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ABSTRACT 

 

This study contributes to a growing body of research in counseling, public health, and 

psychology that examines how features within neighborhoods affect mental health.  The 

environment in which their clients live directly affects services that counselors provide.  Mental 

health discussions often center at the individual level, but mental health significantly impacts 

communities a whole. Therefore, the presence of mental health problems in individuals will 

affect the wider community at varying societal levels.  Geographic information Systems, (GIS) 

will be used to determine which features of built environment associated food insecurity impact 

mental health and where the correlations between mental health and food insecurity are 

strongest.   The proximity of features defining food insecurity will be used to identify areas that 

may be vulnerable to mental health issues.  The study's research questions will examine 

conditions of the neighborhood’s built food environment that impact mental health and in turn 

increase allostatic load.   The hypotheses of this study assert that positive food choices and a 

healthy neighborhood food environment will have a positive linear relationship with mental 

health.  The results of this study will increase the use of the geographic information systems 

within counseling research; inform counselors and policymakers the impact of social 

determinants on mental health and identify vulnerable geographic subgroups. Counselors and 

decision makers may choose to use information and findings from this study to develop 

population-specific interventions.   
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CHAPTER 1: THE RESEARCH OBJECTIVE  

Introduction  

This chapter gives the reader an overview of this study; specifically, how the food 

environment of neighborhoods affects mental health.  Social determinants of mental health will 

be defined for this study.  The reader will also be introduced to the concept of allostatic load.  

The complex relationships between stress, physical and mental health will be defined through the 

concept of allostatic load.  Discussion ensues on the impacts of the food environment on mental 

health.  The resulting spatial features that affect mental health will be used to predict hot spots of 

mental health vulnerability.  These features and variables will be discussed in detail.  The history 

and definition of these construct will be presented as well as a framework for measuring and 

understanding the built environment through social determinants of mental health.  A statement 

of the problem and purpose statement will lead to the research objectives and hypotheses for the 

study.  Finally, limitations of the study will be discussed, and various key terms will be outlined 

for the reader.   

Background 

The built environment of the neighborhood can be a ‘wicked’ problem for individual health 

and learning (Taylor & McGlynn, 2009). The interrelated issues impacting positive community 

development involve elements of poverty, education, and crime (Taylor & McGlynn, 2009).  

However, neighborhoods that function in healthy productive manners provide protective factors 

for the individual community members (Taylor & McGlynn, 2009).  Therefore, improving the 

neighborhood or community can be one of the most effective strategies to solve problems 

relating to individual health and learning. 
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  As a result of research conducted by the World Health Organization (W.H.O.) and its 

Commission on the Social Determinants of Health, social conditions have a direct influence on 

health outcomes (Allen, Balfour, Bell, & Marmot, 2014; World Health Organization, 2011). 

Social determinants of health refer to social and environmental factors that influence individual 

health.  Often, social determinants of health have more impact on an individual’s health 

condition than traditional health services (Allen et al., 2014).   

Within sociological research, Putnam and Bourdieu discussed social determinants of health 

long before W.H.O. identified social determinants of health.  Putnam emphasizes how social 

networks and cohesion of social networks is crucial for healthy communities.  Bourdieu 

emphasizes the resources of networks (Carpiano, 2006).  According to Bourdieu, a network of 

relationships provides links to resources.  For an individual to access these resources he/she must 

have access to the network containing the resources.  Putnam also identifies social capital as 

being part of social networks, but he emphasizes the importance of community-focused 

networks.  Putnam focuses more on the impact of social capitol within communities.  Trust and 

reciprocity of trust form social networks within communities (Ziersch, 2005).  Trust and the 

exchange of trusting expectations have a mutual benefit in developing social networks (Compton 

& Shim, 2015). Research on developing social capital leads to the research done on social 

determinants of health.  Research on social determinants of health builds upon the relationship 

between social networks wihin the environment and includes other factors of how people live.  

Education, workplace conditions, safe living arrangements, and quality nutrition have an impact 

on social determinants of health within each community.   The conditions in which we live 

impact not just the health of individuals but also of the community (World Health Organization, 

2011).   
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  Although there is plenty of research on the physical health outcomes of social determinants 

of health, there is far less research on the mental health outcomes of social determinants.  Some 

research points to a two way relationship between mental and physical health where one 

influences the other (Allen et al., 2014). For example, researchers found that chronic stress 

causes depression via the same biologic pathways that link chronic stress to physical health. The 

chemistry of the brain controls hormonal responses to stress and influenced the nature of the 

relationship between stress and health  (Hammen, 2005).  This two-way relationship can be 

thought of as allostasis.  Allostasis represents the body’s adaptation to physical, psychosocial, 

and environmental stress.  Allostasis load represents the long-term result of stress on the body 

which in turn, results in chronic illness (Logan & Barksdale, 2008). 

  Research has shown that the main social determinants of mental health are a lack social 

inclusion, a lack of safety and discrimination, a lack of economic resources within the 

community and food insecurity (Compton & Shim, 2015).  Social inclusion gives people a sense 

of belonging and gives individuals resources to help them deal with stress.  Social inclusion also 

refers to the availability of resources in the community that promotes trust and cooperation or 

social capital such as recreation centers, libraries or medical facilities.  Safe communities also 

give individuals a sense of belonging and equitable access to social capital (Parasuraman & Shi, 

2014; Strolin-Goltzman et al., 2012).  People feel as if they have more control over their lives 

when they feel safe and valued in their community.  Research shows that individuals experience 

positive mental health and well-being when they feel more control over their lives that comes 

when they feel safe (Allen et al., 2014; Compton & Shim, 2015; World Health Organization, 

2011).  Lack of access to economic resources often results in insecurities and poverty (Ziersch, 

Baum, Macdougall, & Putland, 2005).  Therefore, it is difficult to have housing, food, clothing, 
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transportation, and many other things we need to be healthy when economic resources are scarce 

or individuals are insecure about their economic future (Compton & Shim, 2015).   

Although there are many neighborhood variables that affect mental health, the impact of the 

food environment within a neighborhood on mental health will be the focus of this research.  The 

independent variables chosen for this study will represent features of the built environment that 

influence the food and economic features of the built environment within neighborhoods.  The 

food and economic variables are part of the social determinants of mental health.  Dependent 

variables will be a measurement of mental health.  Since mental health is one factor influencing 

allostatic load, the allostatic load of individuals is a latent construct within this study.   

Because there is often a reciprocal relationship between mental health and social 

determinants, this study hypothesizes that mental health increases with an increase in positive 

social determinants of mental health such as food security.  Decreased mental health often leads 

to reduced income and employment, food insecurity, and social isolation that then cycles back to 

entrenching individuals in poverty and increases the risk of mental disorders (Allen et al., 2014; 

Compton & Shim, 2015).  Therefore, neighborhood features of food insecurity that influence 

allostatic load measures of mental health will be used to determine areas of mental health 

vulnerability within a neighborhood. 

Theoretical Framework 

This research will attempt to understand the complex relationships between features of 

the built environment within neighborhoods and the health of the community.  The focus will be 

on understanding the impact of specific features of the built environment within the community 

on mental health.  Research regarding the effects of a neighborhood on health and social 

outcomes has a relatively long history (Oakes, 2004).  Ernest Burgess and Robert Park developed 

the concentric zone theory in the 1920s to explain the divisions of communities based on 
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socioeconomic factors in and out of the city of Chicago.  It was the first theory explaining how 

social groups organized within an urban area.  According to the theory, the communities or 

social groups extend outward from the central business zone of the city.  Subsequently, the study 

finds a relationship between how far one lives from the central business district and economic 

status.  This study will use concentric zones but consider the school as the bullseye to study 

community or neighboring effects of the population surrounding the school (Anderson & 

Egeland, 1961; Ernest W Burgess, 1928). 

In this research, a public health expose (PHE) paradigm will be used as a theoretical 

framework.  A PHE paradigm provides a conceptual framework to identify and compare 

relationships between individual health characteristics and health disparities at population levels 

across communities and over time (Paul D Juarez et al., 2014).  The health of the environment 

links closely to that of individuals (De Silva, McKenzie, Harpham, & Huttly, 2005).  A PHE 

paradigm can address the environmental impacts on individual health.  The purpose of an expose 

is to identify population risk factors in epidemiological studies.  Epidemiology identifies patterns 

and effects of health and diseases in populations.  The purpose of a PHE paradigm is to be able 

to generalize observations from a group of individuals to the entire population.  These 

generalizations can be used for policy and public health choices and decisions (Paul D Juarez et 

al., 2014).   

When making community level decisions, GIS technology, and spatial modeling can help 

research and community members visualize the environmental factors impacting the community 

(Barnard & Hu, 2005; McMaster, Leitner, & Sheppard, 1997).  Anselin, Syabri, and Kho (2006) 

state that empirical spatial data analysis that includes mapping and geo-visualization, exploration 

of data; autocorrelation analysis and/or spatial regression provide visualizations and explanations 
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of patterns in geographic data in a spatially integrated manner.  Using GIS and spatial modeling 

could help counselors identify hotspots of mental health vulnerability and target counseling 

interventions appropriately within the community.  The approach has implications for health care 

and research but also for providers  (Barnard & Hu, 2005; Jung & Elwood, 2010) as pictured in 

Figure 1. 

 

 

Figure 1:  The cyclical action of stress, social determinants of health and allostatic load 

 

Statement of the Problem 

Although the promotion of mental wellness and the identification of mental illness is a 

worthy goal, treatment will be inadequate if we as counselors believe that treatment ends with 

the clients served.  Unless counselors are concerned with the impact that treatment has on the 

society in which the individual interacts with, the endeavors with the client alone are insufficient.  

“Unless fundamental change occurs within how our client interacts with his neighborhood, 

Neighborhoods and 
the Built 

Environment

• Knowing the factors within neighborhood and the built 
environment that impact the mental health of individuals, 
counselors will be able to more effectively target 
interventions and responses to the community.  

Stress 
Measured 

by Allostatic 
Load
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school, environment, culture, and religious and social institutions, our work with individuals is 

destined to be, at best, only partially successful” (Goodman et al., 2004).  

Prilleltensky (1999) articulates that mental health issues do not exist in isolation.  Mental 

health and individual theories of psychology show that an individual’s support system and the 

environment influence an individual’s sense well-being.  For counseling interventions to be 

effective, counselors need to engage their clients in treatment.  Counseling curriculum teaches 

counselors that clients own their situation and that they are responsible for their choices.  

However, macro-level systems influence the nature of the micro-level interaction (Cline, 2003).  

A combined ownership of the treatment engagement problem at the micro, mezzo, and macro 

level would be most beneficial to counseling clients.  It is important for counselors to recognize 

the impact that environmental factors have in influencing individuals’ well-being.  This study 

will emphasize the importance of the neighborhood and macro-level influences on individual 

client well-being.   

A preliminary analysis of data from the Collaborative Psychiatric  

Epidemiology Surveys (CPES) (2001-2003 ) indicates that self-disclosed mental health scores 

correlate  with whether or not the individual saw a professional counselor as demonstrated in 

Figure 2. 

 A regression analysis was conducted to see if subjective mental health had a 

linear relationship with counselor visits for mental health related issues.  Mental health rating 

was entered into the model as dependent upon a counselor visit.  The model showed that visits to 

counselor significantly correlated with subjective mental health.  However, the effect size is very 

small and only predicts 1.4% of the variance in the model. F (1, 1147) = 15.74, p < .001.  This 

leads to the question; what other factors may contribute to mental health?   
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Figure 2:  The impact of professional mental health treatment on mental health rating 
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Although counselors can and should encourage people in the communities they serve to 

receive mental health care, what can counselors do to promote mental wellbeing outside of the 

counseling session?  Can counselors advocate for stronger neighborhoods to improve the mental 

wellbeing of all members of the community their serve?  To advocate for stronger mental health, 

counselors need to be aware of what particular neighborhood factors influence the mental health 

of their community – one of which is food insecurity. Social determinants of mental health 

articulate food insecurity as one factor influencing the health of individuals.   

The social determinants of mental health will be used in this study as a starting point or a 

theoretical framework to help gauge and determine if there are other community factors or 

features that can improve the health of the community.  Because not all social determinants of 

mental health could be feasibly studied for this dissertation, this study will focus on one 

component of the social determinants of mental health – food insecurity within communities and 

the economic factors influencing food insecurity.  This leads to the research questions for this 

study. 

Research Questions  

Research Question 1: Is there a negative relationship between purchases of fruits and 

vegetables within a community and anti-depressant prescription drug use within Tennessee?  

H0:  There will not be a relationship between purchases of fruits and vegetables within a 

community and anti-depressant prescription drug use within Tennessee. 

H1:  There will be a negative relationship between the purchase of fruits and vegetables and 

mental health. 

Research Question 2: Is there a negative correlation between per capita income spent on fruits 

and vegetables and the use of anti-depressant medication? 
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H0:  There will not be a significant relationship between per capita income spent on fruits and 

vegetables and the use of anti-depressant medication 

H1: There will be a negative relationship between the purchase of fruits and vegetables and 

mental health. 

Research Question 3: Will the density of fast-food restaurants in a neighborhood predict the 

amount of per capita income spent on fresh fruits and vegetables?  

H0:  The density of fast-food restaurants in a neighborhood will be unable to predict the amount 

of per capita income spent on fruits and vegetables 

H1:  As the number of fast food restaurants in neighborhood increases, the amount of income 

spent on fruits and vegetables decreases.  

Research Question 4: Will the density of grocery stores in a neighborhood predict the amount 

of income spent on fresh fruits and vegetables?  

H0:  The density of grocery stores in a neighborhood will be unable to predict the amount of 

income spent on fresh fruit and vegetables 

H1: As the number of grocery stores in an area increases the number of fresh fruit and vegetable 

purchases increases. 

Research Question 5: Will the density of fast-food restaurants in a neighborhood predict the 

number of people in the community who use a prescription drug for depression?  

H0:   The density of fast-food restaurants in a neighborhood will be unable to predict the number 

of people in the community who use a prescription drug for depression. 

H1: As the number of fast-food restaurants in a neighborhood increases; the number of people, 

who use prescription drugs for depression will increase 
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Research Question 6: Will the density of grocery stores in a neighborhood predict the number 

of people who use prescription drugs for depression?   

H0:  The density of grocery stores in a neighborhood will be unable to predict the number of 

people who use prescription drugs for depression. 

H1:  As the number of grocery stores increases, the number of people who use prescription drugs 

for depression decreases. 

Significance of Research Question 

Often organizations rely on empirical research to make policy changes.  Once a model for 

this research has been satisfactorily built, adjusted, and its output checked; the results can be 

used by counselors to inform their practice and services provided.  It can also give mental health 

agencies information in risk analyses and decision-making.  This work will expand and 

synthesize current research on social determinants of mental health for local communities in East 

Tennessee and give policymakers, community members, and mental health clinicians a broader 

understanding of how the built environment and mental health are interconnected and provide a 

decision-making tool for mental health interventions.   

Method 

To answer the research questions, variables will be chosen and operationalized that represent 

mental health, communities, and the food environment.  Subsequently, multiple analyses will be 

employed.  Although this study will use geocoded databases of variables, each research question 

will require a series of steps and methods.  The following section will outline the method for 

each research question. 

Research Objectives 

This dissertation will examine the existence and significance of spatial dependencies 

between neighborhood characteristics and social determinants of mental health.  The objectives 
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are to find the associations between mental health and neighborhood characteristics of food 

insecurity.  By using a dependent variable that measures mental wellness within communities 

and independent variables that measure neighborhood features, a prediction model can be 

formulated.  Mental wellness within communities can be predicted from the neighborhood 

features.  These predictions inform counselors of types of services and interventions a 

community may need.  Finally, the last objective will be to examine spatial variability in anxiety 

and depression medication use, possible predictors and the relationships between them.  These 

objectives will demonstrate the value of spatial analysis in the counseling field. 

  GIS technology can be used to build models is to test relationships, find correlations, 

build models; test hypothesizes and illustrates statistical predictions.  Statistical analyses can 

answer “if” a relationship occurs while GIS helps define “where” the relationship occurs.  

Statistics and GIS may work in tandem with the exploratory function of mapping spatial data if 

new questions arise from the research process.  Therefore, this study will provide mental health 

researchers, clinicians, and policy makers with tools and information that can potentially lead to 

the development of mental health interventions or become a catalyst for policy changes.  

Limitations of the Study  

 Neighborhood measures are often an aggregate measure.  Because aggregate measures 

are a combination of factors that combine multiple socioeconomic characteristics of community 

members, it is difficult to tease out the factors within individual cases that are specifically related 

to place of residence.  The extent to which aggregated neighborhood construct variables   

represent each specific individual- within the aggregated community cannot be validated nor 

viewed as reliable since aggregated data removes individual variability (McCoy, Johnston, & 

institute, 2001).  Therefore, one cannot make conclusions about individuals based on aggregated 

data.  Aggregated data may also depict inaccurate measurements of neighborhood health if 
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neighborhood socioeconomic characteristics do not truly represent the neighborhood construct of 

interest (Law & Collins, 2013).   

 Despite the limitations of aggregated data, these early neighborhood studies using 

census-defined areas have laid the groundwork and provided justification for more detailed and 

complex studies of neighborhood health effects (Paul D Juarez et al., 2014).  By building upon 

the previous literature, new studies have improved the methodological sophistication  and made 

it easier to tease out and identify the impact that the built environment has on health (Law & 

Collins, 2013).  Recent environmental studies have been designed with more attention to 

measurement of aggregated data and specific neighborhood attributes.  Additionally, more 

detailed and sophisticated analyses have been used in recent studies (A. V. Diez Roux & Mair, 

2010). 

Limitations that come from using geo-coded data include spatial autocorrelation and 

spatial uncertainty within the data (Goodchild, Haining, & Wise, 1992; Haining, 2003).  Spatial 

autocorrelation occurs when the data in neighboring districts is too similar. Although one 

assumption of spatial analysis is that things that are closer to each other are more similar.  

However, if the data between nearby neighborhoods is too similar, there is not independence 

observations within the data set.  Most statistical tests assume that the data is a sample of 

independent observations, meaning that the value of one observation does not affect the value of 

other observations. Non-independent observations lead to too many false positives in statistical 

testing (Tabachnick, 2013).   Researchers have cited that geospatial data can have issues with 

spatial coding and the time-based location.  Additionally, geospatial data collection protocols and 

policies lack standardization, and social constructs are not clearly defined (Paul D Juarez et al., 

2014).  The authors encourage researchers to develop a common informatics structure that 

supports data sharing at the same time de-identifies personal data.  Additionally, the authors 
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encourage protocols for the standardization of data dictionaries and protocols for using restricted 

data.   

This study uses data taken from the ESRI data repository.  Census data, ACS data, 

consumer-spending data, market potential data and business location data are geocoded and 

stored in the ESRI data repository.  The geocoded data from national surveys will be used to 

define the food consumption, food environment, and mental health constructs.  These large 

national surveys are subject to sampling and non-sampling errors.  According to the BLS (2015), 

differences in the interpretation of questions, the accuracy of the information provided, and 

mistakes in coding the survey data cause sampling and non-sampling errors.  The full extent of 

the nonsampling errors in the data is unknown.  Sampling errors can occur in the data because 

the data for the surveys used are collected from a sample of the population as opposed to the 

entire population.  Limitations of this study will be discussed in detail in Chapter 2.  

Laws enacted to ensure patient confidentiality limit research on public health issues 

within neighborhoods. HIPPA, The Health Insurance Portability and Accountability Act of 1996 

currently prohibits data collected by the National Center for Health Statistics from being 

displayed in any way that allows individuals to be identified.  When research defines very small 

clusters of living units as neighborhoods, the identity of individuals within that cluster is 

revealed.  Subsequently, HIPPA laws protecting individual identity are violated.  Unfortunately, 

there is not a standardized measurement of small neighborhoods or narrowly defined data.  

Therefore, many data sets do not include important data related to health.  Therefore, it is 

difficult to study health issues when the data cannot be obtained.  To produce quality health 

related research, more metrics or definitions of neighborhoods need to be developed so research 

can be completed without violating HIPPA laws (Kulynych & Korn, 2003). 
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Definition of Key Terms   

Definitions of key terms are provided for purposes of having a basic understanding of some of 

the terminology to be used in the study: 

American Community Survey (ACS): - Data on income, education, employment, language, 

migration, citizenship, marital status, and housing characteristics is obtained from the ACS. The 

ACS collects and produces population and housing information every year and represents a 

continuous measurement of population data.   

 Allostatic load:  Allostasis refers to the body’s processes that to adapt to stressors.  Theories of 

allostatic load suggest a clear biological pathway between chronic stress and heart disease, 

obesity and mental health issues.   

ArcGIS: A collection of GIS software products built upon a geodatabase that provides a 

platform for computer based spatial analysis, data management, and mapping.  It is a software 

system for working with maps and geographic information.    

Built Environment: The built environment includes the fabricated structures that make up the 

surroundings.  The built environment includes places, spaces, environment conditions created or 

modified by people.  The built environment interacts with the social environment and then 

affects our health and mental health.  

Choropleth Thematic Map:  A map which displays georeferenced data with color or symbols 

defined by specific values. Different colors, shapes and symbols are often used to represent 

different variations of the variable.   

Community: The community defined for this study will be the neighborhood surrounding the 

elementary school. The people who live within the community defined by the elementary school 

boundary shape file share values and interactions defined by the school.  
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 Consumer Expenditure Survey (CES):  A survey that collects data on the buying habits of 

American consumers.  The data in this survey includes information on spending habits, income, 

households and the consumer unit (families and individual) characteristics.  The U.S. Census 

Bureau collects the data from the Bureau of Labor Statistics.  It is the only Federal survey 

providing information on consumers’ expenditures and incomes within society.  

Consumer Expenditure (CEX) data: This is a comprehensive database, developed by ESRI 

designed to provide data on household expenditures within specific geographic locations.  The 

data combines the latest Consumer Expenditure Surveys (CES) data from the Bureau of Labor 

Statistics and ESRI's Tapestry Segmentation data to give a picture of specific household 

expenditures in geographic locations. Data is reported by product or service and includes total 

expenditures as well as average spending per household. 

ESRI: (Environmental Systems Research Institute) ESRI is a developer of geographic 

information systems (GIS) software.  The company produces software that will plot addresses, 

demographic information, and other geo-coded data.  The company was founded in 1969 by Jack 

and Laura Dangermond (McCoy et al., 2001). 

 GIS Database: A GIS database is a computer based integration of mapping systems that stores 

geographically referenced data.   Georeferenced data that can be sorted, managed and stored as a 

group but also be analyzed as individual units. A GIS database includes data about the spatial 

locations and shapes of geographic features recorded as points, lines, or areas and their attributes. 

The data also provides a map for display and visual analysis. 

Margin of Error (MOE): A measure of the variability within the population estimate due to 

sampling error.  The Census Bureau reports ACS data with a margin of error. 
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Per capita income: Average income for individuals within a household.  Per capita income is 

calculated from the aggregate income of persons 15 years and older within each household and 

divided amongst all the household members. 

 Social Determinants of Health:  Environmental and social conditions that collectively impact 

individual health.  The community into which people are born into, live, work, and age include 

various social determinants of health.  However, the local environment is shaped by a wider set 

of environment forces which include economics, social policies and politics within the broader 

sense of community.    The social determinants of health are mostly responsible for health 

inequities.  

Social Determinants of Mental Health:  The social and economic conditions that impact and 

influence individual mental health risk.   

Summary  

The primary purpose of this study will validate the idea that the proximity of social 

determinants of mental health influences the mental wellness and overall allostatic load within a 

community. Food insecurity, as one of the social determinants of mental health, will be related to 

the mental health of communities.  The hypothesis purports that healthy food choices and healthy 

food environments correlate positively with positive mental health.  Communities with 

significantly high instances of mental illness and unhealthy food environments correlate and 

could be considered communities that need specific counseling interventions and policies.  This 

study will present potential interventions for counselors and policy makers related to the 

findings.   A literature review focused on social determinants of mental health, allostatic load, 

spatial dependencies, and inferential geospatial statistics will follow.  Chapter 3 will present the 

research methodology used in the proposed study with sections focused on the research problem 
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and purpose, research questions and hypotheses, data collection, database construction, data 

cleaning, and inferential analyses. 
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CHAPTER 2: LITERATURE REVIEW  

Introduction 

This chapter will present the existing literature on the relationships between social 

determinants of mental health and allostatic load.  The built environment of the neighborhood 

will be discussed focusing on the food environment and food choices within the neighborhood 

boundaries.  Subsequently, a discussion will ensue on how the built environment affects mental 

health within communities.  Next, a review of inferential statistics will be presented which will 

cover the use of regression analysis, correlations, the use of aggregated data, and the use GIS 

data and mapping systems in research.  

Historical Context of Neighborhood Research 

Typically, counselors assess mental health or well-being at the individual level.  

However, many studies indicate that communities have an impact on the mental health of 

individuals (Baker, 1974; M. Bronfenbrenner, 1970; U. Bronfenbrenner, 1974).  For example, 

the ‘‘Chicago School’’ researchers found that the decay of physical structures in neighborhoods 

impacted individual mental health problems and environment impacts behavior (Ernest Watson 

Burgess, 1923; Ernest W Burgess, 1928). Researchers Faris and Dunham specifically noted that 

a relationship exists between psychosis and the ecological structure of the city (Faris & Dunham, 

1939). 

Neighborhood research has developed from varying disciplines.  Disciplines studying 

neighborhoods with the intent of improving the individual’s quality of life include sociology, 

geography, psychology, and social work.  Additionally, other academic disciplines study 

neighborhoods with a broader scope or intent.  Such fields may include business and marketing 

or history.  Overall, most these fields have some interest in understanding how neighborhoods 

affect the individuals that reside within them.  Examples include: Social Learning Theory 
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(Bandura & McClelland, 1977); Theories of Social Capital by Bourdieu and Putnam (Carpiano, 

2006); the Concentric Zone Theory; (Ernest W Burgess, 1928);  and the Ecological Model by (U. 

Bronfenbrenner, 1974).  Additionally, the theories within social and behavioral sciences are 

intersecting with theories in public health and epidemiology (Glass & McAtee, 2006). 

 Since many different fields have demonstrated a research interest in neighborhood 

effects, a cross-disciplinary approach has emerged.  Although cross-disciplinary approaches 

deepen and enhance understanding of neighborhood effects, it also complicates this area of 

study.  Specifically, defining and applying theoretical approaches to neighborhood research has 

become complicated by integrating fields of study.  It seems that a good starting point to 

understand this complexity is to apply a broad interpretation of the ecological approach (Faris & 

Dunham, 1939; Openshaw, 1984; Robinson, 2009). 

The ecological perspective provides the researcher with a broad perspective of a 

neighborhood (Robinson, 2009).  Within the ecological perspective, one is looking beyond the 

individual and beyond the small cluster or micro-behaviors to understand behavior from a larger 

vantage point or a more distant perspective (Bronfenbrenner, 1979).  A range of theoretical 

approaches from different disciplines has provided an umbrella of conceptualization for 

neighborhood research (A. V. Diez Roux & Mair, 2010; Elwood & Leitner, 1998; Roy, Hughes, 

& Yoshikawa, 2012; Sampson & Raudenbush, 1999).  These theoretical approaches view 

neighborhoods from different perspectives or different lenses of vision.  The view of the 

neighborhood viewed through the lens of as functionalist compares roles and jobs within a 

neighborhood or social attributes.  A city planner looks at the neighborhood as a compilation of 

structures, pathways, and intersections.  The neighborhood viewed through the lens of a social 

worker may see how social attributes contribute to social disorganization.  The lens of a 
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sociologist may study class conflict or the culture of poverty.  A public health worker may look 

at the spread of disease within the community and healthy living strategies within a community.  

Finally, the ecological lens may look at the interactions of systems within a neighborhood and 

view the neighborhood from a much broader perspective.  Although many views of the 

neighborhood are specific and give a fine-grained picture of neighborhood interactions, they give 

the ecological researcher more detailed pictures of the systems in which individuals reside (U. 

Bronfenbrenner, 1974).  Small neighborhood factors and changes can often have a broad impact 

on the systems within the neighborhood.  Societal variables and factors outside the neighborhood 

also directly impact the neighborhood and systems within the neighborhood.  The national 

economy, world events, and public policies will impact individuals, structures, and groups within 

neighborhoods (Robinson, 2009).     

The ecological perspective encourages researchers to consider communities and 

neighborhoods as impactful on individual’s state of mind and well-being.  Subsequently, various 

types of social science researchers have undertaken studies to determine the relationship or 

impact that neighborhoods have on community behaviors and outcomes.  Through various types 

of research and theoretical perspectives, communities are often defined socially and spatially 

different.  Furthermore, the focus of the study is often different depending on the theoretical 

perspective and discipline.  Studies may focus on interactions between individuals in the 

community, social dynamics, or focus on structural or organizational components (Bandura & 

McClelland, 1977; M. Bronfenbrenner, 1970; U. Bronfenbrenner, 1974; Ernest Watson Burgess, 

1923; Ernest W Burgess, 1928).  

 Defining Neighborhood Used for this Study 

Burton, Price-Spratlen, and Spencer (1997) review neighborhood measurement methods 

and discuss the pros and cons of measuring neighborhoods using different definitions.  The 
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authors found that within the body of literature, neighborhoods tend to be conceptualized as sites, 

networks, or cultures of people.  The authors suggest that future studies should consider the 

objective and subjective nature of neighborhoods.  Neighborhoods defined from the physical 

address perspective (census tract) may pose a limitation for certain studies.  Additionally, the 

utility of viewing individuals and neighborhoods as separate and independent systems limits the 

types of relationships discovered within the findings.  Furthermore, the importance of 

neighborhood processes and changes over time can provide neighborhood studies with a rich 

source of data. 

Coulton, Korbin, Chan, and Su (2001) researched several definitions of neighborhood 

units and methods to measure neighborhoods.  Researchers asked residents to draw maps of their 

community, and then the researchers compared those results with the census definitions of 

neighborhoods.  The maps drawn by the residents were remarkably different from census-

defined boundaries.  The definition of community defined by the residents not only covered 

different geography but produced different social indicator values.  However, not all the 

residents could agree on where their community boundaries started and stopped.  This study 

suggests that researcher defined neighborhood boundaries could be a possible source of bias 

when studying neighborhood variables (Coulton et al., 2001).  Furthermore, people who live in 

suburbs tend to see neighborhoods existing in larger and clearly defined boundaries than city 

residents define their neighborhoods (Haney & Knowles, 1978).  Therefore, defining a 

neighborhood based on resident perceptions may not be accurate due to variances in individual 

perceptions (Coulton et al., 2001).   

Previous studies, often defined neighborhoods by census tracts and government-defined 

boundaries due to convenience and accessibility (Ming Wen & Kowaleski-Jones, 2012).  Census 
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tracts are small statistical sections of a county or geographic area that remain the same over a 

long time so researchers can make statistical comparisons (A. V. Diez Roux & Mair, 2010).  

Census tracts do not take into account boundaries or behaviors of different social groups and 

many research studies assume that the elements associated with one's census tract are the main 

influence on the community or neighborhood (Roy et al., 2012). However, relying on census 

tracts to understand communities ignores the impact of social relationships within the community 

(Coulton et al., 2001; Openshaw, 1984).  Consider an individual who lives in a geographic 

census tract whose average demographics include above average income, subdivision living 

arrangements on large tracts of land, and access to public parks and recreation facilities.  This 

same census tract may include pockets of neighborhoods next to the large subdivision that has 

lower housing quality, lower average household income and residents who are experiencing 

transportation issues.  Although the same census tract represents both neighborhoods, it is 

unlikely that both sets of individuals are accurately represented and defined by the census tract 

data.  Thus, one objective of this study is to define neighborhoods by factors which unite the 

community – such as an elementary school (Roy et al., 2012). 

Neighborhood Context of Schools 

This study defines the neighborhood to be studied as the school community.  Schools are 

organized communities with a system of shared values (Bryk & Driscoll, 1988).  Bird and Little 

(1986) describe these shared values as “norms of schooling” Norms taught in school provide the 

framework civility, interaction, and learning within the community.  Schools are central to the 

community and provide the fabric for community interactions and education (Gruenewald, 

2003).  Within this study, multiple levels of data will be aggregated and compiled for a 

neighborhood defined by the elementary school district boundaries.  This method moves away 

from treating schools as spatially independent contextual components of a community 
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(McMaster et al., 1997).  Schools and communities unite a neighborhood (Bryk & Driscoll, 

1988).  These two entities connect and provide multiple layers of supports for all its members its 

members.  The unity seen between the two entities serves as the basis for the definition of a 

community school that is a place and partnership between resources and individuals (Taylor & 

McGlynn, 2009).   

Neighborhood Health 

Previous literature and research revealed that the SES status of neighborhood 

communities greatly impacts the health status of individuals within the community (Robert, 

1998; Ross & Mirowsky, 2001).  Studies on neighborhoods indicate that neighborhoods impact 

heart disease; (Everson-Rose & Lewis, 2005; Mobley et al., 2006; Roux, 2003); diabetes (Ernst, 

Olson, Pinel, Lam, & Christie, 2006; Rocchini, 2002); obesity (Frank, Andresen, & Schmid, 

2004; Giles-Corti, Macintyre, Clarkson, Pikora, & Donovan, 2003) and mental health (M. Wen, 

Hawkley, & Cacioppo, 2006).  However, beyond economic and demographic variables, few 

studies have examined the additional neighborhood factors or stressors and their cumulative 

impacts on the health of the community or allostatic load (Ana V Diez Roux, 2001; Duncan & 

Aber, 1997).   

Measuring the health effects of specific neighborhood characteristics is complicated 

because many of these dimensions are interrelated (Barnard & Hu, 2005; De Silva et al., 2005).  

There is bound to be multicollinearity between neighborhood variables and interaction effects.  

Therefore, a crucial issue in the examination of neighborhood effects is to study how individual-

level variables are incorporated into conceptual models of the neighborhood (P. D. Juarez et al., 

2014).  The most common criticism of postulated neighborhood effects is that they result from 

confounding or confusing individual-level variables. 
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Society sees disease and illness as an individual experience (Paul D Juarez et al., 2014).  

However, the behaviors of the individuals collectively demonstrate the impact of the disease on 

the community and the environment (A. V. Diez Roux & Mair, 2010).  Stressors are 

environmental factors that often have a reciprocal relationship with disease.  Environmental 

stressors can cause diseases and diseases can cause stress within the environment (Flier, 

Underhill, & McEwen, 1998).  Stressors can impact the body and make individuals more 

susceptible to diseases, and lack of stressors can protect the body (Mirowsky & Ross, 1986).  

The impact of stress on the body is what researchers have defined as allostatic load (Logan & 

Barksdale, 2008; Bruce S. McEwen, 2003).  This next section will define the construct of 

allostatic load and the relationship between allostatic load and biological symptoms of mental 

health.  It will also discuss the environmental stressors that affect allostatic load.  These 

environmental stressors are often referred to as social determinants of health (Allen et al., 2014; 

Compton & Shim, 2015; World Health Organization, 2011). 

Allostatic Load  

Allostasis refers to the body’s processes that help it adapt to stressors (Danese & 

McEwen, 2012; Logan & Barksdale, 2008; Bruce S. McEwen, 2003).  Although stress can be 

good for the body, too much stress will have taxing effects on the body (Goymann & Wingfield, 

2004).  During periods of stress, the body tries to remain stable and consistent (Logan & 

Barksdale, 2008; Bruce S. McEwen, 2003).  For the body to remain stable, it releases different 

hormones that help the body maintain a consistent heartbeat and breathing patterns (Danese & 

McEwen, 2012).  These hormones include adrenaline, cortisol, and glucocorticoids (Bruce S 

McEwen, 2008).  However, the release of these chemicals in the body over long periods 

contributes to an overload on the body and more wear and tear on the body and brain as it works 

overtime to try to maintain normal functioning (Danese & McEwen, 2012; Logan & Barksdale, 
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2008). Specific health outcomes related to allostatic load include depression, anxiety, high blood 

pressure, heart disease, arteriosclerosis, diabetes, and obesity (Hammen, 2005; Bruce S McEwen, 

2008). The next section of this paper will focus specifically on allostatic load related to 

depression and stress.   

Stress impairs the hippocampus region of the brain, which is responsible for verbal and 

contextual memory (Flier et al., 1998; Hammen, 2005).  Subsequently, impaired memory leads 

to emotional changes and instabilities over time (Bruce S. McEwen, 2003).  Since the 

hippocampus is also responsible for regulating the stress response itself; if the hippocampus 

becomes impaired due to chronic stress exposure, it is subsequently less able to regulate the 

stress response, suggesting a mechanism by which individual stressors become allostatic load 

(Bruce S McEwen, 2008).  Higher or sustained stress can have negative consequences on the 

entire body but also impacts feelings related to depression and anxiety (Flier et al., 1998; Pachter 

& Coll, 2009).  It can also lead to further risky behaviors such as alcohol or drug use, poor eating 

and unusual sleeping patterns (Barnes et al., 2008).  Chronic exposure to stress can result in 

chronic health and mental health conditions (Lee & Ferraro, 2009). 

Measures Allostatic Load   

 This next section will discuss how allostatic load manifests itself in symptoms of 

individuals within the community.  The impact of allostatic load on the body can be seen in 

various biological systems that influence health (Danese & McEwen, 2012; Bruce S. McEwen, 

2003).  Because the systems in the body are strongly connected, stimulation of one allostatic 

system commonly triggers responses in all allostatic systems (Danese & McEwen, 2012). Three 

distinct and separate systems of the body often exhibit outward symptoms when allostatic load 

measures are high (Compas, 2006; Sterling, 2012).  The circulatory system often exhibits heart 

disease symptoms and relating conditions of high blood pressure and high cholesterol (Logan & 
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Barksdale, 2008).  The digestive system shows signs of allostatic load in the form of diabetes, 

obesity, and digestive issues (Crumeyrolle-Arias et al., 2014).  High allostatic load impacts the 

mental health system within individuals and causes signs of chronic depression or anxiety 

(Goymann & Wingfield, 2004; Bruce S. McEwen, 2003). 

 Chronic heart disease and Hypertension 

 Cardiovascular disease is the largest public health and the most prominent health 

condition implicated in a person’s ability to perform tasks of daily living (Caskie et al., 2010).  It 

is often comorbid in patients with mood and anxiety disorders (Gianaros et al., 2009).  

Individuals exposed to chronic stressors are more likely to experience cardiovascular disease 

(Bruce S McEwen, 2008).  Stress-related events may cause parts of the brain to be hyperactive 

and increase in inflammation throughout the body.  These metabolic changes contribute to 

atherosclerosis progression and stimulate the development of cardiovascular disease (Danese & 

McEwen, 2012; Gianaros et al., 2009). 

High blood pressure affects one-third of all US citizens (Centers for Disease Control and 

Prevention 2011).  Chronic stress exposure is a risk factor for hypertension.  However, the 

specific mechanism by which stress impacts high blood pressure is not well understood in the 

medical field.  Research has shown that chronic stress exposure leads to sustained high blood 

pressure and is almost certainly related to allostatic load (Spruill 2010). 

  Cholesterol levels and blood pressure measurements are other ways we can measure the 

body’s reaction to stress (Moloney, Desbonnet, Clarke, Dinan, & Cryan, 2014).  Our body reacts 

to stress by releasing catecholamine to adjust heart rate and blood pressure when necessary 

(Logan & Barksdale, 2008).  Nevertheless, repeated surges or changes to blood pressure in the 

body due to stress accelerates atherosclerosis and produces Type II diabetes (Goymann & 

Wingfield, 2004).  The interaction of these two systems and the results also impact allostatic 
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load.  (Bruce S McEwen, 2008)  Therefore, the frequency of these variables within each 

community will be used to measure the impact of heart disease on allostatic load. 

Overweight/obesity   

 The outcome of chronic stress exposure is often an overweight body and obesity, 

particularly abdominal obesity (Bjorntorp 1987; McEwen 1998).  Stress and obesity are further 

linked because stress may change both eating and physical activity behaviors.  The release of 

glucocorticoids as the result of stress exposure creates a preference for calorie-dense foods 

(Goymann & Wingfield, 2004).  Unhealthy eating is, therefore, a secondary part of the biologic 

stress response (Dallman et al. 2004).  A review of the literature and meta-analysis of 

longitudinal studies by Wardle et al. (2010) concludes that there is a relationship between 

chronic stress exposure and central obesity. Burdette and Hill (2008) present evidence that 

perceived neighborhood disorder positively correlates with obesity among adults.  Psychological 

stress mediates the relationship between obesity and perceived neighborhood disorder(Black & 

Macinko, 2008).  Many studies using obesity as an outcome have suggested that poor food 

and/or physical activity environments are more likely in disadvantaged neighborhoods(Franco, 

Roux, Glass, Caballero, & Brancati, 2008; Galvez et al., 2009; Morland, Wing, Roux, & Poole, 

2002; Powell, Chaloupka, & Bao, 2007; Roy et al., 2012). 

Mental Illness 

According to the World Health Organization (W.H.O.), depression is the leading cause of 

disability and the fourth leading contributor to the global burden of disease (Chisholm, 2006). 

Over the lifetime, 16.6% of all adults will experience a depressive episode (Kessler et al. 2005).  

Chronic and acute stress exposures correlate with depressive symptoms and major depression 

among adults and adolescents (Hammen 2005).  Chronic stress increases depression via the same 

biologic pathways that link chronic stress to physical health.  The hormonal responses within the 
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body to stress affect the chemistry of the brain, which triggers anxiety and depression (Hammen 

2005).  

Stress impairs the hippocampus region of the brain, which is responsible for verbal and 

contextual memory (McEwen 1998).  The impaired memory within individuals leads to 

emotional disturbances over time (Gerritsen et al., 2011; Toomey & Ecker, 2009).  The 

hippocampus is also responsible for regulating the stress response itself; if the hippocampus 

becomes impaired due to chronic stress exposure, it might become less able to regulate the stress 

response, suggesting a mechanism by which individual stressors become allostatic load 

(McEwen 1998).  Because the causal relationship between stress exposure and depression is 

relatively well known, it is an important outcome for the study of neighborhoods as a source of 

chronic stress.  Graff-Guerrero, Gonzalez-Olvera, Mendoza-Espinosa, Vaugier, and Garcia-

Reyna (2004)  indicate that physiological changes in body chemistry that cause changes in 

sleeping patterns, eating patterns, concentration, memory, muscle tension, psychomotor activities 

would give rise to a diagnosis of a depressive mood disorder or anxiety.  Because stress affects 

many systems in the body and the allostatic load on the body, health and mental health are 

always affecting the other (Danese & McEwen, 2012; Logan & Barksdale, 2008).  One cannot 

talk about the impact of mental health without talking about how it affects physical health.  

Therefore, measuring allostatic load, also directly measures the impact and outcome of mental 

health by measuring the impact of stressors on the body (Bruce S. McEwen, 2003).   

For this study, the variable of “Using Prescription Anti-Depressant medication” will be 

used to represent the mental health construct that impacts an individual’s allostatic load.  Since 

mental health is related to physical health, there would be significant multicollinearity if a study 
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used both physical health variables and mental health variables (Logan & Barksdale, 2008; 

Bruce S. McEwen, 2003).   

When measuring mental wellness within the community, this study uses an aggregated 

measure people within the community prescribed anti-depressant medication. In 2012, 16.0 

million Americans were diagnosed with major depressive disorder and 10.9 million received 

treatment for major depressive disorder (Abuse, 2012). Counseling literature often cites the use 

of anti-depressant medication as a treatment strategy to have unintended consequences on self-

esteem and long-term mental health (Arie Dijkstra, Jaspers, & Van Zwieten, 2008; Gibson, 

Cartwright, & Read, 2014).  Research shows that many mental health conditions improve with 

counseling treatments and patients often prefer counseling to prescription medication (Mulligan, 

2015; van Schaik et al., 2004). However, national data between 2007-2010 indicates that the 

number of people who visit a primary care doctor for mental health increased from 5.96 people 

per every 100 go 8.49 people for every 100 (Olfson, Kroenke, Wang, & Blanco, 2014).  

Currently, primary care physicians are significantly more involved in providing prescription drug 

treatment for depression (Olfson & Marcus, 2009).   

The data relating to anti-depressant is a reliable geocoded measure of mental health 

available in the population-based data (Ryan, Norris, & Becket, 2005).  Since aggregated 

community data represents the construct of mental wellness, it will be used to obtain an overview 

of mental health patterns or the prevalence of depression within each community.  According to 

the research, prescription medication usage can be used to look at mental health within 

communities because it is an accurate and practical measure of the members of the community 

who struggle with depression symptoms (Aletta Dijkstra et al., 2013).  Research by Ryan (2005), 

pointed out that that using prescription drug use may provide the best standardized information 
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on health conditions (Ryan et al., 2005).  Other studies have used prescription drug use of a 

condition to measure the prevalence of the condition (Aletta Dijkstra et al., 2013).   

However, using anti-depressant medication to measure mental health may as a   

underestimate the actual prevalence of mental illness in the community (Sisnowski, Street, & 

Braunack-Mayer, 2016).  People who choose alternative methods to copy with mental illness 

will not be represented within the aggregate count of prescription medication users.  Individuals 

who are clinically mentally ill but do not access any treatment services will also not be 

represented in an aggregate count of anti-depressant medication. Furthermore, this population-

based variable measure will not measure the state of well-being for individual community 

members nor will it measure the results of a particular intervention (Pirl, 2004). 

Since allostatic load measures the impact of stressors on health, the next section details 

the environmental stressors that have the largest impact on health.  The definition of health from 

the World Health Organization’s constitution declares that; “health is a state of complete 

physical, mental and social well-being and not merely the absence of disease or infirmity” 

(World Health Organization, 2003, p. 7).  The intersection between individual health and mental 

health collide when discussing the impact that the environment has upon both.  Social 

determinants of health define the environmental factors that influence health and mental health 

of individuals.   

Social Determinants of Health 

Research has shown that neighborhood factors affect individual development, health, and 

functioning with both health and mental health (Allen et al., 2014; Compton & Shim, 2015; 

Strolin-Goltzman, Sisselman, Melekis, & Auerbach, 2014; World Health Organization, 2011).  

Additionally, having a sense of community was positively associated with lower stress and an 

increase in both social support and physical activity, which improved health and mental health 
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outcomes (Young, Russell, & Powers, 2004).  There are many built features within a 

neighborhood that foster a sense of community amongst its members  (Leventhal & Brooks-

Gunn, 2000; Sampson & Raudenbush, 1999).  Community members may also experience 

environmental stressors that detract from a healthy environment.  Negative social determinants 

of health will be discussed further.   

Food Insecurity 

Food insecurity is defined as ‘‘limited or uncertain availability of nutritionally adequate 

and safe foods or limited or uncertain ability to acquire acceptable foods in socially acceptable 

ways” (G. Bickel, Nord, Price, Hamilton, & Cook, 2014). Food shortages, reduction in quality 

food, reduced intake of food and disrupted eating indicates some degree of food insecurity. In 

2014, 31.2% of US children lived in a food insecure household.  Interestingly, this current 

definition of food insecurity does not include hunger (O'Reilly, 2015).  The new definition of 

food insecurity embraces the idea that hunger is an outcome of food insecurity but not a defining 

feature of the construct.  Food insecure individuals are unsure how they will access food for their 

next meal (Kushel, Gupta, Gee, & Haas, 2006).  The Committee on National Statistics stressed 

the importance of differentiating food insecurity from hunger since the former describes the 

experience and the latter describes the consequence of food insecurity  (Cook, 2013). 

Research indicates that children food insecure homes are diagnosed with more mental 

disorders (Melchior et al., 2012; Whitaker, Phillips, & Orzol, 2006) and experience more 

emotional, behavioral and cognitive concerns (Alaimo, Olson, & Frongillo, 2001; Howard, 2013; 

Melchior et al., 2009). Stress, anxiety, and shame result from experience household food 

insecurity (Burke, Martini, Çayır, Hartline-Grafton, & Meade, 2016).Other studies hypothesize 

that food insecure individuals do not receive needed medical care because the need for adequate 

food is a higher priority than medical care (Kushel et al., 2006).  Additionally, researchers have 
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found that food insecure children have lower fruit intake (Grutzmacher & Gross, 2011) lower 

calcium intake (Eicher-Miller, Mason, Weaver, McCabe, & Boushey, 2011; Matheson, Varady, 

Varady, & Killen, 2002), and higher consumption of unhealthy foods (Rosas, Case, & Tholstrup, 

2009; Sharkey, Nalty, Johnson, & Dean, 2012).  Food insecure adults are also more likely to 

report more mental health concerns than other adults (Sharkey et al., 2012). Whitaker et al. 

(2006) reported that food insecurity is associated with mothers who are depressed or anxious.  

Additionally, food insecure adults are more likely to be overweight or obese (Franklin et al., 

2012), particularly women (Larson & Story, 2010).   

Medical researchers have researched how dietary choices impact mood and mental 

health.  Medical studies exposed groups of mice to frequent and reoccurring stress.  One group of 

mice received a high-fat and high sugar diet while being exposed to stress while the other group 

received a healthier diet while being exposed to stress.  The study found that mice exposed to 

stress while on a high-fat/high sugar diet had a buildup of abdominal fat.  Alternately, stressed 

mice on a healthy diet had little changes in weight.  Furthermore, stressed mice on a high 

fat/sugar diet amassed twice as much abdominal fat in the first two weeks as did unstressed mice 

eating a healthy diet (Kuo et al., 2007; Young et al., 1997).   

Although dietary changes are not recommended as a substitute for professional mental 

health treatment, they can be a supplement counseling and mental health treatment (Whitlock, 

Orleans, Pender, & Allan, 2002).  Research and evidence do suggest that certain nutrients 

support emotional well-being, and proper nutrition will improve people’s physical and emotional 

condition.  For example, Omega-3 helps improve people’s overall mood (Lucas et al., 2014).  

Tryptophan, an amino acid produces serotonin that influences levels of depression (Hammen, 

2005).  Magnesium helps the human body produce energy. Some researchers have found that 
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patients who take extra magnesium recover more quickly from depression.  Folic acid and 

vitamin B-12 play an important role in metabolism and production of blood cells components 

related to dopamine and noradrenalin (Appelhans et al., 2012; Gracey, Stanley, Burke, Corti, & 

Beilin, 1996).  Lack of these chemicals also relates to depression.  Increasing a person’s levels of 

folic acid and vitamin B-12 increase the ability to metabolize antidepressant medications. 

Pregnant mothers who do not get enough nutrients can double the risk of schizophrenia in 

their children since nutritional deficiencies can affect neonatal brain development (Brown & 

Susser, 2008).  Folate deprivation can inhibit or alter DNA repair (O'Mahony, Hyland, Dinan, & 

Cryan, 2011). Folic acid is found in green leafy vegetables and fruits. Vitamin B-12 is mainly 

found in fish, shellfish, meat and dairy products (O'Mahony et al., 2011).  Therefore, proper 

nutrition does support good physical and emotional health (Appelhans et al., 2012; Lucas et al., 

2014; Morland, Wing, & Roux, 2002; Sharkey et al., 2012). 

Literature relating the quality of diets to food environment in neighborhoods is prevalent.  

The physical placement of food stores within neighborhoods does have an impact on food 

choices  (Cummins & Jackson, 2001; Wakefield, 2004).  A limited availability of healthy food 

choices and the perceived convenience of unhealthy foods presents barriers to healthy eating 

(Glanz, Basil, Maibach, Goldberg, & Snyder, 1998; Gracey et al., 1996; O'dea, 2003).  Much of 

the literature on food retail environments and health indicates that proximity of the food outlet 

drives consumer’s decisions.  However, a few recent studies provide differing opinions.  Studies 

by (Cannuscio et al., 2013; Drewnowski, Aggarwal, Hurvitz, Monsivais, & Moudon, 2012) 

indicate that many consumers in city environments travel to food stores beyond the closest 

market to purchases groceries. An ecological model of human behavior theorizes that many 

systems act upon individuals and influence behaviors associated with the local food environment 
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(Nettle, Gibson, Lawson, & Sear, 2013).  However, individual behaviors are influenced by more 

than just geographic proximity.  Although the physical food environment of neighborhoods has 

been well studied, Story, Kaphingst, Robinson-O'Brien, and Glanz (2008)  purports that the 

social environment influences food choices of individuals.  Role modeling, social supports and 

social norms within a community influence choices and decisions of the individuals living within 

those boundaries.  

Furthermore, it is becoming apparent that the key to identifying disparities in health 

outcomes including mental health, diabetes, and mental health comes from examining 

differences in the food environment in neighborhoods (Hill, Wyatt, & Melanson, 2000; Rocchini, 

2002).  Galvez’s research emphasizes that policymakers and health care providers should have a 

basic understanding of the local food environment to fully understand all the supports and 

barriers that exist in the clients that they serve (Galvez et al., 2009; Galvez et al., 2008).  An 

understanding of the food environment can lead to healthier lifestyles in the communities.  There 

is a wealth of literature that suggests that examining differences in food store availability help to 

further understanding of the impact of food choices on mental health (Galvez et al., 2008). 

Research has shown that inequities in the availability of different types of food stores do 

exist by neighborhoods (Black & Macinko, 2008; Franco et al., 2008; Galvez et al., 2009; Powell 

et al., 2007).  The availability of healthy food stores within a neighborhood improves access and 

diet quality.  Research indicates that supermarkets had four times the number of healthy foods 

than convenience stores (Cummins & Jackson, 2001; Galvez et al., 2008; Sallis, Nader, Rupp, 

Atkins, & Wilson, 1986).  Additionally, research has shown that having a supermarket within a 

defined community is related to a 32% increase in fruit and vegetable intake (Galvez et al., 2008; 

Morland, Wing, & Roux, 2002).  Since previous research underscores the importance of food 



36 

 

availability and consumption, both constructs will be represented within this study to measure 

the impact of nutrition on mental health. 

Economic Instability  

  People’s perceptions of food security are also related to their perception of economic 

stability.  The prevalence of food insecurity inversely relates to household income (Kushel et al., 

2006).  Affordability of food choices and the availability of money to buy food will impact the 

dietary choices made within a neighborhood (Eicher-Miller et al., 2011; Glanz et al., 1998; 

Morland, Wing, & Roux, 2002; O'dea, 2003).  The SES of the neighborhood correlates to health 

outcomes, including mental health (Dupre, 2007; Menec et al., 2010).  Neighborhood qualities 

such as SES and educational or employment opportunities have also been shown to impact 

racial/ethnic disparities in health (J. Kim, 2011; Liang, Xu, Bennett, Ye, & Quiñones, 2009).  

The effects of household income on behavior and IQ of children in the home were studied by 

(Brooks-Gunn, Duncan, Klebanov, & Sealand, 1993; Leventhal & Brooks-Gunn, 2000) The 

research found that the families who were supportive of each were able to mediate IQ scores.   

Social Capital  

The positive relationships between people or groups of people within communities make up 

the definition of social capital (Carpiano, 2006; Delany-Brumsey, Mays, & Cochran, 2014).  

Putnam believes that common positive social characteristics increase social capital within a 

community (Adler & Kwon, 2000).  Developing more social capital within a community 

involves building trust amongst community members, developing community cooperation, 

encouraging a sense of helping others, and providing opportunities for civic engagement (De 

Silva et al., 2005).  Places and facilities within a community that allow people to interact build 

more social capital.  Social capital links individuals with institutions and organizations through 

services (Parasuraman & Shi, 2014).   
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Access to facilities and services within a community correlate with to positive mental health 

and well-being (Bowling, Barber, Morris, & Ebrahim, 2006; Leslie & Cerin, 2008).    

Furthermore, access to health care facilities reduces neighborhood inequalities in health 

outcomes (Barnett, Pearce, & Howes, 2006; Hiscock, Pearce, Blakely, & Witten, 2008; Lubans, 

Aguiar, & Callister, 2010).  The World Health Organization, (W.H.O.) has consistently stated 

that the amount of social capital within a community inversely relates to the health inequalities 

within the neighborhood (World Health Organization, 2011).  The less social capital present in 

neighborhoods, the more mental health problems are evident (De Silva et al., 2005).   

Structural neighborhood characteristics of the built environment shape the social capital 

within a neighborhood (Suglia et al., 2016).  Grocery stores and health food restaurants within 

neighborhoods provide resources that residents can use to safeguard and improve health 

(Cannuscio et al., 2013).  However, neighborhoods with lower SES typically have more fast food 

access and limited access to affordable healthy food(Galvez et al., 2008).  The social conditions 

in low-income neighborhoods develop infrastructure related to the development of more fast 

food restaurants and limited access to affordable healthy food (Kwate, 2008).  The interactions 

and communications within buildings facilities social capital.   

Community members who participate in networks within communities build more social 

capital resources.  Social capital provides the community with a cohesive feeling and a sense of 

belonging (Carpiano, 2006; De Silva et al., 2005).  Therefore, the mental health services, groups, 

and civic organizations within a community are directly related to health and mental health of the 

community (Brehem and Rahn 1997).  Furthermore, social inclusion is directly related to the 

social capital within an organization.      
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Housing Instability   

Living in deteriorating neighborhoods may have a multitude of direct and indirect effects on 

the body and the quality of life (Gee and Payne-Sturges 2004).  Pevalin, Taylor, and Todd (2008) 

cite that many research studies support the association between poor housing and poor health.  

Similarly, Leventhal and Brooks- Gunn (2003) looked at the association between neighborhood 

residence and mental health outcomes in which census tract data was used to identify participants 

and found again that poor housing associates with poor health.  Kowaleski-Jones (2000) 

indicated that the impact of residential stability has strong protective effects on child and 

adolescent risk-taking behaviors.  A study by (Galea, Ahern, Rudenstine, Wallace, & Vlahov, 

2005) studied the built environment about depression.  People who lived in buildings with poor 

quality exterior were 36% more likely to report depression in the past six months.  Residents 

who had nonfunctioning kitchens or more heat problems were also 40% more likely to report 

having symptoms of depression in the last six months.   

Safety 

Living in a neighborhood considered dangerous can add to one’s stress level.  According 

to  Sampson and Raudenbush (1999) vandalism, litter and graffiti are more apt to make 

community members fearful and anxious within their neighborhood.  Mirowsky and Ross (2003) 

report that criminal activity in a community or signs of criminal activity increases the residents’ 

feelings of anxiety and depression.  Ziersch et al., (2005) find that perceived neighborhood safety 

is also related to the health of the individual and subsequently the community.  Leslie and Cerin 

(2008)  find that the safety and walkability of neighborhoods significantly correlate with mental 

health within the community.  The implication of these findings suggests that crime and safety 

variables within a neighborhood significantly affect mental health.  Additionally, further research 
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indicates that the lack of social capital within a neighborhood is associated with poor health and 

indirectly associated with crime in the community (Roy et al., 2012).   

Additionally, those living in poorer neighborhoods also face other forms of stress that can 

exacerbate the problem including crime, safety, and neighborhood disorder (Keith, Lincoln, 

Taylor, & Jackson, 2010).  A Chicago study found that perceptions of the neighborhood were 

associated with mental health and may have a causal effect (Wen et al., 2006).  However, data 

from a Harvard study shows that collective efficacy in neighborhoods is one of the strongest 

predictors of lower homicide rates, regardless of individual socioeconomic resources (Morenoff, 

Sampson, and Raudenbush 2001).   

To study the impact of the local food environment on mental health, a secondary analysis 

of public available datasets will be used.  The next section defines the data sets and analysis 

features used in this study. 

Analysis Methods 

Measuring Spatial Dependencies Using GIS 

This study uses a geographic information system (GIS) to define and identify 

neighborhoods.  A GIS system allows the researcher to integrate multiple data sources to analyze 

environmental factors in a community (Law & Collins, 2013).  It is important for the researcher 

to identify the variables most appropriate for a community studies and risk assessment (Elwood 

& Leitner, 1998; McMaster et al., 1997).  However, the decision as to which variables to choose 

cannot always be left to the researcher alone.  Local community members may have information 

on the environment that researchers may overlook (McMaster et al., 1997).   

GIS technology helps researchers visualize relationships within the context of the 

neighborhood.  Where relationships occur are as important as when and if the relationships exist.  

Data analysis and models of relationships between variables within the context of the 
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neighborhood are resources that GIS technology can provide researchers.  GIS technology 

provides additional problem solving and analytical tools for researchers and organizations.  

Understanding the relationship between variables within communities helps researchers 

understand systemic and structural environmental issues within the population of a community 

(Rawson, 2011).  GIS can expand the scope of traditional research, and in turn, better inform 

communities and decision-makers.   

Mental health issues are often the result of social influences within the environment or 

community in which the individual lives. Policies aimed at providing mental health interventions 

are connected to the geographic location of the individuals served (Turk, 2013).  GIS is a 

significantly important tool that can be used to assess the effectiveness of policies and 

interventions aimed at specific groups or people within specific communities (Rawson, 2011)  

GIS allows researchers to integrate information from a variety of sources, which allows for 

spatial analyses to examine the relationship between datasets within the confines of the 

community.  This provides a more accurate and client-specific policy or intervention for specific 

communities (Yang, Shoff, & Noah, 2013).  The visualization of relationships spatially allows 

traditional statistical analyses to be applied and interpreted in new ways. 

GIS helps researchers compute simple circular boundaries to define areas.  Within this 

method, differences between variables inside and outside the area are assessed (Glickman 1994).  

With this definition of a community, it is easier to analyze health and geographic data because 

the data is already defined within a geographic context.  Spatial models can be created with 

multiple layers of variables on the geographic surface of the map (McMaster 1990).  

Subsequently, the models created use standardized variables that give researchers a reliable and 

replicable spatial method to analyze data and assess risk. 
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According to Shannon, Bashshur and Metzner (1969), the location and social activities of 

people are often spatially ordered and distributed.  Shannon, Bashshur, and Metzner (1969) 

introduce research that is concerned primarily with the impact that distance has on individuals 

receiving medical services.  They identify two important studies, Jehlik and McNamara (1952), 

Ciocco, and Altman (1954), who both independently explore the relationship between distance to 

a physician and/or hospital and patient care.  These studies are significant because they represent 

the first attempts in health services research to formalize the idea that distance affects access to 

health services (Shannon, Bashshur & Metzner, 1969).   

According to McLafferty (2003), the use of Geographic Information Systems (GIS) in health 

services research has increased in the past few decades.  GIS software enables investigators to 

input, store, manipulate, analyze, and visualize spatially referenced information.  This ability 

provides the researcher with a set of tools for describing and understanding the spatial 

organization of health delivery systems (Higgs, 2004).  What differentiates GIS from other 

information systems is that objects in the relational database are stored according to location 

(Love & Lindquist, 1995).  As a result, GIS is an important tool for researchers to use when 

emphasizing the geographical or spatial dimension of access to health services.  More 

specifically, the technology can be used to evaluate the type and quality of health services 

available in a given area, the distance and cost to reach those services.  Furthermore, GIS 

visually identifies disparities in access to health services along with various sociodemographic, 

economic, and geopolitical lines (McLafferty, 2003).  The technology offers an advantage over 

traditional research analytics because of its ability to relate both spatial and attribute data, which 

in turn provides enhanced integration and interpretation.  For instance, GIS spatial pattern 

analysis employs statistics to describe and model distributions (e.g. central feature, mean center, 
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median center), patterns (e.g. an average nearest neighbor, spatial autocorrelation), and 

relationships (e.g. ordinary least squares, geographically weighted regression) in spatially 

referenced data (Rosenshein, 2011).  This type of analysis allows health services researchers to 

evaluate the spatial patterns of diseases for at-risk populations (Foody, 2006).  Because of 

technology’s capacity to integrate data with mapping functions, GIS is an influential tool that 

health services researchers can use to explain disparities in healthcare access and health 

outcomes (Graves, 2009).  In this context, GIS technology can be a valuable problem-solving 

tool for decision makers to use when allocating resources toward emergent health priorities such 

as mental health and wellness. 

Inferential Statistics 

Studies that investigate accessibility to health services typically use statistical methods to 

test research hypotheses.  For example, Fortney et al. (1999) use regression analysis to test the 

hypothesis that geographic accessibility affects the number of visits patients make to their 

provider.  Also, they use a logistic regression model to determine if geographic distance between 

patient home and the provider affects the likelihood of being compliant with treatment (Fortney 

et al., 1999).  A study by Nemet and Bailey (2000) evaluates whether healthcare utilization is 

dependent upon the distance to the provider (Nemet & Bailey, 2000).  Luther et al. (2003) use 

ANOVA to compare the averages of those who have high and low health care access to 

determine if health care access influences disease mortality and/or child health.  Furthermore, 

Towne, Smith and Ory (2014) use bivariate and multivariate regression analysis to assess 

differences in distance, utilization, and availability of cancer screening providers in various 

countries (Towne, Smith & Ory, 2014).  These studies indicate that using statistical measures 

with GIS data are applicable in health-related research to measure the impact neighborhood 

features on community groups.   
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Conclusion 

The literature describes the mental health consequences of social determinants.  The 

complicated web of social determinants and its impact on health and mental health is difficult to 

separate. Often, mental health and problems result from more than factors than just genetics or 

biological makeup.  The convergence of time, stress and environment play a role in mental 

health and health concerns.  The impact of allostatic load impacts many health and physical 

health conditions.  The impact that community or the social environment on stress is well 

documented.  Gaining a better understanding of how these social determinants affect individuals 

and the community helps counselors plan policies and intervention strategies that are specific 

and targeted to the population served.   

One of the most important but under-appreciated factors in mental health is the role of 

nutrition. The strength of evidence linking diet and mental health continues to grow.  More 

research continues to relate positive nutritional choices to positive mental health management 

and prevention.  Linkages between diet and mental health are strengthening thanks to the many 

research studies on the relationship between variables within communities.  Research studies 

have examined individual level relationships between mental health and diet as well as 

population or cultural comparisons between mental health status and food intake. 

However, intervention is key to achieving quality health and mental health within the 

lifespan.  Additionally, intervening at the right moment in time with the correct intervention is 

crucial.  Some of the research indicates protective factors such as education, social support, and 

feelings of mastery and control over one’s life can mediate the impact of social determinants.  

The effects of the community, individual choices, and the opportunities for choices within the 

community are just beginning to be understood.  This study will contribute to the growing body 
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of literature linking diet interventions and mental health.  Links between the two areas will help 

counselors identify interventions that are culturally relevant, and community-based.  
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CHAPTER 3:  METHODOLOGY  

Introduction 

  The impact of social determinants on mental health within neighborhoods can 

greatly affect the focus of mental health counseling and community initiatives designed to reduce 

disparities (Allen et al., 2014; Compton & Shim, 2015).  The built food environment is one such 

social determinant mental health and will be used for this study. This study uses population data 

at the community level to investigate the relationship between the built food environment and 

mental health within school communities. Visual and statistical representations of the data are 

provided.  Detailed analysis will explore how the food environment within communities 

influences mental health outcomes.  Since food insecurity is one of the social determinants of 

mental health, this study expects that food insecurity will have a negative impact on mental 

health. 

Although the goal of statistical analysis is to find “if” there is a relationship between 

variables, the goal of a GIS analysis is finding where that relationship occurs (Law & Collins, 

2013).  This study used bivariate correlation and regression analysis to determine if relationships 

exist between food choices and mental health. To determine where correlations are strongest, 

GIS data was used to conduct geographically weighted regression (GWR).  Statistical analyses 

were used to determine where and why mental health and food insecurity intersect.  Additionally, 

this research used descriptive statistics, cluster analysis, Pearson correlations, ordinary least 

squares regression (OLS) and geographically weighted regression (GWR) to investigate 

differences in geographic units.  Before any analyses were conducted, the assumptions of the 

analysis were tested and validated.    The first section discusses the variables selected for this 

study.  Independent, dependent and demographic variables are defined and discussed.  The next 
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section discusses the data cleaning and preparation.  Next, the analysis methods chosen to answer 

the research questions and finally ethical issues and limitations will be discussed.  

Problem and Purpose of the Study 

Although the promotion of mental wellness and the identification of mental illness is a 

worthy goal, treatment will be inadequate if we as counselors believe that treatment ends with 

the clients served.  Counselors need to understand the environment in which their clients live to 

develop appropriate treatment strategies that meet their clients’ goals.  To help counselors 

understand the environment, this study will examine the impact of food environments on mental 

health within Tennessee school communities. 

This dissertation examines the existence and significance of spatial relationships between the 

food environment, and mental wellness.  This study measures mental wellness against food 

insecurity and if appropriate, develops a model predicting mental health of a community from 

the food environment.   The social determinants of a mental health drive the theoretical 

underpinning of variables chosen and researched for this study.  Therefore, this study examines 

the availability and proximity of features of the built environment that contribute to mental 

wellness in the context of allostatic load to better understand the mental health of the client's 

counselors serve.     

Research Objectives 

This dissertation examines the existence and significance of spatial dependencies 

between neighborhood characteristics and one specific social determinant of mental health – 

food insecurity.  The objectives are to find the associations between mental health and 

neighborhood characteristics of food insecurity.  By using variables measuring mental wellness, 

food availability, food consumption choices, and geographic locational data, counselors could 

begin to understand the complex relationship that neighborhood and context have on the mental 
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health of clients served.   An understanding of the relationship between mental health and the 

food environment informs counselors on types of services and interventions a community may 

need in addition to traditional counseling services.  These objectives will also demonstrate the 

value of spatial analysis in the counseling field. 

The purpose of using GIS technology to build models is to test complex multivariate 

hypotheses and illustrate statistical predictions.  Therefore, this study will provide mental health 

researchers, clinicians, and policy makers with tools and information that can potentially lead to 

the development of mental health interventions or become a catalyst for policy changes  

To answer the research questions, a quantitative and geographical approach will be used to 

determine the interrelationships between built neighborhood factors and measures of mental 

health. Since schools often serve as the center of a community, neighborhoods for this study will 

be defined by elementary school district boundaries. Before any geographic variables are entered 

into the study, a relationship between mental health and food will be established correlations.  

Finally, neighborhood attributes that contribute to food availability and insecurity will be 

geocoded and examined.   For each neighborhood condition or characteristic, geospatial hotspots 

will be identified within community school regions.   

The secondary data used for this study will be mapped using ArcMap GIS 10.4.  Regression 

and bivariate correlations will be used to examine variables relating mental wellness to food 

within the neighborhood.  The differing results will then be analyzed and studied to ensure the 

results are valid and reliable.   

Data Selection 

Data  

 The data for this study will come directly from ESRI.  ESRI provides a comprehensive 

set of geocoded data on demographics, spending, and business data for mapping and analysis 
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purposes (Law & Collins, 2013). However, the data was collected in various surveys which will 

be described in the next section. The base map of streets and counties will come from ESRI and 

the software used to display this data will come from ESRI.  An outline of the data to be used is 

included next to an operational definition of the variables chosen. 

 Base Map 

The ESRI Tennessee topographic base map will be used as a starting point to picture the 

geographic features within the state of Tennessee including major roads and highways, city and 

county boundaries. Tennessee was chosen for this study due to the high prevalence of mental 

health issues within the state and the due to the statistics on unhealthy food consumption.    

According to national health rankings, Tennessee ranks 49th in the nation with the 2nd lowest 

number of fruits and vegetables consumed on average per person.  Additionally, Tennessee 

residents disclose they have more poor mental health days than any other state in the nation and 

ranked 50th on the United Health Foundation Survey (United Health Foundation, 2016).  A 

boundary file that provides the GIS coordinates of the elementary school zones and districts 

within the state of Tennessee will be brought into the ArcGIS platform and entered on top of the 

ESRI base map (E. ESRI, 2014).  School communities in Tennessee will be used for this study 

since elementary school district boundaries will define neighborhoods. The SABINS project will 

provide the geographic coordinates for community school data file.   

Community Shapefile 

 To measure communities, The School Attendance Boundary Information System 

(SABINS) file will be used (Center)  The SABINS provides researchers with GIS-compatible 

boundary files for school districts within the United States.  The data is available through the 

National Historical Geographic Information System, (NHGIS) web application. NHGIS asks 

schools to disclose their district coordinates to the project voluntary (Center) NHGIS then takes 
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the boundary information and creates a shapefile which is a standard spatial data file format used 

in GIS projects (E. ESRI, 2014).  The accuracy of the shape file data depends on a voluntary 

disclosure of each school district.  Because some school districts did not disclose their shape file 

coordinates to the SABIN project, this study will be unable to include those school districts. 

There were 822 school districts in Tennessee whose coordinates are logged into the SABINS 

shape file.  This will be used as a base for analysis.   

  Schools are central to many communities and provide the fabric for community 

interactions and education.  Multiple levels of data will be aggregated and compiled for this 

neighborhood study and will be defined by the elementary school district boundaries.  This 

method moves away from treating schools as spatially independent contextual components of a 

community (McMaster et al., 1997).  Schools and communities unite a neighborhood.  These two 

entities connect and create supports for its members.  This serves as the basis for the definition of 

a community school that is a place and partnership between resources and individuals (Taylor & 

McGlynn, 2009).  For adequate power, a minimum of 200 elementary schools in Tennessee with 

similar population density characteristics will be used to measure the effect of food insecurity on 

the mental health component allostatic load.   

Data Enrichment 

To answer the research questions, the shape file will be enriched with data variables. Data 

enrichment provides structural knowledge about the spatial and semantical context of the map 

features and supports complex decision-making and analysis (E. ESRI, 2014).  The activity of 

extracting information about the spatial environment and integrating it into a spatial database is 

called data enrichment (Law & Collins, 2013). Enriching geometries and shapes with penitent 

data is part of the relationship modeling process when creating maps (Law & Collins, 2013). 

Therefore, the shape file will be enriched with data representing mental well-being and healthy 
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eating.  The variables and sources are outlined below.  The data for this study is stored in the 

ArcGIS data repository.   

Population Data 

ESRI’s population data integrates data from a variety of sources.  ESRI begins by using 

population estimates uses estimates from the US Census Bureau (ESRI, 2014).  Since the 

population data is only updated every five years, ESRI adds a time series of county-to-county 

population migration data from other sources (ESRI, 2014).  Additional population data used to 

ensure accuracy is derived from the Internal Revenue Service reports, building permits and 

housing starts, and residential postal delivery counts. To measure current population changes 

within census defined block groups, ESRI uses data from Experian; the US Postal Service 

(USPS), and Metrostudy to validate the results (ESRI, 2014).   

The two population variables used for this study from the ESRI database include 

Population Density POPDENS_CY and Total Population -TOTPOP_CY. The raw ACS data 

provided by ESRI includes a confidence interval and a MOE (margin of error) statistic (Law & 

Collins, 2013).  Confidence intervals evaluate how close the estimate is to the true mean. ESRI 

has provided confidence intervals and calculated coefficients of variation for population 

variables using ACS data (Koo, Chun, & Griffith).  The amount of sampling error relative to the 

size of the estimate is calculated and expressed as a percentage.  ESRI defines small confidence 

intervals as less than or equal to 12% (ESRI, 2014).  Evaluation of the MOE will be used to 

determine if the samples used for this study are reliable estimates of the population.   

Results from various studies indicate that ACS data in low-income areas are more prone 

to sampling error (Folch, Arribas-Bel, Koschinsky, & Spielman, 2014; Spielman & Folch, 2015).  

ACS data quality has been shown to be less reliable in smaller geographic regions even though 

the data is often the foundation for social science research  (Folch et al., 2014; Spielman & 
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Folch, 2015).  This research study does not define areas based on income, therefore decreasing 

the sampling error problems seen in studies evaluating areas based on a poverty threshold.  

Additionally, the regions used for this study will be large enough to be considered reliable.  In 

addition, using caution when interpreting the results will ensure that the sampling error is not 

biasing the findings.  The sampling error will be discussed further in the results section as a 

limitation of the study.   

Income Variables 

To estimate income for households, ESRI uses data on income trends from both federal 

and proprietary sources (ESRI, 2014). Surveys of income used by ESRI include the Bureau of 

Economic Analysis' local personal income series, the Current Population Survey, and the Bureau 

of Labor Statistics' Consumer Price Index (E. ESRI, 2014). After forecasting the state income 

distributions, household income is estimated for counties and then block groups. ESRI's income 

models correlate the characteristics of households at the block group level with changes in 

income (ESRI, 2014). This identifies several different patterns of change by household type that 

are applied to forecast trends in income.  ESRI uses the same definition of income that is used by 

the Census Bureau. Income is defined using statistics from the previous calendar year.  Income 

includes earnings, state or federal aid, retirement income, or investment income. Data on 

consumer income collected by the Census Bureau includes money received before paying 

personal income taxes.  Per Capita Income and Median Household Income will be the income 

variables used for this study.   

Consumer Spending Data Variables 

The Consumer Expenditure Surveys (CEX), 2013−2014, from the Bureau of Labor 

Statistics (BLS) will be used to estimate current spending patterns within defined communities. 

The CEX collects data from approximately 7,000 households per quarter for each of the two 
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consumer spending surveys conducted. The two surveys conducted by the CEX include; a Diary 

Survey detailing daily purchases for households and an Interview Survey detailing general 

purchases. The Diary Survey requires participants to record consumer purchases for two 

consecutive weeklong periods.  The Interview Survey collects expenditure data from consumers 

in four quarterly interviews.  ESRI integrates data from both surveys into a geocoded dataset to 

provide a comprehensive database of all consumer expenditures.  

The variable giving the average amount of money spent on fresh fruit and vegetables for 

each household will be used for this study.  The data for this variable defines money spent 

annually within the consumer unit.  The consumer unit refers to the family or household.  

Therefore, the data represents the amount of money each household spends on fruits and 

vegetables each year.   The CEX contains the most recent and comprehensive data available on 

food spending in U.S. households at the time of this study.  Variables used for this study include 

the amount of money spent at fast food restaurants, the amount of yearly income spent on fresh 

food and vegetables. Within the 2014 survey data, the average amount of money spent on fruits 

and vegetables within a consumer unit averaged $769 nationally and $690 in the southern region 

of the USA.  Standard error was 12.06 nationally but 19.70 in the southern region of USA.  The 

coefficient of variation (CV) as calculated by ESRI was 1.57% nationally and 2.86% for the 

southern region.  Since this is less than 12%, ESRI has defined this data as being highly reliable 

and that the sample represents a good representative of the population as a whole. 

Market Potential Variables 

Market Potential data within ESRI is an integration of information from consumer 

surveys completed by GfK MRI (Mediamark Research and Intelligence).  GfK MRI's Survey 

data mainly comes from their yearly "Survey of the American Consumer." MRI surveys 26,000 

consumers about behaviors and attitudes related to over 6000 products that consumers use 
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(Hawes, Rocha, & Meier, 2012).  MRI randomly selects participants who are at least 18 years 

old and living in a private household (Mediamark Research and Intelligence). The annual survey 

database reflects the responses of 48,000 subjects and every year a new sample is selected 

(Mediamark Research and Intelligence). The variable indicating how many people used 

prescription drugs for depression last month is a market potential variables from ESRI.  The 

question on the GfK MRI survey asks participants to self-disclose the medication they are taking 

for health conditions (Mediamark Research and Intelligence).  This variable will be used to 

measure the mental health of the community.   

Business Location Data 

Census data on businesses was last collected in 2010.  To supplement the census data, 

ESRI also extracts business data from Infogroup business listings using NAICI industry codes. 

The Infogroup business list including the business name, location, franchise code, industry 

classification code, the number of employees, and sales volume.  The data originates from phone 

directory listings,  annual business reports;  Securities and Exchange Commission (SEC) 

information; and business listing data from federal, state, and municipal government data.  

Infogroup verifies the information in telephone interviews.  Subsequently, an address list of 

businesses is then compiled and geocoded to and append 2010 Census Geographic codes via the 

spatial overlay.  The location of fast food outlets and grocery stores will be used to determine if 

places where healthy and unhealthy foods purchased impact the mental health of the community.  

Variable Constructs 

 Variables used for this study will measure three constructs.  The variables will measure 

mental health, healthy food access, and healthy food utilization.  The three constructs are defined 

as follows.  The constructs will be used to associate the findings in this study to the social 

determinants of mental health and allostatic load as defined in the literature review.  
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Mental Health 

 A measurement of mental health used for this study aggregates the number of people 

who self-identified as using a prescription drug for depression within each community during the 

2014 calendar year.  ESRI has geocoded data taken from the GfK MRI's survey titled "Survey of 

the American Consumer." The survey includes two parts; a personal interview, and a product 

questionnaire.  The survey asks participants to disclose which medications they have used in the 

last 12 months.  Upon completion, the interviewer retrieves the completed questionnaire at a 

specified time and date.  Participants do receive monetary incentives for completing the product 

questionnaire.  According to the research, prescription medication usage can be used to look at 

mental health within communities because it is an accurate and practical measure of the members 

of the community who struggle with depression symptoms (Aletta Dijkstra et al., 2013).  

Research by Ryan (2005) has pointed out that that using prescription drug use may provide the 

best standardized information on health conditions (Ryan et al., 2005). 

Food Access 

The food environment of a community comprises access and utilization of healthy and 

unhealthy food.  The concept of “access” to food choices will be measured with two variables.  

The density of grocery stores in the area will measure access to healthy foods, and the density of 

fast food restaurants in each area will measure access to unhealthy foods.  Research has shown 

that the location and availability of food stores impact how and what people eat (Morland, Wing, 

Roux, et al., 2002). Supermarkets tend to offer the largest variety of affordable and healthy food 

choices (Walker, Keane, & Burke, 2010).  In contrast, consumption of fast food is associated 

with unhealthy eating due to the low nutrient content of food and inadequate vegetable and milk 

food choices (Paeratakul, Ferdinand, Champagne, Ryan, & Bray, 2003, Boutelle, 2007 #195). 
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Healthy Food Utilization 

The utilization of healthy food choices will be measured by the average amount of money 

spent on fresh fruit and vegetables and the average per capita income spent on fruits and 

vegetables in a year.  The variables from this study come from the consumer expenditure survey.  

Studies have shown that the consumption of fruit and vegetables indicates healthy eating patterns 

(McMartin, Jacka, & Colman, 2013). Furthermore, using fruit and vegetable intake as a measure 

of diet quality is becoming more widely accepted rather than the measurement of micronutrients 

within diet (Rucklidge & Mulder, 2016).  Additionally, other studies have found that mood 

disorders have a significant association with lower fruit and vegetable consumption (McMartin et 

al., 2013).   

Research Analysis 

Three types of analysis will be used for this study.  Bivariate correlations, regression, and 

cluster analysis or hot spot analysis.  The descriptions of the analyses to be used will follow. 

Bi-Variate Correlations 

A bi-variate correlation determines if a possible linear relationship exists between two 

continuous variables.  The correlation coefficient represents the strength of the relationship 

between the variables studied.  The strength of relationship will be calculated as a measurement 

between the values of -1 and +1.  The correlation strength is valued as stronger as the value 

becomes closer to ±1. A positive correlation coefficient indicates that the variables move in the 

same direction.  As one variable moves up; the second variable moves up.  A negative 

correlation indicates that the relationship is the opposite.  As one variable moves up in value, the 

second variable moves down.  Two types of correlation coefficients are often used to measure 

correlations.  The Spearman’s rank and Pearson’s Correlation coefficient are widely used in 

research.    Spearman’s rank is often used when one or both variables are skewed or ordinal. 
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Spearman’s rank is calculated using median values.  In contrast, Pearson’s Correlation 

coefficients are calculated using the mean value of variables.  Although the Pearson coefficient is 

appropriate to use when the variables are normally distributed, the Pearson calculation is often 

affected by extreme values.  Therefore, when data is not normally distributed, the Spearman’s 

rank is a more appropriate method to measure correlation. Both tests can be used to determine 

the strength and direction of the relationships between pairs of variables, but correlation 

measures do not assess if one variable moves in response to another. In correlations, one variable 

is not dependent upon the other.  Therefore, no predictive conclusions can be drawn from 

correlations.  Thus, relationships identified using correlation coefficients are associations, not 

causal relationships (Tabachnick, 2013).   

Spatial Clusters 

Spatial clusters of data will be analyzed using the Hot Spot Analysis tool within ArcGIS 

(Haining, 2003).  The Hot Spot Analysis tool allows the researcher to detect a spatial cluster of 

statistically significant high or low data concentration within a geographic boundary (McCoy et 

al., 2001).  Locations, where something out of the ordinary has occurred within the data, will be 

identified.  All hot spots detect values that are extreme relative to the mean value. Hot spot 

analysis is used to compare the distribution of values associated with the geographic features in 

the feature class to a hypothetical random distribution (Law & Collins, 2013).  Hot spot analysis 

allows the researcher to see where unexpectedly high/low rates of correlation are occurring (Law 

& Collins, 2013).  The Global Moran's I and Local Getis-Ord statistics identify spatial clusters of 

data.  Spatial clustering or hot spot identification occurs when an area of data has a Z-score value 

larger than 1.96. Therefore, hot spots of mental health and food availability obtained from the 

analysis will be identified with the spatial locations.  
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Regression 

Regression is a widely used statistical method since it allows the researcher to examine, 

model and explore data relationships and spatial data. (R. Bickel, 2007). Regression analyses 

help researchers understand the factors that contribute to the phenomenon being researched.  It is 

most suitable for assessing constructs and evaluating the relationship between the continuous 

dependent and independent variables.  Linear regression models a relationship between a 

continuous dependent variable and one or more explanatory variables (or independent variables). 

The advantage of a regression model over correlation is that it asserts a predictive relationship 

between the two variables and allows for forecasting or predicting.  Regression models the past 

relationship between variables to predict their future behavior.  Ordinary Least Square 

Regression (OLS) formally models a global relationship, quantifies the amount of variation in 

the dependent variable and establishes statistical significance between the variables being 

studied.   

Analysis Summary 

This study will be a secondary analysis of geocoded data to answer research questions 

related to the relationship between nutrition and mental health in communities.  Data will be 

overlaid onto a boundary map of Tennessee counties and school districts. The data within the 

elementary school districts will be analyzed to see if there is a relationship between healthy food 

consumption, mental health and the location of food outlets. A boundary file that provides the 

GIS coordinates of the elementary school zones and districts within the state of Tennessee will 

be brought into the ArcGIS platform and then analyzed using SPSS and spatial analyst tools in 

ArcGIS.  The study will use correlations and regression to answer questions about the 

relationship between mental wellness and nutrition. Each research question will employ a 

separate analysis as outlined below.   
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Research Questions 

Research Question 1: Is there a negative correlation between the amount of income used to 

purchase fruits and vegetables and mental health in East Tennessee Communities?  

H0:  There will not be a relationship between purchases of fruits and vegetables within a 

community and anti-depressant prescription drug use within Tennessee. 

H1:  There will be a negative relationship between the purchase of fruits and vegetables and 

mental health. 

A bi-variate correlation will be conducted a Pearson coefficient or Spearman’s Rank 

coefficient will be used depending on whether normality exists in the data. No independent nor 

dependent variables are necessary for a correlational study.  The variable – ‘income used to 

purchase fruits and vegetables’ will measure the construct of healthy food utilization.  The 

variable of mental health will be measured by using the variable of “Number of people within a 

community prescribed anti-depressant medication.”   The two variables will be used in a bi-

variate correlation to determine if a relationship exists in a negative direction. 

Research Question 2: Is there a correlation between per capita income spent on fruits and 

vegetables and the use of an anti-depressant for depression? 

H0:  There will not be a significant relationship between per capita income spent on fruits and 

vegetables and the use of anti-depressant medication 

H1: There will be a negative relationship between the purchase of fruits and vegetables and 

mental health. 

A bi-variate correlation will be conducted a Pearson coefficient or Spearman’s Rank 

coefficient will be used depending on whether normality exists in the data.  No independent nor 

dependent variables are necessary for a correlational study.  The study measures the variable ‘per 

capita income used to purchase fruits and vegetables’ against the variable of “Number of people 
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within a community prescribed anti-depressant medication.”   This bi-variate correlation will be 

used to determine if there is a negative relationship between the constructs of utilization of 

income on healthy food choices against mental health. 

Research Question 3: Will the density of fast-food restaurants in a neighborhood predict the 

amount of per capita income spent on fresh fruits and vegetables?  

H0:  The density of fast-food restaurants in a neighborhood will be unable to predict the amount 

of per capita income spent on fruits and vegetables 

H1:  As the number of fast food restaurants in neighborhood increases, the amount of income 

spent on fruits and vegetables decreases.  

A simple linear regression model will be used to determine whether the density of fast 

food restaurants predicts the amount of income spent on fresh fruits and vegetables.   

IV:  Density of fast food restaurants 

DV:  Per capita income spent on fruits and vegetables yearly 

Research Question 4: Will the density of grocery stores in a neighborhood predict the amount 

of income spent on fresh fruits and vegetables?  

H0:  The density of grocery stores in a neighborhood will be unable to predict the amount of 

income spent on fresh fruit and vegetables 

H1: As the number of grocery stores in an area increases the number of fresh fruit and vegetable 

purchases increases. 

A simple linear regression model will be used to determine whether the density of 

grocery stores predicts the amount of income spent on fresh fruits and vegetables.   

IV:  Density of grocery stores in the area 

DV:  Per capita income spent on fresh fruits and vegetables 
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Research Question 5: Will the density of fast-food restaurants in a neighborhood predict the 

number of people in the community who use a prescription drug for depression?  

H0:   The density of fast-food restaurants in a neighborhood will be unable to predict the number 

of people in the community who use a prescription drug for depression. 

H1: As the number of fast-food restaurants in a neighborhood increases, the number of people, 

who use prescription drugs for depression will increase 

A simple linear regression model will be used to determine whether the density of fast 

food restaurants predicts the number of people in the community who use a prescription drug for 

depression.   

IV:  Density of fast food restaurants in community school area 

DV:  Number of people in the community who use anti-depressant medication 

Research Question 6: Will the density of grocery stores in a neighborhood predict the number 

of people who use prescription drugs for depression?   

H0:  The density of grocery stores in a neighborhood will be unable to predict the number of 

people who use prescription drugs for depression. 

H1:  As the number of grocery stores increases, the number of people who use prescription drugs 

for depression decreases.  

A simple linear regression model will be used to determine whether the density of grocery stores 

predicts the number of people in the community who use a prescription drug for depression.   

Analysis Tools 

  Two main tools will be used to analyze the data for this study; ArcGIS and SPSS.  The two 

tools will be described next. 

 

 



61 

 

ArcGIS 

  ArcGIS software will be used as a method of organizing, mapping, analyzing, and 

displaying the data (Law & Collins, 2013).  A GIS shape file of the state of Tennessee and 

counties, available from University of Tennessee and ESRI, will be used as a base map.    SPSS 

will be used to provide detailed statistical analysis.  ArcGIS Pro will be used to organize and 

process the data.  The mapping process will also involve several steps, including (1) the creation 

of separate layers including a base layer, demographic data, and independent and dependent 

variable data.  Spatial data will be mapped to investigate the hypothetical relationships between 

variables in all areas of the study.  The resulting maps can also be used to develop potential 

hypotheses and future research objectives. 

SPSS 

SPSS (Statistical Package for the Social Scientists is a data management and statistical 

analysis tool (Tabachnick, 2013). SPSS allows users and researchers to undertake a wide range 

of statistical analyses relatively easily.  While this is extremely useful, the researcher still needs 

to know what analysis is appropriate for the data.   

Data Quality 

Since this study is proposing the use of large aggregated data for secondary analysis, data 

cleaning and inspection will be conducted.  The presence of incorrect or inconsistent data distorts 

the results of statistical analyses.  Data entry and/or aggregation often impact data quality 

(Hellerstein, 2008). Employing data cleaning procedures helps researchers identify and correct 

possible errors in large data sets.   

  Before analysis of the research questions, frequencies on each variable will be 

conducted and histograms produced.  Checking for missing values or extreme values occur when 

performing initial frequencies for each variable.   Additionally, examining frequencies ensures 
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that missing data is coded consistently throughout the data set.  Data will be evaluated for 

normality and homogeneity of variance. 

Ethical Considerations 

Ecological Correlations 

This study employs ecological correlations within neighborhood communities. The 

statistical objects being studied are groups of people as opposed to individual people and 

individual behaviors. The variables represent composites of aggregations of individuals within a 

neighborhood.  This differs from individual correlations where variables are descriptive 

properties of separate objects.  In ecological correlations, the variables are percentages, rates, or 

means of the entire group (Openshaw, 1984).  The ecological correlations compare descriptive 

properties of groups, and not descriptive properties of the specific individuals who make up the 

group.  In a study that uses ecological correlations, one cannot discover specific individual 

behaviors(Robinson, 2009).  One cannot draw conclusions about individuals within a group 

based on the ecological data.  This study is designed to draw conclusions about the entire group 

of individuals as opposed to individuals within the group (Openshaw, 1984).  Therefore, this 

study will not generalize the results to specific individual people since we will be using 

ecological correlations and commit an ecological fallacy.  (Klein & Kozlowski, 2000; Robinson, 

2009) 

Ecological Fallacy 

An ecological fallacy occurs when researchers analyze group data and use the results to 

draw conclusions about individuals in the group.  For example, researchers may study 5th-grade 

classrooms around the country to determine which region fares the best in math achievement 

tests.  If math test scores in Region X were the best in the country, one could not assume that 

every child in that class is a math genius.  Just because that particular class has high math scores 
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does not mean that every specific individual in that class automatically scored the highest on the 

math achievement test.  This study will avoid drawing conclusions about individuals based on 

aggregated data used in this study. 

Aggregated Data 

Aggregating data loses information about specific individuals within the groups 

(Robinson, 2009).  Unfortunately, researchers have made erroneous conclusions from aggregated 

data when they make the association between individual factors and the outcome event among 

groups (Barnard & Hu, 2005).  An error occurs when researchers make an association with 

ecological data for individuals within each group without accounting for the possible ecological 

bias (Openshaw, 1984).  Often group level statistics reflect an aggregation bias compared to 

individual or lower level statistics.  These issues are now studied using 'multi-level,' or 'mixed' 

statistical models that take into account different, nested units of analysis (Glick, 1985; 

Openshaw, 1984). 

Researchers analyze differences in groups by recognizing the nested nature of group 

variables.  Researchers can analyze student performance at the student, classroom, school, 

district, or national level.  By including important levels of unit analysis in the study, the validity 

of the inferences increases and the chances of drawing an ecological fallacy are reduced (R. 

Bickel, 2007). 

Modifiable Areal Unit Problem 

  Gehlke and Biehl first identified the Modifiable Areal Unit Problem (MAUP) in 1934.  

The MAUP is a statistical bias in aggregated data influenced by both the means of the aggregated 

point-based data and the areas into which the data is grouped. Sometimes when grouping data, 

the aggregation is influenced by the boundaries of the group.  The boundaries sometimes 

overestimate or underestimate the aggregated number due to the impact of the boundaries.   
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Methods of collection and distribution of data impact aggregated results. If observed data 

is not aggregated into units following natural breaks of the data under inspection, inaccurate 

analysis results will follow because the data is biased.    One way to treat this kind of bias is to 

repeat the analysis on alternative aggregation areas.  Repeated the analysis for zip codes or block 

groups in the same area would validate results if MAUP is suspected (Jerrett et al., 2003).    

MAUP can also be detected using spatial autocorrelation.  Spatial autocorrelation will not 

eliminate the bias in MAUP.  However, it will provide additional insight into the phenomenon 

from a wider perspective without further aggregating areas (Griffith, 1987).  This study will 

address the modifiable area unit problem by completed spatial autocorrelation with the variables 

to be used.   

Secondary Data Analysis Limitations 

The data used for this study is secondary data, and subsequently, the data was not 

collected to address the specific research questions in this study.  Although this is an inherent 

problem with the secondary analysis of existing data, it poses an issue since the data collected 

was not collected specifically to test the particular hypothesis in the secondary analysis (Cheng 

& Phillips, 2014). Another major limitation of the analysis of existing data is that the researchers 

who are analyzing the data are not usually the same individuals as those involved in the data 

collection process (Cheng & Phillips, 2014). Therefore, researchers using secondary analysis are 

not aware of study-specific nuances in the way data was collected, or survey questions were 

asked of participants (Cheng & Phillips, 2014).  The data collection process may be an 

interpretation the results for specific variables in the data set (Cheng & Phillips, 2014).  

However, researchers involved in secondary data analysis would not be privy to this information, 

and it poses a limitation to the study.  The number of variables and documentation in large-scale 

national surveys conducted by government agencies can be daunting and overwhelming.  Due to 
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the large nature of such data sets, it is easy for researchers to miss important details.  Therefore, 

it is important for researchers to review the documentation included in secondary analysis 

datasets carefully.  Reviewing information provided about the validity of the secondary data, the 

data collection process, and previous analyses can mitigate these issues related to secondary data 

analysis (Cheng & Phillips, 2014). 

Summary of the Methodology   

To answer the research questions, this study will use data from national surveys and 

geocoded databases.  Regression models will provide answers to the research questions as to 

how the availability and location of food sources influence food choices and mental health 

scores.  Ordinary least squares regression and geographically weighted regression helped to find 

answers to the research questions and depict the data in a meaningful way.  Spatial features of 

food availability and food consumption will be used to predict the impact that food has on mental 

health and subsequently mental health.   
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CHAPTER 4: RESULTS 

Introduction 

This chapter describes the results of the study design and methods. The sections begin 

with a description of dataset characteristics, variable descriptive information and then analysis 

results.   

Data Collection   

The school boundary file containing elementary school districts was downloaded from the 

NHGIS web application and then opened in ArcGIS Map.  The shapefile was clipped to include 

only Tennessee Elementary Schools.  The boundary file identified 811 elementary school 

districts within Tennessee.  The shape file was then enriched with data relevant to the study of 

mental wellness and food insecurity in the community.  The following variables were 

downloaded from ESRI’s 2015 database and inputted into each polygon shaped school district:     

Median household income 

The median income reported by ESRI comes from Census Bureau statistics.  Income 

includes pre-tax income for all individuals 15 years old and over living in the same household.  

The income statistics cover the past 12 months and is reported in 2014 dollar amounts.  

Population density 

  The population for each community is calculated by dividing the total population count 

of geographic feature by the area of the feature, in square miles. The geometry of the shapefile 

features is used to calculate the area of the community.  

Total population    

ESRI calculates population by combining census counts and the American Community 

Survey (ACS) five-year averages.  The changes in households are modeled from Experian data; 

the US Postal Service (USPS) data and several additional proprietary sources.  
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Per capita income 

 Per capita income is calculated by taking the sum of all the income within each 

household and dividing by the number of people within each household.  The per capita income 

is then averaged for each area or community.  

Grocery stores  

A point level data set for the NAICS code 445110 or grocery stores was downloaded 

from ESRI. The number of grocery stores in each area is then calculated from the point level 

data.  The NAICS code includes stores known as supermarkets and grocery stores.  It excludes 

convenience stores with or without gasoline sales as well as large, general merchandise stores. 

Fast Food Restaurants 

A point level data set provided by ESRI for the NAICS code 72221 or limited service 

restaurants. Limited-service restaurants are defined restaurants where customers select items and 

pay before eating.  Additionally, if food is taken out or delivered to the customer’s location, the 

restaurant was considered within the 72221 NAICS code.   

Average fruit and vegetable expenditures 

The average amount of money that a household spent on fruits and vegetables for the 

year in 2014 was calculated from the Consumer Spending Index by the Bureau of Labor.  

Anti-Depressant Medication 

A count of adults using anti-depressant medication within the community was calculated for 

each area using information fro the GfK MRI “Survey of the American Consumer.” Table 1 

outlines the initial descriptive data on the variables used in this study.   
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Table 1.  Range and Mean of Variables within Tennessee Communities  

Variables N Range Mean ± SD 

Grocery Store Business 811 0-610 9.12±43.229 

Fast Food Restaurants 811 0 – 727 13.06±54.829 

Population Density 811 0 – 7983.6 1103±1365.98 

Total Population 811 0 – 957,457 15540.6±67915.4 

Fruit & Veg Expenses 811 0-2251.72 738.251±270.817 

Used Prescription Drug for 

Depression 

811 0 – 39951 856.62±2916.96 

Per Capita Income 811 0-71721 23426.2±9086.5 

Median Household Income 811 0-159736 44908±20127.2 

 

 

As the table indicates, there were some school districts with zero statistics. School districts 

with missing data were eliminated from this study in data cleaning procedures.  Because this 

research focused on the impact of relationships and neighborhoods within school communities, 

this study used communities where the population density was above the median in the state of 

Tennessee.  The median population density for the state of Tennessee was 453 people per square 

mile.  Only communities where the population density was above 453 people per square mile 

were used. The median was used as opposed to the mean because median values split the data 

into two halves and is not affected by extreme values.   After eliminating communities with zero 

data and using communities with population density above the average, 408 communities 
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remained.  Frequencies and descriptive data were again calculated for each variable and is 

summarized in Table 2.  

 

 

Table 2.  Range and Mean of Variables in High Population Density Communities  

Variables N Range Mean ± SD 

Grocery Store Business 408 0-610 10.76±59.814 

Fast Food Restaurants 408 0-727 15.58±71.514 

Population Density 408 453.3-7983.6 2071.51±1345.7429 

Total Population 408 765-957457 17704.66±93727.204 

Fruit & Veg Expenses 408 224.05-2251.72 769.0988±326.88 

Used Prescription Drug for 

Depression 408 41-39951 808.27±3907.13 

Per Capita Income 408 5231-71721 24664.59±11119.07 

Median Household Income 408 159736 46675.02 ±24232.31 

  

 

Outliers 

 According to (Tabachnick, 2013) outliers can be identified by visual inspection of 

histograms or frequency distributions.  On initial inspection, outliers were found.  Outliers were 

considered to be any value |3.29| standard deviations above or below the mean (Tabachnick, 

2013).  Four school districts had extreme values in all of the selected variables used in this study.  

Additionally, the values were the same for those four communities as outlined in Table 3. 
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Table 3. Cases Eliminated from Study Due to Extreme Values 

Variables Case 33 Case 39  Case 66 Case 92 

Grocery Store Business 610 610 610 610 

Fast Food Restaurants 727 727 727 727 

Population Density 1270.7 1270.7 1270.7 1270.7 

Total Population 957457 957457 957457 957457 

Fruit & Veg Expenses 884.21 884.21 884.21 884.21 

Used Prescription Drug for 

Depression 

39951 39951 39951 39951 

Per Capita Income 27004 27004 27004 27004 

Median Household Income 47815 47815 47815 47815 
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It appeared that this was an error that occurred when the data was aggregated.  The 

researcher determined these communities have unreliable data and eliminated them from the 

study.  Research by Osborne (2001) shows that removal outliers can reduce the probability of 

Type I and Type II errors, and improve the accuracy of estimates.  A final data inspection was 

conducted and is outlined in Table 4. 

 

Table 4.  Description of Variables within Communities Chosen for Study 

Variables N Range Mean ± SD 

Grocery Store Business 404 0 - 25 4.83 ± 3.73 

Fast Food Restaurants 404 0 - 71 8.53 ± 9.58 

Population Density 404 453.3 - 7983.6 2079.43 ± 1350.03 

Total Population 404 765 - 32136 8400.18 ± 4426.27  

Yearly Fruit & Veg Expenses 404 224.05 - 2251.72 767.96 ± 328.29  

Used Prescription Drug for Depression 404 41 - 1667 420.72 ± 243.20 

Per Capita Income 404 5231 - 71721 24641.42± 11171.66 

Median Household Income 404 10658 - 159736 46663.73± 24352.00 

 

 

Spatial Autocorrelation 

A Moran’s index was calculated for the variables to be used in bivariate correlations. 

Moran’s I (Index) is used to measure spatial autocorrelation (Griffith, 1987). Values close to +1 

indicate that positive spatial autocorrelation exists and similar values are clustered together.  

Values close to -1 indicates that dissimilar values cluster together(Anderson & Egeland, 1961). 
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Spatial autocorrelation helps understand the degree of similar between nearby objects.  If there is 

a strong similar relationship between variables within nearby communities, spatial 

autocorrelation will identify the strength of the similarity to determine if the communities are too 

similar to be considered independent from one another. (Goodchild et al., 1992). The Moran’s 

index is used to determine spatial autocorrelation.  Moran’s Index was calculated for each 

variable used in this study.  The results are summarized in Table 5.   

 

Table 5:  Spatial Autocorrelation Values for Variables 

Variables Moran Index p value z score 

Grocery Store Business .048 .03 2.14 

Fast Food Restaurants .018 .39 .855 

Population Density .21 .00 8.913  

Total Population .06 .01 2.688 

Fruit & Veg Expenses  .01 .03 2.08  

Used Prescription Drug for 

Depression 

.09  .00 98.05  

Per Capita Income .08  .00 3.46  

Median Household Income 0.11  .00 4.88 

 

 

The table of values shows that seven of the eight variables have significant spatial 

clustering as evidenced by a significant p-value.  The value for the Moran Index were calculated 

near   0 for most all variables.  This indicates there is a clustering of both high and low values 
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within each variable.  Although some clustering is to be expecting with population data, this 

might be indicative of a modified area unit problem.  The communities studied may be too 

similar to each other to be considered independent of each other.  This limitation will be 

discussed further within the context of the results.   

Descriptive Data 

   Four hundred and four communities remained for the study and a detailed outline of each 

school, and the value of each variable per community is provided in Appendix A.  Choropleth 

maps were created and examined to gain an initial understanding of the distribution of each 

variable across the region. Choropleth maps are included in Appendix B.  A summary of the 

average, range and standard deviation for each variable is included in Table 4.    

 An exploratory data analysis was conducted to determine if each variable was normally 

distributed.  The results are summarized in Table 5.  Results for the Kolmogorov-Smirnov test 

for normality indicated that the distribution was not a normal distribution.  However, the 

skewness and kurtosis values indicated normality within the data since the values were between 

/3/ and /10/.  Kline (2005) suggests the data could be considered normal if skewness </3/ and 

kurtosis </10/.  A visual examination of the histograms indicated that the data followed a normal 

curve. Therefore, a Pearson correlation will be used when analyzing bivariate correlations.  Table 

6 summarizes the skewness and kurtosis values for each variable.   
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Table 6:  Normality Testing Results 

Variables Statistic n p Skewness Kurtosis 

Grocery Store Business .140 404 .00 1.43 3.28 

Fast Food Restaurants .186 404 .00 2.34 7.74 

Population Density .114 404 .00 1.22 1.35 

Total Population .109 404 .00 1.77 5.62 

Fruit & Veg Expenses .134 404 .00 1.62 3.49 

Used Prescription Drug for 

Depression 

.097 404 .00 1.44 3.66 

Per Capita Income .109 404 .00 1.38 2.38 

Median Household Income .143 404 .00 1.62 3.29 
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Variable Computation 

 A new variable was calculated for this study.  A percent of income spent on fruits and 

vegetables was calculated.  The percent of   per capita income spent on fruits and vegetables was 

calculated by dividing per capita income in each community by fruit and vegetable expenses and 

then multiplied by 100.  The calculation represents how much income per person is spent on 

fruits and vegetables.   

Validity 

Since this study used point based data of grocery store and fast food restaurants, the 

accuracy of the data was tested before analysis.  The researcher downloaded addresses from 

grocery stores and fast food restaurants from the yellow pages for a sample of East Tennessee 

Communities.  These addresses were located in Google Earth and then given x, y coordinate 

information.  Those addressed were subsequently geocoded and entered onto a separate layer 

map.  The results from the manual geocoding layer were overlaid and compared to the map layer 

containing ESRI’s locations of fast food restaurants and grocery stores.  The researcher visually 

inspected the overlaid information and found that ESRI’s data was consistently more accurate 

than the yellow page data.   

Results 

Research Question 1  

Research Question 1: Is there a negative relationship between purchases of fruits and 

vegetables within a community and anti-depressant prescription drug use within Tennessee?  

H0:  There will not be a relationship between purchases of fruits and vegetables within a 

community and anti-depressant prescription drug use within Tennessee. 

H1:  There will be a negative relationship between the purchase of fruits and vegetables and 

mental health. 
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The first research question attempts to answer if there a correlation between purchasing 

fruits and vegetables and mental health in Tennessee communities.  The average amount of 

money spent on fruits and vegetables per year within each community was $767.96. (M=767.96, 

SD=328.29)     The number of people in Tennessee communities who were prescribed anti-

depressant medication averaged 421. (M=420.72, SD=243.20).   A Pearson correlation bivariate 

test was conducted.  Pearson’s correlational test indicated a significant positive relationship 

between the two variables, r (402) =.34, p <.01.  Therefore, the null hypothesis was rejected.  

There is a positive relationship between money spent on fruits and vegetables and high 

prescription drug use for depression.  The results are visualized in a scatterplot seen in Figure 3.   

 

 
Figure 3.  Scatterplot Results of Bivariate Correlation in RQ1 
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 The results from this correlation as seen in Table 7 indicate that household income spent 

on fruits and vegetables increases as money spent on anti-depression drugs increases. The results 

of this test do not support the hypothesis.  However, it may indicate that if families can afford 

fruits and vegetables they can also afford prescription medication.  The amount of money 

budgeted towards these items was not factored into the results either.  This leads to the next 

research question, which takes into account the percent of per capita income spent on fruits and 

vegetables. 

 

Table 7. Correlation Results of RQ1  

 

Fruit and 

Vegetable 

Expenditures 

Use of Prescription 

Drug for 

Depression 

1. Yearly Fruit & Veg 

Expenses 

Pearson Correlation 1 .34** 

Sig. (2-tailed)  .000 

2. Anti-Depressant 

Medication Usage 

Pearson Correlation .34** 1 

Sig. (2-tailed) .000  

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Research Question 2 

Research Question 2: Is there a correlation between per capita income spent on fruits and 

vegetables and the use of anti-depressant medication for depression? 

H0:  There will not be a significant relationship between per capita income spent on fruits and 

vegetables and the use of anti-depressant medication 

H1: There will be a negative relationship between the purchase of fruits and vegetables and 

mental health. 

This question sought to answer if there was a correlation between per capita income spent 

on fruits and vegetables and the use of an anti-depressant medication for depression. The average 
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percent of per capita income spent on fruits and vegetables per year within each community was 

3.2%. (M=3.18, SD=.37)     The number of people in Tennessee communities who were 

prescribed anti-depressant medication averaged 421. (M=420.72, SD=243.20).  The per capita 

income for each community was divided by the average amount of money spent on fruits and 

vegetables.  This value was then correlated with the number of people who use prescription 

medication for depression within each community. The Pearson correlation test indicated that r 

(402) = -.42, p <.05.  The Pearson correlation tests indicated that prescription drug use decreases 

when the percent of income spent on fruits and vegetables increases.  The results can be seen in 

Table 8 and a scatter plot in Figure 4 visualizes the results.  

 

Table 8.  Correlation Results of RQ2 

 Prescription Drug 

Use for Depression 

Per Capita Income 

Spent on Fruits 

and Vegetables 

Prescription Drug Use 

for Depression 

Pearson Correlation 1 -.418** 

Sig. (2-tailed)  .000 

Per Capita Income Spent 

on Fruits and Vegetables 

Pearson Correlation -.418** 1 

Sig. (2-tailed) .000  

**. Correlation is significant at the 0.01 level (2-tailed). 
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Figure 4. Scatterplot Results of Bivariate Correlation in RQ1 
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The results of this test show an inverse relationship between per capita income spent on 

fruits and vegetables and the use of prescription drugs for depression within the communities.  In 

other words, the more income a community spends on fruits and vegetables the fewer 

community members will be prescribed an anti-depressant for depression.     The results of this 

analysis support the hypothesis that more income spent on fruits and vegetables will have a 

negative relationship with the number of people within the community who are prescribed 

medication for anti-depressant medication.  Utilization of healthy foods has an inverse 

relationship with prescriptions for anti-depressant medication within communities.   

Cluster Analysis 

In order to visualize which areas had strong and weak prevalence of these variables, hot-

spot analyses were conducted.  Although the presentation of attribute values in the form of 

choropleth maps was given as part of the descriptive variables, hot spot maps provided more 

information. The chloroplast maps provided a visualization of variable distributions within each 

community.  However, statistically significant values of high and low counts for each variable 

were not apparent upon visual examination of the maps. Utilizing the Hot Spot Analysis tool in 

ArcGIS within the Spatial Statistics Toolbox, analyses were conducted for average fruit and 

vegetable expenditures, per capita income expenditures on fruit and vegetables, anti-depressant 

drug use for each community and density of grocery stores and fast food outlets. Each analysis 

resulted in the creation of an output feature class with standardized scores for each variable. A 

Getis-Ord Gi* spatial statistic was calculated.  The calculation isolates areas that have data 

which is significantly different from the norm. Areas that had results two standard deviations 

above the norm were colored red.  Areas with two standard deviations below the norm were 

colored blue. A visual inspection of the data was conducted to see where clustering of data 

occurred.  Interestingly, hot spots for fruit and vegetable purchases typically occurred in the 
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suburbs of Memphis and Nashville as seen in Figure 5.  Knoxville had statistically high areas of 

fast food restaurants while Memphis areas had low areas of fast food outlets.  This can be seen in 

figure 6 and 7 respectively. Also, Knoxville had areas with unusually high amounts of people 

prescribed prescription drugs for depression and statistically significant cold areas indicating the 

same areas had very low amounts of per capita income spent on fruits and vegetables. These 

results can be seen in figures 8, 9 and 10 respectively. 

 

 

 

Figure 5. Areas on the outskirts of Memphis and Knoxville had statistically more average 

income spent on fruits and vegetables 
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Figure 6. High clusters of fast food restaurants are exhibited around the outskirts of Knoxville 
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Figure 7.   Areas around Memphis have unusually low clusters of fast food restaurants.  
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Figure 8. Unusually high clusters of prescription drug use for depression occurred in Knoxville.   
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Figure 9. Areas with unusually low amounts of per capita income spent on fruits and vegetables 

clustered around Knoxville.   
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Figure 10. The percent of capita income spent on fruits and vegetables was significantly higher 

in suburbs of Nashville.     
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Research Question 3 

Research Question 3: Will the density of fast-food restaurants in a neighborhood predict the 

amount of per capita income spent on fresh fruits and vegetables?  

H0:  The density of fast-food restaurants in a neighborhood will be unable to predict the amount 

of per capita income spent on fruits and vegetables 

H1:  As the number of fast-food restaurants in a neighborhood increases, the amount of income 

spent on fruits and vegetables decreases.  

A simple linear regression model will be used to determine whether the density of fast 

food restaurants predicts the amount of income spent on fresh fruits and vegetables.   

IV:  Density of fast food restaurants 

DV:  Per capita income spent on fruits and vegetables yearly 

To determine if the density of fast-food restaurants in a neighborhood predicts the 

percentage of income spent on fresh fruits and vegetables, a regression analysis was conducted. 

The average amount of per capita income communities spent on fruits and vegetables was 3.2%.  

(M=3.2, SD=.37) The average number of fast food restaurants in each neighborhood was 8.6 

(M=8.6, SD=9.6).  The bi-variate correlation indicated that there was a negative correlation 

between the two variables r (402) = -.37, p<.01. Per Cohen (1988), the effect size is medium 

if r is calculated around 0.3. This correlation indicated that the density of fast food restaurants 

has a medium effect on average fresh fruit and vegetable purchases within each community.  A 

Normal P-P plot used to verify the normal distribution of variance is included in Figure 11.     
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Figure 11.  Normal P-P Plot of Regression Standardized Residual RQ3 
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This study hypothesized that less money would be spent on fruits and vegetables if more 

fast food restaurants dominated the neighborhood.  The regression analysis supports this 

hypothesis F (1, 403) = 62.44, p<.01. The overall model fit was r2=.13.  The number of grocery 

stores (β = --.37, p <.01) accounted for approximately 13% of the variance in number of 

community members prescribed anti-depressant medication.  From this, we suggest that a 

prediction model of Ŷ = .03+ -0.16*fast food density.  For each unit increase of fast food 

restaurants within an area, the model predicts an average decrease of 0.16 percent of income 

spent on fruits and vegetables    For each standard deviation increase in the amount of fast food 

restaurants within communities, the percent of per capita income spent on fruits and vegetables 

decreased by .37, (β =-.37).  A summary of the results is depicted in Table 8. 

 

 

Table 8.  Regression Table RQ3 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error β 

1 (Constant) 3.3 .023  143.25 .00 

Density of Fast 

Food 

Restaurants 

-.02 .002 -.37 -7.90 .00 

a. Dependent Variable: Percent of Per Capita Income Spent on Fruits and Vegetables 

 

 

 

Geographically Weighted Regression Results 

 A geographically weighted regression (GWR) model was calculated along with the linear 

regression model. GWR captures location relationships between observations and provides 

more detailed information that which simply are not addressed by a global (OLS) regression 
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model.  Using the Geographically Weighted Regression (GWR) tool in the spatial relationships 

toolset with ArcGIS, a spatially calibrated model was generated. GWR was calculating using 

an adaptive kernel type bandwidth with cross validation.  Since the adaptive approach was 

selected, bandwidths are specified in terms of nearest neighbors. For this analysis, the GWR 

converged at 121 nearest neighbors.    

 The GWR tool gave separate regression coefficients for each of the 404 communities in 

the sample. These coefficients were mapped as raster surfaces, and the communities were color 

coded by spatially varying regression coefficients generated using the GWR tool in ArcGIS.  

Red areas represented regression coefficients more than 2.5 standard deviations above normal 

and blue areas represented areas with less than 2.5 standard deviations below normal. Shades of 

variation represent values in between. A map depicting the results is included in the Appendix 

C. The linear regression model was significant and had a r2 value of 0.13 (p<.01).  

Additionally, the GWR model improved on these statistics and increased the model's accuracy 

to an r2 value of 0.28 (p<.01).  Upon visual examination, it appears as if Knoxville and 

Nashville had areas with residuals significantly higher than normal while Memphis, Jackson 

and Chattanooga areas had areas with residuals significantly below normal.     

Research Question 4  

Research Question 4: Will the density of grocery stores in a neighborhood predict the amount 

of income spent on fresh fruits and vegetables?  

H0:  The density of grocery stores in a neighborhood will be unable to predict the amount of 

income spent on fresh fruit and vegetables 

H1: As the number of grocery stores in an area increases the number of fresh fruit and vegetable 

purchases increases. 
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The average amount of income spent on fruits and vegetables is 3.2%.  The average 

amount of grocery stores per community is 4.83. A bivariate correlation analysis was conducted 

before a regression analysis. The bi-variate correlation indicated that the two variables were 

inversely related to each other r (402) = -.16, p<.01.   Per Cohen (1988), the effect size is small 

if r is calculated around 0.1. This correlation indicated that the density of grocery stores has a 

small effect on average fresh fruit and vegetable purchases within each community. A Normal P-

P plot used to verify the normal distribution of variance is included in Figure 12.   

 

 
Figure 12.  Normal P-P Plot of Regression Standardized Residual RQ4 

 

 

The regression analysis does not support the hypothesis that as grocery stores increases 

the average amount of per capita income spent on fruits and vegetables increases F (1, 402) = 

11.01, p<.01.  The model significantly indicated that the opposite is true that as the density of 

grocery stores increases the amount of per capita income spent on fruits and vegetables 

decreases.  The overall model fit was r2=.03 The number of grocery stores (β = -.16, p <.01) 

accounted for approximately 2.7% of the variance in number of community members prescribed 
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anti-depressant medication.  From this, we suggest that a prediction model of Ŷ = 3.26+ -

0.16*grocery store density.  For each unit change of grocery stores within an area the model 

predicts an average decrease of 0.16 percent of income spent on fruits and vegetables.  For each 

standard deviation increase in grocery store density, the change in percent of income spent on 

fruits and vegetables decreases .16.    Table 9 outlines the regression model.   

 

 

Table 9:  Regression Table RQ4 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error β 

1 (Constant) 3.26 .03  109.06 .000 

Density of Grocery stores -.016 .01 -.16 -3.32 .000 

a. Dependent Variable: Per capita income spent on fruits and vegetables 
  

 

 

Geographic Weighted Regression Results 

 A geographically weighted regression model was calculated along with the linear 

regression model in order to depict local variations in the relationship between variables.   

GWR captures location relationships between observations and provides more detailed 

information that which simply are not addressed by a global (OLS) regression model.    Using 

the Geographically Weighted Regression (GWR) tool in the spatial relationships toolset with 

ArcGIS, a spatially calibrated model was generated. GWR was calculating using an adaptive 

kernel type bandwidth with cross validation.  Since the adaptive approach was selected, 
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bandwidths are specified in terms of nearest neighbors. For the data, the program has 

converged at 75 nearest neighbors.    

  The GWR tool gave separate regression coefficients for each of the 404 communities in 

the sample. These coefficients were mapped as raster surfaces, and the communities were color 

coded per spatially varying regression coefficients.  These coefficients were mapped as raster 

surfaces, and the communities were color coded by spatially varying regression coefficients.     

Red areas represented regression coefficients more than 2.5 standard deviations above normal 

and blue areas represented areas with less than 2.5 standard deviations below normal. Shades of 

variation represent values in between. A map depicting the results is included in the appendix.  

The linear regression model was significant and had a r2 = 0.03 (p<.01).  However, the GWR 

model improved on these statistics and increased the model's accuracy to an r2 value of 0.28 

(p<.01).  A visual inspection of the data indicated that communities that were not close to cities 

had the residuals significantly higher than urban areas.  

 

Research Question 5  

Research Question 5: Will the density of fast-food restaurants in a neighborhood predict the 

number of people in the community who use a prescription drug for depression?  

H0:   The density of fast-food restaurants in a neighborhood will be unable to predict the number 

of people in the community who use a prescription drug for depression. 

H1: As the number of fast-food restaurants in a neighborhood increases the number of people 

who use prescription drugs for depression will increase. 

A simple linear regression model will be used to determine whether the density of fast 

food restaurants predicts the number of people in the community who use a prescription drug for 

depression.   
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IV:  Density of fast food restaurants in community school area 

DV:  Number of people in the community who use anti-depressant medication 

The following research question sought to answer if the density of fast-food restaurants in 

a neighborhood predicts the number of people in the community who use a prescription drug for 

depression.  The study hypothesized that an increase in fast food restaurants would predict more 

people prescribed anti-depressant medication.  

The average number of people in each community who were prescribed anti-depressant 

medication was 421. (M=420.72, SD=243.20).  The average amount of fast food restaurants in 

each community was 8.6 (M=8.53, SD=9.58).  A Normal P-P plot used to verify the normal 

distribution of variance is included in Fig. 13 

 

 

    Figure 13. Normal P-P Plot of Regression Standardized Residual RQ5 
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 The results indicate there is a significant and positive correlation between individuals 

who use prescription drugs for depression and the density of fast food restaurants in their 

community.  r (404) = .67.  Per Cohen (1988), the effect size is large if r is calculated above 0.5.  

This correlation indicated that the density of fast food restaurants has a large effect on the 

number of people who are prescribed anti-depressant medication wtihin each community.  The 

regression analysis indicated that the number of people within a community who use anti-

depressant medication could be predicted from the amount of fast food restaurants in the area.  

The regression analysis supports this hypothesis: F (1, 402) = 329.13, p <.01.  The overall model 

fit was r2=.45.  The density of fast food restaurants in an area (β = .67, p <.01) accounted for 

approximately 45% of the variance in the number of community members who are prescribed 

anti-depressant medication.  From this, we suggest that a prediction model of Ŷ = 275.30+ 

17.04*fast food restaurants.  For each unit of fast food restaurant increase the model predicts an 

average increase of 17 people prescribed anti-depressant medication. For each standard deviation 

increase in the density of fast food restaurants the number of community members prescribed 

antidepressant medication increases .67 since β=.67   While this study cannot conclude that fast 

food restaurants directly causes more community members to be prescribed anti-depressant 

medication, the data support the hypothesis that communities with more fast food restaurants will 

have more community members prescribed anti-depressant medication.  The results are 

summarized in Table 10.  
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Table 10.  Regression Table RQ5 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error β 

1 (Constant) 275.296 12.039  22.866 .000 

Density of Fast 

Food Restaurants 

17.039 .939 .671 18.142 .000 

a. Dependent Variable: Anti-Depressant Medication Usage 
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Geographic Weighted Regression Results 

 A geographically weighted regression (GWR) model was calculated along with the linear 

regression model. GWR captures location relationships between observations and provides 

more detailed information that which simply are not addressed by a global (OLS) regression 

model.     Using the Geographically Weighted Regression (GWR) tool in the Spatial 

Relationships toolset with Arc GIS, a spatially calibrated model was generated.   GWR was 

calculating using an adaptive kernel type bandwidth with cross validation.  The GWR tool 

calculated 392 neighbors.  The GWR tool gave separate regression coefficients for each of the 

404 communities in the sample. These coefficients were mapped as raster surfaces, and the 

communities were color coded by spatially varying regression coefficients.  The communities 

were color coded according to spatially varying regression coefficients.  Red areas represented 

regression coefficients more than 2.5 standard deviations above normal and blue areas 

represented areas with less than 2.5 standard deviations below normal. Shades of variation 

represent values in between.  While the original linear regression model was found to be 

significant and had an r2 value of 0.45 (p <.01), the GWR model did slightly improve on these 

statistics and increased the model's accuracy to an r2 value of 0.47 (p <.01).  A map of the areas 

with high and low values is included in the appendix.  Upon visual examination, it appears as if 

Knoxville and Nashville had areas with residuals significantly higher than normal while 

Memphis, Jackson and Chattanooga areas had areas with standard deviations below normal.     

Research Question 6  

  Will the density of grocery stores in a neighborhood predict the number of people who use 

prescription drugs for depression?   

H0:  The density of grocery stores in a neighborhood will be unable to predict the number of 

people who use prescription drugs for depression. 
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H1:  As the number of grocery stores increases, the number of people who use prescription drugs 

for depression decreases.  

Will the density of grocery stores in a neighborhood predict the number of people who 

use prescription drugs for depression?   

The average number of people in each community who were prescribed anti -depressant 

medication was 420. (M=419.46, SD=243.11).  The average amount of grocery stores in each 

community was 4.8 (M=4.8, SD=3.7).  A P-P plot verified normal distribution of variance as 

seen in Fig. 14.  

 

 
Figure 14.  Normal P-P Plot of Regression Standardized Residual RQ6 

 

 

 

 

 The results indicate there is a significant and positive correlation between individuals 

who use prescription drugs for depression and the density of grocery stores in their community, r 

(402) = .41, (p<01.).  Per Cohen (1988), the effect size is medium if r is calculated above 0.3. 
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This correlation indicated that the density of grocery stores has a medium effect on the number 

of people who are prescribed anti-depressant medication wtihin each community.  The regression 

analysis indicated that the number of people within a community who use anti-depressant 

medication could be predicted from the density of grocery stores in the area F (1, 402) = 80.28, 

p<01.  The overall model fit was r2=.17.   The number of grocery stores (β = .40, p <.01) 

accounted for approximately 17% of the variance in number of community members prescribed 

anti-depressant medication.  From this, we suggest that a prediction model of Ŷ = 292.07+ 

26.63*grocery store density.  For each unit increase of grocery stores in an area, the model 

predicts an average increase of 27 people prescribed anti-depressant medication.  For each 

standard deviation increase in grocery stores (1 SD), the standard deviation increase of 

individuals in each community prescribed anti-depressant medication increases by .4 since β=.4.  

The results can be seen in Table 11. 

 

Table 11.  Regression Table RQ6 

Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error β 

1 (Constant) 292.07 18.12  16.12 .00 

Grocery Store Density 26.63 2.97 .41 8.96 .00 

a. Dependent Variable: Anti-Depressant Medication Use 

 

 

Geographic Weighted Regression Results 

 A geographically weighted regression (GWR) model was calculated along with the linear 

regression model. GWR captures location relationships between observations and provides 

more detailed information that which simply are not addressed by a global (OLS) regression 
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model.  Using the Geographically Weighted Regression (GWR) tool in the Spatial 

Relationships toolset with ArcGIS, a spatially calibrated model was generated.  GWR was 

calculating using an adaptive kernel type bandwidth with cross validation.   The GWR tool 

calculated 55 neighbors.  Separate regression coefficients for each of the 404 communities were 

calculated and then these coefficients were mapped as raster surfaces.  The communities were 

color coded by spatially varying regression coefficients.  Red areas represented regression 

coefficients more than 2.5 standard deviations above normal and blue areas represented areas 

with less than 2.5 standard deviations below normal. Shades of variation represent values in 

between.  Although the linear regression model was significant and had an r2 value of 0.17 (p < 

01.), the GWR model improved these statistics and increased the model's accuracy to an r2 

value of 0.37 (p<.01).  A map of the areas with high and low values is included in the appendix.  

Upon visual examination, it appears as if suburban areas had significantly lower relationships 

than intercity areas.   

Limitations 

 The results of spatial autocorrelation indicated that all of the data had a significant spatial 

autocorrelation.  This indicates that the data may have a modified area unit problem which is 

increasing the chance of a Type I error.  However, when the geographically weighted regression 

(GWR) was conducted alongside ordinary least Squares regression (OLS), the regression was 

still significant.  However, the effect size of the relationship was altered.  Comparing the results 

of this study with a similar study using census block groups or zip codes may further enhance or 

validate these results. 

Summary of Results 

The first two statistical tests completed compared income spent on fruits and vegetables 

to use of anti-depressant medication within communities.  The first test showed a positive and 
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significant correlation between fruit and vegetable purchases within communities and anti-

depressant medication.  As purchases of fruits and vegetables increases the use of anti-depressant 

medication increases.  The relationship was significant and positive, but not expected. The 

hypothesis indicated that anti-depressant medication users would decrease as purchases of fruits 

and vegetables increased.    However, the second correlational analysis supported this 

hypothesis.  In the second correlational analysis, the percent of per capita income spent on fruits 

and vegetables was correlated with anti-depressant medication.  As a percentage of income spent 

on fruits and vegetables increases, the number of people using anti-depressants decreases  

The final four analysis used regression to model the relationship between variables.  All 

four regression models were significant.  Table 13 summarizes the results.    The first regression 

analysis projected the amount of per capita income spent on fruits and vegetables based on the 

amount of fast food restaurants in the area.  The model was significant and supported the 

hypothesis that the amount of per capita income spent on fruit and vegetables decreases when 

more fast food restaurants are in the area.  This regression model accurately predicts changes in 

average income spent on fresh fruits and vegetables 13% of the time.  The next analysis 

predicted the average amount of per capita income spent on fruits and vegetables by the density 

of grocery stores within the area.  The regression analysis did not support the hypothesis that as 

grocery stores increases the average amount of per capita income spent on fruits and vegetables 

increases    The model significantly indicated that the opposite is true that as the density of 

grocery stores increases the amount of per capita income spent on fruits and vegetables 

decreases.  However, the model was only accurate 3% of the time.  The next regression analysis 

supported the hypothesis that as the number fast food restaurants in the area increases, the 

number of community members who are prescribed anti-depressant medication would rise.  The 
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density of fast food restaurants predicted the number of people in the community who were 

prescribed anti-depressant medication 45% of the time.  The regression analysis indicated that 

the number of people on anti-depressant medication could be predicted from the amount of 

grocery stores in the area 17%.  A summary the statistical findings is included in Table 12.  This 

includes percent of variance explained in each regression analysis, the variance explained in the 

geographical weighted regression and a visual inspection of the geographical weighted 

regression to determine if there were areas where the statistical findings were stronger or weaker 

than others. 
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Table 12. Summary of Regression Results 

Research Question r r2 GWR 

r2 

Visual Inspection 

Will the density of fast food 

restaurants in a neighborhood predict 

the amount of per capita income 

spent on fresh fruits and vegetables?  

 

-.37 .13 .28 Knoxville and Nashville had 

areas with residuals 

significantly higher than 

normal while Memphis, 

Jackson and Chattanooga 

areas had areas with residuals 

significantly below normal.     

 

Will the density of grocery stores in a 

neighborhood predict the amount of 

income spent on fresh fruits and 

vegetables?  

 

-.16 .03 .28 A visual inspection of the data 

indicated that communities that 

were further from cities had   

residuals significantly higher 

than urban areas. 

Will the density of fast-food 

restaurants in a neighborhood predict 

the number of people in the 

community who use a prescription 

drug for depression?  

 

.67 .45 .47 Knoxville and Nashville had 

areas with residuals 

significantly higher than 

normal while Memphis, 

Jackson and Chattanooga 

areas had areas with standard 

deviations below normal.     

 

Will the density of grocery stores in a 

neighborhood predict the number of 

people who use prescription drugs for 

depression?   

 

.41 .17 .35 Suburban areas had 

significantly lower 

relationships than intercity 

areas.   

 

  



104 

 

CHAPTER 5:  DISCUSSION 

 

Introduction 

This chapter reviews the first four chapters, which gives a summary of using spatial data 

to evaluate the impact of the food environment on the mental health of the community.  It then 

provides implications for counselors and provides suggestions for using spatial data to improve 

counseling interventions, action, and evaluation. Finally, limitations of this study and 

recommendations for future research are presented.  

Literature Review Summary 

 Spatial measures of food environments and mental health bring attention to the 

disparities that persist in many East Tennessee Communities. The social determinants of mental 

health can help theoretically explain some of the factors influencing the health disparities within 

communities.  According to research, the key to identifying disparities in mental health outcomes 

comes from examining differences in neighborhoods (Hill et al., 2000; Rocchini, 2002).  

Providers should have a basic understanding of the environment to fully understand all the 

supports and barriers that exist in the clients that they serve.  An understanding of the food 

environment can lead to healthier lifestyles in the communities they serve.   

An ecological perspective was used for this study because the ecological perspective 

encourages researchers to consider the impact communities and neighborhoods have on 

individual’s state of mind and mental health.  The ecological perspective provides the researcher 

with a broad perspective of a neighborhood (Robinson, 2009).  Within the ecological 

perspective, one is looking beyond the individual to understand behavior from a larger vantage 

point.  This study defined neighborhoods using the elementary school district boundaries.   

Schools are central to many communities and provide the fabric for community interactions and 

education.   As seen in the literature, the social determinants of health and mental health have a 
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large impact on the well-being of each community.  The ecological perspective encourages 

researchers to consider communities and neighborhoods as impactful on individual’s state of 

mind and well-being.  

The impact of nutrition on individual mental health has been documented within the 

research.  Additionally, the issues related to mental health are also intertwined with physical 

health.  Many times, mental illness is studied at the individual level and viewed as an individual 

problem. However, the behaviors of individuals collectively demonstrate the impact that 

individual disease and illnesses on the community and the environment.  Inversely, the impact of 

an individual’s good health and well-being and the absence of disease in individuals can impact 

the community, environment, and neighborhood in which individuals interact.  The 

environmental factors often have a reciprocal relationship with physical and mental illness. This 

can be seen through the concept of allostatic load.   Allostatic load is the long-term result of 

stress on the body. 

Methodology Summary 

This dissertation examines the existence and significance of spatial dependencies 

between neighborhood characteristics and one specific social determinant of mental health – 

food insecurity.  The objectives are to find the associations between mental health and 

neighborhood characteristics of food insecurity.  This study incorporates methods and 

technologies used in other fields of research from a counseling perspective.  Although the use of 

Geographic Information Systems (GIS) technology and geocoding neighborhood factors has 

been used in public health, sociology, and geography research, the counseling field has yet to 

widely incorporate the usefulness of these methods to explore problems of interest to this 

profession. However, there is a need for additional research that considers the interconnectedness 

of counseling issues that encompass the individual within the context of the environment.   
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Although the goal of statistical analysis is to find “if” there is a relationship between 

variables, the goal of a GIS analysis is finding where that relationship occurs (Law & Collins, 

2013).  This study used bivariate correlation and regression analysis to determine if relationships 

exist between food choices and mental health. To determine where correlations are strongest, 

GIS data was used to conduct geographically weighted regression (GWR).  Statistical analyses 

were used to determine where and why mental health and food insecurity intersect.  Additionally, 

this research used descriptive statistics, cluster analysis, Pearson correlations, ordinary least 

squares regression (OLS) and geographically weighted regression (GWR) to investigate 

differences in geographic units.  Before any analyses were conducted, the assumptions of the 

analysis were tested and validated.     

Findings 

Within Tennessee communities used for this study, a relationship between mental health 

and healthy eating was found.  The more per capita income spent on fruits and vegetables the 

fewer people in the community are prescribed anti-depressant medication.  Additionally, the 

regression model found that as the density of fast food restaurants increases, the number of 

people who are prescribed anti-depressant medication also increases.  This supports previous 

research on the relationship between healthy eating and mental health.  Policy makers and 

counselors alike who provide services in communities which were identified as hotspot areas of 

fast food restaurants may benefit from participatory action research projects.  Discussions on the 

impact of fast food restaurants on the mental health of community members may provide 

valuable insight for counselors providing services and policy makers whose decisions directly 

impact community members.  It is apparent that income and SES plays an important role in these 

correlations.  A regression model using income as a moderator would further enhance the initial 

correlations and help to explain the role income plays in the relationship between fruit and 
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vegetable purchases and anti-depressant medication.  Since the enactment of Affordable Care 

Act, citizens are required to have health insurance that covers mental health services.  Therefore, 

the cost of prescription medication should not have as much impact on community members as 

the cost of fruits and vegetables.  However, there is still a stigma associated with mental health 

and a lack of understanding of what health insurance now covers.  The cost of prescription 

medication may indirectly play a role and contribute to the variance between the two variables.  

Since that was not considered for this study, it poses a limitation for the results.   

.    One cannot state that purchasing fruits and vegetables causes anti-depressant use to 

decrease.  Even though there is a statistically significant relationship between the two concepts, a 

researcher cannot rule out the possibility that there are not a third variable affecting the 

relationship.  For example, when per capita income was used to transform the amount of money 

spent on fruits and vegetables, the correlation changed directions which show that income has a 

large impact on the behavior of individuals within a community.  

A visual examination of the cluster analysis showed significant clustering in certain 

areas.  When the cluster analysis maps are overlaid, Knoxville areas schools showed both high 

areas of prescription drug use for depression and low averages of per capita income spent on 

fruits and vegetables.   A participatory action research project within areas with high and low 

clustering area may shed light on the impact of the relationship in local areas and give counselors 

and policy makers more information on interventions that meet the needs of the community 

members.   

However, the most significant regression analysis concluded that the density of fast food 

restaurants in an area predicted the number of community members who were prescribed anti-

depressant medication.  This coupled with the correlation that more per capita income spent on 
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fresh fruits and vegetables reduces the number of community members using anti-depressant 

medication has significant implications for community leaders, educators, and counselors.   

   Multiple regression would enhance this study by using more than one variable to model 

the relationship between fast food restaurants and grocery stores.  Additionally, a participatory 

action research study may be helpful to validate the results of this study.  Areas in which there is 

a high density of fast food restaurants may want to have a discussion with community members 

to see if the projected impact of fast food restaurants is having the predicted impact on the 

community.  The idea then validates the results and explains what other factors may be present in 

the relationship between healthy eating and mental health.   

The findings of this study support the need to consider neighborhood and environmental 

interventions in the prevention of mental health.  The results indicate that there is a relationship 

between mental health and healthy eating within Tennessee communities.  The density of fast 

food restaurants within certain communities is highly localized and hot and cold spots of fast 

food restaurants were identified. These spatial clustering patterns suggest a need for localized 

counseling interventions related to the food environment. Counselors providing services in areas 

that are identified as hot spots (i.e., areas with extremely high fast food restaurant density), can 

pay attention to the neighborhood characteristics and plan or prepare counseling interventions 

that relate to the food environment. Although counseling interventions often focus on the 

individual or the family, counselors can be proactive with their clients by identifying 

neighborhood, and the social culture that impacts the counseling process.   

Limitations 

The use of one or two variables to measure socio-demographic features in neighborhoods 

is not enough to understand mental health disparities and capture the unique picture of mental 

health within a community.  Although this study may provide a start to understanding the 
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relationship between the food environment and mental health, implementing multivariate studies 

into the integration of the mental health counseling planning activities will be useful in guiding 

health resource allocation, service provision, and policy decisions at the local level. 

The data used for this study was aggregated data that includes estimated numbers based 

on survey and economic models.  Unfortunately, it does not fully capture the actual number of 

people within each community who struggle with mental illness or are impacted by poor food 

availability and poor food choices.  This data represents the estimated number of users about the 

2014 estimated local population.  Since data available for these specific measurements are 

aggregated into a group, we as researchers do not know the entire story.    Maps, just like any 

other information graphic, exist to show signals in the noise (Goodchild et al., 1992).   

The Modified Area Unit Problem discussed in the literature review may also impact this 

study.  Because community boundaries were drawn as elementary school boundaries, the 

aggregated estimates may not be accurate.  Point based data that falls on the boundary of the 

community may not be modeled correctly.  Furthermore, the data may be duplicated in 

surrounding communities, which could overestimate the problem especially if the boundary 

drawn does not reflect the actual community as defined by the people who live in the area.  

Using the ethical considerations of this study, readers need to be careful not to conclude 

erroneous conclusions from this data.  Correlation does not necessarily mean causation.  Eating 

unhealthy food does not cause mental illness.  Additional variables may influence the 

relationship between the two variables.  Adding more variables may fully explain the impact of 

healthy eating and mental health within a community.  Additionally, drawing the conclusion that 

all people who are prescribed anti-depressants eat unhealthy foods would be erroneous.   
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Furthermore, the data for this study only captured one moment in time.  It did not capture 

longitudinal data.  Nor did this study capture the neighborhood environment from the 

participants’ childhood living experience.  Although one’s childhood has been shown to have an 

impact on mental health, this study can only analyze the current condition of mental health 

within the community against the current state of food choices made by adults.  Although the 

past may have influenced members in this study, it was not considered as a factor for this 

research. 

Implications 

This study saw an inverse relationship between the percentage of income spent on fruits 

and vegetables and prescription drug use for depression.  The number of people prescribed 

antidepressant medication in communities decrease as more per capita income was spent on 

fruits and vegetables. Additionally, as fast food restaurants increased in a community 

prescription medication for depression also increased. Counselors who are serving communities 

that have a significantly higher rate of prescription drug use for anti-depressant medication, high 

fast food outlets or low percentage of income spent on fruits and vegetables may want to 

consider a participatory action research study to understand the impact that these variables have 

on specific communities.  Furthermore, there may be other multiple variate relationships within 

the community impacting the correlation seen between mental wellness and unhealthy eating 

locations and habits. Counselors, educators, and community leaders may benefit from having 

meaningful discussions on the additional variables affecting the bivariate relationship in their 

specific communities.  Subsequently, discussion on how to improve both healthy eating and 

improve mental health in the community would result from the initial discussion on the findings 

of this research study.   
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This study used aggregated data to obtain an overview of mental wellness patterns within 

communities as related to healthy/unhealthy food access and consumption.  Developing mental 

health outcome measures based on population indicators has unique advantages.  This may be 

particularly helpful for school counselors, community leaders, or other health professionals who 

want to use aggregated data to influence social determinants of mental health in an attempt to 

improve counseling outcomes for individuals and the community as a whole.   

Integration of cross-disciplinary methods of inquiry can be utilized to broaden the 

knowledge base of counseling as seen in this study.  These results also point to the importance of 

incorporating mapping technology in the planning of mental health services to best serve the 

needs of the population within each geographic area.  Additionally, these methods can be 

expanded to: identify target areas for prevention and outreach efforts, provide visual data for 

policy recommendations, demonstrate need in seeking funding opportunities, and aid in program 

evaluation efforts. On the community level, the integration of methods brings professionals from 

varying disciplines together in collaborative work thus realizing more effective and holistic 

social change. 

Implications for Counseling Practice 

Since no person can be completely understood apart from his or her defining social 

context, using neighborhood context to understand individuals guides counselors to see the 

connectedness between client and system.  This eliminates the hyphen between person and 

environment. Since provision of individual one-on-one counseling sessions is a major role of 

counselors, it is easy to focus on intrapersonal issues while ignoring ecological problems rooted 

in the built environmental of the community. Although taking an ecological perspective to 

counseling often complicates the task of designing interventions, the outcomes of counseling 

may improve if culture and context are used within the interventions.  Ecological focus implies 
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that individuals and their environments are adaptive to each other.  Therefore, interventions can 

be carried out in either person or environment and have a reciprocal impact on the other. The 

ecological perspective can enable counselors to see clients through a system of lenses that does 

not separate the person from the environment but requires that they are seen together. Systemic 

thinking (used in the ecosystems perspective) allows the practitioner to recognize the 

interconnections present in clients, and thus, consider interventions anywhere in the case.   

 Effective, evidence-based, and well-coordinated treatments could yield ineffective 

results if the environment in which the client lives does not support the treatment objectives.   

From this perspective, the implications of this study inform service providers as to where their 

programs are most needed in the context of the food environment within communities.   

A primary purpose of this study is to identify, propose, and statistically compare the food 

environment within school communities as it is related to mental health.  The overall 

implications are intended to aid in improving the overall counseling services for individuals 

within the context of the neighborhood by informing decision making around locations.  

Identifying differences between the food environment among neighborhoods has clarified how 

mental health services could be directly impacted by where client’s live and work. The 

identification neighborhoods with unhealthy food environments provide counselors with 

knowledge of how their well-intended interventions may be unsuccessful if the environment is 

not taken into consideration during the counseling process. The identification of proximal access 

to unhealthy foods may give policy makers and counselors suggestions as to where new services 

may be placed to meet the geographic counseling needs of clients.  Specifically, it is hoped that 

this knowledge will demonstrate the importance of proximal access in service delivery. 
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Future Research 

   There is a growing body of literature assessing the geography of fast food in 

relationship to obesity.  Most of the studies have found a positive association between 

availability of fast food and obesity.  More geographical analyses combining food access with 

food consumption data related to mental health would give counselors more direction on the 

integration of their services with the community in which they serve.  Not only is there is a need 

for research which connects eating habits and mental health, but also on other social 

determinants of mental health.  Combining data on as many possible potential confounding 

factors provide a more accurate picture of the community and increase counselor success with 

clients. Since allostatic load measures show that physical and mental health is connected, more 

research could be done on counseling interventions that impact both the physical and mental 

well-being of clients together.  

There is a need to direct additional resources toward creating, maintaining, and sharing 

existing and new spatial data. More spatial data should be collected relating to the social 

determinants of mental health.  If more data is collected, geocoding the data to enable small-

scale spatial joining and analysis is most helpful for the communities and services that 

counselors typically provide. Address-level data, as opposed to city or zip code level, is the most 

versatile.  This type of data can be aggregated up to other scales such as census units or other 

neighborhood and regional measures. Additionally, if spatial data is gathered over time, the more 

longitudinal analysis may be conducted. 

As there had been little research conducted that incorporates the use of GIS mapping 

methods and counseling, the possibilities for future research in this area are overwhelming to 

consider. Future studies of this nature could consider the objective and subjective nature of 

neighborhood definitions, the pros and cons of viewing clients and neighborhoods as 
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independent systems, and the value and importance of connections within neighborhoods and the 

process in which those develop.  Additionally, a mixed methods approach would compare 

objective physical space of census tract with subjectively perceived boundaries as reported by 

individuals or groups. This would demonstrate the utility of the social address perspective versus 

a more individualized and subjective method. 

This research study and much of the research on communities and the built environment 

have focused on bivariate relationships (Maantay, 2002).  However, it is important for research 

to consider a variety of variables within each community or environment and their relationship to 

each other within the community.  Examining how a convergence of neighborhood factors 

including income, educational attainment of community members, race, residential tenure, access 

to mental health services, crime, and the food environment may provide a complete picture as to 

the interventions counselors can provide outside of the counseling office. 

Future research should examine the impact of the environmental on specific counseling 

interventions. 

Because aggregated statistical data was used for this study, local knowledge from 

community members and community-based organizations should be used to validate this data 

before policy changes take place.  Local knowledge about risks, assets, and solutions can 

contribute to spatial understandings of the data presented in this study.  Community-based 

participatory research is one often-cited approach for incorporating local knowledge.  

Conclusion 

   Although the promotion of mental wellness and the identification of mental illness is a 

worthy goal, treatment will be inadequate if we as counselors believe that treatment ends with 

the clients served.  Unless counselors are concerned with the impact that treatment has on the 

society in which the individual interacts with, the endeavors with the client alone are insufficient.  
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Counselors should not only consider the food environment of the clients in which they serve, but 

also the other environmental factors that impact treatment and the counseling services provided.  

The counseling services provided do not only include what goes on between counselor and client 

but also includes interventions about where the client and community intersect.  Recognizing that 

places are what people make of them suggests a more active role for schools in the creation 

community policy and intervention.  
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