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ABSTRACT 

With the explosion in the amount of available sequence data, computational methods 

have become indispensable for studying proteins. Domains are the fundamental 

structural, functional and evolutionary units that make up proteins. Studying protein 

domains is an important part of understanding protein function and evolution. Hidden 

Markov Models (HMM) are one of the most successful methods that have been applied 

for protein sequence and structure analysis. In this study, HMM based methods were 

applied to study the evolution of sensory domains in microbial signal transduction systems 

as well as functional characterization and identification of cellulases in metagenomics 

datasets. Use of HMM domain models enabled identification of the ambiguity in sequence 

and structure based definitions of the Cache domain family. Cache domains are 

extracellular sensory domains that are present in microbial signal transduction proteins 

and eukaryotic voltage gated calcium channels. The ambiguity in domain definitions was 

resolved and more accurate HMM models were built that detected more than 50,000 new 

members. It was discovered that Cache domains constitute the largest family of 

extracellular sensory domains in prokaryotes. Cache domains were also found to be 

remotely homologous to PAS domains at the level of sequence, a relationship previously 

suggested purely based on structural comparisons. We used HMM-HMM comparisons to 

study the diversity of extracellular sensory domains in prokaryotic signal transductions 

systems. This approach allowed annotation of more than 46,000 sequences and reduced 

the percentage of unknown domains from 64% to 15%. New relationships were also 

discovered between domain families that were otherwise thought to be unrelated. Finally, 
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HMM models were used to retrieve Family 48 glycoside hydrolases (GH48) from 

sequence databases. Analysis of these sequences, enabled the identification of 

distinguishing features of cellulases. These features were used to identify GH48 

cellulases from metagenomics datasets. In summary, HMM based methods enabled 

domain identification, remote homology detection and functional characterization of 

protein domains. 
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INTRODUCTION 

Proteins are complex biomolecules that perform a myriad of functions such as catalysis, 

transport of nutrients, recognition and transmission of signals, structural elements and 

molecular machines [1, 2]. Thus, an accurate understanding of protein function is crucial 

for understanding life at the molecular level [3]. With the advent of next generation 

sequencing technologies, there is an explosion in the amount of available information [4]. 

Presently more than 13,000 genomes are available from National Center for 

Biotechnology Information (NCBI) [5] and the RefSeq database [6] contains 52 million 

protein sequences. The number of unannotated proteins are two orders of magnitude 

larger compared to the annotated proteins and this difference is only getting larger [7]. It 

is not feasible to experimentally characterize each protein thus making computational 

methods indispensable for studying proteins [3].  

Protein Domains 

Proteins are composed of a linear chain of amino acids that are connected by covalent 

peptide bonds. Each protein has a unique sequence of amino acids that ultimately 

determines its three-dimensional structure and function [8]. Domains are the fundamental 

units of proteins that have been defined based on structure or sequence [9]. Based on 

the structural aspect, domains are defined as the part of the polypeptide chain that can 

fold independently into a functional compact stable 3D structure [9-11]. The two most 

important databases that classify domains on the basis of structure include Structural 

Classification of Proteins (SCOP) [12] and CATH [13].  Domains are also defined as 

evolutionarily conserved independent units that can be present in different molecular 
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contexts [9]. The main repositories for sequence based domain families include Protein 

family database (Pfam) [14], Simple Modular Architecture Research Tool (SMART) [15] 

and Conserved Domains Database (CDD) [16]. There is usually a general agreement and 

overlap between structure based and sequence based definitions [17, 18] but the domain 

boundaries are rarely in agreement [19].  

The length of domains vary from 40 to 700 amino acids with an average of 100 [20-22]. 

It has been estimated that two-thirds of all prokaryotic proteins and four-fifths of eukaryotic 

proteins have more than one domain [23]. Protein domains serve as building blocks and 

a relatively small number of domains can form different combinations giving rise to much 

larger number of unique proteins [24]. Thus, classifying proteins based on the domain 

composition is an efficient way to manage protein data [18]. Since multi-domain proteins 

may have domains from different families, an accurate prediction of function would require 

characterization of individual domains [9].  

Homology  

Detection of homologs is one of the most important aspects of protein sequence analysis 

with applications in protein function prediction, protein structure prediction and protein 

evolution [25]. Homologous proteins are those that have descended from a common 

ancestor and are expected to have similar amino acid sequences which in turn would 

confer similar structure and function [26, 27]. Homologs are further classified into different 

groups based on evolutionary events – (i) orthologs result from speciation events; (ii) 

paralogs result from divergence after gene duplication events and (iii) xenologs result 

from divergence after horizontal gene transfer events [28]. Orthologs usually perform the 
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same function while paralogs and xenologs have related but slightly different functions 

[28].  

Sequence similarity can be used to find homologous proteins. However, it should be 

noted that sequence similarity can either be due to homology or convergent evolution 

[29]. A direct relationship between sequence, 3D structure and function has been proven 

only in case of globular proteins [29]. In case of non-globular segments such as coiled 

coils, transmembrane helices and disordered regions, the similarity may be a result of 

physico-chemical constraints resulting in amino acid composition bias or repetitive 

patterns [29]. Similarly, protein structure similarity may not always be due to homology 

[30]. The proteins that share similar structures but have little or no sequence similarity are 

known as analogs [28].  

Methods for detecting homologs 

In spite of comprehensive efforts such as the Protein Structure Initiative [31], there is an 

ever increasing gap between the number of experimentally determined structures and the 

number of gene sequences. The number of available structures is 200 times smaller than 

the number of sequences and it is estimated that achieving a coverage of 55% will take 

another 15 years [31]. Even though structure-based methods may provide a more 

complete and well-defined domain definition, it will be severely limited to a small number 

of proteins [29]. Thus sequence-based methods continue to be an important part of 

studying proteins. 

The first generation of tools for finding homologs were based on sequence-sequence 

comparison where a query sequence was compared to a protein sequence database. 
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The earliest sequence alignment methods were based on dynamic programming that 

performed local alignment (Smith-Waterman) [32] or global alignment (Needleman-

Wunsch) [33]. Since proteins may undergo several evolutionary events such as domain 

duplication, insertion or permutation, resulting in different parts of the protein being 

homologous to domains from different proteins [34], local alignment methods are more 

preferred. The dynamic programming approach could not keep up with the increasing 

size of protein databases and as a result heuristic methods were developed. The most 

popular tool for local alignment is BLAST (Basic Local Alignment Search Tool) [35]. The 

BLAST tool breaks down the query into a set of words and compares these words to a 

set of words generated from the protein sequence database. Matching words are used to 

initiate a gap free extension. The extensions meeting a specified score are then used to 

seed gapped extensions. Finally gapped extensions that meet a specified score are 

further used to calculate insertions and deletions. The BLAST algorithm returns an expect 

value that can be used to determine the significance of the match. The expect value 

estimates the number of matches that may occur randomly with a given score. Pairwise 

alignment methods such as BLAST assume that all positions are equally important [36]. 

Although sequence-sequence comparison is one of the easiest ways to detect related 

proteins, it cannot be used to detect remote relationships. Only half of the proteins known 

to share evolutionary relationships based on sequence, structure and function with 

sequence identity in the range of 20%-30% can be detected by pairwise comparisons 

[37]. In order to detect more distantly related sequences, multiple sequence alignment 

based methods such as profiles [38] and hidden Markov models (HMM) [39, 40] were 
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developed. These methods are more sensitive since they take into account evolutionary 

history of the proteins by identifying conserved and variable positions in the protein 

sequence [30]. The profile based methods can be used in three different ways – query 

profile against sequence database, query sequence against profile database and query 

profile against profile database [41]. 

Position Specific Iterated BLAST (PSI-BLAST) [42, 43] is one of the most popular 

methods for detecting remote homologs that uses Position Specific Scoring Matrix 

(PSSM) called profiles that are created dynamically each time the search is initiated. The 

PSSM incorporates the frequency of amino acids at each position. It starts with a BLAST 

search in the first iteration and for each subsequent iteration, a profile is built using similar 

sequences found in the previous iteration. It is a very sensitive method and can detect 

homologs that can only be retrieved by structural comparison [44].  However, due to the 

iterative nature, addition of non-homologous sequence may not be easily detected which 

may sometimes result in good scores for even unrelated proteins [30].  

Hidden Markov Model (HMM) is a general statistical modeling technique  [45].  It can be 

used for linear problems such as time series and sequences and has been widely used 

in protein classification, motif detection, multiple sequence alignments and protein 

structural modeling [36, 40]. Profile HMMs are used for modeling sequence conservation. 

Profile HMMs consist of a linear left-to-right structure with three different states – match, 

delete and insert [36, 40, 45]. Each match state has an emission distribution that 

corresponds to the probabilities of observing an amino acids in a given position. Every 

match state is also accompanied by a delete state and an insert state. Since HMMs can 



6 
 

handle insertions and deletions, they are considered to be superior to matrix-based profile 

methods. The HMMer package is the most widely used tool for using HMM for sequence 

analysis [46].  

The profile based methods have also been extended to carry out profile-profile 

comparisons. These methods can identify 20-30% more homologs than PSI-BLAST [47-

49]. FFAS [25], COACH [50] and COMPASS [48, 51] are examples of profile-profile 

comparison tools. HHsearch [52, 53] is one of the most popular tools for HMM-HMM 

comparison [54]. 

Scope of dissertation 

This dissertation will describe three studies of protein domains where HMM-based 

methods played a vital role. Chapter I deals with overcoming the ambiguity between 

sequence based Cache domains and structure based PDC domains. The relationship 

between Cache and PAS domains at the level of sequence was also investigated. Using 

HMM along with other bioinformatics methods, new models were built, thousands of new 

members identified and remote relationship between PAS and Cache domains 

established. Chapter II focusses on understanding the diversity of extracellular sensory 

domains in all prokaryotic signal transduction systems. The most sensitive sequence 

comparison technique of HMM-HMM comparison was applied towards this problem. 

Almost 75 percent of all sensory domains were found to belong to either the Cache clan 

or the 4HB_MCP clan. In addition, the percentage of unannotated domains was reduced 

from 64% to 15% and several relationships between unrelated families were also 

discovered. In Chapter III, the goal was to understand the distinguishing characteristics 
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of cellulases so that they can be identified unambiguously from genomic datasets. The 

glycoside hydrolase family 48 (GH48) was chosen for this study. The features that 

distinguish cellulases from other enzymes in GH48 family were determined. These 

features were subsequently used to screen metagenomic datasets to identify GH48 

cellulases. The conclusion will summarize these studies and also discuss future 

prospects. 
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CHAPTER I: CACHE DOMAINS ARE DOMINANT EXTRACELLULAR 

SENSORS FOR SIGNAL TRANSDUCTION IN PROKARYOTES 
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Abstract  

Cellular receptors usually contain a designated sensory domain that recognizes the 

signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species 

ranging from bacteria to humans. Although PAS domains were described as intracellular 

sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions 

in several transmembrane receptors. Here we show that structurally defined extracellular 

PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct 

from the PAS superfamily. Our newly built computational models enabled identification of 

Cache domains in tens of thousands of signal transduction proteins including those from 

important pathogens and model organisms. Furthermore, we show that Cache domains 

comprise the dominant mode of extracellular sensing in prokaryotes.  
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Introduction 

Signal transduction is a universal feature of all living cells. It is initiated by specialized 

receptors that detect various extracellular and/or intracellular signals, such as nutrients, 

and transmit information to regulators of different cellular functions [1, 2]. Receptors are 

usually comprised of several domains and one or more of them are designated sensors 

that physically interact with the signal. There is a great diversity in the sensory domain 

repertoire, but a few of these domains appear to be dominant. The most abundant 

sensory module that is found in tens of thousands of signal transduction proteins 

throughout the Tree of Life is the Per/Arnt/Sim (PAS) domain [3, 4]. PAS domains are 

related to another large group of dedicated sensors – cGMP phosphodiesterase/adenylyl 

cyclase/FhlA (GAF) domains [5, 6]: both superfamilies belong to the profilin-like fold [6, 

7] and are found in similar types of signal transduction proteins in eukaryotes and 

prokaryotes. PAS and GAF are amongst the largest superfamilies of small molecule-

binding domains in general, and the largest among those solely dedicated to signal 

transduction [8]. Originally, PAS domains were discovered as exclusively intracellular 

sensors [9, 10]; however more recent studies have identified several extracytoplasmic 

PAS domains. Members of this group include quorum- [11], dicarboxylate- [12, 13] and 

osmo-sensing [14] receptor kinases, and chemotaxis receptors [15, 16] from bacteria as 

well as the Arabidopsis cytokinin receptor [17] among others. As commonly accepted in 

structure-based approaches, these domains were termed PAS (or PAS-like) based on 

expert’s visual inspection of three-dimensional structures. Surprisingly, none of these 

structurally defined domains matched any sequence-derived PAS domain models. 
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Furthermore, novel structural elements previously unseen in PAS domains have been 

noticed in some of these structures and a new name, PDC (acronym of three founding 

members, PhoQ, DcuS and CitA), has been suggested for these extracellular domains 

[18]. On the other hand, several independent observations suggest a link between 

extracellular PAS-like structures and yet another sensory domain superfamily, Cache 

[19]. Cache was originally described as a ligand-binding domain common to bacterial 

chemoreceptors [20] and animal voltage-dependent calcium channel subunits [21] that 

are targets for anti-neuropathic drugs [22]. First, the authors of the original Cache 

publication suggested a circular permutation of the Cache domain in extracellular regions 

of DcuS and CitA [19], proteins that later became the founding members of the proposed 

PDC domain [18]. Second, in their structural classification of PAS domains, Henry and 

Crosson [4] noted that a few sequences corresponding to structures included in their 

analysis were annotated as Cache in domain databases. Third, Zhang and Hendrickson 

reported that a conserved domain search detected the presence of a single Cache 

domain in their two related structures of the double PDC domain, namely 3LIA and 3LIB 

(PDB accession numbers), but not in the other three closely related structures of this 

domain, 3LIC, 3LID and 3LIF [23]. Nevertheless, these potential relationships with Cache 

have never been explored further and extracellular PAS-like domains are being referred 

to as PAS [4], PAS-like [14], PDC [18], PDC-like [24], and PDC/PAS [25] (Table 1.S1). 

Furthermore, there is no agreement between sequence- and structure-based 

classifications of these domains and associated structures provided by leading databases 

(Fig. 1.S1, Tables 1.S2 and 1.S3). The real problem beyond classification issues and 



15 
 

semantics is that other than a handful of examples with solved 3D structure, receptors 

containing these domains cannot be identified in current genomic datasets. This, in turn, 

is a barrier for practical applications, such as a proposed use of bacterial receptors as 

drug targets [26].   

Here we show that extracellular PAS (PDC)-like domains belong not to PAS, but to the 

Cache superfamily. By building new Cache domain models utilizing structural information, 

we implicated more than 50,000 signaling proteins from all three domains of life as new 

members of this superfamily thus more than doubling the space of its current 

computational coverage. We also provide evidence that while being a distinct superfamily, 

Cache is homologous to the PAS superfamily and propose that the Cache domain 

emerged in bacteria from a simpler intracellular PAS ancestor as a benefit of extracellular 

sensing. Finally, we show that Cache domains are the dominant mode of extracellular 

sensing in prokaryotes. 

Results 

“Extracellular PAS” is Cache.  To illustrate the level of ambiguity in classification of 

extracellular PAS/PDC-like domains (Table 1.S2) we compared it to that of diverse 

intracellular PAS domains from bacteria, archaea and eucarya (Table 1.S3). The results 

show a nearly perfect classification coverage and agreement between sequence- and 

structure-based definitions for the latter and a state of disarray for the former (Fig. 1.S1).  

We subjected protein sequences of all twenty-one single and double extracellular PAS-

like domains[4] with known 3D structure to similarity searches against the Pfam database 

(v.27.0) using sequence-to-profile search tool, HMMscan [27] and a more sensitive, 
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profile-to-profile search tool HHpred [28]. None of the sequences had any PAS domain 

models as the best hit in any type of search. For fourteen of them (including both single 

and double domains), best hits were to domain models from the Cache superfamily, 

whereas for the remaining seven structures, best hits are not assigned to any domain 

superfamily (Table 1.S4).  

Mapping regions matched to Cache domains onto corresponding structures revealed the 

nature of ambiguity between sequence- and structure-based domain definitions. Single 

domain structures showed better agreement with sequence-based domain models (Fig. 

1.S2), although some of them still had substantial discrepancies. For example, the full-

length Cache_2 model does not include the last three β-strands of the PAS-like domain 

(Fig. 1.1A). Dual domain structures showed major disagreements with sequence-based 

domain models. The Cache_1 model captures the last three strands from the membrane 

distal PAS-like domain, the first two strands of the membrane proximal domain, and the 

connecting elements between the two domains (Fig. 1.1B). Some of the most conserved 

structural elements, such as the long N-terminal helix captured in the Cache_2 model and 

connecting elements between two globular domains captured in the Cache_1 model, are 

never seen in proteins that belong to the PAS domain superfamily, which led to a 

suggestion that these domains are different from PAS [23]. We also confirmed that the 

long N-terminal helix in some of the double domain structures (Fig. 1.1B) matches a Pfam 

model MCP_N (Table 1.S4).   

New Cache Domain Models. We used newly uncovered relationships between structure 

and sequence characteristics to construct new Cache domain models. Three key facts 
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about Cache domains were taken into account. First, structural studies revealed that both 

single and double Cache domains occupy the entire extracellular region between two 

transmembrane helices. Second, Cache domains have been identified exclusively in 

proteins that contain output signaling domains. Third, the vast majority of Cache domains 

are found in prokaryotes. Consequently, in order to identify potential Cache domains, we 

retrieved a non-redundant set of prokaryotic sequences that contained at least one output 

signaling domain and a predicted extracellular region flanked by two transmembrane 

helices (see Methods for details).  The final set of predicted extracellular regions (non-

redundant at 90% identity) was used in the hidden Markov model (HMM) construction. 

Models were built in three stages using sequence-to-sequence and HMM-to-HMM 

comparisons (see Methods for details). We constructed eight new Cache models to 

replace the current three models (Cache_1, Cache_2, and Cache_3) from Pfam 27.0 

(Table 1.S5). The fourth current Pfam model from the Cache clan, YkuI_C, was found to 

adequately capture the domain structure and to perform well (Fig. 1.S2B). Two other 

members of the clan, DUF4153 and DUF4173 were found to be unrelated to Cache based 

on both sequence similarity and secondary structure prediction (Appendix 1.1, 

spreadsheet 3). Consequently, these models will be removed from the clan.  

The new models revealed complex relationships between single and double Cache 

domains. HMM-HMM comparison showed that the membrane distal subdomain of 

dCache_1 was more similar to sCache_3, whereas the membrane proximal subdomain 

was more similar to sCache_2 (Fig. 1.S3). On the other hand, dCache_2 and dCache_3 

domains appear to be a result of sCache_2 and sCache_3 duplication, respectively. 
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Finally, the Cache_3-Cache_2 domain likely originated as a fusion of sCache_3 and 

sCache_2 domains.  

The new models demonstrated dramatically improved sensitivity by identifying more than 

50,000 Cache domains in the NCBI non-redundant database that escaped detection by 

Pfam 27.0 models (Table 1.S6). A small number of newly identified Cache domains (~4%) 

overlapped with other non-Cache Pfam domains, such as MCP_N. TarH, VGCC_alpha2 

and few others (Appendix 1.2, spreadsheet 1). As already discussed earlier, we consider 

MCP_N as a part of the Cache domain. Overlap with TarH is caused by inclusion of 

several Cache-domain containing sequences in the seed alignment for a model depicting 

an all alpha-helical TarH domain (Appendix 1.2, spreadsheet 2). VGCC_alpha2 is usually 

present C-terminal to the Cache domain in Calcium channel subunits and in fact is a C-

terminal part of the Cache domain missing from a Pfam 27.0 seed alignment. Both Mcp_N 

and TarH models will be retired from Pfam. After correcting for these artifacts, the overlap 

of newly defined Cache domains with unrelated Pfam domains is less than 0.3%.  

New models also showed a significantly improved average coverage (Table 1.S7). The 

average length of single and double Cache domains is 140 and 271 amino acid residues, 

respectively. Occasionally, single Cache domain models match to extracellular regions 

that are significantly larger than the average length of single Cache domains (Fig. 1.S4). 

Similarly, double Cache domain models occasionally match to extracellular regions with 

a size of a single Cache domain. This is likely due to the complex modular nature of these 

domains (Fig. 1.S3).  We used sequences with known 3D structures as controls to 

visualize the increased specificity and coverage of the newly built Cache models (Table 
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1.S8).  All new models will be available in the Pfam 29.0 release (January 2016) upon 

further refinement of seed alignments according to Pfam standard protocols. 

New Members of the Cache Superfamily and Its Relationship to PAS and GAF. 

When carrying out sensitive profile-to-profile searches initiated with the sequences of 

extracellular “PAS-like” structures, we noticed statistically significant (although never the 

best) hits with profiles corresponding to several Pfam domains other than members of the 

current Cache clan. We explored this indication of potential remote homology further by 

consistently analyzing all statistically significant HHpred matches for all nineteen 

structures. The results show that statistically significant hits belong either to the PAS and 

GAF superfamilies or to small families that have not been assigned to any domain 

superfamily, for example LuxQ-periplasm, CHASE, Diacid_rec, etc (Appendix 1.1, 

spreadsheet 1). Nearly the same repertoire of small families and members of PAS and 

GAF superfamilies were statistically significant hits in HHpred searches initiated with 

newly constructed Cache models (Appendix 1.1, spreadsheet 2). Finally, we have 

performed a reverse search, where queries were models from small families as well as 

PAS and GAF superfamilies identified as statistically significant hits in the previous two 

types of searches (Appendix 1.1, spreadsheet 3). These searches have identified nine 

additional current Pfam families that lacked any superfamily assignments. We now assign 

these families to the Cache superfamily (Table 1.S5, Appendix 1.1, spreadsheet 4). 

Relationships between all members of the three superfamilies at profile and sequence 

levels are shown in Fig. 1.2. While being closely related to PAS and GAF, members of 
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the Cache superfamily are more related to each other, thus fully justifying a separate 

superfamily designation.  

Cache are Ubiquitous Extracellular Sensors. By performing the HMMscan search 

against the Pfam 27.0 database using eighteen domain models from the newly defined 

Cache superfamily, we have identified 31,570 protein sequences containing these 

domains. Thus, the size of the Cache superfamily is comparable to that of PAS (88,093 

sequences) and GAF (47,618 sequences) superfamilies. Phyletic distribution of Cache 

domains is also similar to that of PAS and GAF (Fig. 1.S5, Appendix 1.1, spreadsheet 2). 

We have used the TMHMM2 tool to identify transmembrane regions in all 31,570 

sequences with detectable Cache domains and determined that members of all Cache 

families are predicted to be principally extracellular, except for two small families, 

Diacid_rec and YkuI_C that are principally intracellular (Table 1.S9). Altogether, 78% of 

all Cache domains were confidently predicted to be extracellular. For comparison, 74% 

of all PAS domains were confidently predicted to be intracellular.  Analysis of the domain 

architecture of all Cache domain-containing protein sequences revealed known output 

domains of signal transduction systems, except for the SMP_2 family members (Table 

1.S5). The SMP_2 domain is the closest relative of the DUF2222 domain (mutual best 

hits in HHpred searches) and both are found exclusively in proteobacteria. While 

DUF2222 is the sensory module of the BarA/GacS/VarA-type histidine kinases that are 

global regulators of pathogenicity in gamma-proteobacteria [29], SMP_2 appears to be a 

sensory module that was cut off from the rest of the protein. The likelihood of this scenario 

is further supported by the nearly identical phyletic distribution of both domains and the 
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fact that SMP_2 proteins are also implicated in virulence in gamma-proteobacteria [30]. 

Apart from this neofunctionalization, all other Cache domains appear to serve as 

extracellular sensory modules for all major modes and brands of signal transduction 

proteins in prokaryotes, including sensor histidine kinases, cyclic di-GMP cyclases and 

diesterases, chemotaxis transducers, adenylate and guanylate cyclases, etc. 

Furthermore, Cache domains are dominant extracellular sensory domains in prokaryotes 

(Fig. 1.3, Table 1.S10), significantly outnumbering the best studied such domain, a four-

helix bundle [31, 32]. 

Newly Identified Cache Domains. Among tens of thousands of newly identified Cache 

domains, many are present in signal transduction proteins from important human 

pathogens and model systems (Fig. 1.4). For example, we have confidently detected the 

Cache domain in the extracellular region of the WalK sensor histidine kinase from low 

G+C Gram positive bacteria, which plays a critical role in regulating cell division and wall 

stress responses [33]. WalK is a novel target for antibacterial agents against multidrug-

resistant bacteria, including methicillin-resistant Staphylococcus aureus [26, 34]. We 

newly identified the double Cache domain in the YedQ diguanylate cyclase, which 

regulates cellulose biosynthesis and biofilm formation in Escherichia coli and Salmonella 

enterica [35, 36]. This domain was also identified in the Rv2435c adenylate cyclase in 

Mycobacterium tuberculosis, which is a part of the cAMP network involved in virulence 

[37]. Our new dCache_1 model has identified the double Cache domain in the 

extracellular region of the osmosensing histidine kinase Sln1 from Saccharomyces 
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cerevisiae, which controls activity of the HOG1 pathway [38]. The region, which is now 

designated as the Cache domain, was shown to be essential for its sensory function [39]. 

Evolutionary Scenario for Cache Origins. Several lines of evidence suggest that 

Cache domain(s) evolved from simpler intracellular PAS/GAF-like ancestor(s). We have 

shown that Cache is homologous to PAS and GAF (Fig. 1.2A). PAS and GAF (that are 

homologous to each other) or their common ancestor originated in the last universal 

common ancestor [5, 8, 40]. Our results show that Cache likely originated in the bacterial 

lineage after its separation from the archaeal/eukaryotic lineage. Every incidence of 

Cache in archaea and eukaryotes can be attributed to horizontal gene transfer. For 

example, Cache domains in Metazoa are limited to a single type of protein – a voltage-

dependent calcium channel alpha-2-delta subunit [21] (Appendix 1.3, spreadsheet 5), 

whereas vertically inherited PAS and GAF domains are found in diverse signal 

transduction proteins [3, 41]. In plants and fungi, Cache is limited to histidine kinases that 

are known to be horizontally transferred from bacteria [42, 43] (Appendix 1.3, 

spreadsheets 3 and 4). In Naegleria, a representative of Excavates, the Cache domain is 

found in a bacterial-type adenylate cyclase (Fig. 1.4). Finally, the Cache-to-PAS ratio in 

archaea and eukaryotes is nearly five times smaller than that in bacteria (Appendix 1.3, 

spreadsheet 2). Taken together, these observations suggest that PAS and GAF predate 

Cache, which is consistent with the previous suggestion that intracellular sensing 

predates extracellular sensing [44].  
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Discussion  

Our findings show that experimentally solved three-dimensional structures of so-called 

“extracellular PAS domains” belong not to PAS, but to Cache superfamily. Our new 

sequence profile models for the Cache superfamily dramatically improve computational 

coverage and enable identification of Cache domains in tens of thousands of signal 

transduction proteins including those from human pathogens and model systems. 

Consequently, we demonstrated that Cache is the most abundant extracellular sensory 

domain in prokaryotes, which originated from a simpler intracellular PAS/GAF ancestor 

as a benefit of extracellular sensing. The key structural innovation in Cache domains, 

when compared to PAS and GAF, is the long N-terminal alpha helix (Fig. 1.1), which is a 

direct extension of the transmembrane helix. It appears that this simple innovation was 

sufficient to convert an intracellular sensor to an extracellular sensor. However, this also 

placed significant physical constraints on the ability of the sensor to transmit information. 

Intracellular PAS and GAF domains have multiple options for interacting with downstream 

signaling domains, including direct domain-to-domain binding. In a striking contrast, the 

only option for an extracellular Cache to transmit signals is via its C-terminal 

transmembrane helix, similarly to the sensory four-helix bundle exemplified by the E. coli 

aspartate chemoreceptor [45]. It is highly likely that these physical constraints dictated 

some re-wiring of the PAS/GAF-like core in Cache domains resulting in evolutionary 

conservation of amino acid positions that are not under such constraints in cytoplasmic 

PAS and GAF domains. Finally, our results demonstrate that solving ambiguous 

sequence- and structure-based domain definitions can dramatically improve 
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computational models and significantly accelerate computational coverage of the protein 

sequence space [46].   

Materials and Methods 

Data sources and Bioinformatics software. The central data source for all analyses 

was the local MySQL Pfam 27 [47] database based on Uniprot 2012_06 release. The 

database files for PfamScan were downloaded in December 2014. The Non-redundant 

database fasta file was retrieved from NCBI on April 2015. Uniref90 (April 2015) was used 

for running Psipred [48, 49]. The following software packages were used in this study: 

BLAST 2.2.28+[50, 51], HHsuite-2.0.16 [28, 52, 53], CD-HIT 4.5.7[54], Cytoscape 2.8.3 

[55], BLAST2SimilarityGraph plugin for Cytoscape [56], Graph-0.96_01 (UnionFind) Perl 

library, MAFFT v7.154b [57], Jalview v2.7 [58], TMHMM 2.0c [59], Phobius v1.01[60], 

DAS-TMfilter (December 2012) [61], HMMER 3.0 (March 2010) [27] , PfamScan (October 

2013) [47], MEGA 5.05 [62], Circos v0.64 [63] and Psipred v3.5. The multiple sequence 

alignments were built with MAFFT-LINSI using legacygappenalty option. Maximum 

likelihood trees were constructed to aid in the model building using MEGA with pairwise 

deletion and the JTT substitution. Domain predictions with PfamScan were carried out at 

sequence evalue and domain evalue thresholds of 1E-3.  

Hidden Markov model construction. A flow chart showing the model building approach 

is shown in Fig. 1.S5. More than 1 million sequences containing at least one signal 

transduction output domain as defined in MiST2 database [64] were retrieved from a local 

copy of the Pfam database (Fig. 1.S5). Eukaryotic sequences were discarded, because 

domain boundaries for Cache domains in eukaryotes are unclear. Predicted 
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extracytoplasmic regions that were longer than 50 amino acids were scanned for Pfam 

domains and redundancy (at 90% identity) was removed resulting in 36,320 sequences. 

In the next step, a similarity network was built using the BLAST2similarityGraph 

Cytoscape plugin. Clusters of similar sequences were obtained using the E-value 

threshold of 1e-10 and query coverage of 95% using Cytoscape and the Perl Graph 

library. 38 clusters comprising of at least ten members and containing at least one Cache 

domain (7577 sequences in total) were further chosen for building models. 

Representative sequences were obtained using a custom script (Fig. 1.S6) for each 

cluster and the sequences in each cluster were aligned using MAFFT-LINSi with the 

legacygappenalty option [65]. In case of the largest cluster, which was primarily 

comprised of sequences with the Cache_1 domain, the alignment was improved by 

dividing the cluster into smaller groups based on a maximum-likelihood tree generated 

using MEGA [66]. Individual groups were realigned using MAFFT-LINSi.  

HMM models for each cluster were built using hhmake and all-against-all HMM-HMM 

comparison was carried out using HHsearch [53]. Based on the probability scores and 

coverage, the clusters were then merged using mafft-profile.  Representatives of each 

cluster were chosen to construct HMMs using the hmmbuild utility in the HMMER3 

package [27]. The sensitivity of the models was improved by incorporating remote 

homologs that were identified by a more sensitive HMM-HMM comparison using HHblits 

[52]. 

New Members of the Cache Superfamily and Its Relationship to PAS and GAF. The 

sequences of extracellular PAS-like domains with available PDB structures were used as 
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queries for HHpred search using default parameters against Pfam 27 database. Only 

those hits were considered which had a probability score greater than 95 for at least one 

of the PDB queries.  

The alignments used for creating the new Cache models were also used as queries for 

HHPred search against with Pfam 27 database with 0 iterations of hhblits. All hits with a 

probability score greater than 70 were considered to be potentially homologous. To 

further explore the relationship between the families, we retrieved models for these hits 

along with new Cache models and the PAS and GAF clan. All-against-all HMM-HMM 

comparison was carried out using hhsearch. A similarity network was created with the 

domain families as nodes and hits representing reciprocal hhsearch hits with (i) evalue 

less than 1E-3 (ii) evalue less than 1E-1 and (iii) probability score >= 90. Families were 

assigned to the Cache clan when the evalue from HHPred was less than 1E-3 (LuxQ-

periplasm, CHASE4, Diacid_rec and DUF2222) or when Cache was the closest 

superfamily (CHASE, Stimulus_sens_1 and 2CSK_N). SMP_2 and PhoQ_Sensor were 

included in Cache clan as they are mutual best hits with DUF2222 and 2CSK_N 

respectively. 

We also performed sequence-sequence comparisons using all-against-all BLAST. The 

sequences for PAS clan, GAF clan and Cache clan comprising of new families were 

retrieved. For Cache clan, sequences that have overlapping domain prediction with other 

sensory Pfam domains were disregarded. 100% redundant sequences were removed 

using CD-HIT. The similarities between different domains were demonstrated using 

Circos tool. 
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Phyletic Distribution of Cache, PAS and GAF families 

In order to show the phyletic distribution, only those organisms having more than 1000 

proteins in Pfam 27.0 database were selected to exclude organisms with relatively 

incomplete genomes. The Sunburst was created by clustering the main level taxonomic 

ranks retrieved from NCBI Taxonomy database with the lowest rank used that of species. 

The domains were considered to be present if any strain of a given organism was found 

to contain a given domain. The Sunburst was generated using a custom script. PAS and 

GAF clans includes all the families as defined in Pfam 27.0. However, the Cache domains 

indicated comprise of those identified by the new models, YkuI_C as well as the other 

families (2CSK_N, CHASE, CHASE4, Diacid_rec, DUF2222, LuxQ-periplasm, 

PhoQ_Sensor, SMP_2 and Stimulus_sens_1) identified to be a part of the Cache clan in 

this study.  

Cache Dendrogram 

The secondary structure prediction by Psipred was mapped on to the alignment for each 

model. Only the PAS-like regions comprising of five beta strands were extracted. HMM 

profiles were built for each alignment using hhmake tool in the HHsuite. All-against-all 

HMM-HMM comparison was performed using hhsearch. A distance matrix was generated 

using probability scores from hhsearch. The dendrogram showing similarity between 

single Cache domains and the membrane-distal and membrane proximal domains of 

double Cache was generated using the DendroUPGMA web server.  
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Fig. 1.1. Comparison of sequence- and structure-based definitions for extracellular 

PAS-like domains.  

(A) Vibrio parahaemolyticus chemoreceptor (PDB: 2QHK); (B) Vibrio cholerae 

chemoreceptor (PDB: 3C8C). Domains are visualized on sequences with corresponding 

amino acid positions (top) and structures (bottom). Cache (cyan) domains are defined by 

Pfam; PAS domains (green and magenta) were defined by visual inspection of 

corresponding structures. 
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Fig. 1.2. Relationship between Cache (red), PAS (blue) and GAF (green) 

superfamilies.  

(A) HMM-to-HMM comparisons. The nodes represent domain families. Links represent 

reciprocal hits in hhsearch. Hits with an evalue <1E-3 are shown as thick lines, those with 

evalue <1E-1 are shown as thin lines and dotted lines are used to represent hits with > 

90 probability score. Filled circles represent hits from HHPred search using new models. 

Empty circles are other members of the clans that were later included (B) Sequence-to-

sequence comparisons. The outer circle represents domain families. Links between 

individual sequences represent reciprocal BLAST hits with an evalue threshold of 1E-8. 
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Fig. 1.2 continued 
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Fig. 1.3. Relative abundance of known extracellular sensory domains in 

prokaryotes.  

Domain counts were obtained by running Pfamscan against a dataset of non-redundant 

prokaryotic extracellular sequences. Relative abundance is shown considering only 

known domains. 
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Fig. 1.4. Examples of newly identified and better defined Cache domains in diverse 

signal transduction proteins from bacteria, archaea and eukaryotes.  

Domain architectures for representative sequences from model organisms are shown 

along with their UniProt accession numbers. Newly defined Cache domains are shown in 

red. Cache boundaries defined by the previous Pfam models are shown in pink (Cache) 

and green (MCP_N). HAMP domains are shown as grey circles, PAS domains as cyan 

circles, and HisKA domains as white circles. Other Pfam domains are abbreviated as 

follows: MCP, MCPsignal; GGDEF, GGDEF; GC, guanylate cyclase; HK, the histidine 

kinase HATPase_c domian; RR, response regulator; VWA, a combination of VWA_N and 

VWA domains; VGCC, VGCC_alpha2. 
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Fig. 1.4 continued 
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Fig. 1.S1. Superfamily assignment of PAS domains in sequence and structure 

classification databases.   

(A) Extracellular PAS-like domains; (B) intracellular PAS domains. Assignments of PDB 

structures by Pfam (red), SCOP (green) and CATH (blue) are shown as Venn diagrams 

to scale. 
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Fig. 1.S2. Comparison of sequence- and structure-based definitions for 

extracellular and intracellular single PAS-like domains.  

(A). Periplasmic domain of CitA from Klebsiella pneumoniae (PDB-1P0Z). Cache_3 

domain predicted by Pfam is shown in cyan, (B) YkuI comprising of EAL and YkuI_C 

domains from Bacillus subtilis (PDB-2W27). The EAL domain is shown in gray and 

YkuI_C domain predicted by Pfam is shown in cyan. 
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Fig. 1.S3. Relationship between single Cache domains and the membrane distal 

and membrane proximal domains of double Cache.  

The PAS-like regions were extracted for each model based on secondary structure 

prediction and all-against-all HHsearch comparison was carried out. The dendrogram was 

generated by using the probability scores as similarity measure. 



43 
 

 

Fig. 1.S4. Coverage of extracellular region by new Cache models.  

(A) dCache_1, (B) dCache_2, (C) dCache_3, (D) Cache_3-Cache_2, (E) sCache_2, (F) 

sCache_3_1, (G) sCache_3_2, (H) sCache_3_3. 
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Fig. 1.S5. Flow chart of the HMM construction process. 
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Fig. 1.S6. Algorithm for selecting representatives from a given set of sequences 

based on all-against-all BLAST results  
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Fig. 1.S7. Phyletic distribution of PAS (blue), GAF (green) and Cache (red) domains.  

Flags at the outer three layers represent the domain presence in a corresponding 

genome. The tree was built using taxonomic ranks retrieved from NCBI. 
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Table 1.S1. Timeline of PAS, Cache and PDC domains  

Year Highlights References 

1997 PAS domain defined [9, 67] 

2000 Cache domain defined based on sequence similarity 

CitA circular permutation of Cache 

Cache N-terminal similar to PAS core 

[68] 

2003 Structure of CitA solved 

Suggested to be PAS based on structural similarity to PYP 

No PAS detected by BLAST, 3D-PSSM, LOOPP, manual searching of S1/S2 boxes 

First structure for extracytoplasmic PAS 

[12] 

2003 Structure of DcuS (belongs to CitA family) solved 

Suggested to possess a novel domain 

[69] 

2008 Structure of PhoQ solved 

New family PDC (PhoQ-DcuS-CitA)  

PDC family subset of PAS – difference in N-terminal helix and the region between 2nd and 

3rd strands 

PDC and PAS belong to separate superfamilies 

[18] 

2008 PDC family comprised of single PDC (DcuS) and double PDC (Vibrio cholerae DctB) [13] 

2008 Sinorhizobium meliloti DctB comprised of tandem PAS domains and one N-terminal helical 

region 

[70] 

2010 Structures of dPDC proteins solved 

PhoQ, CitA, DcuS, AbsF, PhoR – sPDC 

LuxQ, DctB, KinD - dPDC 

[23] 

2013 CitA and DcuS part of Cache_3, a new family in the Cache clan [71] 
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Table 1.S2. Family (domain) and superfamily assignments for extracellular PAS-

like domains.  

PDB Organism Gene Domain 
name 

Refs SCOP 
superfamily 

CATH 
superfamily 

Pfam 
clan 

1P0Z Klebsiella pneumoniae CitA PAS 
Cache 
PDC 

[12] 
[19] 
[18] 

Sensory 
domain-like 

3.30.450.20 Cache 

3BY8 Escherichia coli DcuS PAS-like 
Cache 
PDC 

[72]  
[19] 
[18] 

Sensory 
domain-like 

3.30.450.20 Cache 

3C8C Vibrio cholerae VCA0923 PAS 
PDC 

[4] 
[23] 

N/A 3.30.450.20 Cache 

1YAX Salmonella enterica PhoQ PAS [73] N/A N/A N/A 

3BQ8 Escherichia coli PhoQ PDC 
PAS 

[18] 
[4] 

N/A N/A N/A 

2HJE Vibrio harveyi LuxQ PAS 
PDC 

[11] 
[23] 

Sensory 
domain-like 

N/A N/A 

3C38 Vibrio cholerae LuxQ PAS 
PDC 

[4] 
[23] 

Sensory 
domain-like 

N/A N/A 

3E4P Sinorhizobium meliloti DctB PAS 
PDC 

[70] 
[23] 

N/A N/A N/A 

3BY9 Vibrio cholerae DctB PDC [13] N/A N/A Cache 

3B42 Geobacter sulfurreducens GSU0935 PAS [15] N/A N/A N/A 

2W27 Bacillus subtilis YkuI PAS-like 
PAS 

[74] 
[4] 

Sensory 
domain-like 

3.30.450.20 Cache 

2VA0 Cellvibrio japonicus AbsF PAS 
PDC 

[75] 
[23] 

N/A N/A N/A 

3LIA Methanosarcina mazei MM2955 PDC 
PAS 

[23] 
[4] 

N/A N/A Cache 

3LIB Methanosarcina mazei MM2965 PDC 
PAS 

[23] 
[4] 

N/A N/A Cache 

3LIC Shewanella oneidensis SO0859 PDC 
PAS 

[23] 
[4] 

N/A N/A N/A 

3LID Vibrio parahaemolyticus VP0354 PDC 
PAS 

[23] 
[4] 

Sensory 
domain-like 

3.30.450.20 N/A 

3LIF Rhodopseudomonas 
palustris 

RPA3616 PDC 
PAS 

[23] 
[4] 

N/A N/A N/A 

3CWF Bacillus subtilis PhoR PAS-like 
PDC 
PAS 

[76] 
[23] 
[4] 

N/A 3.30.450.20 N/A 

3T4J Arabidopsis thaliana AHK4 PAS-like 
CHASE 

[17] 
[77] 

N/A N/A N/A 

4JGO Bacillus subtilis KinD PAS-like 
PDC 
PAS 

[14] 
[23] 
[4] 

N/A N/A N/A 

2QHK Vibrio parahaemolyticus VP0183 PAS [4] N/A 3.30.450.20 Cache 

 
N/A – not assigned; Pfam clan assignments are based on default E-values, Pfam 27.0 release. 
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Table 1.S3. Family (domain) and superfamily assignments for intracellular PAS 

domains. 

PDB Organism Gene Domain 
name 

Refs SCOP 
superfamily 

CATH 
superfamily 

Pfam 
clan 

1NWZ Ectothiorhodospira 
halophila 

PYP PAS [78] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

3F1P Homo sapiens Hif2a PAS [79] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

1S67 Escherichia coli DosP PAS [80] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

1D06 Rhizobium meliloti FixL PAS [81] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

1MZU Rhodospirillum 
centenum 

Pph PAS [82] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

1N9L Chlamydomonas 
reinhardtii 

Phot LOV [83] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

1OJ5 Mus musculus NCOA1 PAS [84] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

3KX0 Mycobacterium 
tuberculosis 

Rv1364c PAS [85] N/A 3.30.450.20 PAS 

1LL8 Homo sapiens KIAA0135 PAS [86] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

3GDI Mus musculus Per2 PAS [87] N/A 3.30.450.20 PAS 

1BYW Homo sapiens HERG PAS [88] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

2VEA Synechocystis sp. 
PCC6803 

Cph1 PAS [89] PYP-like sensor 
(PAS domain) 

N/A PAS 

1JNU Adiantum capilus-
veneris 

PHY3 LOV [90] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

3C2W Pseudomonas 
aeruginosa 

BhpP PAS [91] PYP-like sensor 
(PAS domain) 

N/A PAS 

3RH8 Neurospora crassa vvd LOV [92] N/A N/A PAS 

4OUR Arabidopsis thaliana PHYB PAS [93] N/A N/A PAS 

3A0S Thermotoga 
maritima 

TM_1359 PAS [94] N/A 3.30.450.20 PAS 

3BWL Haloarcula 
marismortui 

HtlD N/A  N/A 3.30.450.20 PAS 

1X0O Homo sapiens BHLHE2 PAS [95] N/A 3.30.450.20 PAS 

2YKH Mycobacterium 
tuberculosis 

Rv3220c PAS [96] N/A N/A N/A 

4HIA Rhodobacter 
sphaeroides 

 LOV [97] N/A N/A PAS 

3EWK Methylococcus 
capsulatus 

MmoS PAS [98] PYP-like sensor 
(PAS domain) 

3.30.450.20 PAS 

 
N/A – not assigned; LOV, a subfamily of the PAS domain 
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Table 1.S4. Best Pfam database matches for extracellular PAS-like domains in 

sequence-profile and profile-profile searches. 

PDB Organism HMM scan HHpred 

  Best hit E-value Clan Best hit Probability Clan 

1P0Z Klebsiella 
pneumoniae 

Cache_3 4.9e-34 Cache Cache_3 99.7 Cache 

3BY8 Escherichia coli Cache_3 6.2e-38 Cache Cache_3 99.9 Cache 

3C8C Vibrio cholerae Mcp_N 
Cache_1 

3.9e-32 
3.6e-21 

Cache Mcp_N 
Cache_1 

98 
99.8 

Cache 

1YAX Salmonella enterica PhoQ_ 
sensor 

1.6e-69 N/A PhoQ_ 
sensor 

100 N/A 

3BQ8 Escherichia coli PhoQ_ 
sensor 

2.9e-69 N/A PhoQ_ 
sensor 

100 N/A 

2HJE Vibrio harveyi LuxQ-
periplasm 

6.5e-
109 

N/A LuxQ-
periplasm 

100 N/A 

3C38 Vibrio cholerae LuxQ-
periplasm 

6.6e-
106 

N/A LuxQ-
periplasm 

100 N/A 

3E4P Sinorhizobium 
meliloti 

Cache_3 0.83 Cache Cache_1 99.4 Cache 

3BY9 Vibrio cholerae YkuI_C 4.1e-5 Cache Cache_1 99.5 Cache 

3B42 Geobacter 
sulfurreducens 

DUF3365 0.984 N/A DUF3365 99.3 N/A 

2W27 Bacillus subtilis YkuI_C 2.2e-73 Cache YkuI_C 100 Cache 

2VA0 Cellvibrio japonicus no hit  N/A DUF2286 74.2 N/A 

3LIA Methanosarcina 
mazei 

Cache_1 3.6e-13 Cache Cache_1 99.7 Cache 

3LIB Methanosarcina 
mazei 

Cache_1 2.5e-13 Cache Cache_1 99.7 Cache 

3LIC Shewanella 
oneidensis 

Cache_1 1.3e-3 Cache Cache_1 99.7 Cache 

3LID Vibrio 
parahaemolyticus 

no hit  N/A Cache_1 99.6 Cache 

3LIF Rhodopseudomonas 
palustris 

Cache_1 3.1e-3 Cache Cache_1 99.7 Cache 

3CWF Bacillus subtilis no hit  N/A Cache_3 98.6 Cache 

3T4J Arabidopsis thaliana CHASE 1.4e-21 N/A CHASE 100 N/A 

4JGO Bacillus subtilis Cache_1 5.4e-3 Cache Cache_1 99.6 Cache 

2QHK Vibrio 
parahaemolyticus 

Cache_2 5.6e-27 Cache Cache_2 99.5 Cache 
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Table 1.S5. Newly defined Cache superfamily. Number of sequences in UniProt 

2012_06 release are shown.  

Family Total HK MCP GCD 
AC 

SP STK IC TF PDB 
GC 

Double domains 

dCache_1 15569 4958 4908 2880 265 204 25 467 300 

3C8C, 
2P7J, 
2ZBB, 
3BY9, 
3E4P, 
3LIA, 
3LIB, 
3LIC, 
3LID, 
3LIF, 
4JGO 

dCache_2 299 71 92 89 - 21 - - 1 - 

dCache_3 883 327 236 248 4 8 1 - - - 

Cache_3-
Cache_2 

407 17 330 10 - - - - - - 

CHASE 1214 607 - 549 9 3 5 - - 3T4J 

LuxQ-periplasm 115 112 - 1 - - - - - 
2HJE, 
3C38 

Single domains 

sCache_2 2243 356 1534 29 - 2 - - - 2QHK 

sCache_3_1 2854 2799 3 15 - 1 2 - 3 3CWF 

sCache_3_2 2499 2189 64 40 - 60 2 - 3 

1P0Z, 
2J80, 
2V9A, 
3BY8 

sCache_3_3 276 14 201 15 - - - - 14 - 

YkuI_C 277 - - 178 - - - - - - 

CHASE4 529 79 7 387 3 - - - - - 

Stimulus_sens_1 203 202 - - - - - - - - 

DUF2222 713 705 - 1 - - - - - - 

SMP_2 788 - - - - - - - - - 

Diacid_rec 1274 - 30 3 - - - - 1192 - 

2CSK_N 966 952 - - - - - - - - 

PhoQ_sensor 556 551 - - - - - - - 
3BQ8, 
1YAX 

 

Abbreviations: MCP, methyl-accepting chemotaxis proteins (MCPsignal); HK, histidine kinases (HATPase_c, 

HATPase_c_2, HATPase_c_3, HATPase_c_5, HisKA, HisKA_2, HisKA_3, HWE_HK); GCD, c-di-GMP-cyclases and 
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diesterases (GGDEF, EAL, HD); SP, serine phosphatases (SpoIIE, PP2C, PP2C_2); AC, adenylate- and guanylate 

cyclases (guanylate_cyc): STK, serine/threonine kinases (Pkinase); TF, transcription factors (HTH clan, LytTR); IC, ion 

channels (VWA_N, VGCC_alpha2). 
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Table 1.S6. Number of Cache domains predicted by Pfam 27 Cache models and 

new models against Pfam 27 database and NCBI non-redundant (NR) database 

(April 2015 release) 

HMM models Model Pfam 27 NR 

New models 

dCache_1 15569 60390 

dCache_2 299 995 

dCache_3 883 2706 

Cache_3-
Cache_2 

407 1733 

sCache_2 2243 8043 

sCache_3_1 2854 6493 

sCache_3_2 2499 7979 

sCache_3_3 276 1038 

Total 25030 89377 

Pfam 27 models 

Cache_1 5381 18940 

Cache_2 2250 7705 

Cache_3 2608 8265 

Total 10239 34910 
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Table 1.S7. Query coverage of extracellular region by Cache hits with new models. 

Query Coverage of 
Extracellular region (%) 

Percent of Cache hits 

100 65.27 

90 13.8 

80 7.02 

70 4.86 

60 3.06 

50 2.71 

40 1.81 

30 1.04 

20 0.38 

10 0.06 
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Table 1.S8. Computational coverage of Cache domains in proteins with known 3D 

structure 

PDB Length 
Pfam models New models 

Domain Start End Coverage Domain Start End Coverage 

2QHK 174 Cache_2 14 102 51.15 sCache_2 14 160 84.48 

1P0Z 131 Cache_3 15 127 86.26 sCache_3_2 3 128 96.18 

2J80 135 Cache_3 21 133 83.7 sCache_3_2 6 133 94.81 

3BY8 142 Cache_3 18 133 81.69 sCache_3_2 5 142 97.18 

2V9A 133 Cache_3 19 131 84.96 sCache_3_2 4 131 96.24 

3CWF 122 - - - 0 sCache_3_1 8 113 86.89 

3BY9 260 YkuI_C 71 114 16.92 dCache_1 5 215 81.15 

3C8C 240 
MCP_N 2 70 28.75 

dCache_1 5 237 97.08 
Cache_1 106 182 32.08 

3LI8 291 Cache_1 140 207 23.37 dCache_1 9 279 93.13 

3LIB 290 Cache_1 138 207 24.14 dCache_1 9 278 93.1 

3LIC 274 - - - 0 dCache_1 10 269 94.89 

3LID 295 - - - 0 dCache_1 12 272 88.47 

3LIF 254 - - - 0 dCache_1 9 249 94.88 

4JGO 217 - - - 0 dCache_1 14 182 77.88 

2P7J 287 - - - 0 dCache_1 12 272 90.94 

3E4P 305 - - - 0 dCache_1 53 240 61.64 

 

 

 

 

 

 

 

 

 

 



56 
 

Table 1.S9. Cellular localization prediction for members of the Cache superfamily. 

Family Total Between 2 TM or TM 
and HAMP  

(Extracellular) 

No TM  
(Intracellular) 

dCache_1 15568 12252 1004 

dCache_2 299 249 14 

dCache_3 882 787 11 

Cache_3-Cache_2 407 351 11 

sCache_2 2243 1783 174 

sCache_3_1 2854 2658 9 

sCache_3_2 2499 2253 17 

sCache_3_3 276 249 3 

Diacid_rec 1274 0 1268 

CHASE 1214 861 58 

2CSK_N 966 834 19 

SMP_2 788 439 31 

DUF2222 713 695 1 

PhoQ_Sensor 556 542 0 

CHASE4 529 411 35 

Stimulus_sens_1 203 201 1 

YkuI_C 184 0 180 

LuxQ-periplasm 115 84 2 

Cache clan 31570 24648 (78.07 %) 2838 (8.99%) 

PAS clan 88093 573 (0.65%) 65496 (74.34%) 
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Table 1.S10. Abundance of the two largest clans in prokaryotic extracellular 

sensory domains. Domain models were searched against non-redundant 

prokaryotic extracellular sequences. 

Clan Family Count 

Cache  

dCache_1 9570 

sCache_3_1 1481 

sCache_2 1347 

sCache_3_2 1221 

CHASE 690 

dCache_3 678 

2CSK_N 670 

CHASE4 365 

Cache_3-Cache_2 302 

DUF2222 294 

dCache_2 226 

sCache_3_3 208 

Sensor_TM1 153 

Stimulus_sens_1 149 

PhoQ_Sensor 133 

LuxQ-periplasm 63 

Total 17550 

4HB_MCP 

4HB_MCP_1 2484 

TarH 1164 

CHASE3 1034 

Total 4682 
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CHAPTER II: DIVERSITY OF EXTRACELLULAR SENSORY DOMAINS 

IN PROKARYOTIC SIGNAL TRANSDUCTION 
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Abstract 

Bacteria need to constantly sense changes in environment in order to regulate various 

cellular processes which is essential to their survival. Towards this end, they make use 

of several membrane bound sensors to relay information from the environment to the 

regulatory machinery inside the cell. Since these sensory domains bind to a vast array of 

ligands, they have highly divergent sequences. Over the years, structures of several 

extracellular domain have become available and many sequence-based domain families 

such as Cache, 4HB_MCP and CHASE have been defined. However, owing to their high 

sequence divergence, a large majority of the extracellular sensory domains are still 

unannotated. It is not known if the unannotated domains constitute novel domain or they 

are divergent forms of known domain. Here we show that using sensitive profile-profile 

comparisons, about 85% of sensory domains, can be classified into known Pfam domain 

families with relatively high confidence. We also found that the ubiquitous extracellular 

Cache domains are even more widely distributed than reported earlier. Almost 

three/fourths of all sensory domains belong to Cache or 4HB_MCP clan. Our results will 

help in improving existing HMM models which will enable easy identification of these 
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domains. The remaining 15% unannotated sequences are also potential targets for 

structural genomics studies. 

Introduction 

Sensing and responding to environmental stimuli is central to the survival of microbial 

cells. In order to respond to different environmental stimuli, bacteria employ several signal 

transduction systems. The most widely used are the two component systems comprising 

of histidine kinases and response regulators. Other output modules include methyl 

accepting chemotaxis proteins (MCP), adenylate and guanylate cyclases, c-di-GMP 

associated cyclases and diesterases and Ser/Thr kinases [1]. Many of these systems 

comprise of transmembrane proteins that have an extracellular/periplasmic sensory 

domain that is responsible for binding small molecules or protein-protein interactions. An 

N-terminal extracellular domain flanked by two transmembrane regions is the most 

common topology for both histidine kinases as well as chemoreceptors [2, 3]. 

There are limited number of output domains that are well conserved and can be easily 

identified by existing domain models. Sensory domains on the other hand evolve much 

more rapidly in order to bind to diverse ligands and show considerably higher sequence 

diversity [4, 5]. Structures for several extracellular sensory domains have become 

available over the years. Based on the overall fold, theses extracellular sensors can be 

grouped in to three different classes – mixed αβ, all-helical and periplasmic solute-binding 

protein fold [6]. A combination of two seven-blade β-propellers along with a C-terminal Ig-

type fold, mostly limited to Bacteroidetes and Proteobacteria, has also been observed [7]. 
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An additional class of all-β sensors has been predicted based on sequence analysis alone 

[6]. 

The mixed αβ class comprises of sensors with the PAS-like/PDC fold [6] as seen in PhoQ 

[8, 9], DcuS [10, 11] and CitA [12, 13]. The all-helical sensor domains are typified by the 

four antiparallel helix bundle as seen in Tar [14, 15] and NarX [16]. HK29 was the first 

available structure for periplasmic solute-binding protein fold [17]. An interesting feature 

observed in sensory domains is the presence of duplicated forms of each of the former 

domains – LuxQ [18], DctB [10, 19] and KinD [20] possess double PAS-like/PDC domains 

[21]; TorS [22] and McpS [23] comprise of double four-helix bundles; BvgS from 

Bordetella pertussis [24] has a double periplasmic-solute binding protein fold. The Pfam 

database [25] has several domain models that enable identification of these domains 

using sequence information alone. Some models for these structural classes include: 

Cache_1 [26], Cache_2, Cache_3, YkuI_C, CHASE, CHASE4 [27-29], LuxQ-periplasm 

and PhoQ_Sensor for the PAS-like/PDC domains; 4HB_MCP_1 [30], TarH, CHASE3, 

KinB_sensor, NIT [31] and HBM [32] for all-helical domains, PBP clan for periplasmic 

solute-binding proteins; Reg_prop for β-propeller and Y_Y_Y for the Ig fold.  

In spite of the increase and improvements in the number of models for these extracellular 

domains, a large number of extracellular sequences remain unannotated. A study in 2010 

reported that almost 89% of the ligand binding extracellular region was unannotated in 

bacterial MCP alone [2]. It has been suggested that PDC/PAS-like domains are the 

predominant sensory domains on the basis of unpublished results [5, 21]. However, to 

our knowledge, no comprehensive analysis for the relative abundance of extracellular 
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sensory domains is publically available. We undertook this study to investigate the extent 

of coverage of the sensory domains by existing Pfam models and also to determine if the 

unannotated regions are divergent sequences not covered by existing models or they 

constitute novel domains. We used sensitive profile-profile comparisons and found out 

that almost 85% of sensory domains belong to known domain folds. We also found that 

Cache domains are much more widespread and ubiquitously used in all prokaryotic signal 

transduction systems. 

Results and Discussion 

Distribution of membrane associated sensors in different output classes.  We 

obtained a non-redundant set of prokaryotic sequences from Pfam containing at least one 

output signaling domain. We classified sequences into following major groups based on 

the Pfam output domains: transcription factors, histidine kinases, c-di-GMP-cyclases and 

diesterases, methyl-accepting chemotaxis proteins, adenylate- and guanylate cyclases, 

serine phosphatases and serine/threonine kinases and RNA-binding (see Methods). 

Transcription factors comprised 69% of all the signal transduction proteins followed by 

histidine kinases (15%), c-di-GMP metabolism associated proteins (8%) and 

chemoreceptors (3%) (Table 2.1). We used three methods for transmembrane (TM) 

prediction – TMHMM, DAS-TMfilter and Phobius. Using a consensus of at least two 

methods, we found that 81% of signal transduction proteins are intracellular (Table 2.2). 

Most transcription factors were intracellular (97%) (Table 2.3). However, small number of 

membrane associated proteins with transcription factor output domains were also 

identified. Most of these sequences also had the histidine kinase output domains. Majority 
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of histidine kinases and chemoreceptors are membrane associated. 38% of histidine 

kinases and 17% of chemoreceptors respectively were cytoplasmic with no predicted TM 

regions (Table 2.3). Earlier studies have also reported similar figures with 33% histidine 

kinases being cytoplasmic and 13-16% MCPs being cytoplasmic [1, 2]. Serine/threonine 

kinases have almost equal proportion of cytoplasmic and membrane associated proteins 

while remaining groups including c-di-GMP cyclases and diesterases, adenylate and 

guanylate cyclases and serine proteases are mostly cytoplasmic. A study in 2005 

reported that about half of adenylate and diguanylate cyclases and c-di-GMP diesterases 

were membrane bound and majority of serine/threonine kinases and HD-GYP domains 

were soluble [1]. The discrepancies maybe attributed to the changes in Pfam domain as 

well as the starting dataset. 

The number of TM regions in membrane associated proteins ranged between one and 

twenty which is in agreement with previous study [3]. Overall the most common topology 

was class I [4], comprising of an extracellular region flanked by two TM regions with an 

intracellular output domain, which has also been reported earlier for histidine kinases [3] 

as well as MCPs [2]. Class I topology was the most common in membrane bound histidine 

kinases (61%), MCPs (86%), c-di-GMP cyclases and diesterases (42%) and serine 

phosphatases (26%). In case of adenylate and guanylate cyclases, the most common 

topology was that with six TM regions (29%) followed by class I (21%). For transcription 

factors, serine/threonine kinases and other small groups, RseA_N and RHH_1 most 

common topology was with one TM region. Since topology I was the most common and 
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it is a more reliable way to extract the extracellular regions, we limited our analysis to 

class I proteins with only two TM regions. 

Assigning domains to unannotated sequences. We extracted the region between two 

TM regions and obtained a non-redundant set of 95,139 sequences. Using HMMer tool 

[33] that uses sequence-profile comparison, we were able to assign known Pfam domains 

to 36% sequences with no domain predicted in 60,464 sequences (Table 2.4). We then 

utilized a more sensitive HMM-HMM based method – HHsearch [34, 35]. Fig. 2.1 shows 

the distribution of probability scores for the extracellular sequences using HHsearch. 

Using a more stringent threshold of 98 for the probability score, we can assign 59% of 

sequences to Pfam domain families while using the more relaxed threshold of 95, we can 

assign 71% of the extracellular sequences to known domain families. In either case, we 

are left with 38,831 and 27,678 unannotated sequences (Table 2.4). 

The high sequence variability of sensory domains can severely limit the diversity of 

sequences used in the seed alignment that is used to generate models which may 

consequently limit our ability to reliably predict the presence of these domains. To 

overcome this limitation, instead of completely relying on the models, we opted to 

compare profiles generated for each sequence. We created profile for each sequence 

using hhblits [34] and then carried out all-against-all hhsearch for all sequences. The 

domain family of the best known hit from list of annotated domains was assigned to the 

unannotated sequence in each iteration. The list of annotated sequences was updated 

after each iteration until no domains could be further assigned (see Methods for details). 

Using this approach we were able to increase the percentage of annotated sequences 
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from 36 to 85. The number of unannotated sequences was reduced from 60,464 to 14,602 

sequences. Thus majority of the unannotated sequences are divergent forms of already 

known domains and do not constitute novel folds.  

Using the new annotation scheme we see some striking changes in the abundance of 

known sensory domains (Fig. 2.2, Appendix 2.1).  Cache_1 domain (double PAS-like) 

which constituted 7% of sensor domains is found to actually comprise 21% of all sensor 

domains and is the most abundant sensory domain. It is followed by the four helix bundle, 

4HB_MCP_1, which also shows a two-fold increase in the abundance of the family. It thus 

appears that in case of mixed αβ, the double domain fold has been evolutionarily favored 

while in case of four helix bundle the single domain fold is more preferred. Other families 

that showed a large increase in number of newly classified members include – PAS_12, 

Cache_3, 2CSK_N, SMP_2, CHASE3, DUF2222, HBM, NIT, PhoQ_Sensor and 

RisS_PPD. The availability of newly identified members of these families should help in 

improving domain models so that these domains can be more readily identified. In some 

cases such as TarH, the number of family members was reduced after using the 

annotation pipeline compared to the earlier Pfam annotations, as these members were 

reassigned to other families such as 4HB_MCP_1. 

Relationship between families of extracellular sensory domains. We created a 

similarity network using all-against-all HHsearch results. Nodes represent domain 

families in each cluster. Nodes are connected by an edge if the hhsearch probability score 

is >=95 and the query coverage is >=90 reciprocally for any pair of sequences from two 

different domain families in a cluster. Using this threshold, most families were found to 
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cluster with known clan members (Fig. 2.3). In addition, we also observed some new 

relationships between sensor domain families. An interesting observation is that PAS_12, 

a newly defined family in the intracellular PAS clan, is actually part of the Cache clan. 

DUF3365, Sensor_TM1 and LapD_MoxY_N also appear to be related to the Cache clan. 

KinB_sensor domain which is unique to Pseudomonas genus [36] and has an all-helical 

structure was found to cluster with the 4HB clan. In addition we also found relationships 

with other all-helical domains such as CZB and NIT. There is one DUF3365 sequence 

which clusters with 4HB_MCP_1, one 4HB_MCP_1 which clusters with PilJ domains and 

three Abhydrolase_1 sequences that cluster with CHASE3. Since the number of 

sequences is very low for these, we cannot be certain about the relationships between 

these domains. In all other cases, families were found to cluster with known clan 

members. Thus based on these results and our previous study, we consider the Cache 

clan to comprise of the following domain families: Cache_1, Cache_2, Cache_3, CHASE, 

CHASE4, Sensor_TM1, Stimulus_sens_1, PAS_12, DUF3365, DUF2222, 2CSK_N, 

SMP_2, Diacid_rec, PhoQ_Sensor and LapD_Moxy_N, LuxQ-periplasm and YkuI_C. 

The 4HB_MCP clan comprises of 4HB_MCP_1, TarH, CHASE3, KinB_sensor, CZB, 

HBM and NIT. 

Diversity of extracellular domains in different signal transduction systems.  

The distribution of sensory domains in different signal transduction systems in shown in 

Fig. 2.4. Overall, Cache domains are the most widely distributed in prokaryotic signal 

transduction systems accounting for almost 55% of all sensory domains. The 4HB_MCP 

clan comprising of all-helical domains are the next most widely distributed (19%). In case 
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of Archaea, almost all sensory domains belong to the Cache clan (Appendix 2.1). 15% of 

sequences were not assigned to any domains. Based on the HHPred probability scores 

(Fig. 2.1), it is unlikely that all these constitute novel domains and are likely even more 

divergent sequences. Cache domains are the most abundant in histidine kinases, c-di-

GMP cyclases and diesterases, adenylate and guanylate cyclases and serine 

phosphatases. Interestingly, 4HB_MCP domains are the most abundant in 

chemoreceptors. The most common domain used in case of membrane associated 

sensors with transcription factor related output domains is the double 7 blade β-propeller 

Reg_prop domain and the Ig like Y_Y_Y domain.  

The double PAS-like Cache_1 domains are ubiquitous and are present in association with 

all output domains. Several members of the Cache domain show strong association with 

a single class of output domains – Cache_3, PAS_12, 2CSK_N, DUF2222, 

PhoQ_Sensor, Sensor_TM1 and Stimulus_sens_1 with histidine kinases, Cache_2 with 

MCPs; CHASE4 and LapD_MoxY_N with c-di-GMP cyclases and diesterases.  The single 

four helix bundle domain 4HB_MCP_1 is most prevalent in MCP while CHASE3 is most 

prevalent in histidine kinases. TarH is almost always found in association with MCP and 

KinB_sensor with histidine kinases. The double four-helix bundle domains of HBM and 

NIT are also present in MCPs and histidine kinases but are much more abundant in 

MCPs. The periplasmic solute-binding protein fold is almost absent in MCPs with only two 

instances of Phosphonate-bd domain. Some smaller domain families are specialized for 

specific output domain classes – RisS_PPD and CpxA_peri for histidine kinases and the 

CSS-motif domain for c-di-GMP cyclases and diesterases.  
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Conclusion 

We showed here that almost 75% of all prokaryotic extracellular sensory domains belong 

to either the Cache clan or the 4HB_MCP clan. Almost 77% of unannotated sequences 

were divergent forms of known domains that were not picked up by existing domain 

models. We were able to reduce the percentage of unannotated sequences from 64% to 

15%. These newly annotated domain can be used to improve existing models. Also, the 

unannotated sequences can be used for establishing new domain families. These would 

be useful targets for structural genomics efforts. 

Materials and Methods 

Data sources and Bioinformatics software. A local copy of MySQL Pfam 28 database 

based on Uniprot 2014_07 release served as the central data source. The following 

software packages were used in this study: HHsuite-2.0.16 16 [34, 35, 37], CD-HIT 

4.5.7[38], Cytoscape 2.8.3 [39], Graph-0.96_01 (UnionFind) Perl library, TMHMM 2.0c 

[40], Phobius v1.01 [41], DAS-TMfilter (December 2012) [42], PfamScan (July 2015) [25] 

and HMMER 3.1b2 [33].  

Retrieving extracellular sequences in signal transduction proteins and domain 

prediction. We retrieved 4,420,149 prokaryotic sequences from Pfam 28 which had at 

least one output domain as listed in MiST2.0 database. 100% redundant sequences were 

removed using CD-Hit which resulted in 1,365,467 sequences. TM regions were 

predicted using TMHMM, DAS and Phobius. Only those TM regions were considered that 

had an overlap of one position by at least two methods. We selected only those proteins 

that were predicted to contain two TM regions and retrieved the region between the two 
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TM if it was greater than 50 amino acids. After removing redundant sequences, the 

dataset comprised of 95,273 sequences. PfamScan tool was used to predict domains 

using default threshold. Some sequences in the dataset were found to belong to output 

domains and were discarded. The hhblits tool from HHsuite was used to generate profiles 

using uniprot20_2015_06 database with two iterations for the remaining 95,139 

sequences. The hhsearch tool was then used to compare these profiles to Pfam28 

database to predict domains. Non-overlapping domains that had a probability score of 

>=98 were assigned to each sequence. 

Pipeline for annotation of unannotated sequences. The profiles generated for each of 

the 95,139 sequences were used carry to out an all-against-all comparison using 

hhsearch. A list of annotated sequences was compiled using hhsearch as described 

above. For unannotated sequences, the best hit to an annotated sequence was 

determined from the all-against-all hhsearch results. For earlier iterations, if the probability 

score was >=98 and the query coverage >=90, then the unannotated sequence was 

assigned the domain of the best annotated hit. The newly annotated sequence were 

added to the list of annotated sequences and the process was repeated until no domains 

could be assigned. Subsequently, a probability score threshold of >=95 and query 

coverage >=90 was used until no domains could be assigned to the unannotated 

sequences. The details of each iteration are shown in Table 2.5. 

Abundance of output domains and sensory domains. Sequences were classified into 

the following major groups based on the Pfam output domains: transcription factors (HTH 

clan, LytTR, ROS_MUCR, Arc, CtsR, ArsD, ComK,); histidine kinases (HATPase_c, 



70 
 

HATPase_c_2, HATPase_c_3, HATPase_c_5, HisKA, HisKA_2, HisKA_3, HWE_HK); c-

di-GMP-cyclases and diesterases (GGDEF, EAL, HD); methyl-accepting chemotaxis 

proteins (MCPsignal); adenylate- and guanylate cyclases (Guanylate_cyc, CYTH); serine 

phosphatases (SpoIIE) and serine/threonine kinases (Pkinase, Pkinase_Tyr) and RNA-

binding (ANTAR, CsrA). When determining the abundance of output domains, if multiple 

output domains from different groups were present in a sequence, they were counted 

separately for each class. In case of sensory domains, the percentage was calculated by 

determining the total number of domains instead of total number of sequences. The 

Reg_prop domain is usually present in multiple copies in a sequence and since it is a 

small motif, it was counted only once for each sequence to prevent overestimation. 



71 
 

References 

1. Galperin, M.Y., A census of membrane-bound and intracellular signal transduction 
proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol, 2005. 
5: p. 35. 

2. Lacal, J., et al., Sensing of environmental signals: classification of chemoreceptors 
according to the size of their ligand binding regions. Environ Microbiol, 2010. 
12(11): p. 2873-84. 

3. Mascher, T., J.D. Helmann, and G. Unden, Stimulus perception in bacterial signal-
transducing histidine kinases. Microbiol Mol Biol Rev, 2006. 70(4): p. 910-38. 

4. Wuichet, K., R.P. Alexander, and I.B. Zhulin, Comparative Genomic and Protein 
Sequence Analyses of a Complex System Controlling Bacterial Chemotaxis. 2007. 
422: p. 3-31. 

5. Szurmant, H., R.A. White, and J.A. Hoch, Sensor complexes regulating two-
component signal transduction. Curr Opin Struct Biol, 2007. 17(6): p. 706-15. 

6. Cheung, J. and W.A. Hendrickson, Sensor domains of two-component regulatory 
systems. Curr Opin Microbiol, 2010. 13(2): p. 116-23. 

7. Lowe, E.C., et al., A scissor blade-like closing mechanism implicated in 
transmembrane signaling in a Bacteroides hybrid two-component system. Proc 
Natl Acad Sci U S A, 2012. 109(19): p. 7298-303. 

8. Cheung, J., et al., Crystal structure of a functional dimer of the PhoQ sensor 
domain. J Biol Chem, 2008. 283(20): p. 13762-70. 

9. Cho, U.S., et al., Metal Bridges between the PhoQ Sensor Domain and the 
Membrane Regulate Transmembrane Signaling. J Mol Biol, 2006. 356(5): p. 1193-
1206. 

10. Cheung, J. and W.A. Hendrickson, Crystal structures of C4-dicarboxylate ligand 
complexes with sensor domains of histidine kinases DcuS and DctB. J Biol Chem, 
2008. 283(44): p. 30256-65. 

11. Pappalardo, L., The NMR Structure of the Sensory Domain of the Membranous 
Two-component Fumarate Sensor (Histidine Protein Kinase) DcuS of Escherichia 
coli. Journal of Biological Chemistry, 2003. 278(40): p. 39185-39188. 

12. Sevvana, M., et al., A ligand-induced switch in the periplasmic domain of sensor 
histidine kinase CitA. J Mol Biol, 2008. 377(2): p. 512-23. 

13. Reinelt, S., et al., The structure of the periplasmic ligand-binding domain of the 
sensor kinase CitA reveals the first extracellular PAS domain. J Biol Chem, 2003. 
278(40): p. 39189-96. 

14. Bowie, J.U., A.A. Pakula, and M.I. Simon, The three-dimensional structure of the 
aspartate receptor from Escherichia coli. Acta Crystallogr D Biol Crystallogr, 1995. 
51(Pt 2): p. 145-54. 

15. Milburn, M.V., et al., Three-dimensional structures of the ligand-binding domain of 
the bacterial aspartate receptor with and without a ligand. Science, 1991. 
254(5036): p. 1342-7. 

16. Cheung, J. and W.A. Hendrickson, Structural analysis of ligand stimulation of the 
histidine kinase NarX. Structure, 2009. 17(2): p. 190-201. 



72 
 

17. Cheung, J., M. Le-Khac, and W.A. Hendrickson, Crystal structure of a histidine 
kinase sensor domain with similarity to periplasmic binding proteins. Proteins, 
2009. 77(1): p. 235-41. 

18. Neiditch, M.B., et al., Ligand-induced asymmetry in histidine sensor kinase 
complex regulates quorum sensing. Cell, 2006. 126(6): p. 1095-108. 

19. Zhou, Y.F., et al., C4-dicarboxylates sensing mechanism revealed by the crystal 
structures of DctB sensor domain. J Mol Biol, 2008. 383(1): p. 49-61. 

20. Wu, R., et al., Insight into the sporulation phosphorelay: Crystal structure of the 
sensor domain of Bacillus subtilis histidine kinase, KinD. Protein Science, 2013. 

21. Zhang, Z. and W.A. Hendrickson, Structural characterization of the predominant 
family of histidine kinase sensor domains. J Mol Biol, 2010. 400(3): p. 335-53. 

22. Moore, J.O. and W.A. Hendrickson, Structural analysis of sensor domains from the 
TMAO-responsive histidine kinase receptor TorS. Structure, 2009. 17(9): p. 1195-
204. 

23. Pineda-Molina, E., et al., Evidence for chemoreceptors with bimodular ligand-
binding regions harboring two signal-binding sites. Proceedings of the National 
Academy of Sciences, 2012. 109(46): p. 18926-18931. 

24. Herrou, J., et al., Periplasmic domain of the sensor-kinase BvgS reveals a new 
paradigm for the Venus flytrap mechanism. Proc Natl Acad Sci U S A, 2010. 
107(40): p. 17351-5. 

25. Finn, R.D., et al., Pfam: the protein families database. Nucleic acids research, 
2013: p. gkt1223. 

26. Anantharaman, V. and L. Aravind, Cache-a signaling domain common to animal 
Ca (2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends 
in Biochemical Sciences, 2000. 25(11): p. 535. 

27. Anantharaman, V. and L. Aravind, The CHASE domain: a predicted ligand-binding 
module in plant cytokinin receptors and other eukaryotic and bacterial receptors. 
Trends Biochem Sci, 2001. 26(10): p. 579-82. 

28. Mougel, C. and I.B. Zhulin, CHASE: an extracellular sensing domain common to 
transmembrane receptors from prokaryotes, lower eukaryotes and plants. Trends 
Biochem Sci, 2001. 26(10): p. 582-4. 

29. Zhulin, I.B., A.N. Nikolskaya, and M.Y. Galperin, Common Extracellular Sensory 
Domains in Transmembrane Receptors for Diverse Signal Transduction Pathways 
in Bacteria and Archaea. Journal of Bacteriology, 2003. 185(1): p. 285-294. 

30. Ulrich, L.E. and I.B. Zhulin, Four-helix bundle: a ubiquitous sensory module in 
prokaryotic signal transduction. Bioinformatics, 2005. 21 Suppl 3: p. iii45-8. 

31. Shu, C.J., L.E. Ulrich, and I.B. Zhulin, The NIT domain: a predicted nitrate-
responsive module in bacterial sensory receptors. Trends Biochem Sci, 2003. 
28(3): p. 121-4. 

32. Ortega, A. and T. Krell, The HBM domain: introducing bimodularity to bacterial 
sensing. Protein Sci, 2014. 23(3): p. 332-6. 

33. Eddy, S.R., Accelerated Profile HMM Searches. PLoS Comput Biol, 2011. 7(10): 
p. e1002195. 



73 
 

34. Remmert, M., et al., HHblits: lightning-fast iterative protein sequence searching by 
HMM-HMM alignment. Nat Methods, 2012. 9(2): p. 173-5. 

35. Soding, J., Protein homology detection by HMM-HMM comparison. Bioinformatics, 
2005. 21(7): p. 951-60. 

36. Tan, K., et al., Sensor domain of histidine kinase KinB of Pseudomonas: a helix-
swapped dimer. J Biol Chem, 2014. 289(18): p. 12232-44. 

37. Soding, J., A. Biegert, and A.N. Lupas, The HHpred interactive server for protein 
homology detection and structure prediction. Nucleic Acids Res, 2005. 33(Web 
Server issue): p. W244-8. 

38. Li, W. and A. Godzik, Cd-hit: a fast program for clustering and comparing large 
sets of protein or nucleotide sequences. Bioinformatics, 2006. 22(13): p. 1658-
1659. 

39. Smoot, M.E., et al., Cytoscape 2.8: new features for data integration and network 
visualization. Bioinformatics, 2011. 27(3): p. 431-432. 

40. Krogh, A., et al., Predicting transmembrane protein topology with a hidden Markov 
model: application to complete genomes. Journal of molecular biology, 2001. 
305(3): p. 567-580. 

41. Käll, L., A. Krogh, and E.L. Sonnhammer, A combined transmembrane topology 
and signal peptide prediction method. Journal of molecular biology, 2004. 338(5): 
p. 1027-1036. 

42. Cserzo, M., et al., TM or not TM: transmembrane protein prediction with low false 
positive rate using DAS-TMfilter. Bioinformatics, 2004. 20(1): p. 136-137. 

 

 

 

 

 

 



74 
 

Appendix 

 
 

Fig. 2.1. Distribution of HHsearch probability scores (Pfam domains) for 

extracellular sequences 
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Fig. 2.2. Relative abundance of sensory domain families determined by HMMer 

(black) and HHsearch (red). 
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Fig. 2.3. Relationship between different extracellular sensory domain families.  

A similarity network was generated with Perl Graph library using all-against-all hhsearch. 

Only those clusters that had domains from different families are shown. Each domain 

family is represented as a node. Edges represent reciprocal hhpred hits with a probability 

score >=95 and query coverage >=90 between a pair of sequences from two different 

families.  
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Fig. 2.4. Relative abundance of sensory domains in different output domain 

classes. 

 (A) All output domains, (B) Histidine kinases, (C) MCP, (D) c-di-GMP cyclases and 

diesterases, (E) Transcription factors, (F) Adenylate/Guanylate cyclases, (G) Serine 

phosphatases and (H) Ser/Thr kinases 

 

 



78 
 

 

 

Fig. 2.4 continued 
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Table 2.1. Number of TM regions predicted in prokaryotic signal transduction 

proteins using TMHMM, Das and Phobius. Consensus column shows TM regions 

that overlapped with at least two methods 

Number of 
TM 

TMHMM DAS Phobius 
Consensus  

(Counts) 
Consensus 

(%) 

0 1,114,844 1,115,855 1,097,426 1111439 81.40 

1 57,876 41,549 95,207 50172 3.67 

2 122,577 139,483 102,268 135477 9.92 

3 11,611 9,714 10,691 8413 0.62 

4 9,535 11,394 9,064 9877 0.72 

5 13,360 11,083 9,745 12005 0.88 

6 13,310 14,591 15,205 13704 1.00 

7 10,789 8,853 13,473 11308 0.83 

8 4,647 6,143 3,477 5286 0.39 

9 2,213 2,100 3,272 2533 0.19 

10 1,129 1,972 2,335 2111 0.15 

11 988 844 648 516 0.04 

12 1,627 925 601 689 0.05 

13 279 431 1,089 1151 0.08 

14 574 386 788 680 0.05 

15 33 74 98 27 0.00 

16 25 26 7 10 0.00 

17 21 18 21 24 0.00 

18 11 21 4 19 0.00 

19 17 5 27 8 0.00 

20 1 - 21 18 0.00 
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Table 2.2. Localization of prokaryotic signal transduction proteins for different 

output domain groups.  

Output 

Total Cytoplasmic Membrane-associated 2TM 

Count 
% of 
All 

Count 
% of 

Output 
Count % of Output Count 

% of 
Membrane 
associated 

TF 949981 69.57 924971 97.4 25010 2.6 4354 17.4 

HK 208177 15.25 78925 37.9 129252 62.1 78739 60.9 

GCD 110042 8.06 64796 58.9 45246 41.1 18873 41.7 

MCP 45233 3.31 7640 16.9 37593 83.1 32258 85.8 

STK 24638 1.80 12431 50.5 12207 49.5 611 5.0 

AC-GC 13194 0.97 8790 66.6 4404 33.4 943 21.4 

SP 10489 0.77 6946 66.2 3543 33.8 904 25.5 

RNA-binding 5474 0.40 5463 99.8 11 0.2 1 9.1 

RHH_1 4621 0.34 4616 99.9 5 0.1 1 20.0 

RseA_N 977 0.07 606 62.0 371 38.0 6 1.6 

 
Abbreviations: TF, transcription factors; HK, histidine kinases; GCD, c-di-GMP-cyclases 

and diesterases; MCP, methyl-accepting chemotaxis proteins; STK, serine/threonine 

kinases; AC-GC, adenylate- and guanylate cyclases; SP, serine phosphatases 
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Table 2.3. Distribution of number of TM regions for membrane associated microbial 

signal transduction proteins. 

 
Number 

of TM 
HK GCD MCP TF STK GC SP RseA_N 

RNA-
binding 

RHH_1 

1 12.24 13.71 9.39 60.86 85.66 9.33 8.35 98.38 90.91 80.00 

2 60.92 41.71 85.81 17.41 5.01 21.41 25.52 1.62 9.09 20.00 

3 3.95 2.62 0.83 3.32 2.58 6.61 11.77 0.00 0.00 0.00 

4 4.62 2.80 0.23 5.11 2.71 18.39 4.71 0.00 0.00 0.00 

5 5.84 6.93 1.45 1.38 1.44 6.95 2.12 0.00 0.00 0.00 

6 4.89 9.40 1.94 2.99 1.29 28.95 6.77 0.00 0.00 0.00 

7 3.27 11.00 0.10 5.68 0.52 5.04 10.61 0.00 0.00 0.00 

8 1.51 5.79 0.06 0.77 0.47 2.45 9.79 0.00 0.00 0.00 

9 0.57 2.63 0.03 0.24 0.11 0.32 14.20 0.00 0.00 0.00 

10 0.48 2.71 0.03 0.22 0.06 0.14 5.22 0.00 0.00 0.00 

11 0.08 0.56 0.11 0.41 0.01 0.05 0.31 0.00 0.00 0.00 

12 0.21 0.04 0.00 1.54 0.07 0.02 0.06 0.00 0.00 0.00 

13 0.87 0.04 0.00 0.02 0.02 0.00 0.31 0.00 0.00 0.00 

14 0.51 0.00 0.00 0.00 0.05 0.00 0.23 0.00 0.00 0.00 

15 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.00 0.00 0.00 

17 0.00 0.00 0.00 0.01 0.00 0.32 0.00 0.00 0.00 0.00 

18 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

19 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

 
 

Abbreviations: TF, transcription factors; HK, histidine kinases; GCD, c-di-GMP-cyclases 

and diesterases; MCP, methyl-accepting chemotaxis proteins; STK, serine/threonine 

kinases; AC-GC, adenylate- and guanylate cyclases; SP, serine phosphatases 
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Table 2.4. Proportion of extracellular sequences assigned to existing Pfam 

domains using HMMer, HHsearch and the new annotation pipeline. The probability 

score cut off of 98 and 95 were used for HHsearch. 

 

Pfam 
annotation 

Pfam HHsearch(P>=98) HHsearch(P>=95) New-pipeline 

Count % Count % Count % Count % 

Assigned to 
Pfam domain 

34675 36.45 56308 59.18 67461 70.91 81,077 85.22 

Unannotated 60464 63.55 38831 40.82 27678 29.09 14062 14.78 
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Table 2.5. Iterative assignment of extracellular sequences to existing Pfam domain 

families using all-against-all HHsearch.  

 

Iteration 
HHSearch 
Probability 
threshold 

Query 
coverage 

Newly 
Assigned 

Total 
Assigned 

% 
Assigned 

Unassigned 
% 

Unassigned 

0 98 - 56308 56308 59.2 38831 40.8 

1 98 90 8805 65113 68.4 30026 31.6 

2 98 90 2166 67279 70.7 27860 29.3 

3 98 90 2387 69666 73.2 25473 26.8 

4 98 90 1045 70711 74.3 24428 25.7 

5 98 90 288 70999 74.6 24140 25.4 

6 98 90 173 71172 74.8 23967 25.2 

7 98 90 85 71257 74.9 23882 25.1 

8 98 90 16 71273 74.9 23866 25.1 

9 98 90 3 71276 74.9 23863 25.1 

10 98 90 1 71277 74.9 23862 25.1 

11 95 90 3103 74380 78.2 20759 21.8 

12 95 90 4341 78721 82.7 16418 17.3 

13 95 90 1632 80353 84.5 14786 15.5 

14 95 90 388 80741 84.9 14398 15.1 

15 95 90 263 81004 85.1 14135 14.9 

16 95 90 70 81074 85.2 14065 14.8 

17 95 90 3 81077 85.2 14062 14.8 
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CHAPTER III: SEQUENCE, STRUCTURE, AND EVOLUTION OF 

CELLULASES IN GLYCOSIDE HYDROLASE FAMILY 48 
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Abstract 

Currently, the cost of cellulase enzymes remains a key economic impediment to 

commercialization of biofuels (1). Enzymes from glycoside hydrolase family 48 (GH48) 

are a critical component of numerous natural lignocellulose-degrading systems. Although 

computational mining of large genomic data sets is a promising new approach for 

identifying novel cellulolytic activities, current computational methods are unable to 

distinguish between cellulases and enzymes with different substrate specificities that 

belong to the same protein family. We show that by using a robust computational 

approach supported by experimental studies, cellulases and non-cellulases can be 

effectively identified within a given protein family. Phylogenetic analysis of GH48 showed 

non-monophyletic distribution, an indication of horizontal gene transfer. Enzymatic 

function of GH48 proteins coded by horizontally transferred genes was verified 

experimentally, which confirmed that these proteins are cellulases. Computational and 

structural studies of GH48 enzymes identified structural elements that define cellulases 
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and can be used to computationally distinguish them from non-cellulases. We propose 

that the structural element that can be used for in silico discrimination between cellulases 

and non-cellulases belonging to GH48 is an ω-loop located on the surface of the molecule 

and characterized by highly conserved rare amino acids. These markers were used to 

screen metagenomics data for “true” cellulases. 

Introduction 

The recent exponential growth of genomic data presents a unique opportunity to search 

for novel cellulolytic activities. However, the absence of a clear understanding of structural 

and functional features that are critical for decisive computational identification of 

cellulases prevents their identification in these data sets. True cellulases are defined as 

enzymes that show biochemical activity on cellulose substrates (i.e. crystalline or 

amorphous cellulose). Strikingly, all known cellulases have homologs that have similar 

protein folds and even amino acid sequences but do not show biochemical activity on 

cellulosic substrates (2), which makes computational-only identification of true cellulases 

error-prone. Glycoside hydrolase family 48 (GH48)4 is one of the many families defined 

in the CAZy (Carbohydrate-Active EnZymes) database (3) that contains biochemically 

confirmed cellulases. Furthermore, GH48 cellulases are considered the key component 

of various cellulolytic systems (4–6). They are highly expressed in cellulolytic bacteria, 

such as Clostridium cellulolyticum, Clostridium cellulovorans, Clostridium 

josui, Clostridium thermocellum, and many others (4). In C. thermocellum, a bacterium 

that exhibits one of the highest rates of cellulose degradation among all known cellulolytic 

bacteria, GH48 cellulases are up-regulated during growth on crystalline cellulose (4). 
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Hence, these enzymes become the most abundant subunits in the C. 

thermocellum cellulosome, a complex of enzymes highly efficient in cellulose degradation 

(4, 7). Notably, complete knockout of both GH48 enzymes in C. thermocellum leads to a 

significant decrease in performance but does not completely abolish cellulolytic activity 

(4), whereas knockout of the GH48 gene in Ruminococcus albus (5) leads to nearly 

complete loss of cellulase activity. 

Usually, only one (or rarely two or three) gene(s) encoding GH48 enzymes can be found 

in the genomes of cellulose-degrading bacteria (6), whereas genes for GH5 and GH9 

cellulases are present in much higher numbers (8, 9). Interestingly, GH48 cellulases often 

act in synergy with GH9 cellulases, which increases their catalytic activity dramatically 

(10), a feature that may be utilized for industrial application of these enzymes 

(e.g. “designer cellulosomes”) (11). 

Experimental studies revealed that some GH48 cellulases have only cellulolytic activity 

and thus cannot hydrolyze other substrates (i.e. xylan and mannan) (12). A few GH48 

cellulases have mixed substrate specificity (e.g. they are capable of degradation of xylan 

(13) or β-glucan (14) in addition to cellulose). There are two GH48 enzymes from the 

beetle Gastrophysa atrocyanea that are unable to hydrolyze cellulose-containing 

substrates (e.g. Avicel, carboxymethylcellulose, acid-swollen cellulose, etc.), whereas 

they showed distinct enzymatic activity toward chitin (15) (Appendix-3.1-Table S1). 

Previous genomic studies have shown that GH48 enzymes are found in fungi as well as 

in bacteria, including Clostridia, Bacilli (both Firmicutes), and Actinobacteria. However, 
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the presence of the GH48 cellulase (16) in the evolutionarily distant 

deltaproteobacterium, Myxobacter sp. AL-1, was never explained. 

Here we report evolutionary studies of GH48 enzymes, present a crystal structure of the 

GH48 enzyme encoded by a horizontally transferred gene, and characterize structural 

and functional differences between cellulases and chitinases in this group of enzymes. 

We also show that our computational approach can be used to search for true GH48 

cellulases in metagenomic databases.  

Experimental Procedures 

Bioinformatics Software and Computer Programming Environment. The following 

software packages were used in this study: HMMER version 3.0 (17), MAFFT version 6.0 

(18), MEGA version 5.0 (19), Jalview version 2.7.0 (20), and BLAST version 2.2.17 (21). 

All multiple-sequence alignments were built in MAFFT with its L-INS-i algorithm. All 

maximum likelihood phylogenetic trees were built in PhyML (22) with LG + Г4 + F 

parameters. Symmetrical best hits (SymBets) were assigned using the BLAST algorithm. 

All computational analyses were performed in a local computing environment, and custom 

scripts for data analysis were written in BioPerl. A remote version of the NCBI non-

redundant database was used for direct queries using BioPerl scripts. A local version of 

the same database was used for querying with the hmmsearch algorithm of the HMMER 

package. 
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Data Sources and Literature Analysis. National Center for Biotechnology Information 

(NCBI) non-redundant database (nr) in FASTA format as of April 2011 was retrieved. A 

hidden Markov model of glycol_hydro_48 (PF02011) was retrieved from the Pfam 

database vPfam26 (23). Structures of Cel48S from C. thermocellum (24) and Cel48F 

from C. cellulolyticum (25) were retrieved from the Protein Data Bank (26). 

Glycoside hydrolases of family 48 (classification according to the CAZy database (3)) with 

known activity were identified from the literature (Appendix-3.1-Table S1) and then 

mapped on the phylogenetic tree of GH48 enzymes in order to place the functional 

knowledge into the taxonomic context. Enzymes were considered to be of demonstrated 

cellulolytic function if their activity had been analyzed by in vitro biochemical studies. 

Multiple Sequence Alignment and Construction of Phylogenetic Tree. 183 GH48 

protein sequences were retrieved from the NCBI nr database using hmmsearch of the 

HMMER package (17) with Pfam gathering threshold and Pfam domain model 

glycol_hydro_48 (>600 amino acid residues). Then GH48 enzymatic domains 

corresponding to the Pfam model were excised from the protein sequences using BioPerl 

scripts and further analyzed. 69 domain sequences were found to be too short (<300 

amino acid residues) and thus were discarded to improve the quality of the subsequent 

studies. 114 GH48 sequences were taken into further analysis. 

A multiple sequence alignment (MSA) of 114 GH48 domains was constructed in MAFFT. 

The resulting alignment was used to build a maximum likelihood tree in PhyML. The 

conservation pattern in the MSA was analyzed in Jalview (20) with underlying tools, and 

the phylogenetic tree was analyzed using the MEGA5 package. Taxonomy assignments 
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for the proteins on the tree were taken from GenPept records from the NCBI protein 

database. 

Identification of Orthologs, Paralogs, and Horizontally Transferred Genes. Because 

GH48 is typically present as one copy per genome, we assigned as orthologs all GH48 

protein sequences that (i) form a monophyletic clade on the tree; (ii) were present as a 

single copy per genome; (iii) come from phyla with the same common ancestor after 

species-proteins tree topology reconciliation (Firmicutes, Actinobacteria, and Chloroflexi); 

and (iv) were characterized by symmetrical best matches (SymBets). Similar GH48 

sequences that were present in two or more copies per genome were assigned as 

paralogs. 

Horizontally transferred genes were defined in two ways: (i) by means of phylogenetic 

studies, where horizontally transferred genes were assigned based on phyletic 

distribution on the tree (27), and (ii) by means of a probabilistic approach (27), where the 

probability of occurrence of GH48 genes in prokaryotic genomes was calculated as the 

percentage of genomes containing GH48 genes divided by the total number of the 

available genomes, assuming that each genome contains only one GH48 gene (Table 

3.1). 

Metagenomic Data Analysis. We analyzed a publicly available data set of protein 

sequences from microbial communities in 295 metagenome samples retrieved from 

JGI/M (28) as of October, 2011 and the cow rumen data set from Ref. 29. Sequences 

encoding glycoside hydrolase family 48 proteins (glycol_hydro_48 (PF02011) Pfam 
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domain model) were collected from metagenome data sets with hmmsearch. Duplicate 

sequences were removed. 

Cloning, Expression, and Purification of Hahella chejuensis GH48. A codon-

optimized pMAL expression plasmid obtained from DNA2.0 (Menlo Park, CA) containing 

the H. chejuensis catalytic domain was transformed into Escherichia coli (BL21) (Agilent, 

Santa Clara, CA) and overexpressed at 37 °C in the presence of 0.3 mM IPTG. The 

recombinant fusion protein contained a C-terminal maltose-binding domain and was 

purified using an amylose high flow resin (New England Biolabs, Ipswich, MA). The eluted 

fusion protein was then cleaved using a Genenase protease site incorporated into the 

sequence (New England Biolabs). The H. chejuensis GH48 module was further purified 

by anion chromatography on a source 15Q column (GE Healthcare), using buffers A (20 

mM Tris, pH 6.8) and B (20 mM Tris, pH 6.8, 2 M NaCl). Minor impurities were removed 

by size exclusion chromatography using HiLoad Superdex 75 (26/60) (GE Healthcare) in 

20 mM acetate buffer, pH 5.0, containing 100 mM NaCl and 1 mM sodium azide. The 

purified protein solution was concentrated with a Vivaspin 5K concentrator (Vivaproducts, 

Littleton, MA), and its concentration was measured using the BCA assay (Pierce). 

Model Substrate and Pretreated Biomass. Avicel (PH101), and phosphoric acid-

swollen cellulose generated from Avicel, were used to evaluate the cellulolytic efficiency 

of H. chejuensis GH48. To provide a basis for the maximum theoretical sugar yield 

achievable from each substrate during enzymatic hydrolysis, portions of each of the 

pretreated solid samples were dried and subjected to the standard two-stage sulfuric acid 

hydrolysis method for determining structural carbohydrates in lignocelluloses, as 
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described by Sluiter et al. (30). In this method, the carbohydrate content of each 

pretreated sample is calculated from the carbohydrates released. In both cases, it is 

∼95% glucan. 

Enzymatic Digestion Assays. GH48 activity was determined at 45 °C, at an enzyme 

loading of 15 mg/g glucan Avicel or 80 mg/g glucan phosphoric acid-swollen cellulose in 

20 mM acetate buffer, pH 5.5, containing 10 mM CaCl2 and 100 mM NaCl. The assay 

slurry was mixed by inversion. Digestions were run continuously for 7 days, and sugar 

release was monitored by removing aliquots. Samples taken at various time points and 

the enzymes were inactivated by boiling for 15 min. Samples were then filtered through 

0.45-μm Acrodisc syringe filters and analyzed for glucose and cellobiose by HPLC. 

Samples were injected at 20 μl and run on an Agilent 1100 HPLC system equipped with 

a Bio-Rad Aminex HPX-87H 300 × 7.8-mm column heated to 55 °C. A constant flow of 

0.6 ml/min was used with 0.1 M H2SO4 in water as the mobile phase to give separation 

of the analytes. Glucose and cellobiose were quantified against independent standard 

curves. All experiments were performed in triplicate, and the resulting extents of 

conversion are shown as percentage of glucan converted. 

CD Methods. CD measurements were carried out using a Jasco J-715 

spectropolarimeter with a jacketed quartz cell with a 1.0-mm path length. The cell 

temperature was controlled to within ±0.1 °C by circulating 90% ethylene glycol using a 

Neslab R-111m water bath (Neslab Instruments, Portsmouth, NH) through the CD cell 

jacket. The results were expressed as mean residue ellipticity, [e]mrw. The spectra 

obtained were averages of five scans. The spectra were smoothed using an internal 
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algorithm in the Jasco software package, J-715 for Windows. Protein samples were 

studied in 20 mM sodium acetate buffer, pH 5.0, with 100 mM NaCl at a protein 

concentration of 0.25 mg/ml for the near-UV CD. Thermal denaturation of different 

constructs was monitored by CD in the near-UV (190–260 nm) region. For the analysis 

of thermal stability, the temperature was increased from 25 to 60 °C with a step size of 

0.2 °C and monitored at a wavelength of 222 nm. 

Crystallization. H. chejuensis GH48 (YP_433697) crystals were obtained with sitting 

drop vapor diffusion using a 96-well plate with Crystal Screen HT from Hampton Research 

(Aliso Viejo, CA). 50 μl of well solution was added to the reservoir, and drops were made 

with 0.2 μl of well solution and 0.2 μl of protein solution using a Phoenix crystallization 

robot (Art Robbins Instruments, Sunnyvale, CA). The crystals were grown at 20 °C with 

0.05 M potassium phosphate monobasic and 20% (w/v) polyethylene glycol 8000 as the 

well solution. The protein solution contained 15 mg/ml protein, 20 mM acetic acid, pH 5, 

100 mM NaCl, and 10 mM CaCl2. 

Data Collection and Processing. The H. chejuensis crystal was flash-frozen in a 

nitrogen gas stream at 100 K before home source data collection using a Bruker X8 

MicroStar x-ray generator with Helios mirrors and a Bruker Platinum 135 CCD detector. 

Data were indexed and processed with the Bruker Suite of programs version 2011.2–0 

(Bruker AXS, Madison, WI). 

Structure Solution and Refinement. Intensities were converted into structure factors, 

and 5% of the reflections were flagged for Rfree calculations using the programs F2MTZ, 

Truncate, CAD, and Unique from the CCP4 package of programs (31). The GH48 
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structure was solved using molecular replacement with the program Molrep (32) with 

Protein Data Bank entry 1G9G as a model. ARP/wARP (33) version 7.0 and Coot (34) 

version 0.6.2 were used for multiple cycles of automatic and manual model building. 

Further refinement and manual correction was performed using REFMAC5 (35) version 

5.6.0117 and Coot. The MOLPROBITY method (36) was used to analyze the 

Ramachandran plot, and root mean square deviations of bond lengths and angles were 

calculated from ideal values of Engh and Huber stereochemical parameters (37). 

Wilson B-factor was calculated using CTRUNCATE (31) version 1.0.11. Average B-

factors were calculated using the program ICM version 3.7–2a (Molsoft LLC, La Jolla, 

CA). The resulting structures have been deposited in the Protein Data Bank with 

code 4FUS. The data collection and refinement statistics are shown in Appendix 3.1-

Table S2. 

Results 

Phyletic Distribution of GH48 Sequences and Horizontal Gene Transfer. GH48 

enzymes that were retrieved from databases belong to only four prokaryotic phyla 

(Actinobacteria, Firmicutes, Chloroflexi, and Proteobacteria) and only two eukaryotic 

phyla (Fungi and Arthropoda), indicating a rather unusual evolutionary history. Taking into 

account that Firmicutes, Actinobacteria, and Chloroflexi (i) probably shared a common 

ancestor (38), (ii) showed GH48 enrichment compared with other phyla (Table 3.1), and 

(iii) contained a significant number of biochemically confirmed GH48 cellulases while 

lacking any confirmed non-cellulases, we hypothesize that the GH48 cellulase originated 

in the last common ancestor of Firmicutes, Actinobacteria, and Chloroflexi. Therefore, we 
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have first analyzed sequences only from these three phyla that satisfied two additional 

criteria: (i) they were present as the only GH48 gene in a genome, and (ii) they showed 

many-to-many symmetrical best hits (SymBets) relationships (39). As a result, 65 

sequences, which included 12 biochemically confirmed cellulases, were taken into further 

analysis and aligned. The maximum likelihood tree constructed from this alignment was 

monophyletic (i.e. sequences from the same phylum were found in a single clade). In the 

next step, we determined the conserved residues in the alignment and found that all 

functionally important sites (including folding and substrate binding) were invariably 

conserved (Appendix-3.1-Table S3). 

Because paralogs typically have a similar but not identical function, we asked whether 

paralogous GH48 sequences may represent enzymes with different substrate specificity. 

If so, they should show differences in some of the highly conserved sites, especially those 

implicated in substrate binding. Surprisingly, we found that paralogous GH48 sequences 

in genomes of Firmicutes and Actinobacteria were nearly identical (90–98% identity) and 

retained all conserved residues that were identified in the set of orthologous sequences. 

It appears that the functional innovation in paralogs resides not in the catalytic domain 

but in the repertoire of their auxiliary domains (Fig. 3.1). 

The evidence of horizontal gene transfer emerges when a protein sequence from a 

particular organism shows high similarity to a homolog from a distant taxon (27). In the 

case of GH48, all sequences from Fungi were found in the middle of the Firmicutes clade, 

whereas all sequences from Insecta were found in the middle of the Actinobacterial clade 
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(Fig. 3.2). This non-monophyletic distribution clearly suggests horizontal gene transfer 

into eukaryotes from the two prokaryotic phyla. 

Thus, a total of 23 horizontally transferred genes were identified through phylogenomic 

analysis, where an implicitly defined (see above) set of orthologs showed the presence 

of non-monophyletic clades with representatives of Proteobacteria, Fungi, and Insecta 

(Fig. 3.2). Additionally, in prokaryotes, they were also identified by a probabilistic 

approach (27), where relative increases in abundance of GH48 genes in the genomes of 

Actinobacteria, Firmicutes, and Chloroflexi were compared with that of Proteobacteria, as 

described under “Experimental Procedures” (Table 3.1). Notably, Actinobacteria, 

Firmicutes, and Chloroflexi genomes had much higher probability of occurrence of GH48 

genes compared with Proteobacteria, Fungi, and insects, which along with their 

distribution on the phylogenetic tree presents additional evidence for horizontal gene 

transfer into the latter. In summary, here we define all GH48 orthologs and paralogs from 

Actinobacteria, Firmicutes, and Chloroflexi as true cellulases based on phylogenomic 

analysis, which correlates with their experimentally confirmed enzymatic activities (Fig. 

3.2 and Appendix 3.1-Table S1). 

Cellulose Digestion by the Horizontally Transferred GH48. A comprehensive list of all 

biochemically studied GH48 cellulases is presented in Appendix 3.1-Table S1. This list 

shows that previously studied cellulases are mostly present in Firmicutes and 

Actinobacteria, with a single representative of Proteobacteria (Myxobacter sp. Al-1). We 

determined the activity of the GH48 enzyme from a proteobacterium H. chejuensis, which 

was a subject of horizontal gene transfer, on both crystalline and amorphous substrates 
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(Appendix-3.1-Fig. S1). These results showed that H. chejuensis is a cellulase because 

it shows activity on the phosphoric acid-swollen cellulose substrate. The poor 

performance on the more crystalline substrate is probably due to the lack of the 

carbohydrate-binding module domains in our construct, which is critical for optimal 

performance on a crystalline substrate, such as Avicel. 

Crystal Structure of H. chejuensis GH48. The structure of HcheGH48 was refined to a 

resolution of 1.75 Å with R and Rfreeof 0.154 and 0.205, respectively. There is one 

molecule in the asymmetric unit in complex with a cellobiose molecule bound at the 

product position. It has an (α/α)6barrel fold with one calcium and two sodium atoms and 

multiple ethylene glycol, glycerol, acetate, and phosphate molecules. Due to the long 

crystallization time (more than 1 year), two residue modifications were observed: a 2-

oxohistidine at position 352 and polyethylene glycol modification of Tyr-439. There were 

two outliers in the Ramachandran plot, Glu-72 and Ala-73, both of them well defined by 

the density and close to the allowed region. 

Structural Comparison with Other Known GH48s. Pairwise secondary structure 

matching of structures with at least 70% secondary structure similarity by PDBefold (40) 

found 22 unique structural matches for HcheGH48 from the Protein Data Bank. All similar 

structures were CelF, CelS, or CelA GH48 variants with secondary structure similarity 

between 79 and 88%. Closer inspection of the structure shows that the overall fold (Fig. 

3.3) and the catalytic tunnel are almost identical to C. cellulolyticum CelF, C. 

thermocellum CelS, and Caldicellulosiraptor bescii CelA. In HcheGH48, Glu-83 is the 

catalytic residue. The residues lining the tunnel, catalytic Glu-83, and the positions of the 
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sugar rings of the cellobiose molecule are mostly conserved when compared with the C. 

cellulolyticum CelF, C. thermocellum CelS, and C. bescii CelA GH48 structures (Protein 

Data Bank codes 1FCE (41), 1L2A (24), and 4EL8). The identical residues lining the 

pocket are Trp-344, Gln-247, Asp-241, Ser-245, Thr-239, Ser-136, Phe-346, Lys-303, 

Tyr-331, Thr-251, Gln-207, Phe-206, Asn-204, Trp-180, Trp-330, Tyr-357, Trp-450, Trp-

453, Trp-447, His-64, Arg-648, Trp-650, Asp-529, Glu-83, and Glu-83. The biggest 

differences are Trp-450 and Ala-616. Trp-450 is a methionine in CelF GH48 and 

phenylalanine in C. thermocellum CelS and C. bescii CelA GH48s. Ala-616 is a histidine 

in CelS GH48 and alanine in the other structures. 

Closer inspection of the ω-loop shows that it is defined by two anchor residues, Trp-508 

and Asn-516 (Fig. 3.3). Comparison with C. cellulolyticum CelF, C. thermocellum CelS, 

and C. bescii CelA GH48 structures shows that these residues are conserved and have 

identical conformation in all four structures. The ω-loop of HcheGH48 differs from the 

others by having a proline at position 523, causing a local conformational change, where 

the other structures have a tyrosine, which further anchors the loop. This, however, does 

not change the overall conformation or position of the loop but does suggest that 

variability in the loop is possible without affecting activity. 

Conserved Amino Acid Positions in the GH48 Family in the Context of Structure. 

We used sequence numbering of Cel48F from C. cellulolyticum H10 to designate amino 

acids in all multiple-sequence alignment studies because it is the most extensively studied 

GH48 structure currently available (25, 41, 42). Literature and MSA analysis showed that 
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all GH48 enzymes have 100% conserved catalytic acid and base positions (Glu-55 and 

Asp-230 in Cel48F); thus, these residues are not discussed. 

There are three major types of amino acids that participate in substrate recognition and 

correct folding of the GH48 enzymes: hydrophobic stacking interactions, hydrogen 

bonding, and calcium coordination residues (Appendix-3.1-Table S3) (24, 25, 41, 42). All 

of these residues are highly conserved in orthologs from Actinobacteria, Firmicutes, and 

Chloroflexi as well as in Proteobacteria, which indicates that genes horizontally 

transferred to Proteobacteria code for cellulases, a statement confirmed biochemically 

(this work and see Ref. 16). Our results also revealed that the GH48 enzyme from H. 

chejuensis does not possess any additional elements that would differentiate it from other 

cellulases. 

Consequently, we hypothesize that fungal GH48s are also cellulases due to their high 

sequence similarities with cellulolytic orthologs and the fact that almost all residues 

important for catalysis (Appendix-3.1-Table S3) are highly conserved in fungi (Appendix-

3.1-Table S4) with only one exception, the Ca2+ coordination residues, which were 

considered to play a role in the thermal stability of GH48 enzymes (24) but not in substrate 

specificity. In contrast, GH48 enzymes from all insects are represented by non-cellulases 

because of the large number of amino acid substitutions in positions that are conserved 

among cellulases, one ω-loop deletion, and the lack of cellulolytic activity confirmed 

biochemically (15). 

Mutations in critical positions were not found in all sequences from insects (Appendix-

3.1-Table S4). Thus, MSA and structural analyses suggested that the major difference 
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between cellulases and non-cellulases (i.e. chitinases) from insects is the additional ω-

loop located between Pro-469 and Ala-482 (as in Cel48F) in all cellulases. This ω-loop 

includes two residues highly conserved in all cellulolytic orthologs (99–100% 

conservation): Trp-472 and Asn-481. Residue Leu-484 (as in Cel48F), located adjacent 

to the loop and strictly conserved in cellulolytic orthologs, is also mutated in all insects. 

This ω-loop is located on the surface of the GH48 molecule and connects two β-strands 

that form one side of the catalytic tunnel near the exit of the product (Fig. 3.3). Thus, here 

we report structural differences that occurred after an event of horizontal gene transfer 

from Actinobacteria to Insecta that caused mutation of cellulases to chitinases. 

Screening Metagenomic Data Sets for GH48 Cellulases. Sequences of 211 GH48 

proteins were retrieved from the combined metagenome data set (>79 million sequences) 

with hmmsearch of HMMER (17) and glycol_hydro_48 Pfam domain model with the Pfam 

gathering threshold. Then 36 duplicates were removed, and the remaining 175 

sequences were used in protein BLAST queries. BLAST results showed that these 

sequences belong to the same major phyla as sequences belonging to well defined 

genomes that were retrieved from the NCBI nr database (Actinobacteria, Firmicutes, 

Chloroflexi, Proteobacteria, and insects (Arthropoda)) except for Fungi (Fig. 3.4). These 

results indicate that fungal species are either absent from the metagenomes used in this 

study or significantly underrepresented. In summary, nine sequences from metagenomics 

samples belonged to insects and were classified as non-cellulases, and the other 166 

sequences were classified as cellulases, based on the phylogenomic and structural 

evidence presented above. 
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To confirm the validity of this classification, 166 metagenomic GH48 sequences classified 

as cellulases were aligned by hmmalign of HMMER (17) with default Pfam parameters. 

MSA analysis (Appendix-3.2) showed that 93% of sequences have all of the residues 

important for protein folding and catalysis with very few conservative substitutions that 

were also found in some of the cellulolytic orthologs from complete genomes. A few non-

conservative substitutions that were found in a small set of the sequences (∼7% of all) 

could indicate potential differences in function or could simply be sequencing/assembly 

errors, a rather common problem in metagenomics (43, 44) Therefore, experimental 

evidence must be obtained to clarify this point. 

Because metagenomic samples show a large variation in the total number of genes 

sequenced (e.g. a wastewater treatment plant metagenome has 30,169 genes, whereas 

a biofuel metagenome has 2,706,009 genes), the percentage of GH48 domains in each 

metagenome was calculated (Fig. 3.5). These metagenomes were also grouped together 

according to their habitats, and the percentage abundance of GH48 in each habitat was 

also calculated (Fig. 3.5). 

Discussion 

Using a phylogenomic approach, we have determined that the GH48-type enzymes might 

have originated in a common ancestor of three closely related phyla: Firmicutes, 

Actinobacteria, and Chloroflexi (38). We have determined a number of gene duplication 

events in representatives of these phyla and several cases of horizontal gene transfer. 

For example, fungi received these genes horizontally from a representative of Firmicutes, 

whereas insects received these genes from a representative of Actinobacteria. Similarly, 
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representatives of Proteobacteria also received their GH48 genes horizontally. By 

comparing orthologous sequences from Firmicutes, Actinobacteria, and Chloroflexi, we 

identified a number of amino acid positions that are uniquely conserved in this group of 

organisms. Satisfactorily, the only activity that was previously found in this group is that 

of a cellulase. Thus, we suggest that conserved positions in the catalytic domains from 

Firmicutes, Actinobacteria, and Chloroflexi can be used as a genomic signature for a 

GH48 cellulase. 

We then wondered if this genomic signature for a cellulase remains intact in paralogs and 

horizontally transferred genes, because these types of genes often assume a slightly 

different function. For example, just one or a few mutations in a catalytic domain may lead 

to different substrate specificity. Notably, screening and study of paralogous sequences 

of GH48 proteins showed no significant differences in their catalytic domains but rather 

noticeable differences in their auxiliary domains (i.e. cellulose-binding domain, fibronectin 

type III-like domain, etc.). On the contrary, genes that were horizontally transferred from 

Actinobacteria to insects (Metazoa) acquired a new activity to hydrolyze chitin but lost the 

ability to degrade cellulose. 

Following this initial evolutionary analysis, we extended our findings to structural analysis 

of GH48 enzymes. We found that all orthologs and paralogs have a 10–14 residue ω-

loop (Pro-469 to Ala-482 as in Cel48F) that has no counterpart in enzymes from insects. 

Moreover, this ω-loop is constituted by highly conserved amino acids (Trp-472 and Asn-

481 as in Cel48F) and located on the surface of the molecule. Thus, in accord with the 
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classical definition of ω-loops (45), it may play the following roles in this enzyme structure: 

folding, stability, or contribution to the dynamics of the enzyme during catalysis. 

High conservation of the ω-loop residues in cellulases suggests its importance for the 

computational identification of cellulases, and the complete absence of the loop in all non-

cellulases indicates that GH48 chitinases lost this structural element. We hypothesize that 

the absence of the loop in chitinases allows more conformational degrees of freedom in 

the active site tunnel upon binding of the substrate, which permits a bulkier chitin to “slide” 

freely. In contrast, cellulases may have more rigid structures “reinforced” by the ω-loop. 

Regardless of the exact role of the ω-loop, which can be determined only experimentally, 

we have suggested that it is important for cellulolytic activity, which has allowed us to 

design a strategy to identify new cellulases in metagenomic data. 

Thus, phylogenomic and structural analyses of GH48 suggest that proteins from 

Actinobacteria, Firmicutes, Chloroflexi, and Proteobacteria are indeed cellulases. 

Biochemical activities of GH48 proteins from two Pyromyces species have never been 

studied; thus, it is unknown whether they are cellulases. However, because these proteins 

are not only homologous to known cellulases but also contain all conserved amino acids 

identified in our analysis, it is very likely that they also possess cellulolytic activities. On 

the other hand, GH48s from insects, where only chitinolytic activities were detected 

experimentally, are non-cellulases. Consequently, the existing Pfam model for GH48 can 

be used to retrieve true cellulases; however, there is one exception. GH48 proteins from 

insects should be annotated as non-cellulases. This approach allowed us to identify 166 

true cellulases in the combined metagenomic data set of hundreds of environmental 
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samples. The largest number of cellulases came from the metagenomes of “engineered” 

microbial communities, such as enriched samples or bioreactors (e.g. the “mixed alcohol 

bioreactor” and the “cellulolytic enrichment from sediment of Great Boiling Springs”). Most 

of the environmental cellulases come from communities that typically include saprophytes 

(46), such as soil, wastewater, ant fungal gardens, and the rhizosphere (Fig. 3.5), which 

is in agreement with previously published research (47, 48). Interestingly, very few GH48 

cellulases were identified in cow rumen microbial communities, which also correlates with 

previous extensive biochemical analysis of this classical cellulolytic community (29). 

Moreover, all of the GH48s from cow rumen, found in this study, belong to Ruminococcus 

flavefaciens, a highly specialized cellulose degrader. We hypothesize that because, 

collectively, major ruminal cellulolytic specialists are found to represent as little as 0.3% 

of the total bacterial population (49), and R. flavefaciens is typically one of the three most 

abundant cellulolytic bacteria in cow rumen (50), its GH48 gene was more selective for 

sequencing (51) when compared with the genes of other “rare” members of the 

community. 

Conclusions 

High-throughput computational screening for cellulases from genomic and metagenomic 

data sets is a challenge due to the absence of a clear understanding of structural and 

functional features that distinguish them from closely related enzymes with other 

substrate specificities (2). Here, we present a combined sequence-structure approach 

leading to the identification of clear markers that can be used to distinguish between 

cellulases and non-cellulases within the GH48 family. This approach was applied to 
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identify “true” GH48 cellulases in large metagenomic data sets, illustrating its feasibility in 

the search for novel cellulolytic capabilities. 

Finally, we propose that this approach can be generalized to define genomic signatures 

for identifying cellulases in other CAZy families (2), such as GH5, GH9, GH12, GH45, 

and GH61 that are known to contain biochemically confirmed cellulases. 
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Appendix 

 

 
 
 

Fig. 3.1. Modular domain architecture of GH48 paralogs. 

Representative examples of GH48 paralogs that contain different auxiliary domains are 

shown. The GenBankTM identifiers (GI numbers) are listed beside each protein. Protein 

domains are as follows: carbohydrate-binding module (CBM), dockerin (Dock), domain of 

unknown function (DUF), BNR repeat (BNR), and glycoside hydrolase (GH). 
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Fig. 3.2. Horizontal gene transfer of GH48 enzymes.  

A maximum-likelihood phylogenetic tree constructed from multiple sequence alignment 

of GH48 sequences is shown. Known enzymatic activities, taxonomic information, and 

inferred evolutionary relationships are shown on the outside circle. Sequences from 

underrepresented phyla are marked with an asterisk: Proteobacteria (1) and Chloroflexi 

(2). 
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Fig. 3.3. Structure of GH48 from H. chejunsis.  

The additional ω-loop identified in all cellulases is labeled in blue. The α-helices are 

shown in red, β-strands in yellow, and loops in green. The cellobiose molecule is shown 

with carbon atoms in cyan and oxygen atoms in red. 
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Fig. 3.4. Phyletic distribution of GH48 sequences retrieved from a combined 

metagenomic data set.  

Nearly 95% of sequences belong to three closely related prokaryotic phyla: 

Actinobacteria, Firmicutes, and Chloroflexi. 
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Fig. 3.5. Abundance of GH48 cellulases in metagenomes.  

A, percentage of GH48 sequences in each metagenome (abundance) was calculated by 

dividing the number of GH48 hits by the total number of genes in each metagenome. B, 

the abundance of GH48 sequences in different habitats. The normalized percentage of 

GH48 genes was calculated as the percentage of GH48 sequences in a given 

metagenome divided by the sum of the percentage of GH48 for all metagenomes. 
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Table 3.1. Enrichment of GH48 genes in the prokaryotic genomes 

Taxon 
Total no. of genomesa/No. of 

genomes containing GH48 genes 
Percentage of genomes containing 

GH48 genes 

  % 

Actinobacteria 218/38 17 

Firmicutes 418/80 19 

Chloroflexi 17/2 12 

Proteobacteria 732/2 0.3 

 

a Complete and draft genomes with a size of >1 Mb. 
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CONCLUSION 

In this dissertation, protein domains were studied using HMM-based methods at three 

different scales. In case of cellulases, in chapter III, the efforts were directed towards 

gaining a molecular level understanding of domains of a small family of cellulases. For 

Cache domains in chapter I, the questions were addressed for a much larger superfamily 

of domains. Finally, in chapter II, the scope of the problem was at the level of all 

prokaryotic signal transduction systems. 

In Chapter I, use of HMM models showed the ambiguity in sequence based Cache 

domains and the structure based PDC/PAS-like domains. This information aided in 

building more accurate and sensitive domain models which enabled identification of large 

number of new members which ultimately led to the discovery that Cache domains 

constitute the largest extracellular sensory domain family in prokaryotic signal 

transduction systems. HMM-HMM comparisons also revealed remote homology between 

Cache domains and structurally related PAS domains.  

In Chapter II, use of the highly sensitive HMM-HMM comparison approach enabled 

annotation of a large fraction of previously unannotated sequences. It also revealed that 

three-fourths of all extracellular sensory domains belong to the Cache clan or the 

4HB_MCP clan suggesting these folds are specialized for their roles as extracellular 

sensors.  

In Chapter III, HMM model enabled retrieval of GH48 sequences from protein sequence 

database. Sequence and structure analysis revealed that an ω-loop was missing in 

chitinases but present in all cellulases. Using HMM based alignment it was possible to 
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align even short GH48 sequences obtained from metagenomic datasets. The ability to 

align these sequences to full length GH48 sequences allowed comparison of cellulase-

specific features and prediction of cellulolytic activity of the sequences retrieved from 

metagenomic datasets. 

Thus, overall, HMM-based methods proved crucial for analyzing domain families that 

showed very high sequence divergence as well as functional prediction of very short 

metagenomic sequences. The work here further emphasizes the utility of HMMs for 

studying protein evolution and function.    

Future Directions 

Although the new Cache models were able to identify a large number of new members, 

the models can still be improved by incorporating domains that are not fully covered. We 

have a much better understanding of Cache domains and their relationship to PAS and 

PDC domains. Future efforts can now focus on understanding how the families in the 

Cache clan differ from each other. Many of the Cache domains have been experimentally 

characterized with known ligands. Determining the molecular basis of ligand recognition 

in this highly diverse group of domains will be extremely useful for functional prediction in 

other members of this dominant family of prokaryotic extracellular sensory domains. 

We were able to vastly reduce the unknown space in extracellular sensory domains in 

prokaryotic signal transduction systems. The domains that were not annotated in this 

study can be potential targets for structural genomics initiatives. These may also be used 

to define new domain families and create models for their identification. An interesting 

feature of sensory domains is the duplication of a domain fold such as double Cache and 
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double four-helical bundles which raises the questions - How does the signal transduction 

differ between single and double domains?. 

The approach used in Chapter III can be considered as a framework for analyzing protein 

domains which may have wide applicability to other domain families including other 

families of cellulases that have experimentally characterized members. 
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