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Understanding and Documenting Programs
VICTOR R. BASILI AND HARLAN D. MILLS

Abstract-This paper reports on an experiment in trying to understand
an unfamiliar program of some complexity and to record the authors'
understanding of it. The goal was to simulate a practicing programmer
in a program maintenance environment using the techniques of program
design adapted to program understanding and documentation; that is,
given a program, a specification and correctness proof were developed
for the program. The approach points out the value of correctness
proof ideas in guiding the discovery process. Toward this end, a variety
of techniques were used: direct cognition for smaller parts, discovering
and verifying loop invariants for larger program parts, and functions
determined by additional analysis for larger program parts. An indeter-
minate bounded variable was introduced into the program documenta-
tion to summarize the effect of several program variables and simplify
the proof of correctness.

Index Terms-Program analysis, program correctness, program docu-
mentation, proof techniques, software maintenance.

I. INTRODUCTION

Understanding Programs
W E REPORT here on an experiment in trying to under-

stand an unfamilar program of some complexity and to
record our understanding of it. We are as much concerned
with recording our understanding as with understanding. Every
day programmers are figuring out what existing programs do
more or less accurately. But most of this effort is lost, and
repeated over and over, because of the difficulty of capturing
this understanding on paper. We want to demonstrate that the
very techniques of good program design can be adapted to
problems of recording hard-won understandings about existing
programs.

In program design we advocate the joint development of
design and correctness proof, as shown in [21, [4], [6], rather
than a posteriori proof development. Nevertheless, we believe
that the idea of program correctness provides a comprehensive
a posteriori strategy for developing and recording an under-
standing of an existing program. In fact, we advocate another
kind of joint development, this time, of specification and
correctness proof. In this way, we have a consistent approach
dealing always with three objects, namely, 1) a specification,
2) a program, and 3) a correctness proof. In writing a pro-
gram, we are given 1) and develop 2) and 3) jointly; in reading
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a program, we are given 2) and develop 1) and 3) jointly. In
either case, we end up with the same harmonious arrangement
of 1) and 2) connected by 3) which contains our understand-
ing of the program.
In the experiment at hand, our final understanding exceeded

our most optimistic initial expectations, even though we have
seen these ideas succeed before. One new insight from this
experiment was how little we really had to know about the
program to develop a complete understanding and proof of
what it does (in contrast to how it does it). Without the cor-
rectness proof ideas to guide us, we simply would not have
discovered how little we had to know. In fact, we know a
great deal more than we have recorded here about how the
program works, which we chalk up to the usual dead ends of
a difficult discovery process. But the point is, without the
focus of a correctness proof, we would still be trying to under-
stand and record a much larger set of logical facts about the
program than is necessary to understand precisely what it
does.
In retrospect, we used a variety of discovery techniques. For

simpler parts of the program, we used direct cognition. In
small complex looping parts, we discovered and verified loop
invariants. In the large, we organized the effect of major pro-
gram parts as functions to be determined by additional analy-
sis. We also discovered a new way to express the effect of a
complex program part by introducing a bounded indeterminate
variable which radically simplified the proof of correctness of
the program part.

The Program
We were interested in a short but complex program. Our

goal was to simulate a practicing programmer in a program
maintenance environment. The program was chosen by Prof.
J. Vandergraft of the University of Maryland as a difficult pro-
gram to understand. It was a Fortran program called ZEROIN
which claimed to find a zero of a function given by a Fortran
subroutine. We were given the program and told its general
function. The problem then was to understand it, verify its
correctness, and possibly modify it, to make it more efficient
or extend its applicability. We were not given any more about
the program than the program itself. The program given to us
is shown in Fig. 1, the original Fortran ZEROIN. Prof. Van-
dergraft played the role of a user of the program and posed
four questions regarding the program.

1) I have a lot of equations, some of which might be linear.
Should I test for linearity and then solve the equation directly,
or just call ZEROIN? That is, how much work does ZEROIN
do to find a root of a linear function?

0098-5589/82/0500-0270$00.75 © 1982 IEEE
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2) What will happen if I call ZEROIN with F(AX) and
F(BX) both positive? How should the code be changed to test
for this condition?
3) It is claimed that the inverse quadratic interpolation saves

only 0.5 function evaluations on the average. To get a shorter
program, I would like to remove the inverse quadratic inter-
polation part of the code. Can this be done easily? How?
4) Will ZEROIN find a triple root?

II. TECHNIQUES FOR UNDERSTANDING PROGRAMS
Flowcharts
Any flowchartable program can be analyzed in a way we

describe next for better understandability and documentation.
For a fuller discussion, see [6]. We consider flowcharts as
directed graphs with nodes and lines. The lines denote flow
of control and the nodes denote tests and operations on data.
Without loss of generality, we consider flowcharts with just
three types of nodes, namely,

function node:

predicate node:

'

collecting nodes:

where f is any function mapping the data known to the pro-
gram to new data, e.g., a simple Fortran assignment statement,
and p is any predicate on the data known to the program, e.g.,
a simple Fortran test. An entry line of a flowchart program is
a line adjacent to only one node, its head; an exit line is adja-
cent to only one node, its tail.

Functions and Data Assignments
Any function mapping the data known to a program to new

data can be defined in a convenient way by generalized forms
of data assignment statements. For example, an assignment,
denoted

x :=e (e.g.,x :=x+y)

where x is a variable known to the program and e is an expres-
sion in variables known to the program, means that the value
of e is assigned to x. Such an assignment also means that no
variable except x is to be altered. The concurrent assignment,
denoted

xIlIx2, * xn :=el, e2, * en

means that expressions el, e2, * , en are evaluated inde-
pendently, and their values assigned simultaneously to xl,
x2,... , xn, respectively. As before, the absence of a variable
on the left side means that it is unchanged by the assignment.
The conditional assignment, denoted

(pl -+AlIp2-A21 *.. Ipn -+ An)

where pl, p2, , pn are predicates and Al, A2, * , An are
assignments (simple, concurrent, or conditional) means that
particular assignment Ai associated with the first pi, if any,
which evaluates true; otherwise, if no pi evaluates true, then
the conditional assignment is undefined.
An expression in an assignment may contain a function

value, e.g.,

x :=max (x, abs(y))

where max and abs are functions. But the function defined
by the assignment statement is different, of course, from max
or abs.
We note that many programming languages permit the pos-

sibility of so-called side effects, which alter data not men-
tioned in assignment statements or in tests. Side effects are
specifically prohibited in our definition of assignments and
tests.

Proper Programs
We define a proper program to be a program whose flow-

chart has exactly one entry line, one exit line, and, further,
for every node a path from the entry through that node to the
exit. For example,

f4 YJf-
f_

are proper programs, but

p

are not proper programs.
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ZEROIN.PROGRAM *****

REAL FUNCTION ZEROIN (AX, BX, F, TOL, IP)
REAL AX, BX, F, TOL

C
C

REAL A, B, C, D, E, EPS, FA, FB, FC, TOLI, XM, P, Q, R, S
C
C COMPUTE EPS, THE RELATIVE MACHINE PRECISION
C

EPS - 1.0
10 EPS - EPS/2.0

TOLl = 1.0 + EPS
IF (TOLI GT. 1.0) GO TO 10

C
C INITIALIZATION
C

IF (IP EQ. 1) WRITE (6, 11)
11 FORMAT( THE INTERVALS DETERMINED BY ZEROIN ARE')

A - AX
B - BX
FA - F(A)
FB - F(B)

C
C BEGIN STEP
C

20 C - A
FC - FA
D - B - A
E = D

30 IF (IP .EQ. 1) WRITE(6,31) B,C
31 FORMAT (2E15.8)

IF (ABS(FC) .GE. ABS(FB) ) GO TO 40
A -B
B C
C - A
FA - FB
FB - FC
FC - FA

C
C CONVERGENCE TEST

40 TOLl - 2.0*EPS*ABS(B) + 0.5*TOL
XM - .5*(C - B)
IF (ABS(XM) .LE. TOLl) GO TO 90
IF (FB EQ. 0.0) GO TO 90

IS BISECTION NECESSARY

IF (ABS(E) .LT. TOLl) GO TO 70
IF (ABS(FA) .LE. ABS(FB)) GO TO 70

IS QUADRATIC INTERPOLATION POSSIBLE

IF (A NE. C) GO TO S0

LINEAR INTERPOLATION

S - FB/FA
P = 2.0*XM*S
Q - 1.0 - S
GO TO 60

INVERSE QUADRATIC INTERPOLATION

50 Q - FA/FC
R - FB/FC
S - FB/FA
P - S*(2.0*XK*Q*(Q - R) - (B - A) * (R - 1.0))
Q - (Q - 1.0)*(R - 1.0)*(S - 1.0)

70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

C ADJUST SIGNS
C

C
C
C

C
C

C

C
C

C

60 IF (P .GT. 0.0) Q = -Q
P = ABS(P)

IS INTERPOLATION ACCEPTABLE

IF ((2.0*P) .GE. (3.0*XM*Q - ABS(TOL1*Q))) GO TO 70
IF (P .GE. ABS(O.5*E*Q)) GO TO 70
E D
D = P/Q
GO TO 80

BISECTION

70 D = XM
E -D

COMPLETE STEP

80 A - B
FA - FB
IF (ABS(D) .GT. TOLl) B = B + D
IF (ABS(D) .LE. TOL) B = B + SIGN(TOL1, XM)
FB - F(B)
IF ((FB*(FC/ABS (FC))) .GT. 0.0) GO TO 20
GO TO 30

C
C DONE
C

90 ZEROIN = B
RETURN
END

***** ZEROIN. INFO *****

ZEROIN IS A FUNCTION SUBPROGRAM WHICH FINDS
A ZERO OF THE FUNCTION F(X) IN THE INTERVAL AX, BX
THE CALLING STATEMENT SHOULD HAVE THE FORM

X* - ZEROIN(AX, BX, F, TOL, IP)
WHERE THE PARAMETERS ARE DEFINED AS FOLLOWS.

INPUT

AX LEFT ENDPOINT OF INITIAL INTERVAL
BX RIGHT ENDPOINT OF INITIAL INTERVAL
F FUNCTION SUBPROGRAM WHICH EVALUATES F(X) FOR ANY X IN

THE INTERVAL AX, BX
TOL DESIRED LENGTH OF THE INTERVAL OF UNCERTAINTY OF THE

FINAL RESULT ( GE. 0.0)
IP AN INTEGER PRINT FLAG. WHEN SET TO 0, NO PRINTING

WILL BE DONE BY ZEROIN. IF SET TO 1, THEN
ALL OF THE INTERVALS COMPUTED BY ZEROIN WILL
BE PRINTED OUT.

OUTPUT

ZEROIN ABCISSA APPROXIMATING A ZERO OF F IN THE INTERVAL AX, BX

IT IS ASSUMED THAT F(AX) AND F(BX) HAVE OPPOSITE SIGNS
WITHOUT A CHECK. ZEROIN RETURNS A ZERO X IN THE GIVEN INTERVAL
AX, BX TO WITHIN A TOLERANCE 4*MACHEPS*ABS(X) + TOL, WHERE MACHEPS
IS THE RELATIVE MACHINE PRECISION.

THIS FUNCTION SUBPROGRAM IS A SLIGHTLY MODIFIED TRANSLATION OF
THE ALGOL 60 PROCEDURE ZERO GIVEN IN RICHARD BRENT, ALGORITHMS FOR
MINIMIZATION WITHOUT DERIVATIVES, PRENTICE - HALL, INC. (1973).

THIS VERSION IS COPIED FROM "COMPUTER METHODS FOR MATHEMATICAL
COMPUTATIONS" BY FORSYTHE, MALCOLM,AND MOLED. THE ONLY CHANGE
IS THE INCLUSION OF THE PRINT FLAG IP.

Fig. 1. Original Fortran ZEROIN.

Program Functions

We define a program function of a proper program P, de-
noted [PI, to be the function computed by all possible execu-

tions of P which start at its entry and terminate at its exit.
That is, a program function [P] is a set of ordered pairs, the
first member being a state of the data on entry to P and the
second being the resulting state on exit. Note that the state
of data includes input and output files, which may be read
from or written to intermittently during execution. Also note

Proper programs are convenient units of documentation.
Their program functions abstract their entire effect on the
data known to the program. Within a program, any subpro-
gram that is proper can be also abstracted by its program func-
tion, that is, the effect of the subprogram can be described by
a single function node whose function is the program function
of the subprogram.
We say two programs are function equivalent if their pro-

gram functions are identical. For example, the programs

f

f f

that if a program does not terminate by reaching its exit line have different flowcharts but are function equivalent.
from some initial data at its entry, say by looping indefinitely
or by aborting, no such pair will be determined and no men- Prime Programs
tion of this abnormal execution will be found in its program We define a prime program to be a proper program that con-

function. tains no subprogram that is proper, except for itself and func-

272

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

C

C
C
C

C
C
C

C
C
C

C
C
C

C
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tion nodes. For example,

f f

are primes, while

f 9 ~ ~ ~ ~ ~ ~~~

are not prime (composite programs), the first (of the composites) having subprograms

f 9 and 9 h

Any composite program can be decomposed into a hierarchy of primes, a prime at one level serving as a function node at the
next higher level. For example, the composite programs above can be decomposed as shown next:

r-----------___l | JL5---------------
--------------- ~~~f g9

L----------------,

In each case, a prime is identified to serve as a function node
in another prime at the next level. Note also that the first
composite can also be decomposed as

,~~~C FH}
so that the prime decomposition of proper programs is not
necessarily unique.

Flowchart

f

.p! +e~

-~~~

PDL

while p do f od

do f until p od

Prime Programs in Text Form
There is a striking resemblance between prime programs and

prime numbers, with function nodes playing the role of unity,
and subprograms the role of divisibility. Just as for numbers,
we can enumerate the control graphs of prime programs and
give a text description of small primes in PDL (Process Design
Language) [6] as follows:

Flowchart

if p then f else g fi

dol f while p do2 y od
PDL

f; g

if p then f fi

Larger primes will go unnamed here, although the case state-
ment of Pascal is a sample of a useful larger prume. All the
primes above, except the last (dowhiledo), are common to
many programming languages. Prime programs in text form
can be displayed with standard indentation to make the sub-
program structure and control logic easily read, which we will
illustrate for ZEROIN.
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ZEROIN

Fig. 2. Flowchart of Fortran ZEROIN.

III. UNDERSTANDING ZEROIN
Our overall approach in understanding ZEROIN is carried

out in the following steps.
1) Perform a prime program decomposition which involves

a restructuring of the program into a set of simple constituents
which are represented by the single predicate prime programs
discussed in the last section.
2) Develop a data reference table and analyze the data

references from the point of view of where variables have been
set and referenced. This provides insights into the inputs and
outputs of the various prime program segments.
3) Perform a function decomposition of the program asso-

ciating functions with each of the prime program segments. In
this way, step by step, the whole program function can be
determined by whatever correctness techniques are available.
In what follows, the authors have used axiomatic correctness
techniques, creating loop invariants along the way, and func-
tional correctness techniques.

The Prime Program Decomposition ofZEROIN
Our first step in understanding ZEROIN was to develop a

prime program decomposition of its flowchart. After a little
expenmentation, the flowchart for ZEROIN was diagrammed
as shown in Fig. 2. The numbers in the nodes of the flowchart

represent contiguous segments of the Fortran program of
Fig. 1, so all lowest level sequence primes are already identified
and abstracted.
The flowchart program of Fig. 2 was then reduced, a step at

a time, by identifying primes therein and replacing each such
prime by a newly numbered function node, e.g., R.2.3 names
prime 3 in reduction 2 of the process. This prime decomposi-
tion of the Fortran ZEROIN is shown in Fig. 3, leading to a
hierarchy of six levels. Of all primes shown in Fig. 3, we note
only two that contain more than one predicate, namely R.3.1
and R.5.1, and each of these is easily transformed into a com-
posite made up of pnmes with no more than one predicate.
These transformations are shown in Fig. 4. We continue the
reduction of these new composite programs to their prime
decompositions in Fig. 5. In each of these two cases, a small
segment of programs is duplicated to provide a new composite
that clearly executes identically to the prime. Such a modifica-
tion, which permits a decomposition into one predicate primes,
is always possible provided an extra counter is used. In this
case, it was fortunate that no such counter was required. It
was also fortunate that the duplicated segments were small;
otherwise, a program call in two places to the duplicated seg-
ment might be a better strategy.

A Structured Design ofZEROIN
Since a prime program decomposition of a program equiva-

lent to ZEROIN has been found with no primes of more than
one predicate, we can reconstruct this program in text form in
the following way. The final reduced program of ZEROIN is
given in Reduction 6 of Fig. 3, namely, that R.6.1 is a sequence,
repeated here,

R.6.1 =

Now R.2.1 can be looked up, in turn, as

R.2.1 =

1-9

R. 1.1

16-21

etc., until all intermediate reductions have been eliminated.
Recall that R.5.1 and R.3.1 was further reduced in Fig. 5.
When these intermediate reductions have all been eliminated,

274



BASILI AND MILLS: UNDERSTANDING AND DOCUMENTING PROGRAMS

I ~~~~~~I1~I_1 1
E ~ ~~~ ~~II
I I ~~~~~~LR1.11

IL

L t1 _R2.!R 3

25-28~ ~ ~ ~ ~~~~6 -0

Ir--n---- _ m~~~~~~~I

ll 125-281 ~~~~~~~I

I~~~~~~~~~~~~~~~~~~~.
R4I

Fig. 3. Prime decomposition of Fortran ZEROIN.

R.3.1 -

[R.2.31

R.5.1 =

M.3.I _

CAN BE

MODIFIED

TO

CAN BE M.5.1 -
MODIFIED
TO

Fig. 4. Transformation to single predicate primes.

we obtain a structured program [2], [6], in PDL for ZEROIN
shown in Fig. 6. Note there are three columns of statement
numberings. The first column holds the PDL statement num-
ber; the second holds the Fortran line numbering of Fig. 1; the
third holds the Fortran statement numbering of Fig. 1. The
Fortran comments have been kept intact in the newly struc-
tured program and appear within square brackets [, ]. From
here on, statement numbers refer to the PDL statements of
Fig. 6.
The duplication of code introduced in Fig. 4 can be seen in

PDL 72, 73, and PDL 96-99. It should be noted, however,
that in PDL 87-91 the second IF STATEMENT in Fortran 93
can be eliminated by use of the if-then-else. This permits an
execution time improvement to the code. A second improve-
ment can be seen in PDL 62-66. The use of the absolute value
function can be eliminated by using the else part of an if-then-
else to change the sign of a negative p.
By construction, the PDL program of Fig. 6 is function

equivalent to the Fortran program of Fig. 1. But the struc-
tured PDL program will be simpler to study and understand.

Data References in ZEROIN

Our next step in understanding ZEROIN was to develop a
data reference table for all data identifiers. While straight-
forward and mechanical, there is still much learning value in
carrying out this step, in becoming familiar with the program
in the new structured form. The results are given in Fig. 7.
This familiarization led to the following observations about
the data references in ZEROIN (in no particular order of
significance, but as part of a chronological, intuitive, discovery
process).

1) ax, bx, f, ip, tol are never set, as might be expected, since
they are all input parameters (but this check would discover
initialized data if they existed, and the presence of side effects
by the program on its parameters if passed by reference).

2) Zeroin is never used, but is returned as the purported
zero found for f (since Zeroin is set to b just before the re-
turn of the program, it appears that b may be a candidate for
this zero during execution).
3) eps is set by the dountil loop 6-11 at the start of pro-

gram execution, then used as a constant at statement 36 from
then on.
4) tol 1 is used for two different unrelated purposes, namely,

as a temporary in the dountil loop 6-11 which sets eps, then
reset at statement 36 as part of a convergence consideration in
36-88.
5) Function f is called only three times, at 16, 17 to ini-

tailize fa, fb, and at 92 to reset fb to f(b) (more evidence that
b is the candidate zero to be returned).
6) Identifiers a, c are set to and from b, and the triple a, b,

c seems to be a candidate for bracketing the zero that b (and
zeroin) purports to approach.

7) Identifiers fa, fb, fc are evidently stand-ins for f(a), f(b),
f(c), and serve to keep calls on function f to a minimum.
8) Identifiers p, q, r, s are initialized and used only in the

section of the program that the comments indicate is con-
cerned with interpolation.
9) Focusing on b, aside from initialization at statement 15

and as part of a general exchange among a, b, c at statement
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M.5.1

M.

M.3.1

48-

REDUCTION I

S .1.1 =

REDUCTION 2

S.2.1=

S. 1

25-29

T.2.1I

REDUCTION 3

S.3.1 -

5.21 8-8

M.3.1

E'~I
IID

4II

REDUCTION I

T.I.l =

REDUCTION 2

T.2.1 -

.

TT.

REDUCTION 3

T.3.1 = R

1 -I

REDUCTION 4 1
T.4.1 - 5

[t1
Fig. 5. Prime decomposition of the transformed ZEROIN.

28-29, b is updated only in the ifthenelse 83-90, incremented
by either d or tol 1.

10) d is set to xm or p/q (as a result of a more complex bi-
section and interpolation process); xm is set only at statement
37 to the half interval.of (b, c) and appears to give a bisection
value for b.

A Function Decomposition ofZEROIN
The prime program decomposition and the familiarity de-

veloped by the data reference tabulation and observations sug-
gest the identification of various intermediate prime or com-
posite programs .in playing important roles in summing up a
functional structure for ZEROIN. Each such intermediate
prime or composite program computes values of a function.
The inputs (function arguments) of this function are defined
by, the initial value of all identifiers that are inputs (function
arguments) for statements that make up the intermediate pro-
gram. The outputs (function values) of this function are de-
fined by the final values of all identifiers that are outputs
(function values) for statements that make up the intermediate

program. Of course, further analysis may disclose that such a
function is independent of some inputs, if, in fact, such an
identifier is always initialized in the intermediate program be-
fore its use.
On the basis of this prime decomposition and data.analysis,

we reformulated ZEROIN of Fig. 6 as zeroin 1, a sequence of
four intermediate programs, as shown in Fig. 8, with function
statements using the form f. n-m where n, m are the bound-
ary statements of the intermediate programs of ZEROIN from
Fig. 6. Identifier *outfile in the output lists refers to the fact
that data are being transferred to an outfile by an intermedi-
ate program. The phrase (x,z,v) projection of some function
x,y,z,u,v,w : p,q,r,s,t,u means the new function x,z,v := p,r,t.
In the following program descriptions, all arithmetic opera-

tions are assumed to represent machine arithmetic. However,
we will occasionally apply normal arithmetic axioms in order
to simplify expressions. We next look at the intermediate
programs.
f5-11: The intermediate program that computes the values

of f.5-l 1 is a sequence, namely, an initialized dountil, i.e.,
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ZEROIN. PROGRAM

func zeroin (real ax, bx, f, tol, integer ip)
real a. b, c, d. e, eps, fa, fb, fc.
tol 1. ms. p, q. r. a
[COMPUTE EPS, THE RELATIVE MACHINE PRECISION]
eps :- 1.0
do

eps : eps/2.0
tol 1 1.0 + Pes

until
tol 1 < 1

od
[INITIALIZATION]
if ip - 1 then write ('THE INTERVALS DETERMINED BY ZEROIN ARE') fi
a :- ax
b :- bx
fa :- f(a)
fb f(b)
(BEGIN STEP]
C :- a
fc fa
d :- ba
e :- d
dol

if ip 1 then write (b, c) fi
if

abs (fc) < abs (fb)
then

a b
b c
c :-a
fa fb
fb fc
ft fa

fi
[CONVERGENCE TEST]

tol 1 :- 2.0 * eps * abs (b) + 0.5 * tol
xm :- .5 * (c-b)

while
abs (xs) > tol 1 and fb # 0

do2
[IS BISECTION NECESSARY]
if
abs (e) < tol 1 or abs (fa) S abs (fb)

then [BISECTION]
d x-
e d

else [IS QUADRATIC INTERPOIATION POSSIBLE]
if
ai c

then [INVERSE QUADRATIC INTERPOLATION]
q fa/fc
r fb/fc
a fb/fa
p a* (2.0 * xm * q * (q-r) - (b-a) * (r-1.0))
q (q-1.O) a (r-1.0) * (a-1.0)

else ILINEAR INTERPOLATION]
s fb/fa
p 2.0 * aa
q 1.0 - s

fi
[ADJUST SIGNS]
if /* note can be *J
p > o /* if p > o then q :-q*/

then J* else p -p
qi - -q /* in PDL *1

fi
p :- abs(p)
[IS INTERPOLATION ACCEPTABLE]
if
(2.0 * p) Z (3.0 *xa * q - abs (tol 1 * q))

then [BISECTION]
d :-xm /* note 85-86 repeated *
e :d /* inPDL *1

else
e :-d
d :- p/q

fi
fi
[COMPLETE STEP]
a :- b
fa :a fb
if

abs(d) > tol 1

then
b : b + d

fi
if
abs(d) tol 1

then
b b + sign (tol 1, xi)

fi

fb :- f(b)
if
fb (ft/abs (fc)) > 0.0

then [BEGIN STEP]
c :-a
fc fa
d :- b - a

e :- d
fi

od
[DONE]
zeroin :- b
return

cnuf

/* note test done twice *l
Ja in FORTRAN aJ

/* here and
/* in PDL line 88 */

/* note 25-28 */
/* repeated *J
a* inPDL aJ

Fig. 6. Transformed PDL ZEROIN.

Assigned Used

a 14,28,80 16,19,21,30,49,54,96,98
ax 14

b 15,29,85,90 17,21,24,28,36,37,54,80,85,90,92,98,103
bx 15
c 19,30,96 29,37,49
d 21,45,72,76,98 22,46,73,75,83,85,88,99
e 22,46,73,75,99 43

eps 5,7 7,8,36
f 16,17,92

fa 16,31,81 20,33,43,51,53,57,97
fb 17,32,92 26,31,39,43,52,53,57,81,94
fc 20,33,97 26,32,51,52,94
ip 13,24

p 54,58,67 63,67,70,76

q 51,55,59,65 54,55,65,70,76

r 52 54,55
a 53,57 54,55,58,59
tol 36

tol 1 8,36 10,39,43,70,83,88
xu 37 39,45,54,58,70,72,90
zeroin 101

Fig. 7. Data references of PDL ZEROIN.

Fig. 8. Top level function/data partition of PDL ZEROIN.

5 eps := 1.0
6 do
7 eps := eps/2.0
8 tol : 1.0 + eps

9 until
10 toll.I
11 od

After some thinking, we determine that at PDL 6, an invariant
of the form

I6 = (3 k > 0 (eps = 2-k)) A 1 + eps > 1

must hold, since entry to PDL 6 must come from PDL 5 or

PDL 10 (and in the latter case tol 1 > 1, having just been set
to 1.0 + eps, so 1.0 + eps > 1). Furthermore, at PDL 9 the
invariant

I9=(3k> 1 (eps=2k))Ato1=1+eps

must hold, by observing the effect of PDL 7, 8 on the invar-
ant 16 at PDL 6. Therefore, at exit (if ever) from the segnient
PDL 5-11, we must have the condition 19 A PDL 10, namely,

FORTRAN

Line St
Refer- I
ence re
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99

100
101
102
103
104
105

1-2
S

7
9

10
11

12

14
16
18
19
20
21
23
25
26
27
28

29

31

32
33
34
35
36
37

39
41
42

£22

83

85
86
46

48
62
64
65
66
67
68
55
57
58
59

70

72

72

73
75

77

83
85

86

79

80

90
91

92

92

93

93

94

25
26
27
28

98
00
01
02

20

30

40

70

50

60

70

80

20

1 func zeroin 1 (real ax, bx, f, tol, integer ip)

2 real a, b, c, d, e, epa, fa, fb, fc, p, q, r, s, tol 1, xm

3 integer ip

4 [compute eps, the relative machine precision]

5 eps, tol 1 :- f. 5-11

6 [initialize data]

7 a, b, c, d, e, fa, fb, fc, *outfile : f. 13-22 (ip, ax, bx, f)

8 [estimate b as.a zero of f]

9 a, b, C, d, e, fa, fb, fc, p, q, r, a, tol 1, x=, *outfile

f. 23-101 (a, b, c, d, a, f, fa, fb, fc, ip, p, q, r, s, tol 1, xm)

10 [set zeroin for return, zeroinl:- b]

11 zeroinl :- f. 103-103(b)

12 cnuf

ta
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(3 k > 1 (eps = 2-k)) A 1 + 2 eps > 1 A tol l = 1 + eps< 1.

Thus we have the following.
Lemma 5-11: The program function of f.5-11 is the con-

stant function:

{Qk, (eps, tol 1)) I (3 k > 1 (eps = 2-k)) A 1 + 2 eps

> 1 Atoll = 1 +epsl}.

Since tol 1 is reassigned (in PDL 36) before it is used again,
f.5-1 1 can be thought of as computing only eps.
f 13-22: The intermediate program that computes the value

of f.13-22 can be written directly as a multiple assignment. It
is convenient to retain the single output statement PDL 13,
and write

f.13-22 = f.13-13; f.14-22

yielding the following.
Lemma 13-22: The(a,b,c,d,e, *outfile) projection of f.l3-22

is function equivalent to the sequence

f.13-13; f.14-22

where f.13-13 = if ip = 1 then write ('THE INTERVALS
DETERMINED BY ZEROIN ARE') and

f.14-22 a,b,c,d,e, fa, fb, fc

ax,bx,ax,bx-ax,bx-ax, f(a),f(b),f(a).

f23-101: The intermediate program that computes the
value of f.23-101 is a bit more complicated than the previous
program segments and will be broken down into several sub-
segments. We begin by noticing that several of the input and
output parameters may be eliminated from the list. Specifi-
cally, as noted earlier, p, q, r, and s are local variables to
f.23-101 since they are always recalculated before they are
used in f.23-101 and they are not used outside of f.23-101.
The same is true for xm and tol 1. fa, fb, and fc can be elimi-
nated since they are only used to hold the values of f(a), f(b)
and f(c).
After considerable analysis and a number of false starts lead-

ing into a great deal of detail, we discovered an amazing sim-
plification, first as a conjecture, then as a more precise hy-
pothesis, and finally as a verified result. This simplification
concerned the main body of the iteration of zeroin, namely,
PDL 41-92, and obviated the need to know or check what
kind of interpolation strategy was used, step by step. This
discovery was that the new estimate of b always lay strictly
within the interval bracketed by the previous b and c. That is,
PDL 41-92, among other effects, has the (b) projection

b :=b+a(c-b), forsomea,0<C<1

so that the new b was a fraction oa of the distance from the
previous b to c. With a little more thought, it became clear
that the precise values of d, e could be ignored, their effects
being captured in the proper (but precisely unknown) value
of ca. Furthermore, this new indeterminate (but bounded)
variable a could be used to summarize the effect of d, e in
the larger program part PDL 23-101, because d, e are never
referred to subsequently. Thus, we may rewrite f.23-101 at

this level as

a, b, c *outfile := f.23-101 (a, b, c, f, ip)

and we define it as an initialized while loop.
Lemma23-101: The (a, b, c, *outfile) projection of f.23-101

is function equivalent to

(ip = 1 -+ write (b, c) true -+ I); [Lemma 24]

(abs(f(c)) < abs(f(b)) -* a,b,c := b,c,b true e I);
[Lemma 25-34]

while

f(b) # 0 A (abs(c-b)/2) > 2 eps abs(b) + tol/2
do

a,b,c :=b,b+ac(c-b),c where 0<o< 1;
[Lemma 41-92]

(f(b) * f(c)>0 -* a, b, c := a, b, a true -+ I);
[Lemma 93-100]

(ip = 1 - write (b, c) true -+ I); [Lemma 24]
(abs(f(c)) < abs(f(b)) -+ a,b,c := b,c,b true -+ I)

[Lemma 25-34]
od

where I is the identity mapping.
The structure of f.23-101 corresponds directly to the struc-

ture of PDL 23-101 except for a duplication of segment
PDL 23-34 in order to convert the dowhiledo into a whiledo.
The proof of the correctness of the assignments of f.23-101
is given in separate lemmas as noted in the comments attached
to the functions in Lemma 23-101. The while test is obtained
by direct substitution of values for tol 1 and xm defined in
PDL 36-37 into the test in PDL 39 using eps as defined in
Lemma 5-1 1.
Lemma 24: PDL 24 is equivalent to

(ip = I - write (b, c) true I).
Proof: By direct inspection.

Lemma 25-34: The (a, b, c) projection of the program func-
tion ofPDL 25-34 is function equivalent to

(abs(f(c)) < abs(f(b)) -* a,b,c := b,c,b true -* I).

Proof: By direct inspection of PDL 25-34.
Lemma 41-92: The (a, b, c) projection of the program func-

tion of PDL 41-92 is function equivalent to

a, b, c := b, b +a(c-b), c where 0< cx< 1.

The proof will be done by examining the set of relationships
that must hold among the variables in PDL 41-92 and analyz-
ing the values of p and q only. That is, it is not necessary to
have any knowledge of which interpolation was performed to
be able to show that the new b can be defined by

b :=b+(c-b), 0<o<1.

We will ignore the test on PDL 48 since it will be immaterial to
the lemma whether linear or quadratic interpolation is per-
formed. We will examine only the key tests and assignments and
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do the proof in two basic cases-interpolation and bisection-
to show that the (d) projection of the program function of
PDL 41-78 is

d =(c-b) (a) where 0 < a< 1.

Case I-Interpolation: If interpolation is done, an examina-
tion of Fig. 6 shows that the following set of relations holds at
PDL 78:

* Il tol 1= 2 * eps * abs (b) + .5 * tol
* I2-xm = (c- b)/2
* I3-abs (xm) > tol 1
. I4=p>0
I5=2*p<3 *xm*q- abs(tol 1 *q)

* 16=d=p/q
* I7-abs(d) > tol 1

(PDL 36)
(PDL 37)
(PDL 39)
(PDL 67)
(PDL 70)
(PDL 76)
(PDL 83)

Now let us examine the set of cases on p and q.

p > 0 A q < 0: We have d = p/q <0 (by hypotheses), p/q >
3/2 xm + tol 1/2 (byI5), and tol 1 >0 (by II). Since abs(xm) >
tol 1 (by 13) and 3/2 xm + tol 1/2 <0 (since p/q <0) we have
xm <0 implying 0> d > p/q > 3/2 xm > 3/4 (c-b) > (c-b).
Thus 0> d > (c-b) yielding d = oa(c-b) where 0< a < 1.
p > 0 A q > 0: We have d = p/q >0 (by hypotheses), p/q <

3/2 xm - tol 1/2 <3/2 xm = 3/4 (c-b) <(c-b) (by 15, I1,12)
implying 0< d < (c-b). Thus d = a(c-b) where 0 < a < 1.
p>OAqO=: q=OimpliesO>2 *p(byI5)andweknow

p >0 (by hypotheses), implying a contradiction.
p=OA q = anything: abs(p/q) > tol 1 (by 16, 17) and

tol 1 >0 (by I1) implies p cannot be 0.
p <O A q = anything: p >0 (by 14) implies a contradiction.
Case 2-Bisection: If bisection is done, an examination of

Fig. 6 shows that the following set of relations holds at PDL
78:

B -xm = (c- b)/2.
B2 abs(xm) > tol 1

B3-d=xm

(PDL 37)
(PDL 39)
(PDL 45 or PDL 72).

Here d = xm (by B3) implies a = 1/2 (by Bl) and thus d=
(c-b)(a) where O<a<l.
PDL 82-91 implies if Idi < tol 1 (i.e., if d is too small) then

increment b by tol 1 with the sign adjusted appropriately, i.e.,
set

d abs(d) > tol l

tsign (tol 1, sm) otherwise J

But tol 1 < abs(xm) (by 13 and B2) = abs((c-b)/2) and the
sign (tol 1) is set to the sign (xm) implying

tolI =a(c-b) where 0< a< 1.

Thus, in PDL 82-91 b is incremented by d or tol 1, both of
which are of the form ca(c-b) where 0< a< 1. Thus we have

b :=b +a(c-b), 0<oa<1

and since in PDL 80-81 we have a, fa := b, fb we get the state-
ment of the lemma.
Once again, the reader is reminded that the proof of Lemma

41-92 was done by examining cases on p and q only. No

knowledge of the actual interpolations was necessary. Only
tests and key assignments were examined. Also, the program
function was abstracted to only the key variables a, b, c and
a represented the effect of all other significant variables.
Lemma 93-100: The (a,b,c) projection of PDL 93-100 is

function equivalent to

(f(b) * f(c)>0-a,b,c :=a,b,a true -I).

Proof: By direct inspection, PDL 93-100 is an ifthen
statement with if test equivalent to the condition shown above
and assignments that include the assignments above.
The last function in zeroin 1 (from Fig. 8) is the single state-

ment PDL 103, which can be easily seen as Lemma 103.
Lemma 103: f.103 is function equivalent to zeroin := b.
Now that each of the pieces of zeroin 1 have been defined,

the program function of ZEROIN will be given. First, let us
rewrite zeroin 1, all in one place, using the appropriate func-
tions (Fig. 9).
The program ZEROIN has the required effect of finding and

returning a root if there is one between the endpoints provided
to it. The conditions under which this works are when either
of the endpoints are roots or there is one root or an odd num-
ber of roots between the two endpoints (i.e., the functional
values of the endpoints are of opposite signs). However, if the
two endpoints provided to the program are identical, their
value will be returned as the root. If there are no roots or a
multiple of two roots between the two endpoints, the program
will return a value as a root. This value may be one of the
actual roots or it may be some point lying between the two
points which is arrived at by continually halving the interval
and eventually choosing one of the endpoints of a halved in-
terval when the interval gets small enough.
The behavior of the program is more formally defined in the

following theorem.
Theorem 1-105:

func zeroin has program function [zeroin] =
(ax = bx -+ root bx
f(bx) = 0 - root bx
f(ax)=0-0root :=ax
f(ax) * f(bx) <0 -+ root := approx (f, ax, bx, tol)
true -(V k =1,2, * *,f(bk) * f(ck) > 0-* root

unpredictablel
3 k> 0(f(bk) * *0k< 0 A Vj =1,2, kk-l

f(bj) * f(cj) > 0) -+ root
approx (f, bk, Ck, tol)

where approx (f, ax, bx, tol) is some value, x, in the interval
(ax, bx) within 4 * eps * x + tol of some zero, x of the func-
tion f and the sequence (b1 , cl ), (b2, c2 ), is defined so that
each succeeding interval is a subinterval of the preceding in-
terval; (bl, cl) = (ax, bx), (bk+l, ck+l) defines the half inter-
val of (bk, Ck) such that the endpoint kept is the one that
minimizes the absolute value of f.

Proof: The proof will be carried out in cases, correspond-
ing to the conditions in the rule given in the theorem. The
first three cases follow directly by inspection of zeroinl, as
special cases for input values, which bypass the while loop.
That is, if ax = bx, then the values of a, b, c and root can be
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traced in zeroin I as follows:

a b c root

zeroin 1.8 bx bx bx
0.11 bx bx bx

[condition 13 fails since c-b = 01
0.21 bx bx bx bx.

Cases 2 and 3 proceed in a similar fashion.
Case 4, f(ax) * f(bx) <0, will be handled by an analysis of

the whiledo loop and its results will apply to the last subcase
of the last case as well. The first subcase of the last case arises
when no zero of f is even bracketed and zeroinI runs a predict-
able course, as will be shown.
Case 4: It will be shown that the entry condition f(ax) *

f(bx) <0 leads to the following condition at the whiletest of
zeroini:

I = (a = c * b V a <b <c V c Kb <a)
A f(b) * f(c) < 0 A abs(f(b) < abs(f(c)).

The proof is by induction. First, I holds on entry to the
whiledo loop because by direct calculation

after zeroinl.8
after zeroini .11

a=cAf(b) * f(c)<OAc#b
a = c A f(b) * f(c) <0 A abs(f(b))

< abs(f(c)) A c = b.

Next, suppose the invariant I holds at any iteration of the
whiledo at the whiletest, and the whiletest evaluates true, it
can be shown that I is preserved by the three-part sequence of
the do part. In fact, the first part, in seeking a better estimate
of a zero of f, may destroy this invariant, and the last two parts
restore the invariant. It will be shown in Lemma 15-18 that

after zeroinl .15
after zeroin l. 16

after zeroin l. 18

(a<b<c VcKb <a) A f(a) * f(c) <0
(a=c*b V a < b < c V c < b < a)

Af(b)* f(c)<0
(a=c=:b V a <b <c V c <b < a)

A f(b) * f(c) S0 A abs(f(b))
< abs(f(c))

which is I. Thus, I is indeed an invariant at the whiletest.
Consider the question of termination of the whiledo. In

Lemma 15-18T it will be shown using co and bo as entry
values to the do part, that for some cL, o<a<l ,after zeroinl1.18
abs(c-b) < abs(co - bo) max (a, 1-a). Therefore, the whiledo
must finally terminate because the condition

f(b) * 0 A abs((c-b)/2) > 2 * eps * abs(b) + tol/2

must finally fail, because by the finiteness of machine pre-

cision abs(c- b) will go to zero if not terminated sooner.

When the whiledo terminates, the invariant I must still hold.
In particular f(b) * f(c) < 0, which combined with the nega-

tion of the whiletest gives

IT = f(b) * f(c) < 0 A(f(b)) = 0 V abs((c-b)/2)
< 2*eps * abs(b) + tol/2.

IT states that
1) a zero of f is bracketed by the interval (b, c);
2) either the zero is at b or the zero is at most c-b from b,

i.e., the zero is within 4 * eps * lb + tol of b.

Fig. 9. Function abstraction of PDL ZEROIN.

This is the definition of approx (f, b, c, tol).
Now, beginning with the interval (ax, bx), every estimate of

b created at zeroinl.15 remains within the interval (b,c) cur-

rent at the time.1 Since c and b are initialized as ax and bx at
zeroinl.8, the final estimate of b is given by approx (f, ax, bx,
tol). The assignment zeroin : b at zeroinl.21 provides the
value required by case 4.
CaseS-Part 1: We first show that in this case the condition

a = c will hold at zeroinl .1 5 if f(b) * f(c) > 0. By the hypoth-
esis of case 5, part 1, f((b+c)/2) is of the same sign as f(b) and
f(c). Therefore, the first case of zeroinl.16 will hold and the
assignment c := a will be executed implying a = c when we ar-

rive at zeroinl.15 from within the loop. Also, if we reach
zeroinl .15 from outside the loop (zeroinl .8-1 1) we also get
a = c.

We now apply Lemma 15L, which states that under the
above condition the (a, b, c) projection of zeroin 1.1 5 is

(f(b) * f(c) > 0 a, b, c

. b + (c-b)/2, if abs(c-b)/2> tol 1

b + tol 1, otherwise
true a, b, c :b b + a(c-b), c)

which is a refinement of zeroinl .1 5.
Note that zeroinI.18 may exchange b,c depending on

abs(f(b)) and abs(f(c)). Thus, the (b,c) projection of the
function computed by zeroini .15-18 in this case is

I'b + (c-b)12' 1b + (c-b)/21
b, c .=-. *b or b,,c :=b,

b
c:= to(l I

} rc b b + tol I

i.e., the new interval (b, c) is the half interval of the initial
(bo, co) which includes bo (for increments greater than tol 1),

IThis is because f(b) * f(c) 6 0 is part of I.

1 func zeroinl (real ax, bx, f, tol, integer ip)

2 real a, b, c, d, e, eps, fa, fb, fc, a

3 file *outfile
4 [compute eps, the relative machine precision]
5 eps :- {x|(d k >, 1 (x - 2 k)) A 1 + 2 x > 1 A I + eps -l1}
6 [initialize data]
7 (ip - 1 -i *outfile :- 'THE INTERVALS DETERMINED BY ZEROIN

ARE' I true AI)
8 a,b,c,d,e :- ax,bx,ax,bs-ax,bx-ax

9 [estimate b as a zero of f]
10 (ip - 1 - *outfile (b, c) true- I)

11 (abstftc)) < abs(fCb)) a, b, c :- b, c, b |true v I)

12 while

13 f(b) 0 0 A abs((c-b)/2) > 2 eps abs(b) + tol/2
14 do

15 a, b, c :- b, b + a (c-b), c where 0 < a < 1;*
16 (f(b) * f(c) > 0 - a, b, c : a, b, a Itrue - I)

17 (ip - 1 - *outfile(b, c) Itrue - I);
18 (abs(f(c)) < abs(f(b)) - a, b, c :- b, c, b |true - I)

19 od;

20 [set zeroinlfor return, zeroinil :- bl

21 zeroinl:- b

22 return

23 cnuf

* a is an indeterminate based on the current values of a, b, c, d, e, f,

fa, fb, fc, tol and eps
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and the new b is chosen to minimize the value abs(f(b)). The
result of iterating this dopart is unpredictable unless more is
known about the values of f. For example, if the values of f
in (ax, bx) are of one sign and monotone increasing or decreas-
ing, then the iteration will go to the endpoint ax or bx for
which abs(f) is minimum.- In general, the iteration will tend
toward a minimum for abs(f), but due to the bisecting be-
havior, no guarantees are possible.
Case 5-Part 2: This covers the happy accident of some in-

termediate pair b,c bracketing an odd number of zeros of f
by happening into values bk, Ck, such that f(bk) * f(ck) <0.
The tendency to move towards a minimum for abs(f(b)) may
increase the chances for such a happening, but provides no

guarantee. Once such a pair bk, ck is found, case 4 applies
and some zero will be approximated.
This completes the proof of the theorem except for the

proofs of the three lemmas used in the proofs which are given
in the Appendix.

IV. CONCLUSION
Answering the Questions
We can now answer the questions originally posed by Prof.

Vandergraft.
Question 1: If the equation is linear and the size of the in-

terval (a,b) is greater than or equal to tol 1, and there is no
roundoff problem, the program will do a linear interpolation
and find the root on one pass through the loop. If the size of
the interval (a,b) is smaller than tol 1, the program will per-

-form a bisection (based upon the test at PDL 43). If abs(fa) =
abs(fb) at PDL 43, then bisection will also be performed.
However, in this case bisection is an exact solution. The case

that the size of the interval is smaller than tol 1 is unlikely,
but possible.
Question 2: The theorem states that if f(a) and f(b) are

both of the same sign, we will get an answer that is some point
between a and b even though there is no root in the interval
(a,b) (case 5a of the Theorem). If there are an even number
of roots in the interval (a, b) then it is possible the program

will happen upon one of the roots and return that root as an

answer (case 5b of the Theorem). To check for this condition,
we should put a test right at entry to the program between
PDL 3 and PDL 4 of the form

if
f(ax) * f(bx) > 0

then
write ('F(AX) and F(BX) ARE BOTH OF THE SAME

SIGN, RETURN BX')
B:= BX

else
PDL 4-102

fi

Unfortunately, this does not indicate an error to the calling
program. One approach in handling an error indication would
be to add an extra parameter to the parameter list which
would be set to indicate an error. Another approach would
be to return a special value for the root, e.g., the largest nega-

tive number on the machine, as an error signal.
Question 3: It would be easy to remove the inverse qua-

dratic interpolation part of the code. We can do this simply
by removing several PDL statements, i.e., PDL 47-55. How-
ever, this would,not leave us with the best solution since much
of the code surrounding the inverse quadratic interpolation
could be better written. For example,

1) there would be no need to keep a, b, and c;
2) the test in PDL 70 could be removed if we checked in the

loop that f(a) * f(b) was always greater than zero, since bisec-
tion and linear interpolation would never take us out of the
interval.
Cleaning up the algorithm would probably require a substan-

tial transformation.
Question 4: Zeroin will find a triple root, assuming it is the

only root in the interval. It will not inform the user that it is a
triple root, but will return it as a root because once it has a
root surrounded by two points such that f(a) and f(b) are of
opposite signs, it will find that root (case 4 of the theorem).

It is also worth noting that ax and bx do not have to be the
left and right endpoints of the interval; they could be inter-
changed. Also, any value of IP other than 1 will be equivalent
to zero.

Program History
Since most programs seem by practicing programmers do not

have a history in the literature, we did not research the history
of ZEROIN until we had completed our experiment. The
plexity of the program is partially due to the fact that it was
modified over a period of time by different authors, each
modification making it more efficient, effective or robust.
The code is based on the secant method [7]. The idea of com-
bining it with bisection had been suggested by several people.
The first careful analysis seems to have been by Dekker [3].
Brent [1] added to Dekker's algorithm the inverse quadratic
interpolation option, and changed some of the convergence
tests. The Brent book contains an Algol 60 program. The
Fortran program of Fig. 1 is found in [51 and is a direct trans-
lation of Brent's algorithm, with the addition of a few lines
that compute the machine-rounding error. We understand that
ZEROIN is a significant and actively used program for calcu-
lating the roots of a function in a specific interval to a given
tolerance.

Understanding and Documenting
As it turns out, we were able to answer the questions posed

and discover the program function of ZEROIN. The tech-
niques used included function specification, the discovery of
loop invariants, case analysis, and the use of a bounded in-
determinate auxiliary variable. The discovery process used by
the authors was not as direct as it appears in the paper. There
were several side trips which included proving the correctness
of the inverse quadratic interpolation (an interesting result but
not relevant to the final abstraction or the questions posed).
There are some implications that the algorithm of the pro-

gram was robust in that it was overdesigned to be correct and
that the tests may be more limiting than necessary. This made
the program easier to prove correct, however.
In documenting this program, we learned all the details first

and, in that sense, worked bottom up. The method provided a
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systematic way to accumulate the detailed knowledge and
package it in small pieces which consisted of theorems and
lemmas. Learning of the details first was necessary for the
higher level understanding. This bottom-up process is typical
in maintaining programs; the form of recording that under-
standing is not.
sUnfortunately, we kept no record of time because the work

was done over a rather long period of time in bits and pieces.
The authors would guess that it would take several weeks for a
maintenance programmer versed in these concepts to develop
and document an understanding of this program, as was done
here. The implication is that maintenance without good docu-
mentation is a highly expensive proposition and clearly an
extremely creative process. Unfortunately, in many environ-
ments only novice programmers are put on the maintenance
task. Probably it would be better for programmers to work in
senior/junior pairs, devoting part-time to the problem.
The role of good maintenance should be to keep the require-

ments, specifications, design and code documents up to date
during development so they will be available and can be up-
dated during maintenance. This study supplies some evidence
that the payoff in not having to recreate the specification and
design structure during maintenance is considerable. Although
this approach of formalizing the understanding and documenta-
tion process of maintenance may appear to be overdone, it is
unfortunately a necessity for many environments. To main-
tain a program in an embedded system, it is necessary to
understand it to modify it. If there is no documentation on
the requirements of the current system (which has been modi-
fied over time), there is no choice but to take the approach
that was taken by the authors. There do exist systems which
no one really knows what they do. The only way to be able
to understand them and document them so that they can be
changed or updated is by going through processes similar to
processes performed by the authors.
To reiterate, the process consists of reducing the program

to be understood to small prime programs and then creating
in a step-by-step process the functions produced by those
primes, combining them at higher and higher levels until a
full specification is achieved. It is the price we pay for main-
tenance when only the code exists as the final documentation
of a system.
We believe this experience shows that the areas of program

specification and program correctness have advanced enough
to make them useful in understanding and documenting exist-
ing programs, and extremely important application today. In
our case, we are convinced that without the focus of searching
for a correctness proof relating the specification to the pro-
gram, we would have learned a great deal, but would have been
unable to record very much of what we learned for others.
Hamming pointed out that mathematicians and scientists

stand on each other's shoulders but programmers stand on
each other's toes. We believe that will continue to be true
until programmers deal with programs as mathematical ob-
jects, as unlikely as they may seem to be in real life, as we have
tried to do here.

APPENDIX
Lemma 15-18: The invariant I defined as

I -(a = c * b V a <b <c V c <b < a) A f(b) * f(c)
< 0 A abs(f(b)) < abs(f(c))

is preserved by the execution of the loop body ZEROIN 1.15-18.
Proof We use the following abbreviations:

P abs(f(b)) # 0 A abs((c-b)/2) > 2 * eps * abs(b) + tol/2
10 ((c <b) V (c > b)) A f(b) * f(c) <0
I1 =(a<b<cVc<b <a)Af(a) * f(c)<0
12 =(a= c b V a<b <c V c<b <a) A f(b) * f(c)S.0.

Note that P is the loop predicate. The validity of the lemma
is an immediate consequence of the following conditions:

Cl: IAP 10
C2: Io {ZEROIN1.15} Ii
C3: I {ZEROIN1. 16} 12
C4: 12 {ZEROIN1.18} I.

Condition C1 is straightforward. C2 can be seen by consider-
ing c < b and c > b as different input cases. Condition C3 fol-
lows from

I1 A f(b) * f(c) > 0{c : a} 12 (note that setting c = a
changes the sign of f(c))

I1 Af(b) * f(c)<04*I2.

Similarly, C4 can be inferred from

12 A abs(f(c)) < abs(f(b)) {a, b, c : b, c, b} I
12 A abs(f(c)) > abs(f(b)) * I.

Lemma 15-18T: Given bo, co on entry to zeroinl.15-18
then for some a,, 0<a<l

after zeroinl.15 abs(c-b) = (1-ax) abs(co-bo)
after zeroinl.16 abs(c-b) < abs(co-bo) max(a, l-a)
after zeroinl .18 abs(c-b) < abs(co-bo) max (a, 1- a).

Proof: After zeroinl .15

abs(c-b) = abs(co-bo-a(co-bo) = abs(co-bo)(l-at)
O<a<l

abs(b-a) = abs(bo+az(cO-bO) - bo) = abs oa(co-bo)
0<a< 1.

After zeroinl . 16

abs(c-b) S max(abs(co- bo) (1- o), abs(co- bo)a)
< abs(co-bo) max (at, 1-aY).

After zeroin l. 1 8

abs(c-b) < abs(co-bo) max (a,j-a) since b and c are
unchanged or exchanged.

It should be noted that in the above discussion, zeroin 1.17 was
ignored because its effect on the calculation of the root and
termination of the loop is irrelevant.
We have one last lemma to prove.
Lemma 15L: Given a = c and f(a) * f(b) > Othen zeroinl .15

calculates the new b using the bisection method, i.e.,
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b =b+ {(b-c)/2 if abs(c-b) > tol Il
I tol I otherwise J

Proof: From PDL 43, either abs(f(b)) < abs(f(a)) or bi-
section is done (PDL 45) with d = xm = (c-b)/2. Then PDL
82-91 implies

b b + d = b + (c-b)/2 if abs(c-b)/2 > tol Il

Lb + tol I otherwise J

Since by hypothesis a = c, PDL 49 implies inverse quadratic
interpolation is not done and linear interpolation (PDL 56) is
attempted. Thus

s = fb/fa and 0 < s < I since fb * fa > 0 and abs(fb)
< abs(fa)

p = (c-b) * s, using xm + (c-b)/2
q = 1- s, implying q >0 in PDL 59.

The proof will be done by cases on the relationship between b
and c.
c > b: c > b implies p >0 in PDL 58. Since p >O before

PDL 62, PDL 65 sets q to -q, so q < 0. Then the test at PDL
70 is true since

2 * p = a * s is positive,
3.0 * xm * q = 3 (c- b) * q is negative, and
abs(tol I * q) is positive

implying PDL 70 evaluates to true and bisection is performed
in PDL 72-73.
c < b: c < b implies p <O in PDL 58. Since p <0 before

PDL 62, PDL 65 leaves q alone and PDL 67 sets p >0 imply-
ing p = (b - c) * x. Then the test at PDL 70 is true since

2 * p = 2 * (b-c) * s is positive,
3.0 * xm * q = 23 (c- b) * q is negative, and
abs(tol I * q) is positive

implying PDL 70 evaluates to true and bisection is performed
in PDL 72-73.
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