
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2016

Neurally Plausible Model of Robot Reaching
Inspired by Infant Motor Babbling
Zahra Mahoor
University of Tennessee, Knoxville, zmahoor@vols.utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Mahoor, Zahra, "Neurally Plausible Model of Robot Reaching Inspired by Infant Motor Babbling. " PhD diss., University of Tennessee,
2016.
https://trace.tennessee.edu/utk_graddiss/4149

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Zahra Mahoor entitled "Neurally Plausible Model of
Robot Reaching Inspired by Infant Motor Babbling." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Bruce MacLennan, Major Professor

We have read this dissertation and recommend its acceptance:

Daniela Corbetta, Lynne Parker, James Plank

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Neurally Plausible Model of Robot

Reaching Inspired by Infant Motor

Babbling

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Zahra Mahoor

December 2016

© by Zahra Mahoor, 2016

All Rights Reserved.

ii

To funny Lonnie and fluffy Ling Ling for their love and support.

iii

Acknowledgements

First of all, I would like to thank my Ph.D. advisor and mentor, Dr. Bruce MacLennan

for his support, guidance, and patience throughout the course of my study. This

dissertation would not have been completed without his invaluable teachings and

inputs during our weekly meetings. I appreciate that he would always answer my

questions and correct my mistakes without judgment.

Also, I would like to thank the members of my Ph.D. committee, Dr. Daniela

Corbetta, Dr. James Plank and Dr. Lynne Parker, for their valuable and constructive

feedback on this dissertation. In particular, I must thank Dr. Parker for allowing

me to participate in her weekly group meetings. Her group meetings broadened my

knowledge of artificial intelligence and taught me critical thinking. Additionally, I

would like to thank the Department of Electrical Engineering and Computer Science

at the University of Tennessee for providing me with a teaching assistant position

and the National Science Foundation for funding the humanoid robot used in my

experiments.

I would like to thank my wonderful friends at the University of Tennessee

who have helped me on both personal and professional levels: Nastaran Simarasl,

Sarah Mousavi, Misagh and Amanda Mansouri, Shima Mohebbi, Casey Miller, Allen

McBride, Katie Schuman, Meg Drouhard, Nicole Pennington, Sadika Amreen, Denise

Gosnell, Nicholas Lineback, Stephanie Rivera, Kathy Thompson, Melanie Reese,

Dana Bryson, and the Systers at the University of Tennessee.

iv

I would like to thank my family for their love and support, especially my mother

who lives on the other side of the world. Her encouraging voice telling me to pursue

my dreams is always with me. Most of all I would like to thank my loving, supportive,

encouraging, and funny husband, Lonnie Yu, who supported me in every possible way

while I was writing this dissertation. Finally, I would like to thank my beautiful, fluffy

cat, Ling Ling, whose presence in my life provides me with an enormous amount of

hope and joy.

v

Whoever wants to reach a distant goal must take small steps.–Saul Bellow

vi

Abstract

In this dissertation, we present an abstract model of infant reaching that is

neurally-plausible. This model is grounded in embodied artificial intelligence, which

emphasizes the importance of the sensorimotor interaction of an agent and the world.

It includes both learning sensorimotor correlations through motor babbling and also

arm motion planning using spreading activation. We introduce a mechanism called

bundle formation as a way to generalize motions during the motor babbling stage.

We then offer a neural model for the abstract model, which is composed of three

layers of neural maps with parallel structures representing the same sensorimotor

space. The motor babbling period shapes the structure of the three neural maps as

well as the connections within and between them; these connections encode trajectory

bundles in the neural maps.

We then investigate an implementation of the neural model using a reaching task

on a humanoid robot. Through a set of experiments, we were able to find the best

way to implement different components of this model such as motor babbling, neural

representation of sensorimotor space, dimension reduction, path planning, and path

execution.

After the proper implementation had been found, we conducted another set

of experiments to analyze the model and evaluate the planned motions. We

evaluated unseen reaching motions using jerk, end effector error, and overshooting.

In these experiments, we studied the effect of different dimensionalities of the reduced

vii

sensorimotor space, different bundle widths, and different bundle structures on the

quality of arm motions.

We hypothesized a larger bundle width would allow the model to generalize better.

The results confirmed that the larger bundles lead to a smaller error of end-effector

position for testing targets. An experiment with the resolution of neural maps showed

that a neural map with a coarse resolution produces less smooth motions compared

to a neural map with a fine resolution. We also compared the unseen reaching

motions under different dimensionalities of the reduced sensorimotor space. The

results showed that a smaller dimension leads to less smooth and accurate movements.

viii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Approach and Uniqueness . 1

1.3 Contributions . 4

2 Background in Infant Development 6

2.1 Introduction . 6

2.2 Developmental Trends . 6

2.2.1 Rhythmical Stereotypies . 6

2.2.2 Mass to Specific Movement 7

2.2.3 Hierarchical Integration . 7

2.2.4 Developmental Direction . 7

2.3 Reflexes . 8

2.3.1 Palmar Grasping Reflex . 9

2.3.2 Influence of Reflexes on Voluntary Movement 9

2.4 Manual Control . 10

2.4.1 Pre-reaching . 10

2.4.2 Goal-Directed Reaching . 11

2.4.3 Grasping . 11

2.4.4 Releasing . 12

2.5 Brain Development . 13

ix

3 Literature Review on Developmental Robotics 14

4 Methodology and Implementation 31

4.1 Conceptual Model . 31

4.1.1 Motor-sensory Phase-space and Trajectory Bundles 31

4.1.2 Conceptual Trajectory Bundles Formation 32

4.1.3 Conceptual Trajectory Planning 33

4.1.4 Conceptual Trajectory Execution 36

4.2 Neural Model . 37

4.2.1 Formation of Neurally-Plausible Trajectory Bundles 38

4.2.2 Neurally-Plausible Trajectory Planning and Execution 41

4.3 Model Implementation . 42

4.3.1 Implementation of Trajectory Bundle Formation 44

4.3.2 Implementation of Path Planning and Execution 44

4.3.3 Dimension Reduction . 45

4.3.4 Representation of Motor-sensory Space 49

5 Experiments and Results 63

5.1 Humanoid Robot . 64

5.2 Motor Babbling . 65

5.3 Random Start Points and End Points 66

5.3.1 Dimension Reduction . 70

5.3.2 Self-Organizing Maps . 74

5.3.3 Manually Constructing a Neural Map 78

5.4 Evaluation Metrics of Planned Motions 84

5.5 Fixed Start Point . 86

5.5.1 Autoencoder as Dimension Reduction 88

5.5.2 Construction of the Neural Map using Cartesian Product of

Features . 89

5.5.3 Results of Varying Dimension of Reduced Space 90

x

5.5.4 Results of Varying Bundle Width 94

5.5.5 Results of Varying Training Size 98

5.5.6 Diffusion-Based Path Planning versus Breadth First Search . . 102

5.5.7 Initial Bundle Formation . 102

5.6 Multiple Fixed Start Points . 106

5.6.1 Results of Varying Bundle Width 107

5.6.2 Results of Modifying Bundle Formation 109

5.6.3 Results of Varying the Resolution of the Neural Map 114

5.7 Discussion . 117

6 Conclusion 124

6.1 Future Research . 127

Bibliography 130

Vita 140

xi

List of Tables

2.1 Developmental sequence for the appearance and inhibition of selected

primitive reflex behaviors (Gallahue, 1982) 9

3.1 Components of Development adapted from (Lungarella et al., 2003). . 16

5.1 Range of joint positions of the left arm. 66

5.2 Motor babbling strategies. 67

5.3 Sensor values. 68

5.4 Motor values. 68

5.5 Motors and sensors during the motor babbling creates a motor-sensory

trajectory. 69

5.6 Sequence of neurons fired for two sample trajectories in a 200×300

neural map. 76

5.7 Sequence of neurons fired for sample trajectories in a 350×400 neural

map. 78

5.8 Left arm’s configuration of the fixed start. 86

5.9 Path Planning Parameters. 88

5.10 Accuracy of autoencoders with different bottleneck size. 92

5.11 Accuracy of autoencoders with different training size. 101

5.12 Left arm’s configuration for the starts. 107

xii

List of Figures

2.1 Examples of spontaneous (stereotypic) movements of the arms, hands,

and fingers: (a) arm waving with object, (b) arm banging against a

surface, (c) banging both arms together with object, (d) arm sway, (e)

and (f) finger flexion, (g) hand rotation, (h) hand flexion (Gabbard,

2004). 8

2.2 (a) Basic grasping technique and (b) Changes in object positioning

(Gabbard, 2004). 12

3.1 Partial motor development sequence for the iCub humanoid robot.

Shaded regions relate to periods of development of each ability as

observed in infants. Darker shading indicates more advanced abilities

(Law et al., 2011a). 22

3.2 Partial vision development sequence for the iCub robot (Law et al.,

2011a). 22

3.3 The (a) reaching and (b) grasping architecture (Caligiore et al., 2008). 23

3.4 The spiking neural network framework during training and test

(Bouganis and Shanahan, 2010). 26

3.5 The NOCH framework (DeWolf and Eliasmith, 2011). 29

4.1 A conceptual bundle with three trajectories in which φ represents the

width of trajectories to fuzzy the dynamic. 35

xiii

4.2 An overview of our reaching model with three neural maps at its core

and dimension reduction and dimension expansion modules. 38

4.3 Forward and backward connections between neurons i and j. 40

4.4 A simplified neural representation of a trajectory bundle with gray

nodes inside the bundle and color of the edges representing strength of

the connections among the neurons in the bundle. 40

4.5 Neural architecture for implementing the path planning and execution

process. Activity in map B spreads from the goal state γ, and the

current state r in map F excites nearby neurons r′ and r′′ in map C.

Competition among excited neurons in map C leads to firing of neuron

r′, which represents the new motor-sensory state. 43

4.6 A two-layer neural network is in the core of the GHA algorithm. In

this example, the output layer that captures the principal components

can have up to 4 nodes. The output nodes with dashed line could be

the two least significant components. 47

4.7 A general framework of an autoencoder. The green arrows and orange

arrows respectively represent the weights of encoder and the decoder.

The smallest box in the middle represents the bottleneck layer. 49

4.8 a) A small self-organizing map where each node of input is connected

to all the nodes of the map. One node is colored in brown as an

example along with its neighborhood in different colors. Connections

are omitted to avoid clutter in this image. b) Neighborhoods

of size of 1 and 2 are marked dash lines for a center node lo-

cated in (2, 2) in a hexagonal topology. Six nodes with indices of

(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3) are in distance 1 of this node.

Twelve nodes with indices of (0,0), (0,1), (0,2), (1,0), (1,3), (2,0), (2,4),

(3,1), (3,4), (4,2), (4,3), (4,4) are within distance 2 of this node. . . . 52

xiv

4.9 Creating a 3D neural map using Cartesian product of the three features

of space A′. Each side of the cube represents one of the three features

that are arranged from mini to maxi with step size of resi. 55

4.10 Creating a 2D neural map by arranging the first two dimensions of

the space A′. Each patch or small square is divided according to the

samples within the boundaries of that square. si represents a sample

of the training set. 56

5.1 Rosie, Humanoid Robot. 64

5.2 Random trajectory babbling inside a box (safe area) in front of Rosie. 68

5.3 (a) The first and (b) the second eigenvalues resulting from PCA and

GHA. 71

5.4 (a) The y axis shows the difference between the (a) first and (b) second

eigenvectors calculated by PCA and the ones calculated by GHA. . . 72

5.5 Variance versus number of eigenvalues after applying PCA to (a) a

training set of 5, 000 babbling trajectories with 41 features and (b) a

training set of 10, 000 babbling trajectories with 41 features. 73

5.6 Variance versus number of eigenvalues after applying PCA to (a) a

training set of 5, 000 babbling trajectories with 20 features and (b) a

training set of 10, 000 babbling trajectories with 20 features. 74

5.7 Variance versus number of eigenvalues after applying PCA to (a) a

training set of 5, 000 babbling trajectories with 10 features and (b) a

training set of 10, 000 babbling trajectories with 10 features. 75

5.8 (a) A 2D histogram for neural map of 200×300 neurons (a) for the

entire babbling data set and (b) for one babbling trajectory. 77

5.9 A 2D histogram for a 150×150 neural map. 79

xv

5.10 (a) A sequence of the (a) first and (b) second joint of the shoulder’s

positions where various seen arm trajectories are chained one after

another. The green line represents the original seen trajectory and the

blue line represents the same trajectory after the process of data →
PCA→ PCA−1 → reconstructed data. 81

5.11 (a) A sequence of the (a) first and (b) second joint of the shoulder’s

positions where various seen arm trajectories are chained one after

another. The green line represents the original seen trajectory and the

blue line represents the same trajectory after the process of data →
PCA→ neural map→ PCA−1 → reconstructed data. 82

5.12 (a) A sequence of the (a) first and (b) second joint of the shoulder’s

positions where various unseen arm trajectories are chained one after

another. The green line represents the original unseen trajectory and

the blue line represents the same trajectory after the process of data→
PCA→ neural map→ PCA−1 → reconstructed data. 83

5.13 Experimental settings: (a) Meka Robotics M3 mobile humanoid robot

“Rosie.” (b) The humanoid robot randomly explores an arc in front

of its left arm with a fixed start pose. The initial and final positions

of babbling trajectories are on this arc, but there is no constraint on

points between the initial and final positions. 87

5.14 A babbling trajectory along with its reconstruction using “data →
encoder → decoder → reconstructed data”. The solid and dashed

lines represent the reconstructed trajectories and the original ones

respectively. 89

5.15 (a) A sequence of the (a) first and (b) second joint of the shoulder’s

positions where various unseen trajectories are chained one after

another, mapping the original ones and after the reconstruction by

“data→ encoder → neural map→ decoder → reconstructed data”. . 91

xvi

5.16 Evaluation of planned motions for three trials, where |φ| = 1 is for

the trials and the training data is 70%: (1) |A′| = 3, (2) |A′| = 4,

and (3) |A′| = 5. (a) Smoothness of planned trajectories based on

norm jerk metric across three trials. (b) Euclidean distance error of

end effector position across three trials. (c) Smoothness of planned

trajectories based on norm jerk metric across the y value of the final

position in robot’s coordinate system. (d) Mean Euclidean distance

error of end effector position across the y value of the final position in

robot’s coordinate system. 95

5.17 Evaluation of planned motions for three trials, where |φ| = 1 is for

the trials and the training data is 70%: (1) |A′| = 3, (2) |A′| = 4,

and (3) |A′| = 5. (a) Smoothness of planned trajectories based on

overshooting index across three trials. (b) Smoothness of planned

trajectories based on overshooting index across y value of the final

position robot’s coordinate system. 96

5.18 Evaluation of planned motions for four trials, where |A′| = 5 is for

the trials and the training data is 70%: (1) |φ| = 1, (2) |φ| = 3, (3)

|φ| = 6, and |φ| = 10. (a) Smoothness of planned trajectories based

on norm jerk metric across four trials. (b) Euclidean distance error of

end effector position across four trials. (c) Smoothness of planned

trajectories based on norm jerk metric versus y value of the final

position the robot’s coordinate system. (d) Mean Euclidean distance

error of end effector position across the y values of the final position. 99

5.19 Evaluation of planned motions for four trials, where |A′| = 5 is for

the trials and the training data is 70%: (1)|φ| = 1, (2) |φ| = 3,

(3) |φ| = 6, and |φ| = 10. (a) Smoothness of planned trajectories

based on overshooting index across three trials. (b) Smoothness of

planned trajectories based on overshooting index across y axis of

robot’s coordinate system. 100

xvii

5.20 Evaluation of planned motions for five trials, where |φ| = 1 and |A′| = 5

are for the five trials: (1) train = 10%, (2) train = 20%, (3) train =

30%, (4) train = 50%, and (5) train = 70%. (a) Smoothness of

planned trajectories based on norm jerk metric across five trials. (b)

Euclidean distance error of end effector position across five trials. (c)

Smoothness of planned trajectories based on norm jerk metric across

y value of final position of the arm in robot’s coordinate system. (d)

Mean Euclidean distance error of end effector position across y value

of the final position. 103

5.21 Evaluation of planned motions for five trials, where |φ| = 1 and |A′| = 5

are for the five trials: (1) train = 10%, (2) train = 20%, (3) train =

30%, (4) train = 50%, and (5) train = 70%. (a) Smoothness of

planned trajectories based on overshooting index across five trials. (b)

Smoothness of planned trajectories based on overshooting index across

y value of final position of the arm in robot’s coordinate system. . . . 104

5.22 (a) The dashed and solid lines are planned joint positions and velocities

using breadth first search and the spreading activity and (b) a planned

trajectory where the bundle formation stage was combined with Alg. 2. 105

5.23 Experimental settings: (a) Meka Robotics M3 mobile humanoid robot

“Rosie.” (b) The humanoid robot randomly explores an arc in front of

its left arm from 8 different start poses. The initial and final positions

of babbling trajectories are on this arc, but there is no constraint on

points between the initial and final positions. 107

xviii

5.24 Evaluation of planned motions for three trials, where |A′| = 6 is set

for the trials and training is performed for 8 different start points: (1)

|φ| = 1, (2) |φ| = 3, (3) |φ| = 6. (a) Euclidean distance error of end

effector position of planned trajectories across start postion’s y in the

robot’s coordinate system for 8 start poses. (b) Euclidean distance

error of end effector position of planned trajectories across absolute

change in y position in the robot’s coordinate system. (c) Euclidean

distance error of end effector position across three trials with φ. . . . 110

5.25 Evaluation of planned motions for four trials, where |A′| = 6 is set

for the trials and training is performed for various fixed start points:

(1) |φ| = 1, (2) |φ| = 3, (3) |φ| = 6. (a) Smoothness of planned

trajectories based on overshooting index across start position’s y in the

robot’s coordinate system for 8 start poses. (b) Smoothness of planned

trajectories based on overshooting index across absolute change in y

position in the robot’s coordinate system. (c) Smoothness of planned

trajectories based on overshooting index across three trials with φ. . . 111

5.26 Evaluation of planned motions for four trials, where |A′| = 6 is set

for the trials and training is performed for various fixed start points:

(1) |φ| = 1, (2) |φ| = 3, (3) |φ| = 6. (a) Smoothness of planned

trajectories based on norm jerk metric across start position’s y in the

robot’s coordinate system. (b) Smoothness of planned trajectories

based on norm jerk metric across absolute change in y position in

the robot’s coordinate system. (c) Smoothness of planned trajectories

based on norm jerk metric across three trials with φ. 112

xix

5.27 Evaluation of planned motions for three trials, where |φ| = 3 and |A′| =
6 are for the three trials called: lnrConnections, fixConnections,

and parConnections. (a) Smoothness of planned trajectories based

on the norm jerk metric across four trials. (b) Smoothness of planned

trajectories based on the overshooting index across four trials. (c)

Smoothness of planned trajectories based on the norm jerk metric

across absolute difference in y position of end-effector in the robot’s

coordinate system. (d) Smoothness of planned trajectories based on

the overshooting index across absolute difference in the y component

of end effector position in the robot’s coordinate system. 115

5.28 Evaluation of planned motions for three trials, where |φ| = 3 and |A′| =
6: (1) the neural map’s resolution was the median of difference between

features, (2) 2× median of features, and (3) 3× median of difference

between features in terms of (a) Smoothness of planned trajectories

based on norm jerk metric across three trials. (b) Smoothness of

planned trajectories based on overshooting index across three trials. (c)

Smoothness of planned trajectories based on norm jerk metric across

absolute difference in y position of end-effector in the robot’s coordinate

system. (d) Smoothness of planned trajectories based on overshooting

index across absolute difference in y position of the end-effector in the

robot’s coordinate system. 118

5.29 Evaluation of planned motions for four trials, where |φ| = 3 and |A′| =
6 are for the three trials: (1) the neural map’s resolution was median of

features (2) the neural map’s resolution was 2× median of featrues. (3)

the neural map’s resolution was 3× median of features in terms of (a)

Euclidean distance error of end effector position of planned trajectories

across three trials. (b) Euclidean distance error of end effector position

of planned trajectories across the absolute change in y position in the

robot’s coordinate system. 119

xx

Chapter 1

Introduction

1.1 Motivation

A genuinely independent and autonomous robot must be active in adapting to unseen

circumstances and it must have the capacity to learn from past encounters. Robots

must be versatile and persistently capable of adaptation in their surroundings and

be motivated to investigate their body and their surrounding environment. These

necessities demonstrate a rundown of issues in the commonplace robotic frameworks

that are expressly customized for a particular assignment (Law et al., 2011a).

In contrast, infants learn to control their body and to interact competently with

their physical environment. They can learn about their world in a short period and

to coordinate their limbs within a few months. Children can acquire new skills and

generalize those physical skills to a broader context while they are growing and are

being exposed to a new environment.

1.2 Approach and Uniqueness

In this dissertation, we aim to model knowledge representation and learning

mechanisms used by infants and to transform development of reaching skill for robots

by applying mechanisms from developmental psychology studies in infants.

1

We hope that by mimicking the known learning process in infants, autonomous

robots will be more intelligent, adaptable, and useful than traditional robots. Our

objective is to build a neurally-plausible computational model of human infant

reaching; this model is based on embodied artificial intelligence that emphasizes the

importance of motor-sensory interaction of an agent and the world (Iida et al., 2004;

Pfeifer et al., 2007; Pfeifer and Iida, 2004).

Developmental psychologist Jean Piaget believed that knowledge is acquired

through physical or mental actions. Motor-sensory interaction with the world is the

first of four stages of infant development and happens from birth to two years of age.

Infants lack an internal representation of their bodies when they are born and by

actively exploring at this stage, they are able to interpret their world and self (Piek,

2006).

A motor-sensory space defines the interface between the agent’s internal control

processes (e.g., its nervous system) and the body-environment system. This space

is defined by all the sensory inputs and all the motor outputs of the nervous system

or corresponding artificial control system. For all but the simplest animals this is a

very high-dimensional space. The term “motor-sensory” is an intentional inversion

of the usual “sensory-motor,” since the latter can inadequately suggest an input-

compute-output information-processing model of cognition. Rather, perception is an

active process, which typically depends on the motion of the agent in its environment

(Gibson, 1979). This is critical because the motor activity or exploration directs the

gathering of perception of the environment in a more fruitful way (Sporns and Pegors,

2004). “Motor-sensory” reminds us that motor activity is fundamentally prior to

sensation and perception, although of course the two occur in a tight loop established

by the agent’s continuous physical engagement with its environment. The physical

constraints of body-environment interactions define manifolds of possible trajectories

in this motor-sensory space (Kuniyoshi et al., 2004).

In an analogy of vocal babbling in infants (Vihman et al., 1985), this motor

exploratory stage is called body babbling or motor babbling by Meltzoff and Moore

2

(1997). This means that through this process infants learn the dynamics of their

body and how to control it. In a similar developmental fashion, we wish to build

a computational model that is: (1) embodied, (2) developmental, and (3) neurally

plausible, to mimic infant development.

This dissertation falls within the area of developmental robotics. Developmental

robotics is the combination of robotics and developmental science, mostly developmen-

tal psychology and developmental neuroscience. This research area is very similar to

epigenetic robotics. The main important difference is that epigenetic robotics focuses

primarily on cognitive and social development and on motor-sensory environmental

interaction, while developmental robotics covers more issues such as motor skill

learning and morphological development (Lungarella et al., 2003; Lungarella and

Gomez, 2009).

We describe the advantages of each aspect of our model. We want our model to

be embodied for the following reasons:

• Embodied motor-sensory coordination would allow us to exploit the dynamical

and natural properties of the body and its environment (Brooks, 1997;

Lungarella and Berthouze, 2002a, 2004; MacLennan, 2011).

• Embodied motor-sensory coordination enables us to build an implicit model of

dynamics and kinematics for a complicated body-environment interaction.

• Trajectories in motor-sensory space, “trajectory bundles”, can be defined by the

physical constraints of body-environment interactions (Kuniyoshi et al., 2004).

• We believe that the morphology and physical properties of an agent are

important factors in shaping an agent’s behavior and cognition.

We want our model to be developmental because an infant is born into the

world without having any knowledge about its body and the environment. The

infant obtains the knowledge throughout the interaction with the world and body

in developmental stages. Mimicking infant’s development is a promising approach to

3

building a control mechanism. This control mechanism can be adapted to varying

robot arms and tasks in the environment.

And finally we want to have a neurally-plausible model which is intended to

account for infant development. Nervous systems are the best mechanisms we know

for controlling competent reaching, grasping, and shared object manipulation. A

neurally plausible model in this dissertation means that it is not inconsistent with the

brain’s functionalities. However, our model can not be directly mapped to different

parts of the brain. We are particularly interested in a neurally-plausible model for

the following characteristics:

• It is common to see high-dimensional sensory and motor areas in the brain.

• In the sensory and motor systems, neural connections are arranged such that

adjacent areas in the periphery are represented by adjacent neurons in the

brain (MacLennan, 1997, 2009). These neurons represent the information using

population codes (Georgopoulos, 1996).

• It has been shown that neurons in the sensory-specific cortices are activated by

different types of sensors. These connections across different modalities facilitate

the process of the sensory integration (Neville, 2002).

• Hebbian and competitive learning are common mechanisms in the brain.

This model will ultimately be implemented and tested in a robotic system.

1.3 Contributions

The contributions of this dissertation will be

• To better understand the control of dynamically complex motor-sensory

behavior in both humans and robots.

4

• To build an embodied, developmental, and neurally plausible computational

model for the motor-sensory control of reaching.

• To investigate multiple dimension reduction techniques for reducing the abstract

motor-sensory space.

• To investigate multiple neural representation techniques for the motor-sensory

space.

• To implement spreading activity for path planning and path execution in the

abstract motor-sensory space.

The following chapters are organized as the following: chapter 2 covers related

concepts in infant development that help to understand the literature in develop-

mental robotics. Chapter 3 reviews the research work in developmental robotics that

serves as a basis for this dissertation. Chapter 4 introduces our conceptual model of

infant reaching and the neural representation of this model and an implementation of

this model. Chapter 5 shows some experiments performed regarding our model along

with the results and discussion of the important factors. Finally chapter 6 summarizes

the model and our findings and offers some recommendations for the future research.

5

Chapter 2

Background in Infant Development

2.1 Introduction

In this chapter, we will explain some aspects of infants’ development that are related

to this dissertation, such as brain development and manual control.

2.2 Developmental Trends

2.2.1 Rhythmical Stereotypies

Rhythmical Stereotypies are repetitive movements that infants engage in without the

presence of any known stimuli. Unlike rudimentary behaviors, these transitional

movements are not defined as voluntary or goal-oriented. Infants present these

behaviors when they are capable of controlling their body parts in some degrees

but not capable of performing voluntary or goal-oriented behaviors. It is known that

these non-goal oriented movements happen in order and can be predicted (Gabbard,

2004, p. 259-261).

Some examples of this behavior are rocking on hands and knees, head banging,

kicking, and scratching shown in figure 2.1. It is believed that infants are provided at

6

birth with these abilities to get ready for later more coordinated movements (Snow,

1989).

2.2.2 Mass to Specific Movement

General or Mass Movements develop in children before the Specific ones. For example,

infants usually move their legs and arms at the same time (Mass Movement). Later

on, as the result of body growth, infants will be able to move their arms without

moving their legs and eventually move one arm without moving the other one (Specific

Movements). Fine movements, like finger movements, will happen after that point

(Snow, 1989).

2.2.3 Hierarchical Integration

Infants adopt a hierarchical style in learning skills. First, they learn simple and

rudimentary skills, and those skills are used gradually as the building blocks of more

complex movements. For example, grasping a raisin using the thumb and index

finger and putting it inside a bottle demands the four core competencies of reaching,

grasping, placing, and releasing to be integrated (Snow, 1989).

2.2.4 Developmental Direction

Motor control develops in a cephalocaudal-proximodistal trend in infants. That

means, the baby’s head and neck develop and function first, then the shoulder and

upper trunk and later, the lower trunk and legs. The development also proceeds in

a proximodistally order, starting from the shoulders to the elbows and then to the

fingers (Snow, 1989; Gabbard, 2004).

7

Figure 2.1: Examples of spontaneous (stereotypic) movements of the arms, hands,
and fingers: (a) arm waving with object, (b) arm banging against a surface, (c)
banging both arms together with object, (d) arm sway, (e) and (f) finger flexion, (g)
hand rotation, (h) hand flexion (Gabbard, 2004).

2.3 Reflexes

One early movement in newborn infants is the reflex activity, which is defined as an

involuntary response to a particular stimulus such as touch, light, sound, and change

in pressure. The lower brain and spinal cord are mostly responsible for control of

these activities, which will be replaced by voluntary movements as the upper part of

the brain grows. These reflexes help an infant learn more about its environment and

body, and they serve as a basis for the phases of motor development. Some of the

primitive reflexes in the infant are shown in Table 2.1 (Snow, 1989; Gallahue, 1982).

8

Table 2.1: Developmental sequence for the appearance and inhibition of selected
primitive reflex behaviors (Gallahue, 1982)

Reflex Months 0 1 2 3 4 5 6 7 8 9 10 11 12

Moro
√ √ √ √ √ √ √

Startle
√ √ √ √ √ √

Search
√ √ √ √ √ √ √ √ √ √ √ √ √

Sucking
√ √ √ √

Palmar-mental
√ √ √

Palmar-mandibular
√ √ √ √

Palmar grasp
√ √ √ √

Babinski
√ √ √ √

Plantar grasp
√ √ √ √ √ √ √ √ √

Tonic neck
√ √ √ √ √ √ √

2.3.1 Palmar Grasping Reflex

As soon as a small object is put in the palm of an infant’s hand, this reflex is triggered,

and the hand is closed tightly around the objects without using the thumb. In

the beginning the grasp is tight, and after the first month it becomes weaker and

eventually is replaced by voluntary grasping by the age of 3 or 4 months. It is believed

that palmar grasping plays a significant role in learning later voluntary grasping

(Gallahue, 1982, p. 143).

2.3.2 Influence of Reflexes on Voluntary Movement

There are two views regarding this influence. In one view, reflexes form the foundation

for all voluntary motor activities. In the other view, the reflexes stop the voluntary

movements from emerging. It’s hard to establish an exact relationship between

9

voluntary movements and primitive reflexes. It seems that some of the primitive

reflexes gradually evolve into voluntary movements (Snow, 1989, p. 104).

Gallahue (1982) divides the reflexive phase of development into two stages:

1. Information Encoding Stage: At this time, the involuntary movements in

infants are the sole noticeable activities. Also, since the motor cortex is less

developed compared to the lower brain center, the lower brain is responsible

for controlling the fetal and neonatal movements. This brain center triggers

involuntary reactions to a variety of stimuli and information is gathered during

this time.

2. Information Decoding Stage: This stage starts when reflexes are inhibited,

and higher brain areas continue to develop. The motor cortex gradually controls

the infants’ voluntary movement, and the infants demonstrate more complex

perceptual movements rather than simple sensorimotor activities. At this stage,

a baby can process sensory inputs.

2.4 Manual Control

The term manual control encompasses two forms of behavior: prehension and

manipulation. Prehension describes the initial voluntary use of hand during basic

grasping and manipulation describes a child’s skilled voluntary use of its hand during

the ages of 5-8 years. Three building blocks of manual control are reaching, grasping,

and releasing (Gabbard, 2004).

2.4.1 Pre-reaching

Pre-reaching is an essential behavior observed in infants before the age of 4 months;

after that voluntary reaching emerges. If newborns are provided with full support of

the head and trunk, they can extend their arms and hands toward an object. However,

infants cannot successfully touch the object. This behavior is called pre-reaching

10

because it is not clear whether it is visually guided or visually elicited (Smitsman and

Corbetta, 2010).

2.4.2 Goal-Directed Reaching

Most infants start the initial goal-oriented efforts in reaching and grasping by the age

of 4 or 5 months. At this age, the trajectories of the initial movements are jerky, but

after a couple of months of experience, they become smoother and follow a straight

line. Infants can correct their reaching trajectories based on visual information by

the age of 7 months, and they can adjust their reaching trajectories based on their

previous experiences. There are other factors involved in the development of goal-

oriented reaching such as posture control, head stabilization and movement speed

control (Gabbard, 2004, p. 274-276).

2.4.3 Grasping

The first grasping attempt is usually a corralling action where both arms and hands

are used to pull an object. At this stage, the infants can pick up objects using an

immature palmar grasp. Naive palmar grasp is described by using thumb and fingers

as a whole to hold an object without making a thumb opposition. Later, infants are

capable of adjusting their grip size to match the size of the object and its orientation

(Gabbard, 2004).

At age 5 or 6 months, infants can grasp objects with one hand using pseudo thumb

opposition shown in figure 2.2. By the age of 8 months, they are capable of holding

two objects with both hands. At the age of 9-10 months, major progress in grasping

happens when an infant grasps a small object with a pincer grasp or actual opposition.

Figure 2.2 depicts the changes in object positioning during development (Gabbard,

2004).

11

Figure 2.2: (a) Basic grasping technique and (b) Changes in object positioning
(Gabbard, 2004).

2.4.4 Releasing

Releasing is another form of manual control where infants must accurately control

and relax the arm and hand muscles to release an object. Since it is a rather difficult

task, this component of manual control happens after the other ones are learned. An

infant can release objects at age eight months by opening its hands and dropping

them. An infant is not able to perform an accurate release until 18 months of age

(Snow, 1989).

The primary factor in this behavior is the ability to perceive the object’s weight

and control the amount of applied force. It seems that infants use similar power in

the arm and grasping action regardless of the object weight. By month 9, a child can

adjust the force with the object’s weight right after the initial grip. Eventually at the

12

age of 18 months, they can predict the object’s weight and use the right amount of

force (Snow, 1989).

2.5 Brain Development

There are two primary processes in the brain that control the brain development.

The first one, synaptogenesis, is responsible for generating the neural connections.

The second one, apoptosis, is in charge of the neurons’ death (Piek, 2006).

Synaptogenesis starts early in the infant’s development and due to this process,

the brain grows rapidly during the first few years of childhood. Studies on the cerebral

cortex of children have shown that from the ages of 24 to 72 months, there was a 60%

to 78% growth in the total number of cortical neurons compared with the number at

birth (Piek, 2006).

Apoptosis results in cell death, and greater or lesser degrees of apoptosis are

responsible for both decrease and increase in some cortical neurons. This process is

especially in charge of removing overproduced cells in the embryonic period. It is

not clear if an infant is provided at birth with this process or not. The survival of

new cortical cells is dependent on their use and the activity of appropriate pathways

(Piek, 2006).

After looking at these two processes, we should mention that different parts of

the brain develop at different rates. The bottom of the brain that is responsible

for involuntary early movements, reflexes, and some core functions form and become

functional first. The upper part, which controls voluntary movements, speech, and

cognition, develops later. By the age of 3 months, the brain has developed enough to

control the upper parts of the body. From age 6 to 15 months, the part of the brain

that controls thought and learning processes develops quickly (Snow, 1989).

13

Chapter 3

Literature Review on

Developmental Robotics

We previously introduced Developmental Robotics in chapter 1. This field stresses

the importance of environmental and intrinsic components in the formation of

human behaviors. Remarkable changes and sequences of behaviors are the main

characteristics of human development. Particularly, these properties are more

noticeable because during infancy one pattern of behavior is replaced by another

one. We can identify the periods of growth and consolidation in the human infant.

Piaget, a pioneer in the field of developmental learning, emphasizes the significance of

sensory-motor interaction, skill learning through multiple stages, and a constructivist

approach (Asada et al., 2009).

In this chapter, we begin with the important components of development that are

used in Robotics (seen in Table 3.1). This table was compiled by Lungarella et al.

(2003) and we used these aspects as a way to organize the related studies in this

chapter. It is recommended that these aspects be considered during the design and

construction of a system that simulates infants’ development. A single study might

cover multiple components, but not necessarily all of these components. Some of the

important features of our model are that is neurally plausible, uses motor babbling

14

to learn inverse dynamics for arm trajectories, and is tested on a real robot. Here we

review related studies that serve as a basis for this dissertation. Each of these studies

shares some, but not all, of the qualities listed above that make this dissertation an

original contribution to the field.

Bernstein (1967) first hypothesized a three-stage solution for the problem of

abundant degrees of freedom. In the first step, the peripheral degrees of freedom

are minimized to a small number. In the following stage, the disabled degrees of

freedom are incrementally added back into the system while the agent trains at each

increment. In the final step, reactive phenomena such as gravity and passive dynamics

are added into the system, and the agent exploits the new system. The freeing and

freezing approach was not implemented in this dissertation but could be used in the

future work to structure the babbling stage.

Lungarella and Berthouze (2002b) offered a model for a robot to learn to swing

by reducing the number of available degrees of freedom, which helps to support the

interaction between the environment and the neural model. The focus of this work is

not reaching and grasping; nevertheless, it is a good example of managing the excess

of degrees of freedom.

Nagai et al. (2003)’s work is inspired by the developmental process of infant shared

attention, which goes through different stages: the ecological stage at 6 to 9 months

old, the geometric stage at 12 months old, and the representational stage at 18 months

old. In this paper, a constructive model is built to reproduce these three steps, where

a robot learns the shared attention skill by interacting with a human. This work is an

example of the social interaction aspect of developmental robotics. The foundation of

this paper is similar to our approach; we used the sensorimotor correlation to facilitate

motor skill learning in a robot.

15

Table 3.1: Components of Development adapted from (Lungarella et al., 2003).

Component Synopsis

Incremental process Prior structures and functions are necessary to

bootstrap later structures and functions

Importance of constraints Early constraints can lead to an increase of the

adaptivity of a developing organism

Self-organizing process Development and learning are not determined by

innate mechanisms alone

Degrees of freedom Constraining the movement space may be bene-

ficial for the emergence of well co-ordinated and

precise movements

Self-exploration Self-acquired control of body dynamics

Spontaneous activity Spontaneous exploratory movements are impor-

tant precursors of motor control in early infancy

Prospective control, early

abilities

Predictive control is a basic early competency on

top of which human cognition is built

Categorization,

sensorimotor co-ordination

Categorization is a fundamental ability and can be

conceptualized as a sensorimotor interaction with

the environment

Value systems Value systems mediate environmental saliency and

modulate learning in a self-supervised and self-

organized manner

Social interaction Interaction with adults and peers is very important

for cognitive development

16

Berthouze and Lungarella (2004) introduced a nonlinear coupling between the

environment and the robotic system by connecting a rubber band from a supportive

frame to a humanoid robot at hip-level. The robot in this study learned to

swing, a repetitive action that emerges during the first year of human life. They

showed with this situation that only one stage of freezing and freeing of degrees of

freedom is not adequate to produce a good level of performance in a swinging task.

Instead, alternating freezing and releasing of degrees of freedom produced an optimal

performance. Although reaching and grasping are not repetitive activities, the freeing

and freeing and freezing idea used in this work could be useful for the future work of

this dissertation.

Gomez et al. (2004) and Gomez and Hotz (2004) mimicked infant development in

robot reaching in three concurrent stages. Their method first gradually increases the

resolution of the visual and tactile systems. Second, it freezes and releases degrees

of freedom in the motor system. Third, it gradually adds neurons to the neural

control architecture. The robot in their experiments has to learn to bring a colored

object in the robot’s hand from the periphery to the center of the visual field. This

work is similar to our approach, since it falls into the category of embodied artificial

intelligence and developmental robotics, but it is not neurally-plausible.

The objective of Oztop and Arbib (2001) and (Oztop et al., 2004) is to emulate

the process of grasp development in infants based on motor babbling. The system is

composed of a hybrid neural control circuit and a 19 DOF arm, which uses forward

kinematics to simulate the motion of the arm and hand. The neural circuit learns

the grasping task using the Hebbian learning and utilizes the inverse kinematics for

reaching. Their model is able to generate grasps without visual feedback. This means

that the model makes a motor plan in response to sensory stimuli. This aspect of the

model is inspired by the fact that infants are able to touch glowing and loud objects

in a dark environment.This work does not use any dynamics at the implementation

level and does not consider the haptic and proprioceptive feedback from the hand to

17

the F5 area via somatosensory cortex in its modeling. The reaching model also solves

inverse kinematics, but we are trying to solve inverse dynamics.

Kuniyoushi et al. (2004) studied the emergence of symbolic behaviors and

communication from physical dynamics of a robot and its sensorimotor interactions

with the real world. The behaviors and interactions emerged through self-exploratory

learning of body schemas. In one simulation, a baby body is attached with several

tactile sensors and is surrounded by water. The spatiotemporal correlation is

computed for all pairs of sensing points. In another simulation, a robot explores

its behavior without having any predefined behavioral primitives. This simple

experiment consists of a ball attached to a stick with tactile sensors spread out

all over the ball and the stick. A simple two-layered neural network is trained

for sensorimotor correlation. Interestingly, the system learns some patterns such as

lifting the bar and swinging the bar. Relating to the self-exploratory idea, in the last

experiment a visuomotor neural learning system is designed. The robot learns the

temporal sequence of the sensorimotor vectors by generating random arm movements

and watching them. The inputs of the neural network are the visual motions and

proprioceptive data. The learning trajectory bundles in this work are very similar to

ours, and we used this work as a basis for trajectory learning in our model.

Steels (2004) proposed a general system where a complicated organism itself

could control the set of skills that needs to gain and knowledge about its body and

environment. The agent doesn’t require someone to change the environment, or to set

the reward functions, or to introduce resources progressively on-line in a maturation

plan. The main idea is inspired by humanistic psychology where people are involved

in some activities for the sake of doing it without receiving direct rewards. These

activities are called “autotelic,” which emphasizes that the motivation originates from

the individual itself rather than from an outside source. These activities are different

from the ones that are directly pleasurable; the activity must itself be challenging.

Also, there must be a steady progression in level of challenge and a balance between

the complexity of a task and the required skill to perform.

18

Asuni et al. (2005) build a neural model for visuomotor coordination of a robotic

manipulator in a reaching task. This model is based on a self-organizing neural

network that learns the correlation of motor actions and sensory feedback. This

system maps between the position of the arm in 3D Cartesian space and its joint

space. This model was tested through four different experiments: reaching in the

usual condition, reaching with clamped joints, reaching with a tool, and blind reaching

which aims to show that the model is adaptive under perturbation. The mapping

in this model solves the inverse kinematics problem while we are trying to solve the

inverse dynamics problem. The set of experiments in this study was outside the scope

of this dissertation but they can be used for the future experiments.

The system introduced by Demiris and Dearden (2005) learns multiple forward

models without any prior information by means of motor babbling and a Bayesian

belief network. This model was tested on both real and simulated robots. In this

system, which is inspired by human hand movement, an association between motor

commands and the position of the moving gripper is learned. The main focus of

this work is not reaching, but it is nevertheless a good example of motor babbling in

imitation.

Josh Bongard (2006) used actuation-sensation relationships for a four-legged

robot to indirectly infer its structure and then generate forward locomotion using

that assumed structure. Also, this robot can recover from an unexpected damage

autonomously through continuous self-modeling. The robot uses an active process

to conclude its structure by engaging in an exploration phase that is directed by the

robot itself. First, the robot executes a random motor action and observes/stores the

sensor values. Then, the “model synthesis component” creates a set of 15 potential

models for the robot using stochastic optimization. This stage aims to explain the

sensorimotor correlation. The “action synthesis component” then uses these self-

created models to identify a new action that will lead the most information from the

robot.

19

A new action is found by looking for a motor command that would produce the

most difference among the predicted sensors resulting from the different models. After

the new motor action is determined, it is submitted to the robot for the execution.

Meanwhile, the “model synthesis component” repeat the synthesis process while it

has more data to evaluate the model. The entire process continues for 16 iterations

and finally a model with the least amount of error is selected. The “behavior synthesis

component” uses this final model to produce behaviors that can be sent to the robot

for execution.Even though the task here is not reaching, the idea of self-modeling

could be useful for sensorimotor prediction in our future models.

Lee and Meng (2005) introduced a robotic system that learns the association

between proprioceptive and motor space by taking advantage of natural constraints

with a common learning approach. Those natural constraints are active and idle

sensors, the presence of objects, and resolution of sensors. The robot of this

experiment consists of two manipulator arms with 2 DOF and a visual sensor that

serves as an “eye.” Each arm is attached to a two-finger gripper with tactile sensor

pads all over it.

Lee et al. (2007a) and Lee et al. (2007b) offered the LCAS (Lift-Constraint, Act,

Saturate) algorithm to learn hand/eye coordination. At the beginning of the LCAS

cycle, all or almost all constraints are imposed, and there is a small opportunity

for any complex activity. In each cycle, the system gradually removes a restriction

and explores (Act) all the possible new experiences until the learning saturates. The

computational framework of this work is based on a two-dimensional map, where the

map consists of circular overlapping and regularly spaced receptive fields. Each field

contains a set of variables to keep track of the state and properties of the map. In

this work, a correlation map between motor and sensor space is built, and it doesn’t

focus on trajectory planning and reaching.

In this work, the propriceptive sensors are calculated as “joint angle encoding”,

“shoulder encoding”, “body-centered encoding”, and “Cartesian encoding”. These

20

encodings are good examples of mimicking propriceptive sensors where we didn’t

implement them in the current research but can be used in the future work.

To automatically indicate when to stop an adaptive phase or when a map has

become saturated, two global variables are used. The global excitation is a cumulative

excitation, which is the sum of excitation levels of all those fields with the excitation

level above a given threshold. The global conservancy (a normalized value) is the

inverse of the summation of the frequency levels and shows the “familiarity” of the

map. Global excitation illustrates the strength of the current activity, and global

conservancy measures the novelty of the fields being experienced. These global

indicators are used to remove constraints in two different ways: sensory maps are

created with finer resolution when we have an overall high familiarity, and the motor

actions are more spontaneous when the global excitation is small. A basic “reflex”

is provided to start the system when the total excitation levels are below a given

threshold.

Lee et al. (2007a) identified a trade-off between required time for exploration and

accuracy of the motor actions by changing the sensory resolutions. When small fields

are used, the specification of sensory space is fine and reaching motions to a given

location are more accurate, but at the same time, much more exploration is needed

to generate those mappings. On the other hand, when large fields are used, more

sensory space can be covered and, therefore the mapping is acquired much quicker.

The model offered by Law et al. (2011a) is an extension of the work by Lee

et al. (2007a) and is built upon the same constraints and the same LCAS algorithm

which guides sensorimotor learning in an iCub humanoid robot. The primary goal

of hand/eye system is to find two correlation maps: one between retina and gaze

space, and one between reach and gaze space. Also, they investigated how biological

processes, motor, and vision development can be transferred to the iCub humanoid

robot. The former transfer is shown in figure 3.1 and the latter transfer in figure 3.2.

The approach used by Law et al. (2011a) is built upon shaping and constraints; the

structured motor babbling offered here can be useful for the future work since the

21

modulating influence of a dynamic constraint network;
we call this approach toward constraint-based learning
LCAS, (Lift-Constraint, Act, Saturate; Lee, Meng, &

Chao, 2007b). Consequently the next step is to con-
struct a set of possible constraint tables. These show
the relationships between different constraints and
when they are relevant in the developmental sequence.
Figure 4 depicts a constraint structure for learning to
coordinate eye, head, and body movements to fixate the
fovea on a stimulus of interest. Here the development
sequence consists of 13 stages, beginning with learning
to saccade to a stimulus, and ending with the refine-
ment of torso yaw as an aid to fixation. At each stage
constraints are in place restricting the system to a lim-
ited number of functions. Each stage also has an asso-
ciated saturation criteria that indicates when learning
appears to have finished. Following an action, the
resulting state may either be novel in some way, for
example a new movement pattern is detected, or it
may be be familiar through previous experience. We
define saturation as the degree of scarcity of novelty,
that is, high saturation indicates that novel events are
extremely rare, and thus the given stage is asymptoti-
cally reaching full training.

When saturated, the behavioral sequence may pro-
gress by changing the current regime of constraints
imposed on the system. We notice that there are two
ways that constraints may be lifted. One way is by the
gradual relaxation of a restriction, for example, by
incrementally increasing the resolution, accuracy, or
bandwidth of a channel. The alternative is a threshold
effect whereby some critical skill level is reached allow-
ing a new event for the first time. An example of this is
seen when a behavior cannot be achieved until the
necessary prerequisites are in place, for example a
pincer grasp cannot be performed until the control of
thumb opposition has been sufficiently established.

Motor system
"Birth" 1 2 3 4 5 6 7 8 9 10

Eyes Pan, tilt
Vergence
Eyelids Working

Neck Roll, pitch, yaw
Torque

Shoulder Roll, pitch, yaw
Torque

Elbow Pitch
Torque

Wrist Roll, pitch, yaw
Hand Thumb opposition

Thumb
Fingers
Grasps Ulnar Palmar Radial Pincer

Torso Roll
Pitch
Yaw
Torque Increasing torque

Increase torque

Increasing control
Increasing vergence

Increasing control

Increasing movement precision
Increasing movement precision

Simulated age (months)

Parallel finger use

Increasing range of opposition
Thumb refinement
Individual finger refinement

Increasing control
Increasing torque

Increasing control

Increasing torque
Increasing control

Figure 2. Partial motor development sequence for the iCub humanoid robot. Shaded regions relate to periods of development of
each ability as observed in infants. Darker shading indicates more advanced ability.

Figure 1. The iCub humanoid robot.

346 Adaptive Behavior 19(5)

 at UNIV OF TENNESSEE on January 4, 2013adb.sagepub.comDownloaded from

Figure 3.1: Partial motor development sequence for the iCub humanoid robot.
Shaded regions relate to periods of development of each ability as observed in infants.
Darker shading indicates more advanced abilities (Law et al., 2011a).

We have previously demonstrated both of these cases in
robotic experiments in Lee et al. (2007b) and Lee,
Meng, and Chao (2007a) respectively.

Figure 5 depicts a similarly derived constraints
sequence for learning to reach. Notice that each con-
straint chart deals with a different skill development
and may involve stages that are evident in other devel-
opments. Thus, stage 7 in Figure 4, concerning torso
movement, is also present as stage 6 in Figure 5. This is
important because any given behavior may be contri-
buting to the development of several competencies
simultaneously. This also highlights the dynamics of
the constraints; they are not fixed in their order, nor
are they simply triggered upon saturation. Some stages
may be learned in parallel, and similar levels of devel-
opment may appear in different orders. Importantly,
the constraints do not directly initiate or control the
developmental stages, but simply release more com-
plexity to the learning processes.

Thus the constraint tables provide an overarching
framework for understanding the inter-relationships
between developing behaviors but they do not prescribe
the control trajectory or the operation of any learning
mechanisms. The relaxing or removal of the next avail-
able constraints from the table is determined by the
global system state, which reflects the conditions that
have become saturated. Thus stage transitions are
emergent; their ordering and timing are not easily pre-
dictable. Indeed, the system may even regress to earlier
stages when an action cannot be successfully learned
due to gaps in the system’s previous experience. For
this reason any implementation may be expected to
show noticeable local variations although the system
as a whole should approximately follow the general
developmental timelines.

It is obvious from the timeline that a number of
constraints arise directly from the immaturity of the
neonate brain. Such constraints are derived from the

"Age" Saturation criteria Observed behavior

(m
on

th
s) til

t

ve
rs

io
n

ve
rg

en
ce

pi
tc

h

ro
ll

ya
w

to
rq

ue ro
ll

pi
tc

h

ya
w

to
rq

ue

1 Eye saccade 0 d d Low occurance of unknown
saccades

Eye saccades to fixate on stimuli

2 Vergence 0 d Low occurance of unknown
vergence movements

Both eyes converge onto a single stimuli

3 Neck movements 0 d d d d Low occurence of unknown
movements

Neck roll pitch and yaw movements

4 Eye & head visual search 0 d d d d d d d Low occurance of unknown
combinations of movements

Head and eyes move together to fixate on
a stimulus

5 Torso pitch 2 d d Low occurence of unknown
movements

Torso bends foraward and backward

6 Eye, head & torso pitch
visual search

2 d d d d d d d d d Low occurance of unknown
combinations of movements

Fixations incorporate bending movements
at the waist

7 Torso pitch & yaw 3 d d d Low occurence of unknown
movements

Torso bends forwards, backwards, and
sideways at waist

8 Eye, head & torso pitch &
roll visual search

3 x x d d d d d d d d Low occurance of unknown
combinations of movements

Fixations incorporate bending and leaning
movements

9 Eye, head & torso pitch &
roll visual search

4 x x x x x x x d d x Few improvements in eye and
neck movements

Looking whilst bending and leaning

10 Torso roll, pitch & yaw 5 x d d x Low occurence of unknown
movements

Torso bends, leans and rotates at waist

11 Full body visual search 5 x x x x x x x x d d x Low occurance of unknown
combinations of movements

Looking with whole body movement

12 Improvement of torso pitch 7 x x x x x x x x x d x Few improvements in torso pitch Less jerky bending movement whilst
looking

13 Improvement of torso yaw 10 x x x x x x x x x x x Few improvements in torso yaw Smoother body rotation whilst looking

Eyes Neck TorsoDevelopmental stage

Figure 4. Constraints architecture for staged development of visual fixation coordinated with eye, head, and torso movements. At
each stage the system is constrained so that it only has access to systems marked d or x, where d denotes a system under
development, and x is a fully developed system.

"Birth" 1 2 3 4 5 6 7 8 9 10 11 12
Image resolution
Stereopsis
Sensitivity to stimulus
Color resolution
Transfer rate
Focal range Increasing focal range

Simulated age (months)Vision attributes

Increasing resolution
Stereopsis onset and improvement

Increasing sensitivity to stimulus
Increasing color resolution
Increasing image transfer rate

Figure 3. Partial vision development sequence for the iCub robot.

Law et al. 347

 at UNIV OF TENNESSEE on January 4, 2013adb.sagepub.comDownloaded from

Figure 3.2: Partial vision development sequence for the iCub robot (Law et al.,
2011a).

random motor babbling didn’t perform well in the current study. In this work (Law

et al. (2011a)), the stages of eye-saccade learning have been implemented on iCub

while the reaching stages are in progress.

Caligiore et al. (2008) used primary circular reaction hypothesis which focuses on

motor babbling in front of the eyes. During the motor babbling, Hebbian learning

rules are used to form correlations between actions and perceived consequences for

two rather complex skills of reaching in the presence of an obstacle and grasping.

When the hand touches the objects, the grasping movements are started; this

is inspired by the enclosure reflex in young infants. Fig. 3.3a and Fig. 3.3b show

the reaching and grasping architectures. Their computational framework consists

of two 2D maps of neurons with population codes that encode signals for input

22

Fig. 3. The architecture of the system. Plain arrows refer to information
flows whereas bold arrows represents all-to-all connection weights trained
on the basis of a Hebb rule.

arm’s proprioception) and from the target position (known
through the eye proprioception) [31].
A hardwired inverse kinematic transformation is then used

to convert the hand desired trajectory points wc (in Euclidean
space) in posture points (in joint space; see Fig. 3). The
posture points are then used as desired joint angles for the
PD muscle models to obtain the joints’ torques.
The model learns as follows. Random b1 values (for

simplicity b2 = 1−b1) are generated to perform random arm
trajectories (motor babbling). Importantly, learning uses only
the random parameters that produce a “legal” trajectory, that
is a trajectory that (a) does not lead the arm to collide the ob-
stacle with any part of the arm and (b) does not lead the arm
violate any angle range of the joints. Learning lasts 20.000
legal trajectories (on average, about 1 out of 5 trajectories
is legal; futher 1.000 legal trajectories are generated to be
used in a later generalisation test, see Sect. III-B). For each
trajectory, the input map is activated on the basis of the eye-
centred sight of the obstacle (Eq. 3), the random b values
that generated the movement are used to activate the output
map (Eq. 3), and the all-to-all weights between these two
maps are updated according to a covariance Hebb rule [8]
[32]:

Δwji = η(a j −a j)(gi−gi)(wmax−
∣∣wji

∣∣) (7)

where η is the learning rate set to 1, wmax is set to 0.2 and
is a parameter that keeps the weights within the range of
[−0.2,0.2], a j is the activation of the post-synaptic neuron
j, gi is the activation of the pre-synaptic neuron i, a j and
gi are moving decaying averages of the neurons’ activations,
calculated as a= ξa+(1−ξ)a with ξ set to 0.2. This rule
strengthens the connections between each couple of neurons
that have both an activation above or below their own average
activation, and weakens their connections in the other cases.

B. Results
After training, the model develops a good capacity to

produced curved trajectories in order to reach the target

while avoiding the obstacle. Fig. 4 shows some trajectories
the system performs while reaching a target. As desired,
the system not only produces trajectories with a curvature
suitable for avoiding the obstacle with the tip of the hand,
but it also learns to curve the trajectory so as to avoid that
any other part of the arm collides it.

Fig. 4. Left: trajectories of the arm during reaching tests after learning,
where an obstacle (not reported for clarity) is set between four different
targets (circles) and 36 hand initial positions around each of them. Bold
trajectories correspond to successful reaching movements, dotted trajectories
to failures (i.e. obstacle collisions or joint-range violations). Right: the same
test repeated with switched obstacle and initial hand positions.

In order to have a quantitative measure of the accuracy of
skills, the model was tested with 1.000 couples of target and
hand initial positions not used during training (generalisation
test). The results are reported in Table I. This Table shows
that the system has a high number of successes (67%) in
comparison to the number of collisions (23%) or violations
of the joints’ angle range (10%).

TABLE I
RESULTS OF 1,000 REACHING TESTS WITH OBSTACLES.

Outcome Frequency Percent

Successes 670 67%

Collisions 228 23%

Violations 102 10%

The analysis of the distribution of weights from each
neuron of the input map (encoding the obstacle position) to
the output map (parameters’ of trajectory curvature) shows
that two distinct and symmetrical patterns emerge during
learning for the various obstacle positions and hence for
the various initial hand positions (see Fig. 5): one pattern
causes the hand trajectory to curve left and the other to
curve right. The neural network selects one of the two types
of trajectories in correspondence to two compact subsets of
possible initial hand positions, as indicated clearly in Fig. 4.

IV. OBJECT GRASPING
When performing actions directed to grasp objects, adults

adjust the distance between the thumb and other fingers
according to the perceived orientation and size of the tar-
get during the hand transport. With this respect, in [33]
it was shown that primates’ pre-motor cortex encodes a
sophisticated repertoire of different types of grasping actions.
However, before nine months infants lack the anticipatory
movements seen in adults [34] and adjust their grip only after
touching the target objects. Indeed, a fine fractionated control

(a)

Fig. 5. The reaching model develops weight from each neuron of the input
map to neurons of the output map belonging to two different patterns. Left:
example of weights from one input neuron causing the trajectory to curve
left. Right: example of weights causing the trajectory to curve right.

of the fingers is not possible at this age as it involves cortico-
motoneuronal systems which are not yet fully developed by
the age of acquisition of voluntary grasping [35]. At this
stage of development, when infants contact objects they will
occasionally try to grasp them. This behaviour is supported
by the enclosure reflex for which grasping movements are
triggered when the hand contacts objects. This reflex op-
erates until infants are about six months old. This overall
behavioural pattern likely “scaffolds” the formation of more
stable grasping behaviours that will take a few more weeks
to fully develop [36]. Infants younger than nine months
are physically able to vary the grip size, as indicated by
the fact that they can spread their fingers apart once they
have touched a large object [37]. Likely, these types of
adjustments allow the formation of associations between the
perceived size of objects and the corresponding hand postures
that later will support a full development of the anticipatory
grasping patterns observed in adults.
This section proposes a model of the development of

these processes based on motor babbling. The simulated
development is composed of these phases: (a) when the
hand touches the object with the palm, the enclosure reflex
causes the closure of the hand with constant torques; (b) the
systems moves the arm randomly (motor babbling) with the
object in hand, and forms two types of associations: (b1)
between the locations of objects in space (eye posture) and
the corresponding arm postures; (b2) between the foveal
perception of objects held in hand and the corresponding
hand postures: this mimics the development of the different
types of grasping (e.g., power grip, precision grip, etc., see
[33]); (c) the sight of a target object re-activates the arm
posture corresponding to it, and hence a reaching movement,
while the hand’s contact with the objects triggers, again via
the enclosure reflex, the re-activation the hands’s posture
corresponding to the perceived object: this mimics the devel-
opment of the different types of grips from the initial enclo-
sure reflex; (d) suitable more sophisticated processes, such as
learning by trial-and-error, support the further development
of the different grips and form “chunked” reaching-opening-
grasping action sequences on the basis of their success (this
phase is not modeled here).

A. The Architecture and Functioning of the Model

Fig. 6 shows the components of the model. The neural
components of the model are formed by four 2D maps of

Fig. 6. The architecture of the grasping model, formed by four neural
maps for reaching and grasping, PD muscle models, and a dynamic arm-
hand model. Plain arrows refer to information flows whereas bold arrows
represent connection weights trained on the basis of an Hebb rule.

21× 21 neurons each. These maps use population codes
to encode input and output signals. In particular, the two
input maps respectively encode, on the basis of the Gaussian
function of Eq. 3, the following information: (a) the object
position signaled by the eye’s pan and tilt angles; (b) the
shape of the foveated object obtained through a Sobel filter
[38] applied to the fovea of the visual image (the central
63×63 pixel central portion of the image). The Sobel filter
is a very simple image filter that can be used to mimic edge
detection performed by primary visual cortex simple cells
[39].
While learning, the two output maps encode the following

information, basically corresponding to the random posture
angles generated by motor babbling: (a) the arm posture (two
angles); (b) the fingers posture (one value corresponding
to the thumb’s angles, and one value corresponding to
the “virtual finger’s” angles, see Sect. II). Motor babbling
implies: (a) setting either a big (diameter: 30cm) or small
object (diameter: 12cm) close to the system’s hand palm;
(b) causing the closure of the hand around the object to
mimic the enclosure reflex (this is done by issuing suitable
desired angles to the PDs muscle models); (c) issuing desired
random postures to the arm. While this is done, the Hebb
covariance learning rule of Eq. 7 is used to update the
connection weights of the model so as to form associations
between: (a) the eye-posture (signaling the position of the
target) and the corresponding arm posture (this mimics the
acquisition of reaching skills); (b) the object perception and
the corresponding hand posture (this mimics the acquisition
of different visually-triggered grips).
During later test stages, the sight of the object and the

corresponding eye posture activate the two input maps which,
on their turn, activate the two output maps: this latter
activation sets the desired arm and hand postures (angles)
on the basis of Eq. 4 (here b1 and b2 are the arm and
hand desidered angles). Importantly, however, the reaching
and grasping movements are triggered in different times. In
particular, it is assumed that the simple sight of the object
triggers only reaching whereas grasping is triggered only by
the sight of the object plus the later hand contact with the

(b)

Figure 3.3: The (a) reaching and (b) grasping architecture (Caligiore et al., 2008).

and outputs. In reaching, the input map encodes the position of an obstacle in

“eye-centered coordinates”, while the eye fixated on the target before and during

the movement. The output map encodes parameters used by a “pattern generator”

to create the hand trajectories. During the learning stage, random parameters are

created to perform motor babbling. At this stage, parameters that produce illegal

motions are filtered out, such as the ones that lead to a collision with objects or

any angle violation of joints. This work was not tested on any real robotic system,

and they employed a 3D simulated dynamic eye-arm-hand instead. They are mainly

trying to solve the inverse kinematics problem with the reaching rather than the

inverse dynamics.

Laschi et al. (2008) offered a predictive sensorimotor coordination system for robot

reaching inspired by infant development, as well as pre-shaping fingers for a grasp

configuration, using neuro-fuzzy networks. Reaching controls the final position and

orientation of the arm end effector but not the arm’s trajectory.

Saegusa et al. (2008a) designed a system that learns to predict future sensor

values by using current sensor values and motor commands. The sensory-motor

23

learning procedure has two stage of exploration and learning. The system alternates

between these two stages until the given performance is attained. The sensorimotor

prediction was evaluated by a function called confidence. The principal idea is to use

confidence acquired from the learning happened in the past to explore and collect

new information.

The exploration strategy is improved by Saegusa et al. (2009a) and Saegusa

et al. (2009b). In an experiment with a humanoid robot named James, the sensors

determine the position of robot’s hand and the motor commands determine the joints’

positions of the upper-arm and the shoulder. Saegusa et al. (2008a) performed the

same experiment with James except that the motor commands are velocity commands

for the upper-arm and shoulder joint.

Saegusa et al. (2008b) conducted two experiments that focus on learning to predict

sensor values such as somatosensory and visual. The somatosensory prediction, which

is the prediction of encoder values, was conducted using the left arm of James.

The visual prediction learning uses the images captured by the left eye as the

sensory inputs. In these experiments, the output data are motor commands that

are transferred to the actuators of the left arm and the head.

In another experiment by Saegusa et al. (2009b) with the iCub simulator, two

types of movements such as object fixation and reaching are learned. In the object

fixation learning, the sensor inputs are horizontal and vertical positions of the

robot’s hand on both the left and right eyes. The motor commands correspond

with “horizontal”, “vertical”, and “vergence” movements of the both left and right

eyes. Regarding the reaching movement, the sensor state is a 3D input consist of

the horizontal, vertical, and vergence position of both eyes. The motor commands

correspond to the roll of the upper-arml, and shoulder and elbow pitch. Fixation

learning is done prior to learning reaching.

Saegusa et al. (2010) tackled a different aspect of development and embodiment,

which is body discovery. In their model, a robot discovers its body based on the

correlation between two separate sensory feedbacks of vision and proprioception. A

24

robot can identify that a moving object is part of its body when there is a high

correlation between these two sensors. At this time, some important features of the

moving object and the body itself are stored in a visuomotor memory. This memory

can further assist the robot to define its body without having any previous knowledge.

Saegusa et al. (2012) preformed three experiments of body discovery: without

human interference, with interference from a moving object, and by modifying the

arm by putting a plastic glove over the arm. In all of these experiments, the system

works without prior knowledge of body kinematics, appearances, dynamics, or motor

pattern. Here, the sensorimotor correlation was used solely for sensory prediction

while we used sensorimotor correlation for both trajectory planning and sensory

prediction.

Bouganis and Shanahan (2010) trained a neural network that controls a robot’s

arm with four DOFs. This network consists of individual spiking neurons and employs

a learning technique that is biologically plausible called “Spike Timing Dependent

Plasticity” to modify the strength of connections. This model finds motor commands

that cause the end-effector to move to a given spatial location (inverse kinematics);

in contrast, we are trying to solve the inverse dynamics problem.

The neural network by Bouganis and Shanahan (2010) is a feed-forward type

network with its input layer encode both the end-effector’s spatial location at the next

time step and the proprioceptive sensory information (fig. 3.4). The firing patterns

in the proprioception group indicate the angle of the respective joints located in the

shoulder and the elbow of the arm. The input layers are all connected to the output

layer, where the neurons in the output layer encode the motor commands which are

sent to joints. Each node of the input layer is attached with both an excitatory and

an inhibitory connection to each node of the output layer. In the training stage, an

“Endogenous Random Generator” randomly simulates motor neurons in the range of

[−5◦, 5◦], and the produced motor commands would cause the end-effector to move in

a particular spatial direction (based on forward kinematic equations), which is stored

in the neural network.

25

Proprioception

Forward

Kinematic

Equations

Current

Cartesian

Coordinates

Input

Layers

Output

Layers

Motor

Commands
ERG

+ -

STDP

SNN

ϑ

ϑ

e

e

e

ϑ

Input

Layers

Output

Layers

SNN

Motor

Commands

Proprioception

e
desired

spatial

direction

ϑ

ϑ

ϑ

Performance Period

Training Period

Fig. 3. A diagram of the system during the training and the performance
period.

period, the network has to learn that when the arm lies on
the joint configuration #1, the motor command vectors #̇1

and #̇2 move the end-effector in the spatial directions ė1 and
ė2, respectively. This means that the synaptic weights should
adapt so that, the simultaneous stimulation of Linput

i=1:4(#1)
and Linput

i=5:7(ė1) will result in the activation of Loutput
i=1:4 (#̇1).2

Similarly, the simultaneous stimulation of Linput
i=1:4(#1) and

Linput
i=5:7(ė2) should result in the activation of Loutput

i=1:4 (#̇2).
While this can be learned through STDP, a conflict is
encountered if the network is subsequently called to learn
that, when the arm rests in the new joint configuration #2,
the motor command vector #̇1 moves the end-effector in
the spatial direction ė2. That is, the simultaneous stimulation
of Linput

i=1:4(#2) and Linput
i=5:7(ė2) should activate the neurons

in Loutput
i=1:4 (#̇1). If the synaptic weights in the network are

modified to incorporate the last pattern, it is clear that the
stimulation of Linput

i=1:4(#1) and Linput
i=5:7(ė2) would erroneously

result in the activation of both neuron sets Loutput
i=1:4 (#̇1) and

Loutput
i=1:4 (#̇2), while it should only activate Loutput

i=1:4 (#̇2), as
given by the second training pattern. The output firing pattern

2Li(✓0) denotes the set of neurons in the i-th layer which represent the
value ✓0.

Loutput
i=1:4 (#̇1) is erroneously activated because the sets of

firing neurons Linput
i=1:4(#1) and Linput

i=5:7(ė2) are individually
shown to be good predictors for Loutput

i=1:4 (#̇1), according to
the first and third pattern under learning. To address this
issue, we modify the population vector scheme and use many
“bins” of neurons to represent a single value of a variable,
which means many possible “central neurons”. In this way,
even when firing patterns have the above characteristic, the
erroneous firing in the output layers can be avoided when at
least one of the four central neurons representing Linput

i=1:4(#1)
is different in the first and second pattern, or Linput

i=5:7(ė2) in
the second and third pattern.

The aforementioned issues would not have been encoun-
tered if were following an alternative approach to represent-
ing the input patterns. As has been discussed, we use N
independent neuronal layers to represent N variables, with
the population of neurons in each layer encoding the value
of a single variable. An alternative representation scheme
that would not cause the issues discussed above would be
to use a single N -dimensional array of neurons, where each
instance of input pattern (i.e., N -tuple) would be represented
by stimulating a unique set of neurons. This representation
however has the important drawback of poor scalability, since
the population of neurons required increases exponentially
with the number of variables represented. In particular, even
if we had just 10 neurons representing a single variable, then
this scheme would necessitate the use of 100000 neurons for
5 variables, and ten times this number if we were adding just
a single variable. It is thus evident that such a representation
can only be considered when the number of variables is
small, and is not suitable for our task.

A. Neuron Model

Many models have been proposed in the literature in
an attempt to simulate the behaviour of real neurons. An
influential model was proposed by Hodgkin and Huxley [9]
who translated their experimental observations on the giant
axon of the squid into a set of nonlinear ordinary dif-
ferential equations. While their model is considered to be
biophysically accurate, their simulation is computationally
expensive. An alternative model is based on integrate-and-
fire neurons which carry much less computational burden.
The shortcoming of this model however is its inability to
reproduce the rich dynamics exhibited by cortical neurons.
In this work, we simulate the individual neurons according
to Izhikevich’s “simple model” [10]. This model preserves
the biologically realistic behaviour exhibited by the Hodgkin-
Huxley model, and at the same time is computationally effi-
cient as the integrate-and-fire model. The low computational
cost is especially important when it comes to simulate large
networks. The efficiency of the model relies on the fact that
it uses only two equations and has only one non-linear term.
In particular, the equations describing the model are given
by:

v̇ = 0.04v2 + 5v + 140� u + I (7)

u̇ = a(bv � u) (8)

4107

Figure 3.4: The spiking neural network framework during training and test
(Bouganis and Shanahan, 2010).

Husle et al. (2010) suggested a framework that allows an active vision system

with a robotic arm to conduct reaching that is guided by visual cues. The introduced

framework consists of three different spaces, the “retinotopic reference frame”, the

“gaze space”, and the “reach space”. The visual information captured by the active

vision system are represented and calculated in the retinotopic frame of reference.

The gaze space is defined by the range of motor positions in the system. The reach

space is specified by the robot arm coordinate system that determines the reachable

points in this space. Two mappings in the framework that link these three domains

are the sensory-motor mapping for “eye saccades” and the mapping between reach

and gaze space. The structure is embodied and based on infant development and

26

partially based on brain research. In our work, however, the reaching task is not

visually guided.

Husle et al. (2011) mimicked some fundamental characteristics of infant develop-

ment such as active vision, visual attention, coordination between hand and eye, and

manipulation of simple objects.

Kraft et al. (2010) introduced a framework for visuomotor coordination where

an agent is exposed to a minimum knowledge of its body, the machinery for feature

extraction, structural knowledge, some innate behavioral patterns, and the physical

world. The developmental process consists of three stages of learning the concept of

objects, acquiring particular grasping knowledge for objects, and performing object

manipulations. This system mimics the visuomotor learning of a six-month-old infant

by using an initial premature grasping behavior, and it also uses the visual data to

trigger “reaching and grasping” and “development of object representations.”

However, there are some differences between human development and this system.

First, these developmental stages are not in a clear order in human development.

Second, during play, more knowledge such as movement fine-tuning, body alignment,

and sophisticated grasping affordance are learned besides learning to grasp a

particular object. Finally, planning develops continuously in humans, where the skill

sets and their combinations gradually become more advanced.

Thill and Ziemke (2010) used self-organizing maps to learn motor primitives,

inspired by the mirror neuron system, but their experiments were based on abstract

simulations of limbs, not on realistic dynamical simulations or real robotic arms.

Sauser and Billard (2006) used a neural field approach to model the dynamic

integration of motor and sensory information. Their approach is very compatible

with our own field approach, and they present a valuable mathematical analysis,

but their investigation extended only so far as numerical simulation of some general

effects.

Schaal et al. (2007) unified self-organizing dynamical systems approaches, like

ours, with traditional optimal control; this incorporates earlier relevant work on

27

dynamic motion primitives by Ijspeert et al. (2003); this is very valuable work, but

it is more focused on imitation than autonomous exploration.

Rolf et al. (2010a) used goal babbling (unstructured motor-exploration) as an

exploration strategy to learn inverse kinematics. The focus of this method is to explore

the surroundings of a sub-space with a low dimension. Since motor babbling’s goal

is to explore the entire joint space, they believe that goal-directed babbling is more

feasible for many DOFs. A path-based sampling approach is used to introduce targets

to the model. Training data are generated along the paths, which are the results of

execution of currently learned estimated model along a desired path toward goals. In

this work, the main focus is to solve inverse kinematics using sensorimotor correlation

while we are trying to solve inverse dynamic. This approach is not neurally plausible

but is developmentally feasible. The motor babbling introduced here can be useful

for the future work of our research.

Rolf et al. (2010b) addressed the challenge of body growth using the goal-directed

method suggested by Rolf et al. (2010a). This model was tested with experiments on

various patterns of growth (un-proportional or proportional growth) on a simulated

robot arm and a simulated growth on a humanoid robot. In both cases, learning to

reach was the central goal. An online version of goal babbling for bootstrapping the

sensorimotor coordination was introduced by Rolf et al. (2011). The implemented

technique can rapidly solve the inverse model for very high dimensional domains.

Lee (2011) introduced motor babbling as a form of play behavior. Playing has

been known to be an essential activity for children to develop healthy regarding

cognitive abilities. The four types of play that are particularly relevant to robotics

are attunement (early adjustment of sensorimotor parameters), body (motor babbling

with any of the limbs), object (manipulations and actions on objects), and social

(interaction with other people) plays.

DeWolf and Eliasmith (2011) offered a hierarchical model of a reaching controller

inspired by optimal feedback control and motor babbling. This model of motor control

is based on the main brain areas is offered (figure 3.5) and each of the function of

28

J. Neural Eng. 8 (2011) 065009 T DeWolf and C Eliasmith

Figure 1. The NOCH framework. This diagram embodies a high-level description of the central hypotheses that comprise the neural
optimal control hierarchy (NOCH). The numbering on this figure is used to aid description, and does not indicate sequential information
flow. See the text for details.

foreseeable future, as the neuroscientific evidence is seldom
irrefutable regarding neural function.

To be clear, we take it that the NOCH is an evolving
framework which currently over-simplifies the functions of
many of the relevant anatomical areas. Given the lack of
alternative frameworks, however, these simplifications do
not prevent the NOCH from usefully contributing to our
understanding of how control theoretic functions map to the
neural substrate. In the remainder of this section, we describe
each of the main elements of the NOCH, appealing to both
control theoretical and neuroscientific characterizations of
motor control. We begin with a brief description of all the
elements of the NOCH and then discuss central aspects of the
framework in more detail in subsequent sections.

3.1. NOCH: a brief summary

A block diagram of the NOCH framework is displayed in
figure 1. The numbering on this figure is used to aid
description, and does not indicate sequential information flow.
For additional details see [20].

3.1.1. Premotor cortex (PM) and the supplementary
motor area (SMA). The premotor cortex (PM) and
the supplementary motor area (SMA) integrate sensory
information and specify target(s) in a low-dimensional, end-
effector agnostic, and scale-free space. End-effector agnostic

means that at this stage, no lower level dynamics for any
limbs or body segments that might carry out the action are
considered. It is strictly a high-level space, which may specify
control signals in terms of, for example, 3D end-point position.
Scale-free refers to the fact that solutions found for LBCs (see
section 2.1.2) for optimal movement in an area of a particular
size can be subsequently manipulated by rescaling, due to the
fact that this high-level space is end-effector agnostic [20].

An example of the PM/SMA function in arm reaching
begins with the planning of an optimal path from current hand
position to target, which incorporates information from the
environment, such as obstacle position. Previously learned
motor components (i.e. synergies) are used as a basis, and
linearly combined through weighted summation to compose
the desired movement, as described in section 2.2. If the
desired movement cannot be created from the available set of
basis synergies, the system may explore new paths through
space to determine a satisfactory trajectory. These areas
act as the highest levels in a motor control hierarchy (see
section 2.3) that proceeds through M1 and eventually to muscle
activations.

3.1.2. Basal ganglia. Recently, the basal ganglia has been
characterized as a winner-take-all (WTA) circuit [35], as
responsible for scaling movements or providing an ‘energy
vigor’ term [89], and as performing dimension reduction
[6]. Spiking neuron implementations that employ the

7

Figure 3.5: The NOCH framework (DeWolf and Eliasmith, 2011).

this model is mapped to the steps for generating optimal control signals. Functions

of this model are also mapped to primary parts of the brain known to be involved in

reaching. In an experiment, normal human reaching trajectories along with velocity

profiles were produced by means of a hierarchical control system with two levels that

included basal ganglia, motor cortices, and the cerebellum. Later in this experiment,

some functionalities of the system were impaired, the results were compared with

data from clinical studies of patients where their similar neural parts had substantial

problems. This paper is a great example of a neurally-plausible approach for reaching,

but this approach is not tested on any real robotic system, and the model of reaching

is not inspired by infant development.

Law et al. (2014b) proposed a reaching model through simulating infant devel-

opment on iCub. They focus on learning through developmental stages and motor

29

babbling. Simulated sensorimotor spaces are represented by overlapping maps of

fields that resemble topographic maps in the brain. The work by Law et al. (2014b)

is an extension of previous works by Law et al. (2011b), Law et al. (2011a), and

Husle et al. (2011) and covers the acquisition of saccade, gaze, control of torso, and

reaching and grasping that are visually-elicited in 3D space. This work is an excellent

example of a longitudinal approach to development that starts from motor babbling

and continues to the reaching and grasping stage. In this work, the effect of the torso

is investigated on the robot’s representation of the space. Here, the LWPR algorithm

was used to learn the relative rotation of torso and tilt that is needed to move an

object from one location to another one within the gaze frame of reference. This

algorithm is suitable for learning incrementally from sparse high dimensional data.

The relationship between infant development and this longitudinal experiment was

fully investigated by Law et al. (2014a).

We mentioned earlier that, at the core of this model, there are overlapping maps of

fields with linkings that store the correlation in sensory-motor learning. Earland et al.

(2014) investigated the effect of overlapping fields in sensory-motor representation.

Caligiore et al. (2014) introduced a computational model for development

of reaching by integrating “reinforcement learning”, “equilibrium points”, and

“minimum variance”. The model was tested with a simulated 2 DOF arm. The

model can reproduce several known characteristics of an infant’s reaching, including

the kinematics and dynamics of reaching trajectories in infants, the bell-shape velocity

profile, the evolution of sub-movements and the control of degrees of freedom in

reaching. The focus of this work is capturing the essential features of reaching and

not the neural-plausibility of the model.

30

Chapter 4

Methodology and Implementation

In the following section, we describe our proposed conceptual model of reaching. In

section 4.2, we explain a neural model for the proposed abstract model. In section

4.3 we examine an implementation of this model.

4.1 Conceptual Model

4.1.1 Motor-sensory Phase-space and Trajectory Bundles

We take our inspiration from the embodied development of the human motor-sensory

system, in which an infant must learn the dynamic relationship between its body and

environment. Focusing on the arm, we introduce a model for learning the correlation

between motor action and consequent sensation. Let S be the space consisting of all

possible states of the agent’s sensory inputs, and let M be the space of all possible

states of the motor output system. We are interested in trajectories in the motor-

sensory space A =M×S, which has the dimension n = ms.

If we consider s sensory inputs for the agent and the activity of each input is

normalized to I = [−1, 1], then S = Is. We can formally represent this space

using Ŝ disjoint sub-spaces: S = S1×S2× · · ·×SŜ . Each of these sub-spaces has

31

the dimension of s1, s2, . . . , sŜ , respectively. Likewise the motor space is shown by

M = Im, which consists of M̂ disjoint sub-spaces M =M1×M2× · · ·×MM̂.

To learn this correlation, we explore the dynamical properties of the arm,

mimicking motor babbling in an infant. This exploration allows the agent’s

neural control mechanisms to extract lower dimensional representations of the arm’s

dynamics. During motor babbling, we record motor-sensory trajectories. Collections

of these trajectories cluster as trajectory bundles in the abstract motor-sensory space

A. These trajectory bundles represent regions that are more dynamically feasible

than the surrounding space.

Space A has very high dimension, and direct neural implementation of this

correlation learning could be computationally impractical. In our model, we use

dimension reduction to create a more computationally tractable space A′ for learning

correlations. There is evidence of dimension reduction mechanism in several brain

areas, e.g. cerebellum and other motor-sensory systems.

4.1.2 Conceptual Trajectory Bundles Formation

Our goal in learning motor-sensory correlation is to construct trajectory bundles

or dynamically feasible regions of A. The correlations between motor actions and

consequent sensations can be described by a scalar field D(a), for a ∈ A. We are

interested in regions of A, where D ≈ 1, versus the ones that are not dynamically

feasible, D ≈ 0. Letα(t) ∈ A be a motor-sensory trajectory, and let γα : A → I be an

n-dimensional Gaussian distribution centered at α with a suitable standard deviation.

We use a Gaussian shape for the trajectories to emphasize that the borders of feasible

trajectory tunnels are fuzzy and the fact that the dynamics are continuous. Fig. 4.1

shows a conceptual bundle of three trajectories in which parameter φ is used to show

the fuzziness of trajectories.

32

The D field can be carved by either the following process 4.1

Ḋ(a, t) = ηD[1−D(a, t)]γα(t)(a), (4.1)

or in another form:

Ḋ = ηD(1−D)γα. (4.2)

Here ηD is the adaptation rate and D is the region of feasible motor-sensory

correlation. One extension to this model is to allow the D field to adapt to changes

in body dynamics by adding a slow decay term such as:

Ḋ(a, t) = ηD(1−D(a, t))γα(t)(a)−D(a, t)/τD. (4.3)

We need another refinement because the feasibility of a phase-space trajectory may

depend on the direction with which it passes through regions of A. To accommodate

this fact, we can construct a tensor field D : A → In that encodes the facility of

passing through each point in each possible direction. One way to construct this field

is as follows:

Ḋ = ηD(1− ‖D‖)γαα̇. (4.4)

4.1.3 Conceptual Trajectory Planning

In this stage, we aim to construct a trajectory/path from a dynamical starting point

to the goal through the abstract motor-sensory phase space A. The goal and the

start points are both represented in this motor-sensory phase space, while the goal

is shown by an “image of completion” G : A → I. This function is a map from the

points in this abstract space to a range that stands for the point’s attraction.

When an infant sees an interesting object located in its visual field, the image of

completion will be triggered. Therefore, the image of completion is the combination

of visual information (the location and features of the object) and infant’s feeling

33

when it holds the object. The image of completion for infant reaching is defined as

the feeling of holding the object in its hand.

For example, in the case of an infant reaching for and grasping an object, the image

of completion is the perception of grasping the object (tactile, proprioceptive, visual,

etc.). Such an image of completion might be elicited by the sight of an interesting

object at a particular place in the infant’s visual field. The visual information provided

about the object’s location and properties (size, material, etc.) combines with the

infant’s goal (holding it) to generate the image of completion. For example, the desire

to grasp the object might generate goal haptic inputs in S1, and the perceived location

of the object would generate goal activity defined over the proprioceptive and visual

fields (e.g., S2 and S3).
The purpose of the path-planning process, then, is to find an abstract trajectory

from the current motor-sensory state into the goal region. In order to describe this

process, one must imagine a D field which defines feasible “paths” through A as ant

trails in a high-dimensional phase space rather than a 2D space. In another words,

we can think of 1−D as representing infeasible regions that are outside of “trajectory

tunnels” or “passible regions.” With this assumption, the diffusion of signal from the

goal state to the current state shapes the path planning process. In this process, path

planning and execution happens at the same time. The diffusion process is defined

as

Ṗ = ηP∇2DP − P/τP +G. (4.5)

Here, P (a) is the amplitude of the path signal at a ∈ A. G is the goal motor-

sensory state. To cover the cases that image of completion changes before the reaching

finishes, we can add a rapid decay term, τP, so the potential paths can adjust quickly

on the fly.

34

	

φ	

φ	

T	Motor-sensory space

Figure 4.1: A conceptual bundle with three trajectories in which φ represents the
width of trajectories to fuzzy the dynamic.

If we use a tensor field D instead of a scalar field D, the path planning process

can take into account the differing facilities of change along different dimensions:

Ṗ = ηP∇2DP − P/τP +G. (4.6)

Therefore, the signal diffuses most rapidly in the directions in which D is greatest.

The diffusion-based path planning imposes conservation throughout the process,

meaning the activities that are introduced via the source to the system equals the

activities absorbed in the sink or dissipated in the system. This conservation law

presents a set of problems for motion planning, for instance, for a start state located

far from the image of completion, a signal might die before reaching to the start

state. In contrast, start states in the vicinity of the image of completion can quickly

be saturated with the activation, so the path planning fails.

We switched to spreading activation which is more appropriate to conceptualize

and implement path planning in this dissertation. Since this process doesn’t require

conservation of signals in the system, the signal can be amplified or diminished in

a neural network to handle short or long distance paths better. The process of

spreading activation is a search method first introduced in cognitive psychology to

35

model retrieving concepts from memory that forms a semantic network. This process

also has been used for document retrieval in a network of documents as well as a

search mechanism in the artificial neural networks.

The search process begins with the source nodes in the neural network (e.g. the

image of completion) and spreads out the activity to the other nodes; the source’s

activity propagates in the network according to the connections among nodes. This

process iteratively updates the activation for all the nodes in the neural network.

The nodes with an activation level higher than a given threshold are fired until the

activity reaches the start state.

4.1.4 Conceptual Trajectory Execution

The path execution process can be performed by following the gradient of the path

signal/diffusion or activation that we introduced in the previous section along the

trajectory tunnels, α̇ = ηα∇P . We need to add a threshold θ to this process to

assure that motor-sensory states change if the path signal is above the threshold;

otherwise the state would change for any insignificant changes. Here is the complete

path execution process:

α̇ = ηα∇[P − θ]+. (4.7)

Here, [x]+ is defined as, [x]+ =





x if x ≥ 0

0 if x < 0

This mechanism for path planning and execution has several characteristics that

work best to our benefit:

1. the state of the motor-sensory system will not change until activation from the

goal reaches the start state. At this point, a feasible dynamical path from the

goal to the start has been determined, so the system can seek the goal.

2. since the path planning process is determined by following the gradient of the

path signal, the path is likely near optimal and accessible.

36

3. since there is a slow decay term in the process of path diffusion, if the goal state

changes the system is able to look for the new goal quickly.

4. in case the predicted sensory input doesn’t match the actual sensory input in

presence of any perturbations, the system automatically will follow the path

planning from its new state.

In order to approximate the path planning and execution process in terms of the

gradient, we use neural representation of trajectory tunnels. This approximation is

especially helpful when there are two or more equally attractive paths. In this case,

inherent stochastic mechanisms will break the symmetry, and one of the paths will

be picked.

4.2 Neural Model

We take our inspiration from the embodied development of the human motor-sensory

system, in which an infant must learn the dynamic relationship between its body

and environment. Again, focusing on the arm, we introduce a model for learning

the correlation between motor action and consequent sensation. The central feature

of our model is the encoding of trajectory bundles in three maps of neurons with

a parallel structure representing the same motor-sensory space. We refer to them

as the backward, forward and competition maps. A particular motor-sensory state

is represented by localized activity over the maps, and trajectories are defined by

shifting activities among neurons with overlapping receptive fields. Fig. 4.2 shows an

overview of this model with the three neural maps in the center and the dimension

reduction and dimension expansion modules on the sides.

The connections between successively activated neurons encode both reverse-time

correlations for path planning and forward-time correlations for path execution. The

backward map B represents connections from neurons activated at time t + 1 to

neurons activated at time t. Connections between the forward map F and the

37

!

!Map!B!
Map!C!
Map!F!

A’! A’!
Space!A

!
W!

W!
W! Dimension!

Expansion!
Dimension!
Reduction!!

Space!A
!

Figure 4.2: An overview of our reaching model with three neural maps at its core
and dimension reduction and dimension expansion modules.

competition map C represent forward connections for path execution from neurons

activated at time t to neurons activated at time t+1. Finally, in the competition map

C, mutually inhibitory connections between nearby neurons implement a competitive

network. Neurons in these maps are Radial Basis Functions (RBF) in which centers

are determined by a neural weight matrix W. Connections in W represent the

receptive fields of neurons in maps B and F from space A′ and are normalized

(||Wi|| = 1). In addition, normalized connections W also represent the projection

fields of neurons in map C to space A′. Because the vectors comprising W are

normalized, activity levels of neurons in the neural maps are inversely proportional

to the Euclidean distance between the centers of the neurons and a given point in

space A′. We consider the weights W, as well as the underlying topology of the

neural maps, to represent the result of both the motor babbling itself and the prior

development as determined by evolution or other developmental processes.

4.2.1 Formation of Neurally-Plausible Trajectory Bundles

As we mentioned previously, changing patterns of activity over the neurons in the

neural map will represent the phase-space trajectories. A particular motor-sensory

state will be represented by localized activity over these neurons, and the trajectories

will be defined by shifting activities between neurons with overlapping receptive fields.

38

The trajectory planning happens in this new reduced space; each point in this space

represents different states of these neurons.

Consider an adjacency matrix A so that Aij = 1 if neurons i and j have

significantly overlapping receptive fields and otherwise Aii = 0. We explain later

the process of constructing this matrix.

The connections between successively activated neurons can encode both reverse-

time correlations for path planning and forward-time correlations for path execution.

These synapses will encode the D field which was introduced in section 4.1.2.

In one topographic map, the R×R matrix B represents the backward correlations.

R is the number of neurons in the backward map. The connection strength to neuron

i from neuron j (Fig. 4.3) is updated by

Ḃij = ηD(1−Bij)ri(t)rj(t+ δt)−Bij/τD. (4.8)

Here, rk is the activity of the k-th neuron, which has a certain weight vector in

the neural representation of the trajectory. The adaptation rate ηD is small so that

trajectory bundles evolve slowly. Another topographic map represents the R × R

forward correlation matrix F. This map updates as follows:

Ḟij = ηD(1− Fij)ri(t+ δt)rj(t)− Fij/τD. (4.9)

We can see that F = BT. Fig. 4.3 demonstrates two neurons, i and j, and the

forward and backward connections between them. Fig. 4.4 illustrates a simplified

neural representation of map B, with neurons and connections among those neurons

in a bundle. The connections are stronger in the center of the bundle compared to

the connections in the sides.

In the last topographic map, the R × R matrix C encodes the the inhibitory

connections between connected neurons. This matrix implements a competitive

network and is defined as

C = −kCA. (4.10)

39

	

i j

i	 j

Fij

Bij

r(t + Δt) r(t)

Figure 4.3: Forward and backward connections between neurons i and j.

	

Figure 4.4: A simplified neural representation of a trajectory bundle with gray
nodes inside the bundle and color of the edges representing strength of the connections
among the neurons in the bundle.

40

4.2.2 Neurally-Plausible Trajectory Planning and Execution

After trajectory bundles are created, an agent can find a trajectory or path through

the abstract motor-sensory phase space A from a dynamic starting point to a goal.

The goal or image of completion G initiates this process. The goal’s activities

spread through the network and the backward connections established in map B; this

activation excites a subpopulation of the backward-connected neurons (see fig. 4.5.)

Let γ be the activity of goal neurons and β be the backward spreading activation.

Backward activation β will then be updated as

β̇ = ηB(Bβ + γ)(1− β)− β/τB. (4.11)

This update rule implements spreading activation, weighted according to the synapse

weights in B. A decay term β/τB is included so that if the goal changes, the potential

paths will quickly readjust. ηB is the rate of spread in this equation.

Path execution begins when neurons in map C receive input from neurons in

map B (representing path planning) as well as neurons in map F (representing

the current motor-sensory state). This backward activity activates corresponding

forward-connected neurons to a degree εβ. At the same time, activities from the

current neuron would activate those neurons to a certain degree. These neurons in

map C compete with each other to define the next state of the planning; a neuron

that was sufficiently excited by both the forward connection form the current state

r and the backward connection from the goal state is the winning neuron. The

winning neuron would fire and define the next state of plan-execution in the forward

connections. This process is formulated as

χ̇ = ηCσ(Cχ+ εβ + Fr− θC)− χ/τC. (4.12)

41

In this equation, θC is the activation threshold and ηC is the adaptation rate. Since

we don’t want the path planning to be sensitive to the slow changes of the neurons’

weights, we assume ηB, ηC � ηD.

Path execution begins when neurons in map C receive input from neurons in map

B (representing path planning) as well as neurons in map F (representing the current

motor-sensory state). Activity in B activates corresponding neurons in map C to a

degree of λβ. At the same time, activity of neuron r in F activates potential successor

neurons r′ and r′′ in map C. Activated neurons in map C compete to define the next

state of the planning; the neuron r′ maximally excited by both the current state r

and the backward connections from the goal state is the winning neuron. This neuron

fires and defines the next motor-sensory state in A′. This state is translated back

from A′ to A to generate both motor signals and sensor prediction. The winning

neuron shifts to a refractory state for the rest of the planning and execution, which

helps to avoid cycles in the path planning. Figure 4.5 shows the path planning and

execution process.

Activity in the winning neuron is translated into motor signals by inverting the

PC representations in order to project them back into A. We could only project

the motor subspace in the neural and PC inversion, but we want to investigate the

sensory subspace prediction.

4.3 Model Implementation

We use trajectories resulting from motor babbling in three passes. The first pass trains

a dimension reduction module. The second pass structures the three parallel neural

maps F, B, and C. The third pass determines the weights of synapses within and

among these neural maps. In the following sections we explain the implementation of

our model, which includes multiple different techniques for the purpose of dimension

reduction, different ways of neural representation of phase-space, trajectory bundle

formation, and path planning and execution processes.

42

	

Map B

Map C

Map F

Goal state

Current state

r

r”

r’

r’

r

r

r”

r”

r’
γ	

λβ

Dimension	
Reduction	

Dimension	
Reduction	

Dimension	
Expansion	

New current state

W

W

W

F

B

Figure 4.5: Neural architecture for implementing the path planning and execution
process. Activity in map B spreads from the goal state γ, and the current state r
in map F excites nearby neurons r′ and r′′ in map C. Competition among excited
neurons in map C leads to firing of neuron r′, which represents the new motor-sensory
state.

43

4.3.1 Implementation of Trajectory Bundle Formation

Alg. 1 describes the bundle formation process (following eq. 4.8 and eq. 4.9) which

occurs in maps B and F through motor babbling. A babbling trajectory in the

reduced space is passed as an input to this procedure. Points along the trajectory

iteratively fire a set of neurons from the neural map B, and reverse-time connections

between firing neurons are strengthened. At iteration i + 1, fired neurons have their

connections to the previously fired neurons from iteration i increased by weight w.

In this procedure, φ stands for the width of bundles. By setting φ to a value larger

than one, we can create synapses not only between the maximally firing neurons

but also between neighboring neurons with a lesser level of activity. In Alg. 1,

the function calculate weight determines the strength of connections as a linearly

decreasing function of distance from the middle of the bundles. The update function

increases the old connection’s strength by w and guarantees that the strength of

connections is not above 1.0. After successfully creating map B, we copy the

connections from map B into map F with reversed direction.

One modification to the bundle formation approach to pursue further generaliza-

tion is to assume there are initial connections among neurons before any learning

happens. Alg. 2 shows this pre-learning stage. In this procedure, each neuron in

the map is connected to d other nearby neurons based on the inverse of Euclidean

distance with connections that weigh w. Here, for each neuron i in the neural map,

the neighboring neurons within the threshold of d are found. Then a connection with

a weight of w is set up between neuron i and a neighbor neuron j. After this initial

map construction, trajectory bundles are added to the map using Alg. 1.

4.3.2 Implementation of Path Planning and Execution

Phase-space trajectories are represented by changing patterns of activity over the

neurons in the neural maps. Trajectory planning occurs in the reduced space

A′. Alg. 3 describes the implementation of path planning and execution. In this

44

implementation, start and goal are single neurons, but we expect to expand to

multiple neurons to represent the goal and start states. In this procedure, β initially

is set to zero for all the neurons in map B. We iteratively update β until the end of

path execution or for a certain number of steps, max step. Meanwhile, χ is updated

for the neighbors of current state r in map C where the first term, λβ, reflects the

weight of connections from map B, and the second part, F[r, n], reflects the weight of

forward connections from map F. The competition between nearby neurons in map

C is computed by argmax. The next current state r′ is added to the list fired neurons,

which keeps track of neurons that have been fired throughout path execution and are

in their refractory state. The transform function projects the motor-sensory state

represented by r from A′ back to A, and from there motor commands can be sent to

the arm for execution.

4.3.3 Dimension Reduction

In the following sections we will mention a few ways in that we have investigated which

the spaces and processes may be represented in a way suitable for neural computation.

4.3.3.1 Principal Component Analysis

One simple way of reducing the high dimensionality is Principal Components Analysis

(PCA) (Shlens, 2014); this simple non-parametric technique can extract relevant

information from the dataset by identifying the most meaningful basis. PCA re-

express the data as a linear combination of its basis vectors. For PCA to work

properly, we need to subtract the mean from each of the data dimensions. After this

normalization step, the produced data has an average of zero.

Let X be the data set with dimension m×n. We calculate the covariance

matrix for this dataset, and subsequently, eigenvectors and eigenvalues of this matrix.

Now, we have n eigenvectors and n eigenvalues. The eigenvectors with the highest

eigenvalues are the principal components of the dataset. In general, we sort all the

45

eigenvalues from highest to lowest to choose the first p eigenvectors which are the

most significant. We keep the p eigenvectors and ignore the less important ones to

derive the new dataset X ′. Let matrix P be the most significant eigenvectors and,

then the re-scaled data set is calculated by X ′ = XP .

4.3.3.2 Generalized Hebbian Algorithm

The Generalized Hebbian Algorithm (GHA) by Oja (1982) is a neurally-plausible

technique for reducing dimension and extracting the first p principal components.

This process gradually computes orthogonal basis vectors u1,u2, . . . ,up. Let α(t) be

the motor-sensory trajectories or the input samples and Yk = uk ·α, for k = 1, . . . , p;

where Yk is the output of neuron k and uk is the eigenvector or the neurons’ weight

vector.

U = [u1, . . . ,up]
T, (4.13)

Y = Uα. (4.14)

Eq. 4.15 describes the update rule for GHA where the first principal component can

be discovered. In this equation, ηH is the learning rate.

u(t+ 1) = u(t) + ηH(Y (t)α) (4.15)

This equation was expanded by Sanger to discover the rest of the eigenvectors. You

can see the GHA update rule in Eq. 4.16. Eq. 4.17 shows the update rule for the

weight between neurons i and j.

up(t+ 1) = up(t) + ηHY (t)(α−
∑

i<p

(Yi −α)) (4.16)

wij = wij + ηH(αjyi − yi
∑

k≤i

(wkjyk)) (4.17)

46

	

j

i

	

	

Output nodes Input nodes

Weights

wij

Figure 4.6: A two-layer neural network is in the core of the GHA algorithm. In
this example, the output layer that captures the principal components can have up
to 4 nodes. The output nodes with dashed line could be the two least significant
components.

After several iterations, the U matrix converges to the eigenvectors ordered by

decreasing eigenvalue. We explained the process of transferring the input data into

the reduced space in the section 4.3.3.1. Fig. 4.6 illustrates a small neural network

with the two layers used in a GHA. In this example, the input data has 4 features,

the output layer can therefore hold up to 4 nodes. In this example, the network’s

weights converge to the first two eigenvectors after several training passes. In general,

the underlying network of a GHA consists of two layers: one input, and one output.

But the size of the input layer is the same as the number of features in the dataset,

and the size of the output layer is less than or equal to the number of features.

Alg. 4 shows the main function of a generalized Hebbian algorithm where the

Update function refers to Alg. 5. Before we can find the eigenvectors using the neural

network, we need to normalize the data by zeroing the mean. After normalization,

samples are shuffled and passed to the Update function one at a time. This function

updates the neural network’s weights in a synchronized fashion, using the given sample

starting from the weights of the first principle component. Weights of an output node

are determined by the given example and all the previous output nodes. The process

47

of update happens multiple times for one sample throughout different iterations. After

several epochs (training passes), the network has presumably converged, so we use the

covariance matrix and the eigenvectors to calculate the eigenvalues. The transpose

of the network’s weight represents the eigenvectors. The order of output neurons

represents the order of principal components in which their weights represent the

corresponding eigenvector. The first neuron stands for the first principal component

and so forth.

4.3.3.3 Autoencoders

Autoencoders are simple neural networks used to transform inputs into outputs with

the least possible amount of loss. The goal is to make the output the same as the input

in a network with a central bottleneck. Autoencoders use backpropagation to find

synapse weights that encode the input in the middle layer (Hinton and Salakhutdinov,

2006). Backpropagation is a form of error-driven learning that can be implemented

using a neurally plausible model as proposed by O’Reilly et al. (2012). Autoencoder is

a nonlinear generalization of PCA the uses multiple layers of neural map to transform

data. The data is transformed by a set of layers called the encoder and is reconstructed

back by a another set of layers with the similar structure called the decoder. The

learning happens by training the two networks to minimize the difference between the

original data and reconstructed data. In our implementation, we train the network

by starting with random weights and not from a pre-trained set of weights.

Both the inputs and outputs of the autoencoder are points in the motor-sensory

space A, and the bottleneck represents the same points in the reduced space A′.
After training, the front and back halves of the autoencoder serve as an encoder and

a decoder respectively. The encoder module is used to project motor-sensory states

from space A to the reduced-dimensional space A′. Similarly, the decoder is used to

transform states from space A′ to space A. Fig. 4.7 illustrates a general framework

for an autoencoder. The input and output vector have the same number of nodes

and the smallest box in the middle represents the bottleneck layer.

48

	

Output Vector

Input Vector

Code

Encoding Weights

Decoding Weights

Figure 4.7: A general framework of an autoencoder. The green arrows and orange
arrows respectively represent the weights of encoder and the decoder. The smallest
box in the middle represents the bottleneck layer.

4.3.4 Representation of Motor-sensory Space

After transforming the babbling trajectories into a lower dimensional space, we

create a set of RBFs that is the same for neural maps F, B, and C. Consider

T = {a1, .., ai, ai+1, .., af}, ai ∈ A, a trajectory in the high-dimensional phase-space

A, and T ′ = {a′1, .., a′i, a′i+1, .., a
′
f}, a′i ∈ A′, the same trajectory in the reduced space

A′. The jth feature of a′i is shown by a′ij. We want to create a matrix W which

serves as the receptive fields of neurons in both the neural maps F and B and the

projection field of neurons in map C. To make each weight vector of W normalized

(||Wi|| = 1), we calculate an additional pseudo-feature based on the features in A′

such that this pseudo-feature guarantees ||Wi|| = 1. This means the extra feature

called Wi1 can be calculated simply by the other features as

Wi1 =

√√√√1−
|A′|∑

j=2

W 2
ij. (4.18)

49

We have investigated various techniques for creating such a neural map, which are

explained in the following sections.

4.3.4.1 Self-Organizing Maps

The Self-Organizing Map (SOM) invented by Kohonen (2001) is used both to project

a high-dimensional data space into a low-dimensional space and to cluster data so that

similar data points will be mapped to nearby neurons. The SOM is used to represent

the re-scaled data into a two-dimensional map. In addition, this technique creates a

network that stores trajectories in such a way that any topological relationships within

the motor babbling training set are maintained. It means that the SOM preserves

the topology.

The SOM is a network, a 2D map of neurons where each neuron is fully connected

to the input layer and holds a vector of weights with the same dimension as the input

vector. The neurons are attached to nearby neurons by a neighborhood relation

called the network topology. Neurons are connected to each other in a rectangular or

hexagonal topology. Fig. 4.8a shows a small self-organizing map of size 5×6 neurons.

Each neuron or node in this map is fully connected to the 4 nodes in the input layer.

Therefore, the weight vector of each node has 4 features. In this project, we only focus

on the hexagonal topology. Consider node p1 with indices of (x1, y1) and another node

p2 with indices of (x2, y2) in a self-organizing map. The hexagonal distance between

these two nodes is calculated as

dx = x1 − x2, dy = y1 − y2 (4.19)

dist = max(abs(dx), abs(dx)), if sign(dx) = sign(dy) (4.20)

dist = abs(dx) + abs(dy), if sign(dx) 6= sign(dy). (4.21)

In Eq. 4.20 and Eq. 4.21, sign(x) = 1 if x ≥ 0 otherwise sign(x) = −1 and abs(x)

returns the absolute value of number x. Fig. 4.8b shows a map of 5×6 neurons with

their corresponding indices. The node in location (2, 2) is a center node and two

50

neighborhoods sizes of 1 and 2 are highlighted in colors according to the hexagonal

topology and the preceding equations.

Training: In a training round of the SOM, samples are drawn randomly from the

dataset and fed to the network. For each sample, the best neuron from the map will be

chosen based on a similarity measure and that neuron’s weight and its neighborhood

will be adjusted. This process is repeated a number of times called an epoch.

Finding the Best Matching Unit: In this project, we use Euclidean Distance to

find the best match for each sample. The easiest way to find the Best Matching Unit

(BMU) is to calculate it with

Distance =

√√√√
i=n∑

i=0

(Ti −Wi)2, (4.22)

where W denotes the neuron’s weight and T represents the current sample. The node

with the smallest distance is the winner.

Finding neighbors: Initially, the SOM starts with a large neighborhood size or

radius σ0. One important point of SOM is that the area of the neighborhood around

the winning unit shrinks over the time. The neighborhood function must be a non-

increasing function. Eq. 4.23 shows this function which is an exponential decay.

σ(t) = σ0 exp(− t
λ

) for t = 1 to size(dataset) (4.23)

In this equation, σ is the radius of neighborhood at time t, σ0 is the radius of

neighborhood at t = 0, and λ is a time constant defined in Eq. 4.24.

λ =
epoch

σ0
(4.24)

51

	

Input

Neural Map

Weights

(a)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)
(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)
(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

	
(b)

Figure 4.8: a) A small self-organizing map where each node of input is connected
to all the nodes of the map. One node is colored in brown as an example along
with its neighborhood in different colors. Connections are omitted to avoid clutter
in this image. b) Neighborhoods of size of 1 and 2 are marked dash lines for a
center node located in (2, 2) in a hexagonal topology. Six nodes with indices of
(1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3) are in distance 1 of this node. Twelve nodes
with indices of (0,0), (0,1), (0,2), (1,0), (1,3), (2,0), (2,4), (3,1), (3,4), (4,2), (4,3),
(4,4) are within distance 2 of this node.

52

Updating weights: The SOM update rule for a neuron is as follows

W (t+ 1) = W (t) + α(t)×η(t)×(T (t)−W (t)). (4.25)

Where α(t) is the learning rate that, according to Eq. 4.26, decreases with time

in an exponential fashion:

α(t) = α0 exp(− t
λ

) for t = 1 to size(dataset). (4.26)

Another important aspect of the SOM is how much the weights will be affected

around the winning node. Here, we choose a Gaussian function which implies the

effect of scaling is proportional to the distance of a node from the winning node (Eq.

4.27).

η(t) = exp(−distance
2

2σ2(t)
) for t = 1 to size(dataset). (4.27)

In this equation, distance is the distance of the Best Matching Unit (BMU) from

the current neuron and σ is the radius of the neighborhood discussed earlier that

shrinks over time.

Alg. 6 summarizes the self-organizing map. The learning happens through

multiple passes over the training data set. In our implementation, the number of

training passes or epochs is given as an input to the algorithm. Another convergence

criterion looks at average quantization error over the input samples, defined as

E{‖x −mc(x)‖} and to test whether this error is below a desired threshold value.

Here, x is an input sample and mc is a matching unit for this sample. Lastly, we

can check whether the first and the second matching units for the input samples are

neighbors; this test confirms that the topology was preserved.

4.3.4.2 Creating Neural Maps using Cartesian Product of Features

Another way to create neural representation of motor-sensory space is to produce

the Cartesian product of the features in space A′. To do so, we first calculate the

53

minimum, maximum and desired resolution for each feature of the motor-sensory

states in the reduced space (Eq. 4.28, Eq. 4.29 and Eq. 4.30). We use these values to

arrange each feature from the minimum to the maximum with the resolution as the

step value (Eq. 4.31). Finally, the Cartesian product of all those ranges creates a set

of weights W (Eq. 4.32). Each ordered tuple of set W encodes a neuron’s weight or

the center of an RBF; therefore the number of neurons in the neural maps is same as

the number of tuples in this set. To make each tuple of W normalized, (||Wi|| = 1),

we calculate an additional feature based on the other features where this additional

feature guarantees ||Wi|| = 1.

minj =
k

min
i=1

(a′ij); for j = 1 : |A′| (4.28)

maxj =
k

max
i=1

(a′ij); for j = 1 : |A′| (4.29)

resj = Resolution({a′ij|i = 1 : k}), for j = 1 : |A′| (4.30)

rangej = {minj,minj + resj, ...,maxj}; for j = 1 : |A′| (4.31)

W = rangej×rangej+1× . . . range|A′| (4.32)

Fig. 4.9 shows a 3D map created by this approach. The size of reduced space

in this example is 3. Each side of the cube represents one of the three features of

the space A′ where they are arranged from mini to maxi with the step size of resi.

There are |range1|×|range2|×|range3| small cubes in this cube where each sub cube

represents a neuron in the neural map.

4.3.4.3 Creating Neural Maps using Babbling Trajectories

The approach in section 4.3.4.2 can become computationally expensive as the number

of features in the reduced space increases. Furthermore, the Cartesian product creates

neurons that might not ever be used in the bundle formation. Therefore, we proposed

the following way to create the neural map. Assume we have a function Resolution

54

	

max
3

max
1

	

	

max2 min3

min2

	

	

	

min1

Figure 4.9: Creating a 3D neural map using Cartesian product of the three features
of space A′. Each side of the cube represents one of the three features that are
arranged from mini to maxi with step size of resi.

that takes a vector of values for a given feature and returns a desired resolution for

that feature, a set of intervals covering the feature’s range. Then the resolution of

each feature is given by

resj = Resolution({a′ij|i = 1 : k}), for j = 1 : |A′|, (4.33)

where k is the number of points in all babbling trajectories. Any function returning a

set of intervals covering a feature’s range can be used, and we discuss some examples

in chapter 5.

High-resolution maps assure a smooth motion trajectory by activating different

neurons for different motor-sensory points in T ′. In order to efficiently store such

fine-grained maps of motor-sensory space, we store only those neurons representing

points in or near the trajectory bundles resulting from babbling. Each motor-sensory

point a′i of the babbling data and its neighboring points as determined by function

Resolution are assigned as the center of an RBF.

55

	

	 	 	 	 	

	 	 	 	 	
	 	 	 	 	
	 S3,Sm 	 	 	

	 	 	 	 	
	 	 S2,S30 	 	
S1,S10 	 	 	 	

	 	 	 	 	
	 	 	 	 	

min
1
 max

1

min
2

max
2

res
2

res
1

Figure 4.10: Creating a 2D neural map by arranging the first two dimensions of the
space A′. Each patch or small square is divided according to the samples within the
boundaries of that square. si represents a sample of the training set.

4.3.4.4 Creating Neural Maps using Ordered Features

In the case of using PCA or GHA for dimension reduction, all the features in the

space A′ are sorted in a descending order based on their eigenvalues. The first two

features of the trajectories in the space A′ correspond with the two highest principal

components. We create a 2D map such that two important features have the finest

resolution in the map. To create a neural map, we arrange the first two features from

the minimum (Eq. 4.28) to the maximum (Eq. 4.29) with a step size (Eq. 4.33). One

of these ranges defines the x axis of the 2D map with m steps while the other one

defines the y axis of the map with n steps. This arrangement creates a 2D map of

m×n patches of RBF neurons. Each patch represents some points of the reduced

space whose their first two features are within the ranges of the patch. To divide a

patch into smaller patches or neurons, we iterate over all the training data in space

A′ and locate samples that fall within the range of the patch. Using the features of

the samples that are within the range a patch, we create a fixed number of neurons.

Fig. 4.10 shows a small 2D map where sides of the map represent the two

important dimensions of space A′. The rest of the dimensions, |A′| − 2, are created

56

using the samples that are inside the patches. For example, in this map, samples s2,

s30 fall into the same patch. This patch is divided to smaller patches to represent the

statistics of these samples.

Algorithm 1 Trajectory bundle formation.

1: procedure BundleFormation(neural map, T ′, φ, τD, ηD)

2: n← find firing neurons(T ′[1], φ)

3: for k ← 2 to |T ′| do . for all points along T ′

4: m← find firing neurons(T ′[k], φ)

5: for i in n and j in m do

6: w ← calculate weight(i, j)

7: update(B[j, i], w, ηD, τD)

8: end for

9: n← m

10: end for

11: F← BT

12: return neural map

13: end procedure

57

Algorithm 2 Initial connections in the neural map.

1: procedure InitialConnections(neural map,w, d)

2: for each i in neural map do

3: m← find closest neurons(i, d)

4: for j in m do

5: if i = j then

6: skip this node

7: end if

8: update(B[j, i], w)

9: update(B[i, j], w)

10: end for

11: end for

12: F← BT

13: return neural map

14: end procedure

58

Algorithm 3 Path planning and execution.

1: procedure PathPlanning(neural map, start, goal, ηB, τB, λ, max step)

2: β ← 0.0 for all neurons in neural map

3: χ← 0.0 for all neurons in neural map

4: r ← start . current state

5: fired neurons ← {r}
6: step ← 0

7: while r 6= goal and step < max step do

8: for each n in neural map do

9: β ← β + ηB(Bβ + γ)(1− β)− β/τB
10: if β > 0 and F[r, n] > 0 then

11: if n is not in fired neurons then

12: χ← λβ + F[r, n]

13: end if

14: end if

15: end for

16: if max(χ) > 0 then

17: r′ ← argmax(χ) . winning neuron, r′

18: r ← r′ . new current state

19: (motor-sensory) ← transform(W [r])

20: add r to fired neurons

21: end if

22: step ← step + 1

23: χ← 0.0 for all nodes

24: end while

25: end procedure

59

Algorithm 4 Main algorithm for generalized Hebbian algorithm.

1: procedure GeneralizedHebbian(data, epochs, η)

2: rows, cols ← shape(data)

3: weights ← random small values with shape(cols, cols)

4: data ← data − mean(data)

5: cov ← covariance(data)

6: for i← 1 to epochs do

7: shuffle data

8: for j ← 1 to rows do

9: sample ← data[j,:] . all features of sample j

10: weights ← Update(sample, weights, η)

11: end for

12: end for

13: eigen vectors ← transpose(weights)

14: eigen values ← mean((cov × eigen vectors)/ eigen vectors)

15: return eigen vectors, eigen values

16: end procedure

60

Algorithm 5 Update function for generalized hebbian algorithm.

1: procedure Update(sample, weights, η)

2: cols ← size(sample) . number of features in the sample

3: Y ← zeros(cols) . vector of cols elements

4: delta weights ← zeros(shape(weights)) . Initialize it to zeros

5: Y [0] ← weights[0, :] � sample . inner product multiplication

6: delta weights[0, :] ← η× (sample − (Y[0] × weights[0, :]))

7: for i← 1 to cols do

8: Y [i] ← weights[i, :] � sample . inner product multiplication

9: temp ← zeros(shape(weights[i, :]))

10: for j ← 1 to i+ 1 do

11: temp ← temp + Y[j] × weights[j, :]

12: end for

13: delta weights[i, :] ← η× Y[j] × (sample − temp)

14: end for

15: weights ← weights + delta weights

16: return weights

17: end procedure

61

Algorithm 6 Main algorithm for SOM

1: procedure SelfOrganizingMap(data, map height , map width , epochs,

initial learning rate)

2: map size ← map width × map height

3: nodes weight ← random small values

4: initial neighborhood radius ← max(map height,map width)
2

5: time constant ← epoch
log(initial neighborhood radius)

6: for i← 1 to epochs do

7: neighborhood radius ← initial neighborhood radius× exp(i
time constant

)

8: learning rate ← initial learning rate × exp(−(i
time constant

))

9: shuffle data

10: for j ← 1 to size(data) do

11: sample ← data[j]

12: find the BMU for sample j using eq. 4.22

13: for l← 1 to map size do

14: distance ← distance(l, BMU) using eq. 4.22

15: if distance < neighborhood radius then

16: influence ← exp(− distance2

2×neighborhood radius2
)

17: nodes weight += influence × learning rate ×(sample −
nodes weight)

18: end if

19: end for

20: end for

21: end for

22: return nodes weight

23: end procedure

62

Chapter 5

Experiments and Results

In this chapter, we begin with a description of the humanoid robot used for all of

our experiments. In section 5.2 we then describe some motor exploration or motor

babbling techniques we have tried, and in particular the method upon which the rest

of the experiments are based. In section 5.3, we then describe a set of experiments

with a random start and end point, which aims to find a right dimension reduction

approach and a suitable construction for a 2D neural map for our model. In section

5.4, we list some evaluation metrics utilized for testing the quality of planned motions.

In section 5.5, then, we introduce a new set of experiments with a fixed start point,

and through these experiments, we investigate the effects of bundle width, training

size, and the dimension of the reduced space on the accuracy of the planned motions.

Next, in section 5.6 we explain another set of experiments with multiple fixed start

positions. Here, we examine some modifications of bundle formation and their impacts

on the planned motions. We also evaluate how different resolutions of the neural map

effect the accuracy of these planned movements. Finally, in section 5.7, we review

and further analyze our findings.

63

Figure 5.1: Rosie, Humanoid Robot.

5.1 Humanoid Robot

The robot used in our experiments is a Meka Robotics M3 mobile humanoid called

Rosie (Fig. 5.1), which is a humanoid robot with two 7-DOF arms attached to a

0-DOF torso. Two 6-DOF end effectors or hands, with four fingers each, are attached

to the arms. Two 6-DOF force and torque sensors are mounted on the end of each

arm’s compliant manipulator. The torso is connected to a Zlift, a linear actuator

that mounts on the top plate of the omni-base and allows the robot’s upper body to

traverse a large vertical distance. The omni-base utilizes a Holomni Powered Caster

to provide omnidirectional capabilities. A 2-DOF neck connects the head to the body.

Two 3D Prime Sense cameras, one Kinect and one Bumble Bee camera, are mounted

on the head.

64

5.2 Motor Babbling

In developmental robotics, motor babbling is defined as the random exploration

of motor space, but there is no unified opinion on what level the arbitrary motor

commands should be issued. Moreover, the exact process of motor babbling in infants

is not known, and even mapping the process to robot babbling is not well defined.

To choose a proper approach for our model, we examined three different methods of

motor exploration. Also, to avoid damaging the robot during these experiments, we

issued the motor commands at the position and not the torque level.

The first approach to simulate infant motor babbling was to increment (decrement)

random joint positions of the arm by focusing on one joint at a time. Table 5.1 shows

the ranges of 7 joint positions in the left arm (in radians). Focusing on the first joint

of the shoulder, we randomly added/subtracted the current joint position to/from a

hard-coded small value; we then commanded this new joint position to the robot’s

arm while the positions of other joints were fixed during the motor exploration. We

observed that this random movement produces short and discrete movements which

didn’t resemble an infant’s motor babbling stage. We also simultaneously explored

multiple joints of the shoulder while the other joints were fixed. This exploration

strategy also produced short and very discrete movements that could not be used for

later path planning in our model. We need to mention that, considering the range of

each joint, it is not computationally feasible to freely explore the entire joint space of

the arm. These problems suggested that exploration in the joint space is not suitable

for testing our model. Therefore, we focused on motor exploration in the Cartesian

space instead.

To explore in the Cartesian space, we defined a safe working space in the shape

of a box which is assumed to be in front of the robot. Due to the lack of a built-

in collision avoidance system, this abstract box or safe working space is defined to

minimize any possible damage to the robot. In the second approach, the end-effector

is only able to explore random points inside this working area. We generated a

65

Table 5.1: Range of joint positions of the left arm.

Joint Number Joint Range in Radians

0 [-1.3962634016, 3.49065850399]
1 [-0.418879020479, 2.61799387799]
2 [-1.4835298642, 1.4835298642]
3 [-0.00486908464063, 2.31810267927]
4 [-0.343829862643, 3.48542251623]
5 [-0.343829862643, 1.02677719895]
6 [-1.0471975512, 1.0471975512]

list of random end-effector target positions, (x, y, z), within this confined space and

calculated the desired commands using Rosie’s Inverse Kinematic package. We then

issued the commands to Rosie’s arm to move it from the current position to the target

position. This method produced long reaching trajectories that were more suitable

for the rest of our experiments, but there are no intermediate motor actions between

the start of a motion and the end. This issue motivated us to use third-party software

that produces intermediate motor actions to perform motor babbling.

In the third method, similar to the previous one, a list of random end-effector

target positions (x, y, z) was generated within the confined space. We then iterated

through this list and planned/executed the motions with “MoveIt!,” which is built by

Sucan and Chitta (2014). This final approach generated long arm trajectories along

with the intermediate motor actions that are necessary for our model. Therefore,

for the rest of the experiments in this chapter we used the last approach for motor

babbling. Table 5.2 summarizes the different strategies that we have tried.

5.3 Random Start Points and End Points

In this section, we explain a set of experiments that allows us to both compare different

dimension reduction techniques and to investigate various ways of constructing a 2D

neural map for implementing our model. In this set of experiments, both the start

66

Table 5.2: Motor babbling strategies.

Approach Trajectory
Smoothness

Intermediate
Points

Joint exploration No Yes
End-effector exploration using
Meka’s Inverse Kinematic

Yes No

End-effector exploration using
“MoveIt!”

Yes Yes

and end positions of each trajectory are selected randomly. Here, we first generate

some random end-effector points (x, y, z) located within the boundaries of a safe

area and then use the “MoveIt!” package to plan/execute arm trajectories after the

provided paths are found. Fig. 5.2 shows a sequence of points sequentially planned and

executed within this box, where the end of one trajectory is the start of the next one.

This conceptual figure doesn’t show the exact number of tried target points, however

the boundaries of this box are defined as x = [0.6m, 0.9m], y = [0.3m, 0.6m],and

z = [1.0m, 1.5m] in the robot’s coordinate system.

During the motor exploration phase, the communication with the robot is placed

through the Robot Operating System (ROS). The zlift height was set to 640 during

the experiment sessions. For this experiment, we only use the left arm of Rosie, where

the motor commands are the joint positions and joint velocities of the left arm. The

used sensors are, the joints’ positions, velocities, and force, and also the 6-axis force-

torque. This force-torque sensor is mounted on the left arm’s wrist. The frame of

reference for the movements is the world, which is a point located behind the robot

in the omni-base. Tables 5.3 and 5.4 respectively show the sensor and motor values

used in this set of experiments.

While the arm is moving from a start to an end point, we store all of the motor and

sensor values along with their time stamps, which are received through the channels

of the Robot Operating System (ROS). We only need to store these values when a

67

Y position (m)

0.35
0.40

0.45
0.50

0.55 X p
osi

tio
n (m

)

0.65

0.70

0.75

0.80

0.85

Z
 p

o
s
it

io
n
 (

m
)

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

End Effector Positions

Figure 5.2: Random trajectory babbling inside a box (safe area) in front of Rosie.

Table 5.3: Sensor values.

Sensor Type

Joint position Left arm (for 7 Joints)
Joint effort Left arm (for 7 Joints)

Joint velocity Left arm (for 7 Joints)
Force and Torque sensor Force (x, y, z)-Torque (x, y, z)

Table 5.4: Motor values.

Motor Type

Joint position Left arm (for 7 joints)
Joint velocity Left arm (for 7 joints)

path from the current position to the goal position is determined. Otherwise, another

target pose is submitted to “MoveIt!”. We need to mention that these channels might

have different frequency rates, and the sensor distribution may not be uniform. After

68

Table 5.5: Motors and sensors during the motor babbling creates a motor-sensory
trajectory.

Time step Sensor values Motor Values Motor-Sensory

t=0 S0 = start M0=Stay still M0S1

t=1 S1 = S0 M1 M1S2

t=2 S2 M2 M2S3

t=3 S3 M3 M3S4

t=4 S4 M4 M4S5

t=5 S5 M5=Stay still M5S6

t=6 S6 = goal M6=Stay still M6S7

t=7 S7 = new start M7 M7S8

t=8 S8 M8 M8S9

t=9 S9 M9 M9S10

t=10 S10 M10 M10S11

t=11 S11 M11=Stay still M11S12

t=12 S12 = goal M12=Stay still M12S13

the arm stops at the goal, we repeat the process for new target positions and issue

another random target position within the safe area. Table 5.5 shows how motor

babbling creates two motor-sensory trajectories with two start and goal pairs. To

create a motor-sensory trajectory, we combine the motor commands sent at time-

stamp t with the sensor values read at time-stamp t + 1. At the beginning and the

end of a trajectory, a command called “stay still” is issued. This command reads

the current joints’ positions from the sensors and sends them to the left arm. This

command ensures both the start and the target states are also preserved in each

motor-sensory trajectory. Since all of the sensor and motor values are recorded into

separate files throughout the experiment they need to be merged into one file to create

the motor-sensory trajectories.

In the first phase of training using babbling trajectories, we then use the

Generalized Hebbian Algorithm (GHA) or Principal Component Analysis (PCA) to

transfer the motor-sensory trajectories to a lower dimensional space. As we mentioned

in the previous chapter, the sensor and motor values must be normalized to the range

69

of [−1, 1] before the dimension reduction stage. Alg. 4 in chapter 4 shows the offline

GHA, where “offline” in this context means that the neural network is trained with

the training data collected over all the sessions at once after the last motor babbling

session. We compared the resulting eigenvalues and eigenvectors from the GHA with

those from the PCA. To determine the size of the reduced space, we pick the first few

principal components and transform the trajectories into the new space. To find the

needed eigenvectors, we sort them by their corresponding eigenvalues in decreasing

order, calculate their sum eigenvalues, and then normalize them. Finally, we pick the

eigenvectors which capture the most variance.

The second phase of training is to construct a 2D neural map using the rescaled

trajectories. Each neuron in this map contains a weight vector with the same number

of features as the reduced space. At this stage, there is no connections between the

neurons until the trajectory bundle formation stage (the third phase of training, Alg.

1 from chapter 4,) constructs the connections.

5.3.1 Dimension Reduction

In one experiment with dimension reduction, results of GHA were compared with

PCA. We implemented GHA in C++ and OpenMP library to support multi-threading.

At each epoch, the training set was divided among multiple threads. Each thread

assigned to a chunk of samples iterated over them and updated the eigenvectors.

The training set was composed of 5, 000 babbling trajectories, using 147, 279 samples

overall, where each sample has 41 features. For GHA, the learning rate was 0.01 and

the epochs were 1000. Calculation of eigenvalues was not originally part of the GHA,

but it can be achieved using the covariance matrix and the eigenvector. Fig. 5.3a and

Fig. 5.3b respectively show the first and the second eigenvalues which are calculated

with both PCA and GHA. Both graphs show that the eigenvalues calculated by the

GHA are not stable, and they could drastically deviate from the true values in some

of the epochs. The first two true eigenvalues that are gained from PCA are 7.024,

70

0 200 400 600 800 1000
epochs

−400

−300

−200

−100

0

100

200

ei
ge

nv
al

ue

eigenvalue# 1 vs. epoch

GHA
PCA

(a)

0 200 400 600 800 1000
epochs

−100

−50

0

50

100

150

200

250

300

ei
ge

nv
al

ue

eigenvalue# 2 vs. epoch

GHA
PCA

(b)

Figure 5.3: (a) The first and (b) the second eigenvalues resulting from PCA and
GHA.

and 3.88, but in these graphs they look rather small and almost zero. This drastic

change in the eigenvalues is even worse for the second eigenvalue, which suggests that

even a slight change in the eigenvector from one epoch can drastically impact the

eigenvalues in GHA.

Fig. 5.4a shows the difference between the first eigenvector calculated with GHA

and the first eigenvector calculated with PCA as time increases, measuring the error

with Euclidean distance between the two eigenvectors. This value nears, but, never

reaches zero. Similarly, Fig. 5.4b shows the error of the second eigenvector of GHA

over time. The error value of 2.0 implies that the second eigenvector of GHA has

opposite sign of the eigenvector of PCA. Although we have used a multi-threading

implementation of GHA, this algorithm could take hours to produce the desired

number of principal components. Moreover, since the calculation of eigenvalues in

GHA is not reliable, we use the results of PCA instead of GHA for the following

experiments.

In the next experiment, we evaluated the results of PCA using variance by varying

the size of the training data, which is a method of determining the percentage of

71

0 200 400 600 800 1000
epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

er
ro

r

eigenvector#= 1

error

(a)

0 200 400 600 800 1000
epochs

1.90

1.92

1.94

1.96

1.98

2.00

2.02

er
ro

r

eigenvector#= 2

error

(b)

Figure 5.4: (a) The y axis shows the difference between the (a) first and (b) second
eigenvectors calculated by PCA and the ones calculated by GHA.

variance preserved after reducing the dimensionality. To measure the number of

features that are needed for A′ space, we varied both the size of the space A and the

size of the training data set. To determine the desirable size of the reduced space, we

plot the cumulative sum of eigenvalues (representing variance) in descending order

and then divide each eigenvalue by the total sum of eigenvalues. This plot shows the

fraction of total variance retained versus the number of eigenvalues, and it allows us

72

0 5 10 15 20 25 30 35 40 45
number of eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

va
ria

nc
e

eigenvalues vs. variance

147279 points

(a)

0 5 10 15 20 25 30 35 40 45
number of eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

va
ria

nc
e

eigenvalues vs. variance

292527 points

(b)

Figure 5.5: Variance versus number of eigenvalues after applying PCA to (a) a
training set of 5, 000 babbling trajectories with 41 features and (b) a training set of
10, 000 babbling trajectories with 41 features.

to determine the number of eigenvalues that should be kept to maintain a desired

level of variance. For instance, in Fig. 5.5a, we can see that for a variance of 80%,

a total of 15 eigenvalues out of 41 should be considered in the space A′, and for a

variance of 95%, almost 23 eigenvalues should be retained. We then doubled the

size of training data from 5, 000 to 10, 000 babbling trajectories and observed that

having a larger training set didn’t reduce the suitable dimension of the A′ space. Fig.

5.5b shows that for a variance of 95%, almost 23 eigenvalues must be preserved even

though the size of the training data was doubled.

In another experiment, we repeated the previous test by removing some of the

features of the training set while keeping some of the necessary features. Here, we

looked at the suitable dimension of the reduced space A′ given 20 features of the A
space. The 20 features are the position and velocity of 5 joints of the left arm both

for motor and sensor values. The five joints include 3 joints in the shoulder and 2

joints in the elbow joints. Fig. 5.6a shows that 9 components out of the 20 features

should be retained for a variance of 95%. We also increased the size of the training

73

0 5 10 15 20
number of eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

va
ria

nc
e

eigenvalues vs. variance

147279 points

(a)

0 5 10 15 20
number of eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

va
ria

nc
e

eigenvalues vs. variance

322660 points

(b)

Figure 5.6: Variance versus number of eigenvalues after applying PCA to (a) a
training set of 5, 000 babbling trajectories with 20 features and (b) a training set of
10, 000 babbling trajectories with 20 features.

set while retaining only these 20 features. This test also confirms that doubling the

number of babbling trajectories has not helped PCA, and we still must preserve 9

components (Fig. 5.6b).

In the final experiment with PCA, we measured the dimension of the reduced

space given only 10 features of the A space, which are the position and velocity of

5 joints in the left arm for the motor commands. These five joints include the 3

joints in the shoulder and 2 joints in the elbow. Fig. 5.7a shows that 8 out of the10

features should be retained for a variance of 95%. This experiment also confirms that

doubling the number of babbling trajectories has not had any impact on the number

of features left in the reduced space (Fig. 5.7b).

5.3.2 Self-Organizing Maps

In this section we examine SOM as a technique to construct a 2D neural map for

implementing our model. In the experiment with SOM, the training set was 5, 000

babbling trajectories with 8 features. Re-scaling the trajectories from the space A

74

1 2 3 4 5 6 7 8 9 10
number of eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

va
ria

nc
e

eigenvalues vs. variance

146381 points

(a)

1 2 3 4 5 6 7 8 9 10
number of eigenvalues

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

va
ria

nc
e

eigenvalues vs. variance

290694 points

(b)

Figure 5.7: Variance versus number of eigenvalues after applying PCA to (a) a
training set of 5, 000 babbling trajectories with 10 features and (b) a training set of
10, 000 babbling trajectories with 10 features.

with 20 features to the reduced space of size 8 was done using Principal Component

Analysis. After reducing the dimension of the data set, we used SOM to represent the

re-scaled babbling trajectories into a two-dimensional map. We implemented SOM in

C++ and OpenMP to facilitate multi-threading. At each epoch, the training set was

divided among multiple threads. Each thread assigned to a subset of samples iterates

over them and updates the best-matched unit and its neighbors. The learning can be

performed in batch or online.

In this experiment, a neural map of size of 200×300 was initialized to random

weights and trained online using learning rate of 0.2 and 1000 as the number of

epochs. After the neural map was trained, a 2D histogram was plotted by iterating

over the babbling trajectories (Fig. 5.8a). For each point in the data, the most active

neuron was determined and the counter of that neuron was incremented by one. This

histogram was shown by a 2D color map: each of its pixels represents a neuron of the

neural map, and the color of that pixel depicts the number of times the corresponding

neuron was fired for points in the babbling trajectories. For example, the dark blue

75

Table 5.6: Sequence of neurons fired for two sample trajectories in a 200×300 neural
map.

Trajectory Neurons’ ID

1 51888 51889 51589 51590 51590 51590 55358 55357 17038
16738 16739 16739 16739 16739 16739 16740 16740 16740
17040 16741 16741 16741 16741 16741 17042 17042 17043
17043 17043 17344 17344 17344 17345 17345 17345 2645 2646
2646 2645 2946 2339 2339 3242

2 11700 11701 11701 11701 11701 11701 27997 27997 27998
27697 27697 27998 27697 27697 27697 27697 27697 27697
17812 17812 17812

in this plot shows that a neuron was not fired maximally for any points, or in other

words, it was created but never used in the neural map. The color bar next to the

histogram is a guideline for interpreting the colors of pixels.

To gain insight into the behavior of the self-organizing map, we recorded the

sequence of firing neurons as points along a trajectory. Fig. 5.8b visualizes a histogram

for one trajectory where the color bar shows how motor-sensory points in that

trajectory are mapped to neurons in the neural map. Here, a light blue color means no

activity while the darker blue indicates more activity. We can see that the neurons in

different parts of the map were fired for this trajectory and not all the firing neurons

were neighbors. We also observed that the nearby points in one trajectory correspond

with only one neuron, indicating that the neural map could not discriminate nearby

points. This lack of discrimination in the neural map created discrete and jerky

motions. This observation aligns with the fact the SOM is widely used in clustering

and generalizing tasks rather than separating data points. Table 5.6 shows two sample

trajectories along with the corresponding activated neurons for the points along those

trajectories. Multiple sequences of neurons have been coded in red or blue for the

sake of clarity only. From this table, we can see that a sequence of different points in

one trajectory was mapped to the same neuron.

76

0 50 100 150 200 250

0

50

100

150

Neural Map's Histogram

0

4

8

12

16

20

24

28

(a)

0 50 100 150 200 250

0

50

100

150

Neural's Map Histogram

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

(b)

Figure 5.8: (a) A 2D histogram for neural map of 200×300 neurons (a) for the
entire babbling data set and (b) for one babbling trajectory.

77

Table 5.7: Sequence of neurons fired for sample trajectories in a 350×400 neural
map.

Trajectory Neurons’ ID

1 66293 66293 66293 66293 66694 66694 102166 102165 102965
103765 103764 103764 103764 103764 104163 104162 104161
104161 104161 104160 104560 104560 104560 104959 105360
104958 104958 105357 105356 105757 105756 105756 105354
105753 105753 106553 106151 105750 106950 105746 102536
102134 102534 100315 100716

2 100716 101118 101118 101518 101518 101518 116413 116413
116413 116413 116413 116413 116412 116411 116409 116409
116409 116408 116405 116405 115601

In another test, we examined the map discrimination by adding more neurons to

the map to answer this question: would a self-organizing map perform better in our

experiments by having access to more neurons? In this test, we increased the neural

map from 60, 000 neurons to 140, 000 neurons. Here, we trained a map of 350×400

neurons with a learning rate of 0.2 and 600 epochs. Table 5.7 shows the same sample

trajectories as in table 5.6 along with the sequence of neurons that are fired for these

samples. We see that lack of discrimination even persists with a larger neural map.

This test confirms that a self-organizing map is not a suitable technique for motor-

sensory representation in our experiments because this lack of discrimination leads to

discrete and jerky movements.

5.3.3 Manually Constructing a Neural Map

In this section, we evaluate another proposed method to manually create a neural

map for motor-sensory representation. In one test, we created a neural map following

section 4.3.4.4. The training set was 5, 000 babbling trajectories with 41 features.

These trajectories were re-scaled from space A with 41 features to the reduced

space of size 15 using Principal Component Analysis. We arranged the first and

78

the second features of the data in the reduced space from min to max values where

the resolution was the average difference between the consecutive points of babbling

trajectories. This arrangement creates a 2D map with 150 rows and 154 columns,

hence 150×154 patches. Each patch represents samples of the training set falling

within the boundaries of that patch. Each patch was expanded to more neurons

using the statistics of the training samples falling within the boundaries of the patch.

We created 3 neurons per each sample to represent those samples. Fig. 5.9 shows

a 2D histogram for the map of 150×154 patches. In this figure, a dark blue pixel

indicates that the corresponding patch was not activated for any points in the motor-

sensory space. We observed that the neurons that residing in the four corners of

the histogram were not employed in the motor-sensory space; in other words, these

patches (neurons) were useless. Another interesting observation is the diamond shape

of the histogram and the fact the neurons in the center are activated more often than

the ones on the edges of the diamond. This histogram suggests that pruning the

neural map in the four corners could effectively reduce future computation.

Figure 5.9: A 2D histogram for a 150×150 neural map.

79

Besides the 2D histogram, another visualization technique to evaluate the neural

maps and dimension reduction is to compare the original trajectories with the

reconstructed ones. The first test is to inspect test trajectories after expansion

from space A′ to space A. In the process of “data → PCA → PCA−1 →
reconstructed data”, a training or test trajectory is transferred to the reduced

space using PCA; then it is projected back to the original space using PCA−1.

Fig. 5.10 compares a sequence of original test trajectories (before PCA) with their

reconstructed ones (after PCA−1). Fig. 5.10a and Fig. 5.10b respectively show the

first and the second joint position of the shoulder (two features out of 41). The

original space has 41 features and size of space A′ is 15.

In the next test, each point of a trajectory is mapped to the most active neurons

in the neural map after projection to the reduced space. This time, the weights of the

firing neurons are projected back to the space A to reconstruct the trajectories. This

test can be summarized by the process “data → PCA → neural map → PCA−1 →
reconstructed data”. Fig. 5.11 and Fig. 5.12 respectively show a seen and an unseen

sequence of trajectories reconstructed with the aforementioned test. Both graphs

confirm that the neural map has failed to retain the smoothness of motions, and the

reconstructed trajectories have become rather jerky. The neural map is not able to

represent the details of the seen trajectories. This problem is even more severe for

the unseen (test) trajectories.

Together both graphs show that this approach for creating neural maps is not

adequate for our experiments. The issue with this method is that we are trying

to project 15 dimensions of space A′ to a 2D map while only keeping an excellent

resolution for the first two components. The other 13 features of the reduced space

are not well represented in the 2D map. We even increased the size of the neural map

by allowing each patch to be divided to more neurons, but the problem of resolution

was not resolved.

The results of this section reveal that this experiment is not suitable for testing

planned motions in our model. We suspect that this reaching task needs more

80

(a)

(b)

Figure 5.10: (a) A sequence of the (a) first and (b) second joint of the shoulder’s
positions where various seen arm trajectories are chained one after another. The
green line represents the original seen trajectory and the blue line represents the
same trajectory after the process of data→ PCA→ PCA−1 → reconstructed data.

81

(a)

(b)

Figure 5.11: (a) A sequence of the (a) first and (b) second joint of the shoulder’s
positions where various seen arm trajectories are chained one after another. The
green line represents the original seen trajectory and the blue line represents the
same trajectory after the process of data → PCA → neural map → PCA−1 →
reconstructed data.

82

(a)

(b)

Figure 5.12: (a) A sequence of the (a) first and (b) second joint of the shoulder’s
positions where various unseen arm trajectories are chained one after another. The
green line represents the original unseen trajectory and the blue line represents the
same trajectory after the process of data → PCA → neural map → PCA−1 →
reconstructed data.

83

babbling trajectories than we have already collected; this requires hours of exploration

that is simply not feasible with our robotic system. Another possibility is the features

which we have included in the current motor-sensory space are uncorrelated and

not informative for this reaching task. After taking these factors into account, we

designed a less complex reaching task, which is described in section 5.5. A simpler

reaching task would allow us to test the motion planning of our model and learn

about different aspects of the model. This reaching task requires less motor babbling

than the random exploration of the abstract box. Moreover, we considered a smaller

motor-sensory space than 41 features. To do so, we omitted all the sensor values from

the current space A and only kept the motor commands of 5 joints in the left arm.

5.4 Evaluation Metrics of Planned Motions

In this section, we explain the three metrics that are used in sections 5.5 and 5.6 for

evaluation of the planned arm motions during the test. These metrics are defined as:

• End effector distance estimates the accuracy of the reaching test as the

distance in Cartesian space between the target position and the end effector

after reaching is complete, that is, ||g(x,y,z) − g̃(x,y,z)||, where g(x,y,z) is the

desired location of the end effector and g̃(x,y,z) is the resulting location. This

measurement is expanded as
√

(gx − g̃x)2 + (gy − g̃y)2 + (gz − g̃z)2. This metric

evaluates the planned motions in terms of closeness of the end effector with

the target position in the Cartesian space, so a smaller error indicates a more

accurate motion. In this chapter, the unit of this metric is the meter (m).

• Norm jerk evaluates the smoothness of the reaching trajectories in the joint

space based on the time derivative of the joint angle acceleration; it is defined

jerk = 1
f

∑f
t=1 ||

...
a t||. In this equation, at ∈ A is a point along a planned

trajectory and f is the number of points in the trajectory. This metric evaluates

the planned motions in terms of the smoothness in the joint space and a smaller

84

jerk is indicative of a smoother motion. In this chapter, the unit of this metric

is rad/s3.

• Overshooting Index measures smoothness of reaching trajectories in the joint

space. To measure the actual jerk, the exact time of each sub-movement of

testing paths must be known, which is not easy to gauge accurately. Therefore,

we defined an overshooting index, a unit-less metric, to measure the smoothness

(jaggedness) of planned trajectories. For our reaching task, joint positions of a

planned test trajectory can be viewed as increasing or decreasing straight lines

in a 2D plane, in which the y axis is the joint position in radians and the x

axis is the time in seconds. The overshooting index is defined as the rate of

deviation from a straight line.

A straight line is the shortest possible line from the start position at time s,

(Js, Ts), to the end position at time e, (Je, Te). Here, J is the position of a

particular joint in joint space at the time stamp T . The total length of this

shortest line is
√

(Js − Je)2 + (Ts − Te)2. A more jagged line will be a less ideal

connection from the point (Js, Ts) to (Je, Te) and thus be inevitably longer than

the shortest line. The length of a longer line can be measured by adding the

distance of consecutive points, i.e.
√

(Ji − Ji)2 + (Ti+1 − Ti+1)2. The x and

y values are normalized to the range [−1, 1]; this normalization is critical in

adding different values with different units and possibly ranges.

Therefore, the overshooting index is the total length of a line divided by the

length of the perfect line:

Overshooting Index =

∑e−1
i=1

√
(Ji − Ji)2 + (Ti+1 − Ti+1)2√

((Js − Je)2 + (Ts − Te)2.
(5.1)

A straight line has an overshooting index of 1.0, and more jagged lines have an

index larger than 1.0. We individually calculate this index for the joints located

in the shoulder and average them.

85

Table 5.8: Left arm’s configuration of the fixed start.

Joint Configuration End-effector Position [x, y, z]

[1.58, 0.0, 1.50, 0.0,−1.50, 0.0, 0.0] [0.986, 0.211, 1.336]

5.5 Fixed Start Point

To reduce the complexity of our experiment in terms of number of needed training

samples and the size of neural map, we performed a new set of experiments with a

simple reaching task on an arc (Mahoor et al., 2016). Also, we didn’t include the

sensors in the A space. We used Rosie’s left arm for this experiment. The A space,

motor commands, consists of the position and velocity of joints in the shoulder and

elbow. In total, the size of A is 10 in the following experiments. 1000 random goal

positions were generated in an arc in front of the robot for training (babbling) and

testing our reaching controller in 3D space. 70% of these positions were used for

training and 30% for testing. We used a single fixed start point, with an outstretched

arm, for all trajectories (Fig. 5.13a and Fig. 5.13b). Table 5.8 shows the configuration

of left arm for the fixed start along with the end-effector position of the start in

the robot’s coordinate system. The zlift location was fixed at 670 in the following

experiments. All communication with the robot is through the Robot Operating

System (ROS). For training, trajectories are generated with “MoveIt!” (Sucan and

Chitta, 2014).

In the first pass through the training trajectories, we trained an autoencoder

using backpropagation with the tanh activation function. Before backpropagation,

the training data was normalized to the range [0, 1] by dividing each feature by its

maximum value and subtracting its minimum value. The learning rate was 0.1 and

the number of epochs was 106.

In the second pass of training, neural maps were constructed by calculating a

desired resolution for each feature (section 4.3.4.3 in chapter 4). This resolution was

86

(a)

!

(b)

Figure 5.13: Experimental settings: (a) Meka Robotics M3 mobile humanoid robot
“Rosie.” (b) The humanoid robot randomly explores an arc in front of its left arm
with a fixed start pose. The initial and final positions of babbling trajectories are on
this arc, but there is no constraint on points between the initial and final positions.

set to the median distance of consecutive points of the training trajectories in space

A′. The third pass through the babbling trajectories was to make connections among

neurons in the neural map based on Alg. 1.

The goal of our path planning is to find a trajectory in the high-dimensional space

A that leads the arm from the current state to the goal state. The first step is to

define the goal and start states in space A and transform them to the reduced space

A′ using the first half of the trained autoencoder. The start and goal points in A′ are

used to directly locate the start and goal neurons in the neural maps. These points,

along with path planning parameters, are passed to Alg. 3. These parameters are

ηB = 0.1, τB = 103, λ = 103, and max steps = 80. As soon as a path is found by the

winning neurons in map C, path execution is started. The winning neuron’s weight is

translated to the motor commands using the second half of the autoencoder at each

time step.

87

Table 5.9: Path Planning Parameters.

Parameter Value

ηB 0.1
τB 103

λ 103

max steps 80

5.5.1 Autoencoder as Dimension Reduction

In the first phase of training, we utilized PCA to find the suitable dimension of

the space A′. The training set contains 700 trajectories and number of features

are 10. The eigenvalues resulted from PCA showed that for a variance of 95%, 8

features out 10 must be preserved. This number is rather high for creating a 2D

neural map with a good resolution. This issue with PCA motivated us to instead

use an autoencoder for this phase of training. We trained the autoencoder with an

architecture of 10−30−15−10−3−10−15−30−10 for layers, where 10−30−15−10

represents the encoder part and 3−10−15−30−10 represents the decoder section of

the autoencoder. The autoencoder was trained with back-propagation with a learning

rate of 0.1 and 1000 epochs. The activation function is hyperbolic tangent for neurons

in all layers. The variance of data shows that for a variance of 95%, 3 features out

10 must be preserved. This means that the autoencoder is able to capture the same

amount of variance within the data with a smaller number of features.

Here, we describe another interesting unexpected outcome of using the autoen-

coder for dimension reduction. A training trajectory was projected to the reduced

space of size 3 using the encoder section and back to the original space using the

decoder part. Fig. 5.14 shows the joints’ positions and velocities of that trajectory

along with its reconstructed version using process of “data→ encoder → decoder →
reconstructed data”. We can see in this figure that the reconstructed joint positions

differ from the original ones in two joints, one in the shoulder and one in the elbow,

88

0 5 10 15 20 25 30 35−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0 Original and Reconstructed Joints

Red_0
Red_1
Red_2
Red_3
Red_4
Org_0
Org_1
Org_2
Org_3
Org_4

0 5 10 15 20 25 30 35
time

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6 Original and Reconstructed Velocity
Rec_0
Rec_1
Rec_2
Rec_3
Rec_4
Org_0
Org_1
Org_2
Org_3
Org_4

Figure 5.14: A babbling trajectory along with its reconstruction using “data →
encoder → decoder → reconstructed data”. The solid and dashed lines represent the
reconstructed trajectories and the original ones respectively.

but the end positions are the same for these two trajectories. Interestingly the

autoencoder has learned that the third joint of the shoulder and the second joint of

the elbow compensate for each other. The autoencoder has discovered that multiple

arm configurations with these two joints map to the same position of the end-effector

in Cartesian space. We didn’t observe the same results in an autoencoder with the

bottleneck of 4 or 5. A small bottleneck has forced the autoencoder to capture this

interesting feature within the training data. In contrast, a bigger bottleneck has

enough resources to store these configuration separately; therefore, it was not able to

discover such a property within the training set.

5.5.2 Construction of the Neural Map using Cartesian Prod-

uct of Features

In this section, we explored creating a neural map using Cartesian product of features

following section 4.3.4.2. We used the training data from the experiment with a

89

fixed start on the arc reaching. The size of babbling trajectories was 700 and the

number of features was 10. The training set was projected to the reduced space

using an autoencoder. For the reduced space of 3, the Cartesian product creates

a neural map of 50×103 neurons. We evaluated the unseen trajectories using the

test “data → encoder → neural map → decoder → reconstructed data”. Fig. 5.15

compares multiple original unseen (test) trajectories with their reconstructed ones.

These two graphs show that the neural map has been able to successfully retain the

statistics of the babbling data. This neural map is able to preserve the second joint

of the shoulder even better than the first joint of the shoulder (comparing Fig. 5.15a

with Fig. 5.15b). The second joint has a smaller range of position values opposed to

the first joint. The first joint spans into both positive and negative values while the

second joint has mostly negative values or positive values very close to 0.0. When

a Cartesian product is used, a neural map can grow exponentially by adding more

features to the reduced space. For example, for the reduced space of size of 5, a

neural map of 60×106 neurons is needed to represent the motor-sensory space. This

approach has multiple limitations. First, creating a neural map of such a size is not

computationally tractable; second, a majority of those neurons will not be used in

the bundle formation stage. For these reasons, we used the approach explained in

section 4.3.4.3 for creating a neural map instead of the Cartesian product approach

for the rest of experiments.

5.5.3 Results of Varying Dimension of Reduced Space

In this section, we examined the effect of reduced space size on motion planning. In

one experiment we tested three levels of dimensionality for space A′ (i.e., the number

of neurons in the bottleneck of the autoencoder), while holding other parameters

fixed. Different neural maps were built for each experimental dimensionality of the

reduced space A′. In all trials, the width parameter φ was set to 1 to create narrow

90

(a)

(b)

Figure 5.15: (a) A sequence of the (a) first and (b) second joint of the shoulder’s
positions where various unseen trajectories are chained one after another, mapping
the original ones and after the reconstruction by “data→ encoder → neural map→
decoder → reconstructed data”.

91

Table 5.10: Accuracy of autoencoders with different bottleneck size.

Train Test
Architecture RMSE Variance RMSE Variance

10-30-15-10-3 0.11 0.95 0.12 0.95
10-30-15-10-4 0.07 0.96 0.077 0.96
10-30-15-10-5 0.048 0.97 0.049 0.97

bundles. We evaluate the autoencoder using root-mean-square error according to

RMSE =

√∑n
i=1 ||ai − arec

i ||2
n

. (5.2)

In this equation, a stands for a given point from the training set or test set, and arec

is an approximation of the same point calculated by feeding a consecutively through

the encoder and decoder parts.

Because the autoencoder is used to reduce the dimension of trajectories, another

criterion,

Variance = 1−
∑n

i=1 ||ai − arec
i ||∑n

i=1 ||ai||
, (5.3)

is introduced for determining how many components should be included and how

many should be ignored. The variance metric is a method of determining the

percentage of variance preserved after reducing the dimensionality. We evaluate

different architectures by looking at the aforementioned metrics for both the training

and test trajectories. Table 5.10 shows that as the size of the reduced space increases,

the root-mean-square error decreases and the variance captured by the autoencoder

increases. This observation holds for both the training and test sets.

Fig. 5.16a illustrates the norm jerk of planned trajectories for different dimen-

sionalities of the reduced space A′. As shown in Fig. 5.16a, the median of norm jerk

decreases as the size of space A′ increases. This metric suggests that the smoothness

of planned motions depends on the accuracy of the autoencoder. However, the range

of norm jerk shows a nonlinear drop from size 3 to sizes 4 and 5. This nonlinear drop

92

in the norm jerk suggests that increasing the size of space A′ might not change the

smoothness of motions after a certain size.

Fig. 5.16b shows the range of end effector position error across the three

dimensionalities of space A′. The error metric linearly decreases as the dimensionality

of space A′ increases. Together, Figs. 5.16a and 5.16b show that the model has

successfully learned to plan motions from the test set accurately and smoothly when

the size of space A′ is 4 or 5.

Fig. 5.16c shows the mean of norm jerk across the y of final position of trajectories

in the robot’s coordinate system (across the torso) along with the standard deviation.

The motions are smoother across y for A′ of size 4 and 5. Fig. 5.16d displays the

mean of the Euclidean distance of end effector positions from goal positions across the

final position’s y along with the standard deviation. This metric also indicates that

a space A′ of size 4 or 5 tends to produce more accurate planned motions; however,

there is no particular trend in the error as y increases. An interesting anomaly in this

figure is that the error is higher for small y values– that is, short trajectories. After

investigating the planned motions, we found that a set of movements to the left side

of the arc involves positive values of the second joint of the shoulder. It seems that

these border values were not learned accurately in the autoencoder, and the model

is not able to represent the poses that are located to the right of the arc as well as

those on the left side.

Fig. 5.17a shows the overshooting of the trajectories across the three trials. We

measured the overshooting metric (jaggedness) only for the joints in the shoulder,

and the values shown in this figure represent the averaged jaggedness of these three

joints. The results of this metric is compatible with the results of the norm jerk. This

smoothness metric also confirms that a space A′ of size 4 or 5 create smoother motions

compared to a space of size of 3. Fig. 5.17b shows the same smoothness metric across

the final position’s y value of the testing trajectories. There is no specific pattern

for trajectories as y is increasing, although for the dimensiality of 3 the overshooting

metric is worse for y near 0.7. These trajectories that land on the far left side of the

93

arc (y ∼ 0.7) are composed of the arm configurations that an autoencoder with a

bottleneck of 3 is not able to capture their features correctly.

5.5.4 Results of Varying Bundle Width

In this section we examine the effect of bundle width on the generalization within

both the neural map and the motion planning. In one experiment, we tested four

different bundle widths of φ, while the rest of the parameters were fixed. The tested

bundle widths are 1, 3, 6, and 10. In all trials of this experiment, the dimensionality

of the reduced space was 5.

In the first pass through the training trajectories, an autoencoder with a

bottelneck of 5 was created and the training trajectories were transformed to the

reduced space using the encoder part. In the second pass of training, four neural

maps were constructed for each experimental bundle width by taking the required

width into consideration, meaning that, a larger neural map was created for a larger

experimental bundle width. The resolution of the neural map was set to the median

distance of consecutive points of the training trajectories in space A′. The third pass

through the babbling trajectories was to make connections among neurons in the

neural map based on Alg. 1 with different bundle widths.

Fig. 5.18a demonstrates the norm jerk of the testing trajectories for four different

bundle widths φ. We can see in Fig. 5.18a, as the bundle φ grows wider, the median

of norm jerk increases slightly. Fig. 5.18b shows that the range of end effector error

slightly decreases as the bundle becomes wider. The two figures show that increasing

bundle width φ from 1 to 3 doesn’t have any impact on either the end effector position

error or the smoothness. This observation holds for changing a bundle width of 6 to

bundle width of 10. However, we do observe significant improvement in the end

effector error when the bundle width changes from 3 to 6. This shows that the

model was allowed to generalize better with wider bundles, but the broader bundle

also has had a negative impact on the overall smoothness of trajectories. The jerk

94

φ=1,|A′ |=3 φ=1,|A′ |=4 φ=1,|A′ |=5

Experiments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
N

o
rm

 J
e
rk

 [
ra

d
/s

3
]

Norm Jerk Metric

(a)

φ=1,|A′ |=3 φ=1,|A′ |=4 φ=1,|A′ |=5

Experiments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r
[m

]

Euclidean Distance Error

(b)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

-0.05

0.00

0.05

0.10

0.15

0.20

N
o
rm

 J
e
rk

 [
ra
d
/s

3
]

Norm Jerk

φ=1,|A′ |=3

φ=1,|A′ |=4

φ=1,|A′ |=5

(c)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

0.00

0.05

0.10

0.15

0.20

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r
[m

]

Euclidean Distance Error

φ=1,|A′ |=3

φ=1,|A′ |=4

φ=1,|A′ |=5

(d)

Figure 5.16: Evaluation of planned motions for three trials, where |φ| = 1 is for the
trials and the training data is 70%: (1) |A′| = 3, (2) |A′| = 4, and (3) |A′| = 5. (a)
Smoothness of planned trajectories based on norm jerk metric across three trials. (b)
Euclidean distance error of end effector position across three trials. (c) Smoothness
of planned trajectories based on norm jerk metric across the y value of the final
position in robot’s coordinate system. (d) Mean Euclidean distance error of end
effector position across the y value of the final position in robot’s coordinate system.

95

φ=1,|A′ |=3 φ=1,|A′ |=4 φ=1,|A′ |=5

Experiments

1.00

1.02

1.04

1.06

1.08

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

(a)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

0.95

1.00

1.05

1.10

1.15

1.20

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

φ=1,|A′ |=3

φ=1,|A′ |=4

φ=1,|A′ |=5

(b)

Figure 5.17: Evaluation of planned motions for three trials, where |φ| = 1 is for the
trials and the training data is 70%: (1) |A′| = 3, (2) |A′| = 4, and (3) |A′| = 5. (a)
Smoothness of planned trajectories based on overshooting index across three trials.
(b) Smoothness of planned trajectories based on overshooting index across y value of
the final position robot’s coordinate system.

96

shown in this graph is an estimated jerk rather an actual jerk. We assumed all the

sub-movements of a planned motion took the same amount of time to execute. For

this particular experiment, we also measured the actual execution time of each sub-

movement of the planned motions and calculated the norm jerk with the exact time.

The actual jerk showed the same trend as the estimated jerk, so for the rest of the

experiments we only calculated the estimated jerk.

Fig. 5.18c shows the mean norm jerk across the final position’s y in the robot’s

coordinate system along with the standard deviation. As we can see, the smoothness

of trajectories consistently in four trials improves as y increases (longer motions).

This figure also shows that the smaller bundle widths of 1 or 3 have led to smoother

motions. The fact that the shorter trajectories are less smooth than the longer ones

suggests that the autoencoder was not able to learn some of the joint positions that

are more prevalent on the right side of the arc.

Fig. 5.18d displays the mean of the Euclidean distance of end effector positions

from goal positions across the y component of the final position along with the

standard deviation. This metric also indicates that a bundle width φ of size 6

or 10 tends to produce more accurate planned motions across the component y of

the final positions except for the movements that land to the left side of the arc

(y ∼ 0.07). These shorter trajectories are in the boundary, and generalizing the

babbling trajectories will not help to find a better motion on the edge side.

Fig. 5.19a shows the overshooting of the trajectories across the four trials with

differing bundle width. The results of this metric is compatible with the results of

the Euclidean distance and not the jerk. This smoothness metric also confirms that

smaller bundles tend to create smoother motions compared to the wider bundles. Fig.

5.19b shows the same smoothness metric across y component of the final position of

the testing trajectories. It can be seen in this graph that the overshooting is the

worst for the testing trajectories where their final y poses are located in the far

left (y ∼ −0.03) or the far right of the arc (y ∼ 0.7). The overshooting metric

measures the jaggedness or deviation from a straight line for the joint positions in

97

the shoulder. The fact that patterns of overshooting across y are similar to Euclidean

distance suggests that the jaggedness has mostly occurred toward the end of the

trajectories where the end configurations are defined. This test again confirms that

the autoencoder needs more training samples to learn the boundaries of the working

space.

5.5.5 Results of Varying Training Size

To find the number of babbling trajectories needed for the system to master

this simple task, we trained the system with different portions of 1000 babbling

trajectories. In one experiment, we varied the training portion while the rest of

parameters were fixed during the test and the train. The training sets are 10%,

20%, 30%,50%, and 70% of the 1000 trajectories. We should also mention that the

testing size is fixed with 300 trajectories for the five trials. In all these trials, the

bundle width was 1 and the dimensionality of the reduced space (the bottleneck of

our autoencoder) was 5.

In the first pass through the training trajectories, we trained multiple autoencoders

with a bottleneck of 5 using different training portions. We tested those autoencoders

with a fixed test set. Table 5.11 shows that as the size of the training set increases, the

accuracy of autoencoder improves both in the variance and the root-mean-square error

of the test set. However, the accuracy of the autoencoder doesn’t change significantly

after the 30% training size. We therefore use this training size as the basis of the

next experiment, which uses multiple fixed starting points.

In the second pass of training, five neural maps were constructed using the

corresponding training portion. The resolution of the neural map was set to the

median distance of consecutive points of the training trajectories in space A′. The

third pass through each experimental training set was to make connections among

neurons in the neural maps with the fixed bundle width of 1.

98

φ=1 φ=3 φ=6 φ=10

Experiments

0.00

0.01

0.02

0.03

0.04

0.05

0.06
N

o
rm

 J
e
rk

 [
ra
d
/s

3
]

Norm Jerk Metric

(a)

φ=1 φ=3 φ=6 φ=10

Experiments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r
[m

]

Euclidean Distance Error

(b)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
o
rm

 J
e
rk

 [
ra
d
/s

3
]

Norm Jerk

φ=1

φ=3

φ=6

φ=10

(c)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r
[m

]

Euclidean Distance Error

φ=1

φ=3

φ=6

φ=10

(d)

Figure 5.18: Evaluation of planned motions for four trials, where |A′| = 5 is for
the trials and the training data is 70%: (1) |φ| = 1, (2) |φ| = 3, (3) |φ| = 6, and
|φ| = 10. (a) Smoothness of planned trajectories based on norm jerk metric across
four trials. (b) Euclidean distance error of end effector position across four trials. (c)
Smoothness of planned trajectories based on norm jerk metric versus y value of the
final position the robot’s coordinate system. (d) Mean Euclidean distance error of
end effector position across the y values of the final position.

99

φ=1 φ=3 φ=6 φ=10

Experiments

1.000

1.005

1.010

1.015

1.020

1.025

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

(a)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

φ=1

φ=3

φ=6

φ=10

(b)

Figure 5.19: Evaluation of planned motions for four trials, where |A′| = 5 is for
the trials and the training data is 70%: (1)|φ| = 1, (2) |φ| = 3, (3) |φ| = 6, and
|φ| = 10. (a) Smoothness of planned trajectories based on overshooting index across
three trials. (b) Smoothness of planned trajectories based on overshooting index
across y axis of robot’s coordinate system.

100

Table 5.11: Accuracy of autoencoders with different training size.

Train size Test RMSE Test Variance

10% 0.21 0.91
20% 0.21 0.91
30% 0.04 0.96
50% 0.049 0.97
70% 0.049 0.97

Fig. 5.20b shows that the range of error in the end effector position for the testing

trajectories slightly decreases as the size of training set increases. This graph also

shows that 30% of the training set is a proper portion for the experiments in the next

section. Fig. 5.20a demonstrates the norm jerk of planned trajectories for five trials

with this training size. This graph shows that the jerk is not strictly correlated with

the portion of the training set. For example, for the trial with 30% the median jerk

is higher than the other trials, and we are not able to explain this result.

Fig. 5.20c shows the mean of norm jerk across the y value of the final location of

the arm in the robot’s coordinate system along with the standard deviation. We can

see that the smoothness of trajectories landing in places with y near −0.03 is worse

than the other trajectories. This pattern interestingly persists with all the five trials.

Fig. 5.20d displays the mean of the Euclidean distance of end effector positions from

goal positions across the final position’s y value along with the standard deviation.

The only interesting pattern in the figure is that the trajectories landing on the left

side of the arc (y ∼ −0.03) have had the biggest end effector error for all the five

trials.

Fig. 5.21a shows the overshooting of the trajectories across the five trials with

training size. From this figure, it can be seen that overshooting (similar to jerk) is

not strictly correlated with the portion of training samples. Fig. 5.21b shows the same

smoothness metric across y value of the final position of testing trajectories. The only

pattern observed in this figure is the overshooting consistently is higher for both the

101

far left and far right sides of the arc, and having less or more training samples has

not changed these patterns.

From all the measured metrics in this experiment, the Euclidean distance of the

end effector and the accuracy of the autoencoders conclusively displayed the right

amount of babbling needed for this reaching task. Based what we learned from these

results, we set up a set of experiments with multiple starting points on the arc.

5.5.6 Diffusion-Based Path Planning versus Breadth First

Search

In this section, we investigated the question: would spreading activation find a

shortest path in the neural map? We compared implementation of path planning

based on the spreading activation described in Section 4.3.2 with a traditional path

planning, Breadth First Search (BFS). The neural map B can be viewed as a

directional graph; hence a shortest path from the goal neuron to the start neuron

can be found using BFS. A shortest path has the minimum number of connections

from the goal to the start. Fig. 5.22a shows a trajectory (the joints’ positions and

velocities) found by means of both spreading activation and bread first search. We

can see that path planning using spreading activation doesn’t necessarily lead to a

shortest path from the goal to start. In this example, the planned trajectory is both

stretched out through the time and longer; making it smoother than the one found

using BFS.

5.5.7 Initial Bundle Formation

In section 4.3.1 of chapter 4, we introduced a modification to the bundle formation

approach, which is to create initial connections among neurons before the bundle

formation. Here, the initial bundle formation was performed to connect nearby

neurons in the neural map; then we used the training trajectories to add more

connections to the map with φ = 1. In the initial bundle formation stage, the nearby

102

10% 20% 30% 50% 70%

Experiments

0.005

0.010

0.015

0.020

0.025

0.030

0.035
N

o
rm

 J
e
rk

 [
ra
d
/
s3

]

Norm Jerk Metric

(a)

10% 20% 30% 50% 70%

Experiments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r
[m

]

Euclidean Distance Error

(b)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

N
o
rm

 J
e
rk

 [
ra
d
/
s3

]

Norm Jerk

10%

20%

30%

50%

70%

(c)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r
[m

]

Euclidean Distance Error

10%

20%

30%

50%

70%

(d)

Figure 5.20: Evaluation of planned motions for five trials, where |φ| = 1 and
|A′| = 5 are for the five trials: (1) train = 10%, (2) train = 20%, (3) train = 30%,
(4) train = 50%, and (5) train = 70%. (a) Smoothness of planned trajectories based
on norm jerk metric across five trials. (b) Euclidean distance error of end effector
position across five trials. (c) Smoothness of planned trajectories based on norm jerk
metric across y value of final position of the arm in robot’s coordinate system. (d)
Mean Euclidean distance error of end effector position across y value of the final
position.

103

10% 20% 30% 50% 70%

Experiments

1.000

1.005

1.010

1.015

1.020

1.025

1.030

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

(a)

-0.03 0.07 0.165 0.26 0.36 0.455 0.55 0.645 0.74

Final position 's Y [m]

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

1.040

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

10%

20%

30%

50%

70%

(b)

Figure 5.21: Evaluation of planned motions for five trials, where |φ| = 1 and
|A′| = 5 are for the five trials: (1) train = 10%, (2) train = 20%, (3) train = 30%,
(4) train = 50%, and (5) train = 70%. (a) Smoothness of planned trajectories based
on overshooting index across five trials. (b) Smoothness of planned trajectories based
on overshooting index across y value of final position of the arm in robot’s coordinate
system.

104

(a)

(b)

Figure 5.22: (a) The dashed and solid lines are planned joint positions and velocities
using breadth first search and the spreading activity and (b) a planned trajectory
where the bundle formation stage was combined with Alg. 2.

105

neurons are found by measuring the Euclidean distance of the center of every pair

of RBF neurons. After the bundle formation phase, we planned test motions using

the path planning algorithm. Fig. 5.22b shows one of the planned trajectories within

such a neural map, which shows that the velocity of this trajectory was near zero

and stable for multiple time steps (from step 5 to step 10) while the joint positions

were still changing. This happens because the initial connection stage has connected

neurons that represent points of space A with the velocity of zero even thought they

embed different joint positions. These motor-sensory states with a velocity of zero

could be the start or end of motions. We observe this problem with multiple other

planned trajectories. Since it is not clear how neurons are connected in this approach,

we don’t perform any pre-bundle formation for the rest of experiments.

5.6 Multiple Fixed Start Points

In another experiment with a slightly more difficult reaching task, we use multiple

fixed start points, with the outstretched arm in eight different starting points (Fig.

5.23a). Table 5.12 shows the configuration of the left arm for those fixed eight start

points along with their location of end effector in the robot’s coordinate system

(Cartesian space). The arm configuration varies only for the second joint of the

shoulder which spans the interval of [0.0,−1.4] with a step size of −0.2. However,

the location of start is changing in uniform fashion in the joint space, but it is not

uniform in the Cartesian space. This lack of uniformity can be explained by the

elliptical shape of the arch. For each of the eight start positions, we collected 300

training trajectories that stop at random points on the same arc. The training size

is in total 2400 trajectories. For the purpose of testing this experiment, we collected

150 testing points on the arc for each of the eight start positions. The test set size is

in total 1200 points.

106

Table 5.12: Left arm’s configuration for the starts.

Start Joints’ Position End-effector Position [x, y, z]

1 [1.58,−0.0, 1.50, 0.0,−1.50, 0.0, 0.0] [0.986, 0.211, 1.336]
2 [1.58,−0.2, 1.50, 0.0,−1.50, 0.0, 0.0] [0.970, 0.321, 1.336]
3 [1.58,−0.4, 1.50, 0.0,−1.50, 0.0, 0.0] [0.932, 0.426, 1.336]
4 [1.58,−0.6, 1.50, 0.0,−1.50, 0.0, 0.0] [0.874, 0.521, 1.335]
5 [1.58,−0.8, 1.50, 0.0,−1.50, 0.0, 0.0] [0.798, 0.602, 1.334]
6 [1.58,−1.0, 1.50, 0.0,−1.50, 0.0, 0.0] [0.708, 0.667, 1.334]
7 [1.58,−1.2, 1.50, 0.0,−1.50, 0.0, 0.0] [0.607, 0.713, 1.333]
8 [1.58,−1.4, 1.50, 0.0,−1.50, 0.0, 0.0] [0.498, 0.737, 1.332]

(a)

!

(b)

Figure 5.23: Experimental settings: (a) Meka Robotics M3 mobile humanoid robot
“Rosie.” (b) The humanoid robot randomly explores an arc in front of its left arm
from 8 different start poses. The initial and final positions of babbling trajectories
are on this arc, but there is no constraint on points between the initial and final
positions.

5.6.1 Results of Varying Bundle Width

In this section we examine the effect of bundle width on both the generalization within

the neural map and the motion planning. In this experiment, we varied the bundle

width in three trials with |φ|: 1, 3, 6. The other parameters were fixed during the test

and the train for the three trials. Here, we trained an autoencoder with the reduced

space size (bottleneck size) of 6. In this part of the study, we examined the effects of

107

bundle width on the accuracy of motion planning while the rest of parameters were

fixed. The remaining parameters of the training and path planning are the same as

the experiment with the single fixed start (Section 5.5).

During the first pass through the training trajectories, an autoencoder with a

bottelneck of 6 was created, and the training trajectories were transformed to the

reduced space using the encoder part of the autoencoder. In the second pass of

training, three neural maps were constructed for each experimental bundle width. The

resolution of the neural map was set to the median distance of consecutive points of

the training trajectories in space A′. The third pass through the babbling trajectories

was to make connections among neurons in the neural map based on Alg. 1 with

different bundle widths of 1, 3,and 6.

Fig. 5.26c demonstrates the norm jerk of planned trajectories for three different

bundle widths. We can see in Fig. 5.26c that while the bundle φ is increasing from

1 to 3 or 6, the median of norm jerk increases slightly. Fig. 5.24c shows that the

range of end effector position error slightly lowers as the bundle width increases from

1 to 3. The two figures show that increasing the bundle width φ from 3 to 6 has

changed neither the end effector position error nor the smoothness. However, we

observe significant improvement in end effector position error for bundle widths of 3

or 6. This shows that the model was allowed to generalize better with wider bundles,

but the broader bundle also negatively impacts the overall estimated smoothness of

the trajectories.

Fig. 5.26b shows the mean of norm jerk across the absolute change in the final

position’s y in the robot’s coordinate system along with the standard deviation. As

we can see, the smoothness of trajectories in three trials consistently diminishes as the

y increases (longer motions). This figure also shows that the smaller bundle widths

of 1 or 3 have produced smoother movements.

Fig. 5.24b displays the mean of the Euclidean distance of end effector positions

from goal positions across the final position’s y component along with the standard

deviation. This metric also indicates that a bundle width of size 3 or 6 tends to

108

produce more accurate planned motions except for the movements that land on the

right side of the arc (y ∼ 0.07). This experiment also confirms that the shorter

trajectories are in the boundary and that generalizing by using the wider bundle

width will not help to find a better motion on the edge side.

Fig. 5.25c shows the overshooting of the trajectories across the three trials with

bundle width. We see here that the overshooting metric slightly increases as the

bundle width becomes wider. Fig. 5.25b shows the same smoothness metric across

the y component of the final position of testing trajectories. We didn’t observe

any particular pattern for the three bundle widths in the overshooting across final

position’s y component.

Fig. 5.24a, Fig. 5.25a, and Fig. 5.26a show the three metrics for planned motions

across the y of start positions. We plotted these graphs to check whether the quality

of planned motions is different under different start points. We did not observe any

difference from one start over the others, so we didn’t plot this type of graph for the

rest of experiments using multiple start points.

5.6.2 Results of Modifying Bundle Formation

In this section, we investigate two important aspects of the implementation of bundle

formation in chapter 4. Since the first investigation focused on the synapse’s strength,

we wanted to also see what would happen if all the synapses in a bundle had the same

strengths. Secondly, we focused on the number of synapses in bundles: in other words,

what would happen if the bundle had fewer synapses?

In this experiment, we addressed these questions using three trials with an

implementation of bundle formation called lnrConnections, fixConnections, and

parConnections in terms of accuracy and smoothness. In these trials, |φ| = 3,

|A′| = 6, and the path planning parameters were ηB = 0.1, τB = 103, λ = 103,

and max steps = 80. The first pass through the training trajectories, an autoencoder

with a bottelneck of 6 was created, and the training trajectories were transformed

109

0.21 0.32 0.43 0.52 0.6 0.670.710.74

Y position of start [m]

0.00

0.02

0.04

0.06

0.08

0.10

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r[
m
]

Euclidean Distance Error

φ=1,|A′ |=6

φ=3,|A′ |=6

φ=6,|A′ |=6

(a)

0.0 0.12 0.23 0.35 0.47 0.58 0.7
absolute change in Y position [m]

0.00

0.02

0.04

0.06

0.08

0.10

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r[
m
]

Euclidean Distance Error

φ=1,|A′ |=6

φ=3,|A′ |=6

φ=6,|A′ |=6

(b)

φ=1,|A′ |=6 φ=3,|A′ |=6 φ=6,|A′ |=6

Experiments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r[
m
]

Euclidean Distance Error

(c)

Figure 5.24: Evaluation of planned motions for three trials, where |A′| = 6 is set
for the trials and training is performed for 8 different start points: (1) |φ| = 1, (2)
|φ| = 3, (3) |φ| = 6. (a) Euclidean distance error of end effector position of planned
trajectories across start postion’s y in the robot’s coordinate system for 8 start poses.
(b) Euclidean distance error of end effector position of planned trajectories across
absolute change in y position in the robot’s coordinate system. (c) Euclidean distance
error of end effector position across three trials with φ.

110

0.21 0.32 0.43 0.52 0.6 0.670.710.74

Y position of start [m]

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

φ=1,|A′ |=6

φ=3,|A′ |=6

φ=6,|A′ |=6

(a)

0.0 0.12 0.23 0.35 0.47 0.58 0.7
absolute change in Y position [m]

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

φ=1,|A′ |=6

φ=3,|A′ |=6

φ=6,|A′ |=6

(b)

φ=1,|A′ |=6 φ=3,|A′ |=6 φ=6,|A′ |=6

Experiments

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

1.040

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

(c)

Figure 5.25: Evaluation of planned motions for four trials, where |A′| = 6 is set
for the trials and training is performed for various fixed start points: (1) |φ| = 1, (2)
|φ| = 3, (3) |φ| = 6. (a) Smoothness of planned trajectories based on overshooting
index across start position’s y in the robot’s coordinate system for 8 start poses.
(b) Smoothness of planned trajectories based on overshooting index across absolute
change in y position in the robot’s coordinate system. (c) Smoothness of planned
trajectories based on overshooting index across three trials with φ.

111

0.21 0.32 0.43 0.52 0.6 0.670.710.74

Y position of start [m]

0.000

0.005

0.010

0.015

0.020

0.025

0.030
N

o
rm

 J
e
rk

Norm Jerk

φ=1,|A′ |=6

φ=3,|A′ |=6

φ=6,|A′ |=6

(a)

0.0 0.12 0.23 0.35 0.47 0.58 0.7
absolute change in Y position [m]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

N
o
rm

 J
e
rk

[r
a
d
/s

3
]

Norm Jerk

φ=1,|A′ |=6

φ=3,|A′ |=6

φ=6,|A′ |=6

(b)

φ=1,|A′ |=6 φ=3,|A′ |=6 φ=6,|A′ |=6

Experiments

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

N
o
rm

 J
e
rk

Norm Jerk Metric

(c)

Figure 5.26: Evaluation of planned motions for four trials, where |A′| = 6 is set
for the trials and training is performed for various fixed start points: (1) |φ| = 1,
(2) |φ| = 3, (3) |φ| = 6. (a) Smoothness of planned trajectories based on norm jerk
metric across start position’s y in the robot’s coordinate system. (b) Smoothness of
planned trajectories based on norm jerk metric across absolute change in y position
in the robot’s coordinate system. (c) Smoothness of planned trajectories based on
norm jerk metric across three trials with φ.

112

to the reduced space using the encoder part of the autoencoder. In the second pass

of training, a neural map was constructed that will be used in the three trials. The

resolution of the neural map was set to the median distance of the consecutive points of

the training trajectories in space A′. The third pass through the babbling trajectories

was to make connections among neurons in the neural map using the lnrConnections,

fixConnections, and parConnections approaches in three separate trials.

In the trial lnrConnections, bundles of width of 3 are formed with the connections

in the center of bundles weighted more than the connections on the side of the

bundle. The change from the center to the side is a linear drop in this trial.

In the next trial, fixConnections, bundles of the width of 3 are formed, but the

connections are uniform and have the weight of 1.0 throughout the bundles. In the

trial parConnections, bundles with a width of 3 are formed but in a slightly different

way. During bundle formation in the two previous trials, we set up connections among

all the neurons that are activated at time i with all the neurons which are fired at

time i+1 (section 4.3.1). The connections from stage i to stage i+1 create a bipartite

directional graph. In this trial, we instead ranked the firing neurons at time i and

time i+ 1 based on their rates of firing. The connections from step i to step i+ 1 are

only created among the neurons with the same rank. This approach creates parallel

rivers within a bundle.

To analyse to results, we considered trial lnrConnections as the base case and

compared the results of other two trials against it. The accuracy of the planned

motions in terms of Euclidean distance metric for the three trials were the same, so

we only compare them based on the other two metrics.

Fig. 5.27a and Fig. 5.27b show that smoothness of these three trials regarding

estimated norm jerk and the overshooting index. The trial fixConnections has

the worst motion smoothness compared to the other trials. This result could mean

that it is more biologically plausible to have non-uniform bundles where neurons

have different synapse strength throughout the bundles. Fig. 5.27a and Fig. 5.27b

show that trial parConnections has produced less smooth motions compared to the

113

base case. The average of norm jerk is 0.015 for the base case and 0.02 for trial

parConnections. The closeness of the mean of norm jerk suggests that the bundle

formation in the test parConnections has been unfavorable for some of the testing

motions and not all of them. This result could also mean that it is more biologically

plausible to have denser bundles regarding neurons’ connectivity. The presence of

more connections within in a bundle gives the path planning and spreading activation

a better chance to find an optimal path.

Fig. 5.27c and Fig. 5.27d demonstrate the smoothness of planned motions across

absolute difference in the y component of the end-effector in the robot’s coordinate

system. The x axis of these plots captures the estimated length of the planned

trajectories, or in another words, the traveling distance of planned motions from

the start point to the end point. In Fig. 5.27c, we observe a familiar pattern with

the norm jerk: as the traverse length increases, the norm jerk decreases for the

three trials. We didn’t observe any other specific trends in this graph. Fig. 5.27d

demonstrates the overshooting metric for the three trials across absolute difference

in the y component of the end-effector position in the robot’s coordinate system. An

interesting observation from this plot is that the trial fixConnections has performed

worse for the shorter trajectories compared to the base case.

5.6.3 Results of Varying the Resolution of the Neural Map

In this section we investigate the effect of neural map’s resolution on the quality of

testing motions. Specifically, we are interested in how the neural map’s structure

affects generalization.

In this experiment, we varied the resolution of the neural map in three trials while

the rest of the parameters were fixed. The bundle width was 3 (|φ| = 3) and the

size of reduced space was 6 (|A′| = 6). In the first trial or base case (medRes), the

resolution of the neural map was set to the median of difference between features of

the consecutive points in the trajectories. For the second (2×medRes) and third trial

114

lnrConnections fixConnections parConnections

Experiments

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
o
rm

 J
e
rk

 [
ra
d
/s

3
]

Norm Jerk Metric

(a)

lnrConnections fixConnections parConnections

Experiments

1.00

1.01

1.02

1.03

1.04

1.05

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

(b)

0.06 0.175 0.29 0.41 0.525 0.64 0.76

absolute change in Y position [m]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
o
rm

 J
e
rk

 [
ra
d
/s

3
]

Norm Jerk

lnrConnections

fixConnections

parConnections

(c)

0.06 0.175 0.29 0.41 0.525 0.64 0.76

absolute change in Y position [m]

0.98

1.00

1.02

1.04

1.06

1.08

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

lnrConnections

fixConnections

parConnections

(d)

Figure 5.27: Evaluation of planned motions for three trials, where |φ| = 3 and
|A′| = 6 are for the three trials called: lnrConnections, fixConnections, and
parConnections. (a) Smoothness of planned trajectories based on the norm jerk
metric across four trials. (b) Smoothness of planned trajectories based on the
overshooting index across four trials. (c) Smoothness of planned trajectories based
on the norm jerk metric across absolute difference in y position of end-effector in
the robot’s coordinate system. (d) Smoothness of planned trajectories based on
the overshooting index across absolute difference in the y component of end effector
position in the robot’s coordinate system.

115

(3×medRes), the resolution was set respectively to 2 and 3 times the resolution of

the base case, in order to make the resolution more coarse than the base.

In the first pass through the training trajectories, an autoencoder with a

bottelneck of 6 was created, and the training trajectories were transformed to the

reduced space using the encoder part of the autoencoder. In the second pass of

training, three different neural maps with different resolutions were constructed which

would be used in the three trials. The third pass through the babbling trajectories

was to make connections among neurons in the neural maps based on Alg. 1 with a

bundle width of 3.

Fig. 5.28a demonstrates the norm jerk of the planned trajectories for these three

trials with the neural map resolutions. The average smoothness of trajectories has

increased as the resolution of maps becomes more coarse. This finding follows our

expectation that the coarser resolution would produce less accurate motions. Fig.

5.28c shows the mean of the norm jerk across the absolute change in y of end-effector

position in the robot’s coordinate system along with the standard deviation. This

figure also confirms that both smoothness diminishes as the the resolution becomes

more coarse and that the smoothness is decreasing as y increases. This figure implies

that shorter trajectories have the worst smoothness in this experiment.

Fig. 5.28b shows the overshooting of the trajectories across the three trials with

the resolution of the neural map. The average of the overshooting metric has not

changed for the three trials. Fig. 5.28d shows the same smoothness metric across

the absolute change in y value of the final position of the testing trajectories. The

average of the overshooting doesn’t change as y increases so this metric is the same

for the planned trajectories with different lengths. The overshooting is the highest

for the trial with 3×medRes.

Fig. 5.29a shows the error in the end effector for the three different trials. In this

figure we don’t see any major difference in the Euclidean error when the resolution of

the map has changed. Fig. 5.29b displays the mean of the Euclidean distance of end

effector positions from the goal positions across the absolute change in the y in the

116

robot’s coordinate system along with the standard deviation. We see the Euclidean

distance has been worse in all three trials when y < 0.7, or when the length of travel

for the motions is longer.

Based on the jerk and overshooting metrics, it is fair to say that in a map with

coarse resolution, neurons are more general and cannot represent the fine details of

reaching. In the neural maps with resolutions of 2×medRes or 3×medRes, neurons

respond to a larger area of the motor-sensory space. Thus, the planned motions

can become less smooth. On the other hand, in a map with resolution of medRes,

neurons represent more details of motor-sensory space, so the test-planned motions

are smoother.

5.7 Discussion

In this chapter, we analyzed some important aspects of our model including but

not limited to motor-sensory space representation, dimension reduction, bundle

formation, amount of babbling needed, and the neural map’s resolution.

In this dissertation, we first chose GHA as our dimensionality reduction technique

because it is neurally plausible and provides results that match PCA’s results. The

main limitations of this method are that it is globally linear and computationally

slow. The sub-spaces that are found by PCA or GHA are therefore linear, and they

could be of higher dimension than necessary if the true underlying structure of the

data is not linear. Therefore, we then switched to autoencoders, which are one of the

non-linear dimensional reduction techniques. Autoencoders have shown to capture

the properties of the data in a more constructive way than PCAs while the dimension

of the found space is smaller than PCA. It could be interesting to test the performance

of other variations of autoencoders in terms of accuracy of planned motions.

One important piece of our model is to design the neural representation of motor-

sensory space that effectively represents this space. In the first try, we used the

Self-organizing Map to automatically create such a map. The main limitation of

117

medRes 2*medRes 3*medRes
Experiments

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
o
rm

 J
e
rk

 [
ra
d
/
s3

]

Norm Jerk Metric

(a)

medRes 2*medRes 3*medRes
Experiments

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

1.040

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

(b)

0.06 0.175 0.29 0.41 0.525 0.64 0.76

absolute change in Y position [m]

0.00

0.01

0.02

0.03

0.04

0.05

N
o
rm

 J
e
rk

 [
ra
d
/s

3
]

Norm Jerk

medRes

2*medRes

3*medRes

(c)

0.06 0.175 0.29 0.41 0.525 0.64 0.76

absolute change in Y position [m]

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

O
v
e
rs

h
o
o
ti

n
g
 I
n
d
e
x

Overshooting Index

medRes

2*medRes

3*medRes

(d)

Figure 5.28: Evaluation of planned motions for three trials, where |φ| = 3 and
|A′| = 6: (1) the neural map’s resolution was the median of difference between
features, (2) 2× median of features, and (3) 3× median of difference between features
in terms of (a) Smoothness of planned trajectories based on norm jerk metric across
three trials. (b) Smoothness of planned trajectories based on overshooting index
across three trials. (c) Smoothness of planned trajectories based on norm jerk metric
across absolute difference in y position of end-effector in the robot’s coordinate system.
(d) Smoothness of planned trajectories based on overshooting index across absolute
difference in y position of the end-effector in the robot’s coordinate system.

118

medRes 2*medRes 3*medRes
Experiments

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r

[m
]

Euclidean Distance Error

(a)

0.06 0.175 0.29 0.41 0.525 0.64 0.76

absolute change in Y position [m]

0.00

0.02

0.04

0.06

0.08

0.10

E
u
c
li
d
e
a
n
 D

is
ta

n
c
e
 E

rr
o
r

[m
]

Euclidean Distance Error

medRes

2*medRes

3*medRes

(b)

Figure 5.29: Evaluation of planned motions for four trials, where |φ| = 3 and
|A′| = 6 are for the three trials: (1) the neural map’s resolution was median of
features (2) the neural map’s resolution was 2× median of featrues. (3) the neural
map’s resolution was 3× median of features in terms of (a) Euclidean distance error of
end effector position of planned trajectories across three trials. (b) Euclidean distance
error of end effector position of planned trajectories across the absolute change in y
position in the robot’s coordinate system.

119

this technique is that while some neurons respond to points in the motor-sensory

space some other neurons don’t fire for any motor-sensory points and essentially were

ineffective. So we decided not to use the self-organizing map technique in our model,

although there is strong evidence of self organization in the brain, mostly due to the

existence of various somatosensory, tonotopic, and retinotopic maps.

One important facet of our model is choosing the right design for the neural map

and its resolution. We believe there is a trade-off between the resolution of the neural

map and the required time for motor exploration. Imposing a fine resolution for a

neural map requires more neurons to fill up the motor-sensory space while a coarse

resolution demands fewer neurons. In a map with coarse resolution, neurons are

more general and cannot represent the fine details of the reaching because multiple

motor-sensory points are mapped to one neuron. On the other hand, these neurons

tend to respond to a larger area of the motor-sensory space, and thus the planned

motions can become less accurate. Conversely, a map with a fine enough resolution

to represent more details of motor-sensory space demands more exploration effort,

but it produces more accurate movements at the same time.

Another challenging aspect of our model is to create neurons such that they are

uniformly responsible for representing the reduced space, because the presence of any

ineffective neurons would make the computation more expensive in our model by

making it harder to search for a firing neuron. One possible solution to the problem

with having useless neurons is to prune the neural map; this parallels with the process

of apoptosis in infants, which is known to be responsible for the death of overproduced

neurons. The pruning process of the neural map could therefore mimic the apoptosis

process.

Another important factor in our model is the trade-off between the amount of

babbling needed and generalization that should be placed into the neural map. It is

clear that more motor babbling allows an agent to explore the motor-sensory space

thoroughly, but what is the right amount of babbling, and how much of this space do

infants search through motor exploration? We believe that it is not possible for an

120

agent to explore the entire motor-sensory space, which can be vast in real life. Hence,

the bundle width in our model is an attempt to generalize movements without the

need to explore the entire motor-sensory space. The notion of fuzziness or bundle

formation gives an agent a chance to generalize and avoid longer motor exploration.

We are not entirely sure how infants generalize from one motion to other feasible

motions at an unconscious level where the other motions are as acute and accurate as

the one seen. In our model, the concept of wider bundles tries to compensate for the

motor babbling by impacting more areas of the neural map and potentially creating

similar possible trajectories during learning. In our model, the bundle formation

could be improved to address the generalization problem in a more fruitful way to

reduce the amount of learning required without losing the correctness of the learned

motions.

We claim that our model is inspired by infant development, but not all the details

of our model are the results of that development, as multiple passes through the motor

babbling data to create neurons is not neurally possible. In our defense, we are trying

to mimic the effects of evolution at the same time as the results of development. An

infant is born with a brain which has not solely emerged from development, and the

structures of the brain have more or less evolved to be the one infants are born with. In

our model, the bundle formation or adding of connections into the neural maps using

the motor babbling is the stage we claim to be the result of such development. Also,

the model presented here is focused on a single developmental stage, while it could

potentially be expanded to more stages, for example, by imposing more structures on

the motor-babbling stage.

In our proposed bundle formation, connections in the center of bundles weighed

more than the synapses on the side, or in other words, the synapses’ weight decrease

linearly from the center to the edges. In the experiments section, we offered some

modifications to the bundle formation which target either the connections’ weight

or the number of the links in the bundles. The first change was to set up uniform

connections with constant weight throughout the bundles. The second change was

121

to create a less dense bundle, so we ranked the firing neurons at each time (based on

the firing rate) and then created connections between the neurons using those ranks.

We observed that these changes have made the smoothness of planned motions even

worse. This suggests that the presence of more links within a bundle or non-uniform

connection gives the diffusion in our model a better chance of finding an optimal path.

The spreading activation responsible for motion planning in the brain requires a

careful choice of both the activation and decay rate because a wrong combination

of these two rates could negatively affect the success of this process. A significant

activation rate would cause the neural map to saturate, resulting in an absence of

gradient in the neural map. Without any gradient from a goal to a start, the path

planning process will be lost. On the other hand, a significant dissipation rate causes

the activation from the goal to die even before it reaches the start. It is worthwhile

to look at any diffusion algorithms that don’t require this adjustment, for example, a

diffusion type technique where the source is not responsible for producing the gradient.

Another problem with this type of path planning is that the best parameters for long

trajectories might not even work for the short ones. So, the parameter choice demands

careful investigation with a variety of lengths in the motion planning.

In this dissertation, in our implementation of path planning and execution, one

neuron represents the start and the goal rather than a group of neurons. We don’t

claim that individual neurons represent the motor-sensory points. In reality, a

population of neurons should fire to create a motor-sensory state. For the sake of

simplicity, however, we assumed that one neuron is responsible for each motor-sensory

state of planned motions. We anticipate expanding this implementation to multiple

neurons for the future work.

In the real world, real-time autonomous robots expect to learn from novel

circumstances; this makes it important to design an online learning mechanism. For

our model to learn in an online fashion, we must make the representation of the

motor-sensory space independent of the motor babbling stage. This way, we can use

the online motor babbling to update the synapses in the neural maps.

122

Interestingly, we found that the autoencoder doesn’t reproduce the end state of

babbling trajectories well, meaning that in the motor-sensory space, states with a

velocity of zero are not as well represented as the others. This issue made it difficult

for an autoencoder to represent these states correctly from the original space in the

bottleneck. It would be interesting to see how long an infant is holding its arm in a

non-moving position where the velocity is zero when it reaches for an object.

To summarize, experiments in this chapter have provided a platform to investigate

some critical aspects of our neurally plausible reaching model which is inspired by

infant development. The model was based on motor-babbling.

123

Chapter 6

Conclusion

In this dissertation, we presented an embodied, developmental, and neurally-plausible

reaching model inspired by motor-sensory interaction of an infant and its environment.

At the core of this model, three neural maps represent the same motor-sensory space

and play different roles in the arm motion planning. The motion planning occurs

through the collaboration of these three neural maps representing the trajectory

bundles by means of spreading activation from a goal state.

Before we could test this model in a standard condition of reaching, implementa-

tion of separate pieces of this model was examined. We need to emphasize that our

conceptual model can be implemented in different ways and that the suitable approach

can only be decided through trials. We conducted some experiments to find the right

implementation of motor babbling, the neural representation of motor-sensory space,

dimension reduction, path planning, and path execution.

We compared multiple motor-babbling strategies to identify an approach that

satisfies both the limitations we face in using the robot and the requirements of

our model. The adopted motor babbling approach had to be safe for the robot in

our experiments. The robot we used for our experiments was not reliable and that

made the process of motor exploration and testing very tedious. It would be more

appropriate to develop a simulation of a robotic arm, hand, and a camera with a

124

physical engine software simulator– for example, Open Dynamic Engine (ODE)– to

replace the actual hardware. However, it is not straightforward to simulate torque

and force sensors for a simulated arm. One solution to this limitation is to mimic

proprioceptive sensors similar to the approaches used in Lee et al. (2007a).

Through these experiments, we also evaluated multiple approaches for dimension

reduction in our model and finally adopted the autoencoder, a nonlinear technique

that satisfies our design requirements. We also learned from the experiments that not

any sensors would help our model, or in other words, only the sensors that reasonably

correlated with reaching motion parameters are helpful. Including non-correlated

sensors creates an unnecessarily large motor-sensory space and even an autoencoder

technique can not discover the essential features of the arm dynamics. We then

compared various ways for the neural map representation to be built. From multiple

different approaches, we adopted one that leads to a high-resolution map and tends

to produce smooth motion trajectory with activating different neurons for different

motor-sensory points.

To show that this model is computationally feasible, we tested it in two simple

reaching tasks using a humanoid robot. The model used motor babbling to acquire

successfully smooth and precise reaching behavior. We then investigated various

aspects of this model through multiple experiments by isolating features. In each

experiment, one feature or parameter of the model was varied while the rest of

characteristics were fixed. We compared the learned reaching motions under different

dimensionalities of the reduced motor-sensory space. As we expected, a smaller

dimension leads to less smooth and accurate movements; nevertheless the relationship

between the dimension of reduced space and the accuracy of the motions is not linear.

We also observed that the model has not managed to learn the poses in the right side

of the arc due to insufficient babbling in that direction. To calculate the norm jerk,

we must measure actual time of each sub-movement of a planned motion during the

execution on our robot. However, it was difficult to measure the actual time because,

125

occasionally, one or two joints in the arm would not move to the right positions during

the test without any specific reason.

In two different experiments, we studied the effect of bundle width on quality of

arm motions since a larger bundle width is more biologically plausible and may allow

the model to generalize better. The results confirmed that the larger bundles lead

to a smaller error of end-effector position for unseen targets but at the same time

the smoothness of planned motions was sacrificed. This double-edged effect of wide

bundle suggests that there should be more investigations on the implementation of

bundle formation in our model.

To check the amount of motor babbling that is necessary for the model to master

this simple reaching task, we conducted an experiment with the an autoencoder with

a fixed bottleneck size, trained with different training sizes. This test confirmed that

the autoencoder performs better as the training size increases but, at some point, the

accuracy doesn’t change much when adding more babbling trajectories. Moreover,

this test allowed us to start with a reasonable babbling size for a more complicated

version of this experiment, reaching with multiple start points.

In an experiment with the resolution of neural maps in our model, we compared

motion planning with the neural maps of different resolutions. This experiment

showed that a neural map with a coarse resolution tends to produce less smooth

motions compared to a neural map with a fine resolution.

We hope these findings do shed light on the design of future robotic systems where

autonomous systems must cope with unknown environments with the same level of

competence as the known situations. We expect the results of this dissertation to

serve as foundation for designing such a robotic system.

126

6.1 Future Research

In this section, we make some recommendations for the future research:

• Experiments incorporating sensors feedback: in the current experiments with

reaching, we didn’t use feedback from the sensors to adjust the underlying

neural maps when a planned motion was not correct or the final position of

the arm was not close to the desired destination. These reaching errors should

be incorporated to update the synapses of the neural maps. This adjustment

would be necessary in the situations in which the arm could unexpectedly be

pushed away during a movement or its property (e.g. shape or size) could be

changed after a while.

• In the current experiments, the reaching occurs in the normal situation without

the presence of any unexpected perturbation. It would be interesting to test

our model with reaching in the Cartesian space with clamped joints to simulate

a perturbation.

• Another unexpected perturbation that can be introduced to the system is to

modify the dynamics of the arm. For example, in one experiment, the system

should be trained under the normal condition and then an object can be

strapped around the robot’s arm to modify its dynamics. This new modified

system should learn to reach for the same target points after an adjusting period.

• Experiment with reaching in the Cartesian space using tools: another modifica-

tion to the arm’s property is to attach a tool to the robot’s hand (e.g. extend the

arm). A tool that is attached to the arm subsequently changes the propriceptive

sensors or the location of the end effector.

• In the current experiments with our model, the cameras were not used but

it would be interesting to incorporate vision (e.g. cameras) in our system to

find the end effector’s location in the Cartesian space. This location can be

127

translated to the image of completion or the motor-sensory representation that

starts path planning and execution in our model. The creation of the image of

completion was outside the scope of this dissertation, and the process of learning

this image was not included in this model.

• Experiments with motor babbling strategies, especially it would be interesting

to find a way to safely send motor commands to joints in terms of torque instead

of position.

• Experiments with non-reachable points in the space or presence of an obstacle:

during path planning and execution in our proposed model, neurons represent-

ing the goal spread activities within the neural map and those activities produce

a gradient. Similarly, neurons that represent the location of an obstacle could

exert inhibitory activities or repulsive forces; therefore at each step, the path

planning algorithm should determine the direction of motions by including those

repulsive forces from the obstacle.

• Online learning instead of offline learning: in the current model, the neural maps

are created using the training trajectories resulting from the motor exploration

stage. For our model to be able to learn in an online style, the representation

of the motor-sensory space or neural map creation must be independent of the

motor babbling phase. Given a neural map before this phase, we can use the

motor babbling trajectories in an online fashion to update the synapses of the

neural maps.

• Modifying implementation of path planning and path execution: for the sake of

simplicity in the current implementation of our model, we assumed one neuron

is responsible for each motor-sensory state throughout the planned motions.

However, it is more neurally plausible for a population of neurons to fire and

represent a motor-sensory state rather than a single neuron.

128

• It is worthwhile to perform random or structured motor babbling with a

simulated arm instead of using an actual robot. The random joint exploration

involves simultaneously changing all the desired joints. In contrast, a structured

motor babbling focuses on exploration of one joint at a time. It has

been observed that an assembly phase, in which motor-sensory processes are

generated and combined, precedes a tuning phase in which they are refined to

accomplish a task (Lungarella and Berthouze, 2004; Goldfield, 1995). Also, it

has been observed that degrees of freedom may be frozen or freed in successive

stages to accelerate learning (Lungarella and Berthouze, 2004). For example,

fixing joint angles or phase relations among movements may allow learning

gross motor skills, which can then be refined or elaborated upon by freeing

these constraints.

• Including proprioceptive sensors: information about the location of the arm

could be utilized to mimic proprioceptive sensors. The calculated proprioceptive

feedback from the raw sensors of the robot would be an interesting start.

The underlying biological processes of proprioceptive feedback are not entirely

known and the simulation is just an attempt to incorporate these sensors in

developmental robotics. For example, Lee et al. (2007a) calculated these sensors

in multiple different ways.

129

Bibliography

130

Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino,

M., and Yoshida, C. (2009). Cognitive developmental robotics: A survey. IEEE

Transaction on Autonomous Mental Development, 1(1). 14

Asuni, G., Teti, G., and et al. (2005). A bio-inspired sensory-motor neural model

for neuro-robotic manipulation platform. In Asuni2005, editor, International

Conference on Advanced Robotics,ICAR’ 05. Proceedings., 12th. 18

Bernstein, N. (1967). The Co-ordination and Regulation of Movements. London:

Pergamon Press. 15

Berthouze, L. and Lungarella, M. (2004). Motor skill acquisition under environmental

perturbations: on the necessity of alternate freezing and freeing of degrees of

freedom. ADAPTIVE BEHAVIOR, 12:47–64. 17

Bouganis, A. and Shanahan, M. (2010). Training a spiking neural network to control

a 4-dof robotic arm based on spike timing-dependent plasticity. In WCCI 2010

IEEE World Congress on Computational Intelligence. xiii, 25, 26

Brooks, R. A. (1997). Intelligence without representation. In Haugeland, J., editor,

Mind Design II: Philosophy, Psychology, Artificial Intelligence, Rev. and Enl. Ed.

Cambridge: MIT Press. 3

Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., and Baldassarre,

G. (2008). Using motor babbling and hebb rules for modeling the development

of reaching with obstacles and grasping. In International Conference on Cognitive

Systems. xiii, 22, 23

131

Caligiore, D., Parisi, D., and Baldassarre, G. (2014). Integrating reinforcement

learning, equilibrium points and minimum variance to understand the development

of reaching: A computational model. Psychological Review, 121(3):389–421. 30

Demiris, Y. and Dearden, A. (2005). From motor babbling to hierarchical learning

by imitation: a robot developmental pathway. 19

DeWolf, T. and Eliasmith, C. (2011). The neural optimal control hierarchy for motor

control. J. Neural Eng, 8. xiii, 28, 29

Earland, K., Lee, M., Shaw, P., and Law, J. (2014). Overlapping structures in sensory-

motor mappings. PLoS ONE. 30

Gabbard, C. P. (2004). Lifelong Motor Development. Pearson. xiii, 6, 7, 8, 10, 11, 12

Gallahue, D. L. (1982). Understanding Motor Development In Children. John Wiley

and Sons. xii, 8, 9, 10

Georgopoulos, A. P. (1996). On the translation of directional motor cortical

commands to activation of muscles via spinal interneuronal systems. Cogn. Brain

Res., 3:151–155. 4

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston:

Houghton Mifflin. 2

Goldfield, E. C. (1995). Emergent Forms: Origins and Early Development of Human

Action and Perception. Oxford University Press: New York. 129

Gomez, G. and Hotz, P. E. (2004). Investigation on the robustness of an evolved

learning mechanism for a robot arm. In Proc. of the 8th Int. Conf. on Intelligent

Autonomous Systems, pages 818–827. 17

Gomez, G., Lungarella, M., Hotz, P. E., Matsushita, K., and Pfeifer, R. (2004).

Simulating development in a real robot: on the concurrent increase of sensory,

132

motor, and neural complexity. In in Robotic Systems, M. C. D., editor, Fourth

International Workshop on Epigenetic Robotics. 17

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. SCIENCE, VOL 313. 48

Husle, M., McBird, S., and J. Law, M. L. (2010). Integration of active vision and

reaching from a developmental robotics perspective. IEEE TRANSACTIONS ON

AUTONOMOUS MENTAL DEVELOPMENT, 2:355–367. 25

Husle, M., McBird, S., and Lee, M. (2011). Developmental robotics architecture for

active vision and reaching. In IEEE International Conference on Development and

Learning (ICDL). 27, 30

Iida, F., Pfeifer, R., Steels, L., and Kuniyoshi, Y. (2004). Embodied Artificial

Intelligence. Berlin: Springer–Verlag. 2

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2003). Learning attractor landscapes

for learning motor primitives. In in Advances in Neural Information Processing

Systems, pages 1523–1530. MIT Press. 28

Josh Bongard, Victor Zykov, H. L. (2006). Resilient machines through continuous

self-modeling. SCIENCE, 314. 19

Kohonen, T. (2001). Self-Organizing Maps. Springer Series in Informations Science,

third edition. 50

Kraft, D., Derty, R., and et al. (2010). Development of object and grasping knowledge

by robot exploration. IEEE TRANSACTIONS ON AUTONOMOUS MENTAL

DEVELOPMENT, 2:368–383. 27

Kuniyoshi, Y., Yorozu, Y., Ohmura, Y., Terada, K., Otani, T., Nagakubo, A., and

Yamamoto, T. (2004). From humanoid embodiment to theory of mind. In Iida, F.,

133

Pfeifer, R., Steels, L., and Kuniyoshi, Y., editors, Embodied Artificial Intelligence,

pages 202–218. Berlin: Springer–Verlag. 2, 3

Kuniyoushi, Y., Yorozu, Y., Ohmura, Y., and et. al. (2004). From humanoid

embodiment to theory of mind. In Iida, F., R. Pfeifer, L. S., and Kuniyoshi, Y.,

editors, Embodied Artificial Intelligence, pages 202–218. Berlin: Springer–Verlag.

18

Laschi, C., Asuni, G., Guglielmelli, E., Teti, G., Johansson, R., Konosu, H., Wasik,

Z., Carrozza, M. C., and Dario, P. (2008). A bio-inspired predictive sensory-motor

coordination scheme for robot reaching and preshaping. Auton Robot, 25:85–101.

23

Law, J., Lee, M., Hülse, M., and Tomassetti, A. (2011a). The infant development

timeline and its application to robot shaping. ADAPTIVE BEHAVIOR, 19:335–

358. xiii, 1, 21, 22, 30

Law, J., Lee, M., Husle, M., and Shaw, P. (2011b). Infants and icubs: applying

developmental psychology to robot shaping. In IEEE, editor, The European Future

Technologies Conference and Exhibition. 30

Law, J., Shaw, P., Earland, K., Sheldon, M., and Lee, M. (2014a). A psychology based

approach for longitudinal development in cognitive robotics. Front. Neurorobot. 30

Law, J., Shaw, P., Lee, M., and Sheldon, M. (2014b). From saccades to

grasping: A model of coordinated reaching through simulated development on

a humanoid robot. IEEE TRANSACTIONS ON AUTONOMOUS MENTAL

DEVELOPMENT, 6(2). 29, 30

Lee, M. and Meng, Q. (2005). Psychologically inspired sensory-motor development

in early robot learning. Int. Advanced Robotic Systems. 20

Lee, M. H. (2011). Intrinsic activitity: from motor babbling to play. In IEEE

International Conference on Development and Learning (ICDL), volume 2. 28

134

Lee, M. H., Meng, Q., and Chao, F. (2007a). Staged competence learning in

developmental robotics. Adaptive Behavior, 15:241–255. 20, 21, 125, 129

Lee, M. H., Mengb, Q., and Chaoa, F. (2007b). Developmental learning for

autonomous robots. Robotics and Autonomous Systems, 55(9):750–759. 20

Lungarella, M. and Berthouze, L. (2002a). On the interplay between morphological,

neural and environmental dynamics: A robotic case–study. Adaptive Behavior,

10(3/4):223–241. 3

Lungarella, M. and Berthouze, L. (2002b). On the interplay between morphological,

neural and environmental dynamics: a robotic case-study. ADAPTIVE

BEHAVIOR. 15

Lungarella, M. and Berthouze, L. (2004). Robot bouncing: On the synergy between

neural and body–environment dynamics. In Iida, F., Pfeifer, R., Steels, L.,

and Kuniyoshi, Y., editors, Embodied Artificial Intelligence, pages 86–97. Berlin:

Springer–Verlag. 3, 129

Lungarella, M. and Gomez, G. (2009). Encyclopedia of Artificial Intelligence, chapter

Developmental Robotics. Information SCI. 3

Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G. (2003). Developmental

robotics: a survey. CONNECTION SCIENCE, 15:151–190. xii, 3, 14, 16

MacLennan, B. J. (1997). Field computation in motor control. In P. G. Morasso and

V. Sanguineti, editors, Self–Organization, Computational Maps and Motor Control,

pages 37–73. Elsevier. 4

MacLennan, B. J. (2009). Field computation in natural and artificial intelligence. In

Robert A. Meyers et al., editor, Encyclopedia of Complexity and System Science,

pages 3334–3360. Springer. 4

135

MacLennan, B. J. (2011). Bodies — both informed and transformed: Embodied

computation and information processing. In Dodig-Crnkovic, G. and Burgin, M.,

editors, World Scientific Series in Information Studies, volume 2, pages 225–253.

Singapore: World Scientific Publishing. 3

Mahoor, Z., MacLennan, B., and McBride, A. (2016). Neurally plausible motor

babbling in robot reaching. In The Sixth Joint IEEE International Conference on

Developmental Learning and Epigenetic Robotics. 86

Meltzoff, A. N. and Moore, M. K. (1997). Explaining facial imitation: Explaining

facial imitation: A theoretical model. Early Development and Parenting, 16:179–

192. 2

Nagai, Y., Hosoda, K., Morita, S., and Asada, M. (2003). A constructive model for

the development of joint attention. CONNECTION SCIENCE, 15(4):211–229. 15

Neville, D. B. . H. J. (2002). Cross-modal plasticity: where and how? Nature Reviews

Neuroscience, 3:443–452. 4

Oja, E. (1982). A simplified neural model as a principal component analyzer. J.

Math. Biology, 15:267–273. 46

O’Reilly, R. C., Munakata, Y., Frank, M. J., and Hazy, T. E. (2012). Computational

Cognitive Neuroscience. Wiki Book, 1 edition. 48

Oztop, E. and Arbib, M. (2001). A biologically inspired learning to grasp system.

In in Medicine, E. and Society, B., editors, Proceedings of othe 23th Annual

International Conference of the IEEE. 17

Oztop, E., Bradley, N. S., and Arbib, M. (2004). Infant grasp learning: a

computational model. Exp Brain Res, 158:480–503. 17

Pfeifer, R. and Iida, F. (2004). Embodied artificial intelligence: Trends and challenges.

F. Iida et al. (Eds.): Embodied Artificial Intelligence, pages 1–26. 2

136

Pfeifer, R., Lungarella, M., and Iida, F. (2007). Self-organization, embodiment, and

biologically inspired robotics. Robotics, 318. 2

Piek, J. P. (2006). Infant Motor Development. Human Kinetics. 2, 13

Rolf, M., Steil, J. J., and Gienger, M. (2010a). Goal babbling permits direct leaning

of inverse kinematics. In IEEE TRANSACTIONS ON AUTONOMOUS MENTAL

DEVELOPMENT. 28

Rolf, M., Steil, J. J., and Gienger, M. (2010b). Mastering growth while bootstrapping

sensorimotor coordination. In Int. Conf. on Epigenetic Robotics. 28

Rolf, M., Steil, J. J., and Gienger, M. (2011). Online goal babbling for rapid

bootstrapping of inverse models in high dimensions. In IEEE Int. Conf.

Development and Learning and on Epigenetic Robotics. 28

Saegusa, R., Metta, G., and Sandini, G. (2009a). Active learning for multiple

sensorimotor coordination based on state confidence. In IEEE/RSJ international

conference on Intelligent robots and systems. 24

Saegusa, R., Metta, G., and Sandini, G. (2010). Own body perception based on

visuomotor correlation. In IEEE, editor, IEEE/RSJ International Conference on

Intelligent Robots and Systems. 24

Saegusa, R., Metta, G., and Sandini, G. (2012). Body definition based on visuomotor

correlation. IEEE Transaction on Industrial Electronics, 59(8):3199–3210. 25

Saegusa, R., Metta, G., Sandini, G., and Sakka, S. (2009b). Active learning for

sensorimotor coordinations of autonomous robots. In IEEE, editor, 2nd Conference

on Human System Interactions. HSI ’09. 24

Saegusa, R., Sakka, S., Metta, G., and Sandini, G. (2008a). Autonomous learning

evaluation toward active motor babbling. In IEEE, editor, 2008 IEEE/RSJ

137

International Conference on Intelligent Robots and Systems (IROS2008) Workshop:

From motor to interaction learning in robots. 23, 24

Saegusa, R., Sakka, S., Metta, G., and Sandini, G. (2008b). Sensory prediction

learning – how to model the self and the environment –. In 12th IMEKO TC1 and

TC7 Joint Symposium on Man Science and Measurement. 24

Sauser, E. L. and Billard, A. G. (2006). Dynamic updating of distributed neural

repre- sentations using forward models. Biol. Cybern., 95:567–588. 27

Schaal, S., Mohajerian, P., and Ijspeert, A. (2007). Dynamics systems vs. optimal

control-a unifying view. Progress in Brain Research, 165:425–445. 27

Shlens, J. (2014). A tutorial on principal component analysis. CoRR, abs/1404.1100.

45

Smitsman, A. W. and Corbetta, D. (2010). The Wiley-Blackwell Handbook of Infant

Development, volume 1. Chichester, West Sussex, UK: Wiley- Blackwell Ltd, 2th

edition. 11

Snow, C. W. (1989). Infant Development. Prentic Hall. 7, 8, 10, 12, 13

Sporns, O. and Pegors, T. K. (2004). Information–theoretical aspects of embodied

artificial intelligence. In Iida, F., Pfeifer, R., Steels, L., and Kuniyoshi, Y., editors,

Embodied Artificial Intelligence, pages 74–85. Berlin: Springer–Verlag. 2

Steels, L. (2004). The autotelic principle. Embodied Artificial Intelligence, pages

231–242. 18

Sucan, I. A. and Chitta, S. (2014). MoveIt! 66, 86

Thill, S. and Ziemke, T. (2010). Learning new motion primitives in the mirror neuron

system: A self-organising computational model. In 11th International Conference

on Simulation of Adaptive Behavior, SAB 2010, Paris - Clos Lucé, France, volume

6226, pages 413–423. 27

138

Vihman, M. M., Macken, M. A., Miller, R., Simmons, H., and Miller, J. (1985). From

babbling to speech: A re-assessment of the continuity issue. Language, 61(2):397–

445. 2

139

Vita

Zahra Mahoor earned her B.S. degree with honors in 2005 and M.S. degree in

computer engineering in 2008 from the Isfahan University of Technology in Iran.

Before attending the University of Tennessee, she taught computer science to

undergraduate students at Azad University in Iran for two years.

Zahra completed her Ph.D. degree in computer science in 2016 from the University

of Tennessee where she worked as a graduate teaching assistant in the Department

of Electrical Engineering and Computer Science. During her time at the University

of Tennessee, she co-founded a student organization called Systers: Women in EECS

@ UTK and served as the outreach chair of Systers in 2013. She received two travel

scholarships from Anita Borg Institue to attend Grace Hopper Conference, one travel

award from Google to attend Google I/O, and one travel grant from Graduate Senate

Student to present her research at an international conference. Her research interests

include developmental robotics, machine and human learning, and neuroscience.

140

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2016

	Neurally Plausible Model of Robot Reaching Inspired by Infant Motor Babbling
	Zahra Mahoor
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Approach and Uniqueness
	1.3 Contributions

	2 Background in Infant Development
	2.1 Introduction
	2.2 Developmental Trends
	2.2.1 Rhythmical Stereotypies
	2.2.2 Mass to Specific Movement
	2.2.3 Hierarchical Integration
	2.2.4 Developmental Direction

	2.3 Reflexes
	2.3.1 Palmar Grasping Reflex
	2.3.2 Influence of Reflexes on Voluntary Movement

	2.4 Manual Control
	2.4.1 Pre-reaching
	2.4.2 Goal-Directed Reaching
	2.4.3 Grasping
	2.4.4 Releasing

	2.5 Brain Development

	3 Literature Review on Developmental Robotics
	4 Methodology and Implementation
	4.1 Conceptual Model
	4.1.1 Motor-sensory Phase-space and Trajectory Bundles
	4.1.2 Conceptual Trajectory Bundles Formation
	4.1.3 Conceptual Trajectory Planning
	4.1.4 Conceptual Trajectory Execution

	4.2 Neural Model
	4.2.1 Formation of Neurally-Plausible Trajectory Bundles
	4.2.2 Neurally-Plausible Trajectory Planning and Execution

	4.3 Model Implementation
	4.3.1 Implementation of Trajectory Bundle Formation
	4.3.2 Implementation of Path Planning and Execution
	4.3.3 Dimension Reduction
	4.3.4 Representation of Motor-sensory Space

	5 Experiments and Results
	5.1 Humanoid Robot
	5.2 Motor Babbling
	5.3 Random Start Points and End Points
	5.3.1 Dimension Reduction
	5.3.2 Self-Organizing Maps
	5.3.3 Manually Constructing a Neural Map

	5.4 Evaluation Metrics of Planned Motions
	5.5 Fixed Start Point
	5.5.1 Autoencoder as Dimension Reduction
	5.5.2 Construction of the Neural Map using Cartesian Product of Features
	5.5.3 Results of Varying Dimension of Reduced Space
	5.5.4 Results of Varying Bundle Width
	5.5.5 Results of Varying Training Size
	5.5.6 Diffusion-Based Path Planning versus Breadth First Search
	5.5.7 Initial Bundle Formation

	5.6 Multiple Fixed Start Points
	5.6.1 Results of Varying Bundle Width
	5.6.2 Results of Modifying Bundle Formation
	5.6.3 Results of Varying the Resolution of the Neural Map

	5.7 Discussion

	6 Conclusion
	6.1 Future Research

	Bibliography
	Vita

