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ABSTRACT 

Lipids control a variety of complex biological processes.  Bulk lipids such as 

phosphatidylcholine (PC), phosphatidylserine (PS), and 

phosphatidylethanolamine (PE) represent the major components of cellular 

membranes.  In addition, unilamellar vesicles composed of lipids (liposomes) are 

valuable for delivery applications since they can encapsulate and transport drugs 

and other agents. In order to maximize delivery efficiency and target specific 

membranes, the ability to trigger and control vesicle-vesicle fusion is desirable.  

Such approaches generally seek to mimic the membrane fusion machinery present 

in nature while imparting specificity in the membranes that undergo fusion.  The 

goal of this work is selective drug delivery to diseased cells. We have explored the 

copper-free click reaction as a bioorthogonal means to drive fusion between 

membranes containing cyclooctyne-tagged and azido-tagged lipids. 

We synthesized three novel lipids containing either the cyclooctyne or azide 

functional group at the headgroup.  In chapter one, we describe the synthesis of 

Oxy-dibenzocyclooctyne (ODIBO) lipids 1 and 15 and azido-lipid 18, which contain 

reactive partners for copper-free click chemistry. In these compounds, the 

phosphate headgroup typically seen in phospholipids is substituted for a triazole 

ring.  In chapter two, we describe the analysis of these compounds for membrane 

derivatization and fusion. We first set out to confirm the successful derivatization 

of liposomes containing ODIBO lipids 1 and 15 using a Förster resonance energy 

transfer (FRET) assay.  Next, we investigated membrane fusion by mixing 
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complementary reactive liposomes including ODIBO 1 and azido-lipids, which was 

again studied through FRET.  We studied the effects of liposome composition on 

fusion, including the PC / PE ratio and the structures of the cyclooctyne-lipids (1-

4) and azido-lipids (5, 36). Through these studies, we identified that ODIBO-lipid 1 

and azido-lipid 5 yielded the greatest amount of fusion when incorporated into 

opposing liposomes containing a 45% / 45% PC/PE ratio. We also attempted to 

facilitate fusion by the addition of oppositely charged lipids and cholesterol into 

liposomes, although we were unsuccessful in seeing anything meaningful.  This 

provides, to our knowledge, the first example of exploiting copper-free click 

chemistry to drive membrane fusion. 
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Chapter 1: Roles and Properties of Lipids and Membranes 

Lipids are critical to maintaining and controlling key cellular processes.  They 

are responsible for attracting proteins and other biomolecules that regulate 

biological functions in and out of the cell.  The most fundamental role of cellular 

lipids is based upon their spontaneous self-assembly into membrane bilayers 

driven by molecular attractions.1 This is such that the charged/polar headgroups 

of lipids will interact favorably with  hydrophilic entities  at the aqueous interfaces 

surrounding the membrane, and hydrophobic lipid chains will aggregate inside the 

membrane core.2  As a result of this assembly, membranes act as barriers that 

separate not only the outside and inside of cells (via the plasma membrane), but 

also surround the different organelles that exist inside the cell.  Lipids thus 

intrinsically control the flow of molecules and ions into cells and their trafficking 

between various intracellular compartments.3-5  While these processes are often 

driven by proteins such as through ion channels and processes including 

endocytosis,6-8  lipids are also capable of translocating molecules, particularly 

through membrane fusion. Therefore, it is important to understand and mimic the 

roles of lipids in these processes to control the delivery of molecules such as drugs. 

1.1 Bulk lipids vs. signaling lipids 

We can divide lipids into two sub-classes: the bulk lipids and the signaling lipids.  

Bulk lipids (Figure 1.1), such as phosphatidylcholine (PC), phosphatidylserine 

(PS), and phosphatidylethanolamine (PE), make up the majority of the cell 

membrane and define its shape, and are not typically involved in controlling  



 

2 

 

  

Figure 1.1 Structures of bulk phospholipids: phosphotidylcholine (PC), 
phosphotidylserine (PS), and phosphotidylethanolamine (PE) 
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biological processes.9 Bulk lipids are present in much larger abundance in cellular 

membranes and thus have  greater control over the passage of molecules into and 

out of cells and organelles.10-11 PC is the most abundant lipid present in eukaryotic 

membranes (~45-55%), followed by PE (~15-25%) and PS (~5-15%).12  Signaling 

lipids (Figure 1.2), such as diacyglycerol (DAG), phosphatidylglycerol (PG), 

phosphatidic acid (PA) and the phosphoinositides (PIPns) regulate biological 

processes through a range of activities including the binding and activation of 

proteins, which attract proteins to membrane surfaces and regulate their function.  

PS can also be classified as an important signaling lipid due to its negatively-

charged headgroup. PA and PIPn reside in eukaryotic membranes at 1-2% and 

0.5-1%, respectively, of all lipids.11  Their localization is tightly controlled, 

presenting opportunities to target specific membranes and cell types.    

1.2. Lipid geometries and effects on self-assembled structures 

Lipids can be divided into separate categories based on their shapes.  The 

geometries of lipids dictate key membrane properties including the structures 

formed during self-assembly based on the relative surface areas of the head group 

and hydrophobic tail regions.  These aspects are important to consider when 

designing membrane systems for targeted delivery and fusion. The most abundant 

membrane lipid, PC, is considered to adopt a cylindrical shape between both polar  

and non-polar regions of its structure.  This geometry has the appropriate curvature 

for forming membrane bilayer assemblies such as liposomes. 
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Figure 1.2 Structures of signaling phospholipids: phosphatidyl(1’-myoinositol) 
phosphate (PIPn) and phosphatidic acid (PA) 
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Changing the structure by either increasing or decreasing the size of one of 

these two regions can alter the shape of the lipid assembly that is formed.13  For 

example, increasing the polar head group region with respect to the tail region, as 

is the case with lyso-phosphatidylcholine (lyso PC) (Figure 1.3), will produce 

greater positive membrane curvature, and facilitate the formation of micelles, 

spherical assemblies in which the hydrophobic tails fill the core.  When the 

opposite is done, such as in the case of PE, the shape can resemble that of a 

cone, which introduces negative curvature into the membrane.  In other words, a 

layer of lipids in this shape has a tendency to fold inward, and head groups face 

toward the center of the membrane.  Incorporating lipids with a tendency to form 

this shape is commonly beneficial for instigating membrane fusion between 

membranes because the negative curvature results in destabilization of the 

membrane.13-14  

1.3. Derivatizing membrane surfaces towards targeted drug delivery 

Membrane bilayers can be labeled with groups such as peptides, antibodies, 

and reactive groups through the use of functionalized lipids. This can be pursued 

to targeting groups that guide the liposomes to specific cells or to trigger release 

of contents.  Lipids can be synthesized in order to improve biocompatibility for 

targeted drug delivery, thus facilitating labeling events to that lipid.15 

Functionalized lipids and other synthetic molecules can be incorporated into 

membrane bilayers as a means to promote more compatible labeling and improve 

drug targeting practices.16-20  These fabrication methods include tethering long lipid  
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Figure 1.3 Shape of various phospholipids as they relate to the preferred 
assembly properties.  Phosphatidylcholine (PC) bears a ‘cylindrical’ shape; 
phosphatidylethanolamine (PE) bears an ‘inverted cone’; lyso-phosphatidyl 
choline (lyso PC, LPC) forms a regular micelle shape i.e. “cone” 
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chains through liposome immobilization,21-22 assembly of polymers onto 

phospholipid vesicles,23-25 and coating membranes with metal oxides.26-29 

This process is rather tough to localize due to the complex nature of biological 

systems and degradation of liposomes once in the bloodstream.  It is beneficial to 

understand the role of lipids so functionalized membranes can be delivered 

unencumbered.  Therefore, it is pivotal that the proper chemistry is chosen on the 

membrane surface, or the functional group may be compromised and unable to 

react under biological conditions.  It is thus beneficial to choose a delivery vehicle 

that proceeds in a biological setting unperturbed and enables the drug to be 

delivered efficiently. 

Regular (lipid) and polymeric micelles, single layer membranes with a 

hydrophobic core, have shown potential as drug carriers in vivo because of their 

ability to solubilize water-soluble and water-insoluble drugs30-34 and their low 

cytotoxicity.35-38 Both forms of micelles are susceptible to target moieties on the 

hydrophilic leaflet, thus enhancing delivery systems and bioavailability,17 but the  

advantage of polymer-coated micelles over lipid micelles is that the increased 

molecular weight in their hydrophilic region can raise the critical micelle 

concentration (CMC) and provide thermodynamic stability in aqueous media. 

In 2006, Gao and coworkers reported on the use of multifunctional micelles as 

carriers to deliver drugs and magnetic resonance imaging (MRI) imaging agents 

to cancer cells.39 A chemotherapeutic agent, doxorubicin, was encapsulated into 

the hydrophobic core of the micelle, and then released by a pH-dependent 
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mechanism.  Cancer cells were targeted by a cyclic amino acid complex (cRGD) 

ligand coated as a surfactant onto the micelles.  The drug could be selectively 

delivered to the cell, and a contrast in MRI capability was seen specifically from 

the cRGD-coated micelles and not the cRGD free micelles.  In addition to pH-

dependent targeted release from micelles,40-46 there has also been recent work on 

thermal,47-48 PEG,49-52 and polypeptide51, 53 dependent mechanisms for targeted 

drug delivery. 

Our goal is to achieve targeted drug delivery by selectively directing liposomes 

to certain functional groups along the surface of cancer cells, or through active 

delivery capabilities.  This requires the use of a targeting group on the surface of 

the delivery vesicle that drives selective localization to cells based on a partner 

functionality present on the cell surface, much like the example reported by Gao 

and coworkers. 39, 54 Consequently, targeting molecules such as antibodies, 

peptides, and small nucleic acid molecules have gained traction as receptor-

binding entities due to their strong adherence to targeted cellular surfaces.55-59  

Antibodies and antibody fragments offer the highest binding affinities and 

selectivities for the target of interest because of the presence of two epitome-

binding sites on the molecule,60-61 but likely suffer from the large antibody size, 

which could inhibit delivery efficiency.62-63 Thus, it is desirable to pursue alternate 

strategies that incorporate selective tags onto the surfaces of the liposomes and 

cells.    
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1.4 Bioorthogonal Reactions 

Bioorthogonal reactions on the interface of membranes are heavily used in 

facilitating drug and gene delivery systems.64-66 The hallmarks of bioorthogonal 

chemistry is the use of tags that selectively react with one another within complex 

systems and do not engage in non-specific reactions with biomolecules.  Examples 

such as the thiol-ene “click” reaction, normal Diels-Alder, and aldehyde-amine 

(oxime) linkage have been reported as suitable reactions for protein,67-73 

oligonucleotide,74-75 and glycan modification.76 However, the functional groups 

involved in these reactions (thiols, alkenes, ketones, etc.) have either a vast 

presence or are sensitive in/to intracellular environments, thus diminishing 

selectivity in this setting.77-78    

Therefore, the most prevalent biorthogonal reactions in the literature have been 

the Staudinger ligation, copper-catalyzed click, and copper-free click reactions 

(Figure 1.4).  The common link between these three reactions is the presence of 

an azide reactive group.  Azides offer unique character to biological systems 

because they lie dormant, but show selective reactivity towards alkynes and 

phosphines.  These functional groups are not present in biological systems, so the 

aforementioned ‘click’ reactions and Staudinger ligation benefit from being 

bioorthogonal. There has been extensive research on the mechanism for the 

Staudinger ligation,79,80,81,82,83,84 specifically to optimize the phosphine groups used 

in the reaction.85  It has been suggested the Staudinger ligation is most reactive 

when a 6-membered transition state is in place between an azaylide and  
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Figure 1.4 List of Bioorthogonal Reactions a) Mechanistic approach for 
Staudinger Reduction b) copper-catalyzed click reaction c) copper-free click 
reaction 
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ester/thioester.  The reaction can be tuned to initiate certain reaction rates based 

on the substitution patterns around each component involved in the reaction.  For 

example, placing electron-donating groups around the phosphine and electron-

withdrawing groups around the azide increases the rate of reactivity. The drawback 

of the Staudinger ligation is the arduous synthesis required to access the 

phosphine-lipid analogue on the surface, as well as the reagent being unstable 

and prone to phosphine oxidation.  

The most commonly implemented reaction for functionalizing membranes has 

been the copper-catalyzed “click” reaction (CuAAC).  This reaction is tolerant of 

many functional groups found in biomolecules, and can be performed in aqueous 

solution.  It was simulanteously discovered by Meldal et. al in Denmark and Fokin 

and Sharpless in the U.S.86-87 The normal azide-alkyne cycloaddition reaction, 

reported by Huisgen over the course of investigating various 1,3-dipolar 

cycloadditions,88 is a highly exothermic reaction, however the reaction suffers from 

a high activation barrier and requires extreme temperatures to achieve the proper 

regiochemistry. The introduction of the copper catalyst increased the rate of 

reactivity by a factor of 107 relative to the uncatalyzed reaction, and thus the 

reaction proceeds at or near room temperature and is regiospecific, generating the 

1,4-disubstituted triazole product.89 The introduction of the copper-catalyzed click 

reaction (CuAAC) has led to many applications of its use in organic synthesis, 

small molecule labeling, and surface chemistry.90-94  
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1.5. Copper-free click chemistry  

The copper-catalyzed click reaction is limited for certain applications by the 

requirement for the copper catalyst, which can be a detrimental additive into a 

biological system.  This catalyst could lead to membrane degradation, toxicity, and 

metal-catalyzed side reactions, thus making it undesirable particularly for live-cell 

environments.  Given the facile reactivity between an alkyne and azide, there has 

been a desire to find ways to eliminate the copper catalyst but retain the two 

moieties in a reaction together.  Bertozzi and coworkers reported the first 

cyclooctyne moiety used for this purpose in literature, which circumvents the need 

for copper since the strained cyclooctyne ring does not require a catalyst to react.95 

The presence of a copper catalyst for the original click reaction enables better 

overlap between the frontier molecular orbitals (MO’s) of the azide and alkyne.  

When there is no copper catalyst present, the difference in energy between the 

lowest unoccupied molecular orbital (LUMO) of the azide and the highest occupied 

molecular orbital (HOMO) of the alkyne is far apart, thus leading to a slow rate of 

reactivity.  When the copper is introduced, the gap between the HOMO and LUMO 

of each respective moiety is narrowed, thus lowering the activation energy of the 

reaction.    

The interaction between the HOMO and LUMO of the azide and alkyne, 

respectively, in the copper-catalyzed click reaction can be used to trace the 

kinetics of the copper-free click reaction.  As the name suggests, the copper-free 

click reaction operates in the absence of a copper catalyst.  This is due to the 
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make-up of the alkyne moiety, which is incorporated into strain cyclic systems in 

these reagents.  This phenomenon promotes ring strain due to the bending of the 

normally 1800 linear sp-hybridized orbitals.  With each additional degree of 

bending, the energies associated with the MOs for the alkyne are altered, and this 

theory has led to further understanding on the topic. 

Houk and coworkers have studied the transition state of the 1,3-dipolar 

cycloaddition and how the stabilizing interactions overshadow the destabilizing 

interactions.96  They were able to calculate the angles between atoms within the 

intermediates, and describe them as distortion angles.  These angles remained 

largely unchanged for the azides throughout the reaction, but understanding the 

bond angles of the alkyne moiety led to a breakthrough in understanding the role 

of this reagent.  This study provides a model for the distortion/interaction analysis 

for the cycloaddition reactions, and insight into the origin of the “strain promoted” 

click reaction between the cycloalkyne and azide.  

The transition state for the cyclooctyne was measured to be 1.6 kcal/mol, which 

is 4.5 kcal/mol less than what was observed for the azide. This is due in large part 

to the decreased distortion energy for the cycloalkyne, and the 4.5 kcal/mol 

corresponds to the distortion energy for the linear alkyne.  It is shown that the 

cycloalkyne, due to the bond angles being distorted from 1800, has a higher 

starting energy than acetylene, so it requires less activation energy to reach its 

preferred transition state. This results in a greater rate enhancement, which can 

be attributed to the lower distortion energies for the ‘strain-promoted’ cycloaddition 
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reaction.  Faster reaction kinetics can be achieved through charge-transfer 

methods. Bertozzi and coworkers reported the use of a difluoromethylene unit 

adjacent to the alkyne.97 The added fluorines in this compound raised the HOMO 

significantly, which enhanced the reactivity towards azide.  In turn, this lowers the 

activation energy on account of greater interaction between the frontier MOs.  In 

review, the 1,3-dipole cycloaddition between a cyclooctyne and azide can be 

achieved through changes in distortion energies and better interaction between 

the frontier molecular orbitals of each respective moiety. 

The goal of these enhancements is to improve its stability and efficacy when 

introduced to complex biological systems. For example, the 

azadibenzocyclooctyne (ADIBO) moiety has been abundantly used in literature 

due to its ease of synthetic preparation and favorable kinetic properties.98-100  In 

2012, McNitt and Popik reported the oxa-dibenzocyclooctyne (ODIBO) moiety as 

a tool for metal-free ligations.101  This particular cycloalkyne was prepared through 

a cyclopropenone intermediate, which was subjected to light to produce the final 

product in quantitative yield.  ODIBO displayed faster reaction kinetics than the 

ADIBO moiety (2.5:1 in MeOH), and produced rate constants 14-20 times faster in 

aqueous solutions than organic solvents.  This enhanced reactivity in aqueous 

solutions makes the ODIBO moiety highly effective for biological applications. 

1.6 Förster Resonance Energy Transfer (FRET) 

FRET is a phenomenon associated with fluorescence spectroscopy that is most 

commonly used to detect changes in the distance between various biomolecules. 
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This is done by using two fluorophores, one that acts as a donor and the other 

acting as an acceptor.  The key to these fluorophore pairs is that the emission 

wavelength of the donor must overlap with the excitation wavelength of the 

acceptor, which enables energy transfer between the two when they are in 

proximity. FRET is extremely sensitive to the slightest change in distance, since 

energy transfer has an inverse sixth order energy dependence on the radius 

between the dyes. Excitation of the donor in the absence of acceptor will lead to 

donor emission. However, when the donor and acceptor are sufficiently close, 

excitation of the donor can lead to energy transfer to the acceptor through based 

on long-range dipole-dipole interactions, after which the acceptor will instead emit.  

FRET changes can be observed through either changes in donor emission, 

acceptor emission or the ratio between the two.102  

A popular FRET pair is the donor tag 7-nitrobenz-2-oxa-l,3-diazol- 4-yl (NBD) 

(λex = 450 nm, λem = 520 nm) and acceptor tag rhodamine B (λex = 540 nm, λem 

= 580 nm).  This pair has been extensively used to track membrane fusion, 

small molecule recognition, and protein interactions.103-105 Thus, we selected 

this pair for the membrane derivatization and fusion studies described in later 

chapter. In Figure 1.5, the concept of FRET is outlined in the context of two 

complementary liposomes carrying an NBD-tagged lipid and Rhd-tagged lipid, 

respectively.  Before mixing, the FRET signal is deactivated due to the lack of 

proximity between the donor and acceptor lipids, resulting in only donor (NBD) 

emission.  When the two liposomes are mixed and fusion occurs, the proximity  
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Figure 1.5 Cartoon depicting Förster resonance energy transfer (FRET) taking 
place upon fusion between NBD-tagged liposomes (yellow) and Rhd-tagged 
liposomes (red).  The FRET signal is initially quenched, but fusion causes the 
FRET-tagged lipids to be mized within the same membrane; causing FRET to 
be activated. 
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of the donor tag and acceptor tag is close enough to facilitate a transfer in 

energy, and thus activate the emission signal of the acceptor (Rhd). 

1.7. Click chemistry for the derivatization of membrane surfaces 

Due to the beneficial properties of click reactions, particularly their bioorthogonal 

nature and fast kinetics, these reactions have been explored for derivatizing 

membrane surfaces.  In 2006, Schuber and coworkers106 labeled small unilamellar 

vesicles (liposomes) with monoglycosylated sugars by clicking together an alkyne-

tagged lipid with an azido-tagged mannose moiety.  This reaction was confirmed 

by incubating these liposomes with concanavalin A, a lectin that non-covalently 

interacts with mannose, and observing the increase in turbidity of the solution due 

to the specific recognition of the mannose analogs on the liposome surface by the 

concanavalin A that resulted in aggregation. Concurrently, Kros and coworkers107 

used a FRET assay to successfully derivatize liposome surfaces by CuAAC.  They 

used alkynyl-tagged lipids within liposomes containing the fluorescent lipid Rhd-

PE to react with an azido-tagged NBD-lysine analogue.  When a successful click 

reaction was achieved, the close proximity of the NBD and rhodamine moieties 

activated the FRET signal.  This opposed the observation seen for liposomes 

lacking an alkyne moiety, since the lack of a click reaction did not drive proximity 

between the two fluorescent labels. Since then, multiple studies have been 

reported employing the CuAAC on membrane surfaces (Figure 1.6) as a means 

for targeting carbohydrates and proteins, promoting complex biological functions, 

and constructing bolaamphiphiles108-110 and biopolymers.111-113 



 

18 

 

  

Figure 1.6 Step-by-step process for general derivatization of membranes.  First, 
lipid components are hydrated to generate heterogeneous unilamellar vesicles; 
extrusion produces homogeneous unilamellar vesicles.  Fluorescent tracer with 
a clickable tag can be introduced to the liposome solution to confirm membrane 
derivatization  
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Despite the previous examples showing membrane functionalization through 

the copper-catalyzed click reaction, a drawback of this approach is that the copper 

catalyst is known to promote membrane decomposition.114-115  As a result, the 

copper-free click reaction has been explored as an alternative for membrane 

modification. In 2012, Bostic and coworkers reported the first known use of 

functionalizing membranes via copper-free click chemistry.  This study used azido-

tagged lipids as an anchor onto liposomes, and these functionalized liposomes 

were incubated with a cyclooctyne-tagged biotin analogue.  A successful reaction 

between the azide and cyclooctyne resulted in the liposomes being coated onto a 

streptavidin coated microplate.116  In 2015, Martin and coworkers117 also employed 

the copper-free click reaction to functionalize membranes, but instead the role of 

which reactive partner was labeled onto the liposome was reversed.  These two 

studies show that either azides or cyclooctynes can be linked to lipid analogues, 

incorporated into liposomes, and modified by this reaction.  Continuous 

enhancements have been made to the cyclooctyne moiety in order to improve its 

reactivity, stability, and ease of synthesis.   

1.8 Membrane fusion in biological systems 

Cell-cell and cell-liposome fusion are critical processes that define physiological 

and pathophysiological events.  In natural systems, these processes can be 

mediated by soluble attachment protein receptors (SNARE)”, along the cell 

surface. These receptors, in combination with other regulatory proteins, interact 

with membranes to form a four-helix SNARE assembly (Figure 1.7).  This process 
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has numerous advantages in biological systems, including drug and gene delivery, 

because it can potentially be exploited and mimicked via chemical means, and 

research has been done to elucidate the SNARE complex.118-121 SNAREs are 

responsible for driving opposing membranes to close proximity, holding them in 

close contact, and bending the membranes to create an unstable bilayer.  That last 

point is critical in facilitating fusion because ‘docking’ (Figure 1.7) only connects 

the outer leaflets of opposing membranes, whereas the inner leaflets remain intact, 

yielding a state referred to as ‘hemifusion’. Next, these proteins regulate the 

destabilized bi-layer and generate fusion pores inside the plasma membrane, 

completing the event.   

Liposomes can be engineered to artificially mimic this process of SNARE-

mediated fusion.122  To do so, functionalized lipids bearing partner reactive or 

binding groups are commonly introduced into opposing liposomes. These 

complementary functionalities cause the liposomes to interact, which can be 

exploited to drive fusion. The lipid composition of liposomes (i.e. PC/PE/PS) 

Figure 1.7 Representation of cell-cell fusion directed by SNARE Proteins.  
‘Docking’ brings complementary cells closer together, and fusion is triggered by 
proximity 
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composition in the membrane can be manipulated to facilitate membrane fusion.  

In this case, non-bilayer lipids such as PE or other additives may be necessary to 

promote fusion due to the negative curvature it imparts in the membrane, which 

mimics the destabilizing effect of the inner leaflet seen in the SNARE system.  PS 

has been reported to have inhibitory effects on the rate of fusion due to the 

negatively charged headgroup at physiological pH, which could cause electrostatic 

repulsion with opposing membranes.123  However, metal-complex systems have 

been performed to induce aggregation of PS-labeled liposomes through the use of 

multivalent cations.124 

In 2014, Lentz and coworkers studied the effects of Ca2+ addition to liposomes 

containing PS.123  This report shed some intriguing insight into the mechanism for 

metal-based fusion applications.  Upon introducing the Ca2+ adduct to the vesicle 

solution, the divalent ion binds to two negatively-charged PS lipids from opposing 

membranes, which brings them into proximity.  Polyethylene glycol (PEG) was 

added to initiate dehydration125 in between the vesicle bilayers.  This is done to 

push the hydrophobic tail region out of the plasma membrane and generate fusion 

pores thereby leading to fusion.  

DNA- and polypeptide-mediated systems are often used to mimic the SNARE 

motif as well.  In 2008, Hook and coworkers incorporated cholesterol-modified 

DNA constructs into liposomes to facilitate fusion.126 Cholesterol was incorporated 

into liposome mixtures as an anchor for single or double stranded DNA chains, 

which triggered fusion with liposomes containing complementary DNA strands.  
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The formation of the helical shape made from the binding of complementary DNA 

strands was meant to mimic the action seen from SNARE proteins, which 

commences protein binding at the N-terminus and works its way to transmembrane 

proteins in a ‘zipper-like’ fashion.  It was also found that the DNA linker length has 

a profound effect on the rate of fusion.  As the DNA chain length increases, the 

binding strands are separated further from the membrane bilayer, and thus the 

fusion rate is diminished on account of failing to overcome van der Waals forces. 

Boxer and coworkers built on this strategy and incorporated DNA strands onto 

phospholipid anchors in the membrane.127-128 Like the work seen with the 

cholesterol-anchored DNA strands, it was discovered that fusion was optimal when 

the DNA strands were connected between the 3’ and 5’ ends of each strand.  The 

resulting complex forms a similar parallel orientation to the SNARE complex, which 

is the preferred conformation for inducing membrane fusion.  DNA linker length 

also played a role in controlling fusion rate, and a greater linker length led to 

decreased fusogenic activity. 

1.9 Chemical triggering of membrane fusion 

Although these strategies have been successfully implemented using 

unilamellar vesicles in vitro, these systems could potentially fail in vivo due to the 

challenges of enforcing strong liposome binding in biological systems and the 

inability to selectively introduce the partner reactive handle onto particular cell 

types.  Many of the drawbacks that hinder membrane derivatization studies from 

in vivo are also problematic for triggered membrane fusion studies.129 



 

23 

 

However, one strategy that shows significant promise in circumventing these 

pitfalls is a biorthogonal strategy.  In 2012, Zumbuehl and coworkers130 reported 

the use of a copper-catalyzed ‘click’ reaction (CuAAC) to stimulate fusion between 

liposomes (Figure 1.8).  Here, liposomes containing an azido-lipid were mixed with 

those bearing an alkynyl-lipid to trigger a click reaction and drive fusion. In this 

system oppositely charged lipids were incorporated into opposing liposomes131 to 

help stimulate fusion and counteract the negative charge of the azido-tagged lipid 

used in the study. As mentioned before, this strategy is likely to struggle in a 

biological setting due to the need for the copper catalyst.  Therefore, biorthogonal 

strategies, such as oxyamine formation and copper-free click offer the possibility 

for improvement.  

In 2014, Yousaf and coworkers132-136 reported the use of keto-analogues in the 

presence of oxyamines (R-ONH2) to drive cell-liposome fusion.  Oxyamine 

conjugated liposomes reacted with those bearing ketones, forming an oximine (R-

ON=R’) functionality that caused liposome proximity and fusion.   Herein, we 

describe the pursuit of an alternate bioorthogonal method for triggering membrane 

fusion driven by copper-free click chemistry using cyclooctyne- and azido-lipids. 

Membrane bilayers do not always spontaneously fuse once they are brought 

into proximity, which impacts the selectivity of liposomal delivery.  For fusion to 

occur, the lipid components must overcome the energy barrier of lipid mixing. This 

can be exploited by controlling the lipid composition within the membrane. PC is 

considered to be a bilayer forming lipid and PE is considered to be a non-bilayer  
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Figure 1.8 Representation of vesicle-vesicle fusion directed by copper-
catalyzed click chemistry.  
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forming lipid.  Altering the percentage of these two lipids can affect the curvature 

of the membranes in which they exist.  When the curvature exhibits a negative 

curvature shape, i.e. folds outwards, this can lead to a higher propensity for fusion, 

due to the desire relieve curvature strain.  It is thus desirable to achieve a proper 

ratio of PC and PE lipid in the membrane in order to stimulate fusion such that the 

vesicles are stable enough to remain intact while in the bloodstream but also 

destabilized to promote fusion.  

1.10 Metabolic labeling as a tool for targeted delivery and fusion 

Metabolic labeling has revolutionized the ability to label specific molecules with 

click chemistry tags in cells. In this process, simple biological substrates are 

strategically modified with tags, and in particular clickable groups. Since the azide 

used for click chemistry is very small, the addition of this group often can be 

performed in a way that does not impact the activity of the modified structure. When 

fed to cells, these compounds can enter normal biosynthetic pathways and 

produce labeled versions of products. This enables the selective labeling of 

particular cell types. While this approach has previously been performed to image 

specific biomolecules, clickable tags contained on specific cells, and in particular 

diseased cells, could be exploited for drug delivery to that site. Thus, metabolic 

labeling in combination with membrane fusion driven by copper-free click 

chemistry described in this dissertation shows strong promise for directed drug 

delivery. 
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The metabolic labeling approach was initially demonstrated for the tagging of 

sugars. Cell glycans are composed of an assortment of saccharide units that often 

reside on the cell membrane as glycoproteins or glycolipids.  These structures 

mediate cellular recognition and binding events, thus providing a connecting point 

for pathogenic organisms.137  However, biological studies have to circumvent the 

oligosaccharide heterogeneity of the glycan and the multiple enzymes needed in 

its biosynthesis.138 Fortunately, evidence has been shown that nonphysiological, 

modified sugars can be incorporated into the cell, infiltrate sugar biosynthetic 

pathways, and be secreted into the cell membrane in the form of sialic residues.139-

140  The modified sugar substrate often often consists of an N-acetylated precursor 

of D-mannosamine or D-glucosamine into which an azide group is introduced to 

label  sialic acid residues.140 

These saccharides can be modified to include a variety of functional groups, 

most notably for the purposes to chemoselectively labeling glycoproteins.141-145 In 

1997, Bertozzi and coworkers submitted the first report of chemoselective live-cell 

labeling by using N-levulinoyl mannosamine (ManLev), a synthetic analogue with 

a ketone functionality.76  Its presence was determined by the ligation of a 

biotinylated hydrazine-based probe, and upon conjugation the biotin tag was 

subjected to an avidin stain resulting in an increase in fluorescence intensity.  

However, this system is limited by the presence of the ketone functionality.  There 

are a variety of ketone-containing small molecules inside the cell, which could 

prevent selective targeting by the hydrazine probe.146 
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Although work was shown to mitigate this issue, the focus shifted to finding new 

cell-compatible chemoselective techniques for targeting sialic residues.  The azide 

group became a prevalent tag for this type of work64, 147-148 owing to its inert 

reactivity in vivo.  Over the years, Bertozzi and coworkers have used azides in the 

form of the Staudinger ligation as a method for labeling live cells with azido-tagged 

sugars.148-151  They used the unnatural sugar N-azidoacetylmannosamine 

(Ac4ManNAz) and delivered it live cells, where it became metabolically 

incorporated to label sialic acid containing glycoproteins (Figure 1.9).  A phosphine 

moiety containing a fluorescence tag could be introduced to successfully label the 

cell glycan. It should be noted that these authors admitted the protocol is limited 

by the number of glycans that can be labeled.  This is due to the low tolerance of 

a large number of glycoproteins for functionalized sugars.  

 

Figure 1.9 Metabolically labeling with azido-tagged glycoproteins.  Cell glycans 
derivatized with azides target phosphine reagents for live-cell labeling. 
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In 2010, Finn and coworkers utilized azide-alkyne click chemistry as a tool for 

labeling live cells with Ac4ManNAz-labeled sugars.115 This method improved on 

the reaction kinetics seen in the studies with the Staudinger ligation, and since the 

copper (I) catalyst is known to be a detriment to cells, they used a THPTA ligand 

to quench the production of reactive oxygen species (ROS) brought on by copper 

(I). Additionally, Bertozzi and coworkers have reported the use of cyclooctynes as 

a carrier for labeling live cells coated with Ac4ManNAz.152-153   Both copper-

catalyzed and copper-free click chemistry perform better as a method compared 

to the Staudinger ligation because of faster reaction kinetics, but the copper-free 

click reaction stands out as a more attractive option for in vivo imaging and 

targeting because it does not require the delivery of copper catalyst.     

As previously introduced, metabolic labeling opens enables the selective 

labeling of biomolecules or cells, which could then be exploited for targeted 

delivery. Through the selective labeling of disease-associated biomolecules with 

azide in this manner, liposomes carrying a cyclooctyne moiety could selectively 

target the reactive functional group along the cell surface.  Due to the close 

proximity between the liposome and cell, fusion could be triggered, and liposomes 

carrying encapsulated drug could be delivered to the cell.  Cancer cells contain a 

more abundant range of sialic acid residues,154 and other biomolecules, and 

therefore metabolic labeling, and subsequently fusion, at these sites could be 

beneficial targeted delivery. The projects described in this dissertation provide the 
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first steps for this selective drug delivery via click chemistry by analyzing the 

molecular determinants for membrane fusion by copper-free click chemistry. 
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Chapter 2: Design and Synthesis of Copper-Free Clickable 

Lipids for Membrane Derivatization and Triggered Fusion 

2.1 Background and Significance 

The design for the synthetic lipids presented in this document is largely inspired 

by work in past groups, who have attached a variety of ligands and reactive groups 

onto lipids to drive fusion.   Since phospholipids are abundant in nature, a 

significant amount of work has been reported on the successful functionalization 

of phospholipids to produce functionalized lipids. In particular, PE is commonly 

used to generate derivatized lipids through the amine moiety on the head group.   

The modifications are made with the intention of mimicking cellular functions and 

exploiting pathways inside the membrane.  Some of these modifications include 

the introduction of azides,116, 155-159 alkynes,158-162 DNA nucleotides,163-165 and tri-

dentate ligands.166-168   

One of these biological processes, membrane fusion, has been mimicked 

through the aid of synthetic analogues capped with an azide and linear alkyne, 

respectively.  Most synthetic lipids found in the literature contain a phosphate head 

group and long acyl chains, often derived from phosphatidylethanolamine (PE).  

Since PE contains a terminal amino group, this is commonly functionalized through 

reaction with carboxylic acid moieties through amide bond forming coupling 

reactions, akin to the formation of a peptide bond.  PE constructs can be purchased 

through a commercial vendor, but the extreme polarity and charge of the 

phosphate head group makes the synthesis, purification and characterization of 
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phospholipids rather arduous.  Thus, we have instead used the triazole group 

because it offers a more convenient path in synthesis.156-157  The triazole can be 

synthesized by copper-catalyzed click chemistry, polar enough to reside at the 

aqueous interface,108 and the compounds are easier to purify and characterize due 

to their lack of charge.  

2.2 Design of ODIBO lipid 1 

Since are goal has been to trigger membrane fusion via copper-free click, we 

set out to synthesize lipid analogues containing a cyclooctyne as well as those 

bearing an. For our own synthetic analogue, ODIBO lipid 1 (Figure 2.1), we used 

a similar approach to constructing this molecule to previous examples.130  We 

incorporated long acyl chains to provide an anchor to embed these clickable lipids 

in the membrane.  As previously described, the triazole group facilitates synthesis 

through click chemistry and is sufficiently polar to mimic the phosphate head group 

making the lipid amphiphilic.   

  

Figure 2.1 Design and structural components of ODIBO lipid 1 
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The ODIBO group is linked to the lipid core using a tetra(ethylene) glycol (TEG) 

spacer.  This was introduced to provide a flexible component to the headgroup, 

which allows the molecule to become more fluid and distance the reactive ODIBO 

functionality from the membrane surface. The TEG group is also polar, promoting 

presentation of the ODIBO away from the membrane core.   

2.3 Design of ODIBO lipid 15 and Azide lipid 18 

We discussed the aforementioned ODIBO lipid 1 as one of our synthetic targets. 

As an alternative to acyl groups, we also synthesized an analogue that includes 

ether linkages, ODIBO lipid 15.  This feature was included in our plan because 

ether linkages are more resistant to hydrolysis in both chemical synthesis and in 

biological systems. 

We also designed an azido tagged lipid (18) (Figure 2.2), which unlike azido 

lipid 5 contains a triazole head group, and additionally includes an alkyl chain by 

which the azide is attached.  A concern of this lipid is that, since this structure is 

fairly hydrophobic, the reactive azide group may be buried within the membrane 

when incorporated into liposomes.  This could disallow the azide from reacting with 

the cyclooctyne moiety, rendering this azido-lipid less effective.  However, spacing 

of the azide group further from the membrane surface compared to 5 could be 

beneficial.  Therefore, we elected to evaluate both of these potential azido-lipids 

for membrane fusion. 

 

 



 

33 

 

2.4 Synthetic Procedure for ODIBO lipid 1 

The synthetic scheme used to access both 5  and 1 began with commercially 

available (S)-glycerol acetonide 6, which can be tosylated to produce 7 (Figure 

2.3).  The stereocenter present in reagent 6 matches natural phospholipid 

stereochemistry to avoid the potential perturbation of membrane properties.  Next, 

tosyl acetonide 7 was treated with acid in methanol to deprotect the acetonide and 

produce diol 8.  This product was immediately treated with an excess amount of 

sodium azide (NaN3) in dry and degassed dimethylforamide (DMF) to produce 

azido diol 9.  DMF has a tendency to decompose at high temperatures, and the 

reaction required heat as a catalyst.  As a precaution, we distilled DMF under 

vacuum, let it sit in sieves for 24 hours, and then degassed it. The product could 

be easily traced on a TLC plate because the tosyl diol 8 is UV active, whereas the 

azido diol is not.  Although the starting tosylate and product azide are similar in Rf 

value, the aforementioned difference in UV activity was used to track product 

formation.  

Finally, azido diol 9 was treated with two equivalents of stearic acid and 

dicyclocarbodiimide (DCC) to produce azido lipid 5.  Azide lipid 5 could be used as 

a fusogenic lipid, since it possesses the necessary clickable group and simple 

Figure 2.2 Structures of ODIBO lipid 15 and Azido-lipid 18 
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structure in the glycerol backbone.  The small headgroup relative to the length of 

the acyl chains likely makes this a non-bilayer forming lipid, similar to the shape 

and properties of PE.  Despite the simple structure, we elected to evaluate this 

compound for fusion since it is already made during the synthesis of ODIBO-lipid 

1. 

The second stage of the synthesis began by reacting a boc-protected alkyne 

moiety (10) with azide lipid 5 by employing the copper-catalyzed click reaction 

(Figure 2.4).  This reaction has shown to be compatible with the labeling of 

biomolecules, and the conditions under those circumstances call for the use of a 

catalytic amount of copper.  Initial attempts to synthesize lipid 11 failed under these 

conditions, and instead we used excess amounts of copper reagent and sodium 

ascorbate.  The copper solution was added dropwise to the reaction mixture 

containing all other reactants, and each drop resulted in the solution turning brown 

for a small amount of time.  This transient color change indicated that copper (II) 

was being converted into copper (I), which is the active catalyst in this reaction.  

Lipid 11 was successfully obtained after purification.  This analogue sets up the 

final synthesis steps to produce lipids 1 and 18 (Figure 2.5). 

  

Figure 2.3 Synthetic Scheme for Azide lipid 5 
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Figure 2.5 Retrosynthetic representation of Azido-lipid 18 and ODIBO lipid 1 

Figure 2.4 Synthetic Scheme for boc-lipid 11 and ODIBO lipid 1 
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Next, we attempted to couple lipid 11 with ODIBO-TEG-COOH 12 which was 

synthesized by Christopher McNitt in Vladimir Popik’s group at the University of 

Georgia.  This reactant contains both the desired copper-free clickable ODIBO and 

the TEG spacer. We first intended to deprotect the boc group on lipid 11 and 

generate the amine analogue, and then react it with 12 by utilizing standard amide 

coupling reagents.   

We first attempted to pre-mix 12 with base and coupling reagent to form the 

activated ester.  We stirred this solution for 10 minutes before adding the amino 

lipid to the reaction in order to give enough time for the activated ester to form.  

Unfortunately, after 5 hours of stirring, there was no disappearance of any starting 

material on the TLC plate. We decided to optimize our amide coupling conditions 

using benzoic acid 13 (R-COOH) and 4-ethylaniline 14 (R’-NH2) (Figure 2.6).  We  

wanted to compare yields of a one-pot versus two-pot synthesis; the latter is what 

we initially used for 11 and 12.  Our strategy for employing a one-pot synthesis 

was to dissolve both the acid and amine in the same vial, then add the coupling 

reagent last.  Using this procedure, we were able to obtain the amide product using 

the one-pot method in 69%, whereas the two-method did not produce any amide.   

We incorporated this one-pot method into our attempt at synthesizing ODIBO 

lipid 1.  Consequently, we were able to observe a new spot on the TLC plate, and 

ODIBO lipid 1 was isolated in 55% yield.  It should be noted that lipid 1 and ODIBO-

TEG-COOH 12 are extremely close on the TLC plate, and can be tough to separate 

via column chromatography.  Instead, we performed a sodium bicarbonate   
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(NaHCO3) extraction of the organic layer.  This affects the acid by generating the 

sodium carboxylate and CO2, while leaving the desired product unharmed.  

Additionally, an organic-soluble urea byproduct is generated over the course of 

this reaction and can remain hidden on a TLC plate and runs alongside ODIBO 

lipid 1 during column chromatography.  This byproduct can be removed by 

dissolving the crude in ethyl acetate, and then siphoning off the liquid. NMR studies 

confirmed ODIBO lipid 1 as the major product upon concentration of the liquid and 

column chromatography.  

2.5 Synthetic Procedure for ODIBO lipid 15 

We also synthesized another ODIBO lipid with ether tails (15) as an additional 

target, particularly based on initial synthetic challenges in producing compound 1.  

We outlined earlier how shorter tails in the hydrophobic region, as well as the 

incorporation of ether linkages, could alter the fluidity once embedded in a 

membrane.  We set out to synthesize ODIBO lipid 15 using similar chemistry to 

the route developed to produce lipid 1.  Starting out with azide diol 9, we performed 

a Williamson ether synthesis to produce azide lipid 16 (Figure 2.7).  This reaction 

Figure 2.6 Synthetic scheme for the reaction of acid 13 and amine 14; meant 
to optimize amide coupling conditions 
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required the use of freshly distilled DMF to achieve completion, mainly due to the 

sensitive properties of sodium hydride (NaH) in water.  We also included 

tetraethylammonium iodide (TEAI) as a catalyst in order to transform the 1-

bromohexadecane reagent into a better electrophile. Next, 16 was reacted with 

boc-alkyne 10 using copper-catalyzed click conditions to produce 17.  Identical 

parameters were used for this step as they were for the production of lipid 11. 

Finally, boc lipid 17 was deprotected to give the amine analogue, and then 

reacted with ODIBO-TEG-COOH 12 to produce ODIBO lipid 15.  We used a 

different procedure for the deprotection of lipid 17 than that of lipid 11.  First, we 

dissolved lipid 17 in 50:50 trifluoroacetic acid (TFA)/CH2Cl2, and after 2 hours of 

stirring, the solution was poured into a 1 M ammonium hydroxide (NH4
+OH-) 

solution to quench the reaction.  We could not use this step for lipid 11 because 

the ester tails are sensitive to strong base, but ethers are not.  Therefore, the amino 

lipid analogue was extracted from this layer with CH2Cl2, and then isolated before 

Figure 2.7 Synthetic scheme for making ODIBO lipid 15 
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proceeding on to the coupling reaction.  The benefit of this to ensure removal of all 

acid, save time, and eliminate the excess amount of tertiary amine that was used 

in the prior synthesis to neutralize the amine.  This ensures the amino-lipid 

analogue is completely deprotonated and a strong nucleophile is available for the 

subsequent coupling step. 

2.6 Synthetic procedure for azide lipid 18 

We also synthesized azide lipid 18 to add to our library of fusogenic lipids due 

to concerns over the presentation of lipid 5.  First, we deprotected lipid 11 using 

the identical method seen with generating ODIBO lipid 1.  Immediately after 

collecting the amine analogue, azidohexanoic acid 19 was reacted with the amine 

under amide coupling conditions (Figure 2.8).  We used the one-pot method as 

seen previously with the production of ODIBO lipids 1 and 15.  After completion of 

the reaction, the crude was subjected to another NaHCO3 extraction because there 

was overlap between 18 and 19 on the TLC plate.  This extraction successfully 

isolated lipid 18 as seen through NMR and mass spectrometry results. 

2.7 Attempted Syntheses for Other Clickable Lipids 

Before our success of synthesizing ODIBO-lipids, 1 and 15, and azido-lipid 18, 

we attempted to synthesize another cyclooctyne-labeled lipid.  This lipid has the 

identical components as that seen with ODIBO lipids 1 and 15: acyl chains 

anchoring as the hydrophobic backbone, a triazole and TEG linker for 

hydrophilicity, and the cyclooctyne moiety at the head of the compound.  This 

compound contained an ADIBO moiety as this was designed prior to Popik’s report 
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of the enhanced reactivity of ODIBO (Figure 2.9). We attempted to build this 

molecule up sequentially, similar to how we built ODIBO lipids 1 and 15.  We 

concentrated on synthesizing the hydrophobic backbone and TEG linkers 

individually, and then planned to couple these to generate the lipid scaffold. 

2.7.1 Strategy for Synthesizing Cyclooctyne Lipid 20 

Once azide lipid 5 was synthesized, we started to work on synthesizing the TEG 

linker.  We synthesized boc-protected alkyne 21 by following a previously 

published procedure,155 but made necessary modifications that we felt improved 

the yield of each step. We started with tetraethylene glycol 22 as our starting 

material in this scheme, and were able to functionalize one side of the molecule 

with diazoethylacetate to produce 23 (Figure 2.10).  The reaction was controlled 

by cooling the temperature of the solution to prevent both alcohols from becoming 

functionalized.  Mono-addition to TEG allowed the alcohol on the opposite side of 

the chain to be transformed into a mesylate, and then substituted with azide to 

produce 24.  The addition of mesyl chloride was controlled by cooling the 

temperature of the solution down to 0 0C because mesylates are susceptible to 

uncontrolled substitution at warm temperatures.  As for azide introduction, we’ve  

Figure 2.8 Synthetic scheme for azide lipid 18  
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Figure 2.10 Synthetic scheme for boc-TEG alkyne 21 

Figure 2.9 Structure of cyclooctyne lipid 20 
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shown before that azide substitution reaction works well with DMF as a solvent, 

however this particular compound reacted better with dry ethanol.  This is likely 

due to better solubility of the mesylate compound. 

Next, the azide was converted into the boc-protected amine 25 by simultaneous 

addition of palladium and hydrogen gas (Pd/H2) and as well as di-tert-

butyldicarbonate (Boc2O).   Hydrogen gas was added into the flask through a 

balloon, and then the system was evacuated.  This cycle was repeated three times 

to ensure the reaction was stirred under a complete hydrogen atmosphere.  After 

isolating 25, we performed hydrolysis to produce the corresponding boc-protected 

carboxylic acid, which was then converted into boc-protected alkyne 21 by amide 

coupling conditions.  We used the one-pot method for this reaction, which was 

controlled by cooling the solution down to 0 0C prior to adding EDC·HCl. 

Next, we constructed our lipid component 26 by reacting azide lipid 5 with boc-

protected alkyne 21 via the copper-catalyzed click reaction (Figure 2.11).  We used 

similar conditions for this reaction as we did for the synthesis of lipid 11, including 

excess amounts of copper (II) sulfate and sodium ascorbate.  In the final step of 

this synthesis, attempted to deprotect boc-lipid 26 and couple the resulting amine 

with ADIBO-COOH 27 to form 20.  We were unsuccessful in producing this lipid.  

We believe in retrospect the reaction may not have worked due to the following 

possible reasons: the ammonium moiety formed by boc deprotection in acid may 

not have been full deprotonated for the subsequent coupling reaction, TFA/CH2Cl2 

was left in the flask with lipid 26 for too long (potential ester hydrolysis), quenching  
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with solid sodium carbonate (NaCO3) led to a messy flask to clean up and 

potentially cleaved the ester tails in the hydrophobic backbone.  

The reaction time was rectified when attempting to synthesize ODIBO lipid 1.  

We used intermittent TLC analyses to track the original boc-protected lipid 11 on 

its course to the amine analogue.  Leaving this acidic mixture stir for too long could 

have compromised other components of the molecule, such as cleaving the ester 

tails in the hydrophobic backbone.  When synthesizing ODIBO lipid 1, the 

quenching of the solution was kept in the same phase as the reaction, since we 

added liquid base to the reaction. Lastly, we outlined before the benefit of the one-

pot method when performing amide coupling versus the two-pot method. 

  

Figure 2.11 Synthetic scheme for ADIBO lipid 20; boc-TEG-lipid 26 was 

isolated, but not successfully be converted into lipid 20 
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2.7.2 Strategy for Synthesizing ADIBO-COOH 28 

We originally set out to synthesize ADIBO-COOH 28 to enable the synthesis of 

clickable lipids. However, due to challenges we encountered during this process, 

and since Dr. Vladimir Popik’s group at the University of Georgia reported the 

enhanced reactivity of ODIBO around this time, we ultimately formed a 

collaboration in which they provided ODIBO-COOH 12.  Multiple groups have 

adapted their own methods for synthesizing ADIBO-COOH 28, and we decided to 

follow the procedure from Chadwick and coworkers.169  First, we obtained 

commercially available dibenzosuberone 29 and converted that into the oxime 

analogue 30 (Figure 2.12).  This reaction required the use of dry pyridine for the 

best results.  Upon workup, dilute acid (HCl) was used with the intention of only 

extracting the base out of the solution and not compromising the oxime product. 

Next, oxime 30 underwent a ring expansion to cyclic amine 31 using DIBAL-H.  

This is a modification from other procedures that first convert to the amide product 

followed by reduction to generate the amine.  Once 31 had been isolated, the acid 

chloride moiety 32 was coupled to generate amide 33.  This step was the most 

problematic because it required the initial production of acid chloride 32.  This 

reagent is derived from a succinyl ester and then reacted with neat sulfonyl 

chloride.  We couldn’t isolate the succinyl acid chloride, so it was immediately 

transferred to the reaction flask along with 31.  This reaction could’ve also been 

inhibited by residual sulfonyl chloride as well.  
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After isolation of amide 33, the compound was subjected to bromine to produce 

the dibrominated product 34.  Next, we attempted to synthesize cycloalkyne 28 

through double elimination in base to form the alkyne. This reaction was attempted 

with both potassium t-butoxide (KOt-Bu) and sodium amide (NaNH2).  The reaction 

proceeded by a fast initial elimination generating a vinyl bromide.  The elimination 

of the second bromine atom was more challenging. We attempted a variety of 

conditions including the addition of excess strong base and initial elimination with 

KOt-Bu followed by treatment with NaNH2 to promote the second elimination.  

Unfortunately, we were unable to isolate the cycloalkyne product.  We attempted 

to add-in t-BuOH slowly with potassium metal (K0) already in the flask, but we could 

not isolate the t-butoxide moiety.  As for attempting the reaction with NaNH2, we 

attempted the same strategy of generating the strong base by slow addition.  This 

method did not produce the desired cycloalkyne functional group. Thus, we turned 

Figure 2.12 Synthetic scheme for ADIBO-COOH 28; double elimination step 

from 34 to 28 could not be achieved 
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our attention to ODIBO-COOH 12, which was provided by Christopher McNitt in 

Dr. Popik’s group. 

2.8. Conclusions 

The synthetic routes described in this chapter allowed us to access multiple 

ODIBO- and azide-containing lipids to pursue membrane fusion and derivatization 

driven by copper-free click chemistry. Many challenges were encountered during 

these syntheses, some of which were ultimately overcome to produce compounds 

for studies. In particular, the synthesis of ADIBO functionalities was not successful. 

For this reason, and since the ODIBO group was reported around this time, we 

turned our attention to ODIBO-lipids in collaboration with Dr. Popik’s groups. 

Studies detailing the efficacies of these compounds for membrane derivatization 

and fusion are described in the following chapter.  

2.9 Experimental Procedures 

Reagents and solvents were generally purchased from Acros, Aldrich or Fisher 

Scientific and used as received.  1H, 13C, and MS data for compounds 5, 7-10, 12, 

19, 21, 23-26, 30-34 matched reports found in the literature,155, 169-170 but 1H NMR 

values were listed below to confirm our scheme. 13C NMR is provided for azido-

diol 9 because we had trouble obtaining a clean 1H NMR spectrum. Dry solvents 

were obtained from a Pure solvent delivery system purchased from Innovative 

Technology, Inc. Column chromatography was performed using 230-400 mesh 

silica gel purchased from Sorbent Technologies. NMR spectra were obtained using 

Varian Mercury 300 and 500 MHz spectrometers. Mass spectra were obtained with 
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JEOL DART-AccuTOF and ABI Voyager DE Pro MALDI mass spectrometers with 

high-resolution capabilities. 

2.9.1 ODIBO Lipid 1 Synthesis 

(R)-(2,2-dimethyl-1,3-dioxolan-4-yl)methyl-4-methylbenzenesulfonate (7): (S)-

Glycerol acetonide 6 (1.00 mL, 8.09 mmol) was dissolved in dry CH2Cl2 (50 mL) 

and the reaction was allowed to stir at rt for 5 min.  Next, triethylamine (NEt3, 1.57 

mL, 11.3 mmol) and tosyl chloride (TsCl, 2.15 g, 11.3 mmol) were added in 

succession and the solution changed from clear and colorless to a light yellow 

solution.  The reaction was stirred at rt overnight under an Ar atmosphere.  At 

completion, the solution was poured into 40 mL of 0.75 M hydrochloric acid (HCl).  

The organic layer was collected, and then washed with 2x 50 mL water (H2O) and 

1x 50 mL brine.  The organic layer was dried with magnesium sulfate (MgSO4), 

filtered, and the solvent was evaporated to produce a crude solution.  The solution 

was purified via column chromatography with 10%EtOAc/hexane, and tosyl 

acetonide 7 was produced as a yellow oil in 80% yield (1.85 g). 1H NMR (300 MHz, 

CDCl3): 7.75 (d, J = 8.3 Hz, 2 H), 7.32 (d, J = 7.9 Hz, 2 H), 4.20-4.27 (m, 1 H), 3.96 

(m, 3 H), 3.72 (m, 1 H), 2.41 (s, 3 H), 1.30 (s, 3 H), 1.27 (s, 3 H). 
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(R)-2,3-dihydroxypropyl 4-methylbenzenesulfonate (8): Tosyl acetonide 7 (1.50 

g, 5.24 mmol) was dissolved in 0.5 M HCl/MeOH (15 mL).  The solution was stirred 

at rt until the starting material disappeared on TLC (~3 hrs).  The reaction was 

quenched with NaHCO3 (0.3 g) and stirred for 25 min.  Next, the solution was 

filtered, evaporated, and the flask was placed on the high vacuum.  Tosyl diol 8 

was isolated in quantitative yield (1.2 g) as a colorless oil. 1H NMR (300 MHz, 

CDCl3): 7.79 (d, J = 7.9 Hz, 2 H), 7.35 (d, J = 7.7 Hz, 2 H), 4.06 (m, 2 H), 3.94 (m, 

1 H), 3.65 (m, 2 H), 2.45 (s, 3 H).  

(S)-3-azidopropane-1,2-diol (9): Tosyl diol 8 (900 mg, 3.66 mmol) was dissolved 

in dry and degassed DMF (8 mL).  As the solution was stirred, NaN3 (951 mg, 14.6 

mmol) was added to the flask.  The solution was heated to 80 0C and refluxed 

overnight while stirring.  Next, the solvent was evaporated, and the resulting crude 

was subjected to column chromatography (60% EtOAc/hexane) in order to purify 

the compound.  Azido diol 9 was isolated in 58% yield (250 mg) as a yellow oil. 1H 
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NMR (300 MHz, CDCl3): 3.83 (d, J = 17.2 Hz, 2 H), 3.59-3.66 (m, 1 H), 3.37 (d, J 

= 6.0 Hz, 2 H). 13C NMR (300 MHz, CDCl3): 70.99, 63.97, 53.39. 

(S)-3-azidopropane-1,2-diyl distearate (5):  Azide diol 9 (250 mg, 2.14 mmol) 

was dissolved in freshly distilled CH2Cl2 (20 mL).  Stearic acid (1.34 g, 4.71 mmol) 

was added to the solution, then after 5 min. of stirring DCC (1.06 g, 5.14 mmol) 

and DMAP (130 mg, 1.07 mmol) were added.  The solution was stirred at rt 

overnight, then the solvent was evaporated.  The resulting crude mixture was 

purified via column chromatography (0-10% EtOAc/hexanes), and azido lipid 5 

was produced in 78% yield (1.10 g) as a white solid. 1H NMR (300 MHz, CDCl3): 

5.18 (m, 1 H), 4.26-4.32 (dd, J = 11.9, 4.6 Hz, 1 H), 4.12-4.17 (dd, J = 11.9, 5.6 

Hz, 1 H), 3.46 (d, J = 4.7 Hz, 2 H), 2.29-2.37 (m, 4 H), 1.63 (m, 4 H), 1.25 (s, 56 

H), 0.88 (t, J = 7.0 Hz, 6 H) 

Synthesis of (S)-3-(4-(((tert-butoxycarbonyl)amino)methyl)-1H-1,2,3-triazol-1-

yl)propane-1,2-diyl distearate (Boc-Triazole Lipid) (11): Azido lipid 5 (57.2 mg, 

0.0876 mmol) and Boc-alkyne 10 (11.3 mg, 0.0730 mmol) were both dissolved in 
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a 2:1 mL mixture of THF/t-BuOH.  Copper (II) sulfate pentahydrate (CuSO4·5H2O, 

72.9 mg, 0.292 mmol) and sodium ascorbate (115 mg, 0.584 mmol) were each 

dissolved in 0.5 mL of water in separate vials.  The ascorbate solution was added 

to the THF/t-BuOH mixture slowly at rt.  After 5 min of stirring, the copper (II) sulfate 

solution was added slowly (each drop changed the color of the solution from clear 

yellow to dark brown).  After stirring for 16 h, the solvent was evaporated to yield 

a greenish blue solid.  The crude solid was purified via column chromatography (1-

2.5% MeOH/CH2Cl2) to give boc-triazole lipid 11 in 60% yield (58.1 mg) as white 

solid. 1H NMR (300 MHz, CDCl3):  7.55 ppm (s, 1H), 5.37 ppm (m, 1H), 5.07 ppm 

(bs, 1H), 4.59 ppm (s, 2H), 4.38 ppm (d, J = 5.9 Hz, 2H), 4.30 (dd, J = 12.0, 4.4 

Hz, 1H), 4.00 ppm (dd, J = 11.1, 6.2, 1H), 2.33 ppm (m, 4H), 1.62 ppm (s, 4H), 

1.44 ppm (s, 9H), 1.26 ppm (bs, 56H), 0.88 ppm (t, J = 6.5 Hz, 6H). 13C NMR (75 

MHz, CDCl3):  173.06, 172.50, 157.81, 122.74, 109.99, 77.18, 69.30, 61.93, 

50.08, 36.02, 34.01, 31.91, 29.69, 29.62, 29.47, 29.35, 29.24, 29.12, 29.02, 28.35, 

24.83, 22.68, 14.10. calc. exact mass [M+H]: 805.6782 MS-DART-(+): 805.7267. 

ODIBO-triazole-lipid (1): In a flame-dried flask, lipid 11 (12.0 mg, 0.0149 mg) 

was dissolved in freshly distilled CH2Cl2 (1 mL).  TFA (1 mL) was slowly added at 

RT.  The solution was stirred for 2 h or until the TLC showed complete removal of 

the starting material.  The solvent was evaporated, and the resulting crude was 
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then re-dissolved in dry DMF (1 mL).  DIEA (100 µL, 0.574 mmol) was added to 

the DMF solution and the reaction was allowed to stir until gas production 

subsided. To a flame-dried vial containing ODIBO-TEG-COOH 12 (8.01 mg, 

0.0144 mmol) the DMF solution was added.  Next, the solution was suspended in 

an ice bath, and DMAP (1.99 mg, 0163 mmol) was added.  After 10 min of stirring 

in an ice bath, EDC·HCl (3.12 mg, 0163 mmol) was added.  The solution was 

stirred for 10 min, and then removed from the ice bath with continued stirring 

overnight.  The DMF was removed using a rotary evaporator, and the crude was 

then re-dissolved in chloroform (CHCl3) (5 mL).  The organic solution was washed 

with 2x 5 mL NaHCO3, 1x 5mL H2O, and 1x 5 mL brine.  The organic layer was 

dried with magnesium sulfate, filtered, and then concentrated under nitrogen (N2) 

gas.  The crude was purified via column chromatography (2.5-3% MeOH/CH2Cl2) 

to produce ODIBO-lipid 1 in 55% yield (10.1 mg). 1H NMR (500 MHz, CDCl3):  

7.55 ppm (s, 1H), 7.27 (s, 1H), 7.22-7.25 (dd, J = 8.8, 2.4 Hz, 2H), 7.07-7.11 (dd, 

J = 9.2, 2.3 Hz, 1H), 7.01-7.02 (d, J = 2.5 Hz, 1H), 6.87-6.92 (m, 1H), 6.66 (bs, 

1H), 5.35 (s, 1H), 5.17 (d, J = 12.0 Hz, 1H), 5.11 (dd, J = 6.6, 3.1 Hz, 1H), 4.52-

4.55 (d, J = 12.0 Hz, 1H), 4.45-4.47 (m, 2H), 4.26-4.30 (dd, J = 10.9, 4.9 Hz, 1H) 

4.17 (t, J = 4.5 Hz, 2H), 4.04 (dd, J = 11.1, 6.2, 2H), 3.88 (t, J = 4.4 Hz, 2H), 3.51-

3.76 (m, 10H), 3.42-3.45 (m, 2H), , 2.49 (s, 4H), 2.32 ppm (m, 4H), 1.62 ppm (m, 

4H), 1.31 ppm (s, 9H), 1.26 (bs, 56H), 0.88 ppm (t, J = 6.5 Hz, 6H). 13C NMR (125 

MHz): 183.13, 173.08, 172.55, 172.28, 167.07, 158.44, 148.92, 145.12, 126.70, 

125.42, 123.53, 122.97, 121.18, 119.43, 117.66, 117.42, 114.42, 113.87, 110.64, 
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109.99, 77.81, 70.77, 70.50, 70.13, 69.89, 69.62, 69.29, 67.67, 61.97, 50.01, 

39.27, 35.38, 35.07, 34.36, 34.00, 33.98, 31.91, 31.36, 29.69, 29.65, 29.48, 29.35, 

29.26, 29.13, 29.03, 28.13, 24.83, 24.73, 22.68, 14.10. ESI-MALDI calculated 

exact mass [M+H] 1240.87 MS-ESI-(+): found 1240.8828 

2.9.2 ODIBO lipid 15 Synthesis 

(S)-1-(3-azido-2-(hexadecyloxy)propoxy)hexadecane (16): Sodium hydride 

(NaH, 209 mg, 8.72 mmol) was added to a flame-dried flask, then placed under 

vacuum for 25 min.  Dry DMF (1.5 mL) was next added and the flask was cooled 

to 0 0C.  After stirring for 5 min, a solution of azido diol 9 (120 mg, 1.03 mmol) in 

dry DMF (1.5 mL) was added dropwise to the NaH solution at 0 0C.  Once bubbling 

ceased in the flask, a solution of TEAI (45.0 mg, 0.175 mmol) and 1-

bromohexadecane (700 µL, 2.26 mmol) in dry DMF (1 mL) was added dropwise.  

After 10 min of stirring, the ice bath was removed and the solution was stirred 

overnight at rt.  Next, the solution was poured into 20 mL H2O, which was then 

extracted with CH2Cl2 (3x 20 mL). The organic extracts were collected, then 

washed with H2O (2x 60 mL) and brine (1x 60 mL).  The organic layer was dried 

with MgSO4, filtered, and then evaporated to produce a crude mixture.  The mixture 

was purified via column chromatography (0% - 10% EtOAc/hexanes) to yield azido 

lipid 16 in 45% (300 mg) as a white solid. 1H NMR (300 MHz): 3.34-3.57 (m, 9 H), 
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1.58-1.60 (m, 4 H), 1.26 (s, 48 H), 0.88 (t, J = 6.7 Hz, 6 H). 13C (500 MHz): 77.88, 

71.77, 70.64, 70.11, 52.07, 31.91, 30.01, 29.69, 29.67, 29.66, 29.64, 29.61, 29.59, 

29.45, 29.35, 26.01, 22.68, 14.10. MS-DART (+) [M – N2] calc. exact mass: 

538.5558 found: 538.5365 

tert-Butyl-(S)-((1-(2,3-bis(hexadecyloxy)propyl)-1H-1,2,3-triazol-4-

yl)methyl)carbamate (17): Azido lipid 16 (57.0 mg, 0.101 mmol) and Boc-alkyne 

10 (17.2 mg, 0.110 mmol) were added to a flame-dried flask and dissolved in THF 

(2 mL).  The solution was stirred at rt while CuSO4·5H2O (10.1 mg, 0.0403 mmol) 

and sodium ascorbate (20.0 mg, 0.101 mmol) were dissolved in 1:1 mixture of H2O 

and t-BuOH (0.75 mL) in separate vials.  First, the sodium ascorbate was added 

to the THF solution, and the resulting solution was stirred for 5 min.  Next, the 

copper solution was added dropwise to the reaction mixture, and the color changed 

from dark yellow to brown after each drop.  The solution stirred for 15 h at rt, and 

then the solvent was evaporated.  The crude solid was purified via column 

chromatography using a gradient of 3% MeOH/CH2Cl2, and lipid 17 was isolated 

in 60% (43.7 mg) yield as a yellow solid. 1H (300 MHz): 7.58 (s, 1 H), 5.10 (bs, 1 

H), 4.37 (s, 2 H), 3.27-3.48 (m, 9 H), 1.53-1.55 (m, 4 H), 1.43 (s, 9 H), 1.25 (s, 48 

H), 0.88 (t, J = 5.5 Hz, 6 H). 13C (500 MHz): 154.95, 122.09, 109.98, 77.32, 71.90, 
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70.66, 69.60, 51.72, 36.16, 31.91, 29.69, 29.35, 28.36, 25.96, 22.67, 14.10. MS-

DART (+) [M+H]+ calc. exact mass: 721.6565 found: 721.5721 

ODIBO-TEG-lipid 15: Lipid 17 (40 mg, 0.056 mmol) was dissolved in dry CH2Cl2 

(1 mL) and TFA (1 mL).  The solution was stirred at rt for 2.5 h, and then poured 

into 1 M ammonium hydroxide (4 mL).  The product was extracted with CH2Cl2 (3x 

5 mL), then washed with H2O (3x 10 mL) and 10 mL brine (1x 10 mL).  The organic 

layer was dried with MgSO4, filtered, and then evaporated to isolate the amine 

derivative.  This product was subsequently dissolved in dry DMF (1.5 mL) and 

DIEA (55 µL, 0.32 mmol).  This solution was added to a flame-dried vial containing 

ODIBO-TEG-COOH (22 mg, 0.040 mmol), and stirred for 5 min.  The solution was 

cooled to 0 0C, and DMAP (6.3 mg, 0.051 mmol) was added.  After 5 min, EDC·HCl 

(9.9 mg, 0.051 mmol) was added.  The solution was stirred at 0 0C for 5 min, and 

then the ice bath was removed and the solution was stirred at rt overnight.  The 

DMF was removed in a rotary evaporator, and the crude was re-dissolved in CHCl3 

(5 mL).  The organic solution was washed with NaHCO3 (2x 5 mL), H2O (2x 5 mL), 

and brine (1x 5 mL).  The organic layer was dried with magnesium sulfate, filtered, 

and then concentrated under N2 gas.  The crude was purified via column 

chromatography (2.5-3% MeOH/ CH2Cl2) to produce ODIBO-lipid 15 as a yellow-

orange solid in 51% (23 mg) yield.  1H NMR (500 MHz): 7.57 (s, 1 H), 7.20-7.25 
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(m, 3 H), 7.09 (d, J = 8.6 Hz, 1 H), 7.02 (s, 1 H), 6.90 (d, J = 8.3 Hz, 1 H), 6.62 (bs, 

1 H), 6.37 (bs, 1 H), 5.16-5.18 (d, J = 12.1 Hz, 1 H), 5.10-5.12 (d, 9.3 Hz, 1 H), 

4.49-4.52 (m, 2 H), 4.12 (s, 2 H), 3.86 (s, 2 H), 3.29-3.74 (m, 21 H), 2.63 (d, J = 

4.2 Hz, 2 H), 2.48 (d, J = 9.0 Hz, 1 H), 1.55 (m, 4 H), 1.32 (s, 9 H), 1.25 (s, 48 H), 

0.88 (t, J = 6.7 Hz, 6 H). 13C NMR (500 MHz): 172.80, 172.01, 170.19, 148.92, 

136.83, 128.44, 127.75, 125.41, 123.51, 121.17, 117.66, 114.43, 77.90, 73.86, 

71.55, 70.64, 70.24, 69.61, 67.69, 45.32, 39.29, 34.36, 31.91, 31.36, 29.69, 29.35, 

26.09, 22.67, 14.10. ESI-MALDI (+) [M + H]+ calc. exact mass: 1156.8538 found: 

1156.8416 

2.9.3 Azido-lipid 18 Synthesis 

(S)-3-(4-((5-Azidopentanamido)methyl)-1H-1,2,3-triazol-1-yl)propane-1,2-diyl 

distearate (18):  Boc-triazole-diastearate lipid 11 (28 mg, 0.035 mmol) was 

dissolved in freshly distilled CH2Cl2 (1 mL) and TFA (1 mL).  The solution was 

stirred for 3 h and the solvent was evaporated with N2 gas to yield the 

corresponding deprotected amine analogue.  The crude was re-dissolved in dry 

DMF (1 mL) and NMM (38 µL, 0.35 mmol).  The resulting amine solution was 

transferred to a flame-dried vial containing azido-hexanoic acid 19 (7.1 mg, 0.045 
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mmol), and the solution was cooled to 0 0C.  After 5 min of stirring, DMAP (5.5 mg, 

0.045 mmol) and EDC·HCl (8.7 mg, 0.045 mmol) were added in succession.  The 

solution was stirred for 10 min before the ice bath was removed, and stirring 

continued overnight at rt under inert atmosphere (N2 gas).  The solvent was 

evaporated, and the crude solid was re-dissolved in H2O (10 mL).  The product 

was extracted using CH2Cl2 (3x 10 mL). The organic layers were collected, and 

were washed with 5.5% w/v NaHCO3 (1x 25 mL), 0.75 M HCl (1x 25 mL), H2O (2x 

25 mL), brine (1x 25 mL).  The organic layer was dried with MgSO4, filtered, and 

then isolated to a give a crude product.  The product was purified using column 

chromatography (1.5%-2.5% MeOH/CH2Cl2) to give azido-lipid 18 as a white-

brownish solid in 45% (16 mg). 1H NMR (300 MHz): 7.56 (s, 1 H), 6.12 (bs, 1 H), 

5.38 (m, 1 H), 4.58 (m, 2 H), 4.48 (d, J = 5.5 Hz, 2 H), 4.26 (dd, J = 12.1, 4.5 Hz, 

2 H), 4.07 (dd, J = 12.2, 5.2 Hz , 2 H), 3.26 (t, J = 6.8 Hz, 2 H), 2.35 (m, 4 H), 2.17 

(t, J = 7.5 Hz , 2 H), 1.58 (m, 8 H), 1.26 (s, 56 H), 0.88 (t, J = 6.7 Hz, 6 H).   13C 

NMR (500 MHz): 173.07, 172.50, 122.99, 111.77, 69.29, 61.92, 51.20, 50.11, 

36.19, 34.83, 33.98, 31.91, 29.69, 29.35, 28.58, 26.33, 24.96, 22.68, 14.10. MS-

ESI: calc. exact mass [M+H]: 844.69 found: 844.6958 
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2.9.4 Boc-TEG-alkyne 21 

Ethyl 14-hydroxy-3,6,9,12-tetraoxatetradecanoate (23): Tetraethylene glycol 

(TEG) 22 (48.6 g, 0.251 mol) was dissolved in dry CH2Cl2 (25 mL) in a three-neck 

flask. A solution of copper (II) triflate (CuOTf) (904 mg, 2.51 mmol) in THF (5 mL) 

was added to the TEG solution, which was then stirred for 5 min.  The flask was 

placed in an ice bath to cool the solution to ~0 0C. Ethyl diazoacetate (5.31 mL, 

50.0 mmol) was added dropwise to the cold solution and over time the color of the 

solution changed from blue into darkish yellow. The reaction was stirred at rt under 

an N2 atmosphere overnight.  The solution was quenched by pouring into H2O (150 

mL), and the product was extracted using CH2Cl2 (3 x 100 mL).  The organic 

extracts were collected and washed with H2O (2x 100 mL) and brine (1x 100 mL).  

The organic solution was dried with MgSO4, filtered, and then the solvent was 

removed by rotary evaporation to afford a yellow oil.  The crude was purified via 

column chromatography using 3.5% MeOH/EtOAc, and 23 was produced in 71% 

(9.95 g) yield as a yellow oil. 1H NMR (300 MHz, CDCl3): 4.19 (q, J = 7.1 Hz, 2 H), 

4.13 (s, 2 H), 3.60-3.71 (m, 16 H), 1.27 (t, J = 7.1 Hz, 3 H). 
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Ethyl 14-azido-3,6,9,12-tetraoxatetradecanoate (24): Hydroxy-TEG-ester 23 

(1.42 g, 5.04 mmol) and NEt3 (2.44 mL, 17.5 mmol) were dissolved in anhydrous 

ether (10 mL), and then immediately cooled down to 0 0C and placed under an N2 

atmosphere.  Mesyl chloride (MsCl) (429 μL, 5.54 mmol) was added to the cold 

solution dropwise, and afterwards the solution was warmed back to rt.  The solution 

was stirred for 2 h and the solvent was then evaporated to produce a white solid.  

The solid was re-dissolved in dry EtOH (10 mL), and subsequently NaN3 (975 mg, 

15 mmol) was added.  The solution was stirred for 5 h at reflux (85 ⁰C), and the 

solvent was then evaporated.  CH2Cl2 (100 mL) was added to crude, which was 

next washed with H2O and brine (2 x 75 mL each).  The organic layer was dried 

with MgSO4, filtered, and evaporated to produce azido-TEG-ester 24 as a yellow 

oil in 68% (1.05 g) yield. 1H NMR (300 MHz, CDCl3): 4.22 (q, J = 7.2 Hz, 2 H), 4.16 

(s, 2 H), 3.67-3.73 (m, 14 H), 3.40 (t, J = 7.3 Hz, 2 H), 1.29 (t, J = 7.1 Hz, 3 H).  

Ethyl 2,2-dimethyl-4-oxo-3,8,11,14,17-pentaoxa-5-azanonadecan-19-oate 

(25):  Azido-TEG-ester 24 (450 mg, 1.48 mmol) was dissolved in EtOAc (5 mL).  

Boc2O (480 mg, 2.19 mmol), NEt3 (305 μL, 2.19 mmol), and 10% palladium on 

carbon (Pd/C) (50 mg) were all added to the solution.  The flask was next 
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evacuated and refilled with Hydrogen (H2) via balloon 3x.  The solution was stirred 

under H2 atmosphere at rt overnight.  The Pd catalyst was removed by filtering the 

solution through a pad of celite (Ce).  The collected organic layer was evaporated 

to give a yellow crude oil.  The oil was purified via column chromatography using 

a gradient of 20-35% acetone/CHCl3, and 25 was produced as a yellow oil in 73% 

(390 mg). 1H NMR (300 MHz, CDCl3): 5.13 (bs, 1 H), 4.22 (q, J = 7.1 Hz, 2 H), 

4.15 (s, 2 H), 3.54-3.72 (m, 14 H), 3.30-3.32 (m, 2 H), 1.43 (s, 9 H), 1.28 (t, J = 7.1 

Hz, 3 H). 

tert-Butyl (14-oxo-3,6,9,12-tetraoxa-15-azaoctadec-17-yn-1-yl)carbamate (21): 

Boc-TEG-ester 25 (200 mg, 0.569 mmol) was dissolved in MeOH (3 mL).  A 2M 

solution of sodium hydroxide (NaOH) (1.5 mL) was added to the solution, and 

stirring took place for 2 h.  The solution was quenched using Dowex 50WX8 (50-

100 resin), which was continuously added until the pH of the solution reached ~5.5 

(indicated by litmus paper).  The solution was filtered through a pipette plugged by 

a cotton ball, and the solvent was evaporated using N2 gas.  The product was 

obtained as a brown solid in quantitative yield (195 mg), and then it was dissolved 

in dry DMF (5 mL).  Propargylamine (40.0 μL, 0.631 mmol), NMM (81.0 μL, 0.736 

mmol), and DMAP (77.1 mg, 0.631 mmol) were added to the solution, and then 
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the flask was placed in an ice bath to cool the solution to ~0 oC and a balloon filled 

with N2 was inserted through a septum.  After 5 min of stirring under these 

conditions, EDC·HCl (141 mg, 0.736 mmol) was added in small increments.  The 

flask was immediately removed from the ice bath and the solution stirred at rt 

overnight.  The solution was evaporated to produce a dark red crude oil.  The oil 

was re-dissolved in 30 mL EtOAc, and washed with H2O (2 x 30 mL) and brine (30 

mL).  The organic layer was dried with MgSO4, filtered, and evaporated to produce 

a red oil.  The crude was purified via column chromatography using a gradient of 

20-25% acetone/CHCl3, and boc-TEG-alkyne 21 was obtained in 21% (43.0 mg) 

yield. 1H NMR (300 MHz, CDCl3): 7.41 (bs, 1 H), 5.03 (bs, 1 H), 4.09 (dd, J = 5.6, 

2.5 Hz, 2 H), 4.02 (s, 2 H), 3.63-3.69 (m, 12 H), 3.54 (t, J = 5.1 Hz, 2 H), 3.31 (m, 

2 H), 2.22 (t, J =2.5 Hz, 1 H), 1.44 (s, 9 H). 

2.9.5 ADIBO-COOH 28  

5H-Dibenzo[a,d][7]annulen-5-one oxime (30):  Dry pyridine (4 mL) and dry EtOH 

(7 mL) were mixed together in a flame-dried flask and heated up to ~75 oC.  

Hydroxylamine hydrochloride (NH2OH·HCl) (800 mg, 11.5 mmol) was added to the 

hot mixture, and the solution was stirred for ~10 min.  Dibenzosuberone 29 (678 

mg, 3.29 mmol) was dissolved in dry pyridine (2 mL), and then this solution was 
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added dropwise to the hydroxylamine solution.  A condensing column was added 

to the setup, and the mixture was stirred for 5 h at reflux.  After TLC showed 

disappearance of 29, the solution was cooled to rt.  Next, the solvent was 

evaporated to produce a viscous green oil.  The oil was re-dissolved in CH2Cl2 

(150 mL) and then washed with H2O (2x 150 mL) and brine (1x 150 mL).  The 

organic layer was dried with MgSO4, filtered, and the solvent was evaporated to 

give a green oil.  The oil was purified via column chromatography using 25% 

EtOAc/hexanes, and oxime 30 was produced as a white solid in 53% yield (380 

mg). 1H NMR (300 MHz, CDCl3): 7.64-7.66 (m, 1 H), 7.57-7.60 (m, 1 H), 7.51 (s, 1 

H), 7.38-7.44 (m, 6 H), 6.91-6.92 (m, 2 H).  

(Z)-5,6-Dihydrodibenzo[b,f]azocine (31): Oxime 30 (210 mg, 0.950 mmol) was 

dissolved in dry and distilled CH2Cl2 (10 mL).  The flask was placed in an ice bath 

and the solution stirred for 10 min.  DIBAL-H (1 M solution in hexanes, 6 mL) was 

added dropwise to the cold solution.  After addition, the solution was gradually 

warmed to rt and stirred for 4 hrs.  The solution was cooled to ~5 oC and was 

quenched with H2O (3 mL) and sodium fluoride (500 mg), which turned the solution 

into a lime green slurry.  The solution continued to stir for ~15 min at ~5 oC, and 

was afterwards was filtered through a pad of celite.  EtOAc (50 mL) was poured 
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onto the celite to collect any remaining product.  The organic layer was evaporated 

to produce amine 31 as a yellow solid in 95% (185 mg).  1H NMR (300 MHz, 

CDCl3): 7.15-7.24 (m, 4 H), 6.97 (d, J = 8.2 Hz, 1 H), 6.87 (m, 1 H), 6.59 (d, J = 

8.8 Hz, 1 H), 6.52 (d, J = 2.3 Hz, 1 H), 6.47 (d, J =10.4 Hz, 1 H), 6.35 (d, J = 13.9 

Hz, 1 H), 4.59 (s, 2 H). 

Methyl (Z)-4-(dibenzo[b,f]azocin-5(6H)-yl)-4-oxobutanoate (33):  Amine 31 (160 

mg, 0.780 mmol) was dissolved in dry and distilled CH2Cl2 (5 mL) and then brought 

to 0 o C.  NEt3 (270 µL, 1.95 mmol) was added to the cold solution, and after 10 

min of stirring, methyl succinyl chloride 32 (193 µL, 1.56 mmol) was added 

dropwise.  After 20 min of stirring at 0 o C, the solution was warmed up to RT and 

stirring continued overnight.  The solution was quenched with H2O (2 mL) and then 

diluted with CH2Cl2 (10 mL).  The organic layer was washed with NaHCO3 (2 x 10 

mL), 0.75 M HCl (1 x 10 mL), H2O (2 x 10 mL), and brine (1 x 10 mL). The organic 

layer was dried with MgSO4, filtered, and the solvent was evaporated to produce 

a red oil.  The crude oil was purified via column chromatography using 40% 

EtOAc/hexanes, and dibenzosuccinyl amide 33 was isolated as a brownish-white 

solid in 64% (160 mg).  1H NMR (300 MHz, CDCl3): 7.33 (m, 1 H), 7.26 (m, 1 H), 
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7.07-7.20 (m, 6 H), 6.81 (d, J = 13.0 Hz, 1 H), 6.61 (d, J = 13.0 Hz, 1 H), 5.89 (d, 

J = 14.9 Hz, 1 H), 4.30 (d, J =14.9 Hz, 1 H), 3.54 (s, 3 H), 2.81-2.89 (m, 1 H), 2.50-

2.69 (m, 2 H), 2.06-2.15 (m, 1 H). 

 

Methyl 4-(11,12-dibromo-11,12-dihydrodibenzo[b,f]azocin-5(6H)-yl)-4-

oxobutanoate (34): Dibenzo succinyl amide 33 (100 mg, 0.310 mmol) was 

dissolved in dry CH2Cl2 (5 mL), and then the flask was placed in an ice bath.  

Bromine (Br2) (liq., 40.0 µL, 0.620 mmol) was added dropwise to the cold solution, 

and the resulting mixture was kept at 0 oC as the solution stirred vigorously for 2.5 

hrs.  The reaction was quenched by adding sat. sodium sulfite (Na2SO3) (2 mL), 

which changed the color of the solution from dark orange to yellow.  After stirring 

for 15 min at 0 oC, the mixture was diluted with CH2Cl2 (20 mL).  The organic layer 

was washed with sat. Na2SO3 (3x 20 mL), H2O (2x 20 mL), and brine (1x 15 mL).  

The organic layer was then dried with MgSO4, filtered, and concentrated to give a 

yellow oil.  The oil was purified via column chromatography using 25% 

EtOAc/hexanes, and dibromosuccinyl amide 34 was afforded as a yellow solid in 

60% (89.2 mg) yield. 1H NMR (300 MHz, CDCl3): 7.72 (d, J = 7.8 Hz, 1 H), 7.09-
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7.25 (m, 5 H), 7.02-7.04 (m, 2 H), 6.89 (d, J = 7.5 Hz, 1 H), 5.92 (d, J = 9.9 Hz, 1 

H), 5.82 (d, J = 14.9 Hz, 1 H), 5.16 (d, J = 10.0 Hz, 1 H), 2.80-2.89 (m, 1 H), 2.56-

2.63 (m, 2 H), 2.46-2.52 (m, 1 H). 

2.9.6 ADIBO lipid 20 

(S)-3-(4-(20,20-dimethyl-3,18-dioxo-5,8,11,14,19-pentaoxa-2,17-

diazahenicosyl)-1H-1,2,3-triazol-1-yl)propane-1,2-diyl distearate (26): Azido lipid 5 

(37.0 mg, 0.0570 mmol) and boc-TEG-alkyne 21 (20.0 mg, 0.0510 mmol) were 

dissolved in THF (2 mL).  CuSO4·5H2O (115 mg, 0.460 mmol) and sodium 

ascorbate (153 mg, 0.770 mmol) were each dissolved in separate vials with H2O 

(0.2 mL) and t-BuOH (0.5 mL).  First, the ascorbate solution was added to the THF 

solution, and then the copper solution was added dropwise.  Each drop of the 

copper solution elicited a change of color to dark brown.  The solution was stirred 

at rt overnight, and afterwards it was evaporated to produce a greenish blue crude 

solid.  The crude was purified via column chromatography using a gradient of 5% 

MeOH/CH2Cl2, and lipid 26 was produced as a yellowish white solid in 43% (23.0 

mg). 1H NMR (500 MHz, 95% CDCl3, 5% MeOD): 8.07 (bs, 1 H), 7.73 (s, 1 H), 

5.78 (bs, 1 H), 5.41 (m, 1 H), 4.62-4.66 (m, 2 H), 4.52 (d, J = 5.7 Hz, 2 H), 4.36 

(dd, J = 12.1, 4.0 Hz, 1 H), 4.08 (dd, J = 12.2, 5.5 Hz, 1 H), 4.02 (s, 2 H), 3.65-3.71 
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(m, 12 H), 3.54 (m, 2 H), 3.27 (m, 2 H), 2.34 (m, 4 H), 1.63 (m, 4 H), 1.45 (s, 9 H), 

1.25 (s, 56 H), 0.88 (t, J = 6.9 Hz, 6 H). 
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Chapter 3: Membrane Fusion Triggered by Copper-Free Click 

Chemistry 

3.1 Background and Significance 

Functionalized lipids are used to mimic certain biological processes in 

membranes.  The development of artificial methods for triggering membrane fusion 

is an important goal as this would advance targeted drug delivery.  In this chapter, 

we will describe the development of selective fusion between separate liposome 

samples bearing partner cyclooctyne and azide functional groups displayed on 

their surfaces.  Copper-free click chemistry has a significant advantage as a tool 

for promoting membrane fusion because of its fast reaction kinetics, the lack of 

copper catalyst requirement, and its bioorthogonal nature. 

We present copper-free click chemistry as a hopeful and innovative method in 

targeted membrane fusion that overcomes longstanding challenges associated 

with the application of chemically driven membrane fusion to drug delivery.  A 

successful fusion mechanism will simultaneously require successful conjugation 

of liposomes and overcoming the energy barrier associated with lipid mixing.  The 

product of the click reaction between cyclooctyne and azide groups brings the 

liposomes into proximity, which can trigger membrane fusion depending on the 

properties of the membranes (Figure 3.1).130, 133  

Liposome-liposome adhesion will lead to translocation of lipids within the 

membrane; mixing the lipids from the two complementary liposomes.  This will 

reorganize the membrane and result in the formation of a larger vesicle.  This is 



 

67 

 

designed to mimic the action of SNARE proteins on the surfaces of cells, which 

promote the fusion of specific vesicles and delivery of contents into the cells. This 

has been useful for drug delivery to cancer cells.133, 171  

3.2 Membrane Derivatization of Cyclooctyne Lipids 

In this project, we first we set out to confirm that our new ODIBO-lipids lipids are 

effective for copper-free click chemistry reactions to derivatize the membrane 

surface.  To do so, we set out to compare the derivatization of liposomes into which 

a variety of cyclooctyne lipids (1-4, 15) (Figure 3.2) were incorporated.  For these 

purposes, a convenient method for tracking conjugation via the click reaction was 

to implement assays that cause fluorescence changes when the reaction occurs. 

In particular, Förster Resonance Energy Transfer (FRET) was employed for many 

of the assays we used to study membrane derivatization and fusion since it 

provides sensitive detection of changes in proximity of molecules during these 

processes.  In addition to ODIBO-lipids 1 and 15, we also evaluated ADIBO-lipids 

Figure 3.1 FRET assay for detecting membrane fusion based on the dilution of 
FRET pairs in original liposomes, leading to an increase in the NBD-
PE/rhodamine-PE emission ratio. 
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2-4, which were synthesized by others (2) or became commercially available (3-). 

During the course of our studies, these compounds each have different structural 

features, which will be discussed later. 

To study membrane derivatization through copper-free click chemistry, we 

chose to employ a FRET-based assay driven by the convergence of FRET donor 

and acceptor molecules on the surface of the membrane upon conjugation (Figure 

3.3). To do so, we decorated our liposomes with “donor” lipid, NBD-PE (λex = 470 

nm, λem = 520 nm).  This is a commercially available phospholipid that has a 

fluorescent moiety (NBD) attached at the headgroup.  We subjected these 

liposomes to an “acceptor” molecule, rhodamine (λex = 540 nm, λem = 588 nm), with 

an azide moiety attached to it (35).  When this is added to the liposome solution, 

Figure 3.2 List of cyclooctyne lipids used for membrane fusion assays: ODIBO-

lipids 1 and 15 and ADIBO-lipids 2-4 
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a click reaction will attach the rhodamine to the surface of the liposome.  

Consequently, a FRET signal will be produced due to the enhanced proximity of 

the rhodamine and NBD on the membrane surface.  A control experiment was also 

run in which liposomes lacking cyclooctyne were treated with rhodamine azide 35. 

We composed our liposomes with 90% PC, 9% cyclooctyne lipid (1-4, 15), and 

1% NBD-PE.  Rhodamine-azide (1.5 equivalents with respect to cyclooctyne) was 

added to a cuvette, after which the cyclooctyne-tagged liposomes were introduced.  

After a few mixes with the pipette, fluorescence spectra were collected over time 

through excitation of NBD donor at 460 nm and tracking of the NBD/Rhd emission 

signals over time.  As seen in Figure 3.4, all liposomes containing cyclooctyne 

lipids showed continual decreases in the NBD/Rhd emission ratio signal. This is 

expected since the convergence of the dyes should cause both a decrease in the 

donor emission and increase of the acceptor emission, which indicates FRET 

activation.  We see in the graph that liposomes containing the ODIBO moiety  

Figure 3.3 FRET assay for detection of membrane derivatization by copper-

free click chemistry using ODIBO-lipids (1, 15) and ADIBO-lipids (2-4)  
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Figure 3.4 Change in FRET (NDB/rhodamine emission ratio) as a function of 
time upon treatment of liposomes containing ODIBO-lipid (1, 15), ADIBO-lipid 
(2-4) or control lacking cyclooctyne with rhodamine-azide 35. Error bars denote 
standard errors calculated from at least three replicate experiments.  
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exhibited greater change in the NBD/Rhd signal than those containing the ADIBO 

moiety (Figure 3.4), which we attribute to the ODIBO component having faster 

reaction kinetics than the ADIBO.  Liposomes containing no cyclooctyne (control) 

exhibited a lesser amount of change over time.  We attribute the minor signal to 

non-covalent interactions between rhodamine and the membrane, even perhaps 

with the rhodamine penetrating the bilayer and inserting into the vesicle. We have 

previously observed a similar result in fluorescence membrane studies.170  

 
3.3 Triggering Membrane Fusion 

Now that we had confirmed the derivatization of cyclooctyne lipids, we next 

worked to promote membrane fusion between vesicles containing cyclooctyne and 

azido lipids.  The cyclooctyne lipids used in this study ranged in terms of 

substitution around the cyclooctyne moiety, headgroup size/polarity, and 

hydrophobic chain length.  We mentioned the design of ODIBO 1 in an earlier 

chapter; it has a highly reactive cyclooctyne moiety and tetraethylene glycol linker, 

which can give the molecule flexibility upon the transition phases occurring in 

membrane fusion.  Additionally, ADIBO 2, another synthetic lipid, consists of a 

nitrophenyl moiety that links an ADIBO group to a triazole-lipid backbone. The 

photocleavable nitrophenyl group was incorporated for a separate project aimed 

at light-initiated drug release.170  We also obtained ADIBO lipids 3 and 4 from 

Avanti lipids, a commercial vendor, which became available during the course of 

these studies.  ADIBO 3 has the cyclooctyne moiety directly linked to the 

phosphate headgroup, and ADIBO 4 has a long polyethylene glycol chain in its 
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backbone.  This PEG chain should distance the ADIBO group further away from 

the membrane surface.  and we sought to determine the effect this has on 

membrane fusion.   

We modeled our system for detecting membrane fusion after multiple 

reports.126, 172-175  This particular model incorporated both donor and acceptor 

(NBD and Rhd, respectively) labeled lipids within the same vesicle, which also 

included the cyclooctyne-lipids.  These are then treated with liposomes containing 

no fluorescent dyes, but bearing azido-lipid 5. Upon fusion, a larger vesicle is 

created in which the fluorescent lipids originating from the cyclooctyne liposomes 

are distributed throughout a greater area, and thus these fluorophores undergo 

dilution within the membrane.  This leads to decreased proximity of these 

fluorescent lipids, and thus the FRET signal is diminished.  The expected result is 

the inverse of what we explained before, showing in an increase in NBD emission 

and a decrease in Rhd emission. Below is an example of the fluorescence 

spectrum for liposomes containing PC, PE, 1, Rhd-PE, NBD-PE (45/45/8/1/1, 

respectively) (Figure 3.5).  We can see the increase in the NBD emission signal 

and decrease in Rhd emission over time, eventually plateauing between 60-90 

minutes.  We first used low concentrations of PE (~20%) in our studies, and that 

did not produce any change in FRET.  Thus, we decided to focus on how PE, a 

non-bilayer forming lipid, could affect the change in FRET over time, and hence 

the rate of fusion.  
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Figure 3.5 Representative overlay of spectra showing the change in emission 
properties over time for the PC/PE/1/NBD-PE/rhodamine-PE 45/45/8/1/1 
samples. 
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3.3.1 Effect of PE Liposome Percentage on Fusion 

We set out to optimize the bulk lipid concentration that yielded the greatest 

change in FRET signal attributed to fusion.  We considered the respective 

concentrations of PC and PE in the membrane, and how that relationship could 

impact the rate of fusion.  PC is classified as a bilayer forming lipid, where PE is a 

non-bilayer forming lipid.  Therefore, increased percentages of PE in the 

membrane should promote fusion by destabilizing the membrane bilayer and 

thereby lowering the barrier for fusion. However, increasing PE may also increase 

non-specific fusion that is not driven by the click reaction, and liposomes containing 

greater than 50% PE are not particularly stable. 

 In this experiment, one set of liposomes contained a fixed amount of ODIBO 

lipid 1 (8%), NBD-PE (1%), and Rhd-PE (1%), and the other contained a fixed 

amount of PC (46%), PE (46%), and azide lipid 5.  In the liposome set containing 

ODIBO lipid 1, studies were taken at various concentrations of PC (60, 50, and 

45%) and PE (30, 40, and 45%, respectively).  We ran control studies with the 

aforementioned liposomes containing the variety of PC/PE concentrations along 

with ODIBO-lipid 1 against liposomes lacking any azide lipid 5.  

We performed many experiments where heat was not used during the mixing 

process, and we were unsuccessful in observing any FRET change. Indeed, 

numerous trials were attempted before fusion was successful, as will later be 

summarized. We eventually decided to heat the cuvette in between collecting data 

points as this would be expected to increase fluidity of the liposome membrane, as 
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a result of the lipids transitioning from gel to liquid phase.  This could in turn 

promote fusion and lipid mixing. We experienced success when we heated the 

cuvette up to slightly above physiological temperature (~40 oC). 

In the results from this study, the curve (Figure 3.6) corresponding to 45% 

PC/45% PE showed the biggest change in the NBD/Rhd signal over time, followed 

by 50% PC/45% PE, and finally 60% PC/30% PE.  This sequential order of 

reactivity indicates tight balance between membrane destabilization being 

beneficial for promoting fusion and detrimental for producing liposomes that are 

too unstable. The results also indicate that fusion can be tuned using this ratio of 

PC and PE.    

Additionally, while the control studies showed lesser activity, it should be noted 

how similar the curves are for control studies with liposomes containing 45% 

PC/45% PE versus study liposomes containing 60% PC/30% PE mixed with azido-

liposomes.  This could be an indication that the liposomes containing 45% PC/45% 

PE participate in some non-specific membrane fusion driven by the membrane 

instability caused by increased PE incoporation.  It could also be an indication that 

the high PE composition is shortening the lifespan of small unilamellar vesicles, 

and thus increasing the propensity to undergo fusion and relieve the membrane 

strain.  Not pictured are the studies containing liposomes with PE compositions 

exceeding 45% in the membrane. 

We observed a diminishing returns effect with these concentrations; falling 

along the same path as seen with 50% PC/40% PE study.  This also provides  
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Figure 3.6 FRET assay results for fusion using ODIBO-lipid 1 containing 
liposomes at various PC/PE percentages (60/30 (red circle), 50/40 (yellow 
circle), 45/45 (blue triangle)) and their corresponding controls (green triangle, 
black square, light blue square, respectively) mixed with azido-lipid 5 labeled 
containing liposomes.  
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further evidence that having too much PE in the membrane can cause too much 

destabilization of the bilayer.  This result could be caused by a mixture of lipids 

breaking into small micelles or undergoing non-targeted fusion with other vesicles, 

and this could potentially explain why we don’t observe significant changes in the 

NBD/Rhd signal.  

3.3.2 Cyclooctyne Lipid Effects on Fusion 

Now that we had optimized the conditions to promote membrane fusion, we next 

moved to study the effects that different cyclooctyne and azide lipids have on the 

fusion rate.  We outlined the four cyclooctyne lipids we used in these studies earlier 

in the chapter: ODIBO 1 and ADIBO 2-4.  We were excited to test azide lipid 5 

because it is the most synthetically accessible azide lipid target.  It is expected to 

present similar properties to diacylglyerol (DAG) due to its small headgroups, 

which should augment the curvature in a membrane.  This is beneficial to us as 

this effect on membrane curvature could decrease the energy barrier to stimulate 

fusion.   

In this series of studies, we can see the effect ODIBO lipid 1 has on the 

NBD/Rhd signal compared to other cyclooctyne lipids (Figure 3.7).  This is likely 

caused by the fast kinetics of ODIBO.  When we compare the change seen with 

ODIBO 1 to ADIBO 2, we did not see the same sort of reactivity and what 

essentially seemed to fall in line with the control study.  This could be attributed to 

the hydrophobicity and rigidity of lipid 2, which may not provide an effective 

presentation of the cyclooctyne group for conjugation. We believe this aspect of  
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Figure 3.7 FRET fusion assay results as a function of cyclooctyne-lipid using 
ODIBO (1, blue circle), ADIBO 2 (green circle), 3 (red triangle) or 4 (yellow 
triangle)) or control liposomes (light blue square) lacking cyclooctyne-lipid. Error 
bars denote standard errors calculated from at least three replicate 
experiments. 
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ADIBO lipid 2 was more prohibitive to promoting fusion than the switch to the 

ADIBO moiety based on the other compounds that were studied. 

Although ADIBO lipids 3 and 4 did not show the same degree of change in the 

NBD/Rhd signal, these sets of data provided valuable insight nonetheless.  We 

discussed earlier the prospect of ADIBO lipid 4 being affected by the long PEG 

chain causing the triazole formation to occur away from the membrane.  We also 

expected ADIBO lipid 3 to be an extremely effective fusogenic lipid due to the 

presence of the phosphate head group, which could enhance presentation at the 

aqueous interface.  Our results show that ADIBO lipid 4 exhibited greater change 

over time than ADIBO lipid 3.  In fact, ADIBO lipid 3 barely climbed above the 

control curve.  ADIBO 4 also exhibited greatest amount of volatility between trials, 

as seen by by the large error bars in both the derivatization and fusion studies. 

We have a few theories as to why we observed the results we did.  First, the 

ADIBO lipid 3 has an alkyl group branching off the phosphate group of around 

seven carbons.  Granted, there are amide linkages in the middle of the chain, but 

this chain does have discernable hydrophobic character.  This observation revisits 

an initial concern of ours when designing these functionalized lipids.  There was a 

chance that the hydrophobic character of the ADIBO moiety could induce the 

cyclooctyne to bury itself in the membrane bilayer, rendering it unavailable for 

reaction.  This could explain the limited reactivity of this lipid in the study. 

Secondly, ADIBO lipid 4 has a long, bulky PEG chain its headgroup, and PEG 

lipid (with no functional group) is meant to stabilize membrane bilayers and inhibit 
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fusion events.  Since PEG is hydrophilic, it prefers to reside along the outer leaflet 

of the membrane, and with enough PEG composition in the membrane this can 

prevent opposing membranes from interacting with lipids.  However, having the 

cyclooctyne attached to a long PEG chain may work to its advantage because it is 

more likely to reside outside the membrane, unlike the case with ADIBO lipid 3.  It 

should be noted that with the azide lipid 5, the triazole will form along the edge of 

one liposome, and may mitigate the effect of the cyclooctyne being removed from 

its own liposomal membrane.  Perhaps instead of blocking any contact between 

membranes normally seen by PEG, the reaction between the azide lipid 5 and 

ADIBO-PEG lipid 4 does bring the membranes close enough to promote fusion.     

When membranes are decorated with reactive functional groups, they are 

included such that multiple functional groups are available to react.  This opens 

the possibility that a network of reactions can be accomplished between 

liposomes.  In other words, two liposomes can fuse to form a vesicle twice the size, 

but this can be repeated such that one liposome could potentially react with 4 or 5 

complementary liposomes.  This networking effect could be involved in the 

reactivity pattern seen with ADIBO lipid 4.  The PEG component could still have 

an inhibitory effect on fusion between azido-tagged liposomes and cyclooctyne-

tagged liposomes, but this doesn’t prevent a number of azido-tagged liposomes 

from being docked to surface in close proximity.  This swarming of the liposomes 

could break down the PEGylated surface and fusion could be stimulated.  It could 

be an interesting prospect to design and synthesize a lipid with an ODIBO moiety 
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as the reactive partner and a PEG linker in the backbone, since it has been shown 

that the PEG linker does not seem to diminish the fusion properties of the lipid.  

3.3.3 Azide Lipid Effects on Fusion 

We also studied the effects of incorporating azido-lipids with different headgroup 

linkers on FRET changes attributed to membrane fusion in this assay.  For this 

experiment, we compared azido-lipids 5 and 36 (Figure 3.8) to both ODIBO-lipid 1 

and ADIBO-lipid 3.  Lipid 36 contains a phosphate headgroup and lengthy alkyl 

chain branching off of the phosphate, so it contains a different makeup in the 

headgroup than 5.  We purchased lipid 36 through a commercial vendor before we 

synthesized azido-lipid 18.  

 

In these studies, liposomes were composed of the lipid percentages that had 

been optimized in the aforementioned studies (46% PC, 46%, PE, and 8% azide-

lipid (5 or 36)).These were then mixed with liposomes composed of 45% PC, 45% 

PE, 1% each of NBD-PE and Rhd-PE, and 8% (1 or 3).  According to Figure 3.9, 

there wasn’t much difference in the change of FRET between azido-lipids 5 and  

Figure 3.8 Structures for azido-lipid’s 5 and 36 
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Figure 3.9 FRET fusion assay as a function of cyclooctyne-lipid using ODIBO 
1 mixed with azide lipid  5 (blue triangle) or azide lipid 36 (red circle), and ADIBO 
3 mixed with azide lipid 5 (white triangle) or azide lipid 36 (yellow circle).  Control 

liposomes lacking cyclocytne were mixed with azide lipid 36 (black square).   
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36 when mixed with ADIBO-lipid 3, but a significantly greater change occurred 

when liposomes containing azido-lipids 5 and 36 were mixed with ODIBO-lipid 1. 

We saw similar results when comparing various cyclooctyne labeled liposomes 

when mixed with those containing azide lipid 5, again supporting the faster reaction 

kinetics of ODIBO compared to ADIBO.  However, when we substituted azido-lipid 

36 into the membrane, the change in FRET narrowed between ODIBO 1 and 

ADIBO 3. This could indicate that the azido-alkyl linker branching off of the 

phosphate headgroup in 36 has an inhibitive effect on the rate of fusion.  The linker 

could have enough hydrophobic character that the azide tag becomes buried 

underneath the outer leaflet of the membrane, thus limiting the efficacy of the 

reaction.   

3.4 DLS and STEM Use for Detecting Fusion 

Other than FRET, there has been significant contribution to studying membrane 

fusion from other prominent methods.  This list of methods includes dynamic light 

scattering (DLS) and transmission electron microscopy (TEM).  DLS is a scattering 

technique that indicates the size of molecules in solution by cross-referencing the 

profile of the solution with the size distribution of the particles.  Given the method 

of this technique, we can track the liposome size in the solution upon mixing of 

complementary vesicles and detect the distribution of various sizes over time.  

Unfortunately, we did not obtain any results conducive to tracking membrane 

fusion. 
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Basically, the two initial readings of each respective liposome will determine if 

the filter used in extruding yielded the proper size of liposomes, and also the level 

of polydispersity.  Over time, as these two solutions mix, we should see a second 

peak arise that indicates a larger sized particle has emerged, and a larger 

polydispersity index that confirms an increased variance in the size of the particles. 

While we did eventually observe an increase in liposome size during studies, it 

was not as great of a change as expected from membrane fusion. 

We were able to gather images of our liposome solutions using the scanning 

transmission electron microscopy (STEM) method (Figure 3.10).  We isolated two 

different types of solutions onto a copper-coated plate for scanning purposes: 

azido-tagged liposomes only (control), and cyclooctyne-tagged liposomes mixed 

with azido-tagged liposomes (study).  After a drop (~10 µL) of each solution was 

placed onto separate plates, a drop of KHPTA stain was placed onto each plate.  

The purpose of the stain was to be encapsulated within the membrane bilayer, 

which will allow the detection of liposomes on the plate surface.  In the images of 

the azido-tagged liposomes, a clear depiction of small, unilamellar vesicles (~100-

200 nm) was captured (Figure 3.10A).  It should also be noted how focused the 

KHPTA stain is along the membrane surface, capturing the clear divide between 

inside and outside of the liposome.   

Upon mixing the azido-tagged liposomes with ODIBO-labeled liposomes, we 

could see on multiple images larger vesicles being formed.  Some vesicles were 

measured to be 4x the size of the extrusion, along with the imperfection of the  
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Figure 3.10 STEM images of liposomes before and after fusion driven by 
SPAAC. A. Images of azido-liposomes (46/46/8 PC/PE/5) show ~200 nm 
liposomes. B. Images after mixing of azido- (46/46/8 PC/PE/5) and ODIBO- 
(46/46/8 PC/PE/1) containing liposomes indicate much larger and multilamellar 
assemblies, indicating fusion and incomplete lipid mixing. All scale bars 
correlate with 200 nm. 

A

B
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vesicle membrane (according to the stain) (Figure 3.10B). These images support 

our FRET studies by confirming that the liposomes are fusing when the azide- and 

ODIBO-lipids are incorporated into liposomes. The large sizes of the structures 

seen in the STEM study image supports that multiple liposomes are fusing and 

mixing lipid contents. These structures do, however, contain multiple 

compartments in which not all lipid contents have mixed. It is possible that the large 

assemblies result from the high percentage of azido- and ODIBO-lipids in the 

liposomes. Future work could be performed to vary these percentages and see the 

effect this has on the ultimate membrane size. 

Additionally, we subjected liposomes containing azido-lipids to those lacking the 

ODIBO-lipid (additional control). In this experiment, we did not see the same 

evidence that fusion had taken place.  However, according to these images, we 

did see the aggregation of liposomes around one another, but the presence of the 

stain clearly divided each individual membrane surface.  The congregation of 

liposomes, not resulting in fusion, could be attributed to van der Waals forces 

driving aggregation of unlike liposomes.  In this control sample, the ODIBO-lipid 

that was removed was replaced with PC and PE. It is possible that the extra PE 

content is triggering non-specific fusion, as was seen in the previous studies. 

Therefore, a control should be run in which the ODIBO-lipid that is removed is 

replaced by PC.  
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3.5 Additional attempts at instigating fusion  

Prior to our discovery of the conditions that promote membrane fusion by 

copper-free click chemistry, as previously described, numerous unsuccessful 

attempts were made. In many of these cases, we employed conditions that were 

later shown to be ineffective for promoting fusion. For example, many initial 

liposome studies utilized ADIBO-lipid 2 and/or azido-lipid 36, which were ultimately 

shown to be ineffective in comparison to ODIBO-lipid 1 and azido-lipid 5, 

respectively. In addition, many experiments were performed in the absence of 

heat, which was later identified to be necessary. While these studies typically 

provided no change during fluorescence studies, we will now discuss a few 

examples in which experiments provided insights into the system. 

3.5.1. Effect of Cholesterol on Membrane Fusion  

Before we attempted to promote membrane fusion by using non-bilayer lipids, 

we studied the effects of membrane penetrating additives.  Membrane penetrating 

molecules such as detergents and peptides have the ability to insert into the bilayer 

and disrupt membrane fluidity.  For example, the addition of Triton-X lowers the 

critical micelle concentration (CMC) of lipid assemblies, which diminishes liposome 

viability in solution.  Cholesterol is a popular compound to be paired with PE in the 

membrane, especially when inducing membrane fusion.  Cholesterol is a rigid 

structure that increases the hexagonal shape, HII, of the membrane.  In other 

words, it can augment the negative curvature strain on the membrane and increase 

the propensity to form inverse micelles (polar head groups facing inward).      
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We incorporated various amounts of cholesterol (0%, 10%, and 20%) in each 

liposome containing ODIBO-lipid 1 and azido lipid 5, respectively, while 

maintaining the same ratio of PC/PE (1:1).  Figures 3.11 and 3.12 show the results 

from studies in which we mixed liposomes solutions containing 45:45:0:8:1:1 

(PC:PE:Cholesterol:1:NBD-PE:Rhd-PE), 40:40:10:8:1:1, and 35:35:20:8:1:1 with 

liposome solutions containing 46:46:8:0 (PC:PE:5:Cholesterol), 41:41:8:10, and 

36:36:8:20.  We mixed each possible combination at 40 oC to obtain results for a 

variety of cholesterol-containing liposomes (0%, 10%, and 20%).  We also made 

liposomes that lacked ODIBO 1 to be used as the control, and mixed those 

solutions with the aforementioned liposomes containing azido lipid 5 and 

cholesterol.   

In Figure 3.11, the results of the fusion mixes (cyclooctyne liposomes vs. azide 

liposomes) and the control mixes (no cyclooctyne vs. azide) suggest that 

cholesterol inhibits the change in FRET over time.  In Figure 3.12, we compared 

the two best fusion mixes (10% vs. 10% and 0% vs. 20%) with the mix containing 

no cholesterol, and the change in FRET seen by the fusion mix with no cholesterol 

involved was much greater.  It appears in Figure 3.11 that the mixes containing 

less cholesterol generally displayed the greatest change in FRET, aside from the 

mix of 0% and 10% in the cyclooctyne and azide liposomes, respectively.  Although 

we are maintaining the concentration of PE equal to the PC, a combination that 

produced the greatest change in FRET (Figure 3.6), these studies suggest that 

fusion is largely contributed by the absolute amount of PE present in the liposome.     
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Figure 3.12 FRET studies comparing the best liposome mixtures with and 
without cholesterol.  Control liposome mixtures were also placed in this graph. 

Figure 3.11 FRET studies for ODIBO 1-labeled liposomes mixed with N3 5-
labeled liposomes and control liposomes mixed with N3 5-labeled liposomes.  
All combinations of liposomes were studied in which the cholesterol was varied 
(0, 10, and 20%). 
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3.5.2. Effect of Detergent on Membrane Fusion 

We also attempted to initiate membrane fusion by adding small aliquots of 

Triton-X into the solution.  Triton-X, a detergent, is an amphiphilic entity that can 

penetrate membranes through insertion, but can also promote lipid mixing between 

aggregated vesicles by destabilizing the bilayer.176  When the membranes are in 

close proximity to each other, the Triton-X was expected to assist in initiating fusion 

through the mechanism we just described.  We composed liposomes with 

87:11:1:1 (PC:ADIBO 2:NBD-PE:Rhd-PE) and 89:11 (PC:Azide 36) and mixed 

them at room temperature. Upon addition of 4% (w/v) Triton-X, the results showed 

that this additive did not cause changes in FRET between the fused liposomes and 

control studies.  We should note that this study likely suffered from the choice of 

clickable lipids used, ADIBO 2 and azide 36, since we had not yet 

synthesized/incorporated ODIBO 1, ADIBO’s 3 and 4, and azide 5.  In Figure 3.7, 

we showed that ADIBO 2 contributed little change in FRET compared to the other 

lipids used, and in Figure 3.9 we observed that azide 36 facilitated less change in 

FRET than azide 5.  It is worth revisiting this experiment with the clickable lipids 

ODIBO 1 and azide 5 and observing if any difference between the fusion and 

control studies is detected.   

We attempted these experiments before investigating the effect PE on fusion 

rate, but we did incorporate minor amounts of PE (~30%) into the liposomes by 

replacing the PC percentage.  This resulted in liposomes composed of 

57:30:11:1:1 (PC:PE:ADIBO 2:NBD-PE:Rhd-PE) and 59:30:11 (PC:PE:Azide 36).  
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As with studies that did not include PE in the liposomes, there was no difference 

seen between the fused and control liposomes. 

3.5.3. Effect of Oppositely Charged Lipids on Fusion 

A popular method for stimulating membrane fusion involves the use of charge 

disparity on opposing liposomes to further promote an interaction.177-183  This can 

be achieved by introducing cationic lipids into one liposome accompanied by 

negatively-charged liposomes in the fusion partner. The ionic relationship will 

enhance attraction and may also destabilize the membrane and allow lipids from 

different bilayers to mix more readily.  In our studies, the incorporation of opposite 

charges in the form of a positively-charged lipid (DOTAP) in one liposome and 

negatively-charged lipid (either PA or PS) in opposing liposomes was ineffective 

for promoting membrane fusion.  In addition to having a negatively-charged 

phosphate, PA contains a small headgroup, thus giving it a small surface area 

relative to the hydrophobic tails.  This lipid can thus induce negative curvature 

strain, and promote destabilization in the membrane.  We anticipated the click 

reaction, again, to dock these liposomes on the surface.  This final step is to cross 

over the energy barrier and finalize the path to membrane fusion.   

We originally created liposomes with 78:10:10:1:1 (PC:DOTAP:ADIBO 2:NBD-

PE:Rhd-PE) and 80:10:10 (PC:(PS or PA):Azide 36), as well as control liposomes 

composed of 88:10:1:1 (PC:DOTAP:NBD-PE:Rhd-PE).  We did not detect any 

changes in FRET with fused liposomes (cyclooctyne and azide) nor the control 

liposomes (control and azide).  We attempted to add Triton-X to the mixture in 
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order to induce fusion, but again no change was observed in the FRET studies.  In 

the next batch of liposomes, we made two changes: (1) we incorporated the 

fluorescent lipids (NBD-PE and Rhd-PE) into the azido-tagged liposomes instead 

of the cyclooctyne-tagged liposomes.  The purpose of this alteration was to pair 

the negatively-charged headgroup of Rhd-PE with the negatively-charged PS (or 

PA) in order to reduce self-aggregation of liposomes, (2) we incorporated PE into 

the liposomes as means to augment fusion rate, so now we have liposomes 

composed of 47:35:10:8 (PC:PE:DOTAP:ADIBO 2), 50:32:9:8:0.5:0.5 (PC:PE:(PS 

or PA):Azide 36:NBD-PE:Rhd-PE), and 58:32:9:0.5:0.5 (PC:PE:(PS or PA):NBD-

PE:Rhd-PE). In Figure 3.13, we are comparing the fluorimeter results of the fused 

liposomes and control liposomes by displaying the change in absolute intensity of 

the NBD emission (518 nm) and Rhd emission (590 nm).  We do observe a change 

in the NBD emission intensity over time in the fused mixture (3.13A) and no change 

in the control mixture (3.13B), but the Rhd emission does not waver from the initial 

intensity in both the fused and control liposomes over time. 

After synthesizing ODIBO 1 and obtaining ADIBO 3, we started to use this lipid 

in our studies and we continued with attempting to facilitate fusion using oppositely 

charged lipids in opposing liposomes.  We composed liposomes with 

40:40:10:8:1:1 (PC:PE:PA:(ODIBO 1 or ADIBO 3):NBD-PE:Rhd-PE), 40:40:10:10 

(PC:PE:DOTAP:Azide 36), and 43:43:12:1:1 (PC:PE:PA:NBD-PE:Rhd-PE). As 

seen in Figure 3.14, we observed no difference in the FRET change between the 

fused liposomes and control liposomes.  In this graph, we are presenting the  
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Figure 3.13 FRET Studies of ADIBO 2-labeled liposomes mixed with azide 36-
labeled liposomes (A) and control liposomes mixed with azide 36-labeled 
liposomes (B).  In addition to PC & PE, liposomes were composed of PA in one 
solution and DOTAP in the other solution. Emission intensities for NBD (518 
nm) and Rhd (590 nm) were plotted. 

Figure 3.14 FRET Studies of cyclooctyne-labeled (ODIBO 1, ADIBO 3) 
liposomes mixed with azide 36-labeled liposomes (blue curves) and control 
liposomes mixed with azide 36-labeled liposomes (grey curve). Cyclooctyne 
and control liposomes contain PA while azido-tagged liposomes contain 
DOTAP. 
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NBD/Rhd emission ratio over time, which is the relationship we presented in 

Figures 3.4, 3.6, 3.7, and 3.9.  There is some separation seen between the fused 

liposomes and control liposomes within the first 20 minutes of the experiment, but 

compared to the results we observed in Figures 3.6 and 3.7 we don’t see quite the 

same change.  Subsequently, we were able to experience better FRET results in 

our fused liposomes by optimizing the PE concentration, utilizing azide lipid 5, and 

mixing the liposomes in a ~40 oC water bath.   

3.6. Conclusions 

In the work described in this chapter, we identified and optimized conditions for 

liposome-liposome fusion driven by copper-free click chemistry. In doing so, we 

optimized the structure of the cyclooctyne- and azido-lipid components, the 

temperature of the reaction, and the percentages of bulk lipids including PC and 

PE. Fusion was found to be most effective when using ODIBO-lipid 1, azido-lipid 

5, a reaction temperature of 40 oC, and PC/PE percentages of 45% in the 

liposomes. However, the inclusion of 45% PE was pushing it as this began to 

increases non-specific fusion. This system provides an initial model for targeted 

drug delivery using copper-free click chemistry. Prior to identifying successful 

conditions, many experiments were unsuccessful since they involved compounds 

that ultimately proved unsuccessful or only slightly effective for fusion (ADIBO 2 

and azido 36), were run at room temperature, or were run with lipids that appeared 

to inhibit fusion (cholesterol). 
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3.7 Experimental Procedures 

PC (L-α-Phosphatidylcholine, mixed isomers from chicken egg), PE (1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine), 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE), 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 

(rhodamine-PE), ADIBO-lipids 3 and 4, and azido-lipid 36 were purchased from 

Avanti Polar Lipids, Inc. Liposome extruder and polycarbonate membranes were 

obtained from Avestin (Ottawa, Canada). Ultrapure water was purified via a 

Millipore water system (≥ 18 MΩ·cm triple water purification system). Small 

quantities (< 5 mg) were weighed on a OHRUS analytical-grade mass balance. 

Fluorescence studies were performed using a Perkin Elmer LS55 fluorimeter. Plots 

were generated using SigmaPlot 13, and curves in Figure 3 were fitted using an 

exponential decay function, while those in Figures 5A and 6 were fitted using an 

exponential growth to maximum function. All errors bars in plots include error bars 

depicting the standard errors of at least three experimental replicates. 

3.7.1 Liposome preparation 

Stock solutions of lipids 1 and 2, PC, NBD-PE, and rhodamine-azide 35 (Rhd-

N3) were made in chloroform for fluorimeter studies. Examples of these stock 

solutions were prepared as follows: 6 mg of ODIBO-lipid 1, 1.2 mg of ADIBO-lipid 

2, 100 mg of PC, 1 mg of NBD-PE, and 1.8 mg of Rhd-N3 35 were dissolved in 1 

mL, 1 mL, 4 mL, 1.5 mL, and 2 mL of chloroform, respectively, to form stock 

solutions of 4.83 mM lipid 1, 0.970 mM lipid 2, 32.5 mM PC, 0.720 mM NBD-PE, 
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and 1.18 mM Rhd-N3 16. In three separate separate vials, we used these stock 

solutions to add the following: 11.8 µL PC (90%), 8 µL lipid 1 (9%), and 5.8 µL 

NBD-PE (1%) in vial A; 11.9 µL PC (90%), 40 µL lipid 2 (9%), and 5.9 µL NBD-PE 

(1%) in vial B; and 11.9 µL PC (99%) and 5.4 µL (1%) in vial C. Each lipid solution 

was evaporated using argon gas to generate a solid lipid film. All vials were placed 

under vacuum for 4 h and then dissolved in Tris-HCl buffer (10 mM)/NaCl (90 

mM)/EDTA (1 mM) to produce 2 mM liposome solutions. The solutions were 

hydrated for 1 h at 50 oC, and then subjected to 10 freeze/thaw cycles to form 

unilamellar vesicles. Next, the liposome solutions were extruded 15 times using a 

200 nm polycarbonate membrane. Other liposomes used for studies were 

produced in the same manner using different percentages of the appropriate lipids. 

3.7.2 Membrane derivatization studies  

Rhodamine-azide 35 (48.96 µL, 58.0 nmol) was added to the two separate 

microcuvettes, and then evaporated with Ar gas to leave solid Rhd-N3. Using the 

ODIBO 1 liposome solution (22 µL) was added to one of the cuvettes, and then 

diluted with Tris buffer (300 µL) to give a final total concentration of 220 µM. An 

initial reading was collected; the resulting solution was mixed thoroughly with a 

pipette for 5 minutes, and the cuvette was then placed in the fluorimeter. The 

fluorimeter was set to scan an excitation wavelength of 460 nm and with emission 

and excitation slits of 9.5 nm and 7.5 nm, respectively. Fluorescent readings were 

collected for ~40 min. This procedure was repeated for the studies of ADIBO 

lipid(s) 2, 3, 4, and ODIBO 15.  
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3.7.3 Membrane fusion FRET dilution studies using ODIBO-lipid 1 by varying 

PC/PE percentages.  

PE (5 mg), azido-lipid 5 (2.3 mg), and rhodamine-PE (2 mg) were dissolved in 

1.5 mL, 2 mL, and 675 µL of chloroform, respectively, to form stock solutions of 

4.48 mM PE, 5.24 mM lipid 5, and 0.77 mM rhodamine-PE. These stock solutions 

along with the stock solutions of PC (32.46 mM), ODIBO lipid 1 (4.83 mM), and 

NBD-PE (0.72 mM) were used to make lipid solutions of 60:30:8:1:1 

(PC:PE:1:NBD-PE:Rhd-PE), 50:40:8:1:1 (PC:PE:1:NBD-PE:Rhd-PE), 45:45:8:1:1 

(PC:PE:1:NBD-PE:Rhd-PE), 46:46:8 (PC:PE:5), and 50:50 (PC:PE). Each lipid 

solution was converted into a 2 mM liposome solution by employing a similar 

protocol outlined in the liposome preparation section using 100 nm polycarbonate 

membranes for extrusion. Cyclooctyne-labeled liposome solution (20 µL) was 

added to a microcuvette and diluted with Tris buffer (420 µL), and an initial reading 

was taken on the fluorimeter (0 min). Next, azido-labeled liposome solution (60 µL) 

was added to the cuvette to give a final total concentration of 250 µM. The solution 

was mixed thoroughly with a pipette for ~ 2 min while the cuvette was submerged 

in a warm water bath (~ 40 0C). Fluorescence measurements were taken at 5, 15, 

25, 35, 60, and 90 minutes after mixing, with heating in between each fluorescence 

scan. The ratio of fluorescence intensities at NBD emission (520 nm) and Rhd 

emission (588 nm) was calculated, and each ratio was normalized by subtracting 

the initial NBD/Rhd ratio from each measurement.  
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3.7.4 FRET Dilution Studies using Cyclooctyne-lipids 1-4 

ADIBO-PEG-lipid 4 (5 mg), and ADIBO-lipid 3 (5 mg) were dissolved in 400 µL 

and 1 mL of chloroform, respectively, to form stock solutions of 4.44 mM of ADIBO 

4 and 5.02 mM of ADIBO 3.  These stock solutions and the stock solutions of PC 

(32.46 mM), PE (4.48 mM), lipids 1, 2, and 5 (4.83 mM, 0.97 mM, and 5.24 mM, 

respectively), NBD-PE (0.72 mM), and Rhd-PE (0.77 mM) were used to make lipid 

solutions of 45:45:8:1:1 (PC:PE:cyclooctyne-lipid:NBD-PE:Rhd-PE), 46:46:8 

(PC:PE:azide 5), and 49:49:1:1 (PC:PE:NBD-PE:Rhd-PE). One lipid solution was 

made for each cyclooctyne lipid (1-4). Each lipid solution was converted into a 2 

mM liposome solution by employing a similar protocol outlined in the previous 

liposome preparation protocol using 100 nm polycarbonate membranes for 

extrusion. Cyclooctyne-labeled liposome solution (20 µL) was added to a 

microcuvette and diluted with Tris buffer (420 µL), and an initial reading was taken 

on the fluorimeter (0 min). Next, azido-labeled liposome solution (60 µL) was 

added to the cuvette to give a final total concentration of 250 µM. The solution was 

mixed thoroughly with a pipette for ~ 2 min while the cuvette was submerged in a 

warm water bath (40 0C).  Fluorescence measurements were taken at 5, 15, 25, 

35, 60, and 90 minutes after mixing, with heating in between each fluorescence 

scan. The ratio of fluorescence intensities at NBD emission (520 nm) and Rhd 

emission (588 nm) was calculated, and each ratio was normalized by subtracting 

the initial NBD/Rhd ratio from each measurement. 
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3.7.5 FRET Dilution Studies using Cholesterol  

In addition to the solutions of PC, PE, ODIBO 1, Azide 5, NBD-PE, and Rhd-PE 

described earlier, a stock solution of cholesterol (5 mg/mL, 12.93 mM) was made. 

Liposomes composed of 45:45:0:8:1:1 (PC:PE:Cholesterol:1:NBD-PE:Rhd-PE), 

40:40:10:8:1:1, 35:35:20:8:1:1 and 46:46:8:0 (PC:PE:5:Cholesterol), 41:41:8:10, 

and 36:36:8:20 were made according to the procedure listed above.  Control 

liposomes consisting of 49:49:0:1:1 (PC:PE:Cholesterol:NBD-PE:Rhd-PE), 

44:44:10:1:1, and 39:39:20:1:1 were also made.  Cyclooctyne-tagged liposomes 

(labeled) were thoroughly mixed with azido-tagged liposomes (unlabeled) in a 1:3 

ratio, respectively, at ~40 ⁰C (final concentration: 250 µM).  Prior to addition of 

unlabeled liposomes, an initial fluorescent reading was taken, and fluorescent 

measurements (post-mixing) were subsequently taken at 5, 15, 25, 35, 60, and 90 

minutes.  Studies were repeated with control liposomes instead of cyclooctyne-

tagged liposomes. 

3.7.6 FRET Dilution Studies using PS, PA, and DOTAP 

In addition to the solutions of PC, PE, ODIBO 1, ADIBO 2 and 3, NBD-PE, and 

Rhd-PE described earlier, stock solutions of PS (5 mg/1.5 mL, 4.04 mM), PA (5 

mg/mL, 7.08 mM), DOTAP (16 mg/mL, 22.90 mM), and azide 36 (5 mg/mL, 5.98 

mM) were made.  Liposomes consisting of 40:40:10:8:1:1 (PC:PE:PA:ODIBO 

1:NBD-PE:Rhd-PE), 40:40:10:10 (PC:PE:DOTAP:Azide 36), and 43:43:12:1:1 

(PC:PE:PA:NBD-PE:Rhd-PE) were made according to the procedure described 

above.  Solutions containing fused liposomes (cyclooctyne and azide) and control 
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liposomes (control and azide) were made by mixing 3 equivalents of unlabeled 

liposomes with 1 equivalent of labeled liposomes at room temperature into a 

cuvette (final concentration: 250 µM).  Prior to adding the unlabeled liposomes, an 

initial reading of the labeled liposomes was recorded. Fluorescence 

measurements were taken at 5, 15, 25,35, 60, and 90 minutes after mixing.    

3.7.7 Scanning Transmission Electron Microscopy (STEM) Experiment 

Assays  

Liposomes consisting of Azido lipid 5, ODIBO 1, and control were prepared 

using the procedure listed above.  Three separate solutions were prepared for 

study: 5, 5 mixed with 1, and 5 mixed with control. Each solution was measured to 

a total concentration of 400 µM.  The latter solutions were mixed and heated 

(submerged in water bath of ~35 ⁰C) for 5 minutes, and then allowed to sit at room 

temperature for 1 hr. A drop (5-10 µL) from each solution was immobilized onto 

three separate carbon filters.  Each filter was stained using a 5% (w/v) solution of 

phosphotungstic acid, and the filter was stored in a desiccator overnight prior to 

experiment.    Images were collected using the Zeiss Auriga at the Joint Institute 

of Advanced Materials in Knoxville, TN. The electron beam was set at 25 eV, and 

images were detected using an Everhardt-Thornley SE2 detector.   
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Chapter 4: Miscellaneous Projects 

4.1 PSII Inhibitor Synthesis  

Photosynthesis is an important and necessary process to preserve plant life on 

this planet.  Two proteins in particular, photosystem I (PSI) and photosystem II 

(PSII), are prevalent in maintaining this cycle in perpetuity.  When sunlight is 

makes contact with the plant, a variety of pigment molecules absorb the light and 

are excited.  This excitation energy is transferred to light-harvesting pigments and 

goes through a series of electron-transfer processes at the reactive center site, 

where ultimately the PSI and PSII reside.184-186  These photosystems consist of 

supermolecules that contain a vast array of pigment-protein interactions and 

chlorophyll molecules.  Inhibition of these pathways could lead to plant death, but 

there are benefits to this process as well.  This could be aided by disrupting the 

photosynthetic pathway of certain bacterial strains; allowing us to improve plant 

viability.   

A variety of novel small synthetic molecules have been designed to inhibit the 

PSII complex in plants and weeds.  These synthetic analogues were designed to 

displace pigment-protein interactions and disrupt the flow of electrons 

photosynthesis.  Examples of these novel molecules include hydroquinolines, 

ureas, and amides.187-190  There have also been studies using halides as inhibitors 

in solution with PSII.  This is due to the strong binding affinity between calcium, a 

popular ion present in the PSII complex, and specifically, fluoride.  This was the 

inspiration behind this particular group of PSII inhibitors in a collaborative effort 
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with Dr. Gregory Armell, formerly of the UT Institute of Agriculture and currently at 

BASF Corporation.  The trifluoromethyl substituent is perhaps meant to be the 

primary inhibitive portion of the molecule, and although it doesn’t exist as an ion, 

the electron pairs on each of the fluorides are able to coordinate with the reactive 

core and label it as a dual site inhibitor.191  Studies on these molecules will be 

necessary to understand the full capabilities of both the trifluoromethyl and urea 

substituents.  

We began the synthesis for PSII inhibitors with commercially available 3-

trifluorophenol 39 and 4-chloro-1-nitrobenzene 38 (Figure 4.1).  These two 

reagents were coupled using an Ullman type reaction, which produces the ether 

linkage between the two benzene moieties.  We originally designed the synthesis 

to generate biphenyl urea 37 in one step using the Ullman reaction from 39 and a 

urea chlorobenzene moiety.  This reaction suffered from degradation of the urea 

compound, which was confirmed by mass spectrometry.  Consequently, we 

decided to generate the ether linkage first.  Compound 38 has the nitro functional 

group, and in the para position on the ring can withdraw a lot of electron density 

from the C-Cl bond.  The Ullman reaction has shown limited reactivity when using 

chlorine as the halogen, as opposed to the bromine or iodine.192-194  Having an 

electronegative halogen substituted on the benzene and using it as the 

electrophilic piece in the Ullman reaction could lead to lower yields.  Adding the 

nitro functional group onto the ring weakens the bond between C-Cl, and thus 

could increase the reactivity of the electrophile.  Another addition we made to the 
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reaction was to use dry and degassed DMF as the solvent.  Since we heated the 

reaction to high temperatures, this could’ve led to DMF decomposing in the flask 

and produce unnecessary byproducts.  Degassing solvents inhibits the solvent to 

be exposed to oxidation in the flask.  Taking into account all of these details, we 

were able to isolate the biphenyl ether adduct 40. 

We subjected this to hydrogen and palladium catalyst to generate amine 41.  

We were able to obtain the commercially available dimethylcarbomoyl chloride, 

and after slow addition at 0 oC and basic conditions we generated urea 37.  This 

final reaction also required dry and distilled dicholoromethane (CH2Cl2) to obtain a 

modest yield.  This is likely due to the moisture sensitive nature of 

dimethylcarbomyl chloride.  We produced compound 37 in 8% overall yield with 

respect to nitrobenzene 38, and 300 mg total of 37.  This scheme was limited by 

both the first step (Ullman Reaction), which could be because the electrophile likely 

Figure 4.1 Synthetic scheme for producing biphenyl ether 37 
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wasn’t sufficiently reactive, and the final, which may suffer from the moisture 

sensitivity of the dimethylcarbamoyl chloride reagent.  Another possibility is that 

the reactivity of the phenol, which is the nucleophile in this case, could be limited 

by the presence of the trifluoromethyl group substituent.  This is a strong electron 

withdrawing group that can decrease the nucleophilicty of the phenol, and hinder 

its ability to attack the chlorobenzene moiety. 

We’ve also designed a class of molecules that contain a heteroatom in one or 

each of the benzene rings.  Heteroaromatics are a class of compounds that can 

be useful for designing biological inhibitors.  These functional groups have 

especially been prominent in manufacturing herbicides for plant and weed 

diseases.  

4.2 Coumarin-Azide Synthesis 

Coumarins are useful, versatile, and small molecules that contribute to 

fluorescent labeling of organic entities.  The assistance of coumarins is a popular 

entity used in labeling live cells, and for reacting with derivatized liposomes.195-200  

A variety of coumarins have been synthesized by adding on different substituents 

to cater to different functional groups.  These groups include thiols,201-202 acids, 

alkynes, and azides.  The latter of which has been most prominently utilized as a 

fluorogenic dye through the use of the copper-catalyzed click reaction.203 

2,4-Dihydroxybenzaldehyde 43 was purchased through a commercial vendor, 

and then reacted with N-acetylglycine 44 (Figure 4.2).  The reaction proceeded 

through a Robinson annulation in order to form the bicyclic component.  In addition 
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to this reaction closing up the ring, the hydroxyl group at the 4-position was acetyl 

protected.  Coumarin analogue 45 was collected and moved to the next step 

without further purification.  Next, 45 was reacted with sodium nitrite to form the 

nitrosamine derivative, and then sodium azide was added to produce the coumarin 

azide 42.  The product was isolated via crystallization with H2O and characterized 

by infrared spectroscopy.  This compound is defined by the strong peak at 2140 

cm-1, which signifies the presence of the azide functional group.   

Coumarin analogues have been useful for fluorescence detection, particularly 

for in vitro studies.  These dyes have the ability to act as ‘on/off’ fluorophore in 

which fluorescence is activated upon reaction. Multiple functional groups have 

been added on coumarin to optimize fluorogenic properties for this purpose.  A 

number of chemical methods have been implemented to expose this ‘on/off’ 

attribute, most notably azide-alkyne click chemistry, thiolene click chemistry, and 

oxazine moieties.  Recently, we incorporated this coumarin-azide probe as a 

method to derivative membranes decorated with a photocleavable lipid.170  The 

coumarin probe for this system was introduced into a microplate containing 

liposomal solution with and without cyclooctyne lipid.  Upon mixing with the solution 

Figure 4.2 Synthetic scheme for producing azido-coumarin 42 



 

106 

 

containing the cyclooctyne lipid (Figure 4.3), the results show a steady increase in 

fluorescence.  Liposomes lacking the cyclooctyne (control) showed an initial 

increase in fluorescence, but it tapered off quickly.  

  All of these methods are likely to suffer when it comes to selective targeting in 

vivo.  Thiolene chemistry involves the use of cysteine residues, and although it has 

been shown to have good selectivity with this coumarin analogue, it was matched 

against one cell solution.  Given the robust variety of cells, there is skepticism 

whether this method will have any success in labeling a specific type of cell.  Azide-

alkyne click chemistry offers the best approach because of the orthogonal nature 

invoked by each functional group.  With Bertozzi and coworkers fabricating the 

method of metabolically labeling live cells with azido-tagged glycoproteins, this 

offers potential in selectively targeting functionalized cells with fluorescent probes.  

 

Figure 4.3 Strategy for implementing azido-coumarin 42 into derivatized 
liposomes.   
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4.3 Porphyrin lipid Project 

Porphyrins are photosensitive molecules utilized for the absorption of reactive 

oxygen species.  They have received a lot of attention for their potential in 

biological and biochemical processes,204 specifically for materials to combat issues 

in photonics and electronics.  The pervasive feature of these porphyrin substrates 

is the large planar pi-conjugation they possess at the core of the structure.205-206  

They also provide good thermal stability and photodynamic properties, which are 

attractive to material scientists. 

The synthesis for porphyrin related materials is an important exercise is well 

published in the literature.207-210  The structure has been exploited to convert the 

singlet oxygen state into triplet oxygen, a process that can benefit photosynthetic 

pathways (Figure 4.4).211-212  It can be helpful to bind porphyrin to a variety of 

biomolecules because of their chemotherapeutic applications, since they can also 

absorb radiation and inhibit reactive oxygenated products.  

We attempted to synthesize porphyrin lipid 46 via copper-catalyzed click 

chemistry (Figure 4.5).  The availability we had with azide lipid 5 made for an 

appealing component in the collaborative work between us and the supplier of 

porphyrin alkyne 47, Reza Ghiladi from North Carolina State University.213  With 

porphyrin lipid available, we could incorporate this lipid into a bilayer membrane 

and undergo non-specific cell therapy.  Given the experience and success we’ve 

had in the laboratory with utilizing copper-catalyzed click reactions between 

terminal alkynes and azides, we figured to employ the same tactics with this  
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Figure 4.5 Synthesis scheme for porphyrin lipid 46. Lipid could not be isolated. 

Figure 4.4 Potential application of porphyrin lipid 46 being incorporated into 
vesicles and converting triplet oxygen into singlet oxygen. 
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particular scheme.  We dissolved both the porphyrin alkyne moiety and azide lipid 

5 in THF, and then mixed in an aqueous solution of copper (II) sulfate (CuSO4) and 

sodium ascorabate (Na Ascorbate).  We experimented with catalytic and 

stoichiometric amounts of this copper solution, and found THF to be a desirable 

solvent for both azide lipid 5 and porphyrin alkyne 47.   

We believe the desired product was not amenable to normal phase column, so 

we attempted a reverse phase column instead.  We analyzed a variety of fractions 

from this column on the HPLC instrument, and compared the results to the 

porphyrin alkyne moiety.  We found there to be no change between any of the 

fractions with the starting alkyne.   Based on the literature precedent with producing 

porphyin derived molecules, introducing heat did yield some success with the 

reaction. 

4.4 Conclusions 

We described in this chapter the various side projects we worked on while 

attempting to synthesize lipid analogues for the promotion SPAAC driven 

membrane fusion.  We synthesized one potential PSII dual-site inhibitor, biphenyl 

ether urea 37, from trifluoromethyl phenol in a collaborative work with Dr. Gregory 

Armel from BASF. We originally intended to synthesize 37 by the Ullman reaction 

in one step, but found the urea starting was susceptible to decomposition during 

this reaction. Instead, this led to a multistep synthesis that saved the generation of 

urea moiety until after the Ullman coupling step.  We also synthesized coumarin-

azide analogue (42) to be used in the derivatization of cyclooctyne-tagged 
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liposomes through exploiting the SPAAC reaction.  We found this fluorogenic 

analogue to be extremely selective in targeting these functionalized liposomes 

over control liposomes (lacking cyclooctyne).  Finally, we attempted to synthesize 

a porphyrin lipid (46) by clicking on azido-lipid 5 with a porphyrin alkyne (47) in a 

collaborative work with Dr. Reza Ghiladi from the North Carolina State University.  

We found the porphyrin alkyne moiety and porphyrin lipid analogue to be tough to 

distinguish between each other during characterization.  Given the large polarity 

difference between azido-lipid 5 and porphyrin alkyne 47, this reaction could be 

improved by increasing the solubility of both components.  We could’ve 

experimented with different concentrations of aqueous and organic solvents in 

solution to achieve this. 

4.5 Experimental Procedures 

4.5.1 Biphenylether urea 37 Synthesis 

1-(4-nitrophenoxy)-3-(trifluoromethyl)benzene (40): 1-chloro-4-nitrobenzene 38 

(1.03 g, 6.51 mmol), 3-(trifluoromethyl)phenol 39 (948 µL, 7.82 mmol), potassium 

carbonate (1.08 g, 7.82 mmol), and copper (I) iodide (37.0 mg, 0.200 mmol) were 

added to a flame dried flask and capped with a rubber septum.  Next, 4 mL of dry 

and degassed DMF was added to the flask via syringe.  The flask was evacuated 
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and refilled with nitrogen gas three times, and the solution was stirred at reflux (120 

0C) overnight. The solution gradually cooled down to room temperature, and then 

added to 50 mL ethyl acetate.  The organic layer was washed with 2x 50 mL H2O 

and 1x 50 mL brine.  The organic layer was collected and dried with MgSO4, 

filtered, and concentrated using a rotary evaporator.  The green-blue solid was 

purified via column chromatography (3.5% EtOAc/Hexanes), and nitro-biphenyl 

ether 40 was produced as a yellow solid in 45% yield (830 mg). 1H NMR (300 MHz, 

CDCl3): 8.23-8.26 (d, J = 9.1 Hz, 2H), 7.50-7.57 (m, 2H), 7.35 ppm (s, 1H), 7.26-

7.29 (d, J = 9.5 Hz, 1H), 7.04-7.07 (d, J = 9.1 Hz, 2H). 13C NMR (75 MHz, CDCl3): 

162.27, 155.27, 130.99, 126.13, 123.55, 121.93, 117.72, 117.30. MS-DART(+) 

[M+H] calc. exact mass: 284.05, found: 284.00  

 

4-(3-(trifluoromethyl)phenoxy)aniline (41):  Nitro-biphenyl ether 40 (500 mg, 

1.76 mmol) and 10% Pd/C (20 mg) were dissolved in 5 mL of dry MeOH in a flame-

dried flask.  The flask was evacuated and refilled with hydrogen gas, and the 

solution was stirred at room temperature for 6 hr.  The solution was filtered through 

a pad of celite, and liquid was concentrated on a rotary evaporator to produce a 

crude oil.  The oil was purified via column chromatography (15% EtOAc/Hexanes) 

to produce amino-biphenyl ether 41 as a dark yellow oil (60%, 267 mg). 1H NMR 
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(300 MHz, CDCl3): 7.38 (t, J = 8.0 Hz, 1 H), 7.25-7.27 (d, J = 7.0 Hz, 1H), 7.16 (s, 

1 H), 7.08-7.10 (d, J = 8.2 Hz, 1H), 6.87-6.90 (d, J = 8.9 Hz, 2 H), 6.69-6.72 (d, J 

= 8.9 Hz, 2 H), 3.59 (bs, 2H). 13C NMR: 159.36, 147.51, 143.38, 130.05, 121.43, 

120.11, 118.51, 116.36, 113.69. MS-DART(+) [M+H] calc. exact mass: 254.07, 

found: 254.0464. 

1,1-dimethyl-3-(4-(3-(trifluoromethyl)phenoxy)phenyl)urea (37): Amino-

biphenyl ether 41 (200 mg, 0.790 mmol) and NEt3 (440 µL, 3.16 mmol) were 

dissolved in dry & distilled CH2Cl2 (5 mL).  The solution was cooled to 0 0C before 

dimethylcarbamoyl chloride (87.0 µL, 0.948 mmol) was added dropwise via 

syringe.  The ice bath was removed after 10 minutes and stirring continued for 7 

hr.  The solution was poured into 10 mL H2O, and then extracted with 3x 10 mL 

EtOAc.  The organic layers were collected and washed with 1x 20 mL 0.75 M HCl, 

2x 20 mL H2O, and 1x 20 mL brine.  The organic solution was dried with MgSO4, 

filtered, and evaporated to produce a red solid.  The solid was purified via column 

chromatography (35-50% EtOAc/Hexanes) to produce biphenyl ether urea 37 as 

a brownish white solid in 38% yield (97.0 mg). 1H NMR: 7.40 (d, J = 6.2 Hz, 2H), 

7.28-7.31 (d, J = 7.4 Hz, 2H), 7.20 (s, 1H), 7.11-7.13 (d, J = 8.0 Hz, 1H), 6.95-7.00 

(m, 2H), 6.40 (bs, 1H), 3.04 (s, 6H). 13C NMR (125 MHz, CDCl3): 158.49, 155.78, 
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151.17, 135.69, 130.17, 121.83, 120.28, 114.58, 36.44. MS-DART(+) [M+H] calc. 

exact mass: 325.11, found: 325.07199. 

4.5.2 Synthetic Scheme of Coumarin Azide 42203 

N-[7-(Acetyloxy)-2-oxo-2H-1-benzopyran-3-yl]acetamide (45):  2,4-

dihydroxybenzaldehyde 43 (1.38 g, 10.0 mmol), N-acetylglycine 44 (1.17 g, 10.0 

mmol), and anhydrous NaOAc (2.46 g, 30.0 mmol) were dissolved in Acetic 

Anhydride (50 mL).  This mixture was put under reflux and N2 atmosphere for 4 

hours.  The solution was poured onto crushed ice and a yellow precipitate 

developed.  This precipitate was collected via filtration, and dried to produce 1.96 

g (75%) of a yellow solid.  This solid was carried through to the next step without 

further purification. 

3-Azido-7-hydroxycoumarin (42): 3-Acetamido-7-acetoxycoumarin 45 (170 mg, 

0.650 mmol) was dissolved in conc. HCl:EtOH (15 mL, 2:1, respectively), and then 

stirred at reflux for 1 hr.  Ice water was added dropwise to the solution.  The flask 

was then put into an ice bath, and as the solution was cooling down, sodium nitrite 

(90.0 mg, 1.30 mmol) was added; solution stirred in ice bath for ~10 minutes.  

While still stirring in an ice bath, sodium azide (130 mg, 2.00 mmol) was added in 

small increments over 5 minutes.  The solution was stirred in an ice bath for an 
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additional 5 minutes, and then warmed up to room temperature and stirred for an 

additional 1 hr.  A brown precipitate developed over the course of this last stage of 

stirring, and it was collected via filtration.  After drying, azido-coumarin 42 was 

isolated in 60% yield (79.0 mg) as a brown solid.  1H NMR (300 MHz, MeOD): 7.40 

(s, 1 H), 6.80-6.81 (dd, J = 2.3, 0.5 Hz, 1 H), 6.77 (dd, J = 2.3, 0.5 Hz, 1 H), 6.72 

(d, J = 2.1 Hz, 2 H). IR (cm-1): 2107 (s), 1676 (s), 1620 (s), 1321 (s). 
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