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ABSTRACT 

The present work was undertaken to provide a model 

which accurately predicts the performance of a packed bed 

energy storage system utilizing spherically encapsulated 

phase-change material (PCM). Two models were developed 

which are refered to as the first-order and second-order 

models. Both models involve modeling of the phase-change 

material as a conduction problem with both sensible and 

latent energy storage and include consideration of the 

temperature gradients in both phases. Both models include 

the solution of the energy equation for the fluid passing 

through the packed bed. In  the second-order model, both 

the intra-particle conduction and the dispersion effects 

in the energy transporting fluid are considered, whereas 

in the first-order model only the intra-particle 

conduction effects are considered. 

Numerical results obtained with both models have been 

compared with experimental results available in the 

published literaature and with experimental data 

previously obtained at University of Tennessee. Of major 

importance to any computation is the treatment of the 

convective heat transfer coefficient between the fluid and 

the packed bed particles. It  was determined that existing 

correlation equation for the heat transfer coefficient are 
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quite suitable. Also, confirmation of the convective heat 

transfer coefficient between the capsules and the fluid 

can be accurately determined by matching the exiting fluid 

temperature variation with time at the exit obtained with 

the second-order model with that obtained by experiment. 

A specific feature of both models is the use of a 

physically correct treatment of the exiting fluid 

temperature boundary condition. 

Both analytical models accommodate ·subcooling and 

superheating for PCM melting and freezing situations, 

respectively, as well as supercooling of the PCM in the 

computer simulation. The significance of subcooling or 

superheating depends upon the magnitude of the subcooling 

or superheating. For example, when using NA HPO . 12H O as 

the PCM, and a ratio of the length to the diameter of the 

bed larger than 1. 0. the neglecting of subcooling would 

result in an error in the total energy stored of about 1/2 

percent for each degree of subcooling. Previously 

reported analyses in the literature do not include the 

effect of subcooling or superheating. 

Both the first-order and second-order models of the 

present study can be used to predict the melting/freezing 

time, the melting/freezing front location in the packed 

bed, and the temperature history of both the transporting 
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fluid and the PCM in the bed. For the case of small 

Peclet numbers, comparison with experiment indicates that 

the first-order model results in significantly greater 

error than does the second-order model; it does, however, 

provide an adequate approximation for the latent heat 

storage in the bed. For Peclet number greater than 200, 

the difference betwe�n the results from the two models is 

typically less than 10%. The use of the first-order model 

requires only about one-fourth as much computer time as 

does the second-order model. The second-order model is 

shown to provide very accurate results when compared with 

experimental data in the published literature. 
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CHAPTER 1 

I NTRODUCTI ON 

The motivation of the work reported herein was 

thermal energy storage applications in cyclical heating or 

cooling problems. Any substance which has heat capacity 

can be used as a heat storage material, but this does not 

mean that it is suitable for practical engineering 

applications. Energy storage in general, although not 

actually reducing energy needs, does play an inportant 

role in energy conservation strategies, thereby reducing 

energy comsumption. It also enhances the use of renewable 

energy sources and permits the more efficient use of high 

capital cost, energy conversion plants. 

The energy crisis in the early 1970' s prompted many 

industrial countries to develop new energy sources and 

conservation techniques in order to reduce reliance on 

foreign oil while continuing to increase their industrial 

productivities. One of these general developments, the 

energy storage unit, can greatly assist in improving the 

overall efficiency of some energy conversion units through 

load leveling, may decrease energy demands by the use of 

waste energy recovery, and can enhance utilization of 

alternative sources of energy. 
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As early as 1975, the U. S. Energy Research and 

Development Administration (ERDA) requested the National 

Research Council to undertake a study on the potential of 

advanced energy storage systems [l]. One of the resulting 

analyses showed that a better designed heat storage unit 

would be economically attractive. 

One example of energy storage unit utilization is 

seen in solar energy engineering where thermal energy 

storage units are an integral part of many solar energy 

systems. These are used to supply heat not only during 

the night when no solar energy is collected but also for 

periods of time, say two or three days, when incident 

solar radiation is low due to clouds. In  industry, 

thermal storage systems also play an important role in the 

recovery of waste heat in situations where a large 

percentage of energy is otherwise discharged to the 

surroundings as waste heat. An additional application of 

thermal storage devices is the use of their stored thermal 

energy, obtained in off peak hours, during periods of high 

demand when conventional energy sources may be expensive 

or even unavailable. 

Presently, most thermal storage devices use sensible 

thermal energy where good technology has been developed 

for designing such systems [2]. A great amount of 
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research has been done on sensible thermal energy storage 

packed beds, and, in particular, in rock-beds. This is 

hardly surprising, considering that over three-quarters of 

all single family dwellings in the U.S. are provided with 

warm air heating systems. The use of solar collectors has 

enabled these types of building heating units to operate 

without the need for heat exchangers other than the packed 

bed. 

In recent years thermal storage units that utilize 

the latent heat of the storage material have received 

considerable attention (3,4], because these offer 

advantages over materials whose thermal storage capacity 

is based exclusively on sensible heat. These advantages 

consist of: (1) high energy storage densities ( which 

means a reduction in storage volume for a given capacity) ; 

(2) smaller overall system temperature differentials 

(which means that the heat capacity of the storage unit is 

concentrated in a narrow temperature range thereby 

promising an improvement of solar heating system 

performance as the mean inlet temperature is expected to 

be lower ); and (3) higher heat collection efficiency. 

However, very little literature has been found which deals 

with the study of thermal storage packed beds with 

phase-change occuring in the thermal storage material, and 
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no literature was found for both the thermal storage 

material and working fluid undergoing phase-change. 

In solar engineering for residential or commercial 

heating purposes, air, water and Freon are the best 

potential candidates for the working fluid. The selection 

of the phase change thermal storage material has generally 

involved the following selection criteria: temperature of 

transition between 25  and 7C°C; high latent heat and 

specific heat; long term stability under temperature 

cycling conditions; good thermal conductivity; abundant 

supply; and low cost. The ideal material which satisfies 

all of these selection criteria has not yet been found, 

but the list in Table 1 summarizes the materials which 

have been studied most intensively. To a large extent, 

good design of a thermal storage device depends upon the 

choice of the working fluid and phase-change material 

(PCM) for energy storage. 

To know whether a particular latent heat thermal 

energy storage system can achieve the required storage and 

withdrawal rates as well as the total heat capacity is the 

major design problem. Proper design rests upon 

understanding the phase-change processes in the PCM and, 

hence, on modeling the process. current PCM technology 

focuses on encapsulated or pelletized phase-change 
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TABLE 1 SOME PHASE-CHANGE MATERIALS 

AND SELECTED PROPERTIES 

Cost(c/kg) L(kj/kg) Phase-Change 

Temperature 

I 

Naz. S103 SH.iO 1 26 119 49 C(l19 F) 

;' 

Appl. Temp. 

Active 

Heating 

----------- ------·---.. -----------_____________ , .. ( 35-36° C) 

Wax Pl16 44 146 47 C(l16 F) 

-----------· �----------.., _________ ,. --------------
Na2HP04 44 264 36 C(97 F) 

12Hz.O 

----------- ---------- __________ ,. -------------· ----------
Na1 S04/NaC03 1 10-22 209 23 C(84 F) Passive 

lOH10/BORAX 1 Heating 

(23-30° C) 

----------- _________ ,_ �---------''!!! -------------- ----------
NaCl1 · 6Hz. 0 9 188 29 C(84 F) " 
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material. I n  such case, the heat transfer from the fluid 

to the PCM pellets can be generally assumed to be 

controlled by either forced convection to·or conduction in 

the pellets. I n  a typical packed bed, the pellets usually 

are so small that natural convection in the PCM melt 

region is not important, and conduction is indeed the 

dominating heat transfer process there. 

The prediction of the melting or freezing front 

within the pelletized PCM is important in order to 

estimate the amount and rate of thermal energy stored in 

or withdrawn from the bed. This is a moving boundary 

problem of the Stefan type best solved by numerical 

methods. 

Most important in any packed bed thermal storage unit 

analysis is the determination of the heat transfer 

coefficient. This determination is a very complicated 

problem influenced by many factors including properties 

and superficial velocities of the energy transporting 

fluid, the voidage of the packed bed, and the geometry and 

size of the pellets in the bed. It is impossible to 

formulate a general mathematical equation for the heat 

transfer coefficient solely by an analytical method, even 

for the packed bed with a single phase fluid. But, 

fortunately, this has been the topic of many preceding 
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investigations, and some empirical and semi-empirical 

correlation equations are available. 

The latent heat packed bed with working fluid 

undergoing phase-change should be so designed that the 

quality of the fluid should be near zero (for condensing) 

or near 1. 0 (for boiling) at the exit of the bed during 

bed charging. Such a condition would mean that most of 

the working fluid' s latent heat has been absorbed by the 

thermal storage material. Although the temperature in the 

two-phase flow regime is almost constant, the change of 

fluid quality with length causes the heat transfer 

coefficient to be a function of bed length position. 

The present study focuses on an analysis of a 

phase-change type storage system intended for use with a 

heat pump in residential solar heating. The following 

chapters specify the particular problems of interest. 
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CHAPTER 2 

SURVEY OF PREVIOUS WORKS 

Over the years, a great amount of practical work on 

sensible thermal storage in packed beds, and particularly 

in rock beds, has been undertaken in many countries 

throughout the world. The relative published literature 

is very extensive, including structural aspects of packed 

beds, the mechanism of fluid flow, the gross performance 

parameters such as pressure drop and overall heat transfer 

coefficient between the working fluid and thermal storage 

materials, and some work concerning phase-change thermal 

storage materials. But there exist very few references 

about packed beds with encapsulated phase change 

materials. No publication has been found treating packed 

beds involving phase-change in both the working fluid and 

the thermal storage material. 

In  this survey, no attempt is made to report on all 

of the related publications, but it is intended to include 

sufficient coverage of the more important related works. 

This survey may be divided into four aspects: (1) work 

relative to fluid flow in packed beds; (2) heat transfer 

coefficient in the packed pad; (3) sensible thermal energy 

storage packed bed systems intended for solar energy 
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applications, in which some form of thermal storage device 

is essential to accommodate system demands which are often 

out of phase with direct solar energy availability, and 

(4) latent heat storage in packed beds utilizing the 

latent heat of fusion in suitable substances that undergo 

melting and freezing at a desired temperature level. 

(1) Fluid Flow in Packed Beds 

Three major models for flow through a packed bed were 

developed in the p�st. 

( 1. A) Mode 1 1 : 

In 1952, S. Ergun [S] proposed a so-called "channel 

model", which envisages the packed bed as consisting of an 

assembly of tortuous conduits. From this model he 

postulated a well-known and widely used expression to 

calculate the pressure drop caused by the friction between 

the fluid and particles, and expansion and contraction 

along the packed b�d. 

Ergun's equation is 

�p (t-r.>2 µVo (1-e) Mf · Vo - g = 150 -- · - + 1.75 -3-
Lu c e3 D e S fr • D 
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I . F. MacDonald, et al. , [6] introduced a modified 

Ergun equation, where the constants 1. 75 and 150 are 

replaced by packing geometry dependent parameters A' and 

B' which were determined by comparison with extensive 

data. In  general, this modified equation is used to 

calculate pressure drop across the bed in terms of the 

Fanning friction factor. 

(l. B) Model 2: 

W. E. Ranz [7] suggested a discrete particle ·model 

which regards the system as consisting of an assembly of 

particles submerged in the flowing fluid, each possessing 

its own individual boundary layer. He pointed out that 

there is no continuous channel along which the fluid 

flows; most of 

face of each 

the pressure drop occurs on the forward 

individual particle and a relationship 

between the actual average velocity and the superficial 

velocity is built. 

Both of the above models provide reasonably good 

pressure drop predictions for spherical, or near-spherical 

shapes, but are inadequate for particles of low 

sphericity. 

(l. C) Model 3: 
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In 1962, C. L. Kusik and J.Happel [8] proposed another 

model, based on the consideration that the particle wake 

effectively decreases the area available for flow. This 

area reduction creates stagnant regions in the fluid, 

which are represented by a stagnant void fraction 

T. R. Galloway and B. H.Sage [9] reported the values of 

for different particle shapes from available experimental 

data on single particles and on packed beds. 

W. H.Gauvin and S.Katta [10] developed a theoretical 

approach based on the concept of stagnant void fraction 

and the principle of drag additivity to estimate stagnant 

voidages for various particle shapes arranged in a packed 

bed. A new type of friction factor based on this approach 

was correlated satisfactorily with a shape factor. The 

momentum transfer data were also correlated with the 

sphericity of the particles. 

In seeking theoretical models to describe the fluid 

transport process 

have been followed. 

in the bed medium, two main approaches 

In the first [11], the flow is 

described as a random process in which the progress of the 

fluid is assumed to creep over the surface of the packing 

elements. In the second approach [12, 13, 14], a 

differential form of the modified Ergun equation is used. 
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(2) Heat Transfer Correlation in Packed Beds 

Much literature about heat transfer correlations for 

single-phase flow in a packed bed has been published. 

Most of the reported investigations have presented 

anddiscussed empirical equations for the heat transfer 

coefficient. Because of the different experimental 

set-ups and different heating metdods used in the 

experiments, however,many of the results apply only to 

situations similar to those of the specific experiment for 

which a correlation was obtained. However, all of those 

results still offer some useful guidelines for 

constructing a heat transfer coefficient correlation as a 

first approximation for calculations in a single-phase 

flow, packed bed. 

In 1965, J.J. Barker [15] presented an extensive 

survey of heat transfer coefficient correletions available 

up to 1964. A considerable spread in the data was found 

when the Colburn J factor was ploted versus the Reynolds 

number, which was an expected result. It is unreasonable 

to think that a correlation of J as a function of Reynolds 

number only could be obtained, because the data were 

obtained from different beds differing in geometric 

parameters, etc. 
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H. S. Mickley and K. A. Smith [16] studied the 

local property effect on heat transfer by making basic 

fluid flow measurements. Their results showed that the 

low heat transfer coefficient regions near the contact 

points between the particles correspond to low velocity 

and low turbulent intensity regions. 

Empirical correlations are generally useful for the 

particular purpose for which they are made. For the sake 

of clarity in the application and use of the data obtained 

in packed beds, it seems desirable to develop expressions 

in a comprehensive form applicable to all types of flow. 

In doing so, theoretical developments, as well as 

empirical approaches , have been considered. 

In 1968, D. Handley and P. J. Heggs in their article 

[17] on the momentum and heat transfer mechanisms in 

regular shaped packed beds, experimentally determined the 

heat transfer coefficient by using a transient method 

based on an iterative solution of Schumann' s mathematical 

model [18]. The advantage of this method is that the heat 

transfer coefficient correlation 

consideration of the effects 

thus obtained includes 

of the dispersion and 

intraparticle conduction. Schumann' s model assumes that 

there are no thermal gradients within the particles; in 

fact, it is a uniform temperature model. 



14 

W. E. Ranz op. cit. , developed a method of analysis 

based on properties of a single particle for estimating 

and characterizing heat transfer rates in packed beds. 

Equations for estimating effective thermal conductivity 

and diffusivity are derived, and parametric constants 

relating the actual fluid velocity and average lateral 

velocity to the superficial velocity, which is defined as 

the velocity of the working fluid passing through a 

completely void bed, are shown to characterize the 

performance of a packed bed. This method reveals the 

mechanisms by which energy is lost and heat transfer 

occurs. The simple correlation equation developed by Ranz 

can be used up to a value of Reynolds number of 106 and 

for values of Pr between 0. 6 and 400. 

This correlation is 

Nu= 2.0 + 0.6 · Pr113 · Re 112 ( 2- 1) 

where Re is based on the actual velocity and the diameter 

of spheres. The relationship between actual velocity and 

superficial velocity, as an approximation for the packed 

bed, can be given by 

V = 10.73 · V 

where V
0 

is the superficial velocity. 
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D. E. Beasley and J. A. Clark [19] adapted the 

heat transfer correlation developed by Galloway and Saze 

[9]. That correlation has the following form: 

Where Re = V div 
0 o, 

c1 = 1.354 

c2 = 0.032s 

B. T. Kulakowski and F. 

(2-2) 

w. Schmidt [ 20] · used 

Dunkle and Ellul's [21] correlation in their packed bed 

design. This is 

hDS
fr ----- = 2.4Re-0·3 

Cf Mf 

Where 

(2-3) 

This correlation is based on an equivalent sphere 

diameter D where the sphere volume is equal to that of the 

packed particles. 

Hanley and Hegg [17] expressed the heat transfer 

correction in the following form. 

c2 
213 C1 (Rem) 

J=St· (Pr) = ---­
£ (2-4) 
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where Re is a modified Reynold's number, and given by 

and the Stanton number, St, is 

h· s,r 
St= -----c,- Mf 

Many other equations are available for calculating 

the heat transfer coefficient in a packed bed. For 

example, Timofeev, as reported by S. S. Zabrodsky [22], 

proposed the following empirical formula which describes 

the experimental data for heat transfer coefficients for a 

fixed bed of any material. 

N =0.106· Re u 20 <Re< 200 

(2-5) 

N = 0.61 · Re°·67 
u Re> 2000 

where Re is based on the superficial velocity and the 

sphere diameter. 

It  is obvious that these equations are simple, but 

they do not have very high accuracy and do not cover a 

sufficient range of Reynolds number. 

Another Russian worker, Chechetkin, as also reported 

by S. S. Zabrodsky [22), obtained the following empirical 

formula for nonmetallic packings: 
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N = 0.123 · Re°·83 50 <Re< 2000 (2-6) 

In  calculating the value of the Reynolds number in 

both this and the Timofeev equation, the superficial 

velocity and equivalent diameter (De= void fraction / 

surface area of the particles per unit volume of the bed ) 

are used. 

The heat transfer coefficient between the working 

fluid and the wall of a packed bed is much different from 

that between the working fluid and the particles inside 

the bed. Yagi and Kunii [23] obtained coefficients for 

heat transfer on the inner surface, as well as the mean 

effective thermal conductivities, of a packed bed in terms 

of a theoretical model of heat transfer. The model was 

then applied to the prediction of wall film coefficient, 

especially for low Reynolds number. 

All of the heat transfer correlation expressions 

mentioned in the preceding discussion are empirical and 

dependent on the specific physical parameters involved in 

obtaining the particular correlation. 

(3) Sensible Thermal Energy Storage Packed Bed 

B. T. Kulakowski and F. W. Schmidt [l] presented 

a method for the design and sizing of a packed bed thermal 

storage unit for a heating system. The characteristics of 
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the design are sub that a controlled bypass of the thermal 

storage unit during the retrieval process is used in order 

to maintain the fluid temperature leaving the system at a 

constant value. 

D. E. Beasley and J. A. Clark [19] conducted an 

analytical and experimentudy of a packed bed, sensible 

heat thermal storage unit; both charging and recovery 

modes were included in their study. Spatial variations in 

void fraction were found to have some effect on the 

dynamic response of both fluid and solid temperatures. A 

uniform temperature model for the thermal storage material 

was assumed. This is a reasonable approach because the 

thermal storage material used was aluminum with high 

thermal conductivity. 

R. F. Benenati and C. B. Brosilow [24] studied 

the radial variation of void fraction within a packed bed 

of uniform spheres. They found that the voidage 

distribution takes the form of a damped oscillatory wave 

with the oscilations damped out at about 4. 5 to 5 sphere 

diameters from the wall. 

(4) Latent Heat Packed Bed 

Latent heat storage at low temperature is of interest 

for a variety of residential and commercial applications. 

The development of dependable thermal storage systems for 
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such purposes requires a better understanding of the 

melting and freezing characteristics of thermal storage 

materials. The low thermal conductivity of organic PCM' s 

such as paraffin wax and the almost total absence of 

convective enhancement of heat transfer in 

phase-stabilized salt hydrates have resulted in the need 

for heat exchangers with large surface area per unit 

storage volume. The use of encapsulated phase-change 

materials in packed beds offers a simple solution to this 

problem. 

(4. A) Melting and Freezing Process of Phase-Change 

Materials. 

In  1958, P. A. Longwell [25] used a graphical 

method for obtaining a numerical solution to Stefan-type 

problems involving a moving boundary which can be 

described in terms of one space coordinate. In  that 

reference, the equations are derived and are applied to 

two examples involving solidification. The method used 

takes into account both sensible heat and latent heat. 

W. D. Murray and F. Landis [26] improved the 

previous methods for the solution of one-dimensional heat 

conduction problems with melting and freezing. Two new 

and more generally applicable numerical methods suitable 

for digital and analog computation were developed in 1959. 
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Their approaches utilize a traveling space network where 

the fusion point travel can be accurately determined, 

instead of the stationary space network used in previous 

methods. 

J .  E. Sunderland and R. J. Grosh [ 27] considered 

superheating and subcooling . Their method consisted of 

calculating the temperature distribution before the 

phase-change occurs, during the transient process of 

phase-change, and after steady-state conditions · are 

obtained, if such steady state is attained. 

A simple algorithm incorporating the equivalent heat 

capacity model is described for the finite difference heat 

capacity analysis with phase-change by J .  S .  Hsiao [28] . 

The specific heat associated with those nodes adjacent to 

the fusion front are determined using a linear 

interpolation of nodal temperatures to properly account 

for the latent heat effect . This scheme was proven to be 

insensitive to the selection of the temperature interval 

assumed for phase change to take place . Therefore, very 

small or large temperature intervals can be used to 

properly simulate the fusion of phase-change materials . 

L . C. Tao [29] developed a numerical method and 

graphs of generalized solutions for the moving interface 

problem of freezing a saturated liquid inside a cylinder 



or a sphere. Before his 

analytical solutions were 

cylinders and spheres. 
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work, all other generalized 

not readily applicable to 

In  order to improve the thermal conductivity of the 

solidified material, R. Siegel [30] suggested that some 

fine particles of high 

dispersed in the 

conductivity 

salt, which 

material 

certainly 

should be 

aids the 

solidification rate. However, some effective volume is 

occupied by these particles that do not melt, so the heat 

of fusion per unit volume is diminished . 

A. D. Solomon [31] has undertaken extensive 

research concerning phase change materials at the United 

States Oak Ridge National Laboratory. He developed simple 

equations for evaluation of the melting time of phase 

change materials having a slab shape and a convective 

boundary condition. A comparison of his analytical 

results with numerical computations shows a relative 

discrepancy of less than 7% in all cases. 

Due to the nonlinearity associated with the moving 

boundary condition at the solid-liquid interface, it is 

difficult to obtain analytical solutions of phase-change 

problems. J . Y. Ku ( 32] developed a systematic approach 

whereby the standard Laplace transform technique is 

extended to yield exact solutions for some simple 
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( 4. B) Latent Heat Storage System 

L. G. Marianowski and H. C. Maru [33] studied a 

latent heat thermal energy storage system above 450° C ( 840 

F) . They placed emphasis on the choice of the salts. The 

main factors they considered were thermal properties, 

physical properties, the change in melting point, and 

volumetric expansion on melting. Their work selected a 

salt of 35% L½ Co3 and 65% K2 Co3 mixture as a model system 

for experimental effort in the temperature range of .their 

interest. A mathematical analysis was described and 

compared with the experimental results. The analysis was 

based on the slab geometry. 

The major problem in using salt hydrates as PCMs is 

their poor nucleating properties which result in 

supercooling of the liquid salt hydrate prior to freezing. 

Suitable measures must be adopted to eliminate 

supercooling or reduce it to a minimun. A typical method 

suggested in the literature for this purpose is to add 

some nucleating agents to the salt, or to use metallic 

heat exchanging surfaces immersed in the salt hydrates. 

See, for example, Lou [34]. 

At the Electrotechnical Laboratory, Ibaraki, Japan, a 

direct contact latent heat thermal energy storage unit 

which consists of a bundle of vertically arranged, thin 
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HDPE ( high density Polythylene) rods was developed by Abe, 

et el. , [ 35] for the purpose of studing charge and 

discharge characteristics. Of particular interest are the 

effects of low charge/discharge rate and of varing inlet 

and initial temperatures . 

Up to now, · only a few published papers dealing with a 

packed bed of encapsulated, phase-change material have 

been found. R. J .  Wood , S. D. Gladwell, et al. , [ 36] 

have reported experimental and simulation results for a 

latent heat thermal energy storage system using a small 

scale, experimental packed bed of 20 mm diameter, wax 

filled, high density polypropylene spheres. A packed bed 

heat transfer correlation was also developed. A 

charateristic of their analytical method for predicting 

the thermal performance of the storage unit is that no 

temperature gradient exists inside the capsules. I t  is 

obvious that this assumption of uniform temperature in the 

capsules is not valid because the thermal storage material 

has a poor conductivity, and thus the Biot number is 

usually much larger than 1. 0. Certainly in this case 

significant errors will be caused by the assumption of 

uniform temperature in the storage material. 
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T. Saitoh and K. Hirose [ 37 ] carried out an 

experimental and theoretical investigation of the unsteady 

thermal charateristics of a latent heat, thermal energy 

storage unit using spherical capsules . Particular 

attention was focused on developing a method for 

predicting the thermal performance of a latent heat 

thermal energy storage system unit for design purposes. A 

simulation program that rigorously considers transient 

aspects of both the surrounding heat transfer fluid and 

the phase-change material packed inside the spherical 

capsules was developed. The experimental thermal 

responses under various conditions were obtained for both 

charging and discharging processes. For the charging 

process, the experimental results were coincident with the 

modelling results. But superheating, subcooling, and 

supercooling were not considered in modelling, and a 

quasi-steady approximation for heat transmission inside 

the spherical capsules was assumed. These flaws limit the 

use of their simulation method. 

Much of the past work concerning the use of 

phase-change materials in latent heat thermal energy 

storage units deals with the behavior of freezing and 

melting, the location of melting front, and how to choose 

a suitable phase-change material for a particular thermal 
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energy storage system so that the process of phase-change 

takes place in the operating temperature range of the 

total system. Natural convection inside the capsule is 

usually neglected because the small size of the capsule 

and small variation of the density of the PCM with 

temperature results in low convective effects in the PCM. 

I t  may be that natural convection should be considered in 

a rather large size PCM capsule. 
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CHAPTER 3 

MATHEMATI CAL MODEL OF THERMAL STORAGE PACKED BED 

(1) Sensible Thermal Storage in a Packed Bed 

Two models for determination of the transient 

response of packed bed thermal storage units will be 

presented in this section. The first takes the 

intraparticle conduction and the dispersion effects in the 

working fluid into consideration. The temperature of the 

surface in contact with the fluid depends on the 

convective film coefficient and the intraparticle 

conduction. As the fluid flows through the packed bed, 

small eddies are generated in the fluid thereby causing 

extensive mixing of the fluid particles. This mixing and 

the effect of the axial molecular conduction of heat 

within the fluid are classified as the dispersion effects. 

This model is called a second-order model in the present 

study. 

I f  the dispersion effects in the fluid are neglected, 

only intraparticle conduction is considered. 

for the fluid in the second-order model 

The equation 

will then be 

degraded into a first-order differential equation, and we 

call the resulting model the first-order model. 



27 

(l.A) The Second-Order Model 

The transient response of the thermal storage packed 

bed is governed by (i) the two-dimensional conservation of 

energy equation in cylindrical coordinates for the working 

fluid, accounting for temperature gradients in both axial 

and radial directions, and by (ii) the one-dimensional 

transient heat conduction equation in spherical 

coordinates for the phase-change thermal storage material. 

The governing equation for the working fluid in 

non-dimensional form is as follows (see Appendix A )  

where hA · 
X =  

C ·  Lu M ·  f f 

h ·  A ·  
q = 

C ·  Lu · s p fr f f 

T ' - T ' 

T = T _, - T ,  r, o 

r 

r = 
-

r 
0 

h · A · K:c 
f 

( 3 -1) 

e 



The boundary conditions are 

where 

at 

at 

at r =  0 

- 2 
i/l'w I (T - T ) = -- --:-f w (Bi)w a r ; = 1 

hw· d (Bi) w = --­Kw 
and the initial condition 
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X = O 

x-. oo 

at r = 1 .0 

at q = 0 

In  some of the thermal storage packed beds (see 

Appendix A) , the wall is well insulated, and , therefore , 

the temperature gradient in the radial direction becomes 

unimportment. In this case the governing equations can be 

simplified into the following form 

1 a2r, aT1 ar, - -- - - - - - (T - T ) = 0 
PE ax2 ax aq f sur ( 3 -2 ) 



with boundary conditions 

aTf - = O 
ax 
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at X =  0 

as X -+ 00 

and the initial condition is unchanged. 

The governing equations for spherical particles (see 

Appendix B )  is 

where 

aT a1-T 2 aTP p p 
- = -- + = �  

a q  a R  2 R a R  

q =  
K · t 

p 
,2 . P • C 

0 p p 

T ' - T '  
p 0 

T = P T ' - T ' 
fi 0 

R R == Ro 

the boundary conditions for equation (3-3) are 

aT P
= O 

a R 
atR = O 

(T - T ) = - 2 ! 
aT 

I f aur (Bi)p a r ; = l 
at R = l  

(3-3) 



where 

h D  
(Bi)p = --­

, K 

3 0  

and the initial condition is 

T = T (X)  P a at q = 0 

Some previous investigators have used different 

boundary conditions for the fluid , particularly for the 

condition at the exit. T. Saitoh op. cit. , chose 

at the exit and Beasley and Clark [19] used 

= O  

at the exit. 

In  fact, both dT /dx and T at the exit are varying with 

time during the thermal charging and discharging 

processes. Rather than use either of the preceding , We 

chose i l T 
_f = O  as X -+ oo  

as a more realistic, physical boundary condition. 

Equations (3-2) and (3-3) are a set of coupled, 

second-order, time-dependent , partial differential 

equations which can be solved by the implicit finite­

difference method. 
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(l.B) The First-Order Model: 

I f  the dispersion effects in the fluid are neglected, 

the energy equation for the fluid reduces to a first-order 

partial differential equation. The complete mathematical 

model of the packed bed in terms of the dimensionless 

parameters becomes 

with 

and 

For the fluid: 

ar, aT, 
· - + - + (T - T ) = 0 

ax dr} f ,ur (3-4) 

at X = O 

at  q = O 

The governing equation and the boundary and the initial 

conditions for the spherical particles remains unchanged. 

Compared with the second-order model, only the 

second-order, X-direction derivative term in the governing 

equation for the working fluid has been omitted. The 

error caused by this omission depends on the value of the 

Peclet number. I f  the size of the packed bed has already 

been decided, the Peclet number is a function of the 
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properties of the fluid and thermal storage material, and 

the flowrate of the working fluid. In the case with Freon 

113 as the working fluid, a glas s sphere diameter of 0. 625 

in, and a packed bed inner diameter of 5 in, the Peclet 

number as a function of flowrate is presented in "TABLE 

2 II • 

TABLE 2 Peclet Number Versus Flowrate of Working Fluid 

Flowrate 

(Gallon/min) 

0. 1 

0. 2 

0. 5 

1. 00 

2. 00 

4 . 00 

Re 

(Based on Sphere Dia. ) 

17. 5 

34. 1 

85. 5 

170 . 5  

341. 5 

682 . 4  

PE 

>2500 

>5000 

>13961 

>39315 

>110000 

>310000 
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( 2) Latent Heat Storage in a Packed Bed 

The latent heat storage packed bed requires the use 

of a phase-change substance as the thermal storage 

material. This material for the case under study is 

encapsulated in thin wall, spherical capsules which are 

surrounded by a flowing working fluid. I t  is the purpose 

of this section to concentrate mainly on building a 

mathematical model for the transient thermal performance 

of a latent heat, thermal energy storage unit of the 

spherical capsule type. Throughout this work, a moving 

boundary problem will be taken to mean a time-dependent 

problem represented by a parabolic partial differential 

equation together with a prescribed initial condition and 

boundary conditions. 

a boundary which 

One of these conditions is given on 

moves 

solution of the partial 

in a way 

differential 

that depends on the 

equation, or, in 

other words, such a problem is characterized by the fact 

that the domain in which the partial differential equation 

is to be solved constitutes one of the unknowns of the 

problem. The problem is non-linear, and due to the 

unknown and transient nature of the boundary, it is 

difficult to solve by common numerical methods. 
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The greatest difficulty in solving a moving boundary 

problem 

boundary. 

lies in tracking the unknown phase-change 

The approach used is based on energy 

conservation in the material from which the phase-change 

boundary location is a natural consequence of solving the 

energy conservation laws for the system. The following 

assumptions are made in the approach: 

(a) the melting front is sharp, that is, there is no 

mushy region between the solid and the liquid phases. 

(b) Natural convection effects inside the capsule are 

negligible. 

(c) Spherically symmetrical melting and freezing can 

be assmed , i. e. heat conduction is dominant. 

(d) The volumetric increase and decrease due to 

phase-change is negligible. 

(2. A) Second-Order Model 

The non-dimensional variables defined for the 

analysis of the spherical phase-change material (PCM) are 

C1 · (T ' - T ') 
STe = rn ° 

L 

K1 (T ' - T• ) · t rn o 
q = 

R 
R = 

-

R2 · p  · L  
0 l 
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K 
'2 = -Kl 

The other non-dimensional parameters are the same as in 

the preceding section. 

The energy conservation equations for the PCM are: 

In  the liquid region 

STe ·  aT1 a2r1 2 aT1 - = -- + - -aq aR 2 R aR  (3-5 )  

which is valid for R* < R < 1 (melti ng case ) or for O < � < 

R* (freezing case ) .  

I n  the solid region 

STe · aT� = l . ( Ir, 
+ 

! ilT, ) 
a if � 

· a R2 R a R (3-6 ) 

which is valid for O < R < R* ( melting case ) or for R* < R < 

1 (freezing case ) 

The two coupling conditions at the phase-change 

interface are 



and 

or 

T t  = Ts = Tm 

for the melting case 

aii • i!TI 1 -
a �  = - a 'ii "ii =  R· + '2 · 

for the freezing case 

aR• aT, j ; 
o ii  - � aR  R = R·  + � 
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( 3 - 7 ) 

aT I ii = ii· 
s 

a R  ( 3 - 8 )  

aT'l I ii =  ii· a R  
( 3-9) 

In  these expressions the subscripts 1 and s indicate the 

liquid and solid phases, respectively, Tm is the melting 

temperature, and r* is the location of the melting front. 

Other boundary conditions on equations (3-5) and (3-6) are 

aT - = O  
aR 

R = 0 

and the surface temperature of the PCM is (see Fig d-2) 

- (1 + E)  KP 

E T2 - K ·  
T 

sur 

1.39 
T

1
= ------K---

(2 +E p -- - ----
(1 +E) 1.39·  K 

where the Tsur can be obtained by the convection boundary 

condition on the surface of the capsules. 
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The energy equation for the working fluid remains the 

same as that in the sensible thermal storage packed bed, 

i. e. , 

1 n, aT
f 

aT
f - -- - - - - - (T - T ) = 0 PE ax2 ax aq f ,ur (3-2) 

and the boundary conditions on the fluid are 

unchanged. 

also 

Equations (3-2) , (3-5) and (3-6) , together · with 

coupling conditions (3-7) and (3-8) or (3-9) and the 

boundary conditions, constitute a set of coupled partial 

differential 

numerically. 

equations which 

(2. B) First-Order Model 

can only be solved 

(a) I f  the energy dispersion in the fluid is 

neglected, the energy equation for the fluid simplifies to 

a first order differential equation, just as we discussed 

in section (l. B ) .  The equations for the spherical PCM 

remain the same as the equations in the preceding section. 

(b) For the melting/freezing case with the assumption 

that the phase-change material is initially at the melting 

point, equations (3-8) to (3-9) simplify to the following: 

For the melting case where R < R < 1 

( 3-10) 



For the freezing case where o < R < R • 

(3-1 1 )  

Virtually this assumption ignores the sensible heat 

of the packed bed below the melting temperature (for the 

melting case) , or above the melting temperature (for the 

freezing case) . If  the initial temperature of the bed is 

not too much lower or higher than the melting _ temperature, 

this assumption will not cause significant error . I t  

should be noted that for the phase-change material 

' NA 2HP03 • 12H2 0 '  and in the temperature application range 

of 20° to 50° celsius, negfecting subcooling or 

superheating will cause an error of approximately 0. 5% in 

total thermal storage per degree celsius of subcooling or 

supercooling. 

(2. C) Supercooling 

I n  the freezing process, solidification does not 

start until the temperature of the phase-change material 

reaches a point considerablly lower than the freezing 

temperature. This is known as supercooling. The amount 

of supercooling depends on a number of factors and can not 

be determined by analysis. As soon as the solidification 

begins, the temperature at the phase-change interface 
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jumps to the freezing point value. The heat of fusion 

released is not only transferred to the fluid but also to 

the interior to heat the supercooled liquid phase-change 

material . This is depicted in figures (3-1) and (3-2) . 

The temperature distribution in both the liquid and 

solid phases and the location of the solidification front 

is of primary concern in analysis. The sets of equations 

used for computating the temperature distribution are as 

follows. 

(2. C. l) Before Freezing Starts ( t < tfre > =  

As the temperature is higher than the temperature of 

supercooling, the solidification will not start and 

equation (3-2) and equation (3-5) will be used for the 

working fluid and the PCM, respectively . A major 

characteristic of this case is that the temperature of the 

PCM is below the melting temperature, but higher than the 

temperature of supercooling . A typical temperature 

distribution before the moment of freezing is shown in 

figure ( 3-1) . 

(2. C. 2) After Freezing Starting ( t � tfre) : 

The energy balance equation for the phase-change 

interface changes into the following forms 

(3-12) 
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After the temperature at the center of the sphere 

reaches the melting temperature, the energy balance 

equation at the phase-change interface reduces to 

aR  I ii =  ii· ( 3-13 } 

The temperature distribution after the moment of freezing 

is shown in figure ( 3-2 } .  

(2. C. 3) At the Moment of the Freezing ( t = tfre > =  

A temperature jump happens at the phase-change 

interface; at this moment the temperature at the interface 

is discontinuous, and the temperature gradient at the 

phase-change interface is infinite. 

As will be shown in a later chapter, the computer 

simulation results with consideration of supercooling 

obtained with this set of partial differential equations 

and a special boundary condition to handle the temperature 

discontinuty at the initial phase-change interface compare 

very closely to the experimental data of T. Saitoh [ 37]. 
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(3 } The Packed Bed with Two-Phase Working Fluid 

(3. A } Governing Equation 

Phase-change of the working fluid is considered in 

this analysis while the thermal storage material might be 

either a latent heat (PCM } or a sensible thermal storage 

material such as solid , glass spheres. Since the working 

fluid temperature in the phase-change region remains 

relatively constant, the infinite heat capacity model for 

the working fluid appears to be reasonable. This feature 

simplifies the modelling and calculation process. 

However, the thermodynamic quality of the working fluid 

varies with the distance from the entrance. 

With the following non-dimensional parameters 

h · A · :c • (T ' - T ') X' = ______ m __ o_ 

T = 
T ' - T '  

f ,,. 
T ' - T '  

,n 0 

the governing equation for the two-phase fluid can be 

written in the following form 
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a<x> a< x> -- + -- + (T - T ) = 0 
aK' aq' f sur 

having the boundary condition 

<x> = <x> . (q') 
& 

and the initial condition : 

For the working fluid 

<x> = <x> er) 
0 

X' = 0 

q' = 0 

For the thermal storage material 

T = T (X� at q' = 0 

(3. B) Heat Transfer Coefficient 

( 3 -14 )  

The determination of the heat transfer coefficient 

between the thermal storage material and the two-phase 

working fluid is very difficult. No published work has 

been found which applies directly to this problem. I n  the 

following section, two different cases are discussed. 

(3. B. l) Boiling Situation 

The energy transporting fluid absorbs heat from the 

thermal storage material and undergoes boiling over at 

least a part of the length of the packed bed. The 

entering fluid usually is liquid and at a temperature 

below saturation. Before the saturation temperature is 

reached, the heat transfer process is that of single-phase 
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forced convection. At the point where the saturation 

value of temperature is reached, forced convective boiling 

occurs. 

saturated 

Usually in a boiling situation, before the 

boiling region is encountered there is a 

subcooled boiling region. But in a typical packed bed, 

the transition from subcooled to saturated boiling flow 

happens in a short distance. This is because the 

hydraulic diameter is small, and no clearly defined core 

region appears in the working fluid. Near the exit of the 

bed "dryout" may occur, the location of which depends on 

the operational time, flowrate and the kind of thermal 

storage material. 

One forced convective boiling heat transfer 

correlation presented by R. T. Lahey and F. J . Moody [ 38] 

for two phase flow is of the form 

where Xtt · is the Martinelli parameter. 

From G. B. Wallis and J. G. 

Martinelli parameter is given by 

2._ = ( <x> )o.9 . ( Pr )o.s .  ( llg )0.1 
X 1 - < .x >  p µ tt . g f 

(3-15) 

Collier [ 39], the 

(3 -16) 

where <x> is the quality of the working fluid. 
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In equation (3-15) , A and n are undetermined constants 

which can be obtained by a curve fitting method using 

experimental data. The equation (3-lS) can be transformed 

by taking the logarithm, term by term, into 

ln (h
'u,

I hu,> = ln (A) + n · ln (1/X
tt

) (3-1 7) 

For m experimental data points, this equation can be 

expressed in the following form . (See reference 40 for 

details concerning this approach. ) 

m ( 1 ) "' ( 1 ) '" ( 1 ) ( h2t ) ln A ·  � X + n � X f = � X i h i , = 1 tt , = 1 tt , = 1 tt lt 

The solutions of these two normal equations for the 

unknowns n and A are 

and 

n =  

,n h ,n [ !  I (2!) . - � I (-1 ) . ]  

A = e m i = 1 h 14> ' "' i = 1 xtt ' 

(3-18) 

(3-19) 
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(3.B. 2) Condensing Situation 

During the charging process, the working fluid vapor 

releases heat to the thermal storage material by 

condensing as it flows through the packed bed. J .  w. 

Yang [41] formed a boundary layer analysis for laminar 

film condensation on a sphere and obtained expressions for 

the heat transfer coefficient and the condensation rate. 

His analysis was based on the condition of zero vapor 

velocity. In  197 9, S. S. Kulateladze, N. I .  Gogonin, 

A. R. Dorokhov and V. I.  Sosunov [42] reported on a 

study of film condensation of flowing vapor over a bundle 

of horizontal tubes. They presented the following 

equation for the ratio of the heat transfer coefficient 

for flowing vapor, h, to that for quiescent vapor, hO, on a 

bundle of horizontal tubes. 

where 

z = 0.9 · (1 + Pr · k!R')VJ 

( 3- 2 0 ) 



R' = p . µIp . µ f u u 

k = L IC · 6.t 
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In the above equations, w is the velocity of the 

vapor, D is the tube diameter, L is the latent heat of 

vapor, C is the specific heat, h is the heat transfer 

coefficient in quiescent vapor, t is the temperature 

difference between vapor and tube wall, and the subscripts 

f and v indicate liquid and vapor states, respectively. 

The value of h can be obtained from Yang [41 ) ,  viz. 

[ 
g (pf - p ) . L . x3 I h = 0. 803 

u u 
0 d • . V • (t - t ) u w 

(3-21) 
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( 4) Energy Stored in the Packed Bed 

In  the evaluation of the performance of a thermal 

storage unit, the fraction of available energy that is 

stored is of major interest since it can be thought of as 

an indication of the effectiveness of the storage system 

as an energy recovery device. 

The amount of energy added to or extracted from the 

fluid stream during the time interval ' t ' i s  

+ J t m · L · ( < x > - < x > .) · dt 
O f f � & 

(3-22 ) 

Q is equal to the energy lost or obtained by the fluid as 

it passes through the packed bed. 

The maximum possible energy storage occurs when the 

final temperature of the thermal storage material is equal 

to the temperature of the fluid entering the unit, or 

whenever the thermodynamic quality of a two-phase working 

fluid at the exit is equal to that at the entrance. Thus, 
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where Ql is the latent heat obsorbed or released by the 

PCM, Q2 is the sensible heat change of the PCM, Q3 is the 

latent heat change of the working fluid within the packed 

bed, and Q4 · is the sensible heat change of the fluid 

within the packed bed. 

Q = p (1 - e) · S · Lu · L 1 m fr 

Q = [ p  · S · Lu · e · C · (T . - T > ]  (T ' - T ') 4 f fr f i o m o 

The fraction of the useful energy stored, Q, is given 

by the ratio of Q (actual) to Qmax, i.e. , 

(3-23) 
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CHAPTER 4 

NUMERI CAL SOLUT ION 

The numerical method chosen in the present study is 

the finite difference, implicit formulation approach. 

The usual way of solving the heat flow equation over 

a fixed domain using finite difference representations of 

the derivatives is to evaluate the temperatures at 

discrete points on a fixed grid. For the sensible thermal 

storage packed bed, the traditional finite difference 

method can be used to solve .the governing equations for 

both the working fluid and the thermal storage material. 

I n  the case of a phase-change material used for the 

purpose of storing thermal energy, a modified finite 

difference formula based on unequal space intervals near 

the moving phase-change front within the spherical pellet 

is suitable. The complication associated with a moving 

boundary is that at any time it will be located at an 

initially unknown position between two neighboring grid 

points. The governing differential equations for both the 

PCM and the working fluid are non-linear, and due to the 

unknown and transient nature of the boundary, it is 

difficult to solve this set by most methods. Two finite 

difference methods referred to as the strong solution 

method and weak solution method by Solomon ( 33 ] , have 
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already been developed. The weak solution method avoids 

tracking the unknown moving boundary. In the strong 

solution method, the boundary location is determined by 

the phase-change process which is dependent upon the 

latent heat energy of the material, and the boundary 

location is a naturai consequence of solving the energy 

conservation law of the system. Control of charging and 

discharging rate of a thermal energy storage packed bed 

rests upon the understanding of the phase-change process 

in the PCM, and particularly on the estimation of the 

location of the melting and solidification front in the 

PCM . 

In this chapter the finite difference equations for 

the sensible thermal storage packed bed and the latent 

thermal storage packed bed are discussed separately. 

(1) Sensible Thermal Storage Packed Bed 

The solution of the coupled set of equations of the 

sensible thermal storage packed bed is accomplished by 

utilizing a fully implicit, finite difference scheme. The 

finite difference equations in non-dimensional form are 
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For the fluid: (with j denoting node and n denoting 

time step) 

(T )n + 1 = A (T )" + 1 + B (T )" + 1 + C (T )" + D <T )" + 1 f j 1 f J + l  1 f J - 1 1 f J 1 f J 

where: Aq ( 1 1 ) 
AX . PE ·  AX - 2 

A1 = --------
( 2�q. 2 + Aq + 1 ) 

PE · AX 

· All ( 1 1 ) 
AX PE · AX

+ 2 B1 = --------

( 2 �Il + �Il + 1 ) PE · AX2 

C = 1 1 

D = Aq 1 

For the glass spheres: 

T"+ 1 = A  T� + 1 + B T� + 1 + C  T" i 2 t + l  2 , - 1  2 , 

where: �ri ·( 1 ) -- 1 + --
A R 2 K- i 

A2 = ( 2Aq ) -- + 1 
A R 2 

uif ( 1 _ _  
1 

) u'ii 2 . K- i 
82 = ( 2 aq ) 

--=-2 
+ 1 

' u R 

(4-1 )  

(4-2) 
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In  the above expressions for A2 and B2, K indicates 

the number of nodes of the sphere, and i indicates the 

location of the node. Equation (4-2) is not valid at i=l 

and at i=21; these special cases are discussed in Appendix 

D 

The initial condition simply involves assigning the 

initial solid and fluid temperature at each node. The 

boundary conditions for the fluid, however, are not 

obvious. For the exit condition, several differential and 

numerical forms have been employed in the past. In fact, 

the temperature and temperature gradient at the exit 

varies for all time, and it is impossible to assign fixed 

values for both fluid temperature and fluid temperature 

gradient at the exit. 

The truncation error in 

formulations is O(�?l + � R ) . 

the 

(2) Latent Heat Storage Packed Bed 

above difference 

The equation that prescribes the working fluid 

temperature field in a latent heat storage packed bed is 

the same as that used in a sensible heat packed bed. But 

the equations for the phase-change thermal storage 

material are much more complicated . The applicable 

governing differential equations for the spherical capsule 

of the phase-change material with constant thermal 
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properties in both the solid and liquid regions have 

already been shown in Chapter 3. Equation (3-5) is for 

the solid and equation (3-4) is for the liquid . Equation 

(3-6) is the energy balance at the melting front, and this 

expression couples equations (3-4) and (3-5) . The (3-6) 

represents the rate of travel of the interface, and L is 

the latent heat of fusion, which is positive for a 

freezing process and negative for a melting process. 

I n  the computation method employed, the total region 

of PCM is divided into N equally spaced intervals of 

thickness ,1 R, and the melting/freezing front is traced 

only between two nodes. The regions between all other 

nodes are either all liquid or all solid. The method 

leads to a simple and accurate computation of the 

melting/freezing front travel. The method developed in 

this work focuses attention on the melting/freezing 

interface and the node immediately adj acent on each side 

of the front. 

Appendix D presents a detailed development of each of 

the finite difference equations. These equations are also 

presented in this section, and four different cases will 

be discussed. 
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Case 1: The phase-change interface lies between two 

points 'i', and ' i+l ' ( 2 < i < 20 ) 

The resulting finite difference equations are · 

At point 'i' 

[ 
2 - 2 (En + 1 + En) l . l 

+ ------ + --------- T� + 1 + T� 
En + 1 + En + 2 ( N- i) (En + 1 + En - 2) ' - l ' 

(4-3) 

At the interface the radial length fraction of the 

increment A R  is given by 

(4-4) 
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at point ' i+ l' 

T" + l  = i +  1 

[ 
26 q ( 

2 

STe ·  t.R 2 
4 _( E"+ l + E") 

En + l
+ E " - 2 

) ] 
+ I ( ) ]  T

. + 2
+ T \ 1 

(K - i- 1 )  4 - E " +  1 + E" 
' ' 

1 1.0 + f-
2

. 6q l I Ste · 6 R 2 

2 En + l + En 

1 1  gn + I  + gn - 2 
+ 

( gn + I + gn - 2 )< N - i - l l 

at point 1 

K T 1 
- -1!. · � + 2T - - T 

K 1 .39 2 2 3 

T = __ c:.__ ______ _ 
1 3 K

P 
2 1.39 · K 

at the center 

(4-5 ) 

(4-6 )  

at al l other points (except points 1, 21, and the point on 

either side of the phase-change interface) 

T� + l  = A T� + l  + B T
n + l  + C T" 

' 2 , + 1  2 i - 1  2 i 

where :  __ I1_ l + --6-
( 

1 
) STe '  6 R 2 N - i 

A = --------
2 

( 
26- ) 11 + 1 STe · 6 R 2 

(4-7) 



__ l'l____ 1 - --t,,.= ( 1 ) 
S Te " 6. R 2 N - i  

B = -2 (. 2�- ) ____ ri_ + l 
STe ·  � R  2 

C = 1 2 
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Case 2 :  The phase-change lies between point 'l' and 

point '2' ( i = 1 ) 

The resulting finite difference equations are: 

At the phase-change interface, the radial fraction of 

/ R is 

( 4-8) 

The temperature at point '2 ' is 

( 4-9 ) 
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and the temperature at the point ' l' becomes 

K 
0 .71 9  ...!!. · T 

K sur 
T = ___ c __ _ 

1 
1 K 
- + 0.7 1 9 ' .2. 
E K 

(4-10) 

The temperatures at all other points and at the 

center of the PCM are the same as those for case 1. 

Case 3: The phase-change interface lies between 

points ' 2 ' and ' 3' ( i = 2 ) .  The only difference from 

case 1 is in the equation for the temperature at point 

' l' .  The temperatures at the points on both sides of the 

phase-change front can be obtained by substituting i = 2 

into equations (4-3) and (4-5) . 

by 

In this case, the temperature at point ' l' is given 

- (2 + E" + l + E" K T 
------- T" +  1 _ ..J!. _P_ 

E" + l + E 2 K 1. 3 9 
rn + l = ___________ c __ 

1 1 4 + E" + 1 + E" K
P I l 

2 + E"+ l + E" - K
c 

1 .39 

(4-11) 
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Case 4: the phase-change interface lies between 

point ' 20' and the center of the capsule. At the 

phase-change interface the radial length fraction of � R  

is 

En + l = _q _ _ ----- Tn + l _ ------ T" + l 
� : I E" + 1 + E" + 2 E" + 1 + E" I � R  2 En + l + E" 20 En + l  + E" + 2 

19 

(4-12 ) 

At point ' 20 ' , the finite difference nodal temperature 

equation is obtained by substituting ' i=20' into equation 

(4-3 ) . Finally at the center of the sphere 

T == O 
21 
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CHAPTER 5 

RESULTS AND DISCUSSION 

(1) Results for a Sensible Thermal Storage Packed Bed 

The results for sensible thermal storage packed beds 

are shown in figures 5-1 through 5-15. In this case, 

liquid Freon 113 was used as the energy transporting fluid 

and glass spheres served as the thermal storage material. 

The bed length was 1. 13 m and the diameter was 0. 127 m. 

The diameter of the glass spheres was 15. 87 mm. This bed 

is identified herein as Bed S. 

Figures 5-1 through 5-4 indicate the transient 

variation of the outlet fluid temperature under typical 

charging conditions. The computer simulation results are 

fairly coincident with the experimental data [45] , both 

qualitatively and quantitatively. The agreement between 

the measured and computed outlet field temperature reveals 

that the first order model is good enough for this case. 

As a matter of fact, for these flows the Peclet number is 

sufficiently high that the second derivative term has a 

negligible effect on the axial fluid temperature 

distribution and the temperature at the exit. In these 

computations, the correlation reported by Ranz ( 7). was 

utilized to compute the heat transfer coefficient between 
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the working fluid and the glas s spheres. The heat 

transfer coefficient between the working fluid and the 

packed bed wall was from Yagi and Kunii [23]. Figures 5-5 

through 5-8 show the non-dimensional temperature 

distribution inside the spheres. These results indicate 

that the temperature gradient inside the sphere increases 

with working fluid flowrate, and, therefore, the uniform 

temperature assumption for the glass  spheres would not be 

valid, particularly for the situation of high flowrate 

resulting in a Biot number much larger than 1. 0. 

Figures 5-9 through 5-11 show surface temperature 

distributions of the spheres along the packed bed length 

for different flowrates. After several minutes of bed 

operation, the sphere surface temperature becomes close to 

uniform over the bed length. This is a result of the 

small heat capacity of the sensible heat storage packed 

bed. 

The amount of recoverable energy stored in the packed 

bed as a function of time of charging operation can be 

evaluated from figures 5-12 through 5-15. 

(2) Results for a Latent Heat Storage Packed Bed 

I n  this section, the experimental data with which the 

analytical results are compared are taken from Saitoh 

[39]. The experimental set up was a 1. 295 m long and 
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0. 61 m diameter packed bed, · well-insulated with 

fiberglass. This bed is identified hearin as Bed L .  The 

diameter of the bed spherical capsules was 71 mm, and the 

phase-change material was NA2 HP03 · 12H20. The experimental 

flowrates were 113. 8, 347. 4, and 658. 6 kg/hr for the 

melting case, and 119. 8, 298. 8, and 558. 0 kg/hr for the 

freezing case in their tests. 

(2. A) Melting Mode 

Figure 5-16 shows the comparison between experimental 

values of the outlet temperature of the working fluid and 

results obtained with both the first-order and 

second-order models. It should be particularly noted here 

that the melting process in a sphere is predominantly by 

conduction. Both the first-order and the second-order 

models are based on the assumption that the heat 

transmission in the liquid phase inside the capsule is by 

conduction alone. 

From Figure 5-16, it can be seen that the second 

order results compare very favorably with the experimental 

data. However, the first-order results deviate 

significantly from the experimental data at a flowrate of 

113. 8 kg/hr . This error is a result of neglecting the 

second derivative term in the governing equation ( A-2 ) ,  

and the magnitude of this derivative term depends on the 
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value of the Peclet number (or flowrate) . 

I n  Figure 5-16, subcooling also has been taken into 

account with resulting good agreement between the 

experimental data �nd the analysis. Neglecting subcooling 

will cause a error of approximately 0. 5% in total energy 

storage per degree celsius of subcooling for the material 

and range of parameters investigated in this study. 

Because of the added complexity, no previous work has 

included subcooling in an analysis. 

The results given in Figures 5-17 through 5-22 

present comparisons between the solutions using the 

first-order and the second-order models for working fluid 

temperature and surface temperature of the capsules as a 

function of non-dimensional distance. All of these 

results are as expected and give an additional 

confirmation of the consistency of the mathematical models 

and the computational scheme of the present study. 

Figure 5-23 shows the comparison of corresponding 

outlet temperatures between the experimental and the 

analytical results for a prescribed, time-depedent inlet 

temperature. Here again, good agreement between the 

experimental results and the second-order analytical model 

was obtained . 
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Figures 5-24 through 5-29 show the transient 

variation of the non-dimensional working fluid temperature 

along the length of the packed bed obtained with the two 

models. The general trends of the curves for the 

different models are similar to each other. The 

subcooling region and phase change region exist distinctly 

in these plots. The release of the heat of fusion of the 

PCM produces some inflexion points on the boundary between 

the two regions. 

Figures 5-30 through 5-35 show the surface 

temperature variation of the capsules in the axial 

direction. Compared with Figures 5-9 through 5-11, more 

time is needed for the PCM to reach the working fluid 

entrance temperature. 

Figures 5-36 through 5-41 indicate the transient 

temperature gradient inside the spheres as a function of 

bed length location along the axial center of the packed 

bed. Three separate regions, subcooling, phase-change , 

and superheating, can be seen in these figures. 

clear from the figures that the area 

It is 

'A' of 

non-dimensional temperature below the zero value 

represents subcooling where no melting appears. The top 

area ' C' represents the superheating. In this region, all 

the PCM is in liquid phase. The phase change region, area 
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' B' where both liquid phase and solid phase co-exist, lies 

between the above two. the temperature gradient inside 

the sphere is not equal to zero (except at the center of 

the sphere) , particularly in the phase change region. The 

lumped model, therefore, is not suitable for a PCM. 

Figures 5-42 through 5-47 indicate the so-called 

"melting gradient" lines. · These figures give the total 

melting time, the melted fraction at any specific time, 

and the location of the melting front. This information 

is essential for the designer to make the best choices of 

parameters in a latent heat, packed bed design. 

Finally the non-dimensional heat storage ' Q' for 

different flowrates is shown in Figures 5-48 through 5-51. 

(2. B) Freezing Mode 

Figure 5-52 is an example of the working fluid 

temperature at the exit as a function of time for 

discharging. After the working fluid flows through the 

packed bed, the outlet temperature promptly drops to a 

point below the melting temperature due to supercooling, 

then remains temporarily constant, and finally experiences 

a temperature jump at the end of the flat segment. 

Following the jump, the outlet temperature gradually falls 

to the entrance temperature. The ' jump ' phenomena was 

experimentally observed by Graves ' 45 ] .  In  the 
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charging process, the outlet temperature gradually 

even while the phase change is preceding. I n  

the 

rises 

the 

PCM discharging process, the latent heat released by 

per unit time is almost constant while solidification is 

proceeding. The temperature ' jump' is the result of 

suddenly and appreciably raising the capsule' s surface 

temperature during the solidification at the downstream 

end of the packed bed. 

In  Figure 5-53, an example of analytical results 

without considering supercooling is shown. Compared with 

the results with supercooling shown in Figure 5-52, the 

curves exhibit no plateau and no temperature jump. I f  we 

invert the curves , they are seen to be very similar to 

the curves for the melting process shown in Figure 5-16. 

Figures 5-54 through 5-56 show the working fluid 

temperature variation along the axial direction. 

characteristic of this set of figures is 

A unique 

that an 

intersection appears among some curves; this is caused by 

supercooling. The superheating and phase-change regions 

are separated naturally in these figures. 

The variation of surface temperature of spherical 

capsules with distance and time is shown in Figures 5-57 

through 5-59. Because the surface temperature is strongly 

influenced by the supercooling, some zig-zag temperature 
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gradient discontinuities are produced when the 

solidification is proceeding . The initial solidification 

occurs very rapidly and is probably associated with a 

rapid return to the equilibrium temperature after an 

initial supercooling. The solidification proceeds until 

the phase change interface reaches the center of the 

capsule, and the surface temperature decreases steadily 

until it reaches the entrance temperature. 

I n  Figures 5-60 through 5-63 the measured and 

predicted temperatures at the center of capsules are 

compared. Good agreement is seen to exist between the 

analytical and the experimental data . The non-dimensional 

temperature jump due to supercooling varies with position 

in the packed bed. The bed axial length was divided into 

20 equal distances for defining bed length locations. 

Thus, the point"2" is 2/20 or 10 percent of the bed 

length, etc. At the position "2", the jump was so slight 

that there seems to be no jump at all. The jump gets 

larger with increasing axial distance. This is considered 

to be due to the different rates of cooling at different 

positions, since the PCM has poor conductivity .and it 

takes a significant amount of time to cool down the center 

point of the capsule. As soon as the initial 

solidification occurs, the latent heat released at the 
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phase-change interface will be transferred not only to the 

working fluid but also to the inner part of the capsules. 

The temperature at the center will rise until the melting 

temperature is reached. 

Figure 5-64 shows the transient variation of the 

predicted temperature at the capsule center for a flowrate 

of 558. 0 kg/hr. The time variation of the location of the 

freezing front is given in Figures 5-65 through 5-67 where 

the non-dimensional freezing front radius is plotted · 

against non-dimensionalized axial location . All of these 

curves follow trajectories similar to those of the same 

type in the melting mode. 

It  is understandable that the total solidifying time 

of the packed bed varies with the flowrate; viz. , 

approximately 9 hours for a flowrate of 119. 9 kg/hr, 5 

hours for 298. 8 kgjhr, and three hours for 559. 0 kg/hr. 

The prediction of the transient response of the 

outlet temperature, subj ect to a time-varying inlet 

temperature, is shown in Figure 5-68 . I t  can be seen from 

this figure that the predicted transient characteristics 

of the packed bed at the exit closely resemble the 

measured characteristics at the exit. 
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(3) Results for the Packed Bed with the Working Fluid 

undergoing Phase Change 

Figure 5-69 shows the relationship of the heat 

transfer coefficient between the two-phase working fluid 

and the thermal energy storage material to the 

thermodynamic quality based on Graves' experimental data 

for a 'bed S' configuration. The constants A and n of 

equation 3-13 were determined by using the least square 

curve fitting method and are equal to 14. 687 and -0.184, 

respectively. 

Figure 5-70 indicates the transient variation of 

thermodynamic quality of the two-phase working fluid with 

a Glauber salt as the thermal energy 

Figure 5-71 shows the location of 

storage material. 

the solidification 

front. Because the heat transfer coefficient between the 

working fluid and the capsules 

solidification front moves rapidly. 

is very large, the 

The curves in figure 

5-71 are somewhat rough because of this relatively high 

speed. 
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CHAPTER 6 

CONCLUSIONS 

In  order to predict the thermal performance of 

sensible heat and latent heat storage packed beds, two 

models designated as 

developed in this 

second-order and first-order were 

of the models take the study. Both 

intraparticle conduction into 

effect of the dispersion in 

consideration, 

the fluid in 

but the 

the ·axial 

direction is considered only in the second-order model. 

I t  has been shown that the second-order model is in good 

agreement with published experimental data by Saitoh and 

Kirose [ 37 ] ,  and in fact, is significantly better than 

results of previous analyses reported in the literature. 

I n  addition, an improved exiting fluid temperature 

boundary condition used in the present work provides a 

more physically meaningful description of the exit 

condition for the bed . 

Compared with the second-order model, the major 

advantage of the first order model is simplicity, but this 

model gives less accurate results, particularly at low 

Peclet number. For Peclet number larger than 200, 

however , the outlet working fluid non-dimensional 

temperature difference between the first and second-order 
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models is less than 10% for the beds and operating 

parameters considered in the present study. For Peclet 

number larger than 1000, the results from the first-order 

model gave a very .good coincidence with the unpublished 

data of sensible heat storage previously obtained by 

researchers at the University of Tennessee. 

The effects of subcooling, superheating, and 

supercooling of the PCM has been included in the computer 

simulation of this study, and good agreement between the 

results of the computer simulation and the experimental 

data has been found where these effects are existant. 

An outstanding new feature of the present numerical 

method lies in tracking the entire bed phase change_ 

interface for both the charging and discharging modes. As 

a natural result of this method, the so-called 

"melting/freezing gradient" lines were determined. These 

results are helpful in the design of a latent heat storage 

packed bed, particularly with regard to estimating the 

energy stored or withdrawn from the bed. Specifically, 

these results are useful in making compromise design 

choices of parameters such as flowrate, size of the bed, 

heat storage materials, etc. 



144 

Typical computations of thermal performance of the 

packed bed with a phase-change working fluid have been 

carried out. The very high heat transfer coefficient 

between the two-phase working fluid and the thermal energy 

storage material results in short charging and discharging 

times of the packed bed. In order to make full use of the 

latent heat of the two-phase working fluid, the packed bed 

should either have a large heat capacity or utilize a _ very 

small flowrate of the two-phase working fluid. 
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APPENDIX A 

DEVELOPMENT OF THE GOVERNING EQUATIONS 

FOR THE SINGLE-PHASE WORKING FLUID IN PACKED BED 

The governing equations for the working fluid in a 

packed bed of spherical particles that accounts for 

dispersion effects and the temperature gradients in both 

axial and radial directions can be obtained by performing 

an energy balance on an incremental fluid control �olume 

of length /x and a radial thickness /r. The rate of 

energy entering the incremental volume is equal to the 

rate of energy leaving the volume plus the rate of energy 

accumulated within the fluid in the incremental volume and 

rate of energy absorbed by the thermal energy storage 

material. 

I n  order to form the energy balance for the fluid 

passing through the incremental control volume, (refer to 

figure A- 1) the fol lowing expressions are useful, 

1. The energy entering the control volume during / t 

is 

! M, . Cr .  l T ' · 2 nr · flr · flt 
sfr 

r % 

aT ' 
f . l e · -:;- · 2nr ·  !lx ·  flt x 

aT '  
c : · 2 nr · /lr · flt ] , 
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E xi t  

Con t r o l  V o l ume  

Inl et 

Figure A-1. Schematic Diagram of Heat Storage Packed Bed 
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2. The energy leaving the control volume during time 

� t is 
! M, . Cr . T ' ·  2nr · llr · 6tJ , + /;.% s, f 

1 -Kf · aT , 
6t ] . + IJ.% 

+ c ·  _f . 2nr · llr · 

. 
+ 1 -11 · C ·  

ar, . 
ar (2 nr + llr) · llx .  6t l r + IJ.r  

3. The energy accumulated by the fluid in the 

control volume during ,Ll t  is 

IC · p · c · 2nr · llr · llx · T ' ] f f f t + !J.t 

- [c . p . c · . f f 
2nr ·  llr · llx · T ' ] 

f t 

4. The energy absorbed by the heat storage material 

in the control volume during Li t  is 

hA --- (T ' - T ) · 2 nr · llr · llx · flt S · Lu f sur 
fr 
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Now the first law of thermodynamics applied to the 

control volume is 

Energy entering 

Control Volume 

_during � t 

...... 
Energy exiting : 

+ Control Volumel 

J during d t 

rEnergy accumulated'! 

= 
l
in Control Volume 

during � t ; 

( A- 1) . 

Substituting the preceding expressions into the 

equation above and simplifying yields the fol low governing 

equation in general forms 

ill' ' _f - KR 
ax f 

aT '  
- p ·  C · e · -' 

r f at 

The boundary conditions are 

ill' ' _f = O 
ax 

aT ' _f = O 
ar 

hA 
S · Lu fr 

at X = 0 

at x -+  ao 

at r= 0 

(T ' - r' ) = 0 f •ur ( A-2 ) 



h · (T ' - T, ) = -K · w f sur w 
aT ' 
ar 

1 5 6  

r = r 0 

and the initial condition is 

T ' =  T ' (x) f 0 

at t = 0 

at r = r 
0 

Equation (A-2) can be non-dimensionalized and becomes 

1 IT aT i1l' ( 1 i1l' r IT r ) - __ r _ -1. _ ! _ <T - T ) + K = -=- + --- = o 
PE ax2 ax a q f sur r a r a r 2 

( A - 3) 

in terms of the following non-dimensional parameters  

hA · X 
X = -----M( C( Lu 

r 
r = -

r 
0 

h ·  A ·  t 



K =  

e · Kf · Lu · S 
fr 

h A R 

(pf Vf c,>2 
Sfr Lu · e 

PE = --------------
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For most residential applications, the wall of the 

heat storage packed bed is well-insulated outside. Even 

so, the bed wall may still absorb a significant amount of 

thermal energy, but this usually will not markedly 

influence the temperature in the bed in the radial 

direction. Tables A-1 and A-2 list some experimental data 

of A. G. Graves { 45] for the charging mode. The flowrates 

are 0. 25 and 4.0 GPM for Table A-1 and Table A-2, 

respectively. In  these tables point 2 is at the 

centerline, whereas point 1 and point 3 are one inch from 

the wall, on either side of the centerline. 
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TABLE A-1 Experimental Bed Temperature for ' Bed S' 

during Charging at Flowrate of 0. 25 GPM, 

(Ti-To) =45, From [45] 

Time (min) Temperature (F) 

point 1 point 2 point 3 

0. 0 82. 5 82. 5 82. 5 

10. 4 88. 6 88. 4 88. 5 

20. 8 105. 9 105 . 8  106. 0 

31. 2 115. 1 115. 0 115. 0 

41. 6 119. 5 119. 5 119. 5 

52. 0 122. 2 122. 1 122. 2 

62. 4 124. 5 124. 5 124. 5 
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TABLE A-2 Experimental Bed Temperature for ' Bed S' 

during Charging at Flowrate of 4. 0 GPM, 

(Ti-To) =40 F, From Graves [45] 

Time (min) 

0. 0 

2. 6 

5. 2 

7. 8 

10. 4 

13. 0 

point 1 

86. 3 

114. 6 

117. 7 

119. 0 

119. 8 

120. 1 

Temperature (F) 

point 2 

86. 5 

115. 9 

118. 2 

119. 3 

120. l 

120. 2 

point 3 

86. 7 

114. 8 

117. 7 

119. 1 

119. 9 

120. l 
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From the experimental data in Tables A-1 and A-2, the 

assumption of uniform temperature in the bed radial 

direction appears reasonable, at least for the cases 

investigated by Graves (op. cit. ) .  

Neglecting the radial temperature gradient, the 

governing equation (A-2) becomes 

1 i'T f aT f aT f 
- - - - - - - (T - T ) = 0 
PE aX2 ax cJl'l f sur 

with the boundary conditions 

aTf 
- = O  
ax 

and initial condition 

at X = O 

at X _. 00 

at q = 0 

(A-4 ) 
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APPENDIX B 

GOVERNING EQUAT I ONS FOR THE PHASE-CHANGE THERMAL 

ENERGY STORAGE MATERIAL 

The transient response of a latent heat storage 

packed bed is governed not only by the energy balance 

equation for the working fluid but also by the transient 

energy equations for the heat storage material and the 

conservation of energy equation at the phase change 

interface. The energy equations for the phase change 

material are well! known and are 

Liquid region: 

aT ' ..2T 
p · C -1 = K · (� + ! a'l'/ ) L L at L aa2 R dR 

Solid region: 

P .  C .  • • 
aT ' 
-• = K 

at • 
iJ'l'. iJ'l' ' ( • 2 • ) 
aR + R aR 

(B-1 ) 

( B-2 ) 

The equation of conservation of energy at the phase 

change interface is 

aT '  ; I R = R' 

(B-3 ) 



or 

aR *  
p · L ·  - = - K  · • at • 

� '  
8 
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� ' I + K ·  _l I aR R=R• l aR R=R• 

It is he lpful to introduce the 

dimensionless parameters 

following 

C · (T ' - T ') 
STe = l m o 
. L 

ri -= 
K (T ' - T )  · t l m o 

R2 · p · L  
0 l 

R 
R = ­

R 

P, C11 K1 � = ----
p · C · K l l s 

K 
� = -' Kl 

(B-4) 

new 

which al low the equations (B-l) , (B-2), (B-3) , and (B-4) to 

be simplified to the following non-dimensional forms, 

respective ly 

aT, irTl 2 aTl STe· - = - + - -a q  aR 2 R aR ( B-5) 
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STe ·  
aT 

I + . - - -

ii = "ii- ½ aR  R = R · 

The boundary conditions are 

at the center 

aT - = O 
aR 

at point 1 

K 
0 .719 2 - r 

K sur 
T = C 

1 1 K 
E + 0.71 9 . 

K
P 

R = 0 

and the initial condition is 

at 11 = 0 

( B- 6)  

( B-7) 

(D - 8) 
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APPENDIX C 

THE GOVERNING EQUATIONS FOR THE PACKED BED 

WITH BOTH WORKING FLUID AND HEAT STORAGE MATERIAL 

UNDERGOING PHASE-CHANGE 

The temperature of the working fluid passing through 

the packed bed remains constant in the saturation regime 

if the effect of the pressure drop on the temperature is 

ignored. The governing equation of the working fluid can 

be obtained by applying an energy balance on the fluid 

within the incremental volume with the assumption of no 

radial gradient of thermodynamic quality. This yields 

a < % >  a < .x >  hA • 
Mf · Lf · -- + p · L · S · £ • -- + - (T ' - T ) = 0 

ax f f fr at L u f s ur 

introducing following non-dimensional variables 

h · A · X · (T ' - T ') 
m o X' = ---------

Mf Lf Lu 

h A · t ( T ' - T ') 
m o 

q' = ------· L · S  · Lu · e  
Pr f fr 

T ' - T ' 

T = f m 

T ' - T ' 
o m 

(C-1) 
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the equation (C-1) can be non-dimensionalized and becomes 

a<x> a<x> -- + -- + (T � T  ) = O  
a}(' drJ.' f SUT 

with the boundary condition 

<x> = <x > .  (q') ' 

and the initial condition 

<x> = <x> (X') 
0 

(C-2 ) 

X' = 0 

q' = 0 

The governing equations for the phase-change heat 

storage material are the same as those given in appendix 

B . 
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APPENDIX D 

THE NUMERICAL EQUATIONS 

FOR THE PHASE-CHANGE HEAT STORAGE MATERIAL 

The purpose of this appendix is to develop the finite 

difference equati.ons used in modelling the phase change 

heat storage material. With reference to figure (D-1) , 

the moving boundary at a point in time is shown to be a 

fractional distance E �R between the grid points i AR 

and (i+l) AR. The value of E is, of course, between 0 

and 1. The figure identifies the points (i-1) , i, and the 

boundary itself, as well as the corresponding temperatures 

Ti-1 , T i  , and T m on the boundary. 

I n  the following sections, the problem is discussed 

for four different cases 

( l) CASE 1 :  2< i <20 

( l. A) The travel Rate of the Moving Boundary 

Forming a Taylor' s series expansion about the 

temperature Tm at the moving boundary for each of the 

temperatures at the points on either side of the moving 

boundary yields: 

- aT , - (E+ 1 )2 A R 2 i-T , - _ T
i
_ 1

= T
'" + (E+ HA R -:: _ _ + ---- -=- _ _  + O (A R 3) 

a R  R = R • 2! a R  2 R = R • 
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C a p s u l e 
P CM 

i+ 1 

( 1 - E ) • A R 

D-1. Schematic Diagram of Encapsulated PCM ( CASE 1) 
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aT 1 - (E · fl R )2 ilT 1 - . -
Ti = T

m
+ E· tl R . aR - - + 

2 ' 
-

2 
- + O(fl R  3) 

R = R•  • aR R = R• 

Using these expressions, the temperature gradient on 

each side of the moving boundary can be obtained. The 

left-side temperature gradient on the moving boundary thus 

obtained is 

aT 1 2 - E 1 -E - 2  
I

+ 
( -= = --= - -- T. + -- T .  + 0 (fl R ) 

aR ii = ii• ll R 1 - E 1 + 1 2 - E 1 + 2) 
(D-1) 

The right-side temperature gradient on the moving boundary 

i s  

aT 1 - 1 ( E + l  E . = - -- T - -- T ) 
aR A i  flR E i E + 1 i - 1 (D-2) 
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By inserting the two temperature gradients given by 

(D-1) and (D-2) into equation (B-7) , one obtains the 

following expression for the travel rate of the moving 

boundary 

- 1 -E ) ] -+ 
2 - E Ti + 2 

+ O(A R ) (D:..3) 

THe finite difference form of above equation (D-3) 

has been shown in equation ( 4- 4) 

(1.B) The Temperature at Point i 

Expanding the temperature at point (i-1) and that at 

the moving boundary with respect to the temperature at 

point i results in 

and · 

T . 1 = T . + A R  · , - ' a'f' 
I (A R )2 iT I - 3 . + -- --=- . + 0 (A R ) 

aR  ' 2 ! aR 2 ' 

- aT I (E .  A R  ) 2 iT I _ Tm = Ti - E · A R -=- i 2 , _ 2 . + o (A R 3) aR · a R  ' 
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from these two equations, we obtain 

and 

aT I _ _  1 ( 1 - E 
T � T ) 

aR i - AR E i - E- 1  i - l  

IT I _ _  2_ (!. T + _1_ T ) aR 2 i - AR 2 E i E+ l i - 1 

(D-4) 

(D-5) 

By inserting equations (D-4) , and (D-5) into equation 

(3-4) one obtains 

a'I' I 2 1 1 1 1 - E I - = ---- - + --- T 
o q i Ste ·  AR 2 . E (K -nE i 

I 1 E l l + -- + ----- T E+ l <K-n( - E+l ) i - 1  (D-6) 

The finite difference form of equation (D-6) , is 

shown as equation (4-3) in the body of this thesis. 

(l. c) The Temperature at Point i+ l 

Using a similar procedure, we obtain 

aT ' 2 1 1  1 (E - 1 )  l 
a q i + l  

= 
STe · A R 2 (2 - E) + 

(k - i - 1)(2 - E) 
Ti + 2 

(D- 7) 
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and the finite difference form of equation (D-7) is shown 

as equation (4-5) . 

(2) CASE 2: i=l 

In this case the melting /freezing front lies between 

point ' 1' and point ' 2' (see figure (D-2) ) 

(2. A) The Velocity of the Moving Boundary 

Assuming that the temperature profile between point 

' l' and the moving boundary is linear, the temperature 

gradient on the left hand side of the moving boundary is 

( D-8) 

the temperature gradient on the right hand side of the 

moving boundary can be obtained by substituting i=l into 

equation (D-2) , thus 

aT 1 - 1 ( 2 - E 1 -E ) ---= - - = --= -- T - -- T + O (d R 2) aR R = R •  6.R 1 - E  2 2 - E 3 (D-9 ) 

By substituting equation (D-8) and (D-9) into 

equations (B-7) the expression for the speed of the moving 

boundary then becomes 

aE I - 1  I 1 ( 2 - E  l - E  ) I _ a q a =R• = 6. R 2 - E Ti + ½ � T 
2 + 2 - E Ta + o (.1. R l 

( D-10) 
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2 

E · A R 

D-2. Schematic Diagram of Encapsulated PCM (CASE 2) 
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( 2 . B) The Temperature Gradient at Point 2 

From the Taylor series expansion of temperature about 

point 2, the following expression for the non-dimensional 

derivative of temperature is obtained 

[ 2 E I I + -- + ---- T E - 1 (E - l ){K - 2) 2 

E-l 1 
-- T 
2 -E 3 

( 2 . C) The Temperature at Point 1 

( D- 1 1 ) 

From an energy balance on the capsule ( see figure 

( D-2) ) there results 

( D-12) 

where the surface temperature of the capsule, which can be 

determined by the boundary condition at R=Rsur, is 

T = 
sur 

T i 
T + ---­

f (Bi)p · � R  

1 .0 
1 + ----

(Bi)p · � R  
( D-13) 

I t  should be noted that the numerical constant in 

equation (D-12) depends upon both the capsule diameter and 

shell thickness. 



1 74 

(3) CASE 3: i=2 

The only difference between the expressions for this 

case and those for case 1 is the equation for the 

temperature at point 1, which can be obtained by expanding 

the temperatures at point 2 and at the phase-change 

interface about point 1 to obtain 

- Cl +E) K T 
p ,ur 

E T2 
- - · 

K 1.39  
T = 

C (D- 14 ) 1 (2 + E p -- -
(1 +E) 1 .39 ·  K 

(4) CASE 4: i=20 

In  this case, the melting/freezing front lies between 

point ' 20' and the center point of the capsule. 

Speed of the Moving Boundary 

The temperature gradient on the left side of the 

moving boundary can be obtained by substituting i=20 into 

equation (D-3) to obtain 

- = -- -- T - - T al' I + - 1  [ I E + l  E I a R i = i • � ii 2 E 20 E + t 19 (D-15 )  
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The temperature gradient on the right side is, using (D-2) 

.,,,.. 1 - - T o, 21 

aR R = R· = {1 - E)A R  ( D- 16) 

Applying equation (D-7) the speed of the moving boundary 

becomes 

aE - 1 1 1  E + l E l I -T 21 I ] 
� = -- -- T - - T + --a ri � "ii 2 E 20 E + 1 19 'i (1 - E) (D_l7) 

Finally, the temperature at point '21' must satisfy 

the following equation (which is obtained from the general 

governing equation by noting that at this point, R=O) 

ir Jr · 
- = 3 -a q  aR 2 

with the boundary condition 

- = O  
aR 

R = O  

(D-18) 
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APPENDI X  E 

MELTI NG AND SOL I D I FYING PROCESSES I N  A GLAUBER SALT 

(1) Introduction 

This appendix describes work to investigate , both 

theoretically and experimentally , the phase change 

processes of a Glauber salt developed as a thermal energy 

storage material. The main objective of the present 

experiment was to check the melting and solidification 

behavior and compare the experimental results for the 

phase-change location in a one-dimensional system with the 

classical Stefan solution. 

The experimental result shows that the location of 

the moving interface between solid and liquid phases and 

the temperature distribution along the x -direction agree 

well with the classical analytical solution due to Stefan 

[44] , and that the freezing temperature is a little lower 

than the melting temperature. 

The Glauber' s salt used in the experiment was 

obtained from encapsuled pellets used in a DoE funded 

study at the University of Tennessee , Project No. 7685 

s-17. A bulk quantity of this material was obtained by 

cutting away the capsule coating. 
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(2) Experimental set up and procedure 

The experimental set up consisted of a cylindrical 

test section 1. 5 ft long and 2. 5 inch in inner diameter; a 

heater which consisted of a solid aluminum cylinder 

wrapped with electrical resistance wire, and a 

three-legged support. The electric A. C. power to the 

heater was controlled with a powerstat, which allowed 

adjustment of the temperature at the bottom of the test 

section. Nineteen thermocouples, ten of them on the inner 

surface of test section wall and equally spaced in the 

x-direction, and nine on the centerline with equal 

x-direction spacing, were used to measure the temperature 

distribution in the salt and along the wall. The latter 

nine thermocouples were glued to a 0. 15 inch glass tube, 

and then the tube was inserted in the centerline. All of 

the thermocouples were connected to a Hewellet-Packard 

model 9826 computer to record temperatures automatically. 

The set up is shown schematically in Figure E-1. 

In the solidification test, another solid alumimum 

cylinder six inches long and three inches in diameter was 

used to replace the heater cylinder. The replacement unit 

had, of course, no electrical heating wire. In  this case 

half of the aluminum cylinder extended out the bottom of 

the plastic cylinder and into an ice-water mixture to cool 
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Figure E-1. Schematic Diagram of Experimental Setup 
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the bottom of the test section. 

( 3) Theoretical analysi� 

This is a one-dimensional phase change problem and 

can be described after Stefan method [44] by the following 

set of partial differential equations for the melting 

case . 

For the liquid phase 

;T/ 1 il'/ 
a1 at 

and the solid phase 

;T ' aT '  1 s 

a at 

the coupling conditions at the interface are 

and 

T '= T ' =  T 
l • m 

(E-1) 

(E-2 ) 

(E-3) 

( E-4) 



180 

Assuming that the initial temperature equal to the melting 

temperature 

T ' = T .' (x) = T ' s , m t = 0 

the equations will be simplified as follows 

IT/ 1 a'f� 
-- = - -

ih2 a1 aq 

aT' ax• 
-K · - = pL -

l clt at 

With the boundary conditions 

T� = T� 

. . 
T = T  

l m 

x = O 

X = X* 

X = x* 

t >  0 

t > 0 

( E- 5 )  

( E- 6 ) 

The analytical solution (See, for example, reference 43) 

can be expressed as 

and 

x• = A · 2 (a · t)112 
l 
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where can be determined 

transcendental equation 

2 C (T - T ) 
A o m 

A. e · erf(A.) = -
L V n  

(4) Results and Discussion 

Melting Test: 

from the following 

The bottom temperature was maintained at 180+4 F, and 

the temperatures were recorded once every 12 minutes. 

Figure (E-2) shows the measured temperature at the bottom 

of the test section. 

Figure (E-3) shows the transient response of the 

melting front, which indicates that the experimental 

results are essentially coincident with the theoretical 

results, especially in the first run. The difference 

between the first and the second runs was caused by some 

initial cavities in the solidified Glauber' s salt due to 

the solidification process in the test apparatus. 

Figure (E-4) shows the temperature distribution along 

the x -direction. Clearly, good agreement between the 

experimental results and the analytical results has been 

found. This, of course, is an indication of the validity 

of the properties given by the manufacturer for this PCM. 

Unfortunately, no packed bed results were obtained with 
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this material due to mechanical failures of the 

encapsulating material. 

Solidification Test: 

The bottom temperature was maintained at 32±0. 5 F. 

The temperature at point A was recorded every 10 minutes 

except at the beginning and at times near freezing. From 

the temperature record at point A, the freezing 

temperature can be estimated to be in the range of 

83-84. 5 F, which is about 5-6 F lower than the melting 

temperature. Figure (E-5) indicates the temperature 

variation at point A with time. 

During these tests, visual observation indicated that 

the phase-change interface was clear and no noticeable 

"mushy region" was observed in the melting process. 
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