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ABSTRACT 

The purpose of this dissertation was to examine the effect of dietary camitine 

supplementation on ethanol and fatty acid metabolism. Rats · were fed purina chow as 

such (non-supplemented, NS) or supplemented with 0.5% L-carnitine (camitine 

supplemented, CS). Carnitine supplementation for 7d resulted in decreased oxidation 

of an oral dose of [ l-14C]-ethanol. Expired 14C02 was significantly reduced at hours 4-

12 in the CS group. There were no significant differences in urinary excretion of the 

14C-label between the two groups which accounted for only about 3% of the total dose. 

The 14C-label rem�ning in tissues after 12h was also. not significantly affected by 

camitine supplementation. Blood-ethanol concentrations (BEC) were 88.5 and 125.9 

mg/dl in the NS and CS groups, respectively, 3h post-ethanol administration (PEA). 

Liver-ethanol concentrations· (LEC) were 1.70 and 0.85 µg/mg in the NS and CS 

groups, respectively 3h PEA. Examination of liver concentrations of pyruvate, lactate, 

acetoacetate, and 3-hydroxybutyrate i:evealed no significant difference� between the NS 

and CS groups. Plasma. concentrations of lactate were 2-fold higher in the CS group, 

but pyruvate, acetoacetate and 3-hydroxybutyrate were not significantly different 

between the two groups. Plasma and liver non-esterified camitine (NEC), acid soluble 

acylcarnitine (ASAC) and acid insoluble acylcarnitine (AIAC) concentrations were all 

significantly higher in the CS group 3h after ethanol administration. The effect of 

camitine supplementation on the urinary excretio� of ethanol, its metabolites and 

camitine was determined by feeding rats the NS and CS diets for 7 d. The rats were 

then given an oral dose of [ l-14C]-ethanol and urine was collected for the next twenty 



iv 
four hours. Food intake, water intake and urine volume were not significantly 

different between the NS & CS groups over the 24h period. Urinary excretion of 

ethanol and the 14C-label were not significantly affected by carnitine supplementation. 

Urinary excretion non-esterified carnitine (NEC), acid-soluble acyl-carnitine (ASAC) 

and acid-insoluble acyl-camitine (AIAC) were significantly elevated in the CS group 

over the 24h period. Supplementary carnitine did not significantly affect the oxidation 

of [14C(U)]-palmitate. There were no significant differences between the NS and CS 

groups with regard to the rates of 14C02 appearance or percent of the dose following 5, 

10, 20, 30 & 40 days of feeding CS diet. Ethanol administration resulted in decre·ased 

palmitate oxidation, at hours 4-24, but dietary carnitine supplementation did not affect 

the decreased oxidation due to ethanol. 
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CHAPTER I 

INTRODUCTION 

One of the most prominent metabolic effects of ethanol consumption is the 

disturbance in lipid metabolism leading to hepatic steatosis. As with most clinical 

disorders the actual mechanism(s) leading to a fatty liver are not well understood and 

are probably the result of a combination of factors. Several potential mechanisms 

responsible for the accumulation of lipids in the ethanol-compromised liver �ave been 

discussed by Baraona and Lieber (1); for example, increased supply of lipids from the 

small intestine, increased uptake of fatty acids by the liver, increased mobilization of 

fatty acids from adipose tissue, increased synthesis of fatty acids in the liver, increased 

esterification of fatty acids in the liver, decreased oxidation of fatty acids in the liver, 

decreased hydrolysis of fatty acid esters in the liver, decreased excretion of liver fat 

into the bile, and decreased release of serum lipoproteins. It is obvious there is no 

clear solution to the steatogenic effect of ethanol on the liver, but the most probable 

explanation is that ethanol inhibits fatty acid oxidation and promotes fatty acid 

synthesis and elongation resulting in an increased supply of long-chain fatty acids. 

available for esterification to glycerol. 

Ethanol oxidation occurs primarily in the liver (2-4). It is first oxidized to 

acetaldehyde by one of three enzyme systems; alcohol dehydrogenase (ADH), catalase 

or the microsomal ethanol oxidizing system (MEOS) (5-7). ADH is located in the 

cytosol and catalyzes the major pathway of ethanol oxidation. However, MEOS is 



known to contribute significantly to ethanol oxidation· following chronic or high doses 

of ethanol (8). Acetaldehyde is subsequently oxidized to acetate in the mitochondrial 

matrix by aldehyde dehydrogenase 

(5, 7, 9). Both dehydrogenase-catalyzed reactions are coupled to the reduction of 

NAO+ to NADH. This results in an increase in the NADH/NAD+ ratio in both the 

cytosol and the mitochondrial matrix of the hepatocyte ( 10, 11). The excess in 

reducing equivalents will result in inhibition of glycolysis, the TCA cycle and fatty 

acid oxidation and promote fatty acid synthesis and esterification (individual reactions 

will be discussed in the review of literature). The acetate generated from ethanol 

oxidation has the potential to be incorporated into fatty acids, which would further 

promote the lipogenic effect of ethanol. Thus ethanol oxidation has a possible three

fold effect on lipid metabolism in the liver by (1) decreasing fatty acid oxidation, (2) 

enhancing the synthesis of fatty acids and (3) increasing fatty acid incorporation into 

triglycerides. 

Alcoholic fatty liver and hyperlipidemia are often associated with more serious 

diseases such as hepatitis, liver cirrhosis, and atherosclerosis ( 1). This has prompted 

attempts to ameliorate ethanol-induced hepatic steatosis. Supplementation of a liquid 

ethanol diet with D,L-carnitine results in decreased concentrations of lipids, especially 

triglycerides, in the liver ( 12, 13). There are several possible mechanisms by which 

carnitine may have a lipid lowering effect in the liver. All of these mechanisms 

involve the increased availability of carnitine, due to supplementation, to serve as a 

substrate for carnitine acyl-transferase. The possible mechanisms are: 

2 
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1. Increased levels of free carnitine could accommodate the inpux of fatty acids by 

serving as a co-substrate for carnitine acyl-transferase. This would result in 

higher concentrations of acyl-carnitines which may enhance the activity of 

carnitine acylcarnitine translocase and facilitate the transport of acyl-carnitine 

into the mitochondrial matrix. The higher concentrations of fatty acids inside the 

matrix may then promote P-oxidation. 

2. The carnitine-induced increase in carnitine acyl-transferase activity would 

compete with glycerol-phosphate acyl-transferase for acyl-CoA 's. This could 

result in decreased formation of phosphatidate, a substrate for synthesis of 

. triglycerides and phosphoglycerides. Carnitine acyl-transferase would also 

compete for acyl-CoA's needed to synthesize triglycerides from diglycerides. 

The net effect would be a decrease in triglyceride synthesis resulting from the 

esterification of acyl groups to carnitine rather than to the glycerol. 

3 .  There may also be increased activity of carnitine acetyl-transferase which would 

compete with acetyl-CoA carboxylase for acetyl CoA units. This may reduce the 

amount of malonyl CoA available for fatty acid synthesis. 

4 .  In each of the above situations there is increased formation of acyl-carnitine . 

. The acyl-carnitines can enter the blood stream and be distributed in the extra

hepatic organs or excreted in the urine. Thus, removal of the fatty acids as acyl

carnitines from the liver pool should result in less of a burden on the liver due to 

alcohol. 
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Another related effect of dietary camitine supplementation is the elevated blood 

ethanol concentrations following both acute and chronic doses of ethanol (14, 15). It 

is generally agreed that the redox state of the hepatocyte is rate controlling for ethanol 

oxidation (2-4). Excess cytosolic NADH generated via ADH will inhibit the 

dissociation of the ADH-NADH complex, which is the rate limiting step in ethanol 

oxidation (4-6). If carnitine doe� increased '3-oxidation, it would provide reducing 

equivalents and produce acetyl-CoA. Both of which would have the potential to 

inhibit ethanol oxidation and result in higher blood ethanol concentrations. 

The objective of this dissertation was to examinC? the possible mechanisms 

responsible for th� lipotropic effect of carnitine on ethanol-induced fatty liver, its 

effect on ethanol oxidation and the possible relationship of the two effects. The 

mechanisms were investigated by the following courses of action. 

1. The effect of dietary camitine on ethanol oxidation was determined by measuring 

the oxidation of [ l-14C]-ethanol to 14C02 along with the effect of carnitine on the 

redox _state which �as determined by measuring lactate/pyruvate and �

hydroxybutyrate/acetoacetate ratios in the liver and blood. 

2. The effect of dietary carnitine supplementation on P-oxidation was determined by 

measuring the oxidation of [14C(U)]-palmitate to 14C02 with and without ethanol 

administration. 

3. The effect of dietary camitine on urinary excretion of ethanol, its metabolites, 

and acyl-camitines was determined by measuring the concentration of ethanol, its 



metabolites and acyl-carnitines in the urine following [ l- 14C]-ethanol 

administration. 

5 
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CHAPTER II 

REVIEW OF LITERATURE 

ETHANOL METABOLISM 

Ethanol is readily absorbed from the gastro-intestinal tract (3). Gastric 

absorption accounts for about 20% of ethanol absorption with the remainder being 

absorbed by the small intestine (16). After absorption ethanol is evenly distributed in 

body water (16) and accumulates in tissues with the highest water content ( 17). There 

is a general consensus that the liver is responsible for the majority of ethanol 

metabolism. Hepatic oxidation accounts for around 75% of the metabolism of ethanol· 

as demonstrated by liver perfusion (18 ,  19), hepatic vein catherization (20), ethanol 

infusions (2 1), partial (22) and complete hepatectomy (23), and evisceration (23). The 

remainder of ethanol is metabolized extra hepatically or eliminated through the 

kidneys and lungs (2-10%) (3). 

Ethanol is first oxidized to acetaldehyde via either alcohol dehydrogenase (ADH, 

reaction a), the microsomal ethanol oxidizing (MEOS, reaction b) or catalase (reaction 

c). 

(a) CH3CH20H + NAD+ �> CH3CHO + NADH + H+ 

(b) CH3C�OH + NADPH + H+ + 02 
MF.Os > CH3CHO + NADp+ 

(c) CH3CH20H + H202 • CATALAsE> CH3CHO + 2H20 

ADH catalyzes the oxidation of ethanol to acetaldehyde coupled to the reduction 

of NAD+ to NADH. ADH occurs at highest concentrations (> 90% of total ADH 



activity) in the liver where it is found in the cytosol (2-7). Mammalian alcohol 

dehydrogenases are polymorphic and the isozymes can be classified based on their 

function and lphysicochemical properties (24-26). The enzyme responsible for ethanol 

oxidation in rat liver is isozyme ADH III. It has a Km of 1.4 mM for ethanol and Ki 

of 10.4 mM for pyrazole (24). All evidence indicates that ADH is the principle 

enzyme responsible for the oxidation of ethanol (2-5). Studies using the ADH 

inhibitors pyrazole and 4-methylpyrazole, result in a 85-90% inhibition of ethanol 

metabolism in vivo (27). The rate limiting step, in vitro, in the ADH catalyzed 

reaction is the dissociation of the ADH-NADH complex (4, 10). This most likely is 

responsible for the rate limiting step in ethanol oxidation, in vivo, which is the re

oxidation of NADH (which will be discussed later) (10). 

7 

The observance that chronic alcohol administration results in the proliferation of 

hepatic smooth endoplasmic reticulum led to the speculation that it may be involved in 

ethanol oxidation (28). It was later demonstrated than an ethanol-oxidizing system 

could be reconstituted with cytochrome P-450, NADPH-Cytochrome C-reductase, and 

phospholipids (29). Most recently, a 52,000 dalton polypeptide, termed P450IIEI (also 

P-450), has been purified by immunoelectrophoresis and shown to be inducible by 

ethanol. Like other cytochrome P-450 - dependent monooxygenases, MEOS requires 

oxygen and NADPH. The number one carbon of ethanol is hydroxylated in a 

cytochrome P-450 dependent manner with the concomitant oxidation of N ADPH. The 

doubly hydroxylated carbon is unstable and -water splits-out leaving acetaldehyde. 

Historically, the role of MEOS in ethanol metabolism has been controversial. The 
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contribution of MEOS to total ethanol oxidation increases with chronic abuse and high 

doses of ethanol (8 , 31). Since MEOS utilizes NADPH and the NADP/NADPH and 

NAD/NADH systems are linked, ethanol oxidation via MEOS co':1ld result not on�y in 

accelerated ethanol metabolism because of MEOS activity, but it may also accelerate 

the ADH pathway by favoring the re-oxidation of NADH (11). The theory for the 

increased MEOS activity at higher ethanol concentrations is that the Km for ethanol 

by ADH is around 2 mM and the Km for ethanol by the MEOS is around 10 mM. So 

at low concentrations of ethanol (10 mM) ADH is already saturated and at higher 

ethanol concentrations the MEOS has the ability to oxidize more ethanol. 

Catalase is a peroxisomal enzyme that can catalyze the peroxidative cleavage of 

· ethanol to acetaldehyde in the presence of a H202 generating system. It is generally 

accepted that the H202 - mediated ethanol peroxidation by catalase is limited by the 

rate of H202 generation. Since the physiological rate of H202 production is rather low, 

the contribution of catalase to in vivo ethanol elimination is not quantitatively 

significant (2, 3 ,  26). 

Regardless of the pathway of the oxidation of ethanol to acetaldehyde the next 

step in the complete oxidation of ethanol is the oxidation of acetaldehyde to acetate 

catalyzed by aldehyde dehydrogenase (ALDH). The overall reaction is: 

CH3CH\0 + NAD+ 
+ H20 AIDH > CH3CHOOH + NADH + H+ 

The reaction is essentially non-reversible with a i\G = -13 kcal/mole and is 

responsible for the rapid removal of acetaldehyde ( 4 ). Rat liver contains several 

ALDH isozymes (9). The isozyme responsible for acetaldehyde oxidation is localized 
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in the mitochondrial matrix as a soluble protein and has a Km of 0. 7 mM for 

acetaldehyde (9). 

Most reviews state that ethanol and acetaldehyde are metabolized primarily in the 

liver and acetate is disposed of in the extrahepatic tissues (1-4). This could be 

misleading and downplay the role of the liver in acetate metabolism. Studies using 

liver perfusion, liver slices and hepatocytes find that 14C-ethanol is partially recovered 

as 14C02 and TCA cycle intermediates (32-39), indicating further oxidation of acetate 

in the liver. The incorporation of 14C-ethanol into acetoacetate, (3-hydroxybutyrate, 

triglycerides and cholesterol indicate� that the liver is .involved in the utilization of 

acetate for the synthesis of these compounds (35-38 ). Also, in vivo, the acetate 

�eleased into the blood no doubt is re-circulated through the liver and would be 

available for re-entry into the· hepatocyte. 

When ethanol is oxidized to acetaldehyde in the cytoplasm via ADH, there is a 

stoichiometric reduction of NAD+. The mitochondrial membrane is impermeable to 
. . 

NADH. S� !educing eq�ivalents must be transferred into the mitochondria via the cx

glycerophosphate or malate shuttle (4). NAD+ may also be regenerated in the cytosol 

by coupling NADH oxidation to reduction reactions (4). The oxidation of ethanol 

exceeds the hepatocyte's ability to utilize the reducing equivalents resulting in an 

increased NADH\NAD+ ratio (10, 1 1). It _is this decreased ratio which is responsible 

for many of the deleterious effects of ethanol. 
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DEVELOPMENT OF FATTY LIVER 

· The accumulation of lipids in the ethanol compromised liver can originate from 

three main sources: dietary lipids, adipose tissue lipids and endogenous synthesis by 

the liver. The source of the lipids varies with the type of ethanol administration. The 

administration of a single large dose of ethanol leads to hepatic accumulation of fatty 

acids resembling those of adipose tissue. In contrast, prolonged ethanol ingestion 

produces fatty livers consisting of endogenously synthesized fatty acids and dietary 

fatty acids (40, 43). The proposed theory for the difference is that the large acute 

dose represents a stressful situation to the rat causing the release of catecholamines. 

So through �-adrenergic stimulation, lipase is activated resulting in the hydrolysis of 

triglycerides and the release of fatty acids from adipose tissue (1). · Chronic 

administration, as the liquid ethanol diet, represents a less stressful situation and fatty 

acid turnover is more representative of "normal" metabolism. It has also been 

demonstrated that the degree of triglyceride accumulation in the liver varies with 

increasing amounts of fat in the diet and with increasing chain length of fatty acids in 

the diet ( 44, 45). 

Although there are several potential mechanisms for the accumulation of fat in 

the ethanol-compromised liver the most likely candidates are decreased �-oxidation, 
. . 

increased synthesis of triglycerides and increased synthesis and elongation of fatty 

acids. All three can be at least partially explained by the change in the redox state 

and excess acetate formed during ethanol oxidation. 
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There is considerable evidence that ethanol does inhibit the oxidation of fatty 

acids. In humans, the formation of 14C02 from 14C-oleic acid was reduced and the 

effect was partially abolished by 4-methylpyrazole (46). The addition of ethanol to 

human and rat liver slices reduces 14C02 from 14C-labeled oleic acid, palmitate and 

linoleic acid and the addition of 4-methylpyrazole inhibited the effect (47). The above · 

results do not prove that �-oxidation is inhibited since the inhibition of 14C-fatty acid 

to 14C02 could result from TCA cycle inhibition. However, ethanol was later shown 

to decrease· formation of ketone bodies ( 48 ), acetyl-CoA ( 49) and CO2 ( 48 ,  49) from 

labeled fatty acids, thus confirming the decrease in P-oxidation due to ethanol. 

The common feature to all the above experiments is that the effects of ethanol on 

fatty acid oxidation were decreased considerably when ethanol metabolism via ADH 

was inhibited by 4-methylpyrazole. In fact, pyrazole titration experiments demonstrate 

a correlation between changes in the mitochondrial NADH/NAD ratio and both 

inhibition of the TCA cycle and inhibition of the �-oxidation pathway (49). The TCA 

cycle is sensitive to inhibition by N ADH at isocitrate dehydrogenase and at 

ketoglutarate dehydrogenase steps (49). P-oxidation would be r�stricted at �

hydroxyacyl-COA dehydrogenase and acyl-CoA dehydrogenase ( 1 ). Ethanol also 

influences the activity of carnitine palmitoyltransferase I (CPT-1). In hepatocytes 

isolated from rats fed a liquid ethanol diet CPT-1 activity was markedly decreased and 

its sensinvity to inhibition by exogenously added malonyl-C.9,A was increased (50). 
-

Pre-incubation of hepatocytes from rats fed control diets with ethanol or acetaldehyde 

also decreased CPT-I activity and increased sensitivity to malonyl-CoA (50, 5 1). 
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CPT-I is generally considered to catalyz.e the rate limiting step in the transport of long 

chain fatty acids into the mitochondrial matrix (50). 

The effect of ethanol on fatty acid synthesis remains unsettl�d. The incubation 

of hepatocytes, isolated from rats given an acute dose of ethanol, with either 14C

ethanol or 14C-acetate resulted in increased incorporation of the label into fatty acids 

(52). Perfusion of isolated rat liver demonstrated that ethanol directly enhanced the 

synthesis of fatty acid from labeled acetate (53). However, rats fed the liquid ethanol 

diet failed to show an increase in the incorporation of 3H20 into fatty acids but did 

show an increase in triglycerides in the liver (55-57). Although it seems probable that 

the liver would increase fatty acid synthesis in order to cope with the excess NADH 

and acetate; conflicting data do not entirely support the theory. 

The increase in lipid content in the ethanol-induced liver is mostly due to the 

increase in triglyceride content. Ethanol administration results in enhanced 

incorporation of 14C-palmitate into triglycerides in hepatocytes (47, 48). Rats fed a 

liquid ethanol diet incorporate more 14C-glycerol into triglycerides than control animals 

(54). Isolated perfused livers incorporate more 14C-acetate into triglycerides in the 

presence of ethanol (53). There is a rapid increase of the a-glycerophosphate content 

of the liver after ethanol administration (58). The proposed mechanism is the 

increased concentration of NADH will increase the production of a-glycerophosphate 

from dihydroxyacetone phosphate (58). Thus with increased levels of fatty acids 

(froni decreased oxidation and possibly increased synthesis) and higher conce�trations 

of a-glycerophosphate, conditions are favorable for triglyceride synthesis. 
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CARNITINE AND ETHANOL METABOLISM 

Camitine serves as an esse�tial carrier for long chain acyl groups across the 

mitochondri� membrane to sites of oxidation. It was this role of camitine that first 

prompted investigators to examine the possibility that camitine might help prevent the 

alcohol-induced fatty liver. The addition of camitine to the ethanol solution in rats 

orally receiving a dose of 6g ethanol/kg b.w. resulted in significantly lower 

concentrations of triglycerides in the liver and blood 24h after ethanol administration 

(59). The addition of camitine to a diet (containing 36% calories as ethanol) fed to 

rats for 56d resulted in significantly lowered levels of total lipids, free and esterified 

cholesterol, triglycerides and phospholipids 1n the liver (12). The effect was later 

· found to be dose dependent up to 0.8% DL-camitine (13). Dietary carnitine 

supplementation of the liquid ethanol diet results in elevated blood-ethanol 

concentrations (BEC) ( 14 ). Carnitine supplementation has also resulted in elevated 

BEC under acute ethanol administration (14, 15). Under both acute and chronic 

conditions carnitine administration has resulted in both decreased lipids in the liver 

and higher BEC. One possible explanation for the observations is that carnitine is 

causing increased �-oxidation of fatty acids which results in lower lipid levels. The 

increase in �-oxidation will result in an · increased intramitochondrial redox potential 

(E = Eo-2.3RT/nF log [RED]/[OX]) (61) which would inhibit regeneration of NAO+ 

from NADH and elevate BEC. Another possible mechanism for the lipid lowering 

effect of carnitine is that carnitine traps excess acetyl groups derived both from free 
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acetate, formed by ethanol oxidation, and from acetyl-CoA, accumulated as a result of 

the ethanol-induced decrease in the TCA cycle (61). 



CHAPTER Ill 

MATERIALS AND METHODS 

ANIMALS, HOUSING AND DIETS 
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Animals used in these studies were mature male Sprague-Dawley rats (Harlan 

Sprague-Dawley, Inc., Indianapolis, IN). They were kept in an ALAS accredited 

facility and individually housed in 7" X 10" X 7" wire mesh, stainless steel cages and 

kept in ventilated cubicles with glass sealing doors� The temperature in each cubicle 

was maintained at 72 .= 2°C, relative humidity between 40-50% with a cycle of 12. 

hours light and 12 hours dark. The rats were fed ground Purina Rat Cow #500 1 

(Ralston Purina, St. Louis, MO). The diets were fed as such (non-supplemented, NS) 

or supplemented with 0.5% (w/w) L-Camitine (camitine supplemented, CS). Camitine 

was supplemented as a hydro-chloride salt (Sigma, St. Louis, MO). All diets and 

water were supplied ad libitum. 

EXPERIMENT AL PROCEDURES 

Experiment 1 (l-14C]-Ethanol Oxidation 

The objective of this experiment was to determine the effect of dietary carnitine 

supplementation on [l-14C]- ethanol oxidation, distribution and urinary excretion. Ten 

rats (300-350g) were divided into 2 groups of 5 and fed Purina rat chow as such (non

supplemented, NS) or supplemented with 0.5% (w/w) L-carnitine (camitine 

supplemented, CS) for 7d. 

[ l -14C]-ethanol (New England Nuclear, Boston, MA) was mixed with absolute 

ethanol and double distilled water to yield a 13% (v/v) solution containing 
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1 x 107dpm/� ethanol. The rats �rally received 3g ethanol/kg bwt and were placed in 

respiratory chambers. 14C02 was collected as descri�d later. After 12 h the animals 

were anesthetized with Metofane (Pitman-Moore, Washington Crossing, NJ) blood wa.s 

collected by cardiac puncture; liver, kidney, heart, semitendinusus leg muscle, 

epididymal fat pad, and brain were removed· and stored at -20°C. 

Experiment 2 Blood and Liver Ethanol Concentrations and Redox State 

The objective of this experiment was to determine the effect of dietary carnitine 

supplementation on the redox state of the liver following ethanol administration. Ten 

rats (300-350g) were divided into 2 groups of 5 and fed Purina rat chow as such (NS) 

or supplemented with 0.5% L-carnitine (CS) for 7d. 

[ l -14C]-ethanol (New England Nuclear, Boston, MA) was mixed with absolute 

ethanol and glass distilled water to yield a 13% v/v solution containing 1 X 107 dpm/g 

ethanol. 'The rats orally received 3g ethanol/kg bwt. Three hours later the rats were 

decapitated, blood was collected from. the neck and liver was r�moved .within 45 sec 

and dropped _in liquid ni�gen. Plasma and livers were stored at -7(1'C. 

Experiment 3 Urinary Excretion of [l-14CJ Ethanol 

The objective of this experiment was to determine the effect of dietary carnitfoe 

supplementation on urinary excretion of ethanol, its metabolites and camitine 

following ethanol administration. Ten rats (300-350g) were divided into 2 groups of 5 

and fed Purina rodent chow as such (NS) or suppl�mented with 0.5% L-carnitine (CS) 

for 10d. [ l -14C]-ethanol (New England Nuclear, Boston, MA) was mixed with 

absolute ethanol_ and double glass distilled water to yield a 13% (v/v) solution 



containing 1 x 107 dpm/g ethanol. The rats orally received 3 g ethanoVKg bwt and 

were placed in metabolic cages. Urine was collected for the next 24 hr. 

Experiment 4 (14C(U)J-Palmitate Oxidation Time Course 
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The objective of this experiment was to determine the effect of dietary carnitine 

supplementation on [14C(U)]-palmitate oxidation. Thirty rats (300-350 g) were divided 

into 5 groups of 6. One-half th� rats from each group received Purina rodent chow as 

such (NS) or supplemented with 0.5% L-carnitine (CS). The groups were fed their 

respective diets for 5, 10, 20, 30 and 40d. 

A 2.5% palmitate solution was prepared by adding 2.5 g palmitic acid to a 

mixture of 50 ml double distilled water and 0.25 ml of 4.0 N KOH. The mixture was 

then sonicated until homogeneous. The pH was adjusted to 7 .5 by the addition of 

concentrated HCI. It was necessary to slowly add HCl then sonicated in order to 

obtain accurate pH readings and to ensure homogeneity. Total volume was then 

brought to 100 ml with double distilled water. The final solution had the consistency 

of coconut milk. [14C(U)]-palmitate (New England Nuclear, Boston, MA) was mixed 

with freshly sonicated 2.5% palmitate to yield a solution containing 2 x 107 dpm/g 

palmitate. The rats orally received 0.5 g palmitate/kg bwt (this would amount to about 

one-half of the normal daily intake of palmitate) and were placed in respiratory 

chambers. 4C02 was collected as described later. After 24 h the animals were 

anesthetized with Metof ane (Pitman-Moore, Washington Crossing, NJ) blood was 

collected by cardiac puncture; liver, kidney, heart, semitendinusus leg muscle, 

epididymal fat pad, and brain were removed and stored at -20°C. 
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Experiment 5 [14C(U)J-Palmitate Oxidation With Ethanol 

The objective of this experiment was to determine the effect of dietary carnitine 

supplementation superimposed with a single oral dose of ethanol on (14C(U)]-palmitate 

oxidation. Ten rats (300-350g) were divided into 2 groups of 5 and fed Purina rodent 

chow as such (NS) or chow supplemented with 0.5% L-carnitine (CS) for 10d. 

(
14C(U)]-palmitate was administered as in experiment 3. The rats were then 

placed in a respiratory chamber for 2 h. Air inside the chamber was evacuated by 

�locking influent air and allowing a vacuum to form. This should have prevented any 

loss of expired air. The rats were then removed and given an oral dose (3g ethanol/kg 

bwt) of 13% ethanol and returned to the respiratory chambers. 14C02 was determined · 

as described later. After 24 h the animals were anesthetized with Metofane (Pitman

Moore, Washington Crossing, NJ) blood was collected by cardiac puncture; liver, 

kidney, heart, semitendinosus leg muscle, epididymal fat pad, �nd brain were removed 

and stored at -2D°C. 

ANALYTICAL PROCEDURES 

14C02 Analysis 

After receiving the labelled dose of either palmitate of ethanol the rats were 

placed into a respiratory chamber (Fig. 1). Air flowing into the chamber at l .OUmin 

(monitored by flow meter), first passed through a CO2 trap (Baralyme, Allied 

Healthcare Products, St Louis, MO) and a moisture trap (Molecular sieve 5A with 

Indicating Drierite, American Scientific Products, McGraw Park, IL). Effluent air 

from the metabolic chamber entered another moisture trap and was bubbled through 
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800 ml of 1.0 M KOH, then into a second CO2 trap containing 350 ml of 1.0 M KOH 

(virtually all the radioactivity was found in the first trap). 1.0 ml samples of the KOH 

solution were removed and mixed with 2.0 ml water and 15 ml of Aquasol II LSC 

cocktail (New England Nuclear, Boston, MA) in a scintillation vial; these were 

allowed to sit overnight, then. counted in a Beckman LS 380 1 Liquid Scintillation 

Counter. 
14C Determination in Tissues 

Approximately 100 mg of tissue was added to 1.0 ml 2.0 M Methanolic-KOH 

and digested at 60°C for 1 hr in a tightly · capped glass scintillation vial. The samples 

were _ then cooled to -20°C for 20 min. and 0.4 ml of glacial acetic acid was added 

followed by 15 ml of Aquasol II (New England Nuclear, Boston, MA). The vials 

were then placed in the dark overnight to reduce additional background counts due to 

chemilumesence. The next morning the vials were shaken, and counted in a Beckman 

Model 13801  Liquid Scintillation Counter. A blank for each specific tissue from rats 

not receiving labelled compounds was ran to determine the contribution of color to 

background DPM and was found to be negligible. Plasma and urine samples (0.2 to 

1.0 ml) were counted with or without KOH digestton and the KOH digestion did not 

alter the DPM. 

Sampling of Tail Vein Blood 

The dorsal tail vein was cut by making an incision directly over the vein and 

blood was collected in a 20 pl capacity, heparinized micro-hematocrit capillary tube. 

The contents of the tube were immediately delivered into a 1.5 ml capacity microfuge 



tube containing 980 µl of cold normal saline, capped and mixed well. The tube was 

then centrifuged at 1500 x g for 10 min at 2°c and kept on ice until ethanol 

concentration was determined within 24 hours (usually on the day of collection). 

Tissue Homogenation for Total Lipids, Triglycerides, and Carnitine 

2 1  

Approximately 1.0 g of tissue was added to 2 volumes of 1. 15% KCl containing 

0.01 M NaJIPOJKH�4 buffer (pH 7.4) and homogenized by four strokes in 

teflon/glass homogenizer. The top of the teflon plunger was then rinsed with 1 

volume of KCl solution and homogenize further by 2 more strokes. The homogenate 

was then poured into a graduated conical tube and th� homogenizer was rinsed with 1 

volume of KCl solution and added to the homogenate. This yielded a w/v 

homogenate. The homogenate was stored at 

-7CfC in 1 ml portions to avoid repeated thawings of the sample. 

Tissue Homogenation for Pyruvate, Lactate, Acetoacetate, 3-Hydroxybutyrate and 

Ethanol 

Froze� . livers were pulverized into a fine power by mortar and pestle. Liquid 

nitrogen was constantly poured into the mortar to prevent the liver from thawing. 

Approximately 100 mg of powdered liver, 200 µl plasma or 100 µl urine + 100 µl 

10% BSA were added to pre-weighed conical tubes containing 300 µl of 3.0 M HC104 

and 1.25 ml of qouble distilled water. The tubes were vortexed vigorously for 30 

seconds and allowed to sit in an ice water bath for 5 minutes, vortexed again and 

centrifuged for 10 minutes at 1500 x g at 2°C. 1.0 ml of the supernatant was removed 

and added to another conical tube on ice. The original tube was then allowed to wann 
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to room temperature and weighed. 200 pl of 3 M KHC0
3 

was added and allowed to 

sit for 15 min., then centrifuged for 10 min at 1500 x g at 2°C. The supernatant was 

then poured off. Acetoacetate, pyruvate, and ethanol were assayed immediately. 

Lactate and 3-Hydroxybutyrate were assayed within 2 hours. 

Pyruvate Determination 

Pyruvate was determined fluorimetrically by the method of Passonneau & Lowry 

(62). The decrease in NADH concentration was measured by the decrease in 

florescence as pyruvate was reduced to lactate by bovine heart lactate dehydrogenase. 

Reagents 

1 .  1 .0 M :KiHPOJNaHJ>()4 (pH 7.0): 

Dissolve 2 1 .Sg K2HP04 and 19.0g NaH2P04 2H20 in 200 ml of double distilled 

water adjust pH to 7 .0 as necessary with 4.0 M KOH and bring up to 250 ml wi�h 

double distilled water. Store at 4°C. 

2. 5mM NADH: 

Dissolve 3.5 mg B-NADH-N3i, Grade m from yeast (Sigma, St. Louis, MO) per 

ml carbonate buffer. Heat to 60°C for 15 min and store at -20°C. Make fresh 

weekly. 

3. O. lM N3iCOJ.NaHC0
3 

(pHl0.6): 

Dissolve 0.85g N3iC03 and 0. 17 g NaHC03 in 7.5 ml double distilled water adjust 

pH as necessary with 4.0 M KOH and bring up to 100 ml with double distilled 

water. Store at -200C. 



4.  20 mM Tris Buffer (pH 8 .0): 

Dissolve 0.24 g Tris (Sigma, St. Louis, MO) in 75 ml of double distilled water, 

adjust pH to 8 .0 with 1.0 M HCl, add 200 pl 10% BSA and bring to 100 ml. 

Store at -2D°C 

5. Lactate Dehydrogenase (LDH): 

Dilute stock LDH, Bovine Heart Type III in 2.1 M �)2S04 (Sigma, St. Louis, 

MO) with 20mM Tris to yield 500 u/ml. Make fresh daily. 

6. 1.0 mM Pyruvate: 
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Dissolve 18 .3 mg Pyruvic Acid-potassium salt Type m (Sigma, ST. Louis, MO) 

per ml double distilled water. This yields a 0.1 M solution. Dilute to 1.0 mM by · 

adding 100 pl to 9.9 ml double distilled water. Make fresh daily. 

7. 3 .0 M HC104: 

Dilute 25 ml 70% HC104 to 100 ml with double distilled water. Store at 4°C. 

8 .  Reagent Mixture: 

Add 10 ml 1.0 M phosphate buffer and 100 pl of 5mM NADH to 90 ml double 

distilled water. Prepare fresh daily. 

9. 10% BSA: 

Dissolve 10g BSA in 75 ml double distilled water and bring to 100 ml with 

double distilled water. 

10. 3 .0 M KHC03 : 

Dissolve 30 g KHC03 in double distilled water and make up to 100 ml. Store at -

2Q°C. 
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Procedure 

A standard curve was prepared by adding 0, 10, 20, 40, 60, 80 and 100 µl (Fig. 2) 

of pyruvate standard to tubes containing 100 µl 10% BSA, 300 µl of 3 .0 M HC104 and 

double distilled water to a total volume of 1.65 ml. The tubes were vortexed 

vigorously for 30 sec and allowed to sit in an ice water bath for 5 min, vortexed again 

and centrifuged for 10 min at 1500 x g at 2°C. 1.0 ml of the supernatant was removed 

and added to another conical tube on ice. 200 µl of 3M KHC03 were added and 

allowed to sit for 15 min, then centrifuged for 10 min at 1500 x g at 2°C. The 

supernatant was then poured off into another tube on ice. A 100 µl aliquqt of the 

neutralized standard or tissue supernatant was added to 1.9 ml of reaction mixture in a 

4.5 ml polystyrene Ultra-Vu disposable cuvette (Baxter Scientific Products, Atlanta, 

GA) and mixed by inversion. Baseline florescence was determined in a Hitachi F-

2000 Florescence Spectrophotometer (Exitation 360 and Emission 460 um). 20 µl of 

LDH (approx. IOU) was then added. The cuvettes were mixed by inversion and let sit 

at room temperature for 30 min �n the dark. After 30 min florescence was determined 

again. The decrease in florescence was proportional to the concentration of pyruvate. 

Calculations 

Florescence X 1/slope X 5 = nmoles/ml plasma or urine 

Florescence X 1/slope + mg liver = nmoles/mg liver 

Florescence X 1/slope + 10 = nmoles/ml/nmoles/ml urine 



25 

1 50 

1 25 

y = 1 .8432 + 53.8303x R = 1 .00 

1 00 

75 

so 

25 

o �--T-----------..----..�--------. 

0 . 0  0 . 5  1 . 0 1 . 5 2 .0  2 . 5  

PYRUVATE (NMOLES/ML) 

Figure 2. Pyruvate Standard Curve 



Lactate Determination 

Lactate was determined by the method of Passonneau (63). The increase in 

NADH concentration was measured by the increase in fluorescence as lactate is 

oxidized to pyruvate by bovine heart lactate dehydrogenase. 

Reagents 

1. 2-Amino-2-methyl-1-propanol buffer (1 M; pH 10.0): 

Dissolve 8.9 g 2-amino-2-methyl-1-propanol (9.5 ml if liquid) in double distilled 

water, adjust pH to 10.0 with 12 M HCl and dilute to 100 ml. with 

double distilled water. Store at -2D°C. 

2. Tris buffer (20 mM; pH 8.0): 
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Dissolve 0.24 g Tris (Sigma, St. Louis, MO) in double distilled water adjust pH to 

8 with 1.0 m HCL add 200 pl 10% BSA and dilute with double distilled water to 

100 ml. Store at -2D°C. 

3 .  Hydrazine Hydrate, (Sigma, St. L<?uis, MO) 

4. Nicotin�de-adenin� dinucleotide (0. 1 M B-NAD Grade III) from yeast (Sigma, 

St. Louis, MO). 

Dissolve 70 mg. NAD in 1 ml double distilled water. Store frozen. 

5. Lactate dehydrogenase, LDH 

Dilute stock LDH, Bovine heart Type III in 2. 1 M (NH4)2S04 (Sigma, St. Louis, 

MO) with 20 mm Tris to yield 500 u/ml. 



27 
6. 1.0 mM Lactate 

Diss�lve 10.3 mg L (+)-Lactic Acid-Lithium salt Grade L-X (Sigma, St. Louis, 

MO) per' ml double distilled water this yields a 0.1 M solution. Dilute to 1.0 mM 

by adding 100 µl to 9 .9 ml double distilled water. Make fresh daily. 

7. Perchloric acid (3 M): 

Dilute 25 ml. 70% HC104 with double distilled water to 100 ml. 

8. Potassium hydrogen carbonate (3 M): 

Dissolve 30 g. KHC03 with double distilled water and make up to 100 ml. 

9.  Reagent mixture 

Mix 10.0 ml buffer solution (1), 250 µl Hydrazine Hydrate and 50 µl NAD and 

bring to 100 ml with double distilled water. 

Procedure 

A standard curve was prepared by adding 0, 10, 20, 40, 60, 80 and 100 µl (Fig. 3) 

of lactate standard to tubes containing 100 µl 3 .0 M HC104 and double distilled water 

to a total volume of 1.65 ml. The tubes were vortexed vigorously for 30 sec and 

allowed to sit in an ice water bath for 5 min vortexed again and centrifuged for 10 

min at 1500 X g at 2°C. 1.0 ml of the supernatant was removed and added to another 

conical tube on ice. 200 µl of 3 M KHC03 were added and allowed to sit for 15 min, 

then centrifuged for 10 min at 1500 x g at 2°C. The supernatant was then poured off 

into another tube on ice. A 100 µl aliquot of the neutralized standard or tissue 

supernatant was added to 1.9 ml of reaction mixture in a 4.5 ml polystyrene Ultra-Vu 

disposable cuvette (Baxter Scientific Products, Atlanta, GA) and mixed by inversion. 
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Baseline florescence was determined in a Hitachi F-2000 Fluorescence 

Spectrophotometer (Exitation 360 and Emission 460nm). 10 µl of LOH was then 

added, the cuvettes were mixed by inversion and let sit at room temperature for 30 

min in the dark. After 30 min fluorescence was determined again. The increase in 

florescence was proportional to the concentration of lactate 

Calculations 

Fluorescence X I/slope X 5 = nmoles/ml plasma 

Fluorescence X I/slope + mg liver = nmoles/mg liver 

Fluorescence X I/slope x 10 = nmoles/ml urine 

Acetoacetate Determination 

Acetoacetate was determined by the method of Mellanby and Williamson ( 64) 

adapted from spectrophotometry to fluorescent spectrophotometry. The decrease in 

NADH concentration was measured by the decrease in fluorescence as acetoacetate 

was reduced to 3-Hydroxybutyrate. 

Reagents 

1. I .OM K2HPOJNaH2P04 (pH 7.0): 
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Dissolve 21.8 g KiHP{)4 and 19.0g NaH2P04 2H20 in 200 ml of double 

distilled water adjust pH to 7 .0 as necessary with 4.0MKOH and bring up to 250 

ml with double distilled water. Store at 4°C. 



2. 5mM NADH: 
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Dissolve 3 .5 mg B-NADH-N�, Grade III from yeast (Sigma, St. louis, MO) per 

ml of carbonate buffer. Heat to 60°C for 15 min and store at -2D°C. Make fresh 

weekly. 

3 .  0.1 M N�COJNaHC03 (pH 10.6): 

Dissolve 0.85g N�C03 and 0.17g NaHC03 in 75 ml double distilled water adjust 

pH as necessary with 4.0 MKOH and bring up to 100 ml with double distilled 

water. Store at -2Q°C. 
· 4. 20mM Tris Buffer (pH 8 .0): 

. Dissolve 0.24g Tris (Sigma, St. Louis, MO) in 75 ml of double distilled water 

adjust pH to 8 .0 with I.OM HCl add 200 µl 10% BSA and bring to 100 ml. 

Store at -2Q°C. 

5.  3-Hydroxybutyrate Dehydrogenase. Type II from Rhodopseudomonas spheroides 

in 3 .2M (NH,.)2So4 (Sigma, St. Louis, MO). 

6. l .OmM Acetoacetate 

Dissolve 1 1 .5 mg Acetoacetic Acid-Lithium Salt (Sigma, St. Louis, MO) per ml 

double distilled water. This yields a OllM solution. Dilute to 1.0mM by adding 

100 µl to 9.9 ml double distilled water. 

7. 3 .0M HC104: 

Dilute 25 ml 70% HC104 to 100 ml with double distilled water. Store at 4°C. 



8� 10% BSA: 

Dissolve 10g BSA in 75 ml double distilled water bring to 100 ml with double 

· distilled water. 

3 1  

Dissolve 30g of KHC03 in double distilled water and make up to 100 ml. Store 

at -20°C. 

10. Reagent Mixture: 

Add 10 ml I.OM phosphate buffer and 100 µl of 5mM nadh to 90 ml double 

distilled water. Prepare fresh daily. 

Procedure 

A standard curve was prepared by adding 0, 10, 20, 40, 60, 80 and 100 µl (Fig. 

4) of acetoacetate standard to· tubes containing 100 µl 10% BSA, 300 µl 3.0M HC104 

and double distilled water to a total volume of 1.65 ml. The tubes were vortexed 

vigorously for 30 sec and allowed to sit in an ice water bath for 5 min vortexed again 
. . 

and centrifuged for 10 �n at 1500 X g at 2°C. The supernatant was then poured off 

into another tube on ice. A 100 µl aliquot of the neutralized standard or tissue 

supernatant was added to 1.9 ml of reaction mixture in a 4.5 ml polystyrene Ultra-Vu 

disposable cuvette (Baxter Scientific Products, Atlanta, GA) and mixed by inversion. 

Baseline fluorescence was determined in a Hitachi F-2000 Fluorescence 

Spectrophotometer (Exitation 360 and Emission � nm) 10 µl of BHBDH was _ then 

added. . The cuvettes were mixed by inversion and let sit at room temperature for 60 
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min in the dark. After 60 min fluorescence was determined again. The decrease in 

fluorescence was proportional to the concentration of acetoacetate. 

Calculations 

Fluorescence X 1/slope X 5 = nmoles/ml plasma 

Fluorescence X 1/slope + mg liver = nmoles/mg liver 

Fluorescence X 1/slope X 10 = nmoles/ml urine 

3-Hydroxybutyric Acid Determination 
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3 Hydroxybutyric Acid was determined according to the procedure of Williamson 

and Mellanby (65) adapted for fluorescence. The concentration of NADH is measured 

by an increase in fluorescence as 3-Hydroxylbutyrate is oxidized to acetoacetate. 

Reagents 

1 .  2-Amino-2-methyl-1-propanol buffer (1 M; pH 10.0): 

Dissolve 8.9 g 2-amino-2-methyl-1-propanol (9.5 ml if liquid) in double distilled 

water, adjust pH to 10.0 with 12 M HCl and dilute to 100 ml. wit double 

distilled water. Store at -2D°C. 

2. Tris buffer (20 mM; pH 8.0): 

Dissolve 0.24 g Tris (Sigma, St. . Louis, MO) in double distilled water adjust pH 

to 8 with 1.0 m HCL add 200 pl 10% BSA and dilute with double distilled water 

to 100 ml. Store at -20°C. 

3 .  Hydrazine Hydrate (20 m) (Sigma, St. Louis, MO) 
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4. Nicotinamide-adenine dinucleotide (0. 1 M B-NAD Grade Ill) from yeast (Sigma, 

St. Louis, MO). 

Dissolve 70 mg. NAO in 1 ml double distilled water. Store at -20°C . 

5. Lactate dehydrogenase, LOH 

Dilute stock LOH, Bovine heart Type III in 2. 1 M (NH4)2S04 (Sigma, St. Louis, 

MO) with 20 mm Tris 

6. 1.0 mM 3-Hydroxybutyrate 

Dissolve 15.4 mg DL-3Hydroxybutyric Acid-Sodium salt (Sigma, St. Louis, MO) 

per ml double distilled water this yields a 0. 1 M solution. Dilute to i.o mM by 

adding 200 µl to 9.8 ml double distilled water. Make fresh daily. 

7. Perchloric acid (3 M): 

Dilute 25 ml. 70% HC104 with double distilled water to 100 ml. 

8. Potassium hydrogen carbonate (3 M): 

Dissolve 30 g. KHC03 with C:touble distilled water and make up to 100 ml. 

9. Reagent mixture 

Mix 10 ml buffer (1), 250 µl Hydrazine Hydrate and 50 µl NAO and bring to 

100 ml with double distilled water. Make fresh daily 

Procedure 

A standard curve was prepared by adding 0, 10, 20, 40, 60, 80 and 100 µl (Fig. 

5) of 3-Hydroxybutyrate standard to tubes containing 100 µl 10% BSA, 300 µl 3.0 M 

HC104 and double distilled water to a total volume of 1.65 ml. The tubes were 

vortexed vigorously for 30 sec and allowed to sit in an ice water bath for 5 min, 
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vortexed again and centrifuged for 10 min at 1500 x g at 2°C . . 1:0 ml of the 

supernatant was removed and added to another conical tube on ice. 200 µl of 3 M 

KHC03 were added and allowed to sit for 15 min, then centrifuged for 10 min at 1500 

x g at 2°C. The supernatant was then poured off into another tube on ice. A 100 µl 

aliquot of the neutralized standard or tissue supernatant was added to 1 .9 ml of 

reaction mixture in a 4.5 ml polystyrene Ultra-Vu disposable cuvette (Baxter Scientific 
. . 

Products, Atlanta, GA) and mixed by inversion. Baseline fluorescence was �etermined 

in a Hitachi F-2000 Fluorescence Spectrophotometer (Exitation 360 and Emission 460 

nm). 10 µl . of BHBDH were then added, the cuvettes . were mixed by inversion a)Jd let 

sit at room temperature for 60 min in the dark. After 60 min fluorescence was 

determined again. The decrease in fluorescence was proportional to the concentration 

of 3-Hydroxybutyric Acid. 

Calculations 

Fluorescence X 1/slope X 5 = nmoles/ml plasma, urine 

Fluorescence_ X I/slope +. mg liver = nmoles/mg liver 

Fluorescence X I/slope x 10 = nmoles/mg liver 

Total Lipids Determination 

-Total lipids were determined according to the method of Ellenston and Caraway (66). 

Reagents 

1. Concentrated �S04 



2. Phosphoric Acid-V anillin Reagent 

Dissolve 1.0g vanillin in 160 ml double distilled water. Bring to 500 ml with 

concentrated phosphoric acid. Store at room temperature. 

3. Olive Oil standard (1 %) 

Mix l .Og of olive oil with 7.5 ml chloroform and bring to 100 ml with 

chloroform. Store at -2D°C. 

4. Working standard (0.1 % ) 

Mix 0.5 ml of 1 % standard with 4.5 ml chloroform. Store at -20°C. 

Procedure 
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A standard curve was prepared by adding 0, 50, 100, 200, and 400 µI (Fig. 6) of 

working standard to 16 X 150 mm glass tube. The chloroform was then evaporated 

off under a stream of nitrogen and 200 µI of double distilled water were added to each 

tube. 200 µI of plasma or 100 µI liver homogenate plus 100 µI doub_le distilled water 

were added to 16 X 150 mm glass tubes while the chloroform was evaporating off. 5 

ml of H2S04 were added to all tubes, vortexed and placed in a heating block at 100c 

for 10 min, then allowed to cool to room temperature. 200 µl from each tube were 

added to 3.0 ml of phosphoric acid-vanillin reagent, vortexed and placed in the dark 

for 1 hour. Absorbance was determined in a Beckman Model 34 Dual-Wavelength 

Spectrophotometer at 520 nm. 
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Calculation 

Abs X 1/slope X 5 = mg lipid/ml plasma 

�bs X 1/slope X 10/mg liver/ml homogenate = mg lipid/mg liver 

Triglyceride Determination 
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Triglycerides were determined according to the method Geigel et al (67). Lipids 

are partitioned between water/isopropanol and nonane phases with the triglyceride 

extracted into the nonane. Glycerol is liberated from the triglyceride by sodium 

hydroxide and oxidized to formaldehyde by periodate. The formaldehyde reacts with 

2, 4-pentanedione to form 3,5-diacetyl- 1,3-dihydrolutidine, the color compound 

measured. 

Reagents 

1. Extraction reagent: n-nonane/isopropanol (2.0/3 .5 v/v). Caution: flammable. 

Not necessary to redistill. 

2. Triolein standard: triolein (Sigma Chem. Col, St. Louis, MO) 100 mg/dl in 

extraction reagent (1. 13 nmol/liter). 

3 .  Dilute sulfuric acid, 40 nmol/liter: 1. 10 ml cone. H2So4 diluted in small amount 

of distilled water and diluted to 500 ml. 

4. Transesterifying reagent: N aOH in isopropanol, 100 mmol/liter. 1 g Na OH is 

dissolved in small amount of isopropanol and diluted to 250 ml. A fine 

precipitate may be present in the reagent, primarily as a result of carbonate 

formation. It will settle on standing, or it can be removed by filtration. A slight 

yellow color may develop with age but will not affect test results. 
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5. Oxidizing reagent: sodium periodate (Nal04),  18 mmol/liter, in 2.0 mol/liter 

acetic acid (CH
3COOH). 0.962 g of Nal04 is dissolved in 2 M acetic acid and 

diluted to 250 ml. 2 M acetic acid is prepared by adding 5 1  ml of glacial aceti� 

acid to some distilled water and dilute to 500 ml. 

6. Color buffer: Ammonium acetate (CH2COOHN4) (6.0 mol/liter, pH 6.0 at 25°C). 

462g CH2COONH4 is dissolved in approximately 600 ml distilled water. The pH 

is adjusted to 6.0 with glacial acetic acid (H). The solution is diluted to one 

liter. 

7. Acetylacetone (c;i80z) (2,4-pentanedione), reagent grade. 

8. n-Nonane (Phillips "pure" grade.) 

The above reagents all are stable for at least a year at room temperature . Store 

them in tightly stoppered vessels. 

9. Working color reagent: Add 4 ml of acetylacetone to 100 ml of the color buffer. 

Shake vigorously and allow to stand for at least 15 min. before use. This 

solution is stable for 8 hours at room temperature. 

Procedure 

A standard curve was prepared by adding 0, 50, 100, 200, 400 µl (Fig. 7) to 16 

X 100 mm glass screw-top tubes. Total volume was brought to 5.0 ml with extracting 

reagent. 200 µl of double distilled water were than added to each standard. 200 µl of 

liver homogenate or plasma was then added to tubes containing 5 .0 ml extracting 

reagent. The tubes were vortexed and centrifuged at 1500 x g at 2°C. 500 µl of the 

upper phase was added to an equal volume of transesterifying reagent, vortexed and 
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held at room temperature for five min. 500 µ1 of oxidizing reagent was added, 

vortexed and held at room temperature for five min. 6.0 ml of working color reagent 

was added and incubated at 60°C for ten min. The tubes were cooled to room 

temperature and absorbances was determined at 415 nm. 

Calculation 

Abs X 1/slope X 5 = mg Triglyceride/ml plasma 
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Abs X 1/slope X 5 = mg liver/ ml homogenate = mg Triglyceride/ml plasma 

Camitine Determination 

Carnitine was · determined by the method of Cederblad & Lindstedt (68) with 

modirications (69-7 1). Total carnitine is fractionated by PCA into non-esterified 

carnitine (NEC), acid soluble acylcarnitine (ASAC) and acid insoluble acylcarnitine 

(AIAC). The acylcarnitine fractions are first hydrolyzed with KOH then assayed as 

NEC. Labelled ([1-14C]AcetylCoA or [CH3-H]Acetyl CoA) acetyl CoA is then 

esterifiec
f 

to NEC by carnitine acetyl transferase (CAT). Excess acetyl-CoA is 

removed by anion exchange chromotography. Radioactivity in the eluent which would 

be proportional to carnitine concentration, is determined by liquid scintillation. 

Procedure 

A standard curve was prepared by adding 0, 10, 20, 40, 60, 80, 100 µ1 (Fig. 8-

10) to plastic conical tubes and total volume was brought to 100 µ1 with double 

distilled water. , 100 µ1 BSA and 200 µ1 PCA were added to each tube. Plasma was 

assayed by adding 100 µl plasma to 100 µl double distilled water and 200 ml PCA. 

Liver camitine was determined by mixing 200 µI liver homogenate with 200 µl PCA. 
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100 µl of urine sample were mixed with 100 µl BSA before the addition of PCA. (It 

is necessary to dilute urine (with normal saline) from carnitine supplemented rats 20-

30 fold in order to determine NEC and ASAC and 10 fold for AIAC). The tubes were 

vortexed," centrifuged at 1500 X g for 10 min at 4°C (Model TJ-6, Beckman 

Instruments, Palo Alto, CA) and put on ice. 

Reagents 

1. 0.5 mM carnitine standard solution (stock): 9.88 mg L-carnitine HCL (sigma 

Chemical Co., St Louis, MO) was dissolved in cold glass distilled water (GDW) 

and diluted to 100 ml in a volumetric flask. This stock standard was diluted 1 :2 

to give a working standard concentration of 0.25 mM. 

2. 22.90 mM L-palmitoylcarnitine standard (stock): 1 .0 ml of GDW was added to a 

vial containing 10 ml of L-palmityl camitine (Sigma Chemical Co., St. Louis, 

MO). This stock standard was diluted 1: 100 to give a working standard 

concentration of 0.229 mM. 

3 .  Carniti�e standard tµixture: Working standard were prepared by mixing equal 

volumes of L-carnitine and L-palmitoyl carnitine. 

4. 0.5 M Potassium hydroxide: 28.05 g of KOH was dissolved in some GDW and 

diluted to a volume of 1 liter. 

5. 0.5 M Potassium hydroxide: 56. 11 g of KOH was dissolved in some GDW and 

diluted to a volume of 250 ml. 

6. 0.6 M Perchloric acid (PCA): 51.26 ml of 70% PCA was added in some GDW 

and diluted to a volume of 1 liter. 



7. 0. 1 M Sodium tetrathionate: 0.6756 g of anhydrous sodium tetrathionate (J.T. 

Baker Chem. Co., Phillipsburg, NJ) was dissolved in GDW and diluted to a 

volume' of 25 ml. 
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8 .  0. 1 % Phenol red: 100 mg of phenol red (Sigma Chemical Co., st. Louis, MO) 

was dissolved in absolute ethanol and made to a volume of 100 ml. Phenol red 

tubes were prepared by adding one drop of phenol red to 12 x 75 mm Pyrex 

glass tubes and allowed to dry. 

9. [ 1-14C] acetyl Coenzyme A: 10 uCi of [3H] acetyl Coenzyme A (New England 

Nuclear, Boston, MA) was dissolved in cold GDW and made to a volume of ·300 

ml. 5.0 ml aliquots were dispensed into plastic vials and frozen at -7CY'C. 

10. IM Potassium bicarbonate: 1 g potassium bicarbonate (Certified ASC, Fisher 

Scientific Co., Fair Lawn, NJ) was dissolved and made to a volume of 10 ml 

with GDW. Solution was stored at room temperature and made daily. 

1 1. 0. 1 M acetic anhydride: 0.5 ml of acetic anhydride (Fisher Scientific Co., Fair 

Lawn, NJ) was added to 4.95 ml of cold GDW and used immediately for acetyl 

CoA solution. 

12. 0. 1 mM acetyl Coenzyme A: 10 mg of acetyl Coenzyme A (Sigma Chemical 

Co., St. Louis, MO) was added tO' 0.5 ml cold GDW and mixed. Then, 100 µl of 

1 M potassium bicarbonate was added and mixed, and followed by the addition 

of 200 µl of 0. 1 M acetic anhydride. The solution was made up to 80 ml with 

cold GDW, mixed thoroughly, and dispensed into plastic vials and frozen at -

10
°

c. 
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13.  Camitine acetyltransferase (CAT): CAT from pigeon breast muscle (Sigma 

Chemical Co., St Louis, MO) was diluted with GDW to give an enzyme activity 

of 50 units/ml. 

14. 1 M [3-(4-morpholino)propanesulfonic acid]MOPS: 20.92 g of MOPS (Sigma 

Chemical Co., St Louis, MO) was added to about 80 ml of GDW. The pH was 

adjusted 7.4 with 4 M potassium hydroxide and was diluted to a volume of 100 

ml with GDW. 

15. PCA/MOPS-1: 20.9 g of MOPS was added to 50 ml of 0.6 M PCA and brought 

up · to a volume of 100 ml with GDW. The solution was stored at 4°C. 

16. PCA/MOPS-11: 20.9 g of MPOS was added to 20 ml of 0.6 M PCA and brought

up to a volume of 100 ml with GDW. The solution was stored at 4°C. 

17. 0. 1 M ethylene glycol-bis (beta-amino-ethylether) N, N-tetraacetic (EGTA), pH 

7: 1.902 g EGTA (Sigma Chemical co., St. Louis, MO) was added in 30 �l 

GDW, adjusted to pH 7.0 with 4 M potassium hydroxide, and diluted to 50 ml 

with GDW. 

18. 0. 1 mM [3H] acetyl Coenzyme A solution: 2: 1 volumes of [l-14C]acetyl CoA 

and 0. 1 mM acetyl CoA were mixed and stored at 4°C. 

19. Reagent mixture for one assay: 1 M MOPS, pH 7.4 ,  120 µl; 0. 1 M EGTA, pH 

7.0, .20 µl; 0. 1 M sodium tetrathionate, 20 µl; 0. 1 mM [l-14C]-acetyl CoA 

solution, 200 µl; GDW, 40 µl; to a volume of 400 µI. 
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20. 8% bovine serum albumin (BSA): 4 g of BSA (Fatty acid poor, Fraction V, ICN 

Pharmaceuticals Inc., Life Sci. Group, Cleveland, OH) was dusted into about 20 

ml of GDW, stirred gently, and diluted to 50 ml. 

21 .  Scintillation fluid; Ready-Solv@CP (Beckman . Instruments, Palo Alto, CA). 

22. Mini Columns: The mini columns were made by stuffing the area above 5-3/4" 

Pasteur pipettes (Fisher Scientific Co., Fair Lawn, NJ) with glass wool. Anion 

Exchange Resin, AG I-X8, 200-400 mesh, CL-form (Bio-Rad Laboratories, 

Richmond CA) was added up to the 9 cm mark measured from the tip of the 

pipette. 

Nonesterified Camitine Determination 

35 pl of 1 M potassium bicarbonate was added to the 150 pl of the supernatant 

in a phenol red test tube and vortexed. The contents turned a golden yellow color. 

The mixtures were held for 30 min on ice and centrifuged at 1500 x g for 10 min. 

Acid Soluble Acylcarnitine Determination 

75 pl of 0.5 M potassium hydro�ide was added to the 100 pl of the supernatant 

in the phenol red test tube and vortexed. The contents turned a purple-red color 

indicating alkalinity for hydrolysis. The contents were incubated in a 37°C rotating 

water bath ( 100 shakes/min) for 30 min for complete hydrolysis. The mixtures were 

then neutralized by adding 30 pl of PCA/MOPS-11, and vortexed. They were held on 

ice for 30 in and centrifuged at 1500 x g for 10 min. . . 

Acid Insoluble Acylcamitine Determination 
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The pellet was resuspended in 200 µl of 0.6 M PCA and centrifuged at 1500 x g 

for 10 min, drained by inverting the tube and repeated. One drop of phenol red 

indicator and 200 µl of 0.5 M potassium hydroxide were added to each tube and the 

pellets were resuspended. The contents turned a purple-red color and were hydrolyzed 

in a 65°C shaking water bath (100 spm) for 60 min. 

The contents were neutralized by adding 100 µl of PCA/MOPS-1. The tubes 

were vortexed, held on ice for 30 min and centrifuged at 1500 x g for 10 miri at 4°C. 

Assay for Carnitine 

A 100 µl aliquot was transferred from each of the fractions to 1.5 ml microfuge 

tubes separately. Four hundred µl of reagent mixture were added followed by 20 µl of 

carnitine acetyltransferase (CA n. The tubes were capped, mixed by gentled tapping, 

incubated in a 37°C shaking water bath for 30 min. Later, 200 µl of the incubated 

mixture was transferred onto a mini column, and the eluant was collected into plastic 

mini scintillation vial. When the 100 µl aliquot was fully absorbed, the column was 

washed with 2 portions of 500 µl GDW, and the washe� were also collected into the 

same respective scintillation vial. Then, 5 ml of scintillation fluid was added to each 

vial, capped, shaken, wiped-off with ethanol, counted for 10 min/vial in a scintillation 

counter (LS-3801 Beckman Instruments, Irving, CA). 

Calculation 

DPM x I/slope x 10 - nmoles/ml plasma 

DPM x I/slope x 5 + mg Liver/ml homogenate = mg liver 



Ethanol Determination 

Ethano� was determined by the procedure of Bernt and Gutmann (72). As 

ethanol is oxidized to acetate by alcohol dehydrogenase the reduction of NAO to 

NAOH is followed spectrophotometrically. 

Reagents · 

1. 0.5% (v/v) Ethanol: 

5 1  

Add 500 µl absolute ethanol to 100 ml volumetric flask containing 75 ml of cold 

double distilled water and bring up to mark with cold double distilled water. 

Dilute the 0.5% ethanol 50 fold to yield working standard 0.01 % ethanol. 

2. Sodium pyrophosphate buffer: 

(75 mM pyrophosphate buffer, pH 8.7, 75 mM semicarbazide, 21 mM glycine). 

Dissolve 33.3 g N�P207 X 10 �O + 8.25 g semicarbazide HCl + 1.65 g glycine 

in 800 ml distilled H20, adjust to pH 8.7 with about 16.7 ml 4N KOH and dilute 

to 1 liter with double distilled water. Stable for two weeks at 4°C. 

3. Nicotinamide-adenine dinucleotide: 

(24mM B-NAO Type m from yeast (Sigma, ST, Louis, MO). Dissolve 83.3 mg 

NAO in 5.0 ml double distilled water. Make fresh. 

4. Alcohol dehydrogenase: 

Dissolve 10.0 mg of lyophilized enzyme (Sigma, St. Louis, MO) in 1.0 ml GOW 

( 10 mg/ml). Make fresh. 

5. Reagent Mixture: 

For one assay, 2.38 ml buffer, 100 µl NAO and 20 µl AOH. 
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Procedure 

A standard curve was prepared by adding 0, 25, 50, 75 and 100 µ1 (Fig. 1 1) of 

working st�dard to 16 X 125 plastic tubes. Total volume was brought to 100 µ1 with 

double distilled water. Then, 2.5 ml of reagent mixture were added to each tube. A 

100 µ1 aliquot of 50 fold diluted blood or 1 :3 fold diluted neutralized PCA supernatant 

of liver sample was added to tubes containing 2.5 ml reagent mixture. The tubes were 

very gently vortexed and incubated at 37°C for 25 min in a shaking water bath. After 

cooling to room temperature absorbance was determined at 340 nm with a Beckman 

Model 34 Dual-Wavelength Spectrophotometer. 

Calculations 

Abs X I/slope x 50 = ug ethanol/ml blood 

Abs x I/slope x 3 + mg liver/ml PCA sn 

STATISTICS 

All ·data are presented as group means ± the standard error of the mean. The 

paired t-test was used to analyze the data from 14C0
2 

analysis. The students t-test was 

used to analyze data between 2 groups (91) and Duncan's Multiple Range Test was 

employed if there were more than 2 groups (98 ). 
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CHAPTER IV 

RESULTS 

Experiment 1 [l-14C]-Ethanol Oxidation 
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Dietary carnitine supplementation for 7d resulted in a decrease in the oxidation 

of [l-14C]-ethanol to 14C02 (Table 1). The amount of 14C02 present in the KOH traps 

is lower at all time points and significantly reduced at hours 4-12 in the CS group. 

The CS group also expired less 14C02 
as a percentage of the .total dose. The decrease 

in the percentage of total expired 14C02 in the CS group gradually increases from 0.5% 

at 1 h to 10.2% by 12 h (Table 1). By 24 h the NS and CS groups had expired 85.4% 

and 75.2% of the total dose as CO
2

• In terms of both the total expired 14C0
2 and 

percentage of the total dose, dietary carnitine supplementation results in the inhibition 

of ethanol oxidation. This is consistent with earlier observations reporting elevated 

blood-ethanol concentrations with the CS diet (14, 15). 

The urinary excretion of the 14C-label, which theoretically could have been 

ethanol, acetaldehyde, acetate, or any metabolite that acetate could be incorporated 

into, is shown in Table 2. There is no significant difference in the 12 h urine volume 

between the NS (20.4ml) and CS (22.3 ml) groups. The total DPM in the urine after 

12 h was also not significantly different between the NS (4.86 X 105
) and CS (5.05 X 

108) groups. The percentage of the total dose excreted in the urine after 12 h was · 

2.95� in the NS group and 2.9 1  % in the CS group. Thus, carnitine is not affecting 

blood-ethanol concentrations by inhibiting ethanol or its metabolites excretion by the 

kidneys. 



TABLE 1 

EFFECT OF L-CARNITINE SUPPLEMENTED DIET ON [ l - 14C]-E1HANOL OXIDATION.1 

Hr. Post-Ethanol 
Administration 

1 
2 
3 
4 
5 
6 
7 
8 
10 
12 

DPMs x 10-6 

0.54 
1.21 
1.90 
2.82 
3.60 
4.82 
6.12 
7.97 

11.31 
15.00 

NS 

% of Dose 

3.1 
6.9 

10.8 
16.1 
20.5 
27.4 
34.8 
45.4 
64.4 
85.4 

1. Oxidation of ethanol is represented as expired 14002• 

All values are group means ± SEM (n=3) 

Groups 

· DPMs x 10-6 

0.48 
1.02 
1.60 
2.34* 
3.12** 
4.35** 
5.46*:" 
7.27** 

10.40* 
13.73** 

NS = nonsupplemented. CS = L-camitine supplemented. 
* p S 0.05 
**p S 0.01 

cs % of Dose NS - % of Dose CS 

% of Dose % NS-CS 

2.6 0.5 
5.6 1.3 
8.8 2.0 

12.8 3.3 
17.1 3.4 
23.8 3.6 
29.9 4.9 
39.8 5.0 
57.0 7.4 
75.2 10.2 

VI 
VI 



TABLE 2 

URINARY EXCRETION OF 14C-LABEL FOR TWELVE HOURS 
AFTER ETHANOL D0SE1 

Parameter 

12 hr Urine 
Volume (ml) 

NS 

20.4 ± 3.0-

Groups 

cs 

22.3 ± 3.9· 
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Total DPM 

% Dose 

4.86 X H>5 ± 3.7 X 1<>4-

2.95 ± 0.36. 

5.05 X 1()5 ± 3.3 X 104
• 

2.91 ± o.2s· 

1. All values � group means ± SEM (n=5). 
Those bearing the same superscript within a row are not significantly different 
(p > 0.05). 
NS = Nonsupplemented 
CS = L-carnitine supplemented 
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The distribution of the 14C-label remaining in the body 12 h after ethanol 

administration was measured by determining the DPM in several tissues (Table 3). 

There were rio significant differences in the DPM in plasma, liver, kidney, heart, brain, 

skeletal muscle, and the epididymal fat pad between the NS and CS groups, 

respectively. The highest concentration of radioactivity was in the plasma followed by 

the liver, kidney, heart, brain, skeletal muscle, and the epididymal fat pad for both the 

NS and CS groups. Assuming skeletal muscle, fat and blood represent 50%, 20%, and 

6%, respectively, of total body mass, and using the actual weights of other organs. It 

was possible to account for approximately 95% of the total dose being expired as CO2, 

excreted in the urine or remaining in the body. 

In summary, carnitine supplementation reduced the amount of ethanol oxidized to 

CO2 over a 12  h period with 85% {NS) and 75% (CS) of the to� dose being expired 

as CO2• There was no effect of carnitine supplementation on urine volume, the 

excretion of the label, or tissue distribution of the label 12  h after ethanol 

administration. 

Experiment 2 Blood and Liver-Ethanol Concentrations and Redox State 

Cami tine supplementation for 7 d resulted in 30% higher blood-ethanol 

concentrations, which were 88.52 and 125.99 mg/di in the NS and CS groups, 

respectively (Table 4). Since plasma-ethanol concentrations are 1 . 12 times higher than 

whole blood-ethanol concentrations (94), it would be expected that plasma DPM 

concentrations would also be higher in the carnitine supplemented group. Three hour 

plasma-DPM concentrations were 3 1 ,800 and 33,800 DPM/ml for the NS and CS 
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TABLE 3 

EFFECT OF SUPPLEMENTARY CARNITINE ON 14C TISSUE DISTRIBUTION 
TWELVE HOURS AFIER [l-14C]-ETHANOL ADMINISTRATION. 

Groups 

Tissue NS cs 

Plasma 80.78 ± 5.38· 75. 17 ± 2.99· 

Liver 22. 10 ± 3. 1� 28 .54 ± 5.44. 

Kidney · 20.20 ± 1 .  90- 21 .40 ± 1 .48· 

Heart 9. 10 ± 0.18· 9.24 ± 0.97. 

Brain 4.56 ± 0.82· 4. 18 ± 0.2 1· 

Skeletal Muscle .4.28 ± 0.82· 4.24 ± 0.65. 

Epididymal 1 .93 ± 0.2� 3.72 ± 2.35· 
Fat Pad 

1 .  14C distribution is expressed as DPM/mg tissue or ml plasma. All values are ·group 
means (n=5), those bearing the same superscript within a row are not significantly 
different (p > 0.05). 
NS = Nonsupplemented 
CS = Camitine supplemented 



TABLE 4 

BLOOD AND LNER ETHANOL CONCEN1RA TIONS AND 14C CONTENT 
THREE HOURS AFfER E1HANOL ADMIN1STRATI0N1 

GROUPS 
Tissue NS cs % NS/CS 

Blood Ethanol 88.52 ± 5.78· 125.99 ± 1.57b 70% 
(mg/ell) 

Plasma DPM 31,800 ± 360()& 33,800 ± 3000- 94% 
(DPM/ml) 

Liver Ethanol 1.70 ± 0.21· 0.85 ± 0.08b 200% 
(µg/mg) 

Liver DPM 
(DPM/mg) 34.90 ± 1.& 36.31 ± 1.90- 96% 

1. All values are group means ± SEM (n=5). Those bearing the same superscript 
within a row are not significantly different (p > 0.05). 
NS = nonsupplemented, CS = L-carnitine supplemented 
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groups, respectively (Table 4). Carnitine supplementation resulted in elevated blood-

ethanol concentrations without the expected rise in plasma-DPM concentrations. 

The effect of carnitine supplementation on liver-ethanol concentrations is opposite of 

the blood-ethanol concentrations. Liver-ethanol concentrations were 1 .  70 and 0.85 

µg/mg in the NS and CS groups, respectively. However, as in the plasma, there were 

no significant differences with respect to liver-DPM concentrations between the NS 

(34.9 DPM/mg) and CS (36.3 DPM/mg) groups. 

The oxidation of ethanol leads to an excess of NADH and a shift in the redox 

potential of the liver to a more reduced state ( 10, 1 1 , 94). It is possible to access the 

cytosolic redox state by measuring the lactate/pyruvate ratio and the inner-

' mitochondrial redox state by measuring 3-hydroxybutyrate/acetoacetate ratio. 

Carnitine supplementation did not significantly affect liver pyruvate and _ lactate 

concentrations and there were no significant differences in the lactate/pyruvate ratio 

between the NS (22. 17) and CS ( 19.98) groups (Table 5). Ethanol administration 

lowered liver pyruvate concentrations, raised liver lactate concentration and doubled 

the lactate/pyruvate ratio �hen compared to non-ethanol treated rats (Table 5). 

Acetoacetate and 3-Hydroxybutyrate concentrations in the liver were not significantly 

different between the NS and CS groups (Table 5). There were also no significant 

differences in the 3-hydroxybutyrate/acetoacetate ratio between the NS (54.57) and the 

CS (5 1 .29) groups (Table 5). Ethanol administration lowered liver acetoacetate 

concentrations, raised liver 3-hydroxybutyrate concentrations and increased the 3-



61  

TABLE 5 

LIVER REDOX PAIR CONCENTRATIONS THREE HOURS AFrER ETHANOL 
ADMINISTRA TION2 

Groups 

Metabolite NS cs %NS/CS 
(nmoles/g liver) 

Pyruvate 68.65 ± 9.96· 88.72 ± 17. 13· 77% 
(130)2 

Lactate 2441 .1 ± 426.9. 2490.5 ± 251_5• 98% 
(1620)2 

LIP 22. 17 ± 4.oo· 19.98 ± 0.70- 1 1 1% 

Acetoacetate 14.00 ± 2.41• 13.20 ± 2.80- 06% 
(55)2 

3-Hydroxybutyrate 728.25 ± 15.59. 622.0 ± 65. 17. 1 17% 
(144)2 

H/A 54.57 ± 3.87� 5 1 .29 ± 4.3 1· 106% 

1 .  All values are group means ± SEM (n=5). Those bearing the same superscript 
within a row are not significantly different (p > 0.05). · 
NS = Nonsupplemented 
CS = L-camitine supplemented 
LIP = Lactate/Pyruvate 
H/A = 3-Hydroxybutyrate/Acetoacetate 

2. Values in parenthesis are from fed control rats (93). 



Hydroxybutyrate/acetotate ratio from about 3 to 50 when compared to non-ethanol 

treated rats (Table 5). Plasma pyruvate concentrations were lowered by ethanol 

administration but were not significantly different between the NS (8 1.6 nmoles/ml) 

and CS (75.6 nm<?les/ml) groups (Table 6). Ethanol administration elevated plasma 

lactate concentrations when compared to non-ethanol treated rats which is consistent 

with earlier reports of lactic acidosis following ethanol administration (39.96). 

Carnitine supplementation significantly increased plasma lactate concentrations from 

3553 (NS) to 6849 (CS) nmole/ml (Table 6). The lactate/pyruvate ratio was also 

increased from 44 (NS) to 74 (CS) by carnitine · supplementation (Table 6). Plasma 

acetoacetate concentrations were not significantly affected by either ethanol 

administration or camitine supplementation (Table 6). Plasma 3-hydroxybutyrate 

concentrations and 3-hydroxybutyrate/acetoacetate were elevated by ethanol 

administration but not significantly affected by c·arnitine supplementation (Table 6) 
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Carnitine supplementation had a dramatic effect on plasma and liver camitine 

concentrations 3h after ethanol administration (Table 7). Plasma concentrations of 

NEC were significantly increased from 33 (NS) to 54 (CS) nmoles/ml. Plasma 

concentrations of ASAC were significantly increased from 6.94 (NS) to 16.48 (CS) 

nmoles/ml of AIAC were significantly increased from 13.94 (NS) to 23.96 (CS) 

nmoles/ml. Liver NEC concentrations were 1.3 times in the CS group (199 vs 265 

nmoles/g). Liver ASAC was 2.3 times higher (27 vs 63 nmoles/g) and AIAC was 2.7 

times higher (8.7 vs 23.6 nmoles/g) in the CS group (Table 7). 
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TABLE 6 

PLASMA REDOX PAIR CONCENTRATIONS THREE HOURS AFI'ER ETHANOL 
ADMINISTRA TION2 

Groups 

Metabolit� NS cs % NS/CS 
(nmoles/ml) 

Pyruvate 81.6 ± 6.0- 75.6 ± 4.8· 108% 
(234)2 

Lactate 3553.0 ± 331.0- 6849.0 ± 1388.0b 52% 
(2960)2 

LIP 43.53 ± 2.43. 73 .92 ± 8.79b 59% 

Acetoacetate 116.0 ± 21.2· 68.4 ± 16.4& 170% 
(76)2 

3-Hydroxybutynlte 395.2 ± 106.0- 260.8 ± 50. 86& 152% 
(82)2 

H/A 3.51 ± 0.68& 3.19 ± 0.98& 110% 

1. All values are group means ± SEM (n=5). Those bearing the same superscript within 
a row are not significantly different (p > 0.05). 
NS = Nonsupplemented 
CS = L-camitine supplemented 
LIP = Lactate/Pyruvate 
HI A = 3-Hydroxybutyrate/ Acetoacetate 

2. Values in parenthesis are from fed control rats (93 ). 



TABLE 7 

PLASMA AND LIVER CARNITINE CONCENTRATION THREE HOURS AFIER 
ETIIANOL ADMINISTRA TION1 •2 

Groups 

64 

�amitine 
Fraction 

NS cs % NS/CS 

Plasma (nmoles/ml) 

NEC 
ASAC 
AIAC 
Total 

Liver (nmoles/g) 

NEC 
ASAC 
AIAC 
Total 

33.32 ± 1 .88· 
6.97 ± 1 .73· 
1 3.94 ± 1 .91 •  
54.23 ± 5.52· 

199.64 ± 1 1 .74• 
27 .44 ± 4.6Cr 
8.67 ± 3.37• 

235.75 ± 19.1 r 

54.08 ± 2.3 1b 

16.48 ± 1 .73b 

23.96 ± 7.43b 

94.52 ± 7.43b 

264.64 ± 20.08b 

63.41 ± 5.02b 

23.6 1 ± 2.62b 

35 1 .66 ± 27.75b 

62% 
42% 
58% 
57% 

75% 
43% 
37% 
67% 

1 .  All values are group means ± SEM (N=5). Those bearing the same superscript 
within a row are not significantly different (p > 0.05). 
NS = nonsupplemented, CS = L-camitine supplemented 

2. All NEC and ASAC values should be multiplied by a factor of 2. 



Experiment 3 Urinary Excretion of [l-14C]-Ethanol 
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Urine volume over 24h period following ethanol a�nistration was not significantly 

different between the NS and CS groups (Table 8, Figure 12). Total 24h urine volume 

for the NS and CS groups was 26.8 and 27.9 ml, respectively. The largest volume was 

excreted in the first 3h and accounted for about 50% of the total 24h volume. The 3h 

urine volume is approximately equal to the volume of the gavage. From 3-6 h urine 

volume drops sharply followed by a linear increase over the next 18h (Figure 12). Food 

intake over the 24h period was not significantly different between the NS (18.4g) and CS 

(18.4g) groups (Table 8).Water intake over the 24h period was not significantly different 

betw�en the NS (31.2 ml) and CS (32.4 ml) groups (Table 8) 

The excretion of ethanol in the urine for 24h was not significantly affected by 

carnitine supplementation (Table 9, Figure 12). Total 24h ethanol for the NS and CS 

groups was 29.35 and 26.36 mg, respectively. This accounted for 2.9% of the total 

ethanol dose in the NS group and 2.6% in the CS group. The greatest amount of ethanol 

excreted in the urine was in the first 3h following ethanol administration. By 3h the NS 

group excreted 77% of the total 24h ethanol and the CS group 84% of the total 24h 

ethanol. After the initial 3h period ethanol excretion drops sharply and remains low for 

the remainder of the 24h period. 

The total amount of radioactivity excreted over the 24h period was not significantly 

affected by carnitine supplementation (Table 9, Figure 12). Total 24h excretion · of the 

14C-label was not significantly different between the NS (1.28 X 1()6 
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TABLE 8 

TWENTY FOUR HOUR FOOD AND WATER INTAKE AND URINARY OUTPUT 
FOLLOWING ETHANOL GAV AGE IN RA TS FED NS AND CS DIETS FOR SEVEN , 

DAYS2 

Parameter 

24 hr Food (g) 

intake 

24 hr Water (ml) 
intake 

NS 

18.4 ± ur 

31.2 ± 3.0-

Orpups 
cs 

18.4 ± 0.9' 

32.4 ± 4.1· 

Urine Volume - (ml) 

0-3 hr 
3-6 hr 
6-12 hr 
12-24 hr 
Total 

11.52 ± 1.13• 
1.66 ± 0.21· 

4.46 ± 0.70-
9.16 ± 1.01• 

26.80 ± 3.11' 

14.04 ± 1.24• 
2.24 ± 0.90' 
3.38 ± 0.74' 
8.28 ± 0.39' 

27 .94 ± 3.21· 

1. All values are group means ± SEM (n=5). Those bearing the sa�e superscript within 
a row are not significantly different 
(p > 0.05. 
NS = Nonsupplemented, CS = L-carnitine supplemented 
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TABLE 9 

1WENTY FOUR HOUR URINARY ETHANOL EXCRETION IN RATS FED NS 
AND CS DIETS FOR SEVEN DA YS2 

Groups 
Parameter 

Urine Ethanol (mg) 
0-3 hr 
3-6 hr 
6- 12 hr 
12-24 hr 
Total 
% Total Dose 

Urine DPM (total) 
0-3 hr 
3-6 hr 
6- 12 hr 
2-24 hr 
Total 
% Total Dose 

NS 

22.60 ± 66.50-
2.02 ± 0.90-
1 .66 ± 0.46· 
1 .00 ± 0. 10• 

29.35 ± 9.3 1. 
2.90 ± 0.45• 

5.63 X 1()5 ± 1 .01 X 105• 

1 .57 X 1()5 ± 5 . 1  X l<r 
4. 1 1  X lOS ± 6.5 X lcta 
1 .52 X 105 ± 1 .6 X 1()4• 
1 .28 X 106 ± 2.36 X 104& 

6.35 ± o.s2· 

cs 

22. 17 ± 7.42• 
1 .24 ± 0.52• 
2.02 ± 0.36· 
o.90 ± 0.40• 
26.36 ± 8.12· 
2.60 ± 0.538 

5.68 X lW ± 6.8 1 X 104
• 

9.42 X 1()4 ± 2. 16 X 103
• 

3.36 X lOS ± 5.3 1 X 103
• 

1 .77 X lOS ± 2.29 X 103
• 

1 . 1 5  X 106 ± 1 .69 X 105• 

5.72 ± 0.73· 

1 .  All values are group means ± SEM (n=3 for NS and CS groups, n=5 for NSE and 
CSE groups). Those bearing the same superscript within a row are not significantly 
different 
(p > 0.05. 
NS = Nonsupplemented, CS = L-camitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-camitine supplemented + ethanol 
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DPM) and CS (1. 16 X 1()6 DPM) groups. Over 24h the NS group had excreted 6.35% of 

the total dose and the CS group had excreted 5.72% of the total dose. The greatest 

amount of 14C-label was excreted in the first 3h and accounted for 44% (NS) and 

49%(CS) of the total 24h excretion. Over the next 3h there was a sharp drop in urinary 

radioactivity, followed by an increase from 6-12h (Figure 12). In the final 12h only a 

small amount of the 14C-label was excreted. 
. . 

Dietary carnitine supplementation resulted in dramatic increases in the concentration 

of carnitine in the urine (Table 10). CS rats had a 156 fold increase in NEC 

concentrations, a 62 fold increase in ASAC concentrations and an 1 1  fold .increase in 

AIAC concentrations for the first 3h (Table 10). Over the next 3h period CS rats had a · 

144 fold increase in NEC concentrations, a 23 fold increase in ASAC concentrations and 

a 86 fold increase in AIAC concentrations (Table 10). From 6-12h the CS rats had a 52 

fold increase in NEC concentrations, a 3 fold increase in ASAC concentrations and a 16  

fold increase in AIAC concentrations (Table 10). In the final 12h period the CS rats had 

a 42 fold increase in NEC concentrations, a 83 fold increase in ASAC concentrations and 

a 43 fold increase in AIAC concentrations (Table 10). 

Urinary excretion of the total amount of carnitine (nmoles/ml X uri�e volume) was 

also significantly increased in the CS group (Table 1 1 ). In the first 3h the CS rats had 

162 fold increase in NEC, a 58 fold increase in ASAC and a 27 fold increase in AIAC, 

(Table 1 1 ). _From 3-6h the CS rats had a 97 fold increase in NEC, a 13  fold increase in 

ASAC and a 46 .fold increase in AIAC (Table 1 1 ). From 6- 12h the CS rats had a 39 fold 

increase in NEC, a 5 fold increase in ASAC, a 22 fold increase in AIAC (Table 1 1). In 
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TABLE 10 

TWENTY FOUR HOUR URINARY CARNITINE CONCENTRATIONS 
FOLLOWING ElHANOL GAVAGE IN RATS FED NS AND CS DIETS FOR SEVEN 

DAYS1•2 

Carnitine Groups 
Fraction NS cs 

(nmolesJml) 

0-3 hr 
NEC 4.33 ± 1.08· 674.5 ± 93.lb 

ASAC 5.78 ± o.58. 359.3 ± 38.2b 

AIAC 0.58 ± 0. 12· 6.47 ± 0.46b 

3-6 hr 
NEC 7.76 ± 1.48. 1 122.2 ± 127.2b 

ASAC 8.85 ± 2.52• 207.5 ± 66.lOb 

AIAC 0. 19 ± 0.04• 16.3 1 ± 3 . 16b 

6-12 hr 
NEC 34 .26 ± 9.01 • 1788.3 ± 263 .7b 

ASAC 25.87 ± 12. 13• 86.79 ± 23 .2 1  b 

AIAC 1.36 ± 0.67· 22. 14 ± 5.43 b 

12-24 hr 
NEC 49.89 ± 12.98· 2069.3 ± 203 .4b 

ASAC 12.65 ± 3.66· 1048.9 ± 57.09b 

AIAC 0.38 ± 0. 12· 16.26 ± 1.0lb 

1. All values are group means ± SEM (n=3 for NS and CS groups, n=5 for NSE and 
CSE groups). Those bearing the same superscript within a row are not significantly 
different 
(p > 0.05. 
NS = Nonsupplemented, CS = L-carnitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-carnitine supplemented + ethanol 

2. All NEC and ASAC values should be multiplied by a factor of 2 
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TABLE 11 

TWENTY FOUR HOUR URINARY TOTAL CARNITINE EXCRETION 
FOLLOWING E1HANOL GAVAGE IN RATS FED NS AND CS DIETS FOR SEVEN 

DAYS1
•
2 

Carnitine Groups 
Fraction NS cs 

nmoles/time period 
0-3 hr 
NEC 50.77 ± 8. 14. 8,253 ± 878b 

ASAC 78.88 ± 13.40• 4,624 ± 329b 

AIAC · 3.02 ± 0�73• 8 1.7 ± 7.2b 

Total 293.53 ± 93. 19· 12,959 ± 1214b 

3-6 hr 
NEC 17.72 ± 3.20· 1,739 ± 254b 

ASAC 22.31 ± 10.59· 289 ± 66b 

AIAC 0.56 ± 0.26· 26. 1 ± 6. 14b 

Total 40.59 ± 14.05• 2,054 ± 326b 

6- 12 hr 
NEC 145.3 ± 45.6· 5,604 ± 962b 

ASAC 74.6 ± 20.1· 381.8 ± 90b 

AIAC 3.07 ± 0.18· 67.3 ± 13.8b 

Total 222.9 ± 61. 1 • 6,053 ± 1066b 

12-24 hr 
NEC 429.4 ± 86.60· 17, 137 '  ± 1352b 

ASAC 110.8 ± 28.90· 8,833 ± 8200b 

AIAC 3.02 ± 0.73· 124.3 ± 4b 

Total 543.20 ± 116.20· 26,094 ± 9556b 

1. All values are group means ± SEM (n=3 for NS and CS groups, n=5 for NSE and 
CSE groups). Those bearing the same superscript within a row are not significantly 
different 
(p > 0.05. 
NS = Nonsupplemented, CS = L-carnitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-carnitine supplemented + ethanol 

2. All NEC and ASA C values should be multiplied by a factor of 2 
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the final 12h the CS rats had a 40 fold increase in NEC, a 80 fold increase in ASAC, and 

a 41 fold increase in AIAC (Table 11.) 

Experiment 4 [14C(U)J Palmitate Oxidation Time Course 

Supplementation of the diet with carnitine did not increase the oxidation of [14C(U) ]

palmitate to CO2 (Table 12). There was about a 4h lag between any detectable 14C02 and 

the palmitate gavage� From 4-24h the increase in 14C02 in the KOH traps was close to 

linear. There was no .effect of the length of time on the diets on palmitate oxidation with 

the total 24h 14C02 being essentially the same for 5, 10, 20, 30 and 40d. Both groups 

expired about 25% of the total dose as 14C02 by 24h. 

Since there were no significant differences in palmitate oxidation over the forty day 

period, ten and forty days were chosen to represent short and long term camitine 

supplementation. Plasma NEC concentrations were increased from 20.33 (NS) to 39.76 

. (CS) nmoles/ml in rats fed the diet for ten days (Table 13). Plasma ASAC 

concentrations were not significantly affected by ten days of supplementation. Plasma 

AIAC concentrations increased from �.81 (NS) to 6.30 (CS) but were not significantly at 

the 95% level of confide�ce. Forty days of supplementation also resulted in a significant 

increase of the NEC fraction 30.67 (NS) vs. 47.06 (CS) nmoles/ml. Forty day ASAC 

concentrations ·were almost doubled by camitine supplementation 6.8 1 (NS) vs 1 1 .51 

(CS), but owing to a large standard deviation were not significantly different at the 95% 

level of confidence (Table 13). Forty day AIAC concentrations were significantly 

elevated, 2.39 (NS) and 4.46 (CS) by c�itine supplementation 
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TABLE 12 

EFFECT OF L-CARNITINE SUPPLEMENTED DIET ON [14C(U)]-PALMITATE 
OXIDATION1 

Diet2 Time3 5 

NS 4 129 ± 58 
cs 4 155 ± 68 

NS .8  422 ± 144 
cs 8 385 ± 1 13 

NS 12 1540 ± 314 
cs 12 1 155 ± 204 

NS 24 1667 ± 354 
cs 24 1529 ± 80 

Days on Diet 

10 20 

59 ± 5 31 ± 17 
74 ± 38 30 ± 18  

262 ± 84 249 ± 47 
240 ± 13 342 ± 76 

827 ± 65 879 ± 100 
790 ± 1 14 8 1 8  ± 225 

1412 ± 196 1219 ± 1 8 1  
1428 ± 134 1228 ± 84 

30 40 

88 ± 20 68 ± 29 
1 18 ± 33 70 ± 13 

42 1 ± 125 29 1 ± 62 
440 ± 123 258 ± 38 

992 ± 434 972 ± 183 
1039 ± 156 753 ± 100 

1862 ± 289 1577 ± 369 
1775 ± 167 1544 ± 12 1 

1 .  Oxidation of palmitate i s  represented as expired 14C02 (DPM/rnl). All values are 
group means ± SEM (N=3). 

2. NS = Nonsupplemented. CS = L-carnitine supplemented. 
3. Hours after palmitate gavage. 



TABLE 13 

PLASMA CARNITINE CONCENTRATIONS IN RA TS FED NS AND CS DIETS 
FOR TEN AND FORTY DA YS 1

.

2 

Groups 

74 

Carnitine 
Fraction 
(nmoles/ml) NS cs %NS/CS 

10d 
NEC 20.33 ± 1.65. 39.67 ± 0.55b 5 1% 
ASAC 8.07 ± 1 .69. 7.38 ± 1 .41• 9 1% 
AIAC 2.8 1 ± 4. 19. 6.30 ± 1 .3ga 45% 
Total 3 1.8 1  ± 4. 19· 53.44 ± 3.35b 59% 

40d 
NEC 30.67 ± 1 .97· 47 .06 ± 5 .53b 65% 
ASAC 6.8 1 ± 1 . 1 8· 1 1 .5 1 ± 3.2ga 59% 
AIAC 2.39 ± 0.09· 4.46 ± 0.61b 53% 
Total 39.87 ± 3.24. 63.03 ± 9 .43b 63% 

1 .  All values are group means ± SEM (N=3 for NS and CS groups). Those bearing 
the same superscript within a row are not significantly different (p > 0.05). 
NS = nonsupplemented, CS = L-carnitine supplemented 

2. All NEC and ASAC values should be multiplied by a factor of 2 
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(Table 13). In general, dietary supplementation for forty days was superior to ten days 

in elevating carnitine concentrations in the plasma. 

Liver ca.rnitine concentrations are presented in Table 14. There were no 

significant differences in NEC, ASAC, and AIAC concentrations between the NS and 

CS groups after 10d of carnitine supplementation. Thus the increased plasma 

concentrations of NEC and AIAC observed after 10d of camitine supplementation 

(Table 13) are not reflected in the liver (Table 14). However, by 40d liver NEC is 

25% higher, ASAC is 43% higher an� AIAC is 55% higher in the CS group (Table 

14). These differences would possibly be significant if the number of rats per group 

were. increased. CS groups (Table 15) at either ten or forty days. There were also no 

significant differences between 10d and 40d of supplementation with respect to total 

lipids in the plasma and liver. Plasma and liver triglycerides were not significantly 

different between the NS and CS groups (Table 16) at either 10d or 40d. There was a 

significant decrease in plasma triglycerides in both the NS and CS groups at 40d. 

However, since these values are not from the same rats at both 1 Od and again at 40d it 

is difficult to draw any conclusion due to the individual variability of triglycerides in 

the plasma. 

Experiment 5 (14C(U)J-Palmitate Oxidation with Ethanol 

The administration of ethanol 2h after [14C{U)]-palmitate gavage significantly 

reduced the amount of palmitate oxidized to CO2 for the next 22 hours (Table 17, 

Figure 13). However, supplementation of the diet with carnitine did not significantly 
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TABLE 14 

LIVER CARNITINE CONCENTRATIONS IN RATS FED NS AND CS DIETS FOR 
TEN AND FORTY DA YS 1

•
2 

Camitine 
Fraction 
(nmoles/g) 

10d 
NEC 
ASAC 
AIAC 
Total 

40d · 
NEC 
ASAC 
AIAC 
Total 

NS 

154.3 1  ± 24.83· 
7 4.60 ± 36. 7'? 
2.91 ± 0.30• 

23 1 .83 ± 61 .93· 

206.46 ± 3.6<r 
144.58 ± 6.7 1 a 

4.96 ± 1 . 13• 
356.00 ± 1 1 .44• 

Groups 

cs 

163.40 ± 10. 18· 
77.68 ± 12.948 

3. 12 ± 1 .20· 
244. 12 ± 24.328 

273.43 ± 36.04. 
213.78 ± 50.03• 

8 .87 ± 1 .25• 
490.08 ± 87.328 

%NS/CS 

94% 
96% 
93% 
94% 

75% 
57% 
55% 

73% 

· 1 .  All values are group means ± SEM (n=3 for NS and CS groups). Those bearing 
the same superscript within a row are not significantly different ( p > 0.05). 
NS = Nonsupplemented, CS = L-carnitine supplemented 

2. All NEC and ASAC values should be multiplied by a factor of 2 
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TABLE 15  

PLASMA AND LIVER TOTAL LIPIDS IN RATS FED NS AND CS DIETS FOR 
TEN AND FORTY DA YS 1 

Groups 

NS cs % NS/CS 

Plasma (mg/dl) 
10d 285.96 ± 30.98· 264. 10 ± 16.48. 108% 
40d 3 16.06 ± 30. 10- 329.73 ± 23.94· 96% 

Liver (mg/g) 
10d 32. 16 ± 1 .74• 29.46 ± 0.44· 109% 
40d 30. 15 ± 1 .82· 33.02 ± 0.40- 91% 

1 .  All values are group means ± SEM (n=3 for NS and CS groups). Those bearing 
the same superscript within a row are not significantly different (p> 0.05). 
NS = Nonsupplemented, CS = 0.5% L-carnitine supplemented 
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TABLE 16  

PLASMA AND LIVER TRIGLYCERIDES IN RATS FED NS AND CS DIETS FOR 
TEN AND FORTY DA YS 1 

Groups 

NS cs % NS/CS 

Plasma (mg/dl) 
10d 77.90 ± 1 .12· 80.01 ± 0.841 97% 
40d 56.83 ± 1 .05• 53.41 ± 2.08· 106% 

Liver (mg/ g) 
10d 1 .78 ± 0.09· 1 .96 ± 0. 12• 9 1% 
40d 1 .37 ± 0. 19· 1 .68 ± 0. 13• 82% 

1 .  All values are group means ± SEM (n=3 for NS and CS groups). Those bearing 
the same superscript within a row are not sig�ificantly different (p> 0.05). 
NS = Nonsupplemented, CS = 0.5% L-carnitine supplemented 



TABLE 17 

. [
14C(U)]-PALMITATE OXIDATION WITH AND WITHOUT ETHANOL 

ADMINISTRATION IN RATS FED NS AND CS DIETS FOR TEN DAYS. 1 

Hours After 
Palmitate 0roQ1!S 
Gavage NS cs NSE CSE 

4 59 ± 5• 74 ± 38. 22 ± 17b 19 ± 12b 

6 ND ND 87 ± 19b 90 ± 17b 

8 262 ± 84· 240 ± 13• 164 ± 22b 103 ± 33b 

10 ND ND . 241 ± 25b 240 ± sob 

12 827 ± 65· 790 ± 1 14• 313 ± 36b 306 ± 66b 

79 

24 1412 ± 196. 1428 ± 134• 923 ± 112b 944 ± 171b 

1 .  All values are group means ± SEM (n=3 for NS and CS groups, n=5 for  NSE and 
CSE groups). Those bearing the same superscript within a row are not 
significantly different (p > 0.05). 
NS = Nonsupplemented, CS = L-camitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-camitine supplemented + ethanol 
ND = Not determined 
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Figure 13. Palmitate Oxidation With and Without Ethanol Administration 
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affect palmitate oxidation with or without ethanol administration (Table 17). The 

ethanol treated rats oxidized 69%, 35%, 62% and 35% less palmitate to CO2 at 4h, 8h, 

12h, and 24n, respectively . . 

Plasma NEC concentrations were significantly higher in carnitine supplemented 

rats 20.33 (NS), 39.76 (CS), 24.82 (NSE) and 43.06 nmoles/ml (CSE) (Table 18), but 

there was no significant effect of ethanol on NEC values. Plasma ASAC 

concentration was significantly reduced in the NSE group, but there were no 

significant differences between the NS, CS, and CSE groups. AIAC concentrations 

were not significantly different between the NS, CS, NSE, and CSE groups (Table 18). 

There were no significant differences in NEC and ASAC concentrations in the liver 

between NS, CS, NSE, and CSE groups (Table 19). Ethanol administration resulted in 

significantly elevated 2.92 (NS) and 3.12 (CS) vs 7.29 (NSE) and 12.16 (CSE) AIAC 

concentrations in the liver (Table 19). There was a 2.4 fold increase in the NSE group 

over the NS group and a 3.9 fold inc�ease in the CSE group over the �S group. 

However, comparing NS _ to CS and NSE to CSE groups revealed no significant 

differences in liver AIAC values. 

Plasma and liver total lipids were not significantly different between the NS, CS , 

. NSE and CSE groups (Table 20). Plasma triglycerides were also not significantly 

different between the four groups (Table 21). Ethanol administration resulted in a 3 

fold increase in liver triglyceride concentrations 1.?8 (NS) & 1.96 (CS) vs 5.20 (NSE) 

and 5.37 (CSE); but carnitine supplementation was without significant effect (Table 

21). 
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TABLE 18  

PLASMA CARNITINE CONCENTRATIONS WITH AND WIIBOUT ETHANOL 
ADMINISTRATION IN RATS FED NS AND CS DIETS FOR TEN DAYS1 •2 

Camitine 
Fraction · Groups 
(nmoles/ml) NS cs NSE CSE 

NEC 20.33 ± 1 .65. 39.76 ± 0.55b 24.82 ± 0.97· 43.06 ± 4. 19b 

ASAC 8.07 ± 1 .70- 7.58 ± 1 .41• 3.14 ± 0.64b 1 1 .64 ± 1 .36· 
AIAC 2.81  ± 1 . 10• 6.30 ± 1 .39• 3.25 ± 0.36· 5.48 ± 0.59· 
Total 3 1 .81  ± 4.45• 53.44 ± 3.35b 3 1 .21 ± 1 .97• 60. 18 ± 6. 14b 

1 .  All values are group means ± SEM (n=3 for NS and CS groups, n=5 for NSE and 
CSE groups). Those bearing the same superscript within a row are not 
significantly different (p > 0.05). 
NS = Nonsupplemented, CS = L-camitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-camitine supplemented + ethanol 

2. All NEC & ASAC values should be multiplied by a factor of 2 



83 

TABLE 19 

LIVER CARNITINE CONCENTRATIONS WITH AND WITHOUT ETHANOL 
ADMINISTRATION IN RATS FED NS AND CS DIETS FOR TEN DAYS 1

•
2 

Carnitine 
Fraction 
(nmoles/g) 

NEC 
ASAC 
AIAC 
Total 

NS cs 

Groups 
NSE 

154.31 ± 24.83. 163.40 ± 10.18· 197.25 ± 16.56. 
74.60 ± 36.7ga 77.60 ± 12.94· 58.05 ± 18.73· 
2.92 ± 0.33• 3.12 ± 1.20- 7.29 ± 1.30b 

231.83 ± 61.958 244.12 ± 24.32• 262.59 ± 36.068 

CSE 

144.95 ± 16.56a 

78.43 ± 16.78a 

12.16 ± 1.61 b 

235 .54 ± 34.95a 

1. All values are group means ± SEM (n=3 for NS and CS groups, n=5 for NSE and 
CSE groups). Those bearing the same superscript within a row are not 
significantly different 
(p > 0.05). 
NS = Nonsupplemented, CS = L-carnitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-carnitine supplemented + ethanol 

2. All NEC and ASAC values should be multiplied by a factor of 2 



TABLE 20 

PLASMA AND LIVER TOT AL LIPIDS WITH AND WITHOUT ETHANOL 
ADMINISTRATION IN RATS FED NS AND CS DIETS FOR TEN DAYS 1 

Tissue NS cs 

Groups 
NSE CSE 

84 

Plasma 285.96 ± 39.98• 264. 10 ± 21 .28• 254.01 ± 15.92• 254.90 ± 20.01 a 

(mg Lipid/di) 

Liver 32. 16 ± 1 .73• 29.46 ± 0.57• . 30.58 ± 1 .61• 32.72 ± 1 .371 

(mg Lipid/g) 

1. All values are group means ± SEM (n=3 for NS and CS groups, n=5 .for NSE and 
CSE groups). Those bearing the same superscript within a row are not 
significantly different 
(p > 0.05. 
NS = Nonsupplemented, CS = L-carnitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-carnitine supplemented + ethanol 



TABLE 21 

PLASMA AND LIVER TRIGLYCERIDES WI1H AND WITHOUT ETHANOL 
ADMINISTRATION IN RATS FED NS AND CS DIETS FOR TEN DAYS 1 

0roU1!S 
Tissue NS cs NSE CSE 

Plasma 77.90 ± 1 .12· 80.01 ± 0.84. 7 4.03 ± 6.20· 75.90 ± 5 .84
a 

(mg Lipid/di) 

Liver 1.78 ± 0.09· 1.96 ± 0.12· 5.20 ± 0.27b 5.37 ± 0.64b 

(mg Triglyceride/g) 

85 

1. All values are group means ± SEM (n=3 for NS and CS groups, n=5 for NSE and 
CSE groups). Those bearing the same superscript within a row are not 
significantly different 
(p > 0.05 . 
NS = Nonsupplemented, CS = L-carnitine supplemented 
NSE = Nonsupplemented + ethanol, CSE = L-carnitine supplemented + ethanol 
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In summary, ethanol administration resulted in decreased palmitate oxidation, but 

dietary camitine supplementation did not affect palmitate oxidation with or without 

ethanol admfnistration (Table 17). Camitine supplementation significantly increased 

NEC levels but did not change ASAC and AIAC concentration in the plasma (Table 

18). Liver AIAC concentrations were elevated by ethanol administration but not 

affected by carnitine supplementation. Liver NEC and ASAC levels were not changed 

by either carnitine supplementation or ethanol administration (Table 19). Ethanol 

administration also resulted in elevated triglyceride concentrations in the liver (Table 

2 1). 



CHAPTER V 

DISCUSSION 

Experiment 1 [l-14C]-Ethanol Oxidation 
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The oxidation of [l-14C]-ethanol to 14C02 was reduced by feeding the 0.5% L

carnitine diet for seven days (fable 1 ). This could offer a partial explanation for the 

earlier observations of elevated blood-ethanol concentrations following carnitine 

supplementation (14, 1.5). It would be expected that blood and . hepatocyte ethanol 

should be at an equilibrium. Ethanol oxidation within the hepatocyte would result in 

an influx of ethanol from the blood in order to maintain the equilibrium. The entry of 

ethanol into the hepatocyte would lower blood-ethanol concentrations. So, by 

reducing ethanol oxidation there should be an increase in blood-ethanol concentrations. 

This point has been demonstrated in several studies involving the use of ethanol 

oxidation inhibitors (73-76). 

In the earlier studies (14, 1 5), carnitine supplementation resulted in at least a 30% 

increase in blood-ethanol concentratio_ns at hours 1 through 6. When ethanol oxidation 

was expressed as a perce�tage of the total dose expired as 14C02, it was possible to 

show a �inear difference between the NS and CS groups (Table 1 ). At one h the 

difference is only 0.5% but by 12h the difference is 10%. There seems to be a 

discrepancy between ethanol oxidation to CO2 and blood-ethanol concentrations (i.e. 

there is only a 2% reduction in ethanol oxidation to CO2 at 3h but a 30% increase in 

blood-ethanol concentrations). The explanation probably lies in the accumulation of 

acetate following ethanol administration. Oxidation of ethanol to acetate will lower 
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blood-ethanol concentrations, but the acetate is not oxidized to CO
2 

immediately, since 

the majority of ethanol is recovered in the blood as free acetate (39, 97). This is 

evident 8h after ethanol because administration by 8h blood-ethanol concentrations 

have almost returned to zero, but only a 45% (NS) and 39% (CS) of the ethanol dose 

has been oxidized to CO2• As the excess reducing equivalents generated from ethanol 

are depleted, acetate is then oxidized to CO2 and by 12 hr 85% (NS) and 75% (CS) of 

the total dose has been oxidized to CO2• 

By determining the amount of the 14C-label remaining in the body or excreted in 

the urine it was possible to assess the fate of ethanol not expired as CO2• Urinary 

excretion of [ l -14C]-ethanol or its metabolites was not significantly effected by 

carnitine supplementation and represented only 3% of the total dose (Table 2) . It 

should be noted that evaporation or decomposition of components in the urine may 

have resulted in an underestimation in urinary excretion of the label. Tissue 

distribution of the 14C-label was also not significantly affected by carnitine 

supplementation (Table 3). 

Experiment 2 . Blood and Liver Ethanol Concentrations and Redox State 

Dietary carnitine supplementation for 7d resulted in a 30% increase in blood

ethanol concentrations 3h after ethanol administration (Table 4) which is comparable 

to earlier �ata (14, 15). At the same time liver-ethanol concentrations were twice as 

high in the NS group compared to CS rats (Table 4 ). In contrast, it would be 

expected that the number of DPM would be higher in the NS liver due to elevated 

ethanol concentrations, hut there is no significant difference in the number of DPM 
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between the two groups (Table 4 ). The CS group would also be expected to have a 

higher number of DPM in the plasma, but there were no significant differences in 

plasma DPM between the NS and CS groups (Table 4 ). 

One possible mechanism to explain the above situation is that carnitine could be 

inhibiting the entry of ethanol into the hepatocyte. This would explain the increased 

blood and decreased liver concentrations of ethanol in the CS group. The lower 

concentration of ethanol in the hepatocyte would present less of a "redox burden" ort 

the liver and result in quicker oxidation of ethanol to acetaldehyde and acetate. 

Acetate would then accumulate within the hepatocyte because of the inhib�tion of the 

TCA cycle by ethanol (49). Normally most of the acetate would be activated to 

acetyl-CoA and transported out of the mitochondrial matrix as citrate and appear in the 

blood as free acetate (39, 19). However, Brass and Hoppel have shown that 

exogenous carnitine increased acetyl-carnitine concentrations in the liver and the effect 

was greater when the rats were starved (i.e. high acetate levels) and suggested that the 

hepatic acetyl-carnitine pool reflects changes in the hepatic acetyl-CoA pool (99). 

Table 7 clearly shows the increase in NEC, ASAC, and AIAC concentrations in the 

liver of CS rats. Thus, it is probable that the acetate formed from ethanol is being 

esterified to carnitine and remaining in the hepatocyte rather than entering the blood as 

free acetate. This would explain why there are lower liver-ethanol concentrations but 

no difference in the number of DPM in the CS group. In short, in NS rats the 

ethanoVmetabolite ratio would be higher in the liver and lower in the blood th.an in CS 

rats. 
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It was originally suspected that carnitine supplementation was increasing B-

oxidation resulting in a more reduced state in the liver which would inhibit ethanol 

oxidation. However, the data from the above experiment would suggest that carnitine 

supplementation might result in a more oxidized state in the CS liver due to lower 

ethanol concentrations in the liver. Examination of liver revealed no significant 

differences in pyruvate, lactate, 3-hydroxybutyrate and acetoacetate between the NS 

and CS groups (Table 5). In both groups there were decreased liver concentrations of 

pyruvate and acetoacetate and increased concentrations of lactate and 3-

hydroxybutyrate. The shift in redox pairs to a more reduced state is characteristic of 

etha�ol metabolism and is the major metabolic consequence of ethanol oxidation (10, 

· 11, 94). 

Ethanol administration caused nearly a 3-fold decrease in plasma pyruvate 

concentrations, but there were no significant differences between the NS and CS 

groups (Table 6). Plasma lactate concentrations were increased by ethanol 

administration. Moreover, CS rats had almost a 2-fold increase in plasma lactate 

compared to NS rats. Himwich, et al (95) stated that ethanol acts as a glycogenolytic 

agent in the muscle and the glycogen is oxidized to lactate in the muscle and released 

into the blood. However, the role of carnitine in this process is not clear at this point 

in time. Plasma 3-hydroxybutyrate concentrations and 3-hydroxybutyrate/acetoacetate 

were elevated by ethanol administration but not significantly affected by carnitine 

supplementation (Table 6). 
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Earlier studies in this laboratory have demonstrated that plasma NEC 

concentrations are elevated by carnitine supplemen�tion (for 7 days) without ethanol 

administration (1 5,77) and after 45 days on a liquid ethanol diet containing 36% of the 

calories as ethanol (13) .  However, in these studies plasma ASAC and AIAC fractions 

were not significantly increased. In this experiment all three plasma camitine fractions 

were about 2-fold higher in the CS group 3h after ethanol administration (Table 7). 

Dietary carnitine supplementation (0.5% w/w) for 6 wk resulted in increased liver 

NEC but failed to increase ASAC & AIAC concentrations (96). But after 45d of the 

liquid ethanol diet NEC, ASAC, and AIAC concentrations were elevated in the CS 

group (13). Kondrup and Grunett (99) found that a single dose of ethanol had no 

effect of liver CoA content, but acetyl-CoA, acetylcarnitine and free camitine 

concentrations were increased and concentrations of long-chain acyl-CoA and long-

. chain acylcarnitines were decreased. In this study NEC, ASAC and AIAC content of 

the liver were significantly higher in the CS group (Table 7). Ethanol administration . . 

results in an . increased �ount of acyl groups in the liver. Short-chain acyl groups are 

probably in the form of acetate which would be the result of ethanol oxidation. Long

chain acyl groups are probably the result of mobilization from adipose tissue through 

the action of ethanol on lipases ( 1). Increasing the concentrations of NEC in the liver 

through dietary carnitine supplementation should favor the formation of acyl

carnitines. In short, ethanol is increasing one subs�ate (acyl groups) and 

supplementation is increasing the other substrate (carnitine) for carnitine acyl 

transferases which results in increased concentrations of the product (acyl carnitines) 
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(Table 7). Three hours after an acute dose of ethanol all three carnitine fractions were , 

higher in the CS group (Table 7). Liver carnitine concentrations have been shown not 

to be altered,by carnitine supplementation without ethanol administration (96), but 

after 45 days on the liquid ethanol diet NEC, ASAC, and AIAC concentrations were 

elevated in the CS groups ( 13). Three hour� after an acute dose of ethanol all three 

camitine fractions were higher in the CS group (Table 7). 

Experiment 3 Urinary Excretion of [1-14C]-Ethanol 

Carnitine is known to enhance the excretion of organic acids associated with 

metabolic disorders' such as methylmalonic and propionic aciduria (89-91). Ethanol 

oxidation cre�tes an abu�dance of acetate in the liver and blood. Ethanol also causes 

an influx of fatty acids into the liver. Fatty acids have the potential to become 

esterified to camitine and excreted in the urine. Therefore, it was decided to 

determine if carnitine supplementation would increase the excretion of acyl-camitines 

following ethanol administration. 

Urinary volume was not significantly affected by carnitine supplementation for 

24h following ethanol administration (Table 8, Figure 12). The largest volume was 

excreted in the first 3h following ethanol administration. This volume is 

approximately equal to the volume of the gavage. For the next 9h urine volume drops 

sharply followed by an increase over the next twelve hours. Food and water intakes 

were not significantly different between the NS and CS groups (Table 8). 

Twenty four hour excretion of ethanol in the urine was not significantly different 

between the NS and CS groups (Table 9, Figure 12). The highest amount of ethanol 



93 
in the urine was for the first 3h with the NS group excreting 77% of the total 24h 

ethanol and the CS group excreting 84%. Ethanol excretion declined steadily for the 

next 21 h. This coincides with blood-ethanol concentrations peaking at three hours and 

sharply declining to near zero by 8h. 

The total amount of radioactivity excreted over the 24h period was not 

significantly affected by carnitine supplementation (Table 9, Figure 12). The greatest 

amount was excreted in the first three hours. Over the next 3h there was a sharp drop 

in radioactivity; followed by an increase from 6 to 12 h. In the final 12h only a small 

amount of the 14C-label is excreted. 

A possible scenario to explain the above situation is as follows. The gavage 

results in a large increase in blood volume and blood-ethanol concentrations. The 

body reacts by_ increasing urinary ex�retion and ethanol is excreted along with water. 

This would account for the increased urine volume, total ethanol and DPM for the first 

3h. Over the next 3h urine output drops sharply and blood-ethanol concentrations 

decline; explaining decreased total ethanol and DPM. From 6 to 12 h blood-ethanol 

concentrations virtually disappear, the amount of ethanol in the urine drops, but 

radioactivity in the urine rises sharply. It would seem reasonable to assume that the 

ethanol has been metabolized to acetate by the liver, transported out of the 

mitochondria, into the blood and excreted in the urine. By 12h hours most of the 

acetate derived from ethanol has been further oxidized to CO2 or excreted in the urine 

and the radioactivity in the urine drops. 



Urinary excretion of NEC, ASAC, and AIAC is dramatically increased by 

carnitine supplementation (Table 10, 1 1  ). The high NEC values in the urine are 

expected since excess camitine is excreted in the urine unchanged. Of particular 
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interest are the ASAC and AIAC fractions. In the f1:fSt 3h following the ethanol 

gavage there is a 60 fold increase in ASAC and a 27 fold increase in AIAC in the CS 

group. The total ASAC and AIAC is 4,706 nmoles. During this same time period 

there were no significant differences in ethanol excretion or total DPM (Table 9). In 

other words, the increases in ASAC and AIAC are not reflected in DPM or ethanol 

excretion. Over the next 3h total ASAC and AIAC drops to 3 15 nmoles, but there 

still is a 13-fold increase in ASAC and a 46-fold increase in AIAC in the CS group. 

From 6 to 12 h there is a slight increase (=100 nmoles) in total ASAC and AIAC. 

However, the number of DPM in the urine increases dramatically (Table 19). The 

largest amount of total ASAC and AIAC, 8957 nmoles, are excreted from twelve to 

twenty four hours. There is an 80-fold increase in ASAC and a 41-fold increase in 

AIAC in the CS group. These increases are not reflected in DPM excreted which 

actually drop (Table 9). 

Originally it was presumed that the excess acetate generated from ethanol 

oxidation would be esterified to carnitine and excreted in the urine. This was 

observed in humans given IV carnitine after drinking wine ( 61 ). It is definitely clear 

that the ex�tion of both short and long chain acyl-carnitines is enhanced by carnitine 

supplementation, but it is not clear if the acyl-units are derived from ethanol. . The 

number of DPM would be expected to increase and follow the same pattern of . 
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excretion as ASAC and .AIAC if the acyl-units were derived from ethanol, but there 

are no significant differences in DPM between the NS and CS groups. Furthermore, 

DPM peaked'from 0-3 hrs and 6-12 hrs. while carnitine peaked from 0-3 hr and 12-24 

hr. So, it appears that the acyl-units being excreted in the urine are not entirely 

derived from ethanol. 

Experiment 4 {14C(U)J - Palmitate Oxidation Time Course 

A number of early in vitro studies demonstrated that the addition of carnitine to 

preparations of rat liver slices (78 ), isolated mitochondria (79), hepatocytes (80) or the 

pe�u�ing media of livers (8 1) could stimulate fatty acid oxidation and ketogenesis. 

However, the conclusions of several (82-87) in vivo studies were contradictory with 

regards to the stimulation of fatty acid oxidation and were performed under a variety 

of conditions. One of the original theories for elevated blood-ethanol concentrations 

and the decrease in hepatic steatosis was that dietary carnitine supplementation is able 

to stimulate fatty acid oxidation. Therefore, it was decided to determine if fatty acid 

oxidation· was stimulated by dietary carnitine supplementation in rats under control 

conditions. Dietary camitine supplementation over a 40d period did not significantly 

affect the oxidation of [14C(µ)]-palmitate to 14C02 over a 24h period (Table 12). The 

amount of palmitate oxidized to CO2 in 24h was only 25% of the total dose; compared 

to ethanol where 80% of the dose was oxidi7.ed to CO2 in 12h. This demonstrates the 

urgency that the body places on the metabolism of ethanol compared to a natural 

dietary component. 
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Camitine supplementation for ten days resulted in significantly higher plasma NEC 

and unchanged ASAC and AIAC (Table 13). Which is in agreement with earlier data 

(15, 77), but contrasts with the elevated ASAC and AIAC concentrations seen three 

hours after ethanol (Table 7). Camitine supplementation for forty days resulted in 

significantly higher plasma NEC and AIAC concentrations. ASAC concentrations 

were ahpost doubled in the CS group, but not significantly different. It appears that 

long term camitine supplementation has an inductive effect on the synthesis of acyl-

carnitines. 

Examination of liver camitine revealed no significant differences in the NEC, 

ASAC, and AIAC fractions between the NS and CS groups after ten days of feeding 

the CS diet (Table 14). There was a substantial increase in NEC, ASAC and AIAC 

concentrations in the 40d livers. However, the increase was not significant because of 

large standard deviation. This may prove to be significant if larger numbers of rats 

are used. It should also be pointed out the plasma increases in the NEC fraction are 

not present in the liver after ten days, but after forty days liver camitine content is 

reflecting plasma carnitine values in terms of % NS/CS. 

Plasma and liver total lipids and triglycerides were not significantly different 

between the NS and CS groups at 10 or 40 d of camitine supplementation (Tables 15 ,  

16). No decrease would be expected since there were no differences in palmitate 

oxidation. 



Experiment 5 [14C(U)]Palmitate Oxidation with Ethanol 
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The inhibition of fatty acid oxidation by ·ethanol administration is one of the 

primary causes of hepatic steatosis ( 46-49). It was originally speculated that carnitine 

supplementation would partially prevent the decrease in fatty acid oxidation by 

ethanol. Experiment IV, Table 12, demonstrated that carnitine supplementation did not 

stimulate fatty acid oxidation under normal circumstances, but it was not cl�ar whether 

or not carnitine supplementation would help alleviate the acyl burden imposed upon 

the liver by ethanol. 

Ethanol was orally administered two hours after a [14C(U)]-palmitate gavage. The 

oxidation of palmitate to CO2 was significantly reduced for the next twenty two hours 

(Table 17, Figure 13). However, carnitine supplementation did not significantly affect 

14C02 expiration with or without ethanol. On the average there was about a 50% 

reduction in palmitate oxidation with ethanol treatment 

As demonstrated earlier ( 13, 15, 77, 96), there was an increase in NEC 

concentrations in plasma in the CS and CSE groups, but ethanol administration did not 

significantly change NEC concentrations (Table 18). AIAC concentrations were 

significantly reduced in the NS group which may indicate an increased need for 

carnitine (that can't be met by endogenous synthesis or the chow diet) following 

ethanol administration. There were no significant differences in AIAC concentrations 

between the NS, CS, NSE, and CSE groups. Thus the increased plasma carnitine 

values observed in the CS group at three hours after ethanol administration (Table 7) 

have returned to the pre-ethanol status (pattern) after 24h. 



There were no significant differences in liver NEC and ASAC concentrations 

between the NS, CS, NSE and CSE groups (Table 19). AIAC concentrations were 

significantly higher in the NSE and CSE groups, but carnitine supplementation did 

significantly change AIAC concentrations. The increased AIAC concentration is 

probably the result of increased concentrations of long chain fatty acids available for 

esterification to carnitine. Again, the increased NEC, ASAC, and AIAC 

concentrations observed three hours (Table 7) after ethanol administration are not 

evident at twenty four hours. 
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Unlike what occurs with chronic ethanol administration (12, 13) plasma and liver 

total lipids were not significantly increased by a single acute . close of ethanol in the 

NS, CS, NSE, and CSE groups (Table 20). The acute dose did increase liver 

triglycerides, but the increase was not affected by carnitine. Plasma triglycerides were 

not significantly different between the NS, CS, NSE, and CSE groups (Table 21) . 



CHAPTER VI 

SUMMARY 
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The purpose of this dissertation was to explore the potential mechanisms by which 

dietary camitine supplementation causes elevated blood-ethanol concentrations and 

decreased hepatic lipids following ethanol administration. The hypothesis was that 

dietary camitine supplementation would result in higher than normal concentrations of 

camitine and acyl-camitines and alter the oxidation of ethanol and its metabolic 

consequences. Ethanol administration results in an increase in the hepatic pool of 

acyl-CoA's. Two fates of hepatic acyl-CoA's is esterification to glycerol or camitine. 

Esterification to glycerol would lead to the storage of the acyl groups as triglycerides 

and cause hepatic steatosis. Esterification to carnitine would lead to an increase in the 

oxidation of the acyl groups or their transport out of the hepatocyte since acyl-CoA is 

impermeable to cell membranes. By increasing the availability of camitine, through 

dietary camitine supplementation, it seemed possible to increase the quantity of acyl 

moities being esterified to camitine. The excess camitine would also be available for 

esterification to the excess acetylmoities generated from ethanol oxidation. Thus, by 

binding Acyl and Acetyl moities, camitine would be shuttling these groups away from 

their normal routes following ethanol oxidation. 

The effect of carnitine supplementation on ethanol oxidation was examined by 

feeding rats purina chow as such (non-supplemented, NS) or supplemented with 0.5% 

L-carnitine (camitine supplemented, CS) for. 7d. The rats were then given an .oral 

dose of [ 1 - 14C]-ethanol and placed in respiratory chambers. Expired 14C02 was 
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collected for the next 12h at which time the rats were killed. Ethanol oxidation to 

14C02 was significantly reduced at hours 4- 12 in the CS group. At the end of 12h the 

NS group had expired 85% of the �tal dose as CO
2 

and the CS group 75_%. There . · 

were no significant differences in urinary excretion of the 14C-label between the two 

groups which accounted for only about 3% of the total dose. The 14C-label remaining 

in tissues after 12h was also not significantly affected by carnitine supplementation. 

Thus a partial explanation for carnitine supplementation resulting in increased blood

ethanol concentrations is a reduction in ethanol oxidation. The effect of carnitine 

supplementation on blood and liver-ethanol concentrations and the redox state was 

examined by feeding the rats NS and CS diets for 7d. The rats were then given an 

oral dose of [1- 14C]-ethanol and killed 3h later. Blood-ethanol concentrations were 

88.5 mg/di in the NS group and 125.9 mg/di in the CS group at 3h. Liver-ethanol 

concentrations were 1 .  70 pg/mg in the NS group and 0.85 pg/mg in the CS group. 

However, there were no significant differences in the number of DPM in the plasma or 

liver between the two groups. Measurement of liver concentrations of pyruvate, 

lactate, acetoacetate, and 3-hydroxybutyrate revealed no significant differences 

between the NS and CS groups. Plasma concentrations of lactate were 2-fold higher 

in the CS group, but pyruvate, acetoacetate and 3-hydroxybutyrate concentrations were 

not significantly different between the two groups. Plasma and liver non-esterified 

carnitine (NEC), acid soluble acylcarnitine (ASAC) and acid insoluble acylcarnitine 

(AIAC) concentration� were all significantly higher in the CS group 3h after ethanol 

administration which would support the hypothesis of increased acyl-carnitines after 



101 

ethanol administration. It is concluded that dietary carnitine supplementation results in 

increased blood-ethanol concentrations and decreased liver-ethanol concentrations 

possibly by inhibiti�g the entry of ethanol into the hepatocyte. Additionally, carnitine 

supplementation had no effect on the redox state of the ljver but may effect muscle 

metabolism due to elevated plasma lactate concentration. Finally, both of the above 

effects may be related to the elevated �arnitine concentrations observed in the CS 

group. 

The effect of carnitine supplementation on the urinary excretion of ethanol, its 

metabolites and carnitine was determined by feeding rats the NS and CS diets for 7d. 

The rats were then given an oral dose of [1-14C]-ethanol and urine was collected for 

the next 24h. Food intake, water intake and urine volume were not significantly 

different between the NS & CS groups over the 24h period. Urinary excretion of 

ethanol and the 14C-label were not significantly affected by carnitine supplementation. 

Urinary excretion of NEC, ASAC, and AIAC was dramatically increased by carnitine 
. -

supplementation. From �3h there was a 165, a 60, and a 27-fold increase in NEC, 

ASA� & AIAC, respectively in the CS group. From 3-6h there was a 100, a 13, and 

a 46-fold increase in NEC, ASAC & AIAC, respectively in the CS group. From 6-

12h there was a 40, a 5� and a 20-fold increase in NEC, ASAC & AIAC, respectively 

in the CS group. From 12-24h there was a 40-fold (NEC), a 80-fold (ASAC), and a 

40-fold (AIAC) increase in the CS group. It is co�cluded that dietary carnitary 

supplementation enhances the excretion of acyl groups in the urine following ethanol 

administration without increasing excretion of ethanol or its metabolites. The effects 



of supplementary camitine on the oxidation of palmitate was determined by feeding 

the NS and CS diets for 5, 10, 20, 30, and 40 days. A single oral dose of [14C(U)]-
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palmitate was given and the rats were placed in a respiratory chamber. Expired CO2 

was trapped in KOH solution which was counted to determine amount of radioactivity 

at 4, 8, 12  & 24 h post-gavage. There were no significant differences between the NS 

and CS groups with regard to the rates of 14C02 appearance or percent of the dose 

following 5, 10, 20, 30 & 40 days of feeding CS di�t. Because there were no 

significant differences in palmitate oxidation over the 40d period. 10d and 40d were 

chosen to represent short and long term camitine supplementation. Plasma NEC 

conce_ntrations were significantly higher in the CS group after 10d of supplementation, 

but ASAC and AIAC concentrations were not affected. After 40d of supplementation 

plasma NEC and AIAC concentrations were significantly higher in the CS group and 

ASAC concentrations were doubled in the CS group but not statistically significant. 

There were no significant differences between the NS and CS groups in liver 

concentrations of NEC, ASAC, and AIAC at 10 and 40d. However, 40d was superior 

to 10d in elevating NEC, ASAC, and AIAC in the liver. Analyses of plasma and liver 

of NS and CS rats revealed no significant differences in total lipids or triglycerides. It 

is concluded th_at in the intact rat, 0.5% L-camitine supplementation did not 

significantly alter oxidation of orally administered palmitate to CO2• Additionally, 

supplementary carnitine was neither hypolipidemic nor lipotropic in normal rats fed 

Purina rat chow. 
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. The effect of camitine supplementation and ethanol administration on palmitate 

oxidation was determined by feeding rats NS and CS diets for 10d. They were then 

given an oral dose of [14C(U)]-palmitate followed by an oral dose of ethanol 2h later. 

Expired 14C02 was then collected for the next 24h then killed. Ethanol administration 

resulted in decreased palmitate oxidation, at hours 4-24, but dietary camitine 

supplementation did not affect palmitate oxidation with or without ethanol 

administration. Carnitine supplementation sigi:iificantly increased NEC levels but did 

not change ASAC and AIAC concentration in the plasma. Liver AIAC concentrations 

were elevated by ethanol administration but not affected by camitine supplementation. 

Liver NEC and ASAC levels, which were elevated 3h after ethanol administration, 

were not significantly different 24h after ethanol administration. Ethanol 

administration also resulted in elevated triglyceride concentrations in the liver, but 

liver total lipids were unchanged. Plas�a total lipids and trigly�eride concentrations 

were not significantly affected by ethanol administration and/or carnitine 

supplementation. It is concluded that ethanol administration reduced the amount of 

palmitate oxidized to CO2 over a 24h period, but dietary camitine supplementation did 

not prevent' the ethanol-induced decrease in palmitate oxidation. 

In summary, dietary camitine supplementation has the following effects on ethanol 

and palmitate metabolism: 

1) It decreases the oxidation of ethanol to CO2 without affecting the redox state of 

the liver. 

2) It results in higher blood-ethanol and lower liver-ethanol concentrations. 
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3) It results in a tremendous increase in the urinary excretion of both short and long 

chain acyl groups following ethanol administration. 

4) It does not affect the oxidation of palmitate to CO2 with or without ethanol 

. administration. 
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