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ABSTRACT 

A sulfur�containing protein (S-protein) was proposed to be an 

intermediate in the sulfation of cellular constituents containing 

ester sulfate after it was observed that S-protein isolated from the 

particulate·fraction of the cell was unaffected by avitaminosis E, 

the stress of malathion intoxication or the level of inorganic sulfate 

in the diet. The present investigation was undertaken in an attempt 

to identify the cellular role of the S-protein in sulfate utilization. 

The role of the S-protein as a possible intermediate.in the 

sulfation of ester sulfates was·determined using both.a natural sulfate 

acceptor, mucopolysaccharide, and an artificial sulfate acceptor, 

p-nitrophenol. The S-protein appear�d to possess the energy required 

to raise inorganic sulfate to the level of ester sulfate when muco-. 

polysaccharide was the acceptor, but not when the artificial acceptor, 

p-nitrophenol, was used. 

Since the S-protein appeared to possess a high energy configura

tion, and in view of its particulate origin, further experiments were 

designed to determine the relationship of _the high energy configuration 

to. the oxidative reactions of .the cell. Since other investigators had 

previously suggested that an Fe-S protein is involved in sulfhydryl

disulfide oxidoreductions in the energy conservation at S'ite I, the 

modified sulfhydryl�disulfide.exchange reaction between the S-protein 

and.2-mercaptoethanol led to the assumption that the S-prot�in might. 

be involved in energy conservation at Site I. 
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The evidence that the S-protein (Fe-S pr�tein) was involved in 

energy conservation was .strengthened by feeding rats 2,4 dinitrophenol, 

an uncoupler of oxidative phosphorylation, prior to isolation of Fe-S 

protein. Results of this experiment an� an experiment determining 

the uptake of a test dose of 59Fe+I- and 3Sso:= suggested that rats 

increased the synthesis of Fe-S protein. to compensate for the decreased 

energy conservation that resulted from t4e injection of the uncoupler 

of oxidative phosphorylation. 

The-relationship between the Fe-S protein and.the formation of 

ATP was then investigated. When the Fe-S protein was incubated with 

· inorganic phosphate and ADP there was an increase in the disappearance 

of phosphate which paralleled the amount of Fe-S protein in the 

incubation mixture. The actual esterification of inorganic phosphate 

with ADP was demonstrated using 32po4 in the incubation medium and 

isolating pure ATP containing 32p. Therefore, it is concluded that 

the Fe-S protein functioned to trap a portion of the energy of the 

respiratory chain by oxidatively binding inorganic sulfate, which it 

can then exchange for inorganic phosphate. The high energy phosphate. 

could then be transferred to ADP to generate ATP. 
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CHAPTER I 

INTRODUCTION 

Fractionation of a 35s-cellular lipoprotein preparation from rat 

liver cells gives a lipid, a mucopolysaccharide, a nucleotide, and .an 

unidentified protei� fraction (S-protein), all of wh�ch contain 35s

activity (1). Fulton and Smith (1) investigated the effect of avita

minosis E_ upon the sulfation of cellular lipoprotein and its fractions 

by feeding diets low in inorganic sulfate and deficient in vitamin E 

or supplemented with a tocopheryl acetate. They found that avitamino

sis E resulted in a decreased 35s-sulfate incorporation into cellular 

lipoprotein, and its lipid and mucopolysaccharide fractions. However, 

there was no effect on the incorporation of 35s-sulfate into the S

protein. Determination of the incorporation of 35s-sulfate into the 

S-protein with time demonstrated that it became maximally labeled 

sooner and lost its label earlier than any of the other cellular 

lipoprotein fractions. Based on the rate of turnover of 35s-sulfate, 
• t 

S-protein appeared to have a precursor relationship to the rest of 

the fractions which suggested the possibility that the S-protein might 
' � 
. ... 

serve as an intermediate in the sulfation of other ester sulfates in\ 

the cell. 

In later experiments Disney (2) found that the stress of malathion 

intoxication resulted in an increase in the uptake of 35s-sulfate into 

the sulfolipid component of the cellular lipoprotein, but did not affect 

the incorporation of 35s-sulfate into cellula� lipoprotein nor its 

mucopolysaccharide or S-protein fractions. 
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Since neither avitaminosis E nor the stress of malathion intoxi

cation affected the uptake of 35s-sulfate by the S-protein, it appeared 

that the unidentified protein fraction of cellular lipoprotein was 

a high priority protein with respect to sulfate. Therefore, this 

investigation was undertaken in an attempt to identify the possible 

role of the S-protein in sulfate utilization. 



CHAPTER II 

REVIEW OF THE LITERATURE 

Mitochondria contain a series of multienzyme pathways closely 

associated with, or an integral p�rt of, the inner mitochondrial 

membrane. Their physiological function is to catalyze the oxidation 

of intermediary metabolites by molecular oxygen in such a way that the 

energy released by these oxidation-reduction reactio�s may be con

served in a form that can be utilized by the cell for energy requiring 

reactions (3). The process of energy conservation in the mitochondria 

requires the presence of several systems: 1) a chain for the transfer 

of electrons, 2) a system for generating the electron donors for the 

chain, and·3) a system for synthesizing adenosine triphosphate (ATP) 

from adenosine diphosphate (ADP) and inorganic phosphate (4). 

The respiratory chain is a structural group of proteins con

taining oxidation-reduction groups which implement the stepwise (but 

not continuous) transfer of electrons.from electron donors, such as 

reduced nicotinamide adenine dinucleotide {NADH), and succinate, to 

molecular oxygen. The group of prote�ns of the respiratory chai� 

can be subdivided into four units. These units have been referred 

to as Complexes I, II, III and IV as shown in Figure ·1. In the oxida

tion of NADH, Complexes I, III and IV follow one another succes�ively 

while in the ._oxidatio� of succinate, Complexes II, III and IV provide 

the pathway for the flow of electrons (4, 5). 

As a result of the passage of electrons through Complexes I, IIi 

and IV, an ene�gized state of the complex is generated in which the free 

3 



NADH > I Comp
l
lexl 

Co . _ I� Q�jco��}ex,_. cyt c�,Co��lexj::,. 02 

Succinate-,;. I cm;rexj/ 

Figure 1. Schematic representation of the arrangement of the 
complexes in the mitochondrial respiratory chain. 
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energy released by the oxidoreductions is conserved and trapped by the 

formation of ATP (4) . The exact sites in these complexes where oxi�a

tive phosphorylation occurs have not.been identified·with certainty. 
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The three sites of oxidative phosphorylation are referred to as Sites I, 

II and III. The nature of the electron transfer is different at each of 

the three sites and the actual mechanism for coupling the energy 

released during the oxidation of the electrons to the synth�sis of the ATP 

is not known (5). 

Complex I, the NADH-coenzyme Q reductase, has been shown to con

tain iron-sulfur proteins, flavoproteins and possibly a structural 

protein (6, 7) . Hatefi and Stempel (8) propose that in Complex I and 

presumably in the intact mitochondria, the NADH dehydrogenase is pro

tected by a hydrophobic sheath of lipids and structura,l proteins. 

This review w�ll deal primarily with the location and function of the 

iron-sulfur proteins (Fe-S proteins) found in Complex I. 

It has recently become app�rent that Fe-S proteins, also 

referred to as non-heme iron proteins, �ccur widely .in plants, animals 

and bacteria and play a role in respiration although their mechanism 

of action and structure remains unknown (9) . At least six different 

Fe-S proteins have been found in the respiratory chain (10) . Ev�n 

though Fe-S proteins were found in mitoc�ondria as early as 1953, it 

was not until about 10 years later that the characteristic g = 1.94 

electron paramagnetic r�sonance (EPR) signal of Fe-S protein was found 

in submitochondri�l partic�es. Attempts have been made .to localize the 

positio�· of the Fe-S proteins in the respiratory cha�n and in phosphoryl

ation reactions through their relationship to other components, EPR· 



spectroscopy and the site of action of specific inhibitors (9) . 

St�dy of the mechanisms involved in the respiratory chain.in 

mammalian systems has proved very difficult. Strong and unknown forces 

hold the catalysts of oxidative phosphorylation tightly bound to the 

inner membrane of the mitochondria and separation of these components 

from the mem�rane results in.alteration of their properties (11) . 

Dif ficul_ty in separating membrane · components in mammals led many 

investigators to turn to various yeasts to study mitochondrial and 

submitochondrial particles. By using a single species and specific 

variables any variations that might be due to differences in species 

6 

can be overcome (12) . The use of .yeasts also allows the use of nutrient 

restrictions or modifications that would be unfeasible in studying the 

mitochondria of mammalian species. Therefore, much of the work 

reported in this review has been done with yeasts. Two different. 

yeasts have been used primarily, Candida or Torulopsis utilis (C. 

utilis) and · Saaaharomyaes aerevisiae (S. aerevisiae).' -The NADH 

dehydrogenase from C. utilis has been found to resemble the mammalian 

systems more closely than that from other yeasts with regard to sub

strate specificity, electron acceptors and reactivity toward. 

inhibitors (13) . 

Beinert and Sands (14 ) were one of the first groups to assign 

the characteristic EPR signal, g = 1.94 , of an unidentified component 

of mitochondria to an iron-containing electron carrier which functioned 

near the flavin region of the respiratory chain. The EPR signal· 

, accounted for only a very small portion of the Fe-S proteins present 

in mitochondr�a (15) . Initially, the.signal was found in materials 



th�t contained flavin which gave rise to the idea that a flavin-iron 

complex was responsible for the signal at g = 1.94 (15, 16) . The 

improbability of the Fe-S protein being attached to a flavin was indi

cated by the fact that similar signals have been found associated with 

Fe-S proteins that have been isolated and do not contain flavin (17) . 

Further evidence that the Fe-S protein of NADH dehydrogenase which 

shows the characteristic g = 1.94 EPR signal'is associated with the 

respiratory chain is that it appears and disappears fast enough to be 

consistent with participation in catalysis (18) . The signal of the 

Fe-S proteins of the NADH dehydrogenase is distinguishable from the 

adjacent signals associated with the iron moieties of succinate 

dehydrogenase and of the cytoch.rome b-c region (19) . 

7 

Bois and Estabrook (20) using bovine heart mitoc�ondria suggested 

that the g = 1. 94 signal was associated with the rotenone sensitive 

site. Garland (21) also showed a correlation between coupling at 

Site I and the presence of rotenone or piericidin A sensitivity. It 

has been suggested that barbiturates, amytal, rotenone, and the anti

biotic, piericidin A, inhibit by blocking the reduction of NADH dehydro

genase by NADH (22). By comparing submitochondrial particles prepared 

from S. aereviaiae and C. utiZia Sharp et al. (23) found that those 

from S. aereviaiae show no NADH induced EPR signal and no rotenone sensi

tivity whereas those derived from c .. utiZie do. S. aer-evisiae lack 

energy conservation at Site I while C. utiZie hav�-normal Sites 

I, II and III and the characteristic�= 1.94 signal (13) 6� This 

comparison of these submitochondrial particles gave further support to 

the fact that the g = 1.94 ,signal was associated with the NADH 

dehydrogenase. 
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Many investigators (12, 24-27), by preparing mitochondria from 

C. utilis cells grown in an.iron-limited medium, have obtained support 

for the concept that Fe-S proteins, the EPR signal, and the _ piericidin A 

or a rotenone sensitive-site wer_e related to the mechanism of energy 

conservation at Site I. Light et al. (12) found that C. utilis grown 

on a medium limited in iron lacked energy conservation at Site I, lacked 

the EPR signal, and lacked sensitivity toward piericidin A or rotenone, 

but still possessed the capability for electron transport. These 

observations with different yeasts and nutrient media led to the 

conclusion that the Fe-S protein involved in energy conservation at 

Site I was the same as the one involved in both rotenone and piericidin 

A sensitivity. Later investigators (24-27) using similar techniques 

also found absence of energy conservation at Site I and of piericidin A 

sensitivity. It was found that by adding small increments of iron to 

the medium energy conservation at Site I would occur in the 

absence of sensitivity towards piericidin A. A further increase in 

the iron in the mediu� was required.before piercidin A ·or rotenone 

sensitivity returned. It seemed probable that the functional 

alterations caused by iron-limited growth were due to structural 

modifications or perhaps even deletions of Fe-S proteins (26). 

Repetition of the iron-recovery experiment with C. utilis 

using cycloheximide, an inhibitor of cytoplasmic rather than mito

chondrial protein synthesis, resulted in cells which lacked sensitivity 

toward piericidin A but did possess energy conservation at Site I (27). 

Clegg and Garland (26) speculated that the recovery of piericidin A 

sensitivity. involved cytoplasmic protein synthesis whereas recovery 



of energy conservation at Site I involved reconstitution of a Fe-S 

protein rather than protein synthesis. 

The above experiments seemed to establish that there were at 

least two involvements of Fe-S proteins in the segment of the 

respiratory chain from NADH. to the cytochromes; one involved in 

energy conservation and one involved in piericidin A or rotenone 

sensitivity (28). Since the majority of Fe-S proteins contain equal 

proportions of iron and labile sulfur (9), it seemed that the.effects 

of sulfate-limited growth should. be similar to those of iron-limited 

growth (21). Haddock and Garland (29) showed that restricting the 

concentration of sulfate in the medium did result in the absence of 

both energy conservation at Site I and piericidin A sensitivity. 

Increasing the sulfate concentration in the medium caused a parallel 

return of the two properties. Return of energy conservation at Site I 

and piericidin A sensitivity to sulfate-limited cells in the presence 

of low but increased concentrations of sulfate with or without 

cycloheximide was similar to that of the corresponding iron-recovery 

experiments. 

Ohnishi et al. (24) have stated that the Fe-S protein associated 

with NADH dehydrogenase must be located on the substrate side of the 

piericidin A or rotenone sensitive site. Their proposal is supported 

by the fact that the EPR signal is reduced to nearly the same extent 

in submitochondrial particles inhibited by amytal, rotenone, or 

piericidin A as in untreated ones (22, 24). Palmer et al. (22) pro

posed that the site of inhibition by amytal, rotenone, and.piericidin 

A was between NADH dehydrogenase and coenzyme Q . . More recent 

9 



investigators (30) place the site of inhibition on the o2 side of the 

Fe-S protein associated with energy conservation but suggest that the 

binding site is part of the NADH dehydrogenase. Chance et al. (31) 

have proposed that the NADH dehydrogenase portion of the respiratory 

chain contains two flavoproteins FpD1 
and FpD2 

with both the rotenone 

sensitive site and Site I energy conservation between them as shown 

in Figure 2. The first flavoprotein is distinguished physically by 

its high fluorescence, and chemically by its low redox potential, 

10 

nearl� as low as that of NADH. The second flavoprotein is characterized 

physically by its low fluorescence efficiency, and chemically by its 

high redox potential (32) . Serious doubts have been cast on the 

proposal that a second· flavoprotein is present in this region of the 

respiratory chain by the finding that thi� second flavoprotein is 

in the soluble fraction of the mitochondria and is not present in 

mitochondrial preparations from all animals (33) . 

Many investigators have shown that the g = 1. 94 EPR signal 

obtained at 77°K results from the Fe-S protein associated with the NADH 

dehydrogenase region of the respiratory chain of C. utilis (23, 25) 

and mammalian (31, 34) submitochondrial particles. Ohnishi et al. 

(35) were the.first to report the ,presence of two different species 

of <77°K EPR signals arising from Fe-S proteins in the NADH dehydro

genase region of the respiratory chain in submitocqondrial particles 

of C. utilis. Ohnishi et al. (36) and Orme-Johnson et al. (37) later 

detected similar <30°K signals in bovine heart submitochondrial 

particles but did not observe any of the three signals in So aerevisiae 

submitochondrial particles which lack energy conservation at Site I. 



NADH � FpD 1 

Site I 
> 

Rotenone 
Amytal 
Piericidin 

FpD -->- �tQ,b) � � � 02 
2 

Figure 2. Te�tat�ve scheme for location of inhibitors and 
energy coupling at Site I. 
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The effect of iron concentration on the amplitude of the low temperature

detectable EPR signals in C. utilis wa� examined since it was known 

that the amplitude of the g = 1.94 signal is dependent on the con

centration of .iron in the culture medium. When the iron concentra-

tion was lowered the relative intensity of the EPR signals decreased 

in parallel. These observations led to the suggestion that there were. 

at least three different species of EPR-detectable Fe-S proteins 

present in the NADH dehydrogenase region of the respiratory chain, 

possibly contained on dif!erent parts of the enzyme molecule (36) . 

Orme-Johnson et al. (37) later showed the presence of four 

Fe-S ·centers in Complex I from bovine heart mitochondria. These have 

been termed Center 1, 2, 3 and 4. Center 1 is the most labile and 

disappears on exposure to NADH for more than five minutes. Centers 3 

and 4 cannot be differentiated from one another at the protein con

centrations required for optical spectrophotometric observation. 

Ohnishi et al. (38) reported that similar signals in C. utilis were 

all located on the substrate.side of the piericidin A inhibition site. 

As the . electrons are passed from one compound to another in the 

respiratory chain oxidation-reduction reactions are taking place with 

each electron donor having a characteristic electron pressure and each 

electron acceptor having a characteristic affinity. Th�se electron 

pressures and affinities can.be measured in terms of an electromotive 

force o� potential and each electron donor when tested under standard 

conditions has a characteristic oxidation-reduction potential (redox 

potential) . The thermodynamic tendency is for electrons to flow from 

the most negative compound, that having the highest electron pressure 



to the most positive compound. The redox potentials of the main 

components of the respiratory chain are shown in Figure 3 (39). 

The order of redox potentials for the four Fe-S centers is 

1<3+4<2 (37,38,40) as shown in Figure 4. The redox potential for 

Center 1 was found to be -0.240 volts (v) for C. utiZis (37) and 

13 

-0.305 v for the mammalian respiratory chains (41). The redox poten

tial for the combined Centers 3+4 is -0.210 v while that for Center 2 

is -0.05 v. It is interesting to note the gap between the redox 

potentials of Centers 1 and 2. In the respiration of C. utiZis using 

ethanol as a substrate, Center 1 is largely (approximately 80 percent) 

reduced while Center 2 is about 50 percent reduced. This gives a redox 

potential difference of approximately 0.24� v which suggests that the 

energy conservation for Site I phosphorylation occurs between Center 1 

and· Center 2 (38). This is in agreement with the earlier work done 

on mammalian systems (40). 

The scheme for the respiratory chain in Figure 5 was . drawn by 

the author after consideration of all the information presented in the 

review of the literature and represents a compilation of the work of 

many authors. It will later be shown that the results of this investi

gation show that the S-protein mentioned in the introduction was 

in reality an Fe-S protein involved in energy conservation at 

Site I. 
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CHAPTER III 

EXPERIMENTAL PROCEDURE 

A. GENERAL PLAN 

Since previous investigations have shown that neither avitamino

sis E (1) nor stress (2) affected the Fe-S protein, and an early experi

ment in this investigation demonstrated that dietary inorganic sulfate 

1 was without effect, rats fed laboratory chpw were used as tissue 

donors. The rats were sacrificed by decapitation after a stunning 

blow on the head and the livers removed. Livers were pooled and 

stored at -20° until cellular lipoprotein isolation b�gan. The Fe-S 

protein was isolated from the cellular lipoprotein prepared by the 

salt ·extraction method of Smith et al. (42) as modified by Levin and 

Thomas (43) . 

Based on the rate of 35s-sulfate (35so::) turnover the Fe-S 

protein was originally thought to have a precursor relationship to 

other sulfur-containing compounds since it became maximally labeled 

sooner and lost its. label earlier than any of the other fractions of the 

cellular lipoprotein (1). 
,,, Based on this assumption earlier experiments 

attempted to demonstrate the transfer of 35so4 from the Fe-S protein 

to mucopolysaccharides and later to an artificial sulfate acceptor, 

p-nitrophenol to form p-nitrophenyl sulfate. 

1 Ralston Purina, St. Louis, Missouri. 
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For 35s tracer studies, the Fe-S protein was pulse labeled by 

a subcutaneous injection of 10 to 25 µCi carrier free Na2 35so4
2 in 

0.5 ml isotonic saline one hour prior to sacrifice since maximal 

labeling of the Fe-S protein occurred one hour following injection 

of a test dose of 35so; (1) . Radioactivity of the samples was deter

mined using a Picker Nuclear Liquimat 220 Liquid Scintillation 

Counter. 
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Since transfer of 35so; from the Fe-S protein was inhibited by 

ATP and no transfer could be demonstrated with the artificial sulfate 

acceptor, p-nitrophenol, it was postulated that the Fe-S protein might 

be a high energy compound involved in the oxidative phosphorylation of 

ADP. Based on this assumption experiments were conducted to 1) detect 

a disulfide configuration, 2) determine the iron concentration, 

3) determine the effect of an uncoupling agent, 4) establish esteri

fication of inorganic phosphate, and 5) determine the uptake of 32po� 

by ADP as influenced by the Fe-S protein. 

Bo METHODS 

IJiets 

The composition of the diets is shown in Table 1. In the 

first experiment three groups of five male rats were fed the 0.0002 

percent, the 0.10 ·percent and the 0.42 percent inorganic sulfate 

diets. In all the experiments using 2,4 dinitrophenol the 0.02 

percent inorganic sulfate diet was used. 

2 New England Nuclear, Boston, Mass. 
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TABLE 1 

COMPOSITION OF DIETS 

Q.0002% S04 0.02% S04 0.10% S04 0. 42% S04 

g/100 g 

Casein 15.00 15. 00 15.00 15. 00 

Cornst�rch 30.00 30. 00 30.00 30.00 

Sucrose 30.00 30.00 30. 00 30.00 

Cod Liver Oil 2.00 2.00 2. 00 2.00 

Vegetable Shortening 1 6.00 6. 00 6.00 6.00 

Vitamin mixture 2 2. 00 2.00 2.00 2.00 

Non-nutritive bulk 3 11. 79 11.68 11. 74 12. 00 

Basic salt mixture 4 1. 34 1.34 1.34 1.34 

DL methionine 3 Q.66 0.62 a.so· 00 

CaC03 1.34 1.32 1. 24 0.91 

CaS04. 2 H20 00 Q.04 Q.18 0.75 

1 Crisco, Proctor and Gamble, Cincinnati, Ohio. 

2 Nutritional Biochemicals Corporation, Cleveland, Ohio. Vitamin 
diet fortification mixture formulated to supply, the following amounts of 
vitamins (g/kg vitamin premix) : thiamine hydrochloride 1.0� · riboflavin 
1. 0, niacin 4.5, p-aminobenzoic acid 5.0, calcium pantothenate 3,·0, 
pyridoxine hrdrochloride 1.0, ascorbic acid 45.0, inositol 5.0, choline 
chloride 75.0, menadione 2.25, biotin Q.020, folic acid 0.090, vitamin 
B12 0.00135, a-tocopherol 5.0, vitamin A 9 x 105 units, vitamin D 1 x 105 

units, and sufficient glucose to make 1 kg. 

3 

4 

Alphacel, Nutritional Biochemicals Corporation, Cleveland, Ohio. 

1. 34 g equals in mg: 92. 8 MgC03, 207.0 NaCl, 336. 0 KC!, 636.0 
KH2P04, 61.5 FeP04• 2H20, Q. 2 KI, 0.3 NaF, 1.8 AlK (S04) 2·12 H20, 2. 1 
Cu(C2H302) ·H20, 1.2 MnCl2·6 H20, Hubbell et al. (44) as · modified·by 
Pendergrass (45) . 



20 

Isolation of Cellular Lipoprotein 

The livers were removed from the freezer and allowed to thaw at. 

4° overnight. Approximately 50 g of liver were homogenized in cold 

Solution I using a motor-driven Thomas size C homogenizer with a teflon 

pestle. Solution I is a 0.16 M KCl solution each liter containing 186 mg 

of iodoacetic acid, as an enzyme inhibitor, and 5 g of sodium citrate, 

to prevent clotting of any blood present, and the final solution 

adjusted to pH 4.7 with concentrated HCl. The homogenate was trans

ferred to a 100 ml ground glass stoppered mixing cylinder, diluted 

to 100 ml with Solution I and the contents mixed by inversion. All 

solutions were kept between 3 ° and 5° throughout the entire isolation 

procedure. The homogenate was centrifuged at 28,000 x g fo·r 40 minutes 

in a Lourdes "Beta-fuge" using a 9RA _head at 4 ° .. The supernatant 

fluids were discarded and the centrifuge cake homogenized again with 

Solution I an_d centrifuged. The centrifuge cake was then homogenized 

with Solution III (a 0.4 M KCl solution containing 186 mg of iodo

acet�c acid and 10 g of sodium citrate per liter) and centrifuged. 

The homogenizing of the centrifuge cake with Solution III and the 

centrifugation were repeated. Next the centrifuge cake was homo

genized with Solution II (a 1.0 M KCl solution containing 186 mg of 

iodoac�_tic .acid and 10 g of sodium citrate per liter, the final 

solution was adjusted to pH 4.7 by the addition of concentrated 

HCl) and centrifugede The procedure was repeated making the volume 

of the homogenate up to 80 ml each time and alternating between 

Solut_ions II and III until the supernatant fluid gave a negative 

protein test with 10 percent trichloroacetic acid (TCA). In order 



to lower the salt concentration of the centrifuge cake, it was 

washed with a 1:1 aqueous diluti�n of Solution I and _centrifuged 

again. The resulting centrifuge cake of insoluble cellular lipo

protein was homogenized with 5 ml of cold acetone per g of liver, 

the resulting mixture filtered by suctJon filtration, and the residue 

allowed to air dry and weighed. 

Fraationa.tion of Cellular Lipoprotein 

Lipid was.extracted from the cellular lipoprotein by heating 

with 20 ml 2:1 chloroform:methanol per g in a 60 ° water bath for two 

hours. The resulti�g residue was separated by suction filtration, 

washed with 5 ml 2:1 chloroform:methanol per g and allowed to dry. 

To remove the mucopolysaccharides, the air-dried residue was 

stirred with 10 ml of 0.5 M KSCN per g for three hours. For each 

gram of sample, 5 ml 80 percent phenol.in distilled water .were added 

and the stirring was continued for an additional four hours. The 

mixture was allowed to stand overnight after which the emulsion was 

separated by centrifugation at 715 x g in an International Model SBV 

cen�rifuge for 10 minutes. The centrifuge cake was washed once 

with 5 ml of 0.5 M KSCN per g of original residue. The emulsion 

was again separated by centrifugation at 715 x g for 10 minutes 

and the supernatant fluid poured off. 

The protein was removed from the.phenol phase after removal 

of the_0.5 M KSCN supernatant fluid by the addition of five volumes. 

of acetone. The protein which was precipitated was removed by 

centrifugation at 715 x g for 10 minutes and dried with acetone. 
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The nucleotides were then extracted by heating the residue with 10 ml 

of 5 percent TCA per 200 mg in a 90° water bath for 30 minutes. The 

TCA-extracted residue ·was collected by suction filtration and dried 

with acetone. Sufficient 2 N NaOH was added to adjust the, 

pH to 8 as was determined by using pHydrion paper (A) . 3 Enough 0. 5 

N NaOH was added to yield a final concentration of 25 ml per gram 

of residue. The mixture was shaken at Oto 5° for 16 hours. The 

pH was adjusted to pH 7. 0 with glacial acetic acid and the residue 

removed by centrifugation at 715 x g for 10 minut�s. The residue 

was washed an� again removed by centrifugation at 715 x g for 10 

minutes. The sup�rnatant fluids were combined with four volumes of 

e·thanol and allowed to precipitate overnight -at -20° . The precipitate 

(Fe-S protein) was collected .by centrifugation at 715 x g for 10 

minutes and washed three times with ethanol. For all the 35so; 

transfer studies the precipitate was dried with ethe� and the specific 

activity determined. 

For studies in which th� Fe-S protein was being studied as a 

high energy compound, the precipitate was further purified. Th� 

ethanol precipitate was weighed and dissolved in 5. 0 ml of 0. 1 M 

imidazole buffer, pH 9. 2, per g wet weight. The resulting mixture 

was centrifuged at 715 x g for 10 minutes and the supernatant fluid 

dialyzed against running water overnight. T4e resulting dialysate was 

centrifuged at 715 x g for 10 minutes and the supernatant fluid shell

frozen in an acetone-dry ice mixture and lyophilized. The dried 

3 Scientific Products, Evanston, Illinois. 
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product was weighed and stored at 4 ° until used. This product will, 

be her.eafter referred to. as "purif_ied" Fe-S protein •. 

DetePmina.tion of 35so7; in the Fe-S Protein and in MuaopolysaaahaPides 

The specific activity of the_35so:;= was.determined accor4ing to 
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the method of Mahin and.Lofberg (46). Approximately 2 to 3 mg samples of 

either the Fe�s protei� or the mucopolysaccharides were transferred 

to counting via�s. All samples were analyzed in duplicate. To each 

vial were added 0.2 ml distilled water, 0.2 ml. of 70 percent HC103 

and 0.4 ml H202. The samples were heated in a 70-80° water bath for 

approximately 30 minutes or until the material had dissolved. The 

samples were allowed to cool to room temperature and a scintillation 

4 cocktail composed of 6.0 ml of 2-ethoxyethanol and 10 ml of PPO 

(2,5 diphenyloxazol) in toluene made by adding 12 g PPO per liter of 
. 

. 

toluene. There was-no appreciable quenching as indicated by the 

channels ratio data. 

Transfer of 35so'; From the Fe-S Protein to Muaopolysaaaharides 

The Fe-S protein as prepared for the 35so=;; transfer experiments 

was used. If a radioactive fraction was .. not required the Fe-S protein 

was isolated by the same procedure from rats that had not received a 

35so4 injection. Mucopolysaccharides were isolated ._by the method of 

Bostrom (47) from the rib cartilage of those rats that had not 

received 35so7;. As a source. of enzymes, a 10 percent liv�r homogenate 

was prepared in 0.067 M phosphate -buffer, pH 7.4 and ce�trifuged at 

650 x g for 10 minutes to remove the nuclei. 

4 Packard Instrument Company, Inc., Downers Grove, Illinois. 



Mixtures contai�ing 1.0 ml. of the enzyme solution either fresh 

or boiled were incubated_at·37° for one hour in Warburg flasks wi�hout 

cen�er wells with air as the gas phase. The complete incubation mix

ture contained 40 mg of Fe-S protein. [4000 counts per minute (cpm).] 

added as 0.5 ml of a solution prepared by· dispersing 200 mg of Fe-S 

protein in 2 ml of 0.067 M K2HP04 and adding 0.5 ml of 0.067 M KH2P04 

•' 
. ' . 

to achieve a solution with a.pH.of 7.4. Mucopolysaccharides were 

added as 0.5 ml of a_solution containing 30 mg of mucopolysaccharides 
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dissolved in 1 ml of 0.067 M phosphate buffer, pH 7.4. MgCl2 and Na2S04 

were added. as 0.1 ml each of a 0.15 M solution. Total volume of solu

tion in the.flask was adjusted to 3 ml by addition of 0.067 M phos

phate buffer, pH 7.4. Th� variations in the incubation mixture were: 

1) no added ATP, 2) no added mucopolysaccharides, 3) no added 

Fe-S _protein, and 4) boiled enzyme. At the end of the incubation 

period the reaction was stopped by the addition of 2 ml of 10 percent 

TCA. The precipitate.d Fe-S protein was removed by centrifugation 

at 715 x g for 10 minutes and the .m�copolysaccharides precipitated 

from the supernatant fluid by the addition of four volumes of ethanol. 

The precipitate was collected ,by centrifugation at 715 x g for 10 

minutes and purified by dissolving in 0.5 N NaOH and reprecipitated 

with four volumes of ethanol. The specific activity of the isolated 

mucopolysaccharides was determined. 

Transfer of 35so; from the Fe-S Protein to p-Nitrophenol Using 

SuZfotransferase 

·sulfotransferase was pr�pared according to the method of Hilz 



and Lipm�nn (48) . A 25 percent �omogenate of fresh rat liver was 

made using a 0. 25 M sucrose solution containing 0. 08 M KHC03• The 

homogenate was centrifuged at 510 x g for 15 mi�utes in the cold 

(4 ° ) .  One-tenth of its volume of 1. 5 M KC! was added with stirring 
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to the supernatant fluid containing the mitochondria. The mitochondria 

were removed by centrifuging at 14, 750 x g for one hour in the cold. 

To obtain a clear and more active preparation the cloudy supernatant 

fluid was recentrifuged for one hour at 28, 000 x gin the cold. 

Six hundred fifty ml of clear liver supernatant fluid plus 

100 ml of Alumina Cy gel were stirred for 30 minutes and then 

centrifuged at 1200 x g for 20 minutes in the cold. The gel was 

extracted with 1 liter of a 0. 20 percent saturated (NH4) 2so4 solution, 

pH 7. 2. To the extract a solution of 4 M [saturated] (NH4) 2S04, 

pH 7. 0, containing 0. 002 M versene was added to a final saturation of 

0. 520 and the precipitate collected and dissolved in 0. 02 M Tris-HCl 

buffer, pH 7. 0. 

One hundred fifty milliliters of the soluti�n were diluted with 

an equal volume of cold water and refractionated between 0. 20 and 0. 35 

percent saturation of (NH4) 2so4• The precipitate was dissolved in 

25 ml 0. 02 M Tris-HCl buffer, pH ).0. The enzyme solution was dialyzed 

for 2 hours at 4 ° against 0. 01 .M Tris-HCl buffer, pH.7. 4,  to free it 

of sulfate. 

A modification of the method of Levi et al •. (49) was.used.in 

the transfer of 35so::= to p-nitrophenol. Mixtures containing either 

0. 5 or 1. 0 ml of the enzyme solution were incubated at 37° for 40 

minutes in Warburg flasks w!�hout center wells or side arms with air 



as the gas phase. The complete incubation mixture contained 10 mg 

of Fe-S protein added as 0.5 ml of a solution prepared by dispersing 

70 mg of Fe-S protein in 4 ml of 0.02 M Tris-HCl buffer ; pH 7.0. 

All flasks contained 0.00112 M p-nitrophenol added as 0.04 ml of 

solution. The variations included the use of two different enzyme 

levels, 0.5 ml and 1.0 ml with a boiled enzyme preparation used as 

a control. The other variation included the addition of 0.28 M ATP 5 

and 0.14 M MgCl2 both as 0.04 ml of solution. The . total volume of 

solution in the flask was adjusted to 1.54 ml by the addition of 

0.02 M Tris-HCl buffer, pH 7.0. At the end of the incubation period, 

the reaction was stopped by the addition of 3 ml of 95 percent 

ethanol, and the mixture freed of the precipitated protein by centri

fugation at 715 x g for 10 minutes. The total supernatant fluid for 

each flask was stripped on a separate chromatogram using Whatmann #1 

filter paper. The chromatograms were developed using 9 : 1 (v/v) 

acetone : water as the solvent. p-Nitrophenyl sulfate was eluted from 

V the solvent front with _9 : 1  ( /v) acetone·: water by descending chromato-

graphy. The eluates were placed in liquid scintillation vials, con

centrated and 16 ml of a scintillation cocktail, composed of 6 ml 

of 2-ethoxyethanol and 10 ml of PPO in toluene added and the mixture 

counted • .  The strip along the origin containing the residual sulfate 

was removed , the sulfate eluted with water, concentrated, and 

counted . 

5sigma Chemical Company, St. Louis, Missouri. 
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Determination of the PPesenae of a Disulfide ConfigU'l'ation in the 

Fe-S 'PPotein · 

Each tube contained 3 mg of "purified" Fe-S prot ein added as 

2 ml of a solution prepared by dispersing 24 mg in 14 ml of 0. 28 M 

Tris-HCl buffer, pH 7. 4. Duplicate t ubes cont ained 1 mmole of 

cysteine added in 1 ml of 0.28 M Tris-HCl buffer, pH 7. 4 and t wo 

tubes contained 1 mmole of 2-mercaptoethanol added in l · ml of 0. 28 M 

Tris-HCl buffer, pH 7. 4. The control tubes contained only 1 ml of 

0. 28 M Tris-HCl buffer, pH 7. 4 and 2 ml of Fe-S protein suspensions. 

The mixt ures were a1 1owed to st and at room temperature for 1 hour and 

the contents of the tubes transferred to 1/4 inch dialysis bags and 

dialyzed against dist illed water for nine hours. The dist illed water 

was changed twice and the dialyzing mediums were combined in a 50  ml 

centrifuge tube. One ml carrier sulfat e (2. 85 ml H2S04/lit er) was 

added and the sulfat e precipit ated with 1 ml of 1 percent benzidine

HCl in ethanol. The solution was centrifuged at 715 x g for 10 

minut es and the precipit ate combust ed with 0.2 ml of 70 percent HC103 

and 0. 4 ml of 30 percent H2o2• The contents of t he centrifuge tube 

were transferred to a scintillation vial · and counted. 

Determination of the Iron Content of the Fe-S Protein 

Approximately 100 mg of the "purified" Fe-S prot ein were placed 

in a 30 ml micro-Kj eldahl flask with 1 ml of a 7 + 1 v/v HCl03-H2S04 

mixture and 4 ml of concentrat ed HN03. The mixt ure was digest ed on 

elect ric heaters, adding extra HN03 when necessary , unt il only the 

H2so4 and inorganic constit ue�t s of t he material remained • . The 
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contents of the flask wer� cooled, 1.25 ml of demineralized water 

added and the contents · filtered into 10 ml volumetric flasks. The 

contents of the micro-Kjeldahl flask were quantitat�vely transferred 

to volumetric flasks and the flasks made to volume with distilled 

water . Two reagent blanks were also prepared . 
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Working standard iron solutions were prepared from a concentrated 

stock iron solution . The opti�um range suggested is 2 to 20 parts per 

million (ppm) (50) . Percent absorption of the samples and standards 

was determined using a . Perkin-Elmer Atomic Absorption Spectrophotometer 

303. The energy source was a hollow cathode tube and an acetylene 

and air flame was used with a Boling burner head . 

Determination of the Effeat of an Unaoupling Agent, 2, 4 Dinitrophenol, 

on the Inaorporation of 35s-sul fate into the Fe-S Protein 

2,4 Dinitrophenol, an uncoupling agent, was added (50 mg/100 g 

diet) to a 0 . 02 percent sulfate diet (Table 1 ,  page 19 ) and fed to 

11 adult male rats . The control rats received the 0 . 02 percent sulfate 

diet without added 2,4 dinitrophenol. The . rats were housed in group 

cages and given feed and water ad libiturn. On the fifth day all rats 

were puls.e labeled with a subcutaneous injection of 10 - 25µCi of 

carrier free Na2 3 5so4 in 0.5 ml isotonic saline and all animals 

sacrificed one hour af ter injection . The livers were removed, trans

ferred to cold Solution I and th� Fe-S protein prepared as described 

previously. The resulting product was weighed and counted . 

Determination of 5 9F�++ and 35so=;: in the Fe-S Protein Isolated from 

2, 4 Dinitrophenol-Treated Rats 

As in the previous . experiment the 0 . 02 percent sulfate d�et 



containing 2,4 dinitrophenol (50 mg/100 g diet) was used and fed to 

eight rats . On the fourth day all rats . were injected with 25 µCi 

carrier free Na2 3 5so4 and 25 µCi 5 9Feso4
6 1n 0 . 5 ml isotonic saline 

and sacrificed one hour after injection . The livers were removed 

and transferred to cold Solution I and . the Fe-S protein prepared 

as described previously . The resulting product was weighed and 

counted . The counts attributable to sulfate were determined as 

follows . 

An approximate 1 . 0  mg sample of the Fe-S protein was . combined 

with approximately 800 mg benzoic acid to form a pelle.t which was 

combusted in a Parr bomb . After combustion the samples were trans

ferred to a 50 ml centrifuge tub.e and 1 ml of carrier sulfate added . 

The sulfate .was precipitated with 1 ml of 1 percent benzidine-HCl in 

ethanol . The precipitate was collected by centrifugation at 715 x g 

for 10 minutes, combusted and counted . The counts attributable to 

iron were determined by difference . 

Determination of the Esterifiaation of Inorgania Phosphate 

"Purified" Fe-S protein added as 20 mg of Fe-S protein per 

0 . 25 ml of 0 . 1  M imidazole buffer, pH 7 . 4, was incubated with 20 

7 µmoles of ADP and 20 µmoles of phosphate added as 0 . 5  ml of 0 . 1  M 

imidazole buffer, pH 7 . 4 .  Two different levels of the Fe-S protein 

were used, 20 mg and 40 mg. Other variations included no added_ ADP, 

no added Fe-S protein or the addition of 2 ml of 10 percent TCA . 

6 Schwarz/Mann, Orangeburg, New York . 

7 Sigma Chemical Company, St . Louis, Missouri . 
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The mixtures were incubated at 37° for 40 minutes in Warb urg  flasks 

without side arms or center wells with . air as the gas phase. The 

react:ion was stopped by  the addition of 2 ml of 10 percent TCA. The 

contents of the Warburg flasks were filtered into 25 ml volumetric 

·flasks and the contents adjusted to volume with distilled water. 

Duplicate 1 ml aliquots were placed in 10 ml volumetric flasks for 

phosphate determination. 
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Phosphorus was determined according to the . method of Allen (51) . 

Duplicate standards were prepared by  placing 2.5 ml of a stock solution 

containing 0.01 mg P - per ml in a 10 ml volumetric flask. A reagent 

blank was also preparedo To each of the flasks were added 1 ml of 70 

percent.HCl03, 1 ml hydroquinone reagent (0. 25 g hydroquinone and 5 g 

of pure NaHS03 per 25 ml water) and 0.5 ml of 8 . 3  percent ammonium 

molybdate in that order. The samples were made to volume with distilled 

water and after 5-30 minutes the absorbance determined at 650 nanometers 

(nm) with a Beckman B spectrophotometer. 

DetePmination of the InaoPpoPation of 3 2p into AT3 2p 

Pressman' s method (52) was used to determine the incorpor ation 

of 3 2p into AT3 2p, To . 0.5 ml of 0.1 M .imidazole buffer , pH 7.4, con

taining 40 ml of "purified" Fe-S protein, 20 µmoles of ADP and 20 µmoles 

phosphorus, was added a neutralized solution (neutralized with KOH) of 

32p8 containing 5. 5 x 105 c pm. Ad4itional samples contained 200 µmoles 

MgCl2 . The solutions were incubated at 37° in Warburg flasks without 

center wells or side. arms with air as the gas phase. The reaction 

8 Obtained as H3 3 2po4 from Amersham Searle Corp., Arlington 
Heights, Illinois. 



was allowed to proceed with gentle shaking for either 20, 45 or 90 

minutes. The reaction was stopped with 2 ml of 10 percent TCA and 

the precipitate removed by centrifugation at 715 x g for 10 minutes. 

The supernatant fluid was decanted and the precipitate washed with 
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three separate washings of 1 ml of distilled water. The supernatan� 

fluids were combined, 5 µmoles of carrier nucleotide added to the 

reaction mixture and the volume made up to 10 . ml before placing it on 

the column. The column was p�epared using purified Dowex-1-Cl, X-8, 

200-400 mesh from the Bio-Rad Company and converted to the formate form 

by washing with 3 M  sodium formate. Resin colunms 1 cm in diameter a�d · 

3 cm high were tsed. The supernatant fluid was allowed to pass into the 

resin column and the column washed with two 15 ml portions of dis

tilled water. The 3 2p and ADP were removed with three 15 ml washes of 

4 M formic acid in 0. 05 M ammonium formate and the AT 3 2P eluted with 

two 15 ml portions of 4 M formic acid in 0. 5 M ammonium formate. Twq 

ml of the eluate containing the AT 3 2p were counted using a scintilla

tion cocktail containing 5. 0 g permablend and 120 g of napthalene 

per liter of dioxane. 

Determination of the Pu:Pity of AT 3 2p 

Purity of the AT32p was determined according to the method of 

Lowenstein (53) , A sample collecte� after washing the column with 4 M 

formic acid in 0 , 5  M amm9nium formate was appl�ed to . Whatmann #3 filter 

paper along with a marker spot of ATP. The chromatograph was developed 

using ascending chromatography with the solvent composed of 46 , 8  ml 

isopropanol, 2. 6 ml formic acid, 24. 6 ml of 95 percent etha�ol, 26.1 

ml water and 20 ml pyridine. The paper was dried in a current of air 



at room temperature. The portion of the chromatogram containing the 

AT3 2P was identified by the quenching of the ultraviolet light by the 

marker sp ot. This portion of the chromatogram_ was cut out, placed in 

a scintillation vial with 20 ml of the dioxane cocktail and counted. 
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RESULTS 

Previous experiments (1, 2) have demonstrated that neither avita

minosis E or the stress of malathion intoxication affects the uptake �of 

a test dose of 3 5so; by the S-protein. However, because of the appar

ent precursor relationship demonstrated by the ti�ed experiments of 

Fulton and Smith (1) and previous investigation in this laboratory 

(54-56) with respect .to the effect of dietary . inorganic sulfate, it 

seemed necessary to determine the effect of dietary . inorganic sulfate 

on the uptake of a test dose of 35so:;=. The data which are shown in 

Table 2 $how · that, as was true for avitaminosis E and stress, varia

tions in dietary inorganic sulfate were without effect .upon the uptake 

of 35so; by S-protein. Since these data and earl ier experiments (1, 2) 

demonstrated .that S-protein was a high priority protein with respect 

to sulfate and was not affected by diet, rats fed laboratory chow were 

used as tissue donors in all future experiments. 

Although an intestinal mucosa sulfate reductase . has been iden

tified (57 ) and the incorporation of sulfate into taurine demonstrated 

(58 ) ,  it is generally assumed that if 35s-sulfur is administered as 

35so:=, it will be incorporated as ester sulfate. Therefore, the most 

obyious acceptor for the sulfate of S-protein to t�st the apparent 

precursor relationship demonstrated .earlier (1) is mucopolysaccharide. 

The data which are presented in Tab�e 3 show the results of. two experi

ments in which the S-protein, pulse labeled in vivo by a subcutaneous 
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TABLE 2 

EFFECT OF DIETARY INORGANIC SULFATE ON THE UPTAKE OF 
35so4 BY THE S-PROTEIN 

Percent Sulfate in Diet 

0. 0002 

0.10 

0.42 

35so4 Activity in S-Protein 

cpm/mg 

91
1 

90 

97 

Values are averages of duplicate determinations from five 
pooled livers. 

TABLE 3 

IN VITRO TRANSFER OF 35so; FROM IN VIVO LABELED 35s S-PROTEIN 
TO MUCOPOLYSACCHARIDES 

Total cpm 
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System Exp. 1 Exp. 2 

Com1>_lete 1 4 262 3962 

Without added ATP 547 545 

Without added mucopolysaccharides 69 64 

Boiled enzyme 414 333 

1 1 ml of enzyme solution, 7. 5 µm�les ATP , 15 µ moles MgCl2, 15 mg 
mucopolysaccharides, 40 mg 35g S-protein (400 cpm) , 2 . 9  ml 0. 67 M P04 
buff er, pH 7 • 4 • 

2 Values are . averages of duplicate determinations. 



injection of 3 5,so; was used to transfer 3 5so4 to mucopolysaccharides 

in vitro. These data indicate that S-protein will transfer 3 5so; to 

mucopolysaccharides when S-protein is labeled by injecting the anilllB.l 

w�th 3 5S04. _ Al t;hough transfer was obtained wit_h a boiled enzyme, a 

slight enzyme effect was noted. 
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These data have demonstrated that the S-protein could transfer 

sulfate if labeled in vivo; however, it seemed reasonable to deter mine 

if S-protein could raise 3 5 so; to the energy level of ester sulfate if 

it were incubated in a medium containing 3 5so=;:= and an enzyme preparation 

from liver . These data . which are shown in Table 4 show an enzyme depen

dent "activation" of sulfate. In addition these data as well as the 

data shown in Table 3 show tpat the addition of ATP is apparently 

inhibitory either to the transfer (Table 3) or the actiyation and trans

fer of sulfate (Table 4) . .  

Although the results from previous experiments appeared to be 

clear cut and indicate that S-protein could raise sulfate to the energy 

level of ester sulfate and transfer it to mucopolysaccharides, ques

tions arose _ because the acceptor could not be isolated in a highly 

purified state and the radioactivity associated with the mucopoly

saccharides might only represent coprecipitation. It is difficult 

to understand how coprecipitation might explain. the data obtained 

without added S-protein (Table 4) . However, in order to answer. these 

questions it was decided to repeat the sulfate transfer experiment 

using p-nitroph�nol, an artificial sulfate acceptor. These data which 

are shown in Table 5 show little transfer of 3 5so; from S-protein to 

p-nitropbeno). and no enzyme effect. Those samples which contained 



TABLE 4 

INFLUENCES OF S-PROTEIN ON THE IN VITRO UPTAKE OF 3 5so4 
BY MUCOPOLYSACCHARIDES 

36 

µmoles 3 5so4 in mucopolysaccharides 
System 

1 Complete 

Without · added ATP 

Without added mucopolysaccharides 

Without added S-protein 

Be>iled enzyme 

Exp. 1 Exp. 2 

3. 52 5. 12 

6. 1 5. 4 

0.2 0.2 

L O  0.4 

2 .8 1.4 

1 1 ml of enzyme solution, 7 , 5  µmoles ATP, 15 µmoles MgCl2, 15 mg 
mucopolysaccharides, 40  mg S-protein, 15  µmoles 3 5 so4 (8000 cpm) , 
2 .8 ml 0.067 M P04 buffer, pH 7 ,4 ,  

2 Values are averages of duplicate determinations. 
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TABLE 5 

IN VITRO TRANSFER OF ? 5so; FROM S-PROTEIN TO p-NITROPHENOL 

System Residual 3 5so'i;= p-Nitrophenyl Sulfate 

1 Complete 

With 1 ml sulfotransferase 

Boiled enzyme 

3 With ATP and MgC12 added 

cpm x 10 

15.92 

11.5 

17. 4 

20. 0 

-2 Total cpm 

26 

24 

25 

25 

1
o . 5  ml sulfotransferase solution, 10 mg 3 5g S-protein (9000 cpm) , 

0.04 µmoles p-nitrophenol, 0. 5 ml 0.02 M Tris-HCl b uffer, pH 7. 0 

Values are averages of duplicate determinations. 

311. 2 µmoles ATP and 5. 6 µmoles MgCl2. 
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the sulfotransferase enzyme preparation gave less 35g activity in the 

p-nitrophenyl sulfate fraction than any of the others .. None of the 

fractions incorpora�ed more than 0.3 percent of the available activated 

sulfate. Th�refore, it was concluded that S-protein was not effective 

in transferring sulfate to the artificial sulfate . acceptor, 

p-nitrophenol. 

These data opened to question the role of S-protein as an 

intermediate in the sulfation of those cellular constituents tQat 

contained ester sulfates. Therefore, some other function for S

protein . was sought. The next step then appeared to be a check on 

the nature of the linkage of the sulfate to the S-protein. One way 

which. the sulfate could attach to the S-protein .would be by splitting 

out hydrogen between a sulfhydryl and a sulfate to form -thiolpyro

sulfate. Since this linkage was formed by oxidation, it could be 

cleaved by reducing agents especially sulfhydryl containing reducing 

agents in a modified sulfhydryl-disulfide · exchange reaction. The 

data which are shown in Table 6 show the effect of two sulfhydryl 

reducing agents cysteine and 2-mercaptoethanol on the release of 3 5.so;. 

Cysteine was not as effective in removing sulfate, however, cysteine 

is not as good a reducing reagent as 2-mercaptoethanol and may have 

been partially oxidized as purchas�d. 

Gutman et al. (59) have demonstrated the par:ticipation of SH 

groups in the energy conservation reactions of a cell and suggest 

that the equation 2SH --+- -S-S + H2 may function as a .catalyst in 

energy conservation reac tions. Therefore, since the S-protein had 

been demonstr�,ted to under.go an apparent modified sulfhydryl-disulf ide 



TABLE 6 

INFLUENCE OF REDUCING AGENTS ON REMOVAL OF 3 Sso:= 
FROM THE S-PROTEIN 

Reducing Agent 

1 None 

1 mmole cysteine 

1 mmole 2-mercaptoethanol 

Total cpm · in . Dialyzing 
Medium 

48 

110 

39 

1All systems contained 3 mg · 355 S-protein (3800 cpm) and 3 ml of 
0. 28 M Tris-HCl buffer, pH 7.4. 

2 Values are averages of duplicate determinations. 



exchange reaction, it was assumed that the S-protein might have a role 

in energy conservation by the cell. This supposition was strengthe�ed 

by the determination of iron in the S-protein. Atomic absorption 

spectrophotometric determinations of Fe in the S-protein demonstrated 

that there were approximately 0.6 µmoles of Fe/mg S-protein in the S

protein samples. The S-protein will hereafter be referred to as Fe-S 

protein. 

As has been stated previously (37 , 38)  three Fe-S proteins are 

�elieved to be involved with t�e NADH dehydrogenase complex and at 

least two of these participate in energy conservation at Site I (38) . 

If the Fe-S protein is participating in energy conservation, it is 

conceivable that if the Fe-S protein were isolated from two groups of 

rats given a test dose of 35so=; with one group being fed 2, 4 dinitro

phenol, there should b� a difference in the uptake of 35so4 between 

the two groups. The data which are - presented _ in Table 7 show a 40 

percent increase in the specific activity o� the Fe-S protein isolated 

from rats fed 2, 4 dinitrophenol. Although not unequivocal, these data 

indicate that the Fe�S protein is indeed involved in energy conserva

tion reactions of the cell. 
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These data raise an important question, that is, does the 

apparent 40 percent increase in specific activity of the Fe-S protein 

as a result of 2, 4 dinitrophenol treatment represent increased de novo 

synthesis of Fe-S protein or the filling of more than one active site 

on an existing Fe-S protein with the 35so=;. Both 59Fe
+r and 35so� we�e 

injected into a group of eight adult male rats and their Fe-S protein 

+r 
-

isolated and the specific activity of both 59Fe and 35so-; determined. 

These data (Table 8) show an approximately equal uptake of 59Fe+r and 



TABLE 7 

INFLUENCE OF 2,4 DINITROPHENOL ON INCORPORATION OF · 3 5 so; 
INTO THE Fe-S PROTEIN 

Dietary Additions 

Per 100 g 

None 

50 mg 2,4 Dinitrophenol 

3 5g Activity Fe-S Protein 

cpm/mg1 

305 ± 27 

429 ± 38 

1 Values are averages of three groups of six pooled livers ± 
standard error of the mean. 

TABLE 8 

THE UPTAKE OF A TEST DOSE OF 3 5 so; AND 5 9Fe++ BY Fe-S PROTEIN 
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Radioactivity in Fe-S Protein 5 9  ++ Fe 

1 cpm/mg 

Total cpm as percent of dose 

203 

8 , 6 X lQ-l 

210 

8. 9 X 10-l 

1 Values are averages of duplicate determinations from eight 
pooled livers. 



35S04 • As stated previously (25) iron uptake by the Fe-S proteins 

involved in energy conservation at Site I represents de novo . synthe

sis. Therefore, these data (Table 8) and those data obtained from · 

animals fed . 2, 4 dinitr.ophenol (Table 7) indicate that the rat is 

synthesizing additional quantities of the Fe-S protein .involved in 

energy conservation at Site I to compensate for the effect of the 

uncoupling of oxidative phosphorylation. 
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These data allow the assumption that the Fe-S protein is the 

high energy configuration generated just prior to the esterificat�on 

of phosphate . This assumption was checked by incubating Fe-S protein 

with inorganic phosphate and ADP. The data obtained by incubating 

Fe-S protein with inorganic phosphate and ADP and measuring the 

disappearance of inorganic phosphate are shown in Table 9. These . 

data show that Fe-S protein can catalyze the es terification of 

inorganic phosphate with ADP as an acceptor and that the esterifica

tion parallels the amount of Fe-S protein in the incubation mixture. 

Although these data indicate that ADP is accepting inorganic phosphate, 

it is conceivable that the inorganic phosphate might be bound to the 

Fe-S protein and thus appear . to have been esterified under the condi

tions of this experiment. 

One way that ac tual esterification of inorganic phosphate with 

ADP could be demonstrated would be to use 3 2po! in - the medium and 

isolate pure ATP. If the isolated ATP contained 32p activity this 

would be irrefutable evidence that the Fe-S protein catalyzed the 

esterification of inorganic phosphate into a high energy configuration. 

The total cpm of 32p in ATP isolated from an incubation mixture 



TABLE 9 

_ ESTERIFICATION OF INORGANIC PHOSPHATE IN THE PRESENCE 
OF THE Fe-S PROTEIN 

System 

2 Complete 

Fe-S Protein, 20 mg 

Without added ADP 

Without added Fe-S protein 

With 2 ml TCA added 

Picomoles of P1 Esterified 

6003 

100 

200 

0 

0 
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1corrected for the phosphate in ADP. 

2 40 mg Fe-S protein, 20 µmoles ADP, 20 µmoles of phosphate, 1 ml 
0. 1 M imidazole buffer, pH 7. 4 .  

3 Averages of duplicate d�terminations of a model experiment. 



containing Fe-S pr�tein, 32po� and ADP are shown in Table 10. These 

data show that Fe-S protein .catalyzes the esterification of inorganic 

phosphate into the high energy configuration of ATP, and that the 

amount of esterification is proportional to the time of incubation. 

Paper chromatography demonstrated that the radioactivity moved with 

a known marker spot of ATP. 
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TABLE 10 

EFFECT OF Fe-s PROTEIN ON THE INCORPORATION OF 32p INTO ATP 

System 

Complete 1 

Incubated 20 minutes 

Incubated 45 minutes 

Incubated 90 minutes 

With added MgCl2, 200 µmoles 

Without added Fe-S protein 

To tal 3 2p Activity in Isolated ATP 

cpm x 10-4 · 

2. 6 

3 . 6 

1. 0 

0. 9 

1 40 mg Fe-S protein, 20 µmoles ADP, 20 µmoles of phosphate, 32P 
(5. 5 x .10 5 cpm) , 1. 0 ml 0. 1 M ,imidazole buffer, pH 7. 4. Al� systems 

· except those indicated were incubated for 45 minutes. 

2 Averages · of duplicate determinations. 

45 



CHAPTER V 

DISCUSSION 

Data have been presented (T�ble 2, page 34) to sho'f that a 

sulfur-containing protein (S-protein) observed previously (1) to 

be unaffected by avitaminosis E or the stress of malathion intoxi

cation (2) was also unaffected by the level of inorganic sulfate in 

the diet. Previous investigations . (1, 2, 53, 60, 61) have shown that 

cellular lipoproteins, mucopolysaccharides, sulfolipids, oone epiphy

sis, taurine excretion, the glycocholic: taurocholic acid ratio and 

feed efficiency were affected by one _or more of these conditions. 

These data serve to stre�s th� importance of the S-protein and indi

cate that the uptake and release of sulfate by the S-protein is a 

high priority reaction for the integrity of the cell. 

Because the S-protein had the most rapid turnover of . any of the 

sulfur compounds investigated (1) including nucleotide-sulfur, the 

fraction which contained ph9sphoadenosine phosphosulfate (PAPS), it 

was assumed that the S-protein served as an intermediate in the sulfation 

of those cellular constituents which contained ester sulfate. Investi

gations designed to confirm the intermediary role of S-protein in 

sulfate esterification reactions were somewhat confusing. When a 

natural s�lfate acceptor, mucopolysaccharide, was used in the test the 

S-protein appeared to possess the energy required to raise inorganic 

sulfate to the level of an ester sulfate (Table 4 ,  page 36). However, 

when an artificial sulfate acceptor, p-nitrop�enol, was used the S-
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protein .was found to possess little s�lfation potential . It is con

ceivable <hat the sulfotransferase preparation used in these experi

ments was not free of sulfurylase _ and that any p-nitrophenyl sulfate 

formed was immediately hydrolyzed. Therefore, the measured result 

would be little sulfation of p-nitrophenol . 

If the sulfotransferase were contaminated with sulfurylase, it 

was a fortunate error, be�ause the experiments with the mucopoly

saccharides had suggested that the S-protein possessed a high energy 

configuration and those with p-nitrophenol forced additional research 

into the role of S-protein in the cell. Since the above data indi

cated th�t the S-protein possessed a high energy configuration, the 

remaining experiments were designed to determine the relationship of 

the high energy configuration to the oxidative reactions of the cell. 

Conservation of energy by the formation of thioesters is not a unique 

process in cellular metabolism ; for example, the energy of the oxi

dation of glyceraldehyde-3-phosphate is conserved by the formation 

of a .thioester. However, the sulfur in glyceraldehyde-3-phosphate 

dehydrogenase is present as a sulfhydryl group. Since the sulfate 

exchange demonstrated in this investigation involves inorganic 

sulfate it is unlikely that the high energy configuration of the 

S-protein was generated during substrate level phosphorylation. 

As stated previously Fe-S proteins have been implicated in both 

electron transport and the energy conservation reactions of Complex 

I of the respiratory chain (18) . Since the S-protein was demon

strated to contain iron it seemed reasonable ·to assume that the S

protein might be the Fe-S protein in which the energy of oxidation 
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was conserved at -Site I. This assumption was reinforced by the 

demonstration of a modified sulfhydryl-disulfide exchange reaction 

between the Fe-S protei� and . 2-mercaptoethanol, and the suggestion 

by Gutman et al. (59) that a.sulfhydryl ---+- disulfide oxidoreduction 

may participate in the conservation of energy at Site I. 

As .stated earlier (36) and shown in Figure 4, page 15 , three 

Fe-S proteins have been implicated as part of the NADH dehydrogenase 

complex, some of which may be involved in actual electron transport. 

However, investigatio�s in which iron was limiting in the growth 

media for yeasts have shown that electron transport but not energy 

conseryation can occur when some of these Fe-S proteins are limiting 

(12, 24-27). Thus it appears that some of the Fe-S proteins of the 

NADH dehydrogenase complex are involved in energy conservation. The 

Fe-S protein investigated in this study appears to be one of those 

Fe-S proteins involved in energy conservation. Whe_n the Fe-S protein 

was isolated from rats fed 2, 4 - dinitrophenol there was an increase in 

its specific activity. The increase in the specific activity of the 

Fe-S protein by rats fed 2, 4 dinitrophenol was demonstrated to reflect 

an increased de novo synthesis of Fe-S protein by the demonstration 

of equal molar uptake of 5 9Fe ++- and 3 5so; (Table 8, page 41). The 

increased synthesis of Fe-S protein .may result from an attempt by the 

animal to compensate for decreased energy conservation. The latter 

supposition suggests that 2, 4 dinitrophenol interferes with the 

sulfate-phosphate transfer reaction of the Fe-S protein. 

The rationale for suggesting a sulfate-phosphate transfer 

reaction for the Fe-S protein comes from those experimen·ts with the 
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esterification of  inorganic phosphate (Table 9 ,  page 43) , the formation 

of radioactive ATP from ADP and 3 2po� (Table 10 ,  page 45) and those 

experiments with the esterification of sulfate (Tables 3 and 4 ,  pages 

34 and 36) . Th� firs t two experiments prove that the Fe-S pro tein 

can catalyze the esterifica tion of ADP to form ATP . However , the 

experiments with the ester�fica tion of ino rganic sulfate proved that 

the Fe-S .pro tein could al so provide the energy for the sulfation of 

ester sulfates , and that the sulfate was attached to the Fe-S pro tein 

before transfer to the mucopolysaccharides . These data (Tables 3 and 

4 )  also demons trated that ATP , the product of the reac tion documented 

by the data presented in Tables 9 and 10 ,  was inhibitory to the esteri

fication of. sulfate .  A phosphate buffer . was· used in tho se experiments 

in which the es terificatiQn of sulfate was measured . 

As shown in Figure 6 ,  consideration of the above data allows 

the following proposal for the role of Fe-S protein in the . c ell . The 

Fe-S prot ein is part of the NADH dehydrogenase complex which traps 

the energy of electron transport by oxidatively binding inorganic 

sulfate to a sulfydryl group of the Fe-S protein , in a high energy 

configuration . A requirement for an intact sulfhydryl group for 

energy conservation at  Site I has been demons trated (59 ) . Fe-S 

protein�S then picks up inorganic phosphate for�ing a high energy 

Fe-S pro tein�P and releasing sulfate . If a sulfate accep tor is 

available the released sul fate may be es terified ; however , due to the 

particulate nature of the Fe-S protein ,  its cellular role as an inter

mediate in sulfation may be limited . Rather · in the cell Fe-S  protein�P 

reacts with ADP to generate ATP and regenerate the Fe-S pro tein . 
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Figure 6 .  Scheme for the proposed role of  the Fe-S pro tein 
in energy conserva tion at  Site I .  



CHAPTER VI 

SUMMARY 

The role of a sulfur-containing protein (S-protein) shown to 

have a high sulfate priority in the metabolism of the cell was investi

gated with respect to the formation of ester sulfates. When mucopoly

saccharide was used as a sulfate acceptor the S-protein was shown to 

possess .the energy required to raise inorganic sulfate to the energy 

level of ester sulfate . However, when the artificial sulfate acceptor, 

p-nitrophenol, was used as a sulfate acc eptor no esterification of 

sulfate was observed . 

These data, together with a consideration of the particulate 

nature of the S-protein and the demonstration that it contained iron, 

suggested that the S-protein (Fe-S protein) might be a component of 

the respiratory chain . This supposition was strengthened by the 

demonstration that 2,4 dinitrophenol resulted in an increase in the 

3 5S04 specif ic activity of the Fe-S protein and also by the incorpora-

++ = 
tion of equal molar amounts of 5 9Fe and 3 5so4 into the protein . These 

data indicated that the animal was synthesizing extra Fe-S protein 

to compensate for the uncoupling reagent and the dec reased energy 

conservation. 

The high energy configuration of the Fe-S protein was proven by 

demonstrating that it would catalyze the esterification of inorganic 

phosphate with ADP as an ac ceptor, and the formation of radioac tive 

ATP with H3
3 2P04 as the donor and ADP as the acceptor . 
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Therefore, it is concluded that the Fe-S protein is a component 

of the NADH dehydrogenase complex and that it functions to trap a 

portion of the energy of the respiratory chain by oxidatively binding 

inorganic sulfate, which it could then exchange for inorganic phos

phate. The high energy phosphate could then be transferred to ADP 

to generate ATP. 
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