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TECHNICAL NOTE Open Access

MetabR: an R script for linear model analysis of
quantitative metabolomic data
Ben Ernest1,2, Jessica R Gooding3, Shawn R Campagna3, Arnold M Saxton1,2 and Brynn H Voy1,2*

Abstract

Background: Metabolomics is an emerging high-throughput approach to systems biology, but data analysis tools
are lacking compared to other systems level disciplines such as transcriptomics and proteomics. Metabolomic data
analysis requires a normalization step to remove systematic effects of confounding variables on metabolite
measurements. Current tools may not correctly normalize every metabolite when the relationships between each
metabolite quantity and fixed-effect confounding variables are different, or for the effects of random-effect
confounding variables. Linear mixed models, an established methodology in the microarray literature, offer a
standardized and flexible approach for removing the effects of fixed- and random-effect confounding variables
from metabolomic data.

Findings: Here we present a simple menu-driven program, “MetabR”, designed to aid researchers with no
programming background in statistical analysis of metabolomic data. Written in the open-source statistical
programming language R, MetabR implements linear mixed models to normalize metabolomic data and analysis of
variance (ANOVA) to test treatment differences. MetabR exports normalized data, checks statistical model
assumptions, identifies differentially abundant metabolites, and produces output files to help with data
interpretation. Example data are provided to illustrate normalization for common confounding variables and to
demonstrate the utility of the MetabR program.

Conclusions: We developed MetabR as a simple and user-friendly tool for implementing linear mixed model-based
normalization and statistical analysis of targeted metabolomic data, which helps to fill a lack of available data
analysis tools in this field. The program, user guide, example data, and any future news or updates related to the
program may be found at http://metabr.r-forge.r-project.org/.

Keywords: R script, User-friendly, Linear mixed model, Statistics, Normalization, Mass spectrometry-based
metabolomics

Findings
Background
Quantitative metabolomics is a high-throughput approach
to systems biology in which many small molecules
(metabolites) from a biological sample are simultaneously
measured, commonly using nuclear magnetic resonance
spectroscopy (NMR), gas chromatography—mass spec-
trometry (GC-MS), or liquid chromatography—mass spec-
trometry (LC-MS). While transcriptomics and proteomics

are established approaches for characterizing the effects of
experimental conditions on metabolism, gene and protein
expression changes merely indicate the potential for
changes in metabolic endpoints. Metabolic changes are
“real-world” endpoints, so metabolomics can connect these
functional genomics platforms with actual physiology [1].
LC-MS metabolomic approaches fall into two catego-

ries: those that attempt to measure every metabolite
in the sample (untargeted approaches) and those that
attempt to measure only a subset of the metabolites
(targeted approaches) [2]. A key benefit of targeted ap-
proaches is that the detected metabolites can also be rea-
dily quantified. Like other approaches to systems biology
that rely on the analysis of multiple samples to generate
large datasets, two important issues hold true in targeted
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metabolomics. First, experiments frequently are carried
out in multiple “blocks”. For example, targeted LC-MS
metabolomic platforms involve lengthy instrumental runs
and may rely on multiple runs to enhance metabolite
coverage [3,4], often necessitating multiple run days to
analyze all samples. Each run day represents a different
block, which introduces technical variability in metabolite
detection signals from day-to-day variances in factors
related to the instrument’s operation, such as injection
volume and ionization efficiency. Second, sampling and
measurement variables introduce technical variability in
metabolite detection signals, including tissue mass (for
multicellular organisms), cell number and size (for micro-
organisms), sample matrix effects, and mass spectrometer
variability (measured by the signal from an internal stan-
dard present in the metabolite extraction solvent in our
experiments). Clearly, the metabolite signal variability due
to block and sampling/measurement variables needs to be
distinguished from variability due to experimental treat-
ment factors, which calls for a normalization step to re-
move the effects of such confounding variables.
Conventional LC-MS metabolomic data normalization

is carried out by expressing each metabolite signal rela-
tive to values of sampling/measurement variables [3,4].
Statistical tests for mean differences between treatment
groups are performed on normalized metabolite values,
with metabolite means averaged across the levels of any
block factors (i.e., run day).
There are limitations to this conventional normaliza-

tion approach, however. First, often many metabolites
are normalized to one internal standard (i.e., one for all
positive ions and one for all negative ions). This would
introduce additional bias if there were low or negative
correlation between the internal standard signal and a
metabolite signal (i.e., for metabolites with different che-
mical properties from the internal standard), or if the
internal standard signal differed significantly between
treatment groups. Second, while ignoring block factors
(i.e., comparing metabolite means averaged across sam-
ples analyzed on different days) increases sample size,
significant block effects on metabolite signals may widen
confidence intervals, which may preclude identification
of “significant” metabolites and conceal statistical out-
liers. Block effects may dramatically bias the data, espe-
cially if they are not balanced across treatment groups.
Currently available software packages provide power-

ful tools for pre-processing (i.e., peak selection and in-
tegration and retention time alignment), visualization
(i.e., biochemical pathway mapping), and/or interpreta-
tion of targeted and untargeted metabolomic data [5-10].
However, these packages have limitations because they ei-
ther 1) do not provide normalization tools for removing
confounding effects of experimental variables [7-9]; 2) use
the conventional normalization approach [6]; or 3) require

the researcher to manually determine a normalization fac-
tor for each experimental sample [5].
A flexible and standardized normalization approach that

improves on current limitations would improve metabolo-
mic analyses. An efficient and intuitive approach to con-
trol for confounding variables is to estimate their effects
on metabolite signals using linear models. Rather than as-
suming similar relationships between each metabolite sig-
nal and confounding variables, a linear model fit for each
metabolite can be used to estimate and partition the
effects of each experimental variable, including treatment
factor, on each metabolite signal. Further, experimental
variables can be modeled as having either a fixed or
random effect on metabolite signals, with important im-
plications. Fixed-effect variables are assumed to have a
constant effect on metabolite signals, influence metabolite
signals in an anticipated direction, and have a similar in-
fluence in replicate experiments. Common fixed-effect
variables are number of cells, tissue mass, and ionization
efficiency. By comparison, the effects of random-effect
variables cannot be anticipated a priori, and they create
variation, but overall do not influence metabolite signals.
Typical examples are specimen gender, species or line, ex-
periment day, instrument, and technician [11], although
some of these could be treated as hypothesis-driven ex-
perimental factors in some experiments.
Mixed models can be used to estimate the effects of

fixed- and random-effect variables on a response variable
[11] and are an established approach for normalizing mi-
croarray data [12-21]. For two primary reasons, however,
currently available microarray data normalization tools are
not suitable for metabolomic data. First, microarray
normalization tools adjust data for systematic effects spe-
cific to microarray technology, such as “dye bias” of dif-
ferent fluors, spatial position effects on the microarray
chip, background signals, and biases due to probe binding
strengths [22]. Second, microarray normalization tools are
often platform specific, designed to carry out pre-proces-
sing and quality control only for Illumina BeadArray or
for Affymetrix GeneChip platforms, for example [23].
Given the limitations of current metabolomic data nor-

malization approaches, we developed MetabR, a simple,
user-friendly, and stand-alone tool that researchers with
no programming background can use to implement li-
near model-based normalization and statistical analysis
of targeted metabolomic data downstream of pre-
processing. While MetabR is stand-alone, software with
pre-processing tools [5,6,8] can be used to generate the
input data for MetabR. Further, MetabR generates out-
put files that may be used in subsequent analysis, in-
cluding normalized data, a heat map and dendrogram,
and a comma-separated values (CSV) file formatted for
direct upload into Pathway Projector [9], a web-based
biochemical pathway visualization tool.
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Methods
Implementation of MetabR
A graphical user interface (GUI)-based program, MetabR
(Additional file 1), was written in the R open-source lan-
guage (version 2.15). A screenshot of the GUI is shown
in Figure 1. The GUI was built using the “gWidgets”
package [24]. As described in the user guide (Additional
file 2), the GUI is used to select which variables to define
in a normalization model as fixed- and random-effect
variables and to tailor statistical analysis to the resear-
cher’s needs. As a threshold to screen for metabolites
that differ significantly in abundance between treatment
groups, the researcher may choose p-value, q-value,
mean fold-change, or a combination of p-value or q-value
and mean fold-change, as well as the specific values of
these thresholds.
In this program, either a fixed linear model (function

“lm” in the “stats” package) or a linear mixed model (func-
tion “lmer” in the “lme4” package) [25] is constructed that
includes the normalization variables selected by the user,
and one Group treatment factor, for example

Metabolite ¼ μ þ Group þ β∗Quantity þ β � IS
þ Day þ e;

where μ = group mean,

Group = treatment factor,
Quantity = a measured, continuous value of the amount

of tissue used to produce each sample,
IS = a measured, continuous value of the detection sig-

nal from an internal standard present in the metabolite
extraction solvent,
Day = a normalization factor accounting for the effects

of different run days on metabolite signals,
and e = residual error.
The residuals and treatment group means from the fit-

ted model are added together to yield normalized data,
which adjusts for effects of sample quantity, ionization
efficiency, and run day, as appropriate for the experi-
mental design of the study.
To check normality and equal variance assumptions

made by linear models, R functions “shapiro.test” in the
“stats” package (“stats” and any other packages not refer-
enced are part of R [26]) and “levene.test” in the “lawstat”
package [27] are used, respectively. In addition, resi-
dual error plots are produced, and normalized data are
exported for possible secondary use by the researcher.
Tukey’s Honest Significant Difference (HSD; function
“TukeyHSD” in the “stats” package) method is used to
test for treatment group mean differences in the nor-
malized data based on the Studentized range statistic.
Q-values [28] are calculated from the list of Tukey HSD

Figure 1 Screenshot of the MetabR GUI.
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p-values for each treatment group comparison using the
“qvalue” function in the “qvalue” package [28]. If any
treatment group mean is significantly different from any
other, a group mean plot with confidence intervals is
constructed for the metabolite. Differences among treat-
ment group means are represented by letter groupings
generated by code adapted from a SAS macro [29], with
means that share any letter being statistically equal. Fur-
ther, statistical results from “significant” metabolites are
exported into a spreadsheet that can be directly uploaded
to Pathway Projector [9], which uses the information to
map the metabolites, colored dots representing the di-
rection and size of mean fold-changes, and either p- or
q-values, to biochemical pathways. The program generates
a series of files listed in Table 1 and described in the user
guide (Additional file 2).

Experimental data collection
Two experimental datasets were generated in our lab to
illustrate the utility of MetabR. In both experiments, adi-
pose tissue samples were flash frozen in liquid nitrogen
and powdered with a mortar and pestle before meta-
bolite extraction, which followed a previously described
procedure [30]. The extracted metabolomes were then
analyzed by liquid chromatography—tandem mass spec-
trometry (LC-MS/MS) via a slightly modified version of
the methods of Rabinowitz and co-workers [30-32] that
scans for approximately 350 total metabolites in positive
and negative ionization modes. The Quan Browser func-
tion in the Xcalibur software package (Thermo Scientific,
Waltham, MA) was used to assess the presence of each
metabolite based on standard detection parameters, such

as retention time, signal-to-noise ratio, and peak shape.
Signal intensity in ion counts was then determined using
Xcalibur to manually integrate each peak, and these data
were exported into a Microsoft Excel spreadsheet for stat-
istical analysis.
The first experiment was designed to examine the

effects of dietary restriction and insulin immunoneutrali-
zation on adipose tissue metabolism in chickens. A total
of 127 metabolites were detected in abdominal adipose
tissue from 16- or 17-day-old male broiler chicks that
were fed ad libitum (“Control”), fasted for 5 hours (“Fast”),
or immunoneutralized against the effects of endogenous
insulin (“InsNeut”), as we previously described [33,34].
This study included two factors, Treatment and Day (day
1, day 2, or day 3). Fourteen metabolite measurements
from this experiment are provided in Additional files 3
(“Chicken example data 1”) and 4 (“Chicken example data
2”), corresponding to metabolites detected in positive and
negative ionization modes, respectively.
The second experiment was designed to examine the

effects of Bisphenol A (BPA) on adipose tissue metabo-
lism in mice. A total of 93 metabolites were detected in
abdominal adipose tissue from 32 16-week-old inbred
male mice which, from weaning, were fed ad libitum
and given drinking water spiked with 0, 0.05, 0.5, or
5 μM BPA. Sixteen mice from each of the inbred strains
C57BL/6J and DBA/2J were used in this study. A few
missing values arose when a metabolite was not detected
in a subset of the samples. Using a zero value for these
measurements would bias the results, so they were set
to missing (“NA”) which excludes that measurement
from analysis. This study included three factors, Treat-
ment, Strain (C57BL/6J or DBA/2J), and Day (day 1, day
2, day 3, or day 4). Twelve metabolite measurements
from this experiment are provided in Additional files 5
(“Mouse example data 1”) and 6 (“Mouse example data
2”), corresponding to metabolites detected in positive
and negative ionization modes, respectively.

Modeling confounding variables as fixed- vs. random-effect
In our chicken example, Group, Quantity, and IS were
modeled as fixed-effect variables, while Day was mo-
deled as a random-effect variable. To illustrate the dif-
ference, if Day is defined as a fixed-effect variable, the
estimated treatment group mean includes the average
Day effects, and the variance and corresponding confi-
dence intervals are based only on residual error and
sample size. Inferences about treatment effects refer only
to the days used in the experiment. If Day is defined as a
random-effect variable, the estimated mean no longer
includes Day. Instead, the Day effect becomes a source
of random variation that is added to the variance of the
estimated mean. The variance and confidence intervals
are larger than those when Day is treated as a fixed-

Table 1 Output files produced by the MetabR program

Output File type

Normalized data CSV

Normalized data with technical replicates averaged CSV

A plot of the model residuals for each metabolite
vs. each metabolite’s overall mean signal

PDF

A plot of the model residuals for each metabolite
vs. each metabolite’s overall mean signal, expanded to
accommodate metabolite labels

PDF

Mean plots for all significant metabolites CSV

Tukey HSD p-values for all treatment group comparisons
for every metabolite

CSV

q-values for all treatment group comparisons for every
metabolite

CSV

Mean fold-changes between all treatment group
comparisons for every metabolite

CSV

Plots of all confounding variables vs. all metabolite
measurements, pre- and post-normalization

PDF

Heat map and dendrogram of the normalized data PDF

Spreadsheet for direct upload to Pathway Projector CSV
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effect variable, but experimental results can now be cor-
rectly extrapolated to all possible days [11].

Results
Chicken experimental results
For the chicken data, Quantity (tissue mass) and IS (in-
ternal standard measurement, Tris in positive ionization
mode and Benzoic Acid in negative ionization mode)

were selected as fixed-effect regression variables, and Day
(run day) as a random-effect factor.
Summary information printed in the R console (not

shown) includes 1) results from the Shapiro-Wilk test of
normality; 2) results from Levene’s test of equality of
variance; 3) pairwise mean fold-changes between all
treatment groups for significant metabolites (also expor-
ted into a spreadsheet; see Table 2 for the data); and 4)

Table 2 Chicken experiment fold-changes

Treatment comparison

Fast-control InsNeut-control InsNeut-fast

Metabolite Fold-change P-value Fold-change P-value Fold-change P-value

ATP 1.273 0.384 1.059 0.932 0.832 0.588

Citraconate 0.969 0.694 0.982 0.915 1.014 0.907

Citrate 1.251 0.047 1.054 0.720 0.842 0.196

Dihexose 0.082 <0.001 0.590 0.928 7.217 0.001

Inosine 0.736 0.328 0.910 0.580 1.236 0.890

Lactate 0.873 0.137 0.991 0.974 1.135 0.198

Pyruvate 1.100 0.353 1.065 0.640 0.969 0.870

2-Oxoglutarate 0.929 0.754 1.511 0.001 1.627 <0.001

1-Methyladenosine 0.934 0.878 0.923 0.865 0.989 1.000

Glutamine 0.676 0.026 2.512 <0.001 3.715 <0.001

Guanosine 0.762 0.215 0.833 0.257 1.094 0.993

O-Acetyl-L-serine 0.614 0.337 2.276 0.085 3.707 0.004

Glucosamine 1.014 0.959 2.073 <0.001 2.044 <0.001

Thiamine 0.486 0.059 0.781 0.860 1.607 0.156

Mean fold-changes among the three treatment groups for the chicken example data (14 metabolites across positive and negative ionization modes), and
associated Tukey HSD p-values for mean differences (bold values are p < 0.05).

Figure 2 Residual error plot for the chicken experiment. Legend - Linear model residuals are plotted in relation to overall mean metabolite level.
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pairwise Tukey HSD p-values or q-values between all
treatment groups for significant metabolites (also expor-
ted into a spreadsheet; see Table 2 for the data). This
printout showed that Shapiro-Wilk p-values for all meta-
bolites were greater than 0.05, indicating no violation of
the assumption of normality. Levene’s test p-values for
Citraconate and Inosine were less than 0.05, indicating a
possible violation of the linear model assumption of
equality of variance. By using the diagnostic results from
Shapiro-Wilk and Levene’s tests, researchers can identify
when data are unacceptable for use with the linear

model approach. Ion counts are sometimes modeled as
Poisson distributed, so if normality concerns are still an
issue after opting for a log transformation, the re-
searcher may wish to pursue an alternative statistical
approach.
Figure 2 contains the plot of residual error for each

metabolite after data transformation and normalization
in relation to the overall mean abundance for each me-
tabolite across all samples (we used log base 2 transfor-
mation). This plot can be used to determine whether
data transformation and normalization corrected for the
typical relationship of increasing variance with increa-
sing mean. In this example, variance is visually relatively
consistent across groups, and somewhat greater for low-
abundance metabolites.
Figure 3 illustrates an example of the mean plots and

95% confidence interval bars created for metabolites
with a statistically significant effect of treatment. O-
Acetyl-L-serine levels were significantly lower in Fast
samples compared to InsNeut. Mean separation letters
indicate that Fast and InsNeut groups differed signifi-
cantly from each other (p < 0.05 threshold chosen), but
neither differed from Control. Fold-changes between
treatment group means (not log transformed) are dis-
played below the letters. Fold-changes in the nth row
correspond to comparisons with the group in the nth
column, (i.e., the mean of O-Acetyl-L-serine was 3.707-
fold higher in InsNeut compared to Fast).
Figure 4 shows a box-and-whisker plot of Citrate vs.

run day, an ANOVA confounding variable, before and
after data normalization with MetabR. Figure 5 shows a
scatter plot of Pyruvate vs. Quantity, a regression con-
founding variable, before and after data normalization
with MetabR. These plots are produced automatically by
MetabR for all metabolites and all confounding variables

Figure 3 Group mean plots for O-Acetyl-L-serine in the chicken
experiment. Legend - Treatment group metabolite means, 95%
confidence intervals, mean fold-changes, and significant difference
letters are combined to summarize results for each significant
metabolite.

Figure 4 Pre- and post-normalization plots: metabolite vs. Day. Legend - Citrate is plotted before and after normalization, showing the
effectiveness of the normalization model for removing confounding variation in the chicken experiment. Normalization removed the effect of
different run days on the Citrate detection signal.
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Figure 5 Pre- and post-normalization plots: metabolite vs. tissue quantity. Legend - Normalization removed the correlation between the
quantity of tissue analyzed and the Pyruvate detection signal in the chicken experiment.

O
−

A
ce

ty
l−

L−
se

rin
e

T
hi

am
in

e

A
T

P

D
ih

ex
os

e

G
lu

ta
m

in
e

C
itr

ac
on

at
e

La
ct

at
e

1−
M

et
hy

la
de

no
si

ne

C
itr

at
e

2−
O

xo
gl

ut
ar

at
e

G
ua

no
si

ne

G
lu

co
sa

m
in

e

In
os

in
e

P
yr

uv
at

e

Fast_Chicken8
Fast_Chicken13
Control_Chicken6
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Figure 6 Heat map and dendrogram. Legend - The heat map was produced by the MetabR program using the chicken example data included
in Additional files 3 and 4. The metabolites are in the columns and the chicken adipose samples are in the rows. Columns are mean-centered,
with relative abundance represented by color (blue, lower abundance; red, higher abundance), as indicated in the legend. InsNeut chickens
cluster in the upper half of the dendrogram, completely separate from Fast chickens, suggesting that these two treatment groups have distinct
metabolic signatures, while the metabolic signature of the Control chickens appears less distinct. Note: the LC-MS/MS instrument method is
unable to differentiate between the several isomeric dihexoses, and therefore they are measured as a group.
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Table 3 Mouse experiment fold-changes

Treatment comparison

BPA500-BPA50 BPA5000-BPA50 Control-BPA50 BPA5000-BPA500 Control-BPA500 Control-BPA5000

Metabolite Fold-change P-value Fold-change P-value Fold-change P-value Fold-change P-value Fold-change P-value Fold-change P-value

Bisphenol A 0.817 0.998 0.455 0.423 1.420 0.984 0.558 0.490 1.738 0.946 3.117 0.261

Glucose-6-phosphate 1.042 0.081 0.987 0.859 1.023 0.545 0.947 0.013 0.981 0.654 1.036 0.168

Lactate 1.663 0.298 1.177 0.923 1.353 0.401 0.708 0.652 0.814 0.997 1.149 0.771

Citrate 1.064 1.000 3.265 0.120 2.273 0.219 3.070 0.141 2.137 0.252 0.696 0.988

Isocitrate 0.809 0.219 1.134 0.644 1.117 0.731 1.401 0.019 1.380 0.026 0.985 0.999

Phosphoenolpyruvate 1.218 0.551 1.476 0.167 0.793 0.962 1.212 0.852 0.651 0.287 0.537 0.064

Thymine 0.868 0.919 0.552 0.025 1.118 0.972 0.636 0.100 1.288 0.710 2.026 0.009

Urea 1.325 0.971 0.960 0.993 1.084 0.947 0.725 0.894 0.818 1.000 1.129 0.849

N-Acetyl-L-glutamate 0.449 0.001 0.518 0.007 0.548 0.014 1.152 0.789 1.220 0.638 1.059 0.994

ADP 1.264 0.907 7.812 0.092 11.948 0.035 6.180 0.280 9.452 0.124 1.530 0.957

Tryptophan 1.086 0.998 0.757 0.461 0.870 0.912 0.697 0.367 0.801 0.841 1.150 0.843

Ornithine 1.813 0.008 1.563 0.071 1.231 0.476 0.862 0.776 0.679 0.189 0.788 0.686

Mean fold-changes among the four treatment groups for the mouse example data (12 metabolites across positive and negative ionization modes), and associated Tukey HSD p-values for mean differences (bold values
are p < 0.05).
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included in the input data, and they give visual verifica-
tion that the effects of confounding variables on metabo-
lite measurements were removed by normalization using
the linear model approach.
Figure 6 shows a heat map and dendrogram of the

normalized data, produced automatically by MetabR via
the “heatmap.2” function from the “gplots” package [35].
A heat map is useful for visualizing overall differences in
metabolic signatures, and the dendrogram gives visual
evidence of whether the experimental conditions signi-
ficantly influenced metabolic signatures. Each metabolite
plotted is mean-centered, helping to call attention to
metabolites differing in abundance among samples. The
chickens appear to cluster non-randomly based on their
overall metabolic signatures (Figure 6). InsNeut chickens
cluster in the upper half of the dendrogram, completely
separate from Fast chickens, suggesting that these two
treatment groups have distinct metabolic signatures,
while the metabolic signature of the Control chickens
appears less distinct.
Table 2 contains all between-group mean fold-changes

for the metabolites, with differences tested by Tukey’s
HSD at the 5% significance level. We produced this table
by combining the mean fold-changes and p-values
exported automatically by MetabR. As shown, the ex-
periment had sufficient power to detect a fold-change as
low as 1.25 for Citrate between Fast and Control groups.
In general, the differences between the Control and
InsNeut groups were smaller than other treatment group
comparisons. The program exports q-values automa-
tically, and the researcher may select p-value, q-value,
mean fold-change, or a combination of either p-value or
q-value and mean fold-change as a significance thres-
hold. As technological improvements continue to allow
more metabolites to be detected, the chance of false dis-
coveries will increase, making false discovery corrections
(q-value) increasingly necessary.

Mouse experimental results
MetabR was run on the mouse example data in Additional
files 5 and 6, selecting the same parameters as the chicken
experiment, except that “Strain” (C57BL/6J or DBA/2J)
was additionally selected as a random-effect variable in
order to remove the effects of different mouse strains on
metabolite measurements. Two metabolites had Shapiro-
Wilk p-values less than 0.05 and W statistics less than
0.90, indicating possible violations of normality. No meta-
bolites were identified as having unequal variance among
treatment groups. The residual plot (not shown) also
showed no evidence of unequal variance, and it was vis-
ually apparent that variance was equal across all measure-
ment levels, and thus the log base 2 transformation
chosen for the analysis was effective. Fold-change results
are given in Table 3.

Conclusions
The open-source statistical computing software R [26]
provides a convenient environment for statistical analysis
of metabolomic and other -omic data. We developed a
user-friendly R program that normalizes metabolomic
data using linear mixed-effect modeling (with regression
and ANOVA terms), statistically compares treatments,
and exports results files to aid data interpretation, filling
an important lack in statistical analysis tools available to
the metabolomics community. The MetabR program file,
example data, and user guide are available as an R-Forge
project at http://metabr.r-forge.r-project.org/. This web-
site will also contain future news or updates related to
MetabR, including availability through the Comprehen-
sive R Archive Network (CRAN) or Bioconductor.

Availability and requirements
Project name: MetabR
Project home page: http://metabr.r-forge.r-project.org/
Operating system(s): Windows, Mac, Linux, any system
that runs R
Programming language: R
Other requirements: Required R packages are installed
automatically. The program was written and tested using
R version 2.15 for Windows.
License: GNU General Public License (GPL)
Any restrictions to use by non-academics: No
restrictions

Availability of supporting data
The datasets supporting the results of this article are
included within the article (and its additional files).

Additional files

Additional file 1: MetabR. MetabR program file.

Additional file 2: User Guide. MetabR user guide.

Additional file 3: Chicken_pos. Chicken example data 1 from positive
ionization mode.

Additional file 4: Chicken_neg. Chicken example data 2 from negative
ionization mode.

Additional file 5: Mouse_pos. Mouse example data 1 from positive
ionization mode.

Additional file 6: Mouse_neg. Mouse example data 2 from negative
ionization mode.
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values; GUI: Graphical user interface; HSD: Honest Significant Difference;
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