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ABSTRACT 

With the revolutionary progress in sequencing technologies, computational biology 

emerged as a game-changing field which is applied in understanding molecular events of 

life for not only complementary but also exploratory purposes. Bioinformatics resources 

and tools significantly help in data generation, organization and analysis. However, there 

is still a need for developing new approaches built based on a biologist’s point of view. In 

protein bioinformatics, there are several fundamental problems such as (i) determining 

protein function; (ii) identifying protein-protein interactions; (iii) predicting the effect of 

amino acid variants. Here, I present three chapters addressing these problems from an 

evolutionary perspective. Firstly, I describe a novel search pipeline for protein domain 

identification. The algorithm chain provides sensitive domain assignments with the 

highest possible specificity. Secondly, I present a tool enabling large-scale visualization 

of presences and absences of proteins in hierarchically clustered genomes. This tool 

visualizes multi-layer information of any kind of genome-linked data with a special focus 

on domain architectures, enabling identification of coevolving domains/proteins, which 

can eventually help in identifying functionally interacting proteins. And finally, I propose 

an approach for distinguishing between benign and damaging missense mutations in a 

human disease by establishing the precise evolutionary history of the associated gene. 

This part introduces new criteria on how to determine functional orthologs via 

phylogenetic analysis. All three parts use comparative genomics and/or sequence 

analyses. Taken together, this study addresses important problems in protein 

bioinformatics and as a whole it can be utilized to describe proteins by their domains, 

coevolving partners and functionally important residues.  
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CHAPTER 1. Introduction 
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The genomics era was started in 1995 by a group led by Craig Venter who published the 

complete DNA (genome) sequence of Haemophilus influenza (Fleischmann et al. 1995; 

Cristianini and Hahn 2006). It was the first sequenced genome of a free-living organism. 

Venter’s method of genome assembly, shotgun sequencing, opened the doors for 

inevitable genomic data accumulation. In the following year, the first eukaryotic genome 

(Saccharomyces cerevisiae) was published (Goffeau et al. 1996). Year by year, DNA 

sequencing became easier and cheaper.  After only 5 years, the human genome was 

sequenced (Venter et al. 2001). Today, researchers (from the United States and China in 

parallel) aim to sequence 1 million human genomes in the next few years (Stephens et 

al. 2015).  

With the revolutionary developments in sequencing technologies and instrumentation, 

genomic data has been accumulating exponentially (Figure 1-1). So far, the amount of 

genomic data has doubled every 7 months since 2008 which has significantly beaten the 

curve of Moore’s law (doubles every 18 months) (Stephens et al. 2015).  As of August 

2015, the number of sequenced (partially/fully) genomes in the NCBI genome database 

approached 50,000. Though gaining more information on living beings, including humans, 

sounds like a great advancement, the ability to understand the data remains a growing 

challenge. Since generated raw sequence data alone is not useful to infer information, 

unprocessed sequence data needs to be compiled and converted into a format that 

addresses certain questions of interest. This data-processing is performed with 

specialized tools through scientific measurement methods. Bioinformatics, which is partly 

the field of designing tools and approaches for retrieving, storing, organizing, visualizing 

and analyzing biological data, is vital for scientists desiring to know about their 
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DNA/protein sequence of interest (Luscombe et al. 2001). New knowledge derived from 

living beings can be obtained by using the services offered by the bioinformatics field. 

However, making sense out of large series of letters (DNA or protein sequences) is 

challenging. As the interpretation of large data depends on computational capabilities, the 

fields of computational biology and bioinformatics are continuously expanding since the 

beginning of the exponential growth of biological data. Research in these fields attracted 

attention due to promising results for prognosis, diagnosis and treatment of diseases 

(Mount 2001).  

There are three aims of bioinformatics (Kumar and Dudley 2007). The first aim is to 

develop systems to store data, so that it is accessible to researchers. Because automated 

algorithms are erroneous, manual curation is important (Howe et al. 2008). However, 

manual curation is a limiting step and tends to fall behind of the growth of genomic data. 

Though automated systems are still not at the desired level of precision, as our 

understanding of molecular biology expands, the quality of these resources increases. 

For instance, the partially manually-curated protein database RefSeq has not shown a 

steeper rate of increase especially in the last few years (Figure 1-2). The second aim is 

to develop tools, methods and resources helping biologists to convert data to knowledge. 

Because the majority of researchers conducting experimental work are not data 

scientists, user-friendly tools are needed (Kumar and Dudley 2007). The increasing rate 

of genomic data has surpassed computational developments. Therefore, algorithms that 

are specifically designed for genomic data should be developed and implemented to 

maintain an efficient computation for a desired task. Bioinformatics tools and resources 

can be diverse. While some of them are general, most bioinformatics tools are designed  
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The data retrieved from GenBank. 

 

Figure 1-1 Genomic data growth in GenBank.  
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to address specific questions of interest. Finally, the third aim is to apply these resources 

in data analysis in order to infer biologically meaningful results. This dissertation serves 

promote to the last two aims of bioinformatics with attempts to understand proteins from 

an evolutionary perspective. As a subfield of biology, evolutionary bioinformatics focuses 

on understanding mutative events at the levels ranging from molecules to populations, by 

applying computational methods. This work concentrates on protein evolution at not only 

a molecular but also a genomic level. 

1.1 Biology overview 

1.1.1 Central dogma of molecular biology: DNA to protein 

The genome of a free-living organism is composed of DNA (deoxyribonucleic acid) which 

carries the heritable information. DNA is in double-helix conformation (Watson and Crick 

1953) and each strand is composed of a linear sequence of deoxyribonucleotides: 

adenine (A), thymine (T), guanine (G) and cytosine(C). A and G (purines) pair with T and 

C (pyrimidines), respectively, through hydrogen bonding (Donohue and Trueblood 1960). 

Due to this complementarity the sequence of a single strand is sufficient to determine the 

sequence of the complementary strand.  

Originally described by Francis Crick in 1958, the central dogma of molecular biology 

explains the flow of information residing on biopolymers of DNA, RNA (ribonucleic acid) 

and protein in a residue-by-residue fashion (Figure 1-3) (Crick 1958; Crick 1970). 

Although the rule oversimplifies complex biological information transfer, it is useful to 

understand how protein is synthesized by the information coded in DNA (Biro 2004). 
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Figure 1-2 The logarithmic growth of GenBank and RefSeq databases.  

As it is manually curated, the RefSeq database is harder to construct. However, in the few last 

years, there was an increase in the number of records in RefSeq. This rate of increase exceeded 

the GenBank rate. 
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In protein synthesis, the first step is to construct messenger RNA (mRNA) from a genomic 

DNA template (complementary strand) in a process called transcription. RNA polymerase 

starts mRNA synthesis by binding an upstream region (promoter) of the gene. This 

binding is usually aided by proteins called transcription factors. RNA polymerase reads a 

single strand of DNA and synthesizes RNA in 5’  3’ direction. The mRNA sequence is 

identical to the coding strand (complementary to the template strand) except for uracil (U) 

in place of thymine (T). 

In eukaryotes, most genes include regions that do not code for protein. These regions are 

called introns. Right after eukaryotic transcription the mRNA (often called pre-mRNA) 

contains both coding regions (exons and introns). However, the pre-mRNA is processed 

and intron regions are excluded by joining exons. This process is called RNA splicing 

(Figure 1-4). During splicing, some of the exons can be skipped and various 

combinations of exons (while keeping the order intact) result in unique mature mRNA 

products. As the name alternative splicing implies, this process eventually results in 

different protein products (isoforms) coded by the same gene. Eukaryotic transcription 

and splicing take place in the nucleus and mature RNA are then transferred to the 

cytoplasm. 

Figure 1-3 Central dogma of biology. 



8 
 

 

Copied from National Human Genome Research Institute. 

 

 

In eukaryotes, after mature mRNA is produced, mRNA is transported from the nucleus to 

the cytoplasm. Here, a complex protein/RNA structure, the ribosome, facilities information 

transfer from mRNA to protein. This process is called translation. In eukaryotes, first, the 

ribosome binds to the untranslated region (UTR) of mRNA at the 5’ end. Then, the mRNA 

is scanned in a 5’  3’ direction to search for the start signature of three letters: AUG 

(start codon). mRNA in a 5’  3’ direction corresponds to an N terminus to C terminus 

directionality in proteins. The mRNA sequence is translated into an amino acid sequence 

in protein synthesis. Each 3-letter nucleotide block of RNA (codon), codes for a 

corresponding amino acid. The 4 nucleotides, A, G, U and C can generate 64 (43) different 

codons (Figure 1-5). 3 codons (UAG, UAA and UGA) do not code for amino acids, as 

they are stop codons. Protein synthesis stops when a ribosome encounters any stop 

codon. 

Figure 1-4 mRNA splicing.  
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Figure 1-5 Codon wheel and single letter codes for amino acids.  
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After translation, a polypeptide chain (primary protein structure) is folded into a three-

dimensional structure (Figure 1-6). First, certain segments of protein are folded into 

general structural elements (secondary structures: alpha helix or beta sheet). Then, 

physical attractions between secondary structural elements result in more folding which 

eventually results in tertiary protein structure. Tertiary structures of the same protein can 

come together and form a complex (oligomer). This complex is called quaternary protein 

structure. Protein folding is primarily determined by the amino acid sequence itself. 

External factors such as solvent properties, temperature, and other aiding proteins also 

play important roles in folding. Because the structure of a protein is directly related to the 

function, deficiency in folding causes function disruption.  

Three-dimensional protein structures are composed of one or more functional units called 

domains (Figure 1-7). Domains are minimal functional and structural elements of proteins 

that can fold autonomously and evolve independently from the rest of protein as they are 

found in various domain arrangements in proteins.  

1.1.2 Mutations 

A mechanism exists that can make permanent and heritable changes to DNA, thus 

allowing genetic diversity and speciation. These changes can be due to environmental 

factors, viruses and transposable elements, and erroneous replication where DNA 

polymerases make errors. DNA polymerase makes errors at a certain rate and most of 

them are corrected by molecular proof-reading mechanisms (Reha-Krantz 2010). 

Uncorrected DNA changes are called mutations. DNA mutation and recombination are 

the major reasons for genetic diversity in a population. These molecular events are also   
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Copied from National Human Genome Research Institute. 

Figure 1-6 Protein folding - from polypeptide chain to the three-dimensional structure.  
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A Dicer protein contains three domains and a linker. Green: RNase III domain, yellow: PAZ 

domain, red: platform domain. The linker is shown as blue. 

 

 

responsible for many genetic disorders. Mutations can be classified in two general 

categories: (i) substitution and (ii) indel (insertion or deletion).  

Mutations accumulate in non-coding regions at an incomparably high rate relative to 

coding regions. Because of their relatively low importance in protein function, there is no 

eliminating selection pressure on these regions. However, some regions are critical in 

protein synthesis such as promoters, enhancers and silencers which play roles in protein 

expression. These regions are less prone to accumulate mutations compared to other 

non-coding regions because of their vital roles that are conserved for survival. Mutations 

in coding regions are less tolerable and thus less frequently observed than non-coding 

Figure 1-7 Example of a multi-domain protein.  
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variations. There are several types of substitution mutations within a coding region 

(Figure 1-8). First, a single nucleotide mutation resulting in a different codon that still 

encodes the original amino acid is called a synonymous or silent mutation. Synonymous 

mutations are mostly tolerable because the change doesn’t affect protein sequence and 

thus structure and function. Secondly, missense mutations cause single amino acid 

replacement on the protein and can affect protein folding, catalytic activity, and interaction 

with other molecules. Some missense mutations can be neutral and have no effect on 

protein function while others can slightly or severly change protein activity. Finally, non-

sense mutations change amino acid-encoding (sense) codons to stop (nonsense) codons 

where protein synthesis is forced to terminate early. The truncated polypeptide chains are 

usually non-functional. Beside substitutions, indels are also important in protein function. 

DNA polymerases might skip reading one or more nucleotides on the template, which 

causes deletion in the newly synthesized DNA. On the contrary, these enzymes may also 

add extra nucleotides while copying DNA, resulting in insertion. Indels are more likely to 

affect protein function if the length of indel is not a multiple of three (size of codons). This 

changes the codons read during translation, resulting in a meaningless protein sequence. 

This type of indel mutation causes a shift of the open reading frame called a “frame-shift” 

mutation.  

In diploid organisms such as humans, every gene has two copies (alleles), one on each 

pair of chromosomes. Alleles can be identical or different in terms of sequence. For a 

specific trait, if alleles result in the same observation (phenotype) the genetic condition of 

alleles is called homozygous. If alleles yield different proteins for a certain trait then they 

are called heterozygous.  



14 
 

 

 

Adapted from National Human Genome Research Institute. 

  

Figure 1-8 Types of single point mutations.  
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If one of the alleles in a diploid organism causes a defective protein due to a mutation 

while the other allele codes for a functional protein, there are three possible 

consequences: (i) protein function is complemented by the protein coded by the wild-type 

allele (functional allele is dominant to the defective one), (ii) the deficiency in one allele 

results in insufficient amount of fully functional protein, so the overall function remains 

deficient (defective allele is dominant), (iii) the lack of protein amount partially affects 

protein function (partial dominance or haploinsufficiency).    

There are rare and common variants in a population. Simple Mendelian diseases and 

novel genetic disorders are mostly caused by rare variants. Genetic variants in a 

population are called polymorphisms. Although polymorphisms are usually benign, some 

of them have been found to be associated with diseases (Satake et al. 2009), especially 

certain combinations of single nucleotide polymorphisms (SNPs)  (De Gobbi et al. 2006).   

1.1.3 Molecular evolution 

Gene duplication is the major mechanism in the formation of new functions in evolution 

(Ohno 2013).  Gene duplication occurs via several molecular events such as unequal 

crossing-over, DNA polymerase slippage, retrotransposable elements and non-

disjunction during meiosis (Ohno 2013). When a gene is copied, an identical gene can 

keep the function if it was necessary for the organism and fixed in the population. 

However, the other copy remains redundant at first and prone to change and 

accumulation of mutations. Over generations, this copy may diverge and result in three 

possible consequences: It is (i) lost because the sequence doesn’t constitute a 

meaningful biomolecule; (ii) neo-functionalized and gains a new function; (iii) sub-
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functionalized and takes on a subset of functions of the original gene (Lynch and Conery 

2000).  

Most gene families are enlarged due to gene duplication. Genes and proteins that share 

a common ancestor are called homologs. If the homology is achieved through gene 

duplication within a current or ancestral species, homologous genes are called paralogs. 

Homologous genes in different species that evolved by a speciation event are termed as 

orthologs. Orthologs are more likely to conserve their function while paralogs are not 

anticipated to keep the identical function (Taylor and Raes 2004). 

Natural selection is a key principle in evolution and well reflected at the molecular level. 

Genes that are not vital for survival keep changing until they are either lost or modified 

enough to gain a new function. We see the same trend in amino acid sequences. Some 

residues are critical and cannot be replaced by any other amino acid while others are 

unimportant for function and structure, so they can be replaced by other amino acids. 

Amino acids sharing a common physicochemical property which is needed in a particular 

sequence position of a protein are likely to substitute each other (Figure 1-9).  

1.2 Problem overview and motivation 

Despite a steep increase in genomic data accumulation, there is still a vast amount that 

is unknown about the molecular biology of proteins. Particularly, functions of proteins are 

questions of interest. In order to establish the precise function of a protein, its interactions 

at a cellular level and physical properties at a molecular level must be determined. 

Although wet-lab experiments are informative and essential to produce basal data from 

which computational predictions can be derived, they are expensive and most of them 
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are not practical to be applied on a large scale. For this reason, there has been a tendency 

to computationally predict protein function. In order to determine the general function of 

a protein, it should first be described based on the sequence content. Computational 

prediction of protein function at the cellular level depends on two major approaches; (i) 

homology-based; (ii) context-based. A homology-based method uses a comparative 

approach and finds similar proteins whose functions are known. If the similarity between 

“unknown” and “known” proteins is significant, then a prediction of the protein function 

can be made. However, for non-significant similarity there is still a good chance of 

predicting protein function. Remote homologs share low sequence identity, but they carry 

signatures of general properties of protein domains. For this reason, protein domains are 

computationally predicted. Determining domains in a protein gives insight about the 

overall function and potential interacting partners. However, determining protein domains 

Figure 1-9 Physiochemical properties of amino acids.  
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is a challenge. There are specific and sensitive tools available. The problem is that 

specific tools miss domains, while sensitive tools yield an undesired number of false 

positives. In addition, sensitive tools are computationally intensive and, therefore, they 

are not applicable for large-scale analyses. Consequently, there is a need for an 

optimized approach in domain prediction to reach the highest possible confidence while 

increasing sensitivity. 

Content-based protein function prediction is computationally performed by three 

methods: (i) Co-location; (ii) gene fusion and (iii) genomic co-occurrence (Aravind 2000). 

Genomic co-location is highly successful in prokaryotes because of the presence of gene 

clusters (operons) in which genes are regulated together. However, this method is not 

applicable in eukaryotes because of dispersed locations of interacting genes. Gene fusion 

is another indicator of interacting genes and proteins. If two or more genes are fused and 

yield a single protein product in a single organism, it indicates that these proteins are 

likely to interact in other systems when they are independently located in the genome. 

Finally, genomic co-occurrence is another indicator of potentially interacting proteins. If 

two genes/proteins evolve together (they are lost or kept in the genome together), it is 

likely that they are interacting at least functionally if not physically. This interaction 

information provides an important understanding about protein function. However, neither 

gene-fusion nor co-occurrence patterns is straightforward to discover. A major challenge 

in these analyses is the uncertainty about the absence of biomolecules. Proving true 

negative in genomic context is not an easy task. However, consistent observation of 

independent co-absences of genes/proteins would add a confidence. Hence, there is a 
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need for a platform to visualize co-occurrence patterns of protein and domain families to 

reveal gene fusions and interacting partners. 

Even if the overall function of a protein is established, predicting the molecular function 

of each residue is as critically important. Establishing function of specific residues is 

important for health and disease in terms of drug design, personalized medicine, and 

variant outcome prediction. Although knowing specific functions for each amino acid in a 

protein remains a big challenge, it is possible to weigh their importance in the overall 

function by evaluating their evolutionary history. By comparing homologous proteins from 

different species, it is possible to observe which amino acid was conserved and likely to 

be important and which position was less conserved so that it was replaced by other 

amino acids in its evolution. There are automated tools performing this task; finding 

similar protein sequences and comparing each position to assess their weight by 

evolution. This is a commonly used approach for also predicting damaging and benign 

mutations for human health and disease. However, the automated tools do not 

discriminate between orthologs and paralogs. Orthologs are expected to keep the 

function while paralogs are divergent copies with potentially different functions despite 

being homologs. Usually, only one of the paralogs is associated with a disease in the 

same organism for Mendelian disorders. Furthermore, automated algorithms usually 

result in an approximation when they build an evolutionary history of a gene. This 

generalization can be disadvantageous when dealing with proteins with distinct 

evolutionary histories. For these reasons, there is a need for an approach to establish 

correct evolutionary parameters and separate orthologs from paralogs in evaluating the 

evolutionary importance of each amino acid position of a protein. 
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1.3 Scope of dissertation 

This dissertation focuses on the molecular understanding of proteins from an evolutionary 

aspect. The presented work attempts to address three questions: (i) What is the function 

of a protein; (ii) Which proteins functionally interact with each other; (iii) What is the impact 

of each amino acid for protein function. 

Chapter One briefly introduces basic biology and explain the problems which were 

addressed in this work. Chapter Two describes the tools, resources and concepts that 

are important for understanding the rest of the dissertation. Additionally, Chapter Two 

also discusses the status quo of protein domain exploration and missense mutation 

outcome prediction. Chapter Three covers an approach for domain identification along 

with a web-based tool, CDvist. The rationale, approach, and algorithm are briefly 

explained in this chapter. In Chapter Four, another tool, Aquerium, for phylogenetic 

profiling visualization is introduced. The web-server also offers a resource for protein 

domain architecture investigation. In Chapter Five, a rationale for the importance of 

revealing precise evolutionary history of proteins in health and disease is established with 

a case study. This chapter proposes new criteria in distinguishing orthologs from paralogs 

with a phylogenetic approach by using the NPC1 gene which is responsible for a 

neurodegenerative genetic disorder: Niemann-Pick type C.  Moreover, this chapter 

describes an algorithm and defines new parameters in missense mutation effect 

prediction. In Chapter Six, the dissertation is summarized and applications of this work 

and future aims are discussed. 
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CHAPTER 2. Literature Review 
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This chapter summarizes the current literature on technical concepts, which are crucial 

to prepare the ground for the following chapters.  

2.1 Sequence Databases 

As discussed in the previous chapter, the first aim of bioinformatics is to store and 

organize the genomic data. Accumulating sequence data should be publicly available and 

easily accessible to researchers in order to increase the rate of biological discoveries. 

There were parallel attempts in storing and presenting annotated nucleic acid sequence 

data. Three major resources for nucleotide sequence data are: 

i. ENA (European Nucleotide Archive) maintained by EBI (European 

Bioinformatics Institute) 

ii. GenBank  maintained by NCBI (National Center for Biotechnology Information)  

iii. DDBJ (DNA Data Bank of Japan) maintained by NIG (National Institute of 

Genetics) 

These three databases are in collaboration (International Nucleotide Sequence Database 

Collaboration) and share a spectrum of raw nucleotide data (Brunak et al. 2002). 

Therefore, in principle, nucleic acids records submitted to any of the databases above 

should be available through any one of three databases.  

The same approach is applied for protein sequences as well. Although many proteins 

have been experimentally characterized, hundreds of them will never be characterized in 

laboratories. Therefore, accurately annotated and well-organized protein sequence 

databases are important for biologists. There are two centers leading and maintaining 
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protein sequence databases: EMBL (European Molecular Biology Laboratory) and NCBI. 

EMBL offers a comprehensive database, UniProt, which contains variety of protein 

information besides sequences (UniProt 2015). NCBI offers several databases, each of 

which is independently served. The following list explains the currently active databases 

that store, annotate, organize and serve protein sequences. 

i. UniProtKB/Swiss-Prot (by EMBL) hosts proteins which were curated and 

reviewed manually. 

ii. UniProtKB/TrEMBL (by EMBL) contain proteins that are automatically 

annotated. 

iii. UniParc (UniProt Archive by EMBL) is a non-redundant database and each 

protein sequence (collected from different resources) is assigned to an ID.  

iv. UniRef (UniProt Reference Clusters by EMBL) contains sets of UniProtKB 

(including isoforms) and selected entries from UniParc. The sets are non-

redundant as homologous proteins are clustered together. The sets of 

UniRef100, UniRef90 and UniRef50 were defined based on the sequence 

identity (100%, 90% and 50% respectively) that is used to cluster similar 

sequences.  

v. GenPept (by NCBI) is collection of protein records which are automatically 

translated from coding sequences in the GenBank resource. 

vi. RefSeq (by NCBI) database contains non-redundant and curated set of 

proteins (Pruitt et al. 2012). A protein record is not repeated in this database 

for the same genome. It does include alternative gene products, isoforms.  
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vii. NCBI non-redundant (NR) database is the collection of protein sequences in 

which identical sequences are clustered together. Though the main resource is 

GenPept, it is not limited to it. The sequences are also collected from other 

resources such as RefSeq, Protein Data Bank (PDB), UniProtKB/Swiss-Prot 

etc. 

By definitions UniProtKB/TrEMBL and GenPept should be similar type of databases as 

they automatically annotate proteins from coding sequences. UniProtKB/Swiss-Prot and 

RefSeq databases are subsets of UniProtKB/TrEMBL and GenPept respectively. By the 

same logic, they can be considered equivalent, as their objective is to characterize 

proteins manually. UniParc and NCBI nr databases can be considered similar because 

they are collections of unique protein sequences. These two streams of protein sequence 

resources (maintained by EMBL-EBI and NCBI) share the majority of the sequences, 

however the content of the databases are not identical. Therefore, the results using the 

“equivalent” databases may not be the same.  

2.2 Comparative sequence analysis 

Duplication followed by polymorphisms and selection pressures are the main processes 

driving the evolution of genes - de novo inventions are more infrequent than alterations 

of existing coding regions (Hughes 1994). Because genes were derived from each other, 

homologous genes/proteins have similarities in terms of sequence. Therefore, a protein 

with unknown function can be compared to the existing ones in order to predict potential 

function, interaction partners and cellular localization. Comparative analysis of DNA and 
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protein sequences has been a successful branch of computational biology since the 

beginning of the genomics era.  

Nucleotide and amino acid sequences are composed of alphabets with the length of four 

and twenty respectively. One can expect that sequence comparison should not be 

different than text string comparison from the computational point of view. Although the 

string and sequence comparison algorithms are comparable, the parameters in molecular 

biology are different. First, there are indels in evolution, which can be short piece of 

sequence as well as long stretches. Second, the single point mutations should be taken 

into account carefully by considering about the likelihood of substitutions. Not all of the 

amino acid substitutions are equally tolerable. For this reason, there is always a guide in 

sequence comparison, called substitution matrix. These matrices include scores for each 

possible amino acid substitutions. The amino acids sharing physiochemical properties 

are more likely to replace each other. In benchmark alignments of homologous 

sequences, the statistics of each substitution establish the tendency patterns of amino 

acid replacements. Therefore, by guidance of the matrix, this kind of substitutions is 

favored. 

Sequences must be aligned in order to match the residues sharing common position in 

the ancestral sequence. Due to indels, sequences may not be aligned perfectly. Thus, 

indels are represented by gaps introduced in the alignment. In the alignment algorithms, 

a gap is introduced with a penalty cost to prevent false/artificial indels.  There are two 

types of sequence alignment serving to different purposes: pairwise and multiple.  

  



29 
 

2.2.1 Pairwise alignment 

Basically, the aim of pairwise alignment is to answer the question of “Are two proteins 

homologous?”. Although similarity is a good indicator of homology, it doesn’t necessarily 

prove it because similarity between two sequences may arise by random chance. Also, 

sequences may share only partial similarity due to gene duplication, fusion and deletion 

events. For this reason, there are methods developed to detect positional and general 

similarities. Thus, there are two types of pairwise alignment: (i) local and (ii) global 

alignments (Figure 2-1).  In global alignment the aim is to align entire length of 

sequences. On the other hand, local alignment focuses on subsequences that are most 

similar between two sequences. The aim of local alignment is to find the subsequences, 

which give the highest score (calculated from the substitution matrix) when aligned. 

Because introduced gaps cause penalties in alignment scoring, the number of gaps in 

local alignment is kept at minimum.  

 

 

 

A) Global and B) local alignments. 

Figure 2-1 Pairwise alignment types.  
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Pairwise comparison of n number of sequences with each other is computationally easier 

than building multiple sequence alignment of n sequences. Thus, pairwise alignment 

calculations are efficient and relatively fast in comparison to multiple sequence 

alignments. There are tree methods in this type of alignment: (i) Dot-matrix method; (ii) 

Dynamic programming and (iii) Word method (Rekepalli 2007). Dot-matrix method is 

efficient to reveal insertions, deletions and repeats. However, it is slow when analyzing 

large sequences.  Dynamic programming, itself, cannot identify insertions and deletions 

efficiently. “Word” (or k-tuple) remains as the most efficient, and thus preferred pairwise 

alignment method. By this approach, unnecessary calculations between irrelevant 

sequences are avoided. Although this method doesn’t result in the optimum alignment, it 

is fast and thus appropriate to search similar sequences in large databases. 

2.2.1.1 BLAST: The popular pairwise sequence comparator 

There have been several algorithms developed to perform pairwise alignments in order 

to calculate similarity score between pairs of genes/proteins, but most of them did not 

scale efficiently with the number of sequences to be searched. After BLAST algorithm 

was developed, most probably because of its speed, it became the most popular tool to 

retrieve similar sequences. It uses the Word method to align two sequences. BLAST 

algorithm has several subprograms to search different input types against different types 

of databases (Table 2-1). Because this dissertation focuses on proteins, this chapter 

specializes in blastp (protein-protein blast) only. 
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Query Subject Program to Use 

Nucleotide Nucleotide blastn or tblastx 

Nucleotide Protein blastx 

Protein Nucleotide tblastn 

Protein Protein blastp 

 

The alignment scores are calculated through a substitution matrix of choice such as 

BLOSUM (Blocks Substitution Matrix) or PAM (Percent Accepted Mutation).  PAM is 

derived from evolutionary distances of proteins. The following number (i.e. 30 in PAM30 

matrix) indicates the allowed percentage of substitutions in 100 amino acid-length 

sequence. PAM250 matrix accepts multiple substitutions per site. Unlike PAM, BLOSUM 

is not designed based on evolutionary distances. Ungapped alignments of protein families 

(or domains) are considered as reference. The number followed by BLOSUM (such as 

62 for BLOSUM62 matrix) is the indicator of identity threshold when clustering sequence 

to build blocks. 

 A single matrix cannot be efficiently applied for every case as each BLAST query has its 

own evolutionary dynamics (Altschul 1991; Altschul 1993). By default, BLOSUM62 

(Figure 2-2) is utilized by BLAST, which has shown to be most efficient scoring matrix in 

identifying low similarities in general (Henikoff and Henikoff 1992). For short protein 

sequences, the scoring matrix should be more conservative for substitutions in order to 

eliminate false positives. Compared to BLOSUM, PAM matrices have higher mismatch 

penalties for amino acid substitutions, consequently they are more appropriate for short 

(less than 50 amino acids) length of queried sequences (Figure 2-2).  

Table 2-1 BLAST programs.  
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NCBI is the primary host for the BLAST algorithm. It enables users to “blast” their 

sequence of interest on a database of choice (such as RefSeq, NR, Swiss-prot etc.) and 

against a specified taxonomic level. Therefore, the database to search similar sequences 

can be manually set. Statistical significance of the hits (found similar sequences matched 

to query) is indicated by an important parameter called E-value. E-value depends on the 

database size and gives the number of hits to expect due to random chance only (Kerfeld 

and Scott 2011). Lower E-values means that the match is less likely to be false a positive. 

For instance, with E-value of 1 indicates one false positive “similar” sequence expected 

to be found by random chance in the given database. 

BLAST algorithm is heuristic and it aims to find similar sequences quickly without the 

concern of finding optimum alignments. Thus in principle, when two sequences are 

compared by BLAST, presence of another local alignment with higher score than the 

match is possible. Also, because it is a local alignment tool, it is not designed to provide 

high quality global alignments. For these reasons, though it is one of the fastest tools to 

find similar sequences on large databases, BLAST shouldn’t be used to infer distances 

between two proteins and it cannot replace the function of multiple sequence alignment 

tools. 

2.2.1.2 PSI-BLAST: To detect distant homology 

The problem of pairwise alignment is the fact that only obvious similarities can be 

detected. Subtle similarities may not be identified through pairwise comparison (Figure 

2-3). Two homologous sequences derived from a common ancestor could have diverged 

enough to loose amino acid identity. However, the physical-chemical composition of 

sequence may have been conserved to perform the same function, which is apparent in  
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Both matrices have identical entropies. Copied from (Henikoff and Henikoff 1992). 

 

homologous sites with reduced alphabets. A functional unit of a protein have a profile 

which carries the characteristics of the represented unit. Remotely related and 

functionally equivalent proteins share alphabet characteristics (profile) to perform the 

same function. Thus, a profile can be used as a signature for detecting remote 

homologies.  

To overcome the sensitivity problem of pairwise comparison, PSI-BLAST (Position-

Specific Iterative Basic Local Alignment Search Tool) was developed. The algorithm is 

processed iteratively. First iteration is identical with the conventional BLAST procedure. 

A query sequence is blasted against a database. Before next iteration, significant BLAST  

Figure 2-2 BLOSUM62 (below) and PAM160 (top) substitution matrices.  



34 
 

 

Sequence 1 and Sequence 4 are distantly related with no sequence identity. It is not possible to 

identify the relationship by comparing these two sequences only. 

 

hits (under a specified e-value) are collected and aligned. From the alignment, a profile 

is generated. The profile includes observed amino acid counts for each position in the 

alignment. These counts are used to determine the likelihood of observing a certain amino 

acid at a certain position. This profile is called PSSM (Position-specific scoring matrix). 

PSSMs contain the conservation pattern of the sequence they represent. In the second 

iteration, the newly generated PSSM is used as query. Compared to pairwise alignment, 

PSSM is more sensitive to find similar hits as it contains information from not a single 

sequence but multiple sequences. After collecting the results, new significant hits are 

added to the alignment, which is used to generate a newer PSSM. For each iteration, 

PSSM is recalculated with the newly selected sequences and queried against the 

selected database. After each iteration new hits can be found or new hits may not be 

Figure 2-3 The problem of pairwise comparison in detecting remote homology.  
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found after some point. Thus, the process is iterated until the point of satisfaction with the 

results, an arbitrary iteration number, or the point that no new sequences can be captured. 

It is important to note that PSI-BLAST algorithm, as other BLAST tools, is heuristic i.e. it 

doesn’t guarantee to yield the optimal solutions.  

Like other BLAST tools, PSI-BLAST is also available at NCBI webserver. Additionally, the 

graphical user interface is convenient to apply PSI-BLAST. In every iteration, users are 

given an option of which hits to include and exclude in the computation of the following 

PSSM. In PSI-BLAST, hits are not guaranteed to be sorted from most to least similar. For 

this reason human intervention is important. In this case deciding on what to include is a 

challenge. Statistical significance is an important criterion to be careful about. When 

manually performing PSI-BLAST on NCBI server, if a hit is at the border of statistical 

significance, there are consequences of including and excluding the hit depending on the 

truth of match. If the hit is false positive, inclusion of an irrelevant sequence may make 

the next PSSM more diverged, which would result in more false positives at the next 

round. If the hit is true positive, but a diverged one, excluding that sequence in PSSM 

may end the iteration at that point and more distantly related proteins may never be found. 

2.2.2 Multiple Sequence Alignment 

Multiple sequence alignments (MSAs) are built to compare three or more DNA or protein 

sequences with each other.  Usually, sequences that are related to each other with a 

common ancestor are aligned to reveal common patterns as homologous sites. Moreover, 

MSAs are prerequisites for most of phylogenetic analyses. The aim of MSA is to align 

homologous residues, such as amino acids which used to have the same common 

ancestor. Thus, columns in the alignment should ideally be homologous residues in each 
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position. The length of sequences can be different in homologous sequences due to 

insertions and deletions. For this reason gaps are introduced and represented with 

hyphens.  

MSAs can be built manually or automatically. Because manually aligning sequences is 

tedious especially for large data, computational algorithms were developed to perform 

this task. Automatic MSA building is an extensive research topic in the field of 

computational biology. Few popular MSA tools are: CLUSTAL W, T-Coffee, MUSCLE and 

MAFFT. 

As homologous sequences are derived from a single ancestor, every residue in a 

sequence had an ancestor residue (except for recent insertions). Although in theory there 

should be a single correct MSA having only homologous residues aligned, in practice this 

is not possible yet. Computational algorithms generate more than one MSAs. The “best” 

MSA determined by specific criteria is selected to be the optimum one. However, in most 

cases, the optimum MSA does not identically reflect the true alignment. Thus, the 

achieved MSA is an approximation and it usually contains mistakes. Manual refinements 

should be applied on automatically generated MSA.  

Substitution matrix is the most important criterion in building MSAs. In protein sequence 

alignment, the substitution matrices are based on the observation of current substitutions. 

Usually, amino acids sharing one or more physical or chemical property are more likely 

to substitute each other. For instance, S and T are often replaceable because they are 

small and polar. Additionally, D and E (negatively charged and acidic); H, K and R 

(positively charged); F, I, L, M, V (hydrophobic); F, Y (aromatic) are often interchangeable 

when only their physiochemical characteristic is conserved at a certain position. Cysteine 
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(C) on the other hand is not replaceable with any amino acid when it builds a disulfide 

bond which is crucial for the protein structure. In DNA alignment, application of a 

substitution matrix is not possible because of the small size of the nucleotide alphabet. 

For nucleotide alignment there is ~1/4 random chance of having an identical match. 

Therefore, in DNA alignment only identity is used as the substitution matrix: Adenine (A) 

can be favorably matched only with A. For this reason, nucleotide alignments are often 

ambiguous and result in more mistakes compared to protein sequence alignments. 

Therefore, if possible, instead of aligning DNA of a coding region, building MSA on amino 

acid sequence yields more reliable results. If nucleotide sequence of a coding region is 

needed for the analysis, building DNA alignment generated from protein alignment 

(reverse translation) can be used. 

2.3 Phylogenetics and Taxonomy 

In biology, it is important to know about the historical relationships between species or 

inherited biomolecules. This can be achieved by DNA and/or protein comparison or 

manually curated classification. This chapter introduces basic approaches of hierarchical 

classification of organisms and biological sequences. 

2.3.1 Phylogenetics 

Phylogenetics is the study of the evolutionary history of organisms (or their hereditary 

components) achieved via genetic material. Typically, a phylogenetic tree is inferred from 

a sequence alignment. Alignments ideally contain only homologous sequences and 

residues in an alignment column share a common ancestor. A phylogenetic tree should 

represent the evolutionary history of subjects while explaining the alignment it is derived 
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from. There is a single correct tree, but it is not easy to achieve. Calculations of the 

likelihoods of all possible tree topologies are computationally impossible with the current 

hardware for more than tens of sequences. So, the aim of algorithms is to pick the best 

tree among calculated ones. 

2.3.1.1 Methods 

There are four major methods to build phylogenetic trees: (i) distance matrix; (ii) maximum 

parsimony; (iii) maximum likelihood and (iv) Bayesian. 

The distance method depends on relative evolutionary distances between each pair of 

sequences to be compared. The distance can be achieved through pairwise comparison 

by which a genetic distance matrix is established (Felsenstein 1988). Pairwise 

comparison results in an underestimated genetic distance as they count each 

polymorphism as a single mutational event, which may actually be caused by multiple 

events (Salemi and Vandamme 2003). Underestimated dissimilarity score can be 

converted to an evolutionary distance by an adjustment formula (Jukes and Cantor 1969). 

Then, tree topology is inferred from estimated distances. There are a few types of tree-

building approaches based on evolutionary distances such as the clustering approach 

and the neighbor-joining method. 

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) is one of the clustering 

methods that provides a hierarchically clustered tree. This algorithm assumes that all 

sequences to be compared are at an equal distance from the root. Therefore, all tips of 

the individual branches are aligned (Figure 2-4). In reality, this is hardly the case. Two 

biological species are rarely at the identical distance from their closest common ancestor, 
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as their evolutionary rates are likely to be different. For this reason UPGMA is rarely used 

to understand true evolutionary relationships. 

 

 

 

Left panel shows a cladogram which UPGMA results in. Right panel shows a phylogram. 

 

Neighbour-joining (NJ) is another distance-based method that is computationally efficient. 

The algorithm clusters the two closest taxa and considers the cluster as a single node to 

compare with others and additively constructs the tree. In order to achieve the correct 

phylogenetic tree with NJ approach, distance matrix must be statistically consistent. In 

other words, the additive algorithm should progress with matching distances in the matrix. 

Because distance matrix generating algorithms are approximations, the true distance 

Figure 2-4 Cladogram vs phylogram.  
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table cannot be produced easily. Thus, the NJ approach may also fail to yield the correct 

tree. It is preferable over more accurate non-distance-based tree inferring methods due 

to its efficacy in computing. A tree from thousands of sequences can be built with NJ in a 

short time on a single node. It is also preferable over the UPGMA approach because it 

doesn’t assume that all sequences have evolved at the same rate, thus it results in non-

equal branch lengths from the root.   

Maximum parsimony approaches assume a minimum evolutionary event number to 

achieve the observed data. It assigns common ancestors to each node in a way that it 

favors the minimum substitution number. Although the logic behind the method is 

reasonable for morphological properties, for DNA/protein sequences, it is not well suited. 

In sequence alignments there is more than one way to achieve minimum evolution, which 

may result in multiple optimal trees. With morphological data, which contains more 

complex structures that are less likely to evolve independently compared to sequence 

residues, maximum parsimony performs well.  

Maximum likelihood (ML) is a statistically well-understood method to estimate parameters 

of an evolutionary model that explains the evolutionary process in which the observed 

data went through. In phylogenetics, this approach can be used to evaluate the pattern 

of branching by considering probabilities explaining the observation under a given model. 

ML is a powerful tree-inferring method as it provides biologically meaningful trees 

compared to parsimony and distance-based approaches. However, it is computationally 

intense. Because searching every possible tree may not be plausible, a heuristic method 

is usually applied. Even the heuristic approach doesn’t enable applying ML on large data 
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sets containing over thousand sequences due to computational constraints, unless there 

is a chance of using a supercomputer. 

Bayesian inference is another method to generate trees from sequence alignments. It is 

similar to ML because it also uses a likelihood function and results in the probability 

distribution of possible trees. However, the difference of this method is that it uses prior 

knowledge on the data (prior probability) to calculate posterior probability. As a heuristic 

method it doesn’t guarantee the best tree. However, it is used as widely as the ML 

method. One main disadvantage of this method is the lack of speed given the nature of 

the algorithm. For small sets of sequences Bayesian inference works well. 

2.3.1.2 Which One to Use: Protein or DNA Sequence? 

DNA is the source of information that is needed to synthesize proteins, whereas proteins 

are the fundamental functional elements in molecular biochemistry, which are subject to 

natural selection rather than protein coding DNA regions. Coding DNA can be modified 

as long as protein function and expression are maintained. For reasons explained below, 

using protein sequences in phylogenetic analysis is more appropriate to obtain trees 

closer to the “true” tree. 

1) Multiple codons one amino-acid 

As discussed in the introduction same amino-acid can be encoded by multiple codons. 

For this reason, any codon producing the required amino acid will not be under an 

eliminating selection pressure. So, different DNA sequences may result in the same 

fitness. 
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2) Codon usage bias 

Organisms may have different preferences for certain codons which encode for the same 

amino acid. Thus, comparing DNA sequences from different organisms may reflect an 

artificial change in nucleotides which have no effect at the protein level. 

3) “Almost” universal genetic code 

Genetic code is general and applies to nearly all organisms with exceptions. Unusual 

genetic codes were reported in lower eukaryotes (Horowitz and Gorovsky 1985; Salemi 

and Vandamme 2003). Non-identical (or even non-equivalent) codons may result in same 

amino acid sequences.  

4) Higher noise in DNA 

In a DNA sequence there are only four letters and at any position of the alignment there 

is 25% chance of matching nucleotides randomly. Therefore, the probability aligning non-

homologous residues is much higher in DNA compared to proteins which would have 

~5% probability of “by-chance” misalignment. Therefore, by using proteins, it becomes 

more likely to align homologous residues (the amino acids that share a common ancestor 

at the same position). 

5) Non-coding regions within a gene 

Genes include regions called regulatory sequences which are not transcribed. In 

eukaryotes, there are introns which are removed at pre-mRNA level after transcription. In 

addition, there are untranslated mRNA regions. Therefore, in order to infer meaningful 

phylogenetic trees these regions should be removed from the DNA alignment, as they 
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can be highly divergent and cause substantial unnecessary noise in the MSA. A high-

quality gene alignment at DNA level can be performed using only coding regions.  

On the other hand, there are minor drawbacks of using protein sequence. First, 

positive/negative selection cannot be quantitatively identified using only protein 

sequences. Second, non-coding sequences may contain conserved information and they 

are only accessible at the DNA level. And finally, in eukaryotes, alternatively spliced 

proteins result in variations of in the products of the same gene. Thus, even if the protein 

sequences are originated from the same gene, they cannot be aligned well at splice site 

regions. The last drawback is addressed in chapter 5. 

2.3.1.3 Reading phylogenetic trees 

A connected sets of organisms in trees is called a taxon (plr. taxa). Each tip (often called 

leaf) represents an organism (or gene/protein) while each node represents the common 

ancestor of the descendants (Figure 2-5). Phylogenetic trees reflect not only clusters of 

similar taxa but also evolutionary relationship between them, which is the point of 

difference between phylograms and cladograms. Evolutionary trees show how ancestors 

are related with their descendants quantitatively. In a vertically aligned tree, the distance 

between two taxa is measured by the total vertical branch length (Figure 2-5). A clade is 

a set of organisms that share an ancestor whose all descendants are in the set (Figure 

2-5). Clades are composed of minimum two organisms. Small clades can be nested in 

large ones.  
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2.3.2 Taxonomy 

Taxonomic trees reflect hierarchically categorized organisms and aim to represent 

evolutionary classification. There are several different attempts on building taxonomic 

classification. Most of these databases are specialized in a certain clade of organisms 

such as bacteria, plants etc. NCBI offers the most comprehensive taxonomy database 

with the attempt of including all organisms from each domain of life (including viruses and 

viroids). This database is carefully built and maintained by considering not only 

DNA/protein similarities between organisms, but also consensus literature in the 

classification. Ranking categories start from root (which includes every organism with no 

exception) to subspecies and every kind of other rankings between them. Each species 

Figure 2-5 Reading phylogenetic trees: illustrated terms and measuring distances between 
two leaves. 
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and classification node is given a “taxid” which is a unique identifier. Every node including 

species can be traced back to the root with the lineage information. One drawback of the 

classification is that ranking levels from root to species are not standard. One organism 

may have only 8 levels described, whereas others may have 16. So, not every organism 

has the same hierarchical levels. 

Resolving ancestral relationships in early eukaryotic domain of life remains a challenge 

(Burki et al. 2007). There is no consensus of how deep eukaryotic groups are connected 

to each other (Hampl et al. 2009). Although their evolutionary relationships couldn’t be 

established, there are 5-6 eukaryotic supergroups known to be diverged at early stage of 

eukaryotic evolution. These supergroups are: Unikonta (Opisthokonts and Amoebozoa), 

Chromalveolata, Plantae, Excavata and Rhizaria (Koonin 2010). Because their 

hierarchical relationships are arguable, eukaryotic supergroups are not used in taxonomic 

database. However, supergroup assignment to genomes would be useful to detect the 

genes that are common in all of them, which is an indicator of the presence of the genes 

in the last eukaryotic common ancestor (Koonin 2010). 

Generally, taxonomic databases provide a good overview of which organisms are similar 

to each other, however it has low resolution within clades. For instance, a question of 

which species within a genus are more similar to each other cannot be answered unless 

they are classified with an intermediate rank between genus and species.  
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2.4 Protein Domains 

Amino acids are the building blocks of proteins. Linked amino acids (polypeptide chains) 

fold and give rise to three dimensional protein structures. Proteins are composed of one 

or more functional and structural units, called domains, which evolve and function 

independently from the rest of the protein. Domain sizes are limited. With 100 amino acids 

in average, majority of domains are shorter than 200 and longer than 40 amino acids 

(Islam et al. 1995; Jones et al. 1998; Wheelan et al. 2000).  

As structural units, domains are not fully conserved sequence-wise. A motif is found in a 

domain, a set of multiple amino-acid residues, which is probably the most critical 

sequence pattern for the biological function of the protein. Because they are actively 

involved in the function (such as catalytic activity, binding, protein-protein interaction etc.) 

motifs are highly conserved and cannot be mutated without a cost in fitness. Residues of 

motifs are structurally in close proximity with each other and most of them are closer to 

each other at the sequence level. Unlike domains, motifs cannot be classified as structural 

units. A fold on the other hand, represents a domain or a smaller unit of a domain from 

the structural point of view only. Folds are composed of multiple secondary structural 

elements. A domain is composed of a single or more folds. 

Single domain proteins (SDPs) are more often found in the early stages of life where 

MDPs are considered as more recent as they are derived from SDPs  (Di Roberto and 

Peisajovich 2014). Evolution of new protein functions occurs through combining and 

rearranging domains. Organismal complexity positively correlates with the abundance of 

multi-domain proteins (MDPs) (Di Roberto and Peisajovich 2014). MDPs are produced 
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by evolutionary mechanisms such as duplication, fusion, disassociation and divergence 

(Kummerfeld and Teichmann 2005). Though it is possible to invent a domain from 

structurally disordered sequences, this mechanism remains minority among others 

(Moore and Bornberg-Bauer 2012; Di Roberto and Peisajovich 2014).  

In functional networks, domains play important roles because of their characteristics. 

Firstly, a domain is an independently-evolvable unit, thus it can exist in various domain 

organizations. In different compositions, sub-functionalization may occur which results in 

function divergence of the entire protein. Secondly, many domain functions are 

extensively regulated. Besides getting turned on/off, the activities vary based on 

molecule-binding and post-translational modifications. Due to their flexibility in adapting 

to proper function, domains are highly dynamic in terms of evolution. Useful domains 

adopted through either vertical or horizontal evolution are kept because of advantage they 

contributed in the fitness of organisms. 

Domain fusion is one of the major mechanisms in generating a new function. Interacting 

domains on different poly-peptide chains can be fused to act together. Fusion saves cost 

in protein synthesis and molecular transport, and thus fusion of interacting SDPs is 

favored in the evolution. Therefore, domains in MDP, if they exist as single proteins, it is 

very likely that they do interact with each other. This is one way to deduce protein-protein 

interactions in silico. However, not all domains are evenly involved in various domain 

combinations, and some of them even don’t easily fuse with another one as they are 

highly conservative in domain architecture preference. These domains are more 

conserved than the ones freely involved in various domain architectures.  
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To conclude, protein function evolution and new protein invention heavily depend on the 

dynamic nature of domain evolution. For this simple reason, understanding domain 

evolution contributes to understanding protein evolution and thus function. 

2.4.1 Domain search methods 

Pairwise sequence comparison is not sensitive in identifying homology (Figure 2-3). 

Homologous sequences share common characteristics, such as conserved residues, 

motifs, secondary structure patterns etc. These characteristics are reflected on the 

sequences and easily detectable through MSAs. MSA can be summarized by profiles that 

represent a family of related (homologous) sequences by containing their conserved, and 

thus important characteristics. Profiles are used frequently to detect homology more 

sensitively.  

One type of profiles is amino-acid frequency matrix, PSSM, which is used in PSI-BLAST 

algorithm. A domain alignment is converted into a PSSM which can be queried to search 

for new sequences belonging to the domain family represented by the given matrix. A 

sequence can also be queried against PSSMs to scan which domains are present in the 

protein. RPS-BLAST (Reverse PSI-BLAST) is a tool enabling search of sequences 

against a PSSM database. Matrices contain frequencies of amino acids in each position 

of proteins. The complete information of an MSA cannot be represented by a score matrix. 

PSSM profiles are strict about insertion and deletions which reduces applicability for 

length wise diverging domains. Because of these limitation in substitution matrix-based 

profiles, probabilistic profiles were developed.  
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The most popular of these profiles uses a statistical method called Hidden Markov Model 

(HMM). HMMs take into account the likelihood of every possible transition state 

categorized as match, insertion and deletion. Thus, HMMs contain information of the 

probabilities of state changes as well as the frequencies of each residue in an alignment 

column. Each position in an HMM has two types of probability: transition and emission. 

Transition probability is simply the likelihood of transitions between ‘match’, ‘insertion’ and 

‘deletion’ states. Emission probability is the likelihood of observing an amino acid or an 

insertion at each position. HMMs are more complicated than PSSMs, as they store more 

information and offer more sensitive domain identification. Sequence of interest can be 

compared with HMM of a pre-compiled domain/protein family in order to question the 

relationship. This is a widely used approach to identify protein domains. HMMER3 is a 

well-known package of HMM profile-related tools (Mistry et al. 2013). HMMscan tool 

allows searching sequences against a profile database whereas HMMsearch is used to 

search a certain profile against a sequence database. HMMbuild generates HMM out of 

a given MSA.  

HMMs substantially contributed in protein/domain classification and identification. 

However, in the investigation of distant homology, the sensitivity of the HMM-sequence 

comparison still remains under the desired level. A more sensitive approach was 

developed, which is HMM-HMM comparison. First, a sequence of interest is searched in 

a sequence database to find closely related sequences using pairwise similarity searches. 

Significant hits are collected and aligned. The built MSA is then converted to an HMM 

profile. Next the HMM profile is queried against the same sequence database. Because 

an HMM is used now, the search is likely to result in newer hits. The new significant hits 
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are also added to the alignment, which is then converted to a second HMM and the 

process is repeated several times (Figure 2-6). The final HMM profile is then compared 

with a collection of HMMs. The HMM-HMM comparison (Figure 2-7) helps in detection of 

distant homologies. HHsearch is a popular tool that is often used for HMM-HMM 

comparisons. 

2.4.2 Protein/domain profile databases 

Domain profiles are annotated and organized in different forms in several databases. The 

most popular domain profile database is Pfam (Protein Families) (Finn et al. 2014). Pfam 

contains MSAs and derived HMM profiles for domains. HMMs in Pfam are built using 

HMMER3 (Mistry et al. 2013). Pfam-A is the primary collection containing manually 

annotated protein/domain families. Pfam-B is another resource for other families which 

are built automatically from protein/domain clusters retrieved from ADDA (Automatic 

Domain Decomposition Algorithm) (Heger et al. 2005) database. These protein clusters 

are not manually checked and thus not annotated. Pfam-B domains are generated from 

protein/domain clusters which don’t overlap with any current Pfam-A models. Therefore, 

the aim of Pfam-B is to cover “orphan” sequences, however they don’t give any biological 

insight other than the conservation characteristic of the region.  

TIGRFAM is another HMM-based database as it also uses HMMER3 to build models 

(Haft et al. 2013). Unlike Pfam, it is not domain-oriented. TIGRFAM includes profiles of 

full-length proteins. Therefore, both SDPs and MDPs are represented by single profiles. 

TIGRFAM is useful to determine protein families but it is not primarily used to assign 

domains within proteins.  
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Figure 2-6 Domain assignment through HMM-HMM comparison with a sequence as starting 
query. 
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(Copied from HHpred website) 

 

 

SMART (Simple Modular Architecture Research Tool) database is another domain 

collection composed of HMM profiles (Letunic et al. 2015). The most important feature of 

the database, which makes it different than other resources, is that the domains are 

manually and carefully annotated, and external links to variety of databases are provided.   

The latest release (version 7) of the database contains only 1204 distinct models.  

PIRSF is a database of protein classification that is manually curated (Nikolskaya et al. 

2006). Only proteins sharing full-length similarity and having same domain architectures 

are clustered together. However, as other manually curated databases, it is not 

comprehensive. Moreover, length-wise diverged protein sequences are not clustered 

together which causes a drawback of losing homology between them. 

Figure 2-7 A representative scheme of HMM-HMM comparison.  
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COG (Cluster of Orthologous Groups) database is semi-automatically generated and 

includes clusters of protein and domains which are likely to be orthologous (Galperin et 

al. 2015). Because the clusters are built automatically, they also include paralogs. The 

algorithm of COG is based on pairwise sequence comparison in the context of individual 

genomes. It is different than a regular domain database as only orthologous domains are 

clustered together. So same domain can be classified in multiple COGs if it is involved in 

various domain architectures.  

Another frequently used database is CDD (Conserved Domain Database) (Marchler-

Bauer et al. 2015). Unlike Pfam, TIGRFAM and SMART it is a database of PSSMs. 

PSSMs are built from manually curated MSAs and sequences are compared with profiles 

via RPS-BLAST. Domain boundaries are primarily determined by available protein 

structures, if one exists. CDD also includes PSSM profiles built from MSAs which were 

retrieved from external databases such as Pfam, SMART, KOG, COG and TIGRFAM. 

SCOP2 is an upgraded version of SCOP (Structural Classification of Proteins) database. 

The database is a collection of hierarchically clustered domains. The classification 

principle is structure-oriented. The hierarchical classification levels are as the following: 

 Structural Class: All alpha 

 Fold: Globin-like 

 Superfamiliy: alpha-helical ferredoxin 

 Family: pyrimidine dehydrogenase N-terminal domain-like 

 Protein:  Dihydropyrimidine dehydrogenase, DPYD 

SCOP2 also contains crosslinks on relationships between proteins in terms of evolution 

and structure (Andreeva et al. 2015). The database is manually curated, consequently 

reliable, however not comprehensive. SUPERFAMILY is an HMM-based database built 

on the SCOP domains at the superfamily level (Gough and Chothia 2002). 
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CATH is another structure-oriented collection of hierarchically classified domains (Sillitoe 

et al. 2015). It is semi-automatically maintained by using entries from PDB (Berman et al. 

2000). CATH is an abbreviation representing four levels of classification: (i) Class 

(equivalent to SCOP Structural class); (ii) Architecture (equivalent to SCOP fold); (iii) 

Topology; (iv) Homologous superfamily (equivalent to SCOP superfamily). The database 

is built on solved structures. Gene3D is a collection of CATH classifications applied to 

protein sequences by revealing similarities between solved structures and other 

sequences whose structures have not been solved (Lees et al. 2014).  

SeqDepot is a comprehensive collection of various databases on a non-redundant set of 

protein sequences and their associated components (Ulrich and Zhulin 2014) . The 

motivation behind the database is to avoid unnecessary recalculations on predicting 

protein components for identical sequences. Each sequence in the database is 

represented by an id (20 characters), which is used to retrieve pre-computed sequence 

features such as hits from 18 resources including Pfam, TIGRFAM and SUPERFAMILY. 

2.4.3 Web-servers for domain searching 

Pfam website enables domain searching by HMMER3. It also includes a large repertoire 

of pre-computed domain architectures on UniprotKB sequences. Pre-computed domain 

architectures can be queried by entering desired presence and/or absences of domains. 

Phyletic distribution of single domain presence is also offered. However, genomic 

absences of domains are not shown. 

In Pfam, related domain families are clustered together with profile-profile comparisons 

such as HHsearch (Soding 2005) and SCOOP (Bateman and Finn 2007). Also the fact 
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that a same region of a sequence has significant hits for more than two Pfam profiles is 

considered as an indicator of related profiles, thus they are categorized as candidates to 

be clustered. These clusters are termed clans in the database.  Though domains which 

are members of the same clan are highly likely to share a common ancestor, the 

homology is not guaranteed.  

HMMER web server also allows domain prediction through HMMscan (Finn et al. 2015). 

Unlike Pfam it doesn’t store pre-computed domain architectures. It also allows 

HMMsearch by querying an MSA. MSA is converted to an HMM automatically with 

HMMbuild and generated HMM is searched on the database of choice such as Uniprot, 

SwissProt and PDB. 

CD-Search webserver allows querying sequences against CDD (or other compiled PSSM 

libraries) which is a collection of pre-calculated PSSMs (Marchler-Bauer and Bryant 

2004). The search is performed by RPS-BLAST. The web server also enables querying 

similar domain organizations through CDART (Conserved Domain Architecture Retrieval 

Tool) (Geer et al. 2002).  

SMART is another web resource for searching a sequence of interest on its own 

database. The most important feature of the SMART website is that it allows querying 

domain composition and organization (Letunic et al. 2015). By this feature a user is 

enabled to search for other proteins that have the same composition of the user’s input. 

Domain organization search allows finding proteins having only the domains in the same 

order with the input. Taxonomic distribution of the hits (only presence) is also offered.  
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HHpred is a platform enabling more sensitive domain investigation (Hildebrand et al. 

2009). The main goal of the tool is to utilize HMM-HMM comparison to infer remote 

homologies. The user enters a single input which is iteratively searched against Uniprot 

or NR database to find similar sequences. This search is performed by either PSI-BLAST 

or HHblits (Remmert et al. 2012) algorithms, by generating a profile after the first run, 

followed by the same procedure several times until a pre-determined iteration number is 

reached. At the end of the iterative sequence search, sequences found to be related are 

aligned and an HMM is built out of MSA. The generated HMM is queried against a 

collection of HMMs via HHsearch algorithm. Libraries of HMMs are built from databases 

retrieved from several resources such as Pfam, PDB, SCOP, CDD, Panther, PIRSF, 

COG, CATH and SUPERFAMILY. The web server also offers an option to limit the search 

with one of the several representative genomes. By default, HHpred also uses a 

contribution of secondary structure information when detecting similarity between profiles. 

Secondary structure information can be retrieved from either a computational prediction 

or a structure database (such as PDB).  

HHpred web-server allows a single query at a time. If the query is a single sequence (not 

MSA), similar sequences are searched via HHblits by default. For multi-domain proteins 

similarity search is biased towards finding the sequences with a similar domain 

architecture (Hildebrand et al. 2009). Moreover, the profile built at every step of iterative 

process will represent the domain architecture of the initial query. The biased domain 

architecture will be specific to find domains which are similar to ones found in the same 

domain organization. More diverged domain sequences, especially the ones that are 

found in different domain organizations, are less likely to be identified. Therefore, in this 
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case, the results do not reflect the true sequence diversity of the protein family. This 

causes a narrower spectrum of the HMM profile and, consequently leads to lower 

sensitivity than theoretical limit (Figure 2-8). If possible generating profiles out of 

individual domains would be more sensitive to find more distantly related sequences.  

It is worth to note that though there are databases containing pre-calculated HMM-

sequence comparison results, there is no such database for HMM-HMM comparisons. 

Because HMM-HMM comparison is computationally expensive and there is no standard 

procedure to build first HMM to compare against a collection. With the current hardware 

and software capabilities, HMM-HMM results can only be achieved through via “on the 

fly” computations.   

2.4.4 Other protein components  

Low-complexity regions (LCRs) are subsequences composed of biased amino acid 

composition with a little degree of diversity (DePristo et al. 2006; Coletta et al. 2010). Most 

of them are sequences composed of one or few different amino acids, or in other words, 

it utilizes only a limited subset of the amino acids alphabet. LCRs are usually non-

conserved, irregularly spaced and repeated. About 12% of Uniprot amino acids are found 

to be within LCRs (UniProt 2008). These sequences become non-globular/disordered 

structures when translated. In sequence similarity searches including profile-sequence 

comparisons, LCRs cause false positive matches. Therefore, hits on the LCR part of a 

sequence should be taken into account cautiously. SEG is an algorithm used to predict 

LCRs (Wootton 1994). 
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Figure 2-8 Sensitivity problem of querying entire length of multi-domain protein in HMM-
HMM search. 
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Coiled coils are structural units that are formed by anti-parallel two or three alpha helices. 

The amino-acid composition of these units shows a predictable pattern which is a 

combination of hydrophobic and hydrophilic amino acids. From sequence information 

only, coiled-coils can be easily predicted. COILS is an algorithm developed to predict 

these structural folds (Lupas et al. 1991).  

Proteins can be cytoplasmic or membrane associated. Membrane-bound proteins have 

at least one region anchored within membrane. Transmembrane regions are composed 

of mostly hydrophobic residues. Though secondary structure of these regions are usually 

alpha helices, there are membrane proteins with beta barrel structures. Membrane-bound 

alpha helices can be computationally predicted with HMM approach. TMHMM is a popular 

tool to predict transmembrane alpha helices (Sonnhammer et al. 1998). 

Signal peptides are short N-terminus regions of some proteins which are recognized by 

transporter proteins to transfer proteins to the subcellular location where they function. 

After translocation, signal peptidase cleaves this sequence. These regions are composed 

of hydrophobic residues, which in turn form an alpha-helix type structure. For this reason, 

signal peptides can be wrongly predicted as transmembrane helices. PHOBIUS is an 

algorithm to distinguish between signal peptides and transmembrane helices (Kall et al. 

2007). 

2.4.5 Domain coverage 

Proteins can be defined and annotated based on the domain content. However, there are 

proteins that have not been found to be composed of any domain. Moreover, in multi-

domain proteins, identifying only a single domain will not solve the problem of 
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understanding the function of the entire protein. The orphan sequences have been 

referred as “dark matter” of protein universe (Rekapalli et al. 2012). Four potential reasons 

causing this dark matter of the proteins have been established: (i) errors in sequencing 

DNA, which would cause meaningless protein sequences and no similar sequences can 

be found; (ii) non-globular structures that are basically non-conserved disordered parts of 

proteins; (iii) inability to identify domains due to too diverged sequences by the course of 

evolution, which is a computational limitation; (iv) an encountered novel domain, which 

cannot be identified because of no similarity with the existing sequences (Levitt 2009).  

When inter-domain regions are subtracted orphan sequence ratio in protein universe was 

found to be ~40% in 2012.  The relative size of uncovered amino acid sequences is 

shrinking every year. From April 2009 to December 2011, the Pfam coverage increased 

3.4%. However, if the trend of domain coverage remains same, it will take more than 20 

years to cover proteins in terms of domains. This fact shows a necessity of applying more 

sensitive domain search algorithms. 

2.5 Human Genome and Genetic Diseases 

2.5.1 Human Genome 

Twenty years ago, an accurate estimate on the number of protein-coding genes in human 

genome couldn’t be made. Though in 1960s 2,000,000 genes were estimated, in 1970s 

the upper limit for this count was determined as 40,000 (Cristianini and Hahn 2006). 

Recent work, although not precisely, shows that the human genome contains ~19,000 

protein-coding genes which comprise only 1% of the human genome (Ezkurdia et al. 
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2014; Flicek et al. 2014). Overestimates on gene count were likely to be caused by the 

observation of the unique protein counts prior to the discovery of alternative splicing.   

Humans and mice share majority of their genes with 85% average sequence identity in 

coding regions and their genomes are comparably similar in terms of content and 

sequence. Most of mice genes show noticeable phenotypes when knocked out and ~30% 

of them cause prenatal fatality. Therefore, each human gene is also suggested to be 

critical in survival. However, impacts of 52% of human genes have not been determined 

yet (Chong et al. 2015). Clearly, there is still a lot to be discovered on human genes, and 

thus health. 

2.5.2 Variants 

DNA polymorphism is a variation in nucleotide sequence that is common in population. 

An arbitrary cutoff percentage to categorize a DNA variation as polymorphism is 1%. It 

means that when a variation is observed in more than 1% of the population it is called 

polymorphism. DNA polymorphism and mutation are often misused interchangeably. 

Although every polymorphism can be defined as a mutation, not every mutation is 

polymorphism. Novel mutations that are population independent should not be called 

polymorphism. Most polymorphisms are benign. If they were damaging then they would 

have a fitness cost, which would have resulted in a reduced allele frequency. However, 

in biology there are many examples of DNA polymorphisms that are damaging at certain 

conditions. Also, combination of polymorphisms can determine the phenotype in health 

and disease. The most common type of polymorphism is a Single Nucleotide 

Polymorphism (SNP). SNPs can be within non-coding as well as coding DNA regions. 

Coding SNP types are basically categorized as: (i) Non-synonymous (ii) Synonymous and 
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(iii) Nonsense. Non-coding SNPs can affect transcription, especially if they are in 

functionally important regions such as the promoter, enhancer and silencer.   

2.5.3 Sequencing Human Genes 

Current sequencing technologies aim to be cheap, fast and high throughput. Since 2005, 

high throughput parallel sequencing approach is called Next Generation Sequencing 

(NGS). Today, NGS platforms can sequence a human genome within a day with a cost 

of a few thousand dollars.  

2.5.3.1 Whole Genome Sequencing (WGS) 

The process of deciphering the entire DNA code of an organism including mitochondria 

(or chloroplast in plants) is called whole genome sequencing (WGS). WGS has an 

important advantage as it provides information about not only genes but also any other 

DNA region. Thus, for complicated diseases caused by multiple coding and non-coding 

regions, WGS is the most appropriate choice due its comprehensive scan. However, it is 

expensive compared to the other specialized sequencing approaches. For testing 

specifically certain genotypes, WGS would be a waste of money and time. High coverage 

in sequencing is obtained with an extra cost. Because WGS is already expensive, 

coverage levels are kept at minimum levels in order not to increase the cost. The low 

coverage results in low confidence. 

Human WGS results contain 6 billion (2 sets of chromosomes X 3 billion bases) 

nucleotides of information, in principle. Today, the analysis of the generated data is more 

challenging than sequencing. Although there is a number of robust algorithms available 
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for processing the raw data, manual intervention is considered as a must to deduce 

biological meanings.  

2.5.3.2 Whole Exome Sequencing (WES) 

The entire set of exons in the genome is called exome. Whole exome sequencing focuses 

on the exome and ignores other DNA regions. Because many known genetic diseases 

are associated with coding regions, most clinicians are interested only in exons. In 

addition, because only ~1% of the human genome is composed of exons, WES is 100 

times cheaper than WGS. It means that, 100 times more samples or coverage can be 

sequenced or achieved with the same cost. Like replication that DNA polymerases 

perform in cells, sequencing in laboratories is erroneous. The low cost of WES enables 

high coverage in DNA sequencing, which provides confidence in sequence analysis. 

2.5.3.3 Targeted Sequencing 

WGS and WES are usually used to identify the comprehensive list of variants, when a 

clinician suspects about a genetic case which has not been associated with a gene yet. 

However, in most cases DNA tests are performed to check if a certain gene/protein 

contains a mutation. In these cases only that part of the genome is targeted and 

sequenced. This approach is highly practical and preferable in terms of money, time and 

confidence.  

2.5.4 Mendelian Diseases 

A better understanding of diseases was probably the most encouraging motivation of the 

human genome project. Before the project started, the community expected to cure many 

diseases by understanding the causes with deciphered DNA code. However, sequenced 
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human genome came with many unknowns and as of today, the causes of many genetic 

disorders are still unidentified. There are two types of genetic disorders classified based 

on their mechanism of action: Mendelian and complex disorders. Mendelian traits are 

consequences of single gene variations which can cause disorders such as sickle-cell 

disease and cystic fibrosis. The inheritance pattern of Mendelian traits is simple and 

traceable. In complex disorders such as diabetes and cardiovascular diseases, there are 

more than one gene involved. For multi-genic disorders it is challenging to understand 

the contribution of each gene involved in the disease. The primary aim of many 

researchers was to understand the simpler of the two types, Mendelian disorders. 

Mendelian traits are caused by loss of function, activity change, mislocalization of 

proteins. About 8% of people are diagnosed with a genetic disorder every year (Baird et 

al. 1988; Chong et al. 2015). Mendelian birth defects are the primary cause for the death 

under the age of one (Chong et al. 2015).  

In clinics only well-established disorders can be diagnosed, whereas others cannot. 

Clinical diagnosis rate of Mendelian phenotypes is 50% (Chong et al. 2015). In children, 

diagnosis rate is as low as 11%. Besides, diagnosis success is another problem. There 

is a number of patients who are incorrectly diagnosed especially for rare diseases. Also, 

diagnosis periods are sometimes too long, which reduces the quality of life and results 

even in more severe conditions.    

With recent developments in WGS and WES, the average number of discovered genes 

associated to a monogenic Mendelian phenotype has been increasing. WES has been 

the most widely used in diagnostics success compared to karyotyping and genomic 

hybridization. The WES related diagnose success rates of 25% - 30% depends on the 
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recent discoveries on the association between genes and disorders. Thus, the future of 

the remaining 70% - 75% percent undiagnosed genetic disorders will depend on the 

findings on the gene-phenotype associations. As of today, Online Mendelian Inheritance 

in Man (OMIM) (McKusick 2007) database contains 7998 phenotypes described to have 

Mendelian basis. For ~45% of the Mendelian phenotypes, the molecular basis and 

responsible genes are still unknown.   

For autosomal dominant diseases, at least one parent should display the diseased 

phenotype. In autosomal recessive diseases, if the parents are healthy, the both must be 

carriers and there is 25% chance of inheriting both disease alleles to the child. 

Heterozygosity is inferred from the relative ratio of alleles in sequence reads. Normally 

50% is expected for heterozygous conditions.  

2.5.5 Orthologs and Paralogs in Disease 

Most of Mendelian phenotypes are caused by mutations in coding regions as they would 

have direct effects on proteins which are the fundamental biological molecules in cellular 

processes (Cooper et al. 2010).  

Evolution of genes mainly depends on two major mechanisms: duplication and loss. 

These two events work together to invent new genes. An existing gene is duplicated in 

cellular processes such as homologous recombination, retrotransposition, chromosomal 

and whole genome duplication, and replication slippage. Right after duplication, the new 

gene is likely to be identical to the original one in terms of sequence. However, since one 

of the two is not going to be critically necessary, one of them will likely accumulate 

mutations and “differentiate”. Before the newer duplicate diverges, it may function in the 
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same way of the original one. In that short time frame, the original gene may accumulate 

some mutations which would be compensated by the newer duplicate. Therefore a gene 

duplication may cause the original gene to be slightly diverged from the optimum fitness. 

In evolution, the redundancy of genes is not tolerated over long periods of time and one 

copy (usually the newly generated) either gains a new function or gets lost. These two 

sequences are still called homologous as one is derived from another. However, they are 

not orthologous as they are not resultant of a speciation event and they often have 

different biological functions. These genes are called paralogs and they are frequently 

associated with different phenotypes. For Mendelian diseases, it has been found that only 

one of the paralogous genes is associated with a disease (Figure 2-9) (Dickerson and 

Robertson 2012). Moreover, most of the Mendelian diseases are associated with the 

genes that have duplication history, which is likely to be caused by the slight divergence 

from the optimum fitness of the original gene upon duplication. 

2.5.6 In silico Variant Assessment  

Each human genome is estimated to contain 24,000-26,000 coding SNPs. Though 

substantial portion of the SNPs is synonymous, the non-synonymous part has a potential 

of changing the function of the associated protein. Each human genome contains 250-

300 loss-of-function variations affecting the function of the protein which in turn may 

cause a disorder mostly at homozygotic or compound-heterozygotic state (1000-

Genomes-Project-Consortium 2010). This is how rare genetic disorders arise. Although 

there are biochemical assays for well-known genetic disorders, not all of them are 

practical to be applied. Moreover, for cases where there are multiple suspects, testing 

each case is time consuming, financially unfavorable and labor intensive. Additionally,  
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Frequencies of disease genes from different sizes of gene families. Copied from (Dickerson and 

Robertson 2012) 

 

biochemical test-based diagnostic decisions are made only for well-established disorders. 

For the remaining genetic disorders, a high throughput screening is needed. For these 

reasons, molecular testing has started to be widely applied in clinics. DNA sequencing is 

a cheap and standard method, and can play a vital role in diagnoses of some cases. 

However, the analysis part can be challenging especially if the variant of interest is 

unusual. When encountering a novel non-synonymous mutation, the question that 

clinicians asks is: “Does the mutation affect the protein function?” To answer this 

question, the only easy way is to computationally predict the potential effect of the variant 

on the function.  

Figure 2-9 Gene family members are not involved in diseases equivalently.  
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There is a number of variant assessment tools (Table 2-2). Each of them has its own 

approach to evaluate the variants based on several features such as evolutionary history, 

structural and physiochemical importance of the substitutions.  Physiochemical property 

change in a substitution can only be a contributing parameter, as it is not accepted to be 

standard in every case of molecular interaction between amino acids. Structures on the 

other hand can be useful, because biological function of proteins depends on their 

structural stability. However, structures of only 36% of human proteins have been solved 

so far. For this reason, evolutionary information set the basics of the algorithms assessing 

non-synonymous variants.  Almost all of the protein-coding genes in human are 

conserved in vertebrate lineage (Aparicio et al. 2002; Mouse Genome Sequencing et al. 

2002). The evolutionary depth for human genes should allow for the observation of benign 

mutations to be present in wild type genomes of other organisms, which is then translated 

to human variant interpretation. Therefore, whether a site is conserved or not has a 

substantial contribution in decision making about the risk of a variant. The current tools 

select a subset of related sequences by eliminating too close and too distant sequences 

and they do not consider the phylogenetic relationship between them.   

Each of these automated tools uses their own approaches and as a result they lead to 

different predictions. The ratio of overlapping predictions for rare and novel variants 

between tools is fairly small (Chun and Fay 2009).  So, a single tool is insufficient to 

confidently categorize variants. If a stringent categorization is desired, agreement 

between tools can be used as proposed in Chun et al. However, agreed results from 

multiple tools clearly reduces the specificity. For instance, in a research performed by  
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Name Reference Basis 

ConSurf (Ashkenazy et al. 2010) Evolutionary conservation 

FATHMM (Shihab et al. 2013) Evolutionary conservation 

MutationAssessor (Reva et al. 2011) Evolutionary conservation 

PANTHER (Thomas and Kejariwal 
2004) 

Evolutionary conservation 

PhD-SNP (Capriotti et al. 2006) Evolutionary conservation 

SIFT (Ng and Henikoff 2003) Evolutionary conservation 

SNAP2 (Hecht et al. 2015) Evolutionary conservation 
and predicted structural 
information 

SNPs&GO (Calabrese et al. 2009) Protein structure/function 

Align GVGD (Mathe et al. 2006) Protein structure/function and 
evolutionary conservation 

MAPP (Stone and Sidow 2005) Protein structure/function and 
evolutionary conservation 

MutationTaster (Schwarz et al. 2010) Protein structure/function and 
evolutionary conservation 

MutPred (Li et al. 2009) Protein structure/function and 
evolutionary conservation 

PolyPhen-2 (Adzhubei et al. 2013) Protein structure/function and 
evolutionary conservation 

PROVEAN (Choi and Chan 2015) Alignment and measurement 
of similarity between variant 
sequence 

nsSNPAnalyzer (Bao et al. 2005) Multiple sequence alignment 
and protein structure analysis 

Condel (Gonzalez-Perez and 
Lopez-Bigas 2011) 

Combines SIFT, PolyPhen-2, 
and MutationAssessor 

CADD (Kircher et al. 2014) Contrasts annotations of 
fixed/nearly fixed derived 
alleles in humans with 
simulated variants 

 

Table 2-2 Tools predicting effects of missense mutations on proteins. Modified from 
Richards et al. 
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Chun et al., SIFT predicts 53% of the studied variants as damaging (Figure 2-10). 

However, three tools agreed on only 7%. If the agreement of at least two tools criterion is 

used, 28% of variants are predicted as damaging. For this case, sensitivity reduces 

almost by half by using consensus of two tools. To sum up, neither a single tool nor a 

combination of tools is accurate enough to be confident and sensitive in predicting the 

damage of protein variants. This is one of the problems that clinicians are looking forward 

to having it solved.  

To conclude, with the easiness of sequencing, prognosis and diagnosis of human genetic 

diseases should be made by testing DNA. However, a new challenge in molecular biology 

is now to analyze the sequence data rather than retrieving them. Because evolution 

primarily takes effect at the protein level, protein based predictions are preferred by the 

scientific community. Around 19,000 protein coding human genes can only be targeted 

by a robust approach. Automated tools, however, lack accuracy. Though manual analysis 

on proteins cannot be applied on large-scale, case by case, it has a potential to result in 

more accurate predictions in experts’ hands, which in turn would be beneficial for the 

human health.   

 



71 
 

 

Copied from Chun and Fay, 2009. 

 

  

Figure 2-10 Inconsistent results produced by three different methods.  Predictions made by 
three methods. Numbers below and above are variants in the Venter genome for the complete 
set and subset respectively. 
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CHAPTER 3. CDvist: A Webserver for Identification and 

Visualization of Conserved Domains in Protein Sequences 
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3.1 Abstract 

Summary 

Identification of domains in protein sequences allows their assigning to biological 

functions. Several webservers exist for identification of protein domains using similarity 

searches against various databases of protein domain models.  However, none of them 

provides comprehensive domain coverage while allowing bulk querying and their 

visualization schemes can be improved. To address these issues we developed CDvist 

(a comprehensive domain visualization tool), which combines the best available search 

algorithms and databases into a user friendly framework. First, a given protein sequence 

is matched to domain models using high specificity tools and only then unmatched 

segments are subjected to more sensitive algorithms resulting in a best possible 

comprehensive coverage. Bulk querying and rich visualization and download options 

provide improved functionality to domain architecture analysis. 

Availability 

Freely available on the web at http://cdvist.utk.edu 
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Contact 

oadebali@vols.utk.edu or ijouline@utk.edu 

3.2 Introduction 

The identification of protein domains is a key feature of protein sequence analysis. 

Several databases, notably Pfam (Punta et al. 2012), SMART (Letunic et al. 2009), COG 

(Tatusov et al. 2003), CDD (Marchler-Bauer et al. 2013) and others, develop and maintain 

domain models. Searching tools such as RPS-BLAST (Marchler-Bauer et al. 2013), 

HMMER3 (Eddy 2011) and HHpred/HHsearch (Soding 2005; Hildebrand et al. 2009) are 

used to match sequences to domain models present in a given database. The size of the 

protein sequence database grows dramatically, whereas its coverage by precomputed 

domain models increases very slowly (Rekapalli et al. 2012). Consequently, sensitive 

domain searches of sequences in bulk are necessary to improve computational coverage 

of the current and future protein sequence space. Despite the overwhelming success of 

the current state-of-the-art domain searching resources, three areas require further 

improvements: i) combining tools with high specificity and tools with high sensitivity in a 

single framework, ii) multiple query searches using highly sensitive (e.g. profile-to-profile) 

methods, iii) visualization of most relevant information in a responsive and interactive 

way.  

To address these issues, we have developed the Comprehensive Domain Visualization 

Tool (CDvist), a domain searching webserver specialized in maximizing domain coverage 

of multi-domain protein sequences with emphasis on visualization.   
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3.3 Implementation and Features 

Users submit protein sequences in FASTA format and each sequence is processed 

independently of each other on individual linux cluster nodes. Up to 500 queries per 

request are supported. The following domain search methods are implemented in CDvist: 

HMMER3 (Eddy 2011), RPS-BLAST (Schaffer et al. 1999; Marchler-Bauer et al. 2013), 

HHSEARCH (Soding 2005), and HHBLITS-HHSEARCH (Remmert et al. 2012). 

Transmembrane regions are predicted by either TMHMM (Sonnhammer et al. 1998) or 

Phobius (Kall et al. 2007).  Low complexity and coiled coil regions are predicted by SEG 

(Wootton 1994) and Coils (Lupas 1996) respectively. To improve domain coverage, rather 

than using the entire sequence, CDvist iteratively identifies regions without significant 

domain match (orphan segments) and submits each one of them to similarity search 

against a user-determined sequence of databases until the entire protein sequence is 

covered or all databases have been searched (Figure 3-1). The key principle of this 

process is that tools that have high specificity – HMMER against Pfam and RPS-BLAST 

against CDD – are used first. Only then, the sequence segments that were not confidently 

matched to any model are used to build profiles and subjected to more sensitive profile-

profile searches by HHsearch. Each algorithm can be turned on/off and the order of 

databases, and their significance thresholds, can be altered. This flexibility enables users 

to tailor the overall process for their specific purposes. Optional ‘domain split’ function 

splits the matched domain model if there is a considerable unaligned query region (5% 

by default) in the query-model alignment. This unaligned region is considered as an 

orphan segment and is used in the next run to search for potential domains.  
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a) Primary sequence is used as input and transmembrane (gray), low complexity (magenta) and 

coiled-coil (green) regions are predicted. b) HMMER3 scan against Pfam database is executed 

and first domain architecture is built. c-e) HHblits followed by HHsearch is executed against c) 

Pfam,  d) PDB  and e) CDD databases. f) Domain coverage option: gray background represents 

the whole length of model whereas red bar displays the portion of the model that aligns with the 

query. Square points represent the domain positions that do not align with the query. g) Alignment 

option. Sequence is displayed to scale, and each bar stands for alignment quality at that position. 

The absence of the bar at a given position indicates gap in the alignment on query side. 

 

  

Figure 3-1 Workflow and visualization example. 
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A custom built JavaScript module powers the visualization on the client side with images 

in vector format (SVG) that are practical to edit, export as PDF and produce figures of 

publication quality. Results are displayed asynchronously for each query sequence 

submitted, which also allows the user to interact with the data before the completion of 

the entire request. Domain coverage bar provides information on what portion of the 

matched domain model is represented on the query sequence (Figure 3-1f). Alignment 

quality is represented as vertical bar for each position of the alignment. Gaps in the 

alignment indicate that the corresponding part of the query is not aligned with the model 

(Figure 3-1g). Scaled sequence information is mapped on the domain architecture, which 

is easily retrievable by zooming in on the browser. Drag feature allows user to align 

desired parts of batch data for further analysis. All this information is hosted in our 

webserver for over a week with a unique URL. Alternatively, the user can retrieve the 

HTML file to control the interactive feature visualizations locally on a web browser. JSON 

formatted files containing the information used to draw the graphics in the website are 

available for not only for each individual sequences but also for the entire input set as a 

single file. Finally, the log files for each run are available, which display the raw output of 

the whole process. Logs provide extra information on less significant hits which are not 

displayed visually. The databases are updated immediately upon their release. 

3.4 Discussion 

CDvist is designed to provide maximum domain coverage in protein sequences by 

bundling the best current domain search tools into a pipeline that exhaustively searches 

through a series of domain databases in an iterative fashion.  This methodology yields 

the most comprehensive domain architecture for a given protein sequence. Rich 



88 
 

visualization, download options and linear speed-up for bulk queries should be appealing 

to both biologists and bioinformaticians. This webserver would be especially useful for 

multi-domain proteins with rare or unique domain architectures and those prone to 

domain swap, where whole sequence similarity searches often yield uninformative and 

misleading results (Iyer et al. 2001). 
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4.1 Abstract 

Gene duplication and loss are major driving forces in evolution. While many important 

genomic resources provide information on gene presence, there are no tools for retrieving 

information on gene absence. Here, we present Aquerium, a platform for visualizing 

genomic presence and absence of biomolecules with a focus on protein domain 

architectures. The webserver offers advanced domain organization querying against the 

database of pre-computed domains for ~26000 organisms and it can be utilized for 

identification of evolutionary events, such as fusion, disassociation, duplication and 

shuffling of protein domains. The tool also provides alternative inputs of custom entries 

or BLAST results for visualization. Aquerium is available at http://aquerium.utk.edu. 

4.2 Introduction 

Phylogenetic profiling is a method to detect functionally or physically interacting proteins 

by inferring their co-presence/absence in hierarchically clustered species (Skunca and 

Dessimoz 2015). If genes are gained or lost together, it is likely that their products 

participate in the same biological pathway, meaning that they interact functionally. The 

method was first described by Pellegrini et al. who investigated the coevolution patterns 
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of Escherichia coli genes (Pellegrini et al. 1999). They demonstrated that gene groups 

that have similar occurrence profiles tend to be involved in the same pathways. 

Consequently, in addition to discovering protein-protein interactions, phylogenetic 

profiling can be used for protein function prediction. There has been a number of 

successful applications of this context-based method complemented by homology-based 

and experimental approaches (Kensche et al. 2008).  

Homology is inferred through sequence-based similarity searches. Domain organization 

comparisons can also be used to infer homology and to identify protein families. Domains, 

defined as minimal structural and functional building blocks of proteins, are capable of 

folding autonomously and evolving independently. Single domain proteins (SDPs) were 

likely dominant in the early stage of life, whereas multi-domain proteins (MDPs) are 

enriched with the complexity of organisms (Di Roberto and Peisajovich 2014). In SDPs 

the domain itself functions alone while in MDPs domains work in collaboration to perform 

the protein function.Domains can exist in various arrangements in a protein and this 

flexibility enriches the diversity of protein families. The complexity of MDPs can be 

attributed to the evolutionary dynamic nature of domains. The evolutionary events, such 

as domain innovation, loss, duplication, fusion, disassociation and shuffling enable 

proteins and eventually organisms to adapt to their environment (Kummerfeld and 

Teichmann 2005). Particularly, domain shuffling, rather than de novo inventions from 

disordered sequences is the major evolutionary event to generate novel proteins (Di 

Roberto and Peisajovich 2014). It was suggested that the total number of unique protein 

domains decreased in the course of eukaryotic evolution. For instance, last eukaryotic 

common ancestor (LECA) had a larger unique domain pool than any of the current 
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species (Zmasek and Godzik 2011). Also, in mammals, a drop in the domain pool has 

been observed compared to the ancestral repository (Zmasek and Godzik 2011). These 

observations suggest that reusing protein domains in various modifications and 

rearrangements drives protein evolution.  

More complex organisms have relatively more complex MDPs (Das et al. 1997; Wolf et 

al. 1999). This correlation may explain why gene number does not increase with 

organismal complexity (Koonin et al. 2002). Therefore, in order to understand complex 

networks, it is important to investigate the function of domains and how they collectively 

work together. Inferring the evolutionary relationships between domains is critically 

important in order to identify their functions and interactions. 

Domains in protein sequences can be identified computationally, e.g. using. HMM 

(Hidden Markov Model) profiles. Pfam (Protein Families) database is a large collection of 

HMMs and underlying tools, which is one of the most popular resources for identifying 

protein domains (Finn et al. 2014). Pfam-A, a manually curated subset of the database, 

currently (version 28.0) contains 16230 domain models. Another HMM utilizing resource, 

TIGRFAM, contains models for many full-length proteins so that it provides an easy 

detection for protein families (Haft et al. 2013).  

Biological networks diverge from their ancestor by protein or domain gaining/losing and 

domain shuffling. Such diversity patterns can be detected by comparative analysis of 

domain architectures. For this reason, retrieving the domain organization of interest and 

visualizing its taxonomic distribution are the crucial steps in understanding the functional 

relationships within networks. In addition to Pfam, several other tools,  such as SMART 

(Letunic et al. 2015), CDART (Geer et al. 2002), DAhunter (Lee and Lee 2008) and 
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PfamAlyzer (Hollich and Sonnhammer 2007), provide domain architecture querying. 

These tools specialize in searching for protein homologies through similar domain 

architectures. However, none of the current resources allows advanced domain 

architecture querying while visualizing domain presence and absence in the 

phylogenomic context. Furthermore, none of the tools has an option to visualize genomic 

distributions of multiple queries at once.  

To address these problems, we developed Aquerium (architecture querying podium), a 

tool enabling biologists and bioinformaticians to understand the domain-based 

evolutionary history of proteins. 

4.3 Implementation 

Genomes from the NCBI genomes database (as of 12th of December 2014) which also 

had assembly records in the NCBI assembly database were selected. GenBank records 

for each genome was retrieved from the NCBI Entrez Genome database (Gibney and 

Baxevanis 2011). We created a proteome collection for each genome. In order to manage 

isoforms in eukaryotes, each protein was categorized under the gene identifier that it is 

coded by. If a gene has at least one protein isoform matching the query, the tool returns 

true. If several isoforms match with a query, only one of them is taken into account in 

order to eliminate redundancy in count number. SeqDepot database (Ulrich and Zhulin 

2014) was used locally to retrieve the pre-computed domain architectures from Pfam 

versions 27.0 and 28.0 and TIGRFAM versions 14 and 15. Local SeqDepot database was 

updated by running HMMER3 (Mistry et al. 2013) searches against domain databases for 

uncovered proteins.  
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The NCBI taxonomy database (Federhen 2012) was used to build the tree. In addition to 

eight major taxonomic ranks, we also included the five eukaryotic supergroups (Koonin 

2010). Protein GI number to taxonomic id mapping was performed using the local 

database that was retrieved from NCBI taxonomy ftp source (Federhen 2012) and daily 

updated. The resulting taxonomic tree can be visualized by using two sets of genomes: 

species-representative and full sets. Species-representative set (4934 genomes) was 

built by selecting only one representative for strains determined by their species-level 

taxonomic ids. The genomes with the largest number of genes among strains were 

selected as representative. The full set was composed of 26618 organisms. 

The data has been organized in a document based MongoDB database. Custom Python3 

scripts were developed for searching the database. JavaScript was implemented in 

HTML5 to visualize the results. The final figure is drawn in Scalable Vector Graphics 

(SVG).  

4.4 Features 

Advanced domain architecture querying 

MDPs have various domain arrangements. In some proteins, the domain order is 

conserved, whereas other proteins are subjected to domain shuffling, duplication and 

loss. Diverged domain architectures might be indicators of modified or adapted function. 

For these reasons, it is important to enable extensive architecture querying. 

Aquerium allows users to select the domain of interest, called “key domain”, to initialize 

the search.  This field is mandatory and the algorithm will retrieve proteins that have at 

least one key domain. In the query page, a condition (“if” statement in Python syntax) can 
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be specified to customize the query in terms of domain content and organization. This 

condition is used for enriched querying in which presence and absence of other domains 

can be examined. Moreover, the order of the domains, from N- to C-terminus can be 

specified and only proteins satisfying the given condition are retrieved. Specifying a 

condition is not necessary if the user is interested only in the presence and absence of 

the key domain. Domain search can be performed on species-representative and full sets 

and these sets can be filtered based on taxonomic units. 

Visualization 

Species are clustered based on their taxonomic ranks and represented as a sunburst tree 

on which each taxonomic class is drawn as an arc. The length of arcs scales to represent 

the number of species which are eventual descendants of the node. On the tree, there 

are nine taxonomic layers representing the major taxonomic ranks and supergroups for 

eukaryotes (Koonin 2010). After taxonomic ranks, each outer ring represents the 

requested query. If there is any match in the corresponding genome, there will be a 

colored flag aligning with the organism on an outer circle.  

In the “zoom” mode each taxonomic node, represented by an arc, is zoomable on click. 

The sunburst is redrawn and shows only the selected node and its children in a circular 

layout. Extensive coloring options are offered on the fly allowing to produce publication-

quality figures. The coloring of flags can also be performed as a heatmap depending on 

the quantity of each flag. Multiple layers can be visualized on the same tree. Users can 

visualize up to 10 outer layers on the same tree. In the “Arc” mode, clicking on a node will 

redirect the user to another webpage where they can visualize the associated organisms 

and the domain architectures on a collapsable tree layout. 
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Data export 

The sunburst tree can be exported in scalable vector graphics (SVG). The compiled data 

can be downloaded in semicolumn separated file (CSV) format, which includes the 

taxonomic identifiers and the number of occurrences for each organism. JSON file 

containing taxonomically classified organism information is also available to retrieve. 

Moreover, protein sequence (in FASTA format) download option for desired taxonomic 

unit is available.  

Custom input for visualization 

In addition to protein domains, the sunburst tree can be produced with any other types of 

genomic data. Users can input a custom table containing NCBI taxonomic id followed by 

numeric or binary occurrence of profiles in CSV format and visualize the results. Up to 10 

flag layers can be visualized in a single request. 

Aquerium web server also offers visualizing blastp results on the tree. Users must 

download xml version of the BLASTp (Boratyn et al. 2013) results from NCBI and upload 

it to the relevant link on the Aquerium web page. Filtering the blast hits are possible by 

setting up thresholds for e-value, query and subject coverage. Additionally, protein GI 

number list can also be used as an input. 

4.5 Illustrations 

In order to exemplify Aquerium performance, we presented two independent test cases 

which show potential applications to similar problems. 
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Identification of a domain fusion event. Amino acid kinase (AA_kinase) and Aldehyde 

dehydrogenase (Aldedh) domain families are universal and seen in all domains of life with 

minor absences in few parasitic clades. These domains usually comprise a single domain 

protein, such as E. coli glutamate-5-kinase and γ-glutamyl phosphate reductase. Human 

δ-1-pyrroline-5-carboxylate synthetase has evolved as a fusion product of AA_kinase and 

Aldedh domains (Marcotte et al. 1999). Figure 4-1 shows the presences and absences of 

these domains. The outmost layer shows the occurrence of these two domains together 

in a single protein. In all supergroups of eukaryotes, these two domains are fused. The 

observed pattern of inheritance suggests that the fusion of these domains has occurred 

in the common ancestor of eukaryotes, and the common ancestor of fungi lost it.  

Coexisting proteins and abundance correlation. The signaling complex in bacterial 

chemotaxis, which has been conserved since the common bacterial ancestor (Wuichet 

and Zhulin 2010), consists of MCPs (chemoreceptors), CheA (a kinase) and CheW (an 

adaptor). These three proteins are found together in 98% of genomes that encode 

chemotaxis genes (Wuichet and Zhulin 2010). Figure 4-2 shows the phlyetic distributions 

of these three proteins. Satisfactorily, in the vast majority of cases, all three proteins are 

either present or absent in genomes indicating the presence or absence of chemotaxis 

as a cellular function. This test case serves as a control for true negatives. Relative 

abundances of these proteins in genomes (some genomes have several different types 

of the signaling complex encoded by different sets of genes) also correlate.  This is 

visualized using the heatmap option revealing the number of hits for each organism. 

Increased abundance is shown by a change of color intensity from light to dark.  
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Fused proteins containing both Aldedh and AA_kinase domains are found in all represented 

eukaryotic supergroups, suggesting that the fusion occurred in the last eukaryotic common 

ancestor (LECA). 

  

Figure 4-1 Illustration of a domain fusion event.  
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Chemotaxis proteins MCP, CheA and CheW are known to be interacting with each other. They 

show similar patterns of not only occurrence but also relative abundance. 

  

Figure 4-2 Interacting proteins coevolve.   
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4.6 Discussion 

The presence of genetic material in a genome is almost never questioned except for the 

possibility of contamination. On the other hand, the absence is always questioned and 

negative information should be treated cautiously.  Being confident about the absence of 

particular genes/proteins/domains in genomes is challenging for two main reasons: (i) 

genomes may be incomplete, erronenus or contaminated and (ii) genes may not be 

identified due to computational limitations. However, the absence of two or more 

genes/proteins/domains that is consistently observed in independent samplings strongly 

suggests that the absence is true (Figure 2). Independent co-evolution can be identified 

by large-scale analyzes; as the number of samples increases, the likelihood of finding 

independent cases also increases. 

Aquerium enables exploring a variety of phenomena in a genomic context, ranging from 

evolution of individual domains to inferring potential protein-protein interactions, by 

placing a nearly equal weight on the presence and the absence of genomic entities, such 

as genes, proteins and their domains.Thus, this tool is expected to be useful to many 

biologists working within the genomic landscape. 

4.7 Acknowledgments 

This work was supported in part by the National Institutes of Health grants GM072285 

and DE024463. 

  



103 
 

 

4.8 References 

Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten 

WT, McGinnis SD, Merezhuk Y et al. 2013. BLAST: a more efficient report with usability 

improvements. Nucleic acids research 41: W29-33. 

Das S, Yu L, Gaitatzes C, Rogers R, Freeman J, Bienkowska J, Adams RM, Smith TF, 

Lindelien J. 1997. Biology's new Rosetta stone. Nature 385: 29-30. 

Di Roberto RB, Peisajovich SG. 2014. The role of domain shuffling in the evolution of 

signaling networks. Journal of experimental zoology Part B, Molecular and developmental 

evolution 322: 65-72. 

Federhen S. 2012. The NCBI Taxonomy database. Nucleic acids research 40: D136-143. 

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, 

Hetherington K, Holm L, Mistry J et al. 2014. Pfam: the protein families database. Nucleic 

acids research 42: D222-230. 

Geer LY, Domrachev M, Lipman DJ, Bryant SH. 2002. CDART: protein homology by 

domain architecture. Genome research 12: 1619-1623. 

Gibney G, Baxevanis AD. 2011. Searching NCBI Databases Using Entrez. Curr Protoc 

Hum Genet Chapter 6: Unit6 10. 

Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. 2013. TIGRFAMs and 

Genome Properties in 2013. Nucleic acids research 41: D387-395. 



104 
 

Hollich V, Sonnhammer EL. 2007. PfamAlyzer: domain-centric homology search. 

Bioinformatics 23: 3382-3383. 

Kensche PR, van Noort V, Dutilh BE, Huynen MA. 2008. Practical and theoretical 

advances in predicting the function of a protein by its phylogenetic distribution. Journal of 

the Royal Society, Interface / the Royal Society 5: 151-170. 

Koonin EV. 2010. Preview. The incredible expanding ancestor of eukaryotes. Cell 140: 

606-608. 

Koonin EV, Wolf YI, Karev GP. 2002. The structure of the protein universe and genome 

evolution. Nature 420: 218-223. 

Kummerfeld SK, Teichmann SA. 2005. Relative rates of gene fusion and fission in multi-

domain proteins. Trends in genetics : TIG 21: 25-30. 

Lee B, Lee D. 2008. DAhunter: a web-based server that identifies homologous proteins 

by comparing domain architecture. Nucleic acids research 36: W60-64. 

Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status 

in 2015. Nucleic acids research 43: D257-260. 

Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D. 1999. Detecting 

protein function and protein-protein interactions from genome sequences. Science 285: 

751-753. 

Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. 2013. Challenges in homology search: 

HMMER3 and convergent evolution of coiled-coil regions. Nucleic acids research 41: 

e121. 



105 
 

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. 1999. Assigning 

protein functions by comparative genome analysis: protein phylogenetic profiles. 

Proceedings of the National Academy of Sciences of the United States of America 96: 

4285-4288. 

Skunca N, Dessimoz C. 2015. Phylogenetic profiling: how much input data is enough? 

PloS one 10: e0114701. 

Ulrich LE, Zhulin IB. 2014. SeqDepot: streamlined database of biological sequences and 

precomputed features. Bioinformatics 30: 295-297. 

Wolf YI, Brenner SE, Bash PA, Koonin EV. 1999. Distribution of protein folds in the three 

superkingdoms of life. Genome research 9: 17-26. 

Wuichet K, Zhulin IB. 2010. Origins and diversification of a complex signal transduction 

system in prokaryotes. Sci Signal 3: ra50. 

Zmasek CM, Godzik A. 2011. Strong functional patterns in the evolution of eukaryotic 

genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome 

biology 12: R4. 

 



106 
 

CHAPTER 5. Establishing Precise Evolutionary History of a 

Gene Improves Predicting Disease Causing Missense 

Mutations 
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5.1 Abstract 

Predicting the phenotypic effects of mutations has become an important application in 

population genetics studies and clinical genetic diagnostics. Computational tools, such as 

PolyPhen and SIFT, utilize comparative genomics to evaluate the behavior of the variant 

over evolutionary time and assume that variants seen during the course of evolution are 

likely benign in humans. However, these tools do not take into account 

orthologous/paralogous relationships. Paralogs have dramatically different roles in 

Mendelian diseases. For example, while inactivating mutations in the NPC1 gene cause 

the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog 

NPC1L1 are not disease causing and moreover are implicated in protection from coronary 

heart disease. Here we show that by removing the NPC1 paralogs from the analysis we 

can improve the overall performance of categorizing damaging and benign single amino 

acid substitutions. We anticipate that this approach will improve the interpretation of 

variants in other genetic diseases as well.  
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5.2 Introduction 

With the revolutionary developments in sequencing technologies (Katsanis and Katsanis 

2013), molecular testing is now widely used to confirm or support clinical diagnosis.  Being 

cheap, fast and accurate, DNA sequencing is a promising method for prognosis, 

diagnosis, personalized therapeutics and identifying unknown cause in genetic disorders 

(Ng et al. 2010; Chang and Li 2013; Katsanis and Katsanis 2013). There are several 

approaches to evaluate the effect of a variant: (i) evidence-based, (ii) frequency-based, 

(iii) functional (variants with obviously drastic consequences such as nonsense and 

frameshift mutations), and (iv) predictive (Oliver et al. 2015). Being knowledge-based, the 

first three approaches are often successful in determining the effects of variants. 

However, they are limited when it comes to the variants of unknown significance (Katsanis 

and Katsanis 2013). For novel variants, which comprise the vast majority of coding 

variation (Tennessen et al. 2012), in silico prediction is a quick way is to estimate potential 

consequences. There is a number of computational tools, such as PolyPhen (Adzhubei 

et al. 2010) and SIFT (Ng and Henikoff 2003), that are frequently used to evaluate genetic 

variations not only in research laboratories, but also in clinical practices. However, they 

are not yet at the level of desired performance in terms of sensitivity and specificity, even 

for well-studied monogenic Mendelian diseases (Jordan et al. 2010; Sunyaev 2012; Oliver 

et al. 2015). Therefore, there is still a need for improvement in computational prediction 

of variant effects (Oliver et al. 2015).  

Current tools that are automated, fast and applicable to all human protein-coding genes 

consider the following key parameters: sequence conservation, structural constraints and 

physiochemical properties of amino acids. Risk estimation is largely dependent on the 
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molecular conservation, which is inferred from comparative sequence analysis (Ng and 

Henikoff 2006). The motivation behind using molecular conservation as a key estimate is 

the fact that deleterious mutations cause a reduction of evolutionary fitness; therefore, 

they are not selected for and are not observed in homologs in other organisms (Jordan 

et al. 2010). In order to identify homologous sequences in other organisms, current tools 

employ automated sequence similarity searches followed by clustering. Consequently, 

sets of similar sequences that are used in the downstream analysis usually include both 

orthologs and paralogs (Adzhubei et al. 2010). This approach is based on the argument 

that disease-causing substitutions far more often affect protein structure than function 

(Wang and Moult 2001), and while paralogous proteins may have a slightly different 

function, their structure is fully conserved. 

However, recent studies revealed that the roles of paralogous genes in disease and 

health are different. In most of the cases of Mendelian diseases, among gene family 

members, only one gene is associated with the disease, while others do not have any 

role in that particular disorder (Dickerson and Robertson 2012). In 87% percent of the 

gene pairs, only one pair is associated with disease, and this trend is observed in gene 

families with more than two members. Duplication of genetic material is the primary 

source of new protein-coding elements rather than de novo invention. Once a gene is 

duplicated, purifying selection pressure on one of the copies is relaxed and that gene 

becomes more prone to accumulating mutations. This divergence can lead to sub-

functionalization, neo-functionalization or non-functionalization of the paralogous gene 

(Lynch and Conery 2000) often resulting in their different roles of paralogs in disease.  
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This precise pattern is observed in Niemann-Pick disease type C (NP-C), which is a 

neurovisceral lysosomal lipid storage disease with an incidence of 1:100,000 (Vanier 

2010; Patterson et al. 2012; Jahnova et al. 2014). NP-C is inherited in autosomal 

recessive pattern and caused by mutations in either NPC1 or NPC2 genes (Vanier 2015). 

NPC1 and NPC2 proteins work in concert to transport cholesterol from the 

endosomal/lysosomal compartment (Sleat et al. 2004; Vanier 2010). Homozygous loss 

of function in either protein perturbs lipid homeostasis, specifically by causing sterol and 

sphingolipid accumulation in the late endosomal/lysosomal (LE/L) compartment of cells, 

which results in pathogenicity. 95% of affected individuals carry pathogenic mutations in 

the NPC1 gene (Patterson et al. 2012), which recently attracted attention because of its 

role in Ebola virus entry (Carette et al. 2011; Cote et al. 2011; White and Schornberg 

2012).  By contrast, the NPC1 paralog, NPC1L1 is not associated with the disease. On 

the contrary, inactivating mutations in NPC1L1 reduce the risk of coronary heart disease 

(Myocardial Infarction Genetics Consortium et al. 2014). NPC1 deletion in mice causes 

hearing loss (King et al. 2014), defects in retina (Yan et al. 2014), and deficiency in 

cerebellum development (Nusca et al. 2014), whereas NPC1L1 deficiency protects ApoE-

/- mice against atherosclerosis (Davis et al. 2007).  Clearly, these two paralogs do not 

share identical functions and have different roles in health and disease. 

Diagnosis of NP-C is challenging because of the heterogeneity in symptoms and clinical 

presentation (Vanier 2010). Until recently, the diagnostic standard was filipin staining of 

unesterified cholesterol in fibroblasts obtained by skin biopsy (Bornig and Geyer 1974; 

Vanier and Latour 2015). This test, however, is able to make a definitive diagnosis in only 

~2/3 of cases. NP-C diagnostics has been significantly improved through the discovery 
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of cholesterol oxidation products (“oxysterols”) that are elevated in the plasma of NP-C 

subjects (Porter et al. 2010). The plasma oxysterol assay detects >97% of cases with 

100% sensitivity (Jiang et al. 2011). DNA sequencing offers another tool for NP-C 

diagnostics, but in practice detects only ~85% of NP-C cases due to the large number of 

private and non-coding sequence mutations (Stampfer et al. 2013). If a variant found in 

genetic testing has not been previously found to be disease causing, it is followed by risk 

estimation for pathogenicity. For novel missense mutations, in silico tools are 

indispensable to predict potential NP-C. However, each of the tools uses a different 

algorithm and some of them even use different data sets to evaluate the variant effect. 

For this reason, substantial inconsistencies between in silico tools are observed 

(Castellana and Mazza 2013). In case of a contradiction, deciding which software to trust 

in pathogenicity prediction remains a challenge. Researchers usually rely upon 

agreement between several tools, which has the effect of increasing specificity while 

decreasing the sensitivity (Wassif et al. 2015). Moreover, computational risk prediction 

tools that use conservation information do not discriminate between orthologous and 

paralogous proteins (Adzhubei et al. 2010), and, thus, include NPC1 paralogs, such as 

NPC1L1, in their analysis. Although including paralogs in risk estimating datasets is 

convenient (this eliminates computationally demanding and often non-trivial steps to 

separate orthologs and paralogs), such simplification confounds the function-specific 

signal.  

NP-C disease caused by NPC1 mutations is an ideal case study to understand the effects 

of paralogs in predicting disease causing mutations, because of a dramatic consequence 

of the duplication event that yielded NPC1L1. Moreover, many experimentally validated 
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disease-causing mutations as well as alleles with high frequencies that are likely to be 

benign are known for this gene. We hypothesized that it is possible to predict the 

pathogenicity of single amino acid variants (SAVs) in NPC1 using only functionally 

equivalent human NPC1 (HsNPC1) orthologs.  

In this study, we established the precise evolutionary history of the NPC1 gene and 

identified evolutionary events that have likely affected its function. We used this 

information to build a computational approach, which showed improved accuracy in 

categorizing damaging and benign single amino acid substitutions in NPC1. 

5.3 Results 

Distinct Clusters of NPC1 Homologs Suggest Different Functions 

NPC1 protein is predicted to have 13 transmembrane (TM) regions with 3 luminal 

domains. The crystal structure of the N-terminal domain has been solved with bound 

cholesterol, implicating this domain is involved in cholesterol binding and transport (Kwon 

et al. 2009). The pentahelical sterol-sensing domain, which resides between TM3 and 

TM8, likely responds to membrane cholesterol content and is required for cholesterol 

egress from the lysosome. There are 9 human genes, which share homology through 

their sterol-sensing domains and are identifiable in conventional sequence similarity 

searches initiated with NPC1: NPC1, NPC1-L1, PTCH1, PTCH2, PTCHD2, PTCHD3, 

PTCHD4, SCAB SREBF and DISP. These related proteins also share the “Patched” 

domain, which has a role in cholesterol-dependent processes. By contrast, domain 

architectures of these proteins show significant differences, where only NPC1 and NPC1-

L1 contain the N-terminal cholesterol-binding domain (Figure 5-1A). A phylogenetic tree 



113 
 

constructed from the multiple sequence alignment of all Patched domain proteins shows 

distinct clades, where the NPC1-NPC1L1 clade is clearly separated from the rest of the 

Patched-containing sequences (Figure 5-1B).  These findings strongly suggest that other 

Patched-containing sequences should not be taken into account when examining 

function-specific characteristics of NPC1. In contrast, automated tools often include such 

functionally unrelated sequences in their datasets (see appendix). 

Major events in NPC1 evolution  

The NPC1 gene is found in four of the five eukaryotic supergroups - unikonta, plants, 

chromalveolata and excavates – and is missing from Rhizeria. Phylogenetic analysis of 

NPC1 protein shows that the NPC1 gene followed vertical evolution. Thus, it is likely that 

NPC1 was present in the last eukaryotic common ancestor (LECA). Multiple gene 

duplication events are observed in a range of taxonomic ranks from superorder to species 

level: among 397 species having NPC1, 195 (49%) have more than one copy (see 

appendix).  

In the common ancestor of gnathostomata (jawed vertebrates), the NPC1 gene was 

duplicated giving rise to the “NPC1-like” protein, which is present in most jawed 

vertebrates including humans (named NPC1L1). The NPC1L1 clade is greatly diverged 

from the root when compared to the gnathostomatan NPC1 clade (Figure 5-2). NPC1 is 

present in each organism that has NPC1-L1; however, the opposite is not true. NPC1L1 

is missing from some jawed vertebrate genomes. Moreover, the NPC1L1 clade has a 

longer average branch length from its root indicating a greater divergence (Figure 5-2). 

The NPC1L1 divergence and dispensability strongly suggests that its function is different  
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A) The domain architectures of human Patched domain-containing proteins were retrieved using 

the CDvist web server. Boxes with white background represent PFAM domains. Cholesterol-

binding domains (in blue) were retrieved using a PDB database profile.  Cholesterol-binding 

domain was found exclusively in NPC1 and NPC1L1. B) Some pairs such as PTCH1-PTCH2, 

NPC1-NPC1L1, PTCHD3-PTCHD4 have a relatively recent common ancestor, whereas the other 

proteins are related to each other more distantly, as they are represented as single clades on the 

phylogenetic tree. According to the phylogenetic tree the NPC1-NPC1L1 clade is clearly 

separated from other patched domain containing sequences. 

\ 

  

Figure 5-1 Relationships between Patched domain-containing proteins. 
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from that of NPC1, which is further supported by the observation that no mutations in 

NPC1-L1 have been associated with the Niemann-Pick C disease.  

We observed another duplication in neoptera. As in gnathostomata, one of the two copies 

diverged from the original protein. Except for Drosophila willistoni, each neopteran 

genome containing the “diverged” copy also has the “original” version of the NPC1 gene. 

However, the diverged copy is dispensable for some flies. In addition, because the 

diversified neopteran NPC1 shows higher within-clade divergence, it is likely to have 

gained a different function compared to the original protein, as seen in vertebrates (see 

appendix). 

In fungi and amoebozoa, several duplications took place, but only at the species and 

genus level. So there was no major duplication event in these kingdoms.  

In plants, there was a NPC1 duplication in the common ancestor of flowering plants. More 

than one paralog is observed in Pentapetalae. However, the distances of two clades from 

the root are comparable (Figure 5-2). Furthermore, some organisms have only one 

version of the gene from either clade, which suggests that one paralog is sufficient and 

neither copy is indispensable. Internal diversity of two clades were not significantly 

different from each other. Therefore, the clades may not have gained significantly different 

functions. For this reason, the Homo sapiens NPC1 (HsNPC1) orthology assignment 

cannot be precisely performed in plants. 

Unikonts (metazoa, fungi and amoebozoa) and plants have the full-length NPC1 protein 

with an approximate length of 1300 amino acids and 13 TM regions, except for  
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The star is placed at the root of full length NPC1. On the left side, the black markers represent 

the closest NPC1 to the root for each organism. Green markers (Set 2) show the orthologs 

whereas red markers point to paralogs. Blue markers represent sequences which are ambiguous 

in terms of orthology. Gray-shaded clade contains short version of NPC1. 

Figure 5-2 Maximum-likelihood phylogenetic tree of NPC1 proteins and described sets. 
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Dictyostelium, where two additional TM regions are inserted after TM-1 (see appendix). 

They all accommodate a lumenal N-terminal domain that binds to cholesterol. However, 

in Naegleria gruberi (excavate) and in most chromalveolates, the N-terminal cholesterol-

binding domain is missing resulting in a shorter protein with 12 TM regions (see 

appendix). We found that all organisms that lack the NPC1 N-terminal domain, have a 

separate protein (~ 300 amino acids) encoded in their genomes, which is homologous 

(~30% identity, ~50% similarity) to the N-terminal domain of the full-length HsNPC1. 

Oomycetes have both “full” and “short” versions of NPC1. In the phylogenetic tree, these 

two versions are distinctly separated. Except for Nannochloropsis gaditana (which has an 

atypical NPC1 with no sterol-sensing domain), all organisms having the short version of 

NPC1 protein, also have the separate cholesterol binding protein. Moreover, the separate 

cholesterol binding protein is found exclusively in the organisms that have the short 

NPC1. The separate cholesterol binding protein is predicted to have a signal peptide at 

the N-terminus and a TM region at the C-terminus. Thus, concatenation of the separate 

cholesterol-binding protein and the short version of NPC1, substantially resembles 

HsNPC1. Exclusive coexistence of these two proteins suggests that they interact and 

function similarly to the full version of NPC1. The existence of both versions in oomycetes 

and the vertical evolutionary patterns suggest that both versions could have been present 

in LECA, where either fusion or dissociation could have occurred; then only one version 

was kept in all organisms, except for oomycetes, where both were kept. 

In addition to major duplication events, in each kingdom, there were also species and/or 

genus level duplications. In such cases, we usually observe that in an organism, one copy 

evolves slowly to keep the original function, while the extra copies, which are not prone 
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to purifying selective pressure, diverge faster. We used the distance measurements from 

the common ancestor node in the phylogenetic tree to determine the “incomparably least 

diverged” (slowest evolving) gene, which in turn enables us to find the functional 

orthologs. However, in some cases orthology assignment was inconclusive due to 

comparable divergence behaviors.  

NPC1 was lost in many parasites including whole clades, such as microsporidia (fungi) 

and apicomplexa (chromalveolata). Except for Naegleria gruberi, all species sequenced 

in the excavate supergroup are parasitic (Trypanosomatidae family, Trichomonas 

vaginalis and Giardia intestinalis) and contain no NPC1 in their genomes.  

Defining HsNPC1 Functional Orthologs  

Products of orthologous genes are very likely to perform the same function. Therefore, 

distinguishing HsNPC1 orthologs from other homologous proteins is critical in order to 

identify potentially pathogenic variants specifically affecting HsNPC1 function. Detailed 

analysis of the phylogenetic tree of all NPC1 homologs guided HsNPC1 orthology 

assignment. The clades retaining the original NPC1 function were determined based on 

the agreement of three lines of evidence. First, we compared the distances of duplicated 

clades to the full-length NPC1 root (Figure 5-2) to identify which one is less diverged. 

Second, we compared the organism content of the clades. If a clade is subset of another, 

then the superset clade was considered the “original” one representing HsNPC1 

orthologs. Finally, diversity within the clades was assessed: the less diverged clade is 

more likely to be ancestral (see appendix). When all three criteria agree, HsNPC1 

orthologs can be identified with confidence. However, in some cases, the sequence 

divergence information was inconclusive. In those cases, none of the clades was a subset 
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of another. Moreover, the diversity within the clades was comparable. Consequently, 

these sequences were classified as “ambiguous” and they were not included in the set of 

HsNPC1 orthologs. 

Evaluating Missense Mutations in HsNPC1: the Scoring Algorithm 

Our master multiple sequence alignment (MSA) included all homologs, such as paralogs 

and short version duplicates. We divided the master MSA into three sets grouped by the 

orthology relationships (see Figure 2 for details). The phylogenetic clade containing 

HsNPC1 after the most recent major evolutionary event, which is the birth of NPC1L1 in 

gnathostomata, was considered as the core alignment. Not surprisingly, this alignment 

set had a high level of sequence conservation. We refer to this alignment as “Set 1”. Set 

1 is given the highest importance in the evaluation algorithm. Set 2 includes Set 1 and 

also other sequences which have unambiguous one-to-one orthology with HsNPC1. 

Finally, Set 3 contained all HsNPC1 homologs, including paralogs and “ambiguous” 

orthologs, except for the short versions of NPC1. 

In order to predict the effect of missense mutations on HsNPC1 function, we propose an 

algorithm (SAVER: Single Amino Acid Variant Evaluator) that provides binary output from 

the MSA analysis of Sets 1 and 2 (Figure 5-3). In the scoring part, Set 1 is given the 

highest weight, because it contains HsNPC1 and its orthologs that evolved after the most 

recent duplication (MRD). The birth of many Mendelian diseases correlates with the time 

of MRDs (Dickerson and Robertson 2012). However, using only Set 1, which is limited in 

our case to bilaterian genomes, would not be sufficient in collecting the entire ancestral 

information. For this reason, Set 2 was used to compensate for the lack of evolutionary 

depth in Set 1. Because Set 2 was carefully constructed from sequences that are likely 
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to conserve the ancestral function of NPC1, the amount of false signal it introduces is 

limited. Furthermore, the possibility of false signals in Set 2 was addressed by lowering 

its priority. Because sufficient evolutionary depth was reached with set 2, specificity was 

not affected drastically by excluding Set 3-only sequences. 

Sequencing and aligning errors are key factors causing misinterpretation. For example, 

a pathogenic variant can be categorized as benign, when the corresponding position in 

MSA appears variable due to several misaligned sequences. For this reason, working 

with the cleanest possible data set, a nearly perfect alignment and well-constructed 

phylogenetic trees is critical in assessing the mutations. Ab initio elimination of sequences 

that have misaligned regions is not an optimum solution, because these sequences may 

also contain well-aligned regions carrying important information. In our approach we apply 

positional masking of misaligned regions, so that well-aligned positions in these 

sequences are taken into account. Another challenge in eukaryotic sequence comparison 

is dealing with isoforms, which are different protein products of the same gene due to 

alternative splicing.  The isoforms can redundantly dominate the signal and cause artificial 

conserved positions. Moreover, on the borders of alternative splicing, the unrelated 

sequences of isoforms can be aligned together. We resolve this issue by choosing a 

representative isoform for each gene. Selection of a representative isoform depends on 

the queried position, in order to rule out the errors that alternative-splicing prediction can 

cause.  

For a single amino acid substitution from AA0 to AA1, scoring algorithms usually use the 

abundance of the AA1 in MSA. However, instead of counting the number of sequences 
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P: position of the substitution; AA0: original amino acid; AA1: replacing amino acid. 

Figure 5-3 SAVER algorithm workflow. 
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with substitutions, we propose to count how many times a given replacement has 

occurred independently, so a single evolutionary event would not be counted multiple 

times. Distinguishing between single and multiple independent substitutions is critical, 

because multiple independent substitutions, occurring in different clades, suggest that a 

position tolerates mutations, whereas a single substitution compensated by a suppressor 

mutation can be in a potentially “irreplaceable” position. It is important to stress that such 

information can only be obtained from well-edited multiple sequence alignments and well-

built phylogenetic trees that require substantial manual work. 

Improved success in distinguishing between damaging and benign SAVs. 

We scanned literature to retrieve known NPC1 variants. Only single amino acid 

substitutions were taken into account. Only biochemically validated NP-C causing 

mutations were considered as “damaging” variants. Recently published frequencies of 

HsNPC1 variants from several exome sequencing data sets (Wassif et al. 2015) were 

used to define the benign mutation data set. We selected the common variants that have 

never been shown as pathogenic in any study, and that have frequency greater than 

0.028%, which is the frequency of the most commonly reported pathogenic variant, 

I1061T. Our compiled control set contained 166 damaging and 21 benign SAVs (see 

appendix).  

We tested our approach in comparison with leading automated tools: PolyPhen-2, SIFT 

and PROVEAN (Ng and Henikoff 2003; Adzhubei et al. 2010; Choi and Chan 2015). The 

results indicate that our approach outperforms other tools (i) in terms of sensitivity (~10% 

improvement), while causing a relatively low cost in specificity and (ii) in terms of the 

overall quality, as measured by the Matthews correlation coefficient (Table 5-1). The 
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drastic improvement in sensitivity can be explained by the fact that our method eliminates 

the false evolutionary signals introduced by functionally diverged sequences that are 

included in the analysis by other tools (see appendix).   

We also applied our method to all theoretical amino acid substitutions in NPC1. 24282 

(1278 positions in NPC1 sequence X 19 amino acid substitutions) theoretical SAVs were 

evaluated by our approach in comparison with the well optimized automated methods 

described above (see attachment). Ultimately, our method predicts 81% of the variants 

as damaging, while PolyPhen-2, PROVEAN and SIFT predict 60%, 70% and 66% as 

damaging, respectively. Because we suspected that our approach over predicts 

damaging variants, we adjusted the cutoffs of other tools to fix the damaging rate at 81%. 

After the adjustment, the performance of two methods (PolyPhen-2 and PROVEAN) was 

improved; however, none of them reached the quality of our approach, as measured by 

Matthews Correlation Coefficient value. Comparison between receiver operating 

characteristics of the tools and our “sensitivity - false positive rate” datum, shows a clear 

distinction of our result from the general trend of the others (see appendix). 

An example of how inclusion of paralogous sequences negatively affects the prediction 

is shown in Figure 4. Known pathogenic mutations, N968S, G986S, G993A and M995R 

(see appendix) are predicted as benign by all three automated tools, because the same 

substitutions are found in NPC1L1 paralogs that are included in their MSA sets (Figure 

5-4). Figure 5-5 shows topology of the human NPC1 where the positions are colored 

based on the numbers of allowed amino acids at that position by our approach. This risk 

map provides clues about the functionally critical regions of HsNPC1 (see appendix) and 

the full list of potentially damaging and benign substitutions in this protein is provided as   
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 TP FN TN FP 

           

SAVER 157 9 14 7 0.95 0.67 0.04 0.91 0.95 0.59 

PP2 139 27 15 6 0.84 0.71 0.04 0.82 0.89 0.42 

PROVEAN 141 25 15 6 0.85 0.71 0.04 0.83 0.90 0.43 

SIFT 135 31 18 3 0.81 0.86 0.02 0.82 0.89 0.48 

PP2adj 159 7 12 9 0.96 0.57 0.05 0.91 0.95 0.55 

PROVEANadj 153 13 12 9 0.92 0.57 0.06 0.88 0.93 0.46 

SIFTadj 150 16 11 10 0.90 0.52 0.06 0.86 0.92 0.38 

 

The cutoffs distinguishing between “damaging” and “benign” variants, are changed in the methods 

which have subscripted with “adj” abbreviation based on the output of the SAVER computation. 

SAVER and other “adjusted” tools yield 81% damaging rate in all theoretical amino acid 

substitutions on HsNPC1.  TP: True positive; FN: False negative; TN: True negative; FP: False 

positive. 

  

Table 5-1 Performance comparison of tools predicting the effect of NPC1 missense 
mutations. 
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attachment. We have built a web-based application for querying single amino acid 

variants in NPC1, which can serve as a reference for clinicians when describing novel 

NP-C causing mutations. It is freely available at http://genomics.utk.edu/saver/npc1.html. 

5.4 Discussion 

In this work, we showed that it is possible to get closer to the desired level in predicting 

the effects of missense mutations by carefully analyzing the evolutionary history of a 

gene. A clear improvement is accomplished by taking into consideration only function-

specific orthologous protein sequences. Remote homologs and paralogs that are likely to 

be functionally diverged should be removed from the analysis. In selecting functional 

counterparts, specific criteria based on a thorough phylogenetic analysis must be used.  

The proposed approach heavily depends on manual work (constructing high-quality 

datasets, alignments, trees and defining orthologs and paralogs) as well as reasoning, 

which depends on the output of a particular computational step. Thus, for now, this 

approach cannot be fully automated and will not replace any of the available automated 

tools. However, revealing common trends and problems in identifying functional orthologs 

and testing this approach on other well-defined monogenic Mendelian diseases, should 

lead to the development of the next generation of predictive automated methods directly 

applicable in clinical practices.  

 

 

http://genomics.utk.edu/saver/npc1.html
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Blue shaded sequences are HsNPC1 orthologs and the rest are paralogs. For each tool, 

a red marker represents “predicted as damaging”, whereas green marker stands for 

“predicted as benign”. Residues highlighted in red are the potential causes of predicting 

pathogenic variants as benign. 

  

Figure 5-4 An alignment window illustrating false effects of paralogs in predicting 
damaging mutations.  



127 
 

 

Color scale from red to green ascendingly shows the number of amino acid substitutions that are predicted to be benign. Secondary 

structure information was retrieved from a 3D structure for the cholesterol-binding domain (PDB ID: 3GKH) and predicted for the rest 

of the protein. Squared residues represent beta-sheet, while circles with outline stand for alpha helices. Disulphide bonds are 

represented (dashed lines) only for the cholesterol-binding domain. 

Figure 5-5 NPC1 missense mutation risk map. 
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5.5 Materials and Methods 

Databases, multiple sequence alignments and phylogenetic trees 

Human NPC1 protein (NM_000271.4) was queried through blastp (Altschul et al. 1990) 

against the human genome to reveal the related sequences. Each hit was blasted 

individually against the RefSeq database (Pruitt et al. 2012). For each job the full 

sequences were compiled and aligned using MAFFT default algorithm (Katoh and 

Standley 2013). Neighbor joining tree was built with the phylip package (Retief 2000). 

From the tree, the NPC1-homologs clade was isolated. With the retrieved homologs, 

MAFFT version v7.154b E-INS-i algorithm was used to realign the full-length sequences. 

A maximum-likelihood tree was constructed using the PhyML software version 20140929 

(Guindon et al. 2009), with JTT substitution model (Jones et al. 1992) and the remaining 

parameters as default. The outgroups that were not considered to be NPC1 homologs 

based on Refseq annotations and domain architectures were discarded from the multiple 

sequence alignment, NPC1 homologs were realigned and the final phylogenetic tree was 

built using the previously described approach.  

Taxonomic distribution 

After obtaining the final set of sequences, gene IDs were assigned to protein sequences 

using NCBI Entrez (Gibney and Baxevanis 2011). The gene counts were visualized on a 

taxonomically classified sunburst tree. Taxonomical ranks were taken from  the NCBI 

taxonomy database (Federhen 2012). Organisms were selected based on two criteria: (i) 

the availability of their NPC1 in the RefSeq database and (ii) the availability of their 

genome in the NCBI genome database. The sunburst visualization was performed with a 

custom built tool. 
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Orthology assignment 

Orthologs and paralogs were distinguished using the maximum likelihood phylogenetic 

tree. In case of major duplication events, a consistently more divergent duplicated clade 

was categorized as paralogs that are less likely to retain the original NPC1 function. The 

reference point for evolutionary distance was determined as the full-length NPC1 node. 

In the cases where no divergence consistency between clades was observed (e.g. not all 

species in clade A were more diverged than those in clade B, or incomplete species set 

in both clades), the orthology assignment was deemed inconclusive. In such cases, we 

considered both clades as paralogs that have a potential to gain a modified function. For 

the species-level duplications, the sequence, which was significantly diverged from the 

closest node of NPC1 orthologs, was categorized as paralogous.   

Scoring the effect of single amino acid variants 

 PubMed 1997-2014 database was manually searched to identify relevant studies and 

case series. The search key words used were: (i) “Niemann-Pick type C”, (ii) “NPC1”, (iii) 

“NPC1 mutations”. No other search restrictions were applied and all related reference 

articles were retrieved and reviewed. The initial search resulted in 312 papers. General 

review articles on Niemann-Pick disease type C pathogenesis, course and outcomes, 

basic clinical case reports lacking genetic testing and experimental findings not connected 

with clinical data were excluded. As a result, we identified 56 articles referencing a total 

of 572 mutations in the NPC1 gene (including repetitive reports). After refining this list by 

excluding repetitive reports, insertion/deletion, frameshift and nonsense mutations and 

benign SNPs, the final list of most likely pathogenic SAVs was comprised of 166 variants 

that were referred to as “damaging” variants in this study. In order to retrieve the set of 
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“benign” mutations, we used frequencies in human populations reported by Wassif et al. 

(Wassif et al. 2015). The variants found in humans with higher frequency than the most 

common deleterious variant, I1063T, were categorized as benign. However, we removed 

N222S, N961S, S1200G and A521S from this list, due to the reports suggesting that they 

might be damaging. 

In our algorithm, the “moderately variable” category was defined as a position having 

more than 5 different substitutions in a given set. Position was categorized as “hyper-

variable” if there were more than 9 different substitutions. 

Statistical analyses  

The performance of the algorithm is described by the following parameters: sensitivity, 

specificity, false discovery rate, accuracy, F1 score and Matthews Correlation Coefficient 

(MCC). In the equations given below, TP, TN, FP and FN refer to the number of true 

positives, true negatives, false positives and false negatives, respectively. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP +  FN
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 

𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 = 1 −
TP

TP + FP
 

𝐹1 = 1 −
2TP

2TP + FP + FN
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𝑀𝐶𝐶 =
TP X TN − FP X FN

√(TP + FP)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑁)
 

 

Domain architecture prediction and risk map generation  

We used CDvist webserver with HMMER3 against Pfam 27.0 and HHsearch against PDB 

options respectively (Finn et al. 2014; Adebali et al. 2015). PDB HHsearch probability 

cutoff was adjusted to 98%. Transmembrane regions and signal peptides were predicted 

using Phobius (Kall et al. 2007). 

We implemented the SAVER algorithm in a python3 script and ran it on all theoretical 

human NPC1 SAVs. For each position, we counted the allowed (benign) amino acids. 

The range was between 0 (no substitution allowed) and 19 (any substitution allowed). For 

secondary structure information, X-ray crystal structure (PDB ID: 3GKH) was used for N-

terminal domain and Psipred prediction was used for the rest. Protter web application was 

used to generate the NPC1 membrane topology figure using default parameters for 

transmembrane region and signal-peptide predictions. Disulphide bond information for N-

terminal domain was also collected from the available structure. 
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5.8 Appendix 

Interpretation of the risk map 

Each residue in a protein experiences a different selection pressure due to their molecular 

function. Some residues are replaceable, and some cannot be altered. Additionally, there 

are positions allowing replacements by only certain amino acids. Though interchangeable 

amino acids usually share at least one physiochemical characteristic, this is not always 

the case.  

According to the NPC1 risk map (Figure 5-5), first two TM regions are not conserved as 

well as other TM regions. Thus, these two regions may not be involved in sterol transport 

process. Instead, they could have evolved as a simple connector to join lumenal 

cholesterol-binding domain with the rest of the protein. On the other hand, the rest of the 

TM regions show moderate to high level of conservation. Particularly, TM5, TM11, TM12 

and TM13 may play critical roles in the transport process. We also see heterogeneous 

high level of conservation in the lumenal domains. Predicted helices and beta sheets 

generally correlate with the conservation pattern. However, some predicted unstructured 

regions are also highly conserved. Specifically, most cysteine residues in the lumenal 

domains are invariable, likely because of their specific structural role of building disulfide 

bridges.  The cytoplasmic regions between TM5 and TM6, and TM11 and TM12 are 

predicted to form secondary structure elements and also are well conserved, which 

indicates that these regions may play a distinct functional role.  

The risk map built based on set 1 and set 2 shows evolutionary patterns that we already 

deduced from the MSA of all NPC1 homologs. For instance, TM1 and TM2 were 



139 
 

considered to function in linking cholesterol-binding domain with the rest, based on the 

analysis of domain architectures of NPC1 homologs in chromalveolata and Naegleria. 

Even these sequences are removed from the analysis, we can still observe a relaxed 

selection pressure on these regions, which also indicates that they are not functionally 

critical. Taken together these observations suggest that the evolutionary depth of the 

dataset, which includes only functional orthologs of NPC1, is sufficient to infer tolerant 

and intolerant substitutions. 
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Close homologs are often missing from automatically constructed datasets, whereas functionally 

unrelated remote homologs might be present. A) The maximum likelihood phylogenetic tree of 

sequences from the alignment we generated based on raw sequences retrieved (February 15th, 

2015) from PolyPhen-2 (PP2) human NPC1 (Uniprot ID: O15118) query. B) Maximum-likelihood 

phylogeny of NPC1 homologs from the core alignment compiled in this study. Red markers 

identify sequences that are present in the PP2 alignment. The unmarked sequences are missing 

from the PP2 alignment. PTC1-2: Patched protein homolog 1-2, PTRs: Unclassified patched 

receptor like proteins, MRC1: Mannose receptor, C type 1. 

Figure 5-6 Common problems in automated prediction of functional effects of amino acid 
substitutions in proteins. 
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Green flags indicate the presence of a single NPC1 gene in associated genome, whereas red 

and black flags are representatives of two and more NPC1 copies respectively. Shaded clades 

have at least one NPC1 gene and white clades have no detectable NPC1 homologs. NPC1 is 

present in all four eukaryotic supergroups represented here. NPC1 and NPC1-L1 were found in 

all mammalians except for Bison bison. Although all avian genomes have NPC1, most of them 

are missing the NPC1-L1 gene. Except for mammals, NPC1-L1 is not consistently found in other 

classes of Chordata. In Actinopteri, we observed a loss of both genes in Salmoniformes, Esox 

lucius, Notothenia coriiceps and Ictalurus punctatus. In Anura, Xenopus tropicalis have both 

genes, but they both are missing from Xenopus laevis.    

Figure 5-7 Taxonomic distribution of NPC1. 
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Branch length means of clades were measured and subjected to t-test. Significance is 

represented by asterisk with p-value<0.0001. In C, the p-value was 0.04. 

  

Figure 5-8 Internal diversity of paralogous clades. 
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Full version sequences include cholesterol-binding domain (blue). Short version NPC1 genes 

contain sterol-sensing and patched domains and no cholesterol-binding domain. Cholesterol-

binding domain is found as a single protein in chromalveolatan species as well as Naegleria 

gruberi. The cholesterol-binding domain protein exclusively coexist with the short version of 

NPC1. Oomycetes (such as Phytophthora parasitica) have both full and short versions of the 

NPC1 gene. 

  

Figure 5-9 Domain architectures of NPC1 homologs. 
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The data is inferred from predictions on 166 damaging and 21 benign variants known in NPC1. 

 

  

Figure 5-10 Receiver operating characteristics of the tools compared with SAVER datum. 
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Table 5-2 (continued) 
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Table 5-2 Known pathogenic and benign mutations in NPC1. 
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1999) 



147 
 

Table 5-2 (continued) 

M
u

ta
ti

o
n

 

P
a
th

o
g

e
n

ic
 /
 F

re
q

u
e

n
t 

S
A

V
E

R
 

S
A

V
E

R
 c

a
t.

 

P
P

H
2
 s

c
o

re
 

P
P

H
2
 (

0
.4

5
2
) 

d
e

fa
u

lt
 

P
P

H
2
 (

0
.0

1
2
) 

P
R

O
V

E
A

N
 s

c
o

re
 

P
R

O
V

E
A

N
 (

-2
.5

) 

d
e

fa
u

lt
 

P
R

O
V

E
A

N
 (

-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

C177Y 
Pathogen

ic 
D AA 0.999 D D 

-
10.5

5 
D D 0 D D 

(Patterso
n 1993; 
Ribeiro et 
al. 2001; 
Fernandez
-Valero et 
al. 2005; 
Millat et 
al. 2005; 
Macias-
Vidal et 
al. 2011) 

C247Y 
Pathogen

ic 
D AA 1 D D 

-
10.2

6 
D D 0 D D 

(Park et 
al. 2003; 
Garver et 
al. 2010) 

C479Y 
Pathogen

ic 
D AA 1 D D 

-
10.6

9 
D D 0 D D 

 
(Fernande
z-Valero 
et al. 
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Table 5-2 (continued) 
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.1

8
6
) 

R
e
fe

re
n

c
e
 

F703S 
Pathogen

ic 
D BD 1 D D -7.9 D D 0 D D 

(Yamamot
o et al. 
2000) 

F763L 
Pathogen

ic 
D BD 0.624 D D 

-
4.29 

D D 
0.00

7 
D D 

(Millat et 
al. 2005; 
Sevin et 
al. 2007) 

F779L 
Pathogen

ic 
B ZZ 0.997 D D 

-
5.83 

D D 0 D D 
(Bauer et 
al. 2013) 

F995L 
Pathogen

ic 
D AA 0.987 D D 

-
5.67 

D D 
0.02

7 
D D 

(Macias-
Vidal et 
al. 2011) 

G1015
V 

Pathogen
ic 

D AA 1 D D 
-

8.39 
D D 

0.00
2 

D D 
(Yang et 
al. 2005) 

G1034
R 

Pathogen
ic 

D AA 0.991 D D 
-

5.75 
D D 

0.00
8 

D D 
(Yang et 
al. 2005) 

G1140
V 

Pathogen
ic 

D AA 1 D D 
-

8.03 
D D 

0.00
2 

D D 
(Park et 
al. 2003) 

G1209
E 

Pathogen
ic 

D AA 1 D D 
-

7.05 
D D 0 D D 

(Macias-
Vidal et 
al. 2011) 

G1236
E 

Pathogen
ic 

D AA 1 D D 
-

7.26 
D D 0 D D 

(Yamamot
o et al. 
2000) 

G1240
R 

Pathogen
ic 

D AA 1 D D 
-

7.26 
D D 0 D D 

(Millat et 
al. 2005; 
Runz et al. 
2008) 

G343E 
Pathogen

ic 
D AA 1 D D 

-
7.96 

D D 0 D D 
(Jahnova 
et al. 
2014) 

G535V 
Pathogen

ic 
D BD 0.991 D D 

-
4.69 

D D 
0.00

9 
D D 

(Macias-
Vidal et 
al. 2009) 

G640R 
Pathogen

ic 
D BB 1 D D 

-
7.77 

D D 0 D D 
(Park et 
al. 2003) 
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Table 5-2 (continued) 
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 c
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0
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2
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P
R

O
V

E
A

N
 (

-2
.5
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d
e
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u

lt
 

P
R

O
V

E
A

N
 (

-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

G660S 
Pathogen

ic 
D AA 1 D D -6 D D 0 D D 

(Park et 
al. 2003; 
Garver et 
al. 2010) 

G673V 
Pathogen

ic 
D AA 1 D D -9 D D 

0.00
2 

D D 

(Park et 
al. 2003; 
Garver et 
al. 2010) 

G910S 
Pathogen

ic 
B ZZ 0.995 D D -4.8 D D 

0.13
1 

B D 
(Tarugi et 
al. 2002) 

G986S 
Pathogen

ic 
D BB 0.427 B D -1.7 B B 

0.34
2 

B B 
(Millat et 
al. 2001) 

G992A 
Pathogen

ic 
D CB 0.017 B D 

-
1.85 

B D 0.74 B B 

(Millat et 
al. 2005; 
Sevin et 
al. 2007; 
Harzer et 
al. 2014) 

G992R 
Pathogen

ic 
D CB 0.789 D D 

-
3.06 

D D 
0.46

6 
B B 

(Patterso
n 1993; 
Millat et 
al. 2001; 
Vanier 
and Millat 
2003; 
Millat et 
al. 2005; 
Sevin et 
al. 2007; 
Macias-
Vidal et 
al. 2011; 
Bauer et 
al. 2013; 
Jahnova 
et al. 
2014) 
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Table 5-2 (continued) 
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d
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V
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IF
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5
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d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

G992
W 

Pathogen
ic 

D BD 0.989 D D 
-

3.86 
D D 

0.04
5 

D D 

(Patterso
n 1993; 
Greer et 
al. 1998; 
Greer et 
al. 1999; 
Tarugi et 
al. 2002; 
Vanier 
and Millat 
2003; 
Millat et 
al. 2005; 
Vanier 
2010; 
Macias-
Vidal et 
al. 2011; 
Zampieri 
et al. 
2012) 

H1016
R 

Pathogen
ic 

D AA 0.243 B D 
-

6.15 
D D 

0.02
4 

D D 
(Park et 
al. 2003) 

H510P 
Pathogen

ic 
D BD 0.988 D D -5.2 D D 

0.10
7 

B D 
(Yamamot
o et al. 
1999) 

H512R 
Pathogen

ic 
D AA 0.556 D D -6.3 D D 

0.07
6 

B D 

(Bauer et 
al. 2002; 
Fancello 
et al. 
2009) 
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Table 5-2 (continued) 
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d
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IF
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 s
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S
IF

T
 (

0
.0

5
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d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

I1061T 
Pathogen

ic 
D BD 0.875 D D 

-
3.84 

D D 
0.00

1 
D D 

(Patterso
n 1993; 
Greer et 
al. 1999; 
Millat et 
al. 1999; 
Millat et 
al. 2001; 
Ribeiro et 
al. 2001; 
Bauer et 
al. 2002; 
Tarugi et 
al. 2002; 
Vanier 
and Millat 
2003; 
Fernandez
-Valero et 
al. 2005; 
Millat et 
al. 2005; 
Sevin et 
al. 2007; 
Fancello 
et al. 
2009; 
Macias-
Vidal et 
al. 2009; 
Garver et 
al. 2010; 
Vanier 
2010; 
Macias-
Vidal et 
al. 2011; 
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Table 5-2 (continued) 
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V
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N
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-2
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d
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P
R
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V

E
A

N
 (

-1
.7

2
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S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

Zampieri 
et al. 
2012; 
Harzer et 
al. 2014; 
Jahnova 
et al. 
2014; 
Macias-
Vidal et 
al. 2014) 

I685T 
Pathogen

ic 
D AA 0.985 D D -5 D D 

0.00
1 

D D 
(Zhang et 
al. 2014) 

I943M 
Pathogen

ic 
B ZZ 0.037 B D 

-
0.87 

B B 
0.22

6 
B B 

(Bauer et 
al. 2002; 
Fancello 
et al. 
2009) 

K576R 
Pathogen

ic 
B QQ 0 B B -1.5 B B 

0.18
8 

B B 

(Fernande
z-Valero 
et al. 
2005; 
Godeiro-
Junior et 
al. 2006) 

L1102F 
Pathogen

ic 
D BD 0.999 D D -3.4 D D 

0.00
6 

D D 
(Fancello 
et al. 
2009) 

L1106P 
Pathogen

ic 
D BD 1 D D 

-
5.64 

D D 
0.00

1 
D D 

(Macias-
Vidal et 
al. 2011) 

L1191F 
Pathogen

ic 
D BD 0.991 D D 

-
3.66 

D D 
0.00

3 
D D 

(Fancello 
et al. 
2009; 
Zampieri 
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Table 5-2 (continued) 
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d
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V
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-1
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IF
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c
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S
IF
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 (

0
.0

5
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d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

et al. 
2012) 

L1213F 
Pathogen

ic 
D AA 1 D D -3.5 D D 0 D D 

(Yamamot
o et al. 
1999) 

L1213V 
Pathogen

ic 
D AA 1 D D 

-
2.62 

D D 0 D D 
(Greer et 
al. 1999) 

L1244P 
Pathogen

ic 
D AA 1 D D 

-
5.82 

D D 
0.00

1 
D D 

(Runz et 
al. 2008; 
Fancello 
et al. 
2009) 

L380F 
Pathogen

ic 
D AA 1 D D 

-
3.98 

D D 0 D D 
(Park et 
al. 2003) 

L472H 
Pathogen

ic 
D AA 1 D D 

-
6.05 

D D 0 D D 
(Fancello 
et al. 
2009) 

L648H 
Pathogen

ic 
D BD 0.82 D D 

-
5.15 

D D 
0.00

3 
D D 

(Fancello 
et al. 
2009) 

L684F 
Pathogen

ic 
D AA 1 D D 

-
3.83 

D D 
0.00

3 
D D 

(Park et 
al. 2003) 

L695V 
Pathogen

ic 
D AA 1 D D -3 D D 

0.00
3 

D D 
(Park et 
al. 2003) 

L724P 
Pathogen

ic 
D BD 0.14 B D 

-
5.02 

D D 
0.00

1 
D D 

(Millat et 
al. 2001; 
Sevin et 
al. 2007) 

L929P 
Pathogen

ic 
D BB 0.697 D D 

-
2.75 

D D 
0.21

5 
B B 

(Park et 
al. 2003) 

M1001
T 

Pathogen
ic 

D BB 0.293 B D 
-

3.09 
D D 

0.00
5 

D D 
(Bauer et 
al. 2013) 

M1142
T 

Pathogen
ic 

D BD 0.984 D D 
-

5.76 
D D 0 D D 

(Millat et 
al. 2001; 
Vanier 
and Millat 



156 
 

Table 5-2 (continued) 
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d
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IF
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IF
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0
.0

5
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d
e

fa
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lt
 

S
IF
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0
.1

8
6
) 

R
e
fe

re
n

c
e
 

2003; 
Fancello 
et al. 
2009; 
Macias-
Vidal et 
al. 2011) 

M272R 
Pathogen

ic 
D BD 0.982 D D 

-
4.64 

D D 
0.00

1 
D D 

(Millat et 
al. 2001) 

M631R 
Pathogen

ic 
D AA 0.999 D D 

-
5.87 

D D 0 D D 

(Millat et 
al. 2001; 
Millat et 
al. 2005) 

M754K 
Pathogen

ic 
D BD 0.982 D D 

-
5.73 

D D 0 D D 

(Fernande
z-Valero 
et al. 
2005) 

M996R 
Pathogen

ic 
D BB 0 B B -2 B D 

0.47
2 

B B 
(Yamamot
o et al. 
2000) 

N1137I 
Pathogen

ic 
D BD 0.99 D D 

-
6.93 

D D 0 D D 
(Park et 
al. 2003) 

N1156I 
Pathogen

ic 
D AA 1 D D 

-
8.63 

D D 0 D D 

(Fernande
z-Valero 
et al. 
2005) 

N1156
S 

Pathogen
ic 

D AA 1 D D -4.8 D D 0 D D 
(Tarugi et 
al. 2002) 

N188S 
Pathogen

ic 
D BB 0.017 B D 

-
1.89 

B D 0.12 B D 
(Bauer et 
al. 2013) 

N222S 
Pathogen

ic 
D BB 0.003 B B -1.2 B B 

0.71
6 

B B 

(Park et 
al. 2003; 
Fancello 
et al. 
2009) 



157 
 

Table 5-2 (continued) 

M
u

ta
ti

o
n

 

P
a
th

o
g

e
n

ic
 /
 F

re
q

u
e

n
t 

S
A

V
E

R
 

S
A

V
E

R
 c

a
t.

 

P
P

H
2
 s

c
o

re
 

P
P

H
2
 (

0
.4

5
2
) 

d
e

fa
u

lt
 

P
P

H
2
 (

0
.0

1
2
) 

P
R

O
V

E
A

N
 s

c
o

re
 

P
R

O
V

E
A

N
 (

-2
.5

) 

d
e

fa
u

lt
 

P
R

O
V

E
A

N
 (

-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
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5
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d
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fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

N961S 
Pathogen

ic 
B QQ 0.034 B D 

-
2.33 

B D 
0.36

5 
B B 

(Jahnova 
et al. 
2014) 

N968S 
Pathogen

ic 
D BB 0.034 B D -1.8 B D 

0.70
4 

B B 

(Millat et 
al. 2005; 
Yang et al. 
2005; 
Fancello 
et al. 
2009) 

P1007
A 

Pathogen
ic 

D AA 0.995 D D 
-

7.78 
D D 0 D D 

(Greer et 
al. 1999; 
Millat et 
al. 2001; 
Ribeiro et 
al. 2001; 
Bauer et 
al. 2002; 
Tarugi et 
al. 2002; 
Vanier 
and Millat 
2003; 
Fernandez
-Valero et 
al. 2005; 
Millat et 
al. 2005; 
Godeiro-
Junior et 
al. 2006; 
Sevin et 
al. 2007; 
Fancello 
et al. 
2009; 
Garver et 
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Table 5-2 (continued) 

M
u

ta
ti

o
n

 

P
a
th

o
g

e
n

ic
 /
 F

re
q

u
e

n
t 

S
A

V
E

R
 

S
A

V
E

R
 c

a
t.

 

P
P

H
2
 s

c
o

re
 

P
P

H
2
 (

0
.4

5
2
) 

d
e

fa
u

lt
 

P
P

H
2
 (

0
.0

1
2
) 

P
R

O
V

E
A

N
 s

c
o

re
 

P
R

O
V

E
A

N
 (

-2
.5

) 

d
e

fa
u

lt
 

P
R

O
V

E
A

N
 (

-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
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5
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d
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S
IF
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0
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8
6
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R
e
fe

re
n

c
e
 

al. 2010; 
Vanier 
2010; 
Macias-
Vidal et 
al. 2011; 
Zakharova 
et al. 
2012; 
Zampieri 
et al. 
2012; 
Bauer et 
al. 2013; 
Jahnova 
et al. 
2014) 

P166L 
Pathogen

ic 
D AA 0.999 D D 

-
8.44 

D D 
0.00

4 
D D 

(Millat et 
al. 2005) 

P166S 
Pathogen

ic 
D AA 0.988 D D 

-
6.78 

D D 
0.00

6 
D D 

(Park et 
al. 2003; 
Fancello 
et al. 
2009) 

P237L 
Pathogen

ic 
D BD 0.468 D D 

-
4.32 

D D 
0.04

1 
D D 

(Fancello 
et al. 
2009) 

P433L 
Pathogen

ic 
D BD 0.981 D D 

-
8.12 

D D 
0.00

1 
D D 

(Park et 
al. 2003; 
Fancello 
et al. 
2009) 

P434L 
Pathogen

ic 
B ZZ 0.001 B B 0.04 B B 0.18 B D 

(Fernande
z-Valero 
et al. 
2005) 



159 
 

Table 5-2 (continued) 
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lt
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IF
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8
6
) 

R
e
fe

re
n

c
e
 

P474L 
Pathogen

ic 
D AA 0.889 D D 

-
8.08 

D D 
0.00

1 
D D 

(Tarugi et 
al. 2002; 
Vanier 
and Millat 
2003; 
Fernandez
-Valero et 
al. 2005; 
Macias-
Vidal et 
al. 2009; 
Garver et 
al. 2010; 
Xiong et 
al. 2012; 
Jahnova 
et al. 
2014) 

P543L 
Pathogen

ic 
D AA 1 D D -9.6 D D 0 D D 

(Park et 
al. 2003; 
Millat et 
al. 2005; 
Garver et 
al. 2010) 

P691L 
Pathogen

ic 
D AA 1 D D -10 D D 0 D D 

(Park et 
al. 2003; 
Jahnova 
et al. 
2014) 

P733R 
Pathogen

ic 
D BD 1 D D 

-
8.75 

D D 0 D D 
(Jahnova 
et al. 
2014) 

P867S 
Pathogen

ic 
D BB 0.999 D D 

-
7.91 

D D 
0.03

4 
D D 

(Park et 
al. 2003) 

P888S 
Pathogen

ic 
D AA 1 D D 

-
7.91 

D D 0 D D 
(Fancello 
et al. 
2009) 
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Table 5-2 (continued) 
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 c
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0
.0

1
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P
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O
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A

N
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c
o

re
 

P
R

O
V

E
A

N
 (

-2
.5

) 

d
e

fa
u

lt
 

P
R

O
V

E
A

N
 (

-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

Q775P 
Pathogen

ic 
D AA 1 D D -5.4 D D 

0.00
3 

D D 

(Patterso
n 1993; 
Millat et 
al. 2001; 
Fernandez
-Valero et 
al. 2005; 
Macias-
Vidal et 
al. 2009; 
Macias-
Vidal et 
al. 2011) 

Q862L 
Pathogen

ic 
D AA 1 D D 

-
6.46 

D D 
0.00

2 
D D 

(Millat et 
al. 2005) 

Q921P 
Pathogen

ic 
D BD 0.994 D D 

-
3.27 

D D 
0.09

8 
B D 

(Fancello 
et al. 
2009) 

Q92R 
Pathogen

ic 
D BB 0.079 B D 

-
2.14 

B D 
0.03

7 
D D 

(Ribeiro 
et al. 
2001; 
Vanier 
and Millat 
2003; 
Garver et 
al. 2010) 

R1077
Q 

Pathogen
ic 

D CB 0.051 B D 
-

0.31 
B B 

0.06
3 

B D 
(Fancello 
et al. 
2009) 

R1186
H 

Pathogen
ic 

D BD 1 D D 
-

4.74 
D D 0 D D 

(Millat et 
al. 2001; 
Vanier 
and Millat 
2003; 
Millat et 
al. 2005; 
Macias-
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Table 5-2 (continued) 
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 F
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q

u
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n
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S
A

V
E
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S
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V
E
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 c

a
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P
P

H
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c
o
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P
P

H
2
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0
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5
2
) 

d
e
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u
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P
P

H
2
 (

0
.0

1
2
) 

P
R

O
V

E
A

N
 s

c
o

re
 

P
R

O
V

E
A

N
 (

-2
.5

) 

d
e

fa
u

lt
 

P
R

O
V

E
A

N
 (

-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

Vidal et 
al. 2011; 
Xiong et 
al. 2012; 
Jahnova 
et al. 
2014) 

R389C 
Pathogen

ic 
D BD 1 D D 

-
7.28 

D D 0 D D 
(Park et 
al. 2003) 

R389L 
Pathogen

ic 
D BB 0.665 D D 

-
6.04 

D D 
0.05

8 
B D 

(Fancello 
et al. 
2009) 

R404P 
Pathogen

ic 
D AA 1 D D 

-
6.97 

D D 0 D D 
(Millat et 
al. 2005) 

R404Q 
Pathogen

ic 
D AA 1 D D 

-
3.98 

D D 0 D D 

(Millat et 
al. 2001; 
Vanier 
and Millat 
2003; 
Garver et 
al. 2010) 

R404W 
Pathogen

ic 
D AA 1 D D 

-
7.96 

D D 0 D D 
(Park et 
al. 2003) 

R411P 
Pathogen

ic 
D BD 0.042 B D -1.5 B B 

0.10
9 

B D 
(Jahnova 
et al. 
2014) 

R518Q 
Pathogen

ic 
B ZZ 0.02 B D 

-
0.27 

B B 0.64 B B 

(Vanier 
and Millat 
2003; 
Zhang et 
al. 2014) 

R518W 
Pathogen

ic 
D CB 0.997 D D -3.7 D D 0.01 D D 

(Ribeiro 
et al. 
2001) 

R615C 
Pathogen

ic 
D AA 1 D D -8 D D 0 D D 

(Park et 
al. 2003) 
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Table 5-2 (continued) 

M
u
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n

 

P
a
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o
g

e
n

ic
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 F
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q

u
e

n
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S
A
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E
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E
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 c

a
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P
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d
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P
P
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 (

0
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R

O
V
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A

N
 s

c
o
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P
R

O
V

E
A

N
 (

-2
.5

) 

d
e

fa
u

lt
 

P
R

O
V

E
A

N
 (

-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

R615L 
Pathogen

ic 
D AA 0.999 D D -7 D D 0 D D 

(Millat et 
al. 2005; 
Sevin et 
al. 2007) 

R726T 
Pathogen

ic 
D AA 0.941 D D 

-
5.52 

D D 
0.00

3 
D D 

(Zhang et 
al. 2014) 

R789G 
Pathogen

ic 
D BD 1 D D 

-
6.81 

D D 0 D D 

(Park et 
al. 2003; 
Garver et 
al. 2010) 

R789H 
Pathogen

ic 
D BD 1 D D 

-
4.86 

D D 0 D D 
(Zhang et 
al. 2014) 

R934Q 
Pathogen

ic 
D BD 0.199 B D 

-
0.79 

B B 
0.33

2 
B B 

(Greer et 
al. 1999; 
Millat et 
al. 2001; 
Vanier 
and Millat 
2003; 
Millat et 
al. 2005; 
Jahnova 
et al. 
2014) 

R958L 
Pathogen

ic 
D AA 0.974 D D 

-
6.03 

D D 
0.00

5 
D D 

(Bauer et 
al. 2002) 

R958Q 
Pathogen

ic 
D AA 1 D D 

-
3.25 

D D 
0.01

1 
D D 

(Park et 
al. 2003) 

R978C 
Pathogen

ic 
D BD 0.955 D D 

-
2.16 

B D 0.05 B D 

(Ribeiro 
et al. 
2001; 
Vanier 
and Millat 
2003; Di 
Leo et al. 
2004; 
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Table 5-2 (continued) 

M
u
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g

e
n
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q

u
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 c

a
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.0

1
2
) 

P
R

O
V

E
A

N
 s

c
o

re
 

P
R

O
V

E
A

N
 (

-2
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d
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-1
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IF
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 s
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re
 

S
IF
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0
.0

5
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d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

Macias-
Vidal et 
al. 2011) 

S1200
G 

Pathogen
ic 

D AA 0.998 D D -3.6 D D 
0.00

2 
D D 

(Bauer et 
al. 2013) 

S1249
G 

Pathogen
ic 

D AA 1 D D -3.5 D D 
0.00

8 
D D 

(Park et 
al. 2003; 
Garver et 
al. 2010) 

S473P 
Pathogen

ic 
D BD 0.709 D D 

-
2.46 

B D 
0.01

8 
D D 

(Yamamot
o et al. 
1999) 

S636F 
Pathogen

ic 
D BD 0.745 D D -4.4 D D 

0.00
1 

D D 
(Fancello 
et al. 
2009) 

S666N 
Pathogen

ic 
D BD 0.298 B D 

-
2.44 

B D 
0.02

3 
D D 

(Jahnova 
et al. 
2014) 

S734I 
Pathogen

ic 
D BD 0.998 D D 

-
5.78 

D D 
0.00

1 
D D 

(Park et 
al. 2003; 
Macias-
Vidal et 
al. 2011) 

S849I 
Pathogen

ic 
D BD 0.998 D D -5.4 D D 

0.00
1 

D D 
(Bauer et 
al. 2002) 

S865L 
Pathogen

ic 
D AA 0.999 D D 

-
5.04 

D D 
0.00

2 
D D 

(Fernande
z-Valero 
et al. 
2005; 
Millat et 
al. 2005; 
Macias-
Vidal et 
al. 2009; 
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Table 5-2 (continued) 

M
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0
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P
R
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V

E
A

N
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-2
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d
e
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P
R

O
V

E
A

N
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-1
.7

2
) 

S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

Xiong et 
al. 2012) 

S940L 
Pathogen

ic 
D BD 0.999 D D 

-
4.13 

D D 
0.00

5 
D D 

(Greer et 
al. 1999; 
Vanier 
and Millat 
2003; 
Millat et 
al. 2005; 
Sevin et 
al. 2007; 
Garver et 
al. 2010; 
Macias-
Vidal et 
al. 2011) 

S954L 
Pathogen

ic 
D BD 0.879 D D 

-
3.06 

D D 
0.12

3 
B D 

(Greer et 
al. 1999; 
Bauer et 
al. 2002; 
Tarugi et 
al. 2002; 
Vanier 
and Millat 
2003; 
Sevin et 
al. 2007; 
Macias-
Vidal et 
al. 2011; 
Bauer et 
al. 2013; 
Jahnova 
et al. 
2014; 
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Table 5-2 (continued) 
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V

E
A

N
 (

-2
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d
e
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R
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V

E
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-1
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2
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S
IF

T
 s

c
o

re
 

S
IF

T
 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

Zhang et 
al. 2014; 
Maubert 
et al. 
2015) 

T1036
K 

Pathogen
ic 

D BD 0.997 D D 
-

4.09 
D D 

0.00
3 

D D 

(Fernande
z-Valero 
et al. 
2005) 

T1036
M 

Pathogen
ic 

D BD 1 D D 
-

4.45 
D D 

0.00
1 

D D 

(Millat et 
al. 2005; 
Garver et 
al. 2010) 

T1066
N 

Pathogen
ic 

D BB 0.698 D D 
-

3.66 
D D 

0.00
3 

D D 

(Fernande
z-Valero 
et al. 
2005; 
Macias-
Vidal et 
al. 2011; 
Rodriguez
-Pascau et 
al. 2012) 

T1205
K 

Pathogen
ic 

D AA 1 D D -5.3 D D 0 D D 

(Park et 
al. 2003; 
Fancello 
et al. 
2009; 
Zampieri 
et al. 
2012; 
Jahnova 
et al. 
2014) 
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Table 5-2 (continued) 
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d
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IF
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 s

c
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S
IF
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 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

T1205
R 

Pathogen
ic 

D AA 1 D D 
-

5.33 
D D 0 D D 

(Jahnova 
et al. 
2014) 

T137M 
Pathogen

ic 
D CB 0.871 D D 

-
2.19 

B D 0.04 D D 

(Vanier 
and Millat 
2003; 
Fernandez
-Valero et 
al. 2005; 
Garver et 
al. 2010) 

V1023
G 

Pathogen
ic 

D AA 0.999 D D 
-

6.23 
D D 0 D D 

(Fancello 
et al. 
2009; 
Zampieri 
et al. 
2012) 

V1212L 
Pathogen

ic 
D BB 0.87 D D 

-
2.19 

B D 
0.01

1 
D D 

(Yang et 
al. 2005; 
Xiong et 
al. 2012; 
Zhang et 
al. 2014) 

V378A 
Pathogen

ic 
D BB 0.969 D D 

-
3.98 

D D 
0.00

1 
D D 

(Millat et 
al. 2001) 

V664M 
Pathogen

ic 
D AA 1 D D 

-
2.93 

D D 
0.00

1 
D D 

(Park et 
al. 2003; 
Fernandez
-Valero et 
al. 2005; 
Macias-
Vidal et 
al. 2011; 
Bauer et 
al. 2013; 
Jahnova 
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Table 5-2 (continued) 
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IF
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S
IF
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0
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5
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d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

et al. 
2014) 

V727F 
Pathogen

ic 
D BD 0.87 D D 

-
3.51 

D D 
0.00

5 
D D 

(Fernande
z-Valero 
et al. 
2005) 

V780G 
Pathogen

ic 
D BD 0.981 D D 

-
6.49 

D D 0 D D 
(Fancello 
et al. 
2009) 

V889M 
Pathogen

ic 
D AA 0.995 D D 

-
1.82 

B D 0.21 B B 

(Yamamot
o et al. 
1999; 
Sevin et 
al. 2007) 

V950G 
Pathogen

ic 
D BD 0.07 B D -4.1 D D 

0.00
3 

D D 
(Jahnova 
et al. 
2014) 

V950M 
Pathogen

ic 
D BB 0.007 B B 

-
1.02 

B B 
0.16

7 
B D 

(Millat et 
al. 2001; 
Vanier 
and Millat 
2003; 
Millat et 
al. 2005; 
Sevin et 
al. 2007; 
Garver et 
al. 2010) 

V959E 
Pathogen

ic 
B 

Q
W 

0.007 B B 
-

2.51 
D D 0.16 B D 

(Fernande
z-Valero 
et al. 
2005) 

V971L 
Pathogen

ic 
D BD 0.613 D D 

-
1.59 

B B 
0.23

4 
B B 

(Park et 
al. 2003) 
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Table 5-2 (continued) 
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d
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S
IF
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 (

0
.0

5
) 

d
e

fa
u

lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

W942C 
Pathogen

ic 
D AA 1 D D 

-
12.8

4 
D D 0 D D 

(Ribeiro 
et al. 
2001; 
Fernandez
-Valero et 
al. 2005) 

Y1019
C 

Pathogen
ic 

D AA 1 D D 
-

8.37 
D D 

0.00
1 

D D 

(Fancello 
et al. 
2009; 
Zampieri 
et al. 
2012) 

Y1088
C 

Pathogen
ic 

D AA 1 D D 
-

8.64 
D D 0 D D 

(Yamamot
o et al. 
1999) 

Y276H 
Pathogen

ic 
D BD 0.99 D D -4.3 D D 0 D D 

(Jahnova 
et al. 
2014) 

Y509S 
Pathogen

ic 
D BD 0.731 D D 

-
6.31 

D D 0 D D 

(Park et 
al. 2003; 
Garver et 
al. 2010) 

Y634C 
Pathogen

ic 
D AA 1 D D -9 D D 0 D D 

(Fancello 
et al. 
2009) 

Y825C 
Pathogen

ic 
D BD 0.997 D D 

-
7.75 

D D 0 D D 

(Millat et 
al. 2001; 
Vanier 
and Millat 
2003; 
Millat et 
al. 2005; 
Sevin et 
al. 2007; 
Garver et 
al. 2010) 
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Table 5-2 (continued) 
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d
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5
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d
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fa
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lt
 

S
IF

T
 (

0
.1

8
6
) 

R
e
fe

re
n

c
e
 

Y871C 
Pathogen

ic 
D AA 1 D D 

-
8.01 

D D 
0.00

1 
D D 

(Millat et 
al. 2005; 
Sevin et 
al. 2007; 
Macias-
Vidal et 
al. 2011) 

Y890C 
Pathogen

ic 
D AA 1 D D 

-
8.77 

D D 0 D D 

(Tarugi et 
al. 2002; 
Garver et 
al. 2010) 

Y899D 
Pathogen

ic 
D BD 1 D D 

-
9.53 

D D 0 D D 
(Tarugi et 
al. 2002) 

A183T Frequent B ZZ 0 B B 
-

0.12 
B B 

0.58
6 

B B 
(Wassif et 
al. 2015) 

G1073
S 

Frequent B ZZ 0.069 B D 
-

1.05 
B B 

0.25
3 

B B 
(Wassif et 
al. 2015) 

G911S Frequent B ZZ 0.904 D D -4.3 D D 
0.11

3 
B D 

(Wassif et 
al. 2015) 

H215R Frequent B QQ 0 B B 
-

1.35 
B B 

0.53
1 

B B 
(Wassif et 
al. 2015) 

I450V Frequent B QQ 0.007 B B 
-

0.69 
B B 

0.18
2 

B D 
(Wassif et 
al. 2015) 

I858V Frequent B QQ 0.047 B D 
-

0.72 
B B 

0.23
1 

B B 
(Wassif et 
al. 2015) 

M1179
V 

Frequent B QQ 0 B B 0.32 B B 
0.57

8 
B B 

(Wassif et 
al. 2015) 

M156V Frequent D BB 0.019 B D 
-

1.73 
B D 

0.06
7 

B D 
(Wassif et 
al. 2015) 

N589S Frequent B QQ 0.001 B B 
-

1.01 
B B 

0.32
6 

B B 
(Wassif et 
al. 2015) 

P237S Frequent B QQ 0.003 B B 
-

2.23 
B D 0.41 B B 

(Wassif et 
al. 2015) 

P434S Frequent D BD 0.001 B B 
-

1.34 
B B 

0.04
1 

D D 
(Wassif et 
al. 2015) 
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Table 5-2 (continued) 
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Q60H Frequent D CB 0.656 D D 
-

2.01 
B D 

0.05
5 

B D 
(Wassif et 
al. 2015) 

R1183
H 

Frequent D BD 0.976 D D -4.4 D D 
0.00

2 
D D 

(Wassif et 
al. 2015) 

R1266
Q 

Frequent B QQ 0.003 B B 
-

0.22 
B B 

0.30
8 

B B 
(Wassif et 
al. 2015) 

R411Q Frequent B QQ 0 B B 
-

0.15 
B B 

0.36
7 

B B 
(Wassif et 
al. 2015) 

R646H Frequent B QQ 0.01 B B 
-

1.32 
B B 

0.07
8 

B D 
(Wassif et 
al. 2015) 

S1004L Frequent B QQ 0.837 D D 
-

3.79 
D D 

0.06
2 

B D 
(Wassif et 
al. 2015) 

T511M Frequent D BB 0.978 D D 
-

2.88 
D D 

0.00
3 

D D 
(Wassif et 
al. 2015) 

V1115
F 

Frequent D CB 0.001 B B 
-

2.53 
D D 

0.12
4 

B D 
(Wassif et 
al. 2015) 

V810L Frequent B ZZ 0 B B 
-

1.09 
B B 

0.32
2 

B B 
(Wassif et 
al. 2015) 

W291C Frequent D BD 0.957 D D -3.7 D D 
0.07

4 
B D 

(Wassif et 
al. 2015) 

 

“D” represents damaging and “B” represents benign mutations. 
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CHAPTER 6. Conclusion 
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The main subjects of this work are protein sequences. Three aspects of proteins are 

covered here: (i) Identifying protein domain architectures; (ii) Finding functional partners 

of proteins; (iii) Evaluating importance of individual residues in protein function. With the 

increasing amount of genomic data, it is becoming more important to computationally 

identify cellular and molecular functions of proteins by using only sequences. To define a 

protein, looking into the domains that the protein contains is one of the initials steps. More 

often than not, researchers encounter proteins with no assigned domain for some regions, 

if not for the entire length of the protein. That’s why more sensitive domain assignment 

was a necessary task (chapter three). Secondly, while using the comparative genomics 

approach, obtaining the taxonomic distribution of the gene/protein of interest is another 

useful aim. However, displaying the distribution of sequences only in species where a 

particular protein is present constitutes only half of the story. Information on both 

presence and absence of proteins completes the phylogenetic profile. Additionally, 

visualizing multiple proteins on the same distribution frame is helpful to understand their 

coevolution patterns, if there are any. By introducing such features in the field of 

bioinformatics, it becomes possible to learn more about evolutionary history and 

functional interactions of proteins (chapter four). Finally, identifying amino acids that are 

functionally important in a protein was an important task as it has a wide applicability in 

research and clinics. A general approach is to examine the conservation patterns of 

individual amino acids. However, with this traditional approach does not provide the 

desired level of accuracy (mostly because of insensitivity) in predicting damaging 

variants. This is likely due to the noise introduced by the non-related or neo-functionalized 

paralogous proteins, which were likely to have the same function as the protein of interest. 
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Analyzing evolutionary history thoroughly with the phylogenetic approach helped in 

distinguishing between diverged paralogs and orthologs. By considering only orthologs, 

the quality of the alignment increases, yielding a better assessment of conserved residues 

in the MSA of functionally equivalent sequences (chapter five).  

6.1 Implications of the Covered Work for the Present and the Future 

6.1.1 Protein domain assignment 

The first work in this dissertation was building the CDvist algorithm and web server. The 

goal of developing CDvist was to accelerate the discovery of novel domains and 

improving overall domain coverage in protein sequences. Despite the wide popularity and 

success of domain identification tools and databases, as of today, at least 30% of the 

protein sequence space (all sequences in the non-redundant database) has no domain 

coverage. By providing a logical, flexible and iterative pipeline for domain search, rich 

visualization, and bulk querying, we expected CDvist to attract both biologists and 

bioinformaticians. As of January 2015, since the manuscript was published, more than 

3000 users visited the CDvist website with ~4000 sessions.  CDvist has become of 

interest to researchers dealing with proteins with no identified domain with standard 

techniques. Also, users having batch queries use the tool to perform more sensitive 

domain identification through HHsearch on multiple queries at once. With the help from 

users contacting us, we tailored the web server according to their needs. We expect that 

this kind of integration of ideas helps a variety of research groups. For this reason, it is 

important that administrators of this kind of research web server should be accessible, 

responsive and prepared to fulfill the needs of the community. 
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CDvist works on subsequences rather than the entire sequence. Subsequences are 

redefined after every iteration that comes with a significant hit. Performing HHsearch with 

a number of small units takes time and that’s why the CDvist process is slow for a single 

sequence submission. The tool compensates this disadvantage by offering linear speed-

up for batch requests using a supercomputer, Newton High-Performance Cluster in the 

University of Tennessee. In other words, CDvist users all around the world utilize a 

supercomputer from their home.  

Users of CDvist are offered a number of options for domain search. It is possible to 

manually choose the databases of interest in the desired order. Also, since the best 

domain hit (if it is beyond the significance threshold) is assigned to the protein each time, 

the domain assignment and the following subsequence definition depend heavily on the 

determined significance threshold. The order of the databases changes the entire result 

of domain architecture. If a user starts with Pfam followed by CDD, it means that the user 

gives more importance to Pfam and refers to CDD only to find domains for the regions 

that couldn’t be covered by Pfam. The domain architecture found first by CDD followed 

by Pfam would be different in a sense that the order of tools would be opposite to the 

case above. For this reason, there is no standard procedure to search protein domains 

with CDvist. The pipeline can be tailored according to each user’s need. That’s why pre-

computed CDvist results cannot be offered for now. If a concept that rationalizes a 

standard procedure is developed, then that CDvist pipeline can be applied to a vast 

amount of protein data. Only if there is such a standardized procedure, it would be 

reasonable to dedicate computer hours to perform CDvist search on the protein universe, 

after which pre-computed domain assignments would be retrieved at a high speed. 
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It is predicted that, if the domain discovery rate stays still, domain databases will cover 

the complete protein universe in the next 20-30 years. Until that point, CDvist is likely to 

help in this effort.  

6.1.2 Using the Positives and Negatives of Multidimensional Data 

Humans have extraordinary ability in pattern recognition. We use this ability to conceive 

the facts. In molecular biology, although the data is concrete, it is not always easy to 

visualize. Especially for large sets of genomic data, researchers tend to cluster data and 

display representatives instead of visualizing everything. With Aquerium, we offer a 

platform for visualization of multi-layer genomic information. Among comparative 

genomics methods, particularly phylogenetic profiling is appropriate to be applied on such 

a platform displaying thousands of genomes with their multi-layer information.  

One important missing piece in visualizing molecular data on genomics level is to display 

negative data. Since it is challenging to display what is absent in genomes, it has been 

ignored by the bioinformatics community. Aquerium handles genomic absence 

information. Although single absences are not confidently categorized as true, multiple 

independent co-absences are important indicators of true negatives. 

Aquerium uses the taxonomic information to cluster related organisms. Although this 

classification is useful, it is limited in identifying relationships between taxons which have 

no hierarchical discrimination between them. For instance, relationships between species 

belonging to the same genus cannot be determined if there is no middle rank between 

the species and the genus rank. Therefore, presence and absence data in these kinds of 

genomes may misleadingly seem as independent events. To solve this problem, a 



182 
 

phylogenetic tree of life should be built to guide neighboring genomes that are closer to 

each other. However, building the tree of life is not straightforward, and there is a 

substantial effort on this subject in computational biology.  

Phylogenetic profiling is usually applied for genes/proteins that are suspected to be 

involved in the same biochemical network. This method is used to verify protein-protein 

interactions as an additional line of evidence from the genomics point of view. However, 

this approach can also be used as a hypothesis generating method in discovering 

potentially interacting genes/proteins by building phylogenetic profiles of proteins and 

domains and compare them with each other. Aquerium already contains a database of 

domain-linked genomes. This database can easily be converted to a genome-linked 

domain database. This database should include domain records, each of which contains 

a genomic occurrence pattern (profile). Because taxonomic classification can provide a 

sensitivity up to a certain limit, the phylogenetic tree of life will be crucial when building 

precise profiles. Phylogenetic profiles of domains can be compared to each other to 

reveal common co-occurrence patterns which would be the indicators of potentially 

interacting domains. Using only Pfam (v.28) domains, the analysis would result in 256 

million pairwise comparisons, which is a solvable problem in computational biology. 

6.1.3 Phylogenetics Matter in Health and Disease 

Predicting the effects of mutations in genetic diseases is one of the hot topics of 

computational biology, with direct applications in personalized medicine, risk estimation 

etc. We brought up a new concept in this prediction algorithm: using precise evolutionary 

histories of genes. Building high-quality evolutionary history is challenging as there is no 

standard automated procedure to establish it. However, every automation begins with 
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primary concepts manually proved to work in test cases. In chapter five, we present such 

a test case with new ideas on how to assess single amino acid variants. The major point 

of the work was to distinguish orthologs from paralogs. We defined criteria on how to 

perform such a task through phylogenetic analysis. Also, new functions in isoform 

handling and MSA cleaning were introduced. Moreover, a new evolutionary parameter 

“event number” was defined and used in the algorithm. We think that these new 

approaches should be taken into consideration by the community dealing with mutation 

outcome prediction. 

Although the introduced concepts worked for the NPC1 case, it should be tested in other 

Mendelian diseases as well. Especially, the genes with different patterns of evolutionary 

history should be tested. As a first step, our manual work can be performed on ~600 well-

known Mendelian diseases. Phylogenetic trees for this set should be built and analyzed. 

After testing the genes with diverse evolutionary patterns, it would be possible to 

automate the approach and algorithm to apply to any protein. The SAVER algorithm 

should be exposed to machine learning and trained with a benchmark data set. By training 

the algorithm, SAVER can produce a continuous spectrum of scores between benign and 

damaging instead of binary outputs. This way, the results will be biologically more 

meaningful because some mutations may have subtle effects where others may result in 

function loss or neutral change. 

As a side product, the phylogenetic analysis was proved useful in the assignment of 

orthologs and paralogs. For this reason, phylogenetics should be adopted by orthology 

databases. The current methods in these databases are generally based on pairwise 

comparisons and/or MSAs converted into distances. However, as discussed in the 
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introduction, phylogenetic analysis provides a better resolution in discriminating orthologs 

from paralogs. 

6.2 Scripting for Genomics 

This work resulted in a number of scripts, packages and databases as side products. A 

small portion of them was polished and made available to public with a user-friendly 

graphical interface. However, most of them still remain in private depositories and are not 

available to the public. Unpublished scripts produced in this work were not crucial for final 

products of the projects, however, they were very useful in working with genomic data. In 

an ideal world, researchers should benefit from each other’s work, and programming code 

to make progress in science. Reinventing the wheel would be a waste of time, money and 

labor. Therefore, as computational biologists, we should make our resources available to 

anyone. GitHub and BitBucket are appropriate repository hosting services.   

JavaScript/HTML5 is a good scripting platform for not only presenting data to public but 

also understanding genomic data for in-house usage. Jquery and D3 are game-changer 

JavaScript packages as they established new ways of coding. Moreover, browser 

extensions written in JavaScript are highly useful to add external lines of information on 

the existing web servers such as BLAST. These packages should be made available to 

the public. However, the small visualization packages are often not worth to prepare for 

publishing. I believe that there should be a journal dedicated to small application notes 

for genomic data visualization. Therefore, researchers who build their in-house 

applications are encouraged to share them with the community. 
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6.3 Final Remarks 

This dissertation showed how considering molecular evolution helps in understanding the 

functions of the proteins overall and on the residue-level. Diversity is achieved through 

evolution while conserving the most important parts for survival at the molecular level. 

Genes are derived from each other and all genes could have had a single common 

ancestor. Although sequence data are too diverged to achieve the universal common 

ancestor, it is still useful to infer relatively recent relationships among them. This 

homology information helps greatly in understanding molecular biology, eventually 

leading to a solid understanding of cellular and even organismal levels of life. Through 

evolution, genes that are not viable have already been eliminated. Therefore, what we 

observe in the evolution of genes and organisms can be used as a guide to understanding 

what changes were allowable. 

There is still a lot to be discovered from sequences that are already available. Because 

sequence data contains more than one type of information, a variety of techniques are 

applied to understand more about gene functions, protein structures, disease tendency 

etc. Every method/approach developed in this field has different aims and priorities. In 

other words, there is no such an optimal algorithm for a biological question. Every different 

case is evaluated afresh by computational biologists. While biologists can use 

bioinformatics tools for simple tasks, a stronger computational expertise is required to 

analyze large data sets. To conclude, in order to perform large-scale bioinformatics 

analysis, computational programs, resources and power are necessary but insufficient 

unless they are performed by a computational biologist.  
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