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ABSTRACT 

Cold-start and extended-idling emissions of carbon monoxide (CO), oxides of 

nitrogen (NOx) and particulate matter (PM) were measured from 24, class-8B, heavy-

duty diesel vehicles (HDDV8B) using portable emission monitoring equipment.  The 

ratio of nitrogen dioxide (NO2) to NOx and the ratio of PM2.5 to total PM were reported.  

Truck model years ranged from 1992 to 2004.  All vehicles were tested in the field during 

summer and fall months under ambient environmental conditions at low (600-800 rpm) 

and high (1000 rpm) engine idling speeds with the truck cab air-conditioner operating at 

“on” and “off” modes.  Sampling data thus obtained were used to generate typical 

average cold-start and extended-idling emission factors and were used to estimate 

potential emission reductions associated from using Truck Stop Electrification (TSE) 

Itechnology.   

Results indicated that cold-start emission rates, which were determined from the 

first 5-minutes of the cold-start period, were higher than the extended-idling emission 

rates by factors of 2.5 for CO, 1.5 for NOx and 1.7 for PM2.5.  Overall, the extended-

idling emission factors of the present study compared favorable to both the U.S 

Environmental Protection Agency (EPA) values that are recommended for State 

Implementation Plans (SIP) and average emission factors that were established from a 

previous review of the literature.  In summary, the NOx emission rates were greater than 

those reported for EPA-SIP purposes and from the literature review by 23.5% and 17.4%, 

respectively.  The PM2.5 emission rates observed in this study were less than those 

reported for EPA-SIP purposes by 3.8% and were greater than those reported in the 
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literature by 6.3%, respectively.  The average extended-idling emission factors for CO, 

NOx and PM2.5 were 64.5 g/hr, 167 g/hr and 3.51 g/hr, respectively.   

Electricity utilization and related emissions from TSE were calculated for a coal-

fired power plant equipped with Selective Catalytic Reduction (SCR) technology for 

NOx removal and that meets New Source Performance Standards (NSPS) for NOx and 

PM2.5 emissions.  In general, it was found that the cold-start emissions and the emissions 

from electricity were moderately small in comparison with the extended-idling emissions.  

Conversely, it was determined that the actual emission savings that could be associated 

with the TSE technology were 62.4 g/hr for CO, 158 g/hr for NOx and 3.19 g/hr for 

PM2.5.  Finally, the corrected or actual emission reductions for CO, NOx and PM2.5 using 

a cold-start period for 5-minutes were approximately 3.2%, 5.0% and 10% less than the 

extended-idling emission rate, respectively.   
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1 INTRODUCTION 

Commercial trucking has displaced the railroad to become the dominant form of 

transportation for hauling most freight in this country.  The propulsion system of choice 

for long-haul freight trucks are usually diesel engines because they are more efficient per 

unit of work and are far more durable than gasoline engines.  Out of necessity, long-haul 

truck drivers generally idle their diesel engines while parked at travel centers during 

federally mandated driver rest periods.  Idling the engine provides power for heat or air 

conditioning and helps maintain adequate battery voltage while the driver uses electrical 

appliances in the sleeping berth, such as, microwave, refrigerator or television.  Idling 

also keeps the fuel and lubricating oil more fluid, and so precludes difficult engine start-

up during cold days.  Furthermore, some heavy-duty diesel trucks have refrigerated 

trailers that are cooled by an independent, diesel-driven unit that must be kept running 

while the driver is resting.   

Care must be taken when relating vehicle types across different data sources 

because different classification systems are used for reporting local vehicle registration 

information and Vehicle Miles Traveled (VMT) data.  The United States Environmental 

Protection Agency (EPA) Mobile Source Emission Factor (MOBILE6) model categorizes 

heavy-duty diesel vehicles (HDDV) according to the gross vehicle weight rating 

(GVWR) of the vehicle.  HDDV is any diesel-powered vehicle greater than 8,500 pounds 

(lbs) GVWR.  Other examples are HDDV7 - diesel vehicles between 26,001 and 33,000 
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lbs GVWR, HDDV8A - diesel vehicles between 33,001 and 60,000 lbs GVWR and 

HDDV8B -diesel vehicles greater than 60,000 lbs GVWR.1   

The Vehicle Inventory and Use Survey (VIUS) is conducted every five years by 

the United States (US) Census Bureau to provide information on the physical and 

operational characteristics of the nation’s truck population.  VIUS uses the following 

categories to define heavy-duty diesel trucks:  (1) heavy-heavy, trucks with an average 

vehicle weight over 26,000 lbs, (2) trucks using diesel as fuel and (3) truck-trailer 

combinations having five-axles or more.  With respect to GVWR, the heavy-heavy 

designation includes both MOBILE6 categories:  HDDV7 and HDDV8.  Truck and 

trailer configurations are further divided into categories of truck with one trailer, truck 

tractor with semi-trailer and truck tractor with two or more trailing units.2,3  The main 

focus of this paper will be the long-haul HDDV8 category that includes a sleeping berth 

for the driver in the truck cab.  Long-haul is defined as commercial freight hauling on 

long distance trips over 500 miles per day.   

1.1 Hours-of-Service Regulations 

The basic Hours-of-Service (HOS) regulations for interstate motor carriers and 

drivers have been in effect for over 60 years since Congress first became concerned about 

the effects of fatigue as a contributing factor in commercial motor vehicle accidents.  The 

Federal Motor Carrier Safety Administration (FMCSA) has recently modified the HOS 

rules with compliance to occur January 4, 2004.  Under these new regulations, drivers 

may drive 11 hours, following 10 hours off-duty but are limited to just 14 hours on-duty.  

The 14-hour duty period may not be extended with off-duty time for meal and fuel stops, 
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etc., and only the use of a sleeper berth can extend the 14-hour duty period.  Each duty 

period must begin with at least 10 hours off-duty.  The weekly on-duty limits are 60 

hours in any seven consecutive days or 70 hours in any eight consecutive days, and 

drivers can only restart the 7- or 8-day period by taking at least 34 consecutive hours off-

duty.  Finally, drivers may split on-duty time by using sleeper berth periods, but they still 

must be incompliance with all other HOS rules.4,5   

1.2 Air Quality Trends 

The EPA has established National Ambient Air Quality Standards (NAAQS) for 

the following criteria pollutants:  carbon monoxide (CO), nitrogen dioxide (NO2), 

particulate matter (PM), ground-level ozone (O3), sulfur dioxide (SO2) and lead (Pb).  

The NAAQS were created to protect public health and prevent the continued 

environmental degradation of regional air quality.  Total emissions for the six criteria air 

pollutants have generally declined 48% in the US between 1970 and 2002.  During this 

same time-period, gross national product increased 164 %, VMT increased 155%, energy 

consumption increased 42% and population increased 38%.  In the face of increasing 

population and economic growth, reductions in criteria air pollution concentrations have 

occurred, and they are attributable to the Clean Air Act (CAA) regulations beginning in 

1970 and continuing to the present.  However in spite of great progresses made in air 

quality improvements, approximately 146 million people nationwide (during 2002) still 

lived in counties with pollution levels above the NAAQS.  Out of the 230 non-attainment 

areas identified during the 1990 Clean Air Act Amendments designation process, 124 

areas remain non-attainment areas.6   
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Of the six criteria pollutants, fine PM and ground-level O3 continue to be 

problems in many regions.  Primary concern is reserved for airborne PM less than or 

equal to 2.5 microns (µm) because it is in this range that PM is small enough to penetrate 

deep into the lungs.  Smaller particles, less than 0.1 µm, are easily inhaled and trapped in 

the alveoli of the lungs, which can cause numerous health problems and aggravate 

respiratory conditions, such as asthma and bronchitis.  Some PM can adsorb polycyclic 

aromatic hydrocarbons (PAH) from the diesel exhaust.  PAH are known to be mutagenic 

and, in some cases, carcinogenic in character.  The fine PM also impacts the environment 

by affecting the transmission of light and reducing visibility.7   

Of all emissions from diesel engine, PM is probably the most problematic.  

Emission standards on diesel engines have led to dramatic reductions in particle mass 

emitted.  Some studies show however, that low-emission diesel engines emit much higher 

concentrations of nanoparticles than older designs and other low-emission designs.  

Nanoparticles (or ultra-fine particles) are defined as particles less than 100 nanometers 

(nm).  Many recent studies suggest that at similar mass concentrations, nanometer size 

particles are actually more dangerous to human health than the micron size particles.8,9   

Diesel engines emit gaseous pollutants that are photo-chemically reactive, 

resulting in the formation of ground-level O3.  The main constituent of smog is ground-

level O3.  Short-term exposure to O3 (1 to 3 hours) can result in shortness of breath, 

coughing, chest tightness or irritation of the nose and throat.  Children, the elderly and 

people with pre-existing respiratory illnesses are particularly susceptible.  Long-term 

exposure (6 to 8 hours) or repeated exposure to O3 will make people more vulnerable to 
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respiratory infection and lung inflammation and can aggravate preexisting respiratory 

diseases, such as asthma.  High concentrations of O3 also cause detrimental effects to 

vegetation, which include reduced growth and decreased survivability to disease, pests 

and other environmental stresses.  While national levels of O3 improved in the last 10 

years, 1-hour O3 levels in selected regions increased, and the 8-hour levels in rural areas 

increased.10   

On July 18, 1997, the EPA revised the national standard for ground-level O3 from 

120 parts-per-billion (ppb) 1-hour peak standard to 80 ppb 8-hour average standard.  

Under the new federal regulations, each state was required to submit a list of counties 

expected to exceed the federal O3 standard.  In addition to the counties that do not meet 

the standard, the list included counties that have been determined to be contributing to 

high O3 levels in other counties.6  The EPA conducted an independent review of the list 

of each state and made its final determination of non-attainment areas April 19, 2004.   

Some counties and states have joined the EPA in agreements called Early Action 

Compacts (EAC), which commit them to taking early action to meet the revised O3 

standard by 2007.  In return for this early action, EPA will defer their non-attainment 

designation, thereby avoiding certain economic and transportation restrictions that non-

attainment would involve, in exchange for an earlier compliance schedule.   

On October 27, 1998, the EPA issued a new regulation requiring 22 states and the 

District of Columbia to submit State Implementation Plans (SIP) to diminish the regional 

transport of ground-level O3 through reductions in nitrogen oxide (NOx) emissions.11  

This regulation is commonly known as the NOx-SIP call.  By reducing NOx emissions, 
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the rule was targeted at diminishing the transport of ground-level O3 across state 

boundaries.   

1.3 Compression-Ignition Engines 

Air is compressed to a higher pressure in the diesel engine than it is compressed 

in the spark-ignition gasoline engine.  The higher compression ratio is needed to increase 

temperature and pressure of the air in the piston cylinder.  So when fuel is injected into 

the cylinder just before the end of the compression stroke - the fuel mixes with the heated 

air, the fuel evaporates and spontaneous ignition occurs.  In the gasoline engine, this 

ignition process occurs from an electric discharge through the aid of a spark plug.   

The un-throttled operation and high compression ratio of the diesel engine 

contribute to the higher efficiency of the diesel engine relative to the gasoline engine.12  

Throttling is the process of regulating the amount of air pulled into the engine before it is 

mixed with the fuel and enters the cylinders.  The spark-ignition engine primarily uses 

the throttling process to control torque.  The spark-ignition engine is also designed to 

operate near the stoichiometric ratio.  The key feature of the diesel engine is that the 

torque it generates is governed, not by throttling the air supply, but by simply varying the 

amount of fuel that is injected into the engine.13   

The downside of the high compression ratio of the diesel is that it generates 

higher temperatures inside the engine.  Unfortunately, this increases the production of 

nitric oxides (NO) in the hotter regions of the cylinder.  The formation of NO and other 

oxides of nitrogen increase rapidly with flame temperature.  In the engine, the amount of 

time spent in the combustion cycle is too short for the NO to be oxidized to NO2, even 
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though NO2 is thermodynamically favored at lower temperature.  Lower engine speeds 

generally produce a higher concentration of NOx for a given power due to the longer 

time available for the reactions to occur.13  The term NOx refers to the sum of the two 

compounds:  NO and NO2.  Additionally, since the air and diesel fuel are rarely mixed 

completely before auto-ignition takes place, the potential exists for some of the unburned 

fuel in the cooler regions of the cylinder to form soot during certain combinations of load 

and engine speeds.   

The compression ratio is just one of several factors that influence emissions from 

diesel engines.  Other factors that have a strong influence on emissions are engine 

injection timing and rate of fuel injection, equivalence ratio and engine speed.  The 

equivalence ratio (φ) is defined as the fuel/air ratio normalized with respect to the 

stoichiometric fuel/air ratio, where φ > 1 is fuel-rich, φ < 1 is fuel-lean and φ = 1 at the 

stoichiometric condition.   

Injection timing is the most influential parameter with regard to emissions.  For 

example, if a mixture burns early during the combustion process, it is compressed to a 

higher temperature, thus enhancing the formation of NO.  Unfortunately, injection timing 

retardation is in conflict with good fuel economy and low PM emissions.12  The 

combustion flame speed also influences the NOx formation.  Lean mixtures have lower 

flame speeds, which gives more time for the NOx to form plus greater oxygen (O2) 

availability.  The equivalence ratio is essentially dictated by engine load requirements.  

Piston and cylinder designs that improve the mi xing of fuel and air, and other secondary 



 8

devices (such as, superchargers or turbochargers) that force more air into the combustion 

chamber can also influence emissions.13   

The diesel engine characteristically operates fuel-lean (i.e., φ < 1).  All motor 

vehicle combustion engines are designed to ignite the air-fuel mixture at the optimum 

instant to maximize power output and to minimize fuel consumption and exhaust 

emissions.  This creates special problems because the equivalence ratios are different for 

optimizing the operation of the engine to meet these three objectives simultaneously.  For 

example, efforts to improve the fuel economy or engine performance may aggravate the 

emission problem.  The following discussion demonstrates the impracticality to optimize 

a diesel engine so as to reduce both the NOx and the soot formation simultaneously.   

Figure 1.1 shows the influence of the equivalence ratio on light-duty diesel engine 

performance and emissions.  (Note:  all tables and figures are located in the appendices.)  

This figure is used because a similar figure could not be located for HDDV8 engines, but 

it illustrates quite sufficiently the overall effects of the equivalence ratio.  The terms 

BSFC and BMEP in Figure 1.1, part (a), refer to brake-specific fuel consumption and 

brake-mean effective pressure, respectively.  The former term is the mass of fuel 

consumed per unit net energy output.  The latter term refers to the net power output per 

engine cycle.  It can be thought of as the work done per displacement volume.  The units 

of the term are power per cycle volume, which actually cancel to give units of pressure.14   

From Figure 1.1, part (a), the following conclusions can be reached about 

variations in engine performance and fuel consumption with change in the equivalence 

ratio (φ) between 0.2 and 1.0:   
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• The BMEP increases with equivalence ratio.  Higher BMEP and equivalence 

ratios correspond to higher engine power output or load.   

• The exhaust gas temperature increases with equivalence ratio.   

• Fuel consumption (i.e., BSFC) is high at low equivalence ratio but decreases 

sharply when equivalence ratio increases.  As equivalence ratio approaches unity, 

fuel consumption increases slightly above a minimum value at about φ = 0.5.   

The emission levels in Figure 1.1, part (b), are reported in terms of mass 

emissions per unit net power output.  The reason for this convention is that the species 

concentrations in the exhaust gas are somewhat misleading.  At low equivalence ratios, 

the pollutants are significantly diluted with excess air, as well as during normal engine 

operation, while the equivalence ratio is always changing because of varying demand on 

the engine.  Accounting for this dilution effect and to facilitate comparison with other 

engines, the emission levels in the figure are usually reported in mass per unit energy.14   

From Figure 1.1, part (b), the following conclusions can be reached about 

variations of emissions with change in the equivalence ratio (φ) between 0.2 and 1.0:   

• All emissions are high at low equivalence ratios for which engine output is low.   

• CO and PM emissions drop sharply with increasing equivalence ratio and pass 

through a minimum value at about φ = 0.5 where fuel consumption is also a 

minimum.  They then rise sharply as the equivalence ratio approaches unity.   

• HC and NO emissions drop sharply with increasing equivalence ratio above about 

φ = 0.2.  They reach relatively low levels at about φ = 0.4 and then change only 

slightly thereafter.  It should be noted, that while brake specific emissions of these 
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pollutants decrease with increasing load, absolute emission rates might increase at 

high power output.  The NO emissions can be influenced by injection parameters 

for a given equivalence ratio.   

In summary, diesel engines have a higher maximum efficiency than gasoline 

engines because in diesel engines:  (1) the compression ratio is higher; (2) throttling is 

not used to generate power; (3) during the initial part of compression, only air is present; 

and (4) the fuel/air mixture is always lean of stoichiometric, which gives a higher fuel 

conversion efficiency.  However, those unique features that make the diesel engine more 

efficient than the gasoline engine also become trade-offs in terms of the relative 

magnitudes of emitted pollutants that occur between these types of engines.   

1.3.1 Cold-Starting 

Combustion instability and soot emissions are known problems during cold-

starting the diesel engine.  The factors that affect the diesel engine during cold-start are 

(1) fuel properties, (2) intake air temperature and pressure, (3) compression ratio, (4) 

leakage or blow-by, (5) cranking speed, (6) fuel injection and (7) combustion chamber 

design.15  The effect of ambient temperature is probably the most critical factor because 

auto-ignition in the diesel engine relies on both high temperature and high pressure.  In 

turbocharged diesel engines, the compression ratio is often reduced to restrict peak 

cylinder pressure.  This obviously has a detrimental effect on engine starting 

performance.  The actual compression ratio is usually determined by the cold-starting 

requirements and is often higher than optimum for either fuel economy or power.  Under 

marginal starting conditions, it is also possible that some of the cylinders misfire until the 
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engine reaches idling speed or the engine coolant has sufficiently warmed.16  Such 

behavior is characterized by the emission of unburned fuel.   

1.3.2 Vehicle Age 

There are two factors of vehicle age that may affect the emissions production:  

normal engine wear and technology change.  It is believed that as the vehicle ages and 

accumulates higher mileage, the engine will slowly wear and produce higher emissions.  

However, diesel engine deterioration is thought to be slow relative to most gasoline 

engines.  Changes in technology, implies that the engines produced today are different 

from the older ones and must meet more stringent emissions standards.  There is some 

documentation on vehicle deterioration for heavy-duty vehicles:  generally, diesel 

engines have been reported to deteriorate little over the first 290, 000 miles, and newer 

engines can last between 500,000 and 1,000,000 miles before a rebuild.17   

1.4 Heavy-Duty Diesel Vehicles 

Little quantitative data exists on the amount of emissions that are emitted by 

HDDV8 engines during idling.  Almost no published data exist for the engine during the 

cold-starting period.  In general, diesel engines emit less CO and hydrocarbons (HC) 

when compared to gasoline engines since fuel-lean mixtures (i.e., conditions of excess 

air) tend to reduce CO and HC emissions.  However, diesel engines emit more PM and 

NOx per unit of fuel burned in comparison to gasoline engines.  NOx emitted from diesel 

engines and other combustion sources, serve as precursors in the formation of ground-

level O3.  For diesel engines, the NOx portion of the exhaust gas is approximately 95% 
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NO and 5% NO2.14  Basically, incomplete combustion causes the formation of CO and 

PM emissions.   

Volatile organic compounds (VOC) are the other important class of precursors in 

the formation of ground-level O3.  The VOC classification in the MOBILE6 model 

includes HC emissions as measured by flame ionization detection (FID) and aldehydes.  

The total HC (THC) classification includes HC as measured by FID, methane and ethane.   

The 5-axles or more truck fleet in 1997 was approximately 1.4 million units, 

which was about 20.9% of the total national truck fleet.  Of the 5-axles or more fleet, 

approximately 86.9% was comprised of tractor semi-trailer combinations.  It is estimated 

that about 33% of the 5-axles or more truck fleet, or approximately 400,000 heavy-heavy 

diesel trucks have sleeper compartments.2,3  Total annual interstate VMT for HDDV in 

the contiguous US for 1997 was over 100 billion miles.  Annual rural interstate VMT for 

HDDV was approximately 40 billion miles.18   

According to a recent freight analysis forecast published by the Department of 

Transportation (DOT), total domestic freight volume (i.e., air, highway, rail and water 

freight combined) is expected to grow by more than 65 percent, increasing from 13.5 

billion tons in 1998 to 22.5 billion tons in 2020.  Freight trucks moved 77 percent of the 

total tonnage in 1998, and they are expected to move at least 75 percent of the total 

tonnage in 2020.19  Thus, the number of commercial freight trucks will increase to meet 

this need to transport the additional freight tonnage.  Accordingly, when assessing the 

effects of these factors on vehicle idling emission control scenarios, primary effort must 

focus on reducing emissions in those categories that can be reduced in an effort to 
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decrease overall emissions and meet air quality standards.  Since long-haul trucks have 

the potential to contribute relatively high amounts of NOx and PM into the emission 

inventory, many environmental planning agencies and commercial interests are now 

investigating various strategies to reduce diesel truck emissions, including the emissions 

from trucks that are idling for long-periods of time.   

1.5 Significance of the Study 

The HDDV8 are excellent candidates for idle reduction (IR) technologies because 

of the large number of vehicles that idle for substantial periods of time.  The term IR 

refers to technologies that allow drivers to refrain from long-duration idling of the truck 

engine by using an alternative technology.  The main purposes of IR technologies are to 

reduce emissions and save fuel when compared to long-duration engine idling.  Two 

examples of IR devices are auxiliary power units and fuel-fired heaters.  Auxiliary power 

units provide electrical power and heating, ventilation and air-conditioning to the cab.  

They are usually driven by smaller diesel engines.  Fuel-fired heaters are used to provide 

warm air to the cab during the cold winter months, and they normally rely on a secondary 

fuel for energy (e.g., natural gas).  Limited experimental data have demonstrated that 

auxiliary power units are less polluting and more fuel-efficient than long-duration idling 

of the truck.   

Most important among the IR technologies is truck stop electrification (TSE) 

because it has the greatest potential to reduce idling emissions and fuel usage.  One 

company that provides advance TSE systems is IdleAire Technologies, Inc. with 

corporate offices located in Knoxville, Tennessee.  Their product is a stationary structure 
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that is installed at the rest area, which provides each parking space with an external 

thermostatically controlled, high capacity heating, ventilation and air-conditioning 

(HVAC) unit.  Another approach is to just provide electrical connections to each parking 

space, whereby the truck must have an on-board HVAC unit.   

The IdleAire TSE units are shown in Figure 1.2.  A flexible duct from the main 

HVAC unit connects to the truck via a window-mounted service module, which also 

provides internal 110-volt outlets for in-cab appliances.  Outside on the module, separate 

electric receptacles provide external 110-volt service to power refrigeration units.  Other 

amenities, such as telephone, television and Internet access are also provided to the cab 

via the mounted service module.  The in-cab air supply and service module are shown in 

Figure 1.3.  Thus, by using electricity from the local utility company’s power grid, 

substantial reductions in truck idling emissions can be achieved because electricity 

generating-power plants produce electricity more efficiently than diesel driven truck 

engines, and power plants already have embedded technology for pollution control of PM 

and, in most cases NOx, as well.   

Previous emission reduction estimates that have been attributable to TSE have 

generally only included those idling emission savings that are associated with the driver 

simply shutting-off the engine and using TSE during required rest periods.  A more 

thorough and realistic emission mass balance between idling and TSE should include an 

estimation of the increased emissions associated with the consumption of electricity from 

the power grid.  However more importantly, since combustion inefficiency and the 

emissions generated during the engine cold-start are known problems for internal 
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combustion engines, any increased emissions due to the cold-start should also be counted 

in the mass balance equations since the engine must be restarted after using TSE 

technology.   

1.6 Purpose of the Study 

The TSE concept has the potential to significantly reduce HDDV8 long-duration 

idling emissions.  Currently, major TSE projects are in various stages of development in 

the states of California, Georgia, New York, Tennessee and Texas.  The intent of the 

developers of TSE technology is to apply TSE nationwide along the interstate highway 

system in commercial areas that provide diesel fuel and other services to the trucking 

industry.  Therefore, it is of great interest to quantify the total emission reductions that 

can be expected with TSE to support future administrative decisions from standpoints of 

environmental planning, human health and economic cost.  To aid in this end, it will be 

necessary to examine (1) the complete emissions mass balance associated with the 

production of electricity that is needed to provide TSE, (2) the diesel engine long-

duration idling emissions and (3) the engine cold-starting emissions.   

The later cold-start emissions would be associated with a vehicle that participated 

at a TSE facility by not idling, followed by a relatively cold-start when the vehicle was 

restarted.  Thus, the objective of the present study was to provide estimates of the 

approximate magnitude of exhaust emissions that occur immediately after a cold engine-

start and during the extended-idling periods.  The variation of emissions due to engine 

idling speeds and cycling of the air- conditioning load on the magnitude of emissions 

were characterized.  The overall emission mass balance between truck idling and 
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emissions produced from the electricity consumed in lieu of truck idling was also 

investigated.  Electricity utilization and related emissions from TSE were calculated for a 

coal-fired power plant equipped with Selective Catalytic Reduction (SCR) technology for 

NOx removal and that meets the New Source Performance Standards (NSPS) for NOx 

and PM emissions.20   
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2 LITERATURE REVIEW 

Numerous studies have been conducted of emissions using chassis dynamometers 

on heavy-duty diesel engines where the vehicle or the engine is driven through speed-

time transient tests.  However, only limited historic field data exists concerning HDDV8 

idling emissions.  Interest in HDDV8 idling emissions has been steadily increasing as 

regional planning agencies search for additional emission reductions strategies.  Recently, 

a few independent research groups in conjunction with government and commercial 

interests have started to quantify the effects of engine speed, accessory load and other 

background environmental conditions, such as ambient air temperature, on idling 

emissions and fuel consumption rates.  Moreover, emissions from various IR devices 

have also been evaluated with respect to the potential benefits that these devices may 

provide toward a decrease in overall vehicle emissions and fuel usage.  The following 

sections summarize the methodologies and results from these research papers.  The 

approach and purpose of each study will be summarized first, followed by a summary of 

the emissions testing results at the end of the discussion.   

2.1 Major Idling Research Activities 

McCormick, et.al.21 measured idling emissions rates for total HC, CO, NOx and 

PM from 10 heavy-duty diesel trucks at roughly 1-mile above sea level using a full 

exhaust-flow dilution tunnel.  The truck model years were between 1990 and 1998.  The 

engine displacements and horsepower ranges were 11.1-12.7 liters (L) and 330-450 

horsepower (hp), respectively.  Each truck was tested while the engine was hot, within 20 

minutes of completing a dynamometer driving cycle.  All trucks were idled under the 
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standard factory-specified idling speed.  However, engine revolutions per minute (rpm) 

and the use of cab accessories were not quantified in the paper.  For proposes of 

summarizing the results, the factory-specified idling speed was assumed to be between 

600 and 800 rpm, which in the present paper is defined as low-idling speeds.  High idling 

speed is defined here as engine idling at greater than 1000 rpm.  The analytical methods 

that were used to measure the emissions were:  FID for HC, non-dispersive infrared 

(NDIR) for CO, chemiluminescence for NOx and gravimetry for PM.   

Brodrick, et.al.22 measured idling emissions rates for HC, CO, carbon dioxide (CO2) and 

NOx and fuel consumption rates from a single 1999 class-eight diesel truck using an 

emission measurement trailer that was on loan to the research group from EPA.  The 

analytical methods used in the EPA measurement trailer were not mentioned in the paper.  

The engine horsepower for the vehicle was 450 hp.  The idling test conditions were as 

follows:  (1) standard idle (600 rpm) after cruising 55 miles per hour (mph) for 10-

minutes (min); (2) standard idle after running a 10-min transient cycle; (3) standard idle 

with the air-conditioner (AC) running after performing a 10-min transient cycle; (4) high 

idle (1050 rpm) with the AC running after performing a 10-min transient cycle; (5) high 

idle with AC running for 5-hours (hrs).  The transient cycle consists of driving the vehicle 

through a wide variety of different speeds and loads to simulate typical light and heavy 

traffic conditions with frequent stops and starts with acceleration and deceleration phases.   

Lim23 conducted two idling studies on nine, class-eight diesel vehicles and two 

auxiliary IR devices.  One IR was a diesel direct-fired heater, and the other was a diesel 

auxiliary power unit, which is used to supply electric power to the refrigeration unit of 



 19

the trailer.  Emissions were compared between the trucks and the IR devices to determine 

if a net emission saving could be achieve from the use of IR.  The first study was a short 

introductory study; the testing occurred on four trucks.  The second idling study was 

performed with five trucks.  The second study was also done in collaboration with 

researchers from the Storey group (see below).  Idling emissions rates for HC, CO, CO2 

and NOx and fuel consumption were measured using the EPA Realtime On-road Vehicle 

Emissions Reporter (ROVER).  However, only idling emissions for CO2 and NOx and 

the fuel consumption rates were reported in the paper.  The truck model years for the 

combined studies were between 1985 and 2001.  The engine displacements and 

horsepower ranges were 12.7-14.6 L and 370-500 hp, respectively.  All trucks were 

tested in a climate-controlled chamber at low idle (between 600 and 800 rpm) and/or at 

high idle (between 1,000 and 1,200 rpm) in the following environments:  (1) 90-degrees 

Fahrenheit (F) with the AC running, (2) 0 F with the heater running and (3) 65 F with no 

accessory load applied.  For the AC and heater conditions, the truck cab was maintained 

at 70 F.  The analytical detection method used by ROVER to measure HC, CO and CO2 

was NDIR.  An electrochemical sensor was used to measure NOx.   

Storey, et.al.24 conducted tests on five of the nine, class-eight vehicles from the 

Lim study (see above).  Idling emissions rates for HC, CO, CO2, NOx, and PM and fuel 

consumption rates were measured using the EPA ROVER.  Aldehyde idling emission 

measurements were also conducted but are not reported in this paper.  Two methods were 

used to quantify the PM:  Tapered Element Oscillating Microbalance (TEOM) and 

conventional filter collection.  The truck model years were between 1992 and 2001.  The 

engine displacements and horsepower ranges were 12.7-14.6 L and 370-500 hp, 
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respectively.  All trucks were tested in the same climate-controlled chamber and under 

identical engine load and rpm conditions as in the Lim study.   

2.2 Minor Idling Research Activities 

Tang, et.al.25 conducted dynamometer emissions tests on 35 heavy-duty diesel 

trucks using two test-driving cycles.  Eight of the trucks were HDDV8.  The truck model 

years were between 1988 and 1999.  Engine displacements and horsepower were not 

reported in the paper.  Periodically during the dynamometer test-driving cycle, the engine 

was idled for 100 seconds in duration.  Emissions were measured with bench-top 

instruments from a sampling port located downstream of a constant volume sampling 

dilution tunnel.  Emissions from HC, CO, CO2, NOx and PM were measured.  Idling 

emissions were calculated from the 100-second idling periods that were extracted from 

the continuous sampling data.  Idling emissions and comparisons between the idling 

emissions and the dynamometer test-driving emissions were reported in the paper.   

Lambert, et.al.26 measured the emissions from 40 heavy-duty diesel trucks at a 

roadside intersection rest area using portable emission measurement instruments.  The 

truck model years were between 1993 and 2001.  Engine displacements and horsepower 

were not reported in the paper.  Emissions for CO, CO2, NOx and PM, and fuel 

consumption were measured under different configurations of stationary idling, engine 

accessory load and on-road driving conditions.  The stationary test matrix included low 

and high idling (i.e., engine default and 1000 rpm, respectively) with on and off modes 

for AC usage.  Following the curb idling test, drivers were asked to volunteer for the 

experimental on-road test, which consisted of a pre-trip idle, acceleration, cruise, 
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deceleration and post-trip idle.  Time durations for the idle tests were between one and 

five minutes.  Since this was a preliminary paper, only idling NOx emissions and relative 

fuel consumption rates that occurred during idle testing were discussed in the paper.   

2.3 Summary of Historic Field-Testing Data 

The results from the McCormick, et.al.21, Brodrick, et.al.22, Lim23 and Storey, 

et.al.24 studies are summarized in Table 2.1.  (Note:  all tables and figures are located in 

the appendices.)  These results were grouped together because it is believed that the 

vehicle testing programs of the studies were characteristic of the long-duration idling 

periods, which are common to roadside rest areas.  The reported units for emissions are 

gram per hour (g/hr), and the units for fuel consumption are gallons per hour (gal/hr).  

Percent RSD is expressed as  

100
X

SD
RSD ⋅=  (2.1) 

where,  SD = Standard deviation of values and  

  X = Mean of the values.   

The results shown in the table for each research group were calculated from tabular data 

that were available in the publications.  It should be noted that some of the vehicle 

emission data from those papers were not used to calculate the descriptive statistical 

values listed in Table 2.1 because those vehicles did not fall within the HDDV8 category.  

For example, of the two vehicles that were tested and reported as average results in the 

McCormick study, one was a minor weight-rated rental truck (GVWR 25,900 lbs), and 

the other was a school bus.  The overall averages, percent RSD and minimum/maximum 
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values were also calculated from the original data.  In summary, the approximate overall 

averages are HC = 34 g/hr, CO = 75 g/hr, CO2 = 8,640 g/hr, NOx = 142 g/hr, PM = 3.3 

g/hr and fuel consumption = 0.9 gal/hr.   

Raw data that were used to generate the summaries in Table 2.1 were also plotted 

as a function of the engine load and rpm conditions.  These plots are shown in Figure 2.1 

for HC, CO, CO2, NOx and PM emissions and for the fuel consumption rate.  Six 

categories are represented along the x-axis in the individual plots:  air-conditioner 

running at high and low engine rpm (A-H and A-L, respectively); heater running at high 

and low engine rpm (H-H and H-L, respectively); no-load condition at high and low 

engine rpm (N-H and N-L, respectively).  The horizontal lines in the mid region of the six 

plots indicate the overall means for the 2x3 matrix of engine idling speed and accessory 

load conditions.  These overall means are also the literature review averages that were 

summarized in Table 2.1.   

Mean diamonds were used in the plots as an aid to visualize the data (i.e., one 

diamond per category or group).  The x-axis is also divided proportionally by the group 

sample size (n).  Hence, diamonds that are elongated in the x-direction are those groups 

with larger relative sample sizes.  The centerline that divides the large diamond is the 

group mean for that category.  The two smaller diamonds that lie within the larger 

diamond represent the 95% confidence interval for the group mean.  These confidence 

intervals (i.e., the smaller diamonds) can be used to compare group means.  Overlap of 

smaller diamonds between groups indicates that those two groups are not different at the 

95% confidence level.  For example referring to the NOx plot in Figure 2.1, the A-H 
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group mean is not significantly different from the H-H and N-H group means.  

Conversely, the A-H group mean is significantly different from the group means of A-L, 

H-L and N-L.   

Closer inspections of the plots reveal that the magnitudes of the idling emissions 

are generally larger for the high rpm conditions.  This effect would be expected since a 

positive correlation exists between emissions and fuel consumption, and fuel 

consumption is higher at high rpm and higher engine loads (i.e., heating and AC).  It is 

also obvious from inspection of the graphs in Figure 2.1 that broad ranges of emissions 

are possible during idling tests.  Referring again to the NOx plot for example, the range 

of values for the A-H group was between 70 and 350 g/hr.  The idling emissions that are 

shown in Figure 2.1 are also summarized in Table 2.2.  So, comparisons of the minimum, 

maximum and average values can be examined for the engine load and rpm conditions.   

The results from the Tang, et.al.25 and Lambert, et.al.26 papers are discussed 

together because the idling emission rates from these studies may be more characteristics 

of short time idling emissions from stop-and-go traffic.  It should be noted that the testing 

results from these studies could not be grouped together into a single table because the 

raw data from the Lambert paper were not included in the summary of results.  The 

summary from the Tang study is shown in Table 2.3.  The approximate average idling 

emission rates are HC = 11 g/hr, CO = 26 g/hr, CO2 = 7,530 g/hr and NOx = 96 g/hr.  In 

contrast with the overall summary results listed in Table 2.1, the average emissions from 

long-duration idling were larger than the average results from the Tang study by factors 

of 3.1 for HC, 2.9 for CO, 1.1 for CO2 and 1.5 for NOx.  The maximum emissions were 
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larger by factors of 2.9 for HC, 4.9 for CO, 1.4 for CO2 and 1.9 for NOx.  On the other 

hand, the minimum values from long-duration idling were generally lower than the 

minimum results from the Tang study.  Discrepancies between these studies may be due 

to differences in the test vehicles and testing conditions.  It is also possible that the recent 

operating history of the engine or the length of idling time over which emissions 

measurements were made may have affected the emission levels.   

The preliminary results from the Lambert study for NOx idling emission are 

shown in Table 2.4.  The minimum and maximum ranges are listed for high and low 

engine idling speed for the AC modes of operation (i.e., AC running and AC not 

running).  The values listed in the table are at best only approximations that are derived 

from graphical results because the raw data were not divulged in the paper.  Nevertheless, 

close inspection of Table 2.4 reveals once again that the high idling engine condition with 

the AC running generated the highest NOx emission rate and that wide ranges of 

emissions are likely during idle testing.   

To demonstrate that average emissions levels may not provide a complete picture 

of idling emissions, the test results from the Brodrick study, which was discussed earlier, 

are presented in greater detail in Table 2.5.  It must be noted that two cruising tests 

conducted at 55 mph are also included in this table for comparison purposes between 

engine idling and actual driving emissions.  As shown in the table, the observed 

differences in emissions between engine test conditions 1 and 2 indicate that the 

conditions prior to idling may affect the idling emission behavior of the vehicle.27  When 

the engine idling speed was increased from 600 to 1050 rpm with the air-conditioner 
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running (i.e., condition 3 to 4), emissions of NOx and CO increased by factors of 1.53 

and 5.62, respectively.  A large increase in CO emissions also occurred between the high 

engine speed and long idling situations (i.e., between conditions 4 and 5).  The emission 

produced while cruising at 55 mph (condition 7) were approximately 3.5 times greater 

than the NOx emissions that were produces during long-term idling at high rpm 

(condition 5).   

In conclusion, the historic truck testing data indicated that there is large variability 

between individual vehicles tested at different engine idling speeds and accessory in-cab 

loading conditions.  There may be differences in emission patterns and emission levels 

between short-term and long-term idling.  Limited evidence suggests that emissions at 

idling may be affected by the idling duration period and the operating conditions of the 

vehicle prior to idling.  The average emissions levels may provide an incomplete picture 

of idling emissions.   

2.4 MOBILE6 Emission Factors 

If certain assumptions are made, the US EPA MOBILE6 model can be used to 

estimate idling emissions.28  Several of the researchers, which were discussed in the 

previous section (e.g., McCormick, et.al.21, Brodrick, et.al.22, Tang, et.al.25 and Brodrick, 

et,al.27) also had compared the idling emission rates gathered from their field-testing 

studies to the idling emissions obtained from an algorithm in the MOBILE5b model.  

What these researchers essentially found was that the emissions generated from 

MOBILE5b model always underestimated idling emissions.   
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For purposes of this literature review and study, MOBILE6 was used to predict 

HDDV idling emissions rates for the calendar year 2000 fleet by applying the default 

parameters that are built into the program.   

The other parameters used in the model are as follows:   

• Evaluation month - January  

• Minimum and maximum temperatures 66 and 90 F, respectively  

• Pollutants - HC, CO, CO2, NOx and PM  

• Cut-off sizes for PM: 10 and 2.5 µm  

• Diesel sulfur concentration - 500 parts-per-million (ppm)  

• Average vehicle speed - 2.5 mph for the arterial roadway category.   

The minimum speed allowed by MOBILE6 is 2.5 mph.  In actuality, truck idling occurs 

at zero mph.  Lacking more specific data, the usual modeling convention is to assume 

that idling emissions are equivalent to driving at 2.5 mph.  Since the model reports 

emissions factors in units of g/mile, the conversion of emission factors to units of g/hr 

was achieved by multiplying the MOBILE6 emission values in g/mile by 2.5 mph.23   

The MOBILE6 idling emission factors for the calendar year 2000 fleet are shown 

in Table 2.6 for HDDV, HDDV7, HDDV8A, HDDV8B and HDDV8 for the 2.5 mph 

average speed arterial roadway.  The HDDV8 category was compiled from the VMT 

distribution mix from HDDV8A and HDDV8B for the year 2000.  As an illustration, the 

emission factors for HDDV8 are THC = 7.8 g/hr, CO = 63 g/hr, CO2 = 4,131 g/hr, NOx = 

84.1, PM10 = 1.6 g/hr and PM2.5 = 1.5 g/hr.  Comparisons of these HDDV8 emission 
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values with the overall average values shown in Table 2.1 that were established from a 

review of the literature reveal that the average field-testing measurements are between 

1.7 and 4.4 times larger than those values predicted by MOBILE6 at the 2.5 mph average 

speed, suggesting that the assumption that idling emissions are equivalent to a truck 

moving at 2.5 mph is not well justified in the case of idling HDDV8.   

To demonstrate the full range of emission rates that are possible at various speeds, 

the MOBILE6 model was used to generate emission rates for NOx and PM at 5, 10, 20, 

40, 50 and 60 mph for the HDDV categories using the original default scenario 

parameters.  The emission factors in units of g/hr were calculated by multiplying the 

MOBILE6 emission values in units of g/mile by the respective average speed that was 

used in the input file for the model runs (i.e., 5, 10, 20, 40, 50 and 60 mph).  The 

emissions rates from MOBILE6 were then plotted for all model runs starting at 2.5 mph 

and going through 60 mph.   

Plots of the NOx and PM emission factors in units of g/hr versus highway speed 

in mph are also shown in Figure 2.2 and Figure 2.3, respectively.  The solid-lines shown 

in the figures represent the MOBILE6 emission factors for the vehicle categories (i.e., 

HDDV, HDDV7 and HDDV8) as a function of vehicle speed.  The dashed horizontal 

lines shown in the graphs correspond to the average, minimum and maximum overall 

idling emission rates that were determined by actual long-duration field-testing.  These 

descriptive statistical values were taken from the overall summary section in Table 2.1.  

Referring to Figure 2.2, it can be seen that the average idling NOx emission rate for the 

HDDV8 category (i.e., 142 g/hr) occurs closer to 5 mph and not at 2.5 mph.  The 
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minimum and maximum idling emission rates (i.e., 19.8 and 353 g/hr, respectively) 

occurred between 0 and 15 mph.   

It must be remembered that MOBILE6 was developed to model on-road vehicle 

emission inventories.  It should not be used to create extended-idling emission factors or 

model emissions from long-duration idling trucks.  Quite frankly, the MOBILE6 User’s 

Guide asserts that it should not be used to model “hoteling” behavior.1  By itself, 

“hoteling” was not defined in the guide, but intuitively it must refer to the rest practices 

and behavior of long-haul truck drivers.  To further clarify this issue, the EPA in January 

2004 issued guidance for quantifying and using long-duration truck idling emission 

reductions in SIP and transportation conformity.29  For purposes of the guidance, long 

duration idling was defined as the operation of the engine for a period greater than 15 

minutes when the truck is not engaged in gear.  For use in stationary TSE projects, EPA 

has also provided long-duration idling emission factors (EF) for NOx and PM.   

Between the years 2002 and 2030, the EF that EPA recommends for NOx is 135 

g/hr.  The EF for PM ranges from 0.33 to 3.68 g/hr depending on the year in which the 

emission reduction is generated.  Table 2.7 lists the EF for PM by year.  Referring again 

to the average values shown in Table 2.1, the current literature review emission factors 

for NOx and PM were  142 g/hr and 3.33 g/hr, respectively.  Note that both values 

compare favorably with the EPA suggested values.  (Also note in Table 2.7, the EPA is 

anticipating that the HDDV particulate matter emissions will go down approximately 

90% by the year 2030.)   
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The EPA’s Office of Transportation and Air Quality is currently developing a 

new generation mobile source emission model for state and local air management 

agencies to use in simulating mobile source emissions.30  The new model is called the 

Motor Vehicle Emission Simulator (MOVES), and it will replace the current mobile 

source emission model called MOBILE.  The new model will estimate on-road and non-

road sources, cover a broad range of pollutants and allow multiple scale analysis.  It is 

anticipated that MOVES will also be able to model cold-start and extended-idling 

emissions for heavy-duty diesel truck “hoteling” scenarios.   

2.5 Overview of Particulate Emissions and Sampling Diesel Exhaust 

The typical composition of diesel exhaust, as reported by two different researches, 

are (1) 41% carbon, 25% unburned oil, 14% sulfate and water, 13% ash and other 

compounds and 7% unburned fuel9 and (2) 31% carbon, 40% unburned oil, 14% sulfate 

and water, 8% other unknown compounds and 7% unburned fuel.12  Major disagreement 

among reported compositions were between percent carbon and unburned oil.  Soot and 

unburned fuel are similar concepts as elemental carbon (EC) and organic carbon (OC), 

respectively.  The generally accepted model of diesel engine PM is that of a core of 

agglomerates of elemental carbon, or soot, onto which is adsorbed a layer of condensed 

hydrocarbons and sulfuric acid derived from the SO2 generated from the sulfur in the 

fuel.  Further solid material in the form of metal ash compounds derived mainly from 

lubricating oil can become entrained in the PM.  In addition, water can also condense and 

adsorb on sulfate species.31,32  Figure 2.4 shows a schematic representation of diesel PM.   
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Raw diesel exhaust is typically incompatible with most real-time PM analyzers.  

The PM concentration in the raw exhaust often exceeds the measurement range of the 

analyzer.  Therefore, dilution-sampling systems are frequently used to measure PM in 

diesel exhaust, or PM is measured by collecting and weighing on filter paper after a 

known volume of exhaust gas has been passed through the filter.  There is growing 

evidence that the physical characteristics of the dilution sampling systems may alter the 

size, mass and composition of the PM, as a result of changes in residence time, 

temperature, humidity and dilution.33,34,35  These factors more strongly affect the particle 

size distribution rather than the mass of the particle because mass tends to be conserved 

during dilution.  Yet it has been also demonstrated that the dilution ratio and cooling can 

influence the formation of the soluble organic fraction (SOF) component of PM. 

The SOF is heavy molecular weight hydrocarbon derived from the diesel fuel and 

lubricating oil.  The term “soluble” originates from the analytical method that is used to 

measure SOF, which is based on extraction of PM samples using solvents.  SOF is not to 

be confused with the volatile organic fraction (VOF), which is the organic fraction of 

diesel PM as determined by vacuum evaporation.  Depending on the analytical procedure, 

the VOF may include the organic material (i.e., SOF) as well as some of sulfate 

particulates, composed primarily of hydrated sulfuric acid, that are also volatile.36  

The effects of cooling the exhaust gas on mass concentration, composition, 

number distribution and number-average diameter of diesel PM were analyzed.37  Results 

showed that upon cooling the exhaust gas, the mass concentration of the total PM and 

SOF in the PM was increased.  Peak diameter of the PM number distribution was also 
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shifted towards larger PM and the total PM number decreases, whereas the number-

average diameter of the PM increased.  The important point being made is that the 

dynamics of PM formation during dilution and cooling are still not clearly understood.  

Additionally, the dilution-sampling apparatus may introduce extraneous variables into 

PM measurement.   
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3 METHODOLOGY 

In the present study, cold-start and long-term duration idling emissions were 

measured in the field from HDDV8B using portable emission monitoring systems 

(PEMS).  Real-time mass emissions of CO, NO, NO2 and PM were measured and used to 

generate typical average cold-start and long-duration idling emission factors on a grams 

per hour basis.  The percent CO2 in the exhaust stream was measured and used to 

estimate the diesel fuel consumption rates for the test conditions.   

3.1 Experimental Protocol 

Twenty-four heavy-duty diesel trucks were tested during the summer and fall 

months between June and November 2004.  Important vehicle and engine information are 

listed in Table 3.1.  The truck model years ranged between 1992 and 2004; the odometer 

readings ranged between 60 and 835,000 miles.  Pie charts summarizing truck body and 

engine manufacturer, model year and engine displacement are shown in Figure 2.5.   

All vehicles were tested at ambient environmental conditions at low and high 

engine idling speeds.  Low-idling speeds were between 600 and 800 revolutions per 

minute (rpm).  The as-received condition or the factory idle setting established the low-

idling speeds, especially for cold-start testing.  The high-idling condition was chosen at 

1000 rpm.  The rpm was set in each truck using the electronic onboard cruise control 

module.  Each truck was tested with the cab air-conditioner at the maximum output (i.e., 

AC-On setting) and with the air-conditioner system not operating (i.e., AC-Off setting).  

The trucks were not subjected to any special maintenance procedures.  They were tested 

as received or as rented and used locally available standard diesel fuel.  Each truck was 
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parked overnight in a staging area for at least 12-hours before cold-start testing was 

conducted the following day.  Before engaging the engine for cold-start testing, the air-

conditioner switch was set to operate at maximum output (i.e., AC-On setting).   

Time-resolved emission measurements during engine cold-start and idling periods 

were collected.  During testing, emissions were shown to reach steady-state condition 

within two to three hours after starting the engine.  After the engine warm-up period, 

additional idling tests were conducted on each vehicle through the following typical 

progression:  cold-start at low-idle with the AC-On (run time approximately 3-hrs), low-

idle with the AC-Off (runtime approximately 2-hrs), high-idle with the AC-Off (run time 

approximately 1-hr) and finally high-idle with the AC-On (runtime approximately 1-hr).  

It should be noted that this sequence was chosen, as it typically resulted in a greater load 

on the engine with each consecutive test.   

3.2 Instrumentation 

3.2.1 Gaseous Analyzer 

Exhaust gasses were measured with an ECOM Model AC-Plus portable analyzer.  

The instrument was obtained from ECOM America Ltd., 1895 Beaver Ridge Circle, Suite 

N, Norcross, Georgia.  The probe body was approximately 1 foot in length, and the 

sampling line was 15 feet in length.  The analyzer incorporated an internal pump, radiant 

gas cooler and self-draining moisture trap to condition the gas sample.  The pump 

delivered a fixed flow rate of 2.5 liters per minute (lpm) to separate electrochemical 

sensors.  The analyzer was configured to measure O2, CO, NO, NO2 and SO2 

concentrations.  Ambient temperature, stack temperature and stack pressure were also 
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measured by the analyzer.  The analyzer also reported CO2 and NOx concentrations, 

combustion efficiency and excess air (lambda).  However these parameters are calculated 

values rather than measured parameters.   

The analyzer was calibrated once per week or more frequently, on an as needed 

basis.  During calibration, a different EPA protocol calibration gas was used for each 

electrochemical sensor.  The analyzer was allowed to acclimate to the ambient 

temperature and complete the Auto Zero/Span procedure prior to beginning the emission 

test.  The probe was inserted into the designated sampling port in the primary chamber 

and the analyzer was allowed to draw the gas sample.  All parameters were measured 

continuously.  The analyzer reported concentrations in units of actual conditions of 

temperature, pressure, exhaust moisture and oxygen concentration.  The operating 

parameters for the ECOM analyzer are summarized in Table 3.2.   

3.2.2 Particulate Matter Analyzer 

The PM was measured with a DataRAM Model DR-4000 portable aerosol 

analyzer.  The instrument was obtained from Thermo Electron Corp., 7 Oak Park, 

Bedford, Massachusetts.  The unit was operated as a single wavelength light scattering 

photometer at a wavelength of 880 nanometers (nm).  The sampling flow rate is user 

selectable with a range between 1 to 3-lpm.  An inline jet-to-plate type impactor head was 

attached to the DataRAM to measure PM2.5 (i.e., PM with an aerodynamic equivalent 

particle diameter of 2.5 µm or less).  The impactor has a cassette filter, which collects the 

PM that does not pass through the jet-to-plate.  The 2.5 µm cut point was obtained at the 
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flow rate of 2 lpm.   The analyzer measured instantaneous, average and maximum 

concentrations of PM.  The unit also recorded sample gas temperature and humidity.   

The DataRam was also equipped with an internal membrane filter, which was 

used to collect an integrated sample of PM2.5 over the entire test period for any given 

vehicle that was tested.  This provided the ability to gravimetrically determine the mass 

of PM2.5 sampled during the test period.  The impactor cassette filter was also weighed, 

and the data were used to provide an estimation of the PM greater than 2.5 µm.  The sum 

of the weight collected on the internal membrane filter and the impactor cassette filter 

provided the total mass collected.  The gravimetric data from each test was used to 

calibrate the response of the instrument for each test.  The material of composition for 

both membrane filters was mixed cellulose ester.  Specifications for the internal 

membrane filter were 37 mm in diameter and 0.8  µm for pore size.  For the impactor 

cassette filter, the specifications were 25 mm in diameter and 5.0  µm for pore size.  All 

filters were pre- and post-conditioned in a desiccator before being weighed with a 

microbalance scale.   

The analyzer probe assembly was attached to the inline impactor, which was 

attached to the dilution chamber.  The analyzer was allowed to acclimatize to the ambient 

temperature and complete the Auto Zero/Span procedure prior to beginning the emission 

test.  The instrument reported concentration in units of actual conditions of temperature, 

pressure, exhaust moisture and oxygen concentration.  A summary of the output and 

operating parameters for the DataRAM is shown in Table 3.2.   
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3.2.3 Exhaust Gas Flow Meter 

The diesel exhaust flow rate of the vehicle was measured with a Kurz Model 

454FT-12-MT insertion flow meter.  The instrument was obtained from Kurz Instruments 

Inc., 2411 Garden Road, Monterey, California.  The Kurz flow meter is a point velocity-

sensing thermal anemometer that required an in-situ calibration using a velocity traverse 

of the flow profile.  Flow rate from the Kurz meter was reported in units of standard 

cubic feet per minute (scfm).  The Kurz flow meter was field calibrated by conducting 

velocity traverses inside the primary test chamber using a type S pitot tube.  Table 3.2 

lists the operating parameters for the Kurz flow meter.   

3.2.4 Miscellaneous Equipment 

The moisture content of the diesel exhaust was measured with a DigiSense 

Temperature/Humidity Logger.  The DigiSense was obtained from Cole-Parmer 

Instrument Co., 625 East Bunker Court, Vernon Hills, Illinois.  Inputs from the probe 

also provide exhaust temperature and dew point data.   

Engine operational data were collected using a NEXIQ Technology Pro-Link 

heavy-duty standard communication hardware/software kit.  It was obtained from 

NEXIQ Technologies, 2329 East Walton Boulevard, Auburn Hills, Michigan.  The Pro-

Link kit connects directly to the electronic control module (ECM) of the engine.  It 

allowed visualization and/or downloading of engine parameter and diagnostic 

information to a personal computer during testing.  Engine parameters that were collected 

by Pro-Link are coolant and oil temperature, oil pressure, intake manifold temperature, 

idling speed and operating load.   
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The dilution air required to cool the exhaust gases to the temperature limit needed 

for the DataRAM was measured with surface mounted Dwyer Rate-Masters, Model RMC 

rotameters.  The rotameters were obtained from Dwyer Instruments, Inc., 102 Highway 

212, Michigan City, Indiana.  These devices were necessary to balance the exhaust gas 

and ambient air into the dilution tunnel at near isokinetic conditions and required for 

maintaining the temperature of the dilution air at below 120 F.  Data collected from this 

instrumentation were used to calculate the dilution ratio.  The rotameters were factory 

calibrated.  Static pressure and temperature were measured in the dilution chamber with 

surface mounted Dwyer magnahelic gauges and bimetal thermometers, respectively.  

Data collected from these sensors were necessary to convert the gas flow rates from non-

standard gas conditions to standard gas conditions of temperature and pressure.   

3.3 Sampling System 

A two-stage sampling system was used to measure exhaust emissions.  Figure 3.1 

illustrates the location of the key components of the sampling system.  Gaseous emissions 

were measured in the primary sampling chamber.  The PM emissions were measured in 

the secondary sampling chamber (or dilution chamber), due to the need to cool the flow 

by dilution to avoid exceeding the maximum operating temperature of the PM monitor.  

The vertical muffler of each truck was disconnected from the engine exhaust pipe that ran 

beneath the cab from the engine turbocharger to the side or the back of the cab.  The 

primary sampling system was connected to the engine exhaust pipe via a flexible 

stainless steel hose.  Approximately 20 feet separated the primary sampling chamber 

from the turbine outlet.  The dilution chamber was attached through the downstream 90-

degree elbow of the primary sampling chamber via thin wall stainless-steel tubing.   
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Figure 3.2 shows the sampling chamber attached to a test truck via the flexible 

stainless steel hose.  In the figure, the Kurz meter is located on the top-front segment of 

primary sampling chamber.  Figure 3.3 shows the overall view of the mobile test stand 

and the location of all the instrumentation.  Figure 3.4 shows the side view of the primary 

sampling chamber.  In this figure, the ECOM analyzer and personal computer, both 

located beneath the primary sampling chamber on the lower section of the mobile test 

stand, are clearly visible.  Also, the location of the ECOM probe can be seen on the side-

rear segment of the primary sampling chamber.  Figure 3.5 shows the side view of the 

secondary sampling chamber.  The dilution chamber, which is attached to the 90-degree 

elbow of the primary sampling chamber, is clearly shown in the figure; the DataRAM 

and impactor are attached to the dilution chamber.   

3.3.1 Primary Sampling System 

The primary sampling chamber contains sampling ports for instrumentation and 

permits bypassing the vertical exhaust muffler of the truck.  The dimensions of the 

sampling chamber are 8 feet in length and 8.25 inches in diameter.  It was constructed of 

316 stainless steel pipe and fittings.  A flexible stainless steel hose was used to join the 

sampling chamber to the turbine outlet of the truck.  Combustion exhaust gas was 

directed away from the area through a high temperature resistant, polymer flexible pipe, 

which is attached to the downstream side of the sampling chamber and stretched along 

the ground.  The ECOM gas analyzer probe, the Kurz flow meter sensor and the 

DigiSense humidity sensor were inserted through sampling ports situated along the side 

of the primary sampling chamber.  The exhaust gas-phase species concentrations, flow 

rate, temperature and humidity were measured inside the primary sampling chamber.  
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The dilution chamber and other essential monitoring and recording equipment are also 

attached to the primary sampling chamber.  The entire apparatus was mounted to a 10-

foot long by 3-foot high tube steel, mobile cart.   

3.3.2 Secondary Sampling (Dilution) System 

The dilution chamber was required to continuously extract a representative 

sample from the primary chamber and then cool it, to well below the safe operating 

temperature of the DataRAM, by mixing exhaust gas with cleaned and dry ambient air.  

Dimensions of the secondary sampling system are 3 feet in length and 1 inch in diameter.  

It was constructed of 316 stainless steel pipe and fittings.  Thin wall tubing connected the 

dilution chamber to the primary chamber and to the PM analyzer, without any bends or 

changes in direction.  The tubes were sized to achieve near isokinetic conditions at the 

inlet to the dilution chamber and at the inlet to the DataRAM.  Two regenerative blowers 

(or pumps) were used to mix ambient air and exhaust gas.  Rotameters were attached to 

the dilution chamber to control and measure the flow rate of the dilution air.  Bypass 

values were used for coarse flow control.  A high-efficiency particulate (HEPA) filter and 

the desiccant Drierite were used to remove particles and moisture, respectively from the 

ambient air.  Temperature and pressure gauges located adjacent to the rotameters were 

used to allow correction of the gas flow rates from nonstandard operating conditions to 

standard gas conditions (i.e., temperature at 68 F and pressure at 1-atmosphere).  The 

DataRAM unit, which attached directly to the opposite end of the dilution chamber, was 

used for measuring total PM and PM2.5 concentration in the exhaust gas.   
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3.4 Collection and Treatment of Data 

The internal data logging capacity of the analytical equipment was utilized to 

collect all data during actual testing, after which the data were transferred to a personal 

computer.  The truck engine operation during the warm-up period (between starting the 

engine and until steady-state emissions were reached) constitutes the cold-start period.  

Emissions were also averaged over the first 5-minute, 10-minute and 15-minute time 

periods after a cold engine start to generate cold-start 5-minute (CS-5), CS-10 and CS-15 

emission factors, respectively.  Data collected after emissions reached steady-state 

constituted the long-duration or extended idling period.  Ten-minute averaging periods 

were selected from the long-duration data at locations in the data where the emission rate 

was relatively constant on the emission curves.  All cold-start and idling emission factors 

were reported in units of grams (pollutant) per hour (g/hr).   

Emission rate calculations for the gaseous pollutants (i.e., CO and NOx) from 

continuous measurement data were relatively straightforward.  Concentration (Ci) 

measured by the analyzer multiplied by the flow rate (Qi) as measured in the sampling 

chamber equals the mass of pollutant emitted per time (Mi), i.e., Mi = CiQi.  Standard 

units of concentration and flow rate (e.g., mg/ dry m3 @ 7% O2) are not necessary as long 

as conditions of temperature, pressure, moisture and percent O2 are consistent for both 

paired concentration and flow rate value in the equation.  The continuous emission rate 

data for selected time periods were then averaged to derive the typical average cold-start 

and extended-idling emission rates.  Sample calculations for real-time CO and NOx 

emission rates are shown in Appendix C1.1 and C1.2, respectively.   



 41

Determination of the PM emission rates from continuous measurement data were 

more complex than the calculations for the gaseous pollutants because dilution of the 

exhaust gas had to be incorporated into the emission rate computations.  For the PM 

system, the actual volumetric flow rate (Q1) into the dilution chamber and the actual 

sampling flow rate (Q4) of the DataRAM were unknown, as well as, the density (ρ) of the 

gas that resulted from mixing ambient air and exhaust gas inside the dilution chamber.  

The numerical subscripts refer to the flow locations on the dilution sampler that is shown 

in Figure 3.1.   

The automatic flow rate control of the DataRAM is based on sensing the pressure 

differential across an orifice at the exhaust of the flow system of the DataRAM.  The 

functional relationship between orifice pressure drop (∆p) and volumetric flow rate (Q) is 

given by the following equation:   

2Q  kp ρ=∆  (3.1) 

where,  

k = system constant related to discharge coefficient and area of orifice and  

ρ = density of air at factory calibration of temperature and pressure conditions.   

The user specified sampling flow rate (Q) was fixed at 2-lpm.  Conversion from sampling 

in air to sampling in exhaust gas is as follows:   

Q 
k
p

ρ=
∆

 and 44 Q Q ρ=ρ  
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thus, 
4

4 QQ
ρ
ρ

=  (3.2) 

where,  Q4 = Actual DataRAM sampling flow rate and  

  ρ4 = Density of sample, diluted exhaust gas air.   

It will be assumed that the molecular weight of the exhaust gas in the primary chamber 

and molecular weight the mixture of ambient air and exhaust gas in the dilution chamber 

are equal.  The basis for the assumption of equivalence between the molecular weights of 

the gases is shown in Figure 3.6.  Data used to create the plot were obtained from 

published thermodynamic gas tables.38  The plot shows the molecular weight for the 

complete combustion of several hydrocarbon fuels containing carbon and hydrogen 

(CHn) and air as a function of the percent theoretical fuel.  The percent theoretical fuel for 

combustion increases from (i.e., pure air) to 100% (i.e., air-fuel stoichiometric condition).  

The relation CH1.80 is a good approximation for diesel fuel.18  Values of n, the atomic 

ratio of hydrogen (H) to carbon (C), were chosen in the range 1.430 to 2.142.  The 

molecular weight values for the diesel fuel were interpolated between the H:C range 

1.668 to 1.907, and a best-fit line was drawn through the data points.   

As shown in the figure, the slope of the line is relatively flat.  Differences in MW 

are especially small between 10 and 40% theoretical fuel.  At the limits between pure air 

and 100% theoretical fuel, the molecular weight only varied by approximately 0.4%.  

Since diesel engines always operate less of the stoichiome tric condition and engine idling 

normally occurs at much less than 30% of the theoretical fuel condition, it is believed that 
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the molecular weight assumption was valid.  The governing equations and sample 

calculations for real-time PM emission rates are shown in Appendix C1.3.   

Finally, the fuel consumption rate was calculated in gallons per hour (gal/hr) 

using percent of CO2 in the exhaust gas as reported from the ECOM analyzer.  

Remember the ECOM analyzer did not directly measure CO2.  Instead, the analyzer 

measured the O2 concentration and calculated CO2 percent using the following formula:   







 −=

21
O Measured

1CO MaxCO 2
22  (3.3) 

where,  Max CO2 = stoichiometric percent of CO2 on a dry basis (i.e., approximately 

15.3% using the CH1.80 basis), and Measured O2 = oxygen percent in the exhaust gas as 

measured by the ECOM analyzer.  It must be noted that the fuel consumption rates 

reported in the present paper are approximations rather than truly measured parameters.  

Again for illustration purposes, sample calculations are shown for the fuel-consumption 

rate in Appendix C1.4.   
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4 RESULTS/DISCUSSION 

4.1 Emission Rate Behavior for Heavy-Duty Diesel Vehicles 

A graph of the CO, NOx and PM2.5 emission rates for an entire testing period is 

shown in Figure 4.1 for the 1996 Freightliner truck (ID#1) to illustrate the typical 

response of emissions that occurred during the idling cycles.  Notice that when the engine 

started, NOx emissions peaked between 350 and 400 g/hr, and CO emissions peaked 

around 100 g/hr.  These emission rates gradually declined, over time as the engine 

warmed or until steady-state was achieved.  For NOx, steady-state was reached about 

three hours after cold-starting the engine, whereas it took only about one hour for the CO 

emission to reach steady-state.  When the engine idling speed was increased from 750 to 

1000 rpm and/or the setting of the air-conditioner was switched from “off” to “on” mode, 

the gaseous emissions also increased in magnitude and remained relatively stable 

throughout the testing period.  As shown in Figure 4.1, the typical gaseous emission rates 

for the engine idling at 750 rpm with the AC-Off were approximately 140 g/hr NOx and 

40 g/hr CO.  With the AC-On, they were approximately 250 g/hr NOx and 50 g/hr CO.  

Typical gaseous emission rates for the engine idling at 1000 rpm were approximately 155 

g/hr NOx and 55 g/hr CO with the AC-Off.  Emissions were approximately 255 g/hr NOx 

and 65 g/hr CO with the AC-On.   

For PM emissions during the cold-start period, the high initial peak and gradual 

drop-off in emissions, which were characteristic for gaseous emissions, did not occur for 

the truck that was illustrated in Figure 4.1.  PM emissions also appeared to creep or drift 

over time during some of the idling test periods.  In addition, emissions did not 
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completely achieve steady-state during the engine idling and air-conditioner tests.  It 

should be noted that these characteristics of the PM curve were seen in about 35% of the 

trucks that were tested.  However for the other truck cases, a series of emission spikes 

that varied in magnitude occurred throughout the cold-start period and engine idling/air-

conditioner tests, which were similar to the gaseous emissions curves.   

As shown in Figure 4.1, typical PM2.5 emission rates for the engine idling at 750 

rpm were approximately 4.9 g/hr at the AC-Off setting and approximately 5.4 g/hr for the 

AC-On setting.  Typical PM2.5 emission rates for the engine idling at 1000 rpm were 

noticeably higher for this truck at approximately 8.3 g/hr with the AC-Off and 

approximately 7.6 g/hr with the AC-On.  Also note again, that during the AC-On idling 

test, the PM emission rate did not completely achieve steady-state.   

At present, there is no solid data to explain the cause of the variations in the pattern 

between the gaseous and PM emission curves.  It is possible however that for PM 

emissions, the engine performs more and more poorly during extended idling.  Some 

evidence seems to suggest that incompletely burned fuel in the form of PM can 

accumulate in the exhaust system by a phenomenon called wet-stacking.39  When the 

engine is operated at low idling speed the exhaust temperature is cooler, which is 

conducive for the condensation of liquid droplets.  Soot particles mix with the liquid 

droplets and collect on the walls of the exhaust system, which is called wet-stacking.  

Eventually the material on the wall dehydrates, forming tiny loose projections that can 

dislodge and reenter the exhaust gas stream.  Nevertheless, it is unlikely that the 
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agglomerated materials would be re-entrained as PM2.5, rather more likely, it would be 

re-entrained as larger particulate matter.   

It is also speculated that the prior road history of the truck and wet-stacking can 

influence the amount of PM that is emitted during an engine cold-start episode and/or 

during extended idling periods.  For example, if a truck has been driven on the road at 

high speed, and after that, it is immediately parked and the engine shut down, then 

condensate would not have had time to accumulate in the exhaust system.  Under this 

scenario when the engine is started again, the ensuing PM emissions in the exhaust gas 

only could have derived from the combustion inefficiency of the engine during the cold-

start period.  However, if the truck was driven at lower speeds or if the truck was idled 

for a period of time before the engine was shutdown, and then if wet-stacking occurred, a 

cold-start condition was created that has the potential for the re-entrainment of PM.   

Another phenomenon that is related to particle deposition on the exhaust walls or 

the sample lining system is thermophoresis, which is the movement of a particle derived 

from forces arising from a temperature gradient.  Air molecules at a higher temperature 

impart more kinetic energy in collisions with a particle than those at a lower temperature, 

inducing the particle to move in the direction of the cooler surface.  Thus, soot particles 

can form a layer on the cool surfaces of the vehicle exhaust and sampling system and 

subsequently become re-entrained under changing exhaust temperature conditions.33  

Thermophoretic deposition losses can be minimized by avoiding temperature gradients in 

sample lines through heating or insulation.   
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Figure 4.2 is a graph of the CO, NOx and PM2.5 emission rates for the 1995 

International truck (ID#12) during a segment of the testing period to illustrate the 

complex nature of the emission curves.  The details shown in the curves illustrate the 

high and low cyclic nature of emissions that occurred during extended idling for the AC-

On and AC-Off settings.  The overall effect of running the air-condition system is to 

increase emissions.  The action of the air-conditioning compressor also creates cyclic 

power demands on the engine.  Operational and environmental factors inside and outside 

the cab influence the cyclic nature of the air-conditioning system.  The pattern of large 

spikes appearing in these curves is primarily the result of cyclic power demands that are 

made on the engine from the radiator coolant fan.  It should be noted that the radiator fan 

of a heavy-duty diesel engine does not normally operate continuously, like the radiator 

fan on a gasoline engine.  The radiator fan clutch of a heavy-duty diesel engine is 

dependent instead on the coolant temperature of the engine.  It is electronically engaged 

when the set-point temperature of the coolant is reached; it is disengaged when the 

coolant temperature drops below the set-point temperature.  Also, when the set-point 

pressure of the air-conditioner compressor is exceeded, the radiator fan will engage to 

lower the temperature and thus the pressure of the Freon in the air-conditioning system.   

Graphs of the real-time emission behavior for each test truck are included in 

Appendix E.  Exhaust gas flow rate (FlowRate), temperature (Temp) of the exhaust gas in 

the primary sampling chamber, percent of O2 and percent of CO2 in the exhaust gas are 

also included in these graphs.  In general, exhaust gas flow rate increased with an 

increase in the engine idling speed and/or with the air-conditioner load applied to the 

engine.  The percent of O2 in the exhaust gas indicates the relative proportion of excess 



 48

air, which was occurring during combustion of the fuel.  The percent of CO2 in the 

exhaust gas is proportional to the fuel-consumption rate.   

4.2 Data Analysis 

Emission rates and parameters that characterize sampling and exhaust gas factors 

during the cold-starting and extended idling conditions were determined for each truck 

tested in the study from the responses shown in Appendix E.  Average cold-start and 

extended-idling emission factors were calculated for CO, NOx and PM2.5 emissions, for 

the ratio of NO2/NOx emissions and for fuel consumption rates.  The average emission 

rate activities from all truck data are summarized in Table 4.1.  The overall extended-

idling averages, which are the average values from AC-Off and AC-On for the low- and 

high-rpm idling conditions (i.e., the average value of columns 6, 7, 8 and 9), are listed in 

column 10.  The cold-start emission rates are listed in columns 2, 3, 4 and 5.  Sample 

calculations are shown in Appendix C.  The specific emission rates and other parameters 

for each truck are also tabulated in Appendix D.  Additionally, the average values for the 

percent of O2 and CO2 in the exhaust gas, the combustion equivalence ratio, the sampling 

dilution gas ratio, the ambient air and exhaust gas temperatures, and the molecular weight 

of the exhaust gas are shown in Appendix D.   

The cold-start emission rates that were determined for the 5-minute, 10-minute and 

15-minute periods of the cold-starting episode, as shown in Table 4.1, were higher than 

the overall extended-idling average emission rates.  For example, the CS-5 emission rates 

were higher than the overall extended idling average emission rates by factors of 2.8 for 

CO, 1.5 for NOx and 1.7 for PM2.5.  Cold-start emission rates decreased as the cold-
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starting period lengthened.  In general for the individual extended-idling conditions, the 

emission rates were greater for the AC-On settings at low and at high idling, when 

compared to the AC-Off settings, with the high-rpm idling emission rates being greater 

than the low-rpm idling emission rates, except for PM2.5.  At high-rpm idling, the PM2.5 

extended-idling emission rate was higher for the AC-Off condition in comparison to the 

AC-On condition.  Average NOx emissions at low-idling speeds were 120 g/h at AC-Off 

and 159 g/hr at AC-On.  At high-idling speed, average NOx emissions were 164 g/hr at 

AC-Off and 223 g/hr at AC-On.  The overall extended-idling average emission rate for 

NOx was 167 g/hr.   

The ratio of NO2 to NOx emissions remained fairly constant throughout cold-start 

and long-term duration idling conditions between values of 0.16 and 0.19.  This indicated 

that the effect of idling speed and the in-cab accessory load (air-conditioner) settings had 

little noticeable effect on the ratio of NO and NO2 in the exhaust gas.  Fuel consumption 

rates were approximately 2.0 gal/hr during the first 15 minutes of the cold-starting period, 

and then it ranged between 1.2 and 1.8 gal/hr for the idling conditions of engine speed 

and modes of operation for the air-conditioner.  The overall extended-idling average for 

the diesel fuel rate was 1.5 gal/hr.  This value was about 50% higher than the literature 

review average.  Remember however, that the fuel rate in this study was calculated using 

the percent CO2 as reported from the ECOM analyzer, which was also a calculated value 

based on the measured percent O2 (i.e., excess air) in the exhaust gas.   

Raw data that were used to generate the summary in Table 4.1 were plotted for the 

three pollutants and the diesel fuel rate as a function of the engine idling speed and the in-
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use status of the air-conditioning system.  These plots are shown in Figures 4.3 to 4.6 for 

CO, NOx, PM2.5 and for the fuel consumption rate.  Best-fit lines were drawn through the 

data points for the AC-Off and AC-On modes to illustrate the effect on emissions 

between the two air-conditioner settings and the also the engine rpm effect on emissions.  

Inspections of these graphs reveal that the highest engine idling speed (i.e., 1000 rpm) 

and the AC-On setting produced the higher emissions.  On the other hand, wide 

variability also existed in the data, especially at the 1000-rpm engine idling speeds.   

Analysis of variance (ANOVA) was performed on the two factors (i.e., engine 

idling rpm speeds and air-conditioner settings).  For the effect of engine idling speed on 

emissions and fuel consumption, the significance levels (or p-values) were the strongest:  

CO (p < 0.0001), NOx (p < 0.0001), PM2.5 (p = 0.008) and fuel rate (p < 0.0001).  

Generally, p-values less than 0.05 are considered statistically significant, meaning that 

there is only a 5% probability that an effect this large could occur due to chance alone.  

For the effect of the air-conditioner at “off” and “on” modes of operation, only NOx was 

significant (p = 0.02).  No acceptable significant effects were found for CO (p = 0.15), 

PM2.5 (p = 0.77) and fuel rate (p = 0.25).  Additionally, no significant interaction effects 

were found between engine idling speeds and air-conditioner settings.  Interaction effects 

would have implied that the trend in emissions between air-conditioner factors (i.e., “off” 

and “on” settings) were not in the same direction for engine idling speed factors (i.e., rpm 

levels).  Referring again to Figures 4.3 through 4.6, if the best-fit lines for AC-Off and 

AC-On in any graph had crisscrossed, then an interaction effect would have occurred for 

that element displayed in the graph.  Fortunately there were no interactions between 

factors because some interaction effects are difficult to explain.   
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Emission rates were normalized by the fuel rate.  Table 4.2 shows average mass 

emissions per unit of diesel fuel consumption for the cold-start and extended-idling 

conditions.  In general, mass emissions per fuel consumed decreased during the cold-

starting period as the engine warmed, and mass emissions per fuel consumed increased 

when the engine idling speed increased or when the air-conditioner was turned on.  It is 

believed that the overall higher fuel consumption rates observed during the cold-starting 

period were caused because the engine has not reached its peak operating temperature.  

Proper engine operation temperatures assure more efficient fuel combustion.  Some 

engine designs also allow for excess fuel to be injected into the engine during the cold-

starting period to increase the probability of combustion starting (and then being 

sustained) during the engine warm-up period.  This extra fuel is intended to help seal the 

piston rings and valves for auto-ignition during starting.16   

Graphs of the average emission factors for the three cold-start periods (i.e., CS-5, 

CS-10 and CS-15) and the four extended-idling periods (i.e., Low-rpm/AC-Off, Low-

rpm/AC-On, High-rpm/AC-Off and High-rpm/AC-On) versus the average fuel 

consumption rates are shown in Figure 4.7 for each pollutant.  Best-fit lines that 

constrained the intercept to zero were separately applied to the cold-start and extended 

idling data to demonstrate the linearity of the data and differentiate the two groups (i.e., 

cold-starting and extended-idling).  Equations that define the best-fit lines, R-square 

values and the p-values for the slope coefficient are also included in the graphs.  Units for 

slope of the linear equation are grams emissions per gallon of diesel fuel consumed.  

Based on the p-values, all slopes for were significantly different from zero at better than 

the 0.05 significance level.  As can be seen within individual plots, only the slopes for the 
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cold-start and extended-idle conditions for CO versus fuel rate were fairly different.  On 

average for the cold-starting period, approximately 82 grams of CO were emitted per 

gallon of diesel fuel consumed, and on average for the extended-idling period 

approximately, 44 grams of CO were emitted per gallon of diesel fuel consumed.  Thus, 

about 1.9 times more CO was emitted per volume of fuel consumed during the cold-

starting period than was emitted during the extended-idling period.  For NOx and PM2.5, 

mass emissions were essentially equivalent per unit volume of fuel consumed during both 

cold-start and extended-idling truck sampling periods.   

Figures 4.8 through 4.10 are graphs of emission rates as a function of the truck 

model year and odometer reading for CO, NOx and PM2.5, respectively.  Each figure 

contains four plots: the top row of two plots is for model years; the bottom row of plots is 

for odometer reading; the left column of two plots is for AC-Off setting; the right column 

is for AC-On setting.  Linear equations that define the best-fit lines, R-square values and 

the p-values for the slope coefficient are included in the graphs.  Inspections of the p-

values show that only the slopes from the best-fit equations for truck model year and 

odometer reading for the CO emission rates were statistically significant at less than 0.05 

level.  However, notice that the value of the slope parameter estimates for odometer 

reading is approximately 0.0001 for both AC-Off and AC-On settings.  Thus, these slope 

values, even though statistically significant, can essentially be considered zero.  For truck 

model year, there was a tendency for the older trucks to be higher CO emitters.  For NOx 

and PM2.5 emissions there was no tendency for the high mileage trucks and/or the older 

trucks to also be the high emitting trucks, as would typically be expected.   
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A comparison between the extended-idling emission factors that were determined 

in the field by the present study, the EPA suggested emission factors for SIP using TSE 

and the average values that were calculated from a review of current literature 

(McCormick, et.al.21, Brodrick, et.al.22, Lim23 and Storey, et.al.24) are shown in Table 4.3.  

The experimental values shown in the first column of this table are the average values 

from the low- and high-rpm idling conditions at both AC-Off and AC-On settings that 

were listed in Table 4.1 (i.e., average value of columns 6, 7, 8 and 9).  In summary, the 

NOx emission rates observed in this study and summarized in Table 4.3 were greater than 

those reported for EPA-SIP purposes and from the literature review by 23.5% and 17.4%, 

respectively.  The PM2.5 emission rates observed in this study were less than those 

reported for EPA-SIP purposes by 3.8% and were greater than those reported in the 

literature by 6.3%, respectively.  The average CO emission rates observed in this study 

were less than those reported as the average literature review value by 14.1%.  Emission 

rates for CO are not published for EPA-SIP purposes.   

There is little documented knowledge as to the extent that truckers increase engine 

idling speed.  A few manufacturers do not recommend that the engine idle below 600 rpm 

for longer than 5-minutes because of decreased temperature and lack of sufficient 

lubrication in the engine.  Some drivers practice increasing the engine idling speed to 

keep the batteries charged while using in-cab accessories, because they are in the habit of 

doing it, or they believe that it keeps the engine in good-working order (i.e., high idling is 

something that prevents future maintenance).  Generally, the factory settings for most 

heavy-duty diesel engines are somewhere between 600 and 800 rpm.  It was for that 

reason; the same low-idling speed range was selected for the present study.  The high-
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idling speed selected for this study was 1000 rpm.  This choice was not entirely arbitrary 

because 1000 rpm appeared in the literature for the high-idling limit.  Some researchers, 

however, actually used between 1100 and 1200 rpm for their high-idling tests.  Currently 

based on present knowledge, EPA does not provide guidance or characterized low or high 

engine idling speeds for heavy-duty diesel truck.   

To gain additional insight, the average extended-idling emission factors from Table 

4.1 (i.e., Low-rpm/AC-Off, Low-rpm/AC-On, High-rpm/AC-Off and High-rpm/AC-On) 

were compared separately to the EPA-SIP values for NOx and PM2.5.  These comparisons 

are shown in Table 4.4.  Notice that the low-idle rpm comparisons at AC-Off and AC-On 

conditions (i.e., Comparisons 1 and 2, respectively) were primarily less than the EPA-SIP 

values for both NOx and PM2.5.  The high-idle rpm comparisons (i.e., Comparisons 3 and 

4) conversely were greater than the EPA-SIP values for both NOx and PM2.5.  Based on 

these evaluations, it is believed more prudent to use the overall extended idling averages 

for purposes of reporting emission factors.   

4.3 Particulate Matter Gravimetric Analysis 

Total PM is the sum of PM2.5 and PM > 2.5  µm; both were collected on filters 

during real-time emission testing with the DataRAM analyzer.  The ratio of PM2.5 to total 

PM ranged between 0.40 and 0.98.  It was determine that on average, about 72.9% of the 

PM in diesel exhaust was less than 2.5  µm.  The standard deviation was ±14.5%, and  

the percent RSD was 19.9%.  The sample size (n) was 23.  The gravimetric data for PM 

are included in Appendix F.   
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Examples of PM that were collected on filters by the DataRAM for gravimetric 

analysis are shown in Figures 4.11 and 4.12.  The four photographs in the figures are 

from different truck/testing episodes.  Note that each figure contains two photographs for 

comparison.  Each photograph contains two filters from the same truck-testing episode.  

The larger filter located on the left side of the photograph, was the one that was used to 

collect an integrated sample of PM2.5.  The smaller filter was used in the inline jet-

impactor to collect PM greater than 2.5 µm.  Notice that the appearances of the PM on 

the filters with respect to color and tint (or shade) are not the same for the four sets of 

filters.  In Figure 4.11, the color of the PM on the 10A filters is dark brown; the PM on 

the 10B filter samples is light-brown (or beige).  In Figure 4.12, the PM is black on the 

11A filter samples, and the PM is grayish on the 11B samples.  It should be noted that 

these four sets of filters were selected to be included in the report because they 

represented the full range of appearances of color and shade that were observed of PM 

throughout truck testing.   

Only 17 trucks were tested for PM emissions.  For six of the trucks, the PM 

collected on the filters was either brown or beige in color; for the remaining 11 trucks, 

the PM was either black or gray in appearance.  It is possible that the difference between 

the black and gray shaded PM (or between the brown and beige colored PM) simply 

indicated that more mass was collected, thus, the black or brown appearance relative to 

the gray or beige appearance.  However, the cause for the more unambiguous difference 

between brown and black PM is not known.  It was unlikely that the age of trucks or the 

mileage contributed to this PM color difference because for two highest mileage trucks 

(both at > 800,000 miles), one had gray PM, and the other had light brown PM.  Possibly, 
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different combinations of unburned fuel to soot to lubricating oil caused the difference 

between brown and black PM.  Again, it is also quite possible that “clean” oil (new) 

versus “dirty” oil (old) makes a difference in the appearance of PM emitted, but since the 

ages of the motor oil for the trucks were not known, this hypothesis cannot be verified.   

To further investigate this matter, energy-dispersive spectrometry (EDS) was 

performed on the filter samples shown in Figures 4.11 and 4.12 to quantify the PM 

material.  Plots of the generated spectra are included in Appendix G.  In each plot, two 

curves are shown:  one curve is the EDS for a blank (clean) filter, and the other curve is 

the spectra of the PM sample.  Preliminary results of this analysis have established that 

sulfur was present in the PM, as demonstrated by the sulfur peak for the samples.   

It is not believed that sulfur has any direct influence upon PM color.  Nonetheless, 

it should be mentioned that during truck testing, SO2 was never detected in the exhaust 

stream of any truck.  Yet, the ECOM analyzer was configured to measure SO2 in the 

exhaust.  Resolution for the monitor was 1-ppm SO2, and periodic calibration had 

verified that the monitor was functioning properly.  Currently, the sulfur levels in on-road 

diesel fuels are around 0.05% (i.e., 500-ppm) by weight.  Research as been shown that 

fuel sulfur content has a significant affect on the concentration and distribution of sulfur 

species in diesel PM, and the distributions of various sulfur species are closely related 

with engine load.40,41  Private conservation with the authors of this research have also 

confirmed the color difference on the filter media from their experiments with diesel 

engines.  However, these researchers did not test different engines.  Maybe it is also 
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possible that the engine design (or such things as the air-fuel ratio) can affect the 

completeness of combustion, and thus, the color of PM.   

4.4 Data Quality 

All calibration data for the ECOM and DataRAM analyzers are included in 

Appendix F.  Overall, the ECOM analyzer, which measured gaseous emission, operated 

trouble-free throughout the study and demonstrated 100% data availability.  The EPA 

protocol calibration gases used to challenge the ECOM analyzer were CO = 100.1 ppm, 

NO = 493 ppm, NOx = 90.6 ppm and SO2 = 99.5 ppm.  Average response of the analyzer 

to the calibration gases during truck testing were CO = 100.1 ppm, NO = 498.4 ppm, 

NOx = 90.4 ppm and SO2 = 98.1 ppm.  Thus, it is believed that the emission 

measurements conducted with the portable ECOM gas analyzer, typically used for 

emissions inspection and maintenance programs, were reasonably accurate.  The response 

for the instrument was very stable over the 5-month testing period.  Since the gaseous 

emissions were measured in the primary sampling chamber, which did not require 

dilution with ambient air, the chance for experimental error was also reduced.  In 

addition, gaseous emissions (once formed during engine combustion) remained relatively 

stable throughout testing because the temperature in the exhaust stream was not high 

enough to appreciably cause additional free radical reactions involving species forming 

CO and NOx.   

The DataRAM analyzer, which measured PM emissions, had to be returned to the 

manufacturer for repairs during the early stages of testing.  However, after it was repaired 

and returned, the monitor sustained normal operation and demonstrated 100% data 



 58

availability for the remainder of trucks tested in the study.  The advantage of using the 

DataRAM was that of the light-scattering technology, making the response of the 

analyzer almost instantaneous.  The drawback of the light scattering technology is that 

the response from the instrument is very dependent on PM characteristics, such as 

composition, density, size distribution and index of refraction.  If any of these 

characteristics of PM change, so does the response of the analyzer.  The DataRAM was 

also an ambient monitor that had been adapted to measure diesel particulate from the high 

temperature raw exhaust stream.  This required a dilution-sampling chamber to mix 

ambient air with exhaust gas to reduce the temperature of the sample to within the 

DataRAM’s temperature limits.   

The calibration factors obtained from the gravimetric field calibration of the 

DataRAM response to diesel PM were not numerically equivalent across all trucks tested.  

The range of calibration factors were 0.152 to average calibration factor was 2.539 ± 

1.804; %RSD = 71%.  That the calibration factors were highly variable was not 

anticipated.  It is impossible to precisely state the cause of this less than satisfactory 

comparison between calibration factors.  The most likely explanation, however is due to 

the variability of the PM and the dependency of the monitor on particle characteristics.  

This problem was overcome by calibrating the optical response of the instrument with the 

gravimetric response of the particles in the environment of interest (i.e., for each truck 

tested).   
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Figure 4.13 is a plot of the actual volumetric flow rate as recorded by the Kurz 

flow meter and the calculated flow rate from data collected during truck testing.  The 

calculated flow rate (QA) was approximated using the following equation:   

*
S
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V N V

Q
=η  (4.1) 

where, ηV is the volumetric efficiency (i.e., a measure of the effectiveness of the air 

induction and exhaust gas process); QA is the volumetric flow rate of air with ambient 

density; VS is the engine swept volume; N* is (RPM/2) because two strokes occur per 

power cycle for a four stroke diesel engine.16  Assuming volumetric efficiency is 100% 

(i.e., ηV = 1.0), VS is the engine displacement expressed in liters (L), RPM is the engine 

idling speed during the test and expressing QA in cubic feet per minute (CFM), the 

equation can be re-written as:   
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Flow rates for the air-conditioner On and Off modes of operation were plotted 

separately in Figure 4.13.  Best-fit equations that constrained the intercept to zero, R-

square and p-values are shown for both modes of operation.  A diagonal 45-degree line is 

also shown in the figure to represent the 1-to-1 relationship between measured and 

calculated exhaust flow rate.  As show in the figure, the measured exhaust flow rate data 

fell slightly below the calculated (or theoretical) flow rate.  However, overall there was 

very good correspondence between the measured and calculated exhaust flow rates 

during the test conditions.   
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5 TRUCK STOP ELECTRIFICATION 

5.1 Quantification of Commercial Parking 

Several state departments of transportation in the nation are experiencing heavy 

demand for commercial vehicle parking at public rest areas along the interstate highway 

system.  However, these rest areas were only intended for short-term safety breaks.  

Normally, it is the commercial truck-travel centers, which sell diesel fuel to truck drivers 

along the interstate highway system, that also provide facilities for drivers to use for 

longer-term rest.  To assist the state transportation agencies in making decisions, the 

Transportation Research Board (TRB) conducted a survey to gather information on truck 

parking capacity and demand at public and commercial rest areas.  The primary data 

source for the TRB report were responses to a detailed questionnaire distributed to 

highway maintenance engineers in each state.  During 2003, the TRB estimates of 

commercial and public long-haul freight truck/trailer parking spaces for the contiguous 

US were approximately 284,675 and 30,860, respectively.42   

5.2 Annual Idling Emission Estimates for Heavy-Duty Diesel Vehicles 

Stakeholders for TSE typically use the entire truck fleet or a proportion of the 

truck fleet to estimate the emission reduction benefits that can be realized from the use of 

the technology.  This practice was followed here just to place the relative magnitude of 

emissions from extended-idling HDDV8 into perspective.  For evaluation purposes, the 

emissions from idling emissions will be compared to a typical coal fired power plant.  

The Bull Run coal fired plant, an 870 me gawatt plant located in the Tennessee Valley 

Authority (TVA) system near Oak Ridge Tennessee was chosen as a typical power plant.   
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Truck counting experiments conducted locally at the Petro Truck Travel Center 

located on Watt Road in Knoxville, Tennessee were used to establish the average daily 

fraction of idling trucks at approximately 0.53.43  Average daily idling fraction is defined 

as the fraction of available parking spaces occupied all day by idling trucks.  Using only 

half of the daily average fraction of idling trucks (i.e., 0.5 x 0.53 = 0.265) as a 

conservative estimate, total spaces for the contiguous US and emission factors from the 

present study, the annual emissions from HDDV8 are approximately 135,000 tons/year 

for NOx and 2,900 tons/year for PM2.5.  (Sample calculations are included in the 

Appendix C2.1.)  Annual emissions reported from the Bull Run Creek coal-fired plant 

during 1999 were 13,343 tons/year for NOx and 2,072 tons/year for PM2.5.
44  It is 

apparent that emissions generated annually from extended-idling in the contiguous US 

are about 10 times the NOx emission from this 870 megawatt power plant.  For these two 

sources, the PM2.5 annual emissions were almost equivalent for the scenario selected for 

demonstration purposes.  It should also be pointed out that the recent addition of NOx 

control technologies at this power plant and similar plants throughout the southeastern 

U.S. have the potential to reduce the NOx emissions by 75-80%.  Therefore, the 

emissions from idling trucks will become an increasingly more important and significant 

source on a relative basis in the future.   

5.3 Quantification for Truck Stop Electrification 

Large emission reduction benefits are associated with TSE technology.  However, 

reduction benefits from TSE will be slightly smaller when the cold-start emissions and 

the emissions that are associated with the consumption of electricity used in the TSE have 
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been subtracted from the initial emission benefits.  To quantify the actual reduction in 

emissions that are associated with TSE on a per truck basis, the following relationship 

was used:   

( )iiii EUER  CSER EIER ERRA +−=  (5.1) 

where, for any pollutant, i,  

AERR = Actual emission reduction rate (g/hr),  

EIER = Extended-idling emission rate (g/hr),  

CSER = Cold-starting emission rate (g/hr) and  

EUER = Electricity-use emission rate, (g/hr).   

The EIER term is the extended-idling emission factor for the pollutants (i.e., CO, 

NOx or PM2.5).  These emission factors have been determined by experimentation and/or 

listed by federal regulation (e.g., EPA-SIP).  These emission factors are ordinarily used to 

determine the emission reduction benefits that are associated with TSE technology.   

The CSER term describes the cold-start emission rate assuming that it has been 

spread over the entire period of idling, tA, and is defined by the following equation:   
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where, for any pollutant, i,  

CSEF = Cold-start emission factor (g/hr),  

      tA = Extended-idling rest period or TSE time (hr) and  
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      tB = Idling time during cold-start period, (min).  

The CSEF term is the cold-start emission factor for the pollutants (i.e., CO, NOx 

or PM2.5) that are emitted during the actual time of cold-start, tB.  These emission factors 

were determined in the current study.  Cold-start emissions occur for only a short time 

period (tB), between moments that the engine is started and until the driver places the 

engine in gear causing truck movement or until the engine has warmed, whichever comes 

first.  For illustration purpose here, the cold-start idling time period (tB) is 5 minutes in 

duration, and the driver rest period (tA) is 8 hours.   

Approximating the electricity-use emission rate, the following equation was used:   
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 ⋅=  (5.3) 

where, for any pollutant, i,  

ECES = Electric consumption emission standard (lb/106 Btu),  

   WP = Power utilization by HVAC (watt),  

      L = Load applied to the HVAC (percent) and  

      e = Power-plant thermal efficiency (expressed as a fraction).   

The ECES term is expressed on a mass of pollutant emitted per heat-input basis.  

For NOx and PM2.5, the ECES values are the NSPS for the Fossil-fuel Electric Utility 

Steam Generating Facilities (i.e., 0.6 lb NOx/106 Btu and 0.03 lb PM2.5/106 Btu). 20  One 

should note that the NOx standard is based on the more prudent heat-input value from 

anthracite or bituminous coal.  Since there is no NSPS for CO, the emission factor for CO 
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was taken from AP-42.  Using the configuration from external combustion sources for 

pulverized (bituminous) coal, dry bottom, tangentially fired-furnaces, the AP-42 emission 

factor for CO is 0.5 lb/ton.45  Based on an assumed coal Btu value of 26x106 Btu/ton coal, 

the ECES for CO is approximately 0.02 lb CO/106 Btu.   

The power demand (WP) of the HVAC unit depends on environmental factors, 

such as solar load, ambient temperature and cloudiness, etc.  When the HVAC unit is 

initially engaged, the duty cycle will be continuous, until the inside cab temperature 

attains the thermostat set-point temperature, then the HVAC system starts cycling and the 

load is reduced.  Thermal efficiency (e) is usually expressed as a percentage.  It is defined 

as the energy sought divided by the energy cost, that is, e = EnergyOUT / EnergyIN; thus, 

EnergyIN = EnergyOUT / e.  The typical terminal efficiency for a coal-fired power plant is 

approximately 35%.   

The HVAC power consumption for a single TSE unit during a 1-hr period was 

estimated to be 2.2 kilowatt-hours or 2,200 watts.  This figure is somewhat high, 

however, it was based on actual field tests that were conducted during a typical summer 

day at the fully loaded condition (i.e., L = 100%) at the IdleAire Corp. Research and 

Development TSE facility located at Interstate-40/Broadway (Knoxville, Tennessee).  It 

must be noted that IdleAire has been attempting to reduce the size of the HVAC systems 

that are currently being used for TSE.  

The emission rates for extended-idling, cold-start, electricity-use and the actual 

reductions from TSE are shown in Table 5.1 for CO, NOx and PM2.5.  The table lists the 

results for the 5-, 10- and 15-minute cold-starting periods.  The actual emission 
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reductions that can be expected with TSE are shown in column 6 of the table.  This 

column was obtained by subtracting the cold-start emission rate (column 4) and the 

electricity-use emission rate (column 5) from the extended-idling emission rate (column 

2).  (Sample calculations are included in Appendix C2.2, 2.3 and 2.4 for CO, NOx and 

PM2.5, respectively)   

Comparisons of the emission rates in the table show that the actual or corrected 

emission savings (AERR) are slightly less than if one used the extended-idling emission 

rates (EIER) to estimate total TSE benefits.  The corrected or actual emission reductions 

for CO, NOx and PM2.5 using a cold-start period for 5-minutes are approximately 3.2%, 

5% and 10% less than the extended-idling emission rate, respectively.   

When the cold-start idling period is extended to 10- and 15-minutes, the percent 

difference between EIER and AERR also increased because the CSEF term becomes 

larger.  Supposing the driver idles the engine for 15-minutes, remember that the cold-start 

emission rate decreases progressively over time however these are still running emissions 

that must be subtracted from the TSE emissions benefit.  For example, the corrected or 

actual emission reductions for CO, NOx and PM2.5 using a cold-start period for 15-

minutes are now approximately 7.3%, 7.7% and 11.9% less than the extended-idling 

emission rate, respectively.  The point being made here is that the TSE benefit 

progressively decreases the longer the driver allows the engine to idle before leaving the 

rest area to continue on the freight-hauling trip.   
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6 CONCLUSIONS 

This study measured cold-start and extended-idling emissions of CO, NOx and 

PM2.5 from 24 heavy-duty diesel trucks (HDDV8B) in the field under ambient 

environmental conditions.  Gaseous pollutants were measured directly in the exhaust 

stream.  Ambient air was used to dilute the exhaust gas at the ratio of 3-parts ambient air 

to 1-part exhaust gas, and PM was measured in the diluted gas mixture.   Typical average 

cold-start and extended-idling emission factors were developed for each pollutant.  

Historic emission reduction estimates attributable to TSE have generally only included 

those idling emission savings that are associated with the driver shutting-off the engine 

and in using TSE during required rest periods.  Hence, the equivalent emissions that are 

associated with the production of electricity for the TSE technology were also 

determined.  To provide for a more realistic comparison between extended-idling and 

TSE, both the cold-start emissions and the increased emissions associated with the 

consumption of electricity were subtracted from the usual emission savings associated 

with TSE technology.   

6.1 Impact of Cold-Start 

The cold-start emission factors were higher than the extended-idling emission 

factors for all three pollutants.  Immediately after ignition during the cold-start period, 

emissions increased to maximum emission rate.  Then over time, emissions progressively 

decreased as the engine temperature increased and the combustion process stabilized 

within the engine.  Eventually, emissions reached steady-state, defined here as the period 

where the emission rate ceases to change over time.  The time period for steady-state to 
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be achieved varied among trucks and pollutants.  Usually, the range of the steady-state 

time period was between 1 and 3 hours, and it varied slightly with pollutants.  On 

occasion, the CO emissions reached steady-state before NOx emissions reached steady-

state.  For some of the test trucks, the PM emissions did not entirely reach steady-state.   

A cold-start PM emission spike also did not occur immediately after ignition for 

some test trucks.  At present, there is no obvious explanation for the cause of the 

variations in the spike pattern between the gaseous and PM emission curves.  However, it 

was speculated that the prior road history of the truck and wet-stacking interacted to 

influence the amount of PM that was emitted during an engine cold-start episode.  When 

the engine is operated at low idling speed the exhaust temperature is cooler, which is 

favorable for the condensation of liquid droplets.  Incompletely burned fuel in the form of 

PM mixes with droplets and accumulates in the exhaust system by a phenomenon called 

wet-stacking.  Eventually the material on the wall dehydrates, forming tiny loose 

projections that can dislodge and reenter the exhaust gas stream.  Material may also 

reenter as liquid droplets.   

The cold-start CO emission rate for the three averaging periods selected in this 

study (i.e., 5-, 10- and 15-minutes) was approximately 2.5 times higher than the average 

extended-idling emission rate for CO.  High CO emissions are likely the key indicator for 

incomplete combustion during the cold-start episode.  The cold-start emission rates for 

NOx and PM2.5 were approximately 1.4 times higher than the average extended-idling 

emission rates.  The cold-start fuel rate was approximately 1.3 times higher than the 

average extended-idling fuel rate.  When comparisons were made between the cold-start 
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and extended-idling periods, using mass emissions per volume of fuel consumed, it was 

found that more emissions are produced per unit of fuel used during the cold-start period.  

It was also established that the magnitude of this effect was greatest for CO; the effect 

was similar in magnitude for NOx and PM2.5.   

6.2 Extended-Idling Emission Measurements 

Overall, the extended-idling emission factors of the present study compared 

favorably to both the values suggested by EPA for use in State Implementation Plans 

(SIP) and the average values reported in the literature.  The NOx extended-idling 

emission factor was higher for both the EPA suggested value and the average value 

reported in the literature.  The PM2.5 emission factor was smaller than the EPA suggested 

value, but it was greater than the literature review average.  Analysis also indicated a 

strong dependence of emissions on engine idling speed.  A somewhat moderate 

dependence of emissions on the use of the in-cab air-conditioner was also demonstrated, 

but it was statistically significant only for NOx emissions.  The largest variability of 

emissions measurements among trucks occurred at the highest engine idling speed.  No 

effect was discerned between the relative magnitude of emissions and model year or 

odometer reading of the trucks tested in this study for NOx and PM2.5 emissions.  

However, a small deterioration effect was shown to exist for CO emissions based on the 

model year of the truck.   

The ratio of NO2 to NOx emissions did not vary appreciable throughout cold-start 

and extended-idling testing conditions.  The average ratio was approximately 0.18.  This 

indicated that the effect of idling speed and in-cab accessory load had little effect on the 
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ratio of NO and NO2 in the exhaust gas.  The average diesel fuel consumption rate was 

1.5 gal/hr for extended-idling (i.e., the overall average between 600-800 and 1000 rpm) 

and 2.0 gal/hr for the first 5-minutes of the cold-starting period.  The extended-idling fuel 

rate was about 50% higher than the usually reported literature review value for the 

extended-idling fuel rate, which is 1.0 gal/hr.   

On average about 73% of the PM in the diesel exhaust was less than 2.5  µm.  Of 

the 17 trucks that were tested for particulate emissions, the PM collected on filter media 

for gravimetric analysis was dark brown or beige in color for 35% of the trucks.  The PM 

was black or gray in appearance for the remaining 65% of the trucks.  The cause of this 

difference is unknown, but it is speculated that different combinations of unburned fuel to 

soot to lubricating oil caused the difference.  It is unlikely that the mileage or age of the 

truck intrinsically contributed to differences in PM color because two trucks with the 

highest mileage exhibited different PM color variation.  The concentration of SO2 was 

also measured in the exhaust stream, as a cursory measurement.  However, SO2 was not 

detected in the exhaust gas from any truck throughout testing.  Nevertheless, preliminary 

analysis of the PM on the gravimetric filters showed that the PM contained sulfur.   

6.3 Truck Stop Electrification Idling Emissions Reduction Benefit 

Real or actual emission reductions that can be expected with the TSE technology 

are needed to support future administrative decisions from standpoints of environmental 

planning, human health and economic cost.  To aid in this end, cold-start emissions and 

emissions that are associated with the production of electricity, which is necessary to 

provide TSE in lieu of engine idling, were used to correct or adjust the extended-idling 



 70

emission factors.  In general, it was found that the cold-start emissions and the emissions 

from electricity were moderately small in comparison with the extended-idling emissions.  

However if after using TSE, the driver lengthens the idling time between starting the 

engine and moving the vehicle, then the cold-start emissions are going to be larger and 

the overall benefit from TSE would be further diminished in magnitude.  In general, after 

the extended-idling emission factors were adjusted to account for the cold-start emissions 

and the electricity-use emissions, the benefit in applying the TSE technology was only 

reduced by between 5 and 10% for an 8-hr averaging period, compared to not including 

these factors in the analysis.   
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7 RECOMMENDATIONS 

7.1 Blow-by Emissions 

In all combustion engines, there are several small volumes, usually called 

crevices, where gas flows during engine operation and as the engine cylinder pressure 

changes.  Volumes between the piston, piston rings and cylinder walls are examples of 

large crevices.  When exhaust gas flow out of these regions into the crankcase, it is called 

blow-by.13  For the passenger vehicles powered by a gasoline engine, combustion gases 

that leak into the crankcase are metered through a positive crankcase ventilation (PCV) 

valve into the intake manifold of the engine where they are burned in the combustion 

chamber.10   

All diesel engines tested in this study vented the crankcase blow-by directly to the 

atmosphere.  The open ventilation system for a heavy-duty diesel truck is shown in 

Figure 7.1.  As can be seen in the photograph, blow-by gases are vented toward the 

ground under the engine compartment.  It is possible that crankcase gases can collect 

beneath the truck and migrate into the cab.  Emissions from blow-by were a source of 

idling emissions not measured in this study.  Crankcase emissions from diesel engines 

have traditionally been discharged to the atmosphere because there is technological 

difficulty in re-introducing the emissions into the intake of turbocharged engines.46  This 

is an area which needs further study.  Relative to TSE, and this study, these emissions 

provide an even greater reduction as a result of TSE, since the blow-by emissions are also 

eliminated when the truck is shut off.   
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7.2 Ambient Conditions for Cold-Starting 

The effect of ambient temperature is probably the most important factor affecting 

the starting of a diesel engine.  Required starting torque increases with any given 

compression ratio.  This required increase is needed to overcome the increased viscosity 

of the oil at low temperatures.  The differential expansion and contraction of the different 

engine parts may also be adding to the friction.  The temperature of the cylinder wall and 

pistons is also lower than during other modes of engine operation.47   

In the winter months, the cold-start emissions may be higher because the engine 

idles higher during the warm-up period in winter.  Higher idling speeds have been 

demonstrated to increase emissions.  The higher winter idle of the vehicle is a 

manufactured design because higher idling is used to overcome internal friction while the 

engine warms-up and until the oil reaches normal operating temperature.  Further 

research needs to be done in this area to determine the magnitude of the cold-start 

emissions that might occur during winter months.  TSE would still be required in the 

winter for heating the sleeper compartment of the truck.  Obviously, a block heater could 

be used to keep the engine warm during the driver rest (non-idling) period to offset any 

increased emissions that might be associated with cold-starting the engine under 

extremely cold ambient conditions.   

7.3 Diesel Fuel Sulfur Analysis 

Fuel sulfur content may also have a significant affect on the concentration and 

distribution of sulfur species in diesel PM.  The diesel fuel used in the trucks for this 
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study should have been analyzed for sulfur content.  The effect of engine idling speed, 

accessory load and sulfur content also needs to be further investigated.  On the other 

hand, current levels of sulfur in diesel fuel are decreasing due to regulation.  Therefore, 

characterization of PM emissions in the future will dramatically change.  Another area, 

which needs further study, is a detailed analysis of the color difference in diesel PM to 

determine the basis for the observed differences.   

7.4 Shakedown, Instrument Calibration and Repeated Measurements 

Only one day of testing was allowed per truck partially because of the availability 

of funding and other prior commitments made with certain merchants that had kindly 

loaned their trucks to the project.  Given this time frame, a smooth, by-the-book test, was 

difficult to achieve.  For example, one recurring nuisance factor on the newer trucks was 

the idle-defeat routine in the on-board cruise control that would shutdown the engine 

after a certain period of idling had transpired.   

Thus, the following items would have improved the quality and quantity of the 

data that were collected had there been more time for the project:   

• A shakedown period would have been advantageous to fully understand the 

various idiosyncrasies of each truck since many different makes and models of 

trucks were tested.   

• At least three, repeated measurements of each truck testing episode would have 

been desirable to determine the inherent variability in the measurement system.   
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• Daily pre- and post-calibration tests of the analytical equipment and audits of the 

volumetric flow rates would have been valuable to evaluate the quality of the 

emissions data and to remove any bias.   

7.5 Modification to the Sampling Chamber 

It is believed that the sampling dynamics of the dilution system may also affect 

the size, mass and composition of diesel PM.  It would be beneficial to develop a 

sampling and/or dilution system that simulates the actual atmospheric dilution process of 

diesel exhaust as it leaves the exhaust pipe.  In any dilution process there are also errors 

in measurements of flows into and out of the dilution system.  An alternate approach 

would be to pull a sample directly from the exhaust stream using a PM analyzer that can 

withstand the high exhaust temperatures.  Also for comparison, another PM analyzer 

could sample from somewhere within the emission plume as it leaves the exhaust pipe of 

the truck.   
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Table 2.1:  Summary of Long-Term Idling Emission Data 

HC CO CO2 NOx PM

Average 7.45 72.8 na 89.9 1.42 na
% RSD 33.5 40.2 na 17.2 27.2 na

Minimum 3.60 43.6 na 62.7 1.02 na
Maximum 12.5 128 na 115 2.16 na

Average 23.1 63.9 6,533 170.6 na 0.62
% RSD 182.4 118.4 43.1 40.2 na 44.0

Minimum 1.4 14.6 4,034 103.0 na 0.36
Maximum 86.4 187.7 9,743 254.0 na 0.93

Average na na 8,199 141 na 0.82
% RSD na na 42.1 52.2 na 42.2

Minimum na na 3,915 19.8 na 0.39
Maximum na na 16,577 329 na 1.65

Average 44.0 77.6 9,476 154 3.92 0.95
% RSD 50.3 80.0 37.4 48.1 120 37.2

Minimum 9.8 17.1 4,356 51.5 0.83 0.44
Maximum 89.4 295.0 17,693 353 20.6 1.77

Average 34.2 75.1 8,639 142 3.33 0.86
% RSD 77.1 76.2 40.7 50.4 127 40.9

Minimum 1.40 14.6 3,915 19.8 0.83 0.36
Maximum 89.4 295 17,693 353 20.6 1.77

Storey, et.al.24                                      

n = 32

Researchers

Overall Summary                                         
n = 84

Fuel (gal/hr)

McCormick, et.al.21                                 

n = 10

Description
Emissions (g/hr)

Brodrick, et.al.22                              

n = 5

Lim23                                              

n = 37

Note: Relative Standadard Deviation (RSD) units are percent.  
 
 
 

Table 2.2:  Idling Emission Rates for Engine Accessory Load and RPM Conditions 

High-rpm           
(A-H)

Low-rpm           
(A-L)

High-rpm           
(H-H)

Low-rpm           
(H-L)

High-rpm           
(N-H)

Low-rpm           
(N-L)

Average 59.5 25.7 66.6 32.5 55.3 13.1
% RSD 45.1 72.8 29.5 41.6 28.7 87.9

Minimum 20.9 1.4 41.9 20.0 27.0 1.8
Maximum 86.4 50.3 89.4 50.3 74.3 42.8
Average 101 30.3 169 98.1 65.9 50.3
% RSD 43.8 64.1 49.6 57.4 25.4 67.1

Minimum 53.3 15.3 102.0 52.8 44.4 14.6
Maximum 188 68.9 295 194 87.2 128
Average 13,131 5,990 11,331 6,462 10,600 5,377
% RSD 21.4 22.7 8.1 9.1 13.3 36.5

Minimum 8,078 4,256 10,232 5,688 8,457 3,915
Maximum 17,693 8,454 13,206 7,163 13,230 11,838
Average 214 113 193 101 169 103
% RSD 38.9 44.4 42.7 34.7 36.1 30.5

Minimum 69.3 19.8 64.0 54.8 55.8 62.7
Maximum 353 176 329 137 241 164
Average 6.67 1.34 5.77 2.68 5.87 1.39
% RSD 118.3 44.9 32.5 46.7 121.7 32.0

Minimum 1.44 0.83 3.35 1.43 2.20 0.83
Maximum 20.6 2.26 8.21 4.59 20.4 2.31
Average 1.30 0.60 1.16 0.66 1.06 0.53
% RSD 22.6 22.3 7.7 8.1 13.5 37.7

Minimum 0.80 0.42 1.02 0.58 0.86 0.36
Maximum 1.77 0.85 1.33 0.72 1.33 1.18

NOx (g/hr)

CO2 (g/hr)

CO (g/hr)

Description

Note: Relative Standard Deviation (RSD) units are percent.

Air-Condition Heat No Load

HC (g/hr)

Fuel (gal/hr)

PM (g/hr)
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Table 2.3:  Summary of Short-Term Idling Emission Data 

HC CO CO2 NOx PM

Average 11.1 26.0 7,531 96.2 na
% RSD 86.1 57.1 50.4 50.8 na

Minimum 3.0 12.6 4,844 35.4 na
Maximum 31.2 60.0 16,487 187 na

Tang, et.al.25                       

n = 8

Researcher Description
Emissions (g/hr)

Note: Relative Standard Deviation (RSD) units are percent.  
 

Table 2.4:  Summary of Short-Term Idling NOx Emissions 

Off On

Minimum 55 60

Maximum 275 375

Minimum 55 NA

Maximum 165 NA

Researcher

Lambert, et,al.26                                                            

n = 40

AC Mode (g/hr)

Curb Idle (< 1,000 rpm)

High Idle (1,000 rpm)

Engine Test                        
Conditions Range

 
 

Table 2.5:  Idling Emissions and Fuel Consumption Rates (Detail) 
Fuel

HC CO NOx CO2 (gal/hr)

1 - Idle at 600 rpm after 10-min 55 mph cruise 1.8 14.6 103 4,034 0.36

2 - Idle at 600 rpm after 10-min transient cycle 2.9 15.9 105 4,472 0.39

3 - Idle at 600 rpm with AC after 10-min transient cycle 1.4 15.3 166 4,976 0.52

4 - Idle at 1,050 rpm with AC after 10-min transient cycle NA 86.0 254 9,441 0.88

5 - Idle at 1,050 rpm with AC for 5-hrs 86.4 189.7 225 9,743 0.93

6 - Cruise (or driving) at 55 mph 5.6 65.1 713 60,592 5.92

7 - Cruise (or driving) at 55 mph with AC 3.9 57.4 777 60,320 6.88

Source: Brodrick, et.al.22, 27

Emission (g/hr)Engine Test Conditions                                                              
(n = 1) 

 
 

Table 2.6:  HDDV Idling Emission Factors from MOBILE6 

THC CO CO2 NOx PM10 PM2.5

2.53 18.86 1,445 26.17 0.55 0.51 g/mile
6.3 47.1 3,613 65.4 1.4 1.3 g/hr
2.32 12.34 1,348 20.38 0.46 0.43 g/mile
5.8 30.8 3,369 50.9 1.2 1.1 g/hr
2.57 19.93 1,575 29.90 0.60 0.55 g/mile
6.4 49.8 3,938 74.8 1.5 1.4 g/hr
3.25 26.67 1,674 34.70 0.66 0.61 g/mile
8.1 66.7 4,185 86.8 1.6 1.5 g/hr
3.10 25.19 1,652 33.65 0.65 0.60 g/mile
7.8 63.0 4,131 84.1 1.6 1.5 g/hr

Units

HDDV8

Description

HDDV

HDDV7

HDDV8A

HDDV8B

Idling Emission Factors

Note: g/hr = g/mile x 2.5 mph  
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Table 2.7:  EPA Suggested PM Extended-Idling Emission Factors for SIP 
 

EF EF
(g/hr) (g/hr)

2006 3.68 2019 0.54
2007 3.43 2020 0.50
2008 2.94 2021 0.47
2009 2.52 2022 0.44
2010 2.16 2023 0.41
2011 1.88 2024 0.39
2012 1.60 2025 0.38
2013 1.38 2026 0.36
2014 1.10 2027 0.35
2015 0.89 2028 0.34
2016 0.79 2029 0.33
2017 0.71 2030 0.33
2018 0.58

Source:  USEPA
29

Calendar 
Year

Calendar 
Year

 
 
 
 

Table 3.1:  General Description of Test Trucks 
 

Model HP Disp (L) Odom (mi)
1 Freightliner 2HSCEAPR25C003739 1996 Cummins N14 460 14 512,926

2 Freightliner 1FUYDSEB6XLB00220 1998 Detroit S60 430 12.7 591,476
3 Volvo 4V4NC9GHX5N381710 2004 Volvo Vectro 465 12.1 287
4 Volvo 4V4NC9GH65N381722 2004 Volvo Vectro 465 12.1 83
5 Mack 1M1AA18Y6XW112584 1999 Mack ASET 460 11.9 416,764

6 Kenworth 1XKADB9X45J087931 2004 Caterpillar ACERT 475 15.2 72

7 International 2HSFHAER5XC086741 1998 Cummins N14 500 14 655,380
8 Kenworth 1XKWDB9X05J081372 2004 Caterpillar ACERT 475 15.2 738
9 Volvo 4V4NC9JH1N259226 2000 Cummins N14 435 14 553,465

10 Freightliner 1FUPDCYB2XL904380 1998 Cummins N14 425 11 341,146

11 Freightliner 1FUJA3CG11LG36966 2000 Detroit S60 430 12.7 420,621

12 International 2HSFBAHR1SC056187 1995 Cummins M11 450 11 814,185
13 International 2HSCEAPR25C003739 2004 Cummins N14 475 15 58
14 Freightliner 1FUYDZYB1NP476082 1992 Detroit S60 450 12.7 279,922
15 Freightliner 1FUYJA6CK04LN3773 2004 Detroit S60 455 14 82,929

16 Freightliner 1FUYSSZB6YLG08382 1999 Detroit S60 500 12.7 568,539

17 Freightliner 1FUJA6CK44LM15160 2003 Detroit S60 435 14 147,334
18 Freightliner* 1FUYDZYB8WL903823 1997 Detroit S60 400 12.7 647,979
19 Mack* IM1AEO6Y54N019364 2003 Mack ASET 430 11.9 78,960
20 Freightliner 1FUYDSEB1WL896080 1997 Detroit S60 430 12.7 834,028

21 Freightliner 1FUJA6CK54LM13479 2003 Detroit S60 455 14 154,156

22 Freightliner 1FUYSSEB7YLG51490 1999 Detroit S60 430 12.7 482,983
23 Mack* 1M1AE06Y54N019512 2003 Mack ASET 430 11.9 58,047
24 Mack 1M1AE06Y41W008703 2000 Mack ASET 355 11.6 484,108

ID = Identification number; VIN = Vehicle identification number (manufacturer); HP = Rated engine horsepower; Disp = Engine Displacement;                                               
L = Liters; Odom = Odometer; mi = miles; *Truck body has day cab only.

ID
Engine

Truck YearVIN
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Table 3.2:  Operating and Reporting Conditions for Emissions Analyzers 
 

PEMS Parameters Units Sensor

O2 % Electrochemical

CO, NO, NO2 & SO2 ppm Electrochemical

Ambient Temperature F Positive Temperature Coefficient 
(Thermistor)

Duct Temperature F Thermocouple

Duct Pressure in H2O Piezoresistive Electronic

Sampling Flow Rate Lpm Proprietary flow/pressure control 
(fixed at 2.5 Lpm) 

NOx ppm

CO2 %

Combustion Efficiency %

Excess Air (lambda) %

Losses %

PM mg/m3 Photometric

Duct Temperature F Thermocouple

Relative Humidity % Capacitive

Sampling Flow Rate Lpm Proprietary flow                     
(variable range 1 - 3 Lpm) 

Volumetric Flow SCFM Thermal Anemometer

Duct Temperature F Thermocouple

Calculated Values

ECOM

DataRAM

Kurz
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Table 4.1:  Average Cold-Start and Extended-Idling Emission Factors 
 

CS-SS CS-5 CS-10 CS-15

AC-Off AC-On AC-Off AC-On

CO (g/hr) 78.6 180 163 145 36.9 47.6 74.6 98.9 64.5

Fuel rate (gal/hr) 1.6 2.0 2.0 1.9 1.2 1.4 1.6 1.8 1.5

NOx (g/hr) 187 248 237 225 120 159 164 223 167

 Ratio: NO2/NOx 0.17 0.17 0.17 0.17 0.17 0.16 0.19 0.18 0.18

PM2.5 (g/hr) 2.83 5.99 5.00 4.14 2.55 3.13 4.37 4.11 3.54

Cold-start (at Low-Idling) High-Idling (Overall) 
Extended 

Idling Average
Description

Low-Idling 

AC-On

(600-800 rpm) (1000 rpm)

 
Notes:  CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, CS-10 and CS-15 = Engine 
cold-start during the first 5, 10 and 15 minutes, respectively; AC = Air-conditioner at Off and On settings. 

 
 
 
 

Table 4.2:  Average Mass Emissions per Unit Fuel Consumption Rate 
 

CS-SS CS-5 CS-10 CS-15

AC-Off AC-On AC-Off AC-On

CO 48.6 89.3 81.4 74.8 30.7 33.9 47.5 54.0

NOx 116 123 118 116 100 113 105 122

PM2.5 1.75 2.97 2.50 2.14 2.12 2.23 2.78 2.25

Description

Cold-start (at Low-Idling) Low-Idling High-Idling

(600-800 rpm) (1000 rpm)

AC-On

 
Notes:  Units = (gal/hr); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, CS-10 and 
CS-15 = Engine cold-start during the first 5, 10 and 15 minutes, respectively; AC = Air-conditioner at Off and On settings.  

 
 
 
 

Table 4.3:  Comparison of Overall Extended-Idling Emission Factors 
 

CO (g/hr) 64.5 NA 75.1 NA -14.1%

Fuel rate (gal/hr) 1.5 NA 1.0 NA 50.2%

NOx (g/hr) 167 135 142 23.5% 17.4%

PM2.5 (g/hr) 3.54 3.68 3.33 -3.8% 6.3%

Percent Difference         
(Exp - LitRev)

EPA 
Recommended 

(SIP)

Literature 
Review 
Average

(Overall) Extended 
Idling Average

Description
Percent Difference       

(Exp - EPA)

 
Notes:  Exp = experimental values (determined from this study) and LitRev = literature review values. 
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Table 4.4:  Within Comparison of Extended-Idling Emission Factors 
 

NOx (g/hr) 135 120 -10.9% 159 17.8% 164 21.7% 223 65.4%

PM2.5 (g/hr) 3.68 2.55 -30.7% 3.13 -14.9% 4.37 18.6% 4.11 11.8%

Comparison 1 Comparison 2 Comparison 3 Comparison 4

High-Idle      
1000 rpm      
AC-Off

Percent 
Difference       

(Exp - EPA)

High-Idle      
1000 rpm      
AC-On

Percent 
Difference       

(Exp - EPA)

Low-Idle        
600-800 rpm 

AC-Off

Percent 
Difference        

(Exp - EPA)

Low-Idle        
600-800 rpm 

AC-On

Percent 
Difference       

(Exp - EPA)

Description
EPA 

Recommended 
(SIP)

 
Note:  Exp = experimental values (determined from this study). 
 
 
 
 
 

Table 5.1:  Actual Emission Reductions Using TSE Technology 
 

CS-n Pollutant
Extended-

Idling (EIER)
Cold-Start 

(CSER)
Electric-Use 

(EUER)

Actual 
Emission 

Reduction 
(AERR)

Percent 
Difference

CO 64.5 1.88 0.19 62.4 3.2%

NOx 167 2.58 5.84 158 5.0%

PM2.5 3.54 0.062 0.29 3.19 10.0%

CO 64.5 3.39 0.19 60.9 5.5%

NOx 167 4.93 5.84 156 6.5%

PM2.5 3.54 0.104 0.29 3.14 11.2%

CO 64.5 4.52 0.19 59.8 7.3%

NOx 167 7.04 5.84 154 7.7%

PM2.5 3.54 0.129 0.29 3.12 11.9%

n = 5

n = 10

n = 15

 
Note:  Units = (g/hr) except where the percent symbols are shown. 
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Figures Mentioned in Body of Report 
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Figure 1.1.  Influence of the equivalence ratio (φ) on light-duty diesel engine 

performance and emissions.   
       Note:  part (a) is for performance, and part (b) is for emissions.  Source:  Flagan, et.al.14 
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Figure 1.2.  Truck stop electrification at parking lot (rest) area. 
 
 
 
 
 

   
Figure 1.3.  IdleAire in-cab HVAC module and computer terminal. 
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Figure 2.1.  Engine load and RPM conditions for emissions and fuel consumption 

rates for long-duration HDDV8 idling. 
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Figure 2.2.  MOBILE6 - NOx emission rates as a function of vehicle speed. 
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Figure 2.3.   MOBILE6 - PM emission rates as a function of vehicle speed. 
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Figure 2.4.  Schematic representation of aggregate diesel PM. Source: Walker31 
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Figure 2.5.  Characteristics of test trucks. 
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Figure 3.1.  Diagram of sampling system and equipment layout. 
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Figure 3.2.  Test truck attached to primary sampling chamber. 
 
 
 
 

   
Figure 3.3.  Overall view of mobile test stand and all instrumentation. 
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Figure 3.4.  Side view of primary sampling chamber. 
 
 
 
 
 

   
Figure 3.5.  Side view of secondary (or dilution) sampling chamber. 
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Figure 3.6.  Molecular weight of exhaust gas versus percent theoretical fuel for four 

hydrogen-carbon ratios.  Note:  MWAir ~ 29.  Source:  Keenan, et.al.38 
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Figure 4.1.  Emission rate behavior for 1996 Freightliner truck. 
Notes:  L-rpm = 750 rpm, H-rpm = 1000 rpm and AC = Air-conditioner mode of operation. 
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Figure 4.2.  Emission rate behavior for 1995 International truck (detail). 
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Figure 4.3.  CO emission rate versus idling speed for air-conditioner settings. 
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Figure 4.4.  NOx emission rate versus idling speed for air-conditioner settings. 
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Figure 4.5.  PM2.5 emission rate versus idling speed for air-conditioner settings. 
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Figure 4.6.  Fuel consumption rate versus idling speed for air-conditioner settings. 
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Figure 4.7.  CO, NOx and PM2.5 emission rates versus diesel fuel rate. 
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AC-Off Setting AC-On Setting 

Figure 4.8.  CO emission rates for truck model year and odometer reading at AC-Off and AC-On settings. 
Note:  Top pair of graphs compares truck model year and bottom pair of graphs compares odometer reading. 
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AC-Off Setting AC-On Setting 

Figure 4.9.  NOx emission rates for truck model year and odometer reading at AC-Off and AC-On settings. 
Note:  Top pair of graphs compares truck model year and bottom pair of graphs compares odometer reading. 
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AC-Off Setting AC-On Setting 

Figure 4.10.  PM2.5 emission rates for truck model year and odometer reading at AC-Off and AC-On settings. 
Note:  Top pair of graphs compares truck model year and bottom pair of graphs compares odometer reading. 
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1997 Freightliner (834,028 miles) 
 

 

 
 

2003 Freightliner (154,156 miles) 
 

Figure 4.11.  Brown and beige PM collected on filter media during emission testing. 
Notes:  Diameter of large filter and small filter are 37 mm and 25 mm, respectively; each frame represents a different test truck. 
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1999 Freightliner (482,983 miles) 
 

 

 
 

2003 Mack (58,047 miles) 
 

Figure 4.12.  Black and gray PM collected on filter media during emission testing. 
Notes:  Diameter of large filter and small filter are 37 mm and 25 mm, respectively; each frame represents a different test truck. 
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Figure 4.13.  Measured versus calculated diesel exhaust flow rate. 
 
 

 
Figure 7.1.  Diesel-engine blow-by ventilation. 
Note:  Vertical blow-by tube is located to the left of large bolt-shaped object centered in photograph. 
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Appendix C 

Sample Calculations 



 110

 

C1:  Emission and Fuel Consumption Rates 

C1.1:  Carbon Dioxide Emission Rate 

The CO concentration, as measured by the ECON analyzer, was 89.3 parts-per-

million (ppm).  The diesel-exhaust volumetric flow rate, as measured by the Kurz meter, 

was 272 standard cubic feet per minute (scfm).  Both measuring locations were inside the 

primary sampling chamber.   

For this example, the emission rate for CO was approximately 48 g/hr.   

hr
g

48
hr
min 60

min
ft 272

ft 0.0353
L

 L/mole24.1
g/mole 28

10
89.3

CO
3

36  Rate Emission ≈⋅⋅⋅



⋅=  

Note:  28 g/mole is the gram molecular weight of CO; 24.1 L/mole is the volume of gas 

at standard conditions [i.e., temperature 68 F (20 C) and 1-atmosphere], which are the 

temperature and pressure conditions for reporting flow by the Kurz meter; [(L/0.0353 ft3) 

and (60 min/hr)] are conversion factors.   
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C1.2:  Nitrogen Oxide Emission Rate 

The NO and NO2 concentrations, as measured by the ECON analyzer, were 276 

ppm and 24 ppm, respectively.  The diesel-exhaust volumetric flow rate, as measured by 

the Kurz meter, was 272 scfm.  Both measuring locations were inside the primary 

sampling chamber.   

For this example, the emission rate for NOx, reported, as NO2, was approximately  

265 g/hr;   

hr
g

265
hr
min 60

min
ft 272

ft 0.0353
L

24.1L/mole
g/mole 46

10
24)(276

NOx
3

36  Rate Emission ≈⋅⋅⋅



⋅

+
=  

Note:  46 g/mole is the gram molecular weight of NO2; 24.1 L/mole is the volume of gas 

at the standard conditions [i.e., temperature 68 F (20 C) and 1-atmosphere], which are the 

temperature and pressure conditions for reporting flow by the Kurz meter; [(L/0.0353 ft3) 

and (60 min/hr)] are conversion factors.   
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C1.3:  Particulate Matter Emission Rate 

The PM could not be measured directly in the primary sampling chamber because 

the exhaust gas temperature was above the recommended operating temperature for the 

PM analyzer.  Thus, ambient air was mixed with exhaust gas in the dilution chamber to 

reduce the temperature of the exhaust gas.  This dilution system required additional flow 

components to provide information about the mi xing ratio and to coordinate the functions 

of the system.  The flow rates in the dilution chamber were measured by rotameters.  

They were factory calibrated to operate at specific conditions, which required correction 

for the calibration to be valid.  Equation 1 was used to convert the observed readings 

(OBS) on the rotameter to standard conditions (STD) of temperature and pressure.  

Standard conditions for air are 1-atmoshpere of pressure and 68 F (20 C) of temperature.  

Equation 2 was used to convert the standard conditions to the actual conditions (ACT) of 

temperature and pressure.  It is assumed that pressure was identical at all conditions.  

Thus, both equations reduce to a function of the temperatures.   

OBS

STD
OBS

OBSSTD

STDOBS
OBSSTD T

T
Q

TP
TP

QQ ≈
⋅
⋅

=  (1) 









⋅≈
















⋅








⋅

⋅
⋅

=
STD

ACT

OBS

STD
OBS

STD

ACT

ACT

STD

OBSSTD

STDOBS
OBSSTD T

T
T
T

Q
T
T

P
P

TP
TP

QQ  (2) 

where, Q is flow rate in units of volume per time, and P and T are absolute pressure and 

temperature, respectively.   

The DataRAM analyzer measured PM2.5 concentration inside the dilution 

chamber.  Flow rate control for the analyzer was automatic; constant flow was 

maintained by sensing differential pressure across an orifice and using the pressure drop 

signal to control a variable pump motor.  The function relationship between the orifice 

pressure drop (∆P) and volumetric flow rate (Q) is given by the equation:   ∆P = kρQ2; 
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where k is a system constant related to the characteristics of the orifice; ρ is the air 

density during the factory calibration for conditions of temperature and pressure, which 

existed at the time of calibration.  Here, these conditions are assumed to be at the average 

room conditions for ambient air [i.e., temperature 70 F (21.1 C) and pressure 1-

atmosphere].  Similar to the equations for the rotameters, flow rate at the inlet to the PM 

analyzer must also be converted to actual conditions of temperature and pressure, which 

will be demonstrated in subsequent examples.   

The functional relationship between orifice pressure and flow rate:  2Q ?
k

? P
=  

Thus,    Q?Q? 2
44

2
DRAIR =  

and 
4

AIR
DR4 ?

?
QQ =  

where,  

ρAIR = air density (g/m3) at factory calibration of temperature and pressure conditions,  

   ρ4 = density of sample diluted exhaust gas (g/m3)  

 QDR = user specified (fixed) sampling flow rate (2 L/min), and  

   Q4 = actual sampling flow rate (L/min).   

 

The unknown values are Q1, Q4, ρ3 and ρ4.  In the mixing region of the dilution 

chamber, it is assumed that ρ3 = ρ4.  Hence, there are 3-unknowns quantities and 3-

equations.  The following approach only relied on the mass balance equation.  It was 

assumed that the molecular weights of air, diesel exhaust gas, and the mixture of ambient 

air and diesel exhaust gas were all equivalent.  The basis for this assumption was 

discussed in the body of the report.  The numerical subscripts refer to the flow locations 

on the dilution-sampler; also see Figure 3-1.   

Mass balance:  4321 MMMM &&&& +=+  



 114

where, iM&  = mass flow rate (g/hr) and iii Q?M =&  

where, ρi = density (g/m3) and Qi = volumetric flow rate (m3/hr)  

Thus, 44332211 Q?Q?Q?Q? +=+  (3) 

 

From the Ideal Gas Law:  
T R

 MWP
V
m

  ? ==  

where, ρ = density (kg/m3),  

 m = mass (kg),  

 V = volume (m3),  

 P = absolute pressure (atm),  

 MW = molecular weight (g/gmol),  

 R = universal gas constant (0.08206 atm-L/gmol-K) and  

 T = absolute temperature (K).   

The ideal gas equation was substitution into Equation 3, yielding:   

4
4

44
3

3

33
2

2

22
1

1

11 Q
T R

 MWP
Q

T R
 MWP

Q
T R

 MWP
Q

T R
 MWP

+=+  (4) 

Assumptions:  MW1 = MW2 = MW3 = MW4 = MWAIR  and  P1 = P2 = P3 = P4 = PAIR  

Simplification of Equation 4, yields:  
4

4

3

3

2

2

1

1

T
Q

T
Q

T
Q

T
Q

+=+  

Q1 is the unknown, thus 







−








+=

2

2

4

4

3

3
11 T

Q
T
Q

T
Q

 TQ  (5) 

Next, the DataRAM and rotameter temperature corrections were applied to Equation 5.   

(Again, the assumption that all molecular weights and pressures are equivalent.)   
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3or  2

STD
3or  2

OBSSTD

STDOBS
OBS

STD
3or   232

AIR

4
DR

4
44

AIR

AIRAIR

DR
4

AIR
DR4

T
TQTP

TPQQ        Q   &  Q

and

T
T

Q  

T R
 MWP

T R
 MWP

Q  
?

?
Q  Q

==⇒

≈==

 

Substitution of Q2, Q3 and Q4, yields:  



















−



















+=
2

2

STD
2

4

AIR

4
DR

3

3

STD
3

11 T
T

TQ

T
T

TQ

T
T

TQ
 TQ  

Since the conditions in the original equation were at actual temperatures, and the 

conditions in the above equation for Q2 and Q3 are at standard conditions, the conditions 

for Q2 and Q3 must be converted to actual conditions of temperature.   




























⋅

−





















+








⋅

=
2

STD

2

2

STD
2

4

AIR

4
DR

3

STD

3

3

STD
3

11 T

T
T

T
TQ

T

T
TQ

T

T
T

T
TQ

 TQ  (6) 

Finally, simplifying Equation 6, yields:   



















−



















+=
STD

2

STD
2

4

AIR

4
DR

STD

3

STD
3

11 T
T

TQ

T
T

TQ

T
T

TQ
 TQ  

Now that the flow rate into the dilution chamber (Q1) is known, the concentration 

of PM (C1) in the primary sampling chamber can be determined from the following mass 

balance equation:   

Mass balance:  44332211 QCQCQCQC +=+  (7) 
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where, Ci = PM concentration ( µg/m3)  

Since the dilution air was filtered with a HEPA filter at location 2 in Figure 3-1; C2 = 0.   

The PM concentration as measured by DataRAM was C4.   

Inside the mixing chamber, C4 = C3; thus, Equation 7 can be reduced, yielding:   

( )
1

43
41 Q

QQ
C  C

+
=  

It should be noted that the CiQi pairs must be evaluated at the same conditions of 

temperature, so Q3, Q4 and C4 will be evaluated here at standard temperature conditions.   

Using the following values for this example calculation:   

 

hr
ft

11.71
528

517.3
528

hr
ft30

546
530

546
hr
ft4.24

528
524.5

528
hr
ft35

 689.2Q
3

333

ACT
1 ≈



















−


















+=  

hr
ft 35.12524.5

528
hr
ft 35T

TQQ
33

3

STD
3

STD
3 ≈==  

hr
ft

 4.162
546
528

530
546

hr
ft

 4.24
T

T
T

TQ Q
33

4

STD

AIR

4
DR

STD
4 ≈






⋅=








⋅=  

Thus, the actual concentration in the primary sampling chamber is:   

C4 = 1,481 µg/m3QDR = 4.24 cfh (2 Lpm)

Q3 = 35 cfh

T2 = (460 + 57.3) = 517.3 R

T4 = (460 + 86) = 546 R

TSTD = (460 + 68) 528 R

T1 = (460 + 229.2) = 689.2 R

T3 = (460 + 64.5) 524.5 R

TAIR = (460 + 70) = 530 R

Q2 = 30 cfh



 117

( ) ( )
33ACT

1

STD
4

STD
3

STD

4
4

ACT
1 m

µg
,1385

11.71
4.16235.12

528
546

m
µg

 1,481
Q

QQ
T
T

C  C ≈
+

⋅





=

+
⋅








=  

The dilution ratio for this example is approximately 3.4:   

where, 
hr
ft

29.69
528

517.3
517.3

52830
T
T

T
TQ  Q

3

STD

2

2

STD
2

ACT
2 ≈






⋅=








⋅=  

38.3
(517.3) 71.11
(689.2) 69.29

T Q
 T Q

T
TQ

T
TQ

Q
Q

 RatioDilution
2

ACT
1

1
ACT
2

1

STDACT
1

2

STDACT
2

STD
1

STD
2 ≈==















==  

Finally, the PM emission rate was calculated by multiplying the adjusted PM 

concentration (C1) by the Kurz flow rate from the primary sampling chamber.   

For this example, the emission rate for PM2.5 is approximately 3.1 g/hr.   

hr
g

3.1
hr
min 60

min
ft 272

ft 35.3
m

µg10
g

528
2.229460

m
µg 5,138

PM
3

3

3

63 Rate Emission ≈⋅⋅⋅⋅





 +

⋅=  

Note:  the temperature ratio [(460 + 229)/528] converted temperature into standard 

conditions, which is equivalent to the Kurz flow meter (i.e., 272 scfm); the values [(35.3 

ft3/m3) and (g/106 µg)] are conversion factors.   

Finally, the PM emission rate is adjusted by the integrated gravimetric sample that 

was collected on the internal filter.  For example, if the time weighted average (TWA) 

reading on the DataRAM was 4.2426 mg/m3 for a reference period (TR) of 359.5 minutes 

(~ 6 hrs) and the sampling flow rate for the DataRAM (QDR) was 2-lpm, then the 

calculated average gravimetric concentration (CG), is as follows:   

33
DRR

G m
mg

4.7
m

 L1000
lpm) (2 min 359.5

mg 3.4
Q T
m

C ≈⋅==  



 118

The calibration factor (CAL) for this testing period, is as follows:  

1.1

m
mg2426.4

m
mg7.4

TWA
C

CAL
3

3
G ≈==  

Thus, the corrected PM emission rate is approximately 3.4 g/hr 

hr
g

3.4
hr
g

1.3)1.1(PM  Rate Emission ≈⋅=  

 

Note:  For purposes of this paper, the Molecular Weight (MW) of the exhaust gas can be 

approximated by the following equations.   

)CO%O(%100N% 222 +−=  







+






+






=

100
N%

 28
100
CO%

 44
100

O%
 32MW 222

Gas Exhaust  

where,    %O2 = Percent oxygen as measured by ECOM analyzer, 

 %CO2 = Percent carbon dioxide as calculated/reported by ECOM analyzer and 

    %N2 = Percent nitrogen also approximated.   

 

For example, %O2 = 16.5 and %CO2 = 3.3:   

19.29
100

)3.35.16(100
 28

100
3.3

 44
100

5.16
 32MW Gas Exhaust ≈






 +−

+





+






=  
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C1.4:  Diesel Fuel Consumption Rate 

The Ideal Gas Law {PV = (mi/MWi)RT} was used to convert the percent of carbon 

dioxide (CO2), which was measured in the exhaust of the vehicle, into concentration at 

standard conditions of pressure and temperature:   







⋅

⋅
=

TR
MWP

V
V

V
m

U

CO2

AIR

CO2

AIR

CO2  

where,  

mCO2 = mass of carbon dioxide (CO2)  

VAIR = volume of air  

VCO2 = volume of CO2  

P = absolute pressure of air  

MWCO2 = molecular weight of CO2  

R = universal gas constant, using (0.08208 atm L/gmol K)  

T = absolute temperature of air  

 

From the ECON analyzer, CO2 = 2.31%, thus, the concentration of CO2 in air is:   

3

3

AIR

CO2

m
g

42.3
K 20)(273K)-L/mole-atm (0.08208

)L/m (1,000g/mole) (441atm
100
2.31

V
m

=







+⋅

⋅⋅
=  

Using the vehicle exhaust gas flow rate (Q) and the CO2 concentration, the production of 

CO2 (on an average per hour basis) can be calculated:   

AIR

CO2
CO V

m
 QM

2
=&  

where, MCO2 = mass flow rate of CO2  



 120

Q = volumetric vehicle exhaust flow rate  

 

From the Kurz flow meter, Q = 137.44 scfm,  

thus, the mass flow rate of CO2 from the exhaust of the vehicle is approximately :   

hr
g

9,867
m
g

42.3 
hr
min 60

ft 35.32
m

min
ft

137.44M 33

33

CO2
=








⋅⋅=&  

The mass of carbon in diesel fuel (MC/D) in units of (g/gal) was calculated with:   

( ) DIESELC/DC/D ? WFM =  

where, ρDIESEL = density of diesel fuel (~3,212 g/gal)  and  

WRC/D = weight fraction of carbon in diesel fuel from the relation CH1.80  

 0.869
1.008)](1.80[12.011

12.011
  WFC/D =

⋅+
=  

thus, ( )
gal

g 2,791
  g/gal 3,212 0.869M C/D =⋅=  

 

Finally, the average diesel fuel rate (FR) in units of (gal/hr) was calculated using:   

DCM /

C/CO2CO2 WFM
  FR

⋅
=

&
 

where, WFC/CO2 = weight fraction of carbon in carbon dioxide (i.e., 12.011/44.099)  

hr
gal

0.965
g/gal 2,791

.009)(12.011/44g/hr  9,867
  FR ≈

⋅
=  

Thus, for this example, the diesel fuel rate was approximately 0.97 gal/hr.   
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C2:  Truck Stop Electrification Estimates 

C2.1:  Annual Idling Emissions for Heavy-Duty Diesel Vehicles 

A set of sample calculations is demonstrated below using the average NOx emission 

factor from the current study (i.e., 167 g/hr).   

Estimated daily average idling NOx emissions are 0.00441 tons/day for a single truck:   

day
tons

0.00441
lbs 2,000

ton
g 454

lbs
day

hrs 24
hrs

g 167
Truck Single =⋅⋅⋅=  

Estimated annual NOx emissions for a single truck are 1.61 tons/year:   

year
tons

1.61
year

day 365
day
ton

0.00441Truck Single =⋅=  

Total parking spaces for the contiguous US are approximately 315,535 spaces.42   

(284,675 commercial spaces + 30,860 public spaces = 315,535 total spaces)  

Using only half of the daily average fraction of idling trucks (i.e., 0.53) from truck 

counting experiments43 conducted locally at the Petro Truck Travel Center, as a 

conservative estimate (i.e., 0.5 x 0.53 = 0.265), the average idling NOx emissions are 

approximately 135,000 tons/year:   

( )
year
tons

000,135
year

 tons1.61
spaces 535,3150.265   USContiguous onsNOx Emissi ≈⋅⋅≈  
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C2.2:  Carbon Monoxide at Cold-Start 

Cold-Start Emission Rate (CSER) - Example for CS-5 

A

B

i t
hr

min  60

t
CSEF

CSER













⋅

=  

hr
g .881

hr 8
hr

min  60
min 5

hr
g 180

CSERCO =













⋅

=  

Electricity-Use Emission Rate (EUER) 














⋅⋅⋅





 ⋅⋅=

100
L

watt
hr

Btu 3.412
WP

e
1

lb
g 453.6

ECESEUER COCO  

hr
g 19.0                 

100
100

watt
hr

 Btu 3.412
 watts2,200

0.35
1

lb
g 453.6

 Btu26x10
ton

ton
lb 0.5EUER 6CO

=














⋅⋅⋅







 ⋅⋅





⋅=

 

Actual Emission Reduction Rate (AERR) 

( )COCOCOCO EUER  CSER EIER ERRA +−=  

hr
g 62.4hr

g 0.19hr
g 1.88hr

g 64.5AERR CO =




 +−=  

 

 



 123

C2.3:  Nitrogen Oxides at Cold-Start 

Cold-Start Emission Rate (CSER) - Example for CS-5 

hr
g 2.58

hr 8
hr

min  60

min 5
hr

g 248

CSER NOx =













⋅

=  

Electricity-Use Emission Rate (EUER) 

hr
g 5.84                   

100
100

watt
hr

Btu  3.412
 watts2,200

0.35
1

lb
g 453.6

Btu10
lb  0.6EUER 6NOx

=














⋅⋅⋅





 ⋅⋅=

 

Actual Emission Reduction Rate (AERR) 

hr
g 159hr

g 5.84hr
g 2.58hr

g 167AERR NOx =




 +−=  

 

 

C2.4:  Particulate Matter at Cold-Start 

Cold-Start Emission Rate (CSER) - Example for CS-5 

hr
g 0.0624

hr 8
hr

min  60

min 5
hr

g 5.99

CSER PM2.5 =













⋅

=  
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Electricity-Use Emission Rate (EUER) 

hr
g 0.29                   

100
100

watt
hr

Btu  3.412
 watts2,200

0.35
1

lb
g 453.6

Btu10
lb  0.03EUER 6PM2.5

=














⋅⋅⋅





 ⋅⋅=

 

Actual Emission Reduction Rate (AERR) 

hr
g 3.19hr

g 0.29hr
g 0.0624hr

g 3.54AERR PM2.5 =




 +−=  
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Appendix D 

Summary of Truck Data 
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Table D.1:  CO cold-start and extended idling emission factors at engine rpm speeds and air-conditioner settings 

 

Notes:  Emission factors units = (g/hr); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.2:  NOx cold-start and extended idling emission factors at engine rpm speeds and air-conditioner settings 

 

Notes:  Emission factors units = (g/hr); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.3:  PM cold-start and extended idling emission factors at engine rpm speeds and air-conditioner settings 

 

Notes:  Emission factors units = (g/hr); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.4:  NO2/NOx ratio during cold-start and extended idling at engine rpm speeds and air-conditioner settings 

 

Notes:  NO2/NOx ratio (unitless); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 minutes, 
respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.5:  Fuel consumption rates for cold-start and extended idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Fuel consumption rate units = (gal/hr); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 
15 minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.6:  Exhaust gas O2 percent during cold-start and idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Concentration units = (percent); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.7:  Exhaust gas CO2 percent during cold-start and idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Concentration units = (percent); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.8:  Equivalence ratio during cold-start and extended idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Ratio units = (unitless); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 minutes, 
respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 



 134

 

Table D.9:  Dilution ratio during cold-start and extended idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Ratio units = (unitless); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 minutes, 
respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.10:  Exhaust gas temperature during cold-start and idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Temperature units = (degree F); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.11:  Ambient air temperature during cold-start and idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Temperature units = (degree F); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Table D.12:  MW of exhaust gas (dry basis) for cold-start and idling at engine rpm speeds and air-conditioner settings 

 

Notes:  Molecular weight units = (unitless); CS-SS = Engine cold-start to reach steady-state condition, typically 1-3 hours in duration; CS-5, -10 & -15 = Engine cold-start during the first 5, 10 & 15 
minutes, respectively; AC = Air-conditioner at Off and On settings; %RD = Percent relative standard deviation (Stdev/Average)x100. 
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Appendix E 

Truck Real Time Emission Rate Behavior 
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Figure E.1.  Emission and flow rate behavior for 1996 Freightliner truck (ID#1). 
Note:  L-rpm = 750 and H-rpm = 1000. 
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Figure E.2:  Emission and flow rate behavior for 1998 Freightliner truck (ID#2). 
Notes:  L-rpm = 800 and H-rpm = 1000; PM data not available. 
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Figure E.3.  Emission and flow rate behavior for 2004 Volvo truck (ID#3). 
Notes:  L-rpm = 600 and H-rpm = 700; PM data not available. 
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Figure E.4.  Emission and flow rate behavior for 2004 Volvo truck (ID#4). 
Notes:  L-rpm = 600 and H-rpm  = 700; PM data not available. 
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Figure E.5.  Emission and flow rate behavior for 1999 Mack truck (ID#5). 
Notes:  L-rpm = 650 and H-rpm = 1000; PM data not available. 
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Figure E.6.  Emission and flow rate behavior for 2004 Kenworth truck (ID#6). 
Notes:  L-rpm = 600 and H-rpm = 1000; PM data not available. 
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Figure E.7.  Emission and flow rate behavior for 1998 International truck (ID#7). 
Notes:  L-rpm = 800 and H-rpm = 1000; PM data not available. 
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Figure E.8.  Emission and flow rate behavior for 2004 Kenworth truck (ID#8). 
Notes:  L-rpm = 600 and H-rpm = 1000; PM data not available. 
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Figure E.9.  Emission and flow rate behavior for 2000 Volvo truck (ID#9). 
Note:  L-rpm = 600 and L-rpm = 1000. 
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Figure E.10.  Emission and flow rate behavior for 1998 Freightliner truck (ID#10). 
Note:  L-rpm = 750 and H-rpm = 1000. 
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Figure E.11.  Emission and flow rate behavior for 2000 Freightliner truck (ID#11). 
Notes:  L-rpm = 600 and H-rpm = 1000; Constant idling speeds could not be maintained. 
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Figure E.12.  Emission and flow rate behavior for 1995 International truck (ID#12). 
Note:  L-rpm = 750 and H-rpm = 1000. 
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Figure E.13.  Emission and flow rate behavior for 2004 International truck (ID#13). 
Note:  L-rpm = 600 rpm and H-rpm = 1000. 
 

(Cold-Start) AC-On
 L-rpm

AC-Off
 L-rpm

AC-Off
 H-rpm

AC-On
 H-rpm

0

50

100

150

200

250

300

350

400

13:00 14:00 15:00 16:00 17:00 18:00 19:00

Time (hh:mm)

C
O

 &
 N

O
x 

E
m

is
si

o
n

 R
at

es
 (

g
/h

r)
F

lo
w

 R
at

e 
(S

C
F

M
) 

&
 T

em
p

er
at

u
re

 (
F

)

0

5

10

15

20

25

P
M

2.
5 

E
m

is
si

o
n

 R
at

e 
(g

/h
r)

O
2 

&
 C

O
2 

(P
er

ce
n

t)

NOx
CO
FlowRate
Temp
PM2.5
O2
CO2

 
Figure E.14.  Emission and flow rate behavior for 1992 Freightliner truck (ID#14). 
Note:  L-rpm = 600 and H-rpm = 1000. 



 146

(Cold-Start) AC-On
 L-rpm

AC-Off
 L-rpm

AC-Off
 H-rpm

AC-On
 H-rpm

0

50

100

150

200

250

300

350

400

09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30

Time (hh:mm)

C
O

 &
 N

O
x 

E
m

is
si

o
n

 R
at

es
 (

g
/h

r)
F

lo
w

 R
at

e 
(S

C
F

M
) 

&
 T

em
p

er
at

u
re

 (
F

)

0

5

10

15

20

25

30

P
M

2.
5 

E
m

is
si

o
n

 R
at

e 
(g

/h
r)

O
2 

&
 C

O
2 

(P
re

ce
n

t)

NOx
CO
FlowRate

Temp
PM2.5
O2
CO2

 
Figure E.15.  Emission and flow rate behavior for 2004 Freightliner truck (ID#15). 
Note:  L-rpm = 600 and H-rpm = 750. 
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Figure E.16.  Emission and flow rate behavior for 1999 Freightliner truck (ID#16). 
Note:  L-rpm = 600 and H-rpm = 1000. 
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Figure E.17.  Emission and flow rate behavior for 2003 Freightliner truck (ID#17). 
Note:  L-rpm = 700 and H-rpm = 1000. 
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Figure E.18.  Emission and flow rate behavior for 1997 Freightliner truck (ID#18). 
Note:  L-rpm = 600 and H-rpm = 1000. 
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Figure E.19.  Emission and flow rate behavior for 2003 Mack truck (ID#19). 
Note:  L-rpm = 800 and H-rpm = 1000. 
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Figure E.20.  Emission and flow rate behavior for 1997 Freightliner truck (ID#20). 
Note:  L-rpm = 750 and H-rpm = 1000. 
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Figure E.21.  Emission and flow rate behavior for 2003 Freightliner truck (ID#21). 
Note:  L-rpm = 700 and H-rpm = 1000. 
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Figure E.22.  Emission and flow rate behavior for 1999 Freightliner truck (ID#22). 
Note:  L-rpm = 800 and H-rpm = 1000. 
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Figure E.23.  Emission and flow rate behavior for 2003 Mack truck (ID#23). 
Note:  L-rpm = 800 and H-rpm = 1000. 
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Figure E.24.  Emission and flow rate behavior for 2000 Mack truck (ID#24). 
Note:  L-rpm = 650 and H-rpm = 1000. 
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Appendix F 

Calibration Data for ECOM and DataRAM 

 



 152

 
 
 
 
 

Table F.1:  Calibration Data for ECOM Analyzer using EPA Protocol Calibration Gases. 

Note:  All units are in parts-per-million (ppm) except where the percent (%) sign is shown. 
 
 
 
 
 
 

Reference # 88-87025 88-86994 88-86967

Balance Nitrogen Nitrogen Nitrogen

Component CO NO NOx NO NO2 SO2 CO NOx SO2 CO2% THC H2O O2% N2

Analyzed 100.1 493 90.6 - - 99.5 0.5 0.1 0.1 1 0.1 5 25.5-21.5 Balance

05/27/2004 100 489 91 6 85 100 0 0 0 1.8 - - 18.5 -

07/16/2004 100 501 89 5 84 102 0 0 0 1.8 - - 18.5 -

08/02/2004 100 493 91 2 89 98 0 0 1 1.8 - - 19.5 -

08/17/2004 101 503 90 6 84 95 0 1 0 1.8 - - 18.6 -

09/09/2004 100 496 89 7 82 98 0 1 0 2.6 - - 17.5 -

11/15/2004 100 503 89 9 80 100 5 3 0 0.3 - - 20.6 -

11/23/2004 99 506 89 3 86 89 0 1 0 0.3 - - 20.7 -

12/09/2004 101 496 95 1 94 103 0 1 0 0.3 - - 20.7 -

Average 100.1 498.4 90.4 4.9 85.5 98.1 0.6 0.9 0.1 1.3 - - 19.3 -

Stdev 0.64 5.80 2.07 2.70 4.34 4.45 1.77 0.99 0.35 0.90 - - 1.23 -

%RSD 0.64 1.16 2.29 55.3 5.08 4.54 - - - - - - - -

Avg % Difference 
from Standard

-0.02 -1.09 0.25 - - 1.38 - - - - - - - -

88-86724

Air, CEM Zero Grade

88-87145

Air
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Table F.2:  Gravimetric Calibration Data for DataRAM Analyzer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes:  Units for PM2.5 and total PM are in milligrams (mg). 
 
 

Filter Color Filter Code Date Truck ID Cal Factor PM2.5 PM>2.5 Total PM
Sampling 

Time (min)
Ratio 

2.5/Total

NA NA 1 0.152 2.2 NA NA 211.9 NA
NA NA 1 0.148 4.1 NA NA 260.8 NA

Gray 1A 10 3.409 1.4 0.8 2.2 155.8 0.64
Black 1B 10 1.710 1.4 0.4 1.8 214.5 0.78

Black 2A 22-Aug 9 1.221 1.7 0.5 2.2 349.8 0.77
Black 2B 23-Aug 10 1.621 2.2 0.4 2.6 314.8 0.85

Gray 3A 24-Aug 11 3.616 1.6 0.6 2.2 422.5 0.73
Gray 3B 25-Aug 12 1.126 1.4 0.7 2.1 118.0 0.67
Gray 4A 26-Aug 12 1.115 3.4 0.8 4.2 359.5 0.81
Gray 4B 27-Aug 13 5.028 1.2 0.4 1.6 368.5 0.75
Beige 5A 10-Sep 14 5.322 0.5 0.6 1.1 361.0 0.45

LtBrown 6A 11-Sep 14 4.391 4.1 1.1 5.2 605.7 0.79
Brown 6B 12-Sep 14 5.198 2.0 0.9 2.9 610.2 0.69
Black 5B 22-Sep 1 0.465 3.8 0.9 4.7 380.8 0.81
Black 7A 06-Nov 15 1.232 3.7 0.3 4.0 394.8 0.93
Gray 7B 09-Nov 16 1.179 1.5 0.2 1.7 441.8 0.88

LtBrown 8A 10-Nov 17 2.690 0.6 0.5 1.1 451.8 0.55

Brown 8B 11-Nov 18 2.684 4.1 0.8 4.9 451.8 0.84
Gray 9A 12-Nov 19 1.713 0.5 0.5 1.0 459.8 0.50

Gray 9B 13-Nov 19 3.230 1.1 0.3 1.4 454.8 0.79
Brown 10A 14-Nov 20 2.277 2.5 0.1 2.6 504.7 0.98

Beige 10B 16-Nov 21 6.791 0.8 0.4 1.2 451.8 0.67
Black 11A 17-Nov 22 0.638 6.1 1.8 7.9 451.5 0.77
Gray 11B 18-Nov 23 2.539 0.4 0.6 1.0 451.8 0.40

LtBrown 12A 19-Nov 24 3.972 1.2 0.4 1.6 453.0 0.75
Average= 2.539 Average= 0.729

Stdev = 1.802 Stdev = 0.145
%RSD = 71.0 %RSD = 19.9

n = 25 n = 23

23-Jun

21-Aug
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Appendix G 

DataRAM Sample Filter Spectra 
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Figure G.1.  Composite spectrum for 1997 Freightliner truck (ID#20). 
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Figure G.2.  Composite spectrum for 2003 Freightliner truck (ID#21). 
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Figure G.3.  Composite spectrum for 1999 Freightliner truck (ID#22). 
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Figure G.4.  Composite spectrum for 2003 Mack truck (ID#23). 
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