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Abstract 

Several decades ago the resonant gate driving technique was proposed. 

Given the recent rapid growth in GaN HEMT power device applications for 

high-frequency power applications, research has been conducted in the power 

electronics field using resonant gate driving for GaN power devices.  Previous 

research for resonant gate drivers for GaN HEMT devices mostly focused on 

implementing the gate driving function itself, and mostly for normally-on 

HEMT devices.   

The normally-off (enhancement mode) GaN power device was introduced 

to the commercial market in 2009.  A new resonate gate driver is proposed in 

this work to implement resonant gate driving for commercial high-speed 

normally-off GaN power devices.  The desired resonant condition is configured 

by different turn-on and turn-off driving pulses with specific driving time and 

pulse width.  Using synchronous timing control within the driver integrated 

circuit, the power device gate voltage is securely clamped within the expected 

gate voltage at switching frequencies beyond 10 MHz.  In this research, a 

customized resonant gate driver IC was designed and developed on a 

commercially-available silicon CMOS process.  Compared with current 

commercial gate driver ICs, our test results demonstrate the effectiveness, 

advantages and limitations of the proposed gate driver IC for the enhancement-

mode GaN power device using alternative resonant gate driving techniques for 

the first time.  
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Chapter 1 

Introduction 

1.1 Background and Motivations 

Recently GaN HEMT transistors, which were previously used only in RF 

and microwave regions since its invention decades ago, have been studied 

extensively. GaN-based power converters have appeared in power electronics, 

especially in low power high frequency DC-DC converters in recent years. In 

the past almost all GaN HEMT power transistors are deletion mode devices, 

which means normally-on when no voltage is applied at its gate (i.e., VGS = 0 

V). This greatly hindered the applications of this type of device in power 

electronics where a normally-off switch is greatly desired in power electronics. 

Usually a depletion-mode power device is potentially less reliable than a 

normally-off one from an applications perspective. It also needs a more 

specifically designed gate driver and control function since most gate drivers are 

designed to drive an enhancement mode device. 

A breakthrough in processing GaN materials on a silicon substrate 

commercially made enhancement-mode GaN FETs finally a realistic alternative 

to conventional Si power devices. In 2009 Efficient Power Conversion Co. (EPC) 

announced eGaN ® series [1] enhancement-mode, a normally-off GaN HEMT 

power device. A power converter using GaN HEMT power switches could be as 

simple as using conventional Si MOSFET switches. Compared with their Si 

MOSFET counterparts, GaN HEMT power devices have much lower channel 

resistance due to higher electron mobility, significantly faster switching behavior 

due to much smaller gate charge and zero reverse recovery charge. However, 

unlike their Si counterpart, only several GaN gate drivers based on conventional 

totem-pole driving topologies are available on the market [2]. The gate driver 

provided on EPC websites for their eGaN ® series power devices are low-side 

driver LM5114 and half-bridge driver LM5113 from Texas Instruments. These 

gate drivers are specially designed for EPC devices. However, these gate drivers 

are still based on the conventional totem-pole structure working as a push-pull 

stage that in essence is a RC charging or discharging process. For a complete 
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RC gate charging and discharging process, all power will be finally dissipated 

through resistance. All gate charge accumulated on device gate during turning-

on period will be finally dissipated to ground during the turning-off interval. If 

the switching speed of the gate driver continues increasing, the loss of the gate 

driver will increase as well. For GaN power devices expecting to be able to work 

at several MHz or even higher, the loss of the gate driver itself will be a limiting 

factor for their high-frequency applications. 

To fully explore the advantages of GaN HEMT power devices, resonant 

gate driving techniques are a potential solution. However, currently there is no 

GaN gate driver IC designed for resonant gate driving conditions. The 

previously reported resonant gate driver for GaN devices using off-chip clamping 

diodes to implement resonant gate driving is not realistic for EPC eGaN devices 

and existing GaN gate drivers. Adding clamping diodes at the gate of EPC 

devices will significantly alter the working conditions of the GaN HEMT devices. 

Resonant gate drivers for customized depletion mode GaN devices have been 

reported but there is no resonant gate driver IC reported for enhancement mode 

GaN devices, such as commercial EPC eGaN series devices.    

 

1.2 Objectives 

As the maturity of GaN HEMT power devices continues growing, we can 

expect more and more gate drivers designed for this new type of power devices. 

This document is one of the efforts to design a new type of gate driver IC for 

EPC eGaN power device. The objective of the proposed work is to realize a 

resonant gate driving topology for eGaN devices (EPC2001 as an example), 

design a gate driver IC to support this topology and implement the proposed 

gate driving technique and compare the customized gate driver IC with the 

existing commercial gate driver ICs for EPC eGaN devices. By varying the 

resonant inductor and changing the driving sequences, the proposed resonant 

gate driver can work in different resonant driving conditions, or even the same 

way as the conventional gate driver. A more power efficient and more flexible 

gate driving technique is the purpose of this research work. 
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1.3 Contributions 

The proposed research work is to make contributions in the following 

aspects. 

 Propose a new resonant gate driving topology for enhancement mode 

GaN HEMT power devices (EPC2001 selected as an exmaple), meeting 

different resonant conditions by adjusting driving control signals 

without hardware re-design or re-programming. 

 Design a new low-side resonant gate diver IC for EPC eGaN HEMT 

power devices in a standard CMOS process. 

 Experimentally compare the switching frequency, power consumption 

and driving waveforms between the commercial gate driver LM5114 and 

customized resonant gate driver. 

 Based on the experimental results and analysis on the proposed resonant 

gate driver design, provide guidance for future design. 

 

1.4 Organization 

This dissertation includes five parts. The first part is the introduction. It 

introduces the research background, motivations, objectives and contributions. 

Chapter 2 describes the GaN HEMT power devices and two associated gate 

driver topologies - conventional and existing resonant gate drivers. The 

limitations of these driver techniques are presented at the end of the chapter. 

The proposed work is in Chapter 3. First, a low-side resonant gate driving 

scheme using the proposed resonant structure is described. Then a half-bridge 

gate driver IC design using the same structure is proposed. Design blocks 

revealed and simulation results verified the proposed structures. Chapter 4 gives 

the experimental results. Finally, Chapter 5 is for conclusion and future work. 

After the conclusions in Chapter 5 the Appendix section includes some 

supplement materials such as customized IC and PCB layouts. The literature 

citations are listed in the References section.         
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Chapter 2 

High-frequency Resonant Gate Drivers for 

Power Devices 

 

2.1 Introduction to GaN HEMT Devices 

To describe a Si MOSFET conduction, we have to consider a mechanism 

called “channel inversion” in a lightly doped Si substrate. Likewise, for a GaN 

HEMT (High-electron-mobility transistor) device, we must know the 

mechanisms of so called “two-dimensional electron gas”, or 2DEG in short. The 

phase 2DEG refers to the condition where the electrons have quantized energy 

levels in only one spatial direction, often perpendicular to the interface, but 

often have extremely high mobility to move free in the other two dimensions, 

often parallel to the interface. Generally speaking, bringing an n-type wide band 

gap semiconductor layer in touch with a narrow band gap semiconductor layer 

will lead to a band bending in the conduction band of the narrow band gap 

semiconductor. In this way, a triangular well is formed, in which the transferred 

electrons are confined and form a two dimensional conductive channel, or 2DEG 

[3]. 

The phenomena of confining electrons along a surface may be tracked back 

to as early as the 1950’s [4]. In 1964 Dr. W. T. Sommer demonstrated a layer 

of charge on the surface of liquid helium [4]. In the experimental chamber the 

electron discharged by an ion source with dc voltage applied was confined in an 

energy barrier of liquid helium. No later than 1987, the 2DEG electron layer in 

solid semiconductor materials was realized by a heterojunction supperlatice 

between n-type AlGsAs and intrinsic GaAs by Dr. Dingle and his team at Bell 

Laboratories [5]. The invention of the HEMT based on an AlGaAs and GaAs 

heterojunction structure was contributed to Dr. T. Mimura at Fujitsu 

Laboratories in 1979 [6]. He realized the control of electrons in that superlattice 

by a Schottky gate contact over a single AlGaAs/GaAs heterojuntion. In 1981 

Dr. T. Mimura and his teams successfully fabricated and tested the first HEMT 

IC [7]. In the next few years, the AlGaAs/GaAs HEMT was successfully 

commercialized and first used in a LNA (Low Noise Amplifier) for radio 
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telescope detection [8].  

Similar to the AlGaAs/GaAs heterojunction structure made from III-V 

compounds, the AlGaN/GaN heterojunction has its unique advantages. Firstly, 

as shown in Figure 2.1 [9] the bandgap energy versus lattice constant for 

numerous III-V compound materials, the bandgap energy for GaN is 3.4 eV, 

while GaAs is only 1.42 eVas shown in Table 2.1. Considering 1.12 eV for 

popular Si and 3.2 eV for SiC, 3.4 eV of GaN is a wide bandgap material. This 

results in much higher breakdown voltage and higher operational temperature, 

which is attractive for power electronics. Second, large lattice and large 

conduction band mismatch between AlN and GaN leads to a spontaneous 

polarization at the interface and a piezoelectric field in AlN [6]. A deeper 

quantum well formed in GaN at the edge leads to a very high sheet electron 

charge density in GaN interface, this formed structure creates a better 2DEG 

characteristics than conventional GaAs heterojunction. To the device 

perspective, this means a smaller size, less parasitic effects and higher operating 

frequency. A power device based AlGaN/GaN HEMT structure could be very 

attractive for today’s high-frequency switching power applications.  

 

 

 

Figure 2.1. Bandgaps of the most important elemental and binary  

cubic semiconductors versus their lattice constant at 300○K [6]. 

 

 
The first AlGaN/GaN HEMT demonstrated by Dr. Asif Khan and his group 

in 1994 [10 ] was fabricated on sapphire substrate [11 ]. Then years later 

AlGaN/GaN HEMT grown on SiC substrate was reported [ 12 ] [ 13 ] and 

currently SiC is the substrate of choice for the epitaxial growth of high-
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performance GaN HEMT devices with a thermal conductivity an order of 

magnitude greater than that of sapphire [14]. In the last decade or two, there 

has been a trend shift from the AlGaAs/GaAs HEMT to AlGaN/GaN HEMT. 

Currently the HEMT devices since its invention has been mostly used in 

microwave, high frequency low power applications. There are three potential 

substrate material for AlGaN/GaN structure, sapphire, SiC and Si. The 

sapphire substrate has poor thermal conductivity and large lattice mismatch to 

GaN. Expensive SiC has lower lattice mismatch and high thermal conductivity. 

Si substrate offers the the best trade-off considering the cost. Growing 

AlGaN/GaN heterojunction on Si substrate is one of the reasons hindering 

further expansion of this new device. Another obstacle for the application of 

AlGaN/GaN HEMT in power electronics is the difficulty of making a good 

enhancement mode device, which is especially preferred in power electronics. 

 

Table 2.1: Material properties of Si, GaAs, SiC and GaN at 300○K [15] [16]. 
 

  
 

There are mainly two solutions to realize an enhancement-mode power GaN 

FET device without losing the outstanding characteristics of the inherent 

depletion mode GaN 2DEG channel. One method is directly fabricating a 

depleted channel from the 2DEG layer. This method is adopted by EPC [1] and 

Panasonic [17]. Another way is to cascode an enhancement-mode Si MOSFET 

to the depletion-mode GaN HEMT. Transphorm [18] and International Rectifier 

(IR) [19] have this cascaded type high voltage GaN power transistor. Due to 

the processing limits, the most reliable direct enhancement-mode device is 

targeted to 100 V or below applications while a cascaded version can easily work 

at 400 – 600 V conditions. In 2013, Panasonic announced its 600 V GaN power 

transistor using its Gate Injection Transistors (GIT) techniques with 15 A drain 

                                     
1 The 2DEG increases the electron mobility of GaN from 400 to above 2000 cm2/Vs. 

Properties Unit Si GaAs SiC-4H GaN 

Bandgap energy EG (eV) 1.12 1.42 3.2 3.44 

Breakdown voltage 
EBR 

(MV/cm) 
0.3 0.4 3.5 3.3 

Electron saturation 

velocity 
VS (107 cm/s) 1.0 1.8 2.2 2.5 

Electron mobility μ (cm2/Vs) 1450 8000 950 400  2000 1 

Thermal conductivity k (W/cmK) 1.5 0.55 5 1.3 
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current and 1.2 V threshold voltage [20].   

In June 2009 EPC, announced the first enhancement mode wide bandgap 

AlGaN/GaN HEMT grown on Si substrate and fabricated with standard Si 

manufacturing technology and facilities [21]. The eGaN ® FET named by EPC 

is targeted in the open market as a replacement for the traditionally Si power 

MOSFET widely used in low voltage applications. Figure 2.2 shows the GaN 

FET cross-section structure [2]. The GaN materials are grown on a seed layer 

of AlN that is grown on a Si substrate. The 2DEG charge layer is formed 

between the thin AlGaN and GaN layer at the AlGaN side, but the region below 

the gate is depleted of free electrons. So the whole channel is partially depleted 

to have the enhancement mode gate threshold voltage without sacrificing the 

benefit of high mobility of 2DEG.  

 

 

 

Figure 2.2. EPC eGaN ® FET structure [2]. 

 
 

There are several techniques to shift the negative threshold voltage 

associated with conventional depletion mode AlGaN/GaN HEMT devices to a 

positive threshold voltage. One of the methods called “gate injection transistor” 

is to use a p-type AlGaN named crapping layer beneath the gate electrode [22]. 

The p-type material injects holes into the AlGaN/GaN interface, lifts up the 

potential of the channel and depletes the 2DEG. Figure 2.3 shows a p-type to 

intrinsic AlGaN layers grown in a GaN layer to deplete 2DEG on the GaN side. 

However, one drawbacks of this structure is the gate to channel isolation is 

depends on thin layers of p-AlGaN and i-AlGaN. The p-type material and n-

type conduction channel forms a diode-like structure. This means the 

enhancement mode GaN HEMT is very sensitive to gate voltage. A small 

overvoltage on VGS could forward the gate-channel diode and destroy the device 

under high power conditions. Even though EPC did not disclose their techniques 

to manufacture an enhancement mode GaN device, the characteristics provided 

on the EPC datasheet illustrate the p-type hole injection or similar behavior.    
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Figure 2.3. A p-AlGaN and i-AlGaN heterojuction implemented  

by gate injection transistor (GIT) displayed a depleted 2DEG for  

enhancement-mode operation [21]. 

 

 

The cross-section of an EPC eGaN FET is shown in Figure 2.4 [2]. Each 

lateral FET cell is laid on the GaN bulk material with inter-digitated layout 

pattern as “… G S G D G S G D …”. The source nodes from each cell are routed 

to Metal 2 as in the graph. All these terminals are finally routed to top metal 

layers to the pads on the package. The characteristics associated with the 

electronic properties of the device will be described later in the gate driver design 

section.  

 

 

 
Figure 2.4. SEM micrograph of an EPC eGaN FET [15]. 

 

G G G G

S S

D D 
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2.2 Conventional Gate Drivers for Power MOSFET’s 

Normally in power electronics applications the control signals are provided 

by a DSP, FPGA or other microcontroller IC’s with voltages of 5 V, 3.3 V or 

even lower. Very few power devices can be directly driven by these digital signal 

outputs. An intermediate circuit is needed to convert the low power signals to 

drive the power switches. The gate driver IC is this circuit used to generate the 

voltage or current necessary to turn a power MOSFET, IGBT, or other 

semiconductor power switch on and off. For GaN HEMT FET, the gate driver 

IC is also needed.  

The basic functions of a gate driver IC mainly include three aspects. 

 Provide sufficient current/voltage control signals for power switching 

devices. 

 Provide isolation or protection for control IC’s from the large signal 

swings of the power switching devices. 

 Provide protection for power switching devices under certain conditions. 

There are possibly thousands of gate driver IC’s for power devices on the 

market. Since the normally-off GaN HEMT is very similar to the conventional 

power MOSFET, which is also a voltage controlled threshold and capacitive 

induced channel device, we also call the GaN HEMT simply a GaN FET. 

Usually commercial FET gate drivers are based on the same topology called 

“totem-pole” structure for minimum transition time [23] [24] [25]. Figure 2.5 

shows the simplified conventional “totem-pole” output stage driving a power 

MOSFET. The inverter-like MP and MN is the PMOS and NMOS transistors of 

the “totem-pole” respectively. The gate of the PMOS and NMOS are tied 

together to achieve fastest transient response. The drain nodes of the two 

transistors are connected together to form a push-pull output. Turning on the 

PMOS in the “totem-pole” will charge the output node and pull up the output 

potential to turn on the power device. Turning on the lower NMOS, the output 

node will be discharged below the threshold voltage of the FET device.  

Among those thousands of various gate driver IC’s, only three gate drivers 

from Texas Instruments — LM5113 [26], LM5114 [27] and UCC27611 [28] are 

listed on EPC website for the GaN FET’s. Some other MOSFET gate drivers 

such as the ISL2110 [29] series from Intersil can also be used, but they are not 

specifically designed for EPC eGaN ® FET’s. All of them have a “totem-pole” 

output structure with split pull-up and pull-down output pins. Figure 2.6 
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shows the block diagram of the LM5113 in which both high side and low side 

have the same “totem-pole” output [27]. 

 

MN

MP

IN OUT G

S

D

Power FET

VD Driver Supply to Power Supply VP 

Rg Gate Res.

Qg

Qg Cg 

 
 
 

Figure 2.5. A simplified “totem-pole” output stage for  

a conventional power MOSFET driver. 

 
 

 
 
 

Figure 2.6. Block diagram of LM5113 [19]. 
 
 

To design a gate driver, we need to understand the power loss mechanisms 

for a “totem-pole” gate driving topology. Some literature defines the switching 

loss of output transistors and gate resistor loss separately [30], but they are all 



11 

essentially due to capacitive loss. In this work we define three types of power 

losses associated with the gate driver push-pull process.  

 Static power loss PS 

 Dynamic capacitive power loss PC 

 Dynamic short-circuit power loss PSC 

The total gate driver power loss PGD is the sum of the three types. 

 

 GD S C SC
P = P +P +P             (2.1) 

 

 
Figure 2.7. Gate charge versus Gate-source voltage for EPC2001 [30]. 
 

 
Static power loss is essentially due to transistor leakage current at its 

quiescent condition. There are two main sources of leakage, gate-channel leakage 

during turn on and drain-source leakage during transistor turn off. Other 

leakage like substrate leakage is common to all non-SOI (Silicon on Isolator) 

technologies [3]. Leakage loss usually is very small and can be neglected [3]. 

However, as temperature increases, leakage loss will increase dramatically [31].  

Dynamic capacitive loss happens during the process of charging and 

discharging of load or any node capacitance on the drive signal path. Usually 

the load capacitance, which is the power device’s effective gate capacitance, is 

much larger than other node capacitance. The Miller effect and other junction 

parasitics contribute to the nonlinearity of the device gate capacitance during 

operation. Figure 2.7 shows the gate charge versus gate voltage diagram for 

EPC2001 [32] as an example. Based on gate charge curve, the detailed loss 

analysis can be approximated by assuming a piecewise linear waveform and 

adding up three sections of loss during gate charging and discharging cycles [30]. 
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However, a more systematic view can greatly simplify this analysis. Assuming 

the charging and discharging time is long enough such that the gate of the 

power device can be charged to the driver supply voltage and discharged to the 

ground potential, no matter what kind of resistance or nonlinear channel 

resistance there is, all the energy provided by the power supply will be dissipated 

during a complete switching cycle. Supposing the charge provided by driver 

supply without any leakage to the gate is Qg, and the driver supply voltage is 

VD, then the energy provided by the gate driver supply during a complete 

switching cycle is 

 

 DCG g
E =QV               (2.2) 

The energy supplied to the gate in each switching cycle is EG. The power loss is 

simply the energy times the switching frequency, where CG is the equivalent 

gate capacitance during the switching, normally larger than the static input 

capacitance given as CISS in the datasheet. Even though during the charging and 

discharging process there is a switching loss of the driving transistors themselves, 

while the transistor is in a saturation mode with resistance value significant 

larger RDS(on), the equation (2.3) has already includes this portion of loss. Some 

report this switching loss separately [30], but from the view of the overall loss 

of the gate driver, the loss due to the driving transistors is not necessary to be 

accounted repeatedly. 

 

 G
f f2

CG g D sw D sw
P =QV =C V            (2.3) 

The above equation shows that as switching frequency (fsw) increases, 

dynamic capacitive power loss will certainly increase. Normally the output stage 

consists of several stages of ratioed “totem-pole” structure. If we assume an 

optimal stage effort of four [33], then the total capacitive loss including a chain 

of stages before the final output stage can be approximately expressed as 

  

  
1 1

1 ...
4 16

f f f      
 

  2

CG g D sw g D sw G D sw

4
P Q V Q V 1.34C V

4 - 1
 

                  (2.4) 

 

 Another portion of capacitive power loss for the gate driver is associated 

with the output parasitic capacitance of PMOS and NMOS FET’s in the “totem-
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pole” the gate driver. Since each PMOS and NMOS FET in an inverter has to 

charge the output capacitance to VD during the turn-on stage and short it to 

ground during the turn-on stage, this portion of charge is completely dissipated 

during each switching cycle. The output parasitic capacitances associated with 

gate driver output stage are CPoss and CNoss, then gate driver dynamic output 

capacitive power loss is  

 

   f2

COSS Poss Noss D sw
P = C +C V           (2.5) 

Considering the inverter chain as a whole, the gate driver dynamic output 

capacitive power loss is 

 

   f  2

COSS Poss Noss D sw
P 1.34 C +C V          (2.6) 

Short-circuit power loss, or shoot-through power loss, happens during the 

transition of the upper PMOS FET and lower NMOS FET of the “totem-pole” 

structure. This is the same as a CMOS inverter behaves like a linear amplifier 

when both transistors are in the linear or saturated region [34]. This dynamic 

loss is unavoidable since we cannot have an ideal infinitely sharp transition 

region for the output stage. A portion of charge provided by the gate driver 

power supply has to be bypassed directly to ground without being routed to the 

gate of the power device. Even though short-circuit power loss is relatively much 

smaller than the capacitive loss, as switching frequency increases, this portion 

of loss also increases.                   

 

 

 

Figure 2.8. A CMOS inverter DC characteristics showing the dynamic short-

circuit power loss. On the left is the output voltage vs. input voltage, on 

the right is the output current versus input voltage. “B”, “C” and “D” means 
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the region where PMOS or NMOS is in linear or saturated region [26]. 

The short-circuit power loss can be estimated by a piecewise linear triangle 

approximation of the current waveform shown in Figure 2.8. Assuming the 

inverter-like “totem-pole” has a piecewise linear input slope, the short-through 

current is also a triangle waveform [35]. If the inverter equivalent transition 

time for pull-up or pull-down is tsc, the peak short-circuit current is Ip, then 

short-circuit energy dissipated directly to ground is approximately [35] 

 

 
SC D p up D p down D p sc

1 1
E = V I t + V I t = V I t

2 2
      (2.7) 

Then the short-circuit power loss is  

 

 f
SC D p sc sw

P =V I t              (2.8) 

Similarly, consider an inverter chain of stage effort of four, the total short-circuit 

loss is estimated as 

 

 f SC D p sc swP 1.34V I t            (2.9) 

The dynamic short-circuit power loss is related to peak short-circuit current and 

transition time. There is a trade-off between the two parameters. Increasing the 

inverter PMOS and NMOS transistor sizes will increase the peak current and 

reduce the transition time. Increasing the inverter load capacitance will reduce 

the peak current but increase the transition time. The least short-circuit power 

loss depends on the sizes of the “totem-pole” output transistors and the gate 

capacitance of the power devices. A conventional gate driver will have least 

short-circuit power loss while driving for a specific power device loading 

condition. Changing the loading condition will increase short-circuit power loss 

and lower the gate driver power efficiency. 

Based on the analysis above, the gate driver power loss for a conventional 

gate driver with four stages output and stage effort ratio of four can be 

expressed as 

 

   f   
2

GD G Poss Noss D D p sc swP 1.34 C +C +C V +V I t     (2.10) 
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2.3 Resonant Power MOSFET Gate Drivers 

A resonant gate driver has been proposed decades ago. One of the mostly 

cited pioneering literature on the resonant gate driver was written by Dr. 

Maksimovic during the early 90’s [36]. Since that paper, the most important 

characteristics of resonant gate drivers has not changed. Unlike the conventional 

“totem-pole” driving scheme, the gate driving energy is completely dissipated in 

the resistance during the process of charging and discharging the gate of a power 

MOSFET device. Given that this is an equivalent RC network, the only way to 

apply and remove the capacitive charge during a signal transition cycle is to 

dissipate the charge completely via a resistive element to ground. Resonant gate 

driving implements the charging and discharging process by a LC resonant 

network. For an ideal lossless network, the capacitive energy will resonate with 

the inductive energy, which means no loss occurs during a complete cycle. A 

resonant gate driver implements a quasi-square-wave voltage applied at the gate 

of a power device by employing a resonant process during the conventional 

charging and discharging process. 

The driving forces of proposing a relatively new resonant gate driving 

topology rather than conventional “totem-pole” output driving stage can be 

contributed to two main aspects. Firstly, as switching frequency keeps 

increasing for power converters, gate driving loss is also proportionally 

increasing. In the past, this portion of power loss was often times negligible 

compared with the switching loss and conduction loss of the power devices. 

Today, for low power DC-DC converters, several MHz switching frequency is 

normal, and gate driving loss is by no means negligible. Second, soft switching 

techniques, such as zero-voltage-switching (ZVS) [31] and zero-current 

switching (ZCS) [31], are getting more and more popular. The switching loss of 

the power switches in the power loop has been reduced. However, soft switching 

can result in more circulating current, which leads to higher conduction loss. To 

reduce the conduction loss, devices with lower Rds(on) are preferred. Normally 

there is a trade-off between the Qg and Rds(on). The power MOSFET Figure-of-

Merit (FOM, g ds(on)
FOM =Q R ) [2] suggests this. A lower Rds(on) normally means 

a higher Qg for a given device technology at a given voltage rating. A higher Qg 

will need a larger gate driver capability, such that a higher gate driving loss will 

be consumed if a conventional gate driver is still in use. So resonant gate driving 

techniques are developed to reduce the gate drive loss while allowing the 

increase of switching frequency or the device gate input capacitance. 
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Here we listed several candidate resonant gate drivers developed so far for 

detailed review. All of them are designed to drive a single power device as load. 

Other types of resonant gate drivers, especially those driving two MOSFET’s 

with transformer coupled techniques, which is not suitable for low power 

applications and IC integration, will not be discussed in detail. Also, for low 

power applications, for power MOSFET or GaN HEMT, both of them can be 

treated as a non-linear gate capacitance to the gate driver. So the gate drivers 

discussed here are all capacitance loaded gate drivers.  

 

2.3.1 Resonant Gate Driver – Topology A 
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Figure 2.9. A resonant gate driver using extra resonant inductor  

and capacitors [34]. 

 

 
Figure 2.9 shows a resonant gate driver proposed by Dr. Maksimovic in the 

early 90’s [34]. The operation principle of the above resonant gate driver can be 

explained with the waveform diagram in Figure 2.10. The equivalent 

capacitance connected to net “vx” is much larger than the power device input 

capacitance CG, such that the resonant conductor current can be approximated 

as triangle wave. Furthermore, if we assume an ideal lossless resonance and ideal 

timing condition, the resonant current will flow back and forth with the same 

amplitude. When p-channel FET MP is turned on, the current iLr increases 

linearly, from the negative peak current -ILr to the positive peak current +ILr. 

Then MP is turned off, the positive peak current will discharge the gate input 
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capacitance CG. The gate charge energy will be ideally transferred to energy 

stored in the equivalent capacitance of C1 and C2. As the gate capacitance is 

discharged to ground potential, the n-channel FET MN is turned on, the 

inductor current iLr decreases linearly, from the positive peak current +ILr to the 

negative peak current -ILr. Then MN is turned off, the negative peak current will 

charge the gate input capacitance CG to the desired turn-on voltage, the gate 

driver supply voltage VD. Then repeatedly, MP is turned on again and iLr 

increases linearly.  

 

vp 

vn 

iLr 

vg 

MP on MP on

MN on MN on MN on

Cg discharge Cg charge Cg discharge Cg charge

t0 t1 t2 t3  

 

Figure 2.10. Simplified steady state waveforms of the gate driver in  

Figure 2.9, from top: driver output PMOS MP gate voltage vp, driver  

output NMOS MN gate voltage vn, resonant inductor Lr current iLr  

and power device gate G voltage vg.  

 
 
The resonant gate driver showed in Figure 2.9 is essentially adding an extra 

resonant inductor and load capacitor to the “totem-pole” gate drive output to 

form an unloaded ZVS quasi-square-wave buck converter [ 37 ]. The most 

significant advantage of this resonant gate driver is the realization of the ZVS 

switching of the gate driver output transistors. However, it suffers other 

problems. Firstly, a significant larger resonant capacitance than the power 

device gate capacitance is necessary to maintain a triangle wave like inductor 

current. This could be costly to integrate on chip. Secondly, a separate inductor 

is needed to form the gate resonant loop. The inherent parasitic gate inductance 

cannot be incorporated into this inductor. Thirdly, a large continuous current 

flows through the LC resonant loop. The parasitic loop resistance, especially the 
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equivalent series resistance (ESR) of the inductor, will give rise to conduction 

loss. 

2.3.2 Resonant Gate Driver – Topology B 

Figure 2.11 shows another resonant gate driver published in 2002 [38]. This 

topology utilizes the gate inductance to form the charging or discharging by LC 

resonance. The simplified steady-state waveforms of control logics, inductor 

current and device gate voltage are shown in Figure 2.12. Assume the gate 

capacitance of power device CG has been discharged to the lowest negative 

potential Vp-, while MN is on and MP is off. The diode blocks the reverse flowing 

current with voltage of -Vp-. Then a rising edge of control signal drives MP to 

turn on and MN to turn off. A positive gate driver voltage VD is applied across 

the series resonant tank composed of inductor Lr and device capacitance CG. 

The CG will be charged to its positive maximum potential Vp+ through MP and 

D1, given the resonance is longer than a half period. The charging current will 

be a positive half sinusoidal waveform. The negative discharging current of a 

normal resonant cycle is automatically blocked by the series diode, D1. The 

device CG potential will be maintained at Vp+ until a falling edge of control 

input signal occurs. At this moment, the device gate potential will be discharged 

through inductor Lr, D2 and MN. The inductor current will go through the 

negative half sinusoidal cycle to discharge the gate capacitance to the minimum 

potential of Vp- and maintain this gate voltage level by the reversely blocking 

of D2.              
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Figure 2.11. A resonant gate driver using gate inductor and reverse  

blocking diodes in series [36]. 
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Figure 2.12. Simplified steady state waveforms of the gate driver in  

Figure 2.11, [from top:] driver control input IN voltage, resonant  

inductor Lr current and power device gate G voltage [36]. 

 

 

Compared to the gate driver with resonant transition [39], this resonant 

gate driver does not require a separate capacitance to assist gate resonance. The 

resonant inductor can be implemented by the parasitic inductance between the 

gate driver output and device gate input, or even possibly integrated on chip. 

Another advantage of this gate driver is the lower gate driver supply voltage. 

A resonant condition can make the positive charged gate voltage much higher 

than the gate driver voltage supply. This could be attractive for high gate 

voltage devices. However, for the current enhancement mode power GaN 

HEMT’s, the optimum gate turn-on voltage is around 5 V or even less, further 

lowing the gate driver supply beyond that level will only create complexity by 

requiring an extra supply. Since the gate voltage completely relies on the exact 

values of resonant components, the desired gate turn-on and turn-off levels need 

carefully turned to these values. For example, if the minimum negative swing 

needs to be 0 V, the author recommended to increase the resonant capacitance 

by series capacitor, and a clamped Zener diode in parallel with the device gate 

input. To control the desired maximum positive gate voltage independently, the 

resonant inductor has to be split separately for the charging and discharging 

path, such that their resonant process can be controlled separately. All these 

problems make this solution not applicable to the desired gate driving for high-

frequency switching with GaN HEMT’s. 
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2.3.3 Resonant Gate Driver – Topology C 

Even though the research on the resonant gate driver can be traced back to 

1980’s, the widespread interests on this topic started early this century. Among 

these papers published during that period, one of the most typical resonant gate 

driver papers proposed by Dr. Chen brought up the implementation of resonant 

gate driver “energy recovery” [40] [41] rather than the previous ideal “lossless” 

approach [34] [36]. Figure 2.13 shows the proposed resonant gate driver topology 

[38] [39]. We need to assume the Q factor of the resonant circuit is large enough 

such that an ideal resonance can be approximated. 

The approximated waveforms are shown in Figure 2.14. The shaded area is 

the turn-on period of PMOS and NMOS driver switches. The highlighted 

portion of current is the actual charging and discharging gate current.  

Before time t0 the gate capacitance of power device CG has been discharged 

completely to ground, and both MN and MP are off. The turn-on and turn-off 

process can be divided into the following four intervals. 
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Figure 2.13. A resonant gate driver using gate inductor and gate  

clamping diodes in parallel [38] [39]. 

 
 

1) Lr resonant charge interval t0 - t1: 

At time of t0 a negative pulse on INP turns on the switch MP, a positive 

current iLr will flow from the driver supply VD through the resonant inductor Lr 

to charge the gate capacitance CG. If the turn-on period of MP is long enough, 

the gate capacitance CG will be charged beyond gate driver voltage VD. Due to 
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the paralleling diode D1, the gate voltage will be clamped at VD starting from 

t1.  
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Figure 2.14. Simplified steady state waveforms of the gate driver in  

Figure 2.13, [from top:] gate driver PMOS MP gate control voltage  

vp, NMOS MN gate control voltage vn, resonant inductor Lr current iLr  

and power device gate G voltage vg [38] [39]. 

 
 

2) D1 clamping and recovery interval t1 - t2: 

During the interval t1 - t2 the gate voltage clamping the inductor current 

will keep constant or clamped at its peak value via the freewheeling loop of MP, 

Lr and D1. At time t2  the MP will be turned off, inductor current cannot change 

promptly, it will continues flowing through the body diode of MN and D1 back 

to the driver supply. The constant negative voltage applied across the inductor 

will discharge the inductor current linearly until it vanishes completely. During 

this charging recovery period, all the gate charge has been returned to the driver 

supply.  

3) Lr resonant discharge interval t2 - t3: 

At time t3 the n-channel driving transistor MN is turned on, previously 

clamped gate voltage VD at CG will be discharged through the resonance with 

Lr. Again the gate voltage will be discharged during t2 - t3 and clamped by D2 

to 0 while the inductor current will reach its negative peak value and keeps 

freewheeling in the loop of MN, Lr and D2.  
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4) D2 clamping and recovery interval t3 - t4: 

At time t4 turning off MN will force the existing negative inductor current 

to be discharged through the body diode of MP and D2 back to the driver supply. 

This is the discharging recovery period. If there is no resistive loss involved 

during the process, then during the charge period, half of the energy provided 

by gate driver supply will be stored at the gate capacitance CG voltage and the 

other half will be stored at inductor Lr current. During the discharge period the 

capacitive energy will be exhausted to 0 and transferred into inductor current. 

In either case the inductor current will be completely discharged to the driver 

supply during the recovery period.  

 

2.3.4 Resonant Gate Driver – Topology D 
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Figure 2.15. A resonant gate driver using gate inductor and gate  

clamping diodes in parallel [40] - [43]. 

 
 

Figure 2.15 shows another resonant gate driver topology also implemented 

with a series inductor in the gate driving loop to recover a portion of the driving 

energy [42] [43] [44] [45]. It utilizes extra two driving transistors in replace of 

the two clamping diodes proposed in Figure 2.13. The extra two transistors are 

not simply to reduce the forward conduction loss of a diode with a MOSFET 

being turned on. Before the charging and discharging process, a direct path 

connecting the resonant inductor to the driver supply can be built by turning 

on diagonal transistors, including one of these extra transistors, such that an 

initial non-zero charging or discharging current can be used to turn on or turn 
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off the power switch. Traditionally the gate driver applies the driver voltages 

to the gate of a power device, such that a driving current always starts from 

zero. An ideal current pulse leads to a faster gate charging and discharging 

process and shorter transition time for both gate driving loop and power loop 

to reduce switching loss. The resonant inductor plays an important role to apply 

this non-zero charging and discharging current. It is also called “current source 

gate driver” since the inductor behaves like a constant current source while 

charging and discharging the power FET gate capacitance [46] [47]. 

Again assuming a sufficiently large Q factor, the idealized signal waveforms 

of the four-transistor driver are shown in Figure 2.16. The two switches on the 

left leg are named as MP and MN (Figure 2.15) since they are the main switches 

providing charging and discharging current, respectively. The two on the right 

leg are mostly for clamping, freewheeling and recovery purposes, so they are 

labelled as M1 and M2 as C stands for “clamping”. Before time t0 both MN and 

M2 are turned on, the gate capacitance CG is completely discharged to ground, 

the power device is turned off. The turn-on process can be divided into three 

intervals and discussed in detail. 

 

1) Lr pre-charge interval t0 - t1: 

The MN  is turned off and then MP is turned on following a dead time 

interval. The resonant inductor Lr is connected to driver supply with the loop 

MP - Lr - M2. Due to the inductor current can must starts with 0, the MP is 

turned on with ZCS. The inductor current is then ramped up linearly to a non-

zero pre-charge inductor current.  

2) CG charge interval t1 - t2: 

With the turning off of the clamping NMOS M2  at ZVS, the non-zero pre-

charge current is now steered into the gate of the power device. A resonant loop 

is formed with MP - Lr - CG. With the non-zero inductor current, the turn-on 

transition has been accelerated by providing CG more charge within a given 

charging time. The gate voltage is clamped by the body diode of M1 and the 

positive peak inductor current will freewheel in the loop of MP - Lr - BDM1.  

3) Lr recovery interval t2 - t3: 

With the turning off of the charging PMOS MP  at ZVS, the inductor 

current is immediately steered through the body diode of MN. The conduction 

loop is BDMN - Lr - BDM1. After a short dead time, MN is turned on with ZVS 

after the body diode conduction occurred during the dead time. The PMOS 

clamping M1 is also turned on with ZVS due to its body diode condition. The 

conduction loop is now MN - Lr - M1. The inductor is now reversely connected 
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to the driver supply. The inductor current is ramped down linearly and returned 

to the driver supply VD.  
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Figure 2.16. Simplified steady state waveforms of the gate driver in Figure  

2.15, [from top:] gate driver PMOS MP gate control voltage vp, clamping  

PMOS M1 gate control voltage v1, driver NMOS MN gate control voltage  

vn, clamping NMOS M2 gate control voltage v2, resonant inductor Lr  

current iLr and power device gate G voltage vg [40] - [43]. 

 
 

If the MN is turned off before the recovery current is reduced to zero, the 

residual current will flow through the body diode of MP again. Then turning on 

MP will freewheel the any rest current through the MP - Lr - M1 loop. If the MN 

is turned off after the recovery current reduced to zero. The negative current 

will start to build up through the inductor, turning on MP will still freewheel 

any initial negative inductor current through the MP - L - M1 loop. In either 

case, the PMOS clamping transistor M1 is always on, so the gate voltage is 

always clamped to VD. At the same time, turning on MP is always close to ZCS 

condition. 

The discharging process is a reverse procedure of the charging process. A 

negative non-zero inductor current required by gate discharging is initiated by 
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turning off MP and turning on MN through the loop M1 - Lr - MN. Turning off 

PMOS clamping M1 will quickly start the discharge of gate capacitance via loop 

CG - Lr - MN. The gate capacitance is finally discharged and clamped at ground, 

a freewheeling peak discharging current is now applied to the loop of BDM2 - 

Lr - MN. Turning off MN and then turning on MP with ZVS will form the loop 

of M2 - Lr - MP to recovery the negative inductor current to the driver supply. 

Finally, after turning off MP and turning on MN, the negative clamping condition 

is maintained until the next turn-on cycle. 

The most distinct characteristics of this proposed resonant gate driver is 

the specific controlling sequence of the four driver switches to conduct the 

conventional resonant process. A pre-charge inductor current can be built up 

before charging or discharging the power device gate capacitance. The diodes of 

the recovery process in Figure 2.13 are replaced by controlled clamping switches 

M1 and M2 to further reduce the driving loss. However, these improvements may 

not be beneficial for GaN HEMT devices. For example, the driving switches M1 

and M2 are switching three times as much as the power MOSFET does. If we 

want to have a 10 MHz converter switching frequency, these two driving 

transistors in the gate driver will need to switch at 30 MHz no matter if there 

is a pre-charge period for inductor current or not. Even though these switches 

are working at quasi ZVS or ZCS conditions, switching at this high frequency 

with enough accuracy is still very challenging.  

 

 

 

 

Figure 2.17. Measured waveforms of the turn-on process of a rectifier  

working at 1.5-MHz switching frequency. [From top:] M1 (Q1) and M2 

(Q3) gating signals (10 V/div and 20 ns/div), MP (Q2) and MN (Q4) 

gating signals (10 V/div), power-MOSFET gate voltage Vg (5 V/div) and 

inductor current iLr (1 A/div). [43]. 
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The reported resonant gate driver was tested on a full-bridge rectifier with 

two pairs of synchronous rectifier power switches providing 35 A maximum load 

at 1 V output [43]. Two IRF6691 [48] MOSFET’s in parallel forms each power 

switch. The tested waveforms in Figure 2.17 shows the turn on process [43]. The 

gate charging time is about 60 ns and the whole turn on process is about 140 

ns. The peak charging current is about 1.2 A. A higher switching frequency and 

the larger peak current required by GaN HEMT’s makes the design of a gate 

driver based on this topology difficult. 

 

2.3.5 Resonant Gate Driver – Topology E 

Figure 2.18 shows an H-bridge resonant gate driver [49] [50] [51] with similar 

topology to Figure 2.15. However, this resonant gate driver implements the 

resonance process without connecting to the driver supply. The gate voltage can 

be charged to a positive level and discharged to a negative level with the same 

amplitude. This negative applied gate voltage is often used for high voltage and 

high power conversions. For the low power case, normally discharging the gate 

to 0 V is sufficient. The operation principle can be explained using the 

waveforms in Figure 2.19. Again we assume a sufficiently large Q-factor in the 

resonant loop such that an approximately ideal waveform can be achieved. 

Before time t0 the MP2 and MN1 are turned on, and a negative VD is applied at 

the gate G. At t0 MP2 is turned off and MN2 turned on, a resonant loop MN1 - Lr 

- CG - MN2 is formed. After a half resonant period, the initial capacitive voltage 

energy transferred to inductive current energy is returned to capacitive the gate 

voltage on resonant capacitance CG with inverted polarity. The gate of the 

power switch is now positively charged. Then MN1 is turned off and MP1 is turned 

on. The driver supply will charge the gate voltage drop due to the loss during 

the half-cycle resonance. The gate discharging process is similar. Turning off 

MP1 and turning on MN1 at t2 will again start the resonance as the same loop 

MN1 - Lr - CG - MN2. Since the gate voltage is initial positive, after half-cycle, the 

gate voltage will be inverted. Then turning off MN2 and MP2 turned on at t3 will 

refresh the negative gate voltage. 
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Figure 2.18. An H-bridge resonant gate driver using gate inductor  

in series [47] [48] [49]. 

 
 

This resonant gate driver has the advantage of simple gate control signals. 

The gating signals for MP1 and MN1, or MP2 and MN2, are essentially the same 

except with dead time in between. However, especially for applications of low 

power conversions, very few power switches need a symmetric positive and 

negative gating signals, otherwise the transition speed will be unnecessarily 

reduced. During one cycle, the four driving switches each has to dissipate its 

output capacitance charges with driver supply voltage across it. For the 

resonant loop MN1 - Lr - C - MN2, the resistance should be as small as possible. 

When the MP1 or MP2 is connected, resonance should be depressed quickly such 

that an R-C like charging from the driver supply will compensate the gate 

voltage loss in the resonance. A damping resistor Rd has to be placed in series 

with MP1 and MP2 to stop the resonance. This resonant gate driver was tested 

in a 1 kW, 350 kHz, 230 VDC input inverter with resonant load [49]. The driven 

power switches are APT50M50 [52] power MOSFETs with more than 16 nF 

input capacitance at typical conditions. Based on these characteristics, this H-

bridge resonant gate driver is not suitable for applications of the very high speed 

GaN HEMT with low Qg.  
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Figure 2.19. Simplified steady state waveforms of the H-bridge resonant  

gate [47] [48] [49]. 

 
 

2.3.6 Resonant Gate Driver – Topology F 

Figure 2.20 shows an H-bridge resonant gate driver with extra diodes and 

capacitors to enhance the separate charging and discharging process [53]. This 

topology is an updated version of topology D [40] - [43]. Two resonant inductors 

(Lron and Lroff) are each in series with two diodes (Don and Doff), respectively, 

with different polarity connections implemented to direct current flow into the 

different inductors. The capacitors (CPOS and CNEG) are connected in such a way 

that charging and discharging current flows into one of them. The charging 

resonant loop is MP - Lron - Don - CG - CPOS. The discharging resonant loop is 

MN–Lroff - Doff - CG - CNEG. It is claimed as having “a programmable magnitude 

of the discharge current” and “a tunable turn-on current” [51]. Both the turn-on 

and turn-off current can be modified by the values of their resonant inductor 

and capacitor to match the desired transition performance. The detailed analysis 

is not included here, but the working principle behind it has been previously 

discussed.  
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Figure 2.20. Another H-bridge resonant gate driver using gate  

inductor in series and capacitor voltage divider [51] 

 
 

2.4 Resonant Gate Driver Design Considerations for 

Power GaN HEMT’s 

Several resonant gate drivers have been analyzed in the last section. From 

the early 90’s to the most recent patent in 2013. All of them are implemented 

at the PCB define level using conventional gate driver IC’s and discrete resonant 

inductors. We have noticed the trend that the resonant gate driver is adding 

more and more complex output stages and more resonant components. The 

power loss reduction could be up to 90% [47] compared with a conventional gate 

driver. But all of them suffers difficulties if we need to further improve the 

frequency as more detailed resonant control means more complex control signals. 

The resonant gate driver in [40] is an example of two driving switches having 

be switched three times as often as the power conversion switching frequency. 

The resonant gate driver in [51] is an example using more passive components 

to have a desired resonant control. The trend developed for conventional power 

MOSFET is adding more and more extra components and more control 

mechanisms than the conventional structure to implement the gate resonance. 

For current commercial enhancement mode power GaN HEMT, the gate 

capacitance is much smaller than the conventional power MOSFET. For 

example, EPC2001 [30] has only 950 pF maximum input capacitance while the 

peak gate driving current could be as large as 4 or 5 A when driven by 
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conventional gate driver IC’s [25] [26] [27]. At such peak current condition with 

low gate capacitance, the extra components, either diodes or driving switches, 

will create unexpected parasitic effects leading to degraded resonant gate driving.  

This work tries another direction. Without complex modifications to the 

gate driver output stage, change in the driver IC topology may enable the driver 

to control the output stage to work with parasitic gate inductance in realizing 

resonant gate driving. Parasitic gate inductance should always be minimized 

using a conventional gate driver. Resonant gate inductance is often added for 

high power, low frequency gate driving conditions.  

In this work, the development of a novel GaN resonant gate driver seeks to 

reach a balance between them. The conventional design principle from PCB 

level to converter level should still be followed such that gate parasitic 

inductance should be minimized. For the unavoidable last portion of the gate 

inductance, without significant changes at the driver output topology, by 

updating the driver IC design, this portion of gate inductance, from the IC pads, 

bond wires to the PCB traces, can be incorporated into the resonance input 

capacitance of the commercial fast-switching GaN HEMT devices. Without such 

improvement, the conventional gate driver will finally suffer ringing due to the 

parasitic capacitance as switching frequency gets higher and higher.    
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Chapter 3 

A Fully-Integrated Resonant Gate Driver for 

Power GaN Devices 

 

3.1 Introduction to the eGaN FET 

The GaN HEMT’s power device has many different electrical characteristics 

from the conventional Si power MOSFET’s. Implementing a resonant gate drive 

for such a device should have the benefits of energy saving without sacrificing 

the inherent superior performance of GaN device. Even though many different 

Si power MOSFET’s technologies are available on market, most Si power 

MOSFET’s technologies are derived from Vertical Diffused MOS (VDMOS) 

structure to maximize the power density for an increasing breakdown voltage 

rating requirements. However, all GaN power devices from EPC are lateral 

structure.  

To better understand the differences between these two types of devices, a 

comparison in Table 3.1 is made for a GaN and other selected Si power FET’s 

with similar blocking voltage VDSS, current rating IDS, and on-channel resistance 

RDS(ON). The BSZ035N03MS [54] is from Infineon with its innovated OptiMOSTM 

3 technology. The model IRLH7134PbF [55 ] is provided by International 

Rectifier with the well-known HEXFET® Power MOSFET technology. 

EPC2015 [56] is the one of the eGaN ® series power devices provided from EPC. 

Both MOSFET’s with OptiMOSTM and HEXFET® technologies are vertical 

structure. We will focus on the differences between gate voltage, gate charges, 

input/output capacitance and body diode in the following.   

 

 Gate voltage 

The gate voltage rating for eGaN FET is much smaller than Si MOSFET. This 

is similar voltage and current capability and channel resistance. 
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Table 3.1: Device characteristics for three typical power transistors with  

 

 VDSS IDS RDS(ON) VGS VTH QG QGD CISS COSS Qrr VSD 

 V A mΩ  V V nC nC pF pF nC V 

BSZ035N03MS 30 40 4.3 1 ±20 1-2 27 5.9 4300 1200 ≤20 0.81 

IRLH7134PbF 40 50 3.9 2 ±16 1.0-2.5 39 16 3720 610 25 ≤1.3 

EPC2015 40 33 3.2 3 -5, 6 1.4 10.5 2.2 1100 575 0 1.75 

 

mainly due to the lack of excellent isolation performance provided by gate oxide 

layer in the GaN structure. However, the threshold voltage is about the same. 

But eGaN FET have only 1 to 2 V VGS headroom from full turn-on to 

maximum allowable rating. This brings a challenge to the gate driver design, 

very careful PCB layout to minimize gate inductance is crucial to avoid damages 

caused by parasitic gate overshoot voltage.    A secure high voltage clamp 

function should be provided to clamp the floating boot-strap power supply for 

high-side switch in a half-bridge driver configuration as in LM5113. However, 

due to the large charge or discharge current, using conventional voltage 

regulation method is not realistic, the methodology of voltage clamping at 5.5 

V in LM5113 is not accessible to the commercial IP protection.  

 Gate charges 

All gate associated charges for eGaN FET’s are significantly smaller than 

its comparable Si versions. So a current source gate driver may not be so 

applausive for GaN device considering extra time and losses for building up a 

non-zero current in a inductor. 

 Input/output capacitance 

 The input capacitance is also much smaller, less than one third of similar 

Si MOSFET. From the design of a resonant gate driver viewpoint, this means 

we can have a much smaller resonant inductor for a large enough characteristic 

impedance. Most likely a PCB trace inductor is preferred, rather than a bulky 

and lossy discrete surface mounted inductor.   

  Body diode 

 All vertical power MOSFET’s has inherent source to drain body diode in 

parallel to the device channel. So both Si power MOSFET’s in Table 3.1 have 

reverse recovery charges Qrr during switching operations. However, for GaN 

                                     
1 BSZ035N03MS, VGS = 4.5 V, ID = 20 A. 
2 IRLH7134PbF, VGS = 4.5 V, ID = 40 A. 
3 EPX2015, VGS = 5.0 V, ID = 33 A 
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device there is no PN junction between source and drain, so the Qrr is essentially 

zero. However, eGaN FET’s has a much larger diode-like forward voltage drop 

from the source to the drain. This is mainly because the drain voltage is below 

the gate and source voltage such that the device is reversely conducted. Just 

because of the asymmetric gate-source and gate-drain structure, a higher 

“reverse threshold voltage” leads to a higher body diode forward voltage. This 

is important especially for high-side boot-strap powering in a half-bridge gate 

driver design, since the boot-strap capacitor might be over charged above the 

gate driver power supply voltage.  

 

3.2 Operation Principles of the Proposed Resonant 

Gate Driver   

The customized gate driver IC designed for resonant gate drive has been 

reported. Two typical resonant gate drivers are described here. A research team 

at microelectronics laboratory of University of South Carolina proposed a 

resonant gate driver IC designed for a depletion-mode GaN device fabricated at 

its own facility [57] [58] [59]. The gate driving topology is the “Resonate Gate 

Driver - Topology C” in section 2.3.3. The design process is 0.35 μm, 50 V high 

voltage H35B4 CMOS process [60] of Austriamicrosystems (AMS AG). The 

driver has maximum 50 mA output. The 1 mm width GaN HFET’s built on 

sapphire has total input capacitance about 25 pF with 1 A current level and 

100 V voltage rating. The PCB trace resonant inductor is about 20 nH. A 

switching frequency of 10 MHz was demonstrated for a load of a single GaN 

device test circuit. Another customized resonant gate driver using a 0.25 μm 

BiCMOS process is developed by Ampere laboratory at University of Lyon, 

France [61] [62] [63]. This gate driver is designed for an on-chip 3.6–2.2 V buck 

converter working at 200 MHz. The driver uses the topology described in 

“Resonate Gate Driver - Topology D” in section 2.3.4. The resonant inductor is 

a 400 × 400 μm2 on-chip inductor with 8 nH inductance. The power transistors 

for the gate driver are the lateral-drain-extension MOSFET (LDEMOSFET) 

provided by the process working at 2.5 V VGS and 3.6 V VDS with size of 7 

mm/0.25 μm. The estimated input capacitance is about 17 pF. 

The gate driving requirements for the EPC GaN devices are quite different 

from the above published works. The input capacitance for the GaN device is 
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significantly larger. For example, the CISS for EPC2015 alone is almost 1000 pF, 

much larger than any of the applications above. The output peak current of LM 

5113 is 1.2A/5 A source/sink current and almost 1.3/7.6 A for LM5114, which 

are the conventional gate drivers for EPC eGaN devices. For most conventional 

HV CMOS process, there is no such a large current rating on-chip inductors 

available. The solution proposed in [59] [60] [61] where area for the output 

transistors is almost doubled will not be favorable for EPC GaN devices. 

Additional large transistors in parallel turned on and off will at the gate 

significantly disturbs the gate capacitance and distort the gate signals.  

 

3.2.1 Operation of Non-clamping Resonant Gate 

Driver 

A simpler resonant gate driver is proposed without adding extra clamping 

or recovery diodes or transistors [64]. If the turning on and off timing could be 

precisely controlled, gate resonance will still be implemented and partial energy 

recovery can be realized. This resonant gate driver utilizes the parasitic gate 

inductance for resonant gate driving. The physical configuration from the load 

devices is the same as the conventional gate driver. The resonant gate driving 

is completely controlled by the sequence and pulse width of the control signals 

based on different resonant inductance and load capacitance values. It can be 

configured as resonant gate driver or conventional gate driver as practical 

operation conditions allowed.    
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Figure 3.1. Proposed non-clamping resonant gate driver shared the  

same output structure as a conventional gate driver [62]. 
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The proposed non-clamping resonant gate driver is shown in Figure 3.1. 

Figure 3.2 shows the simplified operating waveforms of four intervals for the 

charging and discharging process. The interval A - driver charging and interval 

B – body-diode charging completes a charging cycle. The interval C - gate 

discharging and interval D – body-diode recovery are for a discharging cycle.  

 
Figure 3.3 shows the steady state waveforms of the proposed non-clamping 

resonant gate driver under resonant gate driving conditions. The four intervals 
are marked as A, B, C and D. 

 

1) Interval A (t0 – t1): VD driver charging: 

P-channel transistor MP is turned on, the gate driver supply charges the 

power device’s gate through the resonant loop MP – Lr – CG. The MP is turned 

off the moment while the gate is charged almost half of the final value VD. The 

energy provided by the driver supply is now split between the resonant inductor 

Lr and the gate capacitance CG.  

 

2) Interval B (t1 – t2): MN body diode charging: 

Since the inductor current is still continuous, the rest of the current iLr will 

flow through the body diode of n-channel transistor MN to finish the resonance, 

charging the gate voltage at the desired value of VD. Since the transistor MN is 

off, the gate capacitance voltage cannot resonate back to resonant inductor 

current since the reverse path is blocked. 

 

3) Interval C (t3 – t4): CG gate discharging: 

Similarly, as interval A, MN being turned on for this interval, the gate 

potential is discharged to the half way where partial of the potential energy is 

transferred to inductor flux energy. 

 

4) Interval D (t5 – t6): MP body diode recovery: 

The current continues flowing back to the driver supply VD. The resonance 

finishes when the gate capacitance CG is completely discharged. 

 

The timing between interval A and B, or C and D is adjusted based the 

actually loss of the circuit. For example, if the interval A is too short, the energy 

provided will not be able to charge the CG to a desired value. If it is too long, 

the resonance will charge the CG above the VD, which might damage the device, 

or increases loss due to unnecessary ringing. 
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D)                             C) 

 

Figure 3.2. Four operation intervals for the proposed resonant gate 

driver, [from top-left clockwise:] A) driver charging, B) body-diode 

charging, C) gate discharging, D) body-diode recovery [62]. 
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Figure 3.3. Simplified steady state waveforms of the proposed  

non-clamping resonant gate driver, the A, B, C and D shows the  

four operating intervals in Figure 3.2 [62]. 
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3.2.2 Operation of MOSFET-clamped Resonant Gate 

Driver 

Even though the proposed non-clamping resonant gate driver has the 

advantages of simple structures and controls, it has serious practical problems 

during application. The non-clamping (floating) gate voltages in the duration 

of on and off status could be distorted by any noise coupled from any 

components on switching converter board. Normally the noise caused by any 

parasitic effects on a PCB is hard to simulate and predict accurately even with 

any PCB level simulation softwares with 3D electro-magnetic (EM) field solvers. 

Comparing with other silicon power MOSFET’s, the current GaN enhancement-

mode HEMT’s power devices are much more sensitive to gate noise. Table 3.1 

shows that the GaN HEMT is especially sensitive to the positive gate voltage. 

To ensure a proper operation of the GaN devices under resonant gate driving 

condition, a MOSFET-clamped resonant gate driver is designed to eliminate the 

possible false turn-on or turn-off due to the coupled gate noise on board. Figure 

3.4 shows the schematic diagram of the proposed MOSFET-clamped resonant 

gate driver.  
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Figure 3.4. Proposed MOSFET-clamped resonant gate driver. 
 

 

The hardware implementation is the same as the resonant gate driver–

topology D in section 2.3.4. However, the control signal scheme is different. 

There is no pre-charge or pre-discharge interval where the inductor current is 

built up. The control sequences in topology D of section 2.3.4 are too complex 

for high frequency switching application. The current source gate driver is less 

favorable for GaN HEMT’s used in low power conversions since the gate input 

capacitance and gate threshold voltage is smaller than other types of Si power 
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MOSFET’s devices. Figure 3.6 shows the steady state waveforms of the 

proposed MOSFET-clamped resonant gate driver. The four intervals are marked 

as A, B, C and D in the figure. 

 

1) Interval A (t0 – t1): VD driver charging: 

P-channel transistor MP is turned on, the gate driver supply charges the 

power device’s gate through the resonant loop MP – Lr – CG. Unlike the non-

clamping version, the gate voltage is completely charged to the final value 

during this interval. If the turn-on time of the MP is a little bit larger than the 

quarter resonant period, there will be s small period of free-wheeling conducting 

through the loop of MP – Lr – BDM1. 
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Figure 3.5. Four operation intervals for the proposed MOSFET-clamped 

resonant gate driver, [from top-left clockwise:] A) driver charging, B) 

charging recovery, C) gate discharging, D) discharging recovery. 

 
 

2) Interval B (t1 – t2): M1 charging recovery: 

The M1 is turned on right after the MP turned off. The rest inductor current 

will feed back to the driver supply via the path of BDMN – Lr – M1. 

 

 

3) Interval C (t3 – t4): CG gate discharging: 
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Similarly, as interval A, MN being turned on for this interval, the gate 

potential is discharged completely to ground. There can be a short period of 

free-wheeling conduction via the loop of BDM2 – Lr – MN. 

 

4) Interval D (t5 – t6): M2 discharging recovery: 

The M2 is turned on right after the MN turned off. The rest inductor current 

will feed back to the driver supply via the path of BDMP – Lr – M2. 

 

3.3 Loss Analysis of the Proposed Resonant Gate 

Driver   

A complete analytical expression on the gate driver loss is almost impossible. 

To simplify the loss analysis, we need to make the following assumptions. 

1) A steady-state waveform is the same as the ideal lossless state waveform. 

2) The only loss is the charging/discharging loss.  

3) All loss can be expressed from the ideal current flow through an 

equivalent lumped resistance RG, the characteristic impedance Z0  >> RG. 

4) The charging or the discharging process is completely symmetrical. 

In Figure 3.7 shows the inductor current iLr and gate-source voltage vGS of 

the resonant gate driver topology C [38] [55], D [40] and the proposed non-

clamping gate driving topology [62] and MOSFET-clamped resonant topology 

during the charging period.  

 

3.3.1 Loss Analysis of Diode-clamped Resonant Gate 

Drive 

In Figure 3.7 (A), the diode-clamped version of resonant gate driver, the 

current waveform can be split into a quarter sine waveform from t0 - t1 for 

resonant charging segment and linear inductor current feeding segment from t1 

- t2. For the resonant charging period, we have the following equation. 
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Figure 3.6. Simplified steady state waveforms of the proposed 

MOSFET-clamped resonant gate driver, the A, B, C and D shows the 

four operating intervals in Figure 3.5. 
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Figure 3.7. Simplified charging steady state inductor current and gate  

voltage waveforms of three resonant gate drivers, [from left:] (A) 

topology C [38] [55], (B) topology D [40], (C) proposed non-clamping 

topology [62] and (D) proposed MOSFET-clamped topology. 

 

Differentiate over time, we can have a standard second-order differential 

equation. Solve equation based on the assumption 3), we have result in (3.2) 

and (3.3) [58]. 
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Based on initial condition, coefficient A is zero. Coefficient B can be quickly 

expressed as the resonant current magnitude of a lossless series LC network. 
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The inductor current for the resonant segment can be expressed as [58] 
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Furthermore, simplify the sine term with the assumption the characteristic 

impedance is much larger than the gate resistance and neglecting the 

exponential decay 
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 The energy loss during the charging segment can be expressed as an 

integral of a quarter sine wave (0 – π/2 radian angel), which leads to 
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For the linear current recovery segment, the time period is 
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Since the current during recovery is linear, the current waveform in this 

segment can be treated as a triangle. The energy loss in this segment can be 

shown as 
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The total energy loss from t0 – t1 can be expressed as the sum of (3.5) and 

(3.6) [58] 
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The total energy loss is the sum of the charging and discharging process, 

with reverse current waveforms but the same amplitude. The result times the 

switching frequency fsw is the total power loss for the resonant gate driver 

topology C in Figure 3.4 (A).    

 

  
2

g swsw fV f

Z Z

   
 

2

D GD G g

total

0 0

V R C2 R C 1
P = + 2.24

4 3
   (3.9) 

 

3.3.2 Loss Analysis of MOSFET-clamped Current 

Source Resonant Gate Drive 

In Figure 3.7 (B), the transistors’ clamped version of resonant gate driver, 

from t1 – t2 segment the current waveform is a resonant segment with non-zero 

initial current and voltage. It will be very complicated to write down a 

differential equation to solve this problem. A simple way is to approximate the 

current of this segment as a linear current growth. So the whole charging period 

can be divided into three segments: pre-charging segment t0 - t1, charging 

segment t1 - t2 and recovery segment t2 - t3.  

If the average current and current ripple in the segment t1 - t2 can be 
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determined, the exact current values at t1 and t2 will be available. The average 

current can be approximated as the gate charges over charge time t12.  
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The current ripple can be obtained if we assume the equivalent voltage 

across the inductor is the middle point of the voltage swing, which is the VD/2. 
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Then the current at t1 and t2 can be expressed as 
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The time intervals of t0 - t1 and t2 - t3 can be approximated in the same way 

as in equation (3.6). 
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Then energy dissipated during time intervals of t0 - t1 and t2 - t3 segments 

can be expressed as below.  
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For the interval of t1 - t2, the wave form can be treated as a superposition 

of an average DC value with a triangle wave. The average DC value Iavg is 

orthogonal to the triangle wave with 0 average, then total mean-square value 

can be obtained by simply adding mean-square value of each component. 
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The total energy loss is the two times of the sum of (3.16) (3.17) and (3.18) 

process.  
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The power energy loss is the product of the switching frequency fsw and 

equation (3.19). 
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3.3.3 Loss Analysis of Non-clamping Resonant Gate 

Drive 

The proposed resonant gate driver without clamping devices is shown in 

Figure 3.7 (C). The whole charging process can be divided in two segments. In 

the time interval t0 - t1 the LC resonant tank consisted of Lr and CG is charged 

through MP by VD. During interval t0 - t1 the same LC tank resonates without 

voltage source connected. Since the time constant of the circuit is the same, for 

simplicity we assume between these two intervals the gate of the power device 

is charged to VD/2, the half way to the final value VD. 
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Since the resonant condition is the same as in Figure 3.4 (A), the current 

expression is essentially the same. The energy loss during the driver charging 

segment t0 - t1 can be expressed as an integral of a quarter sine wave (0 – π/3 

radian angel),  
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The current waveform for the body-diode charging during the interval t1 – 

t2 is symmetric to the interval t0 - t1. So the total energy loss during the charging 

period is   
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Similarly, the discharging process is also symmetric, so the total power loss 

for the proposed resonant gate driver in Figure 3.4 (C) is  
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Comparing to the loss in (3.9), the power loss in (3.23) only has a smaller 

coefficient. This is due to a smaller charging current in a partial quarter sine 

inductor waveform in Figure 3.7 (C) compared to a full quarter current sine 

inductor waveform Figure 3.7 (B). However, since in the proposed resonant gate 

driver, half of the gate driving is conducted by body-diode, we can expect the 

effective RG in Figure 3.7 (C) is larger than in Figure 3.7 (A). But both cases 

should have a similar gate driver power saving profile. 

 

3.3.4 Loss Analysis of MOSFET-clamped Resonant 

Gate Drive 

The current waveform of Figure 3.7 (A) and (D) are essentially the same. 

The only difference is the charge recovery process which in case (A) the inductor 

feeding current is via clamping diodes but in case (D) is through the clamping 

MOSFET’s. The power loss equation is the same as in equation (3.9) since the 
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power loss is calculated based on the equivalent rms current value multiplied 

by the equivalent gate resistance RG. 
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Even though the operating principle is the same, there is an important 

benefit of charge recovery using MOSFET’s over diodes or body diodes charge 

recovery. Since all diodes have a reverse recovery current after forwarding 

current drops off, the charging or discharge voltage must somewhat have an 

overshoot or undershoot to provides charges for reverse current. This overshoot 

or undershoot is observed in the simulations of type (A) and (C) in Figure 3.7.   

 

 

3.4 Design of the Low-Side Resonant Gate Driver  

 

 

 
Figure 3.8. Block diagram of the low-side conventional gate driver 

LM5114 [26]. 

 

 

LM5114 is a low-side gate driver formally designed by National 

Semiconductor and recommended by EPC. It is specifically designed for EPC 

eGaN ® devices. Figure 3.8 is the block diagram of LM5114 [26]. One obvious 

character is that the LM5114 NOUT has a pull-down clamp in parallel. This 
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circuit is actually a NPN BJT transistor which can turn on at less than 1 V to 

pull down the power device. LM5114 provides an option of non-inverting or 

inverting signal input, which also behaves as an enable pin while not used as 

PWM signal input. However, since this is essentially a conventional gate driver 

with totem-pole structure output, only one input is necessary to drive to circuit. 

This is also the reason why the LM5114 cannot be used for resonant gate driving. 

If we want to implement resonant gate driving for GaN HEMT’s devices, a new 

gate driver must be designed.  

 

3.4.1 Design of the Low-Side Non-Clamping Gate 

Driver 

 Based on the signal diagram in Figure 3.3, where the turn-on or turn-off 

control of the power switch is independent of each other, the proposed resonant 

gate driver should have two paths of completely separated control signals. The 

truth table of the proposed resonant gate driver is shown in Table 3.2. Unlike 

a conventional gate driver, both inputs have no signal, the output should be at 

floating status. At this moment, the resonance is implemented at the gate with 

the power device input capacitance and added resonant inductor. 

 
Table 3.2: Truth table of the proposed non-clamping resonant gate driver. 
 

INON INOFF POUT NOUT 

L L OPEN OPEN 

L H OPEN L 

H L H OPEN 

H H OPEN L 

  

 
Figure 3.9 shows the block diagram of the proposed low-side resonant gate 

driver to realize the driving logic functions in Table 3.2. The conventional one 

PWM signal should be split into two signals, INON and INOFF, for the proposed 

resonant gate driver, each signal can control the turn-on or turn-off timing and 

width. As mentioned above, the output is pulled down when both INON and 

INOFF inputs are high. This design is to ensure the power device is turned off 

when the control signals conflict with each other. Another case happens when 

both INON and INOFF inputs are low. Due to the requirements of the proposed 

resonant gate driver, both output pins are floating at this moment. The input 
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INON and INOFF first pass through a Schmitt trigger with designed hysteresis to 

overcome the noises at the inputs. Then a two-input NAND gate following the 

Schmitt trigger outputs is added in a case of abnormal input conditions where 

two inputs are both high. Each turn-on or turn-off signal is finally controlled 

by an output of the under-voltage lock-out circuit (UVLO). When the voltage 

supply of the gate driver drops to a designed low level, the output of UVLO 

will shut down the gate driver output by turning on NOUT and turning off POUT, 

pulling of the power switch gate. The output PMOS and NMOS driving 

transistors are connected to the driver supply VDD. The output has separate 

POUT for pulling up and NOUT for pulling down. The enable pin ENA is defined 

such that when it is low, the output will be POUT for open and NOUT pulled down 

to shut off the power switches.   

The proposed resonant gate driver is designed with a commercially available 

high voltage (HV) CMOS process. This process provides variety of 1.8 V, 5 V, 

20 V and 50 V FET’s and other active and passive devices. In this design the 

driver circuit core is designed with 5.5 V oxide FET’s to meet the requirement 

of maximum 5.5 V gate-source voltage of GaN HEMT’s. For the high-side circuit 

in the proposed half-bridge gate driver, high voltage isolated devices are used. 

Some other devices such as isolated Schottky diodes, resistors and capacitors 

are also used. However, this HV CMOS process does not have an on-chip 

inductor suitable for power applications. The inductor diameter is limited to the 

range of 100 to 400 μm. The supported metal line is limited up to 25 μm. The 

current limit and inductor values cannot meet the required resonant inductor. 

The resonant inductor must be provided off chip either with a discrete surface 

mount inductor or the parasitic stray inductance of a PCB wire. 

Schmitt trigger is the first block on the signal path. It will filter out the 

noises and reconstruct the signal. The noise filtering is implemented with the 

hysteresis design of the Schmitt trigger. Figure 3.10 shows the schematic of the 

designed Schmitt trigger, where the sizing of MN1 and MN2 determines the lower 

triggering voltage and the sizing of MP1 and MP2 determines the upper triggering 

point. Figure 3.11 shows the simulation 

of the Schmitt trigger in Figure 3.10. The post-layout simulation is also carried 

with the Caliber 3D extracted “xACT 3D” suing complete L and C options [65]. 

The simulation confirms the desired switching points of 3.7 V and 1.4 V matches 

the design specifications. It also shows the layout style is in consistent with the 

schematic plan. 

An under-voltage lockout circuit (UVLO) is present in most gate driver 

circuit especially in battery powered applications to ensure proper working 
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conditions for the power switches. As long as the power supply is not sufficient 

to make the device work properly, the gate driver will turn of the switching 

signals. Figure 3.12 shows the schematic diagram of the proposed UVLO. From 

the left to the right, the UVLO is composed of a start-up circuit, a beta 

multiplier reference circuit (BMR) [66], a differential amplifier with one input 

feeding with a resistive divider, a comparator with positive feedback and an 

output differential amplifier. The start-up circuit will quickly push the circuit 

into the desired quiescent conditions whenever the power supply is added. A 

BMR circuit is used to create a stable reference voltage for the current mirrors 

needed for a voltage reference, amplifier and comparator. A resistive voltage 

divider is to provide a ratioed power supply voltage for one of the input of the 

following differential amplifier. The differential output of the differential 

amplifier is feeding into a positive feed-back comparator with hysteresis applied. 

This hysteresis control is different from the conventional feedback based 

hysteresis control in UVLO. The purpose of choosing this design is to minimize 

the transition delay. The output of the comparator is two-path rail-to-rail 

differential signal. This signal is feeding into the output differential amplifier 

with its single-ended output driving an output inverter. The final output will 

either following the power supply or being pulled down to ground. 

 

UVLO

INON

INOFF

NOUT

POUT

VDD

Vss

 
 

 

Figure 3.9. Block diagram of the proposed non-clamping low-side  

resonant gate driver. 
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Figure 3.10. Schematic diagram of the input Schmitt trigger. 

 
 

As for EPC GaN devices, the RDSON will increase significantly if the gate 

driving voltage continuously dropping below 4 V. So the UVLO was designed 

with hysteresis of VLH = 4.5 V and VHL = 3.7 V. The hysteresis is realized by 

the comparator mentioned above with specified transistor sizing. Figure 3.13 

shows the UVLO simulation results. The power supply VDD changes from 0 V 

to 5.5 V and drops back to 0 V. UVLO output follows the VDD when it rises to 

the level at VLH = 4.41 V and pull down to ground again when the VDD drops 

to the level at VHL = 3.60 V when VDD drops. The output transition time is less 

than 30 ns, which is less than one period of 100 ns for 10 MHz switching. So the 

UVLO will take effects in one switching cycle, avoiding possible damages 

working with an under-voltage supply. This UVLO should meet the requirement 

of the proposed resonant gate driver working at high speed conditions.    

 

 

 
 

Figure 3.11. Cadence Spectre simulation of the Virtuosos schematic  

(in blue) and the Calibre xACT 3D extracted layout (in red). 
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Figure 3.13. Cadence Spectre simulation of the proposed UVLO in  

Figure 3.7, [from top:] the VDD input voltage; the UVLO output 

voltage. 

 

3.4.2 Design of the Low-Side MOSFET-clamped Gate 

Driver 

Referring to the schematic and operational diagram in Figure 3.14 and 

Figure 3.15, the gate driver truth table is shown in Table 3.3. For the MOSFET-

clamped resonant gate driver, since it has two set of output, we need to define 

two truth tables for each set of output and inputs. Only the pin OUT2 is split 

into POUT and NOUT since this node is on the main charging or discharging path. 

The first truth table is similar to the non-clamping one, with the exception for 

COUT. When both INON and INOFF are at the H level, the COUT is set to L, such 

as clamp the output to the device gate terminal to ground.  

The second truth table is to determine the functions of the second output 

pin COUT (OUT1 in Figure 3.4) during transitions. This output is triggered by 

the rising and falling edges of the control signals. When INON changes from H 

to L while INOFF is L, this is the start of charging recovery as shown in Figure 

3.5 (B). When INOFF changes from H to L while INON is L, this is the start of 

discharging recovery as shown in Figure 3.5 (D). The driver charging process as 

shown in Figure 3.5 (A) startes as INON changes from L to H when INOFF is L, 

while the discharging process starts as INOFF changes from L to H when INON 

keeps at L. The timing for these three output pins should be carefully observed 
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to obtain the desired clamping without impact on the resonant process.  

Figure 3.14 shows the block diagram of the MOSFET-clamped low-side gate 

driver. The logic function of the INON/INOFF to POUT/NOUT and COUT is designed 

to implement the truth table in Table 3.3. Unlike the non-clamping resonant 

gate driver, where the gate of the power switch will be floating after the desired 

resonant process finished, the clamping node output, COUT, is either shorted to 

ground or power supply based on the different control sequences.   

The control block diagram for the INON/INOFF to COUT can be explained with 

the steady state waveforms in Figure 3.6. A negative edge INON and a low level 

of INOFF is to provide a turn-on duration of M1 in Figure 3.4. A negative edge 

INOFF and a low level of INON is to provides a turn-on duration of M2. If both 

turn-on and turn-off signals happens due to some malfunctions of the input 

signals or circuitry, the output will turn off the power device to protect it. The 

enable pin ENA and internal UVLO control the output in the same way as the 

non-clamping version in Figure 3.9. 

As shown in Figure 3.4, the middle point of transistors MP and MN is 

supposed to experience a large voltage swing (even higher than rail-to-rail swing) 

during the transition from the charging/discharging to the recovery intervals.
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OUT

 

 

Figure 3.12. Schematic diagram of the proposed UVLO circuit, [circled area from left:] start-up circuit,  

BMR, differential-ended differential amplifier, comparator, single-ended differential amplifier.
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To minimize the potential coupling to the gates of MP and MN, two methods 

can be employed. The first is to have a parallel diode across drain and source 

of MP and MN such that the recovery current will not flows through the body 

diodes. The second method is to increase the sizing of MP and MN to have a 

larger parasitic body diode. Figure 3.14 shows the drivers chain in orange for 

MP and MN and in yellow for M1 and M2. The former chain is a six-stage inverters 

and the latter four stages.   

 
Table 3.3: Truth tables of the proposed MOSFET-clamped resonant gate 

driver. 

 
 

INP INN POUT NOUT 
COUT 

L L OPEN OPEN TBD 

L H OPEN L OPEN 

H L H OPEN OPEN 

H H OPEN L L 

 

INP INN COUT 

H  L L H 

L H  L L 

L  H  L OPEN 

L L  H OPEN 

 
  

Cadence Ultrasim simulator [67] rather than conventional Spectre simulator 

is used to simulate the large signal power switching. The simulation mode is 

“Spice (S)” and speed mode is “Extreme Accuracy (1)”. Under this configuration, 

the Ultrasim avoids converge problems occurred during most switching 

simulations with only 2 or 3% errors. Figure 3.15 shows the Cadence Ultrasim 

simulation results for the control outputs of the proposed MOSFET-clamped 

resonant gate driver switching at 10 MHz with 50% duty cycle. The circuit 

configuration is the same as in the topology (g) in Table 3.4. The resonant 

inductor is chosen as 20 nH. The signal inputs in the same as the non-clamping 

gate driver. The outputs are four strictly timing correlated channels to drive 

transistors MN, MP, M1 and M2 in Figure 3.4. For example, when MN is turned 

on by a rising gate signal VN, the M1 must be quickly turned off by ramping the 

V1 to 5 V. When the gate voltage of MP, VP, dropped to 0 V, the V2 must be 
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turned off as soon as possible. The simulation at room temperature with typical 

process corner models shows a transition delay of these two cases of only 0.1 ns.  
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Figure 3.14. Block diagram of the proposed MOSFET-clamped  

low-side resonant gate driver. 

 
 

 

 

Figure 3.15. Cadence Ultrasim simulation results for the voltage  

control outputs of the proposed MOSFET-clamped resonant gate  

driver (in Figure 3.4) working a4 10 MHz with 20 nH resonant  

inductor (type (g) in Table 3.4), [from top:] IN P and IN N, control  

inputs; V P, gate voltage of MP; V 1, gate voltage of M1; V N, gate  

voltage of MN; V 2, gate voltage of M2. 
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Simulations at different temperatures and process corners also prove the 

effectiveness of the proposed design. Figure 3.16 shows the transition of VN 

rising edge to V1 rising edge and VP falling edge toV2 falling edge at 25˚C and 

125˚C. At 125˚C, the maximum transition delay is still less than 0.16 ns. 

Figure 3.17 is the same simulation result at 50˚C using two extreme conditions: 

the fast NMOS slow PMOS model (fs) and the slow NMOS and fast PMOS (sf). 

The delay increase caused by the process corner is about 0.14 ns, even smaller 

than the one due to the temperature increases. 

  

3.5 Simulation Results 

To verify the effectiveness of driving power saving for the proposed resonant 

gate drivers compared with other existing topologies, a simple test circuit is 

used for the simulations. Figure 3.18 shows the simplified test circuit 

schematic diagram. For resonant gate drivers, a modified version with main 

charging PMOS and discharging NMOS FET’s having a PN diodes in parallel 

to bypass their source–drain body diodes are also included for comparison. 

The green-line enclosed amplifier symbol represents each gate drivers for the 

following: 

 

(a) conventional gate driver (Figure 2.5), 

(b) diode-clamped resonant gate driver (Figure 2.13), 

(c) diode-clamped resonant gate driver (Figure 2.13) with body diodes 

bypassing,  

(d) non-clamping resonant gate driver (Figure 3.1), 

(e) non-clamping resonant gate driver (Figure 3.1) with body diodes 

bypassing, 

(f) MOSFET-clamped resonant gate driver (Figure 3.4), 

(g) MOSFET-clamped resonant gate driver (Figure 3.4) with body diodes 

bypassing. 

 

Figure 3.19 shows the schematic diagram of the resonant gate driver type 

(c) and (g) mentioned above. Other types of gate drivers have less components 

as in these two topologies. The resonant inductor has equivalent series resistance 

(ESR) of 10 mΩ.  Table 3.4 lists the component values used for simulations. 

The control signal is from an ideal voltage pulse source with 5 mΩ ESR, 5 V 

amplitude and 1 ns rising/falling edges. The driving pulse width for signal INN  
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Figure 3.16. Cadence Ultrasim simulation results for the transition 

delay at 25˚C (top) and 125˚C (bottom), [from left:] VN rising edge to 

V1 rising edge; VP falling edge toV2 falling edge. 

 

   
 
 

Figure 3.17. Cadence Ultrasim simulation results for the transition 

delay at 50˚C (top) with different process corner models, [from left:] 

fast NMOS slow PMOS (fs) models; slow NMOS fast PMOS (sf) 

models. 
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and INP is 7 ns. The driving pulses for IN1 and IN2 are set respectively to INN 

and INP for the whole duty cycle. 
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Figure 3.18. Test circuit schematic diagram for several gate drivers’ 

simulations. 
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Figure 3.19. Schematic diagram for the gate drivers, [from left:]  

type (c) and type (g). 

 
 

Figure 3.20 shows the Cadence Spectre simulation for conventional gate 

driver of type (a) while the gate inductance was set to 0, 2, 4, 6 nH. Even with 

this simple simulation at 2 nH gate inductor, the peak VGS value has already 

exceeded 6 V, which is the maximum allowable gate-source voltage for eGaN® 

devices. This shows that the conventional gate driver not only suffers the 

inherent driving loss, any parasitic gate inductance will likely degrade the gate 

voltage and result in the device failure. 

Figure 3.21 shows Cadence Ultrasim simulations for the average gate 
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driving losses and power device switching losses1 of the gate drivers from type 

(a) to type (g) listed in Table 3.4. To achieve the best accuracy and avoid the 

convergence problems of Spectre for switching simulation, the Ultrasim 

simulator is chosen with simulation mode of “Spice (S)” and speed mode of 

“Extreme Accuracy (1)”. The switching frequency is 10 MHz with 50% duty 

cycle. The resonant inductor values is chosen from 0 nH to 30 nH with the step 

size of 2 nH. The inductor series resistance is fixed at 10 mΩ. The type (a) 

conventional gate driver also includes the resonant inductance as its gate 

inductor. For resonant gate drivers, different control signals are required for 

different resonant conditions. As the gate resonant inductor changes, the pulse 

width of the driving signals will also need to be adjusted with a resolution of 

0.5 ns in every 30 us run of transient simulation of each topology to obtain the 

desired 5 V turn-on and 0 V turn-off gate-source voltage.  

 
 

Table 3.4: Components’ values used in Cadence Ultrasim simulations for 

conventional gate driver types (a), resonant gate drivers type (b), (c), (d), 

(e), (f) and (g). 

 

Type MP MN M1 (D1) M2 (D2) DB 

(a) 
pfetm, wt=2m, 

l=0.7m, nf=200 

m=12 

nfetm, wt=1m, 

l=0.7m, nf=200

m=12 

   

(b) 
SAA

(Same As 

Above) 

SAA 

sbdi, w=2u, 

l=30u, nf=2, 

m=500  

sbdi, w=2u, 

l=30u, nf=2, 

m=500 

 

(c) SAA SAA SAA SAA 

dipdnw, 

w=5u, 

l=2u, nf=2, 

m=100 

(d) SAA SAA    

(e) SAA SAA   SAA 

(f) SAA SAA 

pfetm, 

wt=2m, 

l=0.7m, 

nf=200 

m=6 

nfetm, 

wt=1m, 

l=0.7m, 

nf=200 

m=6 

 

(g) SAA SAA SAA SAA SAA 

 

 

 The control signals for diode-clamped resonant gate driver was reported 

to be not sensitive to the variations of the exact values of resonant inductance 

                                     
1 The device switching loss is computed as the averaged product of VDS and IDS. It is larger than 
the real device switching dissipation observed during test. 
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[39] [57]. However, due to the reverse recovery charges at the moment of turning 

off a diode, it is difficult to have an ideal turn-on or turn-off gate-source voltage. 

Figure 3.22 shows the turn-on and turn-off waveforms of VGS for the EPC2001 

in the resonant gate driver type (b). The resonant inductor is 16 nH. The control 

signal pulse width is swept from 3 ns to 12 ns with step of 1 ns. It shows that 

the final turn-off VGS level is approaching 0 V as the turn-off pulse width keeps 

increasing. However, the width cannot be too large since it will finally approach 

the driving loss of a conventional gate driver. It also increases the minimum 

switching duty cycle. This is due to the reverse recovery charges when the 

NMOS FET MN is turned off, the inductor current recovery through the body 

diode of PMOS FET MP is finished. The reverse recovery charges must flow 

through the body diode MN. Since this recovery path is not directly connected 

to ground, a small oscillation at middle point of the MP-MN leg will finally settles 

and leads to a non-zero VGS voltage. This also happens to the turn-on process 

such that different turn-on control signal will lead to different VGS “on” potential. 

Considering with the sensitive gate-source voltage rating of GaN HEMT power 

devices, the previously acknowledged “insensitive” controlling for diode clamped 

resonant gate driver proves to be control dependent for GaN devices. The 

advantages of the type (b) or (c) resonant gate driver is not obvious. 

 

 

 

Figure 3.20. Cadence Spectre schematic simulation of VGS voltage  

waveforms of EPC2001 for conventional gate driver type (a) with  

gate inductor values at 0, 2, 4, 6 nH. 

 
 

 Figure 3.23 shows the voltage waveforms (VGS) of the GaN FET device for 

the three representative resonant gate driver configurations type (b): diode-
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clamped, type (d): non-clamped and type (f): MOSFET-clamped. Both type (b) 

and (d) suffers the reverse current of the diodes, especially during the discharge 

process. Because the reverse current is also resonating with gate inductor, the 

discharging undershoot of type (d) is more obvious. The gate driver type (f) 

provides the best gate voltage performance. There is no obvious charging 

overshoot or discharging undershoot in type (f). 

Figure 3.24 also shows the current waveforms (IGD) of the gate driver power 

supply VD for the gate driver configurations type (b), (d) and (f). The positive 

voltage shows the current flowing out of the supply, while the negative current 

recovered to the supply. It shows all these resonant gate drivers save the driving 

power by partial recovery of the supply charges. Both type (b) and (d) have a 

“negative bump” after their positive dissipating current. This is due to the 

reverse current mentioned above.   

The device switching power loss in Figure 3.21 is explained in previous 

footnote. The plotted values are computed averaged values of the product of 

the GaN device VDS and IDS. Figure 3.25 shows the waveforms for the proposed 

resonant gate driver with MOSFET-clamping, the driver type (f) with 16 nH 

gate inductance. When gate voltage VGS charges about 2 V, the GaN switch 

finishes the whole turn-on process within 2 ns. The turn-off process starts when 

the VGS drops to 1 V. The power supply current cannot follow the speed of the 

turn-off of the device. It charges the device drain node through a typical RC 

curve while the device has already turned off. Even the switching power loss in 

Figure 3.21 is an over-estimated value, it still can be used as an indication of 

the switching performance of the device. 

 
The proposed low-side resonant gate driver was simulated with a single 

EPC2001 power device switch connected to a resistive load with 50 V power 

supply. The switching frequency is 10 MHz and duty cycle is 50%. The gate 

driving signal can be created by an FPGA in a real testing setup. The inductor 

will be off-chip since the on-chip spiral inductor with the value around 10 to 20 

nH provided by the process shows large parasitic effects which loses the benefit 

of resonant driving. Simulation shows the waveforms with the resonant inductor 

value sweeping from 6 nH to 20 nH with appropriate driving control. Increasing 

the resonant inductor will recover part of the charging energy back to source 

with little effect on the switching loss of GaN devices. This result is also due to 

the excellent switching characteristics of GaN devices. Simulation results are 

also compared to the conventional gate driver and the resonant gate driver 

topology C with clamping diodes (on-chip Schottky barrier diodes SBDI) [38]. 

The same trend of power saving profile between the proposed resonant gate 
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driver and the topology C with clamping diodes confirms the loss analysis in 

section 3.3. The resonant gate driver topology D with clamping MOSFET’s [40] 

does not work well for this application since the switching’s of the transistors at 

the gate significantly distort the gate voltage of the driven power devices. 

Figure 3.26 shows the simulation comparison of gate driver loss results for 

between three types of the gate drivers working at the above configurations. 

Assuming 0 gate inductance, the conventional gate driver loss is about 407 mW. 

Assuming optimal control timing, the non-clamping resonant gate driver (type 

(d) in Table 3.4) and resonant gate driver with MOSFET-clamping (type (f) in 

Table 3.4) shows similar simulation results. It means the MOSFET-clamping 

resonant gate driver will achieve best power saving capability during gate 

transition period while provides low-impedance path to the load device gate 

capacitance during the steady state. 

 

 

    

 

Figure 3.22. Cadence Spectre schematic simulation of VGS voltage  

waveforms of EPC2001 for resonant gate driver type (b), [from top:]  

VGS voltages, MN gate control signals with pulse width of 3 to 12 ns. 
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 Figure 3.21. Cadence Ultrasim schematic simulation of gate driving losses and power device 

 switching losses at 10 MHz for the gate drivers type (a), (b), (c), (d), (e), (f) and (g) in Table 3.4  

 with gate (resonant) inductance varies from 0 to 30 nH with the step of 2 nH. 
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Figure 3.23. Cadence Ultrasim schematic simulation of gate-source 

voltage waveforms (VGS) of EPC2001 for resonant gate drivers [orange] 

type (b), [green] type (d) and [red] type (f) in Table 3.4 with gate 

inductance of 16 nH.  

  

 

 
 
 
 

Figure 3.24. Cadence Ultrasim schematic simulation of gate driver 

power supply current waveforms (IGD) of EPC2001 for resonant gate 

drivers [red] type (b), [blue] type (d) and [pink] type (f) in Table 3.3 

with gate inductance of 16 nH.  
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Figure 3.25. Cadence Ultrasim schematic simulation of GaN device 

voltage and current for the resonant gate driver with MOSFET clamp 

type (f) in Table 3.3 with gate inductance of 16 nH.  

 

 
 
 

Figure 3.26. Cadence Spectre simulation of a gate driver with a single  

EPC2001 power load switching at 10 MHz with a resistive load 

connected to 50 V power supply, [from inside to outside:] conventional 

gate driver without resonant inductance, resonant gate driver with 

clamping diodes [38] and resonant gate driver without clamping devices 

[62]. 
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Chapter 4 

Design Implementation, Experimental Results 

and Analysis 

 

4.1 Implementation of the MOSFET-Clamped 

Resonant Gate Driver  

The final proposed MOSFET-clamped resonant gate driver for eGaN 

devices is designed, submitted and fabricated using a commercially available 

CMOS process. The basic structure follows with the design described in Chapter 

3 with modifications based on simulation results. So the similar schematics are 

not shown in this chapter.     

 

4.1.1 Circuit Block Design of the MOSFET-clamped 

RGD  

Figure 4.1 shows the layout of the UVLO circuit block of the proposed 

resonant gate driver. The schematic is shown in Figure 2.12. All circuit 

components, including comparator, current mirror, resistive divider and ratioed 

transistors pairs are designed with strict common centroid [65] layout with 

dummy devices on the outer edges. From the simulation results, the turn-on 

voltage is about 4.0 V and turn-off voltage is about 3.4 V, with the built-in 

hysteresis of about 0.3 V. Figure 4.2 shows the extracted simulation results. As 

the power supply increases, the output starts to follow the power supply when 

VDD  4.0 V, and short to ground when the power supply falls from the desired 

5 V to VDD  3.4 V to protect against unexpected working conditions of a 

converter using the switching devices when the gate driver power supply is too 

low such that the full switching condition is diminished. The testing results 

show the expected function of the UVLO. 
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  Figure 4.1. Layout of Under Voltage Lock Out (UVLO) circuit  

(340 μm × 120 μm). 

 

 

 

 

  Figure 4.2. Extracted simulation of the UVLO in Figure 4.1. 
 

The control circuit of the proposed driver is to implements the driving 

sequences shown in Figure 3.5. Figure 3.14 shows the schematic diagram and 

Figure 4.3 shows the layout of the control circuit. The devices of the control 

block are all 5 V devices for fast response. Figure 4.4 is a duplicate of the Figure 

3.14 with corresponding node names used in the simulation results in Figure 4.5 

and Figure 4.6. 

Figure 4.5 and Figure 4.6 show the extracted simulation of the control block 

to implement the driving sequences in Figure 3.5. Figure 4.5 is for the input of 

the buffer chain while Figure 4.6 is for the output of the buffer. The IN_ON and 
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IN_OFF are input pulses with 10 ns pulse width and 1 ns rising/falling edges. The 

P_OUT and N_OUT terminals drive the main output charging (MP in Figure 3.4) 

and discharging device (MN in Figure 3.4) respectively of the resonant gate 

driver. The P_C_OUT and N_C_OUT nodes drive the charge clamping device (M1 

in Figure 3.4) and discharge clamping device (M2 in Figure 3.4), respectively. 

Simulation shows the maximum skew or delay of those driving sequences is well 

below 1 ns.   

 

 

   

Figure 4.3. Layout of the control circuit (360 μm × 380 μm)  

with schematic diagram shown in Figure 3.14. 

 
 

 The output driving devices should be large enough to reduce the on-

resistance while maintaining fast enough transitions for the resonant driving 

sequences. In this work the main charging PMOS (MP in Figure 3.4) and 

discharging NMOS (MN in Figure 3.4) FET’s are sized as 128 × 48 (13/1.3) and 

128 × 48(8/1.6) respectively, and the charge clamping PMOS (M1 in Figure 3.4) 

and discharge clamping NMOS (M2 in Figure 3.4) FET’s are sized with half of 
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the respective charging/discharging devices. Figure 4.7 shows the layout block 

for 64×24(13/1.3) PMOS and 64×24(8/1.6) NMOS. For each set of 24 gates 

fingers devices, it has individual guard ring. This is support the body-diode 

conducting during the charging and discharging recovery stages as shown in 

Figure 3.5 (B) and (D).    

 
 

 
 

Figure 4.4. Schematic block diagram of Figure 4.3, 4.5 and 4.6. 
 
 

4.1.2 Simulation Verification of the Design 

To avoid the convergence problem of the fast switching conditions for 

Spectre simulation, a pseudo “body diode” NW_PW with minimum size is added 

in parallel with the main output charging /discharging devices, as shown in 

Figure 4.8 with green halo rings. The load is a 6 nF capacitance and the resonant 

inductance is 11 nH with 20 mΩ parasitic resistance. Two 200 mΩ resistors are 

also added in series to the power (VDD) and ground (VSS) of the gate driver 

supply path. The switching frequency is 1 MHz. Figure 4.9 shows the gate driver 

power supply current flow. The “dissipating current” is the current that flows 

out of the supply during the driver charging and charging recovery mentioned 

in stage (A) and (B) in Figure 3.5. The “recovery current” is the current that 

flows into the power supply during the driver discharging and discharging 

recovery mentioned in stage (C) and (D) in Figure 3.5. Simulation shows the 
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dissipated power due to the “dissipating current” is 114.5 mW, while the 

recovered power due to the “recovered current” is 40.79 mW. If we assumed the 

power loss of a conventional driver is the dissipated power without recovery 

process, the theoretical driver power dissipation ratio of the conventional to the 

proposed MOSFET-clamped driver working at this condition is about 65%. It 

means the resonant gate driver may reduce up to 35% gate driver power 

dissipation.       

 

RGD Dissipated Recovered 114.5 mW 40.79 mW
65%

Conventional Dissipated 114.5 mW

 
    

                 (4.1) 

 

During the design, the original resonant driving topology is altered to 

accommodate the tradeoff between the speed and power. Figure 4.10 shows the 

the driver charging and charging recovery shown in stage (A) and (B) in Figure 

3.5. One obvious difference is no expected charging recovery current feeding into 

the power supply during the state (B) of Figure 3.5. The M1 clamping device 

actually assistants the load charging process by providing another charging path. 

The total charging current is the sum of existing the resonant inductor current 

from the charging device MP and the new charging current from the clamping 

device M1. Figure 4.11 shows the simulation current waveforms described. The 

blue curve “MP1 Drain Current Out” is the driver current that flows from the 

drain to the source of MP, while the red curve “MN1 Drain Current Out” is the 

driver current that flows from the drain to the source of MN. The green trace 

shows the negative current flowing out of the power supply. The current for the 

later portion of the charging process (B) includes the red body-diode current 

through the MN device and the current from the clamping device M1 that is the 

decaying portion of the green power supply current.  

Similarly, Figure 4.12 and Figure 4.13 show the modified discharging process 

from stage (C) and (D) in Figure 3.5. Since no current feeding into the power 

supply during the modified charging process, the total driver power recovery 

process depends on the discharging process in Figure 4.12. The M2 clamping 

device also assistants the load discharging process by providing another 

discharging path. The total discharging current is then the sum of the existing 

resonant inductor current from the body-diode of the discharging device MP and 

the new charging current from the clamping device M2. Figure 4.13 shows the 

simulation current waveforms described. The pink curve “MN1 Drain Current 

In” is the driver current flows from the drain to the source of MN, while the blue 
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one “MP1 Drain Current In” is the driver current that flows from the drain to 

the source of MP via its parasitic body diode. The green trace shows the positive 

current flowing into the power supply, which is the portion of charge recovered 

by the proposed resonant gate driver.  

 

 

 

 

 

Figure 4.5. Extracted simulation of the control circuit in Figure 4.4. 
 
 

 

 

 

Figure 4.6. Extracted simulation of the control circuit in Figure 4.4. 
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Figure 4.7. Layout of 64×24(13/1.3) PMOS and  

64×24(8/1.6) NMOS FET’s output buffer block  

(680 μm × 520 μm). 

 
 

 
 
 

Figure 4.8. Top-level RGD schematic simulation including the control, 

buffer, driver and output stage with the capacitive load. 

 



73 

 
 

 
 
 

Figure 4.9. Simulation results of the gate driver power supply  

current flow in Figure 4.8. 

 
 
 

 
 
 

Figure 4.10. Modified charging process from the stage (A) and  

(B) shown in Figure 3.5.  

 

Dissipating current 

Recovery current 
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Figure 4.11. Simulation current flows for the charging process in  

Figure 4.10. 

 

 
 

Figure 4.12. Modified charging process from the stage (C) and  

(D) shown in Figure 3.5.  

 



75 

 
 

Figure 4.13. Simulation current flows for the discharging process in  
Figure 4.12. 

 
 

4.2 Testing Results for Capacitive Load  

The testing circuit is three separate circuits, each with one gate driver 

controlling a EPC2001 eGaN device with a SMD (surface mount device) 

capacitor with capacitance in the range from 1 nF to 10 nF. The gate driver 

IC’s are the customized resonant gate drivers from this research and commercial 

eGaN driver LM5114. The turn-on and turn-off gate resistors for the LM5114 

were chosen to be 1.5 Ω and 2.7 Ω according to the User’s Guide of LM5114 and 

EPC2001 evaluation board [68]. By varying the load capacitance and switching 

frequency, the gate driver power loss is monitored by recording the current 

consumption of the driver power supply. 

Figure 4.14 shows the test bench setup diagram. The two input signals are 

generated using the Agilent 33522A two channel waveform generator. The gate 

driver current is monitored by the Keithley DMM7510 high-precision digital 

multimeter. 

Figure 4.15, 4.16, 4.17 and 4.18 shows the measurement results with 11 nH 

resonant SMD inductor (0602 footprint) and 10 MHz switching frequency for 

different capacitive loads, the corresponding measured output voltage 

waveforms for the resonant gate driver and LM5114 are side by side. The pink 

trace is the output waveform, the blue and green traces are the input controls. 

Figure 4.19 shows the measured gate driver power dissipation ratio of RGD 
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to the corresponding LM5114 working at the same conditions. It shows that at 

low frequency the proposed resonant gate driver consumes much lower power. 

This is mainly due to the lower buffer driver power dissipation of the resonant 

gate driver. However, at higher switching frequency, the power saving reduced 

to less than 10%. This means the power recovery process is not significant.  

 

 

 

 

Figure 4.14. Test bench setup diagram. 

 

 

  

Figure 4.15. Measured waveforms for RGD (left) with  

11 nH and LM5114 (right) at 1 nF load. 
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Figure 4.16. Measured waveforms for RGD (left) with  

11 nH and LM5114 (right) at 2 nF load. 

 

 

 

 

 

 

 

 

 
Figure 4.17. Measured waveforms for RGD (left) with  

11 nH and LM5114 (right) at 3 nF load. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Measured waveforms for RGD (left) with  

11 nH and LM5114 (right) at 4 nF load. 
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Figure 4.19. Measured gate driver power ratio of the RGD with  

10 nH to LM5114 with switching frequency from 10 kHz to 10 MHz  

for capacitive loads of 1 nF, 2 nF and 4 nF. 

 

 

4.3 Testing Results for Resistive and Inductive Load 

Figure 4.20 shows the 2 rows of total six captured oscilloscope windows for 

the EPC2001 with resistive load. The loading resistor is 20 Ω and the supply 

voltage is 30 V. The top row is the waveforms of the RGD and the bottom row 

is the results of the LM5114. For each captured window, from the top to the 

bottom are the control input, VGS, VDS and IDS of the EPC2001 GaN device. The 

measured gate driver power consumption ratio is similar to the results of a 

capacitive load in the range between 1 to 2 nF. Considering the input 

capacitance of EPC2001 of nearly 1 nF, with extra Miller capacitance induced 

by CDS of the EPC during the turn-on process, this result is reasonable. 

Figure 4.21 show measured double pulse waveforms for the resonant gate 

driver. The loading inductor is about 400 uH. Input driving signal is created 

using the arbitrary waveform editor of the Agilent 33522A two channel 

waveform generator. From the top to the bottom is the one of the two input 

signals, VGS, IDS and VDS of the driving switch, EPC2001. The above 

measurement shows the fast driving capability and expected clamping 

protection during fast switching applications. 
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Figure 4.20. Captured oscilloscope window of resistive loading for  

RGD and LM5114 at 200 kHz, 100 kHz and 50 kHz. 

 
 

 
 
 

Figure 4.21. Measured waveforms of the double pulse test (DPT) 

of the proposed RGD. 
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4.4 Experimental Results Analysis  

The experimental shows much less power saving capability (less than 10%) 

compared to simulation. Considering extra parasitic loss, it is reasonable to 

expect a maximum power reduction in the range of 20% to 30% from a working 

resonant gate driver compared to conventional driver LM5114. Even though the 

simulation is based on a simpler schematic due to the difficulty of convergence 

during Spectre simulation, the simulation results are still very helpful to 

diagnose the potential design, layout or process limitations.  

Figure 4.22 and 4.23 show the measured waveform versus the simulated 

waveform of the RGD with 11 nH SMD resonant inductor and 4 nF loading 

capacitor. The green voltage waveform is the middle point between the PMOS 

charging and NMOS discharging device, which is also the OUT1 node in Figure 

3.4. The purple waveform is the driver output, which is also OUT2 in Figure 

3.4. In Figure 4.22 the green halo ring shows the charging transition waveforms, 

while in Figure 4.23 the discharging transition waveforms.   

 
From the difference between the measured and simulated results shown in 

Figure 4.22 and 4.23, the design problems could stem from the following issues. 

 

1) The driving force of the output devices is too low. This can be observed 

in the turn-on transition that the mid-point green waveform (VM of 

Figure 3.4) is not pulled up sufficiently high to 5 V. During turn-off 

transition, this green waveform is pulled down to 3 to 4 V, far above 

the desired ground level. 

 

2) The body-diode conduction voltage during the turn-off transition 

behaves like a capacitive ringing spike rather than a diode conduction. 

This also can be explained by the limited equivalent diode size with too 

large of a parallel parasitic resistance. Figure 4.24 shows a cross-section 

diagram of the NMOS and PMOS of the design process. The NMOS 

body-diode conduction happens during the turn-on charging recovery 

stage as (B) in Figure 3.4. The PMOS body-diode conduction happens 

during the turn-off discharging recovery stage as (D) in Figure 3.4. The 

larger red arrow shows most of the current should flow through the 

parasitic body-diode. 
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Figure 4.22. Measured vs. Simulated waveforms of RGD for 11 nH  

inductance and 4 nF load capacitance highlighted with turn-on 

transition. 

 

 
 

Figure 4.23. Measured vs. Simulated waveforms of RGD for 11 nH  

inductance and 4 nF load capacitance highlighted with turn-off 

transition. 

 
  

3) The desired control pulse width should be large enough to initialize the 

charging and discharging process but short enough to start the recovery 

stages. The minimum pulse duty cycle for the Agilent 33522A 

waveform generator at 10 MHz switching frequency is 16%, which is 16 

ns. Previous design simulation is based on 6 ns or even less. Figure 4.25 

shows the simulation results with the control pulse width of 16 ns, 11 

nH resonant inductor and 4 nF load capacitor. By reducing the 

schematic output device, the main charging PMOS (MP in Figure 3.4) 

and discharging NMOS (MN in Figure 3.4) FET’s from the original 128 

× 48(13/1.3) and 128 × 48(8/1.6) defined in Figure 4.8 to 128 × 24(13/1.3) 

and 128 × 24(8/1.6) respectively, and increasing the input control signal 

width from 6 ns in Figure 4.8 to 16 ns, the simulated middle point 

ON OFF 

VM VG
VG VM

OFF ON

ON 
OFF

VM VG
VG VM

OFF ON
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waveforms in Figure 4.25 are similar to the measured waveforms shown 

in Figure 4.26. In Figure 4.26 the switching frequency of the driver is 

10 MHz, while duty cycle the control signal pulses is 16 %, which is 16 

ns, the lower limit of the arbitrary waveform generator. The green trace 

VM is the middle point voltage described above, and the purple VG 

curve is the output capacitor voltage.   

 
 

 
 

 
Figure 4.24. Cross-section of the body-diode conduction for NMOS MN 

(left) and PMOS MP (right) during the stage (B) and (D) in  

Figure 3.4 respectively. 

 
 

Figure 4.27 and Figure 4.28 shows the mid-point voltage (VM node of Figure 

3.4) during turn-on and turn-off transition. The red curves shows main charging 

PMOS (MP in Figure 3.4) and discharging NMOS (MN in Figure 3.4) FET’s up 

to 128×126(13/1.3) and 128×126(8/1.6) with 6 ns control signal width. The 

green waveform is for the size of 128×24(13/1.3) and 128×24(8/1.6) driving 

with 16 ns control pulse. Note the resemblance of the simulated waveforms at 

the fast switching middle point of the phase leg composed of the PMOS charging 

and the NMOS discharging devices in Figure 4.27 and 4.28 to the measured 

waveforms in Figure 4.22 and 4.23 further confirmed the reasons of 

unsatisfactory experimental results, indicated the guidance for the reversion of 

the future work. 
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Figure 4.25. Simulation results for 10 MHz switching frequency, 16 

ns control signals and reduced size of the output devices of the RGD 

with 11 nH inductor and 4 nF load capacitor. 

 

 
 
 

 
 
 
 
 

 
 

 
 

 
 

 
 
 

 
 

Figure 4.26. Measured waveforms for 10 MHz switching frequency, 

16 ns control signals and reduced size of the output devices of the 

RGD with 11 nH inductor and 4 nF load capacitor. 
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Figure 4.27. Simulation of turn-on transition mid-point voltage (VM 

node of Figure 3.4) with control pulse width of 6 ns and 16 ns for 

different sizes of output devices. 

 

 

 

 

 

Figure 4.28. Simulation of turn-off transition mid-point voltage (VM 

node of Figure 3.4) with control pulse width of 6 ns and 16 ns for 

different sizes of output devices. 
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Chapter 5 

Conclusion and Future Work 

A new resonant gate driver for enhancement mode GaN device (EPC2001 

as an example) is proposed and implemented with a standard 5 V and 7 V 

CMOS process. Experimental results show the lack of power saving capability 

especially at high frequency. Further analysis on the testing and simulation 

results reveals the direction for future design. Recommendation for the future 

work includes the following design issues. 

 

1) Increasing the output driving strength of the PMOS and NMOS devices 

aspect ratio to significantly larger than 128×48(13/1.3) and 128×

48(8/1.6). 

2) Using a FPGA or other programmable devices to generate less than 10 

ns control pulse width. The ultimate solution on-chip is to include a 

coded pulse-width generator block to allow manual adjustment of the 

input control pulse width according to different driving conditions.   

3) Increase body-diode conduction capability by dividing output devices in 

smaller sections using larger gate finger multiplier, with each section 

closed in a substrate or N-well guarding ring. 

4) Provide more power and ground pads on-chip for the gate driver, 

reducing the parasitic resistance along the charging or discharging path. 
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Figure A.1. Layout of the resonant gate driver, without level shifter 

(1600 μm × 1100 μm) (top) with level shifter (2000 μm × 1100 μm) 

(bottom). 
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Figure A.2. Schematic of the testing PCB.  
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Figure A.3. Layout of the testing PCB (4.56’’ × 3.27”). 
 

 
 

Figure A.4. 3D view of the testing PCB. 
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Figure A.5. Test bench setup for resistive load  

(top) and inductive load (bottom). 
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EPC Spectre model files used in design 

 

// (C) Copyright Efficient Power Conversion Corporation. All rights reserved. 

// ************************************************************************** 

// Version History: 

//        1.02: Added Copyright Statement  

// Corrected by Yu Long December 2014 

 

simulator lang=spectre 

 

subckt epc2001 (gatein drainin sourcein) 

 

 

parameters aWg=1077 A1=41.7998 k2=2.259866e+000 k3=1.2e-001 rpara=4.463059e-003   

+ aITc=5.486028e-003 arTc=-4.699671e-003 ax0Tc=0.75E-4 x0_0=-0.75 x0_1=1.10 

+ dgs1=4.3e-7 dgs2=2.6e-13 dgs3=.8 dgs4=.23    

+ ags1=8.6952e-010 ags2=5.3168e-010 ags3=1.9975e+000 ags4=2.8377e-001 

+ ags5=-1.4751e-010 ags6=-7.5163e+000 ags7=7.2121e+000 

+ agd1=1.4182e-011 agd2=2.1475e-010 agd3=-3.8030e+000 agd4=5.9551e+000 

+ asd1=3.3621e-010 asd2=6.3080e-010 asd3=-1.2803e+001 asd4=2.2690e+000 

+ asd5=2.5818e-010 asd6=-4.0599e+001 asd7=2.0638e+001 

 

 

rd (drainin drain) resistor r=(0.75*rpara*(1-arTc*(temp-25))) 

rs (sourcein source) resistor r=(0.25*rpara*(1-arTc*(temp-25))) 

rg (gatein gate) resistor r=(.6) 

 

rcsdconv (drain source) resistor r=(1E9/aWg) 

rcgsconv (gate source) resistor r=(1E9/aWg) 

rcgdconv (gate drain) resistor r=(1E9/aWg) 

 

gswitch drain source bsource i=( (v(drain,source)>0) ?  

+ (A1*(1-aITc*(temp-25))*log(1.0+exp((v(gate,source)-k2)/k3))*  

+ v(drain,source)/(1 + max((x0_0+x0_1*v(gate,source))/(1+ax0Tc*(temp-25)*(temp-25)),0.5)*v(drain,source)) ) :  

+ (-A1*(1-aITc*(temp-25))*log(1.0+exp((v(gate,drain)-k2)/k3))*  

+ v(source,drain)/(1 + max((x0_0+x0_1*v(gate,drain))/(1+ax0Tc*(temp-25)*(temp-25)),0.5)*v(source,drain)) ) ) 

 

ggsdiode gate source bsource i=( (v(gate,source)>10) ?  

+ (0.5*aWg/1077*(dgs1*(exp((10.0)/dgs3)-1)+dgs2*(exp((10.0)/dgs4)-1))) :  

+ (0.5*aWg/1077*(dgs1*(exp((v(gate,source))/dgs3)-1)+dgs2*(exp((v(gate,source))/dgs4)-1)))  ) 

 

ggddiode gate drain bsource i=( (v(gate,drain)>10) ?  

+ (0.5*aWg/1077*(dgs1*(exp((10.0)/dgs3)-1)+dgs2*(exp((10.0)/dgs4)-1))) :  
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+ (0.5*aWg/1077*(dgs1*(exp((v(gate,drain))/dgs3)-1)+dgs2*(exp((v(gate,drain))/dgs4)-1))) ) 

 

 

C_GS  (gate source) bsource c=(ags1)   

G_CGS1 (gate source) bsource q=(0.5*ags2*ags4*log(1+exp((v(gate,source)-ags3)/ags4))+ 

+ ags5*ags7*log(1+exp((v(source,drain)-ags6)/ags7)) ) 

 

C_GD  (gate drain) bsource c=(agd1)   

G_CGD1 (gate drain) bsource q=(0.5*ags2*ags4*log(1+exp((v(gate,drain)-ags3)/ags4))+ 

+ agd2*agd4*log(1+exp((v(gate,drain)-agd3)/agd4)) ) 

 

C_SD  (source drain) bsource c=(asd1)  

G_CSD1 (source drain) bsource q=(asd2*asd4*log(1+exp((v(source,drain)-asd3)/asd4))+ 

+ asd5*asd7*log(1+exp((v(source,drain)-asd6)/asd7)) ) 

 

 

ends epc2001 
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Figure A.6. Schematic diagram of the proposed capacitor  

coupled level shifter circuit. 
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  Figure A.7. Schematic block diagram of the proposed half bridge  

resonant gate driver, yellow ring represents high-voltage isolation  

well (high-side supply clamping DB under investigation). 
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