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Abstract 

Deterring nuclear terrorism is a critical national asset to support the preclusion of non-state actors from 

initiating a nuclear attack on the United States. Successful attribution of a detonated nuclear weapon, 

which includes locating the source of the radiological materials used in the weapon, allows for timely 

responsive measures that prove essential in the period following a nuclear event. In conjunction with 

intelligence and law enforcement evidence, the technical nuclear forensics (TNF) post-detonation 

community supports this mission through the development and advancement of expertise to characterize 

weapon debris through a rapid, accurate, and detailed approach. Though the TNF field is young, 

numerous strides have been made in recent years toward a more robust characterization capability. This 

work presents modern advancements in post-detonation expertise over the last ten years and demonstrates 

the need for continued extensive research in this field. 

I. Introduction 
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In recent years, the United States has called upon the scientific community to address gaps in technology 

to improve the performance of forensics as a deterrent to nuclear terrorism [1]. The Nuclear Forensics and 

Attribution Act (NFAA) [2], enacted in 2010, is the legislative embodiment of this directive that stresses 

the technological readiness such a scenario necessitates and has been approached through an interagency 

and academic collaboration [3, 4]. Technical Nuclear Forensics (TNF) has been established as the 

specialized field of science to enhance this technology and analyze nuclear residues of interdicted (pre-

detonation) and exploded (post-detonation) nuclear materials. Attribution of these materials employs TNF 

findings in concert with intelligence and law enforcement evidence to locate the source of these materials. 

As the following pages highlight, the post-detonation arm of TNF has made recent technological strides 

in identifying weapon characteristics from nuclear debris to supply timely, high-quality data in support of 

the attribution process. 

A. Legal Benchmarks of TNF Data 

As in any field of forensics, data supporting the nuclear forensic analysis process may eventually reach 

judicial review.  Though nuclear forensic evidence may not necessarily encounter the judicial process 

before the President and his/her national security council make an attribution decision in the event of a 

nuclear attack, any country wishing to attribute a nuclear incident to another sovereign nation or 

subnational entity will face intense scrutiny, and as such, must have a high standard of legally defensible 

forensic methodology. The NFAA does not contain language specifically referring to a defined standard; 

however, it recommends international cooperation and designates investigative agencies that are bound by 

legal standards.   

 

The standard most relevant to nuclear forensic methods is the Daubert standard, as it applies to the 

Federal Rules of Evidence, Article 7, Rule 702 [5–7]. Based on the Daubert standard, judges are given 

means by which they can assess an expert’s scientific testimony on the grounds of reasoning or 

methodology. Under this standard, the five factors used to assess the validity of a method are (1) whether 

the theory or technique in question can be and has been tested, (2) whether it has been subjected to peer 

review and publication, (3) its known or potential error rate, (4) the existence and maintenance of 

standards controlling its operation, and (5) whether it has attracted widespread acceptance within a 

relevant scientific community [6]. 

For the United States, any research effort seeking broad acceptance and government support must meet 

this standard.   

 

Application of this forensics standard has rightly received rigorous attention in the scientific community 

[5, 8–11]. In addition, the National Institute of Standards and Technology (NIST) and other researchers 

are establishing certified reference materials (CRMs) and recognized databases of nuclear information 

that may act as a known standard for other nuclear materials [12]. Both of these standards generally agree 

with the requirements for competence outlined in International Organization for Standardization (ISO) 

code 17025. 

B. Essential Steps: Nuclear Forensic Analysis 

Post-detonation nuclear forensic analysis begins with the collection of materials produced in the extreme 

temperature and pressure where the weapon detonates. In the aftermath of a detonation, a specialized type 

of debris is formed that effectively encapsulates weapon components and fission products in a solidified, 

glassy matrix [13]. This debris, or nuclear melt glass, is essential for nuclear forensic scientists to 

conclude weapon characteristics during post-detonation nuclear forensic analysis [14]. Analyzing the 

debris begins with non-destructive physical and radiological characterization and progresses toward 

dissolution and destructive analysis. Table 1 (below) as published in Nuclear Forensics: Strategies and 
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Techniques, shows typical analytical techniques to characterize pre-detonation nuclear materials; 

techniques for analyzing post-detonation materials, as outlined in Documentation of a Model Action Plan 

to Deter Illicit Nuclear Trafficking (Table 2), are performed in a similar manner, with radiochemical 

separations and radiological characterization having the largest contribution to subsequent attribution. 
Table 1: Characterization Techniques for Pre-Detonation Nuclear Materials (IAEA) [15]  

 

C. Collection of Species 

Collecting ground samples of nuclear fallout debris is the essential first step toward forensic attribution. 

Samples must be taken from a site sufficiently close to the detonation source or fallout plume to ensure 

the samples were created in the fireball and encapsulate the necessary fission products, activation 

products, and anthropogenic materials needed during forensic analysis. Debris collection falls outside the 

scope of this work and will not be discussed here. 

II. Synthetic Nuclear Debris 

Rapid sample analysis is essential for forensic attribution in a post-detonation scenario. A recent multi-

agency effort between the Federal Emergency Management Agency (FEMA), the Department of 

Homeland Security (DHS), and the Defense Threat Reduction Agency (DTRA) addressed the 

repercussions of an urban nuclear event and the uncertainty associated with samples of urban nuclear 

debris for forensic analysis [4]. While samples of nuclear melt glass (both surface and aerodynamic 

debris) are available to the academic community from the Trinity test, many fission products have 

decayed and the Trinitite samples are only quasi-representative of the signatures that would be obtained 

from a newly acquired sample. Therefore, much work is being dedicated to creating realistic synthetic 

samples of nuclear melt glass for the experimental development of post-detonation analytical techniques. 

These surrogates began as simple highly enriched uranium (HEU)-doped sol-gel glass, as reported by 

Carney et al. in 2013 [16]. The glass was impregnated with 93% HEU and neutron irradiated for 15 

minutes in order to simulate, on a first-tier basis, the fission and activation products that would be found 

in nuclear debris.  

 

Many papers followed that advanced the elemental accuracy of synthetic nuclear debris. Trinitite, the 

most accessible nuclear debris to the academic community, was first synthetically modeled by Molgaard 

in 2014 [17] and the technique was subsequently published in 2015 [13]. Studies ensued, determining the 

Techniques/Methods 24 h 1 Week 2 Months

Radiological Total Activity

Dose Rate (α, β, γ, n)

Surface Contamination

Physical Visual Inspection SEM/EDS TEM (EDS)

Radiography XRD

Photography

Weight

Dimensions

Optical Microscopy

Density

Traditional Forensics Fingerprinting, Fibres

Isotope Analysis γ spectroscopy SIMS, TIMS, ICP-MS Radiochemical Separation

α spectroscopy

Elemental/Chemical ICP-MS GC-MS

XRF

Titration

IDMS
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physical, chemical, and radiological accuracy of this synthetic debris as compared to actual trinitite; 

researchers achieved excellent correlation [13, 18]. 

 

The need for synthetic nuclear melt glass representative of an urban environment was the next step toward 

developing analytical techniques for attribution purposes. Giminaro et al. recently addressed this need in a 

study detailing city-specific formulation techniques to identify the elemental composition of any given 

city using land use data [14]. Two representative samples (Houson, TX and New York, NY) were 

modeled and synthesized in order to demonstrate the procedure. The need for synthetic nuclear debris, 

which can be directly compared to actual debris and those that represent a hypothetical urban event, was 

addressed for the first time in recent years; efforts to improve the realism of the samples are ongoing. 

These samples provide a more credible baseline for developing forensic techniques for real post-

detonation debris [19].  

III. Analysis  

Analyzing nuclear debris to characterize its physical, chemical, and radiological signatures is a vital 

component of the technical nuclear forensics process [20]. The procedure aims to reverse-engineer the 

design of a detonated weapon using the debris it generates. The community of analytical nuclear forensics 

has achieved significant strides in recent years toward improving the timeliness and accuracy of these 

techniques.  

 

Upon the detonation of a nuclear weapon, the resulting debris consists mainly of oxidized materials that 

contain a variety of radiological and elemental forensics signatures [21, 22].  [22, 23][22, 
23]Elemental and radiological signatures can be detected using a variety of methods. Elemental 

signatures consist of the elements captured by the heat and pressure of detonation and are incorporated 

into the final composition of the melt glass. Radioactive signatures consist of unstable elements that have 

a tendency to decay. It should be noted that many of the techniques used in traditional forensics can be 

used in nuclear forensics [23].  Table 2 contains a variety of techniques that can be used for post-

detonation nuclear forensics [23].  It is important to note that Table 2 does not have the associated time 

component that Table 1 contains because attribution should proceed as quickly as possible in a post-

detonation scenario. 

 
Table 2. Post-Detonation Nuclear Forensic Techniques [23] 

Techniques/Methods Instrumentation Pre-Preparation 

Radiological Alpha (α) spectroscopy Remove stable element 

contamination 

 Beta (β) counting Immerse in liquid scintillation fluid 

to determine gross count rate 

 Gamma-ray (γ) spectroscopy No preparation needed other than 

similar counting geometry to 

standard counting source 

Physical Characterization Radiography None 

 Photography None 

 Weight  None 

 Dimensions None 

 Optical Microscopy None 

 Density None 

Isotope Analysis  Gamma-ray (γ) spectroscopy No preparation needed other than 

similar counting geometry to 

standard counting source 
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 Alpha (α) spectroscopy Remove stable element 

contamination 

 Secondary Ion Mass Spectrometry 

(SIMS) 

Dissolution to appropriate 

concentration, removal of isobaric 

interferences 

 Thermal Ionization Mass 

Spectrometry (TIMS)  

Dissolution to appropriate 

concentration, removal of isobaric 

interferences 

 Inductively Coupled Plasma – 

Mass Spectrometry (ICP-MS) 

Dissolution to appropriate 

concentration, removal of isobaric 

interferences 

 Laser Ablation – ICP-MS None 

Elemental Analysis  Scanning Electron 

Microscopy/Energy Dispersive 

Spectroscopy (SEM/EDS) 

Samples must be polished prior to 

analysis 

 X-ray fluorescence (XRF) None 

 ICP-MS, SIMS Dissolution to appropriate 

concentration, removal of isobaric 

interferences 

 LA-ICP-MS None 

 X-ray absorption near edge 

structure (XANES) 

Dissolution to appropriate 

concentration 

 
As shown above, some of the mass spectrometry techniques useful for identifying elements are also 

useful in determining isotopic ratios. The subsequent sections describe the techniques used in the 

literature regarding the analysis of trinitite and similar fallout [13, 18, 24–36]. 

A. Elemental Analysis  

The elements found in nuclear melt glass are largely found in their oxide (and occasionally chloride) form 

due to the excessive oxygen and extreme temperatures found in the toroidal region of the blast [24].  

When performing elemental analysis on a debris sample, it is important that the analytical techniques are 

performed so that the spatial integrity of the sample is preserved prior to interrogation. Physical 

characterization—requiring largely non-destructive techniques—includes morphology of the sample, 

texture, stratification, and other statically observable characteristics of the debris. The presence of 

elements in the sample matrix may be indicative of several weapon characteristics and is an important 

aspect of physical characterization. Some of the more important constituents are plutonium and uranium; 

these elements are important because the debris contains trace levels of fissile material resulting from an 

incomplete detonation—no reaction is one hundred percent efficient—and provide useful indications of 

the initial state of the fuel. Previous reported literature took advantage of alpha spectroscopy on thin 

vertical slices of trinitite to identify deposits of U and Pu; however, a recent study by Donohue et al. 

integrated several additional techniques, including laser ablation inductively-coupled plasma mass 

spectrometry (LA-ICP-MS), electron microprobe analysis (EMP), energy dispersive X-ray fluorescence 

system (XRF), scanning electron microscopy (SEM), and back scattered electron analysis (BSE), in 

addition to alpha spectroscopy, to obtain a clearer picture of the distribution of elements of interest. Pu 

deposits were found up to 10 mm deeper in the sample than previously reported [36].  It is clear that more 

work is still necessary to validate and advance the physical characterization of post-detonation nuclear 

debris. 
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B. Scanning Electron Microscopy/Energy Dispersive X-ray 

Spectrometry 

When analyzing nuclear melt glass, it is important to gain insight into the amount of homogeneity or 

heterogeneity of the elements of interest prior to performing techniques requiring destructive analysis. 

One rapid technique for determining the spatial resolution of matrix elements is scanning electron 

microscopy/energy dispersive x-ray spectrometry SEM/EDS; however, the limiting factor for SEM/EDS 

is debated in literature [37, 38] and it certainly provides poorer sensitivity than other TNF methods. It is 

generally agreed that SEM/EDS has the advantage of providing the “whole picture” of elemental 

dispersion, but has only provided elements with an atomic number greater than 5, targeting boron as a 

problematic constituent due to its low photon energy, and thus, low x-ray yield [39].  The concentration of 

the element is required to be greater than 0.001 wt. percent, though it is preferred if the elements of 

interest have a concentration > 0.01 wt. percent. For amorphous matrices such as nuclear melt glass, the 

major elements of interest are Si, Ca, Na, K, B, Sb, and Fe. Traditional trace-level elements include Al, 

As, Fe, Ba, and Mg.  To complement this technique, most analysts refer to LA-ICP-MS. 

C. Laser Ablation Inductively-coupled Plasma Mass 
Spectrometry 

Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) is an appealing post-

detonation analysis technique because of its ability to introduce samples into the instrument without prior 

sample dissolution. This is a powerful technique that is particularly beneficial for samples that may fully 

dissolve during a dissolution process. Essentially, the laser evaporates or sublimates a portion of the 

material for detection, precluding any need for dissolution. LA-ICP-MS is used to determine elements at 

the ultra-trace level (at concentrations of less than 0.0005 wt. percent), commonly including Ti, Cr, Co, 

Ni, Zn, Zr, Y, Nb, Tc, Ru, Sn, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, 

Ta, W, Th, U, Pu, and Am [36]. This is useful for detecting both impurities in a sample and ultra-trace 

elements of interest to the forensic scientist. Additionally, due to the potent capabilities of ICP-MS, it is 

possible to distinguish relevant isotopes as discussed in the following section. 

D. Isotopic Analysis 

It is important to note that isotopic signatures of stable isotopes are a useful source of information when 

performing the analysis of post-detonation debris. A key interest is determining stable oxygen (18O/16O) 

ratios, as noted by Keoman et al. [40].  In particular, it was determined that the large neutron flux was 

incapable of producing a significant change in the 18O/16O ratio greater than the ordinary variation 

observed (11.2 – 15.5%). Likewise, Bellucci et al. reported the use of stable Pb ratios of 208Pb, 207Pb, 
206Pb, and 204Pb with LA-MC-ICP-MS to determine the geographic source of the Pb in the weapon from 

the Trinity test (the debris is the only openly available weapon debris in existence). The distinct 

overlapping isotopic ratio in both the trinitite sample and the Buchans mine demonstrated that the lead 

originated in the Buchans mine in Newfoundland, Canada [27]. These heavy metal isotopes shed light on 

both the ores used to create components of the device or infrastructure surrounding the device and the 

heavier elements (uranium, thorium) from which it decayed. 204Pb is alone in its natural primordial 

origins; the other three isotopes stem directly from the long-lived decay products of 232Th, 235U, and 238U  

[27]. Such interrogations are extremely useful during the sourcing process following technical analysis, 

though an urban detonation would certainly produce a more complex elemental matrix than the relatively 

simple elemental matrix of a sandy desert. Isotopes can be detected using a variety of instrumentation 

including ICP-MS, where a sample is broken into its elemental constituents and a mass-to-charge ratio is 

measured. 
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E. Oxidation States  

Research by Nelson et al. [41] has noted the relevance of x-ray absorption near edge structure (XANES ) 

when determining the oxidation state ratios of 5+U/6+U and Fe2+/Fe3+. Some variation in the oxidation of 

the iron was found, with the Fe ratios varying from 33–55 percent Fe2+, implying reducing conditions and 

concluding that the dominant species of plutonium was Pu4+. 

IV. Radiological Signatures 

The presence of radiation is a unique characteristic of nuclear forensic samples when compared to 

forensic samples in other scientific disciplines. Radiation signatures from post-detonation debris can 

greatly advance the forensic interrogation of the sample. 

A. Gamma-ray Spectroscopy 

The most common (and typically, first to be employed) form of radioactivity analysis is gamma-ray 

spectroscopy [18, 24, 25, 30, 34, 42].  In natural trinitite, 133Ba, 137Cs, 152Eu, 154Eu, 155Eu, 239Pu, 241Pu, 
241Am, and 60Co have been reported, whereas synthetic versions of these materials also showed 24Na, 
140La, 42K, 59Fe, 47Ca, 132I, 46Sc, 95Zr, 130I, 133I, 103Ru, 131I, and 132Te. There have been four studies on the 

radioactive nuclides in trinitite as measured by gamma-ray spectroscopy—the resulting isotopes and their 

specific activities (Bq/g) are summarized in Table 3. 
 

Isotopes Schlauf [42] Parekh [34] Bellucci [28] Belloni [25] 
133Ba 9.9 ± 0.6 9.8 ± 0.26 53 ± 39 NR 
137Cs 90 ± 9 121.8 ± 0.1 85 ± 72  
152Eu 27 ± 1 25.84 ± 0.38 50 ± 27  
154Eu 4.8 ± 0.6 2.74 ± 0.67 158 ± 134  
155Eu NR NR 0.9 ± 0.6  
239Pu NR NR 11208 ± 3907 86 
241Pu NR 63.0 ± 1.8 NR  
241Am 2.9 ± 0.5 4.14 ± 0.06 13 ± 11 0.4 
60Co 29.4 ± 4.4 44 ± 4 NR 0.015 
90Sr NR NR NR 13 

 

 

 

It is important to note that there are large discrepancies between the reported radionuclides, many of 

which may be attributed to potentially massive sampling errors. Cook et al. [18] reports on the 

comparison of surrogate nuclear melt glass (synthesized to appear chemically and morphologically 

similar to trinitite, as reported by Molgaard et al. [13, 18] to actual trinitite. In this study, a number of 

radionuclides were observed, but the only correlation between synthetic samples and those found in 

trinitite was 152Eu. 

B. Alpha Spectroscopy 

Direct alpha spectroscopy and preparation of intact debris samples is a useful technique in nuclear 

forensics; however, its use in studying nuclear melt glass is limited to one study performed by Eaton et al. 

[43].  Sample preparations consisted of a very thin slice of nuclear melt glass placed in an alpha 

spectrometer, where a distinct peak at 5.157 MeV was observed, correlating to both 239Pu and 240Pu. 

Table 3. Reported Radioactive Nuclides in Trinitite Activities in (Bq/g) for Specific Isotopes of Interest 
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Additional peaks exhibited energies of 5.486 and 5.499 MeV (corresponding to 241Am and 238Pu, 

respectively). The activity ratios were subsequently calculated. 

V. Separation Techniques 

To perform mass spectrometry analysis of nuclear samples, it is important to reduce isobaric or radiation 

interferences using analytical separations. A particular concern before performing separations is the 

dissolution of unique matrices that can encompass a large array of elemental constituents. Post-detonation 

materials are likely to include a suite of elements that are not found in traditional nuclear melt glasses 

such as silicon-rich trinitite. Advanced dissolution techniques are imperative for proper dissolution of 

complex matrices, and several recent publications have introduced innovative approaches to this 

challenge. Subsequent separations can be performed on these dissolved matrices following proper 

dissolution of the initial sample. Recent dissolution and separation techniques addressing post-detonation 

debris are highlighted in the following sections. 

A. Dissolution and Laser Ablation 

Destructive analysis of nuclear materials provides a useful platform for a variety of analytical methods. 

These methods provide data on both major and minor elemental parameters, producing information that 

can help identify the materials’ intended uses (radiological dispersion, nuclear weapon, etc.), 

component/material age and source (do the isotopics point toward a specific mining operation?), reactor 

information (are there fingerprints indicative of specific reactors?) [44], and production processing [45, 

46]. From 2005 to 2015, a variety of methodologies for the preparation of destructive samples were 

investigated; however, the focus has largely highlighted capabilities of laser ablation (LA) and methods of 

liquid dissolution. 

 

Laser ablation multi-collector inductively-coupled plasma mass spectrometry (LA-MC-ICP-MS) has seen 

a recent increase in application since the introduction of laser-induced breakdown spectroscopy in the 

1980s [46–54]. Continuous-wave CO2 lasers remain the preferred method due to their power, wide 

availability, and wide application. Regarding nuclear melt glass, LA proves useful for specific actinides 

(e.g. plutonium isotopes), but struggles with many fission fragment nuclides [46, 47]. In particular, Ga–

Rb and Mo–Cs suffer from volatilization loss with LA [46]. Even with these shortcomings, the appeal of 

the introduction of a direct sample into a mass spectrometer will continue to drive research; however, the 

complexity of laser methods appears to keep effective solutions out of reach.  

 

The dissolution of trinitite, synthetic trinitite, and other melt glasses has been heavily reported in literature 

[29, 30, 32, 46, 55].  Sharp et al. discusses a mixture of concentrated HNO3 and concentrated HF for 

72hrs on a hotplate at 180 C̊ [55].  Eppich et al. [26] reports a multi-stage approach whereby a 2.5:1 ratio 

of concentrated HNO3 and concentrated HF react for 24 hrs until a white fluoride precipitate is formed. 

After the precipitate arises, concentrated HClO4 is added and dried. Finally, dissolution is performed 

using concentrated HCl drying the dissolution with 3M HCl. This method provides excellent elemental 

identification with trinitite and should be a method for application to trinitite surrogates and other melt 

glasses. Hubley et al. reports using NH4HF2 in a mass ratio of 200mg of NH4HF2  to 50mg of trinitite 

heated in screwtop PFA vials to 230 ̊C for 3hrs then cooled to 160 ̊C. After cooling, concentrated HNO3 is 

added, the solutions are evaporated to near-dryness at 160 ̊C, then re-dissolved in a 1:1 ratio of H2O and 

concentrated HNO3. The final mixture is heated to 120 C̊ for 1 hr yielding a clear, colorless solution. 

Final dilution is completed with 2% HNO3.[32].  Hubley et al. also reports using a 1:1 ratio of 

concentrated HNO3 and concentrated HF (total volume of 2mL) in a pressure microwave vessel. The 

samples are heated at 400W to a temperature of 140 C̊, followed with 25min at 600W and allowed to 

cool. Twenty-three mL of 4% H3BO3  was then added. The vessels are first heated at 400W to 140 ̊C for 

10min, then for 25min at 600W. The samples are allowed to cool and are diluted with H2O [32]. 
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Regarding dissolution of synthetic melt glass surrogates, Liezers et al. reports a method whereby 2mL of 

concentrated HF and 0.2mL of HNO3 are heated at 353K for 36 hrs with intermittent ultrasonification 

treatment. The samples are then evaporated, and both concentrated HNO3 and concentrated HCl are added 

for final dissolution [47].  Maxwell et al. reports a method for the dissolution of urban materials such as 

Mixed Analyte Performance Evaluation Program (MAPEP 24) and asphalt, acting as surrogate material 

[56]. He reports a NaOH fusion process wherein 1g samples are placed in a graphite crucible with 15g of 

solid NaOH, heated for 15min, and allowed to cool for 10min. The samples are then transferred to a hot 

plate and H2O was added as needed. After partial dissolution, samples are cooled to ~0 ̊C and the 

suspended solid residues are separated from the liquid by centrifugation at 3,600rpm for 6min. The solid 

residue is then dissolved with 60-80mL of 1.5M HCl and diluted to 170mL with 0.01M HCl. After 

dilution, the samples are treated with 25mL of 28M HF, mixed, and allowed to stand for 10min prior to 

centrifugation. The supernatant liquid is kept, and the remaining solids are dissolved in 5mL of 3M HNO3 

– 0.25M H3BO3, 6mL of 7M HNO3, and 7mL of 2M Al(NO3)3. This method shows success with select 

actinide separation and recommends methods for fission product separations. The separations for this 

dissolution method are discussed in the subsequent section. To date, the dissolution of trinitite has seen 

success; however as new surrogates are developed to replicate trinitite and other weapon scenarios, 

challenges will likely arise and persist with forensically relevant dissolution methods. Unfortunately, 

present nuclear threats are not likely to produce debris resembling the Alamogordo desert, which is the 

site of the Trinity test [57]. 

B. Gas-phase Separations 

A major method of interest is founded upon the methods of chromatographic chemistry, largely utilized 

by the super heavy element community [58, 59]. It is proposed by Hanson et al. and Garrison et al. that 

thermochromatography could be employed as a separation technique for nuclear forensics [60, 61]. 

Following this work, Auxier et al. reported the use of a variety of ligands that could be used to synthesize 

volatile organometallic compounds, specifically of lanthanides, for rapidly separating and detecting useful 

rare earth signatures [62, 63]. In this work, the organic compounds 1,1,1,5,5,5-hexafluoroacetylacetone, 

2,2,6,6-tetramethyl-3,5-heptanedione, and 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione 

combined to produce 7 and 9 coordinate compounds that volatilize at temperatures ranging from 140 to 

220 ̊C. These complexes show promise in a rapid separation technique using a coupled gas 

chromatography - ICP-TOF-MS for elemental and isotopic identification and quantification, as well as a 

separation step for other measurement methods. 

C. Mass Spectrometry Interferences 

Sharp et al. reports that prior to mass spectrometry analysis, rare earth interferences can be removed using 

a 12cm × 2cm Dowex AF50W × 8400 mesh cation exchange column in the H+ form, followed by 

treatment with both 2.5M HCl and 4.5M HNO3, respectively. The individual lanthanides Nd and Gd are 

removed using a Dowex AG50W x 8 (30 × 5 cm) column pre-treated with NH4
+ to remove the H+, with 

subsequent elution using α-HIBA (α-hydroxyisobutyric acid) at a pH of 4.7. The cuts are dried and 

dissolved in 0.8M HNO3[55].  Eppich et al. [64] reports a similar process prior to performing analysis, 

wherein the matrix elements are removed using a 1.8mL U-TEVA ion exchange resin conditioned with 

10mL of 4M HNO3. The samples are loaded onto the resin and washed with 5mL of 4M HNO3, 3mL of 

9M HCl, and 4mL of 5M HCl. The U remaining on the column is removed with 8mL of 0.1M HCl, then 

dissolved in 0.1mL of concentrated HCl. It is also reported that the matrix elements can be removed using 

a 1.8mL AG-1 X 8 (100-200 mesh) anion exchange resin conditioned with 1 mL of 9M HCl. The samples 

are loaded onto the column and washed with 7mL of 9M HCl. The uranium is eluted with the addition of 

8mL of 0.1M HCl. The samples are dried down and dissolved in HNO3. Further pre-treatment is reported 
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prior to performing isotope dilution mass spectrometry (IDMS) techniques. Due to the complexity of pre-

treatment, most researchers have resorted to using LA-ICP-MS in place of chemical separations. 

VI. Conclusion 

Modern research in nuclear forensic technology continues to address the timeliness and accuracy of post-

detonation forensic analysis techniques toward an effective in extremis national security capability. As a 

vital component of the attribution process, it is critical for the TNF community to remain abreast of 

revolutionary technology to provide increasingly accurate and timely data into the attribution cycle. 

Evolving analytical approaches toward the rapid analysis of post-detonation materials is essential, and 

several works presented here have generated innovative solutions to the challenges posed by nuclear 

forensic science. It is imperative for progress to continue down its current path in support of a robust and 

rapid analytical TNF capability. 
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