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Abstract 

 Synthetic biology and genetic engineering are valuable tools in the development of new, 

sustainable energy generation technologies. The characterization of stochastic gene expression is 

vital to the efficient application of genetic engineering techniques. Transcriptional bursting, in 

which periods of high expression are punctuated by periods of no expression, is extensively 

observed in gene expression. While various molecular mechanisms have been hypothesized to be 

responsible for transcriptional bursting, spatial considerations have largely been neglected. This 

work uses computational modeling to examine in detail the influence of spatial factors such as 

macromolecular crowding and confinement on gene expression. 

In the first part of the thesis, cell-free expression chambers containing E. coli extract were 

fabricated and analyzed under varying confinement scenarios to explore how resource sharing 

influences gene expression. Interestingly, fluorescence measurements reveal that expression 

burst size, but not burst frequency, is highly sensitive to changes in chamber volume and the size 

of the shared resource pool. Computational models reveal that the timing of initial transcriptional 

activity strongly influences the acquisition of resources, such that mRNA transcripts produced 

early in time dominate the burst behavior of a chamber.  

In the second part of the thesis, computational models were developed to study the effects 

of macromolecular crowding and confinement on transcriptional bursting. Spatially resolved 

gene expression models reveal significant changes in fluctuations and noise in mRNA behavior 

compared with well-mixed systems. The spatial results were compared to two- and three-state 

models to determine whether the effects of crowding and confinement could be adequately 

captured using simpler models. The comparisons reveal that the two- and three-state models, 

which do not explicitly incorporate spatial features, are unable to capture features of the noise of 

crowded and confined systems due to differences in the distribution of times between 

transcriptional events.  

The work presented here reveals the importance of spatial influences when analyzing 

gene expression and transcriptional bursting in cells. Future work will expand on the role of 

resource sharing on gene expression through spatial considerations, as well as explore the effects 

of crowding on more complex gene expression systems. 
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1. Introduction 

1.1 Biotechnology’s Role in the World’s Greatest Challenge 
One of the greatest challenges to the world today is providing the increasing amount of  

energy needed to support global demand[1]. However, the energy of the future must be both 

sustainable and plentiful to avoid the repercussions of global climate change due to energy 

production. Over the past 10 years, global energy consumption grew at an average of 2% per 

year[2], currently totaling near 13,000 Million tonnes oil equivalent[3]. As more of the global 

population reaches for higher standards of living, the need for more resources increases at an 

even higher rate in underdeveloped regions[2]. Specifically, energy demands are estimated to 

reach 30 TWavg by the year 2050[4]. However, to bring the entirety of the world’s population up 

to the living standards of western society, that number will need to be doubled[1, 5]. To 

sustainability produce the needed energy levels and stem the 16 fold increase in global carbon 

dioxide production since 1900[6], global energy production emissions[7] must be reduced as the 

world demands more energy. 

Current research into sustainable energy practices use biological techniques to reduce 

greenhouse gas emissions in a variety of different energy related fields. Fossil fuels account for 

over 80% of the world’s energy needs[3], with oil making up 32% of the total[2]. In the U.S., 

71% of oil is used solely for transportation[8]. Biofuels are a heavily researched and attractive 

method for offsetting carbon emissions due to their ability to replace fossil fuels. Biofuel 

production can take many forms, such as converting waste biomass from existing agricultural 

industries into ethanol, as Brazil does to generate 5.5 billion gallons of ethanol from sugarcane 

waste[9], or through the use of switchgrass to replace corn ethanol in the U.S.[10].  

Additionally, biological techniques are used to reduce greenhouse gas emissions by 

developing alternate feedstocks for products which are traditionally petrochemical based. For 

instance, bioplastics are a class of plastics derived from various sources of biomass, including 

food waste[11] and cellulose[12], and are designed to both avoid the use of fossil fuel derived 

chemicals, and biodegrade once discarded[13]. Researchers have designed materials made of 

lignin, an underused structural polymer present in plant material, to create carbon fiber 

materials[14, 15]— a 40,000 ton per year industry with applications ranging from automobiles to 
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sports equipment[16]. These techniques, however, often pull biological feedstocks from existing 

waste streams, limiting the range of feedstocks available for offsetting fossil fuels. 

Other researchers have focused on processes that instead rely on microbes, with the use 

of genetic engineering and synthetic biology. Synthetic biology is the study and redesigning of 

biological systems through genetic manipulation[17-20]. Synthetic biology has been harnessed to 

recreate time-delay circuits[21, 22], switches[23], and oscillators[24] with biological 

components, as well as optimize gene networks through directed evolution[25]. Previous work 

has used synthetic biology to create strains of E. coli that produce isobutanol and 

isopropanol[26] (products used as biodiesel additives), as well as strains of S. cerevisiae that 

produce ethanol out of plant polymers[27], such as xylose. Other researchers have engineered 

yeast to produce nanoparticles, such as cadmium sulfide quantum dots[28], that can increase the 

efficiency of solar cells up to 66%[29].  

A deep understanding of the behavior of individual gene circuits within the broader 

context of global gene networks is critical for the realization of many synthetic biology 

applications. Individual cells can have hundreds to thousands of different genes which are 

regulated by intricately controlled pathways[30]. Gene regulation is made up of universal 

principles across both prokaryotes and eukaryotes[31], and although significant differences in 

complexity have been shown, the understanding of basic gene regulation structures are 

applicable across many cell types. Gene expression has been shown to occur primarily through 

two modes: constitutive gene expression and bursty gene expression[32, 33]. 

Constitutive gene expression is characterized by the Poisson-like accumulation of gene 

products[32]. The production of messenger ribonucleic acids (mRNA) and protein molecules is a 

discrete and stochastic process. Transcription can often be described by a Poisson process, where 

the time between mRNA productions follows an exponential distribution and times between 

production events are independent[34]. Additionally, the lifetime of a molecule is typically 

described by an exponential distribution. A large-scale study of over 400 genes in bacteria has 

suggested that constitutive gene expression is the predominate method of expression[32]. 

However, not all genes are constitutively expressed. Several studies have shown that in 

bacteria and yeast, many genes instead produce mRNA through transcriptional bursting[33, 35-

38]. Transcriptional bursting is characterized by episodic periods of transcriptional activity, 
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punctuated by lengths of time with no mRNA production (figure A.1). Recent studies have 

shown that bursty gene expression may in fact be the predominant form of gene expression[39]. 

While transcriptional bursting has been found in many genes and can have important 

consequences in expression, there is no consensus regarding its mechanistic source[40, 41]. 

Researchers have studied a variety of molecular sources to explain transcriptional bursting, 

including transcription factor binding and unbinding [42-44], promoter architecture (which can 

modify transcription kinetics)[36, 45, 46], the buildup of supercoiling[47, 48], and transcriptional 

re-initiation[33, 49, 50]. Figure A.2 shows many of the different factors shown to influence gene 

bursting. To characterize the different types of gene expression behaviors, models are used to 

simplify complex processes into frameworks that can be analytically or computationally 

examined. 

1.2 Modeling Techniques for Gene Expression 
The central dogma of gene expression states that genes code for the production of 

mRNA, which in turn code for the production of proteins[51, 52](figure A.3). The protein can 

then influence other genes, provide functionality for the cell, or be exported into the environment 

outside. Genes have a multitude of parts, including regulatory regions which repress or induce 

expression due to the binding of transcription factors[53, 54]. Most models, however, account for 

factors other than genes, mRNAs, and proteins in terms of effective rate constants[55].  

Understanding and characterizing gene expression requires quantification of the numbers 

of mRNA and protein produced by the system. Simple modeling approaches for gene expression 

are deterministic and are formulated in terms of ordinary differential equations (ODEs)[56-58]. 

A simple deterministic model of gene expression is described by the following coupled 

differential equations for both transcription and translation, 

 

𝑑𝑟

𝑑𝑡
= 𝛼𝑟(𝑡) − (𝛾𝑟 + 𝛿)𝑟 

(1.1) 

𝑑𝑝

𝑑𝑡
= 𝑘𝑃𝑟 − (𝛾𝑃 + 𝛿)𝑝 
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where 𝑟 and 𝑝 refer to the mRNA and protein concentrations, respectively; 𝛾𝑟 and 𝛾𝑃 are the 

decay rates for mRNA and protein; 𝛼𝑟 and 𝑘𝑃 are the production rates for transcription and 

translation; and 𝛿 is the rate of dilution due to cell growth. The steady state values for both of 

these products are  

 

< 𝑟 >=
𝛼𝑅

(𝛾𝑅 + 𝛿)
 

(1.2) 

< 𝑝 >=
𝛼𝑅𝑘𝑃

(𝛾𝑅 + 𝛿)(𝛾𝑃 + 𝛿)
 

 

These equations are useful in examining systems with large populations on the 

macroscopic level. ODEs describe the change in the concentration of each species over time in 

terms of the underlying chemical reactions. The system is assumed to be well-mixed, such that 

there are no concentration gradients or compartmentalization[59]. ODE models of reaction 

dynamics are useful in modeling the average behavior of systems because the ODEs use bulk 

reaction rates to characterize behavior. However, the total number of molecules of a given 

species is assumed to be sufficiently large so that stochastic effects are not important. These 

models are less useful for systems involving low molecule copy numbers, diffusion-limiting 

processes, and spatial inhomogeneities. These features can lead to stochastic fluctuations 

significantly affecting the dynamics important to gene expression. Due to the shortcomings of 

deterministic models, various stochastic methods that capture stochastic fluctuations have been 

developed. 

The Brownian dynamics (BD) method incorporates stochastic influences, making it 

suited to describing low abundance transcription processes[60, 61]. Cellular species are modeled 

as particles diffusing in a uniform solvent such as water, which is treated implicitly as a random, 

stochastic force. The movement of a particle is influenced by the stochastic nature of the solvent 

and results in particles undergoing random walks[61]. In most BD models, molecular reactions 

can occur upon collision. The BD method is attractive because it accounts for the position of 

every molecule in the system and is also able to incorporate the stochasticity of reactions 

between few molecules. Additionally, BD is capable of modeling crowded systems by 
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incorporating excluded volume particles into the system. However, modeling significantly 

crowded systems increases the computational cost of the model, as the cost scales with the 

number of collisions that occur and the smaller time steps needed to resolve them. 

The chemical master equation (CME) also captures the dynamics of stochastic chemical 

reactions. The CME describes the time evolution of the probability that a system will be in a 

state X(t) = x given an initial state X(t0) = x0 for some t > t0. A state is defined here as the 

number of molecules of each species in the system. Changes in the state occur in discrete 

numbers when a reaction occurs. However, unless the reaction system is simple, the CME 

becomes difficult to solve analytically. Instead, a practical approach is to generate trajectories of 

the chemical master equation using the stochastic simulation algorithm (SSA), or Gillespie 

algorithm[62-64]. The Gillespie algorithm is widely used in the simulation of many gene models. 

Briefly, the algorithm is derived by posing the question: given the system is in a state X(t) = x at 

time t, at what time t + τ will the next reaction occur, and which reaction will it be? The 

algorithm accounts for the inherent stochastic nature of gene reactions by modeling the time to 

the next reaction as an exponential distribution, and stochastically chooses the next reaction 

based on a reaction’s propensity. The propensity quantifies the rate at which a specific reaction 

occurs, given the system is in some state X(t) = x. Spatial considerations are incorporated into 

the model by including propensities for molecules to diffuse through space, and the state of the 

system additionally contains information about the particle locations. 

The Gillespie Algorithm is widely used in the field of computational biology[65]. For 

many biochemical systems, however, the computational cost of the Gillespie Algorithm can be 

prohibitively high[66]. Further algorithmic efficiency changes have been made to increase the 

computational speed of the simulation methods. The Next Reaction Method calculates a putative 

time (time a reaction would occur if no other reaction occurs first) for each reaction propensity 

and stores it in a dependency graph[67]. Propensities are only recalculated when they change due 

to a reaction. While storing the putative times for each reaction in a dependency graph incurs 

added computational costs, the efficiency of the algorithm is increased by carefully recalculating 

propensities only if they change, and by reusing putative times where appropriate. 

Approximate accelerated stochastic methods have also been developed to speed 

computational times. The tau-leaping method[68] improves computational efficiency by 
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advancing the simulation by predefined time steps. While the original algorithm asks “which 

reaction will occur in the next time interval τ,” the tau-leaping method instead asks “over the 

next time interval τ, now many times does each reaction occur?” By using larger τ values and 

approximating the number of times a given reaction occurs, computational resources are saved at 

the expense of simulation accuracy. The degree of accuracy tolerated by the method depends on 

an error parameter, which is a measure of the change in a single propensity over the τ leap. If a 

propensity changes more than is expected over a long time leap, then a shorter τ is chosen and 

tested until the error conditions are satisfied. In this thesis, we use the standard stochastic 

simulation algorithm.  

A commonly used framework for modeling bursty gene expression is the random 

telegraph model, often referred to as the two-state model of gene expression[69]. The two-state 

model (figure A.4) is a stochastic model that represents the gene as a system that can transition 

randomly from an ON state, where gene expression occurs, to an OFF state, where no expression 

occurs. This model is common when describing bursty gene expression because it captures the 

features of experimental data independent of the mechanisms that cause bursting.  

It is often difficult to directly observe the regulatory behavior of a gene in a cell. 

Experimental measurements are commonly collected from fluorescently tagged mRNA and 

protein molecules. Previous work has shown that measuring the fluctuations in molecular 

populations (noise) gives information on the behavior of the underlying gene circuit[70-72].  

1.3 Noise Analysis in Gene Expression 
Noise analysis is a critical tool useful for understanding gene expression and 

transcriptional bursting. Noise in gene expression refers to the random fluctuations associated 

with molecule populations over time. Fluctuations in molecular populations influence how 

certain genes are expressed[73], how individual cells determine phenotypes[74], and how cells 

choose directions in motility[75]. Noise originates from the synthesis and decay of molecules 

occurring in discrete numbers and at random times. Many factors influence noise[76], including 

cellular size, molecular concentrations, and the distribution of resources. Figure A.5 shows a 

number of molecular processes that influence the properties of noise in even a simple model of 

gene expression. Noise can generally be divided into two categories: extrinsic and intrinsic noise. 



 
 
 

7 

Extrinsic noise factors are independent of the gene and instead correspond to parameters 

associated with cells or environments[77]. Isogenic populations of cells are genetically identical, 

but still show significant cell-to-cell variations reflected by stochastic differences in the number 

of molecules[78, 79]. One source of extrinsic noise is cell growth, as individual cells at different 

stages of the cell cycle will have differences in size and expression[80]. Division introduces 

another source of extrinsic noise, since the division of a cell into daughter cells can lead to 

different concentrations of molecules in subsequent generations[77]. Resources used globally 

inside the cell, such as ribosomes, amino acids, and energy molecules, also introduce extrinsic 

noise due to sharing among many different regions of the cell at any given time.  

Intrinsic noise refers to noise associated with the stochastic and discrete production of 

molecules. Even in a hypothetical system where the number, location, and activity of all 

molecules in two cells are identical, inherent stochasticity in random microscopic events will still 

cause noise. Intrinsic noise can be thought of as the extent to which two identical genes in 

identical environments fail to correlate[79]. Intrinsic noise in transcription influences processes 

including bacterial quorum sensing[81], eukaryotic cell differentiation[82, 83], and probabilistic 

fate determination[71]. Noise in gene expression has also been shown to control fate selection 

between active infection and proviral latency in an immunodeficiency virus type 1 (HIV-1) 

model system[39, 71, 84-86]. The characterization of extrinsic noise and intrinsic noise is an area 

of active research, and several methods have been detailed that propose to isolate intrinsic 

noise[32, 78, 87]. 

The measurement of noise in gene expression is useful because it allows for the indirect 

observation of transcriptional bursting. Bursting is often described through two parameters: burst 

frequency, a measure of how often bursts occur, and burst size, a measure of how many mRNA 

are produced in a single burst. Simpson et al. have shown in several papers that the parameters of 

transcriptional bursting can be inferred by performing frequency domain analysis on the time 

resolved fluorescence values of protein expression[39, 43, 80, 88]. Golding et al. previously 

estimated the bursting behavior of a gene through the use of fluorescent imaging of mRNA 

molecules[89]. By quantifying mRNA populations using single-molecule fluorescence in situ 

hybridization (smFISH), Golding et al. counted the number of mRNA in E. coli on a single-

transcript level and measured the mean and variance of the number of mRNA per cell in order to 
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characterize the burst parameters. Analyses of steady state and time-dependent measurements of 

both mRNA and protein populations provide insight into transcriptional bursting independent of 

mechanistic causes. However, the analyses rely on relatively simple models of gene expression. 

Several recent papers have shown that in some cases, the distribution of burst arrival times is not 

exponential[45, 90, 91]. Additionally, factors including macromolecular crowding and spatial 

confinement have been shown to change the stochastic behavior of gene expression systems. Due 

to these discrepancies, more sophisticated models must be considered.  

1.4 Gene Expression and Spatial Effects 
Many molecular mechanisms have been probed for their influence on bursting in gene 

expression. However, spatial considerations associated with crowding and confinement are often 

neglected, and have been explored only recently[41, 92]. Crowding refers to macromolecules 

that restrict the movement of other molecules through excluded volume effects, hydrophobic 

effects, or van der Waal interactions[93]. Macromolecular crowding of the intracellular space has 

been measured to be up to 30% by volume[94, 95], which has been shown to significantly alter 

the ability of particles to diffuse and react[96]. Crowding can additionally alter protein 

solubility[97], affect protein folding and stability[98], and change enzymatic activity[99]. 

Crowding effects on proteins are important because proteins are often regulatory factors in the 

expression of other genes. Confinement has been shown to further change transcriptional 

dynamics, causing bursty transcription through spatial correlations[59]. Confinement refers to 

the effects of boundaries, such as those that confine systems to small volumes, including 

organelles, nuclei, or cellular membranes. While crowding and confinement each influence gene 

expression individually, the combined interactions of crowding and confinement has been shown 

to collectively lead to larger effects[100].  

Rein ten Wolde and coworkers have shown that spatial fluctuations and rapid rebinding 

of transcription factors significantly increase the measured noise in a gene network[101]. 

Additionally, macromolecular crowding was shown to enhance binding through changes to 

equilibrium constants[102]. Separately, work by Meyer et al. has also shown that highly 

crowded, static environments significantly alter the behavior of gene expression, and are capable 

of driving what was originally a constitutive processes to behave in a bursty manner[59]. 

However, these works have either considered crowding only though rescaled rate parameters, or 
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have considered only static spatial crowding effects on gene expression, neglecting dynamic 

crowding influences that may occur. It has also been shown that confinement and altered protein 

mobility can markedly influence the stochastic behavior of other biochemical reaction 

networks[103, 104]. Kulkarni et al. recently detailed an analytical method describing a 

generalized stochastic model in which the arrival rate of bursts does not need to follow a Poisson 

distribution[105]. While the generalized model applies to a wider range of gene expression 

influences, spatial considerations have not yet been directly examined. Work regarding spatial 

influences on gene expression have addressed some spatial aspects, but specific questions 

regarding confinement and dynamic crowding have yet to be explored. 

1.6 Scope of the Dissertation 
This work uses stochastic models to investigate how spatial features such as crowding 

and confinement impact gene expression. The topic is examined by analyzing models of gene 

expression under confined and crowded conditions using computer simulations and noise 

analysis. The following questions are explored. In confined, cell-free expression chambers, how 

does confinement change transcriptional bursting? Additionally, can the models used to describe 

the behavior in these cell-free chambers be related to the behavior measured in cellular systems? 

A spatial model has subsequently been developed that considers a simple transcriptional gene 

system in which spatial influences of crowding and confinement are explored and analyzed with 

regards to their behavior in noise space. For these simulations, the question of whether spatial 

effects are captured using simpler, two or three-state models is considered. Any differences are 

further analyzed to determine how spatial properties effect noise. Evidence is provided that the 

consideration of spatial effects are an important component of future models, and that spatial 

effects are valuable to the understanding of many underlying genetic mechanisms. 

 

1.7 Organization of the Dissertation 
Chapter 2 details the background needed to understand the computational design choices, 

as well as computational information required for the understanding of subsequent chapters. This 

chapter additionally details the methods used for the subsequent noise analysis methods that are 

used on the data collected from both experiments and simulations. Chapter 3 focuses on work 
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done with experimental cell-free reaction chambers, where the effects of confinement on 

resource sharing and expression are examined in detail. Several models are used to explore the 

details associated with the noise gathered from these experimental chambers, each of which are 

described in detail to show how resource sharing can have profound changes in the burst 

behavior within these chambers. The focus of chapter 4 is on the transcriptional burst properties 

of mRNA populations generated from the spatial simulations, focusing on how well a simple 

two-state model can reproduce the results from a spatially resolved model. Changes in crowding 

and confinement geometry influence burst properties of the system, and comparisons between 

the spatial model and various parameterizations of two-state and three-state models reveal the 

intricate way spatial effects influence transcriptional bursting through noise measurements. The 

behavior in a spatially resolved system is shown to be poorly captured using simpler two-state 

models of gene expression. The bursting dynamics of the spatial system compared to a two-state 

models indicate that ignoring the spatial properties of crowding and confinement ignores many 

of the subsequent effects that present themselves in the noise and burst properties of the system. 

Finally, chapter 5 concludes these findings and provides additional avenues for future work, 

giving emphasis on specific applications, such as in HIV-1 behavior and treatment and the 

examination of efficient usage of limited resources in gene expression.  
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2. Background and Methodology 
Several models of gene expression are presented in this work that capture the stochastic 

nature of transcription and translation. Each is useful in exploring a different facet of gene 

expression, including resource sharing and allocation, and the effects of spatial crowding and 

confinement on bursty expression. Here, the fundamentals and background needed to understand 

the models and how noise is used to probe gene expression and bursting are described. Specifics 

regarding any particular model or experiment are provided in individual chapters. 

2.1 Gillespie Algorithm Background and Overview 
The simulation of chemical reactions can be viewed through a simple problem statement: 

Given a fixed volume containing a spatially uniform mixture of chemical species interacting 

through a number of reaction channels, and given the number of molecules of each species at an 

initial time, what is the population at any later time? The stochastic framework for solving this 

problem is known as the Chemical master equation (CME) and was primarily developed with the 

work of McQuarrie[106]. Assume a volume V contains N chemical species undergoing M 

possible reactions. The state of the system is defined by specifying Xi(t), the number of 

molecules of species Si at time t, where i = 1 . . . N. The state evolves in time through M reaction 

channels Rµ, where µ = 1 . . . M. The CME is an equation that describes the time-evolution of the 

probability that X(t) ≡ (X1(t),…,XN(t)) will be equal to x = (x1,…,xN), given X0(t0) = x0 for some 

t > t0. The probability is written as P(x,t|x0,t0). 

The master equation can be written as 

 

 𝜕

𝜕𝑡
𝑃(𝑥, 𝑡|𝑥0, 𝑡0) = ∑[𝛼𝜇(𝑥 − 𝑣𝜇)𝑃(𝑥 − 𝑣𝜇 , 𝑡|𝑥0, 𝑡0) − 𝛼𝜇(𝑥)𝑃(𝑥, 𝑡|𝑥0, 𝑡0)]

𝑀

𝜇=1

 

 

(2.1) 

 

where 𝛼𝜇 is the propensity function of an Rµ reaction, and 𝑣𝜇 ≡ (𝑣1𝜇, … , 𝑣𝑁𝜇) is the change in 

the state caused by one Rµ event. The first term in the sum is the probability that the system is 

one Rµ reaction removed from state x at time t and then undergoes an Rµ reaction in (t, t + dt). 

The propensity of a reaction 𝛼𝜇(𝑥) is defined as the probability, given X(t) = x, that an Rµ 
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reaction will occur in the system in the next time interval [t,t+dt). While exact, the CME is not 

analytically solvable for the vast majority of systems.  

The Gillespie algorithm is an exact method of generating simulation trajectories 

consistent with the chemical master equation[62]. To determine the time evolution of a system, 

the simulation generates two pieces of information to evolve the system forward in time: when 

the next reaction will occur, and which reaction it will be. The Gillespie algorithm introduces a 

new function P(τ, μ | x, t) which is defined as the probability that given a state X(t) = x at time t, 

the next reaction to occur will occur in the infinitesimally small time interval (t + τ, t + τ + dt), 

and will be reaction Rμ. With this, P(τ, μ | x, t) is defined as   

 

 
𝑃(𝜏, 𝜇|𝑥, 𝑡) = {

𝛼𝜇exp (−𝛼0𝜏)     if 0 ≤ 𝜏 < ∞ and 𝜇 = 1…𝑀

0                                                             Otherwise
 

 

(2.2) 

where 

 

 𝛼𝜇 ≡ ℎ𝜇𝑐𝜇 

𝛼0 ≡ ∑𝛼𝑗 ≡∑ℎ𝑗𝑐𝑗

𝑀

𝑗=1

𝑀

𝑗=1

 

 

(2.3) 

 

Here, αμ is the propensity (rate) that reaction Rμ will occur over the next time step τ, with 

α0 equal to the total propensity of all M reaction channels in the system. To calculate the 

propensity of each reaction Rμ, a function hμ is defined as the number of distinct Rμ reactant 

combinations available in the state x = x1 … xN. That is to say, if R2 is of the form S1 + S2 → …, 

then the number of distinct reactant combinations is equal to x1x2. hμ takes different forms based 

on the order of the reaction Rμ: for unimolecular reactions (S1 → …), h = x1, for bimolecular 

reaction of the form S1 + S2 → …, h = x1x2, and for bimolecular reaction of the form 2S1 → …, h 

= 
1

2
x1(x1 – 1). cμ is the stochastic rate constant of the reaction Rμ, defined such that cμdt is the 

probability that reaction Rμ will occur in V between a particular pair of reactant molecules in the 

next infinitesimal time interval dt. The stochastic rate constant is closely related to the more 

common reaction rate constant kμ, the primary difference being the reaction rate constant 
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normally relates to concentrations rather than total numbers of molecules[62]. Additional 

differences are present for reactions containing 2 or more identical species, but because no 

reactions of those type are considered here, the differences will not be detailed. The constant c 

has units of inverse time.  

 The expression for P(τ, μ | x, t) can be determined at all times knowing only the reaction 

constants and the current number of molecules of each species in the system. The Gillespie 

simulation method generates two uniformly distributed random numbers to obtain τ and μ: 

 

 
𝜏 =  

1

𝑎0
∙ ln

1

𝑟1
 

∑𝛼𝑣 < 𝑟2𝛼0 ≤ ∑𝛼𝑣

𝜇

𝑣=1

𝜇−1

𝑣=1

 

 

(2.4) 

 

Here, r1 and r2 are two independent, uniformly distributed random numbers over the 

interval (0, 1]. A proof of why these equations give the proper probability distribution has been 

given by Nitzan and Ross[107]. The first equation generates τ values that are exponentially 

distributed and weighted by the total propensity of the system. The second equation generates the 

next reaction Rµ by specifying µ as the first integer to satisfy the equation. 

For a chemical reaction at an initial state and time, the algorithm is iterated for all future 

times until the time limit set in the simulation is exceeded. Because the algorithm deals in 

absolute numbers of particles, when storing the results at regular time intervals, instead of at 

absolute time steps, the population of a species at an arbitrary time point is equal to the 

population at the time of the last reaction to occur. That is, if the number of molecules is being 

stored at 10 second intervals, and the last reaction to occur did so at 8 seconds, then the number 

of molecules at the 10 seconds is the same as the number of molecules at 8 seconds. 

The implementation of the Gillespie algorithm is outlined as follows: 

 Initialization:  

o The initial populations of all species in the system are set. 

o The total time of the simulation is defined. 

o The reactions of the system are defined. 
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 Monte Carlo step:  

o The propensities of all reactions are updated based on the current populations and 

rates. 

o One random variable is generated that determines the time to the next reaction 

o One random variable is generated that determines which reaction takes place.  

 Update:  

o The system is updated according to the previous reaction step and the time is 

moved forward. The number of members in any given species changes based on 

the reaction that occurs.  

 Iterate:  

o Continue running Monte Carlo steps and updating the simulation until the 

simulation time has been exceeded. 

2.3 Noise Analysis Framework 
In a Poisson process, the timing between events is independent and exponentially 

distributed. For mRNA production, it is commonly assumed that constitutive gene expression of 

mRNA is a Poisson process. However, due to transcriptional and translational bursting, the 

production of mRNA and protein can deviate significantly from a Poisson process. For this 

reason, the noise analysis framework is important in examining the underlying behavior of gene 

expression. 

Noise in a given gene expression system is defined as the stochastic fluctuations in 

molecule abundance values, and can be characterized using the noise framework developed 

previously by Cox et al.[70]. Noise can be analyzed in noise space, which is a three dimensional 

space consisting of three components: average species abundance, noise magnitude, and 

autocorrelation time. Noise magnitude is described using the coefficient of variation squared 

(CV2), which is a measure of the dispersion of a probability distribution, and is defined as  

 

 
𝐶𝑉2 =

𝜎2

𝜇2
 

(2.5) 
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where 𝜎2 is the variance of the signal and µ is its mean value. CV2 is useful because it allows for 

the comparison of noise from signals whose abundance values vary over orders of magnitude. 

Autocorrelation describes the correlation between values of the trajectory at different times. 

Noise autocorrelation time is defined as the time when the autocorrelation is half its initial value 

(𝜏1/2). 

2.3.1 Using Noise to Calculate Burst Frequency and Burst Size 

The behavior of a gene is often not measured directly, but is inferred through the 

measurement of fluorescence values of tagged mRNA molecules or proteins. Measurements of 

many different cells are taken, either over time through optical microscopy or over large 

populations through flow cytometry. As described in the previous chapter, noise in 

transcriptional bursting is characterized primarily through burst frequency, defined as the number 

of mRNA bursts per unit time, and burst size, defined as the average number of mRNA produced 

in a single burst. Golding et al. previously showed how burst parameters could be estimated 

using fluorescent imaging of mRNA molecules[89]. By quantifying mRNA populations using 

single-molecule fluorescence in situ hybridization (smFISH), they were able to count the number 

of mRNA in E. coli on a single-transcript level. From these counts, they were able to measure the 

mean and variance in the number of mRNA in individual cells in order to generate burst 

parameters. Suter et al. were able to estimate the bursting parameters for the random telegraph 

model using abundance measurements of mRNA and proteins over time[45]. Their measurement 

revealed that the kinetics of bursting were highly gene specific. 

The noise analysis framework previously discussed allows for another way of examining 

transcriptional burst behavior using time-dependent measurements of protein fluorescence 

values. Described in Dar et al., the three dimensional noise space can be decomposed into three 

two-dimensional projections[39]. Changes in burst parameters were shown to be visible through 

the CV2 and abundance projection of the three-dimensional space, since the distribution of data 

can give information on bursting in gene expression. Noise analysis assumes the gene can be 

adequately described by the random-telegraph model (shown previously in figure A.4). Bursting 

can be visualized as a pulse train, where molecular production occurs only when the pulse is 

nonzero (figure A.6). The pulse train has three main parameters. The first is the frequency, a 

measure of how often pulses occur over time. The second is burst length, a measure of how long 
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a pulse is. Finally, burst height measures the rate of production. For measurements of protein 

populations, the amplitude is a measure of both the transcriptional and translational rate. 

Transcriptional burst size is defined as the number of mRNA produced during a given burst, 

while translational burst size is measured as the number of proteins produced from each mRNA. 

For the analysis, it is assumed the translation rate, protein decay rate, and mRNA decay rate are 

constant[39]. 

Transcriptional burst parameters can be calculated by solving for the autocorrelation 

function and the noise magnitude (CV2). For a system following the two-state model of gene 

expression, and under the assumption that the transcriptional burst size is greater than or equal to 

1, the autocorrelation of the noise is[39] 

 

Φ(𝜏) ≈
𝑘𝑚𝑂𝑏

𝛾𝑑
𝑏𝑒(−𝛾𝑑𝜏) + (

𝑘𝑚𝑂𝑏

𝛾𝑑
)
2 (1 − 𝑂)

𝑂𝑘
(

𝛾𝑑

[1 − (
𝛾𝑑
𝑘
)
2

]
𝑒(−𝛾𝑑𝜏)

+
𝑘

[1 − (
𝛾𝑑
𝑘
)
2

]
𝑒−𝑘𝜏) 

 

 

(2.6) 

 

where km is the transcription rate during a burst, O is the fraction  (
𝑘𝑂𝑁

𝑘𝑂𝑁+𝑘𝑂𝐹𝐹
) of time the gene is 

in the on state , 𝑏 is the translational burst size, 𝛾𝑑 is the dominant decay constant (usually taken 

as the protein decay constant as for most systems, 𝛾𝑝 ≫ 𝛾𝑚), and k is the sum of kON and kOFF. 

The average steady state protein population is 

 

 
〈𝑃𝑠〉 =

𝑘𝑚𝑂𝑏

𝛾𝑑
 

(2.7) 

 

and the noise magnitude is[39] 
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𝐶𝑉2 =
Φ(0)

〈𝑃𝑠〉2
≈
𝑏

〈𝑃𝑠〉
+
(1 − 𝑂)

𝑂𝑘

(

 
 𝛾𝑑

[1 − (
𝛾𝑑
𝑘
)
2

]
+

𝑘

[1 − (
𝑘
𝛾𝑑
)
2

]
)

 
 

 

 

(2.8) 

 

 The first term on the right hand side of equation 2.19 is referred to as the shot-noise[43], 

and may dominate at high ON fraction (constitutive expression), low protein population, or if 

𝑘 ≫ 𝛾𝑑 (fast switching between gene states). On the other hand, the second term, referred to as 

burst noise, may be dominant at low ON fraction, high protein population, or if 𝛾𝑑 ≫ 𝑘 (slow 

switching between gene states). Under conditions where shot noise is dominant, CV2 varies 

inversely with protein abundance and is indistinguishable from constitutive expression in noise 

space. In contrast, CV2 shifts upward when burst noise is dominant, varying inversely with on 

fraction and the kinetics of gene switching (kON + kOFF).  

Kulkarni et al.[105] describe the properties of transcriptional bursting in a more general 

framework, where burst size and burst frequency can be described through queuing theory 

without the assumption of Poissonian distributions from the two-state model. Queuing theory is 

the mathematical relationship associated with waiting lines formed by customers who arrive by 

some stochastic process and remain in the system until serviced. Gene expression can be 

described through this theory by assigning mRNA and protein molecules as customers, where 

bursts of mRNA or protein production are analogous to batches of customers arriving in the 

system. mRNA and protein molecules leave the system when they degrade.  

The Kulkarni model describes the arrival of mRNA in bursts as an arbitrary arrival 

function f(t). mRNA decay, protein production, and protein decay are subsequently modeled 

similarly to the two-state model (figure A.7). Because previous work has shown that mRNA 

burst distributions are geometric[108], the model focuses on geometrically distributed bursts for 

both mRNA and protein. For this model, the steady state of the mRNA population is given by 

 

 
〈𝑚𝑠〉 =

𝑏𝑓

𝛾𝑚
𝐵 

 

(2.9) 
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Additionally, the protein steady state population is given by  

 
〈𝑝𝑠〉 =

𝑏𝑓𝐵𝑏

𝛾𝑝
 

 

(2.10) 

where 𝑏𝑓 is the mean arrival rate of mRNA bursts, 𝛾𝑚 is the decay rate of mRNA, 𝐵 is the mean 

mRNA burst size and 𝑏 is the mean protein burst size from a single mRNA. Under the general 

queuing theory framework, the noise in the mRNA steady state population is 

 

 𝜎𝑚𝑠
2

〈𝑚𝑠〉2
=

1

〈𝑚𝑠〉
+
𝛾𝑚
𝑏𝑓
+
𝛾𝑚
2𝑏𝑓

[𝐾𝑔(𝛾𝑚) − 1 +
𝜎𝑚𝑏
2

𝐵2
− (1 +

1

𝐵
)] 

(2.11) 

 

where 𝜎𝑚𝑠
2 is the variance in the mRNA steady state population, 𝜎𝑚𝑏

2  is the variance in the mRNA 

burst distribution, and 𝐾𝑔(𝛾𝑚) is the gestation factor, which is defined as  

 

 
𝐾𝑔(𝛾𝑚) = 1 + 2 [

𝑓𝐿(𝛾𝑚)

1 − 𝑓𝐿(𝛾𝑚)
−
𝑏𝑓

𝛾𝑚
] 

 

(2.12) 

where 𝑓𝐿(𝛾𝑚) denotes the Laplace transform of arrival time distribution of mRNA bursts. The 

gestation factor encodes information on the arrival process of the bursts. For Poisson arrivals, 

𝐾𝑔(𝛾𝑚) = 1. Under the assumption of Poisson arrivals and geometrically distributed bursts, the 

equation for CV2 reduces to 

 

 𝜎𝑚𝑠
2

〈𝑚𝑠〉
2
=

1

〈𝑚𝑠〉
+
𝐵𝛾𝑚 − 𝛾𝑚
𝑏𝑓𝐵

 

 

(2.13) 

 Solving for burst size and burst frequency results in the following equations. 

 

 𝐵 = 𝐶𝑉2〈𝑚𝑠〉  

(2.14) 
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𝑏𝑓 =
𝛾𝑚
𝐶𝑉2

 

 

Relationships in burst parameter changes in noise space are described in figure A.8. The 

set of equations above provides a concise way to relate the noise and abundance measured in a 

population with the burst behavior of the system. In the CV2 and abundance plane, changes in 

burst frequency correspond with CV2 changing with mRNA abundance. The change follows an 

inverse relationship, as the transition to higher abundance follows from more mRNA production 

due to an increase in bursts over a shorter amount of time. Lateral changes to different 

abundance values with no change in noise magnitude are instead indicative of changes in burst 

size.  

The translational burst parameter relationships can also be derived for measurements of 

protein populations. As above, under the assumption that 𝛾𝑝 ≫ 𝛾𝑚, the noise in protein 

population is defined as[105]  

 

 𝜎𝑝𝑠
2

〈𝑝𝑠〉
2
= 

1

〈𝑝𝑠〉
+
𝛾𝑝

𝑏𝑓

+
𝛾𝑝

2𝑏𝑓
[𝐾𝑔(𝛾𝑝) − 1 +

𝜎𝑚𝑏
2

𝐵2
− (1 +

1

𝐵
)

+ (
𝜎𝑝𝑏
2

𝑏2
− (1 +

1

𝑏
))
1

𝐵
] 

 

 

 

(2.15) 

where 𝜎𝑝𝑠
2  is the variance in the protein population, 〈𝑝𝑠〉 is the mean steady state protein value, 𝛾𝑝 

is the protein decay rate, 𝜎𝑝𝑏
2  is the variance in the protein burst distribution, and 〈𝑝𝑏〉 is the 

protein burst size. Again, assuming Poisson arrivals and geometric distributions for the bursts, 

solving for the burst size and burst frequency of transcriptional bursting results in  

 

 
𝐵 =

𝐶𝑉𝑝
2〈𝑝𝑠〉

 𝑏
 

 

(2.16) 
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𝑏𝑓 =
〈𝑝𝑠〉𝛾𝑝

𝐵𝑏
 

 

The equations relate the noise found in a protein population to the transcriptional burst 

behavior in the system. In the systems being modeled, unless otherwise noted, it is assumed that 

the translational burst size 𝑏 is large (at least 100 proteins per mRNA transcript), and is relatively 

constant[39, 80]. The relationship between protein noise magnitude and burst frequency is 

consistent with the relationship between mRNA noise magnitude and burst frequency, with noise 

following an inverse relationship with abundance under constant burst size. A full derivation of 

these equations can be found in Kulkarni et al.[105]. 

While the equations for burst size and burst frequency (eq. 2.25) from Kulkarni et al. are 

based on a different initial description of the simple genetic expression model, the noise analysis 

framework set out by Dar et al. assumes that the two-state model of gene expression is 

sufficiently bursty (kOFF >> kON) such that each individual pulse of activity can be represented as 

an impulse function[39, 105]. Comparisons between the simplified equations of noise magnitude 

in protein abundance derived though queuing theory (Kulkarni el al.) and through the random 

telegraph model (Dar et al.[39]) show that both methods result in the same relationships between 

noise magnitude and burst parameters. 

2.3.2 Noise Processing 

A gene expression trajectory (i.e., a time history of fluorescence from cells or cell-free 

expression chambers) is composed of deterministic components – background fluorescence and 

gene expression as described by the deterministic ODEs – and a stochastic component that 

captures the noise in gene expression including those that emerge from bursting[71]. Isolation of 

the stochastic component of raw measurements requires the determination of: (1) background 

signals (usually autofluorescence from cell components or cell extract) present in each trajectory; 

(2) the deterministic general trend of expression across an entire population of cells or cell-free 

reaction chambers; and (3) how strongly the general trend couples into each individual trajectory. 

With this information, the noise of each trajectory may be determined. Each of these 3 steps is 

described below.  
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For simplicity, throughout this description, the term “cell” will be used but should be 

interpreted to mean cell, cell-free reaction chamber, or simulated trajectories. Not all steps of the 

full noise analysis framework are necessary for all experiments or models presented in this work. 

However, the noise processing steps are presented in their entirety here, and any omissions or 

modifications used for specific models are detailed in the appropriate section. A more detailed 

analysis of these noise methods are shown in several other papers[39, 71]. The process is shown 

in general in figure A.9. 

The first step is background suppression, which removes signals not related to expression 

(i.e. autofluorescence). This is accomplished by removing the background signal such that the 

expression level is 0 at time 0. Separate experiments have shown that for the measurements 

considered here, the initial fluorescence values are composed entirely of autofluorescence and 

not indicative of gene activity. Simulations are simply initialized at 0 abundance. 

The deterministic general trend that is seen across the population, A(t), is estimated as the 

mean value of all traces within an experiment or simulation: 

 

 

𝐴(𝑡) =  
1

𝑀
∑ 𝐼𝑚(𝑡)

𝑀

𝑚=0

 

(2.17) 

 

where M is the number of trajectories in the data set and Im(t) is the gene expression trajectory 

which is measured over time for each trace m = 1, . . ., M.. The assumption inherent in this 

calculation is that all trajectories display similar general trends (i.e. differing only in a gain factor 

(see below)). For a large enough population of cells, the noise will average out and A(t) will 

provide a reasonable estimate of the deterministic general trend seen in the population. 

The third step requires the generation of a gain factor, which quantifies how strongly the 

general trend couples into each trace. Because the underlying expression levels among cells can 

be variable, the gain attempts to remove as much of the deterministic component as possible by 

minimizing the cross-correlation between the isolated noise trace and the general trend. Several 

factors could cause an individual trace to scale differently from the average behavior captured in 

the general trend, including small variations in the interior of a cell, slight differences in volume, 

or different numbers of reaction components[71]. This process is described by the equation 
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 𝑁𝑚(𝑡) =  𝐼𝑚(𝑡) − 𝑔𝑚 ∙ 𝐴(𝑡) 
 

(2.18) 

 

where gm is the gain factor, Im is the individual trace, and Nm is the noise associated with that 

trace. The gain values are calculated by minimizing the cross-correlation value between Nm(t) 

and A(t), which is 

 
|∑𝑁𝑚(𝑡) ∙ 𝐴(𝑡)

𝑡=𝑇

𝑡=0

| 
(2.19) 

 

 

Once the deterministic portion of an individual trace is removed using the gain values 

calculated, only the noise component remains. The autocorrelation is then calculated from each 

of the noise traces 

 
𝑅𝑚(𝜏) =  

1

𝑇
∑(𝑁𝑚(𝑡) − 𝜇𝑚) ∙ (𝑁𝑚(𝑡 + 𝜏) − 𝜇𝑚)

𝑇−𝜏

𝑡=0

 
(2.20) 

 

 

where Rm is the biased autocorrelation of the noise of trace m[109], τ is the time-lag, 𝜇 is the 

mean of trace m, and T is the number of samples in the trace. The steady state used for the 

calculated CV2 for transient trajectories was taken as:  

 

 < 𝑝𝑚 > =  𝐼𝑚(max{𝑡}) − 𝐼𝑚(0) 
 

(2.21) 

 

where 𝐼𝑚(max{𝑡}) is the steady state value of a given trace (last time point) and 𝐼𝑚(0) is the 

starting fluorescence of all the traces of a given chamber size. Because experimental data is 

limited to transient measurements over short times, the last point of a trajectory is used as a 

substitute for the steady state value. For analysis of cells measured over steady state, the mean 

value at steady state is used. The variance needed to calculate CV2 is taken from the 

autocorrelation at 0 lag time, which is a property of the autocorrelation function. 
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While it is important that both the simulation data and the experimental data should be 

subjected to identical noise analysis methods, it is also critical to understand why each step is 

taken, so that steps that are unnecessary for simulation data are not used, as they may result in 

unwanted removal of noise. For example, the removal of the general trend is included because 

data from cell-free chambers is unable to be taken at steady state, meaning the trend present in 

the population (i.e. due to growth) needs to be removed. The inclusion of the gain factor is also a 

way of removing unwanted signal components, as it has been shown that in cell populations, the 

general trend can have different degrees of coupling into the each individual trace[71]. However, 

simulations have the benefit that many of these external deterministic components are ignored. 

As such, applying the entire course of noise processing steps on the simulation data 

overestimates the magnitude of the deterministic component of the signal, removing some 

portion of the stochastic noise component from simulations. Both the full noise processing 

method and a simplified noise processing method (which excluded the search for a gain term) 

have been applied to sample simulation data as a control, showing that the noise is indeed 

overcompensated for. In short, the simplified method does not calculate a gain factor, and instead 

measures the abundance trajectory at steady state, removes the mean, and calculates the 

autocorrelation to calculate the variance and CV2 values.  

2.4 Major Model Assumptions  
When models are developed for any cellular or experimental system, assumptions must 

be made so that resulting simulations are tractable. The two-state, random telegraph model has 

several inherent assumptions. In many gene circuits, when highly active transcription is not 

occurring, there is still some amount of basal transcriptional activity[80]. This means that even in 

the OFF state, some amount of mRNA is being produced, albeit at a much slower rate. The two-

state model simplifies transcriptional activity and creates an OFF state where absolutely no 

transcription takes place. The two-state model also makes no mechanistic assumptions on the 

underlying structure of the bursty gene, meaning any number of causes could be responsible for 

the transition from the ON state to the OFF state, and vice versa. Any complicated factors, such 

as transcription factor binding or chromatin remodeling, are left out in order to keep the model as 

simple as possible. Transcription and translation are considered instantaneous events in the two-

state model, even though the production of mRNA and proteins requires a finite amount of time.  
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Additional assumptions are inherent in the Gillespie algorithm. Rate constants are based 

upon experimental measurements, meaning complicating factors such as diffusion are implicitly 

included in the measured reaction rates. The introduction of spatial considerations introduces 

additional assumptions, and simplifications must be made such that the complex cellular system 

being examined can be analyzed in a computationally tractable manner. One simplifications was 

the choice to represent the space as 3-dimensional cubic lattice instead of continuous space. This 

is standard practice when simulating spatially resolved systems with the Gillespie algorithm and 

correctly accounts for diffusive properties over sufficiently long time and length scales. The 

lattice simplification also removed the issues associated with spatial proximity and particle 

reactions. In continuous space, the rate at which two particles react can be strongly dependent on 

their distance from each other. Instead of having to continuously recalculate the reaction rates of 

particles based on changes in their distance, it is simpler and faster to consider only reactions that 

occur when the two particles share the same lattice site. 

Crowders were assumed to occupy a single lattice site and interact with other particles 

through excluded volume effects. I.e., no other particles could move into the same lattice site as a 

crowding molecule. No other interactions, such as hydrostatic or van der Waal interactions, were 

considered in this model. More complex macromolecular crowding interactions, such as 

aggregation or polymer chain interactions, were also neglected. 

Assumptions were also made during the development and use of the noise analysis 

methods. One major assumption was that of ergodicity. A process is said to be ergodic if the 

mean value of the stochastic process is equal for a single sample of an infinite amount of time 

and an infinite ensemble of samples over limited time. This property is necessary to the noise 

framework analysis because experimental methods cannot follow a cell over infinite time: they 

must make the assumption that looking over many cells over a limited time will be equivalent. 

Secondly, a non-ergodic process cannot be analyzed using the previously described noise 

analysis framework. It was also assumed that the regime in which the system was observed was 

within the valid bounds of the noise framework equations, namely, that the system was highly 

bursty, with well separated bursts (kOFF >> kON).  
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3. Modeling and Noise Analysis of Confined Cell-free 

Chambers 
The consequences of confining gene expression to various cell-free reaction chamber 

volumes and the consequences of resource sharing on transcriptional burst dynamics are 

explored in this chapter. Resources include any molecules required for the production of mRNA 

or protein in a gene expression system, including polymerases, ribosomes, and amino acids. Cell-

free systems are in vitro tools that incorporate molecular expression machinery or structures 

from a cell into synthetic frameworks, allowing the study of specific reactions in the absence of 

confounding cellular components. Experimental cell-free chambers were fabricated and 

measured by Patrick Caveney and Sarah Norred. Subsequently, the measured flourescence data 

was analyzed using the the noise framework outlined previously. Models were then developed to 

help explain the transcriptional burst behavior measured in the cell-free expression systems. 

3.1 Synthetic Exploration of Resource Sharing 
Resource sharing is rarely considered when exploring the molecular processes associated 

with gene expression bursting. Many molecular processes have been shown to control 

transcriptional bursting (detailed previously in the introduction). However, the focus on 

molecular mechanism effects is often limiting in terms of scope. In a system in which a common 

reservoir of resources is shared among many expressing genes, it seems likely that the global 

activity of the genes would depend on the size of the reservoir and the spatial distribution of the 

common resources available. 

Gene expression has been studied using various experimental techniques[46, 49, 78], 

both in cells and in bulk cell-free systems. Cell-based platforms are advantageous due to the 

ability to observe function within its natural context. However, it is difficult to isolate and 

manipulate specific parameters such as confinement independent of other cellular processes, 

including growth, cell division, and global gene expression.  

In vitro reaction chambers provide a platform to isolate specific mechanistic effects of 

gene expression from confounding cellular processes [110, 111]. Cell-free protein synthesis 

(CFPS) systems have been used to observe gene expression bursting[48]. CFPS systems have 

been used to study noise in gene expression through the use of cellular-scale microfabricated 
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arrays of reaction chambers as well [112, 113]. Here, microfabricated CFPS reactors and gene 

expression noise measurements are used in combination to explore gene expression bursting and 

resource sharing in well-controlled and easily manipulated environments. Figure A.10 details the 

resource-sharing environment in the cell-scale reaction chambers. In a confined system with 

limited resources, multiple genes pull from the reservoir in a time dependent manner. Bursts of 

gene activity correspond to short periods of high resource utilization (indicated in the figure as a 

change in the resource utilization heat map). However, no resources are required for long periods 

of gene inactivity.  

This chapter focuses on the study of cell-free gene expression in synthetic reaction 

chambers under different resource sharing scenarios (figure A.11). Measurements of gene 

expression patterns were completed while the number of genes and the size of the resource pool 

were increased proportionally, either through the compilation of individual chambers (top 

resource sharing scenario in figure A.11-A), or through an increase in single chamber size 

(bottom resource sharing scenario in figure A.11-A). Under different resource sharing scenarios, 

the experiments aimed to determine if the properties of gene bursting were dependent on the 

global distribution of resources available (figure A.11-B). Cell-free reaction chambers were 

populated with cell-extract and observed over time using microscopy. Protein fluorescence time 

traces were collected and analyzed using the noise framework presented in the previous chapter. 

Modeling methods were then created and used to describe the behavior of the underlying gene 

regulatory system and resource sharing process. Finally, similar models were applied to 

transcriptional and translational burst size measurements from E. coli to determine whether 

resource sharing could explain the degree to which coupling between transcriptional and 

translational burst size occurs. 

3.2 Cell-Free Chamber Fabrication and Analysis 
Cell-free expression chambers were fabricated using soft lithography techniques, which 

are described in detail in Norred et al.[113]. In short, chambers were constructed out of 

polydimethylsiloxane (PDMS) and fabricated on a flexible, actuatable membrane suspended 

above microfluidic channels (figure A.12-A). All chambers were cylindrical in shape, with a 

height of 5 µm and a range of diameters from 2 µm to 10 µm. The diameters corresponded to 

volumes from 15 fL to 400 fL. The CFPS reaction raw extract was mixed with Enhanced Green 
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Fluorescent Protein (EGFP) coding pET3a plasmid, and was loaded into the reaction platform by 

flowing it into the microfluidic channel using pressurized nitrogen. The membrane was then 

actuated with deionized water, which forced the flexible membrane onto the cylinders, sealing 

the chambers and creating an easily defined reaction volume. Imaging of these chambers began 

shortly after actuation, and within minutes of the CFPS mixture being activated through the 

addition of the plasmid, which meant that a well-defined t = 0 could be measured. This property 

allowed for experimental chambers that were measured on different days to be directly 

compared. 

Measurements were taken every 3 minutes for an hour of the total EGFP fluorescence for 

each individual chamber (figure A.12-B). The time course average of all 119 chambers showed 

rapid increase in fluorescence initially, followed by a slower rate of fluorescence at longer times. 

The measurements were similar to bulk reactions, proceeding at a slightly higher rate as noted 

elsewhere[114, 115]. Because the protein decay rate was much longer than the measured window 

of time, the falloff in measured fluorescence was not due to equilibrium expression and decay of 

the protein, but was instead more consistent with resource limitation. Reduction in expression at 

long times within synthetic, cell-free systems has been previously noted[112]. The shape of the 

transient and the variation in the measured fluorescence values was similar to cellular 

experiments[72]. To test the volume effects on resource sharing and gene expression, 2 µm, 5 

µm, and 10 µm diameter chambers were fabricated and tested.  

Time traces from each of the experimental chambers were subjected to the noise 

processing framework described earlier (figure A.12-C). Due to the transient nature of these 

experimental traces, noise was extracted by removing the gained general trend from each of the 

individual fluorescence trajectories. The general trend was taken on a per-day bases, as chambers 

captured on different days showed different trends which needed to be removed individually. 

Additionally, a gain factor was used to modify the degree to which each general trend coupled 

into a given experimental trace, and was found by minimizing the cross correlation between the 

general trend and the individual trace. The magnitude of the noise was quantified using the 

square of the coefficient of variation (CV2). Because these chambers were transient in nature and 

never reached steady state, the “mean fluorescence value” used for the calculation of CV2 was 

taken as the final time point fluorescence value of each time trace after background fluorescence 
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was removed. The measured fluorescence for a given time trace was taken as the sum of the 

intensity for all pixels inside an experimental chamber, and was therefore a measure of the 

protein abundance for each chamber (as opposed to the mean value of each pixel within a given 

chamber, which is a measure of concentration). Rigorous testing on the size of the region of 

interest (ROI) and its effect on the measured fluorescence intensity revealed relative insensitivity 

to small changes in ROI near the wall of the chamber. As such, a single ROI region was used for 

all chambers of a given size. 

3.3 Chamber Experimental Results and Discussion 
The expression of 2 µm chambers are examined first. Figure A.13 shows the CV2 vs 

protein abundance plot for individual 2 µm chambers. Each small triangle represents the CV2 and 

protein abundance value for a single 2 µm chamber. The mean abundance over the ensemble of 

individual chambers was ~2x104 arbitrary units (AU) and the mean CV2 was ~10-3, as noted by 

the large triangular marker. Initially, to investigate the effects of resource sharing on expression, 

composite chamber were created by summing the fluorescence values from a number of 

individual 2 µm chambers, which varied from combinations of 2 to 6 chambers. For these 

composite chambers, no set of chambers shared more than 4 chambers in common with any other 

set, which was meant to minimize correlations between composite chambers that were identical 

in composition. The composite chambers serve as an illustrative case where resources are 

manually separated into distinct volumes which are not shared. The results from randomly 

chosen composites of 2 µm chambers are shown in figure A.13 as empty yellow triangles. Each 

empty triangle represents the mean value of 40 composites of a given number of chambers. As 

the number of chambers in a composite is increased, the measured sum value of the CV2 

decreases inversely with abundance (dotted black line), which is consistent with the idea that 

each chamber is an independent noise source. 

To contrast with the composite chambers, larger chambers were measured at higher 

chamber diameters, such that a larger volume of reagents was subjected to a single 

proportionally large pool of shared resources. The results are compared in figure A.14-A. The 

three chambers sizes are presented in different colors (yellow for 2 µm, blue for 5 µm, and green 

for 10 µm chambers). The larger, darker colored symbols represent the geometric mean of each 

distribution. Within each chamber size, there is a clear inverse relationship between relative 
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fluorescence and CV2. Fluorescent abundance for the 2 µm individual chambers, for example, 

varied in value over about one order of magnitude, or from 104 to 8*104 AU, while CV2 values 

ranged over 1.5 orders of magnitude, from 3*10-4 to 10-2.  

The dimensions of the chambers were set such that a single 5 µm chamber contained 

close to the same volume as six 2 µm chambers, which could therefore be directly compared. For 

the 5 µm chambers, it was shown that the CV2 of the chambers was not dependent on the volume 

of the reaction chamber, and was instead an order of magnitude greater in noise compared to the 

composite 2 µm chambers. The 10 µm chambers continued the trend seen in the 5 µm chambers, 

showing little change in CV2 even at much higher abundance values. Comparisons between the 

composite of 6 2 µm chambers with the 5 µm chambers reveal a significant difference in CV2 

(an order of magnitude) at the same abundance values. This comparison reveals that even in 

systems with the same number of genes and resources, the delineation of those resources has a 

significant effect on the behavior of the system. The changes in noise behavior are also apparent 

when considering the distribution of final protein abundance values reached, as shown in figure 

A.14-B, where the chambers of larger volume (blue bars) have a much wider final protein 

abundance distribution compared to the composite chambers (orange bars). 

Separate experiments were undertaken to confirm that the flat CV2 relationship across 

increasing chamber volumes was not unique to the PDMS reaction chambers, or due to any kind 

of surface interactions or molecular adsorption to the chamber walls. The experiments 

encapsulated PURE cell-free reactions in POPC water-in-water vesicles, which are more 

biologically similar to cells. The vesicles were then imaged using confocal microscopy. The 

results from these experiments are shown in figure A.14-C. The volume range of these vesicles 

was larger than the range of volumes of the chamber (4 to 20 µm in diameter), but overlapped, 

allowing for comparisons between the two systems. Each colored set of points represented 

vesicles with a similar range of diameters. The comparison of the two colored sections of volume 

in the vesicles showed that measured protein abundance scaled linearly with volume, but noise 

magnitude remained invariant to changes in abundance. 

The differences between the composite and the large diameter chambers reveals the 

importance of resource sharing when considering bursting in gene expression. Even when the 

ratio of DNA and expression resources are kept constant, changes in the degree of isolation result 
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in significant changes in measured noise in expression. An interesting observation from these 

results comes from the change in burst dynamics within each chamber. When moving to a larger 

chamber, and subsequently a larger pool of resources, individual genes are more likely to 

consume a larger proportion of the total resources in an infrequent manner, as opposed to 

consuming a small proportion of the total resources in a more frequent manner. This suggests 

that expression bursts are more readily made bigger, rather than more often. 

Observations of the noise magnitude at different chamber sizes revealed that while 

insensitive to changes in reaction chamber size, CV2 was hypersensitive to random fluctuations 

in protein abundance within the same sized reaction chambers. For the 2 µm chambers, 

individual protein abundance values varied less than one order of magnitude (from 104 to 8x104 

AU), but individual CV2 values varied more than an order of magnitude (from 10-2 to 3x10-4). 

This behavior was also observed in the 5 µm and 10 µm chamber populations. Figure A.14-D 

shows the hypersensitivity of CV2 to protein abundance, where the dotted lines are fits to each 

chamber size where CV2 goes as one over abundance squared.  

3.4 Resource Sharing Model  
When comparing a 2 µm chamber to a larger diameter chamber at constant concentration, 

the abundance values for each constituent inside the system increase proportionally with the 

volume of the chamber. As such, the resources available to each gene, be it ribosomes, 

polymerases, etc., is the same for each gene, independent of system volume. Although the 

amount of resources available for a given gene is the same across all genes, not all genes may 

utilize a proportionate amount of resources. Due to a number of factors including spatial 

correlations, cooperative binding, and positive feedback, the number of resources an individual 

gene utilizes may be vastly different from another gene in close proximity. The experimental 

data shows that larger chambers have a higher transcriptional or translational burst size, but not 

burst frequency, due to the fact that an abundance change over three orders of magnitude results 

in only a half order of magnitude change in CV2. Two different models were considered to 

explain the behavior seen in the experimental chambers. The first describes a system in which 

sharing is driven by positive feedback between the binding of resources and genes. The second 

model describes resource sharing in which changes in burst size are primarily driven by time-

dependent production events associated with transcription. 
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3.4.1 Shared Resource Pool Model 

The first model developed assumed that reaction chambers are resource limited such that 

not all genes are capable of proceeding with transcription at the same time (Figure A.15-A). In 

order to express protein, each gene must share the available resources in a time-dependent 

manner. The sharing of resources is similar to a genetic toggle switch, which describes a system 

in which two genes are related in such a way that activation of one gene deactivates the 

other[23]. In the shared resource model, negative regulation is introduced implicitly, as a gene 

that strongly sequesters resources from a common pool leaves few resources available for a 

second gene. Additionally, positive feedback (due to cooperative binding, for example) causes 

genes that bind resources to continue to bind resources at a higher rate. The combination of 

positive and negative feedback suggests that in a system in which resources are shared among 

many genes, it is possible that a few genes accumulate the vast majority of the resources at any 

given time, thus sequestering resources from use by other genes. In this scenario, a portion of the 

genes can only pull from a strongly depleted resource pool, lowering the amount of resources 

available for binding. The model is expected to increase burst size as volume increases (more 

concurrent genes and resources) because the combination of positive and negative feedback will 

allow a few number of genes to become active for longer periods of time, as opposed to 

becoming active more frequently. 

Monte Carlo simulations of the master equation using the Gillespie algorithm were 

performed on a system in which a set number of genes would pull from a large resource pool. 

These resources generically represent any molecules required for gene expression in both 

transcription and translation. The binding rate (kBn) of the resources to each gene n = 1, … , N in 

the system was subject to a positive feedback loop, such that bound resource molecules increase 

the affinity of the gene for further resource binding. A sigmoidal curve was applied to resource 

binding (Figure A.15-B). The equation took the form 

 
𝑘𝐵𝑛 =

𝑘𝐵𝑚𝑎𝑥
(1 + 𝑒−𝜆(𝑥𝑛−𝜇)

+ 𝑘𝐵𝑚𝑖𝑛 

 

(3.1) 

where 𝑘𝐵𝑚𝑎𝑥 determines the maximum kB value, 𝑘𝐵𝑚𝑖𝑛 is the minimum kB value, 𝜆 determines 

the slope of the binding curve, 𝜇 determines the curve offset (at what bound number does 
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positive feedback begin to take effect), and xn is the number of resources currently bound to gene 

n. The unbinding rate was equal for all genes and was not subjected to any kind of feedback.  

To determine whether increasing the size of the system changed the behavior of resource 

allocation in the model in the same manner as inferred in the experimental data, simulations were 

run for an increasing number of genes in a single system. The number of resource molecules per 

gene in the system was constant as the number of genes in the system increased, meant to 

represent the move to higher chamber size at constant concentration in the experiment. It is 

assumed that the number of resources utilized by a gene directly correlates with the number of 

proteins it is capable of producing. Simulations were run until steady state, and the variance in 

the number of resources bound to each gene in a given system was measured. Systems with 1 to 

10 simultaneous genes with positive feedback and without positive feedback (kB constant over 

all bound resource values) were simulated for 100 trajectories for each case. Parameters were 

chosen such that no single gene would “lock” into a highly bound state and remove any time 

dependent sharing dynamics in the system. 

Characteristic gene traces are shown in figure A.16. In a system with only one gene, the 

number of bound resource varies around a constant steady state value. Because of the chosen 

parameter space, a single gene does not reach the bound resource value required to transition into 

the high binding regime. However, in a system with more than one gene and positive feedback, a 

gene begins to stochastically transitions between a high steady state and low steady state bound 

resource value. The two steady state values are dependent on the high and low binding rates of 

the sigmoidal curve. Although the system is populated with enough resource molecules for each 

gene to accumulate a number of bound molecules above the lower steady state value, the positive 

feedback allows genes that stochastically bind resource molecules first to continue to bind 

resources at a higher rate. Because of the limited nature of the resource pool, resource 

sequestration results in implicit negative regulation between genes. Genes that bind a large 

proportion of resources force genes without bound resources into an environment without access 

to the same number of free resources, lowering the gene’s steady state bound ribosome value. 

This combination of forces creates a system where a few genes bind proportionally more 

resources, while the remaining genes are unable to bind as many. Due to stochastic fluctuations, 
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genes that release enough resources to fall into the low binding regime provide an opportunity 

for another gene to burst into the high binding regime.  

As more genes are added into the system, the variance in the number of bound resources 

per gene in the system increases more than would be expected compared to a system where there 

is no positive feedback and all genes have an equal number of bound resources on average at any 

given time. This relationship is shown in figure A.17, which shows the change in the variance in 

bound resources per gene for systems with and without positive feedback for an increasing 

number of concurrent genes. With positive feedback, the increase in variance is due to an 

individual gene accumulating a large proportion of resources for an extended period of time. The 

accumulation forms a relationship between the number of genes and the time the gene spends in 

the “active” state. In systems with few genes, an individual gene transitions quickly between the 

high and low steady state values. In systems that contain many genes, individual genes spend 

more time in either the high or low state before transitioning. When examining the transitions of 

a single gene within a system of many concurrent genes, the system increases variance by 

exhibiting both longer times between transitions and a higher difference between the high and 

low steady states. Notably, as the number of genes increases past 5, the variance in bound 

resources per gene levels off, indicating that the addition of more genes is no longer significantly 

changing the dynamics of the system. In systems that did not have positive feedback, individual 

genes did not behave in a bursty manner. The variance in the number of bound resources scales 

linearly with the number of concurrent genes in the system. Instead, the number of resource 

bound to all genes varied around a common steady state value. Sample traces are shown in figure 

A.16-D.  

This model shows that it is possible to create a system that preferentially increases burst 

size when moving to larger chamber volumes by using positive feedback to increase the time 

between transitions as the number of concurrent genes increases. However, a major concern with 

this model is the propensity to develop anticorrelation between genes. In a system with more 

than one gene, an increase in the number of resources bound to a gene is coupled with a decrease 

in the number bound to another gene. Anticorrelations in the simulations would reduce the 

ability of this model to explain the properties of the experimental system. Because the 

experimental system measures behavior in an entire experimental chamber and not on a single 
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gene basis, anticorrelations between individual genes would reduce the variance in the sum of 

bound resources for all genes. Consider a two gene system transitioning between a high and a 

low steady state in a perfectly anticorrelated manner. While each individual gene would have 

high bound resource variance, the sum of the two genes would have low bound resource 

variance, as the total number of bound resources changes little over time. 

Anticorrelation measurements were done for each system of increasing concurrent gene 

number, where two random genes in a given system were compared to each other by cross-

correlating the number of bound resources per gene over time (figure A.18). In the system with 

only two concurrent genes, those two genes were compared to each other. Cross correlations of 

systems with few genes show strong anticorrelation, denoted by strong negative cross correlation 

values at zero lag time (figure A.18-A). The strong anticorrelation is due to single genes 

sequestering the majority of the resources at low concurrent gene number, causing the system to 

simply “toggle” between active genes. However, as the number of concurrent genes increases, 

the likelihood that any two genes within the system are perfectly anticorrelated decreases, as the 

ability to rise into the highly bound state is shared among a greater number of different genes 

(figure A.18-B). This property can be shown as a decrease in the anticorrelation value as the 

number of concurrent genes increases. It is also noted that without positive feedback, little to no 

correlation is found among genes within a given system (figure A.18-C).  

While the variance in the number of bound resources to individual genes increases and 

the anticorrelation falls as the number of concurrent genes is increased, measuring the variance 

in the total number of bound molecules among all genes in a system produces results which are 

not consistent with experimental data. Unfortunately, while the anticorrelation between two 

individual genes within a system drops as the number of genes increases, the total anticorrelation 

remains high, since the number of genes in the high state remains constant over the length of a 

trajectory. When considering the total number of bound molecules across all genes, any change 

in the variance trend is lost. This property can be found in figure A.19, which shows that the 

variance of the total bound molecules in a system across all genes as the number of genes 

increased. In the experimental chambers, variance in the measured fluorescence increased with 

the square of the chamber volume. This in turn caused CV2 to remain relatively constant over 

multiple magnitude changes in abundance value. However, in the model, the variance in the 
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number of bound molecules scales linearly with the number of genes, suggesting the model is not 

capturing the behavior responsible for the experimental noise measurements. 

Different positive feedback binding curves were tested in an attempt to reduce the 

anticorrelation between genes and to determine whether the variance of the total bound resource 

in the system could be increased. The sigmoidal curve used in the previous model was taken to 

two extremes: a step function, which transitioned from a low binding to a high binding rate at a 

specific number of bound resources, and a linear function, which increased the binding rate 

linearly with bound resources. Characterization of the step function showed that while it was 

able to increase the variance in single genes of a system, the shift to the step function simply 

sharpened the transition times between high and low states for each gene without increasing the 

variance of the total bound resource population. The linear binding separated the transitions 

between the high and low states. However, the variance of the total population did not increase 

with the number of concurrent genes in the system. 

3.4.2 Transient Ribosome Model 

Because of the problems with the previous model, a new model was developed to help 

explain the behavior seen in the experimental chambers, based on the random telegraph model of 

gene bursting (depicted schematically in figure A.20-A). Importantly, the transient ribosome 

model would be simulated over a short time frame and not at steady state in order to capture the 

same transient behavior observed in the experimental chambers. In this model, genes within the 

system transition between an ON and OFF state independently of each other and produce mRNA 

molecules when in the ON state. However, the system has a limited number of ribosomes that 

can bind to mRNA molecules as they are produced. Ribosomes here represent any translational 

resource needed to produce protein. Under the time regime being tested, the mRNA molecules 

produced are assumed to not decay, and that ribosomes that bind to mRNA molecules are less 

likely to re-randomize and diffuse back into the global resource (unbinding is small). Bound 

ribosomes produce protein at a rate that decays exponentially over the length of the simulation, 

consistent with previously observed experiments[112]. 

Rate parameters for each of the rate constants were initially derived from literature 

sources[32, 39], and used as a starting point for a variety of different parameter sweeps. 

Concurrent genes were varied from 5 to 50 in 5 gene increments and simulated for 100 minutes. 
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The rate of translation decayed exponentially over time with a time constant set to match the 

transient behavior of the experimental data. Results from simulations are presented in figure 

A.20-B. Simulations increase size at constant concentration by increasing the number of 

concurrent genes with a proportional increase in the ribosome population. Measurements of the 

CV2 and protein abundance values in the simulations show that with high transcriptional 

bursting, larger reaction chambers increases the steady state protein abundance of the system 

without changing the value of CV2, consistent with the experimental data. Further examination 

of the simulations reveal that the shift to higher protein abundance values at similar noise 

magnitudes is due primarily to the timing and duration of the initial burst of activity for a given 

expression system. 

In the transient ribosome model, at short times, the rate of any gene entering the ON state 

is the same. The first gene to transition to the ON state has access to the full ribosome resource 

pool and begins to capture resources. The gene produces several mRNA before returning to the 

OFF state, and the mRNA molecules sequester ribosomes from the pool. After a period of time, a 

second gene enters the ON state and produces mRNA molecules. However, a large proportion of 

the ribosomes have already been sequestered by the mRNA molecules generated from the first 

gene. At long times, genes that stochastically produce larger bursts of mRNA are left with few 

ribosomes in the pool, reducing their apparent burst size and limiting their influence on the total 

bound ribosome population. Additionally, the decrease in translational efficiency over time 

means that even if late mRNA transcripts are produced in a system with available ribosomes, 

those ribosomes will not be able to produce protein at a highly effective rate. 

Stochastic simulations reveal that noise observed in the experimental system can be 

explained though the stochastic timing of the first transcriptional burst events. Interestingly, as 

the size of the chamber increases, a relatively small number of mRNA acquire a larger number of 

bound ribosomes. Instead of a larger number of mRNA being able to accumulate ribosomes 

when more mRNA and ribosomes are introduced into the pool, the system instead shifts a 

disproportionately large number of ribosomes to relatively few mRNA. Figure A.20-C shows 

this relationship graphically by ranking the timing of each mRNA produced in a given system 

with the number of proteins that were produced from that transcript. The figure clearly shows 

that even in systems with many genes producing mRNA, those mRNA that are produced earliest 
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in time are the ones that produce the most protein. Additionally, the same number of mRNA 

transcripts produce the majority of the proteins in a given system, consistent with the idea that 

few genes dominate a chamber regardless of the size of the chamber. The model predicts that the 

larger protein populations found in larger reaction chambers resulted from the translational 

amplification of burst sizes, not the initiation of more bursts. 

An additional experimental prediction was the decrease in noise at increased protein 

abundance faster than the canonical inverse relationship with abundance for systems containing 

the same number of concurrent genes (same chamber size). This hypersensitivity to abundance 

variations seen in the experimental chambers can be attributed to the random timing of the first 

transcriptional event in each simulation. Chambers that have a transcriptional event early in time 

are able to make full use of translation, and result in high steady state protein abundance values. 

The average number of ribosomes captured per mRNA molecule is also reduced, leading to 

smaller burst size and lower noise. Conversely, systems which have late initial transcriptional 

events both have less time to produce protein, and a reduced rate of translation.  

3.5 E. coli Comparison and Steady State Model 
The experimental chamber results suggest available translational resources are more 

likely to aggregate to regions of active transcription, causing expression bursts to self-reinforce. 

The idea can be extended to say that, in prokaryotic cells, the size of a translational burst (b) is 

directly correlated with the size of a transcriptional burst (B). Recent work measured 

transcriptional and translational burst sizes in E. coli, which revealed that large mRNA 

populations are strongly correlated with large translational burst sizes[89]. Additionally, large 

protein populations are strongly correlated with large translational burst sizes[116]. As seen in 

figure A.21, as transcriptional burst size varies over a half an order of magnitude, the 

translational burst size varies over a much larger range (three orders of magnitude). Fitting 

reveals that the translation and transcriptional burst sizes are related as b = 0.25*B4.78.  

It is critical to note that the mechanistic relationship between burst sizes is still unknown, 

as is whether a large transcriptional burst size drives a large translational burst size, or vice versa. 

However, the correlation does suggest strong cooperativity between translational and 

transcriptional bursting. Some form of positive feedback, in which a large transcriptional burst 

encourages the formation of a large translational burst, is a possible mechanism suggested by the 
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data. Spatial effects are a likely source of feedback, as crowding due to RNAP or crowding-

enhanced localization could increase the expression burst size[117, 118]. 

The previous model describing the behavior of the cell-free expression chambers was 

specific to the transient nature of the experimental systems. To create a model that describes the 

burst behavior measured in the E. coli data, the model should be valid in the steady state regime. 

New model parameters were adjusted to match literature values for E .coli[32]. An mRNA decay 

term was incorporated into the model, and protein decay was assumed to be equal to the 

doubling time of an E. coli cell. Ribosomes accumulated into a “local pool,” representing a 

region of spatial proximity to the gene, based on the mRNA population in the system instead of 

to individual mRNAs. The decay associated with translational efficiency was also removed, as 

the parameter was unique to the cell-free experimental chambers. For this model, it is assumed 

that the rate at which ribosomes leave the local pool is dependent on the number of mRNA in the 

system, as it is reasonable to assume that a high local population of mRNA retains ribosomes and 

continue to produce proteins due to localized crowding effects. Likewise, the rate of protein 

production is also said to be proportional to the number of mRNA, which argues that rapid 

rebinding of ribosomes to the mRNA facilitates more protein production. Simulations were run 

with a single gene under the assumption that the relationship between transcriptional and 

translational burst size in E. coli is specific to individual genes. The transcriptional and 

translational burst sizes of the system are measured as the number of mRNA produced per burst 

(transcriptional burst size), and the number of proteins produced from a single mRNA 

(translational burst size). It is assumed that bursts are well separated in time such that any mRNA 

produced in a burst decay before a second burst occurs. These assumptions are made to simplify 

measurements of burst size by avoiding cases where mRNA from a previous burst produce 

proteins that are then accounted for in the current burst. 

 Simulation results from the steady state model are shown in figure A.22. The comparison 

between the transcriptional and translational burst size reveal that a larger transcriptional burst 

results in a larger translational burst. For this model, an order of magnitude increase in 

transcriptional burst size is coupled with a similar order of magnitude increase in translational 

burst size. This relationship can be shown to be due to the influence on mRNA on both the rate 

of ribosomes entering the local pool and the rate of protein production by comparing the results 
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to a model where either of these relationships is removed. In a system where the rate of protein 

production is influenced only on the number of ribosomes in the local pool, as shown in figure 

A.23, there is no translational burst size dependence on transcriptional burst size. However, the 

model does not predict the multiple magnitude increase in translational burst size over 

transcriptional burst sizes. Additional factors, including positive feedback pathways not 

accounted for in the model, may be responsible for the strong correlations between the burst 

sizes.  

3.6 Conclusions 
In this chapter, micro and nanofabricated experimental chambers that allowed for 

accurate control over confinement and resource sharing in gene expression were examined. 

Specifically, gene expression burst patterns were measured as the number of genes and resource 

molecules was increased: either through summing of individual chambers (discrete resources), or 

through an increase in chamber volume (shared resources). It was found that the total protein 

production scaled linearly with the amount of DNA and resources present, as expected. 

However, different resource sharing cases resulted in drastically different burst patterns. 

Composite sums of individual chambers (discrete resources) resulted in higher protein 

abundance through more frequent bursts, while chambers of increased volume (shared resources) 

increased protein production though an increase in burst size. The divergence of burst was 

present even though a constant ratio between resources and DNA was maintained, demonstrating 

the importance of resource sharing on expression bursting. As chamber size is increased with a 

shared resource pool, the expression system preferentially modulates burst size as a small 

number of genes increasingly use a larger proportion of the available resources. The results 

suggest that expression bursts display cooperativity (through self-reinforcement or positive 

feedback) that is controlled by the availability of global resources, and not intrinsic properties of 

the gene. Examination of the models found that genes in the system that produce mRNA early 

are those that most heavily pull on the resource pool, dominating the bursting behavior of the 

system. Subsequent bursts have less available resources to pull from and are unable to produce 

protein at a high rate due to the decay in translational efficiency due to resource limitations. This 

model suggests that burst size control may be the principle mechanism driving protein 

abundance changes observed between transcriptional and translational burst sizes in E. coli.  
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4. Crowding and Confinement Effects on Gene Expression 
Previously, effects of spatial influences on gene expression were explored with cell-free 

expression chambers of varying sizes. The focus was on the idea that gene expression was 

influenced by resource sharing and confinement. This chapter explores the effects of 

macromolecular crowding and geometric confinement on gene expression and transcriptional 

bursting. Results from spatially resolved models are compared to two- and three-state models to 

explore the assumptions made about expression systems in cells and experiments. The 

importance of spatial considerations are detailed though the analysis of discrepancies between 

modeling methods. 

4.1 Spatial Influences on Gene Expression 
The two-state (random telegraph) model is widely used for bursty gene expression due to 

its ability to describe the behavior of gene expression independent of mechanistic causes. 

Different molecular mechanisms have both theoretically and experimentally been shown to cause 

bursty behavior, examples of which were described in detail in an earlier chapter. However, 

spatial considerations can influence assumptions inherent in the two-state model and 

significantly influence the behavior of bursty gene expression. 

As described briefly in the introduction, previous work has started to reveal the 

relationship between spatial influences and gene expression. Rein ten Wolde and coworkers have 

shown that spatial diffusion and rapid rebinding of transcription factors can significantly increase 

the measured noise in a gene network, and that macromolecular crowding can enhance binding 

through changes to equilibrium constants[101, 102]. Previous work by Meyer et al. has also 

shown that highly crowded static environments significantly alter the behavior of gene 

expression by modifying the diffusive properties of molecules, and can drive what was a well-

mixed constitutive process to behave in a bursty manner[59]. However, these works have either 

considered only (1) crowding using rescaled rate parameters in a well-mixed framework[101] or 

(2) static spatial crowding effects on gene expression, neglecting the influence of dynamic 

crowding molecules[59]. Stochastic effects associated with gene expression under the influence 

of dynamic crowding and confinement have not been fully explored (figure A.24). It has been 
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shown that confinement and altered protein mobility can markedly influence the stochastic 

behavior of other biochemical reaction networks as well[103, 104]. 

In this chapter, it is shown that for a simple, spatially resolved model of gene expression, 

spatial considerations such as crowding by mobile molecules and geometric confinement can 

markedly influence the measured noise, and subsequently the inferred bursting parameters, of 

transcriptional bursting. Comparisons to two-state and three-state models reveal that significant 

aspects of the spatial model are not captured using the simpler models. It is shown that the 

relationship between burst frequency and burst size that is observed in the spatial data can be 

attributed to changes in the distribution of events due to spatial effects. In particular, the assumed 

distribution of events in a two-state model are ill-suited to describe the noise behavior at high 

crowding in the spatial model due to altered spatiotemporal correlations between molecules. This 

leads to changes in the noise magnitude of the mRNA population. These comparisons and 

subsequent analysis of the spatial model highlight the potential importance of spatial effects in 

the measurement and analysis of noise in gene expression. 

4.2 Spatial Model of Gene Expression 
Gene expression was modeled here using the Gillespie algorithm with spatial 

considerations incorporated. The system was first partitioned into a three-dimensional lattice of 

voxels. A voxel is a “volumetric pixel” and represents a three-dimensional subset of volume in 

space. Each voxel had the same characteristic length, width and height, all set equal (cubic 

voxels). Species were introduced into the space randomly and uniformly. Particles were allowed 

to diffuse, or “hop,” into an adjacent compartment (6 cardinal directions in three-dimensional 

space, no diagonal movements). Each particle diffused to an adjacent lattice site with a rate given 

by γ = D/h2, where D is the diffusion coefficient for the particle in µm2/sec, and h is the 

characteristic side length of a voxel.   

Crowding by macromolecules was introduced by populating the space with crowder 

species that occupied single sites and excluded other molecules from occupying the same site at 

the same time. Crowding molecules were allowed to diffuse at a separate diffusion coefficient 

from the transcriptional particles. Attempts by particles to diffuse into a site occupied by a 

crowder were rejected. Crowding molecules were populated into the space randomly, where 

attempted insertions that conflicted with previously placed molecules were rejected. Crowding 



 
 
 

42 

fraction was defined as the volume fraction occupied by crowding molecules over the total 

volume of the system. The boundaries of the space were modeled as hard-walls, such that any 

attempt to transition out of the voxel space was rejected. 

A simple model of gene transcription was considered in which a single “gene” and a 

single “transcription factor,” each represented as a point particle, diffused in space. Transcription 

occurred at rate α when the two particles occupied the same voxel at the same time. Otherwise, 

no transcription occurred. The mRNA degraded at rate γm. The positions of mRNA molecules, 

which do not affect gene expression, were not tracked in order to save computational resources. 

The spatially resolved model was conceptually similar to the two-state model of gene bursting in 

which a gene can occupy an ON state where transcription occurs (co-localized particles) or an 

OFF state where no transcription occurs (separated particles). 

The diffusion coefficient of the gene and transcription factor was taken to be 1 µm2/sec, 

within the typical range of values measured in E. coli[119]. Crowding molecule diffusion 

coefficients ranging from 0.00001 to 0.001 µm2/sec were considered to investigate the role of 

crowding molecules on mRNA production. The range of diffusion coefficients allowed for the 

systematic assessment of the influence of crowding molecules, which is typically most 

pronounced at slow diffusion coefficients. Additionally, the effect of confinement were explored 

by considering different system geometries at fixed volume: a bulk three-dimensional system 

(16x16x16), a confined slab-like system (32x32x4), and a two-dimensional system (64x64x1). 

Physically, the three regimes are representative of reaction systems in the cytoplasm, those in a 

confined region of the cell (e.g., the region between the nucleus and plasma membrane), and 

those confined to the plane of a cellular membrane, respectively. Using the same number of 

lattice sites for each case removed any ambiguity associated with changing volume. Multiple 

crowding fractions were considered, ranging from 0% to 50% by volume. For each crowding 

fraction and confinement case, 100 independent trajectories were generated. Each trajectory was 

simulated over 1000 minutes, with the first 300 minutes removed to ensure all data was analyzed 

at steady state. 

4.3 Two-State Model Parameterization Methods 
Multiple parameterizations of the two-state model were used to explore the relationship 

between the spatially resolved model of bursty gene expression and the simpler random 
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telegraph model. In examining the spatial model, the co-localization and separation of the two 

gene expression particles share similarities to the ON and OFF states of the two-state model, 

respectively, as transcription only occurs during co-localization (the ON state). The “encounter 

method” assumes the behavior of the diffusing particles is directly correlated with the gene state 

of the random telegraph model. Two-state models were parameterized using the average particle 

encounter duration and time between particle encounters from the spatial model. “Encounter” 

refers to when the two particles occupy the same voxel at the same time. The average time spent 

apart between encounters and the average time spent together was used to parameterize kON and 

kOFF: 

 𝑘𝑂𝑁 =
1
〈𝜏𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒𝑑〉
⁄  

𝑘𝑂𝐹𝐹 =
1
〈𝜏𝐶𝑜−𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑〉
⁄  

 

(4.1) 

where 〈𝜏𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒𝑑〉 is the mean time between particle encounters, and 〈𝜏𝐶𝑜−𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑〉 is the mean 

time two particles occupy the same voxel. These equations are derived from an understanding of 

the two-state model under the assumption that the process is sufficiently bursty (kOFF >> kON). 

Using the generated bursting rate parameters, two-state models were parameterized as a 

comparison point against which each spatial model at some crowding fraction and confinement 

was examined. This method is expected to give the correct average number of mRNA since the 

mean time between encounters and the mean encounter time give the correct fraction of time in 

the active state. However, it may lead to different noise characteristics due to spatial influences 

changing the distribution and variance of encounter times in the system. To summarize, the 

encounter duration and time between encounters for all trajectories of a given crowding and 

confinement case were averaged to generate a kON and kOFF value for each comparable two-state 

model. Values were averaged to generate a single set of parameters for each case because the 

spatial distributions were also generated from a single set of parameters. Calculating separate 

two-state burst parameters from individual trajectories would over fit the data. 

The theoretical noise framework described in chapter 2 provides a useful tool in relating 

the stochastic fluctuations of gene expression with the underlying characteristics of the system’s 

burst behavior. Previously, equations were described that calculate the burst size and burst 

frequency of bursty gene expression. The equations are leveraged to determine the burst 
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parameters of the spatial simulations, under the assumptions that the noise framework applies 

fully to the spatial model and that the spatial model is accurately represented by a simple two-

state model. Calculated burst size and burst frequency values were converted into two-state rate 

parameters by using the equations. To review, burst size and burst frequency of the two-state 

model were calculated from the noise magnitude and abundance of the mRNA population using 

the equations 

 𝐵 = 𝐶𝑉2〈𝑚𝑠〉 

𝑏𝑓 =
𝛾𝑚
𝐶𝑉2

 

 
 

(4.2) 

From these values, a comparable two-state model was constructed by generating kON and 

kOFF values using the equations 

 𝑘𝑂𝑁 = 𝑏𝑓 

𝑘𝑜𝑓𝑓 =
𝛼

𝐵
 

(4.3) 

 

which were again derived by examining the two-state model under the assumption that 

transcriptional bursts occur at well separated times (kOFF >> kON). This method is referred to here 

as the “burst method,” due to its use of the burst equations from the noise framework. In 

summary, burst size and burst frequency values were calculated from the CV2 and mRNA 

abundance of the spatial model for each trajectory. The geometric mean of all burst parameters 

for all trajectories in a crowding or confinement case was calculated and used to generate a 

single set of two-state parameters. The geometric mean was used to offset the influence of strong 

outliers that would erroneously shift the mean value of the burst parameters. 

4.4 The Three-State Model 
Motivated by the idea that molecule reencounters may play a significant role in the 

measured noise of the system, a three-state model was considered to determine if the properties 

of the spatial model are better captured. For this model, the gene is allowed to occupy one of 

three states: an ON state where transcriptional expression occurs, an intermediate state in which 

transitions to the ON state are highly likely, and finally a third state that infrequently transitions 

to the intermediate state. The intermediate and third states do not produce mRNA. The three-
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state model attempts to account for transcription factor behavior in a crowded environment, 

where the intermediate state accounts for times when the transcription factor is not in the active 

state but is still spatially correlated with the gene and therefore has a higher chance of returning 

to the active state. The third state represents the state when the transcription factor is well 

separated in space and is no longer spatially correlated. The model is described graphically in 

figure A.25. 

The parameterization method described here was developed with the goal to create a 

three-state model where noise magnitude could be shifted through a single free parameter. Initial 

kOFF and kON values were generated using the average encounter times of the spatial model 

(encounter method). It was assumed that the rate of transitioning from the active state to the 

intermediate state was unchanged compared to the two-state model (k12 = kOFF), which assumed 

the duration particles remained encountered did not change between a three-state and a two-state 

model. The rate constant from the intermediate state to the ON state was assumed to be larger 

than the two-state rate parameter (k21 > kON) to account for the increased chance of reencounters. 

In order to reach the same number of mRNA at steady state as in the spatially resolved system, 

the combined time spent in the intermediate and third states was adjusted to account for the 

increase in the k21, such that 

 
𝑘23 = 𝑘32 (

𝑘21
𝑘𝑂𝑁

− 1) 

 

(4.4) 

It was assumed that when k21 = kON, the three-state model generates the behavior of the 

two-state model by never entering the third state, instead transitioning between the ON and 

intermediate state with the same rates as the two state model. For this to be valid, the equation 

sets the transition rate to the third state (k23) to be 0. Any increase in k21 over the calculated kON 

value was offset by an increase in k23. It was assumed that the rate k32 was unchanged, and was 

set to a constant value for all crowding and confinement cases. It was also assumed that under 

the range of k21 values examined, the ratio of timing between the intermediate and third states 

was insensitive to the exact value of k32 and k23. With these assumptions, the distribution of 

times between being in the ON state, and therefore the noise, was modulated by a single 

parameter (k21). Increases in the value of k21 represented a change in the distribution of times 

spent in the active state, where short periods of rapid reencounters were punctuated by periods 
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without encounters. For each spatially resolved crowding and confinement case, rate constants 

(kON and kOFF) were first generated from the average encounter durations and time between 

encounters. k21 was then increased from the encounter method value (kON) until the distance 

between the mean value of the noise measurements from the spatially resolved simulations and 

the three-state model were minimized.  

4.5 Spatially Resolved Model Results 
Figure A.26 shows the results of the spatially resolved simulations. Figure A.26-A 

describes the time resolved mRNA population traces over a 100 minute portion of 10 simulation 

trajectories of the cubic 16x16x16 lattice space system at 0% crowding fraction. Each trajectory 

is assigned a random color. Figure A.26-B shows the mRNA population traces of the cubic 

16x16x16 lattice space system at 50% crowding fraction. For each crowding and confinement 

case, the traces fluctuate around a common steady state mRNA population. However, in cases 

with high crowding fraction, several trajectories contain large fluctuations of populations, 

characterized by a strong burst of expression followed by decay over time. The large fluctuations 

are associated with enhanced mRNA production and are not present in systems that have low 

(below 30% crowding fraction by volume) macromolecular crowding. The likelihood of an 

expression “spike” occurring in the mRNA population increases as the crowding fraction of the 

system increases, while more confined spatial geometries also result in expression spikes 

occurring at lower crowding fractions. Figure A.26-C shows the mRNA population traces for the 

flat 64x64x1 lattice space system at 50% crowding. Interestingly, the most extreme crowding 

fraction and confinement geometry show spikes in expression that occur in close proximity. As 

will be discussed in detail later, large fluctuations in mRNA population occur when the two gene 

expression particles are locally trapped by crowding molecules and co-occupy a small effective 

volume for a short period of time.  

The noise framework was used on the spatially resolved simulation results to measure the 

underlying burst parameters for each trajectory by examining the noise magnitude and 

abundance of each mRNA trace. Figure A.27-A shows the noise magnitude as measured by CV2 

as a function of mean mRNA abundance for the cubic 16x16x16 voxel space at a variety of 

different crowding fractions (from 0% to 50% by volume). Each small point represents the 

results of a single trajectory (colored by crowding fraction), and each large marker is the 
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geometric mean of all the data points at a given crowding fraction. The geometric mean was used 

because the graph visualizes the data in log space, and the geometric mean minimizes the effects 

of outliers on the mean. As crowding fraction increased, the average steady state mRNA value 

increased as well, while the measured CV2 decreased with an inverse relationship to mRNA 

abundance at low crowding fractions (below 30% by volume). However, behavior distinctly 

changed at higher crowding fractions, characterized by an increase in noise magnitude. 

Separately run, well-mixed models (figure A.27-B) were analyzed, where spatial diffusion 

considerations were removed. To account for the volume effects of the macromolecular 

crowders, the rate of transcription was modified based on the effective volume of the system. 

These simulations revealed that the driving force behind the increase in mean mRNA population 

was due primarily to the decrease in effective volume due to the crowding molecules, reducing 

the volume available for the gene expression molecules to interact. Notably, in these well mixed 

simulations, the noise magnitude continued to decrease at an inverse relationship with abundance 

for all crowding fractions considered, which was in contrast with the spatial simulations, where 

noise magnitude increased at higher crowding fractions. 

To review, under the assumption that the system is adequately described by the random 

telegraph model, higher mRNA abundance values are achieved through an increase in burst size 

or an increase in burst frequency. Changes in burst dynamics are directly correlated with shifts in 

the distribution of noise magnitude and mRNA abundance. An increase in abundance due to 

increased burst size results in no change in CV2 values, while an increase in abundance due to 

increased burst frequency results in a proportional decrease in CV2. The results from the spatial 

model suggest the dynamics of bursting for gene expression in the spatial model are changing in 

two district regions of the crowding fractions tested. In the first region, which occurs over the 

range of crowding fractions from 0% to 30%, CV2 drops inversely proportional to mRNA as the 

mRNA abundance value increases, which is consistent with an increase in burst frequency 

resulting from the excluded volume effects of the macromolecular crowding particles. However, 

at crowding fractions in excess of 30%, the system enters a second region where CV2 begins to 

increase as abundance increases, which is indicative of an increase in burst size coupled with a 

decrease in burst frequency.  
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The geometry of the spatially resolved model, which was modified by changing the 

arrangement of voxels in space, also dramatically influenced the noise magnitude of mRNA 

production. Figure A.27-C shows noise magnitude and mRNA abundance for simulation 

trajectories at 50% crowding for three different voxel arrangements. In the least confined system 

(16x16x16 lattice), the distribution of points was relatively tight, with outliers at higher 

abundance and CV2. These outliers corresponded to trajectories with large spikes in mRNA 

production, which drive the noise magnitude and the mRNA abundance values higher. In the 

moderately confined system (32x32x4 lattice), the distribution of the points was similar to the 

16x16x16 lattice case, suggesting moderately confining the system space at high crowding was 

not significant enough to change the dynamics of bursty expression when compared to a more 

cubic system. In the most confined system (64x64x1 lattice), the distribution of points showed 

marked differences from the two other cases, with a broad distribution of steady state mRNA 

abundance values that extended over two orders of magnitude. The broad distribution was shown 

to be a consequence of long-lived spatial correlations that persisted due to confinement to two-

dimensions. When two reacting particles are confined to a small volume by crowding particles, 

there are fewer degrees of freedom by which to escape from the confined subvolume. Similarly, 

when two particles are spatially segregated, crowding molecules are more likely to prevent the 

particles from encountering each other. 

It was assumed in the spatial simulations that the macromolecular crowders diffused at a 

slower rate compared to the particles needed for gene expression in order to better observe the 

effects of crowding on transcriptional bursting. To determine how the rate of diffusion of the 

crowding molecules would affect the spatially resolved simulations, several mobility tests were 

conducted at different diffusion rates, shown in figure A.27-D. The most confined case at a high 

crowding fraction (64x64x1 lattice sites at 50% crowding fraction by volume) was used to 

emphasize the effects of any spatiotemporal correlations that may occur. The crowding 

molecules are characterized by diffusion coefficients 1000 to 100,000 times slower than the 

reacting particles, and their mobility both allows and constrains the local caging imposed by the 

crowders to eventually relax, although the timescale for this relaxation is influenced by the 

diffusion coefficient. This assertion is consistent with the figure, which shows that slower 

diffusion rates results in a broader distribution of steady state mRNA values and higher values of 
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CV2. More mobile crowding molecules allow the reacting particles to explore the space more 

rapidly, and any localized confinement of the two particles into a smaller volume is shorter lived. 

As a consequence, large fluctuations in mRNA production are less pronounced, and the noise is 

reduced. Static crowding molecules were also considered, which at sufficiently high crowding 

fractions (above 30% crowding fraction by volume), resulted in trajectories that exhibited 

dramatically different dynamics: In some, the reacting particles were partitioned into separate 

subvolumes and were unable produce mRNA. In others, the particles were co-localized in a 

subvolume that resulted in high production of mRNA. Because these systems were static, there 

was no relaxation of the local spatial caging, thus resulting in divergent steady state behavior 

based on the random placement of the gene relevant particles. While these diffusion constants 

are too slow to represent realistic macromolecular crowding alone, these diffusion rates are 

useful in exploring and emphasizing the influence of mobile crowding on gene expression 

behavior. 

4.6 Comparing Spatial Against Two- and Three-State Models 
In this section, the degree to which the behavior of the spatially resolved model can be 

described by two- and three-state models of gene expression is explored. As described in detail 

previously, the behavior of individual simulation trajectories is characterized by the mean steady 

state value of mRNA and the noise magnitude measured by CV2. The distribution of points in the 

CV2 and mRNA abundance plane then provides a characterization of the gene expression burst 

behavior for a particular model compared to the spatially resolved model.  

Figures A.28 through A.32 contain the accumulated results from all combinations of 

parameters tested for each model. Each figure shows the noise magnitude vs mRNA abundance 

values for a given model (spatial, encounter based two-state, burst equation based two-state, and 

three-state models) at multiple crowding fractions (10%, 30%, 50%), crowder diffusion constants 

(0.001 µm2/sec to 0.00001 µm2/sec), and confinement geometries (16x16x16, 32x32x4, 

64x64x1). Each point represents a single mRNA population trajectory.  

The spatial model results are described in figure A.28. Several trends are clearly shown 

through the comparison plots of CV2 vs mRNA abundance. For all cases, as crowding fraction is 

increased, both the noise and the mRNA abundance increase as well. Additionally, shifts to 

higher crowding fraction result in a change in the distribution of CV2 and mRNA abundance. As 
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noted earlier, the shift to higher mRNA abundance is consistent with excluded volume effects 

associated with increased crowding. Additionally, the appearance of outliers is driven through 

short spatial correlations due to crowding molecules, which cause mRNA abundance values to 

deviate from steady state for a short amount of time.  

Interestingly, the distribution of outliers change based on the diffusion rate of the 

crowding particles. When considering the cubic confinement geometry, a reduction in crowder 

diffusion rate results in a reduction in the maximum CV2 and mRNA abundance values obtained. 

However, the absolute number of trajectories that deviate from the mean distribution increased, 

shifting from a distribution with a main cluster and few outliers to a single, long distribution. The 

behavior is attributed to the dynamics of molecular trapping: at slow crowder diffusion, 

relaxation time of spatial correlations is slow, such that deviations in mRNA abundance reach 

higher values due to extended trapping. Additionally, slow relaxation times result in fewer 

opportunities for trapping events to occur over each trajectory. At higher crowder diffusion rates, 

the spatial correlations do not last as long, such that spikes in mRNA abundance do not reach the 

same high values. Faster crowder diffusion allow for more opportunities for trapping events, 

increasing the number of trajectories that display deviations from the mean behavior. 

In the spatial results figure, the flat 64x64x1 geometry at 50% crowding fraction displays 

significant changes in distribution associated with changes in crowder diffusion rate. At the 

slowest crowder diffusion rate, the distribution of mRNA abundance values ranges close to two 

orders of magnitude (some data points are missing due to axes constraints; full range is shown in 

figure A.26-C). As crowder diffusion rate decreases, the range of mRNA values decrease. The 

change in mRNA distribution reveals that when crowder diffusion rate is low, the spatial 

correlations last long enough to either drive mean mRNA abundance to extremely low or high 

values, depending on whether crowding molecules separate or trap the two transcriptional 

molecules. 

The two-state models parameterized using the encounter method are shown in figure 

A.29. Clearly, drastically different behavior is displayed, as changes in crowding fraction 

influence CV2 values differently than the comparable spatial model results. Changes in crowding 

fraction result in an increase in mRNA abundance values and a drop in CV2, which follows an 

inverse relationship. The trend appears regardless of confinement geometry or crowder diffusion 
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rate. Interestingly, the encounter method generates results which match the mRNA abundance 

and CV2 values of the well-mixed, non spatial case generated previously. The results suggest 

mean encounter behavior is insensitive to changes in the rate at which crowders diffuse or the 

spatial geometry of the system. 

Two-state models parameterized using the burst method are shown in figure A.30. When 

considering the 16x16x16 geometry, changes in crowding fraction result in similar trends in CV2 

and mRNA abundance compared to the spatial case. Initially, CV2 decreases with increasing 

crowding fraction (10% to 30%). However, as crowding fraction continues to increase (30% to 

50%), CV2 increases, indicating a change in burst behavior. The results are also relatively 

insensitive to changes in crowder diffusion rate. The 32x32x4 spatial geometry reveal similar 

results, with CV2 first decreasing, then increasing as crowding fraction increased. In the 64x64x1 

spatial geometry, the 50% crowding fraction case shows significant dependence on the diffusion 

rate of the crowders. Slow crowder diffusion rate resulted in a larger distribution of mRNA and 

CV2 values, while faster crowder diffusion rates resulted in significantly tighter mRNA values. 

While consistent with the change in distribution seen in the spatial results, the two-state model 

does not reach the same range of mRNA values, especially those at low mRNA abundance.   

The three-state model results are shown in figure A.31. Like the two-state model 

parameterized using the burst equations, the three state model captures the trends of the spatial 

model when crowding fraction increases in both the 16x16x16 and the 32x32x4 spatial 

geometries, where noise magnitude initially decreases before increasing at higher mRNA 

abundance values. In the 64x64x1 spatial geometry at 50% crowding, the three-state model is 

better able to recreate the wide distribution of mRNA values similar to the spatial results. 

However, the three-state model is still unable to fully capture the distribution, as it does not reach 

the same low mRNA abundances at high CV2 seen in the spatial results. 

Finally, figure A.32 compiles the results from the previous four figures by showing the 

geometric means for all traces of a given crowding fraction for each model. When considering 

the cubic, 16x16x16 results at all crowder diffusion rates and at 10% and 30% crowding fraction, 

the centroids of the spatial model, encounter two-state model, and three-state model are 

consistent with each other, while the burst two-state model reaches higher CV2 values. 

Interestingly, for the 50% crowding fraction case, the burst two-state model matches the 
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centroids of both the three-state model and the spatial model, while the encounter two-state 

model reaches a significantly lower mean CV2 value. These relationships are consistent in the 

32x32x4 geometry as well. In the 64x64x1 confinement geometry, the 50% crowding case 

reveals the most deviation among the four different modeling methods. The encounter method 

mean CV2 value is significantly lower than the spatial model CV2 value, continuing to trend in 

an inverse relationship with mRNA abundance as crowding fraction increases. While both the 

burst two-state model and the three-state model show increases in mean CV2 value, they are 

unable to match either the spatial CV2 or mRNA abundance values.  

The different parameterization methods for two- and three-state models of bursty gene 

expression were then compared directly to the spatial model at the slowest diffusion constant, 

16x16x16 confinement geometry, and at a larger range of crowding fractions (0% to 50%) in 

order to better understand the discrepancies between models. The first comparison involved the 

encounter method, shown in figure A.33-A as colored points. They are contrasted with the 

results of the spatially resolved simulations (shown in grey). The spatially resolved results can be 

divided into two regions of behavior: the results between 0% and 30% crowding follow an 

inverse relationship between noise magnitude and mRNA abundance, where CV2 decreasing 

inversely with mRNA abundance, while the results above 30% crowding fraction trend to higher 

CV2 values as mRNA increases. In the first region, the distributions of the encounter method 

two-state model results are similar to the spatial results, following the same reduction in CV2 as 

mRNA abundance increases. However, the encounter method deviates from the spatial model in 

the second region of CV2 behavior. While the two-state model captures the same average steady 

state value of mRNA as in spatial model, the noise magnitude does not shift behavior, and 

instead continues to follow the same trend to lower CV2 values at higher mRNA abundance. The 

behavior is in stark contrast to the sharp increase in CV2 observed in the spatially resolved 

simulations. The difference clearly indicates that parameterizing the two-state model using the 

average encounter duration and average time between encounters is not sufficient to describe the 

noise characteristics of the spatially resolved system at high crowding fraction. Interestingly, the 

behavior of the encounter results is the same as the behavior shown in the well-mixed system at 

different effective volumes described earlier in the chapter. 
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In figure A.33-B, the results from the two-state model parameterized using the burst 

method are shown. The burst method two-state model produces qualitatively different results 

compared with the previous, encounter based two-state model. In particular, the burst method 

recreates the two region behavior characterized by a decrease in CV2 at low crowding fraction 

and an increase in CV2 at high crowding fraction, while also reaching the same mRNA 

abundance values. However, at all crowding fractions tested, an offset in noise magnitude is 

observed in the two-state results, with CV2 values higher than those observed in the spatially 

resolved results. It is clear that assumptions in either the two-state model or in the burst 

equations used to generate the rate constants are not sufficient to accurately describe the noise 

behavior of the spatial model. 

Finally, results from the three-state model with rate parameters generated through the 

method described previously are considered. Figure A.33-C reveals that the distribution of points 

in CV2 and abundance space closely match those of the spatially resolved simulation. The CV2 

values of the three-state model are modulated without a change in average mRNA levels by 

optimizing a single burst parameter (k21) such that rapid state changes between the ON and 

intermediate states were interspersed with state changes between the intermediate state and the 

OFF state.  It was found that in order to drive the three-state model noise magnitude to levels 

similar to the spatial model at high crowding fraction, the free parameter (the rate of entering the 

ON state) needed to be increased by half an order of magnitude. Thus, high CV2 at high 

crowding fraction was attributed to changes in the timing of encounter events. While this method 

most closely recreates the results from the spatially resolved model, it does not capture the 

appearance of rare events at high crowding fractions (large, short-lived deviations in mRNA 

abundance). 

Comparisons in confinement changes are also examined to characterize effects on noise 

magnitude and steady state abundance of mRNA, as well as how well changes in confinement 

are captured using the various two- and three-state parameterization methods. Figure A.34 shows 

the three two- and three-state parameterization methods, which are compared against the spatial 

model as in Fig. A.33. All figure panels show the spatial model results over three different 

confinement cases (16x16x16, 32x32x4, 64x64x1) at 50% crowding fraction in gray with the 
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two- and three-state model comparisons in color. The 50% crowding case was chosen to 

emphasis the differences in each parameterization model.  

Figure A.34-A shows the CV2 and mRNA abundance results for the two-state model 

parameterized using the encounter method. Similar to when crowding is varied, the increase in 

CV2 due to increased geometric confinement is not captured by the encounter method. Very little 

change in noise magnitude or mRNA abundance occurs at drastically different confinement 

regimes, which is in stark contrast to the spatial results. The results reveal that the mean behavior 

of the encounters within the spatial system is insensitive to changes in geometric confinement 

under the same volume. The burst method, shown in figure A.34-B, better matches the 16x16x16 

and the 32x32x4 lattice site cases when compared to the encounter method, but is unable to 

account for the large distribution in abundance and CV2 values reached at the most confined test 

case (64x64x1). Finally, the three-state model is presented in figure A.34-C. While the model is 

best able to capture the CV2 behavior of the spatial model at the highest confinement geometry 

tested, the three-state model is unable to capture the distribution of the spatial results, even at 

extremely high ON rates. The results imply the current method of parameterizing the three-state 

model is insufficient at describing the behavior at high geometric confinement and crowding. 

4.7 Discussion 
The different approaches used to parameterization simpler two- and three-state models 

are analogous to different methods of taking an experimental system, which may include 

parameters outside the scope of the random-telegraph model, and fitting it to a framework that 

can be more easily analyzed. The comparison of the spatially resolved model against each of the 

two- and three- state models have shown that the noise signatures found in the spatial model are 

difficult to recreate using a simpler model. But what about the spatial model is changing and 

causing these discrepancies? 

The encounter method makes an assumption that is considered reasonable: the ON state 

in a two-state model is equivalent to when the two particles occupy the same voxel site in the 

spatial model, since this is the only period that transcription occurs. However, comparisons 

between the spatial results and the encounter method results show significant differences in 

measured CV2 values at high crowding fractions and spatial geometries. While the encounter 

based two-state model produces steady state mRNA abundance values that are consistent the 
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spatial model, the noise magnitude at high crowding fraction is significantly suppressed and 

qualitatively differs in trend.  

The second method of generating two-state parameters relies on the noise analysis 

framework to generate two-state parameters using the noise magnitude and abundance values 

from the spatially resolved model. While better able to capture the increase in CV2 observed in 

the spatially resolved simulations, an offset in the noise magnitude is introduced. The 

discrepancy between the two-state and spatial results could be due to two possibilities: the 

assumptions in the burst equations derived from the noise framework, or the assumptions 

associated with the two-state model (namely the assumption that the distribution between events 

in exponential). 

In contrast to the two-state models, the three-state model is better able to capture the 

behavior of the spatially resolved simulations. Better fits are likely a product of parameter 

optimizations that minimize the distance between the geometric means of the three-state and 

spatial model results. The accuracy of the three-state model comes from the ability to tune the 

distribution of burst events to match those found in the spatial model at each different crowding 

fraction. However, long lived correlations in the spatial model that lead to spikes in mRNA 

production were still not captured. Additionally, the model failed to capture the noise behavior at 

the extreme geometric confinement and crowding cases considered. 

The inadequacies of each simplified two-state model parameterization method are a 

direct result of the difference between the assumed exponential distribution of burst times for the 

two-state model and the actual distribution of encounter times in the spatial model. Comparisons 

of the encounter distributions are analyzed for the highest crowding fraction (50%) spatial model 

in the 16x16x16 confinement geometry, the comparable encounter based two-state model, the 

comparable burst based two-state model, and the comparable three-state model (figure A.35). 

The figure measures the time between events as the time between particle encounters in the 

spatial model and time between transitions to the ON state for the two- and three- state models. 

ECDF stands for the empirical cumulative distribution function, and is on a semi-log plot to 

better visualize the differences between the models.  

The range of times between events for each model differs greatly. The spatial model 

spans the largest range, with encounter times occur at significantly lower values compared to the 
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simpler models, due to increased rapid rebinding. Long periods without particle encounters are 

attributed to crowding molecules reducing the ability of spatially uncorrelated particles to 

become correlated. The encounter based two-state model spans the smallest range, as the model 

is incapable of recreating either the rapid reencounters required for short event times or the 

crowder induced long waiting times between encounters, due to the assumed exponential 

distribution of times inherent in the two-state model. Notably, the mean value of times for the 

spatial model and the encounter based two-state model are the same, as the mean encounter times 

from the spatial model were used to parameterize the two-state model.  

The burst based two-state model displays an ECDF that is similarly shaped to the 

encounter based two-state model. The similarity of shape is due again to the assumption of an 

exponential distribution of times inherent in the two-state model. However, the curve is shifted to 

longer times between events, such that the model captures the long times between burst events at 

the expense of quick bursting events. The shift in the mean time between events is accounted for 

with an increase in the burst magnitude, such that the model retains the same steady state mRNA 

abundance values as the spatial model by producing less frequent, but larger, bursts. The three-

state model distribution is better able to capture the noise magnitude of the spatial model by 

reaching similar rare, long times between transcriptional events while also reaching faster 

rebinding events than is found in the two-state models. However, the model still does not capture 

the extreme rapid rebinding values seen in the spatial simulations. 

The differences among the ECDF curves for each model reveals the way each simpler 

model attempts to capture the behavior of the spatial model. Interestingly, the two-state model 

parameterized using the burst method is able to qualitatively capture the change in CV2 behavior 

at high crowding fraction, even under the assumption that event timings were exponentially 

distributed. Further examination of the burst method two-state model revealed that the model 

accounts for the change in CV2 by increasing burst size and decreasing burst frequency. In a 

spatially resolved system in which rapid rebinding is prevalent (at high crowding fractions), 

mRNA production events occur in a spatially and temporally correlated manner. However, 

because the two-state model assumes exponentially distributed times between bursts, rapid 

reencounters from the spatial model, which are extremely unlikely to occur in a two-state model, 

are instead grouped as single bursts. The grouping of encounters effectively increases burst size 
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while decreasing burst frequency, due to the accumulation of many smaller encounters into 

single events.  

The idea that rapid reencounters punctuated by long periods of time without encounters 

motivated the creation and analysis of the three-state model. The likelihood of rapid reencounters 

in the system is adjusted using a single parameter (k21). Optimizing k21 such that the three-state 

model noise magnitude matched the spatial simulations revealed that the distribution of 

encounter events in the three-state model was broadening, consistent with crowding in the spatial 

model inducing rapid re-encounters, coupled with longer excursions once particles become 

uncorrelated. In the three-state model, this distribution is recreated by having the system rapidly 

transition between the ON and intermediate state (rapid reencounters) while also transitioning 

more readily from the intermediate to the OFF states (re-randomization). However, at high 

crowding and high geometric confinement, this method of parameterizing the three-state model 

breaks down. Because the parameterization method prioritizes the ability to adjust noise using a 

single parameter and focuses on changing the burst distribution by reducing the time spent in the 

intermediate state, extreme increases in k21 results in the saturation of the burst distribution. 

Under the current parameterization scheme, at high values of k21, shifts in the value of k21 no 

longer change the distribution of events in time. In order to properly reach high noise values, a 

different method of parameterizing the three-state model is required. 

As discussed, changes in the distribution of encounter times are responsible for the 

increase in noise magnitude at high crowding and confinement. In the spatial model, at high 

crowding fractions, strong, short lived excursions in mRNA expression away from steady state 

(spikes) provide for an extreme example of rapid reencountering. Over the crowding fractions 

and confinement regimes considered, expression spikes were most likely to occur at high 

crowding and at high confinement. In the least confined regime (16x16x16), large production 

spikes fail to appear at crowding fractions below 30%. Spikes are more likely to occur as the 

crowding fraction increases, due to “caging” caused by crowders confining the expression 

particles into a small volume for a short period of time.  

In figures A.36 and A.37, the effects of spatial caging are shown by mapping the location 

of particle encounters over the course of a single trajectory. Figure A.36 shows the 16x16x16 

space represented as a 3 dimensional set of points, where the size and color of each point 
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represents the number of times particles encountered each other in that specific lattice site. 

Larger, redder points represent lattice sites with many particle encounters. Sites without particle 

encounters are blank. The trajectories used to generate the figures each contained a single 

expression spike due to crowder-driven caging. The caging is localized to the small area with 

large, red circles. The high number of encounters in a short period of time result in an expression 

spike. Analogous behavior can be seen in Figure A.37 for the most confined case (64x64x1). 

Caging occurs due to the diffusive nature of the crowding molecules, which can stochastically 

confine the expression particles in a much smaller volume, promoting interactions between the 

two particles and causing an increased rate of mRNA production. After a period of time, the 

stochastic motion of crowding molecules allows the two particles to separate and sample the 

larger volume. Large fluctuations in mRNA number are more likely at high crowding fractions 

and at high spatial confinement due to the increased likelihood of trapping. Additionally, spikes 

in mRNA abundance are influenced by the rate of diffusion of the crowders. In systems with 

slow crowder diffusion, mRNA spikes are less frequent but reach higher values, while systems 

with faster crowder diffusion result in mRNA spikes that are more frequent but lower in 

magnitude. This relationship is due to the change in cage timing, as slower crowders are slower 

to form, but cage particles for longer periods of time. 

The relationship between burst size and burst frequency for increasing mRNA abundance 

values has been studied in a number of papers. So et al. measured an increase in transcriptional 

burst size with increasing expression level, which was attributed to modulation of the kOFF 

parameter of the two-state model[120]. Additionally, Taniguchi et al. have shown through 

analysis of both protein and mRNA expression in E. coli that low expression levels are primarily 

dominated by intrinsic noise, while high expression levels are dominated by extrinsic noise[32]. 

These examples describe real-world experiments that have measured changes in noise behavior 

over a range of mRNA expression levels. The work comparing a spatial simulation model with 

two- and three-state models have shown that discrepancies arise when assumptions underlying 

the simpler models are not consistent with the behavior of the real system. This highlights the 

need to understand the relationship between experimental systems and the models used to 

describe them, as spatial or other factors that change the distribution of transcriptional events 

may be inconsistent with underlying model assumptions. 



 
 
 

59 

4.8 Conclusions 
Transcriptional bursting is a commonly observed phenomenon in gene expression. While 

molecular mechanisms have been widely explored as the cause of gene bursting, spatial 

considerations have been neglected until recently. The assumptions regarding the two-state 

model of gene expression are considered adequate to describe transcriptional bursting in cells. 

However, extensive testing with two-state gene expression models shows that features of models 

that incorporate spatial details are not captured by simpler models in some cases. The 

development of the three-state model (motivated by observed changes in the distribution of times 

between transcriptional events in the spatial model) introduced an intermediate state to represent 

a spatial correlated state which was highly likely to reenter the active state. While the three-state 

model is best able to capture many of the behaviors of the spatial model, it does not capture the 

most extreme crowding properties seen, such as expression spikes due to molecular trapping and 

noise at high confinement. Further analysis of the bursting behavior of the spatial system show 

the discrepancies in the simpler models are due to differences in the assumed distribution of 

encounter times, as the spatial model does not burst with exponentially distributed wait times. 

Crowding and confinement both increase the likelihood of particle reencounters and the 

likelihood that spatially separated particles remained uncorrelated for longer times. The change 

in encounter distribution reduces the measured burst frequency and increases the measured burst 

size through the accumulation of rapidly occurring encounter events into single burst events. 

Comparisons among the models reveal the importance of considering spatial factors when 

examining the behavior of bursty gene expression, especially those under high crowding and 

confinement. 
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5. Conclusions 
This work is focused on the observation and analysis of gene expression under the effects 

of spatial factors, such as macromolecular crowding and physical confinement. Experimental 

analysis of cell-free reaction chambers revealed that gene expression burst patterns were highly 

dependent on the method of resource allocation. While the composite of individual chambers 

increased protein abundance through more frequent bursts, chambers of increased volume 

increased protein abundance through larger bursts. Through the use of models, it was shown that 

the change in burst behavior at higher chamber volume was a product of the timing of initial 

bursts of activity in each chamber. In systems with a single resource pool and multiple genes, 

genes that produce mRNA early capture a disproportionate number of global resources, 

dominating the burst behavior. Additionally, changes in volume result in a small subset of genes 

utilizing an increasing amount of resources, reaching higher protein abundances through changes 

to burst size. 

Subsequent simulations of spatial and two-state gene expression models revealed that 

noise and burst behavior were strongly influenced by macromolecular crowding and geometric 

confining effects. High crowding fraction was shown to increase the noise of systems above 

what would be expected in a non-spatial, well-mixed system, and it was shown that subsequent 

two-state models were unable to capture the same noise behavior. A three-state model was 

developed that was better able to capture the noise behavior of the spatial model, but was still 

unable to reproduce extreme crowding and confinement conditions. Discrepancies between the 

models were found to be directly related to the distribution of encounter events. While the two-

and three-state models assume an exponential distribution between encounter events, the spatial 

model generates encounters that deviate significantly from that assumption. 

Each of the models and experiments undertaken here share a significant point of interest: 

the resulting observations and conclusions could not have been explored without the 

consideration of time dependent measurements. While many experimental studies explore noise 

and bursting through imaging of individual mRNA molecules[89] or through flow 

cytometry[50], the results from the cell-free chambers could not have been obtained without 

tracking and imaging individual chambers over time. The cell-free chambers were subjected to 

significant time dependent resource allocation, where mRNA produced early in time were much 
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more likely to produce protein compared to those produced late in time. Likewise, in the 

simulation of crowding and confinement, it was clear from the comparisons between the two-

state models and the spatial model that steady state measurements of noise and abundance are 

not sufficient in describing the behavior of the system. The distribution of events, which was 

strongly dependent on the timing of encounter events, was shown to be important in the 

magnitude of noise in simulated systems. These experiments reveal both the importance of time 

dependent considerations when measuring the behavior of cellular systems, as well as the 

importance of spatial effects on noise in these systems. 

Both the modeling of the experimental chambers and the simulation of crowded and 

confined spatial environments reveal the importance of considering spatial factors in the 

modeling and analysis of gene expression systems. The work here reveals additional avenues of 

inquiry, both in the analysis of spatial effects on the efficiency of resource utilization in 

transcriptional bursting, as well as in the measurement of noise and the characterization of 

bursting in more complex cell systems. 

5.1 Transcriptional and Translational Burst Size in E. coli  
At the end of chapter 3, the relationship between transcriptional and translational burst 

size in E. coli was examined, and it was noted that the translational burst size is strongly 

correlated with the transcriptional burst size. These experimental results present an intriguing 

avenue of inquiry regarding expression bursting. Organisms are tasked with optimizing the use 

of a limited reservoir of shared resources. While little is known about the benefits of gene 

bursting, the experimental results illustrate that bursting may be a method for organisms to share 

resources in a time delineated manner. Genes are constrained to limited periods of time where 

they draw heavily from the shared resource pool, while utilizing no resources for the remainder 

of time. This pattern shares many similarities to packet mode communication[121], where the 

capacity of a shared network is divided among a number of different messages. Several recent 

results have revealed that burst frequency saturates in many types of cells[35, 39, 116]. The 

preferential modulation of burst size instead of burst frequency for resource sharing could serve 

as an explanation for the saturation of burst frequency. Still other recent results have shown burst 

size increases in response to an increase in cell volume[122] or crowding in vesicles[123]. 
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Further modeling and analysis of spatial considerations may reveal a clearer picture of how burst 

patterns lead to more efficient use of shared resources.  

This line of inquiry again leads to the exploration of spatial factors, which have been 

shown to be important in the experimental expression chambers. The production of mRNA 

causes a recruitment of translational resources, including large macromolecules such as 

ribosomes. These ribosomes translate proteins by moving along the length of the mRNA 

transcript, and multiple ribosomes can bind to single transcripts. Additionally, the proteins are 

spatially correlated when they are produced, requiring some time to diffuse away from the 

mRNA transcripts. All of these factors could result in a locally crowded region, where ribosomes 

are more likely to rebind to nearby mRNA transcripts instead of diffusing away from active 

regions of translation. The production of mRNA transcripts in bursts could therefore cause the 

translational burst size to couple into the transcriptional burst size by increasing the crowding in 

the local area, thereby increasing the rate of ribosome rebinding. 

Preliminary spatial models have been developed in order to determine whether ribosomes 

remaining spatially correlated with active transcriptional areas increases the overall usage 

efficiency of the resources available. The space is discretized into a cubic lattice of spaces in 

three dimensions. Ribosomes are randomly populated in the space and allowed to diffuse to 

nearest neighbor lattice sites according to a set diffusion rate. mRNA molecules are randomly 

added to the system over time, and at time 0, only one mRNA molecule exists. mRNA molecules 

do not diffuse and remain in a single lattice site. Here, efficiency is defined as the ratio of 

ribosomes localized in a site with active mRNA over the total number of ribosomes in the 

system. A highly efficient ribosome spends the majority of the time localized with an mRNA 

molecule, while a low efficiency ribosome spends much of its time searching the reaction space 

for an active mRNA region. Two scenarios are initially considered. In the “non-sticky” case, the 

appearance of mRNA does not change the diffusion rate of ribosomes into or out of a lattice site. 

In the “sticky” case, lattice sites with active mRNA molecules have a reduced diffusion rate out 

of the site, such that ribosomes that diffuse into the mRNA lattice site are less likely to leave.  

Results of these simulations are presented in figure A.38. In the case where mRNA 

molecules do not interact with diffusion, the efficiency of the system scales linearly with the 

number of active mRNA molecules. The efficiency is consistent with the number of ribosomes in 
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the space and the number of mRNA active mRNA molecules. In the case where mRNA 

molecules cause ribosomes to diffuse away more slowly, efficiency increases a significant 

amount compared to the non-sticky case. In these simulations, the appearance of an mRNA 

molecule causes nearby ribosomes to congregate around the local area. The efficiency of the 

sticky model is dependent on the value of the reduced diffusion rate in relation to the normal 

diffusion rate. Interestingly, when a new active mRNA molecule is produced in the sticky model, 

the efficiency of the total ribosome population does not increase linearly. Instead, subsequent 

mRNA produce a diminishing increase in efficiency. Examining the space reveals that when a 

new mRNA molecule arrives, active ribosomes leave previously activated mRNA sites and 

aggregate around the new mRNA. Over time, the relative number of ribosomes around any 

single mRNA molecules will be the same, since all mRNA molecules have the same reduced 

diffusion parameters. 

Additional simulations are required to fully explore the spatial model of ribosome 

binding and resource efficiency. While these simulations show an increase in efficiency as the 

number of active mRNA molecules increase, further simulations at steady state (where mRNA 

molecules both arrive and decay) are required. Additionally, various spatial considerations such 

as geometric confinement and macromolecular crowding may influence the behavior of the 

resource molecules. Finally, the spatial distribution of active transcription sites, and whether or 

not resource intensive sites are spatially correlated, could have an effect on the measured 

resource efficiency of the system. The preliminary results do support the assertion that spatial 

effects can influence the sharing of resources, suggesting the correlations in transcriptional and 

translational burst size are a method of utilizing limited resources more efficiently. 

5.2 Noise in the HIV-1 Negative Feedback Circuit 
While the magnitude of noise in many gene expression systems has been shown to be 

influenced by parameters including crowding fraction, geometric confinement, and resource 

sharing, it can be difficult to understand the impact changes in bursting behavior have on cellular 

systems. To illustrate the impact of noise on real systems, the HIV-1 virus’ behavior in 

transitioning from latency to active infection is described here.  

Human immunodeficiency virus (HIV) actively replicates in CD4+ T lymphocytes, 

weakening the patient’s immune system and potentially leading to acquired immunodeficiency 
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syndrome (AIDS), allowing for opportunistic infections to thrive[124]. However, an infected cell 

can enter a long-lived state where the virus does not replicate called proviral latency. This state 

fails to generate a substantial viral load, and is therefore unaffected by anti-retroviral therapies 

(ART), which typically target viral machinery. One difficulty in treating and curing HIV comes 

from the latent reservoirs of HIV virus, as any interruption in ART allows these reservoirs to 

reactivate, pushing viral loads to levels on the order of those before any treatment took 

place[125].  

Research has shown that the ability for HIV to enter proviral latency is an evolutionary 

method of “bet hedging,” beneficial in surviving periods where environmental conditions are 

unfavorable by developing a long-lived viral reservoir[125]. The decision between active 

infection and proviral latency appears to be strongly tied to stochastic fluctuations in 

transcriptional activity and a combination of positive and negative feedback mechanisms[126]. 

In the current understanding of the HIV-1 gene expression network, HIV-1 mRNA is 

produced at a low basal rate. Once transcribed, mRNA molecules are serially spliced: the full 

mRNA molecule is fully transcribed before being spliced into smaller mRNA transcripts (unlike 

parallel splicing, where the mRNA is spliced as it is being transcribed)[127]. The full length 

mRNA transcripts are spliced into many transcripts, two of which encode for Tat and Rev. Tat is 

a transcription trans-activator protein that introduces a positive feedback loop by binding to the 

trans-activated response element (TAR)[128]. Tat binding alters the properties of the 

transcription complex, allowing transcription to occur at an accelerated rate. Rev, on the other 

hand, is a protein that binds as a tetramer to full-length mRNA transcripts, exporting them from 

the nucleus to be packaged in newly formed viruses[129]. Because Rev removes mRNA 

transcripts from the local pool, it acts as a negative feedback loop, driving the steady state value 

of proteins down[130]. The combination of positive and negative feedback reveals the 

importance of noise; latent HIV genes produce mRNA in a highly noisy manner, unable to 

accumulate sufficient Tat populations to fully activate the gene. However, stochastic fluctuations 

in the mRNA population will at some time produce a sufficient number of Tat molecules to drive 

transcription into a highly productive state. Once a sufficient population of rev molecules have 

been produced, negative feedback then drives the system to export the newly produced mRNA, 

thereby settling into a state of active infection. 
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Consider the simplified model presented in figure A.40. The model produces mRNA at 

some transcription rate, and accumulates it in the cell. The mRNA transcribes protein, which 

begins to reversibly bind to the mRNA population to create a new population of bound 

molecules. This complex of mRNA and protein is exported from the cell, which produces a 

negative feedback loop where the production of mRNA and protein facilitates the export of 

mRNA from the system. In the model, splicing is removed, and it is assumed mRNA is 

immediately available for translation. To test the influence of the negative feedback loop due to 

mRNA export, comparisons were made where the binding of the protein and the export of 

mRNA was removed (rates set to 0). The removal of protein binding is equivalent to increasing 

the rate at which mRNA is spliced, such that no full-length mRNA is present long enough for rev 

to bind and export from the system.  

The results of the two cases are shown in figure A.41. Trajectories associated with 

negative feedback due to mRNA export have significantly different noise properties compared to 

those without mRNA export. All trajectories begin the simulation time in the ON state, resulting 

in a common rise in protein abundance as time moves forward. There are two main differences 

between the cases: the system without negative feedback has high noise, characterized by high 

steady state values and high steady state variability, while the system with negative feedback is 

characterized by lower noise and lower steady state values. Without negative feedback, the 

protein population is allowed to increase to high values before completely decaying when the 

gene transitions to the OFF state. In contrast, the system with negative feedback cannot reach 

similar steady state values because mRNA molecules are continuously removed from the system. 

However, negative feedback lowers the noise by reducing the rate at which the protein 

population decays when the gene transitions to the OFF state. The reduced rate of decay is due to 

the latent complex population (mRNA bound to protein) that slowly releases mRNA molecules 

back into the system, lengthening the time protein can be translated. The comparison between the 

two cases highlights the importance of noise and negative feedback in the activation of HIV: 

without negative feedback, the production of protein is noisy, readily crashing to a population of 

0 when the gene is inactive. However, with negative feedback, when a gene activates and 

produces protein, the reduced noise “locks in” the decision to activate, retaining both a nonzero 

population of protein and an active export of mRNA transcripts. While this simplified model 
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explores the effects of negative feedback on noise in HIV regulation, further modeling work is 

still needed to fully explore the complex regulatory structure of HIV. Additional work may 

consider spatial influences on the measured noise in HIV regulation, as factors including 

chromatin remodeling, nuclear transport, or spatial localization may influence the magnitude of 

noise. The model helps illustrate the importance of noise in the behavior of a gene expression 

system. 

5.3 The importance of spatial considerations in gene expression 
Spatial considerations have been shown throughout this work to be an important part of 

the analysis and characterization bursty gene expression. As experiments on cellular and 

synthetic systems continue to rely on noise measurements for the analysis of gene expression 

bursting, it becomes increasingly important to assure that spatial factors are properly accounted 

for. As was shown by the work here, failure to account for spatial interactions including 

crowding, confinement, or the spatial distribution of resources can lead to significant differences 

between inferred behaviors. Additionally, the use of simplified models that cannot adequately 

describe a particular gene expression system may lead to inferences about burst dynamics that 

are erroneous. 

Avenues of future work have been detailed, including the examination of the efficiency 

of resource utilization. The consideration of spatial effects may play an important role in many 

other future studies. Measurements of both mRNA and protein populations produced from the 

same gene can give insight into the different ways spatial effects change transcription and 

translation separately. While the exploration of macromolecular crowding was done through 

simple diffusion of single lattice site particles, more complex crowding situations should be 

explored, including crowders that behave as long chain polymers, similar to Ficoll 70, a common 

experimental crowding agent. Additionally, several recent papers have shown that the interior of 

bacterial cells are spatially organized, such that transcription and translation occur in different 

regions of the cell[131, 132]. This spatial organization may impart some kind of efficiency in the 

use of limited cellular resources, such that transcription or translation occurs more readily 

compared to a system which is uniformly distributed with expression machinery.  
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Figure A.1 – Example two state model of gene expression. The gene is activated through the 

binding of a molecular species to the operator site, which allows transcription to occur at a rate α. 

The activity of the gene is represented as a pulse function over time, where the binding of the 

molecular species causes the gene to change state instantaneously.  
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Figure A.2 – Cartoon graphic of the various suspected sources of transcriptional bursting.  While 

there are a multitude of possible molecular mechanisms that can cause bursting in gene 

expression, spatial mechanisms, such as crowding and spatial confinement, are the focus of this 

thesis.  
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Figure A.3 – A simplified model of gene expression. In this model, a particular gene encodes for 

an mRNA molecule, which is transcribed when a polymerase attaches to the promoter region and 

moves along the length of a gene. The mRNA molecule is later translated by ribosomes to create 

proteins, which function in other areas of the cell.  
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Figure A.4 – Schematic of the two state model.  The two state model is a widely used model of 

bursty gene expression, where the low basal expression has been simplified to a state that 

produces no mRNA. * denotes a molecule decaying. 
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Figure A.5 – Intrinsic and extrinsic noise sources in gene expression.  Intrinsic noise sources 

include both transcription and translation, and are inherent in the stochastic and discrete 

production of mRNA and proteins. Extrinsic noise, on the other hand, is a function of many 

global resources, things which are indirectly related to the main cellular process. Figure adapted 

from Cox et al, Chaos (2006)[80]. 
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Figure A.6 – Example pulse train for a two-state bursty process. Burst size is a function of both 

the burst length (the duration the burst stays on) as well as the burst height (the amount of 

mRNA produced per unit time). Burst frequency is measured as the time between bursts, 

measured from where they start. 
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Figure A.7 – Model of complex arrivals of mRNA, based on Kulkarni et al.[105].  Instead of 

assuming an exponential distribution, mRNA arrive in bursts according to a function f(t) which 

describes the arrival rate of the mRNA bursts. mRNA subsequently produce protein and decay 

according to an exponential distribution. 
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Figure A.8 – How changes in CV2 and abundance indicate shifts in burst frequency and burst 

size. A shift in burst size is consistent with a shift in abundance without a shift in CV2, shown in 

the inset pulse trains as increase burst durations. A shift in burst frequency shows a decrease in 

CV2 as abundance increases in an inverse relationship, demonstrated in the inset pulse trains by 

more closely spaced bursts in time. 
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Figure A.9 – Example noise analysis process. In panel A, a group of traces is measured which 

has some general trend (green) associated with it. This general trend is removed using a gain 

factor to reveal panel B: the noise in the system. This noise is then autocorrelated, resulting in 

the traces in panel C. The 0 lag time value is equal to the variance of the trace, and is used to 

calculate CV2. The dotted line in panels B and C represents a value of 0. 
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Figure A.10 – Time variant resource utilization. Bursty gene expression draws heavily from a 

shared pool of global resources, as shown by the color of the resource pool. However, resource 

utilization is done for limited duration and only when a gene is active (indicated by the step 

function in the “burst” axis). The bursts are separated in time, such that multiple genes share a 

single limited resource pool. 
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Figure A.11 - Resource use and bursty gene expression. (A) Protein abundance is increased 

through an increase in both the number of genes and the number of resources available. 

Resources can be shared either through enforced compartmentalization (top) or through a single 

shared resource pool (bottom). (B) Protein abundance change may be driven through an increase 

in burst frequency (top) or an increase in burst size (bottom). Different sharing scenarios were 

considered to determine whether it affects the expression bursting pattern. 
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Figure A.12 - Confined cell-free gene expression and noise measurements. (a) Cell-free protein 

synthesis (CFPS) reactions were trapped within microfabricated chambers. (b) Time-lapse 

fluorescence microscopy was used to image the confined reactions every 3 minutes for 1 hour. 

Images are from an expression experiment performed in 10 µm-diameter reaction chambers 

show fluorescence intensity increasing over time. Scale bar, 20 mm. (Right) A representative z-

slice of POPC vesicles expressing EGFP. (c) (left) The time history of the growth of the protein 

population was collected for each chamber. (middle) Gene expression noise was found by 

removing the deterministic general trend from each expression transient. (right) The CV2 and 

final fluorescence level (protein abundance) for individual chambers (colored circles) and for the 

average of all chambers (gray square) was determined. Adapted from submitted manuscript by 

Caveney et al. 
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Figure A.13 – CV2 vs Abundance for 2 µm individual and composite chambers. Individual 

chambers are denoted by filled triangles. The large filled triangle represents the mean value of all 

individual chambers. Empty triangles represent averages of composite chamber sums ranging 

from 2 summed chambers to 6 summed chambers. 
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Figure A.14 – Effects of resource pool size on gene expression noise in both microfluidic 

chambers and vesicles.  (a) CV2 vs. abundance for 2, 5, and 10 µm diameter chambers. The 

small data points represent individual chambers while the large data points show the average 

behaviors for all chambers of a given size. Dashed gray line is a fit to the 2 µm chambers of the 

form a*(Abundance)^(-1), and highlights the Poissonian relationship between combinations of 2 

µm chambers (open orange triangles). The inset shows volume vs. abundance is well 

approximated by a linear fit. (b) Histograms of abundance for 5 µm chambers and combinations 

of six 2 µm chambers (centroids in red box in (a)). Histograms are normalized and fit with 

normal distributions. (c) CV2 vs. abundance for vesicles ranging in diameter from 4 µm to 19 

µm. Each data point is an individual vesicle. The orange points are vesicles with diameters 8-9 

µm, and the blue points have diameters 18-19 µm. The solid gray line is a fit to all points of the 

form a*(Abundance)^b. Dashed lines are power fits to both size ranges with the exponent, b, 

equal to -2. The inset shows volume vs. abundance is well approximated by a linear fit. The 

orange region corresponds to the volume range of the chambers. (d) Same data in (a) without 

centroids. Dashed lines are power fits to each size chamber with the exponent, b, equal to -2. 
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Figure A.14 continued  
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Figure A.15 – Ribosome binding model with positive feedback. A) A variable number of genes 

are placed in the system and resources enter a bound pool at a rate of kB and leave at a rate kUb. 

The number of resources in the pool is proportional to the number of genes in the system. B) The 

binding curve of resources to genes was subjected to positive feedback, where bound resources 

increase the rate at which new resources enter the pool. 
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Figure A.16 – Bound molecule time traces for the shared resource pool model. A) and B) 

correspond to models with positive feedback, while C) and D) correspond to models without 

positive feedback. A) shows the number of bound resource molecules over time for a system 

with a single gene and a sigmoidal positive feedback curve. B) shows a system with 5 concurrent 

genes pulling from a single resource pool with positive feedback. Note how a single gene 

(outlined in blue) stochastically transitions from a low state to a high state. C) Shows a system 

with a single gene without positive feedback, while D) shows a system with 5 concurrent genes 

without positive feedback. Note that in the systems without positive feedback, there is no high or 

low state formation. 

 

  



 
 
 

93 

 

Figure A.17 - Variance points with and without positive feedback. Blue colored dots indicate one 

trajectory of some number of concurrent genes pulling from a pool of resources with positive 

feedback, with the larger green points denoting the mean. Black points show the variance and 

mean variance of the system without feedback. Note the extreme difference in the variance 

between the two cases at each number of genes. 
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Figure A.18 – Cross correlation traces between genes. A) shows the strong anti-correlation at 0 

lag between two genes with positive feedback in the same system. In systems with larger 

numbers of concurrent genes, as shown in B) where 5 concurrent genes are correlated amongst 

each other, the magnitude of the anti-correlation is reduced. For comparison, C) shows the 

correlation functions between genes in a 5 concurrent gene system without positive feedback. 
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Figure A.19 – A comparison of variance in summed traces. Once all the genes in a given system 

are summed, the variance does not show a significant difference in behavior between the cases 

with positive feedback (blue points with green mean values) and those without positive feedback 

(black points).  
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Figure A.20 – Model of the effects of resource pool size on expression bursting.  (a) The model 

of resource sharing includes a resource pool of a limited number of reusable molecules, e.g. 

ribosomes, that associate with one of n genes at rate kn and return to the resource pool at rate gn. 

(b) CV2 vs Protein Abundance from the model described in (a). Colors represent the size of the 

reaction from 5 to 50 genes. Large points are geometric means. CV2 has a range of ~8 orders of 

magnitude while Protein Abundance spans ~5 orders of magnitude. The solid line is a power fit 

to all data points; the dashed line is a power fit with exponent -2 to one size chamber. (c) mRNA 

are ranked in the order they are produced. The amount of protein produced from each mRNA is 

normalized by the amount of protein the entire reaction produces. Points are colored by the 

reaction size. (d) Schematic of experimental results supported by the simulation in (a). Active 

mRNA in small chambers use a small resource pool (orange circles) and thus produce small 

amounts of protein (green hexagons). Conversely, active mRNA in large chambers use a large 

resource pool and thus produce large amounts of protein.  
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Figure A.21 – Transcriptional and translational burst size in E. coli. The comparison reveals 

strong correlations between the size of transcriptional bursting and the size of translational 

bursting. The solid line is a power law fit given by the equation in the graph. Each point 

represents data from an individual E. coli gene. Translational burst size adapted from Dar et 

al.[116], while transcriptional burst size adapted from So et al.[89].  
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Figure A.22 – Transcriptional and translational burst size from model with two dependencies on 

mRNA population. Translational burst size increases two orders of magnitude as transcriptional 

burst size increases over one order of magnitude. Each small point represents the mean 

transcriptional and translational burst size of a single simulation trajectory. Large blue circles 

represent the average translational burst size of all simulations at a given transcriptional burst 

size. 
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Figure A.23 – Transcriptional and translational burst size from model with one translational 

dependency on mRNA population. Translational burst size is independent of the transcriptional 

burst size in this model. Each small point represents the mean transcriptional and translational 

burst size of a single simulation trajectory. Large blue circles represent the average translational 

burst size of all simulations at a given transcriptional burst size. 
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Figure A.24 – Can a cellular system be adequately described using a simple two-state model? In 

a cellular system, can various spatial factors, including crowding and confinement, be adequately 

captured using modified rate parameters in a two-state model? 
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Figure A.25 – Spatial, two-state, and three-state models.  All models transcribe mRNA through 

bursting by transitioning between a single ON state and one or more OFF states. 
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Figure A.26 – mRNA trajectories from spatially resolved simulations at various crowding and 

confinement regimes. (A) 20 sample mRNA traces over 100 minutes for a 16x16x16 cubic space 

with 0% crowding fraction. mRNA values vary around a steady state value set by the production 

and decay rate of the model. (B) 20 sample mRNA traces over 100 minutes for a 16x16x16 cubic 

space with 50% crowding fraction. In contrast to the 0% crowding case, short lived, but strong 

correlations driven by macromolecular crowding dynamics causes mRNA values to “spike,” 

reaching high population values before decaying back to steady state. (C) 20 sample mRNA 

traces over 100 minutes for a 64x64x1 two dimensional space with 50% crowding fraction. 

Similar to the 50% case under the cubic geometry, strong, short lived correlations in 

macromolecular crowding cause “spikes” in mRNA populations. However, the addition of 

geometric confinement into two dimensions causes correlations that are longer lived, resulting in 

more frequent and longer spikes.  
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Figure A.27 – Noise analysis of the spatially resolved simulations at various crowding and 

confinement regimes.Noise magnitude as measured by CV2 is plotted against the average 

number of mRNA for the 16x16x16 lattice space with crowding fractions ranging from 0% to 

50%. As the crowding fraction increases, the CV2 value initially decreases before increasing at 

high crowding fraction. The large fluctuations in mRNA as described in figure 3 result in outliers 

in CV2 and abundance space, and are more numerous at higher crowding fraction. (B) CV2 and 

average number of mRNA for the highest crowding fraction (50%) over the three different 

spatial geometries considered. Differences between the 16x16x16 space and the 32x32x4 space 

are minimal, while the highest geometric confinement at 64x64x1 results in a distribution of 

points which differs dramatically, revealing a wide range of abundance values over two orders of 

magnitude. (C) A plot of noise magnitude and mRNA population which reveals the difference in 

distributions when the diffusion coefficient of the crowding molecules is changed relative to the 

reacting particles. Slowly diffusing crowding molecules lead to the broadest resulting 

distribution of points, while faster crowder diffusion results in reduced noise magnitude. (D) A 

comparison of a well-mixed system at different crowding fractions where spatial effects due to 

crowding are incorporated into an effective volume term which modifies the transcription rate 

(colored points) against the spatial results (black points). This comparison reveals that the change 

in steady state mRNA population is due primarily to the excluded volume effects of the 

macromolecular crowders. The difference in noise magnitude is due to the spatial effects not 

captured by the well-mixed model. 
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Figure A.27 continued 
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Figure A.28 – Compiled cases for the spatial model. Spatial model results are presented for all 

crowder diffusion rates (rows) and all confinement geometries (columns). Colors represent the 

various crowding fractions tested. Each data point represents the CV2 and mRNA abundance 

value for a single simulation trajectory. 
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Figure A.29 – Compiled cases for the encounter method Encounter two-state model results are 

presented for all crowder diffusion rates (rows) and all confinement geometries (columns). 

Colors represent the various crowding fractions tested. Each data point represents the CV2 and 

mRNA abundance value for a single simulation trajectory. 
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Figure A.30 – Compiled cases for burst method. Burst method two-state model results are 

presented for all crowder diffusion rates (rows) and all confinement geometries (columns). 

Colors represent the various crowding fractions tested. Each data point represents the CV2 and 

mRNA abundance value for a single simulation trajectory. 

 

  



 
 
 

108 

 
Figure A.31 – Compiled cases for 3-state model. Three-state model results are presented for all 

crowder diffusion rates (rows) and all confinement geometries (columns). Colors represent the 

various crowding fractions tested. Each data point represents the CV2 and mRNA abundance 

value for a single simulation trajectory. 
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Figure A.32 – Complied means for all tested cases. All model results are presented for all 

crowder diffusion rates (rows) and all confinement geometries (columns). Colors represent the 

various modeling methods. Each data point represents the geometric mean of CV2 and mRNA 

abundance values for a given model. 
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Figure A.33 – Two- and three- state model parameterizations compared against the cubic spatial 

model results. All comparisons were done at the 16x16x16 lattice geometric confinement over a 

range of crowding fractions (0% - 50%). Results from spatial simulations are shown in grey. (A) 

Results from the two-state model with rate constants generated from encounter times from each 

spatially resolved crowding case. This method does not capture the increase in CV2 at high 

crowding fraction seen in the spatial model. (B) Results from the two-state model with rate 

constants generated from burst equations calculated using CV2 and abundance from the spatial 

model. This method captures the increase in burst size, but introduces an error in the calculated 

CV2. (C) Results from a three-state model with rate constants generated from encounter data and 

systematic variation of the free parameter. The three-state model captures the bulk behavior of 

the spatial model, although it does not generate outliers like those seen in the distribution of rare 

events at high crowding fraction. 
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Figure A.33 continued 
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Figure A.34 – Two- and three- state model parameterizations compared against the confined 

spatial model results. All comparisons were done at 50% crowding fraction over the range of 

geometric confinement spaces tested (16x16x16, 32x32x4, 64x64x1). Results from spatial 

simulations are shown in grey. (A) Results from the two-state model with rate constants 

generated from encounter times from each spatially resolved crowding case. This method does 

not capture the increase in CV2 at high crowding fraction seen in the spatial model. (B) Results 

from the two-state model with rate constants generated from burst equations calculated using 

CV2 and abundance from the spatial model. This method captures the increase in burst size, but 

is unable to reach the noise magnitude values at the highest confinement case (64x64x1). (C) 

Results from a three-state model with rate constants generated from encounter data and 

systematic variation of the free parameter. The three-state model captures the bulk behavior of 

the spatial model, although it is unable to capture the full distribution of points at any of the 

confinement cases. 
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Figure A.34 continued 
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Figure A.35 – Empirical distribution function comparison among the distribution of time 

between encounters.  Empirical distribution function comparison among the distribution of time 

between encounters for the spatial model at 50% crowding and 16x16x16 spatial confinement, 

the distribution in the two-state model based on the mean encounter values of the same spatial 

model, and the distribution in the three-state model based on the modified encounter values of 

the spatial model. It is clear from the comparison that the distributions are drastically different 

among the three models, with the distribution of the spatial model occupying much lower values 

as well as a long tail of high values not apparent in the two-state model distribution. The three-

state model captures the behavior at long times, but still underestimates how short encounters 

occur in the spatial model.  
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Figure A.36 – 16x16x16 encounter map.  Each point represents the number of times the two 

particles encounter each other in a given lattice site. The size and color of the point indicates the 

number of times two particles encounter in a given lattice site (larger, redder points indicate 

more encounters).  
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Figure A.37 – 64x64x1 encounter map .  Each point represents the number of times the two 

particles encounter each other in a given lattice site. The size and color of the point indicates the 

number of times two particles encounter in a given lattice site (larger, redder points indicate 

more encounters).  
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Figure A.38 – Spatial resource efficiency model results without sticky mRNA. The top figure 

shows the efficiency of ribosomes over time, where efficiency is defined as the number of 

ribosomes present in a lattice site with an active mRNA transcript, divided by the total number of 

ribosomes in the system. The bottom figure shows the number of active transcripts in the system 

over time. 
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Figure A.39 – Spatial resource efficiency model results with sticky mRNA. The top figure again 

shows the efficiency of ribosomes over time. The bottom figure shows the number of active 

transcripts in the system over time. Notably, when mRNA transcripts become sticky, the 

efficiency of the ribosomes becomes much higher. 
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Figure A.40 – Schematic of the simplified HIV model. Here, a single gene is allowed to 

stochastically burst on and off, producing mRNA in the on state. Protein can bind to mRNA 

molecules to create a complex, which is exported from the system at rate kexport. The act of 

binding mRNA sequesters it from the system, introducing a negative feedback loop which drives 

steady state abundance and noise in protein population down.  
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Figure A.41 – Results of the two HIV models, with and without mRNA export. Red traces 

represent the model without negative feedback or mRNA export. Steady state protein values 

reach 20,000 and rapidly decay to 0 when the gene stochastically turns off. Blue traces represent 

the model with negative feedback and mRNA export. Because of complex formation, steady 

state values do not reach the same high values as in the previous case. However, the reversible 

formation of the complex reduces the decay rate of the protein population, which maintains a 

non-zero protein population when the gene turns off. 
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