
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2006

Iterative Reconstruction of Cone-Beam Micro-CT
Data
Thomas Matthew Benson
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Benson, Thomas Matthew, "Iterative Reconstruction of Cone-Beam Micro-CT Data. " PhD diss., University of Tennessee, 2006.
https://trace.tennessee.edu/utk_graddiss/1640

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by Thomas Matthew Benson entitled "Iterative
Reconstruction of Cone-Beam Micro-CT Data." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Jens Gregor, Major Professor

We have read this dissertation and recommend its acceptance:

Michael Berry, Charles Collins, Michael Thomason, Jonathan Wall

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:

I am submitting herewith a dissertation written by Thomas Matthew Benson entitled “Iter-
ative Reconstruction of Cone-Beam Micro-CT Data”. I have examined the final electronic
copy of this dissertation for form and content and recommend that it be accepted in par-
tial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in
Computer Science.

Jens Gregor
Major Professor

We have read this dissertation
and recommend its acceptance:

Michael Berry

Charles Collins

Michael Thomason

Jonathan Wall

Accepted for the Council:

Anne Mayhew
Vice Chancellor and Dean of
Graduate Studies

(Original signatures are on file with official student records.)



Iterative Reconstruction of Cone-Beam
Micro-CT Data

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Thomas Matthew Benson

May, 2006



Acknowledgments

I would like to thank my advisor, Dr. Jens Gregor, for devoting so much time to advising
me during the past four years. Without our many engaging consultations, this work would
likely not have been completed and certainly would not have been nearly as enjoyable. I
would also like to thank my family for their continued support during my undergraduate
and graduate studies. Finally, I would like to thank all of the professors that have shared
their knowledge with me throughout the years.

This work was supported by the National Institutes of Health under grant number 1
R01 EB00789. The computer equipment was acquired as part of SInRG, a University of
Tennessee grid infrastructure grant supported by the National Science Foundation under
grant number EIA-9972889.

ii



Abstract

The use of x-ray computed tomography (CT) scanners has become widespread in both
clinical and preclinical contexts. CT scanners can be used to noninvasively test for anatom-
ical anomalies as well as to diagnose and monitor disease progression. However, the data
acquired by a CT scanner must be reconstructed prior to use and interpretation. A recon-
struction algorithm processes the data and outputs a three dimensional image representing
the x-ray attenuation properties of the scanned object. The algorithms in most widespread
use today are based on filtered backprojection (FBP) methods. These algorithms are rela-
tively fast and work well on high quality data, but cannot easily handle data with missing
projections or considerable amounts of noise. On the other hand, iterative reconstruction
algorithms may offer benefits in such cases, but the computational burden associated with
iterative reconstructions is prohibitive. In this work, we address this computational burden
and present methods that make iterative reconstruction of high-resolution CT data possible
in a reasonable amount of time. Our proposed techniques include parallelization, ordered
subsets, reconstruction region restriction, and a modified version of the SIRT algorithm that
reduces the overall run-time. When combining all of these techniques, we can reconstruct
a 512 × 512 × 1022 image from acquired micro-CT data in less than thirty minutes.
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Chapter 1

Introduction

The primary goal of this dissertation is the implementation and evaluation of iterative recon-
struction techniques for x-ray tomography data. In particular, we focus on reconstructing
data acquired from high-resolution small animal medical scanners (micro-CT), although
many of the developments apply to other CT applications as well. Currently, the most
widely employed algorithms for CT reconstruction are the filtered backprojection (FBP)
methods, for example, the FDK algorithm introduced by Feldkamp, Davis, and Kress in
1984 [1]. The FBP methods are based on the Fourier Slice Theorem and can be imple-
mented using the Fast Fourier Transform (FFT). On the other hand, iterative algorithms
such as expectation maximization (EM) [2,3] have been used extensively for reconstruction
of emission data, such as positron emission tomography (PET) and single photon emission
tomography (SPECT). The iterative reconstruction problem associated with emission data
is typically much smaller in scale than that associated with micro-CT data. As a result of
the higher computational burden, iterative reconstruction of CT data has not been widely
employed. Thus, the major focus of this dissertation is to address the computational burden
associated with iterative reconstructions.

There are indications that iterative algorithms could offer superior results in some cir-
cumstances, such as metal artifact reduction [4] and limited or sparse angle reconstruc-
tion [5,6]. In this work, we aim to develop techniques to reduce the amount of computation
required and address the remaining requirements using a distributed reconstruction frame-
work. While the focus of the work is on the reconstruction phase, we must also partially
understand the functioning of the x-ray scanner as well as the nature of the acquired pro-
jection data that will form the input of the reconstruction algorithms.

1.1 History

The medical imaging field dates to December 1895 when Wilhelm Roentgen published a
radiograph of his wife’s hand. The use of planar radiographic imaging for medical purposes
expanded and was ultimately extended to transmission computed tomography (CT) by
Godfrey Hounsfield with his development of a CT scanner in 1972 at EMI in England [7].
Transmission CT consists of taking radiographic-like images of the object of interest from
multiple angles and reconstructing images of the object rather than viewing the radiographs
directly. Hounsfield shared the Nobel Prize in Medicine in 1979 with Allan Cormack, who

1



had developed theoretical foundations for CT a decade before Hounsfield constructed his
CT scanner. In the past several decades, there has been significant progress in the x-
ray CT field in terms of both hardware and reconstruction techniques. Furthermore, the
medical imaging field includes other modalities, such as nuclear medicine, including positron
emission tomography (PET) and single photon emission computed tomography (SPECT),
ultrasound imaging, and magnetic resonance imaging (MRI). In this dissertation, we focus
on iterative reconstruction algorithms for transmission CT data.

1.2 X-ray Tomography

X-ray scanners consist of at least one x-ray source and at least one detector in varying
configurations. X-rays are emitted from the source(s), attenuated as they traverse the
scanned object, and finally recorded by the detector(s). These detector recordings form
the projection data set that will be the input to the iterative reconstruction algorithms.
In addition to the projection data, we must also know the scanner geometry in order to
perform the reconstruction.

1.2.1 Projection Data

In order to discuss the nature of the projection data, we must first consider the process of
x-ray attenuation. In this section, we follow the presentation of x-ray attenuation given by
Prince and Links [8]. X-ray attenuation is the loss of strength of an x-ray beam when passing
through some object, due primarily to the photoelectric effect and compton scattering.
By recording the intensity of an x-ray beam after traversing an object and comparing
that intensity to the initial x-ray intensity, we can determine how much x-ray attenuation
occurred along the path of the x-ray beam. While attenuation is a statistical process, we
assume for this section that the process is deterministic, as is done in [8]. We define a
projection ray corresponding to an x-ray source position and detector element as the path
taken by the x-rays emitted from the x-ray source and recorded at the detector element.

Assume that we have an x-ray beam consisting of N monoenergetic photons traversing
an object with constant attenuation coefficient µ and width ∆x. If we assume that the
number of photons lost due to attenuation, ∆N , is proportional to µ, N , and ∆x, then we
have

∆N = −µN∆x (1.1)

or, written in another way,
∆N

N
= −µ∆x. (1.2)

Consider the case of the object width, and thus the attenuation, approaching zero. Then,
treating N as a continuous value, we have

dN

N
= −µdx (1.3)

with solution
N = N0 exp (−µ∆x) (1.4)

2



where N0 is the number of photons emitted from the x-ray source at position x = 0. If
we consider a three-dimensional object with the attenuation coefficient dependent on the
coordinates x, y, and z, then we have

N = N0 exp

{

−

∫

ray
µ(x, y, z) ds

}

(1.5)

where ray describes the path, parameterized by s, taken through the object.
We can reinterpret this expression in terms of the original x-ray intensity, I0, and the

detected x-ray intensity, I, as

I = I0 exp

{

−

∫

ray
µ(x, y, z) ds

}

(1.6)

or, equivalently,
∫

ray
µ(x, y, z)ds = ln

I0

I
. (1.7)

Since I0 is not accurately known in general, a blank scan, or a scan with no object present,
is performed prior to reconstruction and the intensities measured per detector element are
assumed to be the original intensities corresponding to that projection ray. Furthermore,
there may be some variability in the accuracy of the detector readings. In particular,
the detectors may have a nonzero baseline and may thus produce values that are slightly
different from what they should be. To help correct for such readout errors, a dark scan is
taken, which consists of performing a scan with the x-ray source deactivated or blocked such
that no x-rays reach the detector thus yielding baseline readings for the detector elements.
We then correct for these errors by subtracting the dark scan reading, Id, from both the
blank scan and normal scan values. In other words, (1.7) becomes

∫

ray
µ(x, y, z)ds = ln

I0 − Id

I − Id
. (1.8)

Thus, we can calculate the line integral approximations for each projection ray by cor-
recting and log-normalizing the projection data according to (1.8). There are other possible
corrections, such as identifying and handling a bad detector element, that we do not consider
in this work. This projection data, either log-normalized or in its original form, characterizes
the input to the reconstruction algorithms.

1.2.2 Interpretation as a Linear System

We will interpret a discretization of the line integral representation of the projection data
as given in (1.8) as a linear system. In particular, in the linear system Ax = b, b is the
(potentially corrected and log-normalized) projection data, x is a discrete interpretation of µ
and represents the reconstructed image, and the system matrix A is a linear transformation
from image space to projection space and thus mimics the line integral operator. By solving
this linear system for x, we will obtain a discrete attenuation map of the scanned object.
In the case of a mouse, this attenuation map reveals information about the anatomical

3



structure of the mouse because different anatomical components (bone, water, soft tissue)
have different attenuation coefficients.

1.2.3 Scanner Configurations

The most common x-ray scanner beam configurations are parallel-beam, fan-beam, and
cone-beam. A parallel-beam scanner acquires data along parallel lines for each projection;
see Fig. 1.1. For this geometry, there must either be multiple x-ray sources or some mecha-
nism for translating the source from one position to the next during the acquisition process.
A fan-beam scanner, on the other hand, consists of a single x-ray source and multiple detec-
tors (or a single detector with multiple detector elements) and the x-ray source emits x-rays
in a “fan” toward the detectors; see Fig. 1.2. By extending from a one-dimensional detector
to a two-dimensional detector, the “fan” of x-rays in the fan-beam geometry extends to a
cone, yielding the cone-beam geometry. The cone-beam geometry, which is the geometry
we consider for the remainder of this dissertation, is shown in Fig. 1.3.

In addition to the x-ray beam configuration, an x-ray scanner requires some mechanism
for obtaining projections of the scanned object from multiple view angles in order to provide
sufficient data for a reconstruction. In order to accomplish this, either the x-ray source and
detector can rotate about the object of interest, or the object itself can be rotated while
the x-ray source and detector remain fixed. Additionally, the x-ray source can rotate in
several trajectories around the object. The two primary trajectories used are circular orbit
and helical orbit. With a circular orbit trajectory the x-ray source and detector rotate in a
circle around the object of interest while the object of interest remains fixed. With a helical
trajectory, either the x-ray source can rotate in a helical fashion about the object, or the
object can be translated (for example, on a moving gantry) while the x-ray source rotates in
a circular orbit. In the latter case, the x-ray source rotates in a circular trajectory, but from
the perspective of the scanned object, the x-ray source is rotating in a helical trajectory.
Most of the data used for this dissertation was acquired from a MicroCAT II (Siemens/CTI
Concorde Microsystems), which is a circular orbit cone-beam micro-CT scanner.

1.3 System Models

As shown in Section 1.2.2, the projection data can be modeled as a linear system given by
Ax = b. However, we must choose some method by which we define the system matrix
elements where element aij quantifies the contribution of voxel j to the attenuation of
projection ray i. The model chosen to specify the system matrix elements is known as the
system model. In other words, the system matrix is the embodiment of the system model in
the form of a matrix. The system model is critical to both the accuracy and the efficiency
of the iterative reconstruction procedure. The system model impacts the accuracy of the
reconstruction because ultimately the reconstruction generates an approximate solution to
the system Ax = b and the solution will only be of high quality if the system matrix
itself is accurate. Furthermore, calculating the system matrix elements may consume a
substantial percentage of the reconstruction run-time, so the system model also affects run-
time performance. Choosing a system model thus involves a trade-off between accuracy
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Figure 1.1: Parallel-beam scanner geometry.
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Figure 1.2: Fan-beam scanner geometry.
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Figure 1.3: Cone-beam scanner geometry.
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and efficiency: the model must be accurate enough to yield acceptable reconstructions, but
should be computationally simple enough to facilitate an efficient implementation.

We consider several system models in these terms in Chapter 2. In particular, we
introduce system models based on line intersections, trilinear interpolation, and volumetric
intersection. The line intersection based system model, which we introduce in Section 2.1,
computes the length of intersection between a projection ray and each voxel. This model is
simple to implement and is very fast, but we will demonstrate that it generates ring artifacts
in the reconstructions, although those artifacts may be acceptable in certain applications.
On the other hand, the trilinear interpolation model represents the projection ray as a
series of equidistant points and assigns the interpolation coefficients corresponding to the
eight voxel centers nearest a given point to the associated voxel. We introduce the trilinear
interpolation based model in Section 2.2. This model is also fairly simple to implement and
requires more computation than the line intersection model, but eliminates the ring artifacts
in the reconstruction. Finally, the volumetric approaches introduced in Section 2.3 model
the projection ray as a polytope and compute, or approximate, the volume of the intersection
between a projection ray polytope and each voxel. These models have a more complex
implementation, at least as we have currently implemented them, and are considerably
slower than the other models, but they also eliminate the ring artifact prevalent in the
line intersection model based reconstructions. We present a more thorough comparison of
these models in Section 2.4 and ultimately identify trilinear interpolation as representing a
reasonable blend of accuracy and computational efficiency.

1.4 Iterative Reconstruction Algorithms

Once we have chosen and implemented a system model, and thus have a concrete linear
system given by Ax = b, then the image reconstruction problem is to solve the system for
x. In Chapter 3, we discuss iterative methods of solving the linear system. In the medical
imaging literature, the most popular iterative reconstruction algorithms can be classified
as either algebraic or statistical. The former class of algorithms involves applying algebraic
techniques to the linear system while the latter class interprets the process of attenuation in
a statistical context and solves the problem in that context, typically by applying gradient
ascent methods to a Taylor expansion of a likelihood function.

In this work, we focus on the algebraic reconstruction methods. In particular, we intro-
duce the algebraic reconstruction technique (ART), simultaneous iterative reconstruction
technique (SIRT), and simultaneous algebraic reconstruction technique (SART) in Sec-
tions 3.2, 3.3, and 3.4, respectively. We relate these algorithms to classical iterative tech-
niques for linear systems, such as the Gauss-Seidel and Jacobi iterations. Additionally, in
Section 3.5 we present a parallel SIRT algorithm (PSIRT) that reduces the reconstruction
run-time in a distributed computing environment. While we focus on reconstruction of
micro-CT data in this dissertation, these iterative reconstruction techniques apply to lin-
ear systems in general, including those resulting from reconstruction data corresponding to
other imaging modalities.
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1.5 Implementation

Due to the computation and memory burdens imposed by iterative reconstruction of large
CT data sets, the implementation of the iterative reconstruction framework is critical. In
particular, the implementation must control memory consumption such that the reconstruc-
tion can run in the memory available on given hardware while minimizing the run-time.
In order to reduce the run-time, we parallelize the reconstruction framework using threads
to distribute the work locally to available processors on a single node and message passing
(MPI) to distribute the work to multiple nodes. This approach reduces the run-time of the
iterative reconstruction by distributing the work, but it does not reduce the amount of work
that must be performed to complete an iterative reconstruction. Furthermore, distributing
the workload to several nodes introduces the requirement of frequent interprocessor com-
munications, performed using MPI in our case, which negatively impacts the final run-time.
We present these parallel computing issues in Section 4.1. In Section 4.2 we discuss ordered
subsets, a technique that effectively reduces the total amount of work that must be per-
formed by reducing the number of total iterations required for an acceptable reconstruction.
While ordered subsets reduces the amount of computational work required, it also increases
the relative cost of the interprocessor communications.

The combination of parallel computing and ordered subsets addresses the computational
burden of an iterative reconstruction, but does little to reduce the memory requirements.
Thus, in order to decrease the memory consumption, as well as the amount of data com-
municated, we present compressing the image data when only reconstructing a region of
interest in Section 4.3. We then address two methods of determining such regions of inter-
est in Sections 4.4 and 4.5. The first such method, discussed in Section 4.4, restricts the
reconstruction to a geometry defined support region. Then, in Section 4.5, we present a
heuristic, data-driven technique that utilizes the projection data to identify voxels likely to
contain an object with nonnegligible attenuation characteristics. The reconstruction region
of interest is then restricted to these identified voxels. In addition to reducing the memory
requirements and amount of data communicated, these region restriction approaches also
significantly reduce the amount of computation because we do not need to compute system
matrix elements corresponding to the voxels outside of the region of interest. Finally, we
further decrease the amount of data communicated for a reconstruction using the parallel
SIRT algorithm presented in Section 3.5.

1.6 Results

In Chapter 5 we discuss the reconstruction results obtained using all of the concepts in-
troduced in this dissertation as well as their associated timings. We demonstrate that the
techniques addressed in Chapter 4 very effectively decrease the overall run-time. In partic-
ular, in Section 5.1 we present the benefits of parallelizing the reconstruction framework.
We then quantify the benefits of implementing ordered subsets in Section 5.2 and present
the advantages of restricting the reconstruction to a particular region in Section 5.3. In
Section 5.4 we consider the impact of implementing the parallel SIRT algorithm. In light
of all of these results, we revisit the issue of parallel computing in Section 5.5 in terms

8



of varying the number of reconstruction nodes. Finally, we present reconstructions using
several of the discussed techniques in Section 5.6.

1.7 Conclusions and Future Work

In Chapter 6 we present our concluding remarks, which are based primarily on the results
obtained in Chapter 5, and discuss directions for future research. In particular, we observe
that the techniques discussed throughout this dissertation very effectively reduce the overall
run-time of an iterative reconstruction.
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Chapter 2

System Models

As stated in the introduction, the main goal of the iterative image reconstruction algorithms
presented in this work is to approximately solve the linear system

Ax = b (2.1)

where the vector b corresponds to the projection data acquired from the x-ray scanner.
However, in order to do so, we must choose some method of determining the elements of A.
We refer to A as the system matrix, its elements as the system matrix elements, and the
mathematical formulation defining those elements as the system model. In this chapter,
we introduce several system models, along with their advantages and disadvantages. The
ultimate goal in choosing a system model is to select a model that is accurate enough to
yield reconstructions of acceptable quality, but that also requires as little computation as
possible.

Most generally, the system matrix element aij quantifies the relative contribution of the
jth voxel to the attenuation of the ith projection ray. Thus, each projection ray, which in
turn corresponds to a single detector element value, yields one row in the system matrix.
Similarly, each image voxel corresponds to a column of the system matrix. We will always
use the term projection ray to describe the radiological path associated with an x-ray source
position and detector element pair, although in some of the models this radiological path is
volumetric rather than ray based.

There are two typical classes of system models to choose from: voxel-driven and ray-
driven. Voxel-driven approaches, which in the two-dimensional case are termed pixel-driven
approaches, iterate over the voxels and calculate the system matrix column corresponding to
each voxel. Typically, these calculations depend on some interpretation of the footprint of a
voxel on the detector (see, e.g., [9]). On the other hand, ray-driven approaches iterate over
the projection rays and calculate the system matrix row corresponding to that projection
ray. We will introduce several ray-driven approaches in this chapter. Additionally, there is
an approach termed distance-driven introduced by De Man and Basu [10,11] that does not
iterate over voxels or detector elements, but instead iterates over calculated intercepts. We
do not consider voxel-driven or distance-driven methods in this work.

We use several methods to compare the system models introduced in this chapter.
The first method of comparison we employ is an analysis of the voxel support generated
by each system model for the scanner geometry corresponding to the tiny hole phantom
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data set in Appendix A.2. Algebraically, we define the support for voxel j as the sum
of the jth column of the system matrix. Thus, the voxel support values are equivalent
to backprojecting a projection data set of constant ones. The intuitive interpretation of
voxel support for a geometry based system model is the amount of data support for a given
voxel that is available in the projection data. Voxels outside of the detected paths of the
x-ray cone-beam will have no support, so there will be a sharp change in support values
at these boundaries. However, it seems reasonable to expect that any two neighboring
voxels that are both within a detected region of the x-ray cone-beam would have similar
support values. Large variations in the voxel support values in those regions supported
by the scanner geometry would generate reconstruction artifacts during the backprojection
operation. Thus, we will examine the voxel support generated by the various system models
to determine if such reconstruction issues are likely to arise.

In addition to the voxel support analysis, in Section 2.4 we also compare reconstruc-
tions of the tiny hole phantom data set described in Appendix A.2 using the presented
system models. We compare the reconstructions for visual quality and also compare the
time required to perform the system model calculations using our current implementation.
Throughout this chapter, when we refer to the computational efficiency of a system model,
we are only referencing the efficiency of our current implementation as opposed to a more
general complexity metric.

2.1 Line Intersection Model

One of the simplest and fastest system models is based upon line intersections. Define
projection ray i as the line segment joining the x-ray source, which we assume to be a point
source, and some point in the corresponding detector element, typically the center. Then
the line intersection system model stipulates that element aij of the system matrix is the
intersection length between projection ray i and image voxel j. Thus, the row sum defined
by
∑N

j=1 aij is the length of the intersection of projection ray i with the voxel space. A
two-dimensional example is shown in Fig. 2.1.

2.1.1 Implementation

As with most system models, the efficiency of the line intersection method depends greatly
upon the implementation. A brute force approach would iterate over all of the voxels for
each projection ray and calculate the intersection length of the projection ray with each
voxel. While this approach is simple, it would be exceedingly slow since a single projection
ray does not intersect the vast majority of voxels in a three-dimensional image. Siddon
introduced a fast method of calculating this “exact radiological path” [12] and Jacobs et al.
published a modification that further accelerated the algorithm [13]. This approach is based
on representing the projection ray parametrically and iteratively updating the parameters
to identify each intersected voxel and calculate the intersection length. Thus, the intersected
voxels are determined in a straightforward manner and no computational time is expended
on nonintersected voxels.

By using the modified Siddon’s algorithm, we can quickly generate system matrix el-
ements for a given projection ray. However, in our current implementation, we compute
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Figure 2.1: An example of the line intersection model for a single projection ray in the
two-dimensional case.
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a full row and then use that row in the algorithm, so we must temporarily store it. The
most obvious data structure to employ is simply an image sized array that represents a
single row in the system matrix. However, since the vast majority of the entries in each row
are zero, this approach is not efficient in terms of memory consumption. In fact, for the
mouse data set described in Appendix A.3, the image arrays consume approximately one
gigabyte of memory when using single precision floating point numbers to represent each
system matrix element, which can quickly become prohibitive. Furthermore, if multiple
threads are computing system matrix elements for different rows, then we would have to
store multiple image-sized arrays.

Thus, as an alternative to the direct storage approach, we store two arrays in a class: one
of system matrix values and one of voxel indices corresponding to the system matrix values.
The arrays grow dynamically (doubling in size each time the current size is exceeded), but
a static variable in the class records the maximum row size used thus far and all new rows
are created with that size. Therefore, the class very quickly adapts to an appropriate size
and very few memory reallocations occur. However, this approach also requires a boundary
check each time a new element is inserted into a row, which occurs very frequently. In
terms of run-time performance, this boundary check seems to have a negligible impact. We
use this data structure to store system matrix elements computed by all of the subsequent
system models as well.

2.1.2 Voxel Support

While the line intersection model is fast, simple to implement, and generates smaller system
matrices than most other models, it unfortunately introduces ring artifacts when used for
circular orbit cone-beam reconstructions. This phenomenon was reported by Zeng and
Gullberg [14] who observed that “[t]he ring artifacts are due to unequal weighting as the
ray passes from voxel to voxel”. Another issue affecting such models is uneven sampling due
to the divergent projection rays, which was addressed by Mueller et al. [5]. We will further
characterize these artifacts in terms of voxel support and explore some potential solutions.

Inconsistency issues in the voxel support may or may not be evident in the reconstructed
images, but it would obviously be beneficial to remove the inconsistencies when feasible. We
will demonstrate inconsistencies in the line intersection based system matrix that can be
observed in the voxel support values. After noting these inconsistencies, we will illustrate
how they can generate rings in the reconstructed images.

Consider the voxel support values for the line intersection based system model associated
with the scanner geometry used to acquire the tiny hole phantom data set in Appendix A.2.
Figures 2.2, 2.3, and 2.4 show several transaxial slices of voxel support values interpreted as
gray level images for view angle zero with line plots through y = 200 for each slice. There
are two problems in these transaxial support values: the curved lines that occur in all slices,
and the vertical bands that occur in some slices. Similar patterns were observed by De Man
and Basu [10].

However, these same curved artifacts also exist in the coronal slices. The vertical band
artifacts in the transaxial slices are then due to the intersection of a transaxial slice with
the curved artifacts in the coronal slices. The width of the vertical bands depends upon
the point of intersection of the transaxial slice with the curved artifacts in the coronal
slices. If the curved artifacts in the coronal slice are flatter with respect to the transaxial
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Figure 2.2: Left: Transaxial slice 127 of the line intersection based system matrix column
sums corresponding to view angle zero. Right: Line profile with y = 200.
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Figure 2.3: Left: Transaxial slice 120 of the line intersection based system matrix column
sums corresponding to view angle zero. Right: Line profile with y = 200.
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Figure 2.4: Left: Transaxial slice 80 of the line intersection based system matrix column
sums corresponding to view angle zero. Right: Line profile with y = 200.
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direction at the point of intersection with the transaxial slice, then the vertical band will
have a larger width. Furthermore, the coronal curve artifacts shift with respect to the
view angle, which rotates the vertical band artifacts into sloped band artifacts. These band
artifacts are those that ultimately manifest themselves as ring artifacts in the voxel support
values resulting from considering all projections, and also potentially as ring artifacts in the
reconstructed images. We will first demonstrate the existence of the ring artifacts and then
address how the vertical bands rotate into sloped bands for other projection view angles
and thus generate the ring artifacts.

Figures 2.5, 2.6, and 2.7 contain transaxial support slices with line plots through y =
200 when considering all 720 projections. We see that the near central transaxial slice in
Fig. 2.5 exhibits approximately even support over the supported region with no clear ring
artifacts. On the other hand, the non central transaxial slices in Figs. 2.6 and 2.7 exhibit
obvious ring artifacts consistent with the location of the vertical bands present in projection
zero. Thus, we would expect the backprojection operation to generate ring artifacts in the
reconstructed transaxial slices as well. We explore the effects on an actual reconstruction
further in Section 2.4 where we compare reconstructions performed using the various system
models. In addition, we consider several variations of the line intersection based model in
the following section in order to determine the voxel support resulting from those models.

In order to demonstrate the existence of the sloped bands in rotated projection views, we
also calculated the voxel support values corresponding to a projection view with the x-ray
source rotated 45 degrees. The results are shown in Figs. 2.8, 2.9, and 2.10 for transaxial
slice 120 and coronal slices 200 and 300. Figure 2.8 demonstrates the rotation of the bands
in the transaxial slices that ultimately causes the emergence of the ring artifacts in the
transaxial slices of the voxel support. We see the cause for the sloping of the bands in
Figs. 2.9 and 2.10: the curved patterns still exist in the coronal slices, but shift from one
slice to the next, so intersecting a stack of coronal slices with a transaxial slice generates a
sloped band in the transaxial slice.

2.1.3 Multiple Line Intersection Model

There are several variations of the line intersection based model that may reduce the support
based ring artifacts presented in Section 2.1.2. In this section, we consider varying the
number of projection rays per detector element as well as the terminal point selection of the
projection rays in the detector elements. When using multiple projection rays per detector
element, we sum the system matrix elements from each projection ray and compute the
average values to get the final system matrix elements. We give three possibilities of point
selection in Fig. 2.11. These possibilities include using the center of the detector element
(which we considered previously), the corners of the detector element, and points packed
evenly within the detector element. The evenly packed points are chosen such that distances
between any two neighboring points are equal whether the neighboring point is in the same
detector element or a neighboring element. We also consider randomly selecting some
number of points per detector element. While the points could be chosen in any number of
ways, we constrain ourselves to these variations.

However, none of the variations that we tested seemed to offer a significantly improved
system model in terms of voxel support. In Figs. 2.12, 2.13, and 2.14 we show support values
corresponding to projection view zero for transaxial slice 80 using three different variations
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Figure 2.5: Left: Transaxial slice 127 of the line intersection based system matrix column
sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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Figure 2.6: Left: Transaxial slice 120 of the line intersection based system matrix column
sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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Figure 2.7: Left: Transaxial slice 80 of the line intersection based system matrix column
sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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Figure 2.8: Transaxial slice 120 for a projection corresponding to a 45 degree view angle.

Figure 2.9: Coronal slice 200 for a projection corresponding to a 45 degree view angle.

Figure 2.10: Coronal slice 300 for a projection corresponding to a 45 degree view angle.
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Figure 2.11: Several approaches for choosing points in the detector element by which we
define our projection rays. The filled dots denote the points. The approaches include
choosing the central point (left), the four corners of the element (center), and equally
spaced points within the element (right). There are many other possibilities.
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Figure 2.12: Left: Transaxial slice 80 of the line intersection based system matrix column
sums corresponding to view angle zero and using the four corners of each detector element
as the projection ray terminal points. Right: Line profile with y = 200.

1 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0

0.05

0.1

0.15

0.2

0.25

Voxel x indices (y is fixed at 200)

V
o
x
e
l 
s
u
p
p
o
rt

 v
a
lu

e
s

Figure 2.13: Left: Transaxial slice 80 of the line intersection based system matrix column
sums corresponding to view angle zero and using nine equally distanced points per detector
element as the projection ray terminal points. Right: Line profile with y = 200.
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Figure 2.14: Left: Transaxial slice 80 of the line intersection based system matrix column
sums corresponding to view angle zero and using nine random points per detector element
as the projection ray terminal points. Right: Line profile with y = 200.
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of the line intersection based system model. Also shown are the the profiles corresponding
to y = 200 for each of the transaxial slices. The variations include using the four corners of
each detector element, nine equally spaced points within each detector element, and nine
random points within each detector element. Using the four corners and nine packed points
still results in bands in the voxel support, although the patterns are slightly different from
when using only the central line. Randomizing the projection ray points yields a rather
chaotic support profile that would very likely lead to poor reconstructions. Furthermore,
the computational cost increases with the number of projection rays per detector element,
so the multiple line approach increases the total run-time significantly as the number of
projection rays increases. Thus, these variations in the line intersection model do not seem
to generate good enough results to justify the increase in the cost of computing the system
model several times per detector element.

2.2 Interpolation Models

The interpolation model considered here models the projection ray as a group of equidis-
tant points lying along a line based projection ray. For each of these equidistant sample
points, we identify the eight nearest voxel centers and calculate the interpolation coefficients
corresponding to the voxel centers. We then assign these interpolation coefficients to the
appropriate voxels represented by the voxel center. This approach distributes support val-
ues to neighboring voxels which mitigates the artifacts associated with the line intersection
based method. Trilinear interpolation has been employed by others, e.g. Wang [15], and its
two-dimensional analogue, bilinear interpolation, has been used in the two-dimensional case
by Andersen and Kak [16]. While we choose to use equidistant sample points, another ap-
proach by Zeng and Gullberg chose the sample points as the midpoints of the intersections
of the projection ray with each voxel [14].

Interpolation is a technique typically used to generate new data points from known data
points. For example, given two points x1 and x2, the midpoint is m = (x1 + x2)/2. If we
have some function f with known values f(x1) and f(x2), then we can approximate f(m)
using linear interpolation as f(m) = (f(x1)−f(x2))/2. More generally, if x1 < x2, then any
point x ∈ [x1, x2] can be represented by x = x1+t(x2−x1) for some 0 ≤ t ≤ 1 where t is the
interpolation coefficient. We can loosely interpret t as defining the fractional contributions
made by the functional values at x1 and x2 to yield f(x): f(x) is composed of (1− t) parts
of f(x1) and t parts of f(x2). In other words, we can approximate f(x) as

f(x) = (1 − t)f(x1) + tf(x2). (2.2)

Linear interpolation extends to bilinear interpolation in two dimensions and trilinear
interpolation in three dimensions. Figure 2.15 depicts the situation for bilinear interpolation
in a square grid. In this figure, the four reference points are given by (xi, yj), (xi, yj+1),
(xi+1, yj), and (xi+1, yj+1) and the interpolated point is (x, y). Let f represent the function
defined for all pixel centers that maps a pixel center to the value of its associated voxel.
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Figure 2.15: Depiction of the process of bilinear interpolation.
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Table 2.1: The eight points representing voxel centers and the associated interpolation
coefficients used in trilinear interpolation.

Voxel Center Interpolation Coefficient

(xi, yj , zk) (1 − t)(1 − u)(1 − v)

(xi+1, yj , zk) t(1 − u)(1 − v)

(xi, yj+1, zk) (1 − t)u(1 − v)

(xi+1, yj+1, zk) tu(1 − v)

(xi, yj , zk+1) (1 − t)(1 − u)v

(xi+1, yj , zk+1) t(1 − u)v

(xi, yj+1, zk+1) (1 − t)uv

(xi+1, yj+1, zk+1) tuv

Then we can approximate f(x, y) as

f(x, y) = (1 − t)(1 − u)f(xi, yj) + t(1 − u)f(xi+1, yj) + (2.3)

(1 − t)uf(xi, yj+1) + tuf(xi+1, yj+1). (2.4)

In this case, f(x, y) is composed of (1 − t)(1 − u) parts of f(xi, yj), t(u − 1) parts of
f(xi+1, yj), etc. When we extend to trilinear interpolation, we get eight reference points
and the associated interpolation coefficients shown in Table 2.1. For each of the equidistant
points along the projection ray, we identify the eight nearest voxel centers, calculate the
interpolation coefficients as shown in Table 2.1, and assign those interpolation coefficients
to the appropriate voxel. Since a voxel center may be one of the eight nearest voxel centers
for multiple sample points along a single projection ray, the system matrix value associated
with that voxel is the sum of all such interpolation coefficients.

2.2.1 Implementation

Since the system matrix can become very large, it is important to minimize the amount of
computation required to calculate the system matrix elements. Thus, the implementation
of the system model is quite important. In this section, we present several details that
affect the efficiency of the trilinear interpolation implementation, one of which will have
implications in the algorithm implementation as well.

The first implementation detail to consider is the storage of the computed trilinear
interpolation coefficients. Since consecutive sample points may generate interpolation co-
efficients for the same voxel, all interpolation coefficients corresponding to a given voxel
must be summed to yield the true system matrix value for that voxel. This requirement
can be implemented using several different data structures. For example, we could simply
allocate an image sized array of floating point numbers and add interpolation coefficients
as they are generated. However, as discussed in Section 2.1.1, this is not practical due to
memory consumption. A more elegant approach would be to use an associative array or
lookup table to store data only for voxels which have nonzero values. This could be done,
for example, by using the std::map container in C++. While this approach works well
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for a single thread, performance suffers significantly when using multiple threads∗. Even if
insertion was faster with multiple threads, accessing the data in the algorithm code would
not be straightforward and would likely be slower than necessary. Instead, we use the same
approach discussed in Section 2.1.1 where we allocate one array for voxel indices and another
for system matrix values. Each time we generate an interpolation coefficient and associated
voxel index, we append the information to the arrays, increasing their size if needed as
described previously. Thus, we do not sum the interpolation coefficients generated for a
given voxel and instead store partial sums. This is sufficient for most purposes and does
not require much additional memory, although it can potentially limit us in the algorithm
implementation; see Section 3.3.3 for an example of one such limitation.

There are other considerations that significantly affect the performance of the trilinear
interpolation code. For example, a direct implementation would require repeated integer
truncations, which are quite slow, in order to calculate the voxel indices. We avoid these
repeated truncations by truncating once and then updating the index values using loops.
When assigning interpolation coefficients to neighboring voxels, it is important to verify
that the neighboring voxels are valid, so boundary testing may take an inordinate amount
of time. When considering a full image, this is only a concern on the edges, but it will be
complicated by the region restriction methods introduced in Sections 4.4 and 4.5. Thus,
for a fixed pair of y and z voxel indices, we store the minimum and maximum valid x voxel
indices for which all of the neighbors of the voxel identified by x, y, and z are also valid. As
we will discuss in Chapter 4, all voxels between the minimum and maximum valid indices
in the x direction are assumed valid. Therefore, we can test a voxel to determine if it is
within this safe region, and if so, then we can insert values for all of the neighboring voxels
without additional boundary checks. This replaces eight boundary checks by a single check
in most cases and significantly reduces the total number of boundary checks performed.

2.2.2 Voxel Support

We will consider the voxel support values corresponding to projection zero and all projec-
tions as we did for the line intersection based system model. In Figs. 2.16, 2.17, and 2.18,
we show the voxel support values for several transaxial slices and the associated profiles
through y = 200. Although the curved patterns still exist in the trilinear interpolation sup-
port, they are much less prevalent than in the line intersection based models. This is likely
due to the fact that the sample points are still chosen along the projection ray and thus
share similarities with the line intersection based model, but the interpolation procedure
distributes values to nearby voxels and prevents the sharp difference in values noticeable
when using line intersection lengths.

However, the support values are now higher closer to the x-ray source due to the higher
sampling near the x-ray source. There are some vertical bands as we observed in the line
intersection based support, but the bands correspond only to higher support rather than
higher support closer to the x-ray source and lower support farther from the x-ray source
as is the case in the line intersection based model. Furthermore, the bands are much less
pronounced and do not generate obvious ring artifacts as we show shortly.

∗This is true with gcc as of the writing of this document. For more information, see
http://gcc.gnu.org/bugzilla/show bug.cgi?id=13823. Other compilers or std::map implementations may
not exhibit this behavior.
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Figure 2.16: Left: Transaxial slice 127 of the trilinear interpolation based system matrix
column sums corresponding to view angle zero. Right: Line profile with y = 200.
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Figure 2.17: Left: Transaxial slice 120 of the trilinear interpolation based system matrix
column sums corresponding to view angle zero. Right: Line profile with y = 200.
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Figure 2.18: Left: Transaxial slice 80 of the trilinear interpolation based system matrix
column sums corresponding to view angle zero. Right: Line profile with y = 200.
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In Figs. 2.19, 2.20, and 2.21, we show the voxel support corresponding to the same
transaxial slices when considering all projection view angles as well as the support profiles
through y = 200. In these images, there are no clear ring patterns as there were in the line
intersection based models, although the support values tend to dip in the center of each
transaxial slice. We could compensate for this dipping by applying a weighting factor, but
we have not investigated the matter enough to determine if the weighting would improve
image quality, so we do not consider it further in this work.

In terms of support value consistency, the trilinear interpolation model is significantly
better than the line intersection based models. In particular, the ring artifacts seem to be
eliminated, or at least significantly reduced if they are in fact present. In Section 2.4, we will
further compare the system models based upon reconstruction quality and computational
time.

2.3 Volumetric Models

The volumetric system models considered in this work model the projection ray as a three-
dimensional polytope instead of a line. Thus, it is not really a projection “ray”, but we
maintain the terminology for consistency. This polytope is formed by connecting the x-ray
source to the detector element boundaries. In other words, the x-ray source is the apex of
the polytope and the detector element is the base. System matrix element aij is then the
volume of the intersection between projection ray i and voxel j. We can either calculate
this volume exactly or approximate it in some way.

In order to compute the exact volume of the intersection between a projection ray and
a voxel, we first identify the vertices of the polytope resulting from the intersection. While
this is theoretically rather simple, it is somewhat complicated by the computer based finite
representation of floating point numbers. However, it can be done in the vast majority of
cases. Once the vertices, and thus the faces, of the polytope are known, we can compute the
volume of the polytope by triangulating the faces, calculating the volume of the tetrahedrons
joining the triangulated regions and the centroid, and summing the tetrahedron volumes
to obtain the final volume. There is a closed form formula for calculating the volume of
tetrahedrons, so that step is rather simple (see, e.g., [17]). Furthermore, since the polytope
is the intersection of two convex shapes, namely the projection ray and voxel, it is also
convex, and thus its centroid is located inside the polytope. Therefore, the tetrahedrons
partition the polytope and the sum of their volumes is the volume of the polytope.

In rare cases, the floating point number representation can become problematic. For
example, two or more computed values may be so close together that it is difficult to deter-
mine from their floating point representations whether they are distinct vertices or the same
vertex. In these cases, we employ the volumetric approximation approach, which we present
shortly, to approximate the volume of the intersection as closely as needed. Additionally,
while the presented method calculates the volume intersection exactly in theory, in practice
there will be roundoff errors in the calculation of the vertices, tetrahedron volume, and final
polytope volume, although these errors should be small. While we have an implementation
of an exact volumetric system model using these approaches, it is very computationally
intensive and thus we do not use it for practical reconstructions.
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Figure 2.19: Left: Transaxial slice 127 of the trilinear interpolation based system matrix
column sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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Figure 2.20: Left: Transaxial slice 120 of the trilinear interpolation based system matrix
column sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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Figure 2.21: Left: Transaxial slice 80 of the trilinear interpolation based system matrix
column sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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In addition to the exact volumetric model, we have implemented a volumetric approxi-
mation model. The approximation model divides the voxel into some number of subvoxels
and determines the number of subvoxel centers contained within the projection ray. The
system matrix element aij is then based on the number of subvoxels of voxel j whose cen-
ters are contained within projection ray i. There are many approaches to computing the
system matrix element: we can use the integral number of contained subvoxel centers, di-
vide the number of contained subvoxel centers by the total number of subvoxels to obtain
a normalized fractional system matrix element, or compute the normalized fractional value
and multiply by the voxel volume to obtain a true volumetric approximation. Since the
resultant system matrices differ only by a scalar value, the approaches are mathematically
very similar.

By increasing the number of subvoxels used, we can obtain increasingly accurate volume
approximations. In the case of using only one subvoxel, the model simplifies to the binary
model that we discuss in Section 2.3.1. Determining the actual number of subvoxels needed
for a system matrix to be accurate enough for a particular usage would require careful
consideration.

2.3.1 Binary Models

Binary system models, which assign the value zero or one to each system matrix element,
were popular in the past (see, e.g., [18]). In these models, some method is used to determine
if voxel j should be considered within projection ray i: if so, then aij = 1, and aij = 0
otherwise. With two-dimensional reconstructions, containment was generally determined
by the containment of a pixel center within a strip defining the projection ray. In the fan-
beam case, this strip could be defined as the area joining the x-ray source and the detector
element boundaries with the detector element as a base and the x-ray source as an apex. In
the cone-beam case, this extends to the polytope described in Section 2.3. Therefore, the
most natural binary model for cone-beam CT would be to set aij = 1 if the center of voxel
j is contained within projection ray i as defined by the polytope. This would not, however,
be an accurate approximation to the volumetric intersection between the projection ray and
voxel and thus would not likely facilitate high quality reconstructions.

2.3.2 Implementation

As with all of the system models, an efficient implementation is paramount since the code
will be executed very frequently. We only discuss the implementation of the volumetric
approximation code because the exact volumetric code is complicated by floating point
precision issues. Since we do not use this model in practice, we have only optimized the im-
plementation to the point that we can reasonably use it for comparison purposes. However,
there is very likely a more efficient approach than we present here.

We divide the volumetric approximation system model computation into two steps. We
first identify a list of candidate voxels that may be intersected by the projection ray, and
then test each voxel to determine the number of contained subvoxel centers. Of course,
we want to make the likelihood that a candidate voxel is intersected by the projection ray
as high as possible, although it may not be computationally advantageous to guarantee
an intersection. We find our candidate voxels using an octree approach. This approach
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proceeds by recursively dividing segments of the voxel space into eighths. We then test
each new subdivision for intersection with the projection ray and further subdivide those
that are intersected. Thus, we quickly remove from consideration regions that are far from
the projection ray and recursively subdivide regions near or inside the projection ray. If we
continue this process until every region has either been removed from consideration or only
consists of one voxel, then the candidate list will contain exactly those voxels intersected
by the projection ray. However, once a region contains eight or fewer voxels, we add all of
the voxels to the candidate list as that approach is slightly faster in practice.

After we have a list of candidate voxels, we use dot products to determine whether or
not a subvoxel is contained within the polytope. By computing the dot product between
a subvoxel center and the normal for a plane corresponding to a polytope side, we can
determine on which side of the plane the subvoxel center lies. Thus, if the subvoxel center
lies on the “inside” of all of the polytope planes, then that subvoxel center is considered
contained within the projection ray. Therefore, we compute these dot products for each
subvoxel center for each candidate voxel and assign the number of subvoxel centers of voxel
j contained in projection ray i to system matrix element aij . The loops computing these
dot products can be arranged to store partial dot products in order to reduce the amount
of computation.

2.3.3 Voxel Support

As with the line intersection and trilinear interpolation based models, we will analyze the
voxel support corresponding to projection zero and all projections as a preliminary measure
of the model effectiveness. We used a volumetric approximation model with twenty-seven
subvoxels per voxel for the results in this section. In Figs. 2.22, 2.23, and 2.24, we show
the voxel support for several transaxial slices corresponding to projection view zero and the
associated support profiles through y = 200. In these figures, we observe that the voxels
that are supported by the system geometry have constant support values. This is to be
expected since each subvoxel center that is supported by the scanner geometry should be
in exactly one projection ray. Thus, computing the voxel support values, or system matrix
column sums, is equivalent to summing the number of subvoxels per voxel supported by a
projection view. Similarly, we see in Figs. 2.25, 2.26, and 2.27 that the voxel support values
for the supported voxels are also constant when considering all projection views. Thus, the
volumetric approximation system model produces ideal relative support, although that does
not mean that the model itself accurately models the attenuation process. Furthermore,
these support results apply to the volumetric approximation model when using any number
of subvoxels per voxel, assuming that we always use the same number of subvoxels for each
voxel. The results also apply to the exact volumetric model in the ideal case, although the
support values would not be constant in practice due to floating point roundoff errors. We
will consider the performance of the volumetric system model in actual reconstructions in
Section 2.4.
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Figure 2.22: Left: Transaxial slice 127 of the volumetric approximation based system matrix
column sums corresponding to view angle zero. Right: Line profile with y = 200.
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Figure 2.23: Left: Transaxial slice 120 of the volumetric approximation based system matrix
column sums corresponding to view angle zero. Right: Line profile with y = 200.
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Figure 2.24: Left: Transaxial slice 80 of the volumetric approximation based system matrix
column sums corresponding to view angle zero. Right: Line profile with y = 200.
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Figure 2.25: Left: Transaxial slice 127 of the volumetric approximation based system matrix
column sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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Figure 2.26: Left: Transaxial slice 120 of the volumetric approximation based system matrix
column sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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Figure 2.27: Left: Transaxial slice 80 of the volumetric approximation based system matrix
column sums corresponding to all 720 view angles. Right: Line profile with y = 200.
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2.4 System Model Comparison

While comparing the voxel support values for various system models is useful, ultimately
the most important measurements of a system model are the quality of the reconstructions
that it facilitates and the computational burden. Thus, we will examine those aspects of the
system models in this section. However, it is difficult to directly compare the reconstructions
to one another. In particular, all of the linear systems associated with the system models
have the same b component, but the system matrix A depends upon the system model. Thus,
since the values of A vary, the reconstructed images given by x will be significantly different
from one linear system to the next and directly comparing the reconstructed attenuation
coefficients will not be useful. Therefore, we will compare the images qualitatively, not
quantitatively.

In Fig. 2.28 we show transaxial slices 141 and 181 of reconstructions of the tiny hole
phantom using each of the system models. These reconstructions used five iterations of
the SIRT algorithm with 48 ordered subsets, all of which will be described in subsequent
chapters. Firstly, note that all of the reconstructions are similar, which is to be expected for
reasonable system models. However, there are some artifacts visible in the line intersection
based reconstructions. In particular, for the line intersection based reconstructions, transax-
ial slice 141 has an artifact above the drilled holes, which we term “flaring”, and transaxial
slice 181 has some ring artifacts intersecting the drilled holes. In Figs. 2.29 and 2.30 we
zoom the images at the location of the artifacts for the line intersection based reconstruc-
tions and do the same for the trilinear interpolation based reconstructions for comparative
purposes. Note that all of the reconstructions contain some ring artifacts that seem to be
caused by the projection data as they are also present in filtered backprojection reconstruc-
tions. However, the additional ring artifacts in the line intersection based reconstruction
are due to the rings in the transaxial voxel support. Thus, based on the visual quality of the
reconstructions, the trilinear interpolation and volumetric approximation models appear to
be superior, although the line intersection model would likely be sufficient for screening
purposes or if the ring artifacts are deemed unimportant in a specific case.

The computational burden associated with each of the system models is also very im-
portant. Thus, we will compare the run-times of our current implementation of each of the
system models. Note that this comparison is specific to our implementation and computing
environment; it is entirely possible that much more efficient implementations of the system
models are possible. In order to compare the run-times, we performed one iteration of SIRT,
but did not perform the updates associated with the algorithm and only calculated the sys-
tem matrix rows. In the case of the volumetric approximation based system model, we used
twenty-seven subvoxels per voxel as in the presented reconstructions. As described in Chap-
ter 4, the reconstruction software is parallelized using threads to distribute the workload to
the processors on a given node and using message passing to distribute the workload among
nodes. Here, we report the maximum run-time for all of the system matrix computation
threads, which corresponds to a partial computation of the system matrix. However, it
allows us to compare the amount of time spent computing a substantial number of system
matrix rows with each model.

The maximum thread run-time was 72 seconds for the line intersection based system
model, 344 seconds for the trilinear interpolation based system model, and 13343 seconds for
the volumetric approximation based system model. Thus, the trilinear interpolation based
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Figure 2.28: Transaxial slices 141 (left) and 181 (right) of the tiny hole phantom using
the following system models: line intersections (top), trilinear interpolation (middle), and
volumetric approximation (bottom).
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Figure 2.29: Zoomed version of the flaring artifact that is present in the line intersection
based reconstruction (left) but not the trilinear interpolation based reconstruction (right).

Figure 2.30: Zoomed version of the ring artifacts that are present in the line intersection
based reconstruction (left) but not the trilinear interpolation based reconstruction (right).
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model takes approximately 4.8 times longer to compute than the line intersection based
model, and the volumetric approximation model takes about 185 times longer than the line
intersection based model and 39 times longer than the trilinear interpolation based model.
Note that these times are only for the system matrix computation. The algorithm updates
are identical for each system model, so that aspect of the reconstruction will be nearly iden-
tical for each system model, although system models that generate more nonzero system
matrix elements will have slightly higher associated algorithm updates. When accounting
for other costs such as algorithmic computation and interprocessor communication, a trilin-
ear interpolation based reconstruction actually takes approximately three times longer per
iteration than a line intersection based reconstruction.

Based on the run-time, the line intersection based model is clearly the best, while
the trilinear interpolation based model is acceptable. The current implementation of the
volumetric approximation model, however, is clearly too costly for practical use. Therefore,
as a compromise between image quality and computational run-time, we choose the trilinear
interpolation based system model for the remainder of this work.
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Chapter 3

Algebraic Reconstruction
Algorithms

Once a system model has been selected, we effectively have a linear system given by Ax =
b where system matrix A is the embodiment of the system model and b represents the
projection data. In order to compute an approximate solution to x, which represents the
reconstructed image, we use an iterative reconstruction algorithm. In this chapter, we focus
on algebraic reconstruction algorithms.

The ultimate goal of the algebraic reconstruction algorithms is to solve the linear system
Ax = b for x where A is an m × n matrix. While direct methods exist for solving such a
system, such as applying Gaussian Elimination or Cholesky Factorization to the associated
normal equations, the dimensions and potential lack of sparsity of the coefficient matrix for
the normal equations given by AT A prevent these direct methods from being practical. On
the other hand, the system matrices given by A are very large, but also very sparse, and
the iterative methods presented in this chapter can be implemented using only a single row
of the system matrix at a time. Censor refers to methods that use one matrix row at a time
as row-action methods [19].

There are a large class of related algebraic algorithms available in the medical imag-
ing literature that can be used to solve a linear system: algebraic reconstruction technique,
simultaneous iterative reconstruction technique, simultaneous algebraic reconstruction tech-
nique, etc. Most, if not all, of these algorithms existed in some form in the mathematical
literature previous to their rediscovery and adoption in medical imaging. In this chapter, we
present the algorithms used for iterative reconstruction in medical imaging and relate them
to their previous existence in other fields. This is not meant to be an exhaustive presenta-
tion of the history and development of these algorithms, but should add some perspective
and intuition to their methodologies.

In addition to algebraic reconstruction algorithms, there is a group of statistical recon-
struction algorithms as well. The statistical approaches differ from the algebraic approaches
in that they attempt to iteratively increase the accuracy of the solution in some statistical
context. One of the more successful statistical reconstruction algorithms in the field of
medical imaging is the expectation-maximization (EM) algorithm. Shepp and Vardi pro-
posed the EM algorithm for emission tomography in 1982 [2]. In 1984 Lange and Carson
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independently derived the same algorithm for emission tomography as well as a comple-
mentary algorithm for transmission tomography [3]. While the transmission version of the
EM algorithm introduced by Lange and Carson has not been widely used, most likely due
to a proliferation of variables that would complicate the implementation, other statistical
approaches have been used for transmission tomography. For example, Nuyts et al. pro-
posed a statistical algorithm termed MLTR [20], which is a gradient-ascent based maximum
likelihood algorithm for transmission tomography. This algorithm is developed by assuming
Poisson-distributed photon counts, writing the log-likelihood resulting from an application
of Bayes’ Rule (ignoring the prior term), and finally applying gradient ascent to a truncated
series expansion of the log-likelihood. Additionally, Elbakri and Fessler have also presented
a penalized weighted least squares (PWLS) update based on a Poisson model [21], which
they extend to polyenergetic x-ray CT. There are many other examples of successful ap-
plications of statistical iterative reconstruction algorithm in the medical imaging literature.
However, we focus on the algebraic methods in this work so that we can more thoroughly
explore the algorithms. That said, the techniques presented in Chapter 4 directly extend
to most algorithms, including the statistical iterative reconstruction algorithms.

3.1 A Simple Example

Throughout this chapter, we will use two simple linear systems to demonstrate the iterations
produced by the various algorithms. The systems have the same coefficient matrix, but one
is consistent (i.e., there exists an exact solution) and the other is not (i.e., there is no
exact solution). The goal of including these systems is to establish some intuition for the
functioning of the algorithms and to provide concrete examples for many of the observations
made in the text and citations. The goal is not, however, to compare algorithmic properties
such as speed of convergence. The linear systems used for these examples are





1 10
2 3
15 1





[

x1

x2

]

=





29.5
16.5
70



 and





1 10
2 3
15 1





[

x1

x2

]

=





30.5
15.5
71



 .

The first system is consistent with solution x = [4.5 2.5]T while the second system is
inconsistent. Note that the right hand side of the inconsistent system is simply a perturbed
version of the consistent system. This perturbation is meant to mimic the variations that
may occur during the measurement process in order to demonstrate how the algorithms may
react to noisy data. Furthermore, since the columns of the matrix are linearly independent,
the matrix is of full rank and there exists a unique least squares solution for the inconsistent
system given by

x∗ = (AT A)−1AT b ≈

[

4.553084
2.557767

]

. (3.1)

Since the matrix for the system is 3 × 2, the system can be visualized as three lines in
the Cartesian plane. In the consistent case, the three lines intersect at the exact solution.
On the other hand, in the inconsistent case, the three lines do not all intersect at any
single point, but do define a region in the plane where potential solutions are near all lines
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Figure 3.1: Graphs of the lines defined by the linear system examples. The left system
has a unique solution where all three lines intersect while the right system has no unique
solution.

(although some criterion would need to be defined to specify which point is “closest” to all
three lines). Graphs of the two systems are shown in Fig. 3.1.

3.2 Algebraic Reconstruction Technique (ART)

In 1970, Gordon et al. proposed the algebraic reconstruction technique (ART) for recon-
struction of objects in electron microscopy [18]. We will first present the more modern
version of ART, using our notation, and then comment on its history and mathematical
foundations. The ART algorithm, as presented by Kak and Slaney [22] and converted to
our notation, is

x
(k+1)
j = x

(k)
j + aij

bi −
∑n

h=1 aihx
(k)
h

∑n
h=1 a2

ih

(3.2)

where A is an m × n matrix, i = k mod (m + 1), and x(0) is an initial image estimate. In
vectorized form, ART is

x(k+1) = x(k) + ai∗
bi − aT

i∗x
(k)

‖ai∗‖2
(3.3)

where ai∗ is the ith row of A as a column vector. Since each update step only uses a single
row of the system matrix, we will refer to a single update step as a subiteration, while an
iteration denotes using each system matrix row once for a total of m subiterations. Some
presentations of ART also include a relaxation parameter (e.g., [23]), but we do not include
such a parameter in this work. Furthermore, if nonnegativity is required for the recon-
structed image values, the values can be constrained to be nonnegative by simply assigning
zero to an image element that would update to a negative value during a subiteration. If
this requirement is imposed, we refer to the algorithm as constrained ART; otherwise, we
refer to the algorithm as unconstrained ART. Since ART contains an additive update,
it is possible for an image value to become positive in subsequent iterations after being
constrained to zero.
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The ART iteration presented by Gordon et al. [18] has a slightly different form because
the authors used assumptions about the system model when developing the algorithm. In
particular, the projection rays were modeled as strips of a given width extending through
the image space and a binary system model was adopted: aij = 1 if voxel j is contained
in projection ray i and aij = 0 otherwise. Thus, the leading weight given by aij in (3.2)
disappears, as does the system matrix value given in the numerator, although the range
of summation is then restricted to voxels intersected by the given projection ray. Further-
more, the weighting given by

∑n
h=1 a2

ih in the denominator reduces to the number of voxels
contained in projection ray i. In order to maintain consistency in the presentation of the
iterative algorithms, we will always separate the system model used to generate the system
matrix A from the iterative algorithm used to solve the resulting system. Of course, certain
knowledge about the system model may allow us to create a more efficient implementation
of the algorithm, but the two can remain conceptually independent.

Herman et al. [24] generalized ART in 1973 to the modern version given above and placed
the update on a firmer mathematical basis. In this paper, Herman et al. establish that both
the constrained and unconstrained versions of ART converge to a solution, provided that
such a solution exists. Furthermore, unconstrained ART converges to a minimum variance
solution, although constrained ART does not. Finally, in the case of inconsistent data, and
thus no solution, unconstrained ART cyclically converges. In other words, as the number of
iterations approaches infinity, each subiteration converges to some solution vector, although
the solution vectors for each subiteration may be different. Additional convergence work
by Tanabe further characterized the convergence properties of the last element of the limit
cycle, which is the value obtained after each full iteration of ART, as a generalized inverse
applied to b [25]. Herman et al. and Tanabe further noted that ART had previously been
proposed by Kaczmarz in 1937 for solving linear systems [26]. We will now present ART in
the context of the method of projections as introduced by Kaczmarz.

3.2.1 ART as a method of projections

The method of projections offers an intuitive description for the functioning of ART. Al-
though the 1937 paper by Kaczmarz is frequently cited, that paper is written in German
and thus we have not read it. However, many others (e.g., [22, 23]) have summarized the
method of projections; we give a presentation adapted from those sources in this section.
The basic step of the method of projections, and thus of ART, is projecting the current
solution estimate onto a hyperplane defined by a row of the system matrix. In the case
of a consistent linear system, the hyperplanes all intersect in exactly one point, and by
successively projecting the solution estimate orthogonally from one hyperplane to the next,
the solution estimate continues to move closer to the true solution. In the inconsistent case,
the solution estimate moves toward the region where the hyperplanes “nearly” intersect and
oscillates in this region. We will first establish that a single step of ART does in fact orthog-
onally project the current solution estimate to the next hyperplane and then demonstrate
the algorithm on our sample linear systems.

First consider the hyperplane defined by the ith row of the linear system:

Hi = {z|aT
i∗z = bi} (3.4)
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where aT
i∗ is the ith row vector of A. Assuming that ai∗ has more than one nonzero element,

then Hi contains an infinite number of points. Let z1 and z2 be two distinct points in Hi,
then aT

i∗(z2 − z1) = bi − bi = 0, so ai∗ is orthogonal to Hi. Furthermore, for any z ∈ Hi, the
projection of z onto ai∗ is given by

proj ai∗
z =

(

aT
i∗z

‖ai∗‖2

)

ai∗ =

(

bi

‖ai∗‖2

)

ai∗. (3.5)

In particular, the orthogonal projection of our current solution estimate x(k) onto Hi, which
we call x(k+1), is a point in Hi, so

proj ai∗
x(k+1) =

bi

‖ai∗‖2
ai∗. (3.6)

Now consider the projection of the current iterate, x(k), onto ai∗, or

proj ai∗
x(k) =

(

aT
i∗x

(k)

‖ai∗‖2

)

ai∗. (3.7)

The vector x(k+1) − x(k) is orthogonal to Hi by definition, and thus parallel to ai∗. Thus,
the distance ‖proj ai∗

x(k+1)−proj ai∗
x(k)‖ is equivalent to ‖x(k+1)−x(k)‖. Furthermore, the

vectors proj ai∗
x(k+1) − proj ai∗

x(k) and x(k+1) − x(k) both point in the same direction since
they are parallel and the “heads” of the vectors both lie in Hi. In other words, since they
have the same direction and magnitude, they are the same vector, so

x(k+1) − x(k) = proj ai∗
x(k+1) − proj ai∗

x(k). (3.8)

Therefore,

x(k+1) = x(k) + (x(k+1) − x(k)) = x(k) + ai∗
bi − aT

i∗x
(k)

‖ai∗‖2
(3.9)

which is equivalent to ART as presented in (3.3).
We will show several ART iterations on the sample linear systems in order to clarify

the projection process. Assume that x(0) is the zero vector. Then one full iteration of
ART, which consists of three subiterations, is shown in Fig. 3.2. The circles in the figure
denote the computed solution estimates and the dotted lines denote the projections onto
the hyperplanes (or lines in this case). In order to demonstrate the differing convergence
behavior for consistent and inconsistent systems, we include the results for five iterations
of ART in Fig. 3.3. In this figure, we see that the iterates for the consistent case move
continually closer to the true solution, while the iterates for the inconsistent case begin to
oscillate in a limit cycle as noted by Herman et al [24].

3.2.2 ART as Gauss-Seidel

ART can additionally be viewed as the widely known Gauss-Seidel method applied to al-
ternative normal equations of the system Ax = b. This connection between ART and
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Figure 3.2: One full iteration of ART on the consistent (left) and inconsistent (right) sample
systems.
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Figure 3.3: Five full iterations of ART on the consistent (left) and inconsistent (right)
sample systems. The first several subiteration results are not visible as they are outside the
axes boundaries.
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Gauss-Seidel has been previously shown by Björck and Elfving [27] and observed by Bar-
rett and Myers [28]. Our development is similar to that in [27], but includes more details.

Consider the least squares problem given by

minimize ‖b − Ax‖2. (3.10)

Then the associated normal equations are given by [29]

AT Ax = AT b. (3.11)

An alternative to the normal equations [30] solves the system

AAT y = b (3.12)

for y and computes the solution as x = AT y. We will demonstrate that ART is equivalent
to this alternative approach.

The Gauss-Seidel method for iteratively solving an n×n linear system Ax = b is typically
given as (see, e.g., [31])

x
(k+1)
i =

bi −
∑

j<i aijx
(k+1)
j −

∑

j>i aijx
(k)
j

aii
, i = 1, . . . , n. (3.13)

As written, Gauss-Seidel computes the ith component of the current iteration using elements
1, 2, . . . , i− 1 of the current iteration and i + 1, i + 2, . . . , n of the previous iteration. Thus,
given an initial solution estimate x(0), the estimate x(1) is computed after n component
updates. However, we will instead view Gauss-Seidel as generating a complete solution
estimate vector after each component update, but that new vector will differ from the
previous vector only in the updated component. In other words, we will write the Gauss-
Seidel update in (3.13) as

x(k+1) = x(k) + ∆x(k) (3.14)

where
∆x(k) = ei(g

(k)
i − x

(k)
i ). (3.15)

In the latter equation, i = k mod n + 1, ei is the elementary unit column vector with a

one in the ith position, g
(k)
i is the Gauss-Seidel computed update for the ith component in

the kth iteration, and x
(k)
i is the ith element of the kth iteration of x. Since the previous

iterate now contains the most recent values, the Gauss-Seidel update for the ith component
of x is given by

x
(k+1)
i =

bi −
∑

j 6=i aijx
(k)
j

aii
. (3.16)

Now consider applying Gauss-Seidel as given in (3.14) to solve for y in (3.12) where
A is m × n, y is m × 1, b is m × 1, and x is n × 1. Then the (i, j) element of AAT is
[AAT ]ij =

∑n
h=1 aihajh and

g
(k)
i =

bi −
∑

j 6=i(
∑n

j=1 aihajh)y
(k)
j

∑n
h=1 a2

ih

. (3.17)
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Substituting g
(k)
i into (3.15), solving now for y instead of x, yields

∆y(k) = ei

(

bi −
∑

j 6=i(
∑n

h=1 aihajh)y
(k)
j

∑n
h=1 a2

ih

− y
(k)
i

)

(3.18)

= ei

(

bi −
∑

j 6=i(
∑n

h=1 aihajh)y
(k)
j −

∑n
h=1 a2

ihy
(k)
i

∑n
h=1 a2

ih

)

(3.19)

= ei

(

bi −
∑m

j=1(
∑n

h=1 aihajhy
(k)
j )

∑n
h=1 a2

ih

)

. (3.20)

Rearranging the summations and converting them to matrix-vector notation, we have

∆y(k) = ei

(

bi −
∑n

h=1 aih
∑

j 6=i ajhy
(k)
j

∑n
h=1 a2

ih

)

(3.21)

= ei

(

bi −
∑n

h=1 aih[AT y(k)]h
∑n

h=1 a2
ih

)

(3.22)

= ei

(

bi − aT
i∗A

T y(k)

∑n
h=1 a2

ih

)

(3.23)

where [AT y(k)]h is the hth component of the matrix-vector multiplication and aT
i∗ is the ith

row of A. Since x = AT y by assumption, we have x(k) = AT y(k), so

∆y(k) = ei

(

bi − aT
i∗x

(k)

∑n
h=1 a2

ih

)

. (3.24)

Therefore,
x(k+1) = AT y(k+1) = AT (y(k) + ∆y(k)) = x(k) + AT ∆y(k) (3.25)

and

AT ∆y(k) = AT ei

(

bi − aT
i∗x

(k)

∑n
h=1 a2

ih

)

= ai∗

(

bi − aT
i∗x

(k)

∑n
h=1 a2

ih

)

. (3.26)

Finally,

x(k+1) = x(k) + AT ∆y(k) = x(k) + ai∗

(

bi − aT
i∗x

(k)

∑n
h=1 a2

ih

)

(3.27)

which is equivalent to the vectorized form of ART given in (3.3).
Therefore, ART is equivalent to the Gauss-Seidel method applied to the alternative

normal equation formulas given in (3.12) and is thus a reincarnation of a classical algebraic
technique.
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3.2.3 ART as Gauss-Seidel in matrix form

We can also write the ART iteration in full matrix form. The Gauss-Seidel iteration applied
to a square linear system Ax = b is

x(q+1) = (D + L)−1(b − Ux(q)) = x(q) + (D + L)−1(b − Ax(q)) (3.28)

where D contains the diagonal elements of A, L contains the elements of A below the
diagonal, and U contains the elements of A above the diagonal so that A = D + L + U . If
we apply Gauss-Seidel to the alternative normal equations given by AAT y = b to solve for
y, we have

y(q+1) = y(q) + (D + L)−1(b − AAT y(q)) (3.29)

where D and L are now the diagonal and lower components of AAT , respectively. Since
x = AT y, we have

x(q+1) = AT y(q+1) = x(q) + AT (D + L)−1(b − Ax(q)). (3.30)

This matrix form of ART computes only the full iterations, not the subiterations as
computed by the more typical presentations of ART. In other words, if the total subiteration
index is k, such as in (3.3), then q = km. In Section 3.3.2, we will introduce the concept
of matrix splitting as a general approach to solving linear systems that includes as special
cases the Jacobi and Gauss-Seidel iterations.

3.2.4 Additional Notes

Other researchers have recently investigated efficient implementations of ART. For example,
Mueller has presented fast implementations for the projector-backprojector pair [9] as well
as ART and SART reconstructions driven by commodity graphics hardware [32]. In this
work, we implement the reconstruction software on a cluster of commodity PCs. However,
since ART only uses one system matrix row per image update, it does not easily benefit
from a parallel implementation. Thus, rather than implementing ART in our reconstruction
framework, we implement the simultaneous analogues of ART.

3.3 Simultaneous Iterative Reconstruction Algorithm (SIRT)

Introduced in 1972 by Gilbert [33], the simultaneous iterative reconstruction technique
(SIRT) only updates the image after considering the entire matrix. In our notation, the
matrix-vector version of SIRT is

x(k+1) = x(k) + CAT R(b − Ax(k)) (3.31)

where C and R are diagonal matrices containing the inverses of the column and row sums
of A, or cjj = 1/

∑m
h=1 ahj and rii = 1/

∑n
h=1 aih. Although SIRT is typically presented as

a natural extension of ART, there are some important differences. Most importantly, if the
matrix A has full column rank and the system is inconsistent, then SIRT converges to a
weighted least squares solution. As we will see shortly, the weighting in the SIRT algorithm
is related to the row sums of A.
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3.3.1 SIRT as the generalized Landweber iteration

Landweber proposed an iteration method in 1951 [34] to solve Fredholm integral equations
of the first kind, which can in turn be used to solve linear systems. The Landweber iteration
applied to the system Ax = b is

x(k+1) = x(k) + AT (b − Ax(k)). (3.32)

The iteration scheme was further investigated by Strand [35], who also proposed a general-
ized Landweber iteration defined as

x(k+1) = x(k) + DAT (b − Ax(k)) (3.33)

where Strand refers to the matrix D as a “shaping” operator. We will now show that SIRT
is an instance of the generalized Landweber iteration with D = C.

First consider the matrix R from SIRT, which is diagonal with positive diagonal ele-
ments, and thus symmetric positive definite. Since symmetric positive definite matrices
have associated matrix square roots [29, p. 149], we can define R1/2, which in this case is
simply a diagonal matrix containing the square roots of the elements of R. Now consider
the linear system

R1/2Ax = R1/2b. (3.34)

The generalized Landweber iteration for this preconditioned linear system is

x(k+1) = x(k) + DAT R1/2(R1/2b − R1/2Ax(k)) = x(k) + DAT R(b − Ax(k)) (3.35)

which is equivalent to SIRT with D = C.

3.3.2 SIRT as a matrix splitting

Matrix splitting is a standard approach for solving linear systems that generates a large
family of algorithms, including the Jacobi and Gauss-Seidel iterations. We will show in the
following that SIRT, as well as the Landweber and generalized Landweber algorithms, can
be viewed as specific matrix splittings.

Assume we have a linear system Ax = b with A an n× n nonsingular matrix. Consider
n × n matrices M and N such that A = M − N . If M is nonsingular, then the iteration
defined by

x(k+1) = M−1Nx(k) + M−1b (3.36)

converges to x = A−1b if ρ(M−1N) < 1 where the spectral radius ρ is the largest eigen-
value magnitude of A, or ρ(A) = max{|λ| : λ ∈ Λ(A)} with Λ(A) representing the set of
eigenvalues of A [29, Theorem 10.1.1].

Now consider the matrix splitting applied to the normal equations for an overdetermined
system Ax = b given by AT A = I − (I − AT A). This splitting yields the iteration

x(k+1) = (I − AT A)x(k) + AT b = x(k) + AT (b − Ax(k)) (3.37)
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Figure 3.4: Five iterations of the SIRT algorithm on the consistent (left) and inconsistent
(right) sample systems.

which is the Landweber iteration applied to the original linear system. Furthermore, if we
instead consider a preconditioned version of the normal equations given by

DAT Ax = DAT b (3.38)

for some nonsingular preconditioning matrix D, then the iteration associated with the
splitting DAT A = I − (I − DAT A) is

x(k+1) = (I − DAT A)x(k) + DAT b = x(k) + DAT (b − Ax(k)). (3.39)

This latter equation is the generalized Landweber algorithm.
It should now be clear that SIRT is also an iteration resulting from a matrix splitting.

In particular, consider the preconditioned normal equations associated with the weighted
least squares problem:

CAT RAx = CAT Rb. (3.40)

Then the matrix splitting CAT RA = I − (I − CAT RA) yields the SIRT algorithm:

x(k+1) = (I − CAT RA)x(k) + CAT Rb = x(k) + CAT R(b − Ax(k)). (3.41)

We show the results of applying five iterations of SIRT to the consistent and inconsistent
sample problem in Fig. 3.4. Notice that SIRT does not express the oscillatory behavior
associated with ART on the inconsistent system. Furthermore, in the inconsistent case,
SIRT converges to

x∗ ≈

[

4.537222
2.523572

]

. (3.42)

which is (AT RA)−1AT Rb, so for the sample problem SIRT does in fact solve the weighted
least squares problem.

As noted before, the Jacobi and Gauss-Seidel iterations are also specific matrix splittings.
In the next section, we note the similarities and differences between SIRT and the Jacobi
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iteration. We will also analyze the convergence of SIRT based on the matrix splitting
formulation in Section 3.5 and modify the algorithm to create the parallel SIRT algorithm.

3.3.3 SIRT similarities to the Jacobi iteration

Since we previously established that ART is simply Gauss-Seidel applied to the alternative
set of normal equations, and SIRT is considered the simultaneous version of ART, it seems
reasonable to expect SIRT to be the Jacobi iteration applied to some system of equations.
However, this is not the case. That said, we will show that SIRT is very similar to the
Jacobi iteration applied to a weighted version of the normal equations.

The Jacobi iteration applied to a square linear system Ax = b is

x(k+1) = (I − D−1A)x(k) + D−1b (3.43)

= x(k) + D−1(b − Ax(k)) (3.44)

where D is the diagonal of A. Define LR = ‖b − Ax‖2
R to be the weighted least squares

functional with R defined as before. Then the associated normal equations are given by

AT RAx = AT Rb (3.45)

and the Jacobi iteration applied to these normal equations is

x(k+1) = x(k) + D−1AT R(b − Ax(k)) (3.46)

where D is now the diagonal of AT RA. The only difference between this Jacobi iteration
and SIRT is the D−1 term of the Jacobi iteration in place of the C term of the SIRT
iteration. Both of these matrices are n×n diagonal matrices and the diagonal elements are
given by

d−1
jj = 1/

(

m
∑

h=1

a2
hj

∑n
p=1 ahp

)

= 1/

(

m
∑

h=1

ahjwhj

)

(3.47)

cjj = 1/

(

m
∑

h=1

ahj

)

(3.48)

where whj = ahj/
∑n

p=1 ahp. Thus, D−1 contains weighted column sums, and the weights
are all less than or equal to one since they are normalized contributions of a given matrix
element to its row. Therefore, whj ≤ 1 for all h, so cjj ≤ d−1

jj for all j. If we interpret the C

and D−1 matrices as step sizes for the corrections to the current estimates, then we see that
the Jacobi step sizes are always greater than or equal to the SIRT step sizes. We depict
five iterations of the Jacobi iteration on the consistent and inconsistent sample systems in
Fig. 3.5. Note that the update steps for the Jacobi algorithm are in fact larger than for
the SIRT iterations shown in Fig. 3.4. We do not implement the Jacobi iteration because it
would require access to the full system matrix elements and as described in Section 2.2.1, we
can only easily access the partial system matrix elements when using trilinear interpolation
as the system model.
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Figure 3.5: Five iterations of the Jacobi algorithm on the consistent (left) and inconsistent
(right) sample systems.

3.3.4 SIRT as Richardson’s iteration

Richardson’s iteration, which is also used to solve square linear systems given by Ax = b,
is given by [36]

x(k+1) = x(k) + β(b − Ax(k)) (3.49)

where β is a scalar relaxation parameter. If we let β = 1 and apply Richardson’s iteration
to the system CAT RAx = CAT Rb, then we get the SIRT iteration. We can also view
Richardson’s iteration as applying a matrix splitting given by βA = I − (I − βA) to the
system βAx = βb where β is a scalar preconditioner.

3.4 Simultaneous Algebraic Reconstruction Technique (SART)

Andersen and Kak introduced the simultaneous algebraic reconstruction technique (SART)
in 1984 [16] as an additional algebraic reconstruction technique. SART is basically a hybrid
between ART and SIRT. With ART, only one matrix row is used per image update, while
SIRT uses all matrix rows during each update. The SART algorithm, on the other hand,
divides the system matrix rows in terms of projection view angles and performs updates
based on the matrix rows corresponding to a single view angle using the SIRT algorithm.
In other words, one update will be performed using the linear system that results from
considering only the system matrix rows corresponding to a given projection view. It will
be evident after we introduce ordered subsets in Section 4.2 that SART is an ordered subsets
version of SIRT. Furthermore, note that some authors use the name SART for the algorithm
that we refer to as SIRT.

3.5 Parallel SIRT (PSIRT)

In Section 3.3, we demonstrated that the SIRT iteration can be viewed as resulting from a
matrix splitting of CAT RA and stated a theorem related to matrix splitting. In this section,
we employ that theorem and establish that SIRT converges to a unique solution given a set of
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stated assumptions. We will then modify the SIRT algorithm in such a way that maintains
convergence, but will ultimately be more efficient in a parallelized implementation.

Assume that A is an m× n nonnegative matrix with m > n and rank(A) = n. Since all
of the system models discussed in Chapter 2 generate nonnegative system matrix elements,
A is nonnegative in our case. Furthermore, A is overdetermined, or m > n, if there is
enough projection data, which is generally under our control. However, it is more difficult
to determine if the system matrix A has full column rank, or in other words, if rank(A) = n.
We proceed with the assumption that A does indeed have full column rank.

Consider the following linear system discussed in Section 3.3:

CAT RAx = CAT Rb. (3.50)

Since R and C are both diagonal matrices with positive entries corresponding to the inverse
row and column sums of the system matrix A, respectively, both R and C are symmetric
positive definite (SPD). Then since R is positive definite and A has rank n, AT RA is a
positive definite n × n matrix [29, Theorem 4.2.1]. Furthermore, (AT RA)T = AT RA, so
AT RA is SPD. Finally, since both C and AT RA are SPD, CAT RA is an n×n nonsingular
matrix, so the system CAT RAx = CAT Rb is subject to matrix splitting.

As demonstrated above, the matrix splitting given by CAT RA = I − (I − CAT RA)
yields a rewritten form of the SIRT iteration:

x(k+1) = (I − CAT RA)x(k) + CAT Rb. (3.51)

Thus, if ρ(I − CAT RA) < 1, then the SIRT iteration converges to the unique solution

x∗ = (CAT RA)−1CAT Rb = (AT RA)−1AT Rb. (3.52)

Note that the matrix C does not affect the solution, but will impact convergence since it is
part of the iteration matrix.

We will first use properties of induced matrix norms to bound the spectral radius of
CAT RA and then extend the result to the iteration matrix I − CAT RA. The vector
∞-norm induces the matrix ∞-norm given by ‖A‖∞ = max1≤i≤m ‖aT

i ‖1, which is the
maximum row sum of A. Since R is a diagonal matrix containing the inverse row sums of
A, or rii = 1/

∑n
j=1 aij , each row of RA sums to one. Similarly, since C contains the inverse

column sums of A, and the rows of AT are the columns of A, each row of CAT sums to one.
Furthermore, for any induced matrix norm, ρ(A) ≤ ‖A‖ and ‖AB‖ ≤ ‖A‖‖B‖. Thus,

ρ(CAT RA) ≤ ‖CAT RA‖ ≤ ‖CAT ‖‖RA‖ = 1. (3.53)

In addition, since C is positive definite and AT RA is symmetric, the matrix CAT RA has
the same number of positive, negative, and zero eigenvalues as AT RA [37, Theorem 7.6.3].
Thus, since AT RA is SPD, CAT RA has all positive eigenvalues by the referenced theorem,
and all of the eigenvalues are less than or equal to one by (3.53).

Assume that CAT RA has eigenvalues λ1, λ2, . . . , λn and let the associated eigenvectors
be x1, x2, . . . , xn. Then Axi = λixi and (I−A)xi = xi−Axi = (1−λi)xi, so the eigenvalues
associated with the iteration matrix I − CAT RA are given by 1 − λ1, 1 − λ2, . . . , 1 − λn.
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Figure 3.6: Five iterations of the PSIRT algorithm on the consistent (left) and inconsistent
(right) sample systems.

Hence, the eigenvalues λi of I − CAT RA all satisfy 0 ≤ λi < 1, so

ρ(I − CAT RA) < 1. (3.54)

Therefore, the SIRT iteration converges to the solution described in (3.52).
For reasons that will become apparent in Chapter 4, it would be beneficial to replace the

inverse column sum matrix C by a scalar, primarily due to interprocessor communications
required in a parallelized implementation. Recall that C has no effect on the solution
computed in (3.52), so replacing C is reasonable if convergence is maintained. We will
replace C by a scalar α to form the parallel SIRT iteration (PSIRT):

x(k+1) = x(k) + αAT R(b − Ax(k)). (3.55)

Define α as the inverse of the maximum column sum of A, or

α =
1

maxj
∑n

i=1 aij
. (3.56)

The iteration matrix now becomes I − αAT RA and we have ‖αAT ‖∞ = 1 since all of the
rows of αAT sum to less than or equal to one with at least one row summing to exactly
one. Thus, (3.53) still holds with C replaced by α, and the rest of the analysis remains the
same, although αAT RA is now SPD so the analysis is simplified. Thus, the parallel SIRT
algorithm converges to

x∗ = (αAT RA)−1αAT Rb = (AT RA)−1AT Rb, (3.57)

which is the same solution given for SIRT in (3.52). Therefore, SIRT and PSIRT converge
to the same solution. In Fig. 3.6, we show the first five iterations of the PSIRT iteration
on the consistent and inconsistent sample systems. We will demonstrate the advantages of
PSIRT in Chapter 5.

49



Chapter 4

Implementation Issues

Due to the size of the linear system, special care must be taken when implementing an
iterative image reconstruction algorithm. We employ many methods of reducing the com-
putation and storage burdens associated with the reconstruction algorithms. The first
method employed is cluster computing, which significantly reduces the computational run-
time and somewhat reduces the memory requirements, but also introduces interprocessor
communication. We then apply ordered subsets, which also significantly reduces the com-
putation time, but increases the relative cost of the communication. The combination of
parallel computing and ordered subsets makes the computation manageable, but does not
significantly address memory concerns and also introduces communication costs. In order
to address the latter issues, we restrict the reconstruction to its image support region. This
significantly reduces memory consumption and communication costs, and also somewhat
reduces computation costs. In addition, we employ a heuristic data-driven technique called
focus of attention that reduces the amount of considered data in the image and projec-
tion spaces, which in turn reduces memory consumption, communication, and computation
costs. Finally, we implement parallel SIRT (PSIRT) to further reduce communication.

4.1 Parallel Computing

We have developed an image reconstruction framework that runs on clusters of commodity
PCs. The primary cluster used consists of sixty-four nodes. Each node has dual-processors
and a Myrinet interconnection; this cluster is more thoroughly described in Appendix B.1.
We employ POSIX threads for parallelization on each node and an adaptation of the MPICH
implementation of MPI [38,39] for communication between nodes. While we could avoid the
added complexity of developing the reconstruction software to use multiple threads by in-
stead running several processes per node (e.g., one process per processor), this would require
a great deal of duplication in memory usage. As we will demonstrate later, memory con-
straints are a major concern for iterative image reconstruction, and running two processes
on a single node would approximately double the amount of memory per node required to
perform the reconstructions. Thus, it is important to use multiple threads per node rather
than multiple processes in order to conserve memory. We will first discuss the method of
distributing the reconstruction to multiple nodes and then explore the effectiveness of the
load balancing strategy.
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Node 1, CPU 0 (1:0)
...

Node n−1, CPU 0 (n−1:0)
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Node 1, CPU 1 (1:1)
...

Node n−1, CPU 1 (n−1:1)

Node 0, CPU 0 (0:0)

Node 0, CPU 0 (0:0)
...

Figure 4.1: Depiction of the workload assignment to each of two processors on each of n
nodes. In this figure (i : j) refers to node i and processor j.

4.1.1 Problem Distribution

Recall that the ultimate goal of the iterative reconstruction algorithms is to find an ap-
proximate solution to the linear system Ax = b. Due to the size of the system matrix A,
the matrix elements cannot reasonably be stored and thus must be computed on demand.
There are two obvious approaches to computing the elements: by row or by column. These
two approaches correspond to ray-driven and voxel-driven methods, which we introduced
in Chapter 2. As discussed there, we focus on ray-driven, and thus row based, approaches
in this work.

When partitioning the problem in terms of rows, we must communicate the results
of backprojections, which are image sized arrays. On the other hand, when partitioning
the problem in terms of columns, and thus using a voxel-driven system model, we must
communicate the results of forward projections, which are projection data sized. Since we
typically expect to have an overdetermined linear system, and thus more rows than columns,
the ray-driven approach involves communicating less data than the voxel-driven approach.

We divide the rows among the cluster nodes by treating a detector column, which we
will henceforth refer to as a detector group to avoid confusion with system matrix columns,
as an atomic computational unit. These detector groups in turn correspond to some number
of system matrix rows, one per detector element. We then distribute these groups to the
N nodes in a round robin fashion: node 0 manages columns 0, N , 2N , . . ., node 1 manages
groups 1, N +1, 2N +1, . . ., etc. The groups are then further divided among each available
processor on each node, again in a round robin fashion.

We give a visual depiction of the workload distribution in Fig. 4.1. Each block in the
figure corresponds to a detector group, which is assigned to some processor on some node.
We assume that there are only two processors per node, as is the case on our computing
resources, but this approach generalizes easily to more processors. With n nodes, node
i (0 ≤ i ≤ n − 1) manages detector groups nk + i where 0 ≤ k < K and K is the total
number of detector groups times the number of projections.

There are two major computational operations involving the system matrix that must
be implemented: forward projections and backprojections. These operations correspond
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Figure 4.2: Visual depiction of the forward projection (left) and backprojection (right)
processes for a single node. The node computes specified system matrix rows which then
correspond to certain columns during the backprojection.

to the matrix operations Ax and AT b, respectively. For most algorithms, each of these
operations is used at least once per iteration. For example, recall the SIRT algorithm

x(k+1) = x(k) + CAT R(b − Ax(k)), (4.1)

which superficially includes one forward projection and one backprojection. We demon-
strate later that the R and C matrices actually constitute an additional forward and back-
projection. Thus, if we compute the system matrix elements separately for the forward
and backprojections, we will compute each element at least twice during each iteration.
Fortunately, once a node calculates a system matrix row, we can use the calculated ele-
ments for all projection operations, so we only generate each system matrix element once
per iteration. We will now describe how this is accomplished.

First consider the elements produced from a forward and backprojection. The ith com-
ponent of Ax and the jth component of AT b are given by

[Ax]i =
n
∑

j=1

aijxj (4.2)

[AT b]j =
m
∑

i=1

aijbi. (4.3)

Thus, since each node stores the full image x, the ith component of Ax can be fully computed
on the node to which the ith system matrix row is assigned. Furthermore, this value will
not be needed on any other node. However, the jth component of AT b cannot be fully
computed without input from every system matrix row. Thus, each node only computes
partial sums for the backprojection values and MPI communication is required to calculate
the full back projection values. Figure 4.2 depicts the forward and backprojection processes
for the data stored on a given node.

More precisely, assume that the system matrix row indices are partitioned into the N
sets B0, B1, . . . , BN−1, which we then assign to the N nodes in the natural order. Then the
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partial sum of the jth component of AT b computed on node 0 is

[AT b]
(0)
j =

∑

i∈B0

aijbi (4.4)

where the superscript on [AT b]j denotes the node. Thus, the value [AT b]j must be computed
by summing all of the partial values, i.e.

[AT b]j =
N−1
∑

h=0

[AT b]
(h)
j . (4.5)

We borrow the terminology used by MPI and refer to these summations across nodes as
global reductions. As we will see later, these global reductions can consume a significant
portion of the total reconstruction time.

Furthermore, the column sums computed in the SIRT algorithm are the result of an
implicit backprojection operation given by AT 1 where 1 denotes the m × 1 column vector
containing all ones. Of course, in the implementation we simply sum the values rather than
multiplying each element by one and then summing the results, but it is sometimes useful to
conceptually classify the column sum operation as a backprojection. Thus, communication
is also required to aggregate the partial column sums. The row sums are also the result of
an implicit forward projection given by A1 where 1 is now the n× 1 column vector of ones.
However, as with the other forward projection, no communication is required because the
necessary row sums are fully computed on each node.

As mentioned above, the system matrix elements are only computed once per iteration,
although they are used for several operations. Although Li et al. [40] took this approach,
and it is likely used by others as well, it also seems popular to calculate the system matrix
elements separately for each projection operation. For example, Zeng and Gullberg discuss
using an “unmatched” projector and backprojector pair [41]. The motivation is that a sim-
pler system model can be used for the backprojection than for the forward projection, thus
saving time spent in the projectors. However, if the calculated forward projection coeffi-
cients are reused in the backprojector, then there is no need to use a simpler backprojector
model since using the same values requires no additional computation. Note that an addi-
tional reason given for the unmatched projector pairs is to remove reconstruction artifacts
that are present in a matched projector pair reconstruction, which may justify the approach
despite the computational disadvantages. As presented above, the forward projection op-
erations are simple to compute given a system matrix row because that row and the image
that is stored on each node are all that are needed to compute the corresponding forward
projection element. However, the backprojection operation is less direct since it requires
a column of the system matrix, but only rows are available. Thus, when a system matrix
row is available, we iterate through the row adding contributions to an image sized array
as shown in Algorithm 4.1. This is a simple concept, but must be implemented carefully in
a multi-threaded application due to the possibility of a race condition.
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Algorithm 4.1 Pseudocode for the backprojection operation.
The backprojection values accumulate in the image sized vector v.

1: for all nonzero columns j in row i do

2: vj = vj + aijbi

3: end for

4.1.2 Backprojection Race Condition

While the approach in Algorithm 4.1 works straightforwardly when using one thread, the
inclusion of multiple threads introduces the possibility for a race condition. In particular, if
two (or more) threads are executing the loop in Algorithm 4.1 simultaneously using different
system matrix rows, then they may both update a voxel vj at the same time. If this occurs,
then one of the two updates may be lost and the computed sum will not be correct. Since
the voxel space generally contains tens or hundreds of millions of voxels, and the projection
rays in a circular orbit cone-beam geometry diverge from one another, this update problem
seems unlikely to be a major concern. Thus, we will first quantify the issue to determine
its severity and then consider possible solutions.

First we need to identify, on average, how often updates are actually lost for real recon-
structions. On the surface, this seems to be a simple procedure: compute a backprojection
first with a single thread, which cannot exhibit the behavior, and then with multiple threads
and compare the results. However, if we use the trilinear interpolation model, then we will
be comparing computed floating point numbers for equality, which is generally problematic.
For example, just changing the order in which finite precision floating point numbers are
added can change their sum even if no updates are lost. Instead, we first use a modified dis-
crete volumetric approximation system model that returns the integral number of subvoxel
centers contained in a given projection ray to quantify the effect of the race condition. We
then reconsider the effect of the race condition on the trilinear interpolation based compu-
tations. By using an integral system model, we can avoid the complications arising from the
limitations of finite precision floating point representations. We first compute the column
sums of the corresponding system matrix, which as noted is a backprojection operation. By
then summing these integral column sums and comparing the known correct results with
the results obtained with multiple threads, we can get a sense of how often the race condi-
tion manifests itself. Note that summing the column sums is mathematically equivalent to
summing all of the system matrix elements. The race condition, however, only manifests
itself during the column sum computation since that is a backprojection and not during the
final summation of the column sums, which is performed by a single thread.

We use twenty-seven subvoxels per voxel for the discrete volumetric approximation
and the geometry corresponding to the Shepp-Logan phantom data set described in Ap-
pendix A.1. If only one point, or one subvoxel, is used per voxel, then the race condition is
very unlikely to exhibit itself because that subvoxel can only be contained within one pro-
jection ray per projection and thus vj can only be simultaneously updated from projections
corresponding to different view angles. Furthermore, the threads are unlikely to be comput-
ing at such different rates that they are processing projection rays from different projection
view angles for any substantial amount of time. The results of the column sum summations
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Table 4.1: Total sum of the column sums computed using the modified discrete volumetric
approximation system model. The correct value is 62,891,309,074, so the only reconstruc-
tions not computing the correct value were single node reconstructions.

Nodes Recon 1 Recon 2 Recon 3

1 62,891,309,019 62,891,308,988 62,891,309,005

2 62,891,309,074 62,891,309,074 62,891,309,074

4 62,891,309,074 62,891,309,074 62,891,309,074

8 62,891,309,074 62,891,309,074 62,891,309,074

16 62,891,309,074 62,891,309,074 62,891,309,074

32 62,891,309,074 62,891,309,074 62,891,309,074

for varying numbers of nodes and multiple reconstructions per node configuration are given
in Table 4.1. Each of these reconstructions used two threads per dual-processor node.

The correct column sum value for this system matrix, as computed by using a single
thread, is 62,891,309,074. Thus, only the single node configuration exhibits the race condi-
tion for any of the three reconstructions. This is a result of the way in which the work is
distributed. With N nodes, the detector groups managed by a given node are all separated
by N − 1 detector groups that are managed by other nodes. Furthermore, the detector
groups managed by a given node are assigned in a round robin fashion to each thread, so
in order for both threads to attempt updating a given voxel simultaneously, two projection
rays separated by N − 1 detector columns must interact with that voxel. This becomes
increasingly unlikely as N increases, and we can see from Table 4.1 that it only seems to
be a problem for single node reconstructions. With single node reconstructions, the same
node manages all of the projection rays, so assigning the columns in a round robin fashion
to the threads introduces the possibility of two threads computing system matrix values for
projection rays corresponding to neighboring detector elements. When this occurs, the race
condition is much more likely to manifest itself.

This could be easily prevented for single node reconstructions by assigning blocks of
detector groups to each thread rather than using a round robin assignment, but since we
do not perform large reconstructions on single nodes, this is not a concern. Also, even with
the worst result, the relative error is less than .00000014%, which would likely not have a
noticeable impact on the reconstruction. Thus, it appears that, at least with the volumetric
approximation system model, the race condition is of no practical concern.

However, since we typically use trilinear interpolation for our reconstructions, we should
also investigate the impact of the race condition on that system model. Trilinear interpo-
lation assigns values to the neighbors of the voxels intersected by the projection ray, so it
may tend to exhibit the race condition more often. Unlike the discrete volumetric case, the
trilinear interpolation coefficients are floating point numbers, so comparing the error is a
bit more difficult. In Table 4.2 we show the relative errors of the sum of the system matrix
elements in parts per billion (ppb) when using the trilinear interpolation system model.
For example, the relative percentage error for one node on the first run was 0.0000029%
or 29 ppb. We compared the first fifteen decimal places of the results computed using a
single thread and two threads to calculate these errors. IEEE single precision floating point
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Table 4.2: Relative errors of the sum of the column sums in parts per billion when using
the trilinear interpolation system model. Three reconstructions were performed with each
node configuration.

Nodes Recon 1 Recon 2 Recon 3

1 29 ppb 36 ppb 35 ppb

2 6.9 ppb 3.7 ppb 7.3 ppb

4 < 0.1 ppb 0 ppb < 0.1 ppb

8 0 ppb 0 ppb 0 ppb

16 0 ppb 0 ppb 0 ppb

32 0 ppb 0 ppb 0 ppb

numbers only have an accuracy of approximately 1.19 × 10−7 [42], so the errors reported
may not even be computationally significant. From this, we see that errors are introduced
when using four or fewer nodes, as opposed to the discrete volumetric case in which errors
only existed in the case of a single node reconstruction. Furthermore, the maximum relative
error is higher in the trilinear interpolation case, but still exceptionally small.

While it is debatable if this problem even needs to be addressed due to the incredibly
small errors generated, we will explore possible solutions and present their advantages and
disadvantages. The most obvious solution is to avoid the situation altogether by only using
a single thread, but this is not a reasonable solution as it fails to utilize both processors,
and we already addressed the importance of using multiple threads as opposed to multiple
processes in Section 4.1. Another approach would be to allocate one image sized array
per thread, perform the backprojections into the respective arrays, and sum the results
afterward. However, this would consume too much memory since the images can become
quite large. An additional solution is the use of some locking mechanism to ensure that at
most one thread can update the backprojection values at a time.

The locking approach, using for example the POSIX thread library, can be implemented
at several levels of granularity. It is important to remember, however, that the lock and
unlock operations add overhead and should thus be positioned carefully. One option is it
create a lock for every voxel and require the backprojection threads to acquire the lock
before updating the associated voxel and to release the lock afterward. This approach is far
too fine grained because the locks themselves would consume considerable memory, and the
run-time would be severely impacted due to the constant locking and unlocking. Instead,
we use only a single lock and surround the backprojection loop with this lock. Since each
thread also generates the system matrix rows, performs the forward projection operations,
and any other operations dictated by the algorithm, the backprojection process is only
a small part of that thread’s computation. Thus, locking only that operation should not
generate too much overhead. In our tests, these locks seem to increase the computation time
associated with the SIRT algorithm by about five percent. Thus, if the errors created by
not locking the backprojection operation are deemed to be a concern, then this approach
provides a reasonable solution. We include the locking mechanism for all of the timing
results presented in Chapter 5 in order to guarantee accurate results.
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Figure 4.3: Bar chart depicting the number of system matrix rows assigned to each node for
a sixteen node reconstruction. The number of rows assigned to each node is further divided
among each of the two processors.

4.1.3 Load Balancing Analysis

One major concern when developing a parallelized algorithm implementation is the effective-
ness of the load balancing strategy. If one processor is assigned significantly more work than
the other processors, or for some reason takes longer to complete, then all processors will
be forced to wait for the overloaded processor before completing the next communication.
Since the iterative reconstruction algorithms require at least one communication during
each iteration, uneven load balancing would significantly impact the final reconstruction
time.

Thus, we quantify the effects of our current load balancing algorithm, which we described
in Section 4.1.1. We perform the quantification in several ways: by calculating the number
of system matrix rows per processor, the number of nonzero system matrix elements per
processor, and the time spent awaiting synchronization for MPI communications. In this
section, we will show results for such an analysis using a full reconstruction with all of the
projection and image data considered. In subsequent sections, we will present techniques of
identifying and focusing on parts of the data, which modifies the amount of data used and
thus affects the load distribution. Afterward, we present an additional analysis including
those modifications.

The number of system matrix rows per processor corresponding to a sixteen node re-
construction is shown in bar chart format in Fig. 4.3 and in tabular format in Table 4.3.
Figure 4.3 suggests that the workload distribution, in terms of system matrix rows, is very
even for each processor. In fact, it is difficult to see any disparity between the processor
workloads in the bar chart. The number of system matrix rows per processor presented in
Table 4.3 supports this notion. The maximum number of system matrix rows for any pro-
cessor is 5, 625, 534 on node ten, cpu one, and the minimum number is 5, 624, 275 on node
nine, cpu two. Thus, the processor with the highest workload only has 0.02% more rows
than the processor with the smallest workload. Therefore, using this metric, the workload
distribution approach is very effective.
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Table 4.3: Number of system matrix rows assigned to each processor of each node for a
sixteen node reconstruction. This data is the source for the bar chart in Fig. 4.3.

Node CPU 1 CPU 2 Node CPU 1 CPU 2
1 5,624,683 5,624,642 9 5,625,050 5,624,275
2 5,625,227 5,625,088 10 5,625,534 5,624,781
3 5,624,865 5,624,460 11 5,625,044 5,624,281
4 5,625,406 5,624,909 12 5,625,511 5,624,804
5 5,624,967 5,624,358 13 5,625,001 5,624,324
6 5,625,485 5,624,830 14 5,625,451 5,624,864
7 5,625,027 5,624,298 15 5,624,821 5,624,504
8 5,625,528 5,624,787 16 5,625,270 5,625,045

While the number of system matrix rows per processor is a good initial indicator of
the amount of work required per processor, the number of nonzero system matrix elements
calculated per processor may be a better indicator. In particular, different system matrix
rows can have differing numbers of nonzero elements since the corresponding rays have
different paths through the image space. As noted in Section 2.2, our implementation of
the trilinear interpolation system model stores partial system matrix elements to avoid
the overhead of coalescing the elements, so the number of partial elements produced is
actually higher than the number of nonzero system matrix elements. We report the number
of partial elements computed per node per processor in Table 4.4. This is an important
measure because it indicates the number of elements inserted into the row data structures
and subsequently used in the projection operations. This metric also seems to indicate
an effective load balancing scheme. In addition, this table emphasizes the scale of these
reconstructions: there are over half a trillion partial system matrix elements computed
during a single iteration. If we instead consider the true number of nonzero system matrix
elements rather than the partials, then there are approximately 12.3 billion per processor
for a total of about 390 billion nonzero system matrix elements.

An additional metric that quantifies the effectiveness of a load distribution approach is
the amount of time spent by each node waiting for one or more nodes to reach the same
point in the computation. We calculate this time by having each node call MPI Barrier()

before attempting to communicate with other nodes and recording the amount of time spent
in this function. MPI Barrier() does not return until all nodes have made the function
call, indicating that they are at the same point in the computation. This final metric used
to quantify the workload distribution is also generally the most important.

Since the MPI communication cannot commence (or at least cannot complete) until
all nodes have reached the same point in the computation, it will often be the case that
some nodes will idly wait on other nodes to “catch up” in the computation. While this
metric is ultimately the most important because it quantifies the effect of the workload
distribution on the final reconstruction run-time, it is also the most difficult to accurately
measure. The source of this difficulty is that the synchronization time, as measured by tim-
ing MPI Barrier() calls as described previously, includes everything affecting the run-time,
not just the workload distribution. For example, other processes running on a given node
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Table 4.4: Number of partial system matrix elements computed per node per cpu for a
sixteen node reconstruction.

Node CPU 1 CPU 2 Node CPU 1 CPU 2
1 21, 534, 968, 008 21, 534, 901, 144 9 21,535,957,120 21,533,882,464
2 21, 536, 299, 952 21, 535, 912, 632 10 21,537,126,264 21,535,086,720
3 21, 535, 442, 504 21, 534, 418, 096 11 21,535,975,344 21,533,885,048
4 21, 536, 753, 696 21, 535, 444, 968 12 21,537,081,040 21,535,142,960
5 21, 535, 712, 104 21, 534, 128, 160 13 21,535,856,208 21,534,021,144
6 21, 536, 956, 936 21, 535, 232, 672 14 21,536,907,064 21,535,336,464
7 21, 535, 875, 808 21, 533, 958, 056 15 21,535,390,056 21,534,497,720
8 21, 537, 076, 088 21, 535, 119, 112 16 21,536,411,912 21,535,816,184

may slow the computation on that node, which will manifest itself in higher synchronization
times for other nodes and a slower reconstruction. Thus, successive reconstructions may
result in different reported synchronization times.

Therefore, since it is difficult to accurately and consistently measure the synchronization
times, it is important to instead search for trends in the data. We performed two reconstruc-
tions of three iterations each and measured the time spent per node per iteration awaiting
synchronization. We then calculated the percent of the total time per iteration spent on
synchronization and plotted these percents for the reconstructions in Figs. 4.4 and 4.5. The
first iteration includes the computation and communication of the column sums, which are
then stored for subsequent iterations, which may explain the disparity between the first
iteration and the latter ones in both samples.

In the first reconstruction, nodes three, eight, and fifteen consistently have lower syn-
chronization times, although on the first iteration node three has a synchronization time
more in line with the other nodes. However, for the second reconstruction, nodes four and
eleven have lower synchronization times than the other nodes. These two reconstructions
were run in the same day on the same nodes (i.e., node n corresponds to the same physical
node in each case). Therefore, it does not appear that the same nodes are slower from
one reconstruction to the next, and thus it seems unlikely that the disparity is due to the
workload assignment.

Since the synchronization times are consistently below five percent of the total iteration
times, and often around two percent, we do not further pursue the potential causes of
the differences from one reconstruction to the next. Furthermore, we will present several
mechanisms in this chapter that we use to effectively decrease the amount of work required,
so the workload distribution will also be affected. We will revisit the issue of load balancing
in Section 4.6 after introducing these other techniques.

4.2 Ordered Subsets

A typical method for reducing the amount of computation required in order to achieve an
acceptable reconstruction is the ordered subsets (OS) method, which was popularized by
Hudson and Larkin [43]. The basic premise of the ordered subsets method is to compute
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Figure 4.4: The percent of the total iteration time for each node spent on synchronization
for the first reconstruction. Nodes three, eight, and fifteen consistently have low synchro-
nization times.
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Figure 4.5: The percent of the total iteration time for each node spent on synchronization
for the second reconstruction. Nodes four and eleven consistently have low synchronization
times.
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subiterations of the reconstruction algorithm using only a subset of the rows of the system
matrix during each subiteration. Although not strictly required, we only consider the case
where the system matrix rows are partitioned into some number of subsets such that each
row is in exactly one subset. The algorithm then proceeds by computing one subiteration
per subset of data and updating the image after each subiteration. After each subset has
been used exactly once, a full iteration is complete. For example, ART uses only one system
matrix row per subiteration and thus resembles an ordered subsets technique with each row
forming a subset. Similarly, as we observed in Section 3.4, the SART iteration is an ordered
subset version of SIRT with the system matrix rows for each projection view angle forming
a subset.

The general rule for ordered subsets is that n subsets reduces the number of iterations
required by a factor of n up to some point, after which increasing the number of subsets
generates less significant gains. In previous work [44], we demonstrated that this linear
gain diminishes after about 32 subsets in terms of reducing the error norm for some of our
sample data. For example, when using 64 subsets the acceleration factor was approximately
47 rather than 64. We typically use 48 subsets for our reconstructions as it seems to be a
reasonable compromise.

Since an OS implementation still uses each system matrix row once per iteration, the
computation cost per iteration is approximately the same as a non OS implementation,
but significantly fewer iterations are required. Thus, the total amount of computation is
also significantly reduced. However, since the image is updated after each subiteration,
an MPI communication is required after each subiteration. Furthermore, although the
column sum vectors corresponding to a specific subset of rows are identical from iteration
to iteration, their storage requires one image-sized vector per subset, which is too costly for
high-resolution reconstructions. Thus, at least with SIRT, two MPI communications are
required per subiteration for an OS implementation.

We denote an OS implementation of an algorithm by prefixing the algorithm name with
OS and suffixing the name by the number of subsets. For example, OS-SIRT-48 is an OS
version of SIRT with 48 subsets. Due to the more frequent communication and the reduced
total computation, the OS implementations have a higher relative communication cost than
a typical implementation. For example, let Tc be the total computation time per SIRT
iteration per node and Tm be the total communication time required per MPI reduction of
an image sized vector. Then the approximate time, T , for a SIRT reconstruction with k
iterations is

T = kTc + (k + 1)Tm = k(Tc + Tm) + Tm (4.6)

where the extra communication is required to compute the column sums, which can then
be stored for subsequent iterations. On the other hand, an OS-SIRT implementation with
N subsets and k/N iterations yields a total run-time of approximately

T =
kTc

N
+ 2kTm = k(

Tc

N
+ 2Tm). (4.7)

The number of iterations, k/N , will never in practice drop below one, so this equation
is not accurate when using too many subsets, although we already noted that additional
subsets reach the point of diminishing returns after some point. However, it is clear from

61



the equations that as N increases the communication time begins to dominate and thus the
relative cost of communication increases with increasing numbers of subsets.

We employ a projection based method for determining the subsets of system matrix rows
to use. For example, if we use two subsets, then the even projections will form one subset
and the odd projections will form the other subset. In general, if we have P projections and
specify K subsets, then subset Bi, i ∈ {0, 1, . . . , K − 1} contains projections pK + i where
p ∈ {0, i, . . . , ⌊P−i

K ⌋} and ⌊·⌋ denotes the floor operator.

4.3 Image Compression

We store the image as a contiguous array of single-precision floating point values. Thus,
since the voxels have three coordinates, one corresponding to each dimension, there must
be some mapping from these three coordinates to an index in this contiguous array. In the
simplest case, we store values for all of the voxels, so one possible mapping is defined as

index = i + jNx + kNxNy

where i, j, and k are the integral coordinates of the voxel in question and Nx and Ny are
the number of voxels in the x and y directions. However, as we will present in the following
sections, in many cases we do not actually need to store values for all of the voxels as some
may be outside of our region of interest. In this case, since we still want a contiguous array
for the image and do not want to waste memory on the voxels that do not need to be stored,
such an indexing scheme will not work.

The indexing scheme is, however, very important for performance reasons because an
index must be calculated for every nonzero system matrix element. As we demonstrated
in Section 4.1.3, there may be tens of billions of system matrix elements calculated per
processor per iteration, so if the indexing scheme is slow, then that will have a considerably
negative impact on performance. We use the phrase compressed voxel index to denote the
index in the contiguous memory array corresponding to a voxel with some indices i, j, and
k.

An exhaustive mapping that simply translates a triplet of voxel indices into the cor-
responding compressed voxel index would require too much memory. Instead, we store
the minimum and maximum voxel indices in the x direction for all fixed y and z voxel
indices. Thus, we store values for all voxels between the minimum and maximum voxel in-
dices. While this constrains the shape of our region of interest masks that will be presented
shortly, it is not a major concern in practice due to the convexity of the support region
defined by circular orbit cone-beam scanners as well as the nature of most of the scanned
objects that we consider.

Denote the minimum and maximum voxel indices in the x direction as xMin[z][y] and
xMax[z][y], respectively, for fixed y and z. We also store the compressed voxel index corre-
sponding to each xMin[z][y] as xIndex[z][y]. Then, given some voxel indices i, j, and k, we
calculate the compressed voxel index on-the-fly as

compressed voxel index = xIndex[k][j] + i − xMin[k][j].
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Thus, for each computed system matrix element, we compute its corresponding compressed
voxel index for use in the reconstruction algorithm. When writing the image to disk, we
must retranslate the compressed voxel indices into i, j, and k indices. We can accomplish
this retranslation using the same data structures, although in this case performance is less
important since the operation is typically performed only once per reconstruction.

4.4 Support Regions

In Section 4.2, we demonstrated that the relative cost of communication increases with
an increasing number of subsets. Thus, it is important to reduce the time required for
these communications. One seemingly simple method of reducing the communication time
is to identify data that does not need to be communicated and avoid communicating it.
Of course, identifying the unnecessary data can be difficult. In this section, we define the
concept of support regions to identify such unnecessary data.

Consider a circular orbit cone-beam scanner. We define a point p to be within the
fully supported region (FSR) prescribed by this scanner if for each projection view the ray
connecting the x-ray source (which we assume to be a point source) and the point p is
within the cone-beam and intersects the scanner detector. Therefore, the geometry of a
scanner determines its FSR. We further define a voxel to be fully supported if it lies within
the FSR; otherwise, it is not fully supported. When performing a reconstruction, we will
only consider fully supported voxels. Thus, we will not store values or communicate values
for non-fully supported voxels, and we will not calculate elements of the system matrix
pertaining to non-fully supported voxels. However, we must first determine the shape and
dimensions of the FSR, which will also be the determining factor for how we define our
voxel space.

The FSR region is determined by three sets of boundaries: the x-ray cone-beam bound-
ary, the vertical boundaries of the detector, and the horizontal boundaries of the detector.
The cone-beam defines a spherical support region as it rotates through its circular orbit
while the vertical detector boundaries define a cylindrical support region. On the other
hand, the horizontal detector boundaries define a dual-cone shape with the bases of the
cones given by the x-ray source orbit and the apexes of the cones lying in opposite direc-
tions along the axis of rotation. The intersection of these three shapes describes the FSR
region. If the detector is fully illuminated, or in other words if every line segment joining a
point on the detector to the x-ray source lies within the x-ray cone-beam, then the FSR is
given by the intersection of the latter two shapes as that intersection will lie fully within the
spherical region. In Fig. 4.6 we show an example of the cylindrical and dual-cone support
regions and the resulting FSR, which resembles a pencil sharpened at both ends. Support
regions for circular orbit cone-beam CT systems resulting after projection data rebinning
were also discussed by Grass et al. [45, 46].

Now that we have established the nature of the FSR pertaining to our detector geometry,
we must determine how to position the voxel space. The dimensions of the voxel space will
also determine the size of the voxels for a fixed number of voxels in the x, y, and z directions.
Our goal is to include the entire FSR within the voxel space while including as little of the
non-FSR as possible. To do this, we specify the x and y dimensions of the voxel space such
that they circumscribe the cylindrical portion of the FSR and the z dimension of the voxel
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Figure 4.6: These shapes illustrate the support regions defined by the vertical detector
boundaries (left), horizontal detector boundaries (center), and the intersection of the two
(right).

space such that it extends to the apexes of the conic portions of the FSR. We depict these
chosen dimensions in Fig. 4.7 where o is the origin, Y and Z are the detector dimensions in
the y and z directions, respectively, r is the radius of the cylinder, θ is half of the cone-angle,
d is the distance from the x-ray source to the center of rotation, and D is the distance from
the x-ray source to the detector. Thus, we specify the x and y dimensions of the voxel space
to be 2r to circumscribe the cylinder, or x = y = 2r = 2d sin θ. Furthermore, z is given as
z = (d/D)Z.

By restricting the computing resources to the voxels contained within the support region,
we reduce the amount of computation as well as the memory requirements and communi-
cation time. In Chapter 5 we will present the computational impact of restricting the
reconstruction to the support region.

4.5 3D Focus of Attention

With the 3D focus of attention (FOA) algorithm, we further restrict the reconstruction
region of interest by identifying voxels which may have significant attenuation coefficients,
presumably due to containing some object, and ignoring the rest. Focus of attention is a
heuristic data-driven approach to reducing the amount of data under consideration without
appreciably affecting the quality of the reconstruction. While the scanner geometry deter-
mines the FSR region, the 3D FOA region is obtained by processing the projection data in
order to identify the location of the object being scanned. This is similar to an approach
taken by Li et al. [40] for cone-beam SPECT in which these voxels were referred to as “ac-
tive” voxels. In that work, the FOA regions in projection and image space were rectangular
and cubic, respectively. In this work, the FOA regions are much less constrained and thus
in practice much smaller.

The focus of attention algorithm proceeds in two major steps. The first step is to
threshold and filter the projection data to obtain a projection space mask. The second step
includes backprojecting the projection space masks in order to obtain a support profile in
the image space. This support profile is thresholded to obtain the final 3D FOA region.
The algorithm is presented in Algorithm 4.2. We will now address these steps in detail
using output from the mouse data set described in Appendix A.3.
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Figure 4.7: Calculating the dimensions of the voxel space. The shaded regions denote areas
not supported by this single projection view. The axis of rotation for the top diagram is
orthogonal to the page and passes through the center of the circular support region denoted
by o, while the axis of rotation for the bottom diagram is the dotted line denoted by z.

65



Algorithm 4.2 Calculation of a 3D FOA region.

1: for all projections p do

2: segment p into object and background
3: apply median filter to p
4: apply dilation filter to p
5: for all voxels v do

6: project v to detector plane
7: if v projects to object detector element then

8: increment counter for v
9: end if

10: end for

11: end for

12: for all voxels v do

13: if counter for v exceeds threshold t then

14: add v to object
15: else

16: add v to background
17: end if

18: end for

19: extract FOA region containing object voxels
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In step 2, we segment the projection data into object and background using the blank
scan data, which consists of a projection with no object present. For each detector element,
we mark the element as an object element if the value is less than 98% of the corresponding
blank scan value. Figures 4.8 and 4.9 demonstrate a sample blank scan as well as pro-
jection data corresponding to a single view angle of a mouse. The segmentation resulting
from thresholding the projection as described above is shown in Fig. 4.10. However, this
segmentation contains some salt and pepper noise. In other words, some elements have
been marked as object when they should be background or vice versa. In order to remove
this noise, we apply a median filter, which is a standard image processing technique used
to reduce such artifacts [47], to the segmented image. Furthermore, we do not want the
segmentation to be too tight around the object as that will generate a tight segmentation
in image space as well, which may cause reconstruction artifacts. Thus, after the median
filter we apply a dilation filter, a well-known image processing technique for growing regions
and filling holes, to generate a looser focus of attention mask in projection space, which will
ultimately generate a looser image space FOA mask. The filtered version of the segmented
image in Fig. 4.10 is shown in Fig. 4.11.

Rather than storing a value for each detector element to indicate whether or not it is an
object element, we only store the indices for the minimum and maximum object element in
each detector column and assume that all elements between the minimum and maximum
are object elements as well. Since only two integer values must be stored per detector
column, this approach uses significantly less memory than approaches that would store
some value for each detector element. Furthermore, when calculating the support profile in
image space, we will operate on ranges as well in order to reduce computation, so storing the
object masks as ranges seems reasonable. Note that this may treat more detector elements
as object elements than is strictly necessary, although this is not likely to occur with objects
such as mice.

After calculating the filtered projection segmentation, we generate the corresponding
support profile in image space as shown in steps 5-10 of the algorithm. However, since we
only store the minimum and maximum detector object element indices in a detector column
and assume that the contained elements are also object elements, we can avoid performing a
projection for every voxel as is indicated in step 5 of the algorithm. Instead, for each voxel
column we identify the minimum and maximum indices that project to detector object
elements, and increment the counters for all voxels contained between the minimum and
maximum voxel indices in that column. This can be done since all of the contained voxels
will also project to the same detector column as the minimum and maximum object voxels,
and therefore must correspond to object detector elements because there are no vertical
holes in the segmented projections. Results of these steps for a single transaxial slice are
shown in Fig. 4.12.

Once all of the projections have been processed, the final support profile contains a
count for the number of projections that have identified a particular voxel as potentially
contributing a non-negligible amount of attenuation. We then threshold this support profile
to yield the 3D FOA region. In this work, we require that a voxel has support from 95% of
the projections to be in the 3D FOA region.
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Figure 4.8: Blank scan projection data.

Figure 4.9: Raw projection data corresponding to a mouse at view angle zero.

Figure 4.10: Initial segmentation of the projection from Fig. 4.9 using a threshold value of
98%. This segmentation contains some salt and pepper noise.

Figure 4.11: Result of applying median and dilation filters to the segmentation in Fig. 4.10.
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Figure 4.12: Steps of the FOA algorithm for a transaxial slice of the 3D FOA region. The
first two images are the result of backprojecting one and two projections, respectively, while
the third is the result of backprojecting all 360 projections. The rightmost image is the
final thresholded mask.

4.6 Load Balancing Revisited

In Section 4.1.3, we evaluated the effectiveness of our load balancing approach for solv-
ing the standard linear system. However, by employing ordered subsets and 3D FOA, we
substantially impact several aspects of the workload. The OS algorithm implementations
increase the relative cost of the MPI communications, but they also increase the number
of synchronization points. In particular, each subset requires communication, so there will
be one synchronization point per subiteration rather than one per iteration. Furthermore,
since 3D FOA eliminates some data from consideration in both the projection and image
spaces, the total amount of work per iteration, and thus the amount of work per processor,
is affected. For example, detector elements that are not within the projection space FOA
region are ignored, along with their associated system matrix rows, so the detector groups
that are distributed to the processors no longer have the same number of corresponding sys-
tem matrix rows. Furthermore, each system matrix row will only contain entries for voxels
within the 3D FOA region, so the number of nonzero system matrix rows will be affected
as well. Thus, it is important to re-evaluate our load balancing approach to determine if
it remains effective. Since the 3D FOA algorithm depends upon the object being scanned,
these results are specific to our reconstruction of the mouse data set given in Appendix A.3.
We will use the same metrics in this section as we used in Section 4.1.3 to evaluate the
load balancing approach. These metrics include the number of considered system matrix
rows per processor, the number of nonzero system matrix elements, and time spent on
synchronization.

The first metric, the number of considered system matrix rows, is shown in Table 4.5. We
see that the workload distribution remains quite even, with approximately 3.5 million system
matrix rows per processor. Recall that without the 3D FOA algorithm, each processor
managed approximately 5.6 million system matrix row per processor, so 3D FOA reduced
the number of system matrix rows by about 37%.

While the system matrix rows generally have different numbers of elements due to the
varying intersection lengths of the associated projection rays with the voxel space, the use of
3D FOA may exacerbate this problem because some voxels will be ignored. Thus, we show
the number of partial nonzero system matrix elements per processor in Table 4.6. Again,
the numbers appear quite even across the processors. Furthermore, there are approximately
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Table 4.5: Number of system matrix rows assigned to each processor of each node for a
sixteen node reconstruction when using the 3D FOA algorithm.

Node CPU 1 CPU 2 Node CPU 1 CPU 2
1 3,568,091 3,571,513 9 3,567,890 3,568,135
2 3,569,189 3,571,911 10 3,570,458 3,569,587
3 3,567,571 3,570,783 11 3,569,991 3,569,164
4 3,570,318 3,571,136 12 3,569,885 3,571,535
5 3,569,419 3,569,485 13 3,569,496 3,570,151
6 3,570,246 3,570,495 14 3,571,548 3,570,969
7 3,569,403 3,568,877 15 3,572,031 3,570,069
8 3,570,336 3,569,128 16 3,573,071 3,570,214

Table 4.6: Number of partial system matrix elements computed per node per cpu for a
sixteen node reconstruction when using the 3D FOA algorithm.

Node CPU 1 CPU 2 Node CPU 1 CPU 2
1 5,995,682,062 5,995,817,258 9 5,995,964,261 5,995,529,934
2 5,995,726,153 5,995,797,589 10 5,995,875,064 5,995,427,989
3 5,995,811,583 5,995,817,473 11 5,995,890,335 5,995,471,701
4 5,995,889,843 5,995,647,777 12 5,996,029,716 5,995,519,513
5 5,995,970,791 5,995,277,932 13 5,996,125,679 5,995,598,450
6 5,996,017,345 5,995,086,984 14 5,996,064,375 5,995,682,366
7 5,995,933,664 5,995,218,467 15 5,996,205,251 5,995,646,523
8 5,996,106,816 5,995,372,374 16 5,995,955,727 5,995,637,056
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6 billion nonzero partial system matrix elements when using 3D FOA, as compared to about
21.5 billion when not using any region of interest restriction. Thus, the 3D FOA algorithm
reduces the number of nonzero partial system matrix elements by about 72% in this case.
Additionally, there are around 3.4 billion true nonzero system matrix elements, so the real
reduction in the number of nonzeros is also approximately 72%. We will more thoroughly
consider the impact of the support region and 3D FOA techniques on the reconstruction
performance in Chapter 5. In this section, we only consider the effectiveness of the load
balancing strategy when using these approaches.

As before, the time spent on synchronization is probably the best measure of the effec-
tiveness of the load balancing algorithm. However, we now have one synchronization point
per subiteration rather than one per iteration. In Figs. 4.13 and 4.14, we display the percent-
age of the total iteration time spent on synchronization costs for two reconstructions of the
mouse data set described in Appendix A.3 using OS-SIRT-48 with 3D FOA. These figures
demonstrate that this implementation is particularly well-balanced. In fact, the synchro-
nization costs consume less than one percent of the total iteration time and do not exhibit
the behavior demonstrated in Section 4.1.3 where some nodes would slow the others down,
seemingly at random. Note, however, that since there are now forty-eight synchronization
points per iteration, variability due to noise rather than uneven workload distribution will
tend to average out so that no single node stands out as problematic. Regardless, the
current workload distribution approach is clearly effective for this reconstruction.
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Figure 4.13: The percent of the total iteration time for each node spent on synchronization
for the first reconstruction using OS-SIRT-48 with 3D FOA.
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Figure 4.14: The percent of the total iteration time for each node spent on synchronization
for the second reconstruction using OS-SIRT-48 with 3D FOA.
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Chapter 5

Results

In this chapter, we will quantify the benefits of the techniques discussed in Chapter 4. All
of the results in this chapter use the trilinear interpolation system model and either the
SIRT or PSIRT algorithm. Additionally, all of the timings correspond to reconstructions
performed on the grig cluster, except for some of the results in Section 5.5 that corre-
spond to reconstructions on the frodo cluster. The grig and frodo clusters are described in
Appendices B.1 and B.2, respectively.

We will focus on a single technique at a time and demonstrate its advantages rather than
attempt to compare all possible combinations of techniques and algorithms. In Section 5.1,
we will establish the run-time benefits of distributing the computation of the SIRT algorithm
to multiple nodes. We then focus on the benefits of implementing ordered subsets in terms
of reduction of the weighted error norm from the associated least squares problem as well
as decreasing the final run-time in Section 5.2. We then address the memory and run-time
advantages of restricting the reconstruction to the support region or focus of attention region
in Section 5.3. In Section 5.4 we experimentally compare the error norms computed for the
SIRT and PSIRT algorithms to demonstrate the effectiveness of PSIRT and also compare
the run-times of the algorithms. We then revisit the parallel computing issue in Section 5.5
and compare run-times for reconstructions on the frodo and grig clusters using varying
numbers of nodes. Finally, in Section 5.6 we present several slices from reconstructions of
the mouse data set described in Appendix A.3,

5.1 Benefits of Parallelization

Our first goal is to demonstrate the advantages of parallelizing the reconstruction software
to compute on multiple cluster nodes. We presented details of our workload distribution in
Section 4.1 and established that our approach effectively distributes the required processing
to several cluster nodes, but we did not present run-time comparisons in that section. We
will do so in this section.

Parallelization does not affect the total amount of computation performed, except for a
negligible amount of overhead required for determining the computational responsibilities
of each node, but does decrease the workload for any given node and thus decreases the
overall reconstruction time. We present a chart of the time required for the computation of
the first SIRT iteration using varying numbers of nodes in Fig. 5.1. In this figure, we see
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Figure 5.1: Run-times for the first iteration of SIRT using varying numbers of nodes.

that doubling the number of nodes approximately halves the reconstruction time, although
the effect diminishes with an increasing number of nodes. One cause of the diminishing
returns is the increasing cost of the MPI communications required when using more nodes.

Unfortunately, even with thirty-two nodes, the first iteration consumes over twenty
minutes. The subsequent iterations compute faster because the column sums calculated
and communicated during the first iteration are stored for future use. Thus, the subsequent
iterations require approximately 13.5 minutes with thirty-two nodes. While this reduction is
substantial, many iterations will be required to yield acceptable reconstructions, so the total
run-time of a reconstruction would still be quite high. Computing ten SIRT iterations using
thirty-two nodes, for example, would require over two hours. As we will demonstrate later,
many more iterations are needed for acceptable reconstructions. Thus, while parallelization
effectively distributes the workload, we need to reduce the amount of required computation
to make the reconstructions more feasible. After presenting the impact of the workload
reduction techniques, we will revisit the issue of parallelization and more thoroughly analyze
the cost breakdown of the reconstructions in Section 5.5.

5.2 Benefits of Ordered Subsets

Ordered subsets, as described in Section 4.2, is a method of decreasing the number of it-
erations required to obtain acceptable reconstructions by computing subiterations using
subsets of the data. In this section, we will analyze the impact of implementing ordered
subsets in terms of reducing the weighted error norm and the total reconstruction run-time.
Recall that SIRT is basically a weighted least squares solver. Thus, we can compute this
weighted error norm after each iteration in order to quantify the effectiveness of SIRT in
reducing the error norm. Furthermore, we can compute the same norm after each subiter-
ation of OS-SIRT and compare the resulting norms. We present the weighted error norms
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Figure 5.2: Computed weighted error norms for the SIRT and OS-SIRT algorithms.

for the first 144 SIRT iterations and each subiteration of the first three iterations of OS-
SIRT-48 in Fig. 5.2. From this figure, we see that computing a subiteration of OS-SIRT-48
is approximately equivalent in terms of error norm reduction to computing a full iteration
of regular SIRT, especially after the first full OS-SIRT-48 iteration. Thus, computing three
OS-SIRT-48 iterations generates a reconstruction with an error norm similar to using 144
regular SIRT iterations. While it is difficult to discern in Fig. 5.2, regular SIRT generates a
monotonically decreasing norm sequence to the extent run whereas OS-SIRT-48 does not,
although when the OS-SIRT-48 generated norm increases it does so only slightly.

Therefore, ordered subsets is a very effective method of decreasing the number of iter-
ations required to yield an acceptable reconstruction using our data set. However, there is
one disadvantage of implementing ordered subsets in a distributed environment: the rela-
tive cost of MPI communication per iteration increases with the number of subsets. This
increase occurs because an MPI communication is required after each OS-SIRT subiteration
as opposed to after each full SIRT iteration. Furthermore, since the column sums cannot be
stored from one iteration to the next in the case of OS-SIRT due to memory constraints, the
column sums must also be communicated after each subiteration. Despite these increased
costs, the overall impact of implementing ordered subsets is significant. For example, using
thirty-two nodes, one OS-SIRT-48 iteration requires approximately 46 minutes to compute,
while one SIRT iteration (after the first) requires approximately 13.5 minutes. However,
one OS-SIRT-48 iteration reduces the error norm approximately the same as 48 regular
SIRT iterations, which would take almost 11 hours. Thus, in this case, using ordered sub-
sets reduces the per iteration run-time by about 93%. It is important to note that the
cost breakdown of a regular SIRT and an OS-SIRT-48 iteration are quite different. The
regular SIRT iterations are nearly all computation, while the OS-SIRT-48 iterations have
substantial MPI communication costs. We show these costs when using thirty-two nodes
in pie chart format in Fig. 5.3. The computation times refer to the longest amount of time
spent by any node computing since the nodes must be synchronized before completing the
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Figure 5.3: Per iteration relative-cost breakdown of SIRT (left) and OS-SIRT-48 (right).

MPI communication. These results are dependent on the number of nodes as well as the
number of subsets in the case of OS-SIRT. We will more thoroughly consider how the MPI
communication times change with a varying number of nodes in Section 5.5. However, it is
clear that ordered subsets is a very effective mechanism for reducing the final run-time of a
reconstruction.

5.3 Benefits of Region Restriction

The timings presented thus far in this chapter used the full image and projection spaces.
We will now consider the implications of restricting the reconstructions to the support
region and focus of attention region. The fully supported region (FSR), introduced in
Section 4.4, consists of the set of voxels supported by the scanner geometry. By restricting
the reconstruction to the FSR, we will reduce computation, memory consumption, and MPI
communication. The 3D focus of attention (FOA) technique, discussed in Section 4.5, is a
heuristic data-driven approach that further restricts the image space to voxels supported
by the projection data and also restricts the projection space based on inferred object
attenuation. In this section, we will quantify the effects of these approaches when using
OS-SIRT-48.

Table 5.1 summarizes the main impacts of restricting the reconstruction to the FSR
and FOA regions for an OS-SIRT-48 reconstruction of the mouse data set. By reducing
the number of projection rays and voxels, which correspond to the rows and columns of
the system matrix, respectively, we decrease the size of the problem. This eliminates a
significant amount of computation because fewer system matrix elements must be computed.
Furthermore, the reduction in the number of considered voxels lowers the memory burden
imposed by storing the three image-sized data structures required for OS-SIRT. The true
memory requirements are slightly higher than those shown in the table because memory for
storing the projection data and other data structures is not included. Thus, if only 2 GB
of memory is available per node, which is a common configuration, then a 3D FOA based
reconstruction would be the only option. In addition to reducing the computation and
memory burdens, decreasing the number of considered voxels also reduces the amount of
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Table 5.1: Several metrics measuring the effectiveness of the region restriction techniques.
The numbers are rounded and the memory calculation only considers the image sized vec-
tors, which dominate the memory requirements. All numbers correspond to OS-SIRT-48
on thirty-two cluster nodes.

No restriction FSR FOA

Number of projection rays 188 million 188 million 114 million

Number of voxels 268 million 178 million 67 million

Approximate memory (images) 3 GB 2 GB 0.75 GB

Per iteration run-time 46 min 29 min 12 min

MPI communication required because only values corresponding to considered voxels need
to be communicated.

Thus, there are clearly many advantages to employing the region restriction approaches.
In particular, by restricting the reconstruction to the 3D FOA region, we reduce the cost of
a single OS-SIRT-48 iteration on thirty-two nodes from 46 minutes to 12 minutes for a 74%
reduction. Of course, it is also important that the reconstructed images from each of the
approaches be of similar quality. We have neither noticed nor measured any image quality
degradation associated with restricting reconstructions to the FSR or 3D FOA regions. We
include reconstructed slices using the different approaches in Section 5.6.

5.4 Benefits of Parallel SIRT

Using the techniques discussed in previous sections, a single iteration of OS-SIRT-48 dis-
tributed to thirty-two cluster nodes and using the 3D FOA based region restriction requires
approximately 12 minutes of run-time. About half of this time is computation and the other
half is communication. By employing the parallel SIRT algorithm (PSIRT), we will further
reduce the computation and MPI communication in iterations after the first. However,
before addressing the run-time of PSIRT, we will consider its ability to reduce the weighted
error norm.

In Section 3.5 we demonstrated that SIRT and PSIRT converge based on a few as-
sumptions. However, we did not address their rates of convergence. While the true rate of
convergence depends upon the spectral radius of the iteration matrix, which we cannot eas-
ily compute, we will compare the convergence experimentally using the computed weighted
error norms. Since SIRT and PSIRT are solving the same weighted least squares problem,
we can directly compare the weighted error norm sequences generated by the two algo-
rithms. Figures 5.4 and 5.5 show weighted error norms for the first 144 iterations of SIRT
and PSIRT and the first three iterations of OS-SIRT-48 and OS-PSIRT-48. The SIRT and
PSIRT algorithms both generate monotonically decreasing error norms to the extent run.
The error norms generated by SIRT are generally smaller than those generated by PSIRT,
but only marginally so. Thus, in terms of error norm reduction, PSIRT is competitive with
SIRT for this data set. Since we will use ordered subsets in practice, we also consider the
error norms generated by the first three iterations of OS-SIRT-48 and OS-PSIRT-48. These
norms are very similar to those generated by SIRT and PSIRT, although the ordered subset
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Figure 5.4: Computed weighted error norms for the first 144 iterations of SIRT and PSIRT.
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Figure 5.5: Computed weighted error norms for the first three iterations of OS-SIRT-48 vs
OS-PSIRT-48.
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versions do not generate monotonically decreasing error norm sequences. However, based
on reducing the weighted error norm, OS-PSIRT-48 is very competitive with OS-SIRT-48.
Thus, if OS-PSIRT has a significantly lower run-time, then it is reasonable to use it instead
of OS-SIRT.

The first iterations of OS-SIRT-48 and OS-PSIRT-48 are essentially the same and thus
have approximately the same run-time. In fact, since the full column sums are calculated
during the first iteration of OS-PSIRT-48, we could use those full column sums during the
first iteration and store the maximum column sum for each subset for use in subsequent
iterations. If we do this, then the first iterations of OS-SIRT-48 and OS-PSIRT-48 generate
identical images. However, we use the maximum column sums during the first iteration of
OS-PSIRT-48 for consistency of presentation, so the image computed after the first iteration
is slightly different than that computed by OS-SIRT-48. But, during the second and subse-
quent iterations, we do not have to compute or communicate the column sums when using
OS-PSIRT-48. The first iteration of both OS-SIRT-48 and OS-PSIRT-48 requires about
10.2 minutes with nearly 5.9 minutes corresponding to MPI communication. However, the
second and subsequent iterations of OS-PSIRT-48 require only 6.8 minutes each with 2.9
minutes of MPI communication, while the second and subsequent iterations of OS-SIRT-48
have the same cost breakdown as the first iteration. Thus, for the second and subsequent
iterations, the computation and MPI communication times for OS-PSIRT-48 are reduced
by approximately 9% and 50%, respectively, and the total run-time is reduced by 33%.

5.5 Parallel Computing Revisited

Now that we have established that using OS-PSIRT-48 and restricting the reconstruction
to the 3D FOA region is substantially faster than regular SIRT, we will reconsider the
reconstruction costs of OS-PSIRT-48 in terms of the number of cluster nodes. In particu-
lar, as the number of nodes increases, the computation time per node decreases, but the
MPI communication time increases. Thus, with different node configurations, the mix of
computation and communication times differ. At some point, adding cluster nodes will
actually increase the total reconstruction time due to increasing communication costs, al-
though that does not occur with our available number of nodes. In this section, we display
results from both the grig cluster described in Appendix B.1 and the frodo cluster described
in Appendix B.2. Note that both of these clusters have sixty-four nodes, but neither had
all sixty-four nodes available as of this writing due to hardware issues, so the maximum
number of nodes used is thirty-two.

Tables 5.2 and 5.3 show the cost breakdown for a single iteration (after the first) of OS-
PSIRT-48 on the grig and frodo clusters, respectively, with varying numbers of nodes. The
percentages spent on computation and communication on each cluster are very similar. The
communication times increase from zero to 41% of the iteration run-time on frodo and 43%
of the iteration run-time on grig. On the other hand, the computation times decrease by
nearly half for both clusters as the number of nodes doubles, although the effect diminishes
with an increasing number of nodes. We see from this data that increasing from sixteen
nodes to thirty-two nodes is approximately 30% faster on grig and 28% faster on frodo.
While the ideal increase would be 50%, the results are still quite good considering the
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Table 5.2: Reconstruction timings of OS-PSIRT-48 with varying numbers of grig nodes.
Timings are reported in minutes for the second and subsequent iterations and are separated
into computation and communication.

Nodes Per Iteration Computation Comp. (%) Communication Comm. (%)

1 101.1 101.1 100% – –

2 52.2 50.7 97% 1.5 3%

4 27.9 25.8 92% 2.1 8%

8 15.7 13.3 85% 2.4 15%

16 9.7 7.1 73% 2.6 27%

32 6.8 3.9 57% 2.9 43%

Table 5.3: Reconstruction timings of OS-PSIRT-48 with varying numbers of frodo nodes.
Timings are reported in minutes for the second and subsequent iterations and are separated
into computation and communication.

Nodes Per Iteration Computation Comp. (%) Communication Comm. (%)

1 124.9 124.9 100% – –

2 64.3 62.1 97% 2.2 3%

4 35.1 32.3 92% 2.8 8%

8 19.4 16.2 84% 3.2 16%

16 12.0 8.6 72% 3.4 28%

32 8.6 5.1 59% 3.5 41%
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amount of communication and synchronization that must occur during an iteration. Thus,
this framework seems to scale quite well to many cluster nodes.

Furthermore, the computation times on grig are only about 20% lower than the compu-
tation times on frodo, despite the fact that the clock rates on grig’s processors are more than
double those on frodo’s processors. This may be due in part to architectural differences,
although we suspect that the primary bottleneck for a reconstruction is moving data in
which case increasing the processor frequencies has less of an impact than may be expected.

5.6 Reconstructions

While the methods presented in Chapter 4 and quantified in this chapter are very effective
at reducing the total reconstruction run-time, we must also consider the quality of the re-
constructed images. By considering the reduction of the weighted error norm in Sections 5.2
and 5.4, we quantified the performance of ordered subsets and parallel SIRT in terms of
solving the associated least squares problem, but that does not necessarily translate into
acceptable image quality. Unfortunately, image quality is ultimately subjective and is there-
fore difficult to quantify. Thus, in order to demonstrate that the image quality is maintained
after implementing the discussed techniques, we will first present several slices from four
reconstructions using different reconstruction options. For each reconstruction, we present
coronal slice 270, sagittal slice 225, and transaxial slices 425 and 575. We will then display
line plots through the coronal and sagittal slices for each reconstruction to demonstrate
that the reconstructed attenuation coefficients are close to each other for each method.

Figure 5.6 includes the four slices for a reconstruction using 144 iterations of SIRT and
restricting the reconstruction to the support region. Since the voxels outside of the support
region are not, by definition, supported by the scanner geometry, they cannot be accurately
reconstructed. Thus, this reconstruction acts as a baseline with no special techniques used
to reduce the run-time other than the support region restriction and parallelization. This
reconstruction took almost 16.5 hours on thirty-two nodes.

In Fig. 5.7 we show the slices for a reconstruction using three iterations of OS-SIRT-
48 and a support region restriction. Thus, these results demonstrate the image quality
achieved after implementing ordered subsets for this data set. This reconstruction took
about one hour and twenty minutes on thirty-two nodes for a run-time reduction of about
92% over 144 SIRT iterations. We already established that the results are similar in terms
of reducing the weighted error norm, but we now see that they are also similar in terms
of image quality. Thus, ordered subsets is clearly an effective mechanism for reducing the
final reconstruction time.

We now consider the results of restricting the reconstruction to the 3D FOA region.
Figure 5.8 displays the slices resulting from a three iteration OS-SIRT-48 reconstruction
restricted to the FOA region. As we see, the results are very similar to those in Fig. 5.7. This
seems reasonable since by restricting the reconstruction to the 3D FOA region, we simply
do not expend computational resources on the areas of the reconstructed image that do not
include the mouse. However, the FOA based reconstruction completed in approximately
34 minutes and is thus about 58% faster than the support region based reconstruction.
Furthermore, the memory requirements are significantly reduced, which may allow us to
run the reconstruction on clusters that otherwise would not have enough memory.
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Figure 5.6: Slices from a 144 iteration SIRT based mouse reconstruction restricted to the
support region. Slices are as follows: coronal slice 270 (top), sagittal slice 225 (middle),
transaxial slice 425 (bottom left), and transaxial slice 575 (bottom right).

82



Figure 5.7: Slices from a three iteration OS-SIRT-48 based mouse reconstruction restricted
to the support region. Slices are as follows: coronal slice 270 (top), sagittal slice 225
(middle), transaxial slice 425 (bottom left), and transaxial slice 575 (bottom right).

83



Figure 5.8: Slices from a three iteration OS-SIRT-48 based mouse reconstruction restricted
to the focus of attention region. Slices are as follows: coronal slice 270 (top), sagittal slice
225 (middle), transaxial slice 425 (bottom left), and transaxial slice 575 (bottom right).

84



Finally, we present slices for a three iteration OS-PSIRT-48 reconstruction restricted
to the 3D FOA region in Fig. 5.9. We demonstrated in Section 5.4 that PSIRT and OS-
PSIRT yield very similar results to SIRT and OS-SIRT in terms of the weighted error norm.
We now see in Fig. 5.9 that the results are very similar in terms of image quality as well.
The OS-PSIRT-48 reconstruction completed in 28 minutes, or about 18% faster than OS-
SIRT-48. The overall improvement from a 144 iteration SIRT based reconstruction to an
OS-PSIRT-48 based reconstruction is over 97%.

We now consider line plots for each of the reconstructions through the coronal and
sagittal slices. Figure 5.10 shows line plots for each of the coronal slices through x = 240
and Fig. 5.11 includes the same line plots with a tighter axis. We see in these figures that the
reconstructed attenuation coefficients are very similar for each of the reconstructions. We
see similar results in line plots for the sagittal slices through y = 240 in Figs. 5.12 and 5.13.
While we do not have a baseline of correct values to compare against the reconstructed
values, the similarity of the reconstructed values shows that three iterations of OS-PSIRT-
48 with a 3D FOA restriction generates similar results to 144 iterations of SIRT with
an FSR restriction. Therefore, the techniques introduced in Chapter 4 and quantified
in this chapter are very effective at reducing the overall reconstruction run-time without
significantly affecting the reconstruction quality.
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Figure 5.9: Slices from a three iteration OS-PSIRT-48 based mouse reconstruction restricted
to the focus of attention region. Slices are as follows: coronal slice 270 (top), sagittal slice
225 (middle), transaxial slice 425 (bottom left), and transaxial slice 575 (bottom right).
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Figure 5.10: Line plot for the coronal slices through x = 240.
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Figure 5.11: Zoomed line plot for the coronal slices through x = 240.
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Figure 5.12: Line plot for the sagittal slices through y = 240.
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Figure 5.13: Zoomed line plot for the sagittal slices through y = 240.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The goal of this dissertation was to develop and implement techniques that facilitate iter-
ative reconstructions of micro-CT data in a reasonable amount of time. We accomplished
this goal in several stages. First, we employed parallel computing to distribute the workload
to multiple processors on a single node via threads and to multiple nodes within a cluster
via message passing (MPI). Parallelization significantly lowers the run-time by reducing the
amount of work performed by any given processor, but it does not lower the total amount
of computation needed and also introduces MPI communication costs.

We then implemented ordered subsets to reduce the amount of required computation.
With an ordered subsets implementation, fewer full iterations are needed and thus the
full system matrix is also computed fewer times. Although ordered subsets reduces the
amount of computation, it increases the per iteration cost of the MPI communications.
The increase in MPI costs is due to more frequent and larger communications. The former
increase is a result of communication after each subiteration and the latter is due to always
communicating the column sums because memory concerns prevent their storage from one
iteration to the next. Despite these increased costs, ordered subsets very effectively reduces
the overall run-time of a reconstruction. As demonstrated in Section 5.6, OS-SIRT produces
an acceptable reconstruction 92% faster than regular SIRT for our data.

While ordered subsets reduces the amount of computation, it does so by considering only
subsets of the data at a time as opposed to removing any of the data from consideration
altogether. The region restriction techniques, on the other hand, take the latter approach.
In the case of support region restriction, we restrict the reconstructed image volume to
the voxels fully supported by the scanner geometry. This effectively reduces the number of
columns in the system matrix and thus reduces the computational burden because system
matrix elements are not computed for the ignored columns. Furthermore, it reduces the
amount of memory required, which may allow us to run reconstructions that we otherwise
could not, and reduces the amount of data that must be communicated because we do
not transmit values for voxels outside of the support region. With the focus of attention
technique, we utilize the projection data to identify background regions and restrict the
image space as well as restricting the projection space. This further reduces the number
of considered voxels and thus the number of system matrix columns and also reduces the
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number of considered projection rays and their associated system matrix rows. Thus, focus
of attention additionally decreases the computation, communication, and memory burdens.

The final approach to reducing the run-time is the incorporation of the parallel SIRT
(PSIRT) algorithm. As mentioned above, due to implementing ordered subsets, we can no
longer reasonably store the column sums from one iteration to the next because of memory
consumption. The PSIRT algorithm addresses this shortcoming by replacing the full set of
column sums for each subiteration by the inverse of that subiteration’s maximum column
sum in all iterations after the first. Thus, since the column sums no longer need to be
computed or communicated for iterations after the first, we reduce both the computation
and communication times.

By combining all of these approaches, we can perform an iterative reconstruction of
a micro-CT data set in a reasonable amount of time. For example, a high-resolution re-
construction of a 512 × 512 × 1022 image with 130µm voxels computes in less than thirty
minutes. As a means of comparison, consider an implementation that uses the SIRT algo-
rithm on both processors of a single node with no region restriction and no other acceleration
techniques. The first iteration takes eight hours and each subsequent iteration takes about
five and a half hours, so 144 iterations would require about 33 days. By restricting the re-
construction to the support region, the reconstruction would require about 22 days, which
is still far too long. Of course, on a single node, it is more reasonable to implement either
ART or SART, which are both similar to ordered subset implementations, to substantially
reduce the run-time. However, these reconstructions would likely still take about a day, so
our implementation remains much faster. Ultimately, while half an hour is still a substantial
amount of time, it is a much less than would be required for a more direct implementation.

6.2 Future Work

While the techniques employed in this work were very effective at decreasing the run-time
of an iterative reconstruction, more work can always be done. There are two methods
in particular that we have considered during this work to potentially further decrease the
reconstruction time. The first is an implementation detail while the second is an algorithmic
change. There is also additional theoretical work that can be performed in regards to the
algebraic properties of the system matrix.

As currently implemented, there is no reconstruction related computation performed
during an MPI communication. This is because we cannot begin to compute the forward
projection operation for the next iteration until the image update is complete. The image
update, in turn, cannot complete before the MPI communication finishes. However, it is
possible to calculate rows of the system matrix during the MPI communication, store those
rows in memory, and then use the rows once the communication is complete and the image is
updated. This would reduce the amount of computation associated with calculating system
matrix rows after the communication completes and would thus potentially decrease the
run-time. The primary difficulty with this approach would be the implementation. In
particular, properly synchronizing the threads to perform such an overlapping approach
would be difficult. However, if the time saved by overlapping the system matrix calculations
exceeds the incurred overhead, then the overall run-time would be reduced without affecting
the computed results. We are pursuing this option as an additional run-time reduction
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technique and preliminary results indicate a run-time reduction of between ten and fifteen
percent.

Another area for potential future work involves the reconstruction algorithm selection.
In Chapter 3 we established connections between the popular algebraic reconstruction al-
gorithms and traditional algebraic approaches to solving linear systems. We then modified
the SIRT algorithm in such a way that the obtained results are similar but the computation
and communication overhead are reduced. However, it would also be possible to implement
a different traditional algorithm and use it for image reconstruction since we are ultimately
just solving a linear system. In particular, we could apply the conjugate gradient method
to the associated normal equations rather than pursue a matrix splitting approach. The
conjugate gradient method has proved very useful in solving large sparse linear systems and
thus may have substantial benefits in the field of reconstruction from projections as well.
Thus, incorporating the conjugate gradient method into our framework also provides fertile
ground for future work.

Finally, it would be useful to determine the rank of the system matrix resulting from the
different system models. If it can be confirmed that the system matrix does in fact have full
column rank, then the convergence argument given for SIRT in Chapter 3 provides a succinct
convergence proof for both SIRT and PSIRT. Furthermore, if the spectral properties of the
various iterations matrices could be established, then SIRT, Jacobi, and PSIRT could be
compared in terms of convergence rates as well.
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Appendix A

Data Sets

There are several data sets used for the results presented in this dissertation. These sections
give more details about the data sets.

A.1 Shepp-Logan Phantom Data Set

The Shepp-Logan phantom is a widely used phantom described in detail in [22]. Our Shepp-
Logan phantom data set contains 180 projections with 256 × 256 samples per projection.
When using this phantom, we reconstruct a 256 × 256 × 256 image.

A.2 Tiny Hole Phantom Data Set

The tiny hole phantom is a cubic inch of acrylic with groups of varying sized drill holes.
There are nine rows of five drilled holes with sizes varying from row to row and remaining
constant in each row. The center spacing of the holes on each row is twice the diameter of
the holes on that row and the holes range in size from 0.05 mm to 1.5 mm. An identical
set of holes is drilled into two sides of the phantom. Figure A.1 depicts the dimensions of
the drilled holes and Fig. A.2 shows the phantom itself.

The phantom data set contains 720 projection view angles spaced evenly throughout
the 360 degree scanning circle. The detector has physical dimensions of 33.4848 mm ×
66.9696 mm with 2048×1024 detector elements, which we downsample to 512×256 yielding
a resampled detector pitch of approximately 131 µm. The distance from the x-ray source
to the center of rotation is 256.2 mm and the distance from the x-ray source to the detector
array is 309.6 mm. The detector was vertically offset by approximately 2.8 rebinned detector
elements and the cone angle is approximately 12 degrees. Typically, we reconstruct a
512 × 512 × 256 image from this data set.

A.3 Mouse Data Set

The mouse data set was acquired on a MicroCAT II scanner (Siemens / CTI-Concorde
Microsystems). A projection was acquired for each degree of the 360 degree scanning
circle for a total of 360 projection view angles. The detector has physical dimensions of
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Figure A.1: The design of the tiny hole phantom.

Figure A.2: A picture of the cubic inch tiny hole phantom.

99



82.5344 mm × 164.746 mm with 4096 × 4088 detector elements, which we downsample to
512 × 1022 yielding a resampled detector pitch of approximately 161 µm. The distance
from the x-ray source to the center of rotation is 416.259 mm and the distance from the
x-ray source to the detector array is 512.613 mm. The detector was vertically offset by
approximately 14.5 rebinned detector elements and the cone angle is approximately 18
degrees. Typically, we reconstruct a 512× 512× 1022 image from this data set. The mouse
received an intraperitoneal injection of a water-soluble iodinated contrast agent prior to
being scanned.
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Appendix B

Computing Resources

We utilize two clusters of computers for computations in this work: grig and frodo. We
performed most of the timings and reconstructions on grig. The computer equipment was
acquired as part of SInRG, a University of Tennessee grid infrastructure supported by the
NSF under grant number EIA–9972889.

B.1 Grig Cluster

The grig cluster contains sixty-four nodes with identical hardware. Each node has two Intel
Xeon EM64T 3.2GHz processors, four gigabytes of RAM, and a Myrinet interconnection
(with product ID M3F-PCIXD-2). The cluster runs Debian Linux with GCC version 3.4.3
and we compile the software using the optimization flag -O2.

B.2 Frodo Cluster

The frodo cluster also contains sixty-four nodes with identical hardware. Each node has
two AMD Opteron 240 1.4 GHz processors, two gigabytes of RAM, and a Myrinet inter-
connection (with product ID M3F-PCIXD-2). The cluster runs Debian Linux with GCC
version 3.4.3 and we compile the software identically to grig, using optimization flag -O2.

101



Vita

Thomas Matthew Benson was born in Greeneville, TN. He attended grade school and
high school there and received a high school diploma from Greeneville High School in
1997. He subsequently attended the University of Tennessee, Knoxville, where he completed
Bachelor of Science degrees with highest honors in Computer Science and Mathematics in
May 2001. He then pursued graduate studies in Computer Science at the University of
Tennessee, Knoxville, where he completed a Master of Science degree in December 2003
and the Doctor of Philosophy degree in May 2006.

102


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2006

	Iterative Reconstruction of Cone-Beam Micro-CT Data
	Thomas Matthew Benson
	Recommended Citation


	dissertation.dvi

