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Chapter I. Introduction to basic chemotaxis machinery and b-
galactosidase assaying 

 

Chemotactic signal cascades 

As a survival mechanism, motile bacteria possess the ability to sense chemical gradients 

in their environments and bias their movements accordingly. This biased movement allows 

bacteria to flock to beneficial, potentially 

metabolizable stimuli (attractants) or flee 

from harmful substances (repellants). The 

mechanism by which this biased 

movement, this chemotaxis, occurs centers 

around a phosphorelay signal cascade 

comprised of transmembrane 

chemoreceptors (MCPs), a baseplate array 

composed of multiple adapter proteins 

(CheW) and histidine-aspartate kinases 

(CheA), and a response regulator (CheY) 

directly interfacing with flagellar motor 

machinery (Wadhams et al. 2004). Ligand 

binding to chemoreceptors induces a 

conformational change in the MCPs 

triggering CheA autophosphorylation. 

Phosphorylated CheA’s phosphate group is 

then transferred by its kinase activity to the response regulatory CheY. Phosphorylated CheY 

Figure 1. Basic chemotactic machinery including 
chemoreceptor MCPs, kinase molecule CheA, adapter 
protein CheW, response regulator CheY, as well as 
molecules not discussed CheR, CheZ, and CheB 
(Wadhams et al. Figure 2) 



	

	

Hubler	4	

binds to the flagellar motor protein FliM, and subsequent reactions result in the switching of 

flagellar rotation causing the cell to “tumble.” When the cell senses through this tactic response 

that it is swimming toward beneficial chemicals, flagellar reversal occurs less frequently 

resulting in longer, straighter swimming paths. Conversely, if the motile cell swims past the 

positive source, the flagellar reversal frequency increases resulting in more frequent “tumbling” 

and reorientation. This research project centers around characterization of two distinct aspects of 

the chemotactic machinery in the model bacterium Azospirillum brasilense. A. brasilense 

chemotaxis signal transduction machinery is significantly more complex than that of E.coli and 

is representative of the complexity seen in the predicted chemotaxis systems in soil bacteria. 

BACTH assay 

Testing protein-protein interaction aids in elucidating functionality of novel domains or 

modeling organization of known domains (both explored in this project). Both qualitative and 

quantitative protein-protein interaction assays were used. To qualify protein interactions 

concerning chemotactic machinery, a bacterial adenylate cyclase two-hybrid (BACTH) system 

developed by Euromedex was used. Specialized for membrane-bound domains, the BACTH 

assay utilizes the interaction-dependent two-component reconstitution of the adenylate cyclase 

(CyaA) isozyme from Bordetella pertussis. The enzyme is inactive when the two fragments T25 

and T18 are separated, but reconstitution restores activity and produces cyclic-AMP. The 

resulting cAMP binds to the catabolite activator protein (CAP), which in turn binds the promoter 

site on the lac operon, inducing transcription. By fusing two proteins X and Y to the 

complementary fragments, these proteins’ interaction may be characterized based upon the 

activity of the lac operon.  
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The two vectors used in testing protein-protein interactions were kanamycin-resistant, 

low-copy pKNT25 and carbenicillin-resistant, high-copy pUT18 with both plasmids’ multiple 

cloning sites directly upstream from the cyclase fragments. By cloning the desired genes into the 

vectors, coexpression of the plasmids following cotransformation into competent cells allows for 

the testing of interaction. Ligated vectors pKTN25X or pUT18Y were transformed into XL1-

blue competent cells, and subsequently the two isolated vectors were cotransformed into 

BTH101 competent cells. The interaction between proteins 

X and Y may be qualified through screening for lactose 

utilization on lactose enriched MacConkey agar. Colonies 

able to utilize lactose (i.e. colonies in which CyaA 

reconstitutes) develop a pink color compared to opaque 

colonies in the null population. MacConkey agar contains 

the pH indicator phenol red, which under acidic conditions turns a pink color. Catabolism of 

lactose depends on a functional CyaA, and thus only CyaA reconstitution produces a functional 

Figure 2. Reconstitution of CyaA’s chimeric T25 and T18 fragments results in 
the CAP-mediated promotion of the lac operon 

Figure 3. Positively interacting 
colonies grown on lactose enriched 
MacConkey agar show pink (left) 
compared to opaque, null colonies. 
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enzyme that allows lactose metabolism and the acidification of surrounding media, prompting 

the development of the pink color. 

b-galactosidase assay 

 Following qualitative evaluation of protein-protein interactions through visual inspection 

of BACTH colonies, the same lac operon may be utilized to quantify the strength of protein-

protein interaction. As the BACTH centered around lactose metabolism, b-galactosidase assays 

quantify protein-protein interaction through measurement of lacZ expression using b-

galactosidase activity as a reporter. By inoculating cultures of colonies from the BACTH assay 

into liquid media and introducing a fluorescent substrate, the strength of interaction between the 

two sample proteins is derived by measuring the b-galactosidase activity. For this b-

galactosidase assay, 4-methylumbelliferyl b-D-galactopyranoside (MUG) was used. This 

substrate, when cleaved by b-galactosidase, yields galactose and 4-methylumbelliferone, a 

fluorophore that absorbs light at approximately 360 nm and emits at 440 nm. The fluorescence of 

the sample, therefore, is directly correlated to b-galactosidase activity (i.e. lac operon output) 

and thus, protein-protein interaction strength (Ramsay 2013).  

Chapter II. Characterizing novel domain TMX 

Introduction 

 Chemotaxis is present throughout motile bacteria. Azospirillum brasilense is a 

rhizospheric bacterium that utilizes chemotaxis to move toward and ultimately colonize roots of 

cereals, providing a commensal benefit to the plant. A. brasilense possesses four distinct 

chemotactic operons (Che1, 2, 3, and 4), each encoding putative chemotaxis systems with 

distinct signaling outputs, two of which are not related to chemotaxis. Two chemotaxis operons 

were previously shown to be essential for chemotaxis: Che1 affects transient changes in cell 
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swimming speed (Bible et al. 2012), while Che4 modulates transient changes in the flagellar 

reversal frequency (Mukherjee et al. 2016). Examination of the Che1 pathway led to the 

discovery of a novel, seven-pass transmembrane protein domain (hence referred to as TMX) 

fused to the chemotaxis histidine-aspartate kinase, named CheA1. Since prototypical chemotaxis 

histidine kinases are soluble proteins, the fusion of CheA1 to TMX would restrict the protein to 

the membrane. Recent work (Gullett et al. 2017) showed that the fusion of TMX to the histidine 

kinase is a recent evolutionary event with TMX having no observable function in chemotaxis. In 

that study, CheA1 was also shown to be produced in two isoforms, a soluble isoform that 

functions as a prototypical chemotaxis signal transduction protein and a membrane-anchored 

isoform, the function of which is not known. In this project, the goal is to elucidate the protein-

protein interactions network this protein (CheA1) and TMX are involved in. Intriguingly, TMX 

is a conserved protein in bacteria with most species having a single copy of this gene. 

 Previous work (Gullett, unpublished) showed that TMX mutant strains had membranes 

that were more rigid than the membrane of the wild type, with the mutant cells unable to adjust 

fluidity with changes in temperatures, implicating TMX in homeoviscous adaptation. When 

temperature increases or decreases, fluidity of the membrane must adapt to remain functional. 

This is achieved through several mechanisms 

that lead to changes in the composition of the 

membrane. An optimal fluidity lies between 

staunch rigidity and porous permeability, and 

corresponds to the process of homeoviscous 

adaptation that refers to the mechanism by 

which cells maintain membrane fluidity 
Figure 4. Altering acyl chain length and saturation 
affects membrane fluidity in response to external 
stimuli (Biological membranes 1998). 
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optimal with changing environmental conditions. When temperature increases, the membrane 

tends to become increasingly fluid causing the composition of the membrane to change in order 

to increase rigidity to compensate for this effect.  Conversely, when the temperature falls, cells 

must shift toward more fluid membranes to maintain membrane function. Cells can control the 

fluidity of the membrane by changing both the chain length and saturation of fatty acid tails as 

well as changing the polar head group of the phospholipid (only the former two will be 

examined). Increasing the chain length or saturation of fatty acid tails cause the phospholipids to 

pack together, resulting in a more rigid membrane. Conversely, shorter, unsaturated fatty acid 

tails decrease Van der Waals forces between acyl chains, creating a more fluid membrane.  

Further evidence supporting TMX’s involvement in homeoviscous adaptation is its 

presence in the same regulon as the fatty acid biosynthetic (Fab) genes. Eight Fab genes are 

present in model E. coli (the model used in this project): FabA, B, D, F, G, H, I, and Z (Ernst et 

al. 2016). Each Fab gene controls various steps during fatty acid biosynthesis, including chain 

initiation, elongation, desaturation, and shuttling the fatty acid chain for introduction into the 

membrane. Furthermore, analysis of the phospholipids and fatty acid composition of a wild type 

strain of Escherichia coli and its derivative in which TMX encoding gene was deleted 

determined that fatty acid chain lengths and not phospholipids were affected by the mutation, 

suggesting a role for TMX in fatty acid biosynthesis. By affecting fatty acid biosynthesis, TMX 

could influence the composition of the membrane, and thus altering its fluidity. To further 

characterize the role of TMX in fatty acids biosynthesis, TMX interactions with the eight Fab 

proteins were tested using the BACTH and b-galactosidase assays. 

Materials and Methods 
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 In characterizing TMX, the BACTH assay was used to qualify its interactions with the 

Fab proteins. The positive control consisted of the interaction between pKNT25-zip and pUT18-

zip. For both vectors, a leucine zipper is fused in frame with the CyaA fragment, and the leucine 

zipper dimerization results in reconstitution and a functional CyaA. The negative control 

consisted of the two empty vectors pKNT25 and pUT18. 

Transformation into competent XL1-Blue cells. After cloning the respective genes into 

the vectors pKNT25 and pUT18, the plasmids were transformed into chemically competent 

XL1-Blue cells by first adding the entirety of ligation product into 50 µL competent XL1-blue 

cells on ice and chilling the plasmid/cell mixture for thirty minutes. The contents were heat 

shocked at 42°C for forty-five seconds, and then replaced on ice for two minutes. 1 mL fresh LB 

liquid was added to each mixture, and the cells were shaken for one hour at 37°C. After growing, 

the cells were centrifuged at 8000 RPMs for three minutes, and 850 µL of the supernatant was 

discarded. The remaining cells were resuspended and plated on LB solid agar plates. XL1-blue 

cells transformed with pKNT25X were plated on LB plates treated with kanamycin (50 µg/mL), 

and those transformed with pUT18Y were plated on LB plates treated with carbenicillin (50 

µg/mL). Following transformation, the plasmids were isolated using a ©Qiagen QIAprep spin 

miniprep kit protocol. 

Cotransformation into competent BTH101 cells. 1 µL of both pKNT25X and pUT18Y 

was introduced into 50 µL chemically competent BTH101 cells and chilled on ice for twenty 

minutes. The plasmid/cell mixture was then placed in a 42°C heat bath for one minute and thirty 

seconds and replaced on ice for an additional minute. 1 mL warm, fresh LB broth was added to 

the tubes, and the cells were shaken at 37°C for one hour. The cells were centrifuged at 8000 RPMs 

for three minutes, and 850 µL of the supernatant was discarded leaving approximately 150 µL. 
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The remaining volume of newly cotransformed cells was spread across three LB plates 

supplemented with kanamycin (50 µg/mL) and carbenicillin (50 µg/mL) and incubated overnight 

at 37°C.  

Adenylate cyclase activity assay. 5-7 of the isolated colonies for the experimental 

groups and controls were inoculated into 5 mL fresh LB with kanamycin (50 µg/mL) and 

carbenicillin (50 µg/mL). Three biological replicates of each interaction were conducted. The 

cultures were shaken overnight at 30°C, after which 2 µL samples were “spotted” onto 

MacConkey agar medium pates supplemented with lactose (10 g/L), kanamycin (50 µg/mL), and 

carbenicillin (50 µg/mL) poured into square, grid plates. Two rows of spotted samples were 

prepared for each biological replicate of the control interactions, while three rows for the three 

biological replicates of the experimental test interaction groups were included. Each row 

contained four technical replicates (an example is shown in Figure 5A). 

 

 

 

Figure 5. (A) The organization of “spotted” MacConkey plates was so that each row consisted 
of distinct biological replicates and each sequential column was an additional technical replicate. 
The arrow indicates what is to be expected for a positive interaction. (B) Each colony from the 
“spotted” MacConkey plate was “colored in” with an inoculating loop on the corresponding 
grid. The arrows indicate positive interactions. (Note: the images represent two different 
interactions) 

A B 



	

	

Hubler	11	

The “spotted” plates were incubated at 30°C for 2-3 days until adequately grown. 

Potentially positive interactions were further isolated by taking an inoculating loop, dragging the 

tip of the loop through individual colonies (being sure to acquire positive spots), and re-streaking 

MacConkey agar plates supplemented with antibiotics as above followed by overnight 

incubation at 30°C. These interactions were visualized to estimate potential strength of 

interaction between TMX and the Fab proteins tested. 

b-galactosidase assay. All three biological replicates of the controls and at least one 

technical replicate from the three experimental biological replicates of the re-streaked interaction 

mixtures grown on MacConkey plates were inoculated into 5 mL LB liquid cultures 

supplemented with the appropriate antibiotics. The liquid cultures were shaken overnight at 30°C 

until overgrown. The following day, 183 µL of each sample was reinoculated into 5 mL fresh LB 

liquid with antibiotics and shaken at 30°C until an optical density (OD600) between 0.5 and 0.6 

was reached. After reaching the appropriate OD600, 100 µL from each sample and control was 

aliquoted into the wells of a 96-well microplate. Additionally, 100 µL plain LB liquid was 

aliquoted into separate wells to act as blanks. This 96-well plate was deemed the master plate. 

The OD600 for the master plate was recorded using a microplate reader and saved for later 

analysis, and the master plate was placed in a -80°C freezer overnight.  

To lyse the cells and access the cytoplasmic contents, the freeze-thaw method was used. 

Following overnight freezing, the master plate was placed directly into a 37°C incubator for 

thirty minutes with parafilm over the lid to prevent cross-contamination. Following the initial 

thawing, 10 µL from each well was aliquoted into a new 96-well plate using a multi-channel 

pipet. This new plate was deemed the assay plate and was replaced in -80°C for twenty minutes. 

The assay plate was once more thawed for fifteen minutes at 37°C. While performing the freeze-
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thaw, the working reagent (1X MUG) was prepared by first making a 200X solution by 

dissolving 0.125 g 4-methylumbelliferyl b-D-galactopyranoside (MUG) into 2.5 mL DMSO and 

then diluting to 1X with 1X PBS. With cells lysed and reagent prepared, using a multi-channel 

pipet 100 µL 1X MUG was added into each well, and the fluorescence at 440 nm was measured 

every two minutes for one hour using a plate reader. 

Results 

 
Figure 6. b-galactosidase activity in relative fluorescent units (RFUs) normalized with the OD600 for each 
Fab protein’s interaction with TMX in the low copy pKTN25. *= p<0.05 **= p<0.0005. Statistical 
significance was determined relative to the negative control analyzed on the same Petri plate. 
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Figure 7. TMX’s interaction in the high copy pUT18 with the Fab proteins in relative fluorescent units 
normalized with the OD600. *= p<0.05. Statistical significance relative to negative controls was determined 
using a T-test from the same assay plate. 
 
 Given that the gene coding for TMX is part of the FabR regulon and that the fatty acid 

chain lengths change in a mutant lacking TMX relative to wild type, we hypothesize that TMX 

regulates fatty acid biosynthesis by interaction with Fab enzymes. Data from b-galactosidase 

assays are shown in Figure 6 and Figure 7. TMX interactions in the low copy pKNT25 yielded 

statistically significant interactions with FabA, FabF, and FabG with the most significant 

interaction being with FabI (p<0.0005). In contrast, when expressed on the high copy pUT18 

plasmid, only the TMX and FabF interaction was significant. Notably, TMX did not seem to 

interact with itself, and thus would function as a monomer (Figure 7).  

Discussion 
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Figure 8. Fab genes control each step of fatty acid synthesis from initiation to elongation and shunting to 
the membrane for incorporation (Janßen et al. 2014 figure 3). 

 
TMX targets long-chain fatty acid elongation. From malonyl-CoA to palmitic or 

stearic acid, fatty acids grow by addition of the two-carbon acetyl group for each completion of 

the elongation cycle (Figure 8). Initiation of fatty acid biosynthesis depends on FabD (Malonyl 

CoA:ACP transacylase), which activates Malonyl-CoA with the acyl carrier protein (Sreshty et 

al. 2012), followed by incorporation of this intermediate into the elongation cycle by FabH 

(Janßen et al. 2014). The fatty acid is then elongated two carbons at a time for fatty acid chains 

of certain lengths. While both FabF and FabB catalyze further elongation of the fatty acid chain, 

the two enzymes differ in their preference of fatty acid chain length. In E. coli, FabF is also 

unique in that it serves as a checkpoint for fatty acid biosynthesis, either shunting them for 

membrane incorporation or reinitiating another round of elongation. Our results show that TMX 

interacts strongly with FabF regardless of the copy number of the plasmid on which it is 
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expressed and insignificantly with FabB pointing to the domain’s hand in intermediate to long-

chain fatty acid synthesis.  

TMX controls long-chain fatty acid profile additionally through FabG, FabA, and 

FabI sequestration. TMX manipulation of FabF alone could produce profound effects on 

membrane composition, but we found that TMX also interacted with the remaining fatty acid 

elongation enzymes. FabG (3-ketoacyl-ACP reductase) carries out the NADPH-dependent 

reduction of the newly condensed ketoacyl group. Subsequently, to control the fatty acid profile 

of a cell, FabG would be a necessary component. By influencing an enzyme yielding profiles 

rich in long-chain fatty acids, TMX may influence homeoviscous adaptation. 

 While fatty acid biosynthesis in E. coli utilizes a single 3-ketoacyl dehydrogenase, two 

different 3-hydroxyacyl dehydrases, FabA and FabZ, are present. The difference between the 

two enzymes lies in their substrate specificity. FabA primarily acts on unsaturated fatty acids; 

further study showed FabA is the primary dehydrase for intermediate to long-chain, saturated 

fatty acids (Janßen et al. 2014). FabZ shows preference for short-chain acyl groups. From our 

findings that TMX shows statistically significant interaction with FabA, but not with FabZ, our 

hypothesis that TMX impacts synthesis of long-chain fatty acids is supported given that FabA 

prefers long-chain fatty acids and FabZ prefers short-chain fatty acids. 

 TMX controls membrane contents through long-chain elongation inhibition. The 

quantitative evaluation of TMX’s interactions with Fab enzymes using the b-galactosidase assay 

points to a mechanism by which TMX impacts the fatty acid profile of the cell. We propose that 

TMX influences a cell’s membrane fatty acid profile by restricting the elongation of C-16 fatty 

acids to C-18 fatty acids through the activity of FabA, FabG, FabI, and FabF. Previous 

experimentation by Gullett et al. (unpublished) showed that the fatty acid profile for membranes 
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of E.coli  ∆TMX strains contained more C-18 fatty acids compared to the wild type. Additionally, 

transferring these strains from 20°C to 37°C led to a change in the fatty acid membrane 

composition of the wild type strain, specifically in ratio of C-16 to C-18 fatty acids, but not that 

of the ∆TMX strain. This suggests that a lack of TMX leads to the production of longer chain 

fatty acids that are then incorporated into the membrane, increasing their rigidity. Furthermore, 

the wild type E.coli strain was shown to survive the temperature change while the mutant was 

not able to. Elevated concentrations of C-18 fatty acids point to TMX’s role in affecting fatty 

acid chain length during synthesis. We propose that TMX’s role in homeoviscous adaptation is 

one of enzymatic sequestration with respect to the biosynthetic enzymes FabA, FabG, FabI, and 

FabF. Sequestration of FabF, for example, would inhibit the synthesis of C-18 fatty acids by 

eliminating its catalytic capabilities, yielding the lower levels seen in the wild type when 

compared to the ∆TMX mutant strains (Gullett et al. unpublished). 

Additionally, TMX’s influence on multiple Fab enzymes allows for multiple points of 

control. Affecting output of any of the elongation enzymes (especially those involved in the 

long-chain elongation) would consequently affect the fatty acid profile of the cell membrane, 

controlling its fluidity. 

These observations, while intriguing, remain to be confirmed using independent 

approaches, but together suggest a mechanism by which TMX could interact with certain Fab 

enzymes to alter fatty acid chain lengths. 

Chapter III. Modeling chemotactic receptor arrays 

Introduction 

 Chemotactic receptors form trimers of receptor dimers that localize to the cell pole via 

interaction with cytoplasmic proteins that form baseplate arrays (Aksenova 2014). Cryo-electron 
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tomography of E. coli chemotaxis arrays demonstrated that receptor arrays form lattices with a 

diameter of approximately 250 nm with hexagonal units consisting of the chemotactic histidine-

aspartate kinase CheA and adapter protein CheW with the trimers of receptor dimers at the 

hexagonal vertices (Briegel et al. 2012) (Figure 9). While it is known that the chemotactic 

receptor array baseplates are composed of both CheA and CheW, the organization the two 

proteins exhibit in the baseplate is unknown. CheA exists in the cytosol as a dimer with both 

monomers linked by the P3 domain; its kinase activity is carried out by the P4 domain. CheW 

exists as a soluble monomer whose structure resembles the P5 domain of CheA (Wadhams et al. 

2004). In examining the chemotactic baseplate arrays, Briegel et al. (2012) found that the 

hexagonal units appear to be arranged such that the CheW-like P5 binding domain of CheA and 

the CheW adapter protein alternate with the P4 kinase domain projecting toward the cytosol. 

Figure 9. (A) depiction of chemotactic receptor arrays with CheW and CheA (blue and green) 
forming a lattice complexed with trimers of receptor dimers adjoined (pink). (B) Cryo-electron 
tomographic image of the chemotactic array lattice (Briegel et al. 2012). 

A B 
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Chemotactic receptors 

(MCPs) are not structurally 

homogenous. MCPs differ with 

respect to the length of the C-

terminal region of the receptor 

dimers, and chemotactic receptors 

may be grouped into classes 

depending on the length of the C-

terminal regions. Sequence 

alignment across 152 genomes of 

bacteria and archaea have grouped MCPs into 7 classes (Alexander et al. 2007). Two major 

MCPs present in A. brasilense are Tlp1, predicted to function largely in signaling to the Che1 

pathway, and Tlp4a, encoded in the Che4 operon and thus predicted to signal via the CheA4 

signaling pathway (Aksenova 2014). Previous experimentation has revealed that chemotaxis 

receptors form segregated clusters dependent on the length of their C-terminal region (Seitz et al. 

2014). Tlp1 and Tlp4a represent two distinct classes of chemotactic receptors, and as such we 

can predict that they will form distinct clusters. 

In characterizing the structure of chemotactic receptor arrays, it is important to determine 

the organization of CheA and CheW proteins in the baseplate arrays, as well as determining if 

crosstalk is exhibited by the CheA and CheW proteins from both Che1 and Che4 pathways. 

Additionally, it may be possible that the components of receptor arrays are recruited 

stochastically as opposed to a strict organization. Briegel et al. (2012) suggests that a baseplate 

unit may even be composed entirely from CheW proteins as opposed to the previously proposed 

Figure 10. Representation of multiple sequence alignment 
depicting seven MCP classes. Cytosolic signaling domains are 
shown in dark, thick ribbons. 
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alternating CheA and CheW hexagonal lattice. This project aims to characterize the interactions 

between a subset of chemotaxis proteins in A. brasilense using the BACTH and b-galactosidase 

assays to determine if these interactions could contribute to crosstalk between proteins from the 

Che1 and Che4 pathways. We used baseplate proteins from the Che1 and Che4 pathways and 

two chemoreceptors Tlp1 and Tlp4a to generate a possible model of protein-protein interaction 

that would contribute to explaining crosstalk. 

Materials and Methods 

The materials and methods used for characterizing chemotactic receptor arrays were the 

same as detailed in Chapter II with only one distinction. In incubating the “spotted” MacConkey 

plates containing the experimental interactions, instead of incubating for 2-3 days, the plates 

were incubated for 4 days to allow adequate growth. 

Results 

 pUT18 
A1 A4 W1 W4 Tlp1 Tlp4a 

pKNT25  

A1 * * N.I. N.I. ** * 

A4 N.I. * * * N.I. * 

W1 ** * N.I. N.I. * N.I. 

W4 * N.I. * ** N.I. * 

Tlp1 N.I. N.I. * N.I. * N.I. 

Tlp4a N.I. N.I. N.I. N.I. N.I. N.I. 

 

Table 1. Findings from the b-galactosidase assay of the chemotactic receptor array baseplate 
proteins and receptors. *=Statistically significant interaction (p<0.05), **= strong interaction 
(p<0.0005), N.I.= no interaction (p>0.05) 
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 Quantification of protein-protein interactions are shown in Supplementary figures 12-

15.  

CheA/CheW baseplate interactions. In testing chemoreceptor baseplate proteins CheA 

and CheW from both Che1 and Che4 we found that both CheA1 and CheA4 significantly 

interact with themselves and with their homologs in all circumstances except for when CheA1 is 

in the high copy pUT18. Additionally, CheW4 interacted with itself very strongly, contrasting 

with CheW1 that did not. Further, CheW1 only interacted with CheW4 when CheW1 was in the 

high copy plasmid. Finally, when testing interactions between CheA1, CheA4, CheW1, and 

CheW4, all interactions were significant except for when CheA1 expression was low and in 

testing CheA4 in the high copy with CheW4 in the low copy. 

 Chemoreceptor interactions. Tlp1 and Tlp4a did not interact significantly with each 

other. Interestingly, in testing the self-interactions of Tlp1 and Tlp4a, only Tlp1 was found to 

dimerize, but not Tlp4a. 

 Baseplate interactions with chemoreceptors. Tlp1 was found to interact strongly with 

CheA1 and CheW1 but did not interact with CheA4 and CheW4, irrespective of plasmid copy 

number. Similarly, Tlp4a interacted with CheA4 and CheW4 as well as CheA1, but only when 

expressed from the high copy vector, suggesting dosage effects. 

Discussion 
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 Che1 and Che4 baseplate proteins exhibit crosstalk. b-galactosidase assays of protein-

protein interactions revealed significantly positive interactions between baseplate proteins 

CheA1, CheA4, CheW1, and CheW4. As both CheA1 and CheA4 interactions with themselves 

were significant, so too was CheA1’s interaction with CheA4, though only when CheA1 was 

expressed from the high copy vector. This 

discrepancy may be due to the fact that CheA1 

has two isoforms: a membrane bound form that 

does not function in chemotaxis, and a soluble 

CheA1 form that is much less abundant and 

functions as a prototypical CheA (Gullett et al, 

submitted).  We hypothesize that the presence of 

the two isoforms confounds the interactions of 

CheA1 with other proteins because only when 

CheA1 is produced from a high copy vector 

would any interaction be detected that could 

correspond to the prototypical soluble CheA1. With the baseplate proteins capable of interacting 

with components of each of the two operons, it is logical to conclude that chemoreceptor 

baseplate arrays may be composed of proteins solely from the same chemotactic pathway or 

from both pathways, supporting the hypothesis of crosstalk in the chemotactic signaling cascade 

(Figure 11).  

 CheW plays an additional structural role in receptor arrays. CheA1 and CheA4 

interacted significantly with one another, while CheW1 did not interact with itself. Both findings 

were anticipated given CheA’s dimeric nature and CheW’s monomeric existence (Wadhams et 

Figure 11. Chemotactic receptor array 
baseplates form hexagonal lattices composed of 
alternating CheA (light) and CheW (dark) 
proteins from either Che1 (blue) or Che4 
(green) pathways linked by the CheA P3 
domain (yellow). Additionally, CheW-only 
structural units lie in the center of the hexagonal 
lattice.  
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al. 2004). However, an extremely significant (p<0.0005) interaction was found when testing 

CheW4’s interaction with itself. These findings would be consistent with the hypothesis put forth 

by Briegel et al. (2012) that certain hexagonal baseplate units are solely comprised of the adapter 

protein CheW. Without a CheA present, such units would be incapable of signaling in the 

chemotactic pathway, but these rings could function as structural units, stabilizing the receptor 

arrays as conformational changes occur during signaling. Additionally, these units would be 

distinct from the functional baseplate machinery as it is unable to couple to adjacent units 

without a CheA P3 domain present. Figure 11 depicts these CheW-only rings in the center of the 

functional hexagonal lattice, composed of CheW1 and CheW4. It is important to note that, given 

the findings of this project, CheW4 proteins may exist adjacent to one another, but CheW1 

cannot. 

Tlp1 and Tlp4a prefer specific chemotactic pathways. The two chemotactic receptors 

showed preferred interactions with Che1 or Che4 proteins. Tlp1 has been previously implicated 

in signaling to the Che1 pathway, and its significant interaction with Che1 baseplate proteins 

supports that hypothesis. Likewise, Tlp4a preferentially interacted with Che4 baseplate 

proteins—an expected finding given the gene coding for Tlp4a’s location within the Che4 

operon.  

 Comparing the two receptors’ pathway biases with data supporting crosstalk between 

baseplate proteins yields a clearer concept of chemotactic receptor arrays. Though the lattice of 

hexagonal baseplate units may be comprised of either Che1 or Che4 proteins, the trimer bundles 

of receptor dimers dock at specific points of the polar arrays. Further, data reveals that Tlp1 and 

Tlp4a are segregated from one another. Given the differences in the receptors’ sizes, it is logical 

to conclude that heterogeneous clusters could not form. However, though the different receptors 
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do not interact, the baseplate proteins exhibit crosstalk, and so receptor clusters may be 

composed of interspersed, though segregated, Tlp1 and Tlp4a bundles. 

 Interestingly, Tlp4a did not interact with itself, which is unusual given that literature 

states bacterial chemoreceptors form homodimers (Seitz et al. 2014). This discrepancy may be 

attributed to shortcomings in the experimental design. While Tlp4a showed preference for 

CheA4 and CheW4 (as well as CheA1) in the high-copy pUT18 vector, the receptor when 

expressed on the low-copy pKNT25 vector showed no statistically significant interactions at all, 

possibly pointing to issues with the N-terminal T25 fusion. To fully elucidate the nature of Tlp4a 

interactions with baseplate machinery in chemotactic receptor arrays, it would be beneficial to 

retest the interactions with the receptor fused to the T25 fragment’s C-terminus. Additionally, 

Tlp1 was shown to only statistically interact with Che1 proteins. While this finding supports 

previous hypotheses concerning the receptor’s signaling to the Che1 signaling pathway, it’s lack 

of statistically significant interactions with CheW4 would exclude the trimer of receptor dimers 

from interacting with the structural CheW unit. With the absence of evidence supporting Tlp4a’s 

dimerization and Tlp1’s lack of interaction with the CheW structural units, we lack the data 

needed for accurately modeling the two receptors’ interactions with the baseplate machinery. 

 Chemotactic receptor arrays stochastically form mixed Che1/Che4 clusters with 

specified receptor docking. The findings obtained here support the hypothesis that chemotactic 

receptor arrays form lattice-shaped clusters at the poles with baseplate proteins CheA1, CheA4, 

CheW1, and CheW4 stochastically recruited for assembly and with the receptor’s C-terminal 

signaling domain’s length ensuring segregation of the clusters according to size (Seitz 2014). 

The hexagonal CheA/CheW units composed of either Che1 or Che4 proteins are joined at the 

vertices through the homodimerization of adjacent CheA P3 domains (Briegel et al. 2012). 
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Additionally, Tlp1 and Tlp4a dock to form segregated functional units with Che1 and Che4, 

respectively. It is important to note that Cryo-EM images of A. brasilense wild type, ∆che1, and 

∆che4 mutants all assemble two intact clusters, while only the double ∆che1∆che4 mutant lacks 

any visible chemotaxis clusters. This observation supports the hypothesis that any of the Che1 or 

Che4 baseplate proteins can nucleate polar cluster formation. 

Supplementary Figures

 
Figure 12. b-galactosidase data displaying relative fluorescent units (RFUs) normalized with optical 
density (OD600). Protein-protein interactions are displayed with their respective vector pKNT25 and 
pUT18 on top and on bottom. *= p<0.05 **= p<0.0005. Asterisks denote significance with respect to the 
negative control from the respective master plate. 
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Figure 13.  b-galactosidase data displaying relative fluorescent units (RFUs) normalized with optical 
density (OD600). Protein-protein interactions are displayed with their respective vector pKNT25 and 
pUT18 on top and on bottom. *= p<0.05 **= p<0.0005. Asterisks denote significance with respect to the 
negative control from the respective master plate. 
 

Figure 14. b-galactosidase data displaying relative fluorescent units (RFUs) normalized with optical 
density (OD600). Protein-protein interactions are displayed with their respective vector pKNT25 and 
pUT18 on top and on bottom. *= p<0.05 **= p<0.0005. Asterisks denote significance with respect to the 
negative control from the respective master plate. 
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Figure 15. b-galactosidase data displaying relative fluorescent units (RFUs) normalized with optical 
density (OD600). Protein-protein interactions are displayed with their respective vector pKNT25 and 
pUT18 on top and on bottom. *= p<0.05 **= p<0.0005. Asterisks denote significance with respect to the 
negative control from the respective master plate. 
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