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ABSTRACT 

This dissertation focuses on the development of novel generation and microwave scattering 

diagnostic techniques for small volume plasmas.  The small volume plasmas presented in this work 

fall under the two generalized categories: 1) laser-induced plasmas and 2) non-equilibrium 

microdischarges.   

Chapter I presents the application of microwave scattering theory to laser-induced breakdown in 

air.  The MIE solution to Maxwell’s equations is employed to reveal three distinct phases of the 

evolution of the laser-induced breakdown in air.  Chapter II presents a novel method of quantifying 

thresholds for laser-induced breakdown.  These thresholds are established via total electron 

number measurement from dielectric calibration of microwave scattering.  Chapter III presents 

high-repetition-rate (HRR) nanosecond laser pulse train scheme for laser ignition.  Demonstration 

of the ignition of combustible gaseous mixtures is shown to have an order-of-magnitude reduction 

in per-pulse energy using the HRR LI method over traditional laser ignition methods. 

Chapter IV presents ion-kinetic measurements of a laser induced plasma in sodium-argon and 

sodium-air gaseous mixtures.    Coherent microwave Rayleigh scattering (Radar) from Resonance 

Enhanced Multi-Photon Ionization (REMPI) is utilized for the measurement of sodium ion neutral 

stabilized and cluster dissociative recombination rates.  Chapter V presents rotational temperature 

measurements in a DC microdischarge produced in air.  Radar REMPI measurements of O2 

rotational temperature is performed at eight axial locations between pin-to-pin electrodes.  Chapter 

VI presents relative concentration measurements of atomic oxygen in DC and pulsed Discharges.  

Relative atomic oxygen concentrations were obtained via Radar REMPI.  The effects of pressures, 

gas composition, and discharge voltage were explored for the DC and pulsed discharges.  

Comparisons between two-photon absorption laser induced fluorescence (TALIF) and Radar 
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REMPI techniques were made for atomic oxygen concentration measurements in a pulsed 

discharge.  Chapter VII presents a method of reducing the breakdown voltage of a DC 

microdischarge via metal nanoparticle seeding.  Reductions in the breakdown voltage were seen 

to be as high as 25% for a PD scaling of 40 Torr-cm from the seeding of iron and aluminum 

nanoparticles into the discharge gap. 
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INTRODUCTION  

There is an ever growing number of small volume plasma applications in engineering disciplines.  

Small volume plasmas have characteristic lengths of a few millimeters down to 10’s of microns 

that lead to many unique properties.  Small volume plasmas produced by high intensity laser beams 

are broadly categorized as laser-induced plasmas, but they may manifest from one or more physical 

mechanism including: avalanche ionization (AI), direct multiphoton ionization (MPI), tunneling 

ionization (TI), and resonant enhanced multiphoton ionization (REMPI).  Typically, a small 

volume plasma generated by electric fields produced by high-voltage direct current (DC), radio 

frequency (RF), or microwave sources is termed a microdischarge.  In this work, unique 

approaches for the generation and microwave scattering diagnostics of these two types of small 

volume plasmas are explored. 

Laser-induced plasmas have been extensively studied since the 1960s when laser sparks or laser-

induced breakdown were first observed.[1-5]  The application of laser-induced breakdown to 

energy deposition, material processing, diagnostics, and combustion have fueled this research.  

Flow control through the energy deposition of laser-induced plasmas has been proposed.[6, 7]  In 

material processing, laser-induced plasmas have been used for thin film depositions.[8, 9]  Laser 

Induced Breakdown Spectroscopy (LIBS) is a diagnostic technique that has been utilized in 

determining material compositions in the solid, liquid, and gaseous phases.[10-14]  Laser-induced 

spark ignition has been shown to have many advantages over traditional combustion systems.[15, 

16] 

Laser-induced breakdown begins with the generation of seed electrons via multiphoton ionization 

(MPI) process, in which a gaseous atom or molecule simultaneously absorbs multiple photons to 

be ionized.[17]  The seed electrons are then accelerated by the beam’s electromagnetic field via 
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the inverse Bremsstrahlung effect.  If a sufficient field is applied, the electrons are accelerated to 

energies that cause electron impact ionization upon collisions with the neutral gas atoms and 

molecules.  The newly liberated electrons then are accelerated by the field leading to an electron 

avalanche ionization (EAI) process during the laser pulse duration.  The EAI process manifests as 

a visible laser spark which emits light and heats the surrounding medium producing a shock wave 

that propagates from the breakdown region.  Various studies have focused on the effects of a range 

of parameters including those of the laser beam (i.e. laser wavelengths[18-20], laser pulse widths 

[21, 22], focal areas[23]),  and gas pressures [24], and other gas properties on the laser-induced 

gas breakdown process with various diagnostics such as emission spectroscopy[25, 26], 

interferometry[27, 28] and Thomson scattering.[29, 30]  These parameters have been shown to be 

related to either the MPI or EAI phases of the laser-induced gas breakdown process [31].  

Even with years of extensive research, knowledge on the generation of laser-induced breakdown 

in air is still lacking key details, such as electron number density.  Primarily, optical diagnostic 

techniques, such as optical emission spectroscopy and stark shifting, have been applied to laser-

induced breakdown in air to determine plasma, thermodynamic, and transport properties.[32-34]  

Unfortunately, the limitations of achievable temporal and spatial resolutions of these methods 

make it difficult to study the avalanche ionization phase in laser-induced breakdown.  Traditional 

microwave measurement methods, such as absorption and interferometry, are not effective due to 

the small dimensions of the plasma relative to the microwave wavelength. 

Until recently the initiation of laser-induced gas breakdown was commonly detected by human 

eyes, photodiodes, and/or cameras with a probability-based criterion[21].  Typically, this criterion 

is the visible observation of a glow or flash in the focal region for a probability of 10%-50% of the 

laser firings.[20]  Such criteria are qualitative in nature and maybe inaccurate.  A visible spark 
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produced by an intense laser beam generally occurs at the end of or after the laser pulse duration 

which cannot clearly reveal the MPI and EAI processes and their corresponding effects during the 

laser-induced gas breakdown processes.  Moreover, at higher pressures self-absorption becomes 

prominent, possibly leading to inaccurately high intensity threshold measurements. 

One of the main applications of laser-induced plasma is laser ignition (LI) in combustion systems.  

LI is an advanced ignition method that has several advantages over traditional electric spark plugs 

and gaseous torches for fuel-lean, high-pressure ignition environments [16, 35-38]. It also provides 

precise ignition timing, large penetration depth, and ignition at desired location(s) for optimal 

combustion performance. LI has been used for a wide variety of applications, including ignition 

of gaseous fuels for internal-combustion engines [39] and rocket engines [40] and initiation of 

nuclear fission/fusion reactions [41]. There is particular interest in the use of LI for stationary gas 

engines owing to the possibility of increased engine efficiency and reduced NOx emission [38]. 

Additionally, there is interest in using laser sparks for ignition of aircraft gas turbine engines to 

achieve rapid relight [42].  

Among the available LI methods, the non-resonant breakdown LI technique has been the most 

widely used because of its simplicity in implementation and rapid ignition [16, 35-38]. In the Non-

resonant breakdown LI process, seed electrons are generated through the non-resonant, multi-

photon ionization process using a high-intensity laser pulse (intensity must exceed the air-

breakdown threshold ~1011 W/cm2). Subsequently, the electrons are accelerated via the inverse-

bremsstrahlung process with the same intense pulse.  Collisions between these accelerated 

electrons and other molecules liberate additional electrons and induce an electron avalanche that 

forms a laser-induced plasma.  Joule heating of the surrounding combustible gaseous mixture and 

the production of highly reactive chemical intermediates leads to localized thermal runaway. Non-
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resonant LI pulse energy [i.e, minimum ignition energy (MIE)] varies with the applications but, in 

general, is ~10-20 mJ/pulse for natural-gas engines [43] and ~30-60 mJ/pulse for aero-turbine 

engines [44]. The MIE increases significantly when the fuel/air mixture becomes lean (i.e., 

equivalence ratio φ <0.7) [16, 35, 36, 44]. Additionally, the MIE increases with flow rate and flow 

turbulence level [45].  

This conventional LI technique faces stiff challenges when implemented in practical engines and 

combustion devices where optical access is typically limited. During the past decade, researchers 

attempted to develop a fiber-optic beam-delivery system for LI [46-52]. However, because of the 

high-energy requirements for conventional LI, it remains difficult to deliver the required laser 

beam through flexible optical fibers for practical engine applications. A solid-core silica fiber with 

large core size (~1 mm) can transmit ~10 mJ/pulse [47-49, 53], which is barely sufficient for 

ignition. Hollow-core fibers, because of the absence of a solid core that enables a high damage 

threshold, have been used for delivering the required laser beam for ignition [48, 50]. However, 

since this fiber is very sensitive to bending loss, it not ideal for practical applications. Mullett et 

al. investigated various available fibers for LI and came to the conclusion that until significant 

advances in the development of optical fibers are made, the ability to reliably deliver the laser 

beam for single-pulse LI will be severely limited in real-world applications [48]. Recently 

Beaudou et al. [51] and Dumitrache et al. [52] demonstrated the delivery of high-energy laser 

pulses (~4 mJ/pulse of 10-ns-duration or ~30 mJ/pulse of 30-ns-duration) while maintaining high 

beam quality using a special hollow-core, photonic crystal fiber for ignition of a combustible 

mixture limited to near-stoichiometric conditions (φ ~1). In order to achieve LI in fuel lean or high 

speed flows, while not exceeding the fiber damage threshold, a deviation from the traditional single 

pulse methods may be necessary.  
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Osborne et al. [40] and Cheng et al. [54] report enhancement in igniting lean fuel/air mixtures 

using dual pulse (pulse spacing ~10-200 ns). Osborne et al. showed that extension of the laser 

spark lifetime and optimization of the local energy deposition are highly dependent on delays 

between two pulses [40]. Zhang et al. [55]showed that in atmospheric-pressure air, plasma 

enhancement can be achieved with two pulses that are separated by > 50 μs. 

 Laser-induced plasmas may also serve as a testbed laboratory plasma for limited study of 

ion kinetics.  One example of such is presented by coherent Rayleigh scattering from a laser-

induced plasma generated by resonance enhanced multiphoton ionization (REMPI) of vaporized 

alkali metals.  The ion kinetics of alkali metals are of particular interest to the aerospace 

community.  The unique combination of the relatively low ionization potential of alkali metals and 

the high temperatures behind the bow shock of a hypersonic vehicle in flight allows for rapid 

vaporization and thermal ionization of alkali metals.[56]  Studies have shown that the electrical 

conductivity of the flow near the surface of a hypersonic vehicle can be augmented by seeding the 

flow with alkali metals.  This in turn would allow for better control of a hypersonic vehicle via 

magnetohydrodynamics (MHD).[57, 58] Additionally, hypersonic and atmospheric reentry 

vehicles have a fair amount of alkali metal impurities in the vehicle surface.  During the course of 

hypersonic flight or atmospheric reentry a significant amount of these impurities are inevitably 

vaporized and ionized in the flow.[57-63]  Alkali cations play a significant role in the formation 

of the plasma near the vehicle’s boundary termed the plasma sheath.  The plasma sheath leads to 

many adverse changes in the vehicle’s communication and navigation capabilities such as loss of 

telemetry, GPS, and radio “blackout”.[64, 65]  Also, the plasma sheath can lead to significant 

effects in the vehicle’s aerodynamic performance, stability, and thermal protection system.[63, 66, 

67] Developing a better understanding of the fundamental plasma chemistry involved in the 
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recombination processes for alkali metal ions is of vital importance to hypersonic and plasma 

dynamic research. 

 Alkali metal cations generally have a low radiative recombination rate.  Thus at higher 

pressures in atmospheric gases, such as those around a hypersonic vehicle, the plasma 

neutralizations is controlled primarily by three-body processes.[68]  These processes include 

electron (e- as the third body) and neutral stabilized collisions as well as chaperone mechanisms.  

The lack of knowledge of these processes is heavily due to the difficulty to make quantitative 

measurements of the recombination rates.  Past measurements have involved techniques such as 

ion storage rings, stationary afterglow (SA), and flow afterglow (FA).  The main drawbacks of 

these techniques come in the form of a limited range of experimental pressures and temperatures.  

Additionally, all of these techniques use ionization methods that lead to ions others than those that 

are desired, which naturally complicates the overall chemistry.  Primarily, Penning ionization of 

Ar by a He microwave discharge is used in these apparatuses. 

 Coherent microwave Rayleigh scattering (Radar) from small volume plasmas generated by 

Resonance Enhanced Multiphoton Ionization (REMPI) is a highly selective technique that does 

not require the extraction of ionic species or electrons from the plasma.  Radar REMPI has rapidly 

grown as a diagnostic technique since first implemented in 2006.[69, 70]  This is due largely to 

the benefits of separating the optical plasma generation from the standoff microwave detection.  

This allows the Radar REMPI system to be simpler to implement and less sensitive to the external 

environment than fully optical techniques.  REMPI is a non-linear optical process in which m 

photons are simultaneously absorbed leading to the electronic excitation of a target atomic or 

molecular species.  This is followed by an n photon ionization of the electronically excited species.  

Thus, REMPI transitions are often denoted as an m+n photon process.  Radar consist of microwave 
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scattering from the electrons in the laser-induced REMPI plasma.  When the size of the microwave 

wavelength is larger than the characteristic length of the plasma and the skin depth of the plasma 

is much larger than the characteristic length of the plasma, then the microwave scattering falls 

under the term coherent Rayleigh scattering.  Under such conditions, Radar from a REMPI plasma 

may be treated as an oscillating point dipole.  Such a scattering process is analogous to light 

scattering off of atoms or molecules. 

 Detection of trace species such as NO, CO, Xe, Ar in static gas mixtures[71]  and CH3 in 

a methane/air flame[72] via Radar REMPI has been demonstrated.  Utilizing the decay of the 

Radar REMPI signal has been used for kinetic measurements.  This has been demonstrated by 

electron loss rate measurements in air[73] and sodium-argon cluster ion recombination rates[74].  

O2 rotational temperature measurement via Radar REMPI has been used to measure gas[75], 

flame[76], and DC discharge[77] temperatures.  Atomic oxygen concentration measurements in a 

flame were performed using Radar REMPI.[78] 

The advent of stable microdischarges dates back to the work of White in the 1950s [79] and gained 

much attention in spatially confined cavities in the 1990’s.[80, 81]  Numerous applications, have 

been investigated. Microdischarge devices take advantage of the scaling of breakdown voltage 

with the product of pressure and gap distance (pd) as described by Paschen’s Law.[82] Typically, 

to maintain the stability of “normal-glow” discharges at atmospheric pressure, the inter-electrode 

separation is confined to distances on the order of 1 mm or less.[83] This small spacing leads to 

the generation of a non-equilibrium or “cold” plasma discharge.   

A striking property of these non-equilibrium plasmas is that the electron temperature, Te, is often 

several orders of magnitude larger than the gas temperature, Tg.[83, 84]  This excess electron 

energy can be channeled to drive specific optical or chemical processes at relatively low gas 
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temperature, which opens microdischarges to the wide range of applications previously mentioned. 

Non-equilibrium plasma discharges in general have potential applications in plasma assisted 

combustion [85-87], flow control [86], biomedical research [88-90], manufacturing [91], arc jet 

flow heating [84], vacuum ultra-violet (VUV) light sources [92], and nanoparticle synthesis[93, 

94].  Due to the diversity of the applications of non-equilibrium plasma discharges there are many 

experimental difficulties in implementing diagnostics.  First, many non-equilibrium plasma 

discharge devices have small volumes and limited optical access.  Wide ranges of pressures from 

vacuum to multiple atm and temperatures from room to several thousand kelvin.   

Although tremendous progress has been made in the area of plasma diagnostics in 

microdischarges[84], many fundamental properties, such as temperature, are still not satisfactorily 

measured. A non-thermal plasma is described, not by a single temperature, but by a set of 

temperatures including electron temperature (Te) relating to the kinetic energy distribution of the 

electrons, as well as several molecular temperatures, Ttrans, Tvib, and Trot relating to the translational, 

vibrational, and rotational energies of the molecules. Typically the temperature set in a non-

thermal plasma will have the characteristic of Te >> Tvib > Ttrans = Trot, where Ttrans and Trot are 

commonly identified as the gas temperature, Tg. The gas temperature in these non-thermal plasmas 

can range from near room temperature for monatomic gases such as argon to above 2000K in 

molecular gases such as air,[83, 95] and is highly dependent on discharge source parameters such 

as electrical current. The most widely published temperature diagnostic works involve determining 

rotational temperature by optical emission spectroscopy (OES) of the N2 second positive 

system.[96-98]  Unfortunately, the spatial and temporal resolutions achievable by these methods 

have stringent limitations. Additionally, OES is limited for certain species in microdischarges.[99] 

Another temperature measurement using Stark shifting analysis of the Hβ transition involves 
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hydrogen seeding, which complicates the overall plasma composition.[100] Cavity Ringdown 

spectroscopy is a line-of-sight temperature measurement which has limited spatial resolution.[99] 

Overall, the diagnostic tools available for microdischarge analysis in atmospheric air are scarce 

and restrict, in some way, what can be accurately derived from the experimental process. 

Production of chemical intermediates such as radical and atomic species greatly influence many 

aspects of non-equilibrium plasma discharges and their nearby environment such as: kinetics, 

electron density, and thermochemistry.  Primarily the two techniques used to determine radical 

and atomic species concentrations in discharge environments is tunable diode laser absorption 

spectroscopy (TDLAS) and two-photon absorption laser induced fluorescence (TALIF).  TDLAS 

has been used to measure a wide range of radical species concentrations and kinetics for non-

equilibrium plasma discharges in molecular gas mixtures [101-103].  The major limitation of 

TDLAS is that it is a line integrated technique so it cannot be used to probe species in 

inhomogeneous environments.  TALIF has been used to measure atomic species such as: H, O, 

and N.[99, 104, 105]  TALIF is not applicable to high pressure environments due to rapid 

collisional quenching of the excited states.  Both fully optical techniques can be difficult to 

implement in “real” facilities such as arc jets. 

The mechanisms for breakdown in gas discharges have been studied extensively for over a 

century.[106]  It is well known that the voltage required to initiate breakdown of a gaseous DC 

discharge depends strongly on the pressure P multiplied by the distance D of the gap between the 

electrodes, PD, as described by Paschen’s Law.[82]  For a gas at atmospheric pressure, by limiting 

the inter-electrode separation to a distance of less than a millimeter, it is possible to produce a 

stable “normal-glow” microdischarge.[83]  Although such a microdischarge is spatially confined 

compared to a traditional low pressure discharge, the normal glow properties of a non-thermal 
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discharge still apply, such as an electron temperature, Te, which is several orders of magnitude 

larger than the gas temperature, Tg.[83, 84, 107]  Many applications have been explored to exploit 

this excess electron energy and drive optical or chemical processes such as: vacuum-ultraviolet 

light sources[92], biomedical systems [89, 90], nanoparticle synthesis[93, 94], and plasma 

ignition[87].  However in atmospheric air, even with a small inter-electrode separation of less than 

1 mm, a sizeable voltage (upwards of 4 to 5 kV) may still be required to initiate breakdown.   

A significant reduction of the breakdown threshold within a microdischarge could be a 

breakthrough that enables numerous applications.  Such a breakdown voltage reduction could 

allow for the use of smaller, cheaper, and safer power supplies.  One method of reducing the 

voltage required to initiate breakdown is to generate seed electrons into the discharge region.  

Breakdown under these conditions is termed “under-voltage breakdown”.  Previously studied 

techniques for achieving under-voltage breakdown have included electron seeding by illumination 

of the cathode by ultraviolet (UV) light[108-110], resonance enhanced multi-photon ionization 

(REMPI) by UV pulsed lasers [111, 112], and the use of secondary electrodes or spark plugs[113].  

The major limitation of these methods is that they all require a secondary energy source in order 

to produce the seed electrons which can increase the overall cost, complexity, and weight of the 

microdischarge system. 

On the other hand, the effect of solid particle contamination, whether intentionally introduced or 

not, on the breakdown process in air gaps has been explored previously.  Unwanted solid particle 

contaminants in commercial electrical systems can lead to arcing and failure of transmission lines 

and gas insulation systems.  Sand and dust with particle sizes above several tens of microns were 

shown to initiate breakdown across gap lengths of several centimeters.[114, 115]  The previous 

works concluded that the sand and dust particles in the inter-electrode gap played a negligible role 
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in the volume processes during breakdown; however, the formation of a thin contaminant layer on 

the cathode enhanced secondary electron emission and significantly reduced the breakdown 

voltage in some circumstances.  Other works have shown that larger (100s of microns to 100s 

mms) conductive particles in an inter-electrode air gap can play a significant role in reducing 

breakdown voltage, time-lag of impulses, and breakdown probability.[116-118]  These previous 

works have concluded that the degree of influence that the solid particles have on the breakdown 

process depends on both the discharge properties, namely polarity and field uniformity, as well as 

properties of the particles such as conductivity, shape, size, concentration, and position relative to 

the electrodes. 

In Chapter 1, microwave scattering theory is applied to measurements from transient small volume 

plasmas, such as laser sparks in air, to discover their evolution process in its full cycle.[55, 119]  

From these measurements, it has been hypothesized that the laser spark evolution process can be 

characterized by three unique phases.  First, an initial rise in scattered radiation intensity is caused 

by avalanche ionization.  This is followed by a decrease in intensity due to microwave shielding 

effects caused by the decrease of the skin layer thickness relative to the plasma’s characteristic 

length.  Finally, as the plasma volume beings to expand, fewer electrons are shielded resulting in 

an increase in intensity.  The computational results presented validate the existence of these three 

distinct phases of laser spark evolution seen in experimentation.[55] 

Chapter 2 presents a new quantitative definition of the threshold intensity for generating laser-

induced breakdown in air.  This threshold is based on the measurement of total electron number 

during the onset of the laser-induced breakdown process.  The free electrons produced by laser-

induced breakdown were quantitatively measured by dielectric-calibrated coherent microwave 

scattering.  The electron generation and its temporal evolution were monitored after the laser onset.  
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Threshold measurements were taken in air at pressures ranging from atmospheric to 40 barg. These 

thresholds are compared to the qualitative observation and probability based criteria.  Additionally, 

the effects of laser wavelength and pulse duration on the breakdown threshold were explored for 

the 1st, 2nd, and 3rd harmonics of a Nd:YAG laser (i.e., 1064 nm, 532 nm, and 355 nm) and pulse 

durations of 10 ns and 100 ps. The quantitative breakdown thresholds were confirmed that the 

breakdown threshold decreases with the increase of pressure and/or laser photon energy (shorter 

wavelength), which is consistent with the previous assessments. 

Chapter 3 presents a demonstration of laser ignition (LI) of combustible gaseous mixtures with 

order-of-magnitude reduction in per-pulse energy can be achieved using a high-repetition-rate 

(HRR) nanosecond laser pulse train. The HRR pulses are generated from a Nd:YAG-based burst-

mode laser (Quasimodo, Spectral Energies)[120]. The HRR (10-100 kHz) laser pulse train induces 

a weakly-ionized plasma typically within the first few pulses.  The subsequent laser pulses enhance 

the plasma through energy deposition and leads to sustained ignition.  Generally, this approach 

can be viewed as an extension of the dual pulse technique with the number of pulses easily 

changeable from a few to multiple of tens.  The HRR LI approach increases the ignition probability 

of lean combustible mixtures in high-speed flows while maintaining low individual pulse energies. 

In Chapter 4, coherent microwave Rayleigh scattering (Radar) from Resonance Enhanced Multi-

Photon Ionization (REMPI) is utilized for the measurement of sodium ion neutral stabilized and 

cluster dissociative recombination rates.  The separation of the ionization and detection 

mechanisms greatly simplifies the experimental procedure.  Radar REMPI as a stationary 

technique allows for a wide range of experimental temperatures and pressures including those 

above atmospheric conditions.[119, 121-124] REMPI allows for selective ionization of the sodium 

and minimizes all other cation species generated in the plasma.  Coherent microwave scattering 
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from the electrons in the decaying plasma allows in-situ measurement throughout time without 

extracting electrons or cations.  Recombination rates were then deduced using a least-squares 

Monte Carlo algorithm (LSM). Neutral stabilized recombination rates for sodium ions in argon 

and nitrogen buffer gases along with the dissociative recombination rates of sodium-argon and 

sodium-nitrogen cluster ions are presented.  The current model does not take into account 

backwards reaction of cluster ion formation making the presented rates only at best a rough 

estimation. 

In Chapter 5, Radar REMPI measurements of local O2 rotational temperature within an 

atmospheric air microdischarge are presented. Radar REMPI has previously been demonstrated 

for local rotational temperature measurements of molecular oxygen in static cell[75] and flame[76] 

environments. These measurements are performed at eight axial locations between pin-to-pin 

electrodes; this allowed for an axial temperature distribution within the discharge region to be 

determined. 

Chapter 6 presents relative atomic oxygen species concentration measurements in a low pressure 

O2/He DC and pulsed discharge via Radar REMPI.  A 2+1 REMPI scheme of atomic oxygen was 

utilized.  The technique by which dielectric calibration can be used to obtain absolute concentration 

measurements is discussed.  The influence of gas composition, laser pulse energy, and pressure on 

the measurement technique will be explored.  It will be shown that for prescribed laser intensities 

direct measurement of atomic oxygen can be separated from photo-dissociation.  Methodology for 

separating electrons generated via the REMPI process from those present in the DC and pulsed 

discharge will be presented. 

Chapter 7 demonstrates how the seeding of metal nanoparticles can be utilized to reduce the 

voltage required to initiate breakdown in an air DC microdischarge.  Reductions in the breakdown 
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voltage were seen to be as high as 25% for a PD scaling of 40 Torr-cm for the seeding of iron and 

aluminum nanoparticles.  High-speed chemiluminescence imaging of the discharge region 

revealed that the breakdown process was enhanced by a reduction in the required voltage from 

nanoparticle seeding, and then heating from the discharge can lead to ignition of some of the 

nanoparticles as they flowed through the discharge.  The use of scanning electron microscopy 

(SEM) gave detailed information regarding the particle size, shape, and oxidation distributions of 

the metal nanoparticles.  Further use of ex-situ diagnostic techniques, such as SEM analyses, could 

allow for the development of empirical correlations between particle characteristics and reduction 

in the breakdown voltage.  Visual evidence of particle charging being the most likely mechanism 

for breakdown voltage reduction and subsequent reduction of the effective distance between the 

electrodes is been presented. 
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Abstract 

In this chapter, microwave Mie scattering from a laser-induced plasma in atmospheric air is 

computed.  It shows that the scattered microwave transitions from coherent Rayleigh scattering to 

Mie scattering based on the relative transparency of the laser-induced plasma at the microwave 

frequency.  The microwave penetration in the plasma alters from total transparency to partial 

shielding due to the sharp increase of the electron number density within the avalanche ionization 

phase.  The transition from Rayleigh scattering to Mie scattering is verified by both the temporal 

evolution of the scattered microwave and the homogeneity of polar scattering plots.   

Introduction 

Since the 1960s laser spark generation or laser breakdown has been studied extensively.[1, 2]  It 

has been widely used in experiments involving energy deposition, material processing, 

diagnostics, and combustion etc.  Energy deposition via laser-induced plasmas as a method of flow 
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control has also been explored.[3, 4]  In material processing, laser-induced plasmas have been used 

for thin film depositions.[5, 6]  Laser Induced Breakdown Spectroscopy (LIBS) is a diagnostic 

technique that has been utilized in determining material compositions in the solid, liquid, and 

gaseous phases.[7-11]  Laser-induced spark ignition has been shown to have many advantages 

over traditional combustion systems.[12, 13]   

Even with years of extensive research, the evolution of laser sparks in air is still lacking key details, 

such as electron number density.  Primarily, optical diagnostic techniques, such as optical emission 

spectroscopy and stark shifting, have been applied to laser sparks in air to determine plasma, 

thermodynamic, and transport properties.[14-16]  Unfortunately, the limitations of achievable 

temporal and spatial resolutions of these methods make it difficult to study the avalanche 

ionization phase in the spark.  Traditional microwave measurement methods, such as absorption 

and interferometry, are not effective due to the small dimensions of the plasma relative to the 

microwave wavelength. 

Microwave scattering measurements have been applied to transient small volume plasmas, such 

as laser sparks in air, to discover their evolution process in its full cycle.[17] [18]  From these 

measurements, it has been hypothesized that the laser spark evolution process can be characterized 

by three unique phases.  First, an initial rise in scattered radiation intensity is caused by avalanche 

ionization.  This is followed by a decrease in intensity due to microwave shielding effects caused 

by the decrease of the skin layer thickness relative to the plasma’s characteristic length.  Finally, 

as the plasma volume beings to expand, fewer electrons are shielded resulting in an increase in 

intensity.  Additionally coherent microwave scattering measurements (Radar) have been combined 

with Resonance Enhanced Multi-Photon Ionization (REMPI) to determine species concentrations 

and rotational temperatures in flames.[19, 20]   
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In this chapter, microwave scattering theory will first be introduced along with plasma evolution 

modeling.  The computational results presented here validate the existence of three distinct phases 

of laser spark evolution seen in experimentation.[18]  

Theory 

Microwave Scattering from a Small-volume Plasma 

The laser-induced plasma is initially a small sphere, which is on the order of tens of microns and 

located near the laser focus.  This is much smaller than the wavelength of the incident microwave 

(a few centimeters).  The scattered microwave radiation from the plasma can be characterized by 

either the Rayleigh or the Mie scattering regime.  The determination of the scattering regimes 

depends upon the plasma transparency condition of δ>V0
1/3, where the skin layer thickness of δ is 

found from 



02

2
 , the plasma conductivity at the microwave frequency   is σω, and 

plasma volume is V0, respectively.  Assuming a spherical geometry for the laser induced plasma, 

the plasma transparency condition can be described by a  , where a is the sphere’s radius.   

If the plasma transparency criterion is satisfied, the scattering can be described by the Rayleigh 

approximation in the far field.  The distance between the microwave receiver horn and the plasma, 

R, is significantly larger than the microwave wavelength. The incident microwave causes a 

modulating charge separation leading to an oscillating induced point dipole.  The re-radiation from 

the point dipole forms the scattered microwave signal and exists in the Rayleigh regime.  

Microwave scattering in the Rayleigh regime is both coherent and isotropic, which makes it 

diagnostically favorable because the electric field of the scattered signal is linearly proportional to 

the total electron number inside the plasma.   
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However, if the plasma transparency criterion is not met, the scattering effect is described by 

general Mie scattering.  In this regime, the plasma can no longer be taken to be an induced point 

dipole so that the electric field of the scattered microwave is not directly proportional to the total 

electron number of the plasma.  Additionally, the skin layer thickness is smaller than the 

characteristic size of the plasma which causes some of the electrons to be shielded from the 

incident microwave radiation.  This shielding causes the scattered signal to have a reduction in its 

electric field and be anisotropic in nature. 

In a general, microwave scattering can be described by the Mie solution in both the Rayleigh and 

Mie regimes.[21]  In the Mie solution, the plasma conductivity at the microwave frequency and 

electric permittivity are given as  

 

σω =
e2neνeff

me(ω2+νeff
2 )

         (1) 

𝜖 = 1 −
𝑒2𝑛𝑒

𝜖0𝑚𝑒(𝜔2+𝜈𝑒𝑓𝑓
2 )

        (2) 

where e is the electron’s charge, me is the mass of an electron, ne is the electron number density 

inside the plasma, and the effective plasma collisional frequency of νeff, is the sum of the electron 

neutral and electron-ion (Coulomb) momentum exchange collisional frequencies; 0  is the 

vacuum permittivity. 

A depiction of microwave scattering in the Mie regime from a small-volume plasma can be seen 

in Figure 1.  The electric field of the incident microwave source propagates along the x-axis and 

oscillates along the z-axis while the laser producing the plasma propagates along the y-axis.  The 

spherical coordinates R, θ, and Φ are used to describe the position of the microwave receiver horn 

with respect to the plasma.  As can be seen in Figure 1, the electrons inside the skin layer thickness 
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, δ, oscillate in phase and reradiate due to scattering of the incident microwave radiation, I0.  The 

scattered signal is a function of both angular coordinates and time.  Beyond the skin layer 

thickness, electrons are shielded from the incident microwave radiation and remain unaffected. 

The first phase of the plasma evolution process occurs in the Rayleigh regime.  A time delay is 

seen until the total electron number reaches a threshold detectable by the microwave system.  

Following the time delay, the scattering intensity is then proportional to the square of the total 

electron number during the initial avalanche ionization phase and the collisional frequency can be 

estimated by the electron neutral collisional frequency.  The intensity of the scattered radiation 

continually rises until a peak value is reached and then begins to decreases.  This is the start of the 

second phase which occurs in the Mie regime.  In this phase microwave shielding effects act to 

reduce the intensity of the scattered signal making it no longer proportional to the total electron 

number squared.  Also, collisions due to Coulomb forces begin to play an increasingly important 

role in the collisional frequency of the plasma as time progresses. 

Additionally, with increasing conductivity, the field in the laser plasma is attenuated due to 

polarization screening as given by 

























2

0

0 1/


qEE ,         (3) 

where 0E  is the amplitude of the incident field; q  is the geometric factor (for the assumed spherical 

shape of the laser plasma, q = 1/3).  Polarization screening also reduces the intensity of the 

scattered signal and is automatically taken into account by the Mie solution.[22]  
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Plasma Dynamic Modeling 

In the optical breakdown calculation, several approximations were made.  The initial non-

equilibrium stage of avalanche ionization was neglected.  The conditions for local thermodynamic 

equilibrium (LTE) were assumed valid during the whole process of the optical breakdown 

development, as done in the previous work.[23]  The calculations were carried out using the same 

approximations as the simulation of a pulsed arc in air.[24-26]  The heat source is approximated 

by the formulas 
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where )(tPL  and LQ are the instantaneous power and total energy of the laser pulse which is 

dissipated in the gas via the heating, dissociation, ionization and radiation losses of the plasma. 

This absorbed energy is usually about 1-10% of the total energy of the laser pulse.  The simulations 

were conducted for cases of absorbed energies of 100, 200, and 400 µJ. 

One dimensional gas dynamics equations were solved in a spherical Lagrange coordinate system 

using the Brode algorithm.[27]  The equation of state took into account neutral and dissociated 

molecules, electrons, and ions both single and double ionized.  The total number of particles and 

the local instantaneous molar fractions of neutral and ion molar components were computed in the 

LTE approximation using Plooster’s algorithm.[24]  Energy loss by radiation was taken into 

account in the approximation of radiant heat transfer as in the prior model.26  The instantaneous 

local values of the electron number density ),( trne  
were determined in the ideal gas approximation 

for known local instantaneous pressure ),( trp  and the local instantaneous single and double ion 
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molar fractions. The instantaneous electron number density )(tne
 was averaged over a spherical 

volume with a radius of a equal to the effective radius of the laser beam: 
aree trntn


 ),()( . The 

average ne(t) was used in the calculation of microwave scattering by Mie theory.  

Results and Discussion 

Figure 2 shows the average electron number density, )(tne , of the simulated laser induced plasma 

for absorbed laser energies of 100, 200, and 400 µJ versus time.  It is apparent that in the early 

time frame, approximately the first 10 to 15 ns, there is a very rapid increase in electron number 

density due to avalanche ionization.  Following the end of the laser pulse, the electron number 

density begins to quickly decrease.  If the laser induced plasma existed entirely in the Rayleigh 

regime during its lifetime, the scattering intensity would follow a similar trend. 

However, Figure 3 shows the normalized microwave signal, via the Mie solution, from the 

simulated laser induced plasma for all three absorbed energy cases throughout time.  All presented 

computed results correspond to the assumed microwave frequency 122/  f GHz, as in 

experiments.[18]  There are essentially three distinct regions that characterize the scattered 

radiation intensity throughout time after the initial zero signal response.  The initial zero signal 

response is due to the fact that the total electron number has not yet reached the minimum 

detectable threshold of the microwave system.  This time delay is obviously dependent on the 

absorbed laser energy which causes the 400 µJ case to be the first to reach the threshold.  The first 

phase is the avalanche ionization which causes a rapid increase in the total electron number. This 

in turn causes a swift increase in microwave signal response.  The second phase begins when the 

signal reaches a peak value prior to reaching a maximum total electron number. The intensity then 

begins to decreases due to microwave shielding effects from the skin layer thickness.  Interestingly, 
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the intensity of the scattered microwave radiation is, in fact, higher in the 100 µJ than in the 400 

µJ case.  This is because the larger skin layer thickness in the 100 µJ case leads to the shielding of 

significantly fewer electrons from the incident microwave radiation.  Finally, in later time frames, 

as the plasma volume begins to expand the signal increases due to a reduction in the fraction of 

shielded electrons. 

The ratio of skin layer thickness to plasma radius of the simulated laser induced plasma and the 

normalized laser intensity profile throughout time can be seen in Figure 4. Skin layer thickness 

was calculated from 
f 
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)(t  was calculated by formula (1) with 
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 . Here ),( tr  is the local instantaneous static conductivity computed as 

suggested in previous work.[24]   

As seen in the Figure 4, the ratio of skin layer thickness to plasma radius falls off sharply prior to 

the time of the maximum laser intensity resulting in the peak scattered power occurring prior to 

the moment of maximum total electron number.  The 100 µJ case has the largest skin layer 

thickness to plasma radius ratio throughout time and thus experiences less of an effect from 

microwave shielding and correspondingly has a higher scattered power in later times as previously 

shown in Figure 3. 

Since the microwave scattering from the laser induced plasma lies in the Mie regime for the 

majority of its lifetime, it is important to show the anisotropic nature of the scattered radiation 

throughout time.  A plot of the normalized scattered signal from the simulated laser induced plasma 

throughout time, for receiver angles of 0, 45, and 60 degrees, is shown in Figure 5.  In early time 
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frames, the scattered intensities are roughly equal but quickly diverge due to the inhomogeneous 

nature of Mie scattering.  This shows the effect of the transition from Coherent Rayleigh to Mie 

scattering on signal response. 

Polar plots of the normalized intensity of the scattered signal versus the receiver horn angular 

position θ , with Φ held constant at 0º, from the laser induced plasma at times of 1, 5, 7.5, and 9.2 

ns are shown in Figure 6.  These key times show the angular dependence of scattering intensity 

both before and after the initial peak in intensity.  The isotropic Coherent Rayleigh Scattering can 

be seen in early time frames whereas the anisotropic Mie Scattering is highly evident in later time 

frames.  The scattering is highly homogenous until roughly 7.5 ns and quite inhomogeneous 

afterwards.  The change in homogeneity of these polar plots throughout time is further evidence 

showing the transition from Coherent Rayleigh to Mie Scattering. 

Conclusions 

 Through the implementation of microwave scattering theory and the modeling of the 

plasma evolution induced by a laser spark in air at atmospheric conditions, the apparent differences 

of Rayleigh and Mie scattering can be seen.  The signal response can be characterized by three 

distinct phases.  First, a rapid increase occurs due to avalanche ionization in the Rayleigh regime 

in the early stages of optical breakdown when the conductivity is relatively low.  This is followed 

by a decrease due to microwave shielding effects in the Mie regime. Finally, an increase as the 

plasma volume begins to expand and fewer electrons are shielded. This apparent transition from 

Coherent Rayleigh Scattering to Mie Scattering provides a logical explanation for the signal 

response seen in experimentation.  
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Appendix 

 

 

 

Figure 1.  Depiction of microwave Mie scattering from a laser-induced plasma.  The microwave 

is shielded from the plasma due to the skin layer thickness being smaller than the characteristic 

size of the plasma.  
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Figure 2.  Electron number density versus time of the simulated laser induced plasma for absorbed 

laser energies of 100, 200, and 400 µJ. 
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Figure 3.  Normalized scattered signal versus time (seconds) from the simulated laser induced 

plasma for absorbed laser energies of  100, 200, & 400 µJ. 
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Figure 4.  Ratio of skin layer thickness to plasma radius and normalized laser intensity profile 

versus time (seconds) of the simulated plasma for absorbed laser energies of 100, 200, & 400 µJ. 

Microwave frequency f=12 GHz. 
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Figure 5.  Normalized scattered signal versus time (seconds) from the simulated laser induced 

plasma for an absorbed laser power of 100 µJ and microwave receiver horn angles of 0º, 30º, & 

60º. 
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Figure 6.  Polar plots of the normalized scattered signal from the simulated laser induced plasma 

for an absorbed laser energy of 400 µJ at times of: (a) 1 ns ,(b) 5 ns , (c) 7.5 ns , and (d) 9.2 ns 

(includes experimental results at peak intensity). 
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CHAPTER II 

QUANTITATIVE MEASUREMENT OF ELECTRON NUMBER IN 

NANOSECOND AND PICOSECOND LASER-INDUCED AIR 

BREAKDOWN   
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Abstract 

In this chapter, we present quantitative measurement of total electron number in laser-induced air 

breakdown at pressures ranging from atmospheric to 40 barg, by 10 ns and 100 ps laser pulses.  A 

quantifiable definition for the laser-induced breakdown threshold is defined by a sharp increase in 

the measurable total electron number via dielectric-calibrated coherent microwave scattering.  For 

the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the 

total electron number of ~106.  This breakdown threshold decreases with an increase of pressure 

and laser photon energy (shorter wavelength), which is consistent with the theory of initial 

multiphoton ionization and subsequent avalanche process.  For the 100 ps laser pulse cases, a clear 

threshold is not present and only marginal pressure effects can be observed, which is due to the 

short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche 

ionization.  
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Introduction 

Since the 1960s, laser induced air breakdown processes have been extensively studied due to its 

wide applications in scientific and engineering fields with minimal system complexity.[1-3] Laser-

induced plasma and breakdown in gases have been extensively investigated due to their wide 

applications in laser ignition, laser-induced breakdown spectroscopy (LIBS) and etc.[4]  Laser-

induced breakdown starts with the generation of seed electrons via multiphoton ionization (MPI) 

process, in which a gaseous atom or molecule simultaneously absorbs multiple photons to be 

ionized.[5]  The seed electrons are then accelerated by the beam’s electromagnetic field via the 

inverse Bremsstrahlung effect.  If a sufficient field is applied, the electrons are accelerated to 

energies that cause electron impact ionization upon collisions with the neutral gas atoms and 

molecules.  The newly liberated electrons then are accelerated by the field leading to an electron 

avalanche ionization (EAI) process during the laser pulse duration.  The EAI process manifests as 

a visible laser spark which emits light and heats the surrounding medium producing a shock wave 

that propagates from the breakdown region.  Various studies have focused on the effects of various 

parameters of the laser beam (i.e. laser wavelengths[6-8], laser pulse widths [9, 10], focal 

areas[11]),  and gas pressures [12], and other gas properties on the laser-induced gas breakdown 

process with various diagnostics such as emission spectroscopy[13, 14], interferometry[15, 16] 

and Thomson scattering.[17, 18]  These parameters have been shown to be related to either the 

MPI or EAI phases of the laser-induced gas breakdown process [19].  

Until recently laser-induced gas breakdown was commonly detected by human eyes, photodiodes, 

and/or cameras with a probability-based criterion[9].  Typically, this criterion is the visible 

observation of a glow or flash in the focal region for a probability of 10%-50% of the laser 

firings.[8]  Such criteria are qualitative and maybe inaccurate.  A visible spark produced by an 
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intense laser beam generally occurs at the end of or after the laser pulse duration which cannot 

clearly reveal the MPI and EAI processes and their corresponding effects during the laser-induced 

gas breakdown processes.  Moreover, at higher pressures self-absorption becomes prominent, 

possibly leading to inaccurately high intensity threshold measurements.   

In this chapter, the free electrons produced by laser-induced plasma and breakdown have been 

quantitatively measured by dielectric-calibrated coherent microwave scattering.  The electron 

generation and its temporal evolution have been monitored after the laser onset.  A new 

quantitative definition of the threshold intensity for laser induced breakdown is presented as the 

total electron number during onset of the laser-induced plasma and breakdown process.  Threshold 

measurements were taken in air at pressures ranging from atmospheric to 40 barg. Comparisons to 

the qualitative observation and probability based criteria are made.  The effects of pressure and 

laser wavelengths (the 1st-3rd harmonics of a Nd:YAG laser, i.e., 1064 nm, 532 nm, and 355 nm) 

and pulse duration (10 ns and 100 ps) on the quantitative breakdown thresholds were confirmed 

that the breakdown threshold decreases with the increase of pressure and/or laser photon energy 

(shorter wavelength), which is consistent with the previous assessments. 

Experimental Setup 

The experimental setup for the measurement of laser-induced breakdown is shown in Figure 7.  

This setup is similar to that used in previous works.[20]  Hence, the experimental setup is briefly 

introduced here.  For ns laser induced breakdown, the fundamental (1064 nm), the second and 

third harmonics (532 and 355 nm) from a Nd: YAG nanosecond laser were individually selected 

to generate laser-induced breakdown in air within a high-pressure cell.  For ps cases, the 

fundamental and second harmonics of Nd:YAG picosecond laser were used. The laser beam was 

first split with a portion going to a laser power meter for monitoring of the incident laser power. 
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A second laser power meter was used to simultaneously record the energy of the transmitted laser 

beam.  The incident laser beam was focused into the center of the cell via a 125-mm long focal 

length lens. The high-pressure stainless steel cell is cylindrical in shape and rated up to 100 barg 

(gauge pressure).  The high-pressure cell has three quartz windows for optical access used in the 

LIB experiments. Two windows provide line of sight access to the axial direction and the third in 

the radial direction.  One high pressure port is connected to a compressed air tank (Airgas 

Breathing Air Grade D) while the other port is connected to a pressure transducer.   

The total electron number during the laser-induced breakdown was monitored through the radial 

optical window using the microwave detection system (MDS).  Since the size of the plasma 

(initially ~44 microns in diameter) being generated in the cell is much smaller than the microwave 

wavelength (0.3 cm), the microwave scattering mostly falls into the Rayleigh regime, with the re-

radiated electric-field amplitude of the plasma proportional to the number of electrons.[21]  A 10-

dBm tunable microwave source (HP 8350B sweep oscillator, set at ~10 GHz) was split into two 

channels.  One of the channels was used to illuminate the plasma by employing a microwave horn 

(WR75, 15-dB gain).    The backscattering is monitored through a homodyne transceiver detection 

system (the MDS shown in Figure 8 subplot).  The scattering from the plasma is collected by the 

same microwave horn.  The signal passes through a microwave circulator and is amplified 30 dB 

by one preamplifier at ~10 GHz.  After the frequency is down-converted with by mixing with the 

second channel, two other amplifiers with bandwidth in the range 2.5 kHz – 1.0 GHz amplifies the 

signal 60 dB.  Considering the geometry of dipole radiation of microwave, the polarization of the 

microwave is chosen to be along the propagation direction of the laser beam, maximizing the 

scattering signal.  The microwave detection system (MDS) can be used to monitor the generation 

and evolution of electrons in the breakdown region.  A gated ICCD camera has been applied to 
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estimate  the size of the plasma by spontaneous emissions and  then one can quantitatively 

determine the total electron number as a function of the incident laser intensity and absorption 

energy during the laser-induced breakdown in air. 

Results and Discussions 

Measurements of Laser Transmission and Absorption through the Cell 

The detection system for laser absorption measurements was calibrated for the 10 ns beam at 1064 

nm, 532 nm, and 355 nm wavelengths.  During the system calibration, the focusing lens was 

removed from the experimental setup.  This allowed for us to account for losses at the windows 

for all three wavelengths.  Additionally, absorption of the unfocused beam by the air was 

determined for pressures of 0 barg, 20 barg, and 40 barg.  When using the unfocused beam, there 

were no detectable ionization by the microwave system and no formation of visible laser sparks.  

The incident and transmitted beam energies were monitored by a laser power meter. 

Figure 8 shows normalized transmitted energies versus the normalized incident laser energies for 

the high pressure cell.  Experimental transmittance was determined by linear fitting the data with 

a zero intercept.  The slope of the fitted line is defined as the transmittance of the system which is 

related to the wavelength of the laser beam and the air pressure as shown in Figure 9.  The 

transmittance is largely independent of the air pressures at the wavelengths of 1064 and 532 nm.  

However, a slight dependence is seen for the 355 nm ultraviolet beam, corresponding to the larger 

absorption and Rayleigh scattering cross-section at this wavelength.  At higher pressures, 

ultraviolet light (355nm) can be attenuated by more than 20%.  The transmittance at these three 

wavelengths and pressures were used as a calibration for determining the threshold energies and 

intensities for laser induced breakdown. 
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Laser Beam Characterization 

A beam profiler (Ophir BeamGate) was used to acquire a two-dimensional (2D) beam energy 

profile of the laser beam at the focal point.  The visible laser beam (532 nm) was focused by a 125 

mm focal length lens in this measurement.  The focused beam profile is shown in Figure 10. with 

both one- and two-dimensional spatial distributions.  The 2D profile is averaged over twenty laser 

pulses.  Shot-to-shot laser energy fluctuations are accounted for in the form of error bars in the 

figure.  The experimental data was well fitted by the Gaussian distributions with high R-square 

values (greater than 99%).  The Full Width at Half Maximum (FWHM) was ~ 43 ± 1 µm.  This 

technique was also applied for the laser fundamental (1064 nm) and third harmonic (355 nm).  The 

focused beam dimensions were utilized in laser intensity calculations shown later on. 

Dielectric-Calibrated Coherent Microwave Scattering 

The total electron number during the laser induced plasma generation and evolution is a key 

parameter.  The coherent microwave scattering apparatus was calibrated by using dielectric 

materials (e.g. alumina and PTFE). The detailed calibration strategy and procedure have been well 

illustrated in [22] and will be briefly introduced here.  This method expands from the relative 

coherent microwave scattering to quantitative total electron number measurements by calibrating 

with simple dielectric materials of well-known properties, which can be applied for quantitative 

measurements of atomic and molecular species in plasmas and flames.[23, 24]  In this work, the 

calibration allowed for a quantitative measurement of the total electron number within the laser-

induced breakdown region.   

The microwave scattering signal from the detection system can be written for the limiting cases of 

a perfect conductor or a perfect dielectric scatterer placed in the illumination region as follows: 
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𝑈𝑐 = 𝐴𝜎𝑉𝑐, for perfect conductor

𝑈𝑑 = 𝐴휀0(휀𝑟 − 1)𝜔𝑉𝑑, for dielectirc
 (1) 

where Uc and Ud are the microwave signals, A is the characteristic parameter of the microwave 

detection system, σ is the electrical conductivity of the scatter, εr is the relative permittivity of the 

scatter, ε0 is the free space permittivity, ω is the angular frequency of microwave, and Vc and Vd 

are the volumes of the scatterers, respectively.  By measuring the microwave scattering from a 

sample material with known dielectric properties placed within the illumination region one may 

determine the microwave detection system characteristic A at the sample’s location.  A small 

cylindrical sample of alumina or PTFE was mounted at the laser beam focal point with the 

cylinder’s axis parallel to the laser’s propagation direction.  This approach slightly differed from 

the previous work[22], which used dielectrics launched through the microwave illumination 

region.   

The microwave scattering signals from alumina and PTFE are shown in Fig. 5.  The parameter A 

was measured to be 80.5 VΩ/cm2 and 82.6 VΩ/cm2 with alumina and PTFE calibrators, 

respectively.  The measurement of A should be more accurate with the use of alumina due to its 

larger ε value leading to a stronger scattering signal. Therefore, the coefficient A = 80.5 V·Ω/cm2 

was used for all further calculations with a standard deviation of the coefficient less than 15%.  

With the same detection system and experimental setup, the temporal evolution of total electron 

number by laser-induced breakdown is also shown in Figure 11with the laser energy inputs of 70, 

35 and 16 mJ at 1064, 532 and 355 nm, respectively.  By using the system parameter A and the 

estimated volume of plasma column, one can determine the conductivity of the plasma column 

from the microwave signal.  The electron density in the plasma can then be determined by using 

the expression:  
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𝜎 = 2.82 × 10−4𝑛𝑒𝜈𝑚/(𝜔2 + 𝜈𝑚
2 ) Ω-1 cm-1,   (2) 

where 𝜈𝑚 is the frequency of electron-neutral collisions𝜈𝑚 ≈ 2 × 109𝑝[𝑇𝑜𝑟𝑟], 𝑠−1, 𝑛𝑒 is the 

electron density (cm-3), and ω is the angular frequency (s-1). [25]  Hence, the total electron number 

in the plasma can be explicitly expressed as:  

𝑁𝑒 =
𝜀0(𝜀−1)𝑉𝑑

2.82×10−4 ∙
𝑈𝑐

𝑈𝑑
∙

𝜔(𝜔2+𝜈𝑚
2 )

𝜈𝑚
  (3) 

Temporally resolved measurements of total electron number during the laser-induced breakdown 

process were made with the use of the dielectric-calibrated coherent microwave scattering 

technique.  Figure 12(a) and (b) show two typical total electron number evolution measurements 

at 0 barg and 30 barg.  Energy absorption measurements took into account the previously calculated 

transmittances.  In general, as more energy was absorbed at the focal region, more electrons were 

produced during the laser-induced breakdown processes.  The total electron number increases with 

an increase of energy deposition.  It should be noted that the time scale for microwave scattering 

signal to reach the maximum value are dramatically different between atmospheric pressure and 

elevated pressure (i.e. 30 barg) as shown in Figure 12(a) and (b).   At 0 barg, the rising time for the 

maximum is around 10 ns after the laser onset while the time is around 350 ns at 30 barg.  A 

precursor signal (Figure 12(a)) is witnessed prior to the temporal evolution at atmospheric 

pressure. However, such precursors were not detected at any elevated pressure conditions (from 

10 barg).  At elevated pressure conditions, the electron density of the plasma at the initial stage 

(less than a few hundred nanoseconds after laser onset) is much higher which reaches the critical 

limitation for microwave detection of plasma.  The microwave could not penetrate the dense 

plasma and only part of electrons near plasma surface can be detected which is not able to 

quantitatively measure the total electrons of the plasma in such initial phase.  Because of the 
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limitation of microwave detection on dense plasma, the total electron number within plasma was 

calculated at different plasma evolution time for the atmospheric and elevated pressure conditions.  

As shown in Figure 12(a), the total electron number was calibrated from the microwave signal at 

10 ns after the laser onset at 1 atm condition.  While at elevated pressure conditions (i.e. 30 barg 

shown in Figure 12(b)), the total electron number calculation has been delayed 350 ns after the 

laser onset considering the plasma expansion and density.[26]  Hence, beside the relative 

microwave signals shown in Figure 12, we estimated the plasma size at those specific time delays 

for different pressure conditions. 

Figure 13(a) and (b) show a visualization of the plasma temporal evolution at 1 atm and 10 barg 

by monitoring of spontaneous emission using the 10-ns 532-nm laser beam for the air breakdown 

generation.  The spontaneous emission within the plasma provided an access to estimate the size 

of plasma itself.  Using the temporal coherent microwave scattering signal (Figure 12) and plasma 

size evolution (Figure 13) offered the chance to quantitatively measure the total number of 

electrons throughout the plasma evolution.  Since peak microwave scattering signals are seen at 

different times depending on pressure, the peak total number of electron are then calculated at the 

corresponding peak microwave scattering time.  For ambient air condition, the time is ~10 ns.  For 

elevated pressure conditions, the time approaches 300~400 ns. 

The upper limit of the measurable electron number density using this technique is determined by 

the plasma column diameter, skin depth, and plasma critical density.  The skin depth of the plasma 

given by [20]: 

𝛿 =
5.03

σf
 [𝑐𝑚]  (4) 

where 𝜎 is the plasma conductivity in Ω-1 cm-1 (given by equation 2) and f is the microwave 

frequency in MHz.  The skin depths for air plasmas at pressures ranging from atmospheric to 40 
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barg were calculated for an illuminating microwave at 10 GHz as shown in Figure 14.  When the 

skin depth is much larger than the width of the plasma column the microwave scattering will fall 

into the Rayleigh regime. In this case the scattering signal is proportional to the total number of 

electrons within the illumination region.  However, when the skin depth approaches the size of the 

plasma width shielding of some of the electrons will occur.  As shown in the figure, this shielding 

effect is more prevalent at lower pressures.  The limit to this case is determined by the critical 

density of the plasma given by  

𝑛𝑐𝑟 = 1.24 × 10−8̇ ∙ (𝑓)2(𝑐𝑚−3) 

For 10 GHz microwave illumination the critical electron density is 1.24 × 1012 (𝑐𝑚−3), which 

acts as the limit of measurable electron number density in the cases presented in this work.  The 

plasma emission (Figure 13) was used to estimated plasma column for both atmospheric pressure 

and elevated (>10 Barg) pressure, which can estimate a limit on the measurable total electron 

number for those cases.  Effective total electron number limits for these estimated plasma column 

sizes are 2.36 × 109 𝜇𝑚3 and 5.30 × 1010 𝜇𝑚3, respectively.  Although the plasma volume is not 

perfectly cylindrical and is highly dependent on laser wavelength, this limit estimation gives the 

reader a scale with which to compare our threshold measurements. 

With the measured microwave signals and estimated plasma column, the total electron number 

during the laser-induced breakdown process for the 10 ns beam at 1064 nm, 532 nm, and 355 nm 

wavelengths is calculated as shown in Figure 15(a), (b), and (c) respectively.  In these three figures 

the laser-induced breakdown in air was measured for pressures ranging from atmospheric to 40 

barg.  The total electron number is presented as a function of the laser intensity.  For the first two 

conditions (Figure 15(a) and (b)) and their corresponding laser wavelengths, there is a threshold 

intensity.  Below the threshold intensity, at a given pressure condition, the total electron number 
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profile is relatively independent of laser intensity.  Above the threshold value, the total electron 

number increases significantly with increasing laser intensity.  The threshold intensity is mostly 

clearly seen for the longer laser wavelengths and lower pressure conditions.   

These threshold intensities for inducing laser-induced breakdown with a 1064 nm beam are 

roughly an order of magnitude higher than threshold intensities for the 532 nm and 355 nm beams.  

Additionally, for laser intensities below the breakdown threshold the 1064 nm and 532 nm beams 

have detectable total electron numbers on the order of ~105.  The 355 nm beam at similar intensities 

has about an order of magnitude higher total electron number (~106).  This is mostly likely due to 

higher energy photons of the UV beam producing more electrons during the MPI process.   

For all three wavelengths, it is clearly shown that increasing the pressure leads to more efficient 

electron production for a given laser intensity.  A small amount of electrons (105) was measured 

at the 0 barg pressure condition.  When the pressure is above 10 barg the total electron number 

increases to above 106
.  At pressures above 10 barg, the total electron number dramatically 

increases with small increases in laser intensity.  This indicates that the EAI process is dominant 

for elevated pressures for laser-induced breakdown.   

Figure 16 shows the correlation between total electron number and absorbed laser energy for laser 

induced breakdown in air at pressures ranging from atmospheric to 40 barg with 1064 nm, 532 nm, 

and 355 nm beams.  There is a clear relationship between the minimum detectable total electron 

number and laser wavelength.  For a 355 nm beam, the energy absorption of ~0.15 mJ is needed 

to generate detectable plasma at the focal point.  For the infrared beam (1064 nm), energy 

absorption must be an order of magnitude higher (~1 mJ) to generate a detectable plasma.  This 

once again corresponds to the conclusion that the higher energy photons will be more efficient at 

electron production through the MPI process.  At the elevated pressure conditions (above 10 barg), 
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the curve of total electron number has unique pressure dependence for each laser wavelength.  For 

the 1064 nm laser beam, the total electron number is two orders of magnitude lower at atmospheric 

pressures than at 40 barg.  Such effect is far less pronounced for the 532 nm and 355 nm beams.  

This corresponds to a higher dependence on the EAI process for laser-induced breakdown by the 

1064 nm beam.   

It is worth to note that the time window for the measurement of total electron number is highly 

dependent on the plasma density at different pressure conditions.  For atmospheric pressure 

condition, the electron has been detected within 10 ns short after the laser onset indicating that the 

plasma density is relative low and such condition is appropriate for the microwave Rayleigh 

scattering detection.  At elevated pressure conditions, the electron measurements were 

accomplished at 300~400 ns after the laser onset.  Because the plasma was over dense (above 

critical density) at the beginning of the plasma evolution and microwave could only detect a few 

electrons near the skin of the plasma.  After the plasma expanded and the electron density 

decreased, the microwave detection system was then applicable for the measurement of total 

electron number. 

ps Laser Induced Plasma and Breakdown 

Figure 17 shows the peak microwave signal versus absorbed laser energy during laser induced 

breakdown by 100ps laser pulses at 532 nm and 1064 nm for pressures up to 40 barg, respectively.  

These peak microwave signals correspond to peaks in the total electron number.  An important 

distinction between ns and ps cases is that the peak signals for the 100 ps pulses have no threshold 

phenomena observed.  The electrons can be generated at very low pulse energies, which is in stark 

comparison with ns cases of 1064nm and 532nm.  This corresponds to a dominant MPI process 

for the high intensity beam.  Within a single pulse duration of 100ps, there is not enough time for 
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multiple collisions, which limit the avalanche ionization processes.  At higher pressures, weak 

threshold phenomena are shown, which is due to increased collisional frequency leading to slightly 

increased avalanche ionization processes.  More electrons can be generated at higher pulse 

energies, which is consistent with the subsequent MPI and avalanche ionizations in ns cases.  In 

Figure 17(a), the high pressure condition (i.e. 30 barg and 40 barg) favors the MPI process and 

generate more electrons by using 532 nm ps laser.  Meanwhile, Figure 17(b) shows that the low 

pressure condition (i.e. 0 barg and 1 barg) favors the avalanche ionization by using 1064 nm ps 

laser.  The difference result by using 532 nm and 1064 nm laser beam indicates that the ps laser-

induced breakdown in air is dependent on the laser energy as well.  Unfortunately, due to limited 

facility scheduling a dielectric calibration for the 100 ps data subset was not obtained.   However, 

the peak microwave signal versus energy absorption trends has interesting behavior warranting 

their discussion.  

Quantitative Laser Induced Breakdown Threshold 

As discussed previously, the breakdown threshold is commonly defined as the lowest laser 

intensity at which a spark is visibly observed at a probability of 10% ~ 50% averaged over many 

laser pulses.  The temporal evolution studies of laser sparks are mainly on the microsecond time 

scale which does not reveal critical information about the laser-induced breakdown process.  The 

threshold value of laser intensity to generate laser-induced breakdown in air for pressures ranging 

from atmospheric to 40 barg for 1064 nm and 532 nm beams is shown in Figure 18.  The 355 nm 

beam has not been shown here because there is not clear transition from MPI to EAI by using such 

UV beam source.  The microwave detection system could detect seed electrons even with very low 

energy input.    The threshold laser intensity profiles have little to no dependence on pressure for 

the 532 nm beam.  The 1064 nm threshold laser intensity initially increases with increasing 
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pressure before gradually decreasing with increasing pressure.  This once again is indicative of a 

larger dependence on the EAI process for the laser-induced breakdown with the 1064 nm beam.     

Conclusions 

Quantitative measurements of threshold total electron number for laser-induced air breakdown by 

ns and ps laser pulses at various pressures were presented.  The threshold ns laser intensities to 

generate laser-induced breakdown in air with pressures ranging from atmospheric were 

determined.  Dielectric-calibrated coherent microwave scattering was used to measure the total 

electron number density during the laser-induced breakdown in air.  The plasma size has been 

estimated as well in order to calculate the total number of electrons at specific times.  By careful 

examination of the total number of electron versus laser intensity profiles, a new criterion for laser-

induced air breakdown threshold was introduced.  The quantitative thresholds under various 

conditions confirm the dependence on wavelengths and pressures on the defining criterion.  Laser 

induced breakdown by ps pulses shows different non-threshold effects.  Both measurements 

confirmed the interactions of MPI and avalanche ionization for laser induced breakdown 

processes, i.e., MPI generates initial seed electrons and subsequent avalanche ionization overtakes 

the growth if enough collisions are made.     
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Appendix 

 

 

 

Figure 7.  The experimental setup for the laser-induced breakdown thresholds and total electron 

number measurements. 

 

 

 

Figure 8.  The system calibration with the 10 ns beam in the high pressure chamber.  T.R. used 

here corresponds to transmittance.  
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Figure 9.  The transmittance of the 10 ns beam with respect to the laser wavelength at various 

pressure conditions in air through the 20 cm long cell.  

 

 

 

Figure 10.  The intensity profile and Gaussian fit of the 10 ns 532 nm laser beam after the focusing 

lens. 
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Figure 11.  The microwave scattering signals from dielectric materials (alumina and PTFE) and 

laser-induced air breakdown by using 10 ns 1064, 532, and 355 nm laser beam, respectively. 

Temporally-resolved Quantitative Measurement of Total Electron Number in ns Laser Induced 

Plasma 
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(a) 

 

(b) 

Figure 12.  (a) The microwave signal corresponding to total electron number in the laser-induced 

breakdown in air at 0 barg generated by the 10 ns 1064 nm laser beam.  (b) The microwave signal 

corresponding to total electron number in the laser-induced breakdown in air at 30 barg generated 

by the 10 ns 1064 nm laser beam. 
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(a) 

 

(b) 

Figure 13.  (a) The spontaneous emission from laser-induced breakdown in ambient air by using 

532-nm laser beam. (b) The spontaneous emission from laser-induced breakdown in air at 10 barg 

by using 532-nm laser beam. 
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Figure 14.  Calculated skin depth versus electron number density for an air plasma illuminated by 

10 GHz microwave.  Estimated plasma column diameters of 1 mm and 1.5 mm correspond to 

atmospheric and elevated (>10 Barg) are shown for comparison with skin depth.  The critical 

plasma density acts as the limit for the measurement for the cases presented in this work. 
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(a)       (b) 

 

(c) 

Figure 15.  (a) Total number of electron versus laser intensity for the 1064 nm wavelength beam. 

(b) Total number of electron versus laser intensity for the 532 nm wavelength beam.  (c) Total 

number of electrons versus laser intensity for the 355 nm wavelength beam. 
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Figure 16.  Total electron number versus laser energy absorption during laser induced breakdown 

in air at pressures ranging from atmospheric to 40 barg with 1064 nm, 532 nm, and 355 nm 

wavelength beams. 
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(a)       (b) 

Figure 17.  (a) Peak microwave signal versus absorbed laser energy during laser induced 

breakdown of air with a 532 nm 100 ps beam.  (b) Peak microwave signal versus absorbed laser 

energy during laser induced breakdown of air with a 1064 nm 100 ps beam. 
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Figure 18.  Laser-induced air breakdown threshold versus air pressure for 1064 nm and 532 nm 

laser wavelengths. 
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CHAPTER III 

HIGH-REPETITION-RATE LASER IGNITION OF FUEL-AIR 

MIXTURES 
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Abstract 

In this chapter, a new approach to laser ignition (LI) of fuel-air mixtures that utilizes a high-

repetition-rate (HRR) nanosecond laser pulse train scheme is presented.  The most common 

traditional LI employs single-nanosecond laser pulses with energies on the order of tens of 

milijoules to ignite combustible gaseous mixtures. Due to these high energy per pulse 

requirements, fiber coupling of traditional LI systems is difficult and limits implementation to real 

world systems that have limited optical access (e.g. combustors and engines).  The HRR LI 

technique demonstrated here has per-pulse energy requirements ~10 times lower than the 

traditional single-pulse LI technique allowing for delivery through standard commercial optical 

fibers. Additionally, the HRR LI approach significantly increases the ignition probability of lean 

combustible mixtures in high-speed flows while maintaining low per-pulse energies.
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Introduction 

Laser ignition (LI) is an advanced ignition method that has several advantages over traditional 

electric spark plugs and gaseous torches for fuel-lean, high-pressure ignition environments [1-5]. 

It also provides precise ignition timing, large penetration depth, and ignition at desired location(s) 

for optimal combustion performance. LI has been used for a wide variety of applications, including 

ignition of gaseous fuels for internal-combustion engines [6] and rocket engines [7] and initiation 

of nuclear fission/fusion reactions [8]. There is particular interest in the use of LI for stationary 

gas engines owing to the possibility of increased engine efficiency and reduced NOx emission [5]. 

Additionally, there is interest in using laser sparks for ignition of aircraft gas turbine engines to 

achieve rapid relight [9].  

Among the available LI methods, the non-resonant breakdown LI technique has been the most 

widely used because of its simplicity in implementation and rapid ignition [1-5]. In the Non-

resonant breakdown LI process, seed electrons are generated through the non-resonant, multi-

photon ionization process using a high-intensity laser pulse (intensity must exceed the air-

breakdown threshold ~1011 W/cm2). Subsequently, the electrons are accelerated via the inverse-

bremsstrahlung process with the same intense pulse.  Collisions between these accelerated 

electrons and other molecules liberate additional electrons and induce an electron avalanche that 

forms a laser-induced plasma.  Joule heating of the surrounding combustible gaseous mixture and 

the production of highly reactive chemical intermediates leads to localized thermal runaway. Non-

resonant LI pulse energy [i.e, minimum ignition energy (MIE)] varies with the applications but, in 

general, is ~10-20 mJ/pulse for natural-gas engines [10] and ~30-60 mJ/pulse for aero-turbine 

engines [11]. The MIE increases significantly when the fuel/air mixture becomes lean (i.e., 
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equivalence ratio φ <0.7) [1-3, 11]. Additionally, the MIE increases with flow rate and flow 

turbulence level [12].  

This conventional LI technique faces stiff challenges when implemented in practical engines and 

combustion devices where optical access is typically limited. During the past decade, researchers 

attempted to develop a fiber-optic beam-delivery system for LI [13-19]. However, because of the 

high-energy requirements for conventional LI, it remains difficult to deliver the required laser 

beam through flexible optical fibers for practical engine applications. A solid-core silica fiber with 

large core size (~1 mm) can transmit ~10 mJ/pulse [14-16, 20], which is barely sufficient for 

ignition. Hollow-core fibers, because of the absence of a solid core that enables a high damage 

threshold, have been used for delivering the required laser beam for ignition [15, 17]. However, 

since this fiber is very sensitive to bending loss, it not ideal for practical applications. Mullett et 

al. investigated various available fibers for LI and came to the conclusion that until significant 

advances in the development of optical fibers are made, the ability to reliably deliver the laser 

beam for single-pulse LI will be severely limited in real-world applications [15]. Recently 

Beaudou et al. [18] and Dumitrache et al. [19] demonstrated the delivery of high-energy laser 

pulses (~4 mJ/pulse of 10-ns-duration or ~30 mJ/pulse of 30-ns-duration) while maintaining high 

beam quality using a special hollow-core, photonic crystal fiber for ignition of a combustible 

mixture limited to near-stoichiometric conditions (φ ~1). In order to achieve LI in fuel lean or high 

speed flows, while not exceeding the fiber damage threshold, a deviation from the traditional single 

pulse methods may be necessary.  

Osborne et al. [7] and Cheng et al. [21] report enhancement in igniting lean fuel/air mixtures using 

dual pulse (pulse spacing ~10-200 ns). Osborne et al. showed that extension of the laser spark 

lifetime and optimization of the local energy deposition are highly dependent on delays between 
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two pulses [7]. Zhang et al. [22] showed that in atmospheric-pressure air, plasma enhancement can 

be achieved with two pulses that are separated by > 50 μs. 

In the present study, we demonstrate LI of combustible gaseous mixtures with order-of-magnitude 

reduction in per-pulse energy can be achieved using a high-repetition-rate (HRR) nanosecond laser 

pulse train. The HRR pulses are generated from a Nd:YAG-based burst-mode laser (Quasimodo, 

Spectral Energies).[23]  The HRR (10-100 kHz) laser pulse train induces a weakly-ionized plasma 

typically within the first few pulses.  The subsequent laser pulses enhance the plasma through 

energy deposition and leads to sustained ignition.  Generally, this approach can be viewed as an 

extension of the dual pulse technique with the number of pulses easily changeable from a few to 

multiple of tens.  The HRR LI approach increases the ignition probability of lean combustible 

mixtures in high-speed flows while maintaining low individual pulse energies.   

Experimental Setup 

Figure 19 displays the experimental setup used for laser ignition of isobutane/air and ethylene/air 

pre-mixed flows from a Hencken burner at atmospheric-pressure. The second harmonic of the 

burst-mode laser generated 10-ns laser pulses at various repetition rates (10 kHz-100 kHz). The 

laser beam with a beam diameter of ~6 mm was focused to the center of the Hencken burner using 

a spherical lens with a focal length of f = 50 mm and a diameter of 50.8 mm.  The beam waist at 

the focal point was measured by a beam profiler (Spiricon, LW230); the typical beam waist at the 

focus was ~ 60 µm. To understand the laser-plasma interaction during the laser ignition process, 

the generated plasma (i.e., free electrons) was detected by coherent microwave scattering [22]. 

Additionally, a high-speed camera (Photron SA-Z, at up to 100,000 frames per second) that was 

equipped with an intensifier (LaVision IRO) was used to track the chemiluminescence from the 

flame-ignition and flame-propagation events. OH* chemiluminescence was collected around 310 
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nm with a Cerco UV 45-mm, f∕1.8 lens. A narrow bandpass interference filter (Semrock, FF01-

3080/10-25) was placed on the imaging lens. OH* chemiluminescence was utilized to identify the 

flame reaction zone and capture the flame front and propagation. The 2-D OH* 

chemiluminescence images were acquired with a ~ 2 µs exposure time. Ignition delays and reaction 

times can also be determined from the same measurements. 

Results and Discussion 

Figure 20 shows the coherent microwave scattering from a weakly-ionized laser-induced plasma 

formed in air by a 10-kHz pulse train and the pulse energy distribution of said pulse train. To avoid 

saturating the microwave detector, we intentionally placed the detector at a distance from the laser-

induced spark location.  Hence, the weak plasma created by the laser pulses during the first 2 ms 

(~20 pulses) is not detectable. The first few pulses generated the weakly-ionized plasma. Because 

the plasma lifetime at atmospheric pressure is ~100 μs and larger than the temporal spacing of the 

10-kHz pulse train [22], the plasma is greatly enhanced by the subsequent pulses. Generally this 

enhancement is shown by the increase in the microwave peaks with superimposed oscillations over 

the time span of the pulse train.  These oscillations are most likely due to small fluctuations in the 

plasma position due to ambient air flow in the room. The enhanced plasma heats the surrounding 

gas and most likely forms highly reactive chemical intermediates. When such a plasma is formed 

in a combustible gaseous mixtures this can lead to localized thermal runaway and ignition. 

Figure 21 shows a comparison of laser ignition in a combustible mixture using a single pulse (i.e., 

10-Hz laser) and HRR pulses [i.e., pulse repetition rate (PRR) of 10 kHz and 20 kHz). This figure 

displays the temporally resolved images of OH* chemiluminescence from a typical ignition of an 

isobutane/air mixture above a Hencken burner using a standard 10-Hz laser and the burst-mode 

laser operated at 10-kHz and 20-kHz repetition rate. The flow and beam conditions (i.e., focused 
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beam diameter, fuel/air mixture, and flow rate) are consistent for all three cases. The pulse energy 

used for ignition for the 10-Hz laser, 10-kHz laser, and 20-kHz laser was ~30 mJ/pulse, ~3 

mJ/pulse, and ~2.8 mJ/pulse, respectively. For 10-Hz laser ignition, a high per-pulse energy is 

required to generate a plasma (bright emission spot shown in 10 Hz-figure) for heating the 

surrounding fuel/air mixture and initiating the ignition process. It was found that the hot plasma is 

quickly quenched within ~0.1 ms. The third to the fifth images show a flame front evolution that 

is highly similar to an outwardly propagating spherical flame. For 10-kHz and 20-kHz laser 

ignition, each individual pulse energy is ~ 10 times weaker than that used for 10-Hz laser ignition. 

We have verified that with a 10-Hz laser, the pulse energy < 5 mJ/pulse generates a weakly-ionized 

plasma that cannot initiate the ignition process. The emission from the plasma created by the low-

energy laser pulse is weak; therefore, after attenuation by the OH* band-pass filter, the emission 

cannot be detected by the intensified camera. For both 10-kHz and 20-kHz cases, it was observed 

that a weakly-ionized plasma was created after three to four consecutive laser pulses. It was 

observed that once the plasma was created, the subsequent HRR laser pulses could sustain them. 

The lifetime of the plasma was characterized by strong emissions using the intensified camera. T 

10-kHz laser and the 20-kHz laser is ~0.2 ms and ~0.3 ms, respectively. For all of the cases, the 

premixed flame finally stabilized on the burner surface after ~7 ms. 

Figure 22(a) shows the minimum ignition energy (MIE) as a function of pulse repetition frequency 

for the ignition of isobutane/air mixtures with equivalence ratio φ= 1 at atmospheric pressure. At 

10 Hz the ns lasers have a very high MIE of ~30 mJ/pulse. It is observed that the MIE decreases 

with an increase in PRR. When PRR increases from 10 Hz to 10 kHz, the MIE decreases an order 

of magnitude. Particularly, the MIE decreases  ~10-12 times for PRR in the range 10-100 kHz. We 

also noticed that the laser-energy absorption by plasma increases from ~12% to ~40% when PRR 
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increases from 10-Hz to 10-kHz (incident laser energy remains at ~3 mJ/pulse). This indicates that 

the HRR pulse-train approach can more efficiently deposit laser energy to the plasma. Figure 22(b) 

shows that the HRR laser-ignition approach can maintain the same energy per pulse across a wide 

equivalence-ratio range (φ =0.65-1.2, ethylene/air mixture).  The energy per pulse decreases ~10 

times for the HRR LI approach as compared to 10-Hz-pulsed LI (φ=0.65-1.2).  The limitation of 

this approach is that the per pulse energy must be greater than that needed for laser induced 

breakdown of the mixture.  This is most likely causing the MIE of HRR LI to asymptotically 

approach the breakdown threshold energy of the mixture. 

Ignition in high-speed flows is often challenging because of increased convective heat losses.  

Figure 23 shows the ignition probability of an isobutane/oxygen/nitrogen mixture by various pulse 

trains at different repetition rates while maintaining the same per-pulse energy of ~ 1.5 mJ/pulse.  

Clearly, an increase of repetition rate can increase the ignition probability for higher flow speeds. 

This is most likely due to the plasma enhancement over the pulse.  It should be noted that for this 

test, we were able to ignite the isobutane/air mixture with HRR pulses; however, the flame could 

not be sustained because the flow speed was faster than the isobutane flame speed (~0.3 m/s). 

In summary, we have demonstrated that the HRR LI approach has significantly lower per-pulse 

energy requirements for ignition of combustible gaseous mixtures, as compared to the traditional 

single-pulse LI approach.  Approximately an order-of-magnitude reduction for the ignition 

threshold energy (per pulse) was achieved.  The  HRR LI technique utilizes laser beams with per-

pulse energies that will not damage standard commercial multimode and hollow-core fibers. 

Additionally, we demonstrated that the plasma enhancement from HRR LI technique can increase 

the ignition probability of lean and/or high-speed flows of an isobutane/air mixture while 

maintaining low individual pulse energies. A similar phenomenon may be achievable with other 
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temporally separated muli-beam techniques such as double pulse.  By reducing the burst duration 

those techniques are approached. 

Future work will focus on HRR LI at elevated pressures. The enhanced plasma quenching due to 

collisions at elevated will lead to shorter plasma lifetimes; thus, it is expected that the PRR should 

increased to achieve efficient energy deposition.  We have verified experimentally that the overall 

plasma lifetime in air at 40-bars is ~ 30 μs. Therefore, in principle, a HRR pulse train with 50-kHz 

repetition rate (i.e., 20-μs pulse interval) could be efficiently applied for ignition at high pressure. 
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Appendix 

 

 

 

Figure 19.  Schematic view of the experimental setup for laser ignition in Hencken burner. 

 

 

 

Figure 20.  (a) Normalized microwave scattering and photodiode signals within a 532-nm, 10-kHz 

pulse train;. data were taken in the air. (b) Corresponding excitation pulse energy.  
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Figure 21.  Laser ignition in isobutane/air mixture at equivalence ratio φ=1 using 10-Hz laser 

(single laser shot) and HRR laser (10-kHz and 20-kHz repetition rate). Ignition-core evolution in 

isobutane/air mixture above Hencken burner was tracked by monitoring OH* chemiluminescence.  
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Figure 22. (a) MIE (input energy) as a function of repetition frequency. Isobutane/air mixture of 

φ=1 at atmospheric pressure. (b) MIE as a function of equivalence ratio for ethylene/air mixture 

at atmospheric pressure. The burst duration for all HRR pulses is 0.5 ms.  
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Figure 23.  Ignition probabilities of isobutane/oxygen/nitrogen mixtures for 10-ns pulse train with 

various repetition frequencies at various flow speeds.  The probability for flow speed of 6 m/s and 

9 m/s is shown in gray and red, respectively. Each pulse energy and burst duration was maintained 

at ~1.5 mJ/pulse and 1 ms, respectively.  
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CHAPTER IV 

SODIUM CLUSTER ION RECOMBINATION RATE MEASUREMENTS 

BY RADAR REMPI  
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Abstract 

This paper presents non-intrusive measurements of sodium-argon and sodium-nitrogen cluster ion 

recombination with electrons based on coherent microwave scattering (Radar) from Resonance 

Enhanced Multi-Photon Ionization (REMPI). The number density of sodium, in a mixture of 

sodium vapor with argon or nitrogen buffer gas, was determined by direct absorption 

measurement. Sodium was resonantly ionized by a tunable laser beam in the 2+1 REMPI process. 

Since the plasma is mainly made of sodium ions in the mixture, the sodium ion clusters are thus 

formed by the Chaperone process. The dissociative recombination rate of sodium-argon and 

sodium-nitrogen and the neutral stabilized recombination rate of sodium ions were determined 

from a least-squares Monte Carlo algorithm (LSM) that fitted the plasma dynamic model to the 

direct measurement of the total electron number in the laser-induced plasma. At 300oC, nNa =

5.79 ×  1011/cm3 and PAr = 100 Torr, the dissociative recombination rate of Na+∙(Ar) was 
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determined to be βdr = 5.42 × 10-7cm3/s  and the neutral stabilized recombination rate was 

determined to be β3N = 1.26 × 10-26cm6/s . At 300oC, nNa = 3.22 ×  1011/cm3 and PN2
=

100 Torr, the dissociative recombination rate of Na+∙(N2) was determined to be βdr = 1.31 ×

10-7cm3/s  and the neutral stabilized recombination rate was determined to be β3N = 6.1 ×

10-26cm6/s .The method can be easily extended to measurements of other cluster ion species over 

a wide range of temperatures and pressures in various mixture compositions, such as Mg and Ca 

with N2 and CO2. The results are of fundamental importance to the plasma chemistry field and 

hypersonic research.  The present model does not take into account the backwards reaction of 

cluster ion formation which makes the presented at best a rough estimate. 

Introduction 

The unique combination of the relatively low ionization potential of alkali metals and the high 

temperatures behind the bow shock of a hypersonic vehicle in flight allows for rapid vaporization 

and thermal ionization of alkali metals.[1]  Studies have shown that the electrical conductivity of 

the flow near the surface of a hypersonic vehicle can be augmented by seeding the flow with alkali 

metals.  This in turn would allow for better control of a hypersonic vehicle by 

magnetohydrodynamics (MHD).[2, 3] Additionally, hypersonic and atmospheric reentry vehicles 

have a fair amount of alkali metal impurities in the vehicle surface.  During the course of 

hypersonic flight or atmospheric reentry a significant amount of these impurities are inevitably 

vaporized and ionized in the flow.[2-8] These alkali cations play a significant role in the formation 

of the plasma within the vehicle’s boundary (“plasma sheath”).  The plasma sheath leads to many 

adverse changes in the vehicle’s communication and navigation capabilities such as loss of 

telemetry, GPS, and radio “blackout”.[9, 10]  Also, the plasma sheath can lead to significant effects 
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in the vehicle’s aerodynamic performance, stability, and thermal protection system.[8, 11, 12] 

Developing a better understanding of the fundamental plasma chemistry involved in the 

recombination processes for alkali metal ions is of vital importance to hypersonic and plasma 

dynamic research. 

Alkali metal cations generally have a low radiative recombination rate.  Thus at higher pressures 

in atmospheric gases, such as those around a hypersonic vehicle, the plasma neutralizations is 

controlled primarily by three-body processes.[13]  These processes include electron (e- as the third 

body) and neutral stabilized collisions as well as chaperone mechanisms.  The lack of knowledge 

of these processes is heavily due to the difficulty to make quantitative measurements of the 

recombination rates.  Past measurements have involved techniques such as ion storage rings, 

stationary afterglow (SA), and flow afterglow (FA).  The main drawbacks of these techniques 

come in the form of a limited range of experimental pressures and temperatures.  Additionally, all 

of these techniques use ionization methods that lead to ions others than those that are desired, 

which naturally complicates the overall chemistry.  Primarily, Penning ionization of Ar by a He 

microwave discharge is used in these apparatuses. 

In this work, coherent microwave scattering (Radar) from Resonance Enhanced Multi-Photon 

Ionization (REMPI) is utilized for the measurement of sodium ion neutral stabilized and cluster 

dissociative recombination rates.  The separation of the ionization and detection mechanisms 

greatly simplifies the experimental procedure. Radar REMPI as a stationary technique allows for 

a wide range of experimental temperatures and pressures including those above atmospheric 

conditions.[14-18] REMPI allows for selective ionization of the sodium and minimizes all other 

cation species generated in the plasma.  Coherent microwave scattering from the electrons in the 

decaying plasma allows in-situ measurement throughout time without extracting electrons or 
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cations.  Recombination rates were then deduced using a least-squares Monte Carlo algorithm 

(LSM). Neutral stabilized recombination rates for sodium ions in argon and nitrogen buffer gases 

along with the dissociative recombination rates of sodium-argon and sodium-nitrogen cluster ions 

are presented here. 

Sodium Number Density Measurement 

Absorption Theory 

The attenuation of a beam of light as it passes through an absorbing medium is described by the 

Beer-Lambert law. The Beer-Lambert law relates the exponential decay of the intensity of the light 

to the absorption coefficient, α, and the optical path length, l, as 

      
I

I0
= e-αl         (1) 

where I0 and I are the total and transmitted intensities of the light, respectively.  The absorption 

coefficient of the media is given by 

       α = nσ     

    (2) 

where n is the number density of the absorbers in the media and σ is their optical cross sections.  

The cross section, σ(ω), depends on transition properties between an upper and lower state given 

by 

     σ(ω) =
1

4
(

g2

g1
) λ21

2 g(ω)A21              

(3) 

where A21 is the Einstein spontaneous emission coefficient, λ21 is the absorption line wavelength 

of the absorbed photon, and g1 and g2 are the degeneracy of the lower and upper levels. 
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In a mixture of the buffer gas and the vaporized sodium the line shape functions g(ω) of the sodium 

absorption lines are complicated by both self-broadening collisions and foreign gas collisions.  

Additionally, radiation trapping is present. The line widths, Γ, due to self-broadening and foreign 

gas collisions depend on the broadening rate coefficients self

Ck  and Ar

Ck , the number density of 

sodium vapor Nan  and foreign gas Arn are given by 

ΓC
self = nNa ∙ kC

self      (4) 

ΓC
Ar = nAr ∙ kC

Ar       (5) 

The total collisional-broadening rate, Γc, can be expressed as the sum of self-broadening and 

foreign-gas broadening given by 

ΓC = ΓC
self + ΓC

Ar = nNa ∙ kC
self + nAr ∙ kC

Ar     (6) 

An equivalent line width for collisional and natural broadening may then be expressed as 

Wλ =
λ2

c
(

λ2

8π2

g2

g1
ln(ΓCΓnatural))

1

2
    (7) 

A convolution of the effects of natural broadening, Doppler broadening, collisional-broadening 

and the laser line shape give the line shape function g(ω).  The resulting line shape is a Voigt 

profile because of the convolution of the Gaussian profile of the laser light pulse and Doppler 

broadening with the Lorentzian profile of collisional broadening and natural broadening. A Voigt 

profile may be calculated by the Whitening approximation given by 
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v l v l v

I
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where gw  and lw  are the linewidth (FWHM) of Gaussian profile and Lorentzian profile 

respectively, is the linewidth of Voigt profile, and
GLλI is the normalization factor of the Voigt 

profile. Table 1 gives the various parameters needed to calculate the absorption cross section of a 

standard Voigt profile, with the laser linewidth (FWHM) at 0.01nm.  The higher degeneracy of the 

excited states for the D2 line lead to a larger absorption cross section (and consequently greater 

absorption) in comparison to the D1 line.   

Experimental Measurements 

 Figure 24 shows a schematic of the experimental setup used for the sodium absorption 

measurements.  The second harmonic of a Nd:YAG laser was used to pump a dye laser, with 

Rhodamine 6G as the dye.  The laser power was reduced by irises to eliminate any nonlinear 

optical effects and saturation of the photodiodes. The tunable output beam of the dye laser was 

partially reflected by a mirror and passed through an iris before arriving at a photodiode (PD1).  

The remainder of the beam passed through an iris and quartz cell filled with a mixture of sodium 

vapor and the buffer gas.  The attenuated beam then passed through an iris before arriving at the 

second photodiode (PD2).  The temperature inside of the furnace was regulated by a PID controller 

that controlled the current to a concrete block heater and received feedback from a thermocouple. 

The system had an accuracy of ±1K. The sodium number density in the cell was regulated by a 

pump that was used to reduce the sodium partial pressure to a level below sodium vapor pressure 

at the specified temperature.  The cell was then filled with the buffer gas to a set pressure and 

allowed to reach equilibrium before measurement. 
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The output pulses from the two high speed photodiodes were recorded on an oscilloscope, and 

their ratio as the frequency was scanned through gave the absorption spectrum.  The laser 

wavelength was calibrated by the sodium observed sodium D1 and D2.  The sodium number density 

was found by means of a least squares algorithm used to fit the simulated spectra.  Figure 25 shows 

two measured absorption spectra with their corresponding least squares fit from simulation.  The 

first spectrum corresponds to a mixture of 5.79E11 cm-3 sodium vapor with 100 Torr argon at 300 

oC.  The second spectrum corresponds to a mixture of 3.22E11 cm-3 sodium vapor with 100 Torr 

nitrogen at 300 oC.  The change in buffer gas from argon to nitrogen appeared to result in relatively 

negligible changes in the absorption spectrum so the properties given in Table 1.  Properties of 

sodium D1 and D2 lines from NIST were used for both fitting routines. The laser linewidth 

(FWHM) was measured to be about 0.006 nm during all experiments. 

Sodium Cluster Ion Generation 

Sodium density was measured every time before generating sodium cluster ions.  The same laser 

system, with the addition of a focusing lens, as shown in Figure 24 was used to generate Resonance 

Enhanced Multi-Photon Ionization (REMPI) of the sodium atoms in the mixture of sodium vapor 

and buffer gas in the cell.  The second harmonic (532 nm) was used to pump a dye laser 

(Rhodamine 6G as the dye).  The dye laser output was roughly 3 mJ/pulse with a pulse width of 8 

ns.  The laser beam was split with a small portion going to a photodiode (PD1).  The photodiode 

(PD1) was used to trigger the microwave data acquisition system as well as monitor the laser power 

over the course of experiments. The remainder was focused by a 10 cm focal length plano-convex 

lens.  Gaussian beam calculations give an estimation of roughly a 15 μm for the focal spot size.  

The laser frequency was tunned near the REMPI peak to achieve variable ionization of the sodium 

atoms.  The experimental setup can be seen in Figure 26. 
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A microwave homodyne system was used to detect the REMPI plasma.[17] A 10 dBm tunable 

microwave source (HP 8350B sweep oscillator, set at ~10 GHz) was first split into two channels. 

One was used to illuminate the ionization point through a microwave horn (WR75, 15dB gain). 

Microwave scattering from the plasma was collected by the same microwave horn. The received 

microwave passed through a microwave circulator and was amplified 30 dB by one preamplifier 

at ~10 GHz. After the frequency was converted down in the mixer, two other amplifiers with 

bandwidth of 2.5 KHz to 1.0 GHz amplified the signal by another factor of 60dB. From the 

geometry of dipole radiation, the polarization of the microwave was chosen to be along the 

propagation direction of the laser to maximize the scattering signal. The time-accurate microwave 

scattering signal was monitored by an oscilloscope. The microwave signal was also input into an 

automatic data acquisition system, which recorded the REMPI spectrum as the laser was tuned.  A 

more detailed description of the microwave system can be found in previous publications.   

Figure 27 shows the 2+1 REMPI spectrum of sodium by measured by coherent microwave 

scattering immediately following the laser pulse.  Figure 27 was obtained for a mixture of sodium 

vapor and nitrogen buffer gas at 350℃ and 100 Torr. Laser was scanned from 578.45 nm to 578.85 

nm at 0.001nm per second. Averaging of the microwave signal can result in better signal to noise 

ratio for the spectrum. Spectra were obtained for the sodium at different number densities and 

buffer gas composition, temperatures, and  pressures. In each measurement negligible signal was 

seen far from the REMPI peak.  Thus very little direct ionization of the buffer gas and sodium 

occurred during experimentation.  Sodium can be efficiently ionized by the REMPI process even 

if the conditions of the mixtures, such as sodium number density, temperature, pressure of the 

buffer gases, drastically change. The sodium REMPI spectra do not depend on pressure of buffer 

gases and sodium number density.  
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Plasma Dynamic Modeling 

In this work, a partially ionized plasma of sodium and argon, which consists of neutrals, electrons, 

ions and molecular ions, is modeled.  The model begins at the end of the 8 ns where we assume 

that the ions in the plasma consist entirely of sodium cations.  Table 2  shows the reactions used 

in the model along with their corresponding rate constants.  The reactions include radiative, 

electron stabilized, neutral stabilized, and dissociative recombination along with ion cluster 

conversion and switching with the buffer gas and water vapor.  Diffusion was reasonably assumed 

to be dominated by ambipolar diffusion.  The diffusion coefficient was based on sodium ion 

nobilities of 3.4E-4 and 3.23E-4 (m2/s*V) in ATP nitrogen and argon buffer gases, 

respectively.[19] The ion mobility at the experimental pressure and temperature was obtained by 

gas kinetic theory.  Ambipolar diffusion was treated as a first order loss mechanism. The rate 

constants for neutral stabilized recombination, β3N, and dissociative recombination, βdr, are 

unknown.  The determination of the β3N and βdr values is the goal of this work. 

Rate equations for four species were obtained from the reactions listed in Table 2.  The rate 

equations are given below in equations (9-12) with neutral buffer gas specie denoted by M (Ar or 

N2) and buffer gas cluster ion denoted by C (Na+ ∙ Ar or Na+ ∙ N2).  Rate constants for known but 

unreferenced reactions were taken to be similar to those of similar reactions.  The number densities 

of electrons ne, sodium cations nNa+, sodium ion clusters with the neutral buffer gas nNaM+, and 

sodium clusters with water vapor nNaH2O+ were obtained by the solution of this system of odes. 

Initial concentrations are based on the assumption that sodium is fully ionized.  Therefore 

ne(t = 0) = nNa+(t = 0) = nNa, where nNa is the sodium number density obtained from the 

absorption measurement. Also, the initial concentration of the sodium cluster ions is taken to be 

zero.  An impurity of 10 ppm water vapor was assumed in all calculations. 
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dne

dt
= -k1nenNa+-β3NnMnenNa+-β3enenNa+-βdrnenC-k8nenNaH2O+-Dane   (9) 

dnNa+

dt
= -k1nenNa+-β3NnMnenNa+-β3enenNa+-kconvnNa+nMnM-k6nNa+(nH2O-nNaH2O+)nM 

  -Dane ∙
n

Na+

nNa++nC+nNaH2O+
         (10) 

dnC

dt
= -βdrnenC + kconvnNa+nMnM-k7nC(nH2O-nNaH2O+)-Dane ∙

nC

nNa++nC+nNaH2O+
 (11) 

dnNaH2O+

dt
= -βdrnenC + kconvnNa+nMnM + k7nC(nH2O-nNaH2O+) + k6nNa+(nH2O-nNaH2O+)nM 

        -Dane ∙
n

NaH2O+

nNa++nC+nNaH2O+
        (12) 

Sodium Cluster Ion Recombination Rate Characterization 

A least-squares Monte Carlo algorithm (LSM) was used to optimize the “fit” of the simulated 

electron number density to the total electron number density curve from direct measurement of 

coherent microwave scattering.  The algorithm optimized this fit by manipulating the β3N and βdr 

rate constants within specified bounds.  One hundred random initial guesses were made for these 

values within a range of four orders of magnitude on each variable.  Only the first 40 microseconds 

of the plasma decay was simulated.  On longer time scales the volume of the plasma expanded to 

a volume much larger than the focal size of the laser.  The electron number density will also be 

significantly lower than at the end of the laser pulse.  These two factors may lead to a breakdown 

of the 0D model and nullify coherent microwave scattering as an accurate diagnostic technique.  

Figure 28 and Figure 29 show a comparison of the measured and “fitted” simulation electron 

number density curves for the first 40 microseconds after the laser pulse.  Figure 28 corresponds 

to a mixture of nNa = 5.79 ×  1011/cm3 in a Ar buffer gas at 100 Torr and 300 oC.  The LSM 

algorithm found the dissociative recombination rate of to be βdr = 5.42 × 10-7cm3/s  and the 
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neutral stabilized recombination rate to be β3N = 1.26 × 10-26cm6/s at these conditions.  Figure 

29 corresponds to a mixture of nNa = 3.22 ×  1011/cm3 in a N2 buffer gas at 100 Torr and 300 

oC.  The dissociative recombination rate was determined to be βdr = 1.31 × 10-7cm3/s  and the 

neutral stabilized recombination rate was determined to be β3N = 6.1 × 10-26cm6/s .  Figure 30 

and Figure 31 show the simulated electron, sodium cation, and sodium cluster ion number density 

curves for these conditions for argon and nitrogen buffer gases, respectively. 

microseconds of plasma decay in a Ar buffer gas at 100 Torr and 300oC with nNa=5.79 × 

1011/cm3.  

microseconds of plasma decay in a N2 buffer gas at 100 Torr and 300oC with nNa=3.22 × 

1011/cm3.  

 for the first 40 microseconds of plasma decay in a Ar buffer gas at 100 Torr and 300oC with 

nNa=5.79 × 1011/cm3.  

for the first 40 microseconds of plasma decay in a N2 buffer gas at 100 Torr and 300oC with 

nNa=3.22 × 1011/cm3.  

Conclusions 

The sodium number density in the sodium vapor and buffer gas mixture was determined by the 

direct absorption measurements. The 2+1 REMPI process was used to generate sodium ions in a 

mixture of sodium vapor with argon or nitrogen. Coherent microwave scattering measurements 

were performed to determine the electron number density in decaying plasma throughout time.  

Since the plasma is mainly made of sodium ions in the mixture, the sodium argon ion clusters are 

thus formed by the Chaperone process. The sodium cluster ion recombination rate and neutral 

stabilized recombination rate were determined with the use of a least-squares Monte Carlo 



101 

 

algorithm (LSM).  The LSM algorithm fit the output of the plasma dynamic model to direct 

measurement of the electron number density for the first 40 microseconds after the end of the laser 

pulse.  This method can be easily extended to other cluster ions, such as Na+∙(CO2) and a wide 

range of pressures and temperatures. The results presented here are a fundamental building block 

for plasma chemistry and hypersonic research. 
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Appendix 

 

 

 

Figure 24.  Schematics of experimental setup. The sodium cell is heated by two separate heaters. 

The concrete block heater controls the overall number density of the cell and the temperature of 

the main body. Three irises limit the amount of light into the photodiodes, PD1 and PD2 to avoid 

the saturation. 
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Table 1.  Properties of sodium D1 and D2 lines from NIST. 

Line D1 Units D2 Units 

Wavelength(nm) 589.5924 nm 588.995 Nm 

Temperature(K) 673 K 673K K 

Number Density of Argon 100 Torr 100 Torr 

Number Density of Sodium 10 1010/cm3 10 1010/cm3 

Einstein Coeff. A21 6.14×107 s-1 6.16×107 s-1 

Degeneracy g2/g1 2/2 1 4/2 1 

Argon broadening linewidth 1.209413E+09 s-1 1.016000E+09 s-1 

Argon shift linewidth -1.218444E-02 cm-1 -1.300858E-02 cm-1 

Self broadening linewidth 3.070000E+04 s-1 4.670000E+04 s-1 

Doppler broadening linewidth 2.284049E-12 m 2.281735E-12 M 

Natural linewidth 6.140000E+07 s-1 6.160000E+07 s-1 

Lorentzian linewidth 1.244528E+10 rad/s 1.614172E+10 rad/s 

Gaussian linewidth 6.681119E+10 rad/s 6.679860E+10 rad/s 

Cross section 3.397178E-22 m2 4.063331E-21 m2 
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    (a)      (b) 

Figure 25.  Comparisons of experimental and theoretical absorption profiles of D1 and D2 lines of 

sodium vapor with a buffer gas of (a) Ar and (b) N2 at 100 Torr and 300 oC.  The fitted sodium 

densities were determined to be (a) 5.79E11 cm-3 and (b) 3.22E11 cm-3. 

 

 

 

Figure 26.  Experimental Radar REMPI setup.  The output beam of the dye laser was focused by 

a 10 cm focal length lens to generate the 2+1 Sodium REMPI plasma.  The microwave system was 

used for detection of the plasma. 
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Figure 27.  2+1 REMPI spectrum of sodium in nitrogen buffer gas at 100 Torr. 
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Table 2.  Reactions present in plasma dynamic model. 

Reaction Rate Constant 

Radiative Recombination 

1) Na+ + e- → Na 
k1 = 2.7E-13*Te

-3/4 (cm^3/s).[20] 

Electron Stabilized Recombination 

2) Na+ + e- + e- → Na + e- 
β3e = 8.75E-27*Te

-9/2 (cm^6/s)[20] 

Neutral Stabilized Recombination 

3a) Na+ + Ar + e- → Na + Ar 

3b) Na+ + N2 + e- → Na + N2 
 

β3N (cm^6/s)=? 

Cluster Ion Conversion 

4a) Na+ + Ar + Ar → Na+ ∙ Ar + Ar 

4b) Na+ + N2 + N2 → Na+ ∙ N2 + N2 

kconv = 0.9E-31* (
317

Tgas
) ^3 (cm^6/s) 

kconv = (2.6 ± 1.2)E-30 (cm^6/s) 

Dissociative recombination 

5a) Na+ ∙ Ar + e- → Na + Ar 

5b) Na+ ∙ N2 + e- → Na + N2 

βdr (cm^6/s)=? 

H2O Clustering 

6) Na+ + H2O + N2  ↔  Na+ ∙ H2O + N2 

k6,eq = 1.74E-4, [13] 

k6,f = 9.5E-30* (
300

Te
)

1.5

 , k6,b =
k6,f

k6,eq
 

H2O Cluster Ion Switching and Dissociation 

7) Na+ ∙ N2 +  H2O →  Na+ ∙ H2O + N2  , 

8) Na+ ∙ H2O + e-  → Na + H2O  , 

k7 = 1E-29 (cm^6/s) 

k8 = 2.3E-7* (
Te

300
)

-0.95

(cm^6/s) 

9) Ambipolar Diffusion    

 Da ≅
μkTe

e
 , 

dne

dt
≈

dnNa+

dt
+

dn
NaN2

+

dt
≈ -Dane 
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Figure 28.  Comparison of experimental and fitted electron number density curves for the first 40 

microseconds  
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Figure 29.  Comparison of experimental and fitted electron number density curves for the first 40 

microseconds  
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Figure 30.  Simulated electron, sodium ion, and sodium-argon cluster ion number density curves 
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Figure 31.  Simulated electron, sodium ion, and sodium-nitrogen cluster ion number density curves  
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CHAPTER V 

O2 ROTATIONAL TEMPERATURE MEASUREMENTS IN AN 

ATMOSPHERIC AIR MICRODISCHARGE BY RADAR REMPI 
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Abstract 

Nonintrusive spatially-resolved rotational temperature measurements in an atmospheric air 

microdischarge are presented. The measurements were based on coherent microwave Rayleigh 

scattering (Radar) from Resonance-Enhanced Multiphoton Ionization (REMPI) of molecular 

oxygen. The open air DC microdischarge source operated in a stable “normal-glow” mode and 

pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was 

focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave 

Rayleigh scattering was used to collect the two-photon rotational spectra of O2 at 

C3Π(v=2)←X3Σ(v′=0) transitions. The Boltzmann plots from analyses of the O2 rotational lines 

determined local rotational temperatures at various axial locations between the electrodes. The 

molecular oxygen rotational temperature varied from ~1150 K to ~1350K within the discharge 

area. The measurements had an accuracy of ∼±50 K.  
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Introduction 

The advent of stable microdischarges dates back to the work of White in the 1950s [1] and gained 

much attention in spatially confined cavities in the 1990’s.[2, 3] Numerous applications, including 

plasma ignition[4], VUV light sources[5], nanoparticle synthesis[6, 7], and biomedical research 

[8, 9] have been investigated. Microdischarge devices take advantage of the scaling of breakdown 

voltage with the product of pressure and gap distance (pd) as described by Paschen’s Law.[10] 

Typically, to maintain the stability of “normal-glow” discharges at atmospheric pressure, the inter-

electrode separation is confined to distances on the order of 1 mm or less.[11] This small spacing 

leads to the generation of a non-thermal or “cold” plasma. A striking property of these non-

equilibrium plasmas is that the electron temperature, Te, is often several orders of magnitude larger 

than the gas temperature, Tg.[11, 12] This excess electron energy can be channeled to drive specific 

optical or chemical processes at relatively low gas temperature, which opens microdischarges to 

the wide range of applications previously mentioned.  

Although tremendous progress has been made in the area of plasma diagnostics in 

microdischarges[12], many fundamental properties, such as temperature, are still not satisfactorily 

measured. A non-thermal plasma is described, not by a single temperature, but by a set of 

temperatures including electron temperature (Te) relating to the kinetic energy distribution of the 

electrons, as well as several molecular temperatures, Ttrans, Tvib, and Trot relating to the translational, 

vibrational, and rotational energies of the molecules. Typically the temperature set in a non-

thermal plasma will have the characteristic of Te >> Tvib > Ttrans = Trot, where Ttrans and Trot are 

commonly identified as the gas temperature, Tg_ENREF_5. The gas temperature in these non-

thermal plasmas can range from near room temperature for monatomic gases such as argon to 

above 2000K in molecular gases such as air,[11, 13] and is highly dependent on discharge source 
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parameters such as electrical current. The most widely published diagnostic works involve 

determining rotational temperature by optical emission spectroscopy (OES) of the N2 second 

positive system.[14-16] Unfortunately, the spatial and temporal resolutions achievable by these 

methods have stringent limitations. Additionally, OES is limited for certain species in the 

microplasma.[17] Another temperature measurement using Stark shifting analysis of the Hβ 

transition involves hydrogen seeding, which complicates the overall plasma composition.[18] 

Cavity Ringdown spectroscopy is a line-of-sight temperature measurement which has limited 

spatial resolution.[17] Overall, the diagnostic tools available for microdischarge analysis in 

atmospheric air are scarce and restrict, in some way, what can be accurately derived from the 

experimental process.  

Here, coherent microwave scattering (Radar) from Resonance-Enhanced Multiphoton Ionization 

(REMPI) boasts excellent spatial and temporal resolutions. Radar REMPI has previously been 

demonstrated for local rotational temperature measurements of molecular oxygen in static cell[19] 

and flame[20] environments. In this work Radar REMPI measurements of the local O2 rotational 

temperature within an atmospheric air microdischarge are presented. These measurements are 

performed at eight axial locations between pin-to-pin electrodes; this allowed for an axial 

temperature distribution within the discharge region to be determined. 

Molecular Oxygen Structure and REMPI Scheme 

The 2+1 REMPI scheme used here in O2 with an intermediate  C3Π(υ = 2) ← X3Σ transition was 

described in detail in our previous publications [19, 20]. The molecular oxygen ground state, 

O2(X3Σ), can be best described as Hund’s case (b), and the O2(X3Σ) ground-state term energy can 

be expressed as 
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G1 = BυJ(J + 1)-DυJ2(J + 1)2 + (2J + 3)Bυ-L-√(2J + 3)2Bυ
2 + L2-2LBυ + G(J + 1), 

G2 = BυJ(J + 1)-DυJ2(J + 1)2, 

G3 = BυJ(J + 1)-DυJ2(J + 1)2 + (2J + 1)Bυ-L-√(2J-1)2Bυ
2 + L2-2LBυ + GJ 

where the molecular constants above for the ground-state X3Σ are all well known.[21] The 

molecular oxygen excited state O2(C3Π(υ = 2)), used as an intermediate state in the experiments, 

can be best described as Hund’s case (a). The energy levels for the excited-state O2(C3Π(υ = 2)) 

are thus expressed by 

F1(Ω = 0) = n01 + Beff1J(J + 1)-Dυ1J2(J + 1)2, 

F2(Ω = 1) = n02 + Beff2J(J + 1)-Dυ2J2(J + 1)2, 

F3(Ω = 2) = n03 + Beff3J(J + 1)-Dυ3J2(J + 1)2, 

where the derived constants of the excited-state C3Π(υ = 2) of molecular oxygen are listed in 

Error! Reference source not found. based on our previous experimental and computational study 

of the REMPI spectra of molecular oxygen. Both the ground and excited states contribute to the 

hyperfine structures in the REMPI spectra. The two-photon transition line strength, Tf,g
2 , between 

the excited-state  C3Π  and the ground-state X3Σ has been modeled and expressed as 

Tf,g
2 = ∑

|βk
(2)

|
2

2k+1
(2J + 1)(2J' + 1)(2N' + 1)k=0,2 × [

J' S N'

Λ' + Σ -Σ -Λ'
]

2

[
J k J'

Ω -ΔΛ -Λ'-Σ
]

2

,   

    (1) 

where […] is the Wigner 3-j symbol, J is the rotational quantum number, N is total angular 

momentum except the spin, βk
(2)

 is polarization coefficient, primed parameters are for the ground 

state of  X3Σ and unprimed parameters are for the excited state of  C3Π. For linearly polarized light, 
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terms of both k=0 and 2 contribute to the final line strength, βk
(2)

= √10 3⁄ , while for circularly 

polarized light, only k = 2 contributes and βk
(2)

= √5. 

In the previous O2 rotational temperature study[22], the S21 branch was chosen for the temperature 

analyses due to the distinctness in spectral position and intensity among the experimentally 

observable lines at relatively low temperature (<700 K). At elevated temperature, the S branch 

lines become congested due to the overlap of multiple branches, including the other four common 

branches O, P, Q, and R.[20] Figure 32 shows a comparison of experimental spectra of molecular 

oxygen at low temperature in air (~300K) and at a moderately high temperature in an air 

microdischarge (~1200 K), respectively. The population distribution in the discharge was shifted 

toward higher rotational states due to the increased temperature, which visibly enhanced several 

spectral peaks between 286.0 and 288.0 nm and enabled more branches besides S21 to be involved 

in the higher temperature analyses in this paper. 

The microwave scattering signal from the REMPI produced plasma is proportional to the total 

number of electrons inside the plasma, which is proportional to the total number of electron 

excitations to the continuum through the resonant two photon transition followed by the single 

photon ionization[23]. The total number of electron excitations to the continuum is thus 

determined by the product of the number of molecules in the ground state and the rate of 

multiphoton ionization. An expression for the resulting microwave scattering signal for a given 

two photon transition from state g to f can be written as 

EMW ∝ Ne = N0 ∙ Tf,g
2 I2 ∙ TfiI ∙ exp(-Eg/kBT)      (2) 

where EMW is the scattering microwave electric field, Ne is total electron number inside the plasma 

generated by REMPI, N0 is the total number of oxygen molecules in the laser focal region, Eg is 
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the energy of the ground state of X3Σ, kB is Boltzmann constant, T is temperature, I is the intensity 

of the laser beam, and Tfi is the ionization cross section from the excited state to the ionization 

continuum.  

A rotational temperature can be extracted from the analysis of the ground state rotational energy 

distribution derived from the REMPI spectrum. The thermal distribution of the rotational levels is 

given by a statistically weighted (i.e. quantum degenerated) Boltzmann factor of J(J +

1)exp(-Eg/kBT). The rotational level with the maximum population shifts toward higher J values 

with increasing temperature. This shift is reflected in the REMPI spectrum of the molecule. The 

variation of the intensity of the rotational lines in an electronic manifold is given by the thermal 

population distribution of the rotational levels. If Tfi is assumed to be constant over the limited 

laser wavelength scanning range and the ground state population N0 is constant during the scan 

time, the Boltzmann plots can be formulated as 

 log (EMW I3Tf,g
2⁄ ) Eg⁄ ∝  -(kBT)-1.        (3) 

When a region of the spectrum including numerous rotational lines is measured, a statistical fit of 

the Boltzmann plot gives an accurate measurement of the rotational populations and thus the 

rotational temperature, i.e., the slope of the Boltzmann plot as shown in the Equation (3). 

Experimental Setup 

The experimental setup of O2 rotational temperature measurement in a DC air microdischarge is 

shown in Figure 33. An Nd: YAG laser was used to pump a dye laser with Rhodamine 6G as the 

dye. The output of the dye laser was frequency doubled by an automatic second harmonic 

generation and tracking system allowing tunable ultraviolet radiation between 286 and 288 nm. 

The ultraviolet laser beam (6~8 mJ/pulse), from the tracking system, was first reflected by a pair 
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of mirrors (M1 and M2) on a vertical transition stage, then focused by a lens (f=25mm) to generate 

the REMPI plasma within the atmospheric air microdischarge. As a rough estimate of the beam 

diameters, the waist size of the focused light beam is 1.5 μm with a depth of focus of 13 μm at the 

focal spot for an ideal Gaussian beam. A transition stage was employed in the experiment to 

vertically move the laser focal point precisely along the interelectrode axis using a stepper motor 

(SM1). The first eight sequential pictures in Figure 34 approximately show the position of laser 

focal points by generating laser-induced breakdown between the two electrodes. 

A microwave homodyne system (MDS) was used to detect the REMPI plasma[24]. A 10dBm 

tunable microwave source was first split into two channels. One channel was used to illuminate 

the ionization point through a microwave horn. Microwave scattering from the plasma was 

collected by the same microwave horn. The received microwave passed through a microwave 

circulator and was amplified 30 dB by one preamplifier at ~10 GHz. After frequency was 

converted down in the mixer, two other amplifiers with bandwidth of 2.5 kHz to 1.0 GHz amplified 

the signal by another factor of 60 dB. From the geometry of dipole radiation, the polarization of 

the microwave was chosen to be along the propagation direction of the laser to maximize the 

scattering signal. The time-accurate microwave scattering signal was monitored by an 

oscilloscope. The microwave signal was also input into an automatic data acquisition system, 

which recorded the rotational spectrum of oxygen as the laser wavelength was scanned. 

A 5 kV maximum dc power supply was used in series with a 1 MΩ load resistor to energize the 

microdischarge. The air microdischarge was generated by a pin-to-pin electrode configuration with 

an inter-electrode gap of 1.30 mm. In the experiments, a 4.8 kV voltage was applied by the dc 

power supplier which provided the microdischarge with a reasonable electrical and spatial 

stability. The majority of the high voltage dropped across the load resistor with the remaining 78±2 



122 

 

V dropping across the electrode gap while microdischarge current fluctuated between 4.60 mA 

and 4.73 mA. The microdischarge observed during the experiments is shown in the last two 

photographs in Figure 34. The plasma operated in a “normal glow” mode for REMPI temperature 

measurements. The discharge was reasonably stable and was not disturbed by the focused laser 

beam. However, when the laser beam focal spot was positioned too close to the anode or cathode, 

the microwave detection system obtained strong oscillating signals. This was possibly caused by 

the high energy electrons and molecular ions from the REMPI process near anode and cathode, 

respectively. Hence, the temperature distribution was measured at eight different axial positions 

between the electrodes, equally spaced at 0.10 mm intervals, but with an offset distance of 0.28 

mm from the anode and cathode. Images of air breakdown emission induced by the intense laser 

beam spot are shown in the first six photographs of Figure 34, indicating the laser focal positions 

between the two electrodes with no discharge. Compared to the finite radial width of the 

microdischarge (<0.4 mm), the depth of focus of the laser beam (13 μm) was much smaller. So 

while the microdischarge was operating, the laser focal spot was centered radially in the plasma 

and confined to a region without a significant radial variation in temperature.  With the 

microdischarge on, the focal region was pre-ionized by the plasma and the laser did not induce a 

more expansive breakdown, in the air, leaving the microwave scattering signal confined to the 

depth of focus region within the plasma. The environment inside the plasma was quite harsh  and 

different  from our previous experimental situations (i.e. pure oxygen in cell and room air), 

however, detection of the microwave radiation scattered by REMPI electrons was notimpeded by 

background radiation from the air microdischarge. In fact, the spectra of O2 were reasonably 

undisturbed by the microdischarge and fairly good and repeatable experimental data were obtained 

in this  electrically and optically active environment (Figure 32). It is assumed that any heating of 
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the air by the laser beam is negligible since the duty cycle of the laser pulse is small and relatively 

low average power compared to the microdischarge power. 

Results and Discussion 

Eight separate spectra of molecular oxygen were analyzed corresponding to the eight different 

axial positions probed in the microdischarge. The spectrum shown in Figure 35 is for the 

uppermost scanning position along the microdischarge axis which was 0.28 mm away from the 

anode. The red circle points in Figure 35 were the peak values extracted from the analysis of the 

molecular oxygen ground state rotational energy distribution derived from the REMPI spectrum. 

The transition assignments of these peak points are shown in Table 4.  

After all the peak points were assigned in the eight spectra with the branch information shown in 

Table 4, Boltzmann plots of the selected rotational lines were generated as shown in the following 

Figure 36. In each Boltzmann plot, a linear curve fit was applied to the peak values of the selected 

rotational lines. The R-squared value and slope of the fitted line are shown in the left bottom corner 

of each figure. The temperature at each scanning point was determined by the slope of the linear 

curve fit. 

The O2 rotational temperature distribution within the microdischarge was derived from the 

Boltzmann plots in Figure 36 which provided a determination of the O2 ground-state population 

distributions at the local positions in the atmospheric microdischarge. The axial temperature 

distribution of the microdischarge was obtained and is shown in Figure 37. Due to the 

characteristics of the Boltzmann plot and linear fit, the variation in rotational temperature was 

highly sensitive to small changes in the slope of the fitted line. Hence this approach could precisely 

track temperature variation, however, the temperature uncertainties were relatively large (~ ± 50 

K in Figure 37) as a trade-off in accuracy. The scanning resolution was 0.10 mm, as mentioned 
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above. This resolution was small enough to reveal the basic envelope of the temperature 

distribution for a normal glow discharge within 1.30 mm between two electrodes with a pin-to-pin 

configuration. 

Conclusions 

This work presents a new diagnostic tool for determining local rotational temperatures in 

atmospheric air microdischarges. Radar REMPI measurements were made at eight different axial 

locations in a stable “normal-glow” microdischarge between two pin electrodes. Local rotational 

temperatures were obtained from the 2+1 REMPI spectra of molecular oxygen 

C3Π(v=2)←X3Σ(v′=0) transition as determined by Radar REMPI. The axial temperature 

distribution within the microdischarge with a 1.3 mm electrode spacing was determined.  
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Figure 32.  Spectra of molecular oxygen in atmospheric air (300K) and air microdischarge 

(1200K). 
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Figure 33.  Experimental setup, the microdischarge was generated by two pin electrodes, 

microwave detection system (MDS) was used to collect the REMPI signal in the microdischarge. 

 

 

 

Figure 34.  The first eight sequential photographs show the different scanning positions between 

the two electrodes without the microdischarge; the ninth and tenth photographs show the 

microdischarge (glow discharge) with and without camera light respectively. 
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Figure 35.  Spectrum of molecular oxygen in an atmospheric microdischarge. 

 

 

Table 3.  Adopted Constants for  C3Π(υ = 2) of Molecular Oxygen. 

cm-1 F1(Ω = 0) F2(Ω = 1) F3(Ω = 2) 

n0 69369(2) 69449(1) 69552(1) 

Beff 1.61(5) 1.65(1) 1.69(1) 

Dυ 1.9(5)×10-5 1.6(2) ×10-5 1.9(2) ×10-5 
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Table 4.  Selected rotational lines for temperature measurements in the microdischarge. 

 

 

 

 

  

Branch J' Wavelength (nm) G1 (cm-1) Tf,g
2  

R11 42 285.935 2459.69 11.129 

P32 43 286.282 2703.41 22.927 

R11 36 286.362 1802.31 9.630 

R12 39 286.615 2231.73 20.500 

R11 32 286.637 1420.02 8.631 

R11 26 287.027 931.19 7.132 

S31 8 287.031 79.55 3.269 

P32 5 287.512 44.20 3.200 

R11 14 287.690 260.46 4.138 

S21 7 287.958 81.57 3.706 
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Figure 36. Boltzmann plots at the eight axial locations in the atmospheric microdischarge. 
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Figure 37.  The temperature distribution in the microdischarge was determined by eight points 

between anode and cathode at equal intervals of 0.10 mm. 
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CHAPTER VI 

ATOMIC OXYGEN MEASUREMENTS IN A LOW PRESSURE DC AND 

PULSED DISCHARGE VIA RADAR REMPI 
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Abstract 

This chapter presents relative atomic oxygen concentration measurements in low pressure direct 

current (DC) and pulsed discharges produced in oxygen/helium gas mixtures.  These 

measurements were made by coherent microwave Rayleigh scattering from resonance enhanced 

multiphoton ionization (REMPI) of atomic oxygen.  The 225.6 nm laser wavelength corresponded 

to a 2+1 REMPI transition utilizing the O 2p33p(3P) electronically excited state.  The low pressure 

DC and pulsed discharges are characterized over a range of pressures, gas compositions, and 

discharge voltages.  Temporal and spatial profiles of relative atomic oxygen concentration of the 

pulsed discharge are compared to those made in a similar apparatus via two-photon absorption 

laser induced fluorescence (TALIF).    A method by which quantitative measurement of atomic or 

radical species concentrations in a discharge environment can be made via dielectric calibration of 

Radar REMPI is discussed.  This technique appears to be a viable alternative to the tunable diode 

laser absorption spectroscopy (TDLAS) and two-photon absorption laser induced fluorescence 

(TALIF) methods. 

Introduction 

There is an ever growing interest in non-equilibrium plasma discharges due to the potential 

applications in plasma assisted combustion[1, 2], flow control[2], biomedical applications[3], 

manufacturing[4], arc jet flow heating[5].  However, due to the diversity of the applications of 

non-equilibrium plasma, there are many experimental difficulties in implementing diagnostics.  

First, many non-equilibrium plasma discharge devices have small volumes and limited optical 

access.  Additionally, many of these applications involve a wide range of pressures from vacuum 

to several atmospheres and temperatures from atmospheric to several thousand kelvin.  Production 
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of chemical intermediates, such as radical and atomic species, greatly influences many aspects of 

non-equilibrium plasma discharges and the nearby environment such as: kinetics, electron density, 

and thermochemistry. 

The primary techniques used to determine radical and atomic species concentrations in discharge 

environments are tunable diode laser absorption spectroscopy (TDLAS) and two-photon 

absorption laser induced fluorescence (TALIF).  TDLAS has been used to measure a wide range 

of radical species concentrations and kinetics for non-equilibrium plasma discharges in molecular 

gas mixtures [6-8].  The major limitation of TDLAS is that it is a line-integrated technique, and 

thus, it cannot be used to probe species in inhomogeneous environments.  TALIF has been used to 

measure atomic species such as: H, O, and N [9-11].  TALIF is not applicable to high-pressure 

environments due to rapid collisional quenching of the excited states.  Both optical techniques can 

be difficult to implement in “real” facilities such as arc jets. 

Coherent microwave scattering (Radar) from small volume plasmas generated by Resonance 

Enhanced Multiphoton Ionization (REMPI) has rapidly grown as a diagnostic technique since 

being first proposed nearly a decade ago [12, 13].  This growth is due largely to the benefits of 

separating the optical plasma generation from the standoff microwave detection, which allows the 

Radar REMPI system to be easily implemented and also less sensitive to the external environment 

than fully optical techniques.  Detection of trace species such as NO, CO, Xe, Ar in static gas 

mixtures [14]  and CH3 in a methane/air flame [15] via Radar REMPI has been demonstrated.  

Kinetic measurements have also been done by utilizing the decay of the Radar REMPI signal.  This 

has been demonstrated by electron loss rate measurements in air [16] and sodium-argon cluster 

ion recombination rates [17].  O2 rotational temperature measurement via Radar REMPI has been 

used to measure gas [18], flame [19], and DC discharge [20] temperatures.  Atomic oxygen 
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concentration measurements in a flame were performed using Radar REMPI [21]. As pointed out 

in this study, photo-dissociation of molecular oxygen can lead to erroneous measurements of 

atomic oxygen concentrations.  Utilizing REMPI from a second gas for calibration, such as xenon, 

adds significant uncertainty into the concentration measurement.  This uncertainty is due to the 

difficulty in accurately determining the REMPI cross-sections of the target and calibration species. 

In this work we will present relative atomic oxygen concentration measurements in a low pressure 

O2/He DC and pulsed discharge via Radar REMPI.  A 2+1 REMPI scheme of atomic oxygen is 

utilized.  The technique of using dielectric calibration to obtain absolute concentration 

measurements will be presented.  The influence of gas composition, laser pulse energy, and 

pressure on the measurement technique will be explored.  It will be shown that for prescribed laser 

intensities, direct measurement of atomic oxygen can be separated from photo-dissociation.   

Methodology for separating electrons generated via the REMPI process from those present in the 

DC and pulsed discharge will be presented.  Overall, this work will demonstrate Radar REMPI as 

a novel technique for making absolute concentration measurements of trace species in non-

equilibrium plasma discharges. 

Experimental Setup 

A sketch of the experimental setup used in this work shown in Figure 38.  A frequency doubled 

Nd:YAG laser (Continuum Surelite SI-10) was used to pump a tunable dye laser (Continuum 

ND6000, DCM, [2-[2-[4-(dimethylamino)phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-

propanedinitrile, C19H17N3O as the dye) to generate output at 619 nm. The output wavelengths 

were tunable from 615 to 620 nm, with output power ranging from 10-20 mJ/pulse. The dye laser 

output is mixed with a 355 nm beam (in BBO) to generate the required UV wavelength of 225 nm 

with laser energy of 50 – 400 J per pulse. The laser output was then focused by a lens with a focal 
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length of 50 cm to generate the REMPI plasma in the discharge cell.  The beam height was 

adjustable by using a mirror pair with the top mirror and the 50 cm lens mounted on a vertical 

stage.  The 2+1 REMPI scheme used in this work is shown in Figure 39. 

 The flow system consisted of a 200 mL/min (Omega – FMA5510) and a 2 L/min (Omega – 

FMA5516) to deliver ultra-high purity oxygen and helium respectively.  The gases were mixed 

roughly a meter before entering the discharge cell.  A piezoelectric pressure (Kurt J. Lesker – 910) 

sensor was used to determine the gas pressure shortly before the discharge cell.  The desired 

pressure in the system was obtained by manually adjusting a needling valve to the vacuum pump. 

The discharge cell consisted of a stainless steel 6-way cross with cf-flanges.  Two of the flanges 

had quartz windows applied with vacuum epoxy.  These windows allowed for propagation of the 

laser beam and microwave into the discharge cell. Two other flanges had ¼ inch Swagelok fittings 

to allow connection with the flow system.  The top and bottom flanges had copper rod electrodes 

that were electrically isolated from the discharge cell but through the flanges.  The electrodes were 

in a modified pin-to-pin arrangement with hemispherical heads with diameters of 6.35 mm and 

separated by 8 mm.  Photos of the pulsed and DC discharges are displayed in Figure 40. 

The same microwave detection system was used for all work presented.  A microwave homodyne 

transceiver detection system, shown in Figure 41, was used to detect the REMPI plasma. A 10 

dBm tunable microwave source (HP 8350B sweep oscillator, set at ~10 GHz) was first split into 

two channels. One channel was used to illuminate the ionization point through a microwave horn 

(WR75, 15 dB gain). Microwave scattering from the plasma was collected by the same microwave 

horn. The received microwave passed through a microwave circulator and was amplified 30 dB 

by one preamplifier at approximately 10 GHz. After the frequency was down converted in the 

mixer, two other amplifiers with bandwidth of 2.5 kHz to 1.0 GHz amplified the signal by another 
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factor of 60 dB. It should be noted that the filter after the mixer can effectively block the scattering 

background from the environment. Therefore, Radar REMPI measurements inside an enclosure 

will not suffer from surface scattering interference. From the geometry of dipole radiation, the 

polarization of the microwave was chosen to be along the propagation direction of the laser to 

maximize the scattering signal.  

Dielectric Calibration 

The derivation of a dielectric calibration process beings with the general ohm’s law (considering 

only magnitudes) which gives: 

 J = σE (1) 

 

The current density (current per unit area) is defined by: 

 J = -neev (2) 

 

For a dielectric, polarization occurs when an electric field is applied.  The relationship for a time 

varying field of a single frequency applied to a homogenous linear material is given by: 

 P(t) = χ(ω)ϵ0E(t) 

 

P(ω)eiωt = χ(ω)ϵ0E(ω)eiωt 

P(ω) = χ(ω)ϵ0E(ω) 

(3) 

 

The electric susceptibility is then defined as: 

 χ(ω) = ϵr(ω)-1 (4) 



140 

 

Using this definition: 

 P = ϵ0(ϵr-1)Ei (5) 

 

Defining the polarization in terms of the number of dipoles per unit volume gives: 

 P = need(ω) (6) 

 

Where d(ω) is the oscillation distance.  Then it can be determined: 

 -need(ω) = ϵ0(ϵr-1)Ei (7) 

 

Dividing by the period, Tosc,of the electron oscillation and comparing with Ohm’s law yields the 

current generated by the electric field (A is the area):  

 
I0 = J ∙ A ≈

nee ∙ d(ω)

Tosc
A =

ϵ0(ϵr-1)Ei

Tosc
A = [ϵ0(ϵr-1)ωA)]Ei (8) 

 

Note that it is assumed that the oscillation frequency of the electron matches the frequency of the 

incident electromagnetic wave. The scattered field is given by: 

 
ES ∝

sin(ϕ)

R
I0lω (9) 

 

Upon inserting Eq. 8 into Eq. 9, the scattered field is given by: 

 
ES ∝

sin(ϕ)

R
[ϵ0(ϵr-1)ωAEi)]lω (10) 
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ES ∝

Ei sin(ϕ)

R
ϵ0(ϵr-1)ω2Al (11) 

 

Defining the volume as V = Al and noting that the amplitude of the indident field, Ei, is only a 

function of frequency and is therefore constant for a fixed frequency it can be seen that: 

 
ES ∝

Ei sin(ϕ)

R
ϵ0(ϵr-1)ω2V (12) 

 

Now let β be the constant of proportionality so that: 

 
ES =

βEi sin(ϕ)

Rϵ0(ϵr-1)
ω2V (13) 

 

Since the measured voltage is proportional to the scattered electric field (i.e. U ∝ ES) then it can 

be shown that: 

 
U = [

γβEi sin(ϕ)

R
] ϵ0(ϵr-1)ωV (14) 

 

Finally the dielectric calibration constant can be defined as: 

 
Ac =

γβEi sin(ϕ)

R
ω (15) 

 

The microwave scattering signal from the detection system can be written for the limiting cases of 

a perfect conductor or a perfect dielectric scatterer placed in the microwave illumination region as 

follows: 
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U = {

AσV, for perfect conductor

Aε0(εr-1)ωV, for dielectirc
 (16) 

 

where U is the microwave signal, A is the characteristic parameter of the microwave detection 

system, σ is the electric conductivity of the scatter, ε is the permittivity of the scatter, ε0 is the free 

space permittivity, ω is the angular frequency of microwave, and V is the volume of the scatterer, 

respectively.  By placing a sample with known dielectric properties within the illumination region 

one may determine the microwave detection system characteristic A at the sample’s location.  A 

small cylindrical sample of a dielectric material such as alumina was mounted at the laser beam 

focal point with the cylinder’s axis parallel to the laser’s propagation direction.  This dielectric 

calibration approach slightly differed from the previous work[22], which used dielectrics launched 

through the microwave illumination region.   

A sample microwave scattering signals from alumina and PTFE are shown in Figure 42.  The 

measurement of A should be more accurate with the use of alumina due to its larger ε value leading 

to a stronger scattering signal. With the same detection system and experimental setup, the 

temporal evolutions of electron density from laser sparks are also shown in Figure 42 with the 

laser energy input of 70, 35 and 16 mJ at 1064, 532 and 355 nm, respectively.  By using the system 

parameter A and making the approximation that the plasma column is roughly the same size as the 

laser beam focal region, one can determine the conductivity of the plasma column from the 

microwave signal.  The electron density in the plasma can then be determined by using the 

expression:  

 σ = 2.82 × 10-4neνm(ω2 + νm
2 )Ω-1 cm-1 (17) 
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where νm is the frequency of electron-neutral collisions νm ≈ 2 × 109p[Torr], s-1, ne is the 

electron density (cm-3), and ω is the angular frequency (s-1) [23]. 

 

 The characteristic parameter A is highly dependent on the location of the scatter relative to 

the microwave horn.  However for a given system, it is possible to obtain a spatial mapping of the 

calibration ex-situ.  This methodology would allow for the implementation of a highly robust Radar 

REMPI system. 

Results 

Dielectric Calibration 

 Using an alumina cylinder of 3.1 mm in diameter and 22.1 mm in length as a microwave 

scatter resulted in a microwave scattering signal of 0.5 mV.  An estimate for the plasma column 

diameter equal to the Gaussian beam waist of 125 μm was used to calculate a calibration for 

electron density measurement of 1.97 × 1014 cm-3

100mV
.  This estimation gives a measured electron 

number density on the order of 1 × 1013 cm-3 for the REMPI plasma in this work.  The fraction 

of ionization calculated by the ratio of the electron number density to the atomic oxygen number 

density is given by 

 ne

nO
= σiσ2F3e

(-
kT

E0
)
  (18) 

 

where σi is the one photon ionization cross section, σ2 is the two-photon excitation cross-section, 

F is the photon flux, and e
(-

kT

E0
)
 is the Boltzmann factor taken to be 1 here.  Values of these cross 

sections were reported to be 3.30 × 10-19cm2 and 2.66 × 10-35cm4 for ionization and excitation, 
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respectively.[24] Using the previously mentioned Gaussian beam waist and a typical laser energy 

of 200 μJ/pulse one obtains a factiously high fraction of ionization at 62.5%.  The factiously high 

fraction of ionization is most likely due to a laser beam radius that is larger than the estimated 

Gaussian beam waist.  Attempts were made to measure the laser beam radius using laser burn 

paper but were not successful due to the low laser energy and size of the beam.  It can be shown 

that the measurement of absolute atomic oxygen number density has a relation to the laser beam 

radius, r, given by: 

 nO~ r6 (19) 

 

This large dependence on r causes even small inaccuracies in the laser beam radius to significantly 

change the measured atomic oxygen density for the dielectric calibration technique.  For this 

reason all results below are presented as normalized electron densities.  The results are normalized 

to the relevant maximum signal in order to allow us to make conclusive remarks on the 

characterization of atomic oxygen production in the DC and pulsed discharges. 

DC Discharge 

Figure 43 shows a typical atomic oxygen REMPI spectrum.  Measurements were taken in a 5% 

O2/He mixture at 25 Torr with and without the 4 kV DC discharge on.  The spectrum was taken 1 

mm from the anode along the length of the discharge gap.  With the discharge on, a single peak is 

observed at 225.6 nm corresponding to the 2+1 atomic oxygen REMPI scheme outlined 

previously.  Additionally, there is a small peak observed at 225.63 that most likely corresponds to 

NO produced in the discharge.  This would indicate a small air leak into discharge cell.   

Figure 44 shows microwave scattering signal versus laser energy squared.  These measurements 

were taken in a 4 kV DC discharge 1 mm from the anode produced in a 5% O2/He mixture at 25 
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Torr.  A linear fit was applied to the data to assess its linearity.  Although a significant amount of 

scatter is seen in the measurements, the data most closely follows a linear trend attributed to the 

two-photon excitation process.  If a higher order photon process, namely photo-dissociation of 

molecular oxygen followed by REMPI of atomic oxygen, was the dominant mechanism one would 

observe a signal dependence on laser energy of cubed or higher.  The spectrum most likely 

indicates that direct Radar REMPI measurement of atomic oxygen produced in the DC discharge 

is observed here. 

Figure 45 shows normalized atomic oxygen density measurements versus (a) % O2 in a He mixture 

at 25 Torr and 4 kV supplied voltage, (b) pressure in a 5% O2/He mixture at 4 kV supplied voltage, 

and (c) supplied voltage in a 5% O2/He mixture at 25 Torr.  All three data sets were taken 1 mm 

from the anode.  A peak in the atomic oxygen density is observed near 30% O2/He mixture.  

Enhanced quenching of atomic oxygen via ozone formation at higher molecular oxygen densities 

could lead to lower the decrease in atomic oxygen density.  This same effect is prevalent in the 

pressure dependence measurements shown in Figure 45(b).  At pressures above 20 Torr the atomic 

oxygen density appears to rapidly decrease with increasing pressure.  Along with the formation of 

ozone, collisional quenching leading to O2 formation decreases the atomic oxygen density.  Figure 

45(c) shows that the atomic oxygen increases with increasing discharge supplied voltage.  

Increasing the supply voltage increases the strength of the electric field.  This in turn leads to a 

stronger electron avalanche and larger electron densities.  Since the primary mechanism for atomic 

oxygen generation is dissociative recombination of O2
+, the atomic oxygen density is highly 

dependent on the discharge supply voltage. 

Figure 46 shows normalized atomic oxygen density spatial profile in a 4 kV DC discharge 

produced in a 5% O2/He mixture at 25 Torr.  The peak atomic oxygen density is observed near the 
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anode, which can most likely be attributed to the elevated electron number densities near the 

electrode surface due to cascading effect of the electron avalanche within the discharge gap.  

Another uptick in the atomic oxygen density is seen near 1.75 mm from the anode.  One possibility 

for this would be the formation of a “hotspot” of higher electron density, leading to the higher 

atomic oxygen density.  Near the cathode, the atomic oxygen density rapidly increases, which is 

likely due to the formation of a plasma sheath of higher ionic density near the surface of the 

electrode. 

Pulsed Discharge 

Figure 47 shows typical voltage and current waveforms for the pulsed discharge.  These 

measurements were taken in a 1% O2/He mixture at 100 Torr and supplied voltage of 4 kV.  The 

gate of the pulse can be seen to be roughly 200 ns wide with peaks in voltage and current observed 

after 150 ns.  A peak voltage across the discharge gap of around 2.3 kV, meaning a 1.7 kV voltage 

drop at the 1 k-Ohm resistor and within the other elements of the circuit is obtained.  A 2.3 ampere 

peak current is observed.  This peak current is significantly higher than the operating current of 

the DC discharge and will lead to much higher atomic oxygen densities in the discharge. 

Figure 48 shows a typical atomic oxygen REMPI spectrum in the pulsed discharge at 1 mm from 

the anode and 80 microseconds from the start of the pulse discharge.  The measurements were 

taken in a 1% O2/He mixture at 100 Torr with the 4 kV pulsed discharge off and on.  With the 

discharge on, a peak at 225.6 nm is observed and corresponds to the 2+1 REMPI of atomic oxygen.  

A large disparity is seen at the off-resonance wavelengths between the discharge on and off curves.  

The large off-resonance signal is due to the microwave scattering from the electrons produced in 

the pulsed discharge. 
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Figure 49 shows temporal profiles of normalized atomic oxygen density in a pulsed discharge for 

various (a) Pressure, (b) and supplied voltage, (c) %O2 in He mixture.  For all three data sets, there 

is an early time frame after the pulsed discharge where significant microwave shielding occurs 

leading to much lower atomic oxygen density measurements.  For most of the cases shown below, 

this shielding time frame occurs around the first 50 microseconds following the pulse discharge.  

The notable exception being the 0.5% O2/He mixture case in Figure 49(c), which appears to show 

significant shielding out to 2000 microseconds after the pulsed discharge.  The peak in measured 

atomic oxygen density is observed after sufficient losses in the background electrons occur to 

allow for the microwaves to penetrate the REMPI plasma.  Following this peak, the atomic oxygen 

density follows an exponential decay until the next cycle of the pulsed discharge. 

Figure 50 shows microwave scattering from the background electrons produced in the pulsed 

discharge versus time.  Typical Radar REMPI signal for a laser pulse at 80 microseconds after the 

start of the pulsed discharge.  These measurements were taken for a 1% O2/He mixture at 100 Torr 

with a supplied voltage of 4 kV.  The amplitude of the microwave scattering signal with the first 

50 microseconds peaks at over 2 volts, significantly larger than the superimposed Radar REMPI 

signal.  Additionally, such high scattering signals correspond to electron densities that will not be 

fully penetrable to the microwaves and will lead to erroneously low atomic oxygen density 

measurements. 

Figure 51 shows spatial profile of atomic oxygen density normalized for various pressures in a 4 

kV pulsed discharge in 1% O2/He mixture.  Measurements were taken 1 mm from the anode.  For 

all three pressure conditions, the peak in atomic oxygen density is observed close to the anode.  

Approaching the center of the discharge the atomic oxygen density decreases before finally 
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increasing near the cathode.  The same boundary effects mentioned for the spatial profiles observed 

for the DC discharge are observed here. 

Figure 52 shows atomic oxygen REMPI signal versus laser energy squared with a linear fit.  This 

measurement was taken at 1 mm from the anode in a 1% O2/He mixture at 100 Torr with a 4 kV 

supply voltage.  A linear trend to the measurement is much more apparent for the pulsed discharge.  

The higher atomic oxygen densities in the pulsed discharge lead to a better signal to noise ratio for 

the measurement. 

Figure 53 shows normalized atomic oxygen density measurements in a pulsed discharge versus (a) 

pressure for a 1% O2/He mixture at 4 kV supply voltage, (b) supplied voltage for a 1% O2/He 

mixture at 100 Torr, and (c) %O2 in He mixture at 100 Torr and 4 kV supply voltage.  Similar to 

the DC discharge, increasing pressure leads to a decrease in the observed atomic oxygen density 

due to collisional losses and the formation of ozone.  Similarly to DC discharge, and increase in 

the supplied voltage to the pulsed discharge leads to enhanced electron avalanche and thus higher 

atomic oxygen densities.  As mentioned for the DC discharge measurements, this is most likely 

due to enhanced electron production due to the stronger electric field at higher supply voltages.  

Increased atomic oxygen density is observed for increasing % O2/He mixtures. Unfortunately, 

measurements greater than 5 % O2 in the He mixture were not taken here. 

Figure 54 shows comparisons of atomic oxygen measurements made via Radar REMPI and TALIF 

techniques.  Both sets of measurements were made in a 4 kV pulsed discharge produced in a 1% 

O2/He mixture at 100 Torr.  Figure 54(a) shows a comparison of the spatial profile in two similar 

discharges.  Figure 54(b) shows a comparison of the temporal profiles with exponential curve fits 

and their corresponding 1/e time constants.  Measurements were taken at 1 mm from the anode for 

the two techniques. 
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Conclusions 

In this chapter relative atomic oxygen concentration measurements in low pressure direct current 

(DC) and pulsed discharges produced in oxygen/helium gas mixtures were presented.  Coherent 

microwave Rayleigh scattering from resonance enhanced multiphoton ionization (REMPI) of 

atomic oxygen was utilized for these measurements.  A 2+1 REMPI scheme was employed using 

a 225.6 nm laser wavelength corresponding to a two photon transition to the O 2p33p(3P) 

electronically excited state.  The effects of pressure, gas composition, and discharge voltages on 

atomic oxygen concentration were explored for the low pressure DC and pulsed discharges are 

characterized over a range of pressures, gas compositions, and discharge voltages.  Comparisons 

between Radar REMPI and two-photon absorption laser induced fluorescence (TALIF) techniques 

were made for the measured temporal and spatial profiles of relative atomic oxygen concentration 

in a pulsed.    Dielectric calibration of Radar REMPI was presented as a method by which 

quantitative measurement of atomic or radical species concentrations in a discharge environment 

can be made.  Although this technique relies on careful determination of the laser beam radius, it 

appears to be a viable alternative to the measurement of atomic or radical species concentrations 

in a discharge environment. 
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Appendix 

 

 

 

Figure 38. Sketch of experimental setup used for atomic oxygen concentration measurements in 

O2/He DC and pulsed Discharge 
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Figure 39. Energy level diagram depicting radar REMPI transitions for (2+1) atomic oxygen O. 

 

 

 

   (a)      (b) 

Figure 40.  Photos of discharge in a 1% O2/He mixture with 50 ns exposure time (a) pulsed and 

(b) DC discharge. 
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Figure 41. Microwave homodyne detection system. 

 

 

 

 

Figure 42.  The microwave scattering signals from dielectric materials (alumina and PTFE) and 

laser-induced air breakdown by using 1064, 532, and 355 nm laser beam, respectively. 
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Figure 43. Atomic oxygen REMPI spectrum with the 4 kV DC discharge off and on in a 5% O2/He 

mixture at 25 Torr.  Spectrum was taken 1 mm from the anode. 

 

 

 

Figure 44.  Microwave scattering signal versus laser energy squared with a linear fit.  

Measurements were taken 1 mm from the anode in a 5% O2/He mixture at 25 Torr and 4 kV. 
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(a)        (b) 

 
(c) 

Figure 45.  Microwave scattering signal versus (a) % O2 in a He mixture at 25 Torr and 4kV, (b) 

Pressure in a 5% O2/He mixture and 4kV, and (c) Supplied Voltage in a 5% O2/He mixture at 25 

Torr.  All three data sets were taken 1 mm from the anode. 

0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

 

 
A

to
m

ic
 O

x
y
g

e
n

 D
e
n

s
it
y
 (

n
o

rm
.)

% O
2

20 25 30 35 40 45 50

0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
to

m
ic

 O
x
y
g

e
n

 D
e
n

s
it
y
 (

n
o

rm
.)

Pressure (Torr)

2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
to

m
ic

 O
x
y
g
e
n
 D

e
n
s
it
y
 (

n
o
rm

.)

Supplied Voltage (Volts)



158 

 

 

Figure 46.  Microwave scattering signal along the length of the discharge gap for 5% O2/He at 25 

Torr and 4 kV supplied voltage.  

 

 

 

Figure 47.  Pulsed discharge voltage and current waveforms in a 1% O2/He mixture at 100 Torr 

and set supplied voltage of 4 kV. 

0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
to

m
ic

 O
x
y
g

e
n

 D
e
n

s
it
y
 (

n
o
rm

.)

Distance from Anode (mm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

1000

2000

3000

D
is

c
h
a
rg

e
 V

o
lt
a
g
e
 (

V
o
lt
s
)

Time (microseconds)

0

500

1000

1500

2000

2500

 
C

u
rr

e
n
t 

(m
A

)



159 

 

 

Figure 48.  Atomic oxygen REMPI spectrum at 1 mm from the anode in a 1% O2/He mixture at 

100 Torr with the pulsed discharge off and on. 
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(a)              (b) 

 
(c) 

Figure 49.  Temporal profiles of normalized atomic oxygen density in pulsed discharge for various 

(a) Pressure, (b) and supplied voltage, (c) %O2 in He mixture. 
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Figure 50.  Microwave scattering from electrons produced in pulsed discharge versus time.  

Typical Radar REMPI signal for a laser pulse at 80 microseconds after the start of the pulsed 

discharge. 

 

 

 

Figure 51.  Spatial profiles of normalized atomic oxygen density 80 microseconds after the 4 kV 

pulsed discharge for various pressures in a 1% O2/He mixture.  Measurements were taken 1 mm 

from the anode. 
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Figure 52.  Atomic oxygen REMPI signal versus laser energy squared with linear fit.  

Measurements were taken 80 microseconds after the discharge at 1 mm from the anode in a 1% 

O2/He mixture at 100 Torr and 4 kV supply voltage. 
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(a)            (b) 

 
(c) 

Figure 53. Normalized atomic oxygen density in pulsed discharge versus (a) pressure in a 1% 

O2/He mixture at a 4 kV supply voltage , (b) supplied voltage for a 1% O2/He mixture at 100 Torr, 

and (c) %O2 in He mixture at 100 Torr and 4 kV supply voltage.  These measurements were taken 

1 mm from the anode and 80 microseconds after the discharge. 
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(a)        (b) 

Figure 54.  Comparison of TALIF and Radar REMPI measurements of atomic oxygen produced 

by a 4 kV pulsed discharge in a 1% O2/He mixture at 100 Torr.  Normalized atomic oxygen density 

shown as (a) spatial profile and (b) temporal profile. 
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CHAPTER VII 

REDUCTION OF BREAKDOWN THRESHOLD BY METAL 

NANOPARTICLE SEEDING IN A DC MICRODISCHARGE 
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Abstract 

Significant reduction of the breakdown threshold in a DC microdischarge via seeding metal 

nanoparticles has been demonstrated.  Compared to standard Paschen curves in dry air, reductions 

in the breakdown voltage of 5 to 25% were obtained for PD  values (the product of pressure and 

electrode gap distance) ranging from 20 to 40 Torr-cm by seeding aluminum and iron nanoparticles 

with mean sizes of 75nm and 80nm, respectively.  No secondary energy source was required to 

achieve this breakdown threshold reduction.  From high-speed chemiluminescence imaging of the 

discharge evolution, breakdown was shown to be initiated at reduced voltages.  Following 

breakdown, the increase in temperature ignited some of the nanoparticles near the cathode.  Results 

suggest that possible charging of the nanoparticles within the gap may reduce the effective 

transient distance, leading to the threshold reduction.  
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Introduction 

The mechanisms for breakdown in gas discharges have been studied extensively for over a 

century.[1]  It is well known that the voltage required to initiate breakdown of a gaseous DC 

discharge depends strongly on the pressure P multiplied by the distance D of the gap between the 

electrodes, PD, as described by Paschen’s Law.[2]  For a gas at atmospheric pressure, by limiting 

the inter-electrode separation to a distance of less than a millimeter, it is possible to produce a 

stable “normal-glow” microdischarge.[3]  Although such a microdischarge is spatially confined 

compared to a traditional low pressure discharge, the normal glow properties of a non-thermal 

discharge still apply, such as an electron temperature, Te, which is several orders of magnitude 

larger than the gas temperature, Tg.[3-5]  Many applications have been explored to exploit this 

excess electron energy and drive optical or chemical processes such as: vacuum-ultraviolet light 

sources[6], biomedical systems [7, 8], nanoparticle synthesis[9, 10], and plasma ignition[11].  

However in atmospheric air, even with a small inter-electrode separation of less than 1 mm, a 

sizeable voltage (upwards of 4 to 5 kV) may still be required to initiate breakdown.   

A significant reduction of the breakdown threshold within a microdischarge could be a 

breakthrough that enables numerous applications.  Such a breakdown voltage reduction could 

allow for the use of smaller, cheaper, and safer power supplies.  One method of reducing the 

voltage required to initiate breakdown is to generate seed electrons into the discharge region.  

Breakdown under these conditions is termed “under-voltage breakdown”.  Previously studied 

techniques for achieving under-voltage breakdown have included electron seeding by illumination 

of the cathode by ultraviolet (UV) light[12-14], resonance enhanced multi-photon ionization 

(REMPI) by UV pulsed lasers [15, 16], and the use of secondary electrodes or spark plugs[17].  

The major limitation of these methods is that they all require a secondary energy source in order 
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to produce the seed electrons which can increase the overall cost, complexity, and weight of the 

microdischarge system. 

On the other hand, the effect of solid particle contamination, whether intentionally introduced or 

not, on the breakdown process in air gaps has been explored previously.  Unwanted solid particle 

contaminants in commercial electrical systems can lead to arcing and failure of transmission lines 

and gas insulation systems.  Sand and dust with particle sizes above several tens of microns were 

shown to initiate breakdown across gap lengths of several centimeters.[18, 19]  The previous works 

concluded that the sand and dust particles in the inter-electrode gap played a negligible role in the 

volume processes during breakdown; however, the formation of a thin contaminant layer on the 

cathode enhanced secondary electron emission and significantly reduced the breakdown voltage 

in some circumstances.  Other works have shown that larger (100s of microns to 100s mms) 

conductive particles in an inter-electrode air gap can play a significant role in reducing breakdown 

voltage, time-lag of impulses, and breakdown probability.[20-22]  These previous works have 

concluded that the degree of influence that the solid particles have on the breakdown process 

depends on both the discharge properties, namely polarity and field uniformity, as well as 

properties of the particles such as conductivity, shape, size, concentration, and position relative to 

the electrodes. 

In this study, aluminum and iron nanoparticles were seeded into a DC microdischarge at a very 

low flow speed.  Experimental results indicate that breakdown thresholds of dry air with 

nanoparticle seeding were significantly reduced compared to standard Paschen law.  High-speed 

chemiluminescence images reveal that the nanoparticles had a major influence in inducing 

breakdown and subsequent heating that eventually ignited the nanoparticles. 
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Experimental Setup 

The experimental setup consisted of three major components: 1) a microdischarge cell with a gas 

and particle handling system that produces a DC microdischarge either with or without 

nanoparticle seeding, 2) a high-voltage power supply, high-voltage probes and data acquisition 

systems, and 3) a high-speed camera for luminosity measurements.  In Figure 55, a home-made 

glass cell (inner diameter = 1 inch) was equipped with two adjustable electrodes.  The cathode was 

a circular aluminum plate while the anode was a stainless steel needle oriented orthogonally to the 

circular plane of the cathode.  The cathode was attached to the head of a micrometer so that its 

position relative to the anode could be accurately controlled.  The distance between the two 

electrodes was set to roughly zero as verified by measuring the resistance across the gap with a 

multimeter.  The gap between the electrodes could be determined accurately down to a 0.03 mm 

resolution.   

A custom-made particle seeder, which included a particle container, inlet and outlet tubes, was 

used to seed the flow with various nanoenergetic materials.  Mass measurements, before and after 

each run, were used to estimate the particle flow rates.  Usually about 5 g of aluminum or iron 

nanoenergetics (nominal diameters of 70 nm, purchased from NanoAmor Inc. without further 

treatment) were placed along the flow path inside the particle container.  The particle seeder inlet 

tube was submerged below the surface of the piles to generate particle suspensions inside the 

container.  The height of the inlet and outlet were offset to ensure roughly uniform seeding in the 

flow through the discharge tube.  Standard breathing dry air was used as the gas supply.  A flow 

controller (Omega, FMA 5400) regulated the flow rate in the system to 1 ± 0.1 slpm (standard 

liters per minute).  A three-way valve allowed the flow to be switched between the nanoparticle 

seeder and a bypass line.  If particle seeding was desired, the three-way valve and needle valve 
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were opened to allow flow through the seeder.  Otherwise the three-way valve and needle valve 

were closed to isolate the particle seeder.  The pressure in the system was monitored downstream 

of the cell by a piezoelectric pressure sensor (Kurt J. Lesker Company, Series 910), and the desired 

pressure was obtained by adjusting the needle valve upstream of the vacuum pump.    

The high-voltage system included a high-voltage power supply, high-voltage probes, and data 

acquisition systems.  The output of the high-voltage power supply was controlled via LabviewTM 

software on a personal computer.  The positive terminal was connected to a 1 MΩ ballast resistor 

used to limit the current through the discharge circuit.  When a sufficient positive voltage was 

applied to the anode, breakdown occurred within the air between the two electrodes, with the 

resulting current spike traveling through the circuit to the grounded cathode.  The supply voltage 

was linearly increased until breakdown was achieved.  Two high-voltage probes were used to 

monitor the voltage drop across the electrode gap and across the ballast resistor.  The voltage drop 

across the electrode gap, V1, was determined directly by measuring the potential at junctions before 

the anode and after the cathode.  The current in the system was obtained by measuring the potential 

drop across the ballast resistor and electrode gap sequentially.  The total applied potential across 

the ballast and gap could be expressed as V2=V1+VR.  Rearranging and dividing by the resistance 

of the ballast resistor, R, the current in the circuit was determined by Ohm’s Law to be I = (V2-

V1)/R. 

A high-speed camera (Cooke Corporation, HS1200) was used to track the chemiluminescence 

from the plasma initiation and nanoparticle ignition events.  The 2-D chemiluminescence images 

were acquired with a 1 ms exposure time.  Because of the nature of the volume-averaged 

chemiluminescence images, the measurements can be regarded as an average over the line of sight 

across the discharge. 



171 

 

Results and Discussions 

Figure 2 shows a comparison between theoretical Paschen curves for “clean” dry air and 

experimental measurements in air with and without Al and Fe nanoparticle seeding.  

Measurements of the breakdown voltage of the “clean” dry air were taken for a 1 mm gap distance 

with varying pressures of 200 to 400 Torr.  For the dry air case, as seen in Figure 56, a maximum 

error of less than 12% was observed between theoretical and experimental breakdown voltages.  

Breakdown voltages for the dry air with nanoparticle seeding were experimentally determined for 

the 20 to 40 Torr-cm range.  The experiment was performed with aluminum and iron nanoparticles 

with mean diameters of 80 and 75 nm, respectively.  The number density flow rate of the 

nanoparticles had an upper bound of 1 × 1010 cm-3s-1 during the course of the experiment.  The 

breakdown threshold values for all three curves appear to coalesce at the lower PD scaling close 

to 20 Torr-cm, however, the experimental data diverge from the theoretical values with increasing 

PD up to 40 Torr-cm.  This situation is most commonly due to uncertainty in the secondary 

ionization coefficient of the cathode.  It is clearly seen that nanoparticle seeding resulted in a 

reduction in the breakdown voltage for the entire 20 to 40 Torr-cm range.  However, at lower PD 

values, nanoparticle seeding appeared to cause only a slightly reduced breakdown threshold of a 

few percent compared to the “clean” dry air case.  On the contrary, at larger PD values, a more 

significant reduction in the breakdown voltage, approaching 25%, was apparent with nanoparticle 

seeding.  In Figure 56 a general upward trend is seen in the percentage reduction for increasing 

PD for the 20 to 40 Torr-cm range.  Seeding with Al nanoparticles consistently has a lower 

breakdown threshold compared to seeding with Fe nanoparticles.  This may be due to the 

difference in electrical conductivity of the particles.  Additionally, iron nanoparticles have been 

shown to have larger more porous oxidation layers which may negatively impact charging of the 
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nanoparticles.[23]  Mild day to day variations were seen in the experimental breakdown voltages 

most likely due to changes in the electrode surfaces over time despite rigorous efforts in polishing 

and cleaning; however, the above mentioned trends were consistently preserved. 

 Figure 57 shows a typical plot of the discharge current as the applied voltage was gradually 

increased, both with and without Al nanoparticle seeding.  Initially, in both cases, there is 

negligible current in the circuit prior to breakdown.  Without nanoparticle seeding, there is an 

almost immediate sharp increase in current at the breakdown voltage.  With nanoparticle seeding, 

short-lived instabilities manifest as peaks in current just prior to breakdown.  A slightly elevated 

current is present as well in the instability region.  Once the breakdown threshold was reached in 

each discharge, there was negligible difference in current at similar applied voltages.  Similar 

properties are shown for the measured gap voltage, with and without aluminum nanoparticle 

seeding, as shown in Figure 58.  Without nanoparticle seeding, there is a sharp decrease in voltage 

across the gap at the breakdown voltage.  For the case with nanoparticle seeding, instabilities 

appear as dips in the voltage just prior to breakdown.  Once the breakdown threshold is reached, 

it is apparent from the two plots that the nanoparticle seeding causes negligible change to 

conductivity of the sustained discharge. 

 Figure 59 shows high speed images of the discharge gap taken during the breakdown process with 

a resolution of 2 ms between frames.  Analysis of these images revealed that the breakdown occurs 

within the first 2 ms of applying the voltage.  Ignition of the nanoparticles due to thermal effects 

was observed at 4 ms.  It was confirmed that breakdown always occurs before the ignition of metal 

nanoparticles at various conditions.  The delay between gas breakdown and the ignition of the 

nanoparticles varied.  In conditions at pressures close to atmosphere and/or larger electrode 

separations, the thermal ignition of the nanoparticles was both more abundant and less delayed 
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from the breakdown, which was likely due to the higher temperatures under those conditions.  

Overall, the nanoparticles first acted to reduce the voltage threshold required for gas breakdown. 

Subsequently the discharge ignited some of the particles between electrodes. 

Figure 60 shows scanning electron microscope (SEM) images and statistical analyses of particle 

sizes from samples of the nanoparticles used in this study.  Both the aluminum and iron 

nanoparticle samples appeared to have Gaussian distributions; however, the mean size of the 

aluminum nanoparticles is a bit smaller due to the thinner oxidized shell and lower degree of 

agglomeration.  Such ex-situ diagnostic techniques could be used to build empirical correlations 

between reduction in breakdown voltage and characteristics of the particles such as size, shape, 

and degree of oxidation. 

Based on the experimental observations, the mechanisms for reducing the breakdown threshold 

may be due to possible charging of the nanoparticles within the gap, which may reduce the 

effective distance.  Since the current across the gap does not vary with and without nanoparticle 

seeding, the increased conductivity due to the presence of metal nanoparticles is small.  

Additionally nanoparticles do not start to combust before the breakdown.  The Joule heating due 

to the presence of metal nanoparticles is slow compared to breakdown generation.  However 

evidence of charging of the metal nanoparticles within the gap has been observed in these 

experiments.  For example in Figure 59, the attraction of the nanoparticles to the cathode and the 

subsequent ignition near the cathode region indicate that the nanoparticles were positively charged.  

In addition, the chemiluminescence image at 2 ms shows a brighter glow near the cathode, which 

suggests that the evolution of the breakdown started from anode and turned toward the cathode.  

The nanoparticles charging and shifting toward the cathode might allow the nanoparticles to serve 

as effective electrodes within the gap, which could mimic a reduction in the gap distance.  It is 
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speculated that the Paschen curve may still hold for the particle laden flow with the addition of the 

conducting nanoparticles near the cathode leading to an effective reduction in distance between 

the electrodes, i.e., the PD values on the x axis are reduced. 

Conclusions  

In this work, the seeding of metal nanoparticles was shown to reduce the voltage required to initiate 

breakdown in an air DC microdischarge.  Reductions in the breakdown voltage were seen to be as 

high as 25% for a PD scaling of 40 Torr-cm.  High-speed chemiluminescence imaging of the 

discharge region revealed that the breakdown process was enhanced by a reduction in the required 

voltage from nanoparticle seeding, and then heating from the discharge led to ignition of some of 

the nanoparticles as they flowed through the discharge region.  The use of SEM imaging gave 

detailed information regarding the particle size, shape, and oxidation distributions.  Further use of 

ex-situ diagnostic techniques, such as SEM analyses, could allow for the development of empirical 

correlations between particle characteristics and reduction in the breakdown voltage.  Visual 

evidence of particle charging being the most likely mechanism for breakdown voltage reduction 

and subsequent reduction of the effective distance between the electrodes has been presented. 

Acknowledgements 

We acknowledge support from the AFOSR and NSF CBET-1032523 and CBET - 1346944. 

  



175 

 

References 

1. Townsend, J., Electricity in gases. 1915, Oxford,: Clarendon Press. xv, 406 p. incl. tables, 

diagrs. 

2. Paschen, F., Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei 

verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik, 1889. 273(5): p. 69-

96. 

3. Foest, R., M. Schmidt, and K. Becker, Microplasmas, an emerging field of low-

temperature plasma science and technology. International Journal of Mass Spectrometry, 2006. 

248(3): p. 87-102. 

4. Sawyer, J., et al., O2 rotational temperature measurements in an atmospheric air 

microdischarge by radar resonance-enhanced multiphoton ionization. Journal of Applied Physics, 

2013. 113(23): p. -. 

5. Laux, C.O., et al., Optical diagnostics of atmospheric pressure air plasmas. Plasma 

Sources Science and Technology, 2003. 12(2): p. 125. 

6. Ren’an, B., et al., Development of 146nm Vacuum UV Light Source. Physics Procedia, 

2012. 32(0): p. 477-481. 

7. Goree, J., et al., Killing of S. mutans Bacteria Using a Plasma Needle at Atmospheric 

Pressure. Plasma Science, IEEE Transactions on, 2006. 34(4): p. 1317-1324. 

8. Kim, J.Y., et al., 15-μm-sized single-cellular-level and cell-manipulatable microplasma jet 

in cancer therapies. Biosensors and Bioelectronics, 2010. 26(2): p. 555-559. 

9. Chiang, W.-H. and R.M. Sankaran, Microplasma synthesis of metal nanoparticles for gas-

phase studies of catalyzed carbon nanotube growth. Applied Physics Letters, 2007. 91(12): p. 

121503-3. 



176 

 

10. Richmonds, C. and R.M. Sankaran, Plasma-liquid electrochemistry: Rapid synthesis of 

colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics 

Letters, 2008. 93(13): p. 131501-3. 

11. Pancheshnyi, S.V., et al., Ignition of Propane&ndash;Air Mixtures by a Repetitively Pulsed 

Nanosecond Discharge. Plasma Science, IEEE Transactions on, 2006. 34(6): p. 2478-2487. 

12. Frechette, M.F., N. Bouchelouh, and R.Y. Larocque. Laser-induced undervoltage 

breakdown in atmospheric N<sub>2</sub> correlated with time-resolved avalanches. in Electrical 

Insulation, 1994., Conference Record of the 1994 IEEE International Symposium on. 1994. 

13. Kluckow, R., Über den zeitlichen Verlauf des Stromes einer Gasentladung in Wasserstoff. 

Zeitschrift für Physik, 1961. 161(4): p. 353-369. 

14. Varney, R.N., Liberation of Electrons by Positive-Ion Impact on the Cathode of a Pulsed 

Townsend Discharge Tube. Physical Review, 1954. 93(6): p. 1156-1160. 

15. Cooley, J.E. and E.Y. Choueiri, Threshold criteria for undervoltage breakdown. Journal 

of Applied Physics, 2008. 103(9): p. -. 

16. Cooley, J.E., Fundamentals of undervoltage breakdown through the Townsend mechanism. 

2008. 

17. Hong, T. and V. Scuka, The breakdown mechanism of a mid-plane triggered spark gap 

trigatron. Dielectrics and Electrical Insulation, IEEE Transactions on, 1996. 3(6): p. 843-848. 

18. Al-Arainy, A.A. The influence of dust particles on the DC breakdown voltage of rod-rod 

air gaps. in Electrical Insulating Materials, 1995. International Symposium on. 1995. 

19. Al-Arainy, A.A., N.H. Malik, and M.I. Qureshi, Influence of sand/dust contamination on 

the breakdown of asymmetrical air gaps under lightning impulses. Electrical Insulation, IEEE 

Transactions on, 1992. 27(2): p. 193-206. 



177 

 

20. Kubuki, M., et al., Estimation of dc breakdown mechanisms in air gaps containing floating 

metallic particles. Dielectrics and Electrical Insulation, IEEE Transactions on, 1997. 4(1): p. 92-

101. 

21. Hara, M. and M. Akazaki, A method for prediction of gaseous discharge threshold voltage 

in the presence of a conducting particle. Journal of Electrostatics, 1977. 2(3): p. 223-239. 

22. Hara, M., et al., Particle-triggered pre-breakdown phenomena in atmospheric air gap 

under AC voltage. Dielectrics and Electrical Insulation, IEEE Transactions on, 2005. 12(5): p. 

1071-1081. 

23. Chong, X., J. Abboud, and Z. Zhang, Plasmonics Resonance Enhanced Active 

Photothermal Effects of Aluminum and Iron Nanoparticles  

  



178 

 

Appendix 

 

 

Figure 55.  Discharge cell setup for the flow system and particle seeder. 
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(a) 

 
(b) 

Figure 56.  (a) Comparison of Paschen curves for “clean” dry air and dry air with nanoparticle 

seeding with error bars corresponding to one standard deviation. (b) Percent reduction in 

breakdown voltage from “clean” dry air with aluminum and iron nanoparticle seeding with error 

bars corresponding to one standard deviation. 
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Figure 57.  Discharge current versus applied voltage with and without seeding of aluminum 

nanoparticles at PD=25 Torr-cm. 

 

 

 

Figure 58.  Gap voltage versus applied voltage with and without seeding of aluminum 

nanoparticles at PD=25 Torr-cm. 
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Figure 59.  High-speed chemiluminescence images of breakdown in a 3.5 mm gap in atmospheric 

air. 
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Figure 60.  SEM images of (left) Al and (right) Fe nanoparticle samples, and (bottom) statistical 

analysis of the size distribution of the two samples  
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CONCLUSION 

In the seven chapters of this dissertation novel approaches for the generation and microwave 

scattering diagnostics of small volume plasmas were presented.  Laser-induced plasmas (i.e. laser-

induced breakdown and resonance enhanced multiphoton ionization) and non-equilibrium 

microdischarges are the small volume plasmas illustrated in this work.  Excluding the newest work, 

Chapter 5 “Atomic Oxygen Measurements in a Low Pressure DC and Pulsed Discharge via Radar 

REMPI”, portions of all of the individual chapters have been published in peer-reviewed journals. 

Chapter I presents the application of microwave scattering theory to laser-induced breakdown in 

air.  The MIE solution to Maxwell’s equations is employed to reveal three distinct phases of the 

evolution of the laser-induced breakdown in air.  Chapter II presents a novel method of quantifying 

thresholds for laser-induced breakdown.  These thresholds are established via total electron 

number measurement from dielectric calibration of microwave scattering.  Chapter III presents 

high-repetition-rate (HRR) nanosecond laser pulse train scheme for laser ignition.  Demonstration 

of the ignition of combustible gaseous mixtures is shown to have an order-of-magnitude reduction 

in per-pulse energy using the HRR LI method over traditional laser ignition methods.  Chapter IV 

presents ion-kinetic measurements of a laser induced plasma in sodium-argon and sodium-air 

gaseous mixtures.    Coherent microwave Rayleigh scattering (Radar) from Resonance Enhanced 

Multi-Photon Ionization (REMPI) is utilized for the measurement of sodium ion neutral stabilized 

and cluster dissociative recombination rates.   

Chapter V presents rotational temperature measurements in a DC microdischarge produced in air.  

Radar REMPI measurements of O2 rotational temperature is performed at eight axial locations 

between pin-to-pin electrodes.  Chapter VI presents relative concentration measurements of atomic 

oxygen in DC and pulsed Discharges.  Relative atomic oxygen conenctrations were obtained via 
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Radar REMPI.  The effects of pressures, gas composition, and discharge voltage were explored 

for the DC and pulsed discharges.  Comparisons between two-photon absorption laser induced 

fluorescence (TALIF) and Radar REMPI techniques were made for atomic oxygen concentration 

measurements in a pulsed discharge.  Chapter VII presents a method of reducing the breakdown 

voltage of a DC microdischarge via metal nanoparticle seeding.  Reductions in the breakdown 

voltage were seen to be as high as 25% for a PD scaling of 40 Torr-cm from the seeding of iron 

and aluminum nanoparticles into the discharge gap. 
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