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Alan Lloyd Hodgkin and Andrew Huxley received the 1963 Nobel Prize in Physiology for their work describing the propagation 

of action potentials in the squid giant axon.  Major analysis of their system of differential equations was performed by Richard 

FitzHugh, and later by Jin-Ichi Nagumo who created a tunnel diode circuit based upon FitzHugh’s work.  The resulting 

differential model, known as the FitzHugh-Nagumo (FH-N) oscillator, represents a simplification of the Hodgkin-Huxley (H-H) 

model, but still replicates the original neuronal dynamics (Izhikevich, 2010). We begin by providing a thorough grounding in the 

physiology behind the equations, then continue by introducing some of the results established by Kostova et al. for FH-N without 

forcing (Kostova et al., 2004). Finally, this sets up our own exploration into stimulating the system with smooth periodic forcing.  

Subsequent quantification of the chaotic phase portraits using a Lyapunov exponent are discussed, as well as the relevance of 

these results to electrocardiography. 

 

Keywords: stability analysis, FitzHugh-Nagumo, chaos, Lyapunov exponent, electrocardiography 

 

  

1. Introduction  

 

As computational neuroscientist Eugene Izhikevich so 

aptly put it, “If somebody were to put a gun to the head of the 

author of this book and ask him to name the single most 

important concept in brain science, he would say it is the 

concept of a neuron (Izhikevich, 2010).” By no means are the 

concepts forwarded in his book restricted to brain science.  

Indeed, one may use the same techniques when studying most 

any physiological system of the human body in which 

neurons play an active role.  Certainly this is the case for 

studying cardiac dynamics. 

On a larger scale, neurons form an incredibly complex 

network that branches to innervate the entire body of an 

organism; it is estimated that a typical neuron communicates 

directly with over 10,000 other neurons (Izhikevich, 2010).  

This communication between neurons takes the form of the 

delivery and subsequent reception of a traveling electric 

wave, called an action potential (Alberts, 2010).  These action 

potentials became the subject of Hodgkin and Huxley's 

groundbreaking research. 

At any given time, the neuron possesses a certain voltage 

difference across its membrane, known as its potential.  To 

keep the membrane potential regulated, the neuron is 

constantly adjusting the flow of ions into and out of the cell.  

The movement of any ion across the membrane is detectable 

as an electric current.  Hence, it follows that any accumulation 

of ions on one side of the membrane or the other will result in 

a change in the membrane potential. When the membrane 

potential is 0 mV, there is a balance of charges inside and 

outside of the membrane. 

Before we begin looking at Hodgkin and Huxley's 

model, we must first understand how the membrane adjusts 

the flow of ions into and out of the cell.  Within the cell, there 

is a predominance of potassium, K+, ions. To keep K+ ions 

inside of the cell, there are pumps located on the membrane 

that use energy to actively transport K+ in but not out.  

Leaving the cell is actually a much easier task for K+: there 

are leak channels that “randomly flicker between open and 

closed states no matter what the conditions are inside or  

 

 

outside the cell...when they are open, they allow K+ to move 

freely (Alberts, 2010).” 

Since the concentration of K+ ions is so much higher 

inside the cell than outside, there is a tendency for K+ to flow 

out of these leak channels along its concentration gradient.  

When this happens, there is a negative charge left behind by 

the K+ ions immediately leaving the cell.  This build-up of 

negative charge is actually enough to, in a sense, catch the K+ 

ions in the act of leaving and momentarily halt the flow of 

charge across the membrane.  At this precise moment, “the 

electrochemical gradient of K+ is zero, even though there is 

still a much higher concentration of K+ inside of the cell than 

out (Alberts, 2010).”  For any cell, the resting membrane 

potential is achieved whenever the total flow of ions across 

the cell membrane is balanced by the charge existing inside of 

the cell.  We may use an adapted version of the Nernst 

Equation to determine the resting membrane potential with 

respect to a particular ion (Alberts, 2010): 



V log10
Co

Ci
,

 
where V is the membrane potential (in mV), Co is the ion 

concentration outside of the cell, and Ci is the ion 

concentration inside of the cell.  A typical resting membrane 

potential is about -60mV. 

Before we continue, it is important to revisit the concept 

of action potentials.  Neurons communicate with each other 

through the use of electric signals that alter the membrane 

potential on the recipient neuron.  To continue propagating 

this message, the change in membrane potential must travel 

the length of the entire cell to the next recipient.  Across short 

distances, this is not a problem.  However, longer distances 

prove to be a bit more of a challenge, since they require 

amplification of the electrical signal.  This amplified signal, 

which can travel at speeds of up to 100 meters per second, is 

the action potential (Alberts, 2010). 

Physiologically speaking, there are some key events 

taking place whenever an action potential is discharged.  Once 
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the cell receives a sufficient electrical stimulus, the membrane 

is rapidly depolarized; that is to say, the membrane potential 

becomes less negative.  The membrane depolarization causes 

voltage-gated Na+ channels to open.  (At this point, we have 

not yet discussed the role of sodium in the cell. The important 

thing to understand is that the concentration of sodium is 

higher outside of the cell than on the inside.)  When these Na+ 

channels open up, they allow sodium ions to travel along their 

concentration gradient into the cell.  This in turn causes more 

depolarization, which causes more channels to open.  The end 

result, occurring in less than 1 millisecond, is a shift in 

membrane potential from its resting value of -60mV to 

approximately +40mV (Alberts, 2010).  The value of +40mV 

represents the resting potential for sodium, and so at this point 

no more sodium ions are entering the cell. 

Before the cell is ready to respond to another signal, it 

must first return to its resting membrane potential.  This is 

accomplished in a couple of different ways.  First, once all of 

the sodium channels have opened to allow a sufficient amount 

of Na+ to flood the cell, they switch to an inactive 

conformation that prevents any more Na+ ions from entering 

(imagine putting up a wall in front of an open door).  Since 

the membrane is still depolarized at this point, the gates will 

stay open.  This inactive conformation will persist as long as 

the membrane is sufficiently depolarized.  Once the 

membrane potential goes back down, the sodium channels 

switch from inactive to closed (remove the wall and close the 

door) (Alberts, 2010). 

At the same time that all of this is occurring, there are 

also potassium channels that have been opened due to the 

membrane depolarization.  There is a time lag that prevents 

the potassium gates from responding as quickly as those for 

sodium.  However, as soon as these channels are opened, the 

K+ ions are able to travel along their concentration gradient 

out of the cell, carrying positive charges out with them.  The 

result is a sudden re-polarization of the cell.  This causes it to 

return to its resting membrane potential, and we start the 

process all over again (Alberts, 2010). 

As a special note of interest, cardiac cells are slightly 

different from nerve cells in that there are actually two 

repolarization steps taking place once the influx of sodium 

has sufficiently depolarized the cell: fast repolarization from 

the exit of K+ ions, and slow repolarization that takes place 

due to an increase in Ca2+ conductance (Rocsoreanu et al., 

2000). For now, we will continue dealing solely with Na+ and 

K+. 

At this point, it is time to take a look at the models these 

physiological processes inspired.  Arguably the most 

important of these was created by Alan Lloyd Hodgkin and 

Andrew Huxley, two men who forever changed the landscape 

of mathematical biology, when, in 1952, they modeled the 

neuronal dynamics of the squid giant axon.  Refer to 

Izhikevich (2010) or FitzHugh (1961) for the complete set of 

space-clamped Hodgkin-Huxley equations. 

Shortly after Hodgkin and Huxley published their model, 

biophysicist Richard FitzHugh began an in-depth analysis of 

their work.  He discovered that, while their model accurately 

captures the excitable behavior exhibited by neurons, it is 

difficult to fully understand why the math is in fact correct.  

This is due not to any oversight on the part of Hodgkin and 

Huxley, but rather because their model exists in four 

dimensions. To alleviate this problem, FitzHugh proposed his 

own two-dimensional differential equation model.  It 

combines a model from Bonhoeffer explaining the “behavior 

of passivated iron wires,” as well as a generalized version of 

the van der Pol relaxation oscillator (FitzHugh, 1961).  His 

equations, which he originally titled the Bonhoeffer-van der 

Pol (BVDP) oscillator, are shown below (FitzHugh, 1961; 

Rocsoreanu et al., 2000): 

 









,/)(

),3/( 3

cbyaxy

zxxycx





 
 

where, .,10,13/21 2cbbab   
            

In his model, for which applied mathematician Jin-Ichi 

Nagumo constructed the equivalent circuit the following year 

in 1962, x “mimics the membrane voltage,” while y represents 

a recovery variable, or “activation of the outward current 

(Izhikevich, 2010).”  Both a and b are constants he supplied 

(in his 1961 paper, FitzHugh fixes a = 0.7 and b = 0.8).  The 

third constant, c, is left over from the derivation of the BVDP 

oscillator (he fixes c = 3).  The last variable, z, represents the 

injected current.  It is important to note that in the case of a = 

b = z = 0, the model becomes the original van der Pol 

oscillator (FitzHugh, 1961). 

Many different versions of this model exist (Izhikevich, 

2010; Kostova et al., 2004; Rocsoreanu et al., 2000), all of 

them differing by some kind of transform of variables.  We 

will consider the model used by Kostova et al. in their paper 

(2004), which presents the FitzHugh-Nagumo model without 

diffusion: 

 



du

dt
g(u)w  I,

dw

dt
 u aw,









 

Equation 1 

where 



g(u) u(u) (1u) ,01  and 



a,0  (17).  Here the state variable u is the voltage, w is 

the recovery variable, and I is the injected current. 

 

2. Stability Analysis via a Linear Approximation 

 

2.1 Examining the Nullclines  

When studying dynamical systems, it is important to be 

familiar with the concept of nullclines.  In a broader sense, a 

nullcline is simply an isocline, or a curve in the phase space 

along which the value of a derivative is constant.  In 

particular, the nullcline is the curve along which the value of 

the derivative is zero.  Taking another look at FH-N (Equation 

1), we see that there are two potential nullclines, one where 

the derivative of u will be zero, and the other where the 

derivative of w will be zero: 
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du

dt
g(u)w I  0,

dw

dt
 u aw 0.









 
 

One of these nullclines is cubic, and the other is linear 

(observe the red graphs in Figure 1). Consider an intersection 

of those two graphs. At that particular point, we know that

0 dtdwdtdu .  Hence, at this point, neither of our 

state variables is changing.  This point where our nullclines 

intersect is called an equilibrium or fixed point.  Since our 

nullclines are a cubic and a line, geometrically we see that 

there could be as many as three possible intersections, and no 

fewer than one. Let us consider the case where I = 0. Our 

system then becomes: 

 



du

dt
g(u)w  0,

dw

dt
 u aw 0.









 
 

Evaluating the system at the origin, where u = w = 0, we see 

that this is always an equilibrium when I = 0. 

 

2.2 Linearizing FitzHugh-Nagumo 

Unless otherwise stated, we will assume I = 0 for the 

next few sections.  Similarly, (ue, we) will always refer to an 

equilibrium of FH-N (not necessarily the origin).  Let us 

define the functions f1 and f2 as the following: 

 



f1 :g(u)w  I,

f2 : u aw.  
 

Finally, we also set 



b1g'(ue), a notation we get from 

Kostova et al. (2004). 

 

2.2.1 Creating a Jacobian 

We may linearize FH-N by constructing a Jacobian 

matrix as follows: 

 

.:),(
22

11



















w

f

u

f
w

f

u

f

wuJ
















 

 

In terms of FH-N, we have: 

 



J(ue,we) :
b1 1

1 a

 

 
 

 

 
 .  

 

We see that for any equilibrium, J(ue, we) has the same form, 

since we have the substitution in place for b1.  Thus, we may 

generalize the eigenvalues of the above Jacobian to be the 

eigenvalues of any equilibrium.  Solving the characteristic 

polynomial for our Jacobian, we get the following 

eigenvalues: 

 

.)1(4)(
2

1
)(

2

1
1

2

112,1  babaab   

 

Equation 2 

 

As long as it is never the case that Re



(1) = Re



(2)  = 0, 

the eigenvalues will always have a real part, and then our 

equilibrium is hyperbolic (see definition below). By the 

Hartman – Grobman Theorem, we know that we may use the 

Jacobian to analyze the stability of any fixed point of FH-N. 

 

Hyperbolic Fixed Points (2-D):  

If Re



() ≠ 0 for both eigenvalues, the fixed point 

is hyperbolic (Strogatz, 1994). 

 

The Hartman-Grobman Theorem:  

The local phase portrait near a hyperbolic fixed 

point is “topologically equivalent” to the phase 

portrait of the linearization; in particular, the 

stability type of the fixed point is faithfully captured 

by the linearization.  Here topologically equivalent 

means that there is a homeomorphism that maps one 

local phase portrait onto the other, such that 

trajectories map onto trajectories and the sense of 

time is preserved (Strogatz, 1994). 

 

2.2.2 Trace, Determinant, and Eigenvalues 

From Poole (2011), we find two well-known results 

which tie together the trace, 



 , and determinant, 



 , of a 

matrix with its eigenvalues.  For any 



nn , A, with a 

complete set of eigenvalues, ),,,( 21 n  , we know: 

,21 nA    and 

.21 nA     

 

Hence, for our Jacobian (J) evaluated at an equilibrium, we 

have: 

.

,1

1

1

ab

ab

J

J








 

For 2-dimensional systems especially, there are many 

flowcharts available to assist with classifying the stability of 

an equilibrium based upon the trace and determinant.  One 

such flowchart may be found in Nagle et al. (2008).  We will 

now proceed by exploring the different stability cases for a 

given set of real eigenvalues. 

 

Case 1 

Let 



ab11.  Then 



J  0.  Evaluating the trace, 

we see that for 



b1 a, we get 



 J  0, which therefore 

means that we have a dominant positive eigenvalue.  Since 



J  0, we know that both of our eigenvalues must then be 

positive.  This gives us an unstable source.  For 



b1 a, we 
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get 



 J  0.  This time however, since 



J  0, both of our 

eigenvalues are negative, and so the system is a stable sink. 

 

Case 2 

Let 



ab11.  Then 



J  0.  Hence, our eigenvalues 

are different signs.  In this case, the equilibrium is an unstable 

saddle. 

 

2.3 Bifurcation Analysis 

 

An important area to study in the field of dynamics is 

bifurcation theory.  A bifurcation occurs whenever a certain 

parameter in a system of equations is changed in a way that 

results in the creation or destruction of an equilibrium.  

Although there are many different classifications of 

bifurcations, we will focus only on one. 

 

2.3.1 Hopf Bifurcation 

Consider the complex plane.  In a 2-D system, such as 

FH-N, a stable equilibrium will have eigenvalues that lie in 

the left half of the plane, that is, the Re



()0  half of the 

plane.  Since these eigenvalues in general are the solutions to 

a particular quadratic equation, we need them both to be 

either real and negative, or complex conjugates in the same 

Re



()0  part of the plane.  Given a stable equilibrium, we 

may de-stabilize it by moving one or both of the eigenvalues 

to the Re



()0  part of the complex plane.  Once an 

equilibrium has been de-stabilized in this manner, a Hopf 

bifurcation has occurred (Strogatz, 1994). 

 

2.3.2 Proposition 3.1 from Kostova, et al. (2004) 

As the eigenvalues 



1,2 of any equilibrium (ue, we) 

are of the form 

 



1,2 
1

2
R

1

2
R2  4Q, 

 

where 



Q(, a,b1) ab1 1 and 



R(, a,b1) b1  a, a Hopf bifurcation occurs in cases 

when R = 0 and Q < 0 (Kostova et al., 2004). 

 

Proof 

 

Recall from earlier that we defined the Jacobian for FH-N as 

follows: 



J(u,w) :
g'(u) 1

1 a

 

 
 

 

 
 . 

Now we solve for the eigenvalues of this matrix evaluated at 

an equilibrium. From equation 2, we know our eigenvalues 

have the following form: 



1,2 
1

2
(b1  a)

1

2
(ab1)

2  4(ab1 1). 

Substituting in now for R and Q, we clearly have 



1,2 
1

2
R
1

2
R2  4Q.  

 

If we allow Q < 0 and R = 0, our eigenvalues become: 



1,2 
1

2
4Q i Q . 

Both of these eigenvalues are along the imaginary axis.  This 

is the exact point at which a Hopf bifurcation occurs. 

 

3. Chaos 

 

3.1 Butterflies 

We have really only focused on determining the stability 

of our fixed points, however there are many other interesting 

questions we can ask of a dynamical system.  Two of these 

questions, which concern sensitivity dependence, we can 

lump together: how sensitive is our system to the initial 

conditions that we give it, and how sensitive is our system to 

a certain parameter that it calls? 

The relevance of this first question was explored by 

meteorologist Edward Lorenz in 1961 (Gleick, 1987).  At the 

time, he was studying weather forecasting models.  He found 

that by slightly changing his initial input to the system, he 

could wildly, and quite unexpectedly, change the prediction 

given by his model.  Consider the following question, which 

was actually the title of a talk given by Lorenz back in 1972 

(Lorenz, 1993): 

 

Does the Flap of a Butterfly’s Wings in 

Brazil Set off a Tornado in Texas? 

 

This may at first seem frivolous, but the concept that 

drove him to ask in the first place digs a little bit deeper.  

Given some system that you use to make predictions (in 

essence, any mathematical model), do you expect that using 

roughly equivalent initial conditions will give you roughly the 

same prediction?  Surprisingly, and this is what Lorenz 

discovered, the answer is not always yes. 

Granted, this question depends on a lot of things, for 

instance how far apart your initial conditions are, how far into 

the future you wish to make predictions, and how different 

predictions need to be before you are willing to actually deem 

them “different.”  However, once we define explicitly what 

we are asking, we can learn a great deal about our system. 

When we start thinking about this in mathematical terms, the 

butterfly effect means that two solutions, initialized ever so 

slightly apart, will diverge exponentially as time progresses 

(assuming of course that our system in question possesses this 

property). 

 

3.2 Modified BVDP with Smooth Periodic Forcing 

With regards to the FitzHugh-Nagumo model, asking 

such a question as to whether it is sensitive to initial 

conditions is in most cases trivial.  If we take a look at the 

vector field in the phase plane (see below, Figure 1), we see 

that none of our solutions will run away on some different 

path, since they are all restricted (



 14, a 1,   0.1). 
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Figure 1: Direction Field for FitzHugh-Nagumo 

 

Even more specifically however, we know that each 

solution starting in a certain neighborhood of the equilibrium 

will either converge asymptotically to the equilibrium, or 

periodically trace an orbit that is held within the 

neighborhood.  There are no surprises here: as long as you 

initialize a solution in the neighborhood, you will get 

asymptotic convergence or an orbit. 

But what happens when you start changing the 

parameters inside of the equations themselves?  We will begin 

to examine this question by considering a modified version of 

the Bonhoeffer - van der Pol equation (Braaksma, 1993), 

which is a distant cousin of the FitzHugh-Nagumo model 

(remove the forcing function and do a change of variables to 

get FH-N): 

 
























.),()(

,10,
3

1

2

1 32





tsx
dt

dy

xxy
dt

dx

 

  

Braaksma defines s(t) to be a Dirac 



 -function calling t 

modulo some constant, T.  While the Dirac function is 

especially useful for modeling neuronal dynamics, we decided 

to look at smooth forcing, an idea that we had not seen 

considered in any literary source.  The function we ultimately 

ended up choosing is rather simple: we consider a smooth, 

periodic force, generated by 



s(t)cos(t) . 

Consider the modified BVDP oscillator that fixes 

 0.01, and 



  0.  The phase diagram for a 

solution starting near the origin is shown in Figure 2.  We will 

take some liberties by assuming that the physiological analog 

for this solution is similar to that of our original FH-N 

oscillator. 

Refer to FitzHugh (1961) for a diagram of these analogs.  

As an overview, consider Figure 2, ignoring the phase 

diagram.  Start near the origin (not necessarily tangent), and 

then trace an arc over to the bottom of the left branch of the 

cubic.  Once there, follow the cubic up to the top of its knee.  

At the top (again, not necessarily tangent), trace another 

horizontal arc over to the other branch, and then follow the 

cubic back down to the origin.  The resulting rhomboidal path 

roughly simulates a full oscillation, or physiologically, one 

neuron successfully reaching an active state. 

 

 
Figure 2: Modified BVDP Phase Portrait, kappa = 0. 

 
Keeping 



  and 



 fixed at their value of 0.01, we now 

set 



  = 0.5 (Figure 3).  In essence, we are delivering a 

continuously oscillating current of electricity, the magnitude 

of which does not exceed 0.5.  We see now that a solution 

with the exact same starting conditions now sweeps all the 

way to the left side of the space before travelling up the left 

knee.  From FitzHugh (1961), we know that this solution 

simulates a neuron experiencing four different active states. 

 

 
Figure 3: Modified BVDP Phase Portrait, kappa = 0.5. 
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Another important aspect of this portrait worth noting is 

the existence of what appear to be four periodic limit cycles 

through which our solution travels.  Shown in Figure 4 is the 

bifurcation diagram for our bifurcating parameter, 



 .  We 

see that as the value of 



  changes from 0.1 to 1, solutions 

exist possessing 2, 3, and 4 distinct limit cycles (we see that it 

is consistent with the phase portrait for 



  = 0.5).  For 



  

between 0 and 0.1 however, it is unclear what is happening.  

It appears as though dozens of limit cycles may potentially 

exist.  Our system seems to be highly sensitive to the value of



 .  The question now becomes whether or not this parameter 

sensitivity means that chaos is actually present. 

 

 
Figure 4: Bifurcation Diagram for kappa. 

 

3.3 Lyapunov Exponents 

Arguably the most popular way to quantify the existence 

of chaos is by calculating a Lyapunov exponent.  An n-

dimensional system will have n Lyapunov exponents, each 

corresponding to the rate of exponential divergence (or 

convergence) of two nearby solutions in a particular direction 

of the n-space.  A positive value for a Lyapunov exponent 

indicates exponential divergence; thus, the presence of any 

one positive Lyapunov exponent means that the system is 

chaotic (Wolf, 1985). 

 

3.3.1 Lyapunov Spectrum Generation 

There have been numerous algorithms published 

outlining different ways for generating what are known as 

Lyapunov spectra.  As previously mentioned, an n-

dimensional system will have n Lyapunov exponents.  Each 

Lyapunov exponent is defined as the limit of the 

corresponding Lyapunov spectrum calculated using one of 

these aforementioned algorithms.  For our calculations, we 

consider the following method from Rangarajan that 

eliminates the need for reorthogonalization and rescaling 

(Rangarajan, 1998). 

 

 

 

Suppose we have a two dimensional system of nonlinear 

differential equations, like the one below: 

 



dx1

dt
 f1(x1,x2),

dx2
dt

 f2(x1,x2).









 

 

We may describe a Jacobian for this system in the same way 

as we did back in Section 2: 

 



J(x1,x2) :

f1
x1

f1
x2

f2
x1

f2
x2



















.  

 

Given our two dimensional system and its corresponding 

linearization, Rangarajan introduces three more differential 

equations to be coupled with the original system.  The state 

variables 



1  and 



2 are the Lyapunov exponents, and 



  is a 

third variable describing angular evolution of the solutions.  

The heart of the algorithm, equations for setting up the three 

new variables, is shown below (Rangarajan, 1998): 

 



d1
dt

 J11 cos
2() J22 s in

2()
1

2
(J12  J21)s in(2),

d2
dt

 J11 s in
2() J22 cos

2()
1

2
(J12  J21)s in(2),

d

dt
 
1

2
(J11  J22)s in(2) J12 s in

2() J21 cos
2().

 

Coupling these three equations with our original system, 

we get a five dimensional system of differential equations.  

We now simultaneously solve all of these as we would any 

other system of differential equations, and the output 

corresponding to the values of 



1  and 



2 over time is the 

Lyapunov spectrum we seek. 

 

3.3.2 The Lyapunov Spectra 

Running the algorithm for our modified BVDP model 

with 



  = 0.5 will produce the spectrum shown in Figure 5.  

Recall how we saw four stable limit cycles existing for the 

solution to this system.  Hence, we would not expect either of 

our Lyapunov exponents to be greater than zero.  Upon 

generating each of the Lyapunov spectra, we see that this is 

indeed the case.  Both of the Lyapunov exponents for this 

particular system seem to settle down right away at two 

negative values, a result which is consistent with our 

expectations.  In general, for roughly any system constructed 

with a 



  value between 0.1 and 1, we can predict, at the very 

least, that both of our Lyapunov exponents will be less than 

zero. 
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Figure 5: Lyapunov Spectrum for Modified BVDP, kappa = 

0.5. 

However, the same cannot be said for systems calling a 

value of 



  between 0 and 0.1.  Setting 



  = 0.01, we may 

generate the phase portrait seen in Figure 6.  Notice there are 

now numerous orbits, none of which are generating an active 

state, and none of which seem to have been traced more than 

once.  Said another way, this solution, upon first glance at 

least, appears to be aperiodic.  Aperiodicity is our first clue 

that chaos might be present in the model. 

 

 
Figure 6: Modified BVDP Phase Portrait, kappa = 0.01. 

 

Changing nothing except for the value of 



 , we may 

now generate the Lyapunov spectrum corresponding to this 

new system (Figures 7 and 8).  We see that one of these lines 

eventually makes its way underneath the horizontal axis, but 

the other hovers enticingly close to the axis.  At first glance, it 

is difficult to tell whether or not it ever actually reaches the 

horizontal axis and/or goes negative.  Figure 8 gives us a 

better look, as it zooms in on values between t = 80 and t 

=100; from this we see that the spectrum never actually 

crosses the axis between these values of t, but rather stays 

over it. 

In terms of chaos, it is difficult to judge what is 

happening.  While one of these lines ventures below the 

horizontal axis, the other is clearly oscillating strictly above 

the axis.  We would be remiss to immediately conclude that 

chaos is in fact present.  And we have two reasons for 

offering this conjecture: 

1. We aren’t sure how exactly the oscillations are being 

damped, and 

2. There appears to be a decreasing trend to these 

oscillations, suggesting they may eventually pass 

beneath the horizontal axis. 

 
 

Figure 7: Lyapunov Spectrum for Modified BVDP, kappa = 

0.01. 

 

 
 

Figure 8: Lyapunov Spectrum for Modified BVDP, kappa = 

0.01, 180 ≤ t ≤ 200. 

 

The first reason listed above presents issues for us since 

we need this output to approach some kind of limit.  If it 

continues to behave like it is currently, we cannot say 

definitively whether it will asymptotically reach a limit or not 

(recall how the limit of cos(t) is undefined as t approaches 

infinity).  Should it not asymptotically approach a limit, the 

only real conclusion we could offer is that we need to use a 

more robust algorithm.  The second reason is not so much a 

problem as it is an observation that this output could be 

asymptotically approaching a positive, negative, or zero 

valued limit.  For now, all we know is that one of our 

Lyapunov exponents appears to be negative, and the other is 

positive as far as our solver can tell us. 

 

4. Discussion 

 

“The healthy heart dances, while the dying organ can merely 

march (Browne, 1989).” 

- Dr. Ary Goldberger, Harvard Medical School 

 

The very nature of cardiac muscle stimulation fosters an 

environment for the propagation of chaos as we have 

previously described it.  This may at first seem slightly 

counterintuitive.  The word “chaos” itself connotes disorder.  

Certainly it would not immediately come to mind to describe 

a process as efficient as cardiac muscle contraction.  And yet, 

what we find physiologically with heart rhythms is that a 

“...perfectly regular heart rhythm is actually a sign of 

potentially serious pathologies (Cain, 2011).”  In particular, 
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many periodic processes manifest themselves as arrythmia, 

such as ventricular fibrillation or asystole (the absence of any 

heartbeat whatsoever) (Chen, 2000).  Neither of these 

particular heart rhythms is conducive for sustaining life: 

automated external defibrillators (AEDs) were developed to 

counteract the presence of ventricular fibrillation in a patient; 

and asystole is the exact opposite of what is conducive for 

keeping a human alive. 

At this point, it would appear as if chaos, at least in 

humans, is required for survival.  Indeed, Harvard researcher 

Dr. Ary Goldberger was so moved by this idea that he made 

the above comment before a conference of his peers back in 

1989.  As the next few years unfold, it will be interesting to 

see what role, if any, chaos plays in assisting engineers with 

the development of new equipment to alter life-threatening 

cardiac arrhythmia in patients.  The past twenty years 

especially have seen a tremendous increase in the demand for 

AEDs in public fora.  Unfortunately, through an interview 

with a medical engineer at an AED manufacturer, we learned 

commercially available AEDs only treat ventricular 

fibrillation and ventricular tachycardia. 

AEDs operate by applying a burst of electricity along the 

natural circuitry in the heart.  This electrical stimulus causes a 

massive depolarization event to take place, triggering 

simultaneous contraction of a vast majority of cardiac cells.  

The hope is that this sufficiently resets the heart enough for 

the pacemaker to regain control.  In terms of a forcing 

function, this is almost similar to stimulation via a Dirac 



 -

function.  Hence, we find the underlying motivation for our 

exploration into alternative forcing functions. 

If we consider our modified BVDP model to be a 

sufficient analog to cardiac action potential generation, then 

the solution in Figure 2 roughly represents a heart 

experiencing ventricular fibrillation.  Application of our 

forcing function 



s(t)cos(t)  for amplitudes between 

0.1 and 1 seems to positively impact this model by inducing 

active states.  However, it is unknown whether or not this is a 

realistic or even adequate portrayal of positively intervening 

on an arrhythmic event. 

In light of the quote from Dr. Goldberger, is it possible 

that we should be discounting periodic solutions?  If a healthy 

heart rhythm is in fact chaotic, would this necessitate the 

generation of a chaotic solution?  Thus far, the closest we 

have come to the aforementioned chaotic solution is one that 

indiscriminately oscillates along subthreshold or 

superthreshold orbits (see Figure 6), most of which do not 

even come close to simulating an active event in the cell.  In 

essence, this would imply that the heart is “skipping a beat” 

each time it fails to generate an action potential.  This is no 

closer to offering a viable heart rhythm, and is actually further 

off the mark, than our periodic solutions.  Unfortunately, our 

search continues for an induced current that can generate both 

chaos and muscle contraction. 

Another issue needing to be considered is the fact that 

we cannot, in our modified BVDP model with smooth 

periodic forcing, remove the forcing lest the neuron quit 

generating action potentials.  Shown below in Figure 10 is the 

phase portrait for the modified BVDP model with a damped 

periodic forcing function, 



s(t)  1
t1
 cos( t) . We see 

maybe one action potential generated, and then the rest are all 

subthreshold excitations. 

 

 
Figure 9: Modified BVDP Phase Portrait, Damped Forcing 

(kappa = 0.5). 

 

At first glance, it would appear as though we would have 

to continuously induce our current.  This imposes an entirely 

impractical, even dangerous, requirement on emergency 

service providers in the field.  However, if our forcing 

function behaves at all like an AED, this result is not 

surprising.  Once you strip away the forcing function, or in 

our case, once you evaluate solutions after t has grown 

sufficiently large, the underlying model describes a v-fib-like-

event taking place.  It would then only make sense that action 

potentials are no longer generated. 

The question now is whether or not our forcing function 

could effectively take the place of a strong induced electrical 

spike, similar to that delivered by an AED.  And if the answer 

is no, are there scenarios in which continuous application of 

our periodic current would be practical?  Certainly no such 

scenario is imaginable for AEDs in an out-of-hospital 

environment, however the possibility remains that it could be 

useful within a highly controlled setting, such as inside of an 

operating room during surgery or built into an implantable 

pacemaker.  Ultimately, this a question best left to the 

engineers and surgeons. 

The reason why this is all so important is because sudden 

cardiac arrest (SCA) causes the deaths of more than 250,000 

Americans each year (Heart Rhythm Foundation, 2012).  

Contrary to popular belief, SCA is first and foremost an 

electrical problem, triggered by faulty heart rhythms.  It 

should not be confused with a heart attack, which is actually a 

blockage in one of the major blood vessels of the circulatory 

system.  Certainly a heart attack could eventually become 

cardiac arrest if left untreated, but qualitatively they are 

entirely different events. 

Whereas heart blockages and similar “plumbing 

problems” can be remedied by angioplasty or bypass surgery, 

SCA requires immediate intervention.  Typically the window 

for successful interruption of a cardiac arrest episode will 

close within approximately eight to ten minutes of onset.  

Even with the proper training, like a CPR or First Aid course 

that incorporates the use of an AED, SCA results in death for 

most out-of-hospital patients. This is certainly not for lack of 

trying; there are just two big problems victims currently face: 

CPR is an inefficient substitute for the natural blood delivery 

of the heart, and AEDs are only effective against two 
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arrhythmia, v-fib and v-tach. Ideally, technology will be made 

widely available so that any arrhythmia could be treated in an 

out-of-hospital environment by the layperson. 

 

5. Conclusion 
  

The Hodgkin-Huxley system represents a landmark 

achievement in the field of biomathematics, however it is 

difficult to analyze and largely inaccessible due to the fact 

that it is a four-dimensional system of equations.  Richard 

FitzHugh and Jin-Ichi Nagumo successfully captured the 

important qualities of the H-H equations, in a system with 

only two dimensions.  Using a modified version of the FH-N 

equation from Kostova (2004) (Eq. 1), we were able to 

determine regions in the parameter space where equilibria 

would be stable or unstable, and, in one particular case, where 

we could create a Hopf bifurcation. 

This set up our own exploration of a modified version of 

FH-N from Braaksma (1993), which we manipulated by 

introducing a smooth periodic forcing term (



 cos( t) ).  
Using charts from FitzHugh’s 1961 paper as a basis for 

comparison, we saw that we could replicate phase portraits 

consistent with various instances of neuronal firing.  In the 

realm of electrocardiography, our phase portraits were 

consistent with a successful contraction of the heart when    



  = 0.5. 

However, recent results indicate that healthy heartbeats 

will be mathematically chaotic.  Quantification of our results 

via a bifurcation diagram of our bifurcating parameter, 



 , 

showed us a region where we could have a chaotic system.  

And in fact, as far as our algorithm from Rangarajan (1998) 

can tell us, we were able to create chaotic system when        



  = 0.01. Unfortunately, that chaotic system generated 

solutions consistent with an irregular heart rhythm. 

If we assume that we can use the FH-N equation (or any 

slightly modified versions) to capture neuronal firing, then it 

is worth noting that “healthy” solutions to the system do not 

agree with recent results pointing towards the presence of 

chaos in healthy neurons.  It will be interesting to see if in fact 

a chaotic solution can be generated to this or any similar 

system that also solves the problem of successfully firing. 
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