provided is compatible with international DVI 

procedures, and as such is available in over one hundred countries and in multiple languages 

(Interpol, 2014). In terms of DNA sampling, the report suggests preferentially sampling 4-6 cm 

from long bones with dense cortical bone tissue, healthy teeth, or other available cortical bone. It 

further indicates that samples retrieved from cancellous bone may be difficult to preserve 

(Interpol, 2014). 
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International Society for Forensic Genetics (ISFG) 
	
  
 Prinz and colleagues (2007) reported guidelines for forensic geneticists involved in mass 

disasters set forth by the International Society for Forensic Genetics (ISFG). This group includes 

international members who are leaders in the field of human identification. The authors 

recommend an interdisciplinary approach to human identification that involves DNA 

identification and additional methods such as fingerprint and dental record analysis. Regarding 

DNA sampling, Prinz and colleagues (2007) recommend that numerous sample types should be 

collected for DNA testing (i.e. blood and buccal swab if not decomposed, muscle tissue, long 

primarily cortical bones, healthy teeth). All specimens should be retrieved at the earliest possible 

stage following recovery, and from each recognizable body part. These general guidelines are 

quite broad, however, and do not specify which particular skeletal elements are most likely to 

produce sufficient DNA profiles if skeletal remains are fragmentary or if limb bones are 

unavailable (Mundorff et al., 2012). Additionally, there is no mention of which bones might 

consistently produce full DNA profiles, especially following exposure to harsh environmental 

conditions.  

Guidelines for Mass Fatality DNA Identification Operations 
	
  

Sozer and colleagues (2010) prepared the Guidelines for Mass Fatality DNA 

Identification Operations to provide a review of the factors and protocols involved in DNA 

identification procedures in response to MFIs. The authors emphasize that their manual is based 

on experiences from previous disasters, and does not aim to set standards. The document is 

thorough and well organized. There are coherent sections that describe overall mass disaster 

program management, and technical considerations for DNA sample collection and testing. The 

authors also include appendices with references for suggested reading, and resources for using 
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Bayesian statistics in paternity testing. In their review of sample collection for DNA, Sozer and 

colleagues (2010) recommend sampling biological tissues with the best potential for DNA 

survival as well as the contracting laboratory’s ability and expertise to work with certain sample 

types. Although various laboratories retrieve different minimum sample requirements, the 

authors recommend that skeletal muscle, nails, long bones, and healthy teeth be recovered if 

possible. 

The following section will examine the existing state of knowledge regarding DNA 

sampling techniques by skeletal element. This review emphasizes the need for additional studies 

evaluating differential preservation of DNA by skeletal element under controlled conditions. 

Studies Examining DNA Yield by Skeletal Element 
	
  

Until recently (Hines et al., 2014; Mundorff & Davoren, 2014), DNA sampling protocols 

for human identification have been largely based on the collective wisdom of practitioners. 

Pooled experience suggested that weight-bearing lower limb bones, specifically femora and 

tibiae, yielded higher quantities of DNA than other skeletal elements and were therefore favored 

for sampling. In fact, the aforementioned government agencies including the International 

Commission on Missing Persons, National Institute of Justice, The National Association of 

Medical Examiners, and Interpol have proposed DNA sampling strategies encouraging the 

preferred extraction of dense cortical bone from the lower limb. As such, DNA testing using 

non-weight-bearing bones, or small bones with high cancellous content have been marginalized, 

resulting in a dearth of information on their actual potential. As DNA technology has become 

more refined, various researchers have aimed to demonstrate which skeletal elements and bone 

tissue types (cancellous and cortical bone) best preserve DNA. The following chronological 

review presents current evidence from the forensic identification literature.  
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Alonso and colleagues (2001) examined the influence of bacterial contaminants on 

nuclear DNA extracted from hard-tissue samples. The authors analyzed eight-to-fifty year-old 

skeletal material from the skull, ribs, and teeth. Results indicated that the quality and quantity of 

DNA obtained from long bones is higher than that from the ribs or skull. Edson and colleagues 

(2004) also agree that bones from the lower limb, such as femora and tibiae, should be 

preferentially sampled for DNA. The authors evaluated the rate of successful mtDNA extraction 

from an array of degraded human skeletal elements such as long bones, metatarsals, os coxae, 

and ribs.  

Anđelinović and colleagues (2005) analyzed DNA from bone and teeth samples from 

victims of past conflicts in Croatia, Bosnia and Herzegovina (BH) between 1993 and 2005. Their 

sample consisted of hard tissues, primarily long bones and teeth, from 674 individuals recovered 

from various mass graves sites in Croatia and BH. Anđelinović and colleagues (2005) found that 

successful DNA typing from skeletal material depended on employing an appropriate DNA 

isolation procedure. The authors saw a drastic increase in success from 1993-2004 due to vast 

increases in DNA technology. They reported that the DNA quality from teeth was generally 

higher than that retrieved from bone. It was also noted that femoral samples with dense cortical 

bone better preserved DNA, although the environmental context in which the bones were 

recovered influenced the state of DNA quality (Anđelinović et al., 2005).  

Although focused on mtDNA instead of nuclear DNA, Leney (2006) sampled 

archaeological skeletal remains to identify which skeletal element, by sample weight, performed 

best. He found that the larger the bone sample taken for DNA analysis, the greater the likelihood 

it would yield an acceptable DNA profile. Results further indicated that dense cortical bone from 

femora, followed by humerii were the most successful for mtDNA extraction. 
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In 2007, work by Milos and colleagues utilized data from human skeletal remains 

recovered from mass graves in the former Yugoslavia. They aimed to examine nuclear DNA 

yield from various skeletal elements from different postmortem intervals. The authors tested a 

large sample of bones including upper and lower limb bones, teeth, and small elements such as 

vertebrae and metatarsals. DNA success rates were found to be highly variable. Their results 

further suggested that dense cortical bone (i.e. from long bones) yielded the best DNA profiles, 

and should thus be preferentially sampled. The authors state that bones with a greater proportion 

of cancellous bone performed poorly in comparison (Milos et al., 2007).  

An important study by Misner and colleagues (2009) investigated whether there was a 

correlation between skeletal weathering, or bone’s overall macroscopic preservation, and 

mtDNA quality and quantity. Archaeological bones were tested for DNA quality and quantity 

and included ribs, femora, and os coxae. Results suggested that there is in fact no correlation 

between skeletal weathering and the quantity and quality of mtDNA. This finding contradicts 

previous literature that suggests bone’s gross appearance is often an indicator of DNA 

preservation. As such, factors that degrade bone do not necessarily have the same effect on 

DNA. Moreover, the authors state that the greatest differences in DNA quantity and quality 

existed between femora and os coxae, regardless of the level of weathering. Misner and 

colleagues (2009) assert that cortical bone (i.e. femora) performed better overall than ribs and os 

coxae, with the pelvic material producing the poorest results. 

Mundorff and colleagues (2009) evaluated a subset of remains from the World 

Trade Center Human Identification Project to measure differential nuclear DNA preservation by 

skeletal element. The authors found that variables such as the recovery location of the remains 

(Ground Zero versus the Staten Island Landfill), sex of the decedent, and decedent type did not 
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appear to influence DNA preservation. Contradictory to previous studies, the higher-yield 

producing bones included several smaller elements including patellae, metatarsals, and foot 

phalanges, which are generally overlooked in DNA sampling. These smaller bones can be 

removed easily using a disposable scalpel while sectioning mid-shaft femora is more time 

consuming, increases the risk of DNA contamination, and requires a bone saw. As such, the 

authors argue that their results should be considered when DVI managers are developing DNA 

sampling protocols. 

Ferreira and colleagues (2011) discussed two mass disasters in Rio de Janeiro, Brazil: a 

mudslide event and an aircraft crash. The authors presented results from nuclear DNA sampling, 

fingerprinting, and dental analyses for victim identification. In relatively intact decedents, the 

authors preferentially sampled hard tissues such as lower limb bones, particularly metatarsals 

and foot phalanges, and teeth for DNA analyses. Long bones and teeth were also collected from 

fragmented or burned remains. In accordance with Mundorff and Davoren’s (2014) results, the 

authors found that metatarsals and foot phalanges had high DNA success rates. Comparable to 

Mundorff and colleagues (2009), the authors noted that these small bones were easy to collect 

using disposable equipment that prevented DNA contamination (Ferreira et al., 2011). In a 

second study, the authors analyzed twenty foot-phalanges and knee cartilage samples from intact 

victims from the Brazil forest floor and mudslide incidents of 2011 (Ferreira et al., 2013). They 

compared the DNA profiles and yields from the cartilage samples to the bone specimens. While 

all of the samples yielded full DNA profiles regardless of tissue type, the yield rates were 

variable. Based on these findings, the authors recommended preferentially sampling phalanges 

instead of conventional bones, such as femora.  
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Notable work by Hines and colleagues (2014) provides a comprehensive analysis of 

DNA extractions from numerous skeletal elements (n=11,650) retrieved from varying 

environmental contexts. The skeletal sample was recovered throughout the Western Balkans by 

the ICMP (Hines et al., 2014). The authors presented their nuclear DNA extraction results for all 

skeletal elements in four tiers, with the first tier providing the best data. Results indicated that 

teeth, tarsals (particularly the talus), the petrous portion of temporal bones, vertebrae, 

metatarsals, and the femora and tibiae offered the highest success rates (Hines et al., 2014). 

Patellae also exhibited promising results but the sample size was too small (n=<10) to be 

included. Alternatively, skeletal elements exhibiting a DNA success rate of 50% or less included 

the ribs, cranial bones, humerii, ulnae, radii, and clavicles. In accordance with the findings of 

Mundorff and colleagues (2009), small bones composed predominantly of cancellous bone 

yielded more full DNA STR profiles than dense cortical bone retrieved from long bones. 

Most recently, Kaneko and colleagues (2015) analyzed forty-two hard tissue samples at 

varying states of degradation including teeth, nails, second ribs, and cranial bones. Their results 

demonstrated that teeth provided the highest nuclear DNA concentrations and most complete 

profiles. DNA concentration retrieved from ribs was low compared to the other hard tissues. 

Three of the hard tissue types (rib, skull, and nails) exhibited a high loci number up to one month 

following death. After three months, approximately half of the loci from nail samples were non-

demonstrable, and after five months, the number of loci from the three hard tissue types also 

dropped.  

The majority of the above studies were retrospective analyses in which the researchers 

did not evaluate all element types within a single skeleton. Notably, while smaller bones with a 

higher quantity of cancellous bone tissue were often excluded from these studies, when they 
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were included they often out-performed other bones. Until recently, the majority of studies 

ignored small bones with high cancellous content. Consequently, the conclusions were based on 

testing limited samples and then misapplied to represent results from the entire skeleton.  

Only one empirical study currently exists that has evaluated the differential preservation 

of nuclear DNA by all skeletal element types within the same skeleton and between multiple 

individuals recovered from one environment and point in time. 	
  

Mundorff and Davoren (2014) 
	
  

Mundorff and Davoren (2014) presented a recent comparison of nuclear DNA quantity 

and quality from modern skeletal elements from three individuals with similar demographics (i.e. 

year of death, sex, age). A unique feature of their work is that they tested representatives of all 

element types within each skeleton. While it was not necessary or feasible to test all 206 bones in 

each skeleton, their sampling strategy captured at least one of each specific bone (i.e. one femur, 

one cervical vertebrae, all cranial elements). This was the first empirical study to evaluate the 

differential preservation of DNA by skeletal element under controlled conditions. The 

researchers compared 55 skeletal elements from three recently deceased individuals (n=165). 

Results revealed that bones such as phalanges, tarsals, and patellae yielded both higher quantity 

and better quality DNA for human identification. Results further demonstrated that elements 

with high quantities of cancellous bone yield and may preserve DNA at the highest rates, 

suggesting that preferentially sampling cortical bone may be suboptimal. As such, their findings 

have significant implications for the extraction of DNA, since cancellous bone is typically 

dismissed as a potential DNA source in favor of cortical bone. While the results presented by 

Mundorff and Davoren (2014) clearly indicated that bones with high cancellous quantity better 

preserve DNA, the reason is unknown. As DNA is becoming the preferred human identification 
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method, understanding why these results diverge from expectations requires further scientific 

investigation.  

Summary 
	
  

Nuclear DNA extraction from bone for forensic identification has long relied on 

preferentially sampling dense lower limb bones, specifically femora and tibiae. Certain studies 

further argue that primarily cancellous elements with little weight-bearing capability perform 

less well and should be avoided when selecting a bone to sample. However, a similarity among 

many of the aforementioned studies is their retrospective approach. As such, the authors did not 

evaluate all skeletal element types within a single individual. Further research quantifying DNA 

yield rates from all skeletal elements and cortical and cancellous bone tissue types within the 

same skeleton are warranted.  

The current research methodology offers promise to refine our understanding of DNA 

sample-selection protocols for human identification. It will identify potential reasons for 

variation in DNA preservation among bone tissue types, and aid in understanding why particular 

bones may better preserve DNA. As a result, the findings have wide ranging implications in bone 

biology and will likely impact various fields within anthropology including biological 

anthropology, molecular anthropology, and forensic anthropology. 
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CHAPTER THREE: BASIC BONE BIOLOGY 
	
  

‘‘…between muscle and bone there can be no change in the one but it is correlated  
with changes in the other;…they are parts of a whole…’’ 

- D’Arcy Wentworth Thompson (1917) 
	
  

The current study aims to identify potential reasons why nuclear DNA yield varies 

among skeletal elements with differing proportions of cortical and cancellous bone tissues. To 

address the proposed question, an extensive knowledge of bone biology is essential to 

understanding histomorphological variation in human bone tissue. The following review of 

normal bone gross morphology and histomorphology provides an overview of bone 

microstructure pertaining to differential DNA yield among human bone tissue types. 

Composition and Structure of Bone 
	
  
 The skeletal system performs a variety of metabolic and structural functions in the human 

body. Bone functions metabolically as a reservoir for minerals such as phosphorus and calcium, 

and is involved in maintaining their homeostasis (Martin et al., 2015). It also serves structurally 

as a lever system in which muscles attach allowing for movement. The framework it provides 

supports and anchors the soft tissues of the body while offering protection to internal organs. As 

such, the composition and structure of bone at the molecular, microscopic, and gross levels 

allows the skeleton to perform these functions.  

Molecular Structure of Bone 
	
  
 Human bone is a connective tissue that is composed of 67% inorganic material and 33% 

organic material (Nanci, 2008). Twenty-eight percent of the organic matrix is composed of Type 

I collagen, organized into long fiber bundles (Nanci, 2008). This structural organization provides 

bone with strength and slight flexibility. Inorganic bone material is composed of hydroxyapatite, 
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a poorly crystallized mineral that infuses the organic bone matrix (Nanci, 2008). It is this mineral 

that constitutes the remaining 67% of bone material, and provides bone with its dense and rigid 

structure (Nanci, 2008; Martin et al., 2015). Integration of protein and minerals give bone tissue 

combined mechanical properties that differ from the sum of the individual components. The 

presence of organic and inorganic components allows bone to function in the support and 

protection for the many intricate body systems. This composition also permits locomotion, 

resistance to compressive forces, and as a storage reservoir for minerals (Robling, 1998; 

Goldman, 2001; Nanci, 2008). Human bones greatly differ in size and shape, but this structurally 

sound composition is consistent despite the gross appearance. 

Composition of Bone  
	
  
 Bone is a mechanically active and dynamic tissue that changes in structure over the 

human lifespan. It can be differentiated into two main structural types: cortical and cancellous. 

Generally speaking, long bones possess a diaphysis and two or more epiphyses, composed of an 

outer cortex of cortical bone and cancellous bone within the medullary cavity (Carter & Beaupré, 

2001). The outer surface of the cortex is covered by periosteum, a soft-tissue layer composed of 

a highly vascularized fibrous membrane, and an inner layer containing osteogenic cells (Martin 

et al., 2015). The inner surface of the bone’s cortex is the endosteum, which forms the boundary 

of the medullary canal.  

Cortical, or compact bone is dense and comprises the external surface of bones (Figure 

3.1). It protects the medullary cavities, covers the diploe of cranial bones, and is recognized to 

exhibit three envelopes: periosteal, intracortical and endosteal (Frost, 2003; Robling et al., 2006). 

Cortical bone accounts for the majority of bone mass (~80%) and is composed of highly 

organized primary lamellar and secondary osteonal bone tissues (Carter & Beaupré, 2001). 
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Primary lamellar bone tissue is formed during appositional growth or endochondral ossification 

(Scheur & Black, 2000), and is vascularized by primary vascular canals. Secondary osteonal 

bone tissue, or Haversian bone, refers to lamellar bone tissue that has replaced older bone tissue 

through bone remodeling (discussed later in this chapter). Concentric lamellar rings bordered by 

a cement, or a reversal line, characterize secondary osteonal bone tissue. Reversal lines are 

composed of highly mineralized collagen matrix, and separate secondary lamellar tissue from 

previously existing bone tissue (Crowder & Stout, 2012). Each osteonal system contains several 

specialized bone cells. 

Cancellous bone is composed of thin plate-like structures called trabeculae (Figure 3.1) 

and has a spongy appearance (Nanci, 2008; Carter & Beaupré, 2001). It is typically found at the 

metaphyseal ends of bones and within the medullary cavities that house red and yellow bone 

marrow during life. For the most part, lamellae are arranged parallel to the trabecular surface 

forming half osteons called hemiosteons. One surface of the hemiosteon borders the bone 

marrow cavity, rather than a Haversian canal as seen in cortical bone (Burr & Allen, 2013). As 

such, cancellous bone’s microstructure is comparable to that of cortical bone, with the exception 

that the latter includes Haversian systems.  

Bone Cells 
	
  

Three primary cell types are responsible for the resorption, formation and maintenance of 

skeletal tissue: osteoclasts, osteoblasts, and osteocytes. These cells are histologically distinct and 

are differentiated by their origins, form, function, and locations within the bone matrix.  
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Figure 3.1: Bone cross-section of an adult human rib exhibiting cortical and cancellous bone 
tissue. This image was captured under transmitted light with 10x objective magnification (Credit: 
JM. Andronowski). 
 

Osteoclasts 
	
  

Osteoclasts are bone cells of hematopoietic origin that are responsible for the resorption 

of both inorganic and organic bone material. These are the largest of the three bone cells and are 

multinucleated. Osteoclasts remove excess bone tissues and microfractures, and release minerals 

stored in mature bone tissue to assist with maintenance of mineral homeostasis (Robling et al., 

2006). The activity and control of these cells play a large role in maintaining the balance 

between bone resorption and deposition that is required for healthy bone tissue. Osteoclasts and 

their precursors undergo a series of transformations during bone modeling and remodeling that 

include identified stages of activation, mobilization, resorption, and cessation. Numerous genes 



	
  

	
   36 

are essential for osteoclast differentiation that include: transcription factors PU.1, c-Fos, 

NFKB1and 2, growth factors M-CSF and RANKL, and the receptor RANK (Robling et al., 

2006; Allen & Burr, 2013). 

Bone resorption begins with immature osteoclasts differentiating into mature osteoclasts 

regulated by RANKL and M-CSF (Allen & Burr, 2013). Mature osteoclasts then migrate to the 

resorption site, where they are activated, and attach themselves to the internal cellular structures 

by means of a plasma membrane. A tight seal (actin ring) forms between the plasma membrane 

and the adjacent bone forming an area referred to as the sealing zone (Allen & Burr, 2013). Once 

the cells are mobilized, a space is created between the two surfaces where protons and other 

proteolytic enzymes are secreted (Robling et al., 2006; Teitelbaum, 2000). A highly convoluted 

membrane forms the characteristic ruffled appearance of osteoclast borders (Allen & Burr, 

2013). These membranes contain large quantities of targeted transport vesicles, lysosomes, and 

proton pumps (Teitelbaum, 2000). Bone removal across the inorganic matrix proceeds by 

acidification of the extracellular spaces through proton secretion across the ruffled border (Allen 

& Burr, 2013). The structure of osteoclasts allows for the dissolved bone matrix to be continually 

removed without compromising the tight bond of the actin ring. The dissolution of the bone 

matrix results in a depression termed a Howship’s lacuna. Once the Howship’s lacuna has been 

eroded, the osteoclast detaches and relocates (Teitelbaum, 2000). The disintegrated matrix will 

then be either internalized by the cells, or released into the surrounding microenvironment once 

the osteoclast retracts from the Howship’s lacuna (Allen & Burr, 2013). Following osteoclastic 

bone removal, bone formation by bone forming cells (osteoblasts) occurs.  
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Osteoblasts 
	
  

The osteoblast is a uninucleated, mesenchymal-derived cell involved in the synthesis of 

bone proteins and the deposition of new bone material (Parfitt, 1983a). Osteoblasts form cell 

layers over existing bony material and collectively act as a barrier to control the passage of ions 

in and out of bone. These cells are involved in the secretion of cytokines that regulate the 

formation of bone (Ortner & Turner-Walker, 2003). Osteoblasts are considerably smaller than 

osteoclasts, thus requiring 100-150 cells to form the amount of bone that can be broken down by 

the activity of a single osteoclast (Crowder, 2005). As such, maintaining the balance between 

resorbed and new bone tissue is an ongoing process in which disruption of the normal activity of 

either osteoclastic or osteoblastic activity could be detrimental to bone health.  

Similar to osteoclastic bone resorption, the transcription factors responsible for osteoblast 

proliferation and differentiation are regulated by various hormones and growth factors. These 

include: PTH, estrogens, insulin like growth factor (IGF), fibroblast growth factor 23 (FGF23), 

bone morphogenetic protein, glucocorticoids and vitamin D (Allen & Burr, 2013; Zaidi, 2007). 

Following differentiation and proliferation of osteoblasts, the cells migrate to bone remodeling or 

modeling sites to secrete osteoid, composed of proteins, type I collagen, osteocalcin, and alkaline 

phosphatase, on the resorbed bone’s surface (Robling et al., 2006). A border of unmineralized 

matrix, referred to as an osteoid seam, is then formed. The boundary between the osteoid seam 

and the unremodeled bone surface is called the mineralization front. As the process of bone 

formation progresses, a small number of osteoblasts become entombed in pits called lacunae 

within the surrounding mineralized matrix and undergo osteocytogenesis (Allen & Burr, 2013). 

Radiating appendages stem from the lacunae, termed canaliculi, which allow osteocytes to 

communicate with neighboring osteocytes and osteoblasts, and respond to the surrounding 
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environment (Currey, 2002).  

Since researchers have made significant progress in understanding the complex roles that 

osteocytes play in bone homeostasis, a further discussion of osteocytes and their proposed 

characteristics is presented below. 

Osteocytes 
	
  

Osteocytes are often cited as the most ubiquitous bone cells in mature bone, amounting to 

approximately 90% of all cells in cortical bone tissue (Martin et al., 2015). As they are well 

distributed throughout the bone matrix, communication is efficient with other osteocytes and 

with osteoblasts via canaliculi, as well as aid in exchanging substances via an interconnected 

system. Due to their small size, they only compose about 1% of total bone volume (Martin et al., 

2015). Despite this fact, they have vast surface area. Though the complete nature of osteocytes 

remains elusive, they are considered essential to maintaining normal bone homeostasis and in the 

initiation of bone repair (Turner & Forwood, 1995; Martin et al., 2015). As such, osteocytes play 

an important role as sensors and represent a key element in the mechanosensory system. Some 

remain in direct contact with osteoblasts and with the internal surface of bone. As such, this 

forms a network of mechanosensing. A complete understanding of the lacuno-canalicular 

system, however, remains elusive. 

Overall, the mechanotransduction process can be divided into the following phases: (1) 

the pairing of biomechanical and biochemical processes in response to mechanical loads, (2) the 

transmission of signals by osteocytes, and (3) bone remodeling (Robling & Turner, 2009).  
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Osteocytes as Mechanosensors 
	
  

Mechanical strain is a documented key regulator of osteoclastic and osteoblastic activity 

in bone tissue. Various works have investigated load-related reactions of osteocytes, which 

support their role in mechanotransduction (Robling & Turner, 2009; Burr, 2002; Martin, 2000). 

It is recognized that mechanotransduction begins when osteocytes perceive mechanical energy 

and convert it into cellular and structural signals (Robling & Turner, 2009). However, there is 

not currently a single known mechanoreceptor in osteocytes, and it is suggested that a 

combination of factors must be triggered for mechanosensation and transduction to occur. These 

molecular mechanisms are important to consider as a better understanding of those involved in 

mechanotransduction may provide new insight into bone biology and shed light on new 

applications for therapeutic intervention. 

Mechanisms by which Osteocytes Sense Mechanical Loading 
	
  

Once mechanical stimuli are recognized by osteoctyes, signaling events follow that 

promote bone gain and prevent loss (Robling & Turner, 2009). Osteocytes may be triggered to 

sense mechanical loads via exposure to stress on the cell body itself or on the canaliculi, or cell 

deformation in response to strain. For example, strain concentrations leading to deformation of 

the bone matrix can be triggered by the appearance of microcracks or initiated by common 

microstructural features of bone such as osteocyte lacunae (Burr, 2002; Robling & Turner, 

2009). In addition, it is suggested that osteocytes can sense strain in their localized environment. 

As such, separation of lamellae can occur due to bands of stress that form around osteocyte 

lacunae (Burr, 2002).   
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The Fluid Flow Hypothesis 
	
  

Osteocytes may also respond to increased fluid flow within the bone matrix that is 

initiated by loading. To address the hypothesis regarding the role of interstitial fluid driven by 

mechanical loads, Turner and Forwood (1995) discuss the fluid flow hypothesis and its influence 

on the integration of cellular responses. Fluid flow may be important for removing wastes from 

cells and supplying nutrients to tissues, and act as a stimulus for bone formation when 

mechanical loads are high. It is this extracellular fluid flow and the interaction with osteocytes 

that is essential to mechanotransduction. It is suggested that osteocyte lacunae may act as 

‘pumps’ to push fluids along the canaliculi of loaded bone. This fluid flow can produce a drag-

type force, and shear stress that may activate bone cells and thus the remodeling process 

(Robling et al., 2006). These triggers may occur together or independently to initiate 

mechanotransduction. Signals can be transferred to the Basic Multicellular Unit (BMU) via gap 

junctions and release of signaling molecules (i.e. prostaglandins, ATP, nitric oxide) into bone via 

interconnecting channels, or the lacuna-canalicular system (Robling et al., 2006).  

Osteocyte Apoptosis 
	
  

Mechanical stimuli are recognized as strong regulators of osteocyte apoptosis, which is 

also suggested to initiate remodeling (Robling & Turner, 2009; Burr, 2002). Since loading 

stimulates the proliferation of osteoblast precursors, rates of programmed osteocyte apoptosis are 

reduced (Robling et al., 2006). If the rate of damage formation in bone increases quickly due to 

an increased load frequency, microdamage may accumulate that can initiate osteocyte cell death. 

As osteocyte apoptosis occurs at sites of bone microdamage or in cases of disuse, the dying cells 

may send signals to osteoclasts for bone removal (Martin, 2007). Overall and generally speaking, 
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too little mechanical stimulation encourages apoptosis whereas too much generates damage to 

bone also triggering cell death. 

Osteocytes and Microdamage  
	
  

All structural materials that experience repetitive loading are susceptible to fatigue 

microdamage. Microcracks are recognized to cause damage in bone due to normal as well as 

high skeletal loading (Martin, 2007). Frost (1950) was the first to propose that remodeling may 

occur in response to microdamage. As such, osteocytes may sense this fatigue damage and 

release signals to activate bone remodeling in response. Additional evidence from the literature 

also supports this view. For example, Burr and Martin (1993) further investigated the non-

random association between cracks and resorption spaces. Burr (2002) suggests that microcracks 

disrupted canalicular connections between osteocytes, which stimulates remodeling. He further 

indicates, however, that only thirty percent of microdamage is targeted by bone remodeling. The 

remaining seventy percent that is non-targeted, or stochastic, may be associated with metabolic 

factors, interstitial fluid flow, and/or regions of high strain (Martin 2002; Burr, 2002). 

Bone Modeling and Remodeling 
	
  
 All components of the skeleton work in concert to perform mechanical, metabolic and 

homeostatic functions (Robling & Stout, 2008; Currey, 2002). Bone undergoes modeling and 

remodeling throughout life to allow for these functions.  

Bone Development 
	
  

Bone development begins in utero through intramembranous or endochondral ossification 

(Marks & Odgren, 2002). Intramembranous ossification involves the direct transformation of 

mesenchymal cells into osteoblasts, and is restricted to flat cranial bones, certain facial bones, 
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mandible, and clavicles (Scheur & Black, 2000). The remaining bones form via endochondral 

ossification. During this process, embryonic mesenchyme transforms into cartilage, forming a 

cartilaginous model through chondrocyte proliferation and hypotrophy, reflecting the final form 

of the bone (Carter & Beaupré, 2001). The hyperotrophic chondrocytes undergo apoptosis and 

are replaced by osteoblastic cells, which direct mineralization of the surrounding bone matrix. 

The persistence of mineralized cartilage acts as a scaffold for the deposition of subchondral bone 

and vasculature (Marks & Odgren, 2002). Primary ossification centers form through this process, 

and both intramembraneous and endochondral ossification form primary bone tissue (Marks & 

Odgren, 2002). After the formation of the primary ossification centers, bone formation continues 

through longitudinal and appositional growth. Secondary ossification centers form when 

chondrocytes undergo hypertrophy, while attracting vascularization and osteoblasts. 

Appositional growth allows for size and shape changes in bones, and occurs concurrently with 

longitudinal growth (Carter & Beaupré, 2001). Once longitudinal bone growth ceases, 

appositional growth can continue throughout life, allowing for alterations of bone morphology 

and cross-sectional geometry.  

Modeling 
	
  
 Bone modeling occurs during growth and development, and for the most part, is 

restricted to the growing skeleton. Renewed modeling can occur in some disease states, during 

fracture healing, and in response to pressures of an altered mechanical loading environment 

(Robling & Stout, 2008). In healthy individuals, modeling results in a gain of bone volume and 

mass (Parfitt, 1983a; 2003). Modeling occurs via modeling drift (Figure 3.2), which moves bone 

through tissue space (Robling & Stout, 2008). This process involves the addition and removal of 

bone to existing surfaces, thus adjusting bone architecture. Bone modeling determines the 
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strength, size, and architecture of bones (Frost, 1969; 1997; Crowder, 2005), and allows for 

mechanical loads to be sustained or adjusted. Modeling differs from remodeling in various 

respects. For example, formation and resorption occur on different bone surfaces and there is no 

coupling between them (Parfitt, 1983a). Renewed modeling in the adult skeleton can occur, 

though bone remodeling dominates adult bone turnover.  

Remodeling 
	
  
 Remodeling refers to a tissue turnover process that occurs in adults without changing the 

macroscopic bone architecture (Frost, 1983). Most of the physiology of bone remodeling has 

been defined using undecalcified bone biopsy specimens (Frost, 1969). The remodeling process 

is continuous throughout life, and involves a complex arrangement of cells called BMUs. BMUs 

remodel bone via the removal and replacement of ‘packets’ of bone called bone structural units 

(BSU) (Robling & Stout, 2008; Frost, 1969). Remodeling follows an activation, resorption, and 

formation (ARF) sequence. This series can be further expanded to six phases, however, that 

include activation, resorption, reversal, formation, mineralization, and quiescence (Martin et al., 

2015).  Briefly, Activation involves cell differentiation, and osteoclast formation. Bone 

resorption occurs at specified locations by osteoclasts, and bone formation occurs via 

osteoblastic activity (Crowder, 2005). This process removes and replaces older and/or damaged 

bone, in turn allowing bone to maintain its mechanical competence. BMUs move through tissue 

space by tunneling through bone material (Figure 3.3) with a leading region lined with 

osteoclasts (Robling & Stout, 2008). The diameter of the excavation tunnel is determined by 

osteoclast activity, and corresponds with the size of newly formed osteons. As BMUs transition 

between resorption and formation, a cement or reversal line is formed. The mineral composition 

of the reversal line differs from the surrounding bone matrix (Martin et al., 2015). 
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Figure 3.2: Modeling drift in human ribs. A) Changes in rib morphology due to development. 
None of the cortical bone tissue from the younger rib (a) remains present in the adult rib (c). B) 
Magnified view of the rib cortex during growth and cortical drift. The scalloped edge represents 
the resorptive surface and the parallel layers represent appositional growth layers. C) Changes in 
cortical bone tissue over one year. The majority of the cortical cross section is composed of new 
bone tissue. From Robling and Stout, 2008: Figure 5.1, p.150.  
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Osteoblasts attach to the reversal lines, and line the resorption tunnel (Goldman, 2001). Osteoid 

is deposited in a concentric pattern from the outer edge of the tunnel inwards. A Haversian canal 

is left in the center of the newly formed osteon. 

 Bone remodeling achieves three goals: (1) it allows the body to alter the balance of 

essential nutrients by increasing and/or decreasing their concentration (Burr, 2002), (2) protects 

bone from natural biomechanical forces that cause microscopic damage, and (3) allows 

microdamage to be repaired, preventing the development of macrodamage. The remodeling 

process continuously adjusts homeostasis within the bone matrix, and must be ideally balanced 

to retain bone integrity. 

 

 

 

Figure 3.3: Coupled osteoclast and osteoblast activity depicted as a BMU during bone 
remodeling. A) osteoclastic activity near the leading edge of the cutting cone, B) initiation of 
osteoblastic activity, C) active osteoblast activity, D) a fully formed intact osteon depicting a 
Haversian Canal in the center. Used with permission from Pratt (2013), p.4. 
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Remodeling Theory 
	
  

A diversity of viewpoints regarding bone adaptation and the impelling force behind bone 

remodeling exist. There remains some separation between various disciplines, as researchers 

from fields ranging from bioengineering and materials science to anthropology have varying 

viewpoints regarding the functional adaptation of bone. It is theorized, however, that remodeling 

may maintain the biomechanical integrity of bone (Martin, 2000; Burr, 2002). The following 

review will document various theoretical models pertaining to the mechanical, genetic, and 

chemical factors of bone remodeling.  

Wolff’s Law of Bone Transformation 
	
  
 Prior to 1892, few individuals considered the functions of bones in mechanical terms 

(Frost, 1998), and bone architecture was often attributed to divine design or magic (Frost, 1998). 

Historical researchers such as Galileo, however, considered bone structure in the context of its 

mechanical environment (Martin et al., 2015). These viewpoints were popularized when Julius 

Wolff introduced an influential theory in skeletal physiology, termed Wolff’s Law. Wolff’s Law 

generally states that the form and function of bone is followed by changes in internal architecture 

(Frost, 1998). Wolff’s (1892) theory marked a step forward in understanding bone physiology. 

His theory is grounded in mathematical principles and refers to the mathematical relationship 

between trabecular architecture and stress trajectories (Forwood & Turner, 1995). Wolff did not 

formulate his proposed mathematical theory, however. As such, the basic tenets of Wolff’s Law, 

and his misconceptions regarding skeletal biology have been met with thorough critique 

(Forwood & Turner, 1995; Dibbets, 1992; Pearson et al., 2004; Ruff et al., 2006). Several highly 

developed and biologically relevant theories have since been proposed. 
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Frost’s Mechanostat Theory 
	
  
 Frost (1983) proposed a theory to explain the mechanical mechanism that controls 

modeling, remodeling, and bone mass during growth. Frost’s mechanostat theory is based on the 

immensity of strain that results from mechanical loading, and is responsible for controlling bone 

mass (Frost, 1987). Frost (1983) maintains that bone adapts to strain via mechanical usage 

windows that include trivial, physiological, overload, and pathological (Forwood & Turner, 

1995). Strain thresholds were introduced to explain the activation and inhibition of modeling and 

remodeling. Frost (1987) used a house thermometer as an analogy, stating that mechanisms 

controlling bone mass would turn off in the absence of strain and on in response to it. He called 

these strain thresholds the minimum effective strain set-points (MESm), and argued that they can 

be altered by intrinsic factors. Hormones, pathological agents, and other biological mechanisms 

may disrupt the mechanical feedback system (Frost, 1983; 1987).  

During bone modeling, strains above the threshold of the minimum effective strain set-

points cause modeling to turn on (Frost, 1997). This process increases the amount of bone 

formation. When strains are below the MESm threshold, modeling remains “turned off”. Strains 

above the threshold of the minimum effective strain for remodeling (MESr) retains the 

remodeling process, and conserves bone (Frost, 1997; 2004; Crowder, 2005). If strains fall below 

the threshold, remodeling is inactive, and bone may be permanently removed from the endosteal 

envelope (Frost, 1997; 1998; 2004). This removal process can result in osteopenia, and in severe 

cases, osteoporosis (Carlson et al., 1976; Frost, 1997). Frost also described the effects of 

repeated bone strain in relation to fatigue microdramage. He proposed that strains could initiate 

microcracks, which in turn disrupt osteocyte canalicular networks that may stimulate remodeling 

(Frost, 1997).  
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The mechanostat is the primary hypothesis in the Utah paradigm, since it explains how 

load-bearing bones achieve mechanical competence (Frost, 1983; Crowder, 2005). 

The Utah Paradigm 
	
  
 The Utah Paradigm of skeletal physiology evolved from a series of Hard Tissue 

Workshops sponsored by the University of Utah (Frost, 1998). The workshops were held to 

address the lack of multidisciplinary approaches to skeletal research (Crowder, 2005). The Utah 

Paradigm attempts to bridge the subfields of skeletal biology, medicine, and surgery (Frost, 

1998). This theory introduced a shift from a 1960 paradigm of skeletal physiology, suggesting 

that effector cells (including fibroblasts, chondroblasts, osteoblasts, osteoclasts), which 

determine bone health, are controlled by non-mechanical agents (Stout & Crowder, 2012; Frost, 

2000b).  

The Utah Paradigm examines load bearing skeletal elements at the organ, tissue, and 

cellular level (Frost, 1998; 2004). The focus is the mechanical competence of bone (Frost, 1997; 

1998). The mechanostat is the primary hypothesis in the Utah paradigm, since it explains how 

load-bearing bones achieve mechanical competence (Frost, 1983; Crowder, 2005). The Utah 

paradigm suggests that the driving force of load bearing skeletal architecture and strength are 

mechanical factors, and that non-mechanical factors such as hormones, minerals, sex, and age, 

can hinder or assist the process but do not replace it (Frost, 1998; 2004; Stout & Crowder, 2012).  

The Utah Paradigm, however, does not fully explain the forces that control the cause-

and-effect relationship of muscle force and bone strength. Frost (2003) introduced an updated 

version of the original mechanostat hypothesis indicating that genetic factors must play a role in 

the biological determinants of bone mass. It is not clear, however, how much genetic 
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predisposition accounts for the association between muscle and bone mass (Stout & Crowder, 

2012).  

Osteocyte Inhibitor Theory 
	
  
 Burr (2002) describes that bone remodeling is responsible for three important processes: 

(1) the repair of microdamage in bone to maintain tissue integrity, (2) adaption to the skeleton’s 

mechanical environment, and (3) provides a mechanism for the body to maintain and balance 

essential minerals (Stout & Crowder, 2012; Burr, 2002).  Experimental studies have revealed that 

new remodeling locations are frequently associated with microcracks, supporting a cause-and-

effect relationship (Burr, 2002; Burr & Martin, 1993; Burr et al., 1985; Mori & Burr, 1993). 

Frost (1960) originally suggested that bone microdamage disrupts the canalicular connections 

between osteocytes, in turn stimulating remodeling.  

 Frost’s (1983) mechanostat theory suggests that bone remodeling is activated by disuse, 

thus impeding modeling. Martin (2000a, 2000b), however, contends that the mechanostat does 

not consider the removal of microdamage resulting from high strains. It is essential to consider 

strain levels as they provide a mechanism to nourish osteocytes through interstitial fluid flow 

(Stout & Crowder, 2012; Martin 2003a). If strain levels are disturbed, a lack of nutrient supply to 

osteocytes may result in disrupted osteocyte networks. In turn, resorptive activity is stimulated. 

Burr (2002) offers a differing view, however, suggesting that only thirty percent of 

microdamage is targeted by bone remodeling. The remaining seventy percent that is non-

targeted, or stochastic, may be associated with metabolic factors, interstitial fluid flow, and/or 

regions of high strain (Martin 2002; Burr, 2002). As the relationship between targeted and 

stochastic bone remodeling is not fully understood, this theory has little supporting evidence and 

remains controversial within the scientific community.  
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The Principle of Cellular Accommodation Theory 
	
  
 Turner (1999) challenged Frost’s (1983) mechanostat by introducing a mathematical 

theory of bone biology, the principle of cellular accommodation. Turner (1999) states that the 

mechanostat theory fails to explain why non-weight-bearing bones are not resorbed due to disuse 

(Stout & Crowder, 2012). Turner (1999) argues that Frost’s (1983) mechanostat does not 

conform to experimental observations, and suggests his theory will address inconsistencies. 

 The principle of cellular accommodation theory assumes that bone cells react to their 

biological environment, and learn to accommodate the new environment (Turner, 1999; Stout & 

Crowder, 2012). Turner (1999) predicts that bone mass will stabilize once cells fully adjust to the 

new environment. 

Altered hormone levels, or varying mechanical loads will cause a change in bone 

remodeling, but that reaction will change when bone cells adapt to the new environment (Turner, 

1999). Turner argues that Frost’s mechanostat places biomechanics at the center of bone biology, 

without acknowledging that bone is insensitive to mechanical loading when growth and/or 

parathyroid hormones are absent (Turner, 2000; Crowder, 2005). This suggests that bone mass is 

dependent on mechanical loading and hormonal events, and these factors play a leading role in 

bone formation (Turner, 1999; Stout & Crowder, 2012). Turner’s approach offers a fresh 

perspective on bone biological principles, and represents a step towards a unified theory of bone 

remodeling. 

Summary 
	
  
 Maintaining bone homeostasis involves complex interactions at the molecular, cellular 

and tissue level. Osteocytes play a pivotal role in mechanotransduction and transmission of 

information to the effector cells (osteoclasts and osteoblasts). It is essential to recognize these 
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interactions as a cohesive operating system that allow for the maintenance of the gross 

morphology, microarchitecture and mechanical properties of bone. The modeling of bone during 

growth and ongoing bone remodeling over the lifespan will produce indicators of skeletal health 

and provide information regarding skeletal age.  
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CHAPTER FOUR: THREE-DIMENSIONAL IMAGING OF BONE 
	
  

Bone was among one of the first biological tissues to be studied microscopically. Until 

recently, however, the evaluation of bone microarchitecture at the micron- scale and analysis of 

cortical bone remodeling had been focused within the two-dimensional (2D) realm. The ideas 

and experimental techniques that laid the foundation for the field of bone histomorphometry, and 

continue to form its backbone, can be attributed to HM Frost, orthopedic surgeon, bone biologist, 

and self proclaimed ‘Feisty, Eccentric, Old Dinosaur’. He made many breakthroughs that 

changed the field of bone biology, including: (1) discovering the BMU in bone remodeling,  

(2) introducing the mechanostat hypothesis of bone adaptation, (3) the role of osteocytes in the 

remodeling process, (4) devising theories of bone adaptation in response to mechanical loading, 

(5) introducing skeletal intermediary organization, and (6) demonstrating that non-decalcified 2D 

histologic bone sections can be analyzed to quantify the process of remodeling (Frost, 1969; 

1983; 1987a; 1987b).  

Though researchers still greatly benefit from 2D methodologies that often yield more 

specific or additional histological information, such as finer microstructural details or 

cellular/functional information from sophisticated staining techniques, 3D imaging modalities 

provide a much more comprehensive understanding of cortical microstructure. As such, 

visualizing and analyzing bone using high-resolution 3D imaging modalities will improve 

current understandings of bone biology and have numerous applications in both anthropology 

and biomedicine.   

The following discussion will review topics related to 3D imaging that include: (1) a 

review of the history of 3D imaging and conventional histological 3D methods, (2) 3D x-ray 

microtomography including both desktop and synchrotron-based systems, and associated 
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strengths and weaknesses of these approaches, and (4) applications of 3D imaging to 

anthropological research. 

Brief History of 3D Imaging 
	
  

The following review will detail the methodological approaches used historically to 

evaluate cortical bone tissue in 3D. In the mid-late 1600’s (1677), Anthony Van Leeuwenhoeck 

published what is thought to be the first description of cortical bone histology. He described the 

arrangement of cortical bone tissue as a series of ‘pipes’ and penned a 3D render of his 

observations (Figure 5.1). In the late 1600’s, Clopton Havers described types of pores that run 

transversely and longitudinally through cortical bone tissue to its surface. As such, he is the 

namesake for the longitudinal ‘Haversian’ canals. These early descriptions were based on 

observations of blocks of bone using low magnification. Todd and Bowmann (1845) first 

described Haversian systems, while Tomes and De Morgan later described their formation within 

restrictive resorption spaces (1853).  

Early 3D investigations of bone microstructure were based on time consuming and 

tedious protocols which employed two approaches: (1) staining and/or casting of cortical canals, 

and (2) serial section reconstruction. Casting and/or staining bone specimens (Schnapper et al., 

2002) allowed researchers to determine the positioning of vascular canals, spatial orientation of 

cortical bone, and osteon orientation (Hert et al., 1994; Petrtyl et al., 1996). Hert and colleagues 

(1994) for example, filled the vascular canals of undecalcified cortical bone with india-ink to 

assess the spatial microarchitecture. Other projects employing casting/staining techniques 

examined canal networks in various animal species, and evaluation of resorptive bay distribution 

(Georgia et al., 1982; Vasciaveo & Bartoli, 1961). Though allowing for visualization of canals, 
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these techniques historically did not provide enough quantitative data to visualize the entire 3D 

structure of bone samples.  

As demonstrated by Cohen and Harris (1958), serial sectioning and visualization using 

light microscopy allowed for the examination of vascular canals in cortical bone. Sterio (1984) 

and Gunderson (1986) established that the number of cells per volume could be measured 

through serial sectioning using what is called the ‘disector method’. Additionally, Tappen (1977) 

visualized resorptive bays evident during the remodeling process in canine bone. Reconstructed 

3D sections also provided researchers with the necessary information to create 3D models out of 

various materials such as wire and paper (Cohen & Harris, 1958; Amprino, 1948). More 

recently, advancing computer technology has allowed for much more efficient 3D rendering and 

automation of serial sections. Stout and colleagues (1999), for example, used serial section 

reconstruction to analyze the 3D nature of osteons in canine bone. The authors discovered that 

osteons appeared to have complicated and interconnecting branching patterns, thus refuting 

earlier evidence suggesting that osteons display spiraling organization. A notable finding by 

Stout and colleagues (1999) revealed that previously described ‘dumb-bell shaped’ osteons are in 

fact bi-products of the 2D plane of sectioning. Though providing some 3D information, serial 

sectioning and subsequent reconstruction require destruction of study specimens, produce 

generally qualitative results, and are tedious in nature. 

Quantitative Computed Tomography (QCT) 
	
  

GN Hounsfield developed the first commercial quantitative computed tomography (QCT) 

system in 1973. For this innovative achievement, Hounsfield and Cormack were awarded the 

1979 Nobel Prize in Physiology or Medicine. Prior to the development of QCT, a screening and 

diagnostic tool referred to as digital tomosynthesis allowed for the clinical identification of 
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pathological abnormalities in soft tissue structures (i.e. breast tumors). This early imaging 

modality was limited in its access to 3D information and out of plane structures were often 

illuminated subsequently blurring the target object.  

Hounsfield’s traditional CT system relied on differential x-ray absorption across 

materials or tissues. A series of projection x-ray images could be taken of a rotated object from 0 

to 180 degrees. From these projections, the 3D structure of the object can be reconstructed. In 

reconstructed images, the gray levels will be inverted resulting in the denser materials being 

darker and areas of high absorption being brighter.  

 Boushey and colleagues (1983) published an early study employing QCT in a clinical 

context to evaluate osteoporosis. The authors employed QCT in the examination of lumbar 

vertebral mineral content. This technique afforded high precision compared to alternative 

imaging modalities available at the time of publication including radiogrammetry and photon 

absorptiometry.  

 

                  

Figure 5.1: Van Leeuwenhoeck’s diagrams depicting cortical bone microstructure, which he 
described as pipes (Leeuwenhoeck, 1677). 
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The aforementioned studies are few and generally yield qualitative results from small 

sample sizes. Findings from early conventional 3D imaging techniques demonstrate the need for 

further 3D analysis of cortical bone microarchitecture. The above approaches have been 

superseded by the use of micro-computed Tomography (micro-CT or µCT). 

Micro-Computed Tomography 
	
  

Micro-CT, an x-ray imaging method, has been regularly used since 1989 as an approach 

for analyzing 3D microstructure of cancellous bone. The original application of micro-CT to 

bone microstructure was to assess and quantify pathological changes and mechanical properties 

of bone associated with osteoporosis in vitro (Muller & Ruegsegger, 1995; Borah et al., 2001). 

The ability to quantify 3D bone architecture efficiently, and with software developed for 

cancellous bone analysis, is a very important advantage associated with the micro-CT approach. 

Micro-CT also offers the benefit of preservation of the bone specimen, as opposed to former 

destructive techniques such as serial sectioning. There are two primary micro-CT systems in 

existence that can be applied to the examination of bone tissue: (1) laboratory or desktop micro-

CT systems, and (2) synchrotron radiation micro-CT (SR micro-CT).  

Quantitative Assessment of Bone Microarchitecture 
	
  

Traditional histomorphometric methods based on 2D histologic sections can be 

inadequate for defining cortical and cancellous bone microarchitecture. Employing a micro-CT 

approach allows for bone microarchitectural measurements to be made in 3D non-destructively. 

As such, there are various parameters and indices that can be applied to cortical and cancellous 

bone. Quantification includes measurements and statistical approaches such as counts, volumes, 

areas, distance measurements, distribution graphs, and porosity measurements.  
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Definitions  
	
  

In 1987, the American Society of Bone and Mineral Research (ASBMR) 

histomorphometry nomenclature committee released a document designed to standardize 

definitions for quantitative bone histological research (Parfitt et al., 1987). This report aimed to 

mitigate the esoteric variety of terms in which researchers in the field of bone histomorphometry 

communicate with one another. What resulted was a unified system of terminology that was 

suitable for adoption by the Journal of Bone and Mineral Research. As general rules, the terms 

used to describe variables were self-explanatory and descriptive, straightforward abbreviations 

were employed that did not include sub-or superscripts, each symbol component used had only 

one meaning, and the system be flexible enough to be applied to various bone types and bone 

surfaces. Thus, the symbols and acronyms reported in the following review are in accordance 

with the nomenclature system outlined by Parfitt and colleagues (1987) in the ASBMR 

guidelines. 

Quantitative Assessment of Cancellous bone 
	
  

Bone’s trabecular network has been of great clinical interest (Odgaard & Gunderson, 

1993) in terms of evaluating changes in its morphology and connectivity due to disease states 

(i.e. osteoporosis). As such, a wealth of parameters and indices exist in order to track and 

measure these alterations.  

Borah and colleagues (2001) described a number of parameters to quantify the various 

aspects of cancellous bone microarchitecture. Measurements include, but are not limited to: (1) 

Bone Volume/Tissue Volume (BV/TV), (2) Bone Surface/Tissue Volume (BS/TV), (3) 

Trabecular Thickness (TbTh), (4) Connectivity Density (Conn.D), (5) Marrow Star Volume, (6) 

Percent Plate, and (7) Direct Trabecular Thickness (Borah et al., 2001). Quantifying these 
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measures can be completed three-dimensionally by counting voxels (Müller & Rüegsegger, 

1995).  

Additionally, techniques exist for quantifying the orientation of trabeculae via assessing 

its degree of anisotropy. Anisotropy refers to a material whose properties and technical 

properties are different when measured in various directions. Anisotropic principles can be 

applied to trabeculae by evaluating their directionality. If trabeculae are biased in one 

preferential direction, they are thought to be anisotropic. Particular parameters have been 

developed to quantify the degree of anisotropy including mean intercept length, volume 

orientation, star volume distribution and star length distribution (Odgaard, 1997). The mean 

intercept length (MIL), generally involving a count of the intersections between a grid and the 

bone/marrow boundary, is among the most commonly applied approach. Measures of trabecular 

connectivity are also important parameters to consider when evaluating mechanical quality of 

cancellous bone (Kabel et al., 1999). Connectivity generally reflects the number of holes or gaps 

in the latticework-type structure (Odgaard & Gunderson, 1993). To determine an unbiased 

estimate of connectivity density, a topological property referred to as the Euler characteristic of 

3D data, should be applied (Kabel et al., 1999; Hildebrand & Rüegsegger, 1997b).  

Connectivity density is a common parameter that divides connectivity by the total volume 

of the region of interest (ROI). Other measures include volume fraction and surface density. 

Additionally, an independent morphometric parameter for assessing the Structural Model Index 

(SMI) of cancellous bone was developed by Hildebrand and Rüegsegger (1997b). The SMI is 

used to quantitatively differentiate 3D forms of trabeculae such as ‘rod-like’ and ‘plate-like’ 

types. As the SMI does not provide information on trabecular connectivity, it should be used in 

concert with the aforementioned connectivity parameters.  
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Parfitt and colleagues (1983b) introduced the plate model that enhanced the perception of 

cancellous bone structure (Odgaard & Gunderson, 1993). This model assumes that trabeculae are 

unbounded plates that are parallel in orientation. Assuming this particular structure, various 

measurements can be quantified such as trabecular plate density, and trabecular plate separation 

and thickness. Assumptions of this model, however, include that the architecture is indeed plate-

like. Certain researchers (Kleerekoper et al., 1985) have failed to check the model assumptions, 

and thus results were interpreted incorrectly (Odgaard & Gunderson, 1993). 

Quantitative Assessment of Cortical Bone Morphology 
	
  

Cortical microarchitecture develops and remodels in three-dimensions. Thus, 3D analysis 

will provide a more comprehensive understanding of cortical bone dynamics. Quantification of 

cortical bone morphology can be accomplished on two scales: (1) gross measurements of bone 

morphology and bone geometry, and (2) the cortical canal network. Gross measurements for 

conventional 2D histomorphometric analysis include: Total Subperiosteal Area (Tt.Ar), the area 

under the subperiosteum including endosteal area, (2) Endosteal Area (En.Ar), the area of the 

marrow cavity, (3) Cortical Area (Ct.Ar), the amount of cortical bone in a rib cross-section, (4) 

Cortical Thickness (Ct.Th), mean thickness of the cortex (Parfitt et al., 1987).  

Cortical Bone Microstructure 
	
  

Since the introduction of 3D imaging of bone microstructure in 1989 (Feldkamp et al., 

1989), numerous studies have employed micro-CT to image the complicated cortical canal 

network in human bone (Basillais et al., 2007; Borah et al., 2010; Cooper et al., 2006). Cooper 

and colleagues (2003), however, were the first to report on cortical bone porosity and the cortical 

canal network using micro-CT. 
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Basillais and colleagues (2007) suggested a voxel size of 10 microns or less is necessary 

for quantifying the 3D structure of cortical canal networks due to their complicated nature. Thus, 

applications of geometric assessment parameters are preferred in lieu of topological approaches 

(Cooper et al., 2003). Measures such as tissue volume, canal volume, and canal surface can be 

measured in 3D. To measure canal connectivity (Ca.ConnD) and canal length (Ca.Le), Cooper 

and colleagues (2003) developed imaging analysis software to analyze results of a 

skeletonization technique. This approach is generally accomplished by applying a 3D algorithm 

that strips away layers of voxels to revel a skeleton of an image. Canal connectivity and canal 

length can be subsequently measured by assessing the number of canal intersections and the 

distance between the interconnecting nodes. The SMI is also applicable to cortical canals since 

their cylindrical shape is in general accordance with the ‘rod-like’ trabecular type discussed by 

Hildebrand and Rüegsegger (1997b). In addition to the examination of cortical canal networks, 

Cooper and colleagues (2006) used micro-CT to assess age, sex, and morphological differences 

of BMU-related resorption spaces in human femora. 

Micro-CT: Desktop 
	
  

There are two primary micro-CT systems in existence that can be applied to the 

examination of bone tissue: (1) laboratory or desktop, and (2) SR micro-CT. 

Laboratory or desktop micro-CT systems have been used as a tool to analyze bone in 3D 

since 1989 (Feldkamp, 1989). These self-contained commercial systems use polychromatic 

microfocus x-ray tubes to image specimens at high resolutions. The potential of micro-CT to 

fields such as bone biology and anthropology was quickly recognized. The desktop systems have 

been used broadly and studies span from the evaluation of cancellous bone morphology in 

humans and non-human primates, to the analysis of teeth and examination of fossil remains 
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(Cooper et al., 2012). The non-destructive nature is a crucial factor in its popular use, as well as 

the ability to quantitatively analyze the resulting 3D images following reconstruction. The 

resolution of these systems is limited by the spot size and energy of the x-ray tube, which are 

mutually exclusive. 

Micro-CT: Synchrotron radiation micro-CT 
	
  

In the 1960’s, first generation SR sources were introduced which functioned by retrieving 

synchrotron radiation parasitically from a ring used in particle physics research. In the late 

1960’s-1980’s, 1.5 generation sources were in existence which acquired SR from an electron 

storage ring. Second generation sources retrieved SR from an electron storage ring specifically 

built as light sources for the production of SR. The addition of wiggler insertion devices was 

later added to the second-generation sources. Third generation sources, including the Canadian 

Light Source, were introduced in the mid-1990’s. These are high throughput facilities that use 

smaller electron beams and undulator magnets, and have dedicated electron storage beam 

sources designed to maximize brightness. The most recent are fourth generation SR sources 

(2005-present), which use high-energy linear accelerators and offer a great increase in brightness 

(Wurtz, 2014; CLS Summer School Lecture: Synchrotron 101).  

In SR micro-CT facilities, x-rays are produced by the passage of an electron beam that 

travels close to the speed of light through electromagnets. The generated x-ray beam travels 

down a beamline where it can be optionally filtered by a monochromator. As such, radiation of a 

specific wavelength or energy can be selected for. The flux, or number of x-ray photons passing 

through an area over a given time, is much greater in magnitude than desktop micro-CT systems. 

As a result, high-resolution submicron level imaging can be achieved (Schneider et al., 2007). 

The brilliance of radiation can produce high-resolution images of spectacular quality, reduced 
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scan times, faster and more accurate quantitative measurements, and certain beamlines have the 

potential to handle much larger objects than desktop CT (Cooper et al., 2012; Carter et al., 

2013b).  

Synchrotron Techniques  
	
  

Imaging biological tissues at synchrotron facilities also allows for the application of 

additional contrast mechanisms. Specialized imaging techniques that can be combined with SR 

micro-CT include, but are not limited to, K-edge Subtraction Computed Tomography (KES), 

Diffraction Enhanced Imaging Computed Tomography (DEI), and Phase Contrast Imaging 

(PCI).  

To summarize the techniques generally, KES allows for the quantifiable 3D imaging of 

contrast materials (either natural or induced) such as iodine, barium, strontium or lead (Zhu et 

al., 2014). This technique has been applied to studies of human vasculature and lungs, and brain 

tumor imaging (Thompson et al., 1984; Kelly et al., 2007; Suhonen et al., 2008; Adam et al., 

2005). KES can also be used to track the accumulation of bone turnover in vivo using elemental 

tracers such as strontium (Cooper et al., 2012b). Though KES is a powerful approach, it is 

limited by the need for high quality images that are perfectly matched. The subject or sample 

must be imaged twice at two energies at separate times, thus movement during imaging is a 

serious concern. 

 DEI relies on the use of an analyzer crystal between the object and detector. As the x-ray 

beam passes through an object, it refracts across tissue or materials in the sample and alters the 

angle of various parts of the beam. This technique allows for the extraction of absorption and 

refraction information, provides great tissue contrast, and produces images that are almost 

completely free of scatter (Chapman et al., 1997).  
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PCI is an intuitive and commonly employed technique at synchrotron facilities that 

provides excellent image quality of soft tissue structures. Conventional medical imaging systems 

use polychromatic beams that rely almost completely on x-ray absorption, while ignoring 

information produced by scattering within tissues. Phase shifts, generated as photons pass 

through tissues and scatter, are capable of producing greatly enhanced contrast (Zhou & Brahme, 

2008). The resulting phase contrast decreases at a slower rate with increasing x-ray energy than 

absorption contrast, while being more tolerant to noise. There are several methodologies, 

including interferometry, DEI, and diffraction grating phase contrast, used for exploiting phase 

shift that have been incorporated into synchrotron-based techniques. The majority of these 

techniques use a monochromatic x-ray beam combined with further crystal optics to refine it.  

PCI has also been demonstrated to have potential for imaging porosity, delineating osteon 

boundaries in cortical bone (Cooper et al., 2011), and osteocyte lacunae (Carter et al., 2013a).  

SR micro-CT and Osteocyte Imaging 
	
  

SR micro-CT is revolutionizing the current understanding of bone structural biology by 

contributing novel 3D data. SR micro-CT has recently been extended to examining human bone 

at the cellular level, which will continue to contribute to the understanding of bone adaptation, 

disease, and aging (Schneider et al., 2007; Maggiano et al., 2016; Carter et al., 2013a; 2013b; 

2014a).  

 Micro-CT technology has allowed researchers to quantitatively analyze osteocyte 

lacunae. Since osteocytes are soft tissue structures which are deeply encased within the bone 

matrix, they cannot be visualized using available X-ray imaging techniques. As such, their 

associated cellular spaces (lacunae) are used as substitutes. Though former studies have 

examined osteocytes and their lacunae in both human and non-human animals, quantifying 
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osteocyte population density has been problematic due to limitations of traditional lower-

resolution imaging techniques (Qiu et al., 2003b; Carter et al., 2013a).  

Prior research examining cellular spaces has been achieved using 2D histologic 

modalities (Parfitt, 1983b; Qie et al., 2002; Vashishth et al., 2005; Mullender et al., 1996). For 

example, Parfitt (1983b) described the subjectivity in determining osteocyte lacunar geometry 

using 2D histologic sections. He presented measurement data from three sectioning planes 

(major longitudinal, transverse, and minor longitudinal), combining them to form a reconstructed 

3D image. The author states, however, that a single osteocyte lacuna will display a great variety 

of shapes and sizes depending on the sectioning plane employed. Also, Qiu and colleagues 

(2003) noted that penetration depth associated with traditional light microscopy could only reach 

a few microns below the bone specimen’s surface. As such, results concerning osteocyte density 

were extrapolated and assumed for the entire bone section. Disadvantages of these methods 

include their inherent 2D nature, which leads to extrapolation of results and the possibility of 

introducing a large margin of error, variation in sectioning planes, limited penetration depths and 

regions of interest, and destruction of samples.  

Confocal microscopy has been used to acquire high-resolution microscopic images while 

also allowing for ‘optical sectioning’ of cortical bone (Cooper et al., 2012). Using this technique, 

serial images are acquired that can be amended to 3D reconstruction and further analyses. Due to 

the high-resolution images acquired, minute bone features such as osteocyte lacunae, as well as 

very small canaliculi, can be assessed (Qiu et al., 2002). A disadvantage of this technique, 

however, is that the penetration depth achievable is only 1 mm. Thus, osteon morphology and 

canal network organization cannot be ideally assessed quantitatively.  
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Alternatively, employing SR micro-CT imaging has allowed for hundreds of thousands of 

osteocytes to be visualized and analyzed. This high-resolution imaging modality presents an 

opportunity to consider osteocytes individually, as well as examine them in terms of the larger 

population. Carter and colleagues (2013a) were the first to examine osteocyte lacunar density 

and morphology between cross-sectional regions in human femora.  

Lacunar morphology has not been widely studied, and little is known regarding their 

normal variation in human skeletal elements. Carter and colleagues (2013a; 2013b; 2014a) have 

recently evaluated osteocyte morphology, spatial distribution, regional variation, and density in 

human femora. In their 2013a study, the authors examined osteocyte lacunar density and 

morphology between cross-sectional regions in human femora. Results indicated that extensive 

regional variation (~30%) in osteocyte lacunar density exists, with the medial and lateral 

segments having the most lacunae and the anterior and posterior displaying the least (Carter et 

al., 2013a). In terms of lacunar shape, the anterior and posterior regions revealed more elongated 

lacunae than other segments. Additionally, the authors reported a higher total number of 

osteocyte lacunae compared to previous studies based on 2D imaging techniques (Carter et al., 

2013a). These differences may be attributed to the employment of SR micro-CT and the 

evaluation of a larger region of interest.  

Anthropological Potential of SR micro-CT 
	
  
 Non-destructive 3D imaging methods offer a wealth of potential for the anthropologist. 

The ability to image bone in 3D provides an additional tool to investigate age-related changes 

associated with bone remodeling. For example, Cooper (2005) has demonstrated that examining 

the cortical canal network in 3D offers useful information regarding adult age at death.  
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 The 3D examination of bone microarchitecture also holds promise for examining bone 

loss in past populations. Scholars have warned against the use of certain clinical technologies, 

particularly dual energy x-ray absorptiometry (DXA), for the examination of bone loss in 

archaeological remains. In comparison with many other histological techniques such as light 

microscopy, DXA performed poorly (Cooper et al., 2012a). As such, using 3D imaging 

techniques provide a more accurate and direct comparison between archaeological and modern 

samples.  

Overall, the application of 3D imaging technologies to biomedical and bone biology 

research is considerable and offers tremendous future potential to the field of anthropology.  

Summary 
	
  

Since cortical bone develops and remodels in three-dimensions, examining bone’s 

histomorphology in 3D provides a more comprehensive and accurate understanding of its true 

structure than is possible with 2D techniques. The preceding discussion provided a brief history 

of 3D imaging and conventional histological 3D methods, and compared and contrasted both 

desktop and synchrotron-based micro-CT systems. The associated strengths and weaknesses of 

these approaches were presented, and applications of 3D imaging to anthropological research 

was discussed.  

For the most part, the above imaging modalities offer a tremendous improvement over 

traditional 2D cross-sectional methods for the visualization of cancellous and cortical bone. As 

such, visualizing and analyzing bone using high-resolution 3D imaging modalities will continue 

to improve current understandings of bone biology.	
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CHAPTER FIVE: METHODS 
	
  

This study examines whether histological structure that distinguishes cortical and 

cancellous bone relate to different nuclear DNA yields among skeletal elements. To investigate 

this question, skeletal samples from adult human cadaveric remains were used. This chapter 

discusses the selection criteria of these skeletons and the methods used to image their bones in 

three-dimensions at high microscopic resolution. Methods for measuring and statistically 

analyzing these images are further discussed.  

The William M. Bass Donated Skeletal Collection 
	
  

Data for this dissertation were sourced from the William M. Bass Donated Skeletal 

Collection, housed in the Department of Anthropology at the University of Tennessee, 

Knoxville. The William M. Bass Donated Skeletal Collection was founded in 1981 and has since 

grown exponentially. As of this writing, the collection consists of human skeletal remains from 

approximately 1,600 modern individuals. The collection demographics include Americans of 

European (91%), African (7%) and Hispanic (2%) ancestry, which generally reflects the 

demographic composition of the East Tennessee region (Shirley et al., 2011; Vidoli, 2015). It is 

comprised of approximately 70% males and 30% females with ages at death ranging from fetal 

to 101 years.  

Over 2,000 individuals currently have pre-donation paperwork on file indicating their 

requests for their bodies to be donated to the Forensic Anthropology Center (FAC) for research 

purposes. The FAC donation paperwork requires information from prospective donors including 

sex, weight, date and place of birth, photographs, and medical and dental history, among other 

attributes. Information is self-reported by donors, however family members may also provide 

data to the best of their knowledge. A wealth of postmortem information is also gathered at the 
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time of donor intake. This process involves documenting height and weight, as well as the 

retrieval of blood, hair, and nail samples prior to placement at the Anthropology Research 

Facility (ARF) for natural decomposition. 

Study Sample  
	
  

The study sample comprised cortical and cancellous bone tissues from the three skeletons 

used in the Mundorff and Davoren (2014) study. The three individuals are male donors who: (1) 

died in the same calendar year, (2) decomposed on a designated plot of land and in the same 

position (prone on the ground surface) at the ARF at the University of Tennessee, Knoxville, (3) 

were between the ages of 40 and 69 years at the time of death, and (4) had no known bone-

affecting conditions at the time of death (Mundorff et al., 2012). Confounding taphonomic 

variables were limited by studying donated individuals who were exposed to the same gross 

environmental conditions, and decomposed in the same geographic location (Mundorff & 

Davoren, 2014).   

The William M. Bass Donated Skeletal Collection donation numbers were assigned 

research numbers of: #1, #2, and #3. Individual #1 was a 50-year-old male. Duration of 

placement at the ARF lasted twelve months and twenty-seven days.  Individual #2 was a 47-

year-old male, and placement lasted fifteen months and twenty-six days. Individual #3 was a 69-

year-old male. Placement lasted twenty-two months and twenty-two days. 

Placement ranges varied according to the month the individual died, and the availability 

of FAC staff for skeletal recovery (Mundorff et al., 2012). Recovery of the remains included 

removing the bones from the ground surface followed by screening the dirt and debris 

surrounding and beneath each skeleton. All skeletal elements were transported to the former 

Lake Avenue processing building on the University of Tennessee, Knoxville campus. Adhering 
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dirt and/or tissue from the surface of the bones was removed with room-temperature water and a 

toothbrush. The remains of each individual were separately placed on metal trays and then 

transferred to a drying rack. The dry skeletal remains were then transported to Dr. Amy 

Mundorff’s office in the Department of Anthropology to be photographed, marked for sampling, 

and shipped to the DNA laboratory for testing. Specific element and sample site selection criteria 

were established between Mundorff and FAC management.  

Methods 
	
  

The following section describes the methodological approaches employed to ascertain 

whether differences in bone microstructure can be used to explain differential nuclear DNA yield 

among bone tissue types. The Canadian Light Source (CLS) synchrotron facility in Saskatoon, 

Saskatchewan (SK), Canada, is also described here.  

Bone Sampling Methodology for 3D Imaging 
	
  

Prior to bone sampling, ethical approval was obtained from the University of Tennessee 

(UTK IRB-15-02071-XM) and the University of Saskatchewan (Bio # 15-47). Dr. Dawnie W. 

Steadman, Director of the FAC, also approved a destructive analysis request for all individuals.  

Forty-three bones were selected for SR micro-CT imaging from the fifty-five elements 

per skeleton sampled for DNA by Mundorff and Davoren (2014) (Table 6.1). Representatives 

from each skeletal element type were chosen and bones from the left side only were sampled for 

consistency. A total of 129 samples were prepared in the Molecular Anthropology laboratory at 

the University of Tennessee, Knoxville.  

The analysis was limited by a small specimen size since the camera field of view cannot 

exceed 2 mm. Rectilinear bone blocks with dimensions of approximately 2 x 2 x 10 mm were 
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removed from each intact skeletal element directly adjacent to the DNA sampling site procured 

by Mundorff and Davoren (2014). This sampling location was selected in order to directly 

compare the osteocyte lacunar parameters with the DNA yield results from the same general 

location on each bone. Prior to sampling, the 2 x 2 x 10 mm area on each bone was measured 

with sliding calipers, marked in pencil (Figure 6.1), and photographed.  

Each bone specimen was procured from the same region of each element for all three 

individuals to eliminate inter-individual variation in lacunar properties. Bones were secured in a 

gripping device for stability during sampling. All samples were removed using a Dremel 8200 

drill at 15 RPM with a 7/8-inch diamond wheel attachment. The skeletal elements were 

photographed again following sampling (Figure 6.2). Specimens were further refined using an 

Isomet precision diamond-wafer saw to achieve dimensions of approximately 1.8 x 1.8 x 10 mm. 

All samples were fixed in a 70% ethanol solution and then dried. The author transported the 

prepared skeletal specimens to the CLS for SR micro-CT imaging. 

The Canadian Light Source (CLS) 
	
  

The CLS synchrotron facility is Canada’s national centre for synchrotron research. One 

of only twenty-four synchrotron facilities globally, it is a cutting-edge research facility dedicated 

to advancing Canadian science, and enhancing the competitiveness of Canadian industry. Since 

2005, the CLS has hosted approximately 2,500 researchers from academic institutions, 

government, and industry from 10 provinces and territories, and produced over 1,500 scientific 

publications (www.lightsource.ca).	
  Organizations that contribute to CLS funded projects include 

the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council 

of Canada, the National Research Council of Canada, the Canadian Institutes of Health Research,	
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Table 6.1: Sample list of the forty-three skeletal elements and the specific sampling locations on 
the bone, apportioned by body region.  

Body 
Region(s) Skeletal Element  Sampling Location 

Skull Frontal 
Parietal 
Temporal 
Occipital 
Maxilla 
Mandible 

Posterior to DNA sampling site 
Posterior to DNA sampling site 
Superior to DNA sampling site 
Posterior to DNA sampling site 
Antero-lateral of DNA sampling site 
Inferior to DNA sampling site  

Thorax and 
Abdomen 

Cervical Vertebra 
 
Thoracic Vertebra 
 
Lumbar Vertebra 
 
First Rib 
Middle Rib 
Twelfth Rib 
Scapula 
Clavicle 
Ilium 
Ischium 
Pubis 
Sacrum 

Posterolateral aspect of vertebral body; lateral to DNA sampling 
site 
Posterolateral aspects of vertebral body; posterior to DNA 
sampling site 
Posterolateral aspect of vertebral body; posterior to DNA 
sampling site  
Medial surface; superior to DNA sampling site 
Inferior surface; inferior to DNA sampling site 
Medial surface; inferior aspect of DNA sampling site 
Anterolateral aspect of scapula; ~1.5 cm from glenoid fossa 
Superior surface; lateral to DNA sampling site 
Dorsal surface; directly inferior to iliac crest 
Dorsal surface; 1.5 cm right of ischial tuberosity 
Dorsal surface; ischiopubic ramus 
Ala; superior to DNA sampling site 

Lower Limb Femur 
Tibia 
Fibula 
Patella 

Anteromedial surface; inferior to DNA sampling site 
Anteromedial surface; inferior to DNA sampling site 
Medial surface; superior to DNA sampling site 
Medial facet on posterior surface; lateral to DNA sampling site 

Foot Metatarsal 1 
Metatarsal 2 
Metatarsal 3 
Metatarsal 4 
Cuneiform 1 
Cuneiform 2 
Cuneiform 3 
 
Navicular 
Cuboid 
Talus 
Calcaneus 
First Proximal Phalanx 
First Distal Phalanx 

Medial surface; proximal to DNA sampling site 
Medial surface; distal to DNA sampling site 
Lateral surface; distal to DNA sampling site 
Medial surface; distal to DNA sampling site 
Anteromedial surface  
Medial surface  
Lateral surface; ~0.2 cm from articular facet for metatarsal 2; 
lateral edge 
Distal surface; articular facet for cuneiform 2; lateral edge 
Ventral surface; distal to sampling site 
Anterolateral and distal surface of talar dome 
Superior surface; ~2 cm from posterior articular facet 
Anterior surface; distal to DNA sampling site 
Anterior surface; distal to sampling site 

Upper Limb Humerus 
 
Ulna 
Radius 

Anterior mid-shaft; ~5 cm inferior from deltoid tuberosity; 
superior to DNA sampling site  
Anteromedial surface; superior to DNA sampling site 
Superior aspect of DNA sampling site; distal third of diaphysis  
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Table 6.1: (cont). 
Body 

Region(s) 
Skeletal Element Sampling Location 

Hand Capitate 
 
Metacarpal 2 
Metacarpal 3 
Metacarpals 4 
First Proximal Hand 
Phalanx 
First Distal Hand 
Phalanx 

Anterior surface; ~1 cm proximally from articular surface for 
metacarpal 3 
Anterior surface; distal end; ~1 cm from head 
Lateral surface; proximal to DNA sampling site 
Anterior surface; distal end; ~1 cm from head 
Distal end; lateral surface; proximal to DNA sampling site 
 
Anterior surface; distal to base, lateral to DNA sampling site 

 
 

 

Figure 6.1: Left scapula from individual #3 displaying specimen site marked with pencil (black 
arrow), prior to removal. 
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Figure 6.2: Left scapula from individual #3 displaying specimen site (black arrow) following 
removal. 

 
the Government of Saskatchewan, Western Economic Diversification Canada and the University 

of Saskatchewan.  

Data collection for this study was performed at the BioMedical Imaging and Therapy 

(BMIT) beamlines at the CLS. The BMIT beamlines are designed for imaging biological tissues. 

Research time (beam time) for this research was awarded through a competitive peer-review 

process (Proposal #21-6666). The peer-review committee is composed of CLS scientists and 

external reviewers from synchrotron facilities worldwide. Beam time is allocated based on each 

proposal's ranking in scientific merit, in relation to all other proposals for a given beamline. The 

author received forty-six eight-hour research shifts during two cycles in 2015.  
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Justification for Use of SR micro-CT 
	
  

As bone exists and remodels in three-dimensions, alternatives to high-resolution 3D 

imaging such as 2D histological methods will not achieve the resolution, efficiency, or precision 

required to address the proposed research question. Employing transmitted light to assess 2D 

cross-sections results in having to extrapolate histological feature counts, creating a potentially 

large margin of error.  

Preliminary imaging of human femoral bone using the BMIT-ID beamline at the CLS 

previously revealed that high-resolution scans of approximately 0.9 µm can be achieved. The 

imaging protocol successfully demonstrated that osteocyte lacunae could be visualized and 

subsequently quantified. The Bruker (Kontich, Belgium) system at the CLS BMIT facility was 

specifically designed for imaging osteocyte lacunae.  

The author collaborated with a local research group at the University of Saskatchewan 

lead by Dr. David Cooper. This group’s success at BMIT is evidenced by multiple experimental 

projects and publications focused on 3D imaging of bone, resulting in peer-reviewed 

publications. Additionally, the availability of visualization and reconstruction software and 

sample preparation materials available at BMIT makes it an ideal facility for this type of 

imaging.  

Employing SR micro-CT using the BMIT beamline at the CLS is a proven technique that 

yields high-resolution required to visualize the designated microscopic features. This set-up 

produced excellent results that allowed lacunar parameters such as density and volume to be 

analyzed. The resolution also allowed for visualization of other microstructural features 

including osteonal borders and remnants of soft tissue in the medullary cavity.  
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Imaging and Image Analysis Methodologies 
	
  

Various specialized 3D imaging and image analysis techniques were used in order to 

increase the bone microstructural information gathered from all specimens. Skeletal elements 

were imaged using both clinical Computed Tomography (CT) and SR micro-CT to obtain data 

on the microstructural variables.  

Imaging Methods 

Clinical Computed Tomography  
	
  

Clinical CT scans of the originally sampled bones were acquired to assess potential 

differences in cortical and cancellous bone volume contributing to the DNA results. For each 

sampling site, a 3/8” circular hole had been drilled to remove 0.2 grams of bone powder 

(Mundorff et al., 2012). CT scans were used to calculate the sample site’s approximate volume in 

cortical and cancellous bone tissue.  

CT images were acquired with assistance from Ms. Shelley Acuff and Dr. Yong Bradley 

at the University of Tennessee Medical Center. All CT scans were acquired using a Siemens 

Biograph mCT 64 slice scanner. Scans involved helical acquisition using a 0.6 mm slice 

thickness, 500 mAs, 120 kV, and bone window with kernel B70s. Data were stored on compact 

discs and transferred to workstations with image processing software (OsiriX 5.6, Geneva, 

Switzerland). 

SR micro-CT 
	
  

A custom built stage and Bruker (Kontich, Belgium) micro-CT set-up previously created 

by BMIT staff members was used for this study (Figure 6.3). Each fixed bone specimen was 

mounted on a brass pin holder on the stage (Figure 6.4). To ensure that the sample did not shift 
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during scan rotation, which would increase the possibility of motion artifacts, dental wax and an 

adhesive were applied to the brass pin. The adhesive was dissolved following scanning. 

Images were obtained using monochromatic x-rays on the BMIT beamline. A Bruker 

(Kontich, Belgium) micro-CT system was used with a photon energy of 30 keV and an effective 

pixel size of 0.9 µm. An exposure time ranging from 360-1250 milliseconds and four-frame 

averaging was employed. As the storage ring current decreases from a peak of 250 mA over time 

following injection, the exposure time was tuned to maintain 20% saturation on the detector. A 

rotation step of 0.25 and 2x2 binning were used to obtain 720 projections spanning 180° of 

rotation. This protocol resulted in a scan time of approximately 75 minutes per sample. The 

projection images were reconstructed to create a 3D dataset of the 720 slices for each specimen.  

The beam team assisting the author with 3D imaging included Isaac V. Pratt, Danielle 

Kabatoff, Kim Harrison, and Dr. David Cooper from the Anatomy and Cell Biology Department 

at the University of Saskatchewan.  

Image Analysis 
	
  
 The following section describes the procedures used to visualize and quantify the data 

using commercial imaging packages. 

Clinical CT Data 
	
  

Clinical CT scans were evaluated using OsiriX 5.6. The DNA sampling site on each 

element was digitally measured using ImageJ (National Institutes of Health). A macro was 

created to detect and measure the areas of cortical and cancellous bone (mm) on each CT slice 

where the sampling site appeared. Measurements of cortical width and height (Figure 6.5) and 

cancellous width and height were taken separately for each cortical and cancellous bone region 
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for all bones. Average cortical and cancellous bone width and height measurements were then 

computed for each site. 

SR micro-CT: 3D Quantitative Morphometry  
	
  

The SR micro-CT projection images were reconstructed using NRecon (Bruker, Kontich, 

Belgium), a commercial GPU accelerated filtered back projection based reconstruction software 

package. Image stacks were cropped and analyzed using CT Analyser 1.15.4.0 (Bruker, Kontich, 

Belgium), following protocols described by Carter and colleagues (2013a). Cylindrical ROIs 

were identified within each bone sample with a diameter of 0.7 mm, a height of 0.7 mm, and a 

volume of 0.27 mm3 for both cortical and cancellous bone regions. This produced matching ROI 

volumes of interest from which all measurements were acquired. 

 

 

Figure 6.3: Custom built stage and Bruker (Kontich, Belgium) micro-CT set-up at BMIT. 
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Figure 6.4: Fixed bone specimen mounted on brass pin holder (white arrow). 
 

Visuals of single slices of cortical and cancellous bone ROIs are depicted in Figures 6.6-6.7, and 

3D renders of the same bone specimens are presented below (Figures 6.8-6.9). 

Osteocyte lacunae were separated from the high-density bone using global thresholding. 

Segmentation, a process of separating air-filled spaces, was applied to separate the lacunae from 

the surrounding higher-density bone. Despeckling (denoising) was conducted to remove noise 

(structures less than 10 µm3). Elements above 2000 µm3 were assumed to be canals and 

remaining structures were designated as lacunae. The above volume limits are based on previous 

confocal microscopy measurements, which determined human osteocyte volumes range from 28-

1713 µm3 (Carter et al., 2013a; McCreadie et al., 2004). Subsequently, 3D renders of bone 

microarchitecture were created using AMIRA (Visage Imaging, Berlin, Germany) imaging 

software. 
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Standard nomenclatures for canal and lacunar indices were applied for the analysis of 

three-dimensional lacunar parameters within the ROIs (Cooper et al., 2003; Schneider et al., 

2007; Carter et al., 2013a). The variables measured included: (1) total ROI volume (TV); (2) 

total canal volume within ROI (Ca.V); (3) average canal diameter (Ca.Dm); (4) total number of 

lacunae (N.Lc); and (5) average lacunar volume (Lc.V). To determine lacunar density per mm3 

(N.Lc/BV), bone volume (BV) was calculated as total volume minus canal volume (TV-Ca.V). 

As cancellous bone lacks Haversian systems, and thus central vascular channels, BV for 

cancellous bone ROIs was calculated as total volume minus the volume of the marrow spaces.  

To address the primary hypothesis, bones identified by Mundorff and Davoren (2014) to 

yield more DNA per mass of sample were directly correlated against the number of lacunae and 

osteocyte lacunar density data. The element types that produced higher quantities of DNA are 

hypothesized to have greater osteocyte lacunar densities.  

Analytical Methods 
	
  

This study aims to: (1) identify the approximate amount of cortical and cancellous bone 

tissue removed from the original nuclear DNA sampling sites; and (2) describe the relationship 

between osteocyte lacunar parameters and bone tissue type. Statistical analyses were 

accomplished using SPSS 23.0 statistical software (Chicago, IL, USA) with a significance of α ≤ 

0.05.  

It is important to note that the clinical CT and SR micro-CT data are cross-sectional and 

not longitudinal in nature, and thus can only infer cause and effect relationships between nuclear 

DNA yield and bone tissue type. The limitation of this approach is that it ignores variance in 

osteocyte lacunar parameters within and among individuals over time. As this study is focused 

on assessing histomorphometric variables from the Mundorff and Davoren (2014) study sample, 
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and not analyzing patterns in the parameters for each individual over time, the use of cross-

sectional data is justified.  

To assess within- and between-subject differences in bone tissue types for all clinical CT 

and SR micro-CT parameters, with the exception of the cortical canal measures, Repeated 

Measures Analysis of Variance (RM-ANOVA) statistical tests were selected. This approach 

considers dependency when two experimental units, parameters of cortical and cancellous bone 

tissue in this case, are being assessed within a single individual. The between-subjects effects 

also allows for the parameters to be evaluated among individuals. In addition to normality, RM-

ANOVA has an assumption regarding the type of variance-covariance matrix. When the 

variances and covariances are equal, the matrix has compound symmetry and is sufficient for a 

repeated measures F test to be distributed as an F distribution (Rasmussen, 1987). If the 

assumption of variance-covariance homogeneity is violated, alternate approaches can be 

considered that include using: (1) a degrees of freedom adjustment, (2) only two repeated 

measures for the main analysis, and (3) a non-parametric bootstrapping procedure as an 

alternative to the RM-ANOVA. 

The bootstrap uses a resampling approach to generate the sampling distribution of a 

statistic. Lunneborg and Tousignant (1985), who recommended the bootstrap approach as an 

alternative to the RM-ANOVA, cited two advantages of this method over parametric statistics: 

(1) the bootstrap is free from assumptions of normality and equality of variances, and (2) 

confidence intervals and significance levels are generated from the bootstrapped sampling 

distribution (Lunneborg & Tousignant, 1985). Calculation of confidence intervals using a non-

parametric bootstrapping method provides more biologically meaningful information since it will 

determine which linear distances are statistically different between samples. 
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Figure 6.5: DICOM image from OsiriX software of a left tibia from a single CT projection. The 
circular window indicates the DNA sampling site. The superimposed enlargement displays the 
cortical height and width measurements (mm). Scale =400 mm. (Credit: JM. Andronowski). 
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Figure 6.6: SR micro-CT single slice of a cortical bone circular ROI. (Credit: JM. 
Andronowski). Scale=100 µm. 

	
  

	
  

Figure 6.7: SR micro-CT 3D render of a cortical bone circular ROI. (Credit: JM. Andronowski). 
Scale=100 µm. 
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Figure 6.8: SR micro-CT single slice of a cancellous bone circular ROI. (Credit: JM. 
Andronowski). Scale=100 µm. 
 

 

Figure 6.9: SR micro-CT 3D render of a cancellous bone circular ROI. (Credit: JM. 
Andronowski). Scale=100 µm. 
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Figure 6.8: SR micro-CT 3D render of a 0.27 mm3 cortical bone ROI from a mandible showing 
vascular porosity and osteocyte lacunae in blue (Credit: DML. Cooper; JM. Andronowski). 
Scale=300 µm. The superimposed enlargement displays the 3D microstructure in further detail. 
Scale=50 µm. 
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Figure 6.9: SR micro-CT 3D render of a 0.27 mm3 cancellous bone ROI from a 2nd cuneiform 
showing cancellous bone microstructure (Credit: JM. Andronowski). Scale=300 µm. 
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Bootstrapping is a fairly robust way to address issues resulting from violations of 

statistical assumptions by resampling the data, thus allowing access to the true central tendency 

of the data. As such, it is considered a relatively powerful alternative to traditional non-

parametric statistical approaches such as Kruskal Wallis, Mann-Whitney U, and rank 

transformations. However, statistical software packages such as SAS and SPSS limit bootstrap 

analysis to confidence intervals, and they do not contain bootstrapping implementations to 

directly apply to RM-ANOVA tests. Thus, this approach would require turning to a compatible 

statistical software package, such as R statistical programming language (R Development Core), 

to program the methodology. Alternatively, the analysis could be split into within- and between- 

subject effects, and separate analyses performed on the subsets.  

To circumvent these measures due to time constraints, if a violation of the assumptions of 

normality or homogeneity of variances was revealed, RM-ANOVA tests were employed using 

rank transformed data. For future related work, however, a compatible statistical software 

package, such as R statistical programming language (R Development Core), will be considered 

and the bootstrapping approach applied.  

For cortical canal measures (Ca.Dm and Ca.V), One-Way ANOVA tests were performed. 

This approach was appropriate as the aim was to compare single variables among experimental 

groups, or in this case, individuals. The mean for the variable is tested to determine if it is equal 

among all groups. Assumptions of the one-way ANOVA include: (1) normality of the data, and 

(2) homogeneity of variance. As a bootstrapped resampling function for the One-Way ANOVA 

is available in SPSS, it was applied to increase the number of samples, and thus, robustness. The 

number of data points was increased from 1,000 to 5,000 to increase robusticity. If either of the 

assumptions were violated, canal parameters were assessed using a non-parametric approach. 
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Kruskal-Wallis tests determined if differences in canal measures were present between 

individuals, and Mann-Whitney U tests were applied to assess where significant differences 

existed among individuals.  

Spearman’s Rank-Order Correlations were computed to examine the relationships 

between: (1) cortical and cancellous bone measurements from the clinical CT scans, and 

Mundorff and Davoren’s (2014) nuclear DNA yield results per gram of sample (ng/g), and (2) 

lacunar abundance and density parameters and nuclear DNA yield results per gram of sample 

(ng/g). Spearman’s Rank-Order Correlations were chosen over the parametric equivalent, 

Pearson Product-Moment Correlations, since the parameters of interest were ranked, and 

assumptions of normality were violated.    

Further information regarding the analytical approaches applied to the clinical CT and 

lacunar parameters datasets are presented below. 

Clinical CT Data 
	
  
 Percentiles were computed for the relative amounts of removed cortical and cancellous 

bone from the DNA sampling site for each element. Percentile data was averaged from each 

element type across the three individuals. RM-ANOVA tests were performed to compare the 

collected cortical and cancellous bone height and width measurements within and between 

individuals. If a value was found to be significant at α ≤ 0.05, the Bonferroni adjustment post-

hoc test was used to identify factors contributing to significance. These computations were 

conducted on the entire sample rather than by skeletal element due to the limited sample size. 

Spearman’s Rank-Order Correlations were computed to examine the relationship 

between the amounts of cortical and cancellous bone tissue removed from the sampling sites and 

the nuclear DNA yield results per gram of sample (ng/g).  
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Lacunar Parameters 
	
  

This statistical approach was modeled after Carter and colleagues (2013a). In accordance 

with their methodology, individual outliers were kept in the study since previous analyses have 

demonstrated that variation is normal and restricted to one or two variables (Carter et al., 2013a; 

2014; 2014b). All statistical tests for the lacunar parameters were conducted on the entire sample 

rather than by skeletal element due to the limited sample size. 

The total number of lacunae (N.Lc), lacunar density (N.Lc/BV), and lacunar volume 

(Lc.V) for cortical and cancellous bone ROIs were calculated using Individual Object Analysis. 

Individual Object Analysis calculates the 3D parameters of each discreet object within the 

volume of interest after segmentation. In order to determine lacunae density per mm3 (N.Lc/BV), 

bone volume (BV) was calculated as TV-Ca.V. RM-ANOVA tests were performed to compare 

the N.Lc, N.Lc/V, and Lc.V variables from cortical and cancellous bone ROIs within each 

individual and among individuals. If a value was found to be significant at α ≤ 0.05, a post-hoc 

Bonferroni adjustment was applied to identify factors contributing to significance.  

Spearman’s Rank-Order Correlations were computed to examine the relationship 

between N.Lc and N.Lc/BV values in cortical and cancellous bone ROIs and the nuclear DNA 

yield results per gram of sample (ng/g).  

Canal Diameter and Volume 
	
  

The microstructure of cancellous bone is similar to that of cortical bone, except that the 

former excludes Haversian systems (see Figure 6.8 for a 3D render of isolated vascular canals 

from femoral cortical bone). As such, canal diameter (Ca.Dm) and canal volume (Ca.V) for only 

cortical bone ROIs were calculated using Individual Object Analysis. One-Way ANOVA tests 
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were employed using the original datasets for cortical bone ROIs. As the bootstrap option can be 

applied in SPSS, it was added to increase robusticity.  

If assumptions of the One-Way ANOVA were violated, a rank transformation was 

employed and canal parameters were assessed using a non-parametric approach. Kruskal-Wallis 

tests will determine if differences in canal measures are present between individuals, and Mann-

Whitney U tests will be applied to assess where significant differences exist among individuals.  

Summary 

 
 Using the described imaging and analytical protocols, followed by graphical and 

statistical analyses of resulting data sets, it was possible for the evaluation of CT and osteocyte 

lacunar parameters in the study sample of cortical and cancellous bone tissue to determine their 

relationship to nuclear DNA yield. 
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Figure 6.8: SR micro-CT 3D render of a 0.27 mm3 cortical bone ROI from a left femur showing 
vascular canals (Credit: JM. Andronowski). Scale=300 µm. 
 

 



	
  

	
   91 

CHAPTER SIX: RESULTS 

 
 The results chapter is divided into two main sections. Section I presents results from the 

statistical analyses of the measurement data from the clinical CT scans. Section II describes the 

results from all bone histomorphometric variables analyzed from the SR micro-CT scans.             

Data were preliminarily inspected graphically using scatterplots and residual plots. 

Patterns of residuals were examined for unusual leverage, and the influence of observations was 

inspected using Cook’s distance statistic. Descriptive statistics, including sample mean, range, 

standard error (SEM), and standard deviation were computed for all variables (Appendix C) for 

the clinical CT and SR micro-CT data sets. Normality of raw data was examined using 

Kolmogorov-Smirnov tests (Appendix C). Discussion of the results presented here is reserved 

for Chapter 8. 

Section I: Clinical CT 
	
  

Frequency Statistics: Examination of Percentile Values (%) 
	
  

Due to issues with scan quality, ten of the original 129 samples were removed from the 

analysis. Percentiles of cortical and cancellous bone were computed from each DNA sampling 

site for all elements (Table 7.1). Percentile data were further averaged from each element type 

across all individuals. The majority of element types revealed consistent measurements between 

individuals, with standard deviations of 10% or less (Table 7.2). Three element types (temporal, 

occipital, cervical vertebra) exhibited high variability between the three individuals in the 

relative amount of cortical and cancellous bone removed from the sampling sites (Figure 7.1).  

Mean percentiles of cortical bone composition at each sampling site were divided into 

seven categories by skeletal element: (1) 80-100%, (2) 70-79%, (3) 60-69%, (4) 50-59%, (5) 40-
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49%, (6) 30-39%, and (7) 20-29%. The first category consists of bones whose sampling sites did 

not contain any cancellous bone, including the humerus, radius, ulna, femur, and tibia. The 

second, third, and fourth categories contained only three elements with sampling sites that were 

composed of over 50% cortical bone (Table 7.3).  

 Mean percentiles of cancellous bone composition at each sampling site were divided into 

nine categories by skeletal element: (1) 80-100%, (2) 70-79%, (3) 60-69%, (4) 50-59%, (5) 40-

49%, (6) 30-39%, (7) 20-29%, (8) 10-19%, and (9) >10%. Though only the sacrum was 

represented in the first two categories, the majority of DNA sampling sites contained between 

50-69% cancellous bone (Table 7.4). 

Cortical and Cancellous Bone Height and Width Measurements 
	
  
           RM-ANOVA tests were performed to evaluate differences in average measurements of 

cortical and cancellous bone height and width from each DNA sampling site within- and 

between- individuals. The mean results and standard deviations for each parameter are 

summarized in Appendix C. Normality of raw data was examined using Kolmogorov-Smirnov 

tests. Mauchly’s Tests of Sphericity, the RM-ANOVA equivalent of homogeneity of variances, 

were conducted to test for homogeneity of covariance matrices. Kolmogorov-Smirnov tests 

revealed that cancellous height and cortical width datasets were not normally distributed (α ≤ 

0.05) (Appendix C). Results from Mauchly’s Tests of Sphericity indicated that the assumption 

of homogeneity of variances was met for each parameter (p=1.00). Although analysis with non-

parametric statistics is warranted due to the violation of normality, the Kolmogorov-Smirnov test 

statistics and associated normal Q-Q Plots revealed that these variables only slightly deviated 

from a normal distribution (Figures 7.2-7.5), despite one individual outlier in the cortical height 

dataset.  
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Table 7.1: Percentiles of Cortical and Cancellous Bone from each DNA Sampling Site Procured 
by Mundorff & Davoren (2014) by Skeletal Element. 

Skeletal 
Element Research # Cortical Bone 

(%) 
Cancellous Bone 

(%) 
Pubis #1 44 56 

#2 28 72 
#3 40 60 

Ilium #1 35 65 
#2 30 70 
#3 N/A N/A 

Ischium #1 38 62 
#2 39 61 
#3 N/A N/A 

Sacrum #1 34 66 
#2 25 75 
#3 N/A N/A 

Cuboid #1 40 60 
#2 29 71 
#3 30 70 

Calcaneus #1 40 60 
#2 32 68 
#3 31 69 

Talus #1 40 60 
#2 29 71 
#3 30 70 

1st Cuneiform #1 36 64 
#2 31 69 
#3 36 64 

2nd Cuneiform #1 38 62 
#2 31 69 
#3 32 68 

3rd Cuneiform #1 35 65 
#2 34 66 
#3 37 63 

Navicular #1 36 64 
#2 33 67 
#3 37 63 

Capitate #1 39 61 
#2 28 72 
#3 39 61 

Twelfth Rib #1 N/A N/A 
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Table 7.1: (cont). 
Skeletal 
Element Research # Cortical Bone 

(%) 
Cancellous Bone 

(%) 
 #2 N/A N/A 
 #3 41 59 

Fibula #1 60 40 
#2 62 38 
#3 52 48 

Femur #1 100 0 
#2 100 0 
#3 100 0 

Tibia #1 100 0 
#2 100 0 
#3 100 0 

Patella #1 34 66 
#2 36 64 
#3 34 66 

Humerus #1 100 0 
#2 100 0 
#3 100 0 

Ulna #1 100 0 
#2 100 0 
#3 100 0 

Radius #1 100 0 
#2 100 0 
#3 100 0 

Scapula #1 N/A N/A 
#2 51 49 
#3 48 52 

Clavicle #1 N/A N/A 
#2 40 60 
#3 47 53 

Cervical Vertebra #1 37 63 
#2 30 40 
#3 45 55 

Lumbar Vertebra #1 33 67 
#2 29 71 
#3 34 66 

Thoracic Vertebra #1 34 66 
#2 39 61 
#3 36 64 
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Table 7.1: (cont). 
Skeletal 
Element Research # Cortical Bone 

(%) 
Cancellous Bone 

(%) 
Frontal #1 49 51 

#2 62 38 
#3 58 41 

Parietal #1 46 54 
#2 56 44 
#3 52 48 

Temporal #1 N/A N/A 
#2 52 48 
#3 35 65 

Maxilla #1 42 58 
#2 39 61 
#3 N/A N/A 

Mandible #1 45 55 
#2 46 54 
#3 51 49 

Occipital #1 53 47 
#2 64 36 
#3 100 0 

First Rib #1 47 53 
#2 48 52 
#3 51 49 

Middle Rib #1 40 60 
#2 42 58 
#3 47 53 

Metatarsal 1 #1 39 61 
#2 44 56 
#3 41 59 

Metatarsal 2 #1 44 56 
#2 48 52 
#3 32 68 

Metatarsal 3 #1 45 55 
#2 45 55 
#3 48 52 

Metatarsal 4 #1 38 62 
#2 45 55 
#3 36 64 

First Proximal Hand 
Phalanx 

#1 37 63 
#2 38 62 
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Table 7.1: (cont). 
Skeletal 
Element Research # Cortical Bone 

(%) 
Cancellous Bone 

(%) 
 #3 37 63 

First Distal Hand 
Phalanx 

#1 47 54 
#2 37 63 
#3 N/A N/A 

First Distal Foot 
Phalanx 

#1 45 55 
#2 40 60 
#3 32 68 

Metacarpal 4 #1 34 66 
#2 42 58 
#3 39 61 

Metacarpal 2 #1 36 64 
#2 42 58 
#3 39 61 

Metacarpal 3 #1 42 58 
#2 33 67 
#3 40 60 

First Proximal Foot 
Phalanx 

#1 32 68 
#2 35 65 
#3 37 63 
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Table 7.2: Mean Percentiles and Standard Deviations for Cortical and Cancellous Bone 
Measurements by Bone Type from each DNA Sampling Site. 

Bone Type 
Mean  

Cortical 
(%) 

St.  
Dev 

Mean 
Cancellous 

(%) 

St.  
Dev 

First Distal Hand Phalanx 42 7 58 6 
Cuneiform 2 34 4 66 4 

Talus 33 6 67 6 
Cuneiform 3 35 2 65 2 

Cuboid 33 6 67 6 
First Rib 49 2 51 2 
Capitate 35 6 65 6 

Navicular 35 2 65 3 
Calcaneus 34 5 66 5 

Metacarpal 4 38 4 62 4 
Metatarsal 2 41 8 59 8 
Cuneiform 1 34 3 66 3 

Patella 35 1 65 1 
Metacarpal 3 38 5 62 5 
Metatarsal 4 40 5 60 5 
Metatarsal 3 46 2 54 2 

Maxilla 40 2 60 2 
Pubis 37 8 63 8 
Ilium 35 4 65 4 

Thoracic Vertebra 36 3 54 3 
Sacrum 29 6 71 10 
Ischium 38 1 62 1 

First Proximal Foot Phalanx 35 3 65 3 
Metacarpal 2 39 3 61 3 

Mandible 47 6 53 3 
Humerus 100 0 0 0 

Tibia 100 0 0 0 
Twelfth Rib 41 0 59 0 

First Proximal Hand Phalanx 37 1 63 1 
Middle Rib 43 7 57 7 

Cervical Vertebra 37 8 53 12 
Frontal 57 7 43 7 
Clavicle 43 5 57 5 
Parietal 49 5 51 5 

Lumbar Vertebra 32 3 68 3 
Metatarsal 1 41 3 59 3 
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Table 7.2: (cont). 

Bone Type 
Mean  

Cortical 
(%) 

St.  
Dev 

Mean 
Cancellous 

(%) 

St.  
Dev 

First Distal Foot Phalanx 39 7 61 7 
Femur 100 0 0 0 
Fibula 58 5 42 5 

Temporal 43 12 57 12 
Scapula 50 2 50 2 
Occipital 72 25 28 25 
Radius 100 0 0 0 
Ulna 100 0 0 0 

 

 

 

Figure 7.1: Skeletal Elements Exhibiting High Variability in Cortical and Cancellous Bone 
Measurements. 
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Table 7.3: Average Percentage of Cortical Bone Removed from the DNA Sampling Sites by 
Skeletal Element. 

Average Amount of 
Cortical Bone (%) 

Skeletal 
Element(s) 

80-100 Humerus, Radius, Ulna, Femur, 
Tibia 

70-79 Occipital 
60-69 N/A 
50-59 Scapula, Fibula 
40-49 Maxilla, Mandible, Frontal, Parietal, 

Temporal, Clavicle, First Distal 
Hand Phalanx, First Rib, Middle Rib 
Twelfth Rib, Metatarsal 1, 
Metatarsal 2, Metatarsal 4, 
Metatarsal 3 

30-39 
 
 

 
 

Patella, Cuneiform 1, Cuneiform 2, 
Cuneiform 3, Talus, Cuboid, 
Capitate, Navicular, Calcaneus 
Metacarpal 2, Metacarpal 3, 
Metacarpal 4, Cervical Vertebra, 
Thoracic Vertebra, Lumbar 
Vertebra, Pubis, Ilium, Ischium 

30-39 First Proximal Foot Phalanx, 
First Distal Foot Phalanx, 
First Proximal Hand Phalanx 

 

Table 7.4: Average Percentage of Cancellous Bone Removed from the DNA Sampling Sites 
Procured by Mundorff & Davoren (2014) by Skeletal Element. 

Average Amount of 
Cancellous Bone (%) 

Skeletal 
Element(s) 

80-100 N/A 
70-79 Sacrum 
60-69 Maxilla, Cuneiform 1, 

Cuneiform 2, Cuneiform 3 
Talus, Cuboid, Navicular 
Calcaneus, Capitate, Metatarsal 
4, Metacarpal 2, Metacarpal 3 
Metacarpal 4, Lumbar 
Vertebra, Pubis, Ilium 
Ischium, Patella, First 
Proximal Foot Phalanx, 
First Distal Foot Phalanx, 
First Proximal Hand Phalanx 
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Table 7.4: (cont). 
Average Amount of 

Cancellous Bone (%) 
Skeletal 

Element(s) 
50-59 Mandible, Parietal, Temporal 

Twelfth Rib, Middle Rib 
Clavicle, Scapula, First Rib 
Metatarsal 1, Metatarsal 2 
Metatarsal 3, Cervical 
Vertebra, Thoracic Vertebra, 
First Distal Hand Phalanx 

40-49 Frontal, Fibula 
30-39 N/A 
20-29 Occipital 
10-19 N/A 
>10 Humerus, Radius, Ulna, 

Femur, Tibia 
	
  
 
Individual outliers were kept in the study since variation is normal and often restricted to one or 

two variables. RM-ANOVA tests were first employed using the original datasets for cortical and 

cancellous bone height and width variables from cortical and cancellous bone ROIs, and then a 

rank transformation was performed on each dataset. Additional RM-ANOVA tests were 

employed using the rank transformed data to determine if the results remained consistent. Since 

parametric statistical tests are more powerful, and more robust to deviations, including these 

additional results is warranted to provide a more complete picture of the relationships between 

variables. It should be noted, however, that future publications resulting from this work will 

report results from the non-parametric analyses. 

RM-ANOVA Original Dataset: Cortical and Cancellous Bone Height and Width 
	
  

Results of the test of within-subjects effects revealed no significant differences in the 

main effect for cortical and cancellous bone height measurements (F(1,95)=0.118, p=0.732) (Table 

7.5), indicating that height measurements do not significantly differ according to bone tissue 
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type. However, the interaction effect between cortical and cancellous bone height and individual 

is significant (F(1,95)=5.293, p=0.007). Because of the significant interaction effect, the main 

effect will not be further considered. In this case, the significant interaction effect indicates that 

height measurements are dependent on the individual the measurements were retrieved from, but 

differences in measurements are not consistent among individuals. The interaction can be 

visualized in Figure 7.6, as the trends are not parallel among individuals. The sampling sites for 

individual #3 displayed low cortical and cancellous bone height measurements, and exhibited the 

lowest cancellous bone height measurements overall. Individual #2 displayed greater cancellous 

bone height measurements compared to the other individuals, but the lower cortical bone height 

measurements. Individual #1 possessed the greatest cortical height measurement values. The test 

of between-subjects effects (Table 7.6) demonstrated that there are no significant differences in 

cortical and cancellous bone height between individuals (F(1,95)=1.013, p=0.367).  

For cortical and cancellous bone width measurements, results of the test of within-

subjects main effects (Table 7.7) revealed significant differences in cortical and cancellous bone 

width measurements overall (F(1,95)=267.514, p=0.000). However, the interaction effect between 

cortical and cancellous bone width and individual was not significant (F(1,95)=0.542, p=0.583). 

Figure 7.7 displays the parallel trends, indicating that the interaction is not significant. The test 

of between-subjects effects (Table 7.8) demonstrated that cortical and cancellous width 

measurements were not significantly different among individuals (F(1,95)=1.726, p=0.183). 

RM-ANOVA Following Rank Transformation: Cortical and Cancellous Bone Height and 
Width 
	
  

Results of the test of within-subjects effects revealed no significant differences in the 

main effect for cortical and cancellous bone height measurements (F(1,95)=0.273, p=0.603) (Table 
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7.9). The interaction effect between cortical and cancellous bone height and individual is 

significant (F(1,95)=7.166, p=0.001), indicating that height measurements are dependent upon the 

individual that the measurements were retrieved from. This interaction can be visualized in 

Figure 7.8. The sampling sites for individual #3 displayed lower cortical and cancellous bone 

height measurements overall, and exhibited the lowest cancellous bone height measurements. 

Individual #2 displayed greater cancellous bone height measurements compared to the other 

individuals, and individual #1 possessed the greatest cortical height measurement values. The 

test of between-subjects effects (Table 7.10) demonstrated that there are no significant 

differences in cortical and cancellous bone height between individuals (F(1,95)=1.373, p=0.258).  

For cortical and cancellous bone width measurements, results of the test of within-

subjects effects (Table 7.11) revealed significant differences in cortical and cancellous bone 

width measurements overall (F(1,95)=304.445, p=0.000). However, the interaction effect between 

cortical and cancellous bone width and individual was not significant (F(1,95)=0.168, p=0.583). 

Figure 7.9 demonstrates that the trends are parallel, indicating that the interaction is not 

significant. The test of between-subjects effects (Table 7.12) demonstrated that cortical and 

cancellous width measurements were not significantly different among individuals (F(1,95)=2.324, 

p=0.103). 

The results of the parametric and non-parametric approaches are comparable. As such, it 

was not warranted to either: (1) divide the dataset into within- and between- subjects groups and 

bootstrap the results to make determinations from the resulting confidence intervals, or (2) create 

a new implementation in the R statistical package. It is concluded that employing both statistical 

approaches confirms that the results are reliable. 
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Clinical CT Parameters and Nuclear DNA Yield  
	
  

Of the 55 elements selected for nuclear DNA analysis by Mundorff and Davoren (2014), 

the sampling sites from the 34 top ranked bones had higher percentages of cancellous than 

cortical bone (Table 7.13). The sampling sites from the lowest ranking samples, the radius and 

ulna, were composed entirely of cortical bone. Other poorly ranked bones with strictly cortical 

samples included the humerus, tibia, and femur, which ranked 35th, 36th, and 49th, respectively. 

Normality of raw data examined using Kolmogorov-Smirnov tests and associated normal 

Q-Q Plots, revealed that the nuclear DNA and average cancellous bone volume datasets were not 

normally distributed (α ≤ 0.05) (Appendix C and Figures 7.10-7.11). Thus, Spearman’s Rank-

Order Correlations were computed to further examine the relationship between the relative 

amounts of cortical and cancellous bone tissue removed from the sampling sites and the nuclear 

DNA yield results per gram of sample (ng/g). Correlation coefficients indicated which variables 

shared significant relationships at α ≤ 0.05 (Table 7.14). A significant negative correlation was 

observed between average cortical bone volume and nuclear DNA yield (r=-0.340), suggesting 

that sampling sites comprised of primarily cortical bone do not share a positive relationship with 

nuclear DNA yield (Figure 7.12). 

A positive significant correlation is evident between average cancellous bone volume and 

nuclear DNA yield (r=0.409), indicating that sampling sites with greater cancellous bone 

quantities produced higher nuclear DNA yields per mass of sample (Figure 7.13).   
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Figure 7.2: Normality Q-Q Plot for Cortical Height (mm). 
 

 

Figure 7.3: Normality Q-Q Plot for Cancellous Height (mm). 
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Figure 7.4: Normality Q-Q Plot for Cortical Height (mm). 
 

 

Figure 7.5: Normal Q-Q Plot for Cancellous Width (mm). 
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Table 7.5: RM-ANOVA Results from Cortical and Cancellous Height: Within-Subjects Effects. 

Source df Mean 
Square F p-value 

Cortical and Cancellous 
Height (mm) 1 0.111 0.118 0.732 

Cortical and Cancellous 
Height (mm)*Individual 2 5.014 5.293 0.007* 

*Significance at p=<0.05 
 
 
 

	
  

	
  

Figure 7.6: RM-ANOVA Within-Subjects Results Displaying Significant Interaction Effect for 
Cortical and Cancellous Bone Height (mm) and Individual. 
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Table 7.6: RM-ANOVA Results from Cortical and Cancellous Height: Between-Subjects 
Effects. 

Source df Mean 
Square F p-value 

Cortical and 
Cancellous Height 
(mm)/Individual 

2 5.053 1.013 0.367 

*Significance at =p <0.05 
 
 

Table 7.7: RM-ANOVA Results from Cortical and Cancellous Width: Within-Subjects Effects. 

Source df Mean 
Square F p-value 

Cortical and Cancellous 
Width (mm) 1 1448.862 267.514 0.000* 

Cortical and Cancellous 
Width*Individual (mm) 2 2.938 0.542 0.583 

*Significance at p=<0.05 
	
  

	
  

Figure 7.7: RM-ANOVA Within-Subjects Results Displaying No Interaction Effect for Cortical 
and Cancellous Bone Width (mm) and Individual. 
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Table 7.8: RM-ANOVA Results from Cortical and Cancellous Width: Between-Subjects 
Effects. 

Source df Mean 
Square F p-value 

Cortical and 
Cancellous Width 
(mm)/Individual 

2 1767.66 1.726 0.183 

*Significance at p=<0.05	
  
	
  
	
  

Table 7.9: RM-ANOVA Results from Rank Transformed Cortical and Cancellous Height: 
Within-Subjects Effects. 

Source df Mean 
Square F p-value 

Cortical and Cancellous 
Height (mm) 1 377.964 0.273 0.603 

Cortical and Cancellous 
Height (mm)*Individual 2 9920.09 7.166 0.001* 

*Significance at p=<0.05 
 

 

Figure 7.8: RM-ANOVA Results of Rank Transformed Data for Cortical and Cancellous Bone 
Height (mm): Within-Subjects Effects. 

 



	
  

	
   109 

 

Table 7.10: RM-ANOVA Results from Rank Transformed Cortical and Cancellous Height: 
Between-Subjects Effects. 

Source df Mean 
Square F p-value 

Cortical and 
Cancellous Height 
(mm)/Individual 

2 9350.09 1.373 0.258 

*Significance at =p <0.05 
 
 

Table 7.11: RM-ANOVA Results from Rank Transformed Cortical and Cancellous Width: 
Within-Subjects Effects. 

Source df Mean 
Square F p-value 

Cortical and Cancellous 
Width (mm) 1 1448.862 304.445 0.000* 

Cortical and Cancellous 
Width*Individual (mm) 2 2.938 0.168 0.845 

*Significance at p=<0.05 
 

 

Figure 7.9: RM-ANOVA Results of Rank Transformed Data for Cortical and Cancellous Bone 
Width (mm): Within-Subjects Effects. 
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Table 7.12: RM-ANOVA Results from Rank Transformed Cortical and Cancellous Width: 
Between-Subjects Effects. 

Source df Mean 
Square F p-value 

Cortical and 
Cancellous Width 
(mm)/Individual 

2 1767.66 2.324 0.103 

*Significance at =p <0.05 
 

Section II: SR micro-CT 

Lacunar Parameters 
	
  

Due to the minute specimen size required for SR micro-CT imaging, certain bone blocks 

with dense cortical regions (femur, tibia, fibula, humerus, radius, ulna, temporal, mandible, 

occipital) did not contain sufficient cancellous bone for the evaluation of a separate ROI. For the 

noted skeletal elements, only cortical bone ROIs were quantitatively analyzed. 

Results from the Individual Object Analysis for N.Lc, N.Lc/BV, and Lc.V are presented 

in Appendix A. The mean results and standard deviations for each parameter are summarized in 

Appendix C. Normality of raw data was examined using Kolmogorov-Smirnov tests. Mauchly’s 

Tests of Sphericity were conducted to test for homogeneity of covariance matrices. Kolmogorov-

Smirnov tests revealed that all datasets, with the exception of cortical bone N.Lc and N.Lc/BV, 

were not normally distributed (α ≤ 0.05) (Appendix C). Results from Mauchly’s Tests of 

Sphericity indicated that the assumption of homogeneity of variances was met for all parameters 

(p=1.00), except for the Lc.V variables.  

Though analysis with non-parametric statistics is warranted due to the violation of 

normality (Appendix C), the Kolmogorov-Smirnov tests revealed that certain variables only 

slightly deviated from a normal distribution, with the exception of the Lc.V parameters (Figures 

7.14-7.17). 
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Table 7.13: Ranking of DNA Quantification Results by Average Yield per Mass of Sample and 
Average Percentages of Cortical and Cancellous Bone from each DNA Sampling Site.  

Rank Bone Type Avg.  
Cortical (%) 

Avg.  
Cancellous (%) 

1 First Distal Hand Phalanx 42 58 
2 Cuneiform 2 34 66 
5 Talus 33 67 
7 Cuneiform 3 35 65 
8 Cuboid 33 67 
9 First Rib 49 51 
10 Capitate 35 65 
12 Navicular 35 65 
15 Calcaneus 34 66 
16 Metacarpal 4 38 62 
18 Metatarsal 2 41 59 
20 Cuneiform 1 34 66 
21 Patella 35 65 
22 Metacarpal 3 38 62 
23 Metatarsal 4 40 60 
24 Metatarsal 3 46 54 
25 Maxilla 40 60 
26 Pubis 37 63 
27 Ilium 35 65 
28 Thoracic Vertebrae 36 54 
29 Sacrum 29 71 
30 Ischium 38 62 
31 First Proximal Foot Phalanx 35 65 
32 Metacarpal 2 39 61 
34 Mandible 47 53 
35 Humerus 100 0 
36 Tibia 100 0 
37 Twelfth Rib 41 59 
38 First Proximal Hand Phalanx 37 63 
39 Middle Rib 43 57 
40 Cervical Vertebrae 37 53 
41 Frontal 57 43 
42 Clavicle 43 57 
43 Parietal 49 51 
45 Lumbar Vertebrae 32 68 
46 Metatarsal 1 41 59 
48 First Distal Foot Phalanx 39 61 
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Table 7.13: (cont). 

Rank Bone Type Avg.  
Cortical (%) 

Avg.  
Cancellous (%) 

49 Femur 100 0 
50 Fibula 58 42 
51 Temporal 43 57 
52 Scapula 50 50 
53 Occipital 72 28 
54 Radius 100 0 
55 Ulna 100 0 

	
  
 
 

	
  

Figure 7.10: Normality Q-Q Plot for Nuclear DNA Yield (ng/g). 
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Figure 7.11: Normality Q-Q Plot for Average Cancellous Bone Volume. 
	
  

Table 7.14: Spearman’s Correlation Coefficients for Clinical CT Scan Parameters and Nuclear 
DNA Yield. 
 
 
 
 
 
 

 

 

 

 

*Significance at =p <0.05 

 

Nuclear 
DNA 
Yield 
(ng/g) 

Avg. 
Cortical 

Bone (mm) 

Avg. 
Cancellous 

Bone 
(mm) 

Nuclear 
DNA Yield 

(ng/g) 
1.00 -0.340* 0.409* 

Avg. 
Cortical 

Bone (mm) 
-0.340* 1.00 -0.092 

Avg. 
Cancellous 
Bone (mm) 

0.409* -0.092 1.00 
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Figure 7.12: Scatterplot Depicting Average Cortical Bone Volume and Nuclear DNA Yield 
(ng/g). 

	
  

 

Figure 7.13: Scatterplot Depicting Average Cancellous Bone Volume and Nuclear DNA Yield 
(ng/g). 
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As such, RM-ANOVA tests were employed using the original datasets for N.Lc and N.Lc/BV 

variables from cortical and cancellous bone ROIs, and then a rank transformation was performed 

on each dataset. Additional RM-ANOVA tests were employed using the rank transformed data to 

determine if the results remained consistent. As parametric statistical tests are more powerful, 

including these results is warranted if results are comparable.  

For the Lc.V parameters, only RM-ANOVA tests using the rank transformed data were 

performed since assumptions of normality and homogeneity of variances were violated (Figures 

7.18-7.19).  

RM-ANOVA Original Dataset: Number of Lacunae (N.Lc) 
	
  

Results of the within-subjects test (Table 7.15) indicated that mean N.Lc in cortical and 

cancellous bone were significantly different overall (F(1,99)=171.928, p=0.000). There was no 

significant interaction observed between overall N.Lc in cortical and cancellous bone and 

individual (F(1,99)=2.561, p=0.082). The test of between-subjects effects demonstrated significant 

differences in N.Lc between cortical and cancellous bone among the three individuals 

(F(1,99)=47.969, p=0.000) (Table 7.16). As such, lacunar counts in cortical and cancellous bone 

were significantly different between individuals. Figure 7.20 provides a visual representation of 

the mean N.Lc in cortical and cancellous bone tissues for the three individuals. Lower N.Lc 

values are evident for individual #3 in both cortical and cancellous bone tissues. Alternatively, 

individual #2 exhibited higher lacunar counts than #3 and #1 in both cortical and cancellous bone 

tissues.  

The Bonferroni post-hoc test revealed significant differences between individuals at α ≤ 

0.05 (Table 7.17). Differences were noted in N.Lc between individual #3, #2 (p=0.000), and #1 
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(p=0.000). Significant differences were also noted between individual #2 and #3 (p=0.000), and 

individual #1 and #3 (p=0.000).  

RM-ANOVA Following Rank Transformation: Number of Lacunae (N.Lc) 
	
  

Results of the within-subjects test (Table 7.18) indicated that mean N.Lc in cortical and 

cancellous bone were significantly different overall (F(1,99)=214.658, p=0.000). There was no 

significant interaction observed between overall N.Lc in cortical and cancellous bone and 

individual (F(1,99)=1.189, p=0.309). The test of between-subjects effects demonstrated significant 

differences in N.Lc between cortical and cancellous bone among the three individuals 

(F(1,99)=67.024, p=0.000) (Table 7.19).  

Figure 7.21 provides a visual representation of the mean N.Lc in cortical and cancellous 

bone tissues for the three individuals. Lower N.Lc values are evident for individual #3 in both 

cortical and cancellous bone tissues. Alternatively, individual #2 exhibited higher lacunar counts 

than #3 and #1 in both cortical and cancellous bone tissues.  

The Bonferroni post-hoc test revealed significant differences between individuals at α ≤ 

0.05 (Table 7.20). Differences were noted in N.Lc between individual #3, individual #2 

(p=0.000), and individual #1 (p=0.000). Significant differences were also noted between 

individual #2 and #3 (p=0.000), and individual #1 and #3 (p=0.000).  

RM-ANOVA Original Dataset: Lacunar Density (N.Lc/BV) 
	
  

Results of the within-subjects test (Table 7.21) indicated that mean N.Lc/BV in cortical 

and cancellous bone are significantly different overall (F(1,99)=196.189, p=0.000). There is no 

significant interaction observed between overall N.Lc/BV in cortical and cancellous bone and 

individual (F(1,99)=0.406, p=0.668). The test of between-subjects effects demonstrated significant 
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differences in N.Lc/BV between cortical and cancellous bone among the three individuals 

(F(1,99)=14.205, p=0.000) (Table 7.22). N.Lc/BV in cortical and cancellous bone was 

significantly different between individuals, with lower lacunar density overall in cancellous bone 

tissue (Figure 7.22).  

Figure 7.22 provides a visual representation of the mean N.Lc/BV in cortical and 

cancellous bone tissues for the three individuals. Lower N.Lc/BV values are evident for 

individual #3 in both cortical and cancellous bone tissues. Alternatively, higher lacunar counts 

are evident in both cortical and cancellous bone tissues for individual #2 compared to individuals 

#3 and #1. These differences are more substantial in cancellous bone than cortical bone. 

The Bonferroni post-hoc test revealed significant differences between individuals at α ≤ 

0.05 (Table 7.23). Differences were noted in N.Lc/BV between individual #3, individual #2 

(p=0.000), and individual #1 (p=0.001). Significant differences were also noted between 

individual #2 and #3 (p=0.000), and individuals #1 and #3 (p=0.001).  

RM-ANOVA Following Rank Transformation: Lacunar Density (N.Lc/BV) 
	
  

Results of the within-subjects test (Table 7.24) indicated that mean N.Lc/BV in cortical 

and cancellous bone are significantly different overall (F(1,99)=245.952, p=0.000). There is no 

significant interaction observed between overall N.Lc/BV in cortical and cancellous bone and 

individual (F(1,99)=2.850, p=0.063). The test of between-subjects effects demonstrated significant 

differences in N.Lc/BV between cortical and cancellous bone among the three individuals 

(F(1,99)=26.372, p=0.000) (Table 7.25). N.Lc/BV in cortical and cancellous bone remains 

significantly different between individuals using rank the transformed data, with lower lacunar 

density overall in cancellous bone tissue. 
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Figure 7.23 provides a visual representation of the mean N.Lc/BV in cortical and 

cancellous bone tissues for the three individuals. Lower N.Lc/BV values are evident for 

individual #3 in both cortical and cancellous bone tissues. Alternatively, higher lacunar counts 

are evident in both cortical and cancellous bone tissues for individual #2 compared to individuals 

#3 and #1. These differences are more substantial in cancellous bone than cortical bone. 

The Bonferroni post-hoc test revealed significant differences between individuals at α ≤ 

0.05 (Table 7.26). Differences were noted in N.Lc/BV between individual #3, individuals #2 

(p=0.000), and #1 (p=0.000). Significant differences were also noted between individuals #2 and 

#3 (p=0.000), and individuals #1 and #3 (p=0.000).  

RM-ANOVA Following Rank Transformation: Lacunar Volume (Lc.V) 
	
  

Results of the within-subjects test (Table 7.27) indicated that mean Lc.V in cortical and 

cancellous bone are significantly different overall (F(1,99)=839.825, p=0.000). There was no 

significant interaction effect observed between Lc.V and individual in cortical and cancellous 

bone (F(1,99)=1.693, p=0.189).  

The test of between-subjects effects demonstrated significant differences in Lc.V 

between cortical and cancellous bone among the three individuals (F(1,99)=135.454, p=0.000) 

(Table 7.28). Lc.V in cortical and cancellous bone is significantly different between individuals, 

with lower Lc.V overall in cancellous bone tissue.  

Figure 7.23 provides a visual representation of the mean Lc.V in cortical and cancellous 

bone tissues for the three individuals. Lower Lc.V values are evident for individual #3 in both 

cortical and cancellous bone tissues. For individual #2, higher Lc.V is visible in both cortical and 

cancellous bone tissues compared to individuals #3 and #1, though a higher Lc.V is seen in 
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cortical bone. The Bonferroni post-hoc test revealed significant differences in Lc.V between all 

individuals at α ≤ 0.05 (Table 7.29).  

Summary 
	
  

Results from the parametric RM-ANOVA tests and non-parametric approach using rank 

transformed data are comparable for N.Lc and N.Lc/BV. As such, dividing the datasets into 

within- and between- subjects groups and bootstrapping the results to make determinations from 

bootstrapped confidence intervals, or creating an implementation in the R statistical package, 

was not warranted. It is concluded that employing both statistical approaches on these parameters 

confirms that the results are reliable. 

 However, Lc.V variables violated both assumptions of the RM-ANOVA and analyses 

were solely run on rank transformed data. Following the rank transformation, a number of ties, 

represented by the same values of Lc.V for multiple observations, were noted in the resulting 

cortical bone ROI dataset. This observation may be contributing to the violation of assumptions 

revealed during review of the summary statistics. As such, further investigation into measures of 

lacunar volume parameters with a larger sample size is warranted. 

Lacunar Parameters and Nuclear DNA Yield  
	
  

Normality of raw data was examined using Kolmogorov-Smirnov tests, and revealed that 

the nuclear DNA dataset was not normally distributed (α ≤ 0.05) (Appendix C and Figure 

7.24). Thus, Spearman’s Rank-Order Correlations were used to examine the relationship between 

N.Lc and N.Lc/BV values in cortical and cancellous bone ROIs and the nuclear DNA yield 

results per gram of sample (ng/g). 
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Figure 7.14: Normality Q-Q Plot for Cortical Bone N.Lc. 
 

 

 

Figure 7.15: Normality Q-Q Plot for Cancellous Bone N.Lc. 
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Figure 7.16: Normality Q-Q Plot for Cortical Bone N.Lc/BV (mm3). 
 
 

 

Figure 7.17: Normality Q-Q Plot for Cancellous Bone N.Lc/BV (mm3). 
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Figure 7.18: Normality Q-Q Plot for Cortical Bone Lc.V (µm). 
 

 

Figure 7.19: Normality Q-Q Plot for Cancellous Bone Lc.V (µm). 
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Table 7.15: RM-ANOVA Results for N.Lc in Cortical and Cancellous Bone: Within-Subjects 
Effects. 

Source df Mean 
Square F p-value 

N.Lc 1 233129658 171.928 0.000* 
N.Lc*Individual 2 3473326.43 2.561 0.082 

*Significance at =p <0.05 
 
 

Table 7.16: RM-ANOVA Results for N.Lc in Cortical and Cancellous Bone: Between-Subjects 
Effects. 

Source df Mean 
Square F p-value 

N.Lc/Individual 2 65004213.5 47.969 0.000* 
*Significance at =p <0.05 

 
 

 

Figure 7.20: Estimated Marginal Means for Cortical and Cancellous Bone N.Lc by Individual 
from the RM-ANOVA. 
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Table 7.17: RM-ANOVA Bonferroni Adjustment post-hoc Results for N.Lc in Cortical and 
Cancellous Bone. 

(I) 
Individual 

(J) 
Individual 

Mean 
Difference 

(I-J) 

Std. 
Error 

p-
value 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

#1 
#2 -425.044 199.6417 0.107 -911.239 61.151 
#3 1440.456 199.6417 0.000* 954.261 1926.651 

#2 
#1 425.044 199.6417 0.107 -61.151 911.239 
#3 1865.500 199.6417 0.000* 1379.305 2351.695 

#3 
#1 -1440.456 199.6417 0.000* -1926.651 -954.261 
#2 -1865.500 199.6417 0.000* -2351.695 -1379.305 

*Significance at =p <0.05 
 
 

Table 7.18: RM-ANOVA Results for Rank Transformed N.Lc in Cortical and Cancellous Bone: 
Within-Subjects Effects. 

Source df Mean 
Square F p-value 

N.Lc 1 348812 214.658 0.000* 
N.Lc*Individual 2 1931.68 1.189 0.309 

*Significance at =p <0.05 
 
 

Table 7.19: RM-ANOVA Results for Rank Transformed N.Lc in Cortical and Cancellous Bone: 
Between-Subjects Effects. 

Source df Mean 
Square F p-value 

N.Lc/Individual 2 110633 67.024 0.000* 
*Significance at =p <0.05 
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Table 7.20: RM-ANOVA Bonferroni Adjustment post-hoc Results for Rank Transformed N.Lc 
in Cortical and Cancellous Bone. 

(I) 
Individual 

(J) 
Individual 

Mean 
Difference 

(I-J) 

Std. 
Error 

p-
value 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

#1 
#2 -20.06 6.96768 0.013* -36.638 -3.4794 
#3 57.640 6.96768 0.000* 41.0603 74.2191 

#2 
#1 20.059 6.96768 0.013* 3.47941 36.6382 
#3 77.699 6.96768 0.000* 61.1191 -41.060 

#3 
#1 -57.64 6.96768 0.000* -74.219 -954.261 
#2 -77.70 6.96768 0.000* -94.278 -61.119 

*Significance at =p <0.05 
 
 

Table 7.21: RM-ANOVA Results for N.Lc/BV in Cortical and Cancellous Bone: Within-
Subjects Effects. 

Source df Mean 
Square F p-value 

N.Lc/BV 1 6.484E+9 196.189 0.000* 
N.Lc/BV*Individual 2 13413143.5 0.406 0.668 

*Significance at p=<0.05 
 
 

Table 7.22: RM-ANOVA Results for N.Lc/BV in Cortical and Cancellous Bone: Between-
Subjects Effects. 

Source df Mean 
Square F p-value 

N.Lc/BV/Individual 2 459448156 14.205 0.000* 
*Significance at =p <0.05 
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Figure 7.21: Estimated Marginal Means for Cortical and Cancellous Bone N.Lc/BV by 
Individual from the RM-ANOVA. 

 
 

Table 7.23: RM-ANOVA Bonferroni Adjustment post-hoc Results for N.Lc/BV in Cortical and 
Cancellous Bone. 

(I) 
Individual 

(J) 
Individual 

Mean 
Difference 

(I-J) 
Std. Error p-

value 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

#1 
#2 -1156.6779 975.333196 0.715 -3531.9452 1218.58937 
#3 3811.0054 975.333196 0.001* 1435.73814 1926.651 

#2 
#1 -1156.67789 975.333196 0.715 -1218.5894 3531.94515 
#3 4967.6833 975.333196 0.000* 2592.41603 7342.95055 

#3 
#1 -3811.005 975.333196 0.001* -6186.2727 -1435.7381 
#2 -4967.683 975.333196 0.000* -7342.9506 -2592.4160 

*Significance at =p <0.05 
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Table 7.24: RM-ANOVA Results for Rank Transformed N.Lc/BV in Cortical and Cancellous 
Bone: Within-Subjects Effects. 

Source df Mean 
Square F p-value 

N.Lc/BV 1 433045 245.952 0.000* 
N.Lc/BV*Individual 2 5018.49 2.850 0.063 

*Significance at p=<0.05 
 
 
 

 
 

Figure 7.22: Estimated Marginal Means for Rank Transformed Cortical and Cancellous Bone 
N.Lc/BV by Individual from the RM-ANOVA. 
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Table 7.25: RM-ANOVA Results for Rank Transformed N.Lc/BV in Cortical and Cancellous 
Bone: Between-Subjects Effects. 

Source df Mean 
Square F p-value 

N.Lc/BV/Individual 2 46300.8 26.372 0.000* 
*Significance at =p <0.05 

	
  
	
  

Table 7.26: RM-ANOVA Bonferroini Adjustment post-hoc Results for Rank Transformed 
N.Lc/BV in Cortical and Cancellous Bone. 

(I) 
Individual 

(J) 
Individual 

Mean 
Difference 

(I-J) 
Std. Error p-

value 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

#1 
#2 -14.132 7.18590 0.126 -31.231 2.96631 
#3 36.441 7.18590 0.000* 19.3425 53.5398 

#2 
#1 14.1324 7.18590 0.126 -2.9663 31.2310 
#3 50.574 7.18590 0.000* 33.4749 67.6722 

#3 
#1 -36.44 7.18590 0.001* -53.540 -19.343 
#2 -50.57 7.18590 0.000* -67.672 -33.475 

*Significance at =p <0.05 
 
 

Table 7.27: RM-ANOVA Results for Rank Transformed Lc.V in Cortical and Cancellous Bone: 
Within-Subjects Effects. 

Source df Mean 
Square F p-value 

Lc.V 1 619192 839.825 0.000* 
Lc.V *Individual 2 1247.91 1.693 0.189 

*Significance at p=<0.05 
 
 

Table 7.28: RM-ANOVA Results for Rank Transformed Lc.V in Cortical and Cancellous Bone: 
Between-Subjects Effects. 

Source df Mean 
Square F p-value 

Lc.V/Individual 2 93636.5 135.454 0.000* 
*Significance at =p <0.05 
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Figure 7.23: Estimated Marginal Means for Cortical and Cancellous Bone Lc.V by Individual 
from the RM-ANOVA. 

 
	
  

Table 7.29: RM-ANOVA Bonferroni Adjustment post-hoc Results for Rank Transformed Lc.V 
in Cortical and Cancellous Bone. 

(I) 
Individual 

(J) 
Individual 

Mean 
Difference 

(I-J) 
Std. Error p-

value 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

#1 
#2 -34.30 4.50907 0.000* -45.031 -23.572 
#3 39.846 4.50907 0.000* 29.1164 50.5748 

#2 
#1 34.301 4.50907 0.000* 23.5722 45.0307 
#3 74.147 4.50907 0.000* 63.4178 84.8763 

#3 
#1 -39.85 4.50907 0.000* -50.575 -29.116 
#2 -74.15 4.50907 0.000* -84.876 -63.418 

*Significance at =p <0.05 
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Correlation coefficients indicated which variables shared significant relationships at α ≤ 

0.05 (Table 7.30). Significant negative correlations are observed between cortical bone N.Lc and 

nuclear DNA yield ng/g (r=-0.410), and cortical bone N.Lc/BV and nuclear DNA yield ng/g  

(r=-0.408). These results suggest that although osteocyte lacunar counts are higher in cortical 

bone tissue, these specimens do not share a positive relationship with nuclear DNA yield per 

mass of sample, indicating an alternative factor at play. Figures 7.25-7.26 display the negative 

associations between the cortical bone lacunar parameters and nuclear DNA yield. Positive 

correlations exist between cancellous bone N.Lc and nuclear DNA yield ng/g (0.150), and 

cancellous bone N.Lc/BV and nuclear DNA yield ng/g (r=0.107), though they are not 

statistically significant. Despite the low correlation, a slight positive trend was observed between 

cancellous bone N.Lc and nuclear DNA yield ng/g (0.150) (Figure 7.27), though a positive trend 

was not evident for cancellous bone N.Lc/BV and nuclear DNA yield ng/g (Figure 7.28). 

Canal Diameter and Volume 
	
   	
  

Individual Object Analysis results for cortical bone canal diameter and volume are 

summarized in Appendix A. The mean results and standard deviations for each parameter are 

summarized in Appendix C. Kolmogorov-Smirnov tests revealed that the datasets were not 

normally distributed (α ≤ 0.05) (Appendix C). Levene’s tests of equality of variances revealed 

that the assumption of homogeneity of variances was met for both parameters (Appendix C).  

Though analysis with non-parametric statistics is warranted due to the violation of normality, 

parametric statistical tests are more powerful, and thus including these additional results is 

warranted to provide a more complete picture of the relationships between variables.  

One-Way ANOVA tests were employed using the original datasets for cortical bone 

ROIs. A bootstrap for multiple comparisons was performed, followed by a rank transformation  
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Figure 7.24: Normality Q-Q Plot for Nuclear DNA Yield (ng/g). 
	
  

Table 7.30: Spearman’s Correlation Coefficients for Osteocyte Lacunar Parameters and Nuclear 
DNA Yield. 

*Significance at p=<0.05 

 

Nuclear 
DNA 
Yield 
(ng/g) 

Cort. 
Bone 
N.Lc 

Canc. 
Bone 
N.Lc 

Cort. 
Bone 

N.Lc/BV 
(mm3) 

Canc. 
Bone 

N.Lc/BV 
(mm3) 

Nuclear 
DNA Yield 

(ng/g) 
1.00 -0.410* 0.150 -0.408* 0.107 

Cort.Bone 
N.Lc -0.410* 1.00 0.073 0.939* -0.018 

Canc.Bone 
N.Lc 0.150 0.073 1.00 0.043 0.925* 

Cort. Bone 
N.Lc/BV -0.408* 0.939* 0.043 1.00 0.001 

Canc. 
Bone 

N.Lc/BV 
0.107 -0.018 0.925* 0.001 1.00 
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Figure 7.25: Scatterplot Depicting Average Cortical Bone N.Lc and Nuclear DNA Yield (ng/g). 

 

Figure 7.26: Scatterplot Depicting Average Cortical Bone N.Lc/BV and Nuclear DNA Yield 
(ng/g). 
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Figure 7.27: Scatterplot Depicting Average Cancellous Bone N.Lc and Nuclear DNA Yield 

(ng/g). 

 

Figure 7.28: Scatterplot Depicting Average Cancellous Bone N.Lc/BV and Nuclear DNA Yield 
(ng/g). 
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on each dataset. Ranks of Ca.Dm and Ca.V parameters were further assessed using Kruskal-

Wallis tests to evaluate if the results remained consistent. Mann-Whitney U tests were used to 

determine where significant differences existed among individuals.	
  

One-Way ANOVA: Ca.Dm 
	
  

Results of the One-Way ANOVA (Table 7.31) indicated that mean Ca.Dm in cortical 

bone is significantly different between the three individuals (F(2,129)=86.962, p=0.000). The 

interaction effect between cortical bone Ca.Dm and individual is significant (F(1,129)=11399.8, 

p=0.000), indicating that Ca.Dm measurements are dependent on the individual the 

measurements were retrieved from, but differences in measurements are not consistent among 

individuals. A Bonferroni adjustment post-hoc test revealed significant differences between all 

individuals at α ≤ 0.05 (Table 7.32).  

The bootstrapping function revealed lower and upper confidence intervals around the 

means for each individual (Table 7.33): (1) #1, M=49.98, 95% CI(48.48, 51.66); (2) #2, 

M=46.11, 95% CI(44.84, 47.80); and (3) #3, M=61.39, 95% CI(59.15,63.35). As the SPSS 

software package does not save the 5,000 resampled bootstrapped values, an error bar chart was 

created from the lower confidence intervals, mean, and upper confidence intervals generated by 

the One-Way ANOVA (Figure 7.29). Significant overlap was not present between the lower and 

upper confidence interval ranges across individuals, indicating that Ca.Dm measures are 

significantly different between all three individuals. Thus, it can be concluded that the 

observations are independent of one another. 
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Kruskal-Wallis and Mann-Whitney U Tests: Ca.Dm 
	
  

A Kruskal-Wallis test for Ca.Dm revealed a statistically significant difference among 

individuals, x2(2)=66.038, p=0.000 (Table 7.34), with a mean rank score of 58.58 for individual 

#1, 38.16 for individual #2, and 102.76 for individual #3. The highest rank overall is associated 

with individual #3 (Table 7.35), indicative of possessing the largest measures of canal diameter 

(Figure 7.30). Mann-Whitney U tests determined where significant differences existed among 

individuals. Ca.Dm of individual #1 was significantly higher than it was for individual #2 

(U0.05(2)=563, p=0.001) (Table 7.36), and Ca.Dm of individual #3 was statistically significantly 

greater than it was for individuals #1 (U0.05(2)=214.500, p=0.000) (Table 7.37), and #2 

(U0.05(2)=126, p=0.000) (Table 7.38).  

Figure 7.31 provides a visual representation of the mean Ca.Dm in cortical bone tissue 

for the three individuals. Larger values for Ca.Dm were observed for individual #3. 

Alternatively, lower values for Ca.Dm are evident in cortical bone tissue for individual #2 

compared to individuals #3 and #1.  

One-Way ANOVA: Ca.V 
	
  

Results of the One-Way ANOVA (Table 7.39) indicated that mean Ca.V in cortical bone 

is significantly different between the three individuals (F(2,129)=124.817, p=0.000). The 

interaction effect between cortical bone Ca.V and individual is significant (F(1,129)=22419.73, 

p=0.000). The significant interaction effect indicates that Ca.V measurements are dependent on 

the individual the measurements were retrieved from, but differences in measurements are not 

consistent among individuals. A Bonferroni adjustment post-hoc test revealed significant 

differences between individuals at α ≤ 0.05 (Table 7.40). Differences were noted in Ca.V 
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between individual #3, individuals #2 (p=0.000), and #1 (p=0.000). Significant differences were 

also noted between individual #2 and #3 (p=0.000), and individual #1 and #3 (p=0.000).  

The bootstrapping function revealed lower and upper confidence intervals around the 

means for each individual (Table 7.41): (1) #1, M=0.072, 95% CI(0.068, 0.075); (2) #2, 

M=0.060, 95% CI(0.056, 0.064); and (3) #3, M=0.123, 95% CI(0.115,0.132). Since the SPSS 

software package does not save the 5,000 resampled bootstrapped values, an error bar chart was 

created from the lower confidence intervals, mean, and upper confidence intervals generated by 

the One-Way ANOVA (Figure 7.32). Significant overlap was not present between the lower and 

upper confidence interval ranges across individuals, indicating that Ca.V measures are 

significantly different between each of the three individuals. Thus, it can be concluded that the 

observations are independent of one another. 

Kruskal-Wallis and Mann-Whitney U Tests: Ca.V 
	
  

A Kruskal-Wallis test for Ca.V revealed a statistically significant difference among 

individuals, x2(2)=92.408, p=0.000, with a mean rank score of 54.73 for individual #1, 34.89 for 

individual #2, and 109.89 for individual #3 (Table 7.42). Again, individual #3 revealed the 

highest rank overall (Table 7.43), indicative of possessing the largest canal volume. Mann-

Whitney U tests determined where significant differences existed among individuals. Ca.V of 

individual #1 was significantly higher than it was for individual #2 (U0.05(2)=542, p=0.000) 

(Table 7.44). Ca.V of individual #3 was statistically significantly greater than it was for 

individuals #1 (U0.05(2)=24, p=0.000) (Table 7.45), and #2 (U0.05(2)=3, p=0.000) (Table 7.46).  

A dramatically high Ca.V value is evident for individual #3 (Figure 7.33). Conversely, 

lower Ca.V were noted in cortical bone tissue for individual #2 compared to individuals #3 and 

#1. 
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Summary 
	
  

Results from the parametric One-Way ANOVA tests and non-parametric Kruskal Wallis 

and Mann-Whitney U tests are comparable for Ca.Dm and Ca.V parameters. Applying the 

bootstrap resampling approach to the parametric tests confirmed that the lower and upper 

confidence intervals do not overlap, indicating the measures of Ca.Dm and Ca.V are significantly 

different between all three individuals. It is concluded that employing both statistical approaches 

on these parameters confirms that the results are reliable. 
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Table 7.31: One-Way ANOVA Results for Ca.Dm in Cortical Bone. 

Source df Mean 
Square F p-value 

Ca.Dm 2 2774.58 86.962 0.000* 
Ca.Dm*Individual 1 363720 11399.8 0.000* 

*Significance at =p <0.05 
 
 

Table 7.32: RM-ANOVA Bonferroni Adjustment post-hoc Results for Ca.Dm in Cortical Bone.	
  

(I) 
Individual 

(J) 
Individual 

Mean 
Difference 

(I-J) 
Std. Error p-

value 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

#1 
#2 3.86 1.204 0.005* -0.0027 -0.0197 
#3 -11.41 1.204 0.000* -0.0638 -0.0412 

#2 
#1 -3.86 1.204 0.005* -0.0197 0.0027 
#3 -15.27 1.204 0.000* -0.0720 -0.0500 

#3 
#1 11.41 1.204 0.000* -0.0412 0.0638 
#2 15.27 1.204 0.000* 0.0500 0.0720 

*Significance at =p <0.05 
 
 

Table 7.33: One-Way ANOVA: Bootstrapped 95% Confidence Intervals for Ca.Dm. 

Individual  Statistic Bias Std. 
Error 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

#1 

Mean 49.98 0.02 0.85 48.48 51.66 
Std. 

Deviation 5.634 -0.145 0.908 3.901 6.979 

N 44 0 5 34 54 

#2 

Mean 46.11 0.01 0.64 44.84 47.40 
Std. 

Deviation 4.238 -0.059 0.432 3.507 4.926 

N 44 0 5 34 54 

#3 

Mean 61.39 0.01 1.01 59.15 63.35 
Std. 

Deviation 6.783 -0.197 1.194 4.342 8.506 

N 44 0 5 34 54 
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Figure 7.29: Error Bar Chart Displaying the Ca.Dm Bootstrapped 95% Upper and Lower 
Confidence Intervals and Mean. 

 
 

Table 7.34: Kruskal-Wallis Test for Significance for Ca.Dm in Cortical Bone. 
 C.Dm Cortical Bone 

Chi-Square 66.038 
df 2 

Sig. 0.000 
	
  
	
  

Table 7.35: Kruskal-Wallis Test Rank Results for Ca.Dm in Cortical Bone. 

Source Individual N Mean 
Rank 

Ca.Dm Cortical Bone 
#1 44 58.58 
#2 44 38.16 
#3 44 102.76 
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Table 7.36: Mann-Whitney U Test for Significance in Ca.Dm in Cortical Bone: Individuals #1 
and #2. 

 C.Dm Cortical Bone 
Mann-Whitney U 563.000 

Wilcoxin W 1553.00 
Z -3.413 

Asymp, Sig. (2-tailed) 0.001 

 
	
  

Table 7.37: Mann-Whitney U Test for Significant Differences in Ca.Dm in Cortical Bone: 
Individuals #1 and #3. 

 C.Dm Cortical Bone 
Mann-Whitney U 214.500 

Wilcoxin W 1204.50 
Z -6.308 

Asymp, Sig. (2-tailed) 0.000 

 
	
  

Table 7.38: Mann-Whitney U Test for Significance in Ca.Dm in Cortical Bone: Individuals #2 
and #3. 

 C.Dm Cortical Bone 
Mann-Whitney U 126.000 

Wilcoxin W 1116.00 
Z -7.050 

Asymp, Sig. (2-tailed) 0.000 
 



	
  

	
   141 

 

Figure 7.30: SR micro-CT 3D render of the cortical bone ROI from the left first rib of individual 
#3 displaying large canals. Scale bar=200 µm (Credit: JM. Andronowski). 
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Figure 7.31: Mean Ca.Dm in Cortical Bone for All Individuals. 

Table 7.39: One-Way ANOVA Results for Ca.V. 

Source df Mean 
Square F p-value 

Ca.V 2 0.049 124.817 0.000* 
Ca.V*Individual 1 0.955 22419.73 0.000* 

*Significance at =p <0.05 
 
 

Table 7.40: RM-ANOVA Bonferroni Adjustment post-hoc Results for Ca.V in Cortical Bone. 

(I) 
Individual 

(J) 
Individual 

Mean 
Difference 

(I-J) 
Std. Error p-

value 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

#1 
#2 0.0111 0.00424 0.026 0.0011 0.0212 
#3 -0.0516 0.00424 0.000* -0.0616 -0.0415 

#2 
#1 -0.0111 0.00424 0.026 -0.0212 -0.0011 
#3 -0.0627 0.00424 0.000* -0.0728 -0.0527 

#3 
#1 -0.0516 0.00424 0.000* 0.0415 0.0616 
#2 0.0627 0.00424 0.000* 0.0527 0.0728 

*Significance at =p <0.05 
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Table 7.41: One-Way ANOVA: Bootstrapped 95% Confidence Intervals for Ca.V. 

Individual  Statistic Bias Std. 
Error 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

#1 

Mean 0.0716 0.0000 0.0017 0.0682 0.0750 
Std. 

Deviation 0.01140 -0.00018 0.00101 0.00949 0.01289 

N 44 0 5 35 53 

#2 

Mean 0.0605 0.0000 0.0020 0.0564 0.0643 
Std. 

Deviation 0.01363 -0.00019 0.00116 0.1156 0.01527 

N 44 0 5 35 54 

#3 

Mean 0.1232 0.0000 0.0044 0.1150 0.1319 
Std. 

Deviation 0.02947 -0.00048 0.00333 0.02327 0.03462 

N 44 0 5 35 54 
	
  
	
  

	
  

Figure 7.32: Error Bar Chart Displaying the Ca.V Bootstrapped 95% Upper and Lower 
Confidence Intervals and Mean. 
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Table 7.42: Kruskal-Wallis Test for Significance for Ca.V in Cortical Bone. 
 C.V Cortical Bone 

Chi-Square 92.408 
df 2 

Sig. 0.000 
 
 

Table 7.43: Kruskal-Wallis Test Rank Results for Ca.V in Cortical Bone. 

Source Individual N Mean 
Rank 

Ca.V Cortical Bone 
#1 44 54.73 
#2 44 34.89 
#3 44 109.89 

 

Table 7.44: Mann-Whitney U Test for Significant Differences in Ca.V in Cortical Bone: 
Individuals #1 and #3. 

 C.Dm Cortical Bone 
Mann-Whitney U 24.000 

Wilcoxin W 1014.00 
Z -7.932 

Asymp, Sig. (2-tailed) 0.000 
 
 

Table 7.45: Mann-Whitney U Test for Significance in Ca.V in Cortical Bone: Individuals #1 and 
#2. 

 C.Dm Cortical Bone 
Mann-Whitney U 542.000 

Wilcoxin W 1532.00 
Z -3.649 

Asymp, Sig. (2-tailed) 0.000 
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Table 7.46: Mann-Whitney U Test for Significance in Ca.V in Cortical Bone: Individuals #2 and 
#3. 

 C.Dm Cortical Bone 
Mann-Whitney U 3.000 

Wilcoxin W 993.00 
Z -8.094 

Asymp, Sig. (2-tailed) 0.000 
	
  

	
  

	
  

Figure 7.33: Mean Ca.V in Cortical Bone for All Individuals. 
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CHAPTER SEVEN: DISCUSSION 
 

This study aimed to determine whether differences in bone microstructure can be used to 

explain differential nuclear DNA yield among bone tissue types. At the time of this writing, the 

current work represents the first examination of inter-element variation in osteocyte lacunar 

properties from cortical and cancellous bone tissues in various human skeletal elements. The use 

of SR micro-CT allowed for a scale of analysis that revealed a high range of variation in lacunar 

abundance in both tissue types. As this is the first study to use this approach, the results have 

implications that improve current understandings of the relationship between nuclear DNA yield 

and osteocyte lacunar abundance, and normal variation of osteocyte lacunar parameters in adult 

males. Results of this work also have broader applications as it offers promise for the 

development of a refined method for identifying the bone tissue type most likely to yield nuclear 

DNA. 

This chapter synthesizes the main results from the statistical analyses presented in 

Chapter 6 and discusses their implications for the hypotheses presented in Chapter 1. Though 

these hypotheses were derived from three broader questions (see Chapter 1), the study focuses on 

one central inquiry: Why do different bone tissue types seem to yield DNA differently? A 

discussion of the supplemental research questions will further examine the relationship of bone 

tissue type and nuclear DNA yield. The four hypotheses proposed in the introduction generally 

expected there to be variation in osteocyte lacunar parameters between bone tissue types.  

The current research methodology offered promise to refine understanding of DNA bone 

sample-selection protocols for human identification. The implications of the research findings for 

forensic identification within the fields of biological anthropology, and forensic anthropology 

will also be discussed below. 
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It is important to note the limitations of the study that could potentially be contributing to 

the observed differences in osteocyte lacunar density between bone tissue types. Overall, two of 

the greatest challenges encountered were restricted access to human skeletal specimens and 

synchrotron beam time. Related methodological considerations, limitations of this work, and 

possible confounding factors will be discussed in a later section of this chapter.  

Summary of Principal Findings 
 

Analyses reported in Chapter 6 examined the proposed hypotheses, and the general 

results are reported here prior to fully discussing their implications. From the exploration of the 

hypotheses, four main conclusions emerged: 

 

1) The relative amounts of cortical and cancellous bone removed from the DNA 

sampling sites varied to achieve the desired weight of bone powder for DNA analysis. 

2) Osteocyte lacunar abundance and density differs between cortical and cancellous 

bone tissue types.  

3) The cortical bone ROIs contained higher lacunar abundance and density values than 

their cancellous bone counterparts.  

4) Osteocyte lacunar density appears to be independent of nuclear DNA yield, 

suggesting there may be an alternative explanation regarding why yields were higher 

from bones with higher cancellous content. 

 

The following sections will provide a synthesis of the results for each of the hypotheses 

along with explanations regarding how the results inform understanding of nuclear DNA yield 

and osteocyte lacunar parameters. 
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Addressing Research Hypotheses 
 

Synthesis of Hypotheses One and Two Results 
 
 Hypotheses one and two focused on differences in osteocyte lacunar abundance and 

density in cortical and cancellous bone tissues. The first hypothesis offered the prediction that 

osteocyte lacunar density would vary between bone tissue types. The second hypothesis 

expanded on this notion by stating that osteocyte lacunar density is expected to be greater in 

skeletal elements with high cancellous bone content. 

Hypothesis One  
 

There will be differences in osteocyte lacunar density between cortical and cancellous 
bone. 

 
This study made an initial investigation into variation in nuclear DNA yields from 

cortical and cancellous bone tissues, focusing on the examination of osteocyte lacunae. The first 

hypothesis argued that osteocyte lacunar density varies between bone tissue types. Results of the 

RM-ANOVAs for N.Lc and N.Lc/BV variables demonstrated that variation exists in osteocyte 

lacunar parameters between human bone tissue types, with a greater abundance and density of 

lacunae in cortical bone. As such, the first hypothesis was supported. The following section 

offers potential explanations for the observed differences in osteocyte lacunar density between 

bone tissue types.  

Developmental Factors 
	
  

As mentioned in Chapter 3, adult human bone tissue is a product of ongoing growth and 

development, involving ossification, growth, fusion, appositional growth and eventual bone loss. 

Developmental differences during bone formation among skeletal elements and tissue types may 
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play a role in explaining the varying osteocyte concentrations in cortical and cancellous bone 

tissues. This variability may be attributed to the mechanical environment during bone formation, 

such as during primary growth or secondary bone remodeling. Possible mechanisms for this 

variation in lacunar density could include differences in the bone formation rates across the 

diaphysis, differential remodeling of these areas, the presence of hematopoetic portions of 

cancellous bone regions, or differences in the local strain environment (Qiu et al., 2002; 2003; 

Vatsa et al., 2008; Carter et al., 2014b). Further, lacunar infilling, or micropetrosis (Frost, 1960), 

could be another possible source of density variation since the skeletal sample contained one 

elderly individual (individual #3) with marked differences in lacunar parameters. Thus, 

implications of age-related changes associated with individual #3 are described in the following 

section. 

Age-Related Factors 
	
  

Individual #3 possessed lower osteocyte N.Lc, N.Lc/BV, Lc.V and larger Ca.D and Ca.V 

compared to the other two individuals. Individual #3 was 69 years-old at the time of death, while 

individuals #2 and #1 were 47 and 50 years of age at death, respectively. Thus, it is suggested 

that the microstructural differences observed in individual #3 may be associated with advancing 

age. 

Osteocytes die and disappear from the lacunae of adult humans. Osteocyte deaths are 

particularly prevalent in elderly individuals, as the bone cortex remodels more slowly (Power et 

al., 2001). Investigations into age-associated changes in osteocyte lacunar parameters have 

concentrated largely on lacunar density. Though it is proposed that lacunar density declines with 

age in males and females (Mori et al., 1997; Mullender et al., 1996; Qiu et al., 2002; Carter et al., 

2014a; 2014b), the majority of work on sex differences in bone histological parameters has 
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focused on women. This interest in the aging female skeleton is due to the increased incidence of 

age-related bone diseases, such as osteoporosis. The timing of lacunar density decline in females, 

however, is debated and under further investigation. For example, Mori and colleagues (1997) 

examined osteocyte lacunar density in femoral head cancellous bone from females. The authors 

reported that osteocyte lacunar density did not decline until age 70, which was followed by a 

marked decrease in density thereafter. Further studies have reported this decline to be either 

linear (Mullender et al., 2005) or exponential (Qiu et al., 2002) in nature. Recent research by 

Carter and colleagues (2014a; 2014b) examined differences in osteocyte lacunar parameters in 

males and females across the lifespan. The authors revealed that younger males and females had 

similar osteocyte lacunar densities. Males demonstrated a significant decrease in lacunar density 

with advancing age, though females only revealed a downward trend in lacunar density with age. 

Lacunar volume was found to remain consistent in males, likening the values to those seen in 

older females (Carter et al., 2014b).  

For the most part, lacunar abundance and density values for individual #3 are in 

agreement with the trends for adult males presented by Carter and colleagues (2014b). The 

authors reported that males demonstrated a significant decrease in lacunar density with 

advancing age, while canal diameter and volume increased with age. However, the same study 

noted that lacunar volume was found to remain consistent in males. In the current study, lacunar 

volume was lower in individual #3 in both cortical and cancellous bone tissues. Carter and 

colleagues (2014a) found a reduction in Lc.V in older females across the lifespan, with Lc.V in 

the over 50 age group reduced by approximately a third in comparison to the under 50 age 

category. As markedly low Lc.V measures were observed in only one individual in the current 
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study, further work using an expanded adult male sample is required to ascertain what biological 

process may be driving these results. 

Carter and colleagues (2014b) were the first to identify sex-related differences in the 

osteocyte lacunar network over the lifespan, thus furthering understanding of the effects 

contributing to age-associated bone loss. However, one limitation of their female study sample 

was a lack of specimens representing the female middle-age group. Continuing the research of 

Carter and colleagues (2014a), expanding the middle-age category may allow for the possible 

identification of the timing associated with the reduction in lacunar volume. Future directions 

stemming from the above query and other observations will be described in a later section of this 

chapter. 

Intra- and Inter-Element Variation  
	
  

The differences in lacunar abundance and density between tissue types may also be 

attributed to intra- and inter-element variation. This is the first study to examine inter-element 

variation in osteocyte lacunar properties from cortical and cancellous bone, and only regions 

directly adjacent to DNA sampling sites were examined. However, certain studies have assessed 

intra-element analyses of human lacunar density, though these works have been limited and offer 

conflicting results (Carter et al., 2014b). For example, Power and colleagues (2001) examined 

osteocyte lacunar occupancy in the femoral neck and reported significant variation in lacunar 

densities within and between elderly females with hip fractures and those without. The authors 

identified more lacunae in the inferior region than the superior section (Power et al., 2001). 

Alternatively, Jordan and colleagues (2003) found no intra-element differences in femoral neck 

lacunar density in either men or women, with and without osteoporosis or osteoarthritis (Jordan 

et al., 2003).  
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Few studies have examined osteocyte parameters in cancellous bone, and all have 

employed a 2D approach. However, Qiu and colleagues (2002; 2003; 2006) have conducted 

comprehensive work on osteocyte lacunar density in cancellous bone using human iliac and rib 

specimens. The authors found significant differences between superficial cancellous (<25 µm 

from the surface) and deep cancellous bone (>45 µm) from the iliac crest, with superficial bone 

containing higher densities of osteocytes (Qiu et al., 2002). 

Most recently, Carter and colleagues (2013a) examined regional lacunar variation within 

the femoral cortex of a young adult male using SR micro-CT. Results indicated that extensive 

regional variation (~30%) in osteocyte lacunar density exists, with the medial and lateral 

segments containing the most lacunae and the anterior and posterior displaying the least (Carter 

et al., 2013a). Though this study was limited to the evaluation of one femur within a single 

individual, it documented considerable variation in lacunar densities between regions. This site-

specific variation warns against the extrapolation of lacunar values from single sections (Carter 

et al., 2013a), and thus further work is warranted.  

The purpose of the current study was to compare lacunar parameters with nuclear DNA 

yield, thus all lacunar variables were only examined in a region of each bone directly adjacent to 

the DNA sampling sites. It would be valuable to examine multiple regions from each skeletal 

element to assess regional patterns of variation in lacunar parameters.  

Inter-Element Variation and Bisphosphonates 
	
  

Extensive preclinical research on the use of bisphosphonates (BPs), a class of drugs used 

to treat osteoporosis known to reduce remodeling and fracture risk, have revealed that their 

effects on bone turnover can be greatly site-specific (Allen & Burr, 2007; 2011). For example, 

Allen and colleagues (2010) treated canines (beagle dogs) with an oral BP at doses comparable 
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to those used to treat osteoporosis. The authors noted initiation of new bone remodeling sites of 

15% in the mandible and 46% in the rib. However, no effects were noted in the tibial cortical 

bone tissue. These findings have implications for the examination of bone remodeling activity at 

certain skeletal sites, as evidence of bone turnover may be over- or under-estimated in 

individuals treated with BPs. Thus, differences in remodeling rates among varying skeletal 

elements may affect the accumulation of osteoblasts that become entombed in osteoid and 

undergo osteocytogenesis, potentially affecting osteocyte density.  

Additionally, the mineralization profile of bone is altered by suppressing bone 

remodeling and reducing the formation of BMUs (Allen & Burr, 2007). The degree of 

mineralization is documented to increase in individuals taking BPs, though the mechanisms in 

which they alter the mineralization process are unclear (Allen & Burr, 2007). Future research 

should further address why these differences in mineralization exist and how they relate to 

osteocyte density.  

Hypothesis Two 
 

Cancellous bone will have greater osteocyte lacunar densities. 
 
This second hypothesis argued that osteocyte lacunar density varies between bone tissue 

types, with higher osteocyte densities in cancellous bone. Results of the RM-ANOVAs for N.Lc 

and N.Lc/BV variables demonstrated that there is a greater abundance and density of lacunae in 

cortical bone, failing to support this hypothesis.                                                                                              

Bone Turnover Rates 
	
  

As discussed in Chapter 3, cortical and cancellous bone tissues are continuously modified 

throughout life. It is often asserted that cancellous bone has higher turnover than cortical bone. 
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The following section will explore this claim and assess if differences in turnover rates between 

bone tissue types may be contributing to the variation in osteocyte lacunar densities.  

Cortical bone tissue is altered in three ways through: (1) formative bone modeling, 

including periosteal or endosteal apposition, which adds primary lamellar bone to existing bone 

tissue; (2) resorptive bone modeling that removes bone tissue; and (3) bone remodeling, which 

replaces existing bone tissue with secondary lamellar bone (Martin et al., 2015). In healthy 

adults, cortical bone has a slow turnover rate and a high elasticity modulus (Young’s modulus), 

making it resistant to bending and torsion loads, but weaker in tension (Currey, 2002). The 

rigidity of cortical bone provides a sturdy attachment for muscles and tendons, and protects vital 

areas of the body. 

It is widely accepted that cancellous bone remodeling operates in accordance with the 

activation-resorption-formation (ARF) sequence. Cancellous bone tissue is formed through the 

partial resorption of endosteal cortical bone tissue, and endocortical bone formation (Parfitt, 

1994). Similar to cortical bone remodeling, cancellous bone is remodeled throughout life by 

hemiosteonal remodeling. It is often asserted that cancellous bone has a higher turnover rate and 

low Young’s modulus compared to cortical bone. Though the latter is true, comparisons between 

the turnover rates and level of metabolic activity of cortical and cancellous bone, and the claims 

derived from these comparisons, have been questioned (Parfitt, 2002). Allen and Burr (2011) 

state that cortical bone takes longer to experience remodeling suppression after BP treatment 

than cancellous bone, implying that remodeling rates are lower in the former. However, Parfitt 

(2002) argues that although the surface-to-volume ratio of cancellous bone is greater, turnover in 

cancellous bone will only be higher if it is assumed that the surface remodeling activity is 

comparable in both tissue types. Further, he suggests that remodeling activity will be greater in 
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the central skeleton since there is a close partnership between cancellous bone tissue, blood flow, 

and remodeling activity, as they relate to bone marrow composition (Parfitt, 2002). Additionally, 

osteoclast precursors migrate throughout the body via the circulatory system, and are shuttled to 

where they are needed (Parfitt, 1998; 2001). As such, turnover of cancellous bone will remain 

higher in the central skeleton due to its involvement in calcium homeostasis, and also possibly as 

support for hematopoiesis (Parfitt, 1993; 2002). According to Parfitt (2002), both cortical and 

cancellous bone tissues within the central skeleton will experience higher turnover than cortical 

and cancellous bone in the peripheral skeleton. 

 These differences in turnover between skeletal elements, and the intra-element variation 

within bones, suggests that there is not a simple relationship between bone tissue type and 

turnover rate. As such, generalizing that turnover rate is higher in cancellous bone should be 

done with caution, as this is only true in certain circumstances.  

Osteocyte Lacunar Densities in Cortical and Cancellous Bone Tissues  
	
  

Considering the current study’s hypotheses and results, the following section will discuss 

the literature related to osteocyte lacunar densities in cortical and cancellous bone tissues.  

The range in values for lacunar density in normal human bone is generally high, largely 

dependent on sampling location, tissue type, and the analytical technique employed (Carter et al., 

2013a). Studies examining lacunar populations in human cortical bone are few, reveal high 

variation in density values, and often extrapolate 2D lacunar counts (mm2) to 3D (mm3), 

resulting in a potentially large margin of error. Recently, Bromage and colleagues (2016) used 

BSE-SEM to identify osteocyte lacunae in twelve mid-shaft human femora. The authors reported 

an average value of 100,000 osteocyte lacunae for whole adult femoral mid-shaft cross-sections. 

Further, Bromage and colleagues (2009) reported a lacunar density of 23,333 mm3 from the 
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femur of an Australopithecus afarensis specimen (Lucy) by extrapolating from an original 

lacunar count of 63 (Bromage et al., 2009; Carter et al., 2013a). Sissons and O’Connor (1977) 

found cortical bone to have approximately 13,900 to 19,400 lacunae mm3 depending on the 

sectioning technique applied.  

The current study reported osteocyte densities in cortical bone ranging from ~8,000 to 

47,000, exhibiting high variance compared to the findings of the above earlier studies. It also 

reveals a considerable range in density values not previously reported, possibly due to the array 

of skeletal elements examined. However, the upper values do agree well with those reported by 

Carter and colleagues (2013a), who devised the applied analytical and quantitative techniques 

used in this study. The current study found lacunar densities in femoral bone ranging from 

~26,000 to 35,000 per mm3, which are consistent with the densities of ~26,000 to 37,000 per 

mm3 reported by Carter and colleagues (2013a). The high counts presented in the current work 

and those observed by Carter and colleagues (2013a) are likely related to the improved sampling 

of the 3D imaging modality used, which allowed for larger region of interests to be evaluated 

and much greater numbers of lacunae to be quantified.  

Studies examining lacunar populations in cancellous bone are scarce, and have relied on 

animal models, and/or 2D traditional histological techniques. For example, Hobdell and Howe 

(1971) recorded lacunar densities of 13,000 mm3 in mammalian and reptilian cancellous bone. 

As mentioned above, Qiu and colleagues have performed substantial 2D research examining 

osteocyte lacunar properties from human cancellous bone in iliac and rib biopsy specimens (Qiu 

et al., 2002; 2003a; 2003b; 2006). Differences were observed in lacunar densities between 

superficial cancellous and deep cancellous bone from the iliac crest, with superficial bone 

containing higher densities of osteocyte lacunae. The current study revealed a wide range in 



	
  

	
   157 

osteocyte density in human cancellous bone, ~3,800 to 33,000, which is significantly different 

from the lacunar density values found in cortical bone tissue specimens. This variability may be 

attributed to differences in intra- and inter-element cancellous bone turnover rates. However, this 

study is limited by its focus on only three individuals. Despite this limitation, the current work 

adds to the growing body of literature addressing the possible variances in lacunae populations 

within human cortical (Carter et al., 2013a; 2013b; 2014a) and cancellous bone tissues (Qiu et 

al., 2002; 2003a; 2003b; 2006). The findings further demonstrate that existing pathological and 

functional interpretations of bone microstructure must be better situated within the broader 

context of normal variation, as such interpretations are often deduced from the high-resolution 

3D imaging of osteocyte lacunae. Further research in this area is warranted to determine whether 

the observed pattern exists as a part of normal variation. 

Synthesis of Hypotheses Three and Four Results 
 

Hypotheses three and four centered on the relationship between the clinical CT and SR 

micro-CT histomorphometric variables and nuclear DNA yield. The third hypothesis offered the 

expectation that osteocyte lacunar density would correlate with DNA yield results obtained from 

the same general location on the bones. The fourth hypothesis examined whether relative 

measures of cortical and cancellous bone were consistent between sampling DNA sites to 

achieve the desired testing weight (0.2g bone powder) for nuclear DNA analysis. 

Hypothesis Three  
 

The osteocyte lacunar density in cortical and cancellous bone is correlated with 
differential DNA yield. 

 
Significant differences in osteocyte lacunar abundance and density were found between 

cortical and cancellous bone tissues, with greater lacunar counts found in cortical bone. As such, 
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this hypothesis fails to be supported since cancellous bone had a significantly lower lacunar 

density overall. Results suggest that an alternative explanation exists to describe why Mundorff 

and Davoren (2014) found elements with higher cancellous content to yield greater quantities of 

nuclear DNA. A plausible explanation focuses on remnants of soft tissue between trabeculae 

observed using SR micro-CT. Though soft tissue was not present on the surface of the bones, 3D 

scans consistently revealed soft tissue within the medullary cavities of skeletal elements with 

high cancellous content (Figure 8.1). It is hypothesized that these residual soft tissues, which 

likely include periosteum and osteological lining cells, contributed to the higher DNA yields 

from cancellous bone. 

Cancellous bone tissue has an open, porous structure characterized by interconnected trabecular 

struts. It is found in five primary locations: (1) at the metaphyses of long bones; (2) filling short 

bones; (3) between flat bones; (4) beneath bony protuberances where muscles attach and; (5) in 

the medullary cavities of certain long bones (Currey, 2002). In growing bone, spaces around and 

within cancellous tissue are sites for hematopoietic marrow. With age, the majority of 

hematopoietic marrow tissue is modified to yellow bone marrow and found within medullary 

cavities (Nanci, 2008; Carter & Beaupré, 2001). The internal surfaces of cancellous bone are also 

covered by endosteum. This soft tissue layer consists of connective tissue housing bone cells, 

and physically separates the bone surface from the marrow (Nanci, 2008). Due to this 

composition, the surface to volume ratio of cancellous bone and adhering soft tissues removed 

during DNA sampling is likely much higher compared to cortical bone samples. 

As noted in Chapter 5, the three individuals selected for Mundorff and Davoren’s (2014) 

original study were of modern origin and died in the same calendar year, 2009. 
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Figure 8.1: SR micro-CT cancellous bone ROI slice from a left 2nd cuneiform. Soft tissue 
remnants are evident between the trabecular struts. Scale bar=100 µm. (Credit: JM. 
Andronowski). 
 

Following recovery, all skeletons were only washed with water prior to nuclear DNA sampling 

to limit possible effects of maceration techniques on DNA recovery (Frank et al., 2015). Bone 

washing protocols used to remove blood and bone marrow components from the medullary 

cavities are extensive and time consuming (Eagle et al., 2015), and such measures were not 

employed. During tissue procurement for SR micro-CT, bones were noted to be greasy but 

remnants of soft tissue were not evident on the surface of the bones.  

Though the presence of soft tissue remnants in cancellous bones was consistent for all 

three individuals in this study, skeletal elements from individuals of increased postmortem 

intervals (PMI) were not assessed for the presence of similar amounts of soft tissue. In a follow-

up study (Phase 2), Mundorff and Davoren (2014) examined a subset of skeletal elements 
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(n=120) from twelve additional skeletons of increasing PMIs. Phase 2 comprised the eight 

highest DNA yielding skeletal elements from the primary study plus the femur and tibia, which 

did not rank highly but are typically sampled for DNA by practitioners. Four predetermined 

postmortem intervals (0-3 years, 4-10 years, 11-20 years and <20 years) were identified and 

three skeletons were selected to represent each interval (n=12). Skeletons with similar 

demographics to those examined in the current study were selected. This second phase was 

designed to determine if the same rank order of skeletal elements by DNA yield would maintain 

over increased PMIs, and to give an indication of how nuclear DNA degradation occurs over 

time. 

The nuclear DNA results revealed that as PMI increased, the skeletal elements generally 

maintained a comparable rank order as the first phase, though certain bones did not conform to 

this pattern. Consistent with phase one, the first distal hand phalanx maintained relatively high 

yields of DNA while the femur and tibia possessed the lowest (Mundorff & Davoren, 2014). The 

first distal hand phalanx had the highest yields of DNA from six individuals at three different 

PMI ranges. The fourth metacarpal was the highest yielding sample from three individuals, the 

talus was the highest yielding sample from two individuals, and the first cuneiform was the 

highest yielding sample for one individual (Mundorff et al., 2012). Overall, skeletal elements 

predominantly comprised of cortical bone were generally low yielding, with the femur 

possessing the lowest yields from three individuals at three varying PMI ranges, while the tibia 

had the lowest yields for four individuals at three different PMI ranges (Mundorff et al., 2012).  

Skeletal elements that did not consistently conform to the original pattern include a talus 

and a first cuneiform. Counter-intuitively, a talus from 0-3 years PMI revealed ~50% more DNA 

than the first distal hand phalanges, which typically exhibited the highest yield rates overall. 
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Additionally, the first cuneiforms from the 0-3 years PMI range had the lowest average yield, 

although this was likely due to inhibition (Mundorff et al., 2012). All three first cuneiforms from 

this PMI interval, however, produced full sixteen-loci profiles. Interestingly, the 10-20 year PMI 

group had significantly higher DNA yields than the shorter PMI ranges for the majority of 

samples.  

To further the argument that soft tissue between trabeculae of cancellous bone tissue is 

driving higher nuclear DNA yields, it is recommended that all skeletal elements from phase two 

be evaluated using 3D imaging modalities including clinical CT and SR micro-CT. If remaining 

soft tissue is revealed within medullary cavities of bone with differing PMIs, this could aid in 

explaining why the DNA yields observed by Mundorff and Davoren (2014) remained generally 

consistent over time, and strengthen the argument that soft tissue remnants may be driving this 

trend. Future directions stemming from this query will be described in a later section of this 

chapter. 

 The proposed “soft tissue hypothesis”, as an alternative explanation, has forensic 

implications for bone sampling protocols in DVI. An alteration to DNA sampling guidelines is 

proposed that involves the procurement of small, primarily cancellous bones. Though this study 

did not discover a higher density of osteocyte lacunae in cancellous bone tissue as hypothesized, 

the residual soft tissue in the medullary cavities likely contributed to the higher DNA yields 

found by Mundorff and Davoren (2014). As such, removing small elements with high cancellous 

content, thus housing DNA rich soft tissues, offers promise for selecting elements that will yield 

higher quantities of nuclear DNA. These smaller bones are straightforward to remove since they 

can be easily sampled whole in a field or lab setting with the use of a disposable scalpel blade. In 

turn, this protocol would minimize contamination effects, safety hazards, and the time spent 
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recovering samples by forensic personnel (Mundorff et al., 2009).  

As this sampling recommendation depends on the preservation of remaining soft tissues 

within the medullary cavities of bones, it is likely that this hypothesis will not hold true for 

archaeological samples, though further investigation is warranted for confirmation. Over time, 

diagenetic alterations such as microbial degradation and infiltration of soil into medullary 

cavities and cancellous bone tissues will cause deterioration of remaining soft tissues and 

eventually the bone histology. In severely degraded samples, there is often no clear demarcation 

between the cortical and cancellous bone tissues, and internal porosity increases (Turner-Walker 

& Mays, 2008). As this porosity increases, soil and associated bacteria begin infilling the open 

spaces. The concurrent breakdown of bone tissues and invasion of diagenetic agents will result in 

the decomposition of remaining soft tissue remnants. Eventually, distinguishing histological 

features such as osteonal boundaries and circumferential lamellae will be difficult to discern. 

This ‘ghost histology’ can inform understandings of diagenetic processes and their effects on 

bone microarchitecture, but do little to assist in the description of life history or health variables 

related to an individual.  

Hypothesis Four 
 

The relative volumes of cortical and cancellous bone procured by Mundorff and Davoren 
(2014) will vary between sampling sites to achieve the desired testing weight for nuclear 

DNA analysis. 
 
This hypothesis was upheld by quantifying the relative amounts of cortical and 

cancellous bone tissue comprising the 0.2g bone powder sample removed from each sampling 

site. The majority of DNA sampling sites contained between 50-69% cancellous bone, 

suggesting that unequal amounts of cortical and cancellous bone tissues were removed from each 

sampling site to achieve the desired testing weight. Mundorff and Davoren (2014) also noted, 
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“that in most cases, a single hole was sufficient to collect 0.2g of bone powder” (Mundorff & 

Davoren, 2014, p.56), suggesting that an additional sampling site was drilled for certain elements 

to achieve a consistent testing weight. However, the skeletal elements that were sampled more 

than once were not noted. It is plausible that these bones possessed a high cancellous content 

since cancellous bone is porous and lightweight compared to cortical bone (Martin et al., 2015). 

As such, bone- sampling protocol differences between skeletal elements, and the associated soft 

tissues, may be contributing to the high DNA yield from cancellous elements.  

The sampling sites from the top-ranked 34 top skeletal elements (of the 55 tested) 

contained higher amounts of cancellous bone than cortical bone. The assumption that residual 

soft tissue was consistently present in bones with higher cancellous content may explain why the 

sampling sites from the top ranked bones were comprised primarily of cancellous bone. 

Additionally, sampling sites from low ranking skeletal elements, such as the femur, tibia, 

humerus, radius and ulna, were composed entirely of cortical bone. For these specimens, there 

was not ample cancellous bone present for a separate ROI to be assessed, further supporting the 

alternative hypothesis.  

Results of the RM-ANOVAs indicated that cortical and cancellous bone height 

measurements were not significantly different within individuals, and the height and width 

measurements were not significantly different between individuals. This lack of significance may 

be attributable to small sample sizes among groups. Though due to the low degrees of freedom in 

these analyses, increasing the sample size may not have necessarily increased the ability to 

distinguish subtle differences observed in the results (J. Price, personal communication). 

However, the interaction effect for cortical and cancellous height and individual was significant. 

This result indicated that height measurements are dependent on the individual the measurements 
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were retrieved from, but the differences in measurements were not consistent among individuals. 

For example, the sampling sites for individual #3 displayed markedly low cancellous bone height 

measurements. As discussed earlier in this chapter, individual #3 was 69 years old at the time of 

death and age-associated changes were observed in lacunar abundance, density, and canal 

parameters. The decreased cancellous bone height measurements may be attributed to a loss of 

trabecular connectivity and increased porosity of cortical bone associated with age. Human bone 

undergoes a constant process of remodeling throughout life, in which older bone is resorbed and 

replaced with new bone. In younger individuals, these paired processes are balanced. With 

advancing age, however, there is an increase in bone resorption and an overall loss of bone’s 

microarchitectural quality. The modification of cortical bone with age is referred to as 

trabecularization (Zebaze et al., 2009), and this conversion increases the endosteal area and 

displays a decreasing network of interconnecting trabecular struts.  

Despite subtle differences in the cortical and cancellous height and width measures, 

future work is needed to further investigate the observed trends among DNA sampling sites 

using a dataset larger than three individuals. Replicating this study with additional subsets of 

bones (n=120) from the twelve skeletons of increasing PMIs will increase the sample size and 

allow for further 3D visualization and quantification of comparable DNA sampling sites.  

Overall, the above synthesis of hypotheses three and four suggest broader implications of 

this work in a forensic context. General recommendations for the improvement of DNA 

sampling guidelines, and a refined DNA bone sampling guideline, are presented below which in 

turn may inform future forensic identification efforts. 
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General Recommendations for the Improvement of DNA Sampling Guidelines 
 

Results demonstrated that primarily cancellous elements from the Mundorff and Davoren 

(2014) study housed soft tissue within the medullary cavities resulting in higher nuclear DNA 

yields than cortical bone tissues from the same individuals. These findings have significant 

implications in a forensic context since cancellous bone is typically dismissed as a potential 

DNA source in favor of cortical bone. The following section will use the observations made in 

this dissertation to offer several general DNA sampling guidelines and recommendations to 

guide those who plan and implement DVI projects. 

In the last decade, there have been significant changes in MFI management fueled by 

large-scale disasters such as the World Trade Center terrorist attacks, hurricane Katrina (2005), 

and the 2004 Boxing Day tsunami. DVI is a critical part of a response to a mass disaster in order 

to recover, identify and, repatriate all decedents and their associated body parts (Sledzik & 

Rodriguez, 2002). It is a multidisciplinary approach, in which forensic anthropologists currently 

play a critical role (Mundorff et al., 2012).  

In conjunction with changes to mass fatality response protocols, DNA extraction and 

amplification techniques have been improved, especially with regard to the analysis of small and 

degraded samples. Although DNA analysis has become a common tool used in human 

identification, current DVI DNA sampling choices are highly variable, and often customized for 

each unique disaster situation (Mundorff et al., 2009). As described in Chapter 2, there are few 

empirically based studies informing current guidelines that outline DNA sampling 

recommendations following mass fatality incidents. The available DVI manuals provide 

comprehensive information to create a mass disaster response plan, but only general DNA 

sampling guidelines. They do not consistently define, however, how their guidelines can be 
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modified for different disaster situations, and sometimes fail to differentiate between best 

practices and minimum standards. As such, this author aims to present a set of generic DNA 

sampling guidelines for DVI, provide explanations of how they can be modified based on 

various scenarios, discuss considerations for sufficient sample preservation, and suggest 

recommendations for best practices.  

Due to challenging field conditions often encountered in a mass context, and the lack of 

universally applied DNA sampling guidelines, it is not rare to encounter forensic field teams 

working without previously determined tissue extraction protocols (Sledzik & Rodriquez, 2002; 

Milos et al., 2007). In response to this evidence, and the discrepancies evident in mass disaster 

management manuals and DNA sampling guidelines for DVI, a set of generic recommendations 

are presented below for those who intend to rely on DNA as the primary modality of 

identification.  

 

1. Disaster response plans and DVI guides are typically comprehensive and dense, therefore 

it is essential that these manuals be clearly and intuitively organized. As is evident in the 

NIJ manual (2005), poor organization and disorganized appendices lead to a lot of back-

and-forth browsing that is not intuitive. Difficulty in following this material can lead to 

further distress for forensic personnel in mass disaster situations.   

 

2. Responses to mass disaster are multidisciplinary. The various forensic disciplines should 

be adequately represented (if possible) with individual roles and responsibilities defined. 

For example, anthropology and radiology are underrepresented in the NIJ and Interpol 
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manuals, although forensic anthropologists and archaeologists are crucial during victim 

recovery, initial triage, and identification. 

 

3. DNA sampling guidelines should be adaptable to various DVI scenarios such as large- 

and small-scale disasters, open and closed populations, and intact or fragmentary 

remains.  

Most Significant Recommendation for DNA Bone Sampling Guidelines 
 

The most significant recommended alteration to current DNA sampling guidelines is the 

procurement of small, cancellous bones. As demonstrated by Mundorff and Davoren (2014) 

small bones such as hand phalanges, tarsals, and patellae were shown to yield sufficient DNA 

profiles. Though this study did not discover a higher density of osteocyte lacunae in cancellous 

bone tissue as hypothesized, an alternative explanation suggests that remnants of soft tissue 

found in between trabeculae likely contributed to the higher DNA yields found by Mundorff and 

Davoren (2014). As such, removing small elements with higher cancellous content would allow 

for straightforward sample removal since small bones can be easily sampled whole in a field or 

lab setting with the use of a disposable scalpel blade. In turn, this protocol would minimize 

contamination effects from sampling a wedge of cortical bone, safety hazards due to the use of 

an electric saw, and the time spent recovering samples by forensic personnel (Mundorff & 

Davoren, 2014).  
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Caveats and Methodological Limitations 
 

Caveats 
 

In the analyses summarized above, the research hypothesis proposing a link between high 

lacunar density in cancellous bone tissue and DNA yield was not supported. On the statistical 

argument, power analyses may reveal that the sample sizes were insufficient to reach statistical 

significance. Due to the low degrees of freedom in these analyses, increasing the sample size 

may not have necessarily increased the ability to distinguish many of the subtle differences 

observed in the results (J. Price, personal communication). Statistical power is also dependent on 

effect sizes. To reach relatively large effect sizes would require sample sizes much greater than 

the total sample available for this study and even then an increase in sample size is not a 

guarantee for increased effect sizes. 

Methodological Limitations 
 

One of the greatest challenges for the current work was the restricted access to human 

skeletal specimens and synchrotron beam time. In order to accurately illustrate the variation in 

lacunar density among bone tissue types, a dedicated project would be required with a larger 

number of human samples from additional individuals and sufficient beam time.  

A major limitation of the employed SR micro-CT technique is the ratio of field of view to 

image resolution. In order to visualize a sufficient number of lacunae to be biologically and 

statistically relevant some resolution was sacrificed. While the majority of images were clear, 

others displayed artifacts and noise that limited the visibility of microstructural features. Though 

the protocol allowed for visualization of lacunae and other microstructural features, it only 

permitted intermittent quantification of shape parameters. As such, all shape data were removed 
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from the analysis. However, there are other synchrotron facilities that are capable of achieving 

suffice resolution for quantifying shape parameters. For example, imaging of osteocyte density 

and shape was conducted by Carter and colleagues (2013a; 2013b; 2014a) using an established 

protocol at the Advanced Photon Source (APS), Argonne National Laboratory, Il, USA. This 

protocol provided excellent quantitative information, and allowed for short scan times. 

Comparable scans per specimen were achieved in approximately twenty-two minutes (Carter et 

al., 2014b). 

The current study was limited by its focus on three adult male individuals. Human tissue 

procurement for histological analysis is destructive and it is difficult to acquisition a large 

number of specimens for research purposes. However, as a proof of principle study, the results 

from this project justify destructive analysis of a larger dataset to further assess the relationship 

between nuclear DNA yield and bone tissue type. 

Notably, the cortical and cancellous bone ROIs assessed herein only represent portions of 

the entire cross-section of these bone specimens. Despite this limitation, hundreds of thousands 

of lacunae were analyzed with consistent results. This work further highlighted the high variation 

in lacunar populations within human cortical and cancellous bone. Further exploration of the 

variation identified in lacunar abundance and density using a larger sample that is representative 

of the adult male life span will allow for a clearer understanding of lacunar populations.  

Future work should focus on refining bone sampling, imaging, and image-processing 

protocols for cancellous bone for SR micro-CT. Due to the small width of the beam at the BMIT-

ID line, the field of view is limited to 2 mm. As such, the cancellous bone of certain specimens 

did not fit into the field of view. Additional beam time would have permitted for multiple scans 

of a single specimen, allowing for each bone tissue type to be successfully imaged. Embedding 
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tissue specimens may also allow for greater cancellous bone volumes to be visualized. Due to the 

nature of hard-tissue procurement, some trabeculae were broken during sampling. Embedding 

bone blocks in an epoxy resin, however, would likely increase the presence of artifacts in the 

scans (D.M.L. Cooper, personal communication). Later imaging experiments on the BMIT-ID 

line utilized human femoral bone specimens embedded in methylmethacrylate (MMA). This 

technique has been widely used for undecalcified bone tissue for bone histomorphometry in both 

clinical and experimental contexts (Erben, 1997). MMA can also be fully removed from bone 

tissue sections, while epoxy resin cannot. As such, embedding bone in MMA will be considered 

for future research focused on the 3D imaging of cancellous bone. This study aimed to follow the 

methodology outlined by Carter and colleagues (2013a), along with time and budgetary 

constraints, thus embedding in MMA was not carried out.  

Image processing of cancellous bone ROIs was laborious and time consuming. As 

discussed in Chapter 6, CT Analyser and ImageJ software programs were used to segment 3D 

image stacks and separate lacunar spaces from canals and cavity spaces. Issues were encountered 

during cancellous bone processing due to phase fringe (areas of high frequency), as these regions 

often did not contain adequate frequency information. Future work should consider using image-

processing software such as AMIRA (Visage Imaging, Berlin, Germany), or Avizo (Visage 

Imaging, Berlin, Germany) as they may provide more powerful analysis tools than CT Analyser 

and ImageJ.  

Even taking into account the methodological limitations of this study, the results do 

address interpretations of variation in osteocyte lacunar parameters in cortical and cancellous 

bone tissues, providing a basis for further assessment. 
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Future Directions 
 

This dissertation demonstrated differences in lacunar density between human bone tissue 

types on a scale of two comparable ROIs per specimen. Attempts to measure osteocyte lacunar 

parameters beyond abundance, such as morphology and spatial distribution, could not be 

evaluated from the SR micro-CT scans due to resolution limitations at the BMIT-ID line. The 

majority of lacunae had a generally spherical appearance and accurate shape assessments could 

not be quantified from all scans. As such, it would be valuable to assess differences in osteocyte 

lacunar morphology in cortical and cancellous ROIs from individual specimens. Lacunar 

morphology has not been widely studied in either animal or human models. Work by van Hove 

and colleagues (2009) compared diseased human bone samples and found that osteopenic bone 

had relatively large and round lacunae, while lacunae in osteoarthritic bone were large and 

elongated. In an animal model, Vatsa and colleagues (2008) found osteocyte lacunae in the 

fibula, an element experiencing uni-directional loading, were elongated relative to those of the 

cranial vault, a region undergoing multi-directional loading. In each of these studies, the authors 

linked the results to adaptation of the bone matrix due to different external loading conditions. 

Recent work by Carter and colleagues (2013a) revealed differences in lacunar morphology 

between various regions within human femora. The authors revealed more elongated lacunae in 

anterior and posterior regions than in the other segments. 

It would be beneficial to investigate lacunar abundance and density in relation to 

additional microstructural features such as vascular canals, lamellae, and BMUs. Since BMUs 

accomplish bone remodeling, and thus the mechanism for the removal and embedding of 
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osteocytes, description of lacunar parameters around BMUs, may illuminate the relationship 

between remodeling and the osteocyte mechanotransduction system. 

Another topic necessitating further exploration is the reported differences in osteocyte 

lacunar parameters (density, volume, orientation, and morphology) with age between adult 

women and men (Carter et al., 2013b). The Carter and colleagues (2013b) study was limited by a 

lack of specimens representing the female middle-age group. Continuing Carter and colleagues’ 

(2013b) work by expanding the middle-age category would possibly allow for the identification 

of the timing associated with the reduction of osteocyte lacunar volume. Due to the preferential 

bias of particular bone diseases in females, such as osteoporosis, further exploration of age-

associated sex differences in lacunar parameters is warranted. Revealing a sudden decline in 

lacunar volume during middle age may suggest a potential link to menopause, which may have 

implications for selecting possible targets for intervention during menopause linked to the bone 

remodeling process.  

For the results to be better understood and applicable to forensic identification, this study 

will be replicated using the additional subsets of bones (n=120) from the twelve skeletons of 

increasing PMIs selected by Mundorff and Davoren (2014). Findings from bones at increased 

PMIs may clarify the link between residual soft tissue between the trabeculae of cancellous bone 

and higher nuclear DNA yields. Recommendations further include evaluation of all skeletal 

elements from the Mundorff and Davoren (2014) phase two study using 3D imaging modalities 

including clinical CT and SR micro-CT. Revealing residual soft tissue within medullary cavities 

of bone with increased PMIs could aid in explaining why the DNA yield patterns observed by 

Mundorff and Davoren (2014) generally persisted over time.   
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CHAPTER EIGHT: CONCLUSION 
	
  

The overarching goal of this dissertation was to determine whether differences in bone 

microstructure can be used to explain differential nuclear DNA yield among bone tissue types. 

Increased interest in bone cellular properties resulting from the availability of 3D imaging 

modalities, allows researchers to quantify osteocyte lacunar parameters. By employing SR 

micro-CT, this study has been able explore osteocyte lacunar density in representatives of each 

skeletal element type within a single individual and among multiple individuals for the first time. 

The current work raises more questions than it answered. However, the most important 

intellectual contributions of this dissertation are that it: (1) highlights the variance in osteocyte 

lacunar populations within human cortical and cancellous bone tissues, which is an area of 

growing interest due to emerging high-resolution imaging techniques, and (2) provides evidence 

for preferentially sampling bones with primarily cancellous content with associated soft tissue 

remnants in forensic contexts.  

Although the 3D analysis of bone microstructure did not result in a concrete explanation 

for differential DNA yields among bone tissues types, the results encourage further exploration. 

Three research questions were posed in Chapter 1, and conclusions drawn from the current work 

will be briefly summarized in response to these questions.  

How does osteocyte lacunar density and the amount of bone matrix surrounding osteocytes 
compare between cortical and cancellous bone tissue types? 

 
SR micro-CT scans consistently revealed remnants of soft tissue within the medullary 

cavities of bones with high cancellous content, suggesting that the adherent soft tissues 

contributed to higher DNA yields from cancellous bone. A follow-up study using additional 

subsets of bones (n=120) from the twelve skeletons of increasing PMIs will replicate the 
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methodological approaches outlined here to potentially further the evidence supporting this 

hypothesis. Future results may have implications for DNA bone sampling protocols in a forensic 

context. If remaining soft tissue within cancellous bone is driving the high DNA yields, this 

suggests that these elements should be preferentially sampled in cases involving modern skeletal 

remains. 

Can osteocyte lacunar density in cortical and cancellous bone be used to explain 
differential DNA yield?  

 
Osteocyte lacunar density appears to be independent of nuclear DNA yield, as lacunar 

abundance and density was greater overall in cortical bone specimens. Results suggest that an 

alternative explanation exists that describes why Mundorff and Davoren (2014) found elements 

with higher cancellous content to yield greater quantities of nuclear DNA. 

Do the relative volumes of cortical and cancellous bone, procured by Mundorff and 
Davoren (2014), vary between each sampling site procured to achieve the desired testing 

weight for nuclear DNA analysis? 
	
  
 Overall, the amount of cortical and cancellous bone tissues varied between the DNA 

sampling sites procured by Mundorff and Davoren (2014), with increased amounts of cancellous 

bone removed from higher-ranking skeletal elements. This suggests that the sampling protocol 

for cortical and cancellous bone may be contributing to the variation observed in DNA yield 

among skeletal element types. 

Summary 
	
  

Chapter one outlined the rationale for the study, research objectives, questions, and 

hypotheses. The second chapter examined broad issues associated with DNA bone sampling 

protocols in the forensic identification literature, and reviewed previous studies examining DNA 
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yield rate by skeletal element. Chapter three provided a comprehensive overview of basic bone 

biological principles including normal human bone gross composition, histomorphology and 

basic mechanisms of bone turnover. Chapter four introduced 3D imaging modalities as 

alternatives to traditional 2D methods, provided a brief history of the conception of 3D imaging 

techniques, and examined various imaging modalities used in both clinical and anthropological 

research. Chapter five provided details on the skeletal sample chosen for this study and the 

methods involved in preparing bone specimens suitable for the analyses needed to complete the 

project. An overview of the 3D imaging modalities used for data collection and the subsequent 

analyses were also discussed here. Chapter six presented the results. Chapter seven contained a 

discussion that provided perspectives gained from the study and the potential for future research 

as they relate to anthropology and bone biology. Chapter eight concludes the dissertation, 

providing an overview of the results and potential future research directions. 
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APPENDIX A: Raw Data from Clinical CT Scans for Cortical and Cancellous Bone Height 
and Width Measurements. 

 

Table A.1: Individual #1 Average Cortical and Cancellous Measurement Raw Data (mm).  

Skeletal 
Element 

Cortical 
Height 
(mm) 

Cortical 
Width 
(mm) 

Cancellous 
Height 
(mm) 

Cancellous 
Width 
(mm) 

Pubis 7.61 1.68 7.57 6.14 
Ilium 7.46 0.7041 N/A N/A 

Ischium N/A N/A N/A N/A 
Sacrum N/A N/A N/A N/A 
Cuboid 8.45 1.17 8.36 13.75 

Calcaneus 9.12 0.7053 8.98 12.44 
Talus 8.68 0.6539 8.3 13.44 

1st Cuneiform 6.78 0.7753 6.73 6.72 
2nd Cuneiform 7.01 0.7305 7.14 9.26 
3rd Cuneiform 8.38 0.8025 8.77 7.16 

Navicular 9.04 0.8753 6.77 10.18 
Capitate 8.78 0.9638 8.46 6.98 
12th Rib 8.75 1.13 8.74 5.55 
Fibula 8.38 2.3 6.8 3.03 
Femur 8.35 6.03 N/A N/A 
Tibia 7.4 5.71 N/A N/A 

Patella 8.75 0.995 8.63 10.15 
Humerus 9.61 4.97 N/A N/A 

Ulna 6.38 3.99 N/A N/A 
Radius 6.94 3.86 N/A N/A 
Scapula 7.05 1.35 N/A N/A 
Clavicle 6.47 3.37 4.43 6.85 

Cervical Vertebra 9.14 1.29 8.08 4.47 
Lumbar Vertebra 7.21 1.1 7.46 8.71 
Thoracic Vertebra 5.42 0.7476 4.76 6.01 

Frontal 8.16 2.89 5.73 2.15 
Parietal 7.64 1.93 6.22 2.64 

Temporal 9.07 1.06 9.75 8.89 
Maxilla N/A N/A N/A N/A 

Mandible 7.93 2.98 6.76 3.7 
Occipital 7.64 4 N/A N/A 
1st Rib 3.75 1.03 1.9 2.76 

Middle Rib 7.75 0.8787 6.13 3.44 
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Table A.1: (cont). 

Skeletal 
Element 

Cortical 
Height 
(mm) 

Cortical 
Width 
(mm) 

Cancellous 
Height 
(mm) 

Cancellous 
Width 
(mm) 

1st Metatarsal 8.42 2.49 8.1 7.5 
2nd Metatarsal 4.88 1.21 7.66 5.24 
3rd Metatarsal 9.13 2.44 7.92 4.82 
4th Metatarsal 8.69 0.8894 8.57 8.19 

1st Proximal Hand Phalanx 6.94 1.29 6.5 7.46 
1st Distal Foot Phalanx 6.36 1.05 6.41 9.54 

4th Metacarpal 8.41 1.67 7.8 8.05 
2nd Metacarpal 8.51 1.28 7.87 10.97 
3rd Metacarpal 8.63 1.99 8.59 7.52 

1st Proximal Foot Phalanx 7.54 1.66 7.44 8.29 

 

Table A.2: Individual #2 Average Cortical and Cancellous Measurement Raw Data (mm).  

Skeletal 
Element 

Cortical 
Height 
(mm) 

Cortical 
Width 
(mm) 

Cancellous 
Height 
(mm) 

Cancellous 
Width 
(mm) 

Pubis 0.8794 5.97 8.87 8.56 
Ilium 6.29 1.88 N/A N/A 

Ischium 4.04 7.2 9.21 8.2 
Sacrum 5.88 0.791 11.32 9 
Cuboid 5.85 0.9611 8.42 8.55 

Calcaneus 6.87 1.1 7.01 12.85 
Talus 6.74 1.07 9.66 9.32 

1st Cuneiform 7.11 1.26 9.82 8.47 
2nd Cuneiform 5.93 0.5454 6.02 8.46 
3rd Cuneiform 5.84 0.7286 4.48 8.37 

Navicular 7.7 1.27 9.11 8.84 
Capitate 5.4 0.7485 7.76 8.08 
12th Rib N/A N/A N/A N/A 
Fibula 7.73 2.23 N/A N/A 
Femur 7.16 6.21 N/A N/A 
Tibia 6.74 5.11 N/A N/A 

Patella 8.67 0.981 9.01 8.04 
Humerus 6.42 6.61 N/A N/A 

Ulna 8.62 2.6 N/A N/A 
Radius 8.32 3.27 N/A N/A 
Scapula 8.77 1.96 7.62 2.71 
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Table A.2: (cont). 

Skeletal 
Element 

Cortical 
Height 
(mm) 

Cortical 
Width 
(mm) 

Cancellous 
Height 
(mm) 

Cancellous 
Width 
(mm) 

Clavicle 7.45 0.904 7.75 11.29 
Cervical Vertebra 10.94 0.8712 10.08 8.11 
Lumbar Vertebra 9.88 0.8314 15.59 10.7 
Thoracic Vertebra 8.82 6.36 N/A N/A 

Frontal 8.85 3.01 9.17 8.52 
Parietal 7.33 3.67 6.44 2.13 

Temporal 5.73 2.02 4.16 2.94 
Maxilla 10.6 0.6847 10.53 6.97 

Mandible 13.26 4.89 13.95 7.13 
Occipital 5.32 2.78 2.77 1.79 
1st Rib 9.83 3.16 N/A N/A 

Middle Rib 7.8 1.9 7.9 5.45 
1st Metatarsal 6.61 2.22 5.78 5.34 
2nd Metatarsal 7.92 3.56 6.42 5.83 
3rd Metatarsal 7.63 1.78 7.38 4.2 
4th Metatarsal 7.61 1.84 7.97 3.76 

1st Proximal Hand Phalanx 4.69 1.74 5.12 5.4 
1st Distal Foot Phalanx N/A N/A 6.61 5.96 

4th Metacarpal 9.39 1.14 8.82 6.96 
2nd Metacarpal 7.17 1.01 6.91 4.56 
3rd Metacarpal 8.59 1.07 8.61 10.62 

1st Proximal Foot Phalanx 8.63 1.38 8.23 7.33 
Pubis 7.64 1.04 7.73 8.58 
Ilium 6.34 5.82 3.97  

Ischium 7.26 7.32 N/A N/A 

 

Table A.3: Individual #3 Average Cortical and Cancellous Measurement Raw Data (mm).  

Skeletal 
Element 

Cortical 
Height 
(mm) 

Cortical 
Width 
(mm) 

Cancellous 
Height 
(mm) 

Cancellous 
Width 
(mm) 

Pubis 6.88 3.61 7.5 5.69 
Ilium N/A N/A N/A N/A 

Ischium 8.65 1.31 9.43 6.52 
Sacrum 4.77 2.57 8.83 5.68 
Cuboid 9.09 2.28 8.01 9.23 

Calcaneus 9.54 0.4956 9.36 11.92 
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Table A.3: (cont). 

Skeletal 
Element 

Cortical 
Height 
(mm) 

Cortical 
Width 
(mm) 

Cancellous 
Height 
(mm) 

Cancellous 
Width 
(mm) 

Talus 8.97 1.39 8.7 7.15 
1st Cuneiform 6.67 1.36 6.73 7.5 
2nd Cuneiform 9.32 0.6981 9.7 6.96 
3rd Cuneiform 8.78 0.8327 8.65 9.6 

Navicular 9.59 0.8997 9.67 8.6 
Capitate 8.96 0.8764 8.54 6.63 
12th Rib N/A N/A N/A N/A 
Fibula 8.72 4.03 6.34 2.11 
Femur 6.68 5.8 N/A N/A 
Tibia 9.01 5.36 N/A N/A 

Patella 9.75 0.8244 8.35 12.56 
Humerus 8.09 5.14 N/A N/A 

Ulna 7.19 3.43 N/A N/A 
Radius 7.51 4.63 N/A N/A 
Scapula 6.57 0.8943 5.77 7.14 
Clavicle 6.49 0.9546 6.47 8.65 

Cervical Vertebra 6.83 0.883 6.71 8.06 
Lumbar Vertebra 7.86 1.07 6.76 2.52 
Thoracic Vertebra 8.1 1.45 7.76 3.33 

Frontal N/A N/A N/A N/A 
Parietal 9.74 1.36 9.06 6.13 

Temporal 9.06 1.5 8.66 4.45 
Maxilla 5.79 1.54 4.68 1.73 

Mandible 8.46 1.76 9.44 1.99 
Occipital 9.59 0.9892 9.22 6.39 
1st Rib 9.18 1.59 8.7 8.15 

Middle Rib 8.61 1.32 8.32 4.45 
1st Metatarsal 9.05 1.87 9.31 4.15 
2nd Metatarsal 7.74 1.16 7.95 6.85 
3rd Metatarsal 5.98 0.8327 7.35 4.4 
4th Metatarsal 7.86 0.6728 7.3 2.49 

1st Proximal Hand Phalanx 9.15 0.6705 8.03 3.93 
1st Distal Foot Phalanx 6.74 1.04 6.44 8.71 

4th Metacarpal 6.82 1.75 6.28 9.03 
2nd Metacarpal 11.27 1.06 10.15 7.07 
3rd Metacarpal N/A N/A 6.5 7.25 
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APPENDIX B: Quantitative Results of the Individual Object Analysis for Cortical and 
Cancellous Bone ROIs. 

 

Table B.1: Quantitative Results for the Morphological Parameters of Osteocyte Lacunae from 
Cortical Bone ROIs. 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

Canal 
Diameter 

µm 

Canal 
Volume 

mm3 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar 
Density 

(N.Lc/BV) 
mm3 

Pubis #1 0.19 52 0.08 4138 231 21778.947
37 

#3 0.17 62 0.1 3128 216 18400 
#2 0.2 48 0.07 4405 274 22025 

Ilium #1 0.21 42 0.06 4872 295 23200 
#3 0.18 58 0.09 3505 206 19472.222

22 
#2 0.22 51 0.05 5328 318 24218.181

82 
Ischium #1 0.19 47 0.08 4308 265 22673.684

21 
#3 0.17 59 0.1 3149 240 18523.529

41 
#2 0.2 53 0.07 3910 275 19550 

Sacrum #1 0.21 50 0.06 4128 269 19657.142
86 

#3 0.17 62 0.1 3004 240 17670.588
24 

#2 0.2 48 0.07 4254 308 21270 
Cuboid #1 0.2 56 0.07 4228 279 21140 

#3 0.14 61 0.13 2671 214 19078.571
43 

#2 0.19 47 0.08 4501 230 23689.473
68 

Calcaneus #1 0.19 51 0.08 2682 277 14115.789
47 

#3 0.17 60 0.1 1856 256 10917.647
06 

#2 0.2 47 0.07 1628 293 8140 
Talus #1 0.21 52 0.06 2401 260 11433.333

33 
#3 0.17 63 0.1 1503 256 8841.1764

71 
#2 0.2 48 0.07 2612 277 13060 
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Table B.1: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

Canal 
Diameter 

µm 

Canal 
Volume 

mm3 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar 
Density 

(N.Lc/BV) 
mm3 

1st 
Cuneiform 

#1 0.19 47 0.08 2109 233 11100 
#3 0.12 63 0.15 1083 201 9025 
#2 0.2 50 0.07 2517 301 12585 

2nd 
Cuneiform 

#1 0.2 48 0.07 2231 215 11155 
#3 0.13 63 0.14 1192 212 9169.2307

69 
#2 0.19 52 0.08 2302 239 12115.789

47 
3rd 

Cuneiform 
#1 0.19 50 0.08 2221 265 11689.473

68 
#3 0.14 60 0.13 1173 221 8378.5714

29 
#2 0.2 47 0.07 2517 298 12585 

Navicular #1 0.19 52 0.08 2121 233 11163.157
89 

#3 0.17 63 0.1 1611 206 9476.4705
88 

#2 0.2 48 0.07 2541 280 12705 
Capitate #1 0.19 47 0.08 1998 265 10515.789

47 
#3 0.17 64 0.1 2383 221 14017.647

06 
#2 0.22 42 0.05 2679 327 12177.272

73 
Twelfth 

Rib 
#1 0.19 48 0.08 3021 278 15900 
#3 0.15 55 0.12 2043 261 13620 
#2 0.21 47 0.06 3498 274 16657.142

86 
Fibula #1 0.2 43 0.07 5249 282 26245 

#3 0.11 57 0.16 2908 254 26436.363
64 

#2 0.2 40 0.07 5103 311 25515 
Femur #1 0.18 47 0.09 5308 237 29488.888

89 
#3 0.11 66 0.16 2871 229 26100 
#2 0.19 41 0.08 6721 227 35373.684

21 
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Table B.1: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

Canal 
Diameter 

µm 

Canal 
Volume 

mm3 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar 
Density 

(N.Lc/BV) 
mm3 

Tibia #1 0.18 47 0.09 4237 260 23538.888
89 

#3 0.13 66 0.14 2492 240 19169.230
77 

#2 0.19 41 0.08 5539 226 29152.631
58 

Patella #1 0.18 50 0.09 3872 231 21511.111
11 

#3 0.09 67 0.18 1781 216 19788.888
89 

#2 0.2 42 0.07 4937 274 24685 
Humerus #1 0.2 41 0.07 5262 231 26310 

#3 0.15 61 0.12 3290 216 21933.333
33 

#2 0.21 39 0.06 6318 274 30085.714
29 

Ulna #1 0.2 66 0.07 5237 231 26185 
#3 0.15 41 0.12 3322 216 22146.666

67 
#2 0.22 47 0.05 6139 274 27904.545

45 
Radius #1 0.19 66 0.08 5877 231 30931.578

95 
#3 0.14 41 0.13 3823 216 27307.142

86 
#2 0.21 47 0.06 7102 274 33819.047

62 
Scapula #1 0.18 53 0.09 5105 231 28361.111

11 
#3 0.11 67 0.16 2828 216 25709.090

91 
#2 0.21 49 0.06 6948 274 33085.714

29 
Clavicle #1 0.22 66 0.05 5229 231 23768.181

82 
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Table B.1: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

Canal 
Diameter 

µm 

Canal 
Volume 

mm3 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar 
Density 

(N.Lc/BV) 
mm3 

 #2 0.16 41 0.11 3221 216 20131.25 
#3 0.24 47 0.03 7028 274 29283.333

33 
Cervical 
Vertebra 

#1 0.2 50 0.07 4028 231 20140 
#3 0.07 67 0.2 1238 216 17685.714

29 
#2 0.21 42 0.06 4891 274 23290.476

19 
Lumbar 
Vertebra 

#1 0.2 50 0.07 3971 231 19855 
#3 0.07 67 0.2 1192 216 17028.571

43 
#2 0.21 42 0.06 5392 274 25676.190

48 
Thoracic 
Vertebra 

#1 0.19 50 0.08 5271 231 27742.105
26 

#3 0.11 67 0.16 2323 216 21118.181
82 

#2 0.21 42 0.06 6091 274 29004.761
9 

Frontal #1 0.21 50 0.06 4291 231 20433.333
33 

#3 0.18 67 0.09 3405 216 18916.666
67 

#2 0.23 45 0.04 7128 274 30991.304
35 

Parietal #1 0.21 40 0.06 4827 231 22985.714
29 

#3 0.18 62 0.09 3241 216 18005.555
56 

#2 0.2 52 0.07 6405 274 32025 
Temporal #1 0.22 51 0.05 4210 231 19136.363

64 
#3 0.17 57 0.1 2303 216 13547.058

82 
#2 0.19 58 0.08 4691 274 24689.473

68 
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Table B.1: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

Canal 
Diameter 

µm 

Canal 
Volume 

mm3 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar 
Density 

(N.Lc/BV) 
mm3 

Maxilla #1 0.19 46 0.08 3520 231 18526.315
79 

#3 0.13 61 0.14 2072 216 15938.461
54 

#2 0.2 42 0.07 4728 274 23640 
Mandible #1 0.2 42 0.07 5539 231 27695 

#3 0.18 58 0.09 4298 216 23877.777
78 

#2 0.23 39 0.04 6135 274 26673.913
04 

Occipital #1 0.22 50 0.05 6608 231 30036.363
64 

#3 0.19 67 0.08 4092 216 21536.842
11 

#2 0.23 42 0.04 6632 274 28834.782
61 

First Rib #1 0.19 48 0.08 5405 231 28447.368
42 

#3 0.13 55 0.14 2837 216 21823.076
92 

#2 0.21 47 0.06 4824 274 22971.428
57 

Middle 
Rib 

#1 0.2 48 0.07 6174 231 30870 
#3 0.15 55 0.12 3328 216 22186.666

67 
#2 0.19 47 0.08 4848 274 25515.789

47 
Metatarsa

l 1 
#1 0.21 47 0.06 5823 231 27728.571

43 
#3 0.17 63 0.1 4327 216 25452.941

18 
#2 0.21 50 0.06 6830 274 32523.809

52 
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Table B.1: (cont). 
Element 

Type 
Resear

ch # 
Bone 

Volume 
(TV-
Ca.V) 

Canal 
Diameter 

µm 

Canal 
Volume 

mm3 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar 
Density 

(N.Lc/BV) 
mm3 

Metatarsal 
2 

#1 0.2 47 0.07 5763 231 28815 
#3 0.14 63 0.13 3109 216 22207.142

86 
#2 0.21 50 0.06 6780 274 32285.714

29 
Metatarsal 

3 
#1 0.2 47 0.07 6763 231 33815 
#3 0.15 63 0.12 3829 216 25526.666

67 
#2 0.21 50 0.06 7339 274 34947.619

05 
Metatarsal 

4 
#1 0.21 47 0.06 8028 231 38228.571

43 
#3 0.17 63 0.1 5139 216 30229.411

76 
#2 0.2 50 0.07 6983 274 34915 

First 
Proximal 

Hand 
Phalanx 

#1 0.19 54 0.08 4702 231 24747.368
42 

#3 0.14 68 0.13 2980 216 21285.714
29 

#2 0.22 48 0.05 6102 274 27736.363
64 

First Distal 
Hand 

Phalanx 

#1 0.18 55 0.09 8405 231 46694.444
44 

#3 0.14 67 0.13 2174 216 15528.571
43 

#2 0.23 46 0.04 2830 274 12304.347
83 

First Distal 
Foot 

Phalanx 

#1 0.21 50 0.06 5305 231 25261.904
76 

#3 0.15 67 0.12 2790 216 18600 
#2 0.22 42 0.05 6002 274 27281.818

18 
Metacarpal 

4 
#1 0.22 51 0.05 5827 231 26486.363

64 
#3 0.18 60 0.09 3801 216 21116.666

67 
#2 0.23 42 0.04 6839 274 29734.782

61 
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Table B.1: (cont). 
Element 

Type 
Resear

ch # 
Bone 

Volume 
(TV-
Ca.V) 

Canal 
Diameter 

µm 

Canal 
Volume 

mm3 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar 
Density 

(N.Lc/BV) 
mm3 

Metacarpal 
2 

#1 0.2 50 0.07 6963 231 34815 
#3 0.17 67 0.1 4092 216 24070.588

24 
#2 0.23 42 0.04 8339 274 36256.521

74 
Metacarpal 

3 
#1 0.2 50 0.07 6763 231 33815 

 #3 0.17 67 0.1 6029 216 35464.705
88 

 #2 0.23 42 0.04 6436 274 27982.608
7 

First 
Proximal 

Foot 
Phalanx 

#1 0.2 55 0.07 4192 231 20960 

 #3 0.12 70 0.15 2492 216 20766.666
67 

 #2 0.22 48 0.05 5322 274 24190.909
09 

 

Table B.2: Quantitative Results for the Morphological Parameters of Osteocyte Lacunae from 
Cancellous Bone ROIs. 

Element 
Type 

Research 
# 

Bone 
Volume 

(TV-
Ca.V) 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar Density 
(N.Lc/BV) mm3 

Pubis #1 0.18 2282 163 12677.77778 
#3 0.17 1242 139 7305.882353 
#2 0.2 2717 201 13585 

Ilium #1 0.21 2082 163 9914.285714 
#3 0.18 1042 139 5788.888889 
#2 0.21 1991 201 9480.952381 

Ischium #1 0.2 1912 152 9560 
#3 0.18 1313 120 7294.444444 
#2 0.2 2874 198 14370 
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Table B.2: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar Density 
(N.Lc/BV) mm3 

Sacrum #1 0.2 1967 149 9835 
#3 0.17 1013 98 5958.823529 
#2 0.19 2014 167 10600 

Cuboid #1 0.2 2015 168 10075 
#3 0.17 1213 117 7135.294118 
#2 0.19 2072 156 10905.26316 

Calcaneus #1 0.19 1998 152 10515.78947 
#3 0.15 1116 120 7440 
#2 0.18 2762 198 15344.44444 

Talus #1 0.2 1962 187 9810 
#3 0.18 1290 111 7166.666667 
#2 0.2 2099 166 10495 

1st 
Cuneiform 

#1 0.2 1761 132 8805 
#3 0.17 1047 143 6158.823529 
#2 0.21 2128 170 10133.33333 

2nd 
Cuneiform 

#1 0.2 1821 162 9105 
#3 0.17 1102 113 6482.352941 
#2 0.22 2218 184 10081.81818 

3rd 
Cuneiform 

#1 0.2 2727 195 13635 
#3 0.17 993 98 5841.176471 
#2 0.21 2998 204 14276.19048 

Navicular #1 0.2 2768 197 13840 
#3 0.17 1283 128 7547.058824 
#2 0.21 3113 297 14823.80952 

Capitate #1 0.18 2292 180 12733.33333 
#3 0.15 1690 147 11266.66667 
#2 0.21 2982 201 14200 

Twelfth 
Rib 

#1 0.19 2093 164 11015.78947 
#3 0.14 1222 111 8728.571429 
#2 0.19 2880 201 15157.89474 

Fibula #1 0.2 N/A N/A N/A 
#3 0.17 N/A N/A N/A 
#2 0.19 N/A N/A N/A 
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Table B.2: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar Density 
(N.Lc/BV) mm3 

Femur #1 0.21 N/A N/A N/A 
#3 0.18 N/A N/A N/A 
#2 0.21 N/A N/A N/A 

Tibia #1 0.21 N/A N/A N/A 
#3 0.15 N/A N/A N/A 
#2 0.22 N/A N/A N/A 

Patella #1 0.18 2352 184 13066.66667 
#3 0.12 1392 137 11600 
#2 0.19 2865 196 15078.94737 

Humerus #1 0.21 N/A N/A N/A 
#3 0.18 N/A N/A N/A 
#2 0.22 N/A N/A N/A 

Ulna #1 0.21 N/A N/A N/A 
#3 0.18 N/A N/A N/A 
#2 0.23 N/A N/A N/A 

Radius #1 0.19 N/A N/A N/A 
#3 0.17 N/A N/A N/A 

 #2 0.21 N/A N/A N/A 
Scapula #1 0.18 2612 204 14511.11111 

#3 0.13 1347 139 10361.53846 
#2 0.23 3210 274 13956.52174 

Clavicle #1 0.2 2437 193 12185 
#3 0.12 1063 120 8858.333333 
#2 0.22 3201 273 14550 

Cervical 
Vertebra 

#1 0.19 1788 167 9410.526316 
#3 0.07 534 92 7628.571429 
#2 0.21 2219 187 10566.66667 

Lumbar 
Vertebra 

#1 0.2 1823 173 9115 
#3 0.06 462 84 7700 
#2 0.21 1987 149 9461.904762 

Thoracic 
Vertebra 

#1 0.19 1523 160 8015.789474 
#3 0.1 561 81 5610 
#2 0.21 1903 168 9061.904762 
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Table B.2: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar Density 
(N.Lc/BV) mm3 

Frontal #1 0.2 N/A N/A N/A 
#3 0.21 N/A N/A N/A 
#2 0.18 N/A N/A N/A 

Parietal #1 0.22 2381 187 10822.72727 
#3 0.2 1792 171 8960 
#2 0.17 2210 183 13000 

Temporal #1 0.22 N/A N/A N/A 
#3 0.19 N/A N/A N/A 
#2 0.17 N/A N/A N/A 

Maxilla #1 0.18 1842 184 10233.33333 
#3 0.09 1082 122 12022.22222 
#2 0.19 3217 216 16931.57895 

Mandible #1 0.2 N/A N/A N/A 
#3 0.17 N/A N/A N/A 
#2 0.21 N/A N/A N/A 

Occipital #1 0.21 N/A N/A N/A 
#3 0.18 N/A N/A N/A 
#2 0.22 N/A N/A N/A 

First Rib #1 0.19 2113 170 11121.05263 
 #2 0.15 1421 154 9473.333333 
 #3 0.21 2760 205 13142.85714 

Middle 
Rib 

#1 0.19 2183 178 11489.47368 

 #3 0.14 1149 216 8207.142857 
 #2 0.2 2908 216 14540 

Metatarsal 
1 

#1 0.21 2238 180 10657.14286 

 #3 0.16 1139 125 7118.75 
 #2 0.22 2863 176 13013.63636 

Metatarsal 
2 

#1 0.2 2390 188 11950 

 #3 0.16 1247 149 7793.75 
 #2 0.22 2991 217 13595.45455 
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Table B.2: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar Density 
(N.Lc/BV) mm3 

Metatarsal 
3 

#1 0.2 2103 169 10515 

 #3 0.15 1201 127 8006.666667 
 #2 0.21 2672 195 12723.80952 

Metatarsal 
4 

#1 0.2 2509 193 12545 

 #3 0.14 1139 137 8135.714286 
 #2 0.21 2761 205 13147.61905 

First 
Proximal 

Hand 
Phalanx 

#1 0.2 2209 173 11045 

 #3 0.12 851 77 7091.666667 
 #2 0.21 2686 194 12790.47619 

First Distal 
Hand 

Phalanx 

#1 0.19 2233 172 11752.63158 

 #3 0.11 782 79 7109.090909 
 #2 0.2 2686 197 13430 

First Distal 
Foot 

Phalanx 

#1 0.21 1973 185 9395.238095 

 #3 0.12 452 70 3766.666667 
 #2 0.2 2008 162 10040 

Metacarpal 
4 

#1 0.19 2098 169 11042.10526 

 #3 0.17 1382 144 8129.411765 
 #2 0.21 2902 215 13819.04762 

Metacarpal 
2 

#1 0.19 2109 170 11100 

 #3 0.15 1198 141 7986.666667 
 #2 0.2 1262 151 6310 

Metacarpal 
3 

#1 
 

0.21 2065 170 9833.333333 

 #2 0.16 1207 143 7543.75 
 #3 0.2 2096 167 10480 
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Table B.2: (cont). 
Element 

Type 
Research 

# 
Bone 

Volume 
(TV-
Ca.V) 

# of 
Lacunae 
(N.Lc) 

Lacunar 
Volume 

µm3 

Lacunar Density 
(N.Lc/BV) mm3 

First 
Proximal 

Foot 
Phalanx 

#1 0.2 2004 161 10020 

 #3 0.13 1017 124 7823.076923 
 #2 0.21 2121 172 10100 
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APPENDIX C: Descriptive Statistics and Normality Tests for Clinical CT and SR micro-
CT datasets. 

	
  

Table C.1: Means and Standard Deviations for Cortical and Cancellous Bone Height 
Measurements Calculated from the Clinical CT Scans. 

Variable Individual n Mean St.Dev 

Average Cortical 
Bone Height 

(mm) 

#1 33 8.1993 1.453593 
#2 33 7.6052 1.82317 
#3 32 7.8055 1.31113 

Average 
Cancellous Bone 

Height (mm) 

#1 33 8.0050 1.32470 
#2 33 8.1703 2.53998 
#3 32 7.2916 1.56041 

 
 

Table C.2: Means and Standard Deviations for Cortical and Cancellous Bone Width 
Measurements Calculated from the Clinical CT Scans. 

Variable Individual n Mean St.Dev 

Average Cortical 
Bone Width 

(mm) 

#1 33 1.3801 0.78390 
#2 33 1.6568 1.09018 
#3 32 1.4383 0.73980 

Average 
Cancellous Bone 

Width (mm) 

#1 33 6.3566 2.74554 
#2 33 7.1835 2.66714 
#3 32 6.9266 2.83561 

 
 

Table C.3: Descriptive Statistics for Lacunar Parameters. 

 n Minimum Maximum Mean St. Dev 
Statistic Statistic Statistic Statistic Std. Error Statistic 

N.Lc Cortical 
Bone 132 1083 8405 4274.50 154.088 1770.34 

N.Lc Cancellous 
Bone 102 452 6217 1961.03 80.3374 811.37 

N.Lc/BV  
Cortical Bone 132 8140 46694.44 22723.32 647.73 7441.88 
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Table C.3: (cont). 

 n Minimum Maximum Mean St. Dev 
Statistic Statistic Statistic Statistic Std. Error Statistic 

N.Lc/BV  
Cancellous Bone 102 3766.67 32721.05 10542.87 340.62 3440.09 

Lc.V Cortical 
Bone 132 201 327 245.93 2.495 28.66 

Lc.V Cancellous 
Bone 102 70 297 164.431 4 40.45 

Ca.Dm Cortical 
Bone 132 39 70 52.49 0.748 8.589 

Ca.V Cortical 
Bone 132 0.03 0.20 0.0851 0.00294 0.03378 

 
 

Tests of Normality 
 

Table C.4: Kolmogorov-Smirnov Test for Normality for Cortical and Cancellous Bone Height 
and Width Measurements. 

 Kolmogorov-Smirnov 
Statistic df Sig. 

Cortical Bone Height 
(mm) 0.099 98 0.020 

Cancellous Bone 
Height (mm) 0.087 98 0.067 

Cortical Bone Width 
(mm) 0.189 98 0.000 

Cancellous Bone 
Width (mm) 0.071 98 0.200 

 
 
Table C.5: Kolmogorov-Smirnov Test for Normality for Average Cortical and Cancellous 
Measurements (mm) and Nuclear DNA Data (ng/g). 

 Kolmogorov-Smirnov 
Statistic df Sig. 

Average Cortical 
Bone Volume (mm) 0.118 38 0.200 

Average Cancellous 
Bone Volume (mm) 0.183 38 0.003 

Nuclear DNA Data 
(ng/g) 0.194 38 0.001 
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Table C.6: Kolmogorov-Smirnov Test for Normality for N.Lc. 

 Kolmogorov-Smirnov 
Statistic df Sig. 

N.Lc Cortical Bone 0.075 132 0.068 
N.Lc Cancellous Bone 0.145 132 0.000 

	
  

Table C.7: Kolmogorov-Smirnov Test for Normality for N.Lc/BV. 

 Kolmogorov-Smirnov 
Statistic df Sig. 

N.Lc/BV  
Cortical Bone 0.058 132 0.200 

N.Lc/BV  
Cancellous Bone 0.163 132 0.000 

 

Table C.8: Kolmogorov-Smirnov Test for Normality for Lc.V. 

 Kolmogorov-Smirnov 
Statistic df Sig. 

Lc.V Cortical Bone 0.229 132 0.000 
Lc.V Cancellous Bone 0.176 132 0.000 

 
 

Table C.9: Kolmogorov-Smirnov Test for Normality for Average Cortical and Cancellous 
Measurements (mm) and Nuclear DNA Data (ng/g). 

 Kolmogorov-Smirnov 
Statistic df Sig. 

Average Cortical 
Bone N.Lc 0.097 34 0.200 

Average Cancellous 
Bone N.Lc  0.092 34 0.200 

Average Cortical 
Bone N.Lc/BV (mm3) 0.125 34 0.195 

Average Cancellous 
Bone N.Lc/BV (mm3) 0.129 34 0.167 

Nuclear DNA Data 
(ng/g) 0.208 34 0.001 
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Table C.10: Kolmogorov-Smirnov Test for Normality for Ca.Dm and Ca.V. 

 Kolmogorov-Smirnov 
Statistic df Sig. 

Ca.Dm Cortical Bone 0.160 132 0.000 
Ca.V Cortical Bone 0.196 132 0.000 

 
 

Table C.11: Levene’s Tests of Equality of Variances for Ca.Dm and Ca.V. 
Variable F df1 df2 Sig. 

Ca.Dm Cortical Bone 1.210 2 129 0.302 
Ca.V Cortical Bone 3.193 2 129 0.283 
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