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ABSTRACT 

A constant-fraction discriminator (CFD) is a time pick-off circuit providing time 

derivation that is insensitive to input-signal amplitude and, in some cases, input-signal rise 

time. CFD time pick-off circuits are useful in Positron Emission Tomography (PET) systems 

where Bismuth Germanate (BGO)/photomultiplier scintillation detectors detect coincident, 

511-ke V annihilation gamma rays. 

Time walk and noise-induced timing jitter in time pick-off circuits are discussed along 

with optimal and sub-optimal timing filters designed to minimize timing jitter. Additionally, 

the effects of scintillation-detector statistics on timing performance are discussed, and 

Monte Carlo analysis is developed to provide estimated timing and energy spectra for 

selected detector and time pick-off circuit configurations. The traditional delay-line CFD is 

then described with a discussion of deterministic (non statistical) performance and 

statistical Monte Carlo timing performance. A new class of non-delay-line CFD circuits 

utilizing lowpass- and/or allpass-filter delay-line approximations is then presented. The 

timing performance of these non-delay-line CFD circuits is shown to be comparable to 

traditional delay-line CFD circuits. 

Following the development and analysis of non-delay-line CFD circuits, a fully

monolithic, non-delay-line CFD circuit is presented which was fabricated in a standard 

digital, 2-µ, double-meta], double-poly, n-well CMOS process. The CMOS circuits developed 

include a low time walk comparator having a time walk of approximately 175 ps for input 

signals with amplitudes between 10-mV to 2000-mV and a rise time (10 - 90%) of 10 ns. 

Additionally, a fifth-order, continuous-time filter having a bandwidth of over 100 MHz was 

developed to provide CFD signal shaping without a delay line. The measured timing 

resolution (3.26 ns FWITh1, 6.50 ns FWTM) of the fully-monolithic, CMOS CFD is 

comparable to measured resolution (3.30 ns FWHM, 6.40 ns FWTM) of a commercial, 

discrete, bipolar CFD containing an external delay line. Each CFD was tested with a PET 

EGO/photomultiplier scintillation detector and a preamplifier having a 10-ns (10 - 90%) rise

time. The development of a fully-monolithic, CMOS CFD circuit, believed to be the first 

such reported development, is significant for PET and other systems that employ many 

front-end CFD time pick-off circuits. 
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PREFACE 

The enormous complexity of PET-tomograph front-end electronics prompted the 

research and development staff of CTI PET Systems, Inc. to find a way to integrate this 

electronics into semicustom or custom integrated circuits. Such integration was vital to 

significantly reduce the cost, size, power consumption, and complexity of the front-end 

electronics, which is one of the requirements for making PET a widely-available, clinical, 

medical-imaging modality. 

The idea to integrate PET front-end electronics into CMOS circuits originated while I 

was attending a course in analog CMOS design taught by Jim Rochelle at the University of 

Tennessee in Knoxville. We had been investigating the use of bipolar integration at CTI 

PET Systems, Inc., but the cost and power required using this technology would not permit 

us to reach the aforementioned objectives of significantly reducing the cost, size, power 

consumption, and complexity of PET front-end electronics. 

As a result of the analog CMOS course, we began researching the feasibility at CTI PET 

Systems, Inc. of fabricating monolithic, high-speed (50 - 200 l\1Hz bandwidth), analog CMOS 

circuits. Such circuits had previously seemed unfeasible given the low-speed (1 l\1Hz 

bandwidth) of commercial CMOS analog integrated-circuit and standard-cell offerings. 

Following this feasibility research, CTI PET Systems, Inc., initiated the research and 

development of custom, high-speed, analog and digital CMOS circuits to replace the existing 

PET front-end circuitry consisting of high-speed bipolar operational amplifiers, CMOS 

digital-to-analog converters, and other circuits. A $500,000 Small Business Innovative 

Research grant (grant number 2 R44 CA49405-02Al) was then successfully obtained from 

the National Cancer Institute to help fund the research and development. The fully

monolithic, CMOS constant-fraction discriminator described in this work is one part of the 

CMOS, integrated-circuit, front-end electronic development project. 
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1. INTRODUCTION 

Time-Measurement Systems 

Operation 

The measurement of time between physical events is of great importance in many 

experimental and applied systems. Such time measurements can be obtained using a time

spectroscopy system where the time differences between pairs of events are histogrammed. 

A block diagram of a time-of-flight time-spectroscopy system is shown in Figure 1-11 . The 

time-spectroscopy system shown consists of two detectors, each detecting a physical 

occurrence (light, nuclear radiation, etc.) from an event located somewhere between the 

detectors. Each detector is connected to a time pick-off device that provides a timing signal 

related in time to a detected event. Finally, a time-interval measuring system provides the 

measurement of time differences between the detector timing signals, one detector timing 

signal being designated as a start signal and the other timing signal designated as a stop 

signal. Typical time-interval measuring systems include time-to-amplitude converters 

(TACs) and time-to-digital converters (TDCs). Time-interval measurements from a time

spectroscopy system can be histogrammed using a multi-channel analyzer (MCA) or other 

histogramming device to provide a timing-coincidence spectrum like the one shown in 

Figure 1-2. 

In an ideal time-of-flight time-spectroscopy system, all time-interval measurements are 

the same for physical events having a fixed location between the two detectors. Such a 

time-spectroscopy system precisely locates the events spatially using the difference in 

propagation time between detected events at the two detectors. In actual time-spectroscopy 

systems, time-measurement uncertainty results from detector statistical and electronic 

noise, time pick-off circuit errors and noise, and time-interval measurement system errors 

and noise. Actual time-spectroscopy system timing resolution (in seconds) is specified using 

the quality factors full-width-half-maximum (FWHl\1) and full-width-tenth-maximum 

(FWTM) as shown in the timing-coincidence spectrum of Figure 1-2. 

The Constant-Fraction Discriminator As a Time Pick-Off Circuit 

The ideal time pick-off circuit develops a timing signal having a fixed time delay from 

the detector signal. Such a circuit introduces only a fixed timing error and does not degrade 

1 Due to the large number of figures in this work, figures are placed in an appendix at the 
end of each numbered section to avoid interruption of text. 
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system timing resolution. Actual time pick-off circuits exhibit time walk (varying time 

delay) caused by variations in detector output amplitude and rise-time. This time walk 

degrades system timing resolution. Detector output amplitude variations are caused by 

varying event energy and detector energy absorption. Detector output rise-time variations 

are caused, particularly in semiconductor detectors, by energy absorption at varying 

locations in the detector. 

The time walk of a simple level discriminator (also known as a leading-edge 

discriminator) for varying amplitude and rise-time input signals is shown in Figure 1-3. As 

shown in the figure, the simple level discriminator develops a timing signal whenever the 

input signal crosses the fixed threshold VT and can exhibit time walk equal to a significant 

portion of the input signal rise-time. The walk performance of the simple level 

discriminator is acceptable for time-measurement system applications only if input signal 

rise-times are considerably shorter than the desired timing resolution, or if input signal 

amplitude and rise-time variations are small. 

The constant-fraction discriminator (CFD) is a time pick-off circuit that develops a 

timing signal that is largely insensitive to input-signal amplitude and rise-time. This circuit 

was first reported by Gedcke and McDonald [1, 2] in 1967 and 1968, and is in wide use 

today. As seen in the CFD block diagram of Figure 1-4, attenuated and delayed versions of 

the input signal are compared using a comparator to develop a timing signal when these two 

signals are equal. This timing signal, assuming there are no comparator time-walk errors, 

is insensitive to input signal amplitude and rise-time for linear-edge input signals as shown 

in Figure 1-5. The CFD can also be considered a shaping circuit where the attenuated 

version of the input signal is subtracted from the time-delayed version to produce a bipolar 

signal with a zero-crossing time that is insensitive to input amplitude and rise-time. This is 

also shown in Figure 1-5. 

As shown in Figure 1-5, the CFD may be operated in two modes: the true constant

fraction mode and the amplitude-rise-time compensated (ARC) mode [3]. In the true 

constant-fraction mode, the timing point occurs after the input signal reaches its peak value 

(flat-top pulses are assumed) when the delayed signal is equal to a fixed (constant) fraction 

of the input signal peak value. In the true constant-fraction mode, CFD timing is 

insensitive to input amplitude, but is not insensitive to input rise-time. In the amplitude

rise-time compensated mode, the timing point occurs before the minimum rise-time input 

signal reaches its peak value. In this mode, CFD timing is insensitive to both input 
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amplitude and rise-time provided input rise-time is greater than the minimum rise-time 

selected for operation. 

The selection of true-constant fraction operation or amplitude-rise-time compensated 

operation is determined from the minimum input signal rise-time (tr (min}, the signal delay 

(td) chosen, and the signal fraction (f) chosen as described in the equations in Figure 1-5. 

Typically, a fraction close to 20% is used with the delay chosen to select either true 

constant-fraction or amplitude-rise-time compensated operation. A5 seen for signals 1 and 2 

in Figure 1-5, signal slope through the timing point is higher for the true constant-fraction 

mode compared to the amplitude-rise-time compensated mode. A5 a result, there is a noise 

advantage (less timing jitter) in using the true constant-fraction mode. However, as 

mentioned, the true constant-fraction mode does not provide rise-time insensitive timing. 

The arming comparator shown in the CFD block diagram of Figure 1-4 is used to inhibit 

the CFD timing output unless the input signal is above a preset threshold level. This is 

required as the CFD will normally trigger continuously on input noise when no input signal 

is present. 

Applications of Time-Measurement Systems 

Experimental Physics and Industrial Applications 

Time-measurement systems are widely used in nuclear structure and particle physics 

experiments. Applications include measuring the lifetimes of excited nuclear states, time 

measurements for particle identification, and time-of-flight measurements for heavy-ion 

mass spectrometry [4]. Additional applications include locating x-ray scattering and 

diffraction using position-sensitive detectors in conjunction with time-spectroscopy 

measurements [5]. 

Time-measurement applications are not limited to the measurement of nuclear or x-ray 

radiation as there are many applications in radio and laser ranging. In a ranging 

application, the time intervals between transmitted and reflected radio or light pulses are 

measured to determine physical distance. Industrial laser ranging applications include the 

measurement of levels in silos, automatic control of robots and manipulators, and dimension 

measurement in mechanical and construction industries [6]. 

Laser ranging measurements are used to measure the difference in earth movement on 

both sides of the San Andreas fault in California for possible earthquake prediction [7, 8]. 

In a ground-based system, laser ranging is done using reflections from the Laser Geodetic 

Satellite [7]. In this system, a time digitizer with 9. 76-ps channels is used for time 
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measurements. CFDs are used to provide accurate time pick-off signals from the laser light

detector signals which vary greatly in intensity due to atmospheric conditions. Another 

similar system, planned for space-borne operation in the Space Shuttle, will operate by 

reflected laser light from small reflective cubes located on both sides of the San Andreas 

fault [8]. The measurement accuracy of this space-borne system is expected to be ±2 cm. 

Positron Emission Tomography Applications 

The CFD development described in this work is for use in commercial positron emission 

tomography (PET) medical imaging systems. These systems are designed and 

manufactured (under the name Siemens) by CTI PET Systems, Inc. in Knoxville, Tennessee. 

In these systems, time measurement is required to detect the time coincidence of twin, 

511-keV, 180°-opposing gamma rays that result from the annihilation of a positron with a 

neighboring electron. 

In a PET system, many gamma-ray detectors are arranged adjacent to each other in a 

ring that encircles the patient. Additionally, other parallel rings of detectors are used to 

provide for axial coverage of the patient. Through the use of time-coincidence circuitry, the 

time-coincident, opposing gamma rays from a positron annihilation are detected and 

histogrammed for all possible opposing detector pairs. the lines through these detector pairs 

being known as lines of response. The histogrammed array of coincident events for all lines 

of response is known as a sinogram and is converted to an image following certain correction 

and filtering operations. A block diagram of a commercial PET system is shown in Figure 

1-6. 

In the conventional PET system just described, time-coincidence measurements are used 

to locate positron annihilations on various lines of responses without regard for where on 

the lines the annihilations occurred. In time-of-flight (TOF) PET systems, additional time 

resolution is used to locate a positron annihilation along a line of response through the 

difference in gamma-ray arrival time at the detectors. TOF PET systems are not in wide 

use today because commercially available fast scintillation detectors have poor energy and 

poor spatial resolution compared to the Bismuth Germanate (BGO) scintillators used in 

conventional PET systems. There is, however, great interest in the PET community in the 

development of a scintillator with sufficient time resolution for time-of-flight operation while 

maintaining the energy and spatial resolution of BGO scintillators. Time-of-flight 

information offers improvements in PET imaging by reducing the image noise caused by 

random coincidences (coincidences from separate positron annihilations) and by improving 

spatial information. One recently developed research TOF PET system with Barium 
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Fluoride (BaF 2) scintillation detectors has time-measurement channels of 62.5 ps and a 

timing resolution (dominated by the detectors) of slightly over 600-ps FWHM [9]. 

Medical images are obtained in PET systems by labeling biochemical compounds with 

positron-emitting isotopes so that the resulting biochemical tracers may be imaged in the 

human body. These biochemical tracers allow the imaging of metabolism, blood-flow, 

oxygen, cancer, brain function, and other biological functions. The imaging of biochemical 

function through these tracers significantly differentiates PET imaging from other medical 

imaging systems, such as Computerized-Axial Tomography (CAT) and Magnetic-Resonance 

Imaging (MRI), which image tissue structure and have limited biochemical function imaging 

capability. 

PET metabolic imaging permits the diagnosis and location of severe brain epilepsy for 

surgical removal where the affected area of the brain cannot be seen using structural 

imaging or even using surgical examination. Similarly, PET metabolic and blood-flow 

imaging permits study of the heart muscle to determine if tissue is viable (alive) or necrotic 

(dead). If an affected area of the heart muscle is necrotic, heart bypass surgery to resupply 

blood to this area would not benefit the patient, whereas the patient would likely benefit 

from bypass surgery if the affected area is still viable. In addition to the clinical PET 

applications described, there are other clinical applications and many research applications 

in use worldwide. Brain research applications include study of mental illness, dementia, 

and pharmacological drug effects. Other research applications include the diagnosis and 

treatment evaluation of cancer tumors. Although much of the PET medical application 

literature is targeted for physicians and medical researchers, the overview paper by Wagner 

is recommended for the nonmedical reader desiring further PET application information 

[10]. Additionally, the paper by Phelps et al. [11] on PET brain imaging and the paper by 

Chollar et al. [12] on PET heart imaging are recommended for PET application information. 

Presently, there are over 122 PET systems installed or under construction worldwide 

[13]. This number is projected to exceed 650 by the year 1995, illustrating the rapid growth 

of PET medical imaging [13]. 

Significance of Integrating a CFD into CMOS Technology for PET Systems 

PET System Detector and Front-End Electronics Requirements 

The commercial Siemens ECAT EXACT-HR PET system, manufactured by CTI PET 

Systems, Inc., consists of 784 BGO detector crystal elements in a single ring with a diameter 

of 82.3 cm [14]. Twenty-four of these rings are used to provide 15 cm of axial patient 
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coverage giving a total of 18,816 individual BGO detector crystal elements. These detector 

crystal elements are arranged in three rings consisting of 112 block detectors each. Each 

block detector consists of a 7 x 8 array (7 elements in the transaxial direction, 8 elements in 

the axial direction) of crystal elements attached to four photomultiplier tubes (PMTs) 

providing scintillation light detection. Each block detector is then connected to a front-end 

analog signal-processing circuit that amplifies the PMT output signals, decodes the PMT 

output signals into transaxial and axial position information, sums the PMT output signals 

for energy information, and develops a constant-fraction timing signal from the summed 

PMT output signals. The front-end analog signal processing circuit also contains flash 

analog-to-digital converters (ADCs) giving transaxial position, axial position, and energy 

information. The digital data from these flash ADCs is passed to a front-end digital-signal 

processing circuit that assigns each detected gamma ray to a specific crystal element and 

determines if the event energy is within an acceptable energy window. The front-end 

digital-signal processing circuit also provides time-to-digital conversion using the constant

fraction developed timing signal as a start signal and a system clock as the stop signal. A 

block diagram of a single block-detector channel complete with the front-end analog and 

digital circuitry is shown in Figure 1-7. 

Since 336 front-end analog and digital circuits are required to process signals from the 

336 block detectors in the Siemens ECAT EXACT-HR PET imaging system, the large 

quantity of repeated circuits justified a development program to develop both analog and 

digital custom CMOS integrated circuits for these circuits. The development of these 

custom CMOS circuits includes the development of a CFD as a part of the analog circuit 

development. 

Advantages of Integrating PET Front-End Circuits into Custom CMOS Circuits 

Listed below are the actual numbers of discrete components (includes commercial 

integrated circuits) and solder connections present in the 336 front-end analog circuits of 

the commercial Siemens ECAT EXACT-HR PET system [14]. 

Front-End Analog Component and Solder Connection Count for the Siemens 
ECAT EXACT-Im PET System 

• 84,000 discrete components (250 x 336) 

• 301,728 solder connections (898 x 336) 

The compelling reasons for developing PET front-end analog circuits into custom CMOS 

integrated circuits include lower manufacturing costs, improved system reliability, smaller 
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physical space requirements, lower power supply requirements, lower risks of component 

availability problems, and the potential of later mixed analog and digital circuit integration. 

In order for PET imaging systems to be available outside large research hospitals, it is 

necessary for system costs to be nearly halved from the present cost of over two-million

dollars per system. Lower manufacturing costs in PET electronics are required to meet 

overall cost objectives, and cost savings of at least a factor of four are projected using CMOS 

implementations. The factors affecting manufacturing cost reductions are listed below. 

Factors Lowering Electronic Manufacturing Costs Using CMOS Integration 
(Expected Factor-of-Ten Component and Solder Count Reduction) 

• Lower parts costs using custom integrated circuits compared to discrete components 

• Fewer parts to order, inventory, and sort 

• Fewer parts vendors to track for component availability 

• Fewer parts to preform, insert, and solder 

• Fewer parts to insert or solder incorrectly for later repair 

• Smaller printed-circuit board size required 

• Less circuit inspection for proper component and solder assembly required 

• Less final circuit testing time and troubleshooting time required 

In addition to significant reductions in PET system costs, improved reliability is 

required in PET systems for widespread clinical acceptance. Clinical users are less tolerant 

of PET system reliability problems compared to research users as the clinical users schedule 

larger number of patients for imaging and are usually less familiar with the technical 

operation of a PET system. Factors outlining the projected reliability improvements and 

significance of these improvements by using CMOS integration of PET front-end circuits are 

listed below. 

Reliability 
Integration 
Reduction) 

Improvement and Resulting Significance Using 
(Expected Factor-of-Ten Solder and Component 

CMOS 
Count 

• Discrete implementation of 300,000 solder connections with solder failure rate of 
10 ppm (parts-per-million) per year would result in 3 average system failures per 
year 

• CMOS implementation of 30,000 solder connections with solder failure rate of 
10 ppm per year would result in one average system failure per 3.3 years 

• Reliability is paramount as patients may be scheduled for surgery pending results of 
PET imaging 
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• Reliability is paramount as extensive patient rescheduling is required to compensate 
for system downtime 

• Reliability is paramount as many hospitals are now requiring PET system suppliers 
to pay penalties for system downtime 

In addition to the cost and reliability advantages described for integrating PET front

end functions into CMOS processes, the advantages listed below are also significant. 

Other Advantages Using CMOS Integration 

• Much smaller physical circuit space required (at least a factor-of-four) 

• Lower power requirements and heat dissipation (at least a factor-of-four) 

• Critical high-speed sole-source analog integrated circuits are eliminated with sole
source issues addressed by identifying alternate CMOS foundries for CMOS 
fabrication 

It would be possible to integrate the PET front-end analog electronics into a high-speed 

bipolar process and this was investigated initially. It is, however, more advantageous to 

integrate the PET front-end electronics in a CMOS process versus a bipolar process for the 

reasons listed below. 

Advantages of CMOS Integration Compared to Bipolar Integration 

• Analog switches, digital-to-analog and analog-to-digital conversion, and most digital 
functions can be integrated more effectively in CMOS processes [15] 

• Front-end analog CMOS circuits can be integrated on a large, predominantly digital 
CMOS VLSI circuit 

• CMOS processes are much more widely used, permitting potential multiple sources 

• CMOS production die costs are approximately a factor-of-two lower because of larger 
wafers, higher yields, and higher overall circuit volume 

• CMOS mask charges a.re lower since typically 13 masks are required compared to 
typically 20 masks (for bipolar) 

• CMOS prototyping charges are significantly lower through the use of the MOSIS 
prototype service where prototype CMOS integrated circuits are available for 
$510.00 [16] 

Scope of Dissertation 
The role of time measurement in PET systems and the significance of integrating PET 

timing systems using CMOS integrated-circuit technology has been established. The scope 

of this dissertation then, is the development of a fully-monolithic CMOS CFD as a part of a 

complete PET timing system. This timing system is itself part of a complete PET monolithic 

CMOS (gamma-ray) timing, energy, and position processing circuit. 

8 



In order to develop the fully-monolithic CMOS CFD, three separate objectives must be 

met. The first objective is the development of analysis which permits the prediction of CFD 

energy-discrimination and timing performance for a selected CFD circuit topology and 

scintillation-detector system. Such analysis is necessary to predict system performance 

prior to integrated-circuit fabrication. The second objective is the development of non-delay

line CFD timing-shaping networks having performance comparable to existing delay-line 

networks. Non-delay-line networks are required to permit a fully monolithic CFD 

implementation. The third and final objective is the development of high-speed CMOS 

circuits necessary for implementation of the fully-monolithic CMOS CFD circuit. These 

circuits include a wideband continuous-time filter to implement the non-delay-line timing

shaping network and a low time-walk comparator to derive the CFD timing signal. 

Although the immediate application of the monolithic CMOS CFD presented here is for 

use with PET BGO/photomultiplier detectors with timing resolutions of approximately 3-ns 

FWHM, the CFD was designed to permit transition into time-of-flight PET applications \\-ith 

detector timing resolutions of approximately 400-ps FWHl\tl. Subnanosecond timing

resolution performance is available for future applications because of the development of 

high-performance CMOS timing-shaping circuits and timing comparators. The fully

monolithic CMOS CFD presented here contains no external delay lines or other components, 

except for the components required to develop the arming-threshold voltage which \\-ill be 

integrated later using an on-chip digital-to-analog converter (DAC). 

New Contributions Presented in Dissertation 
Although a fully-monolithic bipolar integrated-circuit CFD was reported by Tanaka et 

al. [17] during the course of this work, no fully-monolithic CMOS integrated-circuit CFD is 

believed to have been reported. The feasibility of implementing CFD CMOS timing circuits 

has been reported by Binkley et al. for a monolithic CMOS CFD requiring an external delay 

line [18]. The fully-monolithic bipolar CFD reported by Tanaka et al. [17] uses the non

delay-line CFD circuits developed by Nowlin [19, 20] which are not used in the monolithic 

CMOS CFD presented here. Instead, considerably different CFD circuits were developed 

which have been designated as Binkley CFD circuits to differentiate them from the Nowlin 

and traditional delay-line CFD circuits. The Binkley CFD circuits offer performance and 

implementation advantages compared to the Nowlin circuit. The performance advantages 

include increased shaping-signal underdrive and zero-crossing slope, and reduced shaping

signal timing jitter through the use of second- or higher-order Binkley CFD circuits. 

Additionally, the Binkley CFD circuits do not require the floating capacitor required in the 
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Nowlin CFD circuits for circuit differentiation. As a result, the Binkley CFD circuits are 

more easily implemented in monolithic integrated circuits. A patent is currently pending 

for the Binkley CFD circuits [21]. 

In order to predict the energy-discrimination and timing performance of the monolithic 

CMOS CFD, Monte Carlo analysis was developed to generate a predicted CFD energy and 

timing spectrum resulting from scintillation-detector statistical noise. Although Monte 

Carlo analysis has been reported for determining the arrival times of scintillation-detector 

photoelectrons [22, 23, 24, 25], it is not believed that the energy-discrimination and timing 

performance of time pick-off circuits has been included in this analysis. Monte Carlo 

analysis is useful for selecting CFD circuit configurations that will give desired performance 

for a given scintillation detector. A paper describing Monte Carlo simulation of CFD 

performance has been presented at the 1992 IEEE Nuclear Science Symposium [26]. 

Two circuits included in the monolithic CMOS CFD are described in detail in this work, 

both of which are believed to be new contributions. The first circuit is a wideband (-3-dB 

bandwidth of over 100 MHz) 2-µ CMOS continuous-time filter for implementation of a 

Binkley CFD timing-shaping circuit. This current-mode fifth-order filter circuit, although 

fully differential, does not require common-mode feedback and requires only 60 MOSFET 

devices, 18 of which are only required for testing with voltage signals. The second circuit 

described is a low time walk CMOS voltage comparator having SPICE-simulated walk 

performance of 1 75 ps for input-signal amplitudes ranging from 10 - 2000 m V and input

signal rise-times of approximately 10 ns. A comparison, given in this work, of SPICE

simulated and measured comparator walk performance for a similar comparator design 

indicates that actual walk performance may be comparable or lower than SPICE-simulated 

walk. The walk performance for the CMOS CFD voltage comparator is comparable to that 

reported for high-speed ECL bipolar comparators [27, 28]. Comparisons of comparator 

topologies and device selections (MOSFET sizes) for a selected topology are given with 

regard to minimizing comparator walk performance. This is believed to be the first reported 

discussion of comparator design for low time walk. 

Organization of Dissertation 
In this work, the material in Section 2 provides the analysis methods necessary for 

evaluating system timing errors due to walk and circuit noise-induced timing jitter in time 

pick-off circuits. The material in Section 3 provides the analysis methods necessary for 

evaluating system timing errors due to scintillation-detector statistical noise. Together, the 

material in Sections 2 and 3 provides the background necessary for evaluating the 
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performance of existing CFD circuits as well as the performance of the newly developed 

Binkley CFD circuits. The evaluation of existing CFD circuits, as well as the development 

and evaluation of the Binkley CFD circuits, is then covered in Section 4. Issues 

surrounding the practical implementation of CFD circuits are discussed in Section 5, 

including the development and evaluation of a fully-monolithic CMOS CFD. Finally, 

concluding remarks and suggestions for future research are contained in Section 6. 

Each section begins with an overview discussion introducing the topics covered in the 

section and the relationship of these topics to the development and implementation of non

delay-line CFD circuits. 
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2. TIMING PERFORMANCE OF TIME PICK-OFF CIRCUITS 

Overview 

In this section, the performance of time pick-off circuits is considered excluding the 

effects of detector statistical noise. Degradation of system timing resolution caused by time 

walk in time pick-off circuits is described and examples are given for the walk introduced by 

leading-edge and CFD time pick-off circuits. In addition, time walk introduced by practical 

comparators for input signals of varying slope and overdrive is described using the 

comparator charge-sensitivity model. Minimizing comparator time walk is a major design 

objective for the timing comparator in the monolithic CMOS CFD described later in Section 

5. 

Timing jitter in time pick-off circuits, caused by electronic noise, is also considered in 

this section. The concept of optimal or matched filters for minimum timing jitter is 

presented along with several examples of nonrealizable optimal timing filters. The optimal 

filter analysis is used to give insight into physically realizable, suboptimal timing filters. 

One example is given for scintillation-detector systems where both the input signal and 

white circuit noise are bandwidth limited by front-end amplification circuitry. For this case, 

it is shown that it is desirable to maximize signal bandwidth since signal slope increases 

directly with bandwidth while total noise increases as the square-root of bandwidth. In 

another example, an optimal timing filter is presented for a linear-edge input signal in the 

presence of white noise. The performance of this optimal filter is compared with the 

performance of a single-pole lowpass filter having various time constants. Here, the 

advantage of limiting system bandwidth, assuming white circuit noise, to that bandwidth 

just required to preserve the input signal slope is discussed as a way of minimizing timing 

jitter. 

Circuit noise-induced timing jitter is not a significant contributor of system timing 

errors for the initial monolithic CMOS CFD application with PET EGO/photomultiplier 

scintillation detectors. However, circuit noise is the dominant contributor of timing errors 

for BGO/avalanche-photodiode scintillation detectors because of photodiode noise. The 

discussions of circuit-noise timing-jitter effects are included for completeness and to permit 

the design of timing systems where circuit noise-induced timing jitter is a significant 

contributor of timing erTor. This section concludes with a brief discussion of time-variant 

timing filters as well as a discussion of temperature- and time-related time drift in time 

pick-off circuits. 
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Time Walk 

Leading-Edge Discriminator Time Walk 

The leading-edge discriminator, described in Section 1, develops a timing signal 

whenever its input signal crosses a fixed threshold. As was shown in Figure 1-3 (page 15), 

time walk from a leading-edge discriminator can equal a significant portion of the input

signal rise-time. The propagation delay of an ideal leading-edge discriminator, one in which 

the comparator propagation delay is zero, can be determined graphically from Figure 1-3. 

The propagation delay is given by 

Vr tr 
tprop =~ 

inpk 

(2-1) 

where VT is the threshold (referenced to the initial signal level), tr is the input-signal 

(linear-edge) rise-time, and Vinpk is the input-signal amplitude. Equation 2-1 is valid only 

for input-signal amplitudes above the threshold (Vinpk > V r), and the discriminator 

propagation delay is always less than the input-signal rise-time (tprop < tr). The leading

edge discriminator is not triggered, of course, for signals below the threshold. 

In Figure 2-1, ideal leading-edge discriminator propagation delay (Equation 2-1) is 

plotted for a 0.5-V threshold for signals of varying amplitude with fixed 10-ns rise-times. 

The propagation delay its almost 10 ns for signals slightly over the 0.5-V threshold and is 

2.5 ns for 2-V signals. The corresponding time walk is nearly -7.5 ns for a 0.5-V to 2-V input 

range with the propagation delay decreasing monotonically with increasing signal level (the 

propagation delay is inversely proportional to signal level). 

The effect of leading-edge discriminator time walk on system timing performance is 

found by evaluating the leading-edge discriminator timing spectrum (the output timing 

probability density) for a given input-voltage spectrum. The input spectrum, representing 

varying input signal levels, is transformed to a timing spectrum representing varying 

propagation delays. This may be evaluated mathematically using a transformation of 

random variables where the input random variable corresponds to the input-voltage 

spectrum, the transformation function corresponds to the leading-edge discriminator 

propagation-delay function, and the output random variable corresponds to the resultant 

leading-edge discriminator timing spectrum. 
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The monotonic transformation of a random variable is described by 

(2-2) 

where p/t) is the probability density of the output random variable t, pJv) is the probability 

density of the input random variable v, t = T(v) is the transformation function mapping the 

input random variable v to the output random variable t, and v = T 1(t) is the inverse 

transformation function mapping the output random variable t to the corresponding input 

random variable v [l]. Equation 2-2 applies for both monotonically increasing or decreasing 

transformation functions. 

The timing spectrum for the leading-edge discriminator described by Figure 2-1 will be 

evaluated using Equation 2-2 for a Gaussian input-voltage spectrum with the probability 

density function 

-(t_:_::-_µ .. )2 

1 2o~ 
Pc,(v) = ln2 e 

v 2na; 
(2-3) 

where µv is the mean input voltage and a} is the input voltage variance. The random 

variable transformation function (t = T(v)) is the leading-edge discriminator propagation 

delay given in Equation 2-1 (shown in Figure 2-1) for fixed VT and tr with substitutions 

tprop = t and vinpk = v, giving 

t = T(v) = Vrtr 
V 

(2-4) 

The inverse transformation function (v = T 1(t)) is available explicitly by solving Equation 

2-4 for v in terms oft, giving 

V = r-1 (t) = Vrt,. (2-5) 
t 

Finally, the derivative of the inverse transformation function is determined by 

differentiating Equation 2-5 with respect tot, giving 

.sL r-1 (t) = - Vrtr 
dt t2 (2-6) 
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Now that all terms of Equation 2-2 have been found, the timing spectrum for a leading

edge discriminator can be obtained for a given Gaussian input-voltage spectrum. The 

leading-edge discriminator considered has a threshold (V r) of 0.5 V with input-signal rise

times (tr) of 10 ns. The propagation delay, taken from Equation 2-1, is shown in Figure 2-1. 

A Gaussian input-voltage spectrum having a mean voltage of 1 V and a standard deviation 

(o) of 0.213 V will be considered for the leading-edge discriminator. This input-voltage 

spectrum has a resolution of 0.5 V FWHM (FWHM = 2.35a for a Gaussian density), or a 

resolution of 50% FWHM expressed as a percentage of the mean. This is comparable to the 

energy resolution of a BGO block detector used in commercial CTI/Siemens PET systems 

(the energy spectrum of a BGO block detector is wider than the energy spectrum of a single

crystal BGO detector because of variations in PMT light coupling between different block

detector crystal elements) [2]. The leading-edge discriminator input-voltage spectmm is 

shown in Figure 2-2, and the resultant leading-edge discriminator timing spectrum is shown 

in Figure 2-3 for the propagation delay shown in Figure 2-1. 

The timing spectrum shown in Figure 2-3 is not Gaussian because of the nonlinear 

propagation delay of the leading-edge discriminator. The timing spectrum is wider for 

higher time values due to the larger increase in propagation delay for smaller input signals. 

If the propagation delay were linear with signal level, the output timing spectrum would be 

Gaussian for the Gaussian input voltage spectrum. 

The timing resolution of 2.2 ns FWHM (Figure 2-3) for the ideal leading-edge 

discriminator considered here is significant compared to a typical timing resolution of 3 ns 

FWHM for commercial PET EGO/photomultiplier detector timing systems [2]. System 

FWHM timing resolution would be degraded to 3.72 ns from 3 ns if the leading-edge 

discriminator timing resolution of 2.2 ns was combined (assuming Gaussian timing spectra) 

in an uncorrelated way with a detector-statistical timing resolution of 3 ns. The evaluation 

of actual system timing performance, however, is considerably more complex because of 

correlation between the statistical threshold-crossing time and leading-edge discriminator 

walk (a higher detector photoelectron rate reduces the statistical threshold crossing time 

and reduces walk due to higher signal slope). Additionally, Gaussian timing spectra cannot 

be assumed. The timing performance of systems using leading-edge or CFD timing can be 

evaluated using the Monte Carlo techniques described in Section 3. Leading-edge 

discriminator timing performance can be improved by lowering the threshold voltage, by 

decreasing the input-signal rise-time, or by raising the input-signal level. Each of these 

actions will lower leading-edge discriminator time walk. 
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Comparator Time Walk 

The CFD, as described in Section 1, is a pulse-shaping circuit that produces a bipolar 

output pulse having a zero-crossing point that is time invariant for linear-edge input signals 

of varying level. It will be discussed in Section 4, that this timing point is time invariant for 

inputs of varying level having arbitrary fixed shapes, including nonlinear leading edges. 

Actual CFDs do exhibit time walk with varying input signal levels due to comparator walk 

errors. These errors are due to varying comparator propagation delay as a function of 

signal slope, signal underdrive (initial signal level below the threshold), and signal 

overdrive (final signal level above the threshold). 

Comparator walk can be described using a charge-sensitivity model where comparator 

triggering occurs after a fixed amount of charge has been exchanged at the comparator 

input after the input exceeds the threshold [3]. Comparator charge sensitivity is illustrated 

in Figure 2-4 for two cases: comparator triggering along the signal edge and comparator 

triggering after the signal edge. Linear-edge signals are considered for both cases in Figure 

2-4. 

For the case of comparator triggering along the signal edge (Figure 2-4), the voltage

time area (A) related to comparator charge sensitivity is a triangle with base equal to the 

propagation delay (tprop) and height equal to the effective change in comparator threshold 

(~VT). The charge related area for comparator triggering along the signal edge is given by 

Equation 2-7 can be rewritten as 

A.= tprop ~VT 
2 

9 

A = tprop ~VT 

2 tprop 

2 
tpropK 

A=--
2 

(2-7) 

, or (2-8) 

(2-9) 

where the signal slope, K, is equal to ~ V ,r'tprop- Solving Equation 2-9 for the propagation 

delay gives 
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t prop I triggering on ,ignal edge/ = ff · (2-10) 

Comparator propagation delay for triggering along the signal edge, as described in Equation 

2-10, decreases monotonically with increasing signal slope and is proportional to the inverse 

square root of signal slope. 

The second case considered in Figure 2-4 is the case of comparator triggering after the 

signal edge (on the final value of the signal). For this case, the voltage-time area (A) related 

to comparator charge sensitivity consists of two components: the triangular area along the 

signal edge and the rectangular area after the signal edge. The triangular area has a base 

equal to time t 1 and height equal to the input-signal overdrive (Voverdrive). The rectangular 

area has width of time t2 and height also equal to the input-signal overdrive (Voverdrive). The 

total voltage-time area is given by 

A = Voverdrivef 1 + V , t 
2 

overdrive 2 (2-11) 

From Figure 2-4, the time t 1 is given by 

t - voverdrive 
i - K ' (2-12) 

where K is the input-signal slope. Equation 2-11 can be solved for the comparator 

propagation delay (tprop = t 1 + t2 ) using Equation 2-12 giving 

__ A __ + Voverdrive 
t prop (triggering after signal edge) = V 2K 

overdrive 

(2-13) 

Comparator propagation delay in Equation 2-13 can be considered for the special case of 

step inputs where the signal slope (K) is infinite. For this case, tprop (step input) is given by 

t prop ( step input) = V , 
overdrive 

A 
(2-14) 

where comparator propagation delay decreases monotonically with increasing signal 

overdrive and is proportional to the inverse of signal overdrive. 
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Note that comparator propagation delay, as predicted in the charge-sensitivity model, 

goes as the inverse square root of signal slope for comparator triggering along the signal 

edge and goes as the inverse of signal overdrive for step inputs. It will be shown that the 

comparator charge-sensitivity model, although widely referenced, is not accurate for the 

CMOS comparators considered in this section and in Section 5 since comparator propagation 

delay can actually increase with increasing signal level for moderate to large signals. 

Time Pick-Off Circuit Walk Due to Comparator Time Walk 

Timing performance of time pick-off circuits is found by obtaining the propagation delay 

as a function of input signal level which must include the comparator contributions. For the 

leading-edge discriminator, the propagation delay function previously described must be 

modified to include the additional delay caused by the comparator. Once the propagation 

delay function has been determined for any time pick-off circuit, this can be used to 

transform the input-signal spectrum into a corresponding timing spectrum using a 

transformation of random variables as was described for the leading-edge discriminator. 

As mentioned previously, the CFD has no theoretical walk for varying amplitude signals 

of fixed shape, the walk being due entirely to the constant-fraction comparator circuit. This 

comparator walk performance must be evaluated for the signals actually present in a given 

CFD application where comparator input-signal slope, underdrive, and overdrive depend on 

the constant-fraction input-signal level (this assumes that no walk offset adjust has been 

applied to the comparator as will be discussed in Section 4). 

The CFD timing spectrum due to time walk can be easily determined from Equation 2-2 

for a Gaussian input-signal spectrum if CFD propagation delay is assumed to be a linear 

function of input-signal level for the input-signal range of interest. This approach involves 

the use of small-signal linearization for the propagation delay (which is nonlinear based on 

the charge sensitivity model) for a given input-signal range. The resulting timing spectrum 

is Gaussian having a mean and variance that are functions of the slope and intercept of the 

(linear) propagation delay function and the mean and variance of the input-signal spectrum. 

The linear propagation-delay function assumed can be represented by 

t prop = a vinpk + b , (2-15) 

where Vinpk is the input-signal level, a is the propagation delay slope, and b is the 

propagation delay time-axis intercept. The propagation delay slope may be either positive 

or negative corresponding to monotonically increasing or decreasing propagation delay. The 
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mean and variance of the resulting timing spectrum for a Gaussian input-signal spectrum is 

given by 

(2-16) 

2 2 2 h at = a 0 1, , w ere (2-17) 

µv is the mean input-signal level and a} is the input-signal variance [1]. Since timing 

resolution is determined by the timing standard deviation (at) and is independent of the 

timing mean (µt), timing resolution can be expressed by 

(2-18) 

tFWHM =lalvFWHM ' (2-19) 

where timing resolution (expressed in either standard deviation or FWHM) is found by 

simply multiplying the input-signal resolution (also expressed in either standard deviation 

or FWHM) by the absolute value of the propagation delay slope. 

For purposes of illustration, timing resolution will be evaluated for the CMOS CFD 

(containing an external delay line) described in [4]. This CFD has a measured propagation 

delay that is almost linear for an input range of 0.5 V to 1.5 V for input signals with 20-ns 

rise-times. The propagation-delay slope is approximately 1.4-nsN over this 0.5-V to 1.5-V 

range, being somewhat less for signals greater than 1 V. The propagation-delay slope is 

positive, indicating increasing propagation delay for increasing signal level. As mentioned 

earlier, the propagation delay of some practical comparators increases with increasing 

signal level for moderate to large signals which is in conflict with the comparator charge

sensitivity model. 

The CMOS CFD timing resolution will be evaluated for the Gaussian input-signal 

spectrum shown in Figure 2-2 having a mean of 1-V and a standard deviation of 0.213 V 

(50% FWHM). The resulting CMOS CFD timing resolution (at), from Equation 2-18, is 

0.298 ns (1.4-nsN multiplied by 0.213 V) or 0. 7-ns FWHM which is considerably less than 

the resolution of 2.2 ns given earlier for the ideal leading-edge discriminator. Although 

timing resolution (caused by walk) for the CMOS CFD considered is considerably higher 

than that of bipolar circuits, it would have little effect on commercial PET 

EGO/photomultiplier timing systems where timing resolution is approximately 3 ns FWHM 

26 



due to detector statistical noise [2]. The fully-monolithic CMOS CFD presented in Section 5 

has considerably improved walk performance over that of the CMOS CFD considered here. 

Timing Jitter Due to Electronic Noise 

Evaluation of Timing Jitter 

Electronic noise degrades system timing resolution by creating timing jitter in the 

output of a comparator circuit whenever a signal, perturbed by electronic noise, crosses the 

comparator threshold. Timing jitter is present in time pick-off circuits, both leading-edge 

and constant-fraction, where noisy signals cross the comparator threshold to develop time 

mark signals. Similarly, timing jitter is present in timing logic circuits where noisy logic 

signals cross the thresholds of other logic devices. The creation of timing jitter is illustrated 

in Figure 2-5 where a signal having noise bands of ±av is shown crossing a comparator 

threshold voltage VT· Timing jitter, as shown in Figure 2-5, is given by 

au a --
t -IKI ' 

(2-20) 

where at is the standard deviation of the timing jitter, av is the standard deviation of the 

noise, and K is the signal slope. Equation 2-20 can also be found from Equation 2-2 where 

an input-voltage random variable is monotonically transformed (using the reciprocal of 

input-voltage slope) to an output-time random variable. In Equation 2-20, signal slope is 

assumed constant over the range of noise about the timing threshold crossing. Additionally, 

the noise is assumed to be stationary (its statistical representation constant) over the range 

of times corresponding to the timing jitter distribution. Finally, the noise is assumed 

symmetrically distributed as a single standard-deviation value is used to describe the noise 

while another single standard-deviation value is used to describe the timing jitter 

distribution. 

If the noise shown in Figure 2-5 is Gaussian, the timing jitter will also be Gaussian. If 

the noise is nonGaussian, statistical representations for the timing jitter are still available 

from the geometric conversion of noise to timing jitter as shown in Figure 2-5. It is 

interesting to note that signal perturbations above the threshold (VT + av) generate timing 

points that are below the timing mean (µt - at), and similarly, signal perturbations below the 

threshold generate timing points above the timing mean. This reverse relationship of noise 

to timing jitter is present for positive signal slope and has no effect on Gaussian noise 

because of the symmetry present. 
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The noise jitter for a typical PET EGO/photomultiplier detector timing system can be 

evaluated using Equation 2-20. Assuming a front-end voltage gain of 100 (after the 

photomultiplier tube), an equivalent input-noise voltage of 4 nVl.../fu (typical for commercial 

high-speed bipolar integrated circuits), and a noise bandwidth of 50 MHz, the circuit noise 

(a) is approximately 2800 µV rms (4 nVl.../fu x 100 x -V50 MHz) [2]. Assuming a circuit rise

time (10 - 90%) of 10 ns, and a signal level of 1 V, the signal slope is approximately 1-V/10 ns 

[2]. The resulting timing jitter (at) due to electronic noise is approximately 28 ps rms 

[2800 µV rms/(l-V/10 ns)]. PET-system timing resolution is not significantly degraded by 

this level of electronic-noise timing jitter as the timing resolution of commercial PET 

EGO/photomultiplier detector systems is much higher (approximately 3 ns FWIIM) [2]. 

The Optimum Filter for Timing 

Electronic noise-induced timing jitter is directly proportional to signal noise and is 

inversely proportional to signal slope at the timing (threshold) point as shown in Equation 

2-20. It is necessary then to minimize signal noise while maximizing signal slope in order to 

minimize timing jitter. For a nonbandlimited input signal (e.g., a step input) in the 

presence of white noise, it is advantageous to maximize circuit bandwidth to the extent 

possible as signal slope increases directly with bandwidth while circuit noise voltage (or 

current) increases only as the square root of bandwidth. Timing jitter would then decrease 

as the inverse square root of increasing bandwidth. If, however, signal slope is detector 

limited, circuit bandwidth should not be maximized above the point necessary to preserve 

the detector-limited signal slope as this would bring in unnecessary noise and raise the 

timing jitter. 

The effects of linear, time-invariant circuit filtering on timing jitter can be evaluated 

using Fourier transform representations of the signal and noise. In Figure 2-6, a filter with 

response G(w) is shown having input signal Vin(w), input noise-power spectral density 

Sin(w), output signal V 0 u/w), and output noise-power spectral density S0 u/w). Douglass 

derived the optimum filter G0p/w) for minimizing timing jitter as a function of the input 

signal Vin(w), the input noise-power spectral density Sin(w), and the measurement time, 

tmeas [5]. The key results of this derivation follow for the inputs, outputs, and filter response 

shown in Figure 2-6. 
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Vin ( w) is the Fourier transform of the input signal v in (t) and is given by 

DO 

V;n(w) = f vin(t)e-jwt dt (2-21) 
-DO 

V0 u/ w) is the Fourier transform of the output signal v oultJ and is given by 

Vout(w) = V;n (ro)G(ro) , (2-22) 

where G(w) is the filter response in Fourier notation. In order to find the timing jitter, the 

output-noise voltage must be found. S 0 u/w) is the output noise-power spectral density and 

is given by 

Sout(w) = Sin (w) IG(ro)l2 
, (2-23) 

where Sin(w) is the input noise-power spectral density. The mean-square output noise 

voltage is given by 

DO 

e~ut = /
11 
f Sout(w)dw , or from Equation 2-23, (2-24) 
-00 

DO 

e~ut = /
11 
f Sin (w) IG(ro)1

2
dro (2-25) 

-CO 

In addition to finding the output-noise voltage, it is necessary to find the output-signal 

slope. The Fourier transform of the output signal slope is given by 

F{ :t Vout<t)} = jw vout (w) , or from Equation 2-22, (2-26) 

(2-27) 

The output-signal slope in the time domain is the inverse Fourier transform of Equation 

2-27 and is given by 
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00 

Jt V0u/t) = 2~ f ]ffi ~n ( ffi)G( ffi) eirot dffi (2-28) 
-00 

Finally, the mean-square timing jitter (from Equation 2-20 squared) is found from the mean

square output noise (Equation 2-25) divided by the square of the signal slope (Equation 2-28 

squared) and is given by 

00 

inf Sin (ffi) IG(ffi)12dffi 

? ( ) -00 a; tmeas = ? , 

[ 1. Ijro V.n r ro)G( co) e
1
""- dro r (2-29) 

where tmeas is the measurement time (the time of the output-signal threshold crossing). In 

Equation 2-29, output-signal slope is assumed constant (as discussed for Equation 2-20) over 

the range of output noise about the threshold crossing. Additionally, the input noise, and 

correspondingly the output noise, is assumed to be symmetrically distributed (the noise 

would normally be Gaussian). Finally, the input, and correspondingly the output signal 

noise, is assumed to be stationary. 

Douglass showed, by using the Schwarz integral inequality, that the timing jitter due to 

noise (Equation 2-29) is minimized when 

G( ) G ( ) v::<ffi)( . ) -jrot 
(iJ = opt (iJ = sin (ffi) - Jffi e meas ' 

(2-30) 

where Vi/(ffi) is the complex conjugate of the Fourier transform of the input signal [5]. An 

arbitrary filter gain for G op/ ffi) is not included in Equation 2-30 as filter gain affects both 

noise and signal slope equally and has no effect on timing jitter. The filter with response 

G
0
p/ffi) is the optimum filter for minimizing timing jitter due to noise for a given 

measurement time tmeas· Radeka and Karlovac derived a similar expression for the 

optimum filter for energy measurements where the signal-to-noise ratio is maximized for a 

given measurement time [6]. 

Douglass also showed that the optimum (minimum) timing jitter obtained with the 

optimum filter for timing (G0p/ffi)) is given by 
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2 1 l~n(m)I 2 

[ 

oo 2 ]-1 
at (opt)= 2r. _! sin (w) 0) dw [5]. (2-31) 

Note that the optimum level of timing jitter (Equation 2-31) is independent of the 

measurement time (tmeas> while the optimum filter for timing (Equation 2-30), required to 

obtain the optimum level of timing jitter, is dependent on the measurement time. 

The optimum filter for timing, G0p/w), can be synthesized in two parts: a whitening 

filter, Gwhitiw), which converts the input noise-power spectral density to a constant (white) 

spectrum, and a filter, Gmatched(w), which is a matched filter for the signal slope at the 

output of the whitening filter [5]. This synthesis procedure is illustrated in Figure 2-7 and 

is analogous to the synthesis procedure used for standard matched filters. This synthesis 

procedure is convenient to use since the whitening filter is a function only of the input noise 

and the matched filter is a function only of the signal present at the output of the whitening 

filter. Arbitrary filter gains will not be considered since, as discussed earlier, filter gain 

affects both noise and signal slope equally and has no effect on timing jitter. 

The whitening filter, Gwhitiw), is a function only of the input noise-power spectral 

density, Sin(w), and is described by 

(2-32) 

The Fourier transform of the signal present at the output of the whitening filter is given by 

(2-33) 

where Vin(w) is the Fourier transform of the input signal. The Fourier transform of the 

matched filter is a function only of the signal at the output of whitening filter and is given 

by 

(2-34) 

where V white* ( w) is the complex conjugate of the Fourier transform for the signal at the 

output of the whitening filter and tmeas is the measurement time. Finally, the optimum 

filter for timing is the product of the whitening filter and the matched filter as given by 
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G opt ( ffi) = G white ( ffi )G mauihed ( ffi) · (2-35) 

The matched filter (Gmatched(w)), described by Equation 2-34, consists of a term which is 

the complex conjugate of the Fourier transform for the signal slope at the whitening filter 

output, and a delay term for a time delay of tmeas· The corresponding impulse response of 

the matched filter is then equal to the time-reversed, whitening-filter output slope with a 

time delay of tmeas· This understanding of the matched filter is useful for the synthesis of 

optimum filters for timing [5]. 

Optimum Timing Filter for a Semiconductor Detector with Charge-Sensitive 
Preamplifier 

Although the fully-monolithic CMOS CFD being developed in this work is for PET 

scintillation-detector applications, the optimal timing filter for a semiconductor and charge

sensitive preamplifier will be considered first to demonstrate that the optimal timing filter is 

not physically realizable for this widely used system. Optimal timing-filter analysis, 

however, is useful as it permits a comparison of system timing performance using realizable 

suboptimal filters to the theoretically optimal performance. 

The optimum timing filter for a semiconductor detector connected to a charge-sensitive 

preamplifier has been considered by Douglass [5]. The Fourier transform representation of 

the input to the timing filter is given by 

Q ( 1 ) ~n(w)= - . . . ' 
CF Jffi ( 1 + Jffilsignal) ( 1 + Jffilamp J 

(2-36) 

where Q is the total charge collected in the preamplifier, CF is the preamplifier feedback 

capacitance, tsignal is the time constant associated with the exponential charge collection in 

the detector, and tamp is the time constant associated with the preamplifier bandwidth. The 

timing-filter input noise-power spectral density is given by 

(2-37) 

where e/ is the single-sided (positive frequency only) value of the preamplifier input noise

power spectral density. The whitening-filter transfer function, Gwhit/w), must cancel the 
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preamplifier pole associated with tamp in order to compensate for the noise roll-off in Sin(w). 

The transfer function for the whitening filter is then given by 

(2-38) 

The Fourier transform of the signal at the output of the whitening filter is the product of 

Vin(w) and Gwhitiw) and is given by 

(2-39) 

The time-domain signal at the output of the whitening filter is the inverse Fourier 

transform of Equation 2-39 and is given by 

(2-40) 

It is necessary to find the slope of the whitening-filter output signal, vwhit/tJ, in order to 

find the matched filter, Gmatch(w). The slope of vwhititJ is given by 

d ) Q -tlt.ignaJ 
diuwhite<t = C e u(t) 

tsignal F 

(2-41) 

The impulse response for the matched filter is the time-reversed, whitening-filter output 

slope with a time delay tmeas· This impulse response is noncausal as it has value before the 

application of an impulse, and the matched filter described by this impulse response is not 

physically realizable. The matched-filter impulse response and its graphical derivation are 

shown in Figure 2-8. In addition to the matched filter (Gmatch(w)), the whitening filter 

<Gwhitlw)) is also nonrcalizable as the whitening filter consists of a single zero with no 

corresponding pole. 

Although the optimum filter for timing is not realizable for the semiconductor detector, 

charge-sensitive preamplifier example just discussed, it does provide a comparison for the 

performance of realizable filters [5]. From Equation 2-31, the theoretical optimum value for 

timing jitter is given by 

33 



2 CF 2 
[ ]

2 

Gt (opt) = Q en tsignal , (2-42) 

for the semiconductor, charge-sensitive preamplifier considered [5]. Using simple single

pole lowpass, single-pole highpass, and combined highpass-lowpass filters, Douglass 

reported theoretical and experimental values of timing jitter (crt) 30 - 40% higher than the 

theoretical minimum value [5]. 

Optimum Timing Filter for a Step Input in White Noise 

In the previous optimum timing-filter example, the input signal was bandlimited 

(described with time constant tsignaz> by semiconductor-detector charge collection. Consider 

now the optimum timing filter for a step input in the presence of white noise as an example 

of a signal that is not bandlimited. No whitening filter is required for this case as the input 

noise is already white noise, thus Gwhitiw) is equal to a constant and the output of the 

whitening filter is a step signal, being equal to the input. The whitening-filter output slope 

is required to determine the impulse response of the matched filter, and this slope is a delta 

function having strength equal to the step signal transition. The impulse response of the 

matched filter (Gmatch(w)) is then the time-reversed, whitening-filter output-signal slope 

with a time delay of tmeas· Since a time-reversed delta function is also a delta function, the 

matched filter impulse response is a delta function of strength equal to the step signal 

transition with delay tmeas as shown in the graphical derivation of Figure 2-9. Thus the 

matched filter described by the derived impulse response has infinite bandwidth and a delay 

equal to tmeas· The total optimum filter (G0p/wJ) consists of the whitening filter and the 

matched filter, yielding a composite filter of infinite bandwidth with delay tmeas· The delay 

simply ensures that the filtered signal is delayed to the desired measurement time so that 

the time measurement occurs on the output-step transition edge. 

Although both the whitening filter and the matched filter have causal impulse 

responses, each filter is of course nonrealizable because of its infinite bandwidth. The 

optimum timing filter derived implies that timing-filter bandwidth should be maximized to 

the extent possible for a step input in the presence of white noise. As mentioned earlier, 

bandwidth should be maximized for nonbandlimited inputs in white noise because signal 

slope increases directly with bandwidth while circuit noise voltage (or current) increases 

only as the square root of bandwidth. The resulting timing jitter decreases as the inverse 

square root of increasing bandwidth. In all cases, however, circuit bandwidth must be 
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limited so noise does not exceed the step signal level as this is required to permit comparator 

triggering on the step signal. 

Optimum Timing Filter for a Band.limited Input in Band.limited Noise 

Consider a step input and white noise that are both bandlimited by front-end 

amplification in a system. Such a system is typical of photomultiplier scintillation-detector 

systems where the step input represents photomultiplier photoelectron current resulting 

from instantaneous light output from the scintillator after a detected event, and bandwidth 

limiting models finite photomultiplier-tube and front-end-amplifier circuit bandwidth. 

White input noise is typical for such systems when voltage-sensitive amplifier circuits are 

used to amplify the voltage appearing across a termination resistor at the photomultiplier 

output. In such systems, the signal and noise reaching the timing filter are equally 

bandlimited by the front-end circuits. For the purposes of this discussion, single-pole 

lowpass filtering (with unity gain) of the step input and white noise will be assumed. 

The Fourier transform of the input signal (at the timing filter) is given by 

~n ( (J)) = '-'inpk ( . ( 1 1 'rot . ) J ' 
Jffi + J amp 

(2-43) 

where Vinpk is the final value of the step input, and tamp is the time constant associated with 

the single-pole lowpass front-end circuitry. The input noise-power spectral density (at the 

timing filter) is given by 

(2-44) 

where en 2 is the single-sided (positive frequency only) noise-power spectral density at the 

input of the front-end circuitry. 

The whitening filter must consist of a zero to cancel the front-end-circuitry pole in order 

to shape the noise into white noise. The whitening filter transfer function is given by 

(2-45) 

35 



The output signal from the whitening filter is then a step input as the single-pole bandwidth 

limit on the input signal has been canceled as described by the Fourier representation of the 

whitening filter output, 

Vwhite(w) = ~npk( . 
1

. ](1 + Jwtamp) , or 
Jffi ( 1 + Jffif amp) 

(2-46) 

(2-47) 

From the preceding optimum timing-filter example, it was shown that the matched filter for 

a step input is a circuit of infinite bandwidth having delay tmeas· The complete optimum 

timing filter is then the whitening filter and the matched filter yielding a composite filter 

consisting of a zero to cancel the input-signal noise pole and a delay of tmeas· Such a circuit 

is, again, nonrealizable as it contains no bandlimiting poles. Additionally, this filter 

contains a zero without an associated pole which is also nonrealizable. The graphical 

derivation of this optimum filter for timing is illustrated in Figure 2-10. 

Suboptimal Timing Filter for a Band.limited Input in Band.limited Noise 

Although the optimum timing filter just considered for the bandlimited step input in 

bandlimited noise is unrealizable, the analysis does give insight into a suboptimal, realizable 

timing emphasis filter. The timing emphasis filter considered contains a zero to cancel the 

pole associated with the front-end bandlimiting circuitry, but unlike the theoretical 

optimum-timing filter, contains a pole at a frequency location higher than the zero making 

it physically realizable. The timing emphasis filter considered here is a pole-zero 

compensation filter that effectively raises the bandwidth of front-end circuitry to a 

bandwidth determined by the pole location in the emphasis filter. 

The Fourier transform of the emphasis filter output is the Fourier transform of the 

input signal multiplied by the emphasis filter response and is given by 

V:mphasis ( ffi) = ~npk ( . ( l 
1

. t ) Jc emphasis ( w) , 
jffi + jffi amp 

(2-48) 

where the emphasis filter response is given by 
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( 
1 + )wtamp J 

G emphasis ( W) = . . , 
JW ( 1 + Jwtemphasis) 

(2-49) 

where temphasis is the time constant associated with the emphasis-filter pole. The resultant 

output of the emphasis filter, in Fourier notation, is given by 

( 1 J V · w=V emphasis( ) inpk . ( l . t ) , 
JW + JW emphasis 

(2-50) 

which corresponds in the time domain to an exponential rise to Vinpk with time constant 

temphasis· The output signal of the emphasis filter is identical to its input signal except the 

input time constant, tamp• is replaced by the emphasis-filter time constant, temphasis· 

The output noise-power spectral density for the emphasis filter is identical to the input 

noise-power spectral density with the input time constant, tamp• again replaced by the 

emphasis-filter time constant, temphasis· The emphasis-filter-output noise-power spectral 

density is given by 

2( 1 J semphasis(w) = e; l ( wt . J2 
+ emphasis 

(2-51) 

An improvement in timing jitter is present using the emphasis filter because the filter 

output-signal slope increases directly with increased bandwidth while the noise increases as 

the square root of increasing bandwidth, so the total timing jitter (at) decreases as the 

inverse square root of increasing bandwidth. This is illustrated by evaluating the timing 

jitter as a function of the circuit time constant. 

As mentioned, the output signal from the emphasis filter is an exponential rise in the 

time domain with time constant temphasis· The output signal is given by 

(t) - V (1 -t1temphaais) (t) 
V emphasis - inpk - e U , (2-52) 

where Vinpk• as mentioned earlier, is the final value of the step input before the 

bandlimiting filter and is also the final value of the emphasis-filter input signal (unity gain 

is assumed for the bandlimiting and emphasis filters as described earlier). The slope of the 

output signal from the emphasis filter is given by 
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_g_ (t) _ ~npk ( -t/temphaaia) (t) 
dt V emphasis - e U , 

temphasis 

which has maximum value at the beginning of the signal (t = 0) given by 

K _ '-'inpk 
pk -

temphasis 

(2-53) 

(2-54) 

The emphasis-filter mean-square output noise from Equation 2-25, using the output noise

power spectral density given by Equation 2-51, is given by 

which is equal to 

e2 
n 

4temphasis 

(2-55) 

(2-56) 

where en 2 is the (single-sided) noise-power spectral density of the white noise present before 

the bandlimiting filter. Finally, the timing jitter at the output of the emphasis filter is given 

by 

Solving Equation 2-58 for at gives 

2 Ot(t=O)= 

2 
--~-

4temphasis 

[ ]

2 
~npk 

temphasis 
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en ~temphasis 
crt(t=O) = ----

2~npk 

(2-59) 

which is the timing jitter (rms) for a threshold crossing at the beginning of the output-signal 

transition (t = 0) where the signal slope is maximum. 

Equation 2-59 illustrates that the timing jitter goes as the square root of the single-pole 

time constant or as the inverse square root of the single-pole bandwidth. If the pole-zero 

emphasis filter effectively increases the front-end bandwidth a factor-of-ten, then from 

Equation 2-59, the noise jitter will decrease by a factor of .../w. Using an emphasis filter to 

increase the front-end bandwidth of a scintillation-detector signal may also permit 

triggering on the first photoelectron, as the increased bandwidth would better separate the 

individual photomultiplier-tube photoelectron impulses (first-photoelectron timing is 

discussed in Section 3). Practical issues, such as photomultiplier tube impulse-response 

ringing, will limit the degree of bandwidth emphasis that is possible in practical circuits. 

Emphasizing front-end bandwidth would have to be compared with lowering the timing 

threshold as a potential technique for first-photoelectron timing with scintillation detectors. 

Optimum Timing Filter for a Linear-Edge Input in White Noise 

The final timing filter considered is for linear-edge input signals in the presence of white 

noise. Although linear-edge input signals are not characteristic of scintillation-detector 

signals, linear-edge signals are present in coaxial semiconductor detectors for detector 

interactions occurring near the center of the depletion region [7, 8, 9]. It will be shown that, 

unlike the other filters presented, the optimum timing filter for linear-edge input signals in 

the presence of white noise is physically realizable. The performance of the optimum timing 

filter will then be compared to the performance of a simple single-pole lowpass timing filter. 

The optimum timing filter is derived graphically as shown in Figure 2-11 for linear-edge 

input signals having rise-times of tr- Since the input signal is in the presence of white noise, 

no noise shaping is required by the whitening filter. The slope for the linear-edge signal at 

the output of the whitening filter is a rectangular pulse signal having height equal to the 

linear-edge input-signal slope and width equal to the input-signal rise-time. Since the 

input-signal transition occurs before the reference time (t = 0), the time-reversed whitening

filter output-signal slope is causal as shown in Figure 2-11 for positive measurement times 

(tmeas). The time-reversed signal slope at the output of the whitening filter is, of course, the 

impulse response for the matched filter. This filter operates by taking the difference 

between the input signal and the input signal delayed by tr. This difference is then fed into 
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an integrator as can be observed from the matched-filter impulse response. The complete 

optimum timing filter, consisting of the whitening filter (which has constant frequency 

response) and the matched filter, is described by Fourier notation as 

(2-60) 

The response of the optimum timing filter for linear-edge input signals is shown 

graphically in Figure 2-12. Note that the peak value of output-signal slope occurs at the 

measurement time equal to zero, which corresponds to the end of the input-signal linear

edge transition (the measurement time (tmeas> as shown in Figures 2-11 and 2-12). The peak 

value of output-signal slope is equal to the input amplitude of the signal (Vinpk) and is 

independent of the input-signal rise-time. As the output-signal slope is known, it is now 

only necessary to find the noise at the output of the filter to evaluate the timing jitter 

performance. 

The noise at the output of the timing filter is found from Equation 2-25 for a single-sided 

input-noise-power spectral density of en 2 and is given by 

(2-61) 

eo2ut = a2 = _Le~ Joo 2(1- cos wt,.) dw 
V 2r; 2 (J)2 

, or (2-62) 
-00 

2 2 
eout = av (2-63) 

The output timing jitter at is then given by the output noise divided by the signal slope at 

the measurement time. The output timing jitter is given by 

~ eJt, 
at (t = tend of input transition> = , or 

~npk 
(2-64) 
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enJt: 
at(t = tend of input transition> = J2v ' 

mpk 

(2-65) 

where the timing crossing occurs at the peak value of the output-signal slope which 

corresponds to the end of the linear-edge input-signal transition. The timing jitter 

(Equation 2-65) for the optimal timing filter for linear-edge input signals in white noise is 

proportional to the square root of the input-signal rise-time 

It is interesting to compare the timing jitter performance of the optimum timing filter 

for linear-edge input signals in white noise with the timing jitter performance of a simple 

suboptimal timing filter. The suboptimal timing filter that will be considered is a single-pole 

lowpass filter. It can be shown that the output-signal slope of this filter is maximum at time 

corresponding to the end of the input-signal linear-edge transition (measurement time 

(tmeas> equal to zero as shown in Figure 2-11) and that the peak output-signal slope is given 

by 

.sL ( _ ) _ ~npk ( -tr/tip) 
dt Vlowpass t - tend of input transition - -t- 1- e , 

r 

(2-66) 

where Vinpk is the input signal level, tr is the linear-edge input rise-time, and tzp is the 

lowpass-filter time constant. The peak output-signal slope approaches a maximum value, 

the input-signal slope, for a lowpass-filter time constant much less than the input signal 

rise-time. 

The mean-square output noise of the single-pole lowpass filter for a white noise input 

can be taken from Equations 2-55 and 2-56 and is given by 

2 2 
eout = CJ l' 

e2 = _n_ 

4t1P 
(2-67) 

where en2 is the single-sided input noise-power spectral density. The output timing jitter of 

the single-pole lowpass filter is then given by the output noise divided by the peak output

signal slope as described by 
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(2-68) 

( ) ~4 
CT t t = tend of input transition = 

2
V: r;--(l -tr lt1P) 

inpk-,,Jtlp -e 
(2-69) 

The lowpass-filter timing jitter (at) (Equation 2-69) is divided by the optimum-timing

filter timing jitter (Equation 2-65) and is plotted in Figure 2-13 as a function of the lowpass

filter time constant divided by the input-signal rise-time (t1Jtr). The minimum value of 

timing jitter for the lowpass filter occurs for tzp = 0.79tr and is only 10.8% higher than the 

timing jitter for the optimum timing filter. The optimum value of lowpass-filter time 

constant relative to the input-signal rise-time represents a balance between a short time 

constant to preserve the input-signal slope and a long time constant to minimize output 

noise. 

It is interesting to observe that the timing jitter of a single-pole lowpass filter with 

linear-edge input signals in white noise is only 10.8% higher than the theoretical minimum, 

whereas the timing jitter of a single-pole lowpass filter with exponential-rise input signals 

in bandlimited noise (the noise and signal time constants being different) is 30% higher than 

the theoretical minimum as described by Douglass [5]. Additionally, it is interesting to note 

that the optimum filter for timing is physically realizable for linear-edge input-signals in 

white noise but is not physically realizable for exponential-rise input-signals in bandlimited 

noise. Both linear-edge and exponential-rise signals are present in coaxial semiconductor 

detectors, the signal shapes depending on event interaction location and the resulting 

detector charge collection [7, 8, 9]. 

The optimum timing filter described for linear-edge input signals in the presence of 

white noise is physically realizable with some error because a perfect integrator is not 

realizable. This implementation error can be made quite small for signal rise-times much 

shorter than the single-pole time constant of a realizable lowpass filter acting as an 

integrator. However, there is a practical difficulty in using a nongated integrator circuit 

since the output can reach circuit saturation levels as no integrator reset is provided. Thus, 
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the optimum timing filter described would best be implemented as a gated integrator which 

is a time-variant filter. 

The optimum timing-filter examples considered have been for the case of white or 

lowpass-filtered noise at the timing-filter input. These cases are representative of charge

sensitive preamplifiers where preamplifier output noise has lowpass characteristics and 

voltage-sensitive preamplifiers where preamplifier output noise has lowpass characteristics 

or white characteristics for the frequencies of interest. The case of current-sensitive 

(transimpedance) preamplifiers, however, was not considered. In this case, preamplifier 

output-noise density increases with frequency (m2 noise power) over a significant range of 

frequency. Recently, Binkley et al. reported a monolithic CMOS transimpedance 

preamplifier for PET BGO/avalanche-photodiode detector applications [10]. In these 

applications, unlike EGO/photomultiplier detector applications where detector statistical 

noise is dominant, timing jitter is the dominant source of system timing errors. The study of 

optimal timing filters for PET BGO/avalanche-photodiode detector applications should be 

considered for both transimpedance and charge-sensitive preamplifiers. 

Time-Variant Filters for Timing 

Time variant filters for timing are discussed by Douglass and can offer advantages over 

time-invariant filters [5]. Time variant filters often have a noise advantage as their output 

noise starts accumulating only after the filter is gated on. Thus, if the filter has been gated 

on for a short time, the output noise level may be considerably less than the steady-state 

output noise present for a time-invariant filter. This may permit the use of a lower timing 

threshold, the timing threshold being required to be above the noise [5]. A lower timing 

threshold lowers the walk effects in a leading-edge discriminator and also lowers CFD walk 

effects due to nonconstant signal shape. Additionally, a lower timing threshold may permit 

single-photon timing. Time-variant filters may also have considerably lower timing jitter 

compared to time-invariant filters for measurements times near the start of the input signal 

[5]. Again, this is particularly true if the time-variant filter has been gated on for a short 

period of time. 

Time variant filters are widely used in nuclear instrumentation for energy 

measurements but are rarely used for timing measurements. This is because time-variant 

energy measurements are usually started (gated) from the output of a timing circuit. Time

variant timing systems, in contrast, must be started before the timing measurement is made 

which requires a high-sensitivity discriminator to gate the filters before the timing 

measurement is derived. Time variant filters, however, should be seriously considered for 
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systems where timing performance is limited by circuit noise. Time variant filters will not 

be discussed further in this work but further discussions are available in the literature [5, 

11, 12, 13, 14]. 

Time Drifts Due to Temperature and Aging Effects 
System timing drifts are caused by changing system time delay with temperature and 

aging. One component of system time delay is circuit propagation delay which is a function 

of signal amplitude, signal rise-time, discriminator threshold, and internal circuit delays. 

Another component is detector timing delay. 

The input stage of most logic timing devices is effectively a leading-edge discriminator. 

Leading-edge timing drift can be found from the leading-edge discriminator propagation

delay function which is given by (as given in Equation 2-1) 

Vrtr 
tprop=v 

inpk 

(2-70) 

where tr is the linear-edge signal rise-time, Vinpk is the signal transition amplitude, and VT 

is the discriminator threshold (referenced to the initial signal level). Equation 2-70 predicts 

a time drift of -5.18 ps/°C for an ECL (emitter-coupled logic) signal with a 2-ns rise-time, 

0.85-V signal swing, and 0.425-V threshold (referenced to the initial signal level) which 

drifts -2.2 mV/°C. The threshold drift assumed in this example is the voltage drift 

associated with a silicon-diode junction. The same timing drift would occur if the initial 

signal level or baseline drifted +2.2 mV/°C with the threshold voltage held constant 

illustrating an effective change in threshold with signal baseline level. 

In addition to leading-edge discriminator time drifts, time drifts are also caused by 

changes in internal circuit propagation delay. The specified propagation-delay temperature 

drift for the ECL lOK logic family is 2 ps/°C typical and 7 ps/°C maximum [15]. The 

specified propagation-delay temperature drift for the ECL lOKH logic family, with its 

improved rise-time and delay characteristics, is 0.5 ps/°C typical and 4 ps/°C maximum [15]. 

Reported circuit timing drift with temperature is typically in the low ps/°C range for 

modem, high-performance, bipolar timing discriminators, with a reported timing drift of 

only 0.3 ps/°C for one CFD design [7]. Such low levels of timing drift are not required for 

commercial PET BGO scintillation-detector timing systems as system timing resolution is 

approximately 3 ns FWHM [2]. 

44 



Scintillation-detector timing drifts with temperature are caused by changes in 

scintillation light output and decay time constant. Additional temperature-induced timing 

drifts are caused by changes in photomultiplier cathode quantum efficiency, photomultiplier 

gain, and photomultiplier transit-time. The mechanisms of timing errors in scintillation 

detectors will be discussed in detail in Section 3. 

Time drift due to circuit and detector aging effects is evaluated in the same manner as 

temperature-induced drifts. Signal amplitude, signal rise-time, discriminator threshold, 

and internal circuit delays can change with age. The gain of photomultiplier tubes used in 

scintillation detectors can change significantly with age, which necessitates the use of 

variable-gain front-end amplifiers in modern commercial PET systems. 
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3. TIMING PERFORMANCE OF SCINTILLATION-DETECTOR SYSTEMS 

Overview 
In this section, the timing errors in scintillation-detector timing systems caused by 

detector statistical noise are considered. Detector statistical noise is the dominant source of 

timing errors for PET EGO/photomultiplier scintillation-detector systems. 

The section begins with a description of scintillation-detector operation including the 

scintillation process and the conversion of scintillation photons (light) to detector 

photoelectrons. The random arrival times of detector photoelectrons following the detection 

of a gamma-ray event is then discussed as a major component of detector statistical noise. 

Detector photoelectron arrival times are modeled as a Poisson process and the theoretical 

timing spectra are presented for timing on the first through fifth detector photoelectrons. 

Next, the operation of photomultiplier tubes is described, including sources of statistical 

noise. Photomultiplier single-electron impulse response, single-electron gain spread, and 

transit-time spread are discussed and illustrated for the photomultiplier tubes used in 

commercial PET EGO/photomultiplier detector systems. Additionally, the electronic noise of 

photomultiplier tubes is described. A brief comparison of PET EGO/photomultiplier and 

EGO/avalanche-diode detector timing performance is presented illustrating the significantly 

higher level of circuit noise present with the avalanche-diode detector. 

The prediction of EGO/photomultiplier statistical noise is then discussed, first using 

Campbell's theorem which describes the statistical mean and variance for a linear system 

excited by Poisson-distributed impulses. As discussed, Campbell's theorem is not useful for 

quantitative prediction of statistical performance for the low number of detector 

photoelectron impulses present during timing discrimination. Instead, Monte Carlo 

analysis is developed where randomly occurring Poisson detector photoelectrons are 

simulated. This analysis is used to generate a timing spectrum resulting from the timing 

discrimination of simulated detector signals. Photomultiplier-tube statistical effects and the 

impulse response for the photomultiplier, front-end amplification circuit, and timing

shaping circuit are included in this analysis. Examples of Monte Carlo simulated timing 

spectra are given for low-threshold, first-photoelectron timing using both a mono- and tri

exponential EGO scintillation model that describes the rise-time and decay behavior of light 

scintillation following event interaction in the scintillator. The timing spectrum resulting 

from the tri-exponential EGO scintillation model represents the best timing performance 

available using the EGO/photomultiplier scintillation detector considered. Monte Carlo 
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analysis will be extended later in Sections 4 and 5 to predict CFD timing and energy

discrimination performance. 

Scintillation Detector Operation 
A scintillation detector detects nuclear radiation by absorbing radiation, converting 

absorbed radiation into light (scintillation), and then converting this light into an electrical 

signal. In conventional (nontime-of-flight) PET systems, the scintillation detector consists of 

a EGO scintillator crystal coupled to a photomultiplier tube. The photomultiplier tube 

converts the EGO scintillation light to (photo) electrons at the photocathode, and these 

photoelectrons are then multiplied giving a typical electronic gain of one- to ten-million. 

The EGO (chemical name Ei4Ge30 12) scintillator is used in conventional PET systems 

because of its high density (specific gravity of 7.13) which is considerably higher than the 

density of sodium iodide, NaI(Tl) (specific gravity of 3.67) [1]. The NaI(Tl) scintillator is 

standardly used for scintillator comparisons, because of its high light output. The high 

density of EGO and high photoelectron cross-section for 511-keV annihilation gamma rays 

gives this scintillator excellent PET gamma-ray stopping power. Gamma-ray stopping 

power is an important consideration for PET applications because detection efficiency and 

spatial resolution are strongly dependent on gamma-ray stopping power. Unfortunately, 

the EGO scintillator is inefficient in its conversion of gamma rays to light, yielding only 

about 550 photoelectrons/MeV compared to about 9,000 photoelectrons/MeV for the NaI(Tl) 

scintillator [2]. The photoelectron yield includes the loss in photon-to-electron conversion at 

the photomultiplier cathode due to a quantum efficiency of approximately 20%. 

Overview of Timing Errors in Scintillation Detectors 
PET EGO/photomultiplier detector-system timing resolution is dominated by the 

statistical noise associated with limited detector photoelectron yield and nonzero scintillator 

decay time. As a result, a limited number of photoelectrons are randomly generated during 

a relatively long period of time after the initial gamma-ray excitation. This statistical 

process will be modeled in detail later as a nonstationary Poisson process. 

Scintillation detector timing errors are also caused by variations in scintillation time 

with varying location of energy deposition and by variations in the scintillator light path 

length [3]. These errors may be significant for subnanosecond time-resolution scintillation 

detectors but are not dominant sources of timing error for PET EGO/photomultiplier 

scintillation detectors. The variation in scintillation time with interaction location is 

expected to be less than 100 ps FWHM for varying interaction locations of less than 30 mm 
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FWHM in the PET EGO block detector. The variation in light path-length time is expected 

to be in the order of 400 ps FWHM (for the PET EGO block detector) based on the difference 

in measured timing resolution for two EaF 2 scintillation detectors having different light 

path lengths [4]. The measured timing resolution for a uniform 10 mm x 10 mm x 30 mm 

EaF 2 scintillation detector is 214 ps FWHM degrading to 428 ps FWHM for a dodecahedron 

10 mm x 18 mm x 45 mm crystal which necks down to a 10 mm x 10 mm area for 

photomultiplier coupling. Timing errors in the 100-ps to 400-ps range associated with 

variations in scintillation time and scintillator path-length time would combine in an 

uncorrelated sense with the detector statistical errors. Since PET EGO/photomultiplier 

detector timing resolution (for a single detector) is approximately 3 ns FWHM, the 

uncorrelated combination of 100 ps FWHM and 400 ps FWHM timing errors results in a 

total timing resolution of 3.03 ns FWHM. This indicates that these timing errors can be 

safely neglected as they would have to be much larger to be significant. 

PET system timing performance is degraded somewhat by timing errors associated with 

the scintillation-detector photomultiplier tube. These photomultiplier timing errors include 

transit-time spread and single-electron gain spread which are functions of varying 

photoelectron paths in the photomultiplier tube [3]. These errors will be discussed later in 

this section. 

Statistical Timing Performance of Scintillation Detectors 
As mentioned, PET system timing performance is dominated by the statistical noise 

associated with the EGO/photomultiplier scintillation detectors. The measured 

photoelectron yield for a 511-keV annihilation gamma ray is approximately 300 for the EGO 

block detectors used in present CTI/Siemens PET systems [5]. This low number of 

photoelectrons and the relatively long (300 ns) decay time constant of EGO give rise to 

considerable statistical noise. 

Scintillation-detector statistical timing performance is analyzed by considering the 

physical scintillation process. The description of this physical process will be simplified for 

brevity, and a more complete discussion is contained in Radiation Detection and 

Measurement by Knoll [1]. Absorbed radiation in the scintillator generates hole-electron 

pairs as some electrons in the scintillator lattice are knocked into excited states. The 

process of generating excited electron states is assumed to be nearly instantaneous with the 

absorption of radiation. The electrons in excited states then return to ground states giving 

off scintillation photons. The rate at which the excited electrons return to their ground 
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states (and the rate of the generation of scintillation photons) decays exponentially with 

time with a characteristic time constant for the scintillator. 

Inorganic scintillators, such as EGO, typically have one dominant characteristic time 

constant [1], and a single time constant of 300 ns is often used to model EGO scintillation. 

These scintillators can be modeled with a mono-exponential scintillation model where 

scintillation light rises instantaneously (with zero rise-time) after event interaction, followed 

by a single-exponential decay. However, as will be illustrated by comparisons of Monte 

Carlo and measured timing performance in Section 4, a tri-exponential model must be used 

to accurately predict timing performance for EGO scintillation detectors. A tri-exponential 

characteristic has been reported for EGO having a 2.8-ns rise-time, a 300-ns decay time 

constant for 90% of the light, and a 60-ns decay time-constant for 10% of the light [2]. The 

finite rise-time of scintillation is due to a two-stage process where electrons are initially 

raised, essentially instantaneously, to excited states and then drop to intermediate states 

without giving off light [6]. Light emission (scintillation) then occurs when electrons return 

from intermediate states to ground states. A mono-exponential EGO scintillation model will 

be used for simplicity in Poisson statistical analysis of timing performance. Both the mono

and tri-exponential model will be used in Monte Carlo analysis of timing performance. 

The statistical timing performance of scintillation detectors can be modeled as a non

stationary Poisson process where the average photoelectron rate is a function of time [7]. A 

Poisson process describes the arrival times of random events in time for some average rate. 

The probability density for the emission of N photoelectrons is given by 

[f(tJt- 1 e-f(tJ _!!_ f(t) 
) dt 

PN(t = (N-l)! , (3-1) 

where f(t) is the average or expected number of photoelectrons emitted between the initial 

excitation (t = 0) and time t [7, 8]. 

The Poisson probability density given in Equation 3-1 can be evaluated for a constant 

average photoelectron emission rate, r0, giving 

[ t] N-1 -r0t 
r0 e r0 

PN(t) = (N-1)! , or (3-2) 
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(3-3) 

The photoelectron rate is assumed to step instantaneously, at the time of detector 

interaction (t = 0), from zero to a constant rate r0. The constant photoelectron rate 

considered is given by 

(3-4) 

where N0 is the total number of photoelectrons (the photoelectron yield) and -c is the 

scintillator decay time constant. A constant average photoelectron rate, r 0 , can be assumed 

for a mono-exponential scintillation model for times much less than the decay time constant 

of the scintillator. For example, if BGO timing is derived in 5 ns, the average photoelectron 

rate at 5 ns is 98.3% (e-5 ns13oo ns) of the initial rate and has thus decayed little from the 

initial rate. 

It is interesting to note that the Poisson timing probability density for the arrival of N 

photoelectrons for a constant average photoelectron rate r O is identical to the impulse 

response of an N-th order, unity gain, Gaussian lowpass filter having a time constant of 1/r0 . 

The timing probability density for the arrival of the first photoelectron (N = 1) has the form 

of a stepped, decaying exponential with initial value of r0 and time constant 1/r0 . The 

timing probability density has a semi-Gaussian shape for the arrival of the second 

photoelectron (N = 2) becoming increasingly Gaussian in shape for larger values of N Plots 

of the timing probability density will be given later along with plots of the coincidence 

timing probability density for two BGO scintillation detectors. 

The Poisson probability density given in Equation 3-1 can be evaluated for an average 

photoelectron rate that is a decaying exponential. This is useful for determining the arrival 

of events at times that are an appreciable fraction of the scintillator-decay time constant 

where the assumption of constant photoelectron rate is no longer valid. The average 

number of photoelectrons emitted between the initial excitation time (t = 0) and time t is 

then given by 

(3-5) 

where again N0 is the total number of photoelectrons emitted and -c is the scintillator decay 

time constant. Substituting Equation 3-5 into Equation 3-1 gives the timing probability 
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density for the arrival of N photoelectrons at time t for an exponentially decaying average 

photoelectron rate. This timing probability density is given by 

(3-6) 

Equation 3-6 simplifies to the constant photoelectron rate expression (Equation 3-3) for 

t << --c and N0 >> 1. 

The timing coincidence between pairs of BGO scintillation detectors is required in a PET 

system to determine if two 511-keV gamma rays are from the same positron annihilation. 

The coincidence-timing probability density for two detectors is the crosscorrelation of each 

detector timing probability density and is given by 

00 

Pcoin(t)= JPstarth)Psto/--c+t)d-c , (3-7) 
-00 

where Pstar/t) and Psto/tJ are the timing probability densities for the start and stop detector 

respectively. Since the single-detector timing probability densities have values of zero for 

times less than zero, Equation 3-7 can be rewritten as 

00 

Pcoin(-t)= JPsta.rth)Pstoph-t)d--c , and 

Pcoin(t)= JPst.arth)Pst,0p(T.+t)d--c , 
0 

(3-8) 

(3-9) 

fort ~ 0 in each expression. Note that if both detectors have the same timing probability 

density, the coincidence-timing probability density is equal to the autocorrelation of the 

single-detector timing probability density. The coincidence-timing probability density is 

then symmetrical about time t = 0. For the PET coincidence-timing application considered, 

the start and stop detector timing probability densities will be assumed equal as the design 

of all detectors is the same. 

63 



The timing probability densities (Equation 3-3), or timing spectra, for a single 

EGO/photomultiplier scintillation detector are plotted in Figure 3-1 for the arrival of one to 

five photoelectrons (N = 1 - 5). A constant detector-photoelectron rate of 1.0/ns (511 keV) is 

assumed which corresponds to the initial rate for a mono-exponential BGO scintillation 

model having a photoelectron yield (N0 ) of 300 and a 300-ns decaying-exponential time 

constant. Since the time values considered in Figure 3-1 range from O to 5 ns, the 

assumption of constant photoelectron rate is reasonable as the rate has decayed only 2% at 

5 ns. 

The single-detector timing spectra in Figure 3-1 are normalized to a maximum value of 

unity versus the standard normalization of unity area for probability densities to permit 

direct comparison of the FWHM timing resolutions. The timing spectrum for first 

photoelectron timing (N = 1), as discussed earlier, is a decaying exponential with time 

constant equal to the inverse of the photoelectron rate (r0). The FWHM timing resolution 

for first photoelectron timing is given by 

1 
tFWHM (N = 1) = ln(2)- , 

ro 
(3-10) 

which goes as the inverse of photoelectron rate. Similarly, the timing resolution for second 

(N = 2) and higher photoelectron timing also goes as the inverse of photoelectron rate. 

Timing resolution is then improved by raising the photoelectron rate by increasing the 

photoelectron yield, decreasing the photoelectron decay time constant, or a combination of 

both. There is considerable interest in obtaining a scintillator with the gamma-ray stopping 

power of BGO but with a higher initial photoelectron rate for improved timing resolution. 

Significantly improved timing resolution would permit the implementation of PET systems 

having lower random-coincidence noise than existing systems. 

The timing probability densities, or timing spectra, for two BGO scintillation detectors 

in coincidence (Equations 3-8 and 3-9) are plotted in Figure 3-2 for the arrival of one to five 

photoelectrons (N = 1 - 5). The coincidence-timing spectra of Figure 3-2 were computed by 

numerical correlation of the single BGO scintillation-detector timing spectra shown in 

Figure 3-1. The coincidence-timing spectra in Figure 3-2 are normalized to unity to permit 

comparison of the FWHM timing resolutions. 

Comparisons of single (Figure 3-1) and coincidence (Figure 3-2) BGO scintillation

detector timing spectra are shown in Table 3-1 for the arrival of one to five photoelectrons. 

Note that coincident timing resolution is a factor of 2.42 higher (a higher timing resolution 
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corresponds to a wider spectral line width, or poorer timing resolution) for second 

photoelectron timing compared to first photoelectron timing, indicating a clear resolution 

advantage in first photoelectron timing. Additionally, coincident timing resolution 

continues to increase, at a decreasing rate, for timing on an increasing number of 

photoelectrons. Finally, it is interesting to note that the coincident timing resolution for 

first photoelectron timing is twice that of the single-detector resolution, not the square-root

of-two increase as is often expected. This is because the single-detector first-photoelectron 

timing spectrum is a decaying exponential function instead of a Gaussian function. The 

coincident-timing resolution for second and higher photoelectron timing is, however, nearly 

the square-root-of-two larger than the single-detector timing resolution as these single

detector timing spectra are more nearly Gaussian in shape. The correlation of Gaussian 

functions gives a Gaussian function with a standard deviation that is the quadrature sum of 

the standard deviations for the functions correlated. Similarly, the quadrature combination 

applies to the convolution of Gaussian functions since convolution is a reverse-direction 

correlation operation and Gaussian functions are symmetrical. 

Table 3-1. Detector Timing Resolution Versus Photoelectron Trigger Level for a 
Constant Photoelectron Rate of 1.0/ns. 

Trigger Single Detector Timing Coincidence Timing 

N 50%Peak 50%Peak FWHM 50%Peak 50%Peak FWHM Increase 
(ns) (ns) (ns) (ns) (ns) (ns) over 

Single 

1 0.000 0.693 0.693 -0.693 -0.693 1.386 2.000 

2 0.232 2.678 2.446 -1.678 1.678 3.367 1.372 

3 0.761 4.156 3.395 -2.330 2.330 4.661 1.373 

4 1.394 5.525 4.131 -2.850 2.850 5.699 1.380 

5 2.083 6.838 4.755 -3.293 3.293 6.586 1.385 
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As mentioned earlier, single-detector timing resolution (for any selected photoelectron 

trigger level) is inversely proportional to the detector photoelectron emission rate. 

Similarly, coincident detector timing resolution is also inversely proportional to the 

photoelectron emission rate for the single detectors as the coincident (correlation) resolution 

scales with the resolution of the single detectors. Again, the significance of maximizing 

detector photoemission rate is clear. As an example, the GSO (Gadolinium Orthosilicate) 

scintillator material, under consideration for future PET systems, has a photoelectron yield 

1. 7 times greater than BGO and a decay time constant of 60 ns [9]. The GSO initial 

photoelectron emission rate (511 keV) is expected to be nearly 8.5/ns (300 x 1.7/60-ns) 

compared to the 1.0/ns rate for the photoelectron yield of 300 assumed for BGO. This would 

imply a greater-than factor-of-eight improvement (decrease) in detector timing resolution for 

PET systems using GSO verses BGO (neglecting photomultiplier-tube errors). Presently, 

cost considerations prohibit the large-scale use of GSO in PET systems. 

Photomultiplier Tube Timing Performance 

Overview of Photomultiplier Operation 

The discussion of photomultiplier tube operation will be simplified for brevity, and a 

detailed discussion of photomultiplier tube operation is contained in the Burle 

Photomultiplier Handbook, formerly published by RCA [10]. The photomultiplier tube is 

used in PET BGO scintillation detectors to convert light (from the scintillator) into electrical 

current for subsequent electronic processing. 

Incident light on the photomultiplier photocathode is converted to photoelectrons with a 

quantum efficiency that is a function of the photocathode material and the incident light 

wavelength. The 1-inch photomultiplier tubes used· in CTI/Siemens PET systems use 

bialkali photocathode [11, 12] for good quantum efficiency at the BGO light wavelength of 

480 nm [1], which is in the blue part of the visible spectrum. The quantum efficiency is, 

unfortunately, only about 20% resulting in an average release of photoelectrons at 20% of 

the incident photons [11, 12]. This greatly degrades the statistical timing performance of a 

EGO/photomultiplier scintillator detector by lowering the photomultiplier photoelectron rate 

from the much higher scintillator photon rate. 

Photomultiplier electrical gain is accomplished by a series of dynodes which multiply the 

released photocathode photoelectrons through secondary emission. Secondary emission 

occurs when an electron with sufficient energy strikes a secondary-emitting surface 

resulting in the release of more than one electron. Photoelectrons released from the 
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photocathode are accelerated and focused by an electric field to strike the first dynode. The 

secondary electrons from this dynode are then accelerated by an electric field to strike the 

second dynode with the process continuing for additional dynodes until the multiplied 

electrons are intercepted at the photomultiplier tube anode. The photomultiplier tubes used 

in CTI/Siemens PET systems use 10 dynodes, each dynode having an approximate gain of 

four, resulting in an total photomultiplier gain of over 1,000,000 (410) [11, 12]. The dynode 

electric fields necessary for directing and accelerating electrons are provided by dynode 

voltages derived from a resistive voltage divider operating off a total voltage of 1500 V de [5]. 

Single-Electron Impulse Response 

Timing on the lowest number of photoelectrons (preferably one) requires sufficient 

photomultiplier bandwidth to maximize the separation of individual photoelectrons. 

Photomultiplier bandwidth is typically characterized in the time domain using impulse 

response. 

Photomultiplier time response is characterized by the output (anode) current response to 

an impulse or delta function of light at the photocathode [10]. This impulse response is the 

output response for a single photoelectron emitted from the photocathode and is 

characterized by output 10 - 90% rise-time, output 10 - 90% fall time, output FWHM pulse 

width, and output transit time (to the 50% point on the leading edge). The impulse response 

rise and fall times are due to the time dispersion of electrons during their travel in the 

photomultiplier tube. The transit time is the total time required for an electron t.o travel 

from the photocathode t.o the first dynode, the time of travel and multiplication in the 

dynode stages, and the time for multiplied electrons t.o be intercepted at the anode. 

The impulse response for the one-inch, 10-stage photomultiplier tubes used in 

CTI/Siemens PET systems was experimentally measured [13, 14] for both the Burle 

C83062E [11] and the Hamamatsu R2497 [12] (either photomultiplier tube is used in a PET 

system). The impulse responses of both photomultiplier tubes were essentially identical, 

and the measured rise-times were within 20% of the specified 2.4-ns rise-times [11, 12]. 

From the measured impulse responses, the rise, fall, and width characteristics can be 

modeled by the impulse response of a three-pole Gaussian filter with a time constant (for 

each real pole) of 1.5 ns. This Gaussian model does not model the transit time 

(approximately 22 ns), but fixed transit time does not contribute t.o timing errors (transit

time spread is considered separately). The photomultiplier-tube impulse-response model is 

described for current entering the anode by 
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hPMT(t)= ~2,t2e-th (A) ' 
't . 

(3-11) 

where Q is the charge associated with a single electron multiplied by the photomultiplier 

gain of one-million and 'tis the real-pole time constant of 1.5 ns. 

The modeled photomultiplier single-electron impulse response is shown in Figure 3-3 

for the photomultiplier gain of 1,000,000. The impulse-response rise-time (10 - 90%) shown 

in Figure 3-3 is 2.4 ns which agrees with the published 2.4-ns rise-times (10 - 90%) for the 

photomultiplier tubes used in CTI/Siemens PET systems [11, 12]. Note that the fall time is 

greater than the rise-time, which is typical of photomultiplier impulse responses [10, 15, 16, 

1 7]. The longer fall time reduces the ability of a photomultiplier to separate individual 

photoelectrons. Additionally, the longer fall time increases photomultiplier step response as 

step response is found by integrating the impulse response. 

Transit-Time Spread 

Timing errors result from photomultiplier transit-time spread, which is caused by the 

varying path lengths of individual photoelectrons between the photocathode and first 

dynode and, to a lesser degree, by varying path lengths in the dynode multiplication and 

anode interception process [10]. The photoelectron path length from the photocathode to 

first dynode is a function of the location of photoelectron emission on the photocathode and 

photomultiplier tube electron-optic focusing. Additionally, transit-time spread is due to the 

statistically varying paths taken by photoelectrons and their corresponding multiplied 

electrons. 

Photomultiplier transit-time spread is characterized by the width of the single

photoelectron transit-time spectrum resulting from uniform illumination of the 

photomultiplier tube cathode [10]. Transit-time spread can be modeled as a Gaussian 

density, based on reported experimental photomultiplier transit-time measurements [18, 19, 

20, 21, 22, 23, 24, 25]. The specified transit-time spread for the Burle C83062E and 

Hamamatsu R2497 photomultipliers used in CTI/Siemens PET systems is 0.53 ns FWHM 

and 0.69 ns FWHM respectively [11, 12]. For subsequent timing analyses, a Gaussian 

transit-time spectrum having a value of 0. 7 ns FWHM will be used to model transit-time 

spread. 
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Single-Electron Gain Response 

The electron-multiplication gain of single photoelectrons emitted from a photomultiplier 

photocathode is described by the single-electron gain response [10]. The single-electron gain 

response is not constant for different photoelectrons because of electron multiplication 

statistics, the most dominant source of statistical variation being associated with a single 

photoelectron hitting the first dynode. Since the multiplication gain of this first dynode is 

on average about four, very poor statistics are associated with this multiplication process. 

Additionally, the remaining dynodes contribute to statistical variations in the single

electron gain response with decreasing effects for later dynodes since more electrons are 

available to strike the later dynodes. The total variation in photomultiplier single-electron 

gain response is described by the single-electron gain response spectrum. 

The photomultiplier single-electron gain response spectrum is difficult to measure 

because of thermal (noise) emissions from the dynodes themselves that undergo partial 

multiplication. Electrons that undergo partial multiplication result in output pulses that 

are smaller than those associated with single photoelectrons released from the 

photocathode. It is necessary then to separate out the dynode noise from the single-electron 

gain spectrum associated with single photoelectrons. Additionally, it is necessary to excite 

the photomultiplier with low levels of light (this is a requirement for all single-photoelectron 

measurements) to ensure that only single photoelectrons are released. 

The single-electron gain spectrum for the Burle C83062E photomultiplier tube was 

measured by Burle Industries, Inc. and is shown in Figure 3-4 [13]. In Figure 3-4, the 

single-electron gain spectrum is fitted to a Gaussian spectrum having a FWHM of 163%. 

This broad single-electron gain spectrum is not unusual for photomultiplier tubes, 

particularly those that are not specifically designed for single photoelectron timing [10]. 

Note that the Gaussian curve shown in Figure 3-4 fits the single-electron gain data very 

well except for low values of gain. The low-gain data that deviates from the Gaussian curve 

will not be considered as it is likely caused by dynode noise. For subsequent timing 

analyses, a Gaussian photomultiplier single-electron gain spectrum will be assumed having 

a FWHM of 163%. This is believed to also be a reliable indication of the Hamamatsu R2497 

photomultiplier tube, also used in CTI/Siemens PET systems, because of its similarity to the 

Burle C83062E tube design [5]. 

Noise 

Photomultiplier noise is caused by ohmic leakage of insulators, thermionic emission of 

electrons from the photocathode and dynodes, and internal regeneration effects [10]. At low 
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operating voltages where multiplication gain is low, noise is dominated by dark current 

associated with ohmic leakage of insulators. At typical operating voltages where 

multiplication gain is high, noise is dominated by dark current associated with thermionic 

emission. At very high operating voltages where multiplication gain is very high, noise is 

dominated by regenerative effects caused by dynode glowing under heavy electron 

bombardment and by glass scintillation from stray electrons attracted to the glass bulb near 

the photocathode and first dynodes (this effect is greatest if the glass bulb is surrounded by 

a shield connected to the anode voltage). For operation in PET systems under typical bias, 

photomultiplier tube noise is dominated by thermionic emission. 

Single electrons emitted from the photomultiplier photocathode by thermionic emission 

result in anode current pulses with shape and average height equal to the single-electron 

impulse response (Figure 3-3). The statistical variation in pulse height is represented by 

the single-electron gain spectrum (Figure 3-4). The complete pulse-height spectrum for 

photomultiplier thermionic-emission noise pulses has an additional low pulse-height 

component due to thermionic emission from the dynodes. These electrons are only partially 

multiplied and result in lower amplitude output pulses. 

The photomultiplier anode-current noise pulses associated with thermionic emission are 

much smaller and narrower than the 300-ns decaying-exponential anode-current pulses 

associated with BGO scintillation. As a result, the noise pulses can usually be rejected from 

the scintillation (signal) pulses. However, the rejection of these photomultiplier anode noise 

pulses becomes increasingly difficult for first-photoelectron timing systems where timing 

triggering occurs on individual photoelectron anode pulses (either signal or noise). It is 

necessary to properly qualify the timing output based on some measurement of signal 

energy. In constant-fraction discrimination timing systems, signal qualification is provided 

by the arming circuitry. Additionally, many systems (including PET systems) use a 

separate "slow" energy channel to further discriminate against low-energy signals and 

noise. 

Photomultiplier anode noise pulses occur randomly in time with some average rate 

which is a Poisson process. These noise pulses give rise to shot noise, which is described by 

power spectral density in the frequency domain. This shot-noise power spectral density is 

constant for all frequencies if the photomultiplier anode noise pulses are impulses. 

However, actual anode noise pulses have finite width (described by the single-electron 

impulse response) causing shot-noise power spectral density to roll off at frequencies above 
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the frequency associated with this pulse width [10]. Photomultiplier anode-current noise

power spectral density is described by the shot noise equation, 

i; = 2q]dark (A 2 
/ Hz) , (3-12) 

where q is the unit of electronic charge and !dark is the anode dark current. 

The anode shot noise predicted by Equation 3-12 is 0.18 pAfHzY2 for a maximum dark 

current of 100 nA for the photomultiplier tubes used in CTI/Siemens PET systems [11, 12]. 

This corresponds to a voltage noise density ofonly 9 pV/HzY2 for a 50-n anode load, which is 

totally negligible compared to the typical 4 n V fHzY2 input-amplifier voltage-noise density 

[5]. Photomultiplier anode shot noise increases when signal current is present, but this 

noise is negligible compared to the statistical noise associated with random photoelectron 

emissions resulting from BGO scintillation. Actual photomultiplier noise is approximately 

15% higher than the value predicted by shot noise because of excess noise associated with 

the Poisson statistics of the multiplication process [10]. This 15% increase in 

photomultiplier anode noise due to excess noise is also negligible for PET applications. 

Photomultiplier and Photodiode Comparisons for PET Applications 

The previous noise calculations illustrate the excellent low electronic-noise performance 

of photomultiplier tubes, which together with their excellent gain-bandwidth performance 

(in excess of 50 MHz x 1,000,000) has not been challenged by semiconductor light detectors 

for PET applications. Silicon PIN photodiodes have the disadvantages, compared to 

photomultiplier tubes, of no gain, high device capacitance, and low-noise preamplification 

requirements [10]. Silicon avalanche photodiodes are more suitable than PIN diodes for 

PET applications because of internal gain (in the range of 100) but exhibit very high excess 

noise from the avalanche gain process [26]. 

The most significant limitation in using silicon photodiodes for PET applications is 

excessive timing jitter due to photodiode and preamplifier noise. Most reported timing 

performance is for a commercial gamma-ray detector module [27] consisting of a BGO 

crystal (3 x 5 x 20 mm) coupled to an avalanche photodiode (3 x 3 mm active area) [26, 28, 29, 

30]. Timing performance of approximately 10 ns FWHM has been reported for this 

commercial detector using a nonintegrated charge-sensitive preamplifier [26, 28, 29]. 

Recently, timing performance of 9.2-ns FWHM has been reported for the commercial 

detector using a low-noise, integrated CMOS transimpedance preamplifier [30]. Since a 

separate avalanche photodiode would be required for each EGO-crystal element in a solid-
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state PET detector to minimize photodiode size and noise, a monolithic CMOS preamplifier 

would be required to minimize system costs. Additionally, a monolithic CMOS CFD would 

be required for solid-state PET detectors as multiple EGO-crystal, avalanche-photodiode 

channels cannot be summed because of the high level of avalanche-photodiode noise present. 

The development of monolithic CMOS circuits is clearly even more significant for 

avalanche-photodiode, EGO-crystal PET detector systems compared to existing 

photomultiplier, EGO-block detectors because of the higher required front-end electronic

circuit density. 

Avalanche-photodiode, EGO-crystal timing performance in the 10-ns FWHM range is 

considerably above the 3-ns FWHM value obtained with modem PET EGO/photomultiplier 

detector systems [5]. Further research is needed to improve the timing performance of 

avalanche photodiodes by reducing active area (reducing capacitance and diode noise) and 

by reducing noise due to edge effects. Such research is significant as a photodiode 

replacement of the photomultiplier tube could considerably reduce the size and cost of 

existing PET EGO/photomultiplier detectors. 

Timing Performance of Scintillation Detector and Time Pick-Off Circuit 

Overview 

The timing performance of time pick-off circuits due to time walk and noise-induced 

timing jitter has been described in Section 2. Additionally, the statistical timing 

performance of scintillation detectors has been described in this section. It is necessary then 

to analyze system timing performance of the detector and time pick-off circuit combination. 

Such system analysis is necessarily complex because of the multiple effects considered: 

statistics of light generation and reflection within the scintillator (negligible for 

EGO/photomultiplier systems as described earlier), Poisson statistics associated with 

scintillation-detector photoelectrons, photomultiplier single-electron gain and transit-time 

statistics, and circuit response of the photomultiplier, front-end amplifier circuit, and 

timing-discriminator circuit. A closed-form analysis for the arrival times of photomultiplier 

anode photoelectron pulses for Nal(Tl)/photomultiplier systems was developed by Nutt using 

order statistics, although the effects of front-end amplification and time-discrimination 

circuits were not included [18]. A closed-form timing analysis including the performance of 

front-end amplification and time-discrimination circuits is not believed to exist. 

In the following discussion, Campbell's theorem [31] will be described for modeling 

certain scintillation-detector statistical errors. Following this discussion, a Monte Carlo 
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technique for predicting timing performance will be developed, which includes Poisson 

photoelectron statistics, photomultiplier single-electron gain and transit-time statistics, and 

front-end amplification and timing-discrimination circuit response. 

Campbell's Theorem Analysis 

Campbell's theorem describes the statistical mean response and variance of a linear 

system excited by Poisson distributed impulses having some average rate. The generalized 

form of Campbell's theorem considers the nonstationary statistics associated with a time

varying average impulse rate and is given by 

co 

µ(t)= fr(1:)h(t-1:)d1: ,and (3-13) 
-CO 

co 

a 2 (t)= f r(1:)h 2 (t-1:)d1: , (3-14) 
-00 

where µ(t) is the mean response, a2(t) is the variance, r(t) is the average impulse rate, and 

h(t) is the linear-system impulse response [31]. Equations 3-13 and 3-14 can be evaluated 

for a system having causal impulse response with an average impulse rate that is a step 

function transitioning at time t = 0 (this is not stepped white noise, but rather randomly 

occurring impulses with an average rate that steps from zero to some stepped value). The 

mean response and variance (derived from graphical convolution) are then described by 

t 

µ(t ~ 0) = r0 J h(1:)d1: , and 
0 

t 

cr 2 (t ~ 0) = r0 f h 2 
( 1:)d1: , 

0 

(3-15) 

(3-16) 

where r 0 is the stepped value of the average impulse rate and h(t) is the causal linear

system impulse response. As discussed earlier, scintillator photoelectron rate for a mono

exponential scintillation model is well approximated by a step function (transitioning at the 

time of detector event interaction) for timing derived at times much less than the 
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scintillation-detector decay time constant. The photoelectron rate is essentially constant for 

times much less than the scintillation-detector time constant. 

Linear-system mean response and standard-deviation (square-root of variance) can be 

found using Campbell's theorem. This is shown in Figure 3-5 for the photomultiplier 

impulse response given in Figure 3-3 (Equation 3-11) for a step photoelectron rate (r0) of 

1.0/ns. Note that the detector-output standard-deviation increases rapidly for times greater 

than zero, reaching a final value for times greater than the width of the photomultiplier 

impulse response. The standard-deviation effectively describes the statistical fluctuations 

present at the signal output of the photomultiplier. The mean and standard-deviation 

shown in Figure 3-5 were found in closed form from Equations 3-15 and 3-16. 

The EGO/photomultiplier detector-output mean and standard deviation given by 

Campbell's theorem in Figure 3-5 suggests that optimal timing occurs early on the output 

signal where the standard deviation is minimized. Quantitative timing performance, 

however, cannot be predicted for the case considered in Figure 3-5 because the mean and 

standard deviation described by Campbell's theorem do not represent a Gaussian density 

because of the low number of photoelectron emissions present (a mean value of five over the 

5-ns time interval considered). An alternative analysis method is then required for the 

application considered where timing occurs on a low number of photoelectrons. Campbell's 

theorem analysis will be used later in Section 4 to predict CFD energy-discrimination 

performance. 

The timing performance illustrated qualitatively by Figure 3-5 indicates that optimum 

statistical timing performance occurs at the lowest possible timing threshold corresponding 

to timing on the earliest part of the detector output signal. Unfortunately, timing on the 

early part of the signal results in greater time-jitter and time-walk errors because of limited 

signal slope. Additionally, false triggering on noise is greater for the low threshold required 

for triggering on the early part of the signal. 

As mentioned, no closed-form timing analysis is believed to exist that considers 

photoelectron Poisson statistics, photomultiplier single-electron gain and transit-time 

statistics, and time pick-off circuit response. With the lack of an analytical expression to 

predict system timing performance, timing performance must be evaluated by Monte Carlo 

simulation or by experimental evaluation. 
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Monte Csrlo Simulation 

Method 

System timing performance of a scintillation detector and time pick-off circuit can be 

evaluated using Monte Carlo simulation where computer-generated random numbers are 

used to simulate statistical processes. In Monte Carlo simulation, the timing signal is 

simulated for a detected event, and the timing crossing of this signal is histogrammed into a 

timing spectrum. This process is repeated for many simulated detected events until enough 

timing values are found to build a statistically meaningful timing spectrum. Monte Carlo 

simulation of timing and energy-discrimination performance for CFD time pick-off circuits 

has been presented by the author at the 1992 IEEE Nuclear Science Symposium [32]. 

The Monte Carlo simulated timing signal is modeled as the output of a linear system 

randomly excited by Poisson-distributed impulses representing detector photoelectron 

emissions. This linear system is itself modeled by a causal impulse response, h(t), which 

includes the photomultiplier single-electron response, front-end amplification and filtering 

response, and constant-fraction shaping-circuit response if constant-fraction shaping is 

used. Varying photomultiplier single-electron gain is considered by varying the strength of 

the simulated photoelectron impulses, and varying photomultiplier transit time is 

considered by varying the delay time of simulated photoelectron impulses. The modeling of 

scintillation-detector output signals by Monte Carlo simulation is illustrated in Figure 3-6. 

The Monte Carlo simulated timing signal for each detected event is the sum of timing

system impulse responses resulting from photoelectron emissions. The timing signal is 

described mathematically as 

K 

h (t) 

K=M 

Timing signa/,(t)= }GPMT(K) h(t-tPoisson(K)-tPMT(K)) , where 
lr:i 

(3-17) 

is the index for each photoelectron emission (ranging from 1 to M) where 
Mis the minimum number of photoelectrons required for timing crossing 
(normally much less than the total number of photoelectrons emitted 
(Nn)); 

is the normalized photomultiplier single-electron gain from single
electron gain spectrum; 

is the impulse response of photomultiplier, front-end amplifier/filter, and 
timing shaping network (if present); 
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t Poisson (K) 

tPMT (K) 

is the photoelectron emission time from Poisson distribution (function of 
detected energy); and 

is the photomultiplier single-electron transit time from transit-time 
spectrum. 

Equation 3-17 is similar to other Monte Carlo timing-signal models reported in the 

literature; however, the reported models do not include front-end amplification and timing 

circuitry response [33, 34, 35]. 

The Poisson photoelectron emission times are given mathematically by 

tPoisson (K) = tPoisson (K -1) + [ l ](-ln(rand)) , 
r(t Poisson (K -1)) 

(3-18) 

where tPoisson(K-1) is the emission time for the previous photoelectron (taken as zero if no 

previous photoelectron has occurred), r(t) is the average photoelectron rate, and rand 

denotes a uniformly-distributed random number between zero and one (with infinitesimal 

probability of equaling zero as ln(O) is undefined). The photoelectron-emission times 

correspond to the emission times for single Poisson events where the probability density for 

waiting times between Poisson events is equal to the probability density for a single Poisson 

emission. The Poisson photoelectron emission times given in Equation 3-18 correspond to 

an average photoelectron emission rate that steps instantaneously from zero as 

representative of the mono-exponential BGO scintillation model. Equation 3-18 cannot be 

used, however, for the tri-exponential BGO scintillation model where the photoelectron 

emission rate has a finite rise-time. 

The right-hand side of Equation 3-18 corresponds to the transformation function 

required to map a uniform (between zero and one) random variable to a random variable 

having the probability density associated with single Poisson-emission times. This 

transformation function is equal to the inverse probability-distribution function of the 

desired output Poisson random variable which can be shown by solving Equation 2-2 (page 

21) for the transformation function required to map a uniform (between zero and one) input 

random variable to an output Poisson random variable. In Equation 3-18, the average 

emission rate r(t) is assumed constant for the time interval between Poisson emissions, 

which is a good assumption since the rate changes very little for an average interval time of 

1 ns corresponding to an initial EGO/photomultiplier detector photoelectron rate of 1.0/ns. 

The photoelectron rate given in Equation 3-18 is linearly proportional to detected event 
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energy having a mean value set by the photoelectron rate for a mean event energy of 

511 keV. Fixed, exponentially-decaying, or arbitrary average emission rates may be used in 

Equation 3-18 subject to the assumption of constant rate between Poisson emissions. 

In the Monte Carlo timing simulation, points are selected from the Gaussian event 

energy, Gaussian photomultiplier single-electron gain, and Gaussian photomultiplier 

transit-time spectra by a transformation of uniformly-distributed random numbers using 

the algorithm described in Numerical Recipes in C [36]. Photomultiplier single-electron 

gain and transit-time are assumed to be uncorrelated in the Monte Carlo analysis. The 

correlation present between the gain and transit time of single photoelectrons is not known, 

but the effects of transit-time spread (with a 0. 7-ns FWHM resolution) are not significant for 

a system timing resolution of 3 ns FWHM. The good agreement between Monte Carlo 

simulated and measured timing spectra for both the delay line CFD (presented in Section 4) 

and the fully-monolithic CMOS CFD (presented in Section 5) indicates that the assumption 

of no correlation between photomultiplier single-electron gain and transit-time spread is 

reasonable, at least for timing resolutions near 3 ns FWHM. Correlation effects, if present, 

may need to be considered for timing resolutions approaching the photomultiplier transit

time resolution. 

The computer program used for Monte Carlo simulation is included in Appendix B. This 

program is written in the C computer language and is documented for interpretation. The 

timing-signal impulse response, h(t), is evaluated in a lookup table that is read in from a 

SPICE print listing. The lookup table permits the evaluation of complex impulse responses 

without mathematical derivation and greatly increases the execution speed of the Monte 

Carlo program by avoiding time-consuming exponential mathematical evaluations. The 

Monte Carlo program histograms all statistical quantities: the timing spectrum, the 

detected-energy spectrum, the photomultiplier single-electron gain spectrum, and the 

photomultiplier transit-time spectrum. Additionally, the coincidence timing spectrum for 

two identical timing systems is histogrammed by subtracting the timing difference between 

adjacent events. Digital filtering of the simulated spectra is provided, by convolving each 

spectrum with a selected Gaussian lowpass impulse response, to smooth out statistical 

noise. Finally, an analysis of each filtered spectrum is provided giving peak counts, FWHM, 

and FWTM information. The program writes the raw spectrum, filtered spectrum, and 

spectrum analysis data to an output text file for reading by commercial spreadsheet/plotting 

programs. 
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In addition to the Monte Carlo timing-simulation program, a Monte Carlo waveform

generation program was also written. The waveform-generation program uses the same 

Monte Carlo algorithms as the timing-analysis program but provides an output file 

consisting of multiple (one for each simulated event) signal waveform values. 

Random Number Generation and Evaluation 

As mentioned, uniformly-distributed random numbers are required for transformation 

into the Poisson and Gaussian points used in the Monte Carlo timing simulation. The 

generation of uniformly-distributed random numbers is often done using a linear 

congruential generator, where a random number is generated from a linear combination of 

the previous random number and numerical constants [36]. The linear congruential 

generator develops a pseudorandom number sequence that is uniformly distributed; 

however, excessive autocorrelation for nonzero delay values may be present in the random

number sequence. The generation of uniformly-distributed random numbers is complicated 

greatly by attempting to minimize the autocorrelation for nonzero delay values. Ideally, the 

random-number sequence autocorrelation would be zero for all nonzero delay values, which 

is analogous to the autocorrelation of white noise and indicates statistical independence of 

individual numbers in the random-number sequence. 

The initial random-number algorithm considered consisted of a shuffied linear

congruential generator taken from Numerical Recipes in C [36]. The process of shuffiing 

the generator (rearranging groups of bits in the output word) is intended to minimize the 

autocorrelation for nonzero delay values. It was found that this initial random-number 

generator produced excessive statistical noise in the Monte Carlo timing spectra, as will be 

illustrated in following timing spectra. The final algorithm used for random-number 

generation was also taken from Numerical Recipes in C but is based on the subtractive 

algorithm described by Knuth in Seminumerical Methods - The Art of Computer 

Programming [37]. 

The autocorrelation of a random-number sequence can be described mathematically as 

l n=N 

cf:>xx(k)= N[X(n)X(n+k), 
n=l 

(3-19) 

where X(n) denotes then-th number in the random-number sequence, k denotes the delay 

considered between random-number samples, and N denotes the number of autocorrelation 

experiments evaluated. The autocorrelation coefficient is a useful measure of random-
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number sequence autocorrelation as the effects of random-number sequence mean and 

variance have been subtracted and normalized out respectively. The autocorrelation 

coefficient is given by 

(3-20) 

where µxis the mean value, <t>x_x<O) is the mean-square value, and cr/ is the variance value 

for the random-number sequence. The autocorrelation coefficient has values constrained 

between ±1 with a value of zero corresponding to statistical independence and values of ±1 

corresponding to total statistical dependence. Equation 3-20, although different in notation, 

is equal to the serial-correlation coefficient described by Knuth [37] for testing random

number sequence autocorrelation. The random-number sequence mean required in 

Equation 3-20 is given by 

l n=N 

µ =- 6X(n) 
X N ' 

n= 

(3-21) 

where N, again, is the number of autocorrelation experiments evaluated. 

The random-number sequence autocorrelation coefficient (Equation 3-20) was computed 

for the subtractive random-number generator used in the Monte Carlo simulation program. 

The autocorrelation coefficient is shown in Figure 3-7 for a sequence length CN) of one

million and for sequence-delay values (k) ranging from one to one-hundred. The 

autocorrelation coefficient is below ±0.001 for most delay values and has an average 

absolute value of 0.000667 for all delay values considered. The level of autocorrelation 

shown in Figure 3-7 is within the level of autocorrelation expected by Knuth [37] for a 

"good" random-number generator. The autocorrelation coefficient expected for a "good" 

random-number generator is described by 

(3-22) 

where the autocorrelation coefficient is expected to be within the limits described about 95% 

of the time [37]. The values of µNand crNare given by 

-1 
µN =-- , and 

N-1 
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0 
=-1-JN(N-3) 

N N-1 N+l ' 
(3-24) 

where N (the number of samples considered) is greater than two [37]. The autocorrelation

coefficient limits are ±0.002 from the preceding equations (one-million samples) and the 

autocorrelation coefficient given in Figure 3-7 is within these limits 98% of the time, 

exceeding the 95% requirement for a "good" random-number generator. 

The testing of random-number generators is exceedingly complex, and the 

autocorrelation test described is only one of many available tests [37]. Press [36] suggests 

that Monte Carlo simulation results be compared using substantially different random

number generators in an attempt to validate results. As mentioned, both a re-seeded, linear 

congruential generator and a subtractive generator were evaluated. The subtractive 

generator ultimately selected had autocorrelation that was on average a factor-of-two less 

than the re-seeded, linear congruential generator. Additionally, as will be illustrated later, 

the statistical noise associated with the re-seeded, linear congruential generator was 

considerably higher than the subtractive generator. It is interesting, however, that the 

Monte Carlo simulation results compared well for both generators (as will be illustrated 

later) with the only exception of excess statistical noise for the re-seeded, linear 

congruential generator. 

Simulation of First Photoelectron Timing without Photomultiplier Effects 

In Figure 3-8, Poisson-distributed detector-photoelectron impulses are shown for a 

single 511-keV event detected by a BGO/photomultiplier scintillation detector. This train of 

impulses was generated by the Monte Carlo waveform-generation program assuming a total 

photoelectron yield of 300 (511 keV), a mono-exponential decay time constant of 300 ns, and 

a corresponding initial photoelectron rate of 1.0/ns (511 keV). The random time occurrence 

of these impulses is evident by random groupings and gaps in the photoelectron impulses. 

The exponentially-decaying average-photoelectron rate is not easily observed as only the 

first 50 ns of time following the detector event interaction is shown. 

Monte Carlo timing simulation of first photoelectron timing was done without 

photomultiplier effects for the BGO/photomultiplier scintillation-detector photoelectron yield 

of 300 (511 keV), mono-exponential decay time constant of 300 ns, and corresponding initial 

photoelectron rate of 1.0/ns (511 keV) previously described. A monochromatic energy 

spectrum at 511 keV was considered for comparison with the timing spectrum predicted 

earlier in the monochromatic, 511-keV Poisson analysis. First photoelectron timing 
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simulation was done using a fast (duration of 10 ps) timing-signal impulse response so that 

timing crossings occurred immediately for the first simulated photoelectron emissions. Both 

raw and filtered timing spectra data were provided by the Monte Carlo timing-simulation 

program. 

Monte Carlo timing simulation of first-photoelectron timing was made using the re

seeded, linear-congruential random number generator initially considered. Although the 

filtered Monte Carlo timing spectrum generated using this initial random number generator 

agrees well with the theoretical timing spectrum, the raw Monte Carlo timing spectrum 

contains excessive statistical noise as shown in Figure 3-9. 

In Figure 3-10, the Monte Carlo timing spectrum for first photoelectron timing is shown 

for the final subtractive random-number generator used. Both raw and filtered timing 

spectra data are shown in Figure 3-10, and the computed timing resolution from the filtered 

data is 0. 73 ns FWHM, which is in close agreement with the theoretical Poisson resolution 

of 0.693 ns FWHM from Figure 3-1 and Table 3-1. The Monte Carlo timing spectrum is 

compared in logarithmic form (Figure 3-11) with the theoretical first-photoelectron timing 

spectrum. The Monte Carlo timing spectrum and the theoretical Poisson, exponentially

decaying timing-spectrum agree very closely, both following a straight line indicative of a 

logarithmic presentation. The statistical noise present in the Monte Carlo spectrum of 

Figure 3-11 is appropriate for the number of channel counts present and appears 

exaggerated for low channel counts because of the logarithmic presentation. 

Monte Carlo timing simulation of first photoelectron timing, again without 

photomultiplier effects, was repeated using the tri-exponential EGO scintillation model 

instead of the mono-exponential model previously considered. A scintillation rise-time time 

constant of 1.5 ns, primary decay time constant of 300 ns for 90% of the light, and secondary 

decay time constant of 60 ns for 10% for the light was assumed in the tri-exponential model. 

This is equivalent to the tri-exponential model reported by Moszynski [2], except that a time 

constant of 1.5 ns was used to model scintillation rise-time (the reported rise-time was 

2.8 ns). The rise-time time constant of 1.5 ns was chosen based on comparisons described in 

Section 4 between measured and Monte Carlo timing resolution for a commercial delay-line 

CFD. Monte Carlo simulations and measurements were compared for various CFD delays 

to ensure accurate modeling. 

Monte Carlo first-photoelectron timing spectra are shown in Figure 3-12 for both the 

mono- and tri-exponential EGO scintillation models for a monochromatic energy spectrum 

at 511 keV and a photoelectron yield of 300 (511 keV). The timing spectrum associated with 
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the mono-exponential model (the model previously considered) is a decaying exponential, as 

predicted earlier by the Poisson statistics, having a resolution of 0. 73 ns FWHM and 2.33 ns 

FWTM. The timing spectrum, however, associated with the tri-exponential model is semi

Gaussian in shape having a considerably higher resolution of 1.98 ns FWHM and 3.70 ns 

FWTM. The higher timing resolution present in the tri-exponential model is due to the 

finite scintillation rise-time. Comparisons between measured and Monte Carlo timing 

resolution given later in this section and in Section 4 indicate that the tri-exponential BGO 

scintillation model is required for accurate modeling of timing resolution. 

Monte Carlo simulations for an energy resolution of 14% FWHM indicate that first

photoelectron timing resolution is not a function of energy resolution for a (symmetrical) 

Gaussian energy spectrum. This is because energies below the mean result in higher timing 

resolution, whereas energies above the mean result in lower timing resolution. Thus, the 

timing spectrum for a Gaussian-energy spectrum is identical in shape to the timing 

spectrum for a monochromatic energy spectrum having energy equal to the mean Gaussian 

energy. 

Simulation of First Photoelectron Timing with Photomultiplier Effects 

In Figure 3-13, Monte Carlo simulated photomultiplier output signals are shown for 

several events detected by a EGO/photomultiplier scintillation detector, assuming again a 

photoelectron yield of 300 (511 keV) and a mono-exponential decay time constant of 300 ns 

which closely models a constant photoelectron rate of 1.0/ns (511 keV). The signals were 

simulated for a Gaussian energy spectrum having a mean energy of 511 keV and resolution 

of 14% FWHM, for the photomultiplier impulse response shown in Figure 3-3, for a 

photomultiplier single-electron gain of 1,000,000 (built into the impulse response) having 

ideal resolution (0% FWHM), and for a photomultiplier transit time of 5 ns having ideal 

resolution (0 ns FWHM). Actual photomultiplier transit time is approximately 22 ns, but a 

value of 5 ns is used for convenience as fixed delay has no effect on timing resolution. 

Simulations of output signals without photomultiplier single-electron gain or transit-time 

spread were done for comparison with output signals resulting from the photomultiplier 

when single-electron gain and transit-time spread are included. 

The times associated with photomultiplier-output signals leaving the zero-current 

baseline (Figure 3-13) are equal to the single-photoelectron timing crossings as no 

photomultiplier resolution errors have been included other than finite photomultiplier 

bandwidth (the fixed, nonstatistical photomultiplier single-electron gain and transit time 

considered have no effect on timing resolution). The mean peak photomultiplier current 
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(511 keV) is approximately 160 µA, which is in agreement with the theoretical mean 

response illustrated in Figure 3-5. Additionally, it is clear from Figure 3-13 that timing 

resolution will degrade for increasing leading-edge discriminator threshold levels. If the 

timing point is delayed from the beginning of the detector signal, timing resolution will 

degrade for both leading-edge and constant--fraction timing. 

In Figure 3-14, photomultiplier output signals are shown again for several detected 

events; however, this time full photomultiplier resolution errors have been included. These 

errors include a 163% FWHM single-electron gain resolution and a 0.7 ns FWHM transit

time resolution. A comparison of Figure 3-14 with Figure 3-13 illustrates that timing 

resolution degrades somewhat as a result of photomultiplier resolution errors. For first

photoelectron timing, the photomultiplier single-electron gain resolution does not influence 

timing; however, the photomultiplier transit-time resolution is significant. For timing at 

thresholds above the zero-signal baseline (timing on greater than the first photoelectron), 

both the single-electron gain and transit-time resolution have an effect on timing resolution. 

In Figure 3-15, Monte Carlo simulated timing spectra are shown for timing directly on 

the photomultiplier output (Figure 3-14). A low-level timing threshold of 0.1 µA (the mean 

peak signal is approximately 160 µA for 511 keV) was used for the simulations to approach 

first-photoelectron timing, and a timing spectrum was simulated for both the mono- and tri

exponential EGO scintillation models. The simulated timing resolution for a Gaussian 

energy spectrum with mean of 511 keV and resolution of 14% FWHM is 1.37 ns FWHM and 

3.35 ns FWTM for the mono-exponential model, and 2.06 ns FWHM and 4.01 ns FWTM for 

the tri-exponential model. The simulated timing resolution for the tri-exponential model is 

in close agreement with the measured resolution reported by Moszynski et al. [2] of 2.1 ns 

FWHM and 4.4 ns FWTM for first-photoelectron timing (using a EGO/photomultiplier 

scintillation detector). The close agreement between measured and simulated timing 

resolution using the tri-exponential model indicates that the tri-exponential model should be 

used in Monte Carlo timing simulations. Additionally, as mentioned earlier, comparisons of 

measured and simulated CFD timing resolution described in Section 4 also indicate that the 

tri-exponential model should be used. The timing resolution available for low-threshold 

(first-photoelectron) timing at the photomultiplier output (Figure 3-15), using the tri

exponential EGO scintillation model, is believed to represent the best (lowest) timing 

resolution available for the EGO/photomultiplier detector considered. 

Compton scatter is not included in the Gaussian energy spectrum used for the first

photoelectron timing spectra of Figure 3-15. Compton scatter will be discussed in Section 4 
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and included in Monte Carlo simulations contained in Sections 4 and 5. Monte Carlo 

simulations for the CMOS CFD described in Section 5 indicate that timing resolution is 

degraded (increased) by approximately 5% for low-level Compton scatter (scatter associated 

with a point source and 1 x 1 x I-inch EGO crystal) and by approximately 10% for high-level 

Compton scatter (scatter associated with a 20-cm diameter, water-filled source and 

1 x 1 x I-inch EGO crystal). 

The Monte Carlo simulated timing spectra of Figure 3-15 are effectively the convolution 

of the ideal (exclusive of photomultiplier transit-time errors) first-photoelectron timing 

spectra shown in Figure 3-12 with the 0. 7-ns FWHM Gaussian transit-time spectrum of the 

photomultiplier. This convolution operation significantly increases the near zero rise-time 

of the ideal first-photoelectron timing spectrum associated with the mono-exponential EGO 

scintillation model and also increases the fall time giving a resulting timing resolution equal 

to nearly twice the theoretical Poisson first-photoelectron resolution of 0.693 ns FWHM. 

The 0. 7-ns FWHM Gaussian transit-time spectrum has little effect on the ideal first

photoelectron timing spectrum using the tri-exponential model since this (ideal) timing 

spectrum has a timing resolution of 1.98 ns FWHM which is considerably greater (for 

uncorrelated combination) than the transit-time spread of 0. 7 ns FWHM. 

The simulated energy spectrum for the Monte Carlo timing spectra of Figure 3-15 is 

shown in Figure 3-16. This energy spectrum is Gaussian in shape and the calculated 

resolution (from the Monte Carlo program) is 14.4% FWHM which compares well with the 

selected value of 14.1 % FWHM. The simulated photomultiplier single-electron gain 

spectrum is shown in Figure 3-17 and is also Gaussian in shape. The calculated resolution is 

167% FWHM which compares well with the selected value of 163% FWHM. Finally, the 

simulated photomultiplier transit-time spectrum is shown in Figure 3-18 which, again, is 

Gaussian in shape. The calculated resolution is 0. 72 ns FWHM which agrees well with the 

selected value of 0. 7 ns FWHM. As mentioned, a mean photomultiplier transit time of 5 ns 

has been assumed instead of the actual transit time of 22 ns, as fixed delay has no effect on 

timing resolution. 

Although optimum timing for EGO/photomultiplier scintillation-detector systems is 

obtained using first-photoelectron timing, it is interesting to note that optimum timing for 

NaI(Tl)/photomultiplier systems is obtained for timing on more than the first photoelectron 

[18]. This is because the intrinsic Poisson first-photoelectron timing resolution of 

NaI(Tl)/photomultiplier detectors is considerably less than the photomultiplier-tube transit

time spread. The intrinsic Poisson first-photoelectron timing resolution of 
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Nal(Tl)/photomultiplier detectors is approximately 0.01925 ns FWHM (from Equation 3-10) 

for an initial photoelectron rate of 36.0/ns corresponding to a photoelectron yield of 9000 [1] 

and scintillator-decay time constant of 250 ns [18]. Optimal timing for Nal(Tl) systems has 

been reported for timing on 0.2 - 0.6% of the total number of photoelectrons (photoelectron 

yield) because of averaging of photomultiplier transit-time errors [18]. 

Simulation of General Scintillation-Detector Systems 

General scintillation-detector system performance can be predicted using Monte Carlo 

simulation by using the appropriate photoelectron rate function, energy resolution 

parameters, system impulse response, and photomultiplier-tube resolution parameters. 

Additionally, time pick-off circuit walk performance can be included in Monte Carlo 

simulation by evaluating the timing-signal underdrive, overdrive, and slope at the threshold 

crossing. This can be done for each simulated event and the time walk can be included as 

an additional timing delay. This time walk can be modeled as a function of the variable 

timing-signal underdrive, overdrive, and slope at the threshold crossing. The walk function 

itself can be evaluated from the comparators used in the time pick-off circuit. Comparator 

walk performance will be discussed in detail in Section 5. 

Time pick-off circuit electronic-noise timing jitter can also be added to Monte Carlo 

simulation by evaluating the timing-signal slope at the threshold crossing. The timing jitter 

is the ratio of noise-to-signal-slope and can be included for the variable timing-signal slope 

present for each simulated event. 

Monte Carlo simulation will be used in Section 4 for predicting CFD timing performance 

as a function of constant-fraction shaping-network design. Additionally, Monte Carlo 

simulation will be extended in Section 4 to predict CFD energy-discrimination performance 

which is limited by the statistical noise in the EGO/photomultiplier scintillation-detector 

signal. Finally, Monte Carlo simulation will be used in Section 5 to predict timing and 

energy spectra for the fully-monolithic CMOS CFD. 
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Appendix for Section 3 - Figures 
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Figure 3-1. Theoretical Poisson Single-Detector Timing Spectrum Versus 
Photoelectron Trigger Level. 
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Figure 3-2. Theoretical Poisson Coincident-Detector Timing Spectrum Versus 
Photoelectron Trigger Level. 
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Figure 3-3. Single-Electron Impulse Response for Photomultiplier Tubes used in 
CTI/Siemens PET Systems. 
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Figure 3-5. BGO/Photomultiplier Scintillation-Detector Mean Output and 
Standard-Deviation from Campbell's Theorem. 
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Sample Delay (1 - 100) 

Figure 3-7. Autocorrelation of Random Number Sequence Used in Monte Carlo 
Simulation. 
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Figure 3-8. Monte Carlo Simulated Photoelectron Emissions for 
BGO/Photomultiplier Scintillation Detector. 
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Figure 3-9. Monte Carlo Simulated First-Photoelectron Timing Spectrum (Using 
Initial Random Number Generator) for BGO/Photomultiplier Scintillation 

Detector without Photomultiplier Effects. 
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Figure 3-10. Monte Carlo Simulated First-Photoelectron Timing Spectrum for 
BGO/Photomultiplier Scintillation Detector without Photomultiplier Effects. 
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Figure 3-11. Comparison of Monte Carlo Simulated First-Photoelectron Timing 
Spectrum with Theoretical Poisson Timing Spectrum. 
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Figure 3-12. Monte Carlo Simulated First-Photoelectron Timing Spectra (Using 
Mono- and Tri-exponential Scintillation Models) for BGO/Photomultiplier 

Scintillation Detector without Photomultiplier Effects. 
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Figure 3-13. Monte Carlo Simulated Outputs for BGO/Photomultiplier 
Scintillation Detector without Photomultiplier Resolution Effects. 
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Figure 3-14. Monte Carlo Simulated Outputs for BGO/Photomultiplier 
Scintillation Detector with Photomultiplier Resolution Effects. 
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Figure 3-15. Monte Carlo Timing Spectrum (Using Mono- and Tri-exponential 
Scintillation Models) for First-Photoelectron Timing with BGO/Photomultiplier 

Scintillation Detector. 
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Figure 3-16. Energy Spectrum from Monte Carlo Simulation of First
Photoelectron Timing with BGO/Photomultiplier Scintillation Detector. 
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Figure 3-17. Photomultiplier Single-Electron Gain Spectrum from Monte Carlo 
Simulation of First-Photoelectron Timing with BGO/Photomultiplier Scintillation 

Detector. 
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Figure 3-18. Photomultiplier Transit-Time Spectrum from Monte Carlo 
Simulation of First-Photoelectron Timing with BGO/Photomultiplier Scintillation 

Detector. 

97 



4. CFD PERFORMANCE AND DESIGN 

Overview 
In this section, CFD performance is described for both delay-line and non-delay-line 

CFD circuits. CFD shaping-signal underdrive, overdrive, zero-crossing slope, zero-crossing 

time, and timing jitter performance are first described for the delay-line CFD with linear

edge input signals. Then, single- and two-pole step input signals are introduced which 

result from the lowpass filtering of a step input. Such signals are representative of 

scintillation-detector systems where the near step current from detector photoelectrons 

(follo,ving a gamma-ray interaction) is lowpass filtered through the detector and front-end 

amplification circuits. The performance of delay-line CFD circuits is then given for single

and two-pole step inputs. All CFD performance data is normalized to the input-signal rise

time and amplitude characteristics, and graphs of normalized CFD performance are 

included in Appendix A. 

Following the discussion of delay-line CFD performance, non-delay-line CFD circuits are 

introduced. The Nowlin non-delay-line CFD, which uses highpass networks (approximate 

differentiators) in place of the delay-line in the delay-line CFD, is discussed first. Then, 

what is believed to be a new class of non-delay-line CFD circuits is discussed. These circuits 

use lowpass (approximate integrators) or allpass networks in place of the delay-line in the 

delay-line CFD and are designated as Binkley CFD circuits. The use of lowpass filters as 

delay-line approximation filters is discussed in detail, and synthesis of the Binkley non

delay-line CFD circuits is described using Gaussian lowpass delay-line approximation 

filters. CFD shaping-signal underdrive, overdrive, zero-crossing slope, zero-crossing time, 

and timing jitter are then given for the non-delay-line CFDs with normalized performance 

graphs included in Appendix A. Tabular comparisons of delay-line, and non-delay-line CFD 

circuit performance is also presented. 

This section concludes with an analysis of delay-line and non-delay-line CFD energy

discrimination and timing performance for scintillation-detector applications. CFD energy

discrimination performance is discussed using Campbell's theorem, where the improvement 

in energy-discrimination performance present using a constant-fraction comparator circuit 

delay is discussed. This delay permits increased time for the accumulation of CFD arming 

statistics. Monte Carlo simulation of CFD timing performance is then given for both delay

line and non-delay-line CFD circuits, where comparable timing performance is shown. 

Finally, Monte Carlo and measured energy and timing spectra are given for a delay-line 

CFD. These spectra illustrate good agreement between Monte Carlo and measured results. 
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Conventional (Delay-Line) CFD 
As discussed in Section 1, the conventional (delay-line) CFD is a time pick-off circuit 

which develops a timing signal that is largely insensitive to input-signal amplitude and, in 

certain cases, rise-time. A block diagram of the delay-line CFD is shown in Figure 1-4 (page 

15). The CFD consists of a shaping circuit that subtracts an attenuated version of the input 

signal from a delayed version to develop a bipolar signal having a fixed zero-crossing time. 

The shaping signal is then coupled to a comparator for developing the timing signal. A 

second, arming comparator is used to inhibit CFD triggering on noise. Only those input 

signals that exceed a preset arming threshold result in a CFD timing output. 

Performance with Linear-Edge Signals 

Delay-line CFD operation is shown in Figure 1-5 (page 16) for linear-edge, flat-top 

signals. CFD timing performance can be analyzed by evaluating the signal and noise 

characteristics of the constant-fraction shaping signal for a given input signal and noise. A 

circuit model for delay-line CFD is shown in Figure 4-1. 

In Figure 1-5 (page 16), two modes of CFD operation are shown: true-constant-fraction 

mode and amplitude-rise-time-compensated (ARC) mode. In the true-constant-fraction 

mode, the timing crossing occurs after the input signal reaches its final amplitude once the 

delayed signal reaches a fixed (constant) fraction of the input signal amplitude. Thus, the 

timing threshold tracks the input signal amplitude at a fixed fraction (f) of the amplitude, 

resulting in walk-free timing for signals of variable amplitude and fixed rise-time. In the 

amplitude-rise-time-compensated mode, the timing crossing occurs before the input signal 

reaches its final amplitude. As illustrated in Figure 1-5 (page 16), walk-free timing is 

provided in amplitude-rise-time-compensated operation for input signals having variable 

amplitudes and rise-times, provided the rise-times exceed the minimum rise-time selected 

for operation. 

The CFD fraction value must be greater than zero and less than unity (0 < f < 1) to 

obtain proper operation. A fraction value of 20% is standardly used although 

experimentally-optimized adjustments deviating from this value are sometimes used. The 

CFD delay value must be greater than zero (td > 0) to again obtain proper operation. A 

delay value near the input-signal rise-time is typically used. 

Zero-Crossing Time 

The shaping-signal zero-crossing time for true constant-fraction operation, from Figure 

1-5 (page 16), is given by 
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(4-1) 

where td is the delay associated with the CFD delay line, f is the fraction (gain) associated 

with the attenuation network, and tr is the (linear-edge) input-signal rise-time. True

constant-fraction operation is established for a given input-signal rise-time by the selection 

of circuit delay and fraction in accordance with the inequality: 

td (true-constant-fraction)> tr (1- f) · (4-2) 

For true-constant-fraction operation at a typical fraction value of 20%, the constant-fraction 

delay must exceed 80% of the input-signal rise-time. 

The timing crossing for amplitude-rise-time-compensated (ARC) operation, from Figure 

1-5 (page 16), is given by 

td t =-
arc l- f (4-3) 

Amplitude-rise-time-compensated operation is established for a given minimum input-signal 

rise-time by the selection of circuit delay and fraction in accordance with the inequality: 

td (amplitude-rise-time-compensated) < tr (min) (1- f) · (4-4) 

For amplitude-rise-time-compensated operation at a typical fraction value of 20%, the 

constant-fraction delay must be less than 80% of the minimum input-signal rise-time. 

It is advantageous to minimize the CFD time crossing or delay to the extent consistent 

with good timing jitter, good constant-fraction comparator signal level, and good statistical 

timing performance. A larger constant-fraction timing delay will result in a correspondingly 

larger temperature-induced timing drift due to delay-time drift in the CFD delay line. 

Additionally, excessive CFD delay can cause reduced gating time for systems employing 

gated energy measurements under control of the CFD output signal. 

Shaping-Signal Amplitude and Slope 

CFD shaping-signal amplitude and zero-crossing slope affect constant-fraction 

comparator time-walk performance and, subsequently, CFD output time-walk performance. 

For practical comparator circuits, it is desirable to maintain signal underdrive, overdrive, 

and slope at levels that minimize comparator time walk. Comparator time-walk 

performance as a function of signal underdrive, overdrive, and slope will be discussed in 
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Section 5. In addition to minimizing constant-fraction comparator time-walk, it is also 

desirable to minimize CFD timing jitter. Timing jitter is minimized by maximizing the 

shaping-signal zero-crossing slope to shaping-signal noise ratio. 

Shaping-signal underdrive (the peak value the signal goes below zero) for both true

constant-fraction and amplitude-rise-time-compensated operation can be determined from 

Figure 1-5 (page 16) and is given by 

Ver (underdriveJ ( td < tr) = - ~npk f ( td I tr) and (4-5) 

Ver (underdriveJ ( td ~ tr ) = - Vinpk f · (4-6) 

Shaping-signal overdrive (the peak value the signal goes above zero) for both true-constant

fraction and amplitude-rise-time-compensated operation can also be determined from Figure 

1-5 (page 16) and is given by 

Ver< overdrive) = Vinpk (l - f) · (4-7) 

For true-constant-fraction operation with a typical fraction (f) of 20%, shaping-signal 

underdrive is 20% of the input-signal amplitude compared to 80% for the overdrive. Since 

comparator response-time is usually more dependent on signal overdrive than signal 

underdrive (discussed in Section 5), a larger comparator input overdrive is desirable. 

Shaping-signal zero-crossing slope can be determined from Figure 1-5 (page 16) and is 

given by 

K cf (true-constant-fraction i = Vin pk I tr and (4-8) 

Ker (amptitude-rise-time-compe.nsated1 = Vmpk (l- f) I tr · (4-9) 

Shaping-signal zero-crossing slope is equal to input-signal slope for true-constant-fraction 

operation and is 80% of the input-signal slope for amplitude-rise-time-compensated 

operation assuming a typical fraction of 20%. The preservation of input-signal slope at the 

shaping signal is an advantage of the delay-line CFD compared to the non-delay-line CFD 

circuits that will be discussed later. Signal slope is preserved because an ideal delay line 

provides time delay without limiting signal bandwidth. 

101 



Timing-Jitter Performance 

The timing-jitter performance of the CFD is found from the ratio of shaping-signal noise 

to shaping-signal slope at the timing crossing. The mean-square shaping-signal noise (from 

Figure 4-1) is given by 

(4-10) 

where a;in is the mean-square input noise (zero-mean Gaussian noise is assumed), <l\n (td) 

is the input-noise autocorrelation evaluated for a delay time equal to the constant-fraction 

delay td, and f is the fraction value [1]. The term <l\n (td) / a;in is the input-noise 

autocorrelation coefficient which has values between ±1 with a value of zero indicating no 

noise autocorrelation. CFD rms timing jitter is given by 

at (true-constant-fraction! "" 

avin~12 +/2 -2f¢>in(td)/ a;in 
and (4-11) 

~ 2 /2 2 a vinl + - 2/ cpin (td) I a vin 
at ( amplitude-rise-time-compensated) = V (1- /) 1 t ' 

znpk · r 

(4-12) 

where the denominator expressions are equal to the zero-crossing shaping-signal slope given 

in Equations 4-8 and 4-9, and Vinpk is the input signal amplitude. It is interesting to note 

that CFD timing jitter is greater than leading-edge-discriminator timing jitter for white 

input noise (¢>in (td) / a;;n is equal to zero for white input noise) because of additional noise 

introduced by the combination of the delayed and attenuated signals. Additionally, CFD 

timing jitter is greater for amplitude-rise-time-compensated operation compared to true

constant-fraction operation because of the lower shaping-signal slope at the timing crossing. 

For white input noise and true-constant-fraction operation at a fraction value of 20%, CFD 

(rms) timing jitter is only 2% higher than leading-edge-discriminator timing jitter. 

DC Baseline Effects on Timing Performance 

The CFD analysis previously considered assumes that signals start from a zero-level 

baseline. Actual circuits may have nonzero DC baseline levels due to AC coupling of high 

count-rate pulses or electronic-circuit offsets in cases where DC coupling or baseline restorer 

circuits are used. A DC baseline level causes the CFD timing crossing to shift from the 

theoretical value and contributes to time walk which is not theoretically present for zero-
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baseline levels. The shift in timing crossing due to DC baseline level can be determined 

from Figure 1-5 (page 16) by observing the DC shift in the shaping signal. 

The CFD timing crossing for linear-edge input signals having a DC baseline is given by 

tcf(true-constant-fractionJ = td + f tr - (Vbaseline I Vinpk)tr (l - f) and (4-13) 

tare ( amplitude-rise-time-compensated) = td / (l - f) -( Vbaseline f ~npk) tr , (4-14) 

where Vbaseline is the DC baseline level. The last term in each equation gives the shift in the 

timing crossing due to the DC baseline level. This timing shift varies with input-signal 

amplitude resulting in time walk for both true-constant-fraction and amplitude-rise-time

compensated operation where amplitude insensitivity would normally be present. 

Additionally, this timing shift varies with input-signal rise-time resulting in time walk for 

amplitude-rise-time-compensated operation where rise-time insensitivity would normally be 

present. 

Table 4-1 illustrates CFD timing error for varying-amplitude input pulses having a DC 

baseline. A signal rise-time (linear edge) of 10 ns, DC baseline level of 10 m V, constant

fraction delay of 10 ns, and fraction of 20% is used for the data in Table 4-1. This selection 

of delay and fraction value gives true-constant-fraction timing. The CFD timing error 

ranges from -0.8 ns to -0.08 ns for input levels of 100 mV to 1000 mV resulting in a time 

Table 4-1. Delay-Line CFD Timing Errors Caused by DC Baseline Error. 

vinpk Timing Error (from 12 ns) 

lOOmV -0.8 ns 

200mV -0.4 ns 

500mV -0.16 ns 

lOOOmV -0.08 ns 

Walk (100 mV- +0.72 ns 

1000 mV): 

Baseline= +10 mV, Signal Rise-Time (linear edge)= 

10 ns Constant-Fraction: Delay= 10 ns, Fraction= 20% 
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walk of +O. 72 ns over the input-signal range. This time walk is 7 .2% of the input-signal 

rise-time and illustrates that significant CFD timing degradation can occur for DC baseline 

levels considerably below the input-signal levels. 

Performance with Lowpass-Filtered Step Signals 

Description of Lowpass-Filtered Step Signals 

In the preceding discussion, CFD performance has been evaluated for linear-edge input 

signals. Although linear-edge signals are characteristic of coaxial semiconductor-detector 

signals for event interactions near the center of the depletion region [2, 3, 4], linear-edge 

signals are not characteristic of scintillation detector signals. 

As discussed in Section 3, scintillation detector signals consist of a nearly instantaneous 

rise followed by an exponential decay which is characteristic of the scintillator. Since timing 

is usually derived on the leading-edge of the detector signal, the detector signal can be 

approximated as a step input filtered by a lowpass filter representing the response of the 

light detector (photomultiplier tube or photodiode detector) and subsequent amplification 

circuits. Both single- and two-pole lowpass-filtered step inputs will be considered for CFD 

performance. It will be assumed that both a step input and white-noise source are lowpass 

filtered to produce an input signal with noise that is characteristic of the signal bandwidth. 

Delay-line CFD performance is catalogued in Appendix A - Catalog of Normalized CFD 

Performance for Lowpass-Filtered Step Inputs for single- and two-pole lowpass-filtered step 

inputs. A discussion of the characteristics of single- and two-pole lowpass-filtered step 

inputs follows. 

The lowpass-filtered step-input signals are described in Laplace notation by 

(4-15) 

V;n (two-poleinput/s)= V;npk[ s(l+st~n / J:i)'] • (4-16) 

where tin is the time-constant associated with input bandwidth limiting, and Vinpk is the 

peak input-signal amplitude. The time-constant associated with each pole for the two-pole 

input is reduced by the square-root-of-two from the composite input-signal rise-time (tin> to 

maintain a nearly equal signal rise-time (10 - 90%) for both the single- and two-pole inputs. 
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The time-domain input signals are found from the inverse Laplace transforms of Equations 

4-15 and 4-16 and are given by 

Vin ( single-pole input) (t) = ~npk ( 1- e -tit;,, ) U(t) and (4-17) 

Vin (two-pole input) (t) = ~npk ( 1- e -Jitlt;,, (1 + 12 t I tin)) u(t) · (4-18) 

Peak input-signal slope is found from the maximum value of the input-signal time 

derivative and is given by 

Kinpk (single-pole input/t = 0) = Vinpk I tin and (4-19) 

Kinpk (two-pole input) (t = (n f ./2) = 12 e-l ~npk f (n · (4-20) 

The peak input-signal slope for the single-pole input occurs at 0% of the amplitude (at the 

beginning); the peak input-signal slope for the two-pole input occurs at 26.4% of the 

amplitude. The peak input-signal slope for the two-pole input is equal to 52% of that for the 

single-pole input, each input signal having the same composite time-constant, tin. 

The noise present with the lowpass-filtered step input is described by noise-power 

spectral density as 

2 
[ 1 l s,n (.single-pole input y( 0)) = e; 1 + ( 0) t,n ) 2 J and (4-21) 

e

2 

[ 1 l sin (two-pole input) (w) = ; ( 2 )2 
l+(c:otin I .fi.) .J 

(4-22) 

where en is the single-sided input-noise density for the lowpass-filtered white-noise source. 

The total mean-square noise present with the lowpass-filtered step input is given by 

00 

(j~in = in J sin (c:o)dc:o ' or (4-23) 
-00 
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2 
2 _ en 

a vin (single-pole input) - # ' and 
in 

') 

2 _ e; 
a vin (two-pole input) - Bt 1 

in I" 2 

(4-24) 

(4-25) 

The total rms input-signal noise for the two-pole input is 84.1 % of that for the single-pole 

input, each input-signal having the same composite time-constant, tin· 

The minimum timing jitter associated with the single- and two-pole step inputs is equal 

to the total rms input noise divided by the peak input-signal slope. The minimum timing 

jitter is given by 

a tin (min, single- pole input) (t = 0) , or 

en /i:: 
a tin (min, single-pole input) (t = 0) = 

2 
V , and 

inpk 

O"tin (min, two-pole input) (t = tin f /2) = 

I e~ 
~8~ 
12e-1_~npk 

tin 

en ~tin I 12 
0"1in (min, two-pole input) (t = (n / 12) = 

2 
~ -1 V 

.J 2 e inpk 
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The minimum rms timing jitter for the two-pole input signal is 161. 7% of that for the single

pole input signal, each input signal having the same composite time-constant, tin· The 

increase in timing jitter is due to the lower peak slope for the two-pole input signal. 

Derivation of Shaping Signal 

The CFD circuit model in Figure 4-1 will be used t.o find the shaping signal for single

and two-pole step-input signals. The shaping signal can be found from the CFD input signal 

and transfer function Hc/sJ as shown in Figure 4-1. The transfer function for the delay-line 

CFD is given by 

(4-30) 

where td is the constant-fraction delay and f is the fraction. The shaping signal for the 

single-pole step input (Equations 4-15 and 4-17) and the transfer function (Equation 4-30) is 

given by 

(4-31) 

Equation 4-31 can be rewritten for time before and after the constant-fraction delay giving 

(4-32) 

(4-33) 

The shaping signal for the delay-line CFD along with full circuit-performance data is 

given in Appendix A - Catalog of Normalized CFD Performance for Lowpass-Filtered Step 

Inputs. Additionally, Appendix A contains full circuit-performance data for non-delay-line 

CFDs that will be introduced later. The delay-line CFD data of Appendix A will be referred 

t.o in the following discussion. Later in this section, after introduction of the non-delay-line 

CFDs, a comparison of delay-line and non-delay-line CFD performance will be given. 

Both a single-pole step input and the corresponding CFD shaping signal is shown in 

Figure A-1 (page 262) as a function of time (t/tin) normalized t.o the input signal time

constant. A constant-fraction delay was chosen t.o give a zero-crossing time equal t.o twice 

the input-signal time-constant <tcr= 2tin) for a fraction value of 20%. In Figure A-7 (page 

107 



266), a two-pole step input and the corresponding CFD shaping signal is shown. Again, a 

constant-fraction delay was chosen to give a zero-crossing time equal to twice the input

signal time-constant (tcf = 2tin) for a fraction value of 20%. The signals shown in Figures A

l and A-7 illustrate CFD shaping of unipolar input pulses into bipolar timing pulses with 

clearly defined zero-crossing times. 

Zero-Crossing Time 

Equation 4-33 is used for finding delay-line CFD zero-crossing time for single-pole step 

inputs. The zero-crossing time is greater than the constant-fraction delay (td) since the 

shaping signal is negative for times less than the constant-fraction delay. The zero-crossing 

time can be solved in closed form for the single-pole step input because only one simple 

exponential term is present. The zero-crossing time is given by 

(4-34) 

The CFD timing crossing given in Equation 4-34 for a single-pole step input is 

independent of the input-signal amplitude but is not independent of the input-signal time

constant (tin) or the input-signal 10 - 90% rise-time (--2.2tin). It will be shown later that 

there is no constant-fraction delay (td > 0) or fraction (0 < f < 1) that will give rise-time 

independent timing as was available for linear-edge input signals (using the amplitude-rise

time-compensated mode). 

The CFD timing crossing for single-pole step inputs (Equation 4-34) is shown in Figure 

A-2 (page 262) as a function of the constant-fraction delay (td) and fraction (f). Both the 

CFD timing crossing (tctf tin) and the constant-fraction delay (td/tin) are normalized to the 

input-signal time-constant (tin>· Since CFD shaping-network design is a filter design 

problem, normalization typical of filter design is advantageous to permit rapid scaling of 

circuit performance for any input-signal time-constant. 

In addition to the CFD timing crossing for single-pole step inputs (Figure A-2, page 262), 

the timing crossing for two-pole step inputs is shown in Figure A-8 (page 266). The timing 

crossing for both the single-pole and two-pole step inputs was found numerically by 

specially-developed computer programs that initiated SPICE runs to generate CFD shaping 

signals. The programs then performed analysis to find the zero-crossing time, signal 

underdrive, zero-crossing slope, output noise, and timing jitter. Although closed-form 
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analysis is available for the zero-crossing time for single-pole step inputs, no closed-form 

analysis is available for two-pole step inputs which mandates the use of numerical analysis. 

The CFD timing crossing for single-pole step inputs (Figure A-2, page 262) and two-pole 

step inputs (Figure A-8, page 266) increases monotonically with constant-fraction delay time 

(td) because the shaping signal cannot zero cross until after the delayed signal is present. 

The timing crossing increases monotonically with fraction value (f) because a higher fraction 

value corresponds to triggering on a higher fraction of the delayed signal. 

The variation in CFD timing crossing with varying input-signal time-constant or 

10 - 90% rise-time ( .... 2.2tin) can be determined in closed form for the single-pole step input. 

This is done by differentiating Equation 4-34 with respect to the input-signal time-constant 

giving 

(4-35) 

Although not obvious, the timing sensitivity to input-signal time-constant given by 

Equation 4-35 has a value of zero for normalized constant-fraction delay (td/tin) equal to 

zero and increases monotonically for increasing values of normalized constant-fraction delay 

for all allowable fraction values (0 < f < 1). This indicates that no CFD delay or fraction 

value is available for rise-time insensitive timing operation. 

A plot of timing sensitivity to input-signal time-constant (Equation 4-35) is shown in 

Figure 4-2 as a function of normalized constant-fraction delay for a fraction (f) of 20%. The 

timing sensitivity to varying input-signal time-constants is minimum for minimum 

normalized CFD delay which is consistent with the shorter delay required for 

(amplitude-)rise-time-compensated timing with linear-edge input signals compared to 

nonrise-time-compensated timing (true-constant-fraction timing). It will be shown later 

that optimum statistical timing performance for scintillation detectors also occurs at 

minimum constant-fraction delay. Both input-signal time-constant sensitivity and detector 

statistical errors are minimized for "short" constant-fraction delays because timing occurs 

early on the signal. Unfortunately, as will be illustrated later, CFD shaping-signal level, 

shaping-signal slope, and timing jitter are not optimum for arbitrarily short constant

fraction delays. 

The timing sensitivity to input-signal time-constant (Figure 4-2) for a single-pole step 

input is 12.5% for a fraction value of 20% and a constant-fraction delay (td = 1.805tin) that 
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gives a zero-crossing time (tcf = 2tin) of twice the input-signal time-constant. This indicates 

a timing error of approximately +56.8 ps (0.454 ns x 0.125) for an input-signal rise-time 

(10 - 90%) increase of 1 ns corresponding to an input-signal time-constant increase of 

0.454 ns (1 ns/2.2). In order to estimate timing sensitivity to input-signal time-constant, it is 

necessary to ensure that the change in input-signal time-constant is sufficiently small to 

maintain operation over a linear portion of the CFD timing crossing given in Equation 4-34. 

Shaping-Signal Amplitude and Slope 

CFD shaping-signal underdrive (the peak value the signal goes negative) for single-pole 

step inputs occurs at time equal to the constant-fraction delay (t = td) and is given from 

Equation 4-32 or 4-33 as 

V - V f(l -tdt!u.) cf ( underdrive) - - inpk - e . (4-36) 

CFD shaping-signal underdrive is shown in Figure A-3 (page 263) for single-pole step

input signals and in Figure A-9 (page 267) for two-pole step-input signals. Shaping-signal 

underdrive is shown for different fraction values (j) as a function of constant-fraction delay 

(td I tin) normalized to input-signal time-constant. Shaping-signal underdrive 

(Vcf(underdrive/Vinpk) is normalized to the input-signal amplitude to illustrate the relative 

amount of underdrive present. 

CFD shaping-signal underdrive (Figures A-3, page 263 and A-9, page 267) increases 

monotonically (negatively) with increasing constant-fraction delay and fraction for both 

single-pole and two-pole step inputs. Additionally, the normalized shaping-signal 

underdrive for both single-pole and two-pole step inputs approaches a maximum value of -f 

for constant-fraction delays greater than 5tin· Although the shaping-signal underdrive is 

similar for both single-pole and two-pole step inputs, the underdrive is lower at low values 

of constant-fraction delay (td/tin < 2) for two-pole step inputs because of the signal delay 

present in two-pole step-input signals (this can been seen in a comparison of Figures A-1, 

page 262, and A-7, page 266). Shaping-signal underdrive is (-)16. 7% and (-)12.6% of the 

input-signal amplitude respectively for single- and two-pole step-input signals for a fraction 

value of 20% and a constant-fraction delay that gives a zero-crossing time of twice the input

signal time-constant (tcf = 2tin). 

CFD shaping-signal overdrive occurs for time approaching infinity and is given from 

Equation 4-33 as 
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vcf ( overdrive) = ~npk (1 - f) . (4-37) 

Shaping-signal overdrive is equal to the CFD DC gain multiplied by the input-signal 

amplitude. Shaping-signal overdrive normalized to input-signal amplitude is simply equal 

to the CFD DC gain (1 - f) and is not plotted in the data contained in Appendix A. 

The CFD shaping-signal zero-crossing slope is found from the time-derivative of the 

shaping signal (Equation 4-33) and is given for single-pole step inputs by 

(4-38) 

Only times greater than the constant-fraction delay time (t > td) are considered since the 

zero-crossing occurs after the delayed signal appears at the output of the delay line. The 

shaping-signal zero-crossing slope, found by evaluating Equation 4-38 for the zero-crossing 

time given in Equation 4-34, is given by 

(4-39) 

The zero-crossing slope is independent of the constant-fraction delay and is equal to the 

input-signal slope at the fraction (f) of the input-signal amplitude. As illustrated for the 

case of linear-edge inputs, the delay-line CFD essentially preserves input-signal slope for 

the typical fraction of 20%. 

CFD shaping-signal zero-crossing slope is shown in Figure A-4 (page 263) for single-pole 

step-input signals and in Figure A-10 (page 267) for two-pole step-input signals. Zero

crossing slope is shown for different fraction values (f) as a function of constant-fraction 

delay normalized to input-signal time-constant (td/tin). Additionally, zero-crossing slope 

(Kc/Kinpk) is normalized to the peak input-signal slope to illustrate the degradation of input

signal slope present. 

Shaping-signal zero-crossing slope for single-pole step inputs (Figure A-4, page 263) is, 

as mentioned, independent of the constant-fraction delay. The zero-crossing slope (Equation 

4-39), when normalized to the peak input-signal slope, is simply equal to (1 - f) since the 

peak input-signal slope is Vinpk/tin (Equation 4-19). Shaping-signal zero-crossing slope for 

two-pole step inputs (Figure A-10, page 267) increases monotonically with increasing 

constant-fraction delay and generally peaks for fraction values between 20 - 40% which is in 
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the vicinity of input-signal amplitude (26.4%) where signal slope is maximum. The zero

crossing slope is equal to 80% and 85.2% of the peak input-signal slope respectively for 

single- and two-pole step-input signals for a fraction value of 20% and a constant-fraction 

delay that gives a zero-crossing time of twice the input-signal time-constant (tcf = 2tin). 

Timing-Jitter Performance 

The mean-square shaping-signal noise (Equation 4-10) is given by 

(4-40) 

where a;in is the mean-square input noise (zero-mean Gaussian noise is assumed), <l\n (td) 

is the input-noise autocorrelation evaluated for a delay time equal to the constant-fraction 

delay td, and f is the constant-fraction fraction [1]. The term <l\n (td) / a~in is the input-noise 

autocorrelation coefficient which, for the single-pole input noise-power spectral density 

given in Equation 4-21, is given by 

2 e-ltd 11t;,, 
rn (t ) / 2 cr vin 
"Yin d a vin = ---2-- or 

avin 
(4-41) 

,h. (t ) / 2. = e-1tdl!t;,, 
"Ym d avm . (4-42) 

The absolute-value operation in the preceding equations is included for mathematical 

completeness even though the constant-fraction delay is physically positive. Substituting 

Equation 4-42 into Equation 4-40 gives the shaping-signal mean-square noise which is 

expressed as 

(4-43) 

The shaping-signal rms noise can be normalized to the input-signal rms noise to illustrate 

the relative increase or decrease in rms noise caused by the CFD shaping network. The 

normalized shaping-signal rms noise for a single-pole step input is given by 

0
vcf =Jl2 +{2 _ 2 fe-ltdl!t;,, 

avin 
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Normalized CFD shaping-signal rms noise is shown in Figure A-5 (page 264) for single

pole input noise and in Figure A-11 (page 268) for two-pole input noise. The normalized 

noise is shown for different fraction values (f) as a function of normalized constant-fraction 

delay (td/tin>· Shaping-signal noise increases with increasing constant-fraction delay 

because of reduced correlated-noise cancellation in the attenuated-signal and delayed-signal 

path. Shaping-signal noise increases most dramatically with increasing constant-fraction 

delay for large fraction values because of significant correlated-noise cancellation at short 

delay values changing to significant uncorrelated-noise addition at long delay values. The 

normalized output rms noise is 98. 7% and 94.4% respectively for a single- and two-pole 

input noise source for a fraction value of 20% and a constant-fraction delay that gives a 

zero-crossing time of twice the input-signal time-constant (tcf = 2tin>· 

Timing jitter for the single-pole step input is found from the shaping-signal noise 

(Equation 4-44) divided by the shaping-signal zero-crossing slope (Equation 4-39) and is 

given by 

(4-45) 

In Equation 4-45, shaping-signal slope is assumed to be constant over the range of noise 

about the timing crossing. 

It is convenient to normalize the timing jitter to the minimum input-signal jitter which 

is equal to therms input noise (avin) divided by the peak input-signal slope. The minimum 

input-signal jitter for the single-pole step input is given by 

O'tin (min)= V /t. , 
mpk m 

O'vin (4-46) 

where the denominator expression is equal to the peak input-signal slope (Equation 4-19) 

which occurs at time equal to zero for the single-pole exponential-rise input signal. The 

normalized CFD timing jitter is then given by Equation 4-45 divided by Equation 4-46 and 

is expressed as 

ate{ J12 + /2 -2{ e-ltdl/tin 

= 
a tin (min) l- f 

(4-47) 
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Normalized CFD timing jitter is shown in Figure A-6 (page 264) for the single-pole step 

input and in Figure A-12 (page 268) for the two-pole step input. The normalized jitter is 

shown for different fraction values (/) as a function of normalized constant-fraction delay 

(td/tin). Normalized timing jitter for the single-pole step-input signal is equal to unity for 

zero delay and fraction and increases monotonically with increasing delay and fraction. 

Operation at zero delay and fraction corresponds to timing on the beginning of the input 

signal where the slope is maximum. In contrast to the single-pole step input, normalized 

timing jitter for the two-pole step input reaches a minimum for non-zero delay and fraction. 

The delay and fraction associated with this minimum ensures timing operation near the 

maximum input-signal slope which occurs at 26.4% of the input-signal amplitude. The 

normalized timing jitter is 123.4% and 110.9% respectively for the single-pole and two-pole 

step inputs for a fraction value of 20% and a constant-fraction delay that gives a zero

crossing time of twice the input-signal time-constant (tcr= 2tin). The advantages of timing 

with no amplitude sensitivity and with reduced rise-time sensitivity come at the expense of 

an increase in timing jitter over the minimum input-signal timing jitter. 

DC Baseline Effects on Timing Performance 

As discussed earlier, CFD zero-crossing time shifts from the theoretical time if a nonzero 

input-signal DC-baseline level is present. The shift in zero-crossing time can be expressed 

for the delay-line CFD by 

- Vbaseline (1- f) 
Mer ( due t;o input DC baseline) = K 

cf 

(4-48) 

where (1 - f) is the DC gain from the input-signal to the shaping-signal and Ker is the 

shaping-signal zero-crossing slope for the input-signal under evaluation. In Equation 4-48, 

the shaping-signal zero-crossing slope is assumed to be constant between the theoretical 

zero-crossing point and the baseline-shifted zero-crossing point. 

The shift in CFD zero-crossing time is -0.455 ns and -0.821 ns respectively for a 100-m V 

single- and two-pole input signal having a +10 mV DC baseline level. This example assumes 

a CFD fraction value of 20%, a constant-fraction delay that gives a zero-crossing time of 

twice the input-signal time-constant (tcf = 2tin), and an input-signal time-constant of 

4.545 ns (10 - 90% rise-time of 10 ns). The increased zero-crossing time shift is present for 

the two-pole input signal because of the lower shaping-signal slope at the zero-crossing 

timing point. 
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Nowlin (Non-Delay-Line) CFO 

Nowlin discovered a class of non-delay-line shaping circuits which produce output 

signals with zero-crossing times that are independent of input-signal amplitude and rise

time for linear-edge input signals [5, 6]. These circuits operate by differencing an 

attenuated version of the input signal with a differentiated version. The resultant shaping 

signal has zero-crossing time which is insensitive to input-signal amplitude and rise-time, 

provided the zero-crossing time occurs on the leading edge of the linear-edge input signal. 

The requirement of timing along the leading edge of a linear-edge input signal is also 

necessary for amplitude-rise-time-compensated timing using the delay-line CFD. 

In addition to zero-crossing time that is independent of input-signal amplitude and rise

time for linear-edge signals, the (Nowlin) shaping-signal zero-crossing time is insensitive to 

input-signal amplitude for nonlinear-edge input signals of fixed, arbitrary shape. Shaping

signal zero-crossing time is independent of input-signal amplitude for all linear bipolar 

shaping circuits having input signals of fixed, arbitrary shape. 

The simplest implementation of the Nowlin CFD consists of a single-pole highpass filter 

(acting as an approximate differentiation network) combined with an attenuation and 

differencing circuit. A circuit model of this implementation is shown in Figure 4-3. 

Since the timing zero crossing occurs on the leading-edge of the input signal, it is 

necessary to consider only the leading-edge of the input signal for analysis of the Nowlin 

CFD. The leading edge of the input signal is described in the time and Laplace domains as 

(4-49) 

V ( ) = ~npk l 
znS t 2' 

r S 

(4-50) 

where Vinpk is the peak input-signal amplitude (occurring at t = tr> and tr is the input-signal 

linear-edge rise-time. 
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The transfer function for the Nowlin CFD is found from Figure 4-3 and is given by 

[ 
(l·fJJ 1-std f 

Her (s) = f 1 ' 
+std 

(4-51) 

where f is the attenuation gain and td is the time-constant associated with the single-pole 

highpass network. This transfer function has a right-half-plane real zero and a left-half

plane real pole. Nowlin reported that only a single right-half-plane real zero is required in 

the shaping-network transfer function to give output signals with zero-crossing times that 

are insensitive to input rise-time (and, of course, amplitude) for linear-edge input signals [5, 

6]. 

The shaping signal for the Nowlin CFD with linear-edge input signals is represented in 

Laplace notation as the product of the input-signal (Equation 4-50) and the shaping-network 

(Equation 4-51) Laplace expressions. The time-domain shaping signal is found from the 

inverse Laplace transform of this product and is given by 

(4-52) 

The shaping signal given by Equation 4-52 starts from a value of zero (at t = 0) and must 

go negative before making a positive-going zero crossing. An initial negative signal swing 

(underdrive) requires that the fraction (/) be less than unity, and a positive-going zero 

crossing requires that the fraction be greater than zero. In addition, the positive-going zero 

crossing must occur during the input-signal rise-time placing a further restriction on the 

fraction value. The range of acceptable values for the fraction are described by 

0 < f < l and (4-53) 

(4-54) 
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where the fraction and single-pole highpass-filter time-constant must be selected based on 

the smallest expected input-signal rise-time. Under the constraints given, the zero-crossing 

time occurs for time greater than zero and time less-than-or-equal-to the input-signal rise

time. The zero-crossing time occurs when Equation 4-52 is equal to zero and is found by 

solving for the time when the right-hand bracketed expression is equal to zero. Clearly, the 

zero-crossing time is not a function of either the input-signal amplitude (Vinpk) or the rise

time (tr), illustrating that the zero-crossing time is insensitive to input-signal amplitude and 

rise-time for linear-edge input signals. As can be seen from Equation 4-52, the zero-crossing 

time can not be solved in closed form; the zero-crossing time must be solved numerically. 

It will be shown later that the Nowlin shaping-circuit transfer function is equal in form 

to the transfer function of one circuit in a class of Binkley timing-shaping circuits, even 

though the Binkley circuits do not utilize differentiator or approximate differentiator 

elements. The performance of the Nowlin shaping circuit for lowpass-filtered step inputs 

can be determined from the performance data given later for the analogous Binkley shaping 

circuit. Additionally, an illustration of rise-time insensitive timing will be given later for the 

analogous Binkley shaping circuit. 

As mentioned in Section 1, Tanaka recently reported what is believed to be the first 

fully-monolithic CFD [7]. This circuit, fabricated in bipolar transistor technology, operates 

by differencing an attenuated version of the input signal and a single-pole highpass-filtered 

version. This circuit topology is the topology reported by Nowlin. The monolithic CMOS 

CFD reported later in this work uses the Binkley timing-shaping circuit topology that is 

believed to be previously unreported. Additionally, this circuit is believed to be the first 

reported, fully monolithic CMOS CFD. 

Binkley (Non-Delay-Line) CFD 

Description 

A class of non-delay-line timing-shaping circuits, believed to be previously unreported, 

was developed independently and prior to knowledge of the Nowlin timing-shaping circuits. 

This class of circuits (described as Binkley CFD circuits) operates by subtracting an 

attenuated version of the input signal from a low pass-filtered (integrated) or allpass-filtered 

version. The resultant bipolar shaping signal has zero-crossing time that is independent of 

input-signal amplitude for arbitrary, fixed-shape input signals. Additionally, for some 

shaping-circuit configurations, the zero-crossing time is independent of input-signal 

amplitude and rise-time for linear-edge input signals. 
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The Binkley CFD circuit (Figure 4-4) is architecturally opposite of the Nowlin circuit 

(Figure 4-3) since the Binkley circuit utilizes lowpass (integrator) or allpass elements 

instead of the highpass (differentiator) elements utilized in the Nowlin circuit. Additionally, 

the attenuated signal is subtracted from the filtered signal in the Binkley circuit compared 

to the subtraction of the filtered signal from the attenuated signal in the Nowlin circuit. 

The Binkley CFD was initially developed to provide timing that is insensitive to input

signal amplitude for input signals of fixed shape. As mentioned earlier, shaping-signal zero

crossing time is independent of input-signal amplitude for all linear bipolar shaping circuits 

having input signals of fixed, arbitrary shape. Fixed rise-time input signals were initially 

considered because scintillation-detector output signals have fixed rise-time, excluding the 

effects of detector statistical fluctuations. It was later discovered, that the zero-crossing 

time for the Binkley CFD is, in fact, insensitive to input-signal rise-time for linear-edge 

input signals provided that the timing point occurs somewhere along the linear-edge of the 

input signal. The rise-time insensitivity is a direct result of a single right-half-plane real 

zero which, like the Nowlin CFD, is present in the shaping-circuit transfer function. 

Development of Delay-Line Approximation Filters 

The Binkley CFD was developed by replacing the delay line in the delay-line CFD with 

a delay-line approximation filter. An ideal delay-line is a linear-phase, allpass filter having 

constant amplitude response but linearly increasing phase shift with frequency. The group 

delay (the derivative of the phase response with frequency) of an ideal delay line is equal to 

the delay of the delay line and is constant for all frequencies, indicating that all input

frequency components are delayed equally in time. Additionally, the characteristic of linear 

phase or constant group delay results in overshoot-free transient response for the ideal 

delay line. This can be illustrated for a square-wave input since the square-wave frequency 

components (fundamental and odd harmonics) are delayed equally in time and sum to 

produce an output signal having no overshoot. 

Delay-line approximation filters are designed for linear-phase response and constant

amplitude response over some limited frequency range [8, 9]. Above this frequency range, 

the phase shift deviates from a linear-phase response and the amplitude response deviates 

from a constant response. 

The major specification for delay-line approximation-filter performance is the delay

time, bandwidth product [8, 9]. A high (much greater than unity) delay-time, bandwidth 

product corresponds to a filter having delay that greatly exceeds the filter rise-time. 

Fortunately, the delay time required for the delay-line CFD circuit is in the order of the 
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input-signal rise-time. As a result, the delay-time, bandwidth product required for a delay

line approximation filter is relatively low (in the range of 1 - 5). Delay-line approximation 

filters with delay-time, bandwidth products in this range can be designed using relatively 

low-order (fourth-order or less) allpass networks in contrast to the high-order networks 

typically used for commercial delay-line approximation filters. 

In addition to allpass filters, delay-line approximation filters can be composed of linear-

phase lowl)ass filters. The major disadvantage of lowpass filters for delay-line 

approximation filters is the low delay-time, bandwidth product compared to allpass filters. 

The improved delay-time, bandwidth product of allpass filters is due to the presence of 

right-half-plane zeros which are mirror images of the left-half-plane poles present. As a 

result of the mirror-image right-half-plane zeros, the allpass filter provides constant 

magnitude response while providing increasing phase shift with frequency. Although the 

magnitude response of allpass filters is constant, signal distortion (undershoot, overshoot) 

will occur for input-signal frequency components that are above the linear-phase frequency 

limit. This distortion can be minimized by limiting the input-signal bandwidth for the 

allpass filter. 

The first-order or single-pole lowpass filter response is given in Laplace notation as 

H(s)=~, (4-55) 
S + (l)n 

where wn is the critic.al frequency associated with the pole (also the -3 dB frequency). The 

first-order allpass filter is synthesized by the addition of a mirror-image right-half-plane 

zero. The first-order allpass filter response is then given by 

H(s)=-r· s-wn J ' 
S + (l)n 

(4-56) 

where negation is present in the expression to permit positive DC gain. As illustrated in 

Equation 4-56, the magnitude response for the first-order allpass filter is constant with 

frequency while the phase shift increases with frequency. Additionally, the phase shift (for 

any frequency) present in the first-order all pass filter is twice that of the first-order lowpass 

filter. The first-order allpass filter response can be obtained by subtracting the input signal 

from a first-order lowpass-filtered version of the input signal where the lowpass filter gain is 

equal to two. 
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The second-order or two-pole lowpass filter response (all-pole lowpass filters are 

assumed) is given in Laplace notation as 

(4-57) 

where con is the natural frequency and Q (1/(2()) is the quality factor associated with the 

pair of poles. The second-order allpass filter is synthesized by the addition of mirror-image 

right-half-plane zeros. The second-order allpass filter response is then given by 

(4-58) 

Like the first-order allpass filter, the magnitude response for the second-order allpass filter 

is constant with frequency while the phase shift increases with frequency. Additionally, the 

phase shift (for any frequency) present in the second-order allpass filter is twice that of the 

second-order lowpass filter. The second-order allpass filter response can be obtained by 

subtracting a second-order bandpass-filtered version of the input signal from the input 

signal where the bandpass filter gain is equal to two. 

Second- and higher-order filters can be designed for Gaussian, Bessel, Butterworth, 

Chebyshev, etc., responses by the selection of pole locations (and mirror-image right-half

plane zeros for the case of allpass filters). In practice, the desired second-order filter 

response is obtained by the selection of second-order natural frequency (con) and quality 

factor (Q). Third- and higher-order filters are obtained by cascaded second-order sections, 

with a single first-order section required if the composite filter order is numerically odd. 

Tables giving the natural frequency and quality factors for cascaded filter sections are given 

in the classic filter book by Zverev [8] and the more recent book by Williams [9]. Filter 

synthesis details are also available in many other filter books and electrical-engineering 

reference books. 

Delay-line approximation filters, for the CFD application considered, will be evaluated 

for a two-pole lowpass-filtered step-input signal. As discussed earlier, the linear-edge signal 

is not representative of scintillation-detector signals. Similarly, the high initial slope of the 

single-pole lowpass-filtered step-input signal is not representative of PET scintillation

detector timing signals because of the presence of more than one significant bandwidth

limiting pole in the system response. The input signal considered is the same normalized 
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two-pole lowpass-filtered step-input signal considered earlier for delay-line CFD analysis. 

The composite time-constant for the input signal considered is one-second (tin= l s) and the 

rise-time (10 - 90%) is approximately 2.2 seconds (2.2tin). 

The delay-line approximation filters considered are designed to give delays (at the 50% 

output point) of one second for the normalized two-pole lowpass-filtered step-input signal. 

This delay is equal to approximately one-half the input-signal rise-time which is relatively 

"short" for constant-fraction operation and corresponds to amplitude-rise-time-compensated 

operation for the delay-line CFD having the typical fraction of 20%. It will be shown later 

that "short" CFD operation, where timing is developed during the input-signal rise-time, is 

desirable for good scintillation-detector statistical timing performance. 

Both lowpass and allpass delay-line approximation filters are considered of first-order, 

second-order, and fourth-order design. Additionally, Gaussian, Bessel, and Butterworth 

responses are considered for the second- and fourth-order designs. Synthesis details for the 

delay-line approximation filters are given in Table 4-2. 

The two-pole lo¥.rpass-filtered step input and resulting output signals are shown in 

Figure 4-5 for the first-order lowpass and allpass delay-line approximation filters. Each 

filter provides a one-second signal delay but the allpass-filter output-signal slope is close to 

that of the input signal while the lowpass-filter output-signal slope is considerably lower. 

The higher allpass-filter output-signal slope is a result of allpass filter gain that does not roll 

off with frequency. Higher output-signal slope, assuming equivalent circuit noise levels, is 

advantageous for minimizing timing jitter. Additionally, higher output-signal slope is 

advantageous for minimizing comparator walk errors. The output-signal slope for the first-, 

second-, and fourth-order lowpass and allpass delay-line approximation filters considered 

will be compared later. 

The first-order allpass filter output has considerable negative undershoot (Figure 4-5) 

since input-signal components are present at frequencies above the linear-phase frequency 

limit and these input-signal components are not lowpass filtered. Although this negative 

undershoot is undesirable for a delay-line approximation filter, the allpass-filter output 

signal is precisely what is desired for a CFD timing-shaping signal: a bipolar signal that 

initially goes negative followed by a zero-crossing with signal slope comparable to the input

signal slope. It will be shown later that there are special configurations of the Nowlin and 

Binkley CFD shaping circuits that exhibit a first-order allpass filter response. 

The group delay for the first-order lowpass and allpass delay-line approximation filters 

is shown in Figure 4-fi. The group delay at DC for both filters is approximately one second 
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Table 4-2. Synthesis Details for Delay-Line Approximation Filters. 

Filter Type Synthesis Details I 

1st-order Lowpass ffin = 0.95 rad/s 

1st-order Allpass ffin = 1.9 rad/s 

2nd-order Lowpass, Gaussian ffin = 1.46 rad/s ( ./2 (1.45) rad/s ea. pole) 

2nd-order Lowpass, Bessel ffin = 1.46 rad/s, Q = 0.578 

2nd-order Lowpass, Butterworth ffin = 1.6 rad/s, Q = 0.707 

2nd-order Allpass, Bessel (J)n = 3.48 rad/s, Q = 0.578 

4th-order Lowpass, Gaussian ffin = 2.07 rad/s ( ..f4 (2.07) rad/s ea. pole) 

4th-order Lowpass, Bessel ffin = 2.22 rad/s, 

1st section: (J)n = (2.22)(1.419) rad/s, Q = 0.522 

2nd section: ffin = (2.22)(1.591) rad/s, Q = 0.806 

4th-order Lowpass, Butterworth ffin = 2. 76 rad/s, 

1st section: ffin = (2.76)(1.0) rad/s, Q = 0.541 

2nd section: ffin = (2.76)(1.0) rad/s, Q = 1.307 

4th-order Allpass-Lowpass Combination, Bessel Allpass section: ffin = 4.85 rad/s, Q = 0.578 

Lowpass section: ffin = 4.85 rad/s, Q = 0.578 

Filter delay (to 50% output point) is 1 s. 

Filter input is two-pole lowpass-filtered step input with composite time-constant ofl s (0.707 sea. pole). 

with the allpass filter having a bandwidth of constant group delay (linear phase) that is 

approximately twice that of the lowpass filter. The gain response for both the lowpass and 

allpass filters is shown in Figure 4-7. The gain of the both filters is unity at DC but the gain 

for the lowpass filter rolls off at frequencies above the cutoff frequency. The gain of the 

allpass filter is constant with frequency, the filter providing only phase shift. 

The two-pole lowpass-filtered step input and resulting output signals are shown in 

Figure 4-8 for the second-order lowpass and allpass delay-line approximation filters. Each 

filter provides a one-second signal delay, but as was the case with the first-order filters, the 
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allpass-filter output-signal slope is close to that of the input signal while the output-signal 

slope of the lowpass filters is somewhat lower. Unfortunately, the allpass-filter output 

signal goes positive initially, which is not desirable for either the application of delay-line 

replacement in a CF'D circuit or the application as a complete timing-shaping circuit. In 

both cases, the initial positive-going signal can cause a shallow zero-crossing prior to the 

main zero-crossing. 

The second-order lowpass-filter output signals (Figure 4-8) are nearly equal for the 

Gaussian, Bessel, and Butterworth cases, with the output-signal slopes also being nearly 

equal. The output-signal slope for the Gaussian filter is the lowest, the output-signal slope 

for the Butterworth filter is the highest, and the output-signal slope for the Bessel filter is 

between that of the Gaussian and Butterworth filters. 

The group delay for the second-order lowpass and allpass delay-line approximation 

filters is shown in Figure 4-9. The group delay at DC for all filters is approximately one 

second, with the allpass filter having a bandwidth of constant group delay (linear phase) 

that is considerably higher than that of the lowpass filters. Both the Bessel lowpass filter 

and the allpass filter (also of Bessel design) have maximally flat group delay characteristics 

without group-delay peaking. In contrast, the Gaussian lowpass filter has group delay that 

begins rolling off earlier in frequency, and the Butterworth lowpass filter has considerable 

group-delay peaking. Output-signal overshoot for the Butterworth filter, normally present 

for step inputs, is not observed (for the times shown in Figure 4-8) because of limited 

bandwidth of the two-pole lowpass-filtered step-input signal. 

The gain response for the second-order lowpass and allpass filters is shown in Figure 4-

10. The gain of all filters is unity at DC but the gain for the lowpass filters rolls off at 

frequencies above the cutoff frequency. The Butterworth lowpass filter has maximally flat 

gain response, whereas the Bessel and Gaussian lowpass filters have gain that rolls off 

earlier in frequency. Again, like the first-order allpass filter, the gain of the second-order 

allpass filter is constant with frequency, the filter providing only phase shift. 

The two-pole lov;rpass-filtered step input and resulting output signals are shown in 

Figure 4-11 for the fourth-order lowpass and allpass-lowpass delay-line approximation 

filters. The allpass-lowpass filter consists of a second-order allpass filter combined with a 

second-order lowpass filter as illustrated in Table 4-2. The second-order lowpass filter is 

designed to minimize the initial positive-going signal distortion that is present at the output 

of the second-order all pass filter. 

123 



Each fourth-order filter response shown in Figure 4-11 provides a one-second signal 

delay, but as was true for the lower-order filters, the allpass-(lowpass)-filter output-signal 

slope is close to that of the input signal while the output-signal slope of the lowpass filters is 

somewhat lower. As will be shown later in a comparison of output-signal slope for the 

delay-line approximation filters considered, the output-signal slope for the fourth-order 

lowpass filters is more nearly equal to the input-signal slope than is the output-signal slope 

of the second-order filters. 

The fourth-order lowpass-filter output signals (Figure 4-11) are similar for the 

Gaussian, Bessel, and Butterworth cases but there is greater difference in the output 

signals compared to the second-order lowpass filters previously considered. The differences 

between Gaussian, Bessel, Butterworth, Chebyshev, etc., filter responses become 

increasingly pronounced with higher filter order. As was true for the second-order lowpass 

filters, the output-signal slope for the fourth-order Gaussian filter is the lowest, the output

signal slope for the Butterworth filter is the highest, and the output-signal slope for the 

Bessel filter is between that of the Gaussian and Butterworth filters. 

The group delay for the fourth-order lowpass and allpass-lowpass delay-line 

approximation filters is shown in Figure 4-12. The group delay at DC for all filters is 

approximately one second with the allpass-lowpass filter having a bandwidth of constant 

group delay (linear phase) that is higher than that of the lowpass filters. Again, as was true 

of the second-order lowpass filters, the Bessel lowpass filter and the allpass-lowpass filter 

(also of Bessel design) have maximally flat group delay characteristics without group-delay 

peaking. In contrast, the Gaussian lowpass filter has group delay that begins rolling off 

earlier in frequency (more pronounced for the fourth-order filter compared to the second

order filter), and the Butterworth lowpass filter has considerable group-delay peaking 

(again more pronounced for the fourth-order filter compared to the second-order filter). Also 

as was true for the second-order lowpass filters, output-signal overshoot for the fourth-order 

Butterworth filter is not observed (for the times shown in Figure 4-11) because of limited 

bandwidth of the two-pole lowpass-filtered step-input signal. 

The gain response for the fourth-order lowpass and allpass-lowpass filters is shown in 

Figure 4-13. As was true of the second-order filters, the gain of all fourth-order filters is 

unity at DC but the gain for all filters rolls off at frequencies above the cutoff frequency. 

Gain roll-off occurs for the allpass-lowpass filter combination because of gain roll-off in the 

lowpass filter. As was true of the second-order filters, the Butterworth lowpass filter has 

maximally flat gain response, whereas the Gaussian and Bessel lowpass filters have gain 
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that rolls off earlier in frequency. The difference in the Gaussian and Bessel filter response 

is more pronounced for the fourth-order filters compared to the second-order filters. 

The output-signal slope at various locations on the output signal is tabulated in Table 4-

3 for the first-, second-, and fourth-order lowpass and allpass delay-line approximation 

filters. The input signal for all filters is the two-pole lowpass-filtered step-input signal 

having a composite time-constant of 1 s. 

Table 4-3. Output-Signal Slope for First-, Second-, and Fourth-Order Lowpass and 
Allpass Delay-Line Approximation Filters. 

Signal Slope Normalized to Peak Input Slope at Various 

Percentages of Signal Level 

10% 20o/o 33% 50o/o 

Input Signal to Filters 85% 98% 99% 85% 

Output, 1st-order Lowpass 48% 60% 63% 57% 

Output, 2nd-order Lowpass, Gaussian 50% 65% 7'2% 67% 

Output, 2nd-order Lowpass, Bessel 50% 66% 74% 71% 

Output, 2nd-order Lowpass, Butterworth 50% 68% 77% 76% 

Output, 4th-order Lowpass, Gaussian 55% 73% SOo/o 75% 

Output, 4th-order Lowpass, Bessel 57% 77% 86% 81% 

Output, 4th-order Lowpass, Butterworth 57% 81% 95% 93% 

Output, 1st-order All pass 81% 88% 87% 77% 

Output, 2nd-order Allpass, Bessel 79% 9'2% 95% 84% 

Output, 2nd-order Allpass + 2nd-order Lowpass, 75% 91% 95% 84% 

both Bessel 

Peak input-signal slope== (Vmpklt;n>e·1 = 0.5203 Vis. 

Filter input is two-pole lowpass-filtered step input with composite time-constant (t;'l.)ofl s (0.707 sea. pole). 

All filters provide 1 s delay at 50% output point; Filter synthesis details given in Table 4-2. 
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AB seen in Table 4-3, lowpass-filter output-signal slope increases with filter order, the 

fourth-order lowpass filters having the highest level of output-signal slope. Additionally, for 

a given lowpass-filter order, the output-signal slope is maximum for the least damped 

filters, the Butterworth filters, and is minimum for the most damped filters, the Gaussian 

filters. Output-signal slope for the first- and second-order allpass filters is considerably 

higher than the lowpass filters of the same order, especially at output-signal points 

considerably below the peak output signal. AB described earlier, the second-order allpass 

filter cannot be used for delay-line replacement or as a complete shaping circuit because of 

the presence of an initial positive-going lobe in its output signal. The fourth-order allpass

lowpass filter combination, a second-order allpass filter followed by a second-order lowpass 

filter to minimize the initial positive-going allpass-filter output lobe, has signal slope nearly 

equal to that of the second-order allpass filter. 

The first-order allpass filter has higher output-signal slope at points at or below 20% of 

the peak output signal compared to the first-, second-, and fourth-order lowpass filters. The 

fourth-order Butterworth lowpass filter, however, has equal or higher output-signal slope at 

points at or above 33% of the peak output signal compared to the first-order allpass, second

order allpass, second-order allpass with second-order lowpass filter combination, and the 

other first-, second-, and fourth-order lowpass filters. 

Gaussian lowpass filters are of special interest as delay-line approximation filters 

because of their simplicity. These filters have real poles with equal critical frequencies and 

do not require the state-variable or biquad second-order filter sections typically required for 

Bessel, Butterworth, Chebyshev, and other filters. 

The group delay of an n-th order Gaussian lowpass filter is approximated by 

(4-59) 

where n is the filter order (the number of poles) and tP is the time-constant associated with 

each pole. The effective time-constant of the filter (representative of filter bandwidth and 

rise-time) is approximated by 

(4-60) 

The delay-bandwidth product of the filter is then approximated by 
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(4-61) 

It is more useful to consider the filter delay-time to rise-time ratio for time-domain work. 

This ratio is closely related to the delay-bandwidth product and is approximated by 

(4-62) 

Both the delay-bandwidth product and the delay-time to rise-time ratio increase as the 

square-root of the number of poles in a Gaussian lowpass filter. The increase over a single

pole filter is approximately a factor of 1.4 for a two-pole filter, 2.0 for a four-pole filter, and 

3.2 for a ten-pole filter. The improvement increases at a diminishing rate as the number of 

filter poles continues to increase. 

Synthesis of Binkley CFD Circuits Using Gaussian Lowpass Filters 

The synthesis of Binkley CFD shaping circuits (circuit model shown in Figure 4-4) will 

be considered for Gaussian lowpass filters used as delay-line approximation filters. As 

mentioned, the simplicity of Gaussian lowpass filters makes these filters advantageous for 

circuit implementation. The Gaussian lowpass filters used for delay-line approximation 

have Laplace transfer functions given by 

(4-63) 

where rod is a filter cutoff frequency that is inversely proportional to the desired filter time 

delay, and n is the filter order. The critical frequency associated with each real pole is 

increased above the filter cutoff frequency (rod) by the ,J;, factor shown to maintain nearly 

constant filter rise-time independent of filter order for a given cutoff frequency. 

The transfer function for the Binkley CFD with Gaussian lowpass delay-line 

approximation filters is given from Figure 4-4 by 

H cf ( s) = D ( s) · f , or (4-64) 
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[..Jn,w ]n 
H cf ( S) = d n - f , 

[ s+..Jn, w d ] 

(4-65) 

where f is the fraction value. The fraction value will be constrained, as in the case of the 

delay-line CFD, for values between zero and unity. Equation 4-65 can be rewritten as 

(4-66) 

to permit study of the pole and zero locations. The transfer function contains the same real 

poles present in the Gaussian lowpass filter (the number of poles equal to the lowpass-filter 

order), but unlike the lowpass filter, the transfer function contains zeros (the number of 

zeros again equal to the lowpass-filter order). It will be shown later that one of these zeros 

is a right-half-plane real zero. The DC gain of the transfer function is given by 

(4-67) 

which is valid for all lowpass and allpass delay-line approximation filters (of arbitrary type 

and order) having unity DC gain. 

The transfer function of the Binkley CFD containing a first-order (Gaussian) lowpass 

filter can be evaluated from Equation 4-66 for n equal to one. The resulting transfer 

function is given by 

(4-68) 

Equation 4-68 contains one pole (having the same critical frequency as the lowpass-filter 

pole) and one right-half-plane real zero. The critical frequency for the right-half-plane zero 

can be adjusted to any real value by selection of the fraction value (0 < f < l) and lowpass

filter cutoff frequency (run). It is interesting to note that replacing the first-order lowpass 

filter with a first-order allpass filter still results in a CFD transfer function containing one 
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left-half-plane pole and one right-half-plane real zero. This configuration is not as useful, 

however, because the critical frequency associated with the right-half-plane real zero cannot 

be adjusted above the filter cutoff frequency (wn). 

If a fraction value(/) of one-half is selected, the transfer function (Equation 4-68) of the 

Binkley CFD containing a single-pole lowpass filter has the form of a first-order allpass 

filter with gain of one-half. As mentioned earlier, the first-order allpass response is 

desirable for a CFD. It will be shown later, however, that even better response is available 

for the Binkley CFD using lowpass filters of higher order (order greater than one). 

One configuration of the Binkley CFD gives a transfer function equivalent to the Nowlin 

CFD containing a single-pole highpass filter. The transfer function for the Nowlin CFD 

(Equation 4-51, page 116) can be rewritten in terms of the highpass-filter critical frequency 

wd instead of the highpass-filter time-constant td by using the substitution of wd = 1/td. The 

transfer function is then given by 

, s- wd(LJ J\ 1-f 
Herr Nowlin) (s) = -( 1- f) . , 

s + (J)d 

(4-69) 

where it can be observed that the Nowlin CFD (using a single-pole highpass filter) is 

equivalent in form to the Binkley CFD (Equation 4-68) using a single-pole lowpass filter. 

The Binkley CFD is identical to the Nowlin circuit if the fraction value for the Binkley 

circuit is selected as described by 

f ( Binkley circuit with 1st-order lowpass) = 1- f ( Nowlin circuit with 1st-order high.pass) (4-70) 

It is interesting that the first-order Binkley and Nowlin CFDs are equivalent, with an 

appropriate interchange of fraction values, even though the Binkley circuit uses a lowpass 

filter and the Nowlin circuit uses a highpass filter. This circuit equivalence resulted even 

though the Nowlin circuit was developed without delay-line approximation filters [6] and 

the Binkley circuit was developed with delay-line approximation filters. 
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The Binkley CFD transfer function (Equation 4-66) is given in factored form as: 

r 
r:: (1-JTJ r lo [1+fi)' _ s-'\l 2wd Tr s + v 2wd -----r;- I 

Hcf(n=2/s)--f 1o fQ j , (4-72) l s+v2rod l s+v2rod 

H3rod(~Jl s+J3wd(w'+I!WJ3!
2 )1 

Hcf(n=3i(s)==-f 1n J 1n . ,and (4-73) 
s+v3wd s+v3wd 

~ ) 

where n denotes the order of the Gaussian-lowpass delay-line approximation filter and wd is 

the delay-line-filter cutoff frequency which is equal to the inverse of the delay time constant 

(td = l/wd). 

The Binkley Gaussian CFD transfer functions were factored (using a commercial 

symbolic mathematical analysis program) to identify the pole and zero locations. The pole

zero locations are given in Figure 4-14 for a delay-line-filter cutoff frequency of 1 rad/sec (a 
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delay time constant, td = llffid, of 1 s) and fraction values of 0.3, 0.5, and 0.7. All transfer 

functions have one right-half-plane real zero which, as mentioned earlier, provides rise-time 

invariant timing for linear-edge input signals. Additionally, the second- and fourth-order 

circuits contain a left-half-plane real zero, and the third- and fourth-order circuits contain a 

pair of complex-conjugate left-half-plane zeros. As mentioned earlier, all circuits contain the 

same real (left-half-plane) poles that are present in the Gaussian lowpass filters. 

It is interesting to note that the zeros in the Binkley Gaussian CFD transfer function 

(Figure 4-14) are located on a circle centered at the pole locations. One of these zeros is 

always located on the real axis of the right-half plane. The other zeros (for second and 

higher-order filters) are located at even spacing along the circle. 

Performance with Lowpass-Filtered Step Signals 

Derivation of Shaping Signal 

The shaping signal for the Binkley Gaussian CFD can be found from the circuit model 

shown in Figure 4-4 (page 155) using Laplace expressions for the input signal (Vin(s)) and 

the transfer function (Hcfs)). The lowpass-filtered step-input signal has a Laplace 

transform that was given in Equation 4-15 (page 104) for a single-pole input and in 

Equation 4-16 (page 104) for a two-pole input. Additionally, the transfer function was given 

in Equations 4-71, 4-72, 4-73, and 4-74 for the single-, two-, three-, and four-pole Binkley 

Gaussian CFD circuit. 

The shaping signal for the Binkley Gaussian CFD, along with full circuit-performance 

data, is given in Appendix A - Catalog of Normalized CFD Performance for Low pass-Filtered 

Step Inputs. This data will be referred to in the following discussion. Additionally, a 

comparison of delay-line and Binkley Gaussian CFD performance will be discussed later in 

this section. 

The shaping signal for a single-pole step input is shown in Figure A-13 (page 270), A-25 

(page 278), and A-37 (page 286) for the Binkley single-, two-, and four-pole Gaussian CFD. 

The normalized delay time-constants (titin) for the CFDs were selected for a zero-crossing 

time equal to twice the input-signal time-constant (tcf = 2tin) and a fraction of 50% was 

selected. It will be shown later that a fraction of 50% generally results in minimum timing 

jitter for the Binkley Gaussian CFD. As seen in the figures, both the shaping-signal 

underdrive (Vcf(underdriveJ) and zero-crossing slope (Ker> increase with increasing CFD order 

because Gaussian lowpass-filter rise-time is degraded less for filters of higher order for a 
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given filter delay. The shaping-signal overdrive (Vcf(overdrive} is independent of circuit 

order as the overdrive is set by the DC gain (1 - /). 

The shaping signal for a two-pole step input is shown in Figure A-19 (page 274), A-31 

(page 282), and A-43 (page 290) for the single-, two-, and four-pole Binkley Gaussian CFD. 

Again, the delay time-constants (titin> for the CFDs were selected for a zero-crossing time 

equal to twice the input-signal time-constant (tcf = 2tin> and a fraction of 50% was selected. 

As seen in the figures, both the shaping-signal underdrive and zero-crossing slope increase 

with increasing CFD order for the reasons described for single-pole step inputs. 

Additionally, the shaping-signal overdrive is again independent of circuit order as the 

overdrive is set by the DC gain (1 - /). The shaping-signal underdrive is less for the two-pole 

step input compared to the single-pole step input (for CFD circuits of equal order) because of 

the initial signal delay present in the two-pole step input. 

Zero-Crossing Time 

Although the Binkley Gaussian CFD shaping signal can be expressed in closed form for 

lowpass-filtered step-input signals, no closed-form solution is available for the zero-crossing 

time. This is due to the presence of exponentials with differing time-constants and/or the 

presence of exponentials multiplied by expressions containing the independent time 

variable. The same numerical computer analysis used for delay-line CFD analysis was used 

to obtain the zero-crossing time and other circuit characteristics of the Binkley Gaussian 

CFD. The results of this numerical analysis are given in Appendix A and are discussed 

here. 

The shaping-signal zero-crossing time for a single-pole step input is shown in Figure A-

14 (page 270), A-26 (page 278), and A-38 (page 286) for the Binkley single-, two-, and four

pole Gaussian CFD. Additionally, the shaping-signal zero-crossing time for a two-pole step 

input is shown in Figure A-20 (page 274), A-32 (page 282), and A-44 (page 290) for the 

single-, two-, and four-pole circuits. For both the single- and two-pole step input, 

normalized zero-crossing time (tc/tin) is given as a function of normalized delay time

constant (titin> for various fraction (f) values. As was true of the delay-line CFD, shaping

signal zero-crossing time increases monotonically with delay time-constant (because of 

increased circuit delay) and increases monotonically with fraction (because of circuit 

triggering at a higher fraction of the input-signal). 

Shaping-Signal Arnjplitude and Slope 

Shaping-signal underdrive for a single-pole step input is shown in Figure A-15 (page 

271), A-27 (page 279), and A-39 (page 287) for the Binkley single-, two-, and four-pole 
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Gaussian CFD. Additionally, shaping-signal underdrive for a two-pole step input is shown 

in Figure A-21 (page 275), A-33 (page 283), and A-45 (page 291) for the single-, two-, and 

four-pole circuits. Shaping-signal underdrive is shown for different constant-fraction 

fraction values (f) as a function of constant-fraction delay time-constant (titin) normalized to 

the input-signal time-constant. Shaping-signal underdrive (Vcf(underdrive/Vinpk) is 

normalized to the input-signal amplitude to illustrate the relative amount of underdrive 

present. 

As was true of the delay-line CFD, shaping-signal underdrive increases monotonically 

(negatively) with delay time-constant and fraction, reaching a maximum value of -f for 

constant-fraction delays much greater than 5tin. Shaping-signal underdrive is lower at low 

constant-fraction-delay time-constants (td/tin < 1) for two-pole step inputs compared to 

single-pole step inputs because of the initial signal delay present in the two-pole step input. 

As mentioned earlier, shaping-signal underdrive increases with the order of the Binkley 

Gaussian CFD. 

Shaping-signal overdrive, as was true for the delay-line CFD, is simply equal to the CFD 

DC gain multiplied by the input-signal amplitude. Shaping-signal overdrive normalized to 

input-signal amplitude is equal to the DC gain (1 - f) and is not plotted in the data of 

Appendix A. 

Shaping-signal zero-crossing slope for a single-pole step input is shown in Figure A-16 

(page 271 ), A-28 (page 279), and A-40 (page 287) for the Binkley single-, two-, and four-pole 

Gaussian CFD. Additionally, shaping-signal zero-crossing slope for a two-pole step input is 

shown in Figure A-22 (page 275), A-34 (page 283), and A-46 (page 291) for the single-, two-, 

and four-pole circuits. Shaping-signal zero-crossing slope is shown for different constant

fraction fraction values (f) as a function of constant-fraction-delay time-constant (td/tin) 

normalized to the input-signal time-constant. Shaping-signal zero-crossing slope (Kc/Kinpk) 

is normalized to the peak input-signal slope to illustrate the amount of input-signal slope 

loss. 

For a single-pole step input, shaping-signal zero-crossing slope for the Binkley Gaussian 

CFD is maximized at minimum constant-fraction-delay time-constants at a fraction value of 

approximately 50%. In contrast, shaping-signal zero-crossing slope for the delay-line CFD is 

independent of constant-fraction delay and is maximized at minimum fraction values. For a 

two-pole step input, shaping-signal zero-crossing slope for the Binkley Gaussian CFD has a 

distinct maximum with constant-fraction-delay time-constant and is maximized at a fraction 

value of approximately 50%. In contrast, shaping-signal zero-crossing slope for the delay-
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line CFD increases with constant-fraction delay and is maximized at fraction values of 

20 - 30%. The distinct zero-crossing-slope maximum is present because the two-pole step

input signal has maximum slope at 26.4% of the amplitude compared to a maximum slope at 

0% of the amplitude for the single-pole step-input signal. 

Zero-crossing slope is maximized at higher fraction values for the Binkley Gaussian 

CFD compared to the delay-line CFD. This is because maximum signal slope at the output 

of the Gaussian-lowpass delay-line approximation filter occurs at a higher percentage of the 

signal amplitude compared to the signal present at the output of a delay line. 

Timing-Jitter Performance 

The mean-square shaping-signal noise for the Binkley Gaussian CFD can be found from 

steady-state noise analysis and is given by 

00 

a~cf = 2
1
7t J Sin (w)Hcr (w)H;t<w)dw (4-75) 

-00 

where Sin(w) is the input noise-power spectral density and Hcfs) is the CFD transfer 

function. The input noise-power spectral density was given in Equation 4-21 (page 105) for 

the single-pole input and Equation 4-22 (page 105) for the two-pole input. The transfer 

function was given in Equations 4-71, 4-72, 4-73, and 4-74 for the Binkley single-, two-, 

three-, and four-pole Gaussian CFD circuit. 

Shaping-signal rms noise for a single-pole step input is shown in Figure A-1 7 (page 272), 

A-29 (page 280), and A-41 (page 288) for the Binkley single-, two-, and four-pole Gaussian 

CFD. Additionally, shaping-signal rms noise for a two-pole step input is shown in Figure A-

23 (page 276), A-35 (page 284), and A-4 7 (page 292) for the single-, two-, and four-pole 

circuits. Shaping-signal rms noise is shown for different constant-fraction fraction values (f) 

as a function of constant-fraction-delay time-constant (titin) normalized to the input-signal 

time-constant. Shaping-signal nns noise (aver/ avin) is normalized to input-signal rms noise 

to illustrate the relative change in noise through the CFD. 

Shaping-signal noise generally decreases with increasing constant-fraction-delay time

constant for low fraction values because the noise bandwidth in the lowpass-filtered-signal 

path decreases with increasing time-constant. Conversely, shaping-signal noise generally 

increases with increasing constant-fraction-delay time-constant for high fraction values 

because of reduced correlated-noise cancellation in the attenuated-signal and lowpass

filtered-signal path. It is interesting to note that the shaping-signal noise shown in the 
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figures is always less than the input noise for the Binkley Gaussian CFDs. Additionally, for 

constant-fraction-delay time-constants near the input-signal time-constant, the shaping

signal noise is generally lower than that of the delay-line CFD. This is most significant and, 

as discussed later, permits the Binkley Gaussian CFD to have comparable timing-jitter 

performance to the delay-line CFD, even though the shaping-signal slope is lower for the 

Binkley Gaussian CF'D. 

Shaping-signal timing jitter is evaluated by finding the ratio of shaping-signal noise 

(avci to the shaping-signal zero-crossing slope (Kc/ Timing jitter for a single-pole step 

input is shown in Figure A-18 (page 272), A-30 (page 280), and A-42 (page 288) for the 

single-, two-, and four-pole Binkley Gaussian CFD. Additionally, timing jitter for a two-pole 

step input is shown in Figure A-24 (page 276), A-36 (page 284)~ and A-48 (page 292) for the 

single-, two-, and four-pole circuits. Timing jitter is shown for different constant-fraction 

fraction values (f) as a function of constant-fraction-delay time-constant (titin) normalized 

to the input-signal time-constant. Timing jitter (atcf/atin) is normalized to the minimum 

input-signal jitter to illustrate the relative amount of timing-jitter degradation present 

using the CFD compared to leading-edge timing on the input-signal at the maximum-slope 

point. 

For a single-pole step input, shaping-signal timing jitter is minimized for the Binkley 

Gaussian CFD at minimum constant-fraction-delay time-constants and at large fraction 

values. For constant-fraction-delay time-constants near the input-signal time-constant, 

timing jitter is minilmized at fraction values near 50%. In contrast, timing jitter is 

minimized for the delay-line CFD at minimum constant-fraction delay and minimum 

fraction values. 

For a two-pole step input, timing jitter for the Binkley Gaussian CFD has a distinct 

minimum with constant-fraction-delay time-constant and is minimized at fraction values 

near 50%. Timing jitter for the delay-line CFD has a distinct minimum with constant

fraction delay but is minimized at fraction values of 20 - 30%. The distinct minimum for 

timing jitter is due largely to the distinct zero-crossing-slope maximum that occurs for two

pole step inputs. 

As mentioned earlier, shaping-signal zero-crossing slope increases with the order of the 

Binkley Gaussian CF'D for both single-pole and two-pole step inputs. As a result, timing 

jitter is minimized for Binkley Gaussian CFDs of higher order. 
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DC Baseline Effects on Timing Performance 

As was true for the delay-line CFD, shaping-signal zero-crossing time shifts from the 

theoretical zero-crossing time if a nonzero input-signal DC-baseline level is present. The 

shift in zero-crossing time can be described by the same expression given for the delay-line 

CFD (Equation 4-48, page 114) and is given by 

Af -vbaseline (l - f) 
cf ( due w input DC baseline) = K ' 

cf 

(4-76) 

where (1 - /) is the DC gain from the input signal to the shaping signal and Kcf is the 

shaping-signal zero-crossing slope for the input signal under evaluation. In Equation 4-76, 

the shaping-signal zero-crossing slope is assumed to be constant between the theoretical 

zero-crossing point and the baseline-shifted zero-crossing point. 

The zero-crossing time shift with input-signal DC baseline is comparable for both the 

Binkley Gaussian and delay-line CFDs. This is because the lower zero-crossing slope of the 

Binkley Gaussian CFD is somewhat compensated for by the lower DC gain present due to 

the use of fractions near 50%. 

Rise-Time Insensitivity of Binkley Gaussian CFDs with Linear-Edge Signals 

The transfer function for the Binkley Gaussian CFD of any order contains one right

half-plane real zero iln addition to left-half-plane poles and zeros. As mentioned earlier, 

Nowlin reported that only a single right-half-plane real zero is required in the shaping

network transfer function to give zero-crossing times that are insensitive to input rise-time 

for linear-edge input signals [5, 6]. Rise-time invariant operation is available only for input 

signals with rise-times greater than the zero-crossing time. This rise-time restriction also 

applies to amplitude-rise-time-compensated operation for the delay-line CFD. 

Input-signal rise-time insensitivity was illustrated mathematically for the Nowlin CFD 

containing a single-pole high-pass filter. The transfer function of this Nowlin CFD circuit 

was later shown to be identical to the transfer function of the Binkley single-pole Gaussian 

CFD with an appropriate interchange of fraction values (the fraction value for the Binkley 

Gaussian circuit is one minus the fraction for the Nowlin circuit). 

Figures 4-15 and 4-16 illustrate input-signal rise-time insensitivity for the single-pole 

and two-pole Binkley Gaussian CFDs. Linear-edge input signals with unity amplitude and 

rise-times of 2 s, 3 s, fi s, and 10 s are shown in the figures along with the resulting shaping 
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signals. The CFDs are configured as indicated in the figures for zero-crossing times of 2 sat 

a fraction of 50%. 

As observed in Figures 4-15 and 4-16, the shaping-signal slope transitions rapidly at 

the zero-crossing point for the signals with 2-s rise-time as this is at the threshold of rise

time invariant operation. Additionally, as observed in the figures, the two-pole constant

fraction circuit provides higher shaping-signal underdrive and zero-crossing slope compared 

to the single-pole circuit. Shaping-signal underdrive and zero-crossing slope is higher for 

higher-order Binkley Gaussian CFDs for both linear-edge input signals and lowpass-filtered 

step-input signals. Finally, as observed in the figures, underdrive decreases as input-signal 

rise-time increases placing practical limits on the maximum input-signal rise-time. 

Comparison of Delay-Line and Non-Delay-Line CFD Performance for 
Lowpass-Filtered Step Signals 

Comparison for Single-Pole Step Signals 

It is useful to compare the performance of delay-line and Binkley Gaussian CFDs for 

single-pole step-input signals. In the first comparison, a zero-crossing time of twice the 

input-signal time-constant (tcr= 2tin) is considered which corresponds to triggering at 86% of 

the peak input-signal amplitude. The shaping signals for the delay-line CFD and Binkley 

single-, two-, three-, and four-pole Gaussian CFDs are shown in Figure 4-17. Delay values 

have been chosen to obtain the desired zero-crossing time of twice the input-signal time

constant. The standard fraction of 20% has been chosen for the delay-line CFD, and 

fractions of 50% have been chosen for the Binkley Gaussian CFDs because timing jitter is 

generally minimized for this value as discussed earlier. In Table 4-4, CFD shaping-signal 

underdrive, overdrive, zero-crossing slope, noise, and timing jitter are compared for the 

signals shown in Figure 4-17. 

The Binkley Gaussian CFDs provide a bipolar timing signal similar in shape to the one 

provided by the delay-line CFD. The underdrive of the Binkley Gaussian circuits is 

comparable to that of the delay-line circuit except that underdrive in the Binkley Gaussian 

circuits is significantly greater during the initial part of the signal. This higher initial 

underdrive is advantageous for driving the constant-fraction comparator more rapidly out of 

baseline noise. Higher initial underdrive occurs because of the high fraction used in the 

Binkley Gaussian circuits. The overdrive, however, is somewhat less for the Binkley 

Gaussian circuits because of the higher fraction used. More importantly, however, the zero

crossing slope is considerably less for the Binkley Gaussian circuits because of bandwidth 
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Table 4-4. Comparison of Delay-Line and Non-Delay-Line CFD Performance for 
Single-Pole Step Inputs (Zero-Crossing Time at 2tin). 

Circuit Configuration Normalized Circuit Performance 

Topology Delay Fract- Under- Over- Zero- Output Timing 

ion drive drive Cross Noise Jitter 

Slope 

td 
{f) Vund Vavr Kzero CJ vet _____:!_t_g_ ,;;; V;npk Vinpk Kmpk CJvm 0 Dn (mn) 

Delay Line 1.805 0.2 -0.167 0.8 0.8 0.987 1.234 

Binkley Gaussian, 1-pole 1.770 0.5 -0.157 0.5 0.176 0.500 2.861 

Binkley Gaussian, 2-pole 1.059 0.5 -0.201 0.5 0.245 0.611 2.492 

Binkley Gaussian, 3-pole 0.826 0.5 -0.225 0.5 0.287 0.666 2.316 

Binkley Gaussian, 4-pol.e 0.702 0.5 -0.242 0.5 0.318 0.701 2.204 

Input signal is 1-pole lowpass-filtered. step input with time-constant tm. 
Normalization details given in Table A-1 for input signal. 

Zero-crossing ti.me (t cf is at 2t. . 
In 

limiting in the Gaussian lowpass filter used for delay-line approximation. The reduced zero

crossing slope results in increased timing jitter for the Binkley Gaussian circuits even 

though the shaping-signal output noise is lower. The timing jitter for the four-pole Binkley 

Gaussian CFD is 220% of the minimum input-signal timing jitter compared to 123% for the 

delay-line circuit. 

In the second comparison, a zero-crossing time equal to the input-signal time-constant 

(tcf = ltin) is considered which corresponds to triggering at 63% of the peak input-signal 

amplitude. Triggering earlier on the input signal (compared to the previous example) will 

result in less rise-time sensitivity, and as shown later, will result in better statistical 

performance with scintillation detectors. The shaping signals for the delay-line CFD and 

Binkley single-, two-, three-, and four-pole Gaussian CFDs are shown in Figure 4-18. 

Again, delay values have been chosen to obtain the desired zero-crossing time, the standard 

fraction of 20% has been chosen for the delay-line CFD, and fractions of 50% have been 
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chosen for the Binkley Gaussian CFDs. In Table 4-5, CFD shaping-signal underdrive, 

overdrive, zero-crossing slope, noise, and timing jitter are compared for the signals shown in 

Figure 4-18. 

The underdrive of the Binkley Gaussian circuits is again comparable to that of the 

delay-line circuit and is significantly greater during the initial part of the signal. The 

overdrive is, again, somewhat less for the Binkley Gaussian circuits because of the higher 

fraction used. However, the zero-crossing slope is not as reduced for the Binkley Gaussian 

circuits set at the shorter zero-crossing time compared to the previous circuits set at higher 

zero-crossing time. This is because of the shorter delay and corresponding wider bandwidth 

of the Gaussian lowpass filter used for delay-line approximation in the circuits configured 

for shorter zero-crossing times. The improved zero-crossing slope at shorter zero-crossing 

time results in reduced timing jitter. The timing jitter for the four-pole Binkley Gaussian 

CFD is 167% of the minimum input-signal timing jitter compared to 117% for the delay-line 

circuit. 

Table 4-5. Comparison of Delay-Line and Non-Delay-Line CFD Performance for 
Single-Pole Step Inputs (Zero-Crossing Time at ltin). 

Circuit Configuration Normalized Circuit Performance 

Topology Delay Fract- Under- Over- Zero- Output Timing 

ion drive drive Cross Noise Jitter 

Slope 

Id 
(f) Vund Vovr Kzero Uvcf __!!Jg_ 

f;n V;npk Vinpl< K;npl< av;n Ufin(rrin) 

Delay Line 0.861 0.2 -0.116 0.8 0.8 0.933 1.167 

Binkley Gaussian, 1-pole 0.768 0.6 -0.087 0.6 0.231 0.600 2.166 

Binkley Gaussian, 2-pole 0.457 0.6 -0.114 0.6 0.312 0.686 1.873 

Binkley Gaussian, 3-pol,e 0.368 0.6 -0.129 0.6 0.369 0.626 1.746 

Binkley Gaussian, 4-pol,e 0.306 0.6 -0.140 0.6 0.390 0.661 1.672 

Input signal is 1-pole lowpass-filtered step input with time-constant tin: 

Normalization details given in Table A-1 for input signal. 

Zero-crossing time (t cf) i:s at 1 tin. 
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The choice of circuit order for the Binkley Gaussian CFD is dependent upon the desired 

underdrive, zero-crossing slope, and timing-jitter performance. The performance is better 

(more underdrive, more zero-crossing slope, and lower timing jitter) for the higher-order 

circuits. The two-pole circuit has considerably better performance over the single-pole 

circuit, but performance improvements diminish as circuit order continues to increase. 

Although circuit gain can be used to compensate for the lower overdrive and zero-crossing 

slope present in the Binkley Gaussian CFD, the timing jitter fundamentally limits the 

performance. 

Binkley Gaussian CFD performance is inferior to that of the delay-line CFD for single

pole step-input signals because it is not possible (at reasonable circuit order) to sufficiently 

maintain the high initial slope of the single-pole step-input signal. However, the Binkley 

Gaussian CFD is useful for single-pole step inputs where system timing is not limiting by 

electronic-noise-induced timing jitter. Such applications include EGO/photomultiplier 

scintillation detector systems. As mentioned earlier, the single-pole Binkley Gaussian CFD 

is equivalent to the Nowlin CFD containing a single-pole highpass filter if the fraction value 

for the Binkley Gaussian circuit is adjusted to one minus the fraction value of the Nowlin 

circuit. 

Comparison for Two-Pole Step Signals 

In addition to comparing the performance of delay-line and Binkley Gaussian CFDs for 

single-pole step-input signals, it is useful to compare the performance for two-pole step

input signals. The two-pole step-input signal is more representative of higher-order 

lowpass-filtered step-input signals because of its low initial slope and constant slope over an 

appreciable portion of the signal. In the first comparison, a zero-crossing time of again twice 

the input-signal time-constant <tcf = 2tin) is considered which corresponds to triggering at 

77% of the peak input-signal amplitude. The shaping signals for the delay-line CFD and 

Binkley single-, two-·, three-, and four-pole Gaussian CFDs are shown in Figure 4-19. 

Again, delay values have been chosen to obtain the desired zero-crossing time, the standard 

fraction of 20% has been chosen for the delay-line CFD, and fractions of 50% have been 

chosen for the Binkley Gaussian CFDs. In Table 4-6, CFD shaping-signal underdrive, 

overdrive, zero-crossing slope, noise, and timing jitter are compared for the signals shown in 

Figure 4-19. 
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Table 4-6. Comparison of Delay-Line and Non-Delay-Line CFD Performance for 
Two-Pole Step Inputs (Zero-Crossing Time at 2tin>· 

Circuit Configuration Normalized Circuit Performance 

Topology Delay Fract- Under- Over- Zero- Output Timing 

ion drive drive Cross Noise Jitter 

Slope 

td 
(f) Vund Vovr Kzero ITvcf -5!!f!._ ,;; Vinpk V;npk K;npk av;n ITfin(rrrn) 

Delay Line 1.503 0.2 -0.126 0.8 0.852 0.994 1.109 

I 

Binkley Gaussian, 1-pole 1.325 0.5 -0.101 0.5 0.332 0.500 1.506 

Binkley Gaussian, 2-pole 0.796 0.5 -0.131 0.5 0.446 0.600 1.344 

Binkley Gaussian, 3-pole 0.623 0.5 -0.148 0.5 0.510 0.648 1.271 

Binkley Gaussian, 4-pole 0.530 0.5 -0.159 0.5 0.551 0.677 1.228 

Input signal is 2-pole lowpass-fi.ltered step input with time-constant ti•t (ti.,/.fi. each pole). 

Normalization details given in Table A-2 for input signal. 

Zero-crossing time (t cf) is at 2tin. 

Again, the Binkley Gaussian CFDs provide a bipolar timing signal similar in shape to 

the one provided by the delay-line CFD. The underdrive of the Binkley Gaussian circuits is 

again comparable to that of the delay-line circuit, and the underdrive in the Binkley 

Gaussian circuits is significantly greater during the initial part of the signal. Note that the 

underdrive for all circuits is considerably less for the two-pole step-input compared to the 

single-pole step input described previously. This is because of the initial signal delay 

present for the two-pole step input. The overdrive is, again, somewhat less for the Binkley 

Gaussian circuits because of the higher fraction used. Also, the zero-crossing slope is again 

lower for the Binkley Gaussian circuits, but this reduction in slope is considerably lower for 

the two-pole step input compared to the single-pole step input described previously. The 

lower degradation of zero-crossing slope results in significantly improved timing jitter for 

the two-pole step input. The timing jitter for the four-pole Binkley Gaussian CFD is 123% of 

the minimum input-signal timing jitter compared to 111 % for the delay-line circuit. 

In the second comparison, a zero-crossing time equal to the input-signal time-constant 

(tcr= ltin) is considered which corresponds to triggering at 41 % of the peak input-signal 
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amplitude. As in the single-pole step-input case, triggering earlier on the input signal will 

result in less rise-time sensitivity and better statistical performance with scintillation 

detectors. The shaping signals for the delay-line CFD and Binkley single-, two-, three-, and 

four-pole Gaussian CFDs are shown in Figure 4-20. Again, delay values have been chosen 

to obtain the desired zero-crossing time, the standard fraction of 20% has been chosen for 

the delay-line CFD, and fractions of 50% have been chosen for the Binkley Gaussian CFDs. 

In Table 4-7, CFD shaping-signal underdrive, overdrive, zero-crossing slope, noise, and 

timing jitter are compared for the signals shown in Figure 4-20. 

The underdrive of the Binkley Gaussian circuits is again comparable to that of the 

delay-line circuit and is significantly greater during the initial part of the signal. The 

overdrive is, again, somewhat less for the Binkley Gaussian circuits because of the higher 

fraction used. Also, the zero-crossing slope is not as reduced for the Binkley Gaussian 

circuits set at the shorter zero-crossing time because of the shorter delay and corresponding 

wider bandwidth of the Gaussian lowpass filter used for delay-line approximation. The 

improved zero-crossing slope at shorter zero-crossing time results again in reduced timing 

Table 4-7. Comparison of Delay-Line and Non-Delay-Line CFD Performance for 
Two-Pole Step Inputs (Zero-Crossing Time at ltin). 

Circuit Configuration Normalized Circuit Performance 

Topology Delay Fract- Under- Over- Zero- Output Timing 

ion drive drive Cross Noise Jitter 

Slope 

td 
(f) Vund Vovr Kz9ro Uvcf _!!J£L_ 

T;;; V;npk V;npk Kmpk Uv,n Ufin(rrin) 

Delay Line 0.661 0.2 --0.061 0.8 0.614 0.868 1.399 

Binkley Gaussian, 1-pole 0.616 0.6 --0.036 0.6 0.296 0.600 1.691 

Binkley Gaussian, 2-pole 0.311 0.6 --0.046 0.6 0.382 0.642 1.419 

Binkley Gaussian, 3-pole 0.244 0.6 --0.061 0.6 0.423 0.567 1.319 

Binkley Gaussian, 4-pole 0.207 0.5 --0.056 0.6 0.446 0.666 1.269 

Input signal is 2-pole lowpass-filtered step input with time-constant tin. (t4rf .J2 each pole). 

Normalization details given in Table A-2 for input signal. 

Zero-crossing time (t J is at 1 t. . m 
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jitter. The timing jitter for the four-pole Binkley Gaussian CFD is 127% of the minimum 

input-signal timing jitter compared to 140% for the delay-line circuit. Thus the four-pole 

Binkley Gaussian CFD exhibits comparable or superior timing-jitter performance to the 

delay-line CFD for this application. 

As in the case of single-pole step inputs, the choice of circuit order for the Binkley 

Gaussian CFD is dependent upon the desired underdrive, zero-crossing slope, and timing

jitter performance. The performance, again, is better (more underdrive, more zero-crossing 

slope, and lower timing jitter) for the higher-order circuits. The two-pole Binkley Gaussian 

CFD circuit again has considerably better performance over the single-pole circuit, but 

performance improvements diminish as circuit order continues to increase. Again, circuit 

gain can be used to compensate for the lower overdrive and zero-crossing slope present in 

the Binkley Gaussian CFD, but the timing jitter fundamentally limits the performance. 

Binkley Gaussian CFD performance is comparable to that of the delay-line CFD for two

pole step-input signals because it is possible (at reasonable circuit order) to sufficiently 

maintain the slope of the two-pole step-input signal. The reduction in zero-crossing slope 

present is, interestingly, nearly compensated for by the reduction in shaping-signal noise. 

The comparable timing-jitter performance of the Binkley Gaussian CFDs is quite significant 

for applications where electronic-induced timing jitter is a dominant component of system 

timing resolution. Such applications include EGO/avalanche-diode scintillation-detector 

systems. Independent of performance issues, the Binkley Gaussian CFDs have the 

advantage of requiring no delay line and may be implemented totally in monolithic 

integrated circuits. 

CFD Performance with Scintillation Detectors 

The performance of delay-line and non-delay-line CFDs has been given for deterministic 

(nonstatistical) signals with additive electronic noise. Knowledge of deterministic 

performance (shaping-signal underdrive, overdrive, zero-crossing time, and zero-crossing 

slope) is necessary for selecting constant-fraction comparators with adequate time-walk 

performance. Additionally, knowledge of circuit noise-induced timing jitter (using shaping

signal zero-crossing slope and noise) is necessary to evaluate this contribution of system 

timing resolution. Finally, knowledge of statistical performance with scintillation detectors 

is necessary to evaluate this often dominant contribution of system timing resolution. 
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Timing-Discrimination Performance 

Monte Carlo Simulation of Timing Resolution 

In Section 3, Monte Carlo simulation was described for predicting the timing resolution 

of scintillation detectors coupled to time pick-off systems. Monte Carlo simulation will be 

used here to predict CFD timing performance using the EGO-scintillator, photomultiplier, 

front-end amplifier, and CFD model shown in Figure 4-21. The EGO-scintillator and 

photomultiplier characteristics were described in Section 3. The front-end amplifier has a 

two-pole lowpass characteristic (time-constant of 4.545 ns/../2 for each pole) with a 10 - 90% 

rise-time of 10 ns. This front-end lowpass characteristic is representative of the front-end 

amplifiers used in Siemens/CTI PET systems [10]. Front-end amplifier noise is included for 

evaluation of timing jitter due to electronic-circuit noise. An input-noise voltage density of 

4 n V/ mz is used which is representative for the noise of commercially-available high-speed 

bipolar current-feedback operational amplifiers. 

In Figure 4-22, Monte Carlo simulated CFD signals are shown for twenty events for a 

delay-line CFD having a delay of 8 ns and fraction of 20%. A Gaussian energy spectrum 

with a mean of 511-keV and resolution of 14% FWHM, a mono-exponential EGO 

scintillation model with a yield of 300 (511 keV) and decay time constant of 300 ns, and the 

photomultiplier and front-end amplifier characteristics described in Figure 4-21 were used 

to generate the signals shown. The spread of CFD output zero crossings clearly illustrates 

the timing performance available for the PET EGO/photomultiplier detector and CFD 

timing system considered. 

In Monte Carlo analysis of CFD timing resolution, Compton scatter (which is normally 

present at energies below the Gaussian energy spectrum) will be considered in the detector 

energy spectrum. Compton scatter is added to the Gaussian energy spectrum in the Monte 

Carlo simulation program (this program described in Appendix B) by a special algorithm 

[11]. This algorithm operates by transforming uniformly-distributed (0 - 1) random 

numbers into a uniform distribution (0 - 1) having an added impulse distribution at one. 

The resultant random numbers are then provided to the existing Gaussian transformation 

algorithm to provide a distribution representative of Compton scatter with a Gaussian 

detector photopeak. The energy spectrum used for CFD timing-resolution analysis is shown 

in Figure 4-23 and consists of a Gaussian photopeak with a mean of 511 keV and resolution 

of 14% added to low-energy Compton scatter. Only events above 200 keV are shown in the 

energy spectrum to model CFD energy discrimination. The energy resolution and Compton

scatter level in Figure 4-23 closely models experimentally measured energy spectra for a 
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EGO/photomultiplier scintillation detector with a 1 x 1 x I-inch BGO crystal excited by 

coincident 511-keV gamma rays from a 22Na point source. 

CFD energy discrimination is considered by accepting only events above 200 ke V as 

shown in Figure 4-23. This is equivalent to a CFD energy threshold of 200 keV and 

infinitely sharp energy resolution. Actual CFD energy resolution is not infinitely sharp 

because of limited photoelectron statistics, but accurate timing resolution can be obtained 

(as will be shown in comparisons with measured data) using the energy spectrum of Figure 

4-23 since events rejected above 200 keV in practical CFDs are largely compensated for by 

events accepted below 200 keV. The arming circuitry shown in Figure 4-21 is not used in 

the Monte Carlo timing analysis as all detector events are collected from the spectrum 

shown in Figure 4-23. Actual CFD energy-discrimination performance will be modeled 

mathematically and by Monte Carlo methods later in this section. 

Comparison of Monte Carlo Delay-Line and Non-Delay-Line CFD Timing 
Resolution 

Monte Carlo simulated FWHM timing resolution (as a function of delay time) is shown 

in Figure 4-24 for the delay-line CFD (fraction of 20%) and the Binkley single-, two-, three-, 

and four-pole Gaussian CFD (fraction of 50%). Additionally, Monte Carlo simulated FWTM 

timing resolution is shown in Figure 4-25. In order to obtain the numerous Monte Carlo 

simulations required, a program was developed that called SPICE simulations for 

calculating CFD impulse response. This program then called the Monte Carlo simulation 

program and later reported the results to a file. Statistical noise is present in the Monte 

Carlo timing-resolution data of Figures 4-24 and 4-25 even though 100,000 events were used 

for each Monte Carlo simulation. Simulations for all five CFD circuits required an 

execution time of over 300 hours on a SUN Sparcstation 2 computer. 

Monte Carlo FWHM (Figure 4-24) and FWTM (Figure 4-25) timing resolution was 

evaluated for the delay-line CFD using both the mono-exponential and tri-exponential BGO 

scintillation models. As described in Section 3, the mono-exponential model represents 

scintillation having an instantaneous rise time followed by a single-exponential decay with 

time constant of 300 ns. The tri-exponential model represents scintillation having a finite 

rise-time (rise-time time constant of 1.5 ns) followed by exponential decay with time 

constant of 300 ns for 90% of the light and exponential decay with time constant of 60 ns for 

10% of the light. 

Monte Carlo and measured FWHM (Figure 4-24) and FWTM (Figure 4-25) timing 

resolution is in very good agreement for the tri-exponential BGO scintillation model for the 

145 



delay-line CFD considered with delays between 4 and 12 ns. Monte Carlo timing resolution 

using the mono-exponential model, however, significantly underestimates (making it appear 

lower or better) timing resolution for constant-fraction delays below 6 ns. The comparison of 

Monte Carlo and measured timing resolution for the delay-line CFD considered has been 

previously reported by the author [12]. 

AF, discussed in Section 3, the tri-exponential BGO scintillation model closely matches 

the model reported by Moszynski et al. [13]. All future Monte Carlo simulations of CFD 

timing- and energy-discrimination performance will be performed using the tri-exponential 

BGO scintillation model because of the very good agreement between Monte Carlo and 

measured delay-line CFD resolution (Figures 4-24 and 4-25). 

Experimental measurements of delay-line CFD timing resolution were made with the 

photomultiplier and front-end characteristics described in Figure 4-21 using a 1 x 1 x 1-inch 

BGO crystal excited by coincident 511-keV gamma rays from a 22Na point source. An 

energy threshold of 200 keV (as used in Monte Carlo simulations) was used for all 

experimental CFD measurements, which were made with a commercial Tennelec 455 [14] 

NIM (Nuclear Instrumentation Module) delay-line CFD. All CFD measurements were made 

as described in the EG&G application note, AN-42 [1] 

The timing resolution data of Figures 4-24 and 4-25 indicates that equivalent timing 

resolution is available for both the delay-line and Binkley Gaussian CFDs. Timing 

resolution decreases (improves) as constant-fraction delay decreases and theoretically 

approaches the timing resolution available for first photoelectron timing. First

photoelectron timing resolution is approximately 2.06 ns FWHM (Figure 3-15, page 96) for 

the detector under consideration due mostly to the Poisson statistical noise of 1.98 ns 

FWHM (Figure 3-12, page 94). 

Although timing resolution decreases with decreasing constant-fraction delay, shaping

signal underdrive and zero-crossing slope also decrease placing practical restrictions on the 

choice of constant-fraction delay. Mean shaping-signal zero-crossing time, underdrive, zero

crossing slope, and timing jitter are shown in Figures 4-26, 4-27, 4-28, and 4-29. The mean 

shaping-signal performance was found by applying a step input at the photomultiplier 

lowpass-filter model (Figure 4-21) assuming a constant photoelectron rate of 1.0/ns 

(300 photoelectrons/300 ns using the mono-exponential scintillation model) at 511 ke V. 

Monte Carlo simulated shaping-signal underdrive and zero-crossing slope were also found, 

but these are near the mean shaping-signal values for timing resolutions of 3 ns FWHM or 

greater and are not reported. At timing resolutions significantly below 3 ns FWHM, 
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shaping-signal underdrive and zero-crossing slope are reduced from the mean value, 

ultimately approaching levels given by the shaping-signal impulse response. Mean shaping 

signal overdrive is not given, but is equal to (1 - f) Vinpk where Vinpk is the CFD mean input

signal amplitude (0.801 V for a photoelectron rate of 1.0/ns for the circuit model of Figure 4-

21). 

It is useful to compare shaping-signal underdrive, zero-crossing slope, zero-crossing 

time, and timing jitter for the delay-line and Binkley Gaussian CFDs when these circuits 

are configured for equal timing resolution. This comparison is shown in Table 4-8 for a 

timing resolution of approximately 3.275 ns FWHM:. 

As shown in Table 4-8, shaping-signal underdrive, zero-crossing slope, and overdrive are 

less for the Binkley Gaussian circuits compared to the delay-line circuit when both circuits 

are configured for equal timing resolution. Additionally, the timing jitter for the Binkley 

Gaussian circuits is higher compared to the delay-line circuit because of lower zero-crossing 

slope. Interestingly,, the zero-crossing time for the Binkley Gaussian circuits is less than 

that of the delay-line circuit. This was first discovered after finding that the timing 

resolution of the Binkley Gaussian circuits is worse than that of the delay-line circuit when 

Table 4-8. Comparison of Delay-Line and Non-Delay-Line CFD Performance for 
Equal Timing Resolution. 

Circuit Configuration Circuit Performance 

Topology Delay Zero- Under- Over- Zero- Timing FWHM 
Cross drive drive Cross Jitter Timing 

Time Slope Res. 

(ns) (ns) (V) (V) (V/ns) (ns rms) (ns rms) 

Delay Line 8.0 13.881 -0.080 0.641 0.049 0.049 3.288 

Binkley, 1-pole Gaussian 3.6 9.663 -0.026 0.401 0.019 0.067 3.261 

Binkley, 2-pole Gaussian 2.1 9.646 -0.033 0.401 0.024 0.060 3.283 

Binkley, 3-pole Gaussian 1.6 9.411 -0.036 0.401 0.026 0.068 3.286 

Binkley, 4-pole Gaussian 1.3 9.171 -0.036 0.401 0.026 0.068 3.263 

Fraction for delay-line circuit is 20%. Fraction for Binkley Gaussian circuits is 60%. 

I Detector and circuit details given in Monte Carlo circuit model. 
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both circuits are configured for the same zero-crossing time. In order to obtain equal timing 

resolution, it is necessary to configure the Binkley Gaussian circuits for shorter zero

crossing time. 

As was the case for single- and two-pole step inputs, shaping-signal underdrive and 

zero-crossing slope improve for higher order Binkley Gaussian circuits, approaching the 

performance of the delay-line circuit. Additionally, timing jitter improves (decreases) for 

higher-order Binkley Gaussian circuits. The timing jitter for the four-pole Binkley 

Gaussian circuit is near that of the delay-line circuit, having a value of 58 ps rms compared 

to 49 ps rms for the delay-line circuit. Timing jitter fundamentally limits circuit 

performance whereas lower shaping-signal underdrive and zero-crossing slope can be 

compensated for by additional circuit gain. Shaping-signal underdrive, overdrive, and zero

crossing slope for the four-pole Binkley Gaussian circuit are comparable to that of the delay

line circuit if a gain of two is included in the Binkley Gaussian circuit. This extra gain is 

included in the monolithic CMOS CFD described in Section 5. 

Energy-Discrimination Performance 

Statistical Analysis of Energy Discrimination 

In scintillation-detector applications, Compton scatter is present at energies below the 

detector photopeak. In BGO PET applications, a low level of Compton scattering occurs 

within the scintillation detector itself and a considerably higher level occurs within the 

patient being imaged. It is important to assess the ability of a CFD to discriminate against 

unwanted Compton scattered events since triggering on these events increases system 

processing deadtime and counting losses. Additionally, it is important to assess photopeak 

losses due to limited CFD energy resolution. Loss of detector photopeak events results in 

reduced efficiency in a PET tomograph. 

A CFD provides detector energy discrimination through the operation of its arming 

circuitry. Ideally, a CFD would accept all events having energy above the selected arming 

threshold while rejecting all events having energy below this threshold. In scintillation 

detector systems, however, the sharpness of energy discrimination is degraded significantly 

due to limited accumulation of photoelectron statistics in the short time interval available 

for circuit arming. This effect is particularly severe for low photoelectron-yield scintillators 

such as BGO. 

The ratio of arming-signal standard deviation (square-root of variance) to arming-signal 

mean provides an indication of CFD energy-discrimination resolution. It is desirable to 
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minimize this resolution ratio by minimizing the arming-signal standard deviation and 

maximizing the arming-signal mean. The mean and variance can be found from Campbell's 

theorem since the arming signal results from a linear system excited by Poisson-distributed 

impulses [15]. From the Campbell's theorem discussion in Section 3, the statistical mean 

(Equation 3-15, page 73) was given by 

t 

µ(t ~ 0) = roJ h(,;) dt , 
0 

and the statistical variance (Equation 3-16, page 73) was given by 

t 

o 2 (t ~ 0) = r0 f h 2 
( 1:)d1: 

0 

(4-77) 

(4-78) 

In Equations 4-77 and 4-78, the photoelectron-emission rate is assumed to be a step function 

having a value of zero for times before detector event interaction (t < 0) and a value of r O for 

times after detector event interaction (t > 0). Additionally, the linear-system impulse 

response (h(t)) is assumed to be causal. The mean and variance described by Campbell's 

theorem do not describe a Gaussian process unless the number of collected photoelectrons is 

sufficiently large (a number greater than ten will yield a process that is nearly Gaussian). 

The resolution ratio of arming-signal standard deviation (square-root of variance) to 

arming-signal mean is plotted in Figure 4-30 as a function of arming-decision time for the 

CFD model of Figure 4-21. A single-pole lowpass arming filter (described by Ham/s) in 

Figure 4-21) is considered with a time-constant of O ns (arming directly on the input signal), 

4 ns, and 9 ns. The single-pole lowpass-filter responses used are taken from the selectable

bandwidth arming filter used in the CMOS CFD (described in Section 5). The impulse 

response (h(t)) used for the data of Figure 4-30 includes the photomultiplier, the front-end 

amplifier, and armin,g filter as shown in the CFD model of Figure 4-21. In addition to the 

resolution ratios of CFD arming-signal standard deviation to arming-signal mean shown, 

the theoretical limit or lowest possible arming-signal resolution ratio is also shown in Figure 

4-30. This theoretical limit occurs if all detector photoelectrons are collected, which would 

occur if the photomultiplier, front-end amplifier, and arming-filter impulse response was 

that of a pure integrator (impulse response equal to a step function). 
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In Figure 4-30, two arming-decision times are shown. The 12.3-ns decision time is equal 

to the CMOS CFD zero-crossing time (14.3 ns) less the required setup time (2 ns) of a D flip

flop used for arming qualification. The 22.3-ns decision time includes an additional 10-ns 

delay from an optional delay circuit at the output of the constant-fraction comparator. The 

use of this optional delay allows more time for the accumulation of arming statistics. 

At the 12.3-ns arming-decision time (Figure 4-30), the resolution ratio of arming-signal 

standard deviation to arming-signal mean is equal to 33%, 38%, and 42% for an arming 

time-constant of O ns, 4 ns, and 9 ns, compared to a theoretical limit (minimum) of 28%. At 

the 22.3-ns decision time, the resolution ratio is significantly lower at approximately 26% for 

all three arming time-constants, compared to a theoretical limit of 21 %. For early decision 

times, the resolution ratio is lower at minimum arming time-constants because more 

photoelectron statistics are available due to less delay in the arming impulse response. In 

contrast, for later decision times, the resolution ratio is lower at higher arming time

constants because less photoelectron statistics are lost (forgotten) due to longer decay time 

in the arming impulse response. The optimum arming-filter time-constant results in a 

resolution ratio that just reaches its minimum value at the decision time of interest. The 

resolution ratio reaches a constant minimum at an equilibrium point where incoming 

photoelectron statistics just equals the statistics lost due to impulse response decay. 

It is interesting to note that the arming filter for optimal (minimal) arming-signal 

resolution is not a pure integrator (approximated by a large arming single-pole time

constant) for the 12.3-ns and 22.3-ns decision times. This is counter-intuitive since an 

integrator by itself optimally collects photoelectron statistics. The arming impulse response, 

however, consists of the convolution of photomultiplier, front-end amplifier, and arming

filter impulse responses so the use of an integrator as the arming filter does not yield a total 

impulse response equivalent to that of an integrator. 

In Section 5, Monte Carlo and measured spectra (energy and timing) will be presented 

for the CMOS CFD. The CMOS CFD will be configured with and without an optional 10-ns 

delay at the output of the constant-fraction comparator. This will illustrate the improvement 

in energy-discriminator performance resulting from delaying the arming-decision time. 

Monte Carlo Simulation of Energy-Discrimination Performance 

In the previous Monte Carlo CFD timing simulations, a fixed Gaussian energy spectrum 

was used with addedl low-energy Compton scatter (Figure 4-23) to represent the energy 

spectrum from a EGO/photomultiplier detector excited by coincident 511-keV gamma rays 

from a 22Na point source. The effects of CFD energy discrimination on timing performance 
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were considered by using only event energies above 200 ke V to represent idea] CFD energy 

discrimination with an energy threshold of 200 keV. 

In addition to the generation of a timing spectrum for a given input energy spectrum, it 

is possible to generate the accepted and rejected energy spectra associated with CFD energy 

discrimination using Monte Carlo techniques. The degree of Compton scatter rejection, 

along with the degree of photopeak acceptance, can then be used as an indication of CFD 

energy-discrimination performance. 

CFD energy discrimination is simulated in a second Monte Carlo program (the previous 

Monte Carlo program was described in Section 3 and Appendix B) by the addition of a 

statistically generated arming signal. This signal is generated identically to the constant

fraction signal except that the arming-system impulse response is used. An event is 

accepted if the arming signal exceeds a selectable arming threshold prior to the arming 

decision time. The arming decision time is equal to the zero-crossing time of the constant

fraction signal (generated in the Monte Carlo program) plus a selectable constant-fraction 

comparator delay les:s a selectable arming D flip-flop set-up time. A selectable delay at the 

output of the constant-fraction comparator is included in the Monte Carlo program to 

evaluate the improvement in CFD energy-discrimination available by delaying the arming 

decision time. The energy spectra associated with all detector events, events accepted by 

the CFD, and events rejected by the CFD are histogrammed by the Monte Carlo program 

along with the timing spectra associated with accepted events. As in previous Monte Carlo 

CFD timing simulations, Monte Carlo simulation of energy and timing performance is done 

using the circuit model shown in Figure 4-21. 

Comparison of Monte Carlo and Measured Energy-Discrimination and Timing 
Performance for a Commercial Delay-Line CFD 

Monte Carlo energy-discrimination and timing performance was simulated for a 

commercial Tennelec 455 [14] NIM (Nuclear Instrumentation Module) delay-line CFD using 

the circuit model shown in Figure 4-21. A detector energy spectrum (consisting of a 

Gaussian photopeak with a mean of 511 keV and resolution of 14% added to low-energy 

Compton scatter) was used to model the EGO/photomultiplier detector (with a 1 x 1 x 1 inch 

BGO crystal) excited by coincident 511-keV gamma rays from a 22Na point source. The 

constant-fraction signal impulse response and the arming-signal impulse response were 

taken from SPICE simulations of a delay-line CFD having a delay time of 8 ns and a 

fraction of 20%. No arming filter was used as the arming comparator is connected directly 

to the input signal in the commercial CFD. Additionally, no optional constant-fraction delay 
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(included to delay the arming-decision time and improve energy-discrimination 

performance) was used as this is not provided in the commercial CFD. Finally, an arming D 

flip-flop set-up time of 2 ns was used to represent the set-up time of the ECL D flip-flop 

circuit contained in the commercial NIM CFD module. 

Monte Carlo total-event, accepted-event, and rejected-event energy spectra are shown in 

Figure 4-31 for the commercial delay-line CFD. The arming threshold was set for a 200-keV 

energy threshold which is determined by the intersection of the accepted-event and rejected

event spectra. The Monte Carlo timing spectrum associated with the accepted-event energy 

spectra of Figure 4-31 is shown in Figure 4-32. 

Measured total-event, accept-event, and rejected-event energy spectra are shown in 

Figure 4-33 for the commercial delay-line CFD. Again, the arming threshold was set for a 

200-keV energy threshold. The measured timing spectrum associated with the accepted

event energy spectra of Figure 4-33 is shown in Figure 4-34. All measurements were made 

as described in the EG&G application note, AN-42 [1]. 

The Monte Carlo (Figure 4-31) and measured (Figure 4-33) CFD energy spectra are in 

good agreement, the primary difference being the presence of a backscatter peak at 

approximately 1 75 ke V in the measured spectra. This backscatter peak is not modeled in 

Monte Carlo simulation since a uniform distribution of Compton scatter is assumed. The 

CFD 511-keV photopeak loss is 2.2% for Monte Carlo simulation which is in good agreement 

with the measured loss of 2.5%. CFD photopeak loss is due to poor energy-discrimination 

performance caused by limited accumulation of arming statistics. Minimizing CF.D 

photopeak loss is significant in PET systems since the loss of valid photopeak events results 

in decreased detection efficiency. Limited CFD energy-discrimination performance can be 

observed in the Monte Carlo and measured energy spectra from the shallow edges of the 

rejected and accepted spectra. 

The Monte Carlo (Figure 4-32) and measured (Figure 4-34) CFD timing spectra are in 

good agreement, with a Monte Carlo timing resolution of 3.22 ns FWHM compared to a 

measured timing resolution of 3.30 ns FWHM. Additionally, the shape of the Monte Carlo 

and measured timing spectra are in good agreement, with a Monte Carlo FWTM timing 

resolution of 6.41 ns compared to a measured FWTM timing resolution of 6.4 ns. 

Comparisons of both Monte Carlo and measured timing and energy spectra for the 

EGO/photomultiplier detector and CFD timing system considered have been previously 

reported by the author [12]. 
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Scintillation Detector and CFD Timing System. 
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Figure 4-26. Mean Zero-Crossing Time for Delay-Line and Non-Delay-Line CFDs. 
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Figure 4-27. Mean Underdrive Voltage for Delay-Line and Non-Delay-Line CFDs. 

169 



0.1 10 

Constant-Fraction Delay (ns) 

100 

Figure 4-28. Mean Zero-Crossing Slope for Delay-Line and Non-Delay-Line CFDs. 
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Figure 4-29. Timing Jitter for Delay-Line and Non-Delay-Line CFDs. 
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Figure 4-30. Ratio of Arming-Signal Standard Deviation to Arming-Signal Mean 
(CFD Energy Resolution). 

0 100 200 300 400 

Energy (ke V) 

500 600 700 800 

Figure 4-31. Monte Carlo Energy Spectrum for Commercial Delay-Line CFD. 

171 



1200 

I 

--~- ---r-
-l-

;'~\ 
100,000 Counts 

! 
I 

BGO: N = 300, Tri-exp. Medel 
1000 I 

I I \ I Energy Res; = 14% FW~M 

f 
I 
I \ Scatter Fract. = 0.00 ! I I 

800 I 
\ 

\ 
------1 

-H I I CFD: td = 8 ns, f = 20% I 
i 

J!? 
I / 

I I 
I 

C I I 
:::, Tffsu ~ 2 ns--t- i 0 I I -

C,) I / c_3.22 ns FWHM Vphotopeak = 0 .8 V 
I I 

: ! I 

I ! l\rming Thld = 200 keV 
I, 

I J \ I I i 

~ I so ps Channels , I 
/ I I ' >", I Filtering, Si~ma = 100 ~ ~ 

I I ; I 6.41 ns FWfM 

I 
+ 

I 

I 

~]"'' I + I I 
0 +-+ I r-/; I I I I I I I I I I I I .1~1~+11 11 

14 16 18 20 22 24 26 28 30 

t {ns) 

Figure 4-32. Monte Carlo Timing Spectrum for Commercial Delay-Line CFD. 
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Figure 4-33. Measured Energy Spectrum for Commercial Delay-Line CFD. 
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Figure 4-34. Measured Timing Spectrum for Commercial Delay-Line CFD. 
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5. CFD CIRCUITS, INCLUDING A FULLY-MONOLITHIC CMOS 
IMPLEMENTATION 

Overview 
In this section, previously reported CFD circuits are presented along with circuits 

developed for a fully-monolithic CMOS CFD. A historical review of major CFD circuit 

developments is presented including discussions of active and passive constant-fraction 

shaping circuits, constant-fraction comparator circuits, and arming circuits. In addition to 

CFD time pick-off circuits, other time pick-off circuits are reviewed. These circuits include 

leading-edge, conventional-crossover, trailing-edge, and differentiator-type discriminators. 

Time-walk performance of comparator circuits is reviewed for high-speed, bipolar ECL 

comparators commonly used in CFD circuits and for recent high-speed bipolar, GaAs, and 

CMOS comparators. In addition, the performance of slow-rise-time reject (SRT) and 

traditional arming circuits is described, including a discussion of CFD timing errors 

resulting from these circuits. Finally, walk-adjustment circuits are described where 

constant-fraction comparator input offset is controlled to minimize CFD walk. 

Design details are presented for a fully-monolithic CMOS CFD, believed to be the first 

reported monolithic CMOS CFD implementation. This circuit uses the Binkley non-delay

line CFD circuits described in Section 4 to replace the delay-line typically used in CFD 

circuits. Process characteristics for the standard 2-µ, double-metal, double-poly, n-well, 

digital CMOS process used for the CMOS CFD are given along with an overview of each 

major circuit. 

A wideband (bandwidth greater than 100 MHz), five-pole, five-zero, CMOS continuous

time filter is described which implements a Binkley, five-pole Gaussian, non-delay-line CFD 

shaping circuit. This fully differential circuit requires no common-mode feedback to set 

common-mode bias levels. SPICE simulations of pulse performance, de linearity, ac 

response, noise, and time-walk distortion are presented. 

Design optimization for low time-walk comparators, believed to be the first such 

reported analysis, is developed to permit selection of circuit topology and device sizes for the 

constant-fraction comparator used in the CMOS CFD. Performance tradeoffs associated 

with time walk due to limited small-signal gain-bandwidth and time walk due to large

signal circuit limiting are illustrated for a multistage, CMOS comparator design that is used 

as a basis for the constant-fraction comparator in the CMOS CFD. SPICE simulations of 

comparator response time, time-walk, ac response, and noise are presented for the constant

fraction comparator used in the CMOS CFD. 

174 



Monte Carlo simulations of energy and timing spectra are presented for the CMOS CFD. 

These simulations are especially useful since experimental verification of CFD performance 

is not possible prior to integrated-circuit fabrication. Additionally, an evaluation of CMOS 

CFD time walk and time jitter is presented, and these errors are shown to be negligible for 

the EGO/photomultiplier application considered. Finally, measured energy and timing 

spectra are presented for the fabricated CMOS CFD. The measured CMOS CFD timing 

resolution (3.25 ns FWHM, 6.50 ns FWTM) is comparable to simulated CMOS CFD timing 

resolution (3.45 ns FWHM, 6. 71 ns FWTM) and measured timing resolution (3.30 ns 

FWHM, 6.40 ns FWTM, given in Section 4) for a commercial, delay-line CFD. 

Review of CFD Circuits 
A CFD circuit (Figure 1-4, page 15) contains shaping circuitry for creating bipolar 

timing pulses, a constant-fraction comparator to sense the zero-crossing of these bipolar 

timing pulses, an arming comparator to detect signals above a preset threshold, and arming 

logic to qualify the CFD timing output for those input signals above the threshold. 

There are three CFD arming circuits in wide use and these are shown in Figure 5-1 [1, 

2]. The traditional arming circuit in Figure 5-1 consists of a simple AND gate which 

provides an output if both the arming and constant-fraction signals are present. The AND 

gate is followed by a one-shot circuit which holds the output active for a duration of time 

equal to the blocking time. This prevents retriggering of the circuit on photoelectron 

emissions from the detected event. 

In addition to the traditional arming circuit in Figure 5-1, two slow-rise-time (SRT) 

reject arming circuits are shown. Both of these circuits use a D flip flop to provide a timing 

output (which is related in time to the constant-fraction signal) only if the arming signal 

precedes the constant-fraction signal. These circuits are designed to prevent false (leading

edge) triggering that occurs in the traditional arming circuit when the constant-fraction 

signal precedes the arming signal. This condition occurs if the input-signal rise-time is not 

sufficiently fast or if the input-signal does not sufficiently cross the arming threshold. One 

slow-rise-time reject circuit shown in Figure 5-1 uses traditional arming with an AND gate 

to qualify the clock input of the D flip flop. The other slow-rise-time reject circuit shown 

does not utilize this gate. 

Reported CFD Circuits 

The first CFD circuits were reported by Gedcke and Mc Donald in 1967 and 1968 [3, 4]. 

These circuits, used for scintillation-detector timing, relied on passive signal summing to 
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produce a single-ended bipolar timing signal that was routed to a tunnel-diode detector for 

zero-crossing discrimination. The shaping circuit consisted of a delay line and wideband 

transformer for delaying and inverting the input signal and a resistor summing network to 

combine the delayed and attenuated input signal. The arming circuit used was effectively 

the traditional arming circuit, although no AND gate was used. Instead, the constant

fraction (zero-crossing) tunnel diode discrimination circuit was primed by a second arming 

tunnel-diode discrimination circuit. Although these were the first CFD circuits reported, 

the walk of the Gedcke and Mc Donald circuits was reported at ±120 ps for a 100:1 input

signal range of 1.2 mA to 120 mA [3, 4]. The input signal was provided directly from an 

RCA (now Burle) 8575 photomultiplier tube with a rise-time in the 2 - 4 ns range [5]. These 

early circuits had good timing performance because of the high-performance tunnel-diode 

discriminators (comparators). 

Another CFD circuit utilizing tunnel diodes was reported in 1968 by Chase [6]. In this 

circuit, designed for timing with Ge(Li) detectors, amplitude-rise-time-compensated (ARC) 

timing was used where CFD constant-fraction delay is made short relative to the input

signal rise-time. As discussed earlier, ARC CFD operation minimizes time walk due to 

varying input-signal rise-time from semiconductor detectors. In 1972, another tunnel-diode 

CFD was reported by Cho and Chase for timing with Ge(Li) detectors [7]. This circuit used 

a "dual priming" technique where one ARC-configured CFD (containing a regular arming 

comparator) was used to arm a second ARC-configured CFD for the timing output. This 

circuit extended the low-energy range of Ge(Li)-detector timing operation from the previous 

limit of 200 keV to approximately 20 keV. 

The first CFD circuit using integrated circuits was reported by Maier and Sperr in 1970 

[8]. In this circuit, used for scintillation-detector timing, ECL logic circuits were used from 

the Motorola :MECL II family [9]. Active summing, now widely used, was utilized in the 

circuit where the delayed and attenuated signal are actively summed (actually subtracted) 

at the differential input of the constant-fraction comparator. Both the constant-fraction 

comparator and arming comparator were constructed from three cascaded ECL line 

receivers. The arming circuit used was the traditional arming circuit which was 

implemented with an ECL AND gate. The walk performance of the Maier and Sperr circuit 

was reported at less than 250 ps for an input-amplitude range of 50:1 (-50 m V to -500 m V) 

with an input rise-time of 2 ns [8, 10]. A circuit similar to the Maier and Sperr circuit, also 

used for scintillation-detector timing, was reported in 1974 by Hall [11]. In this circuit, 

timing performance was improved through the use of iterative adjustment schemes 
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involving the trimming of DC comparator offsets and the trimming of the constant-fraction 

delay. 

In 1974, Maier and Landis [10] reported a second version of the Maier and Sperr [8] 

CFD circuit. In this circuit, the AMD 685 ECL comparator was used [12] and ECL logic 

circuits were used from the Motorola MECL 10 K logic family [9]. The arming circuit used 

in the second version circuit consisted of either the traditional AND-gate logic or a specially

designed slow-rise-time reject circuit useful for Ge(Li) timing. The slow-rise-time reject 

circuitry contained a set-reset flip-flop circuit to ensure that arming only occurred if the 

arming signal preceded the constant-fraction signal. This slow-rise-time reject circuitry was 

first reported by Gabriel et al. in 1972 [13]. The walk performance of the Maier and Landis 

circuit was reported to be superior to the earlier Maier and Sperr circuit for signals lower in 

amplitude than -100 mV. The reported walk for the Maier and Landis circuit was 1 ns for 

an input-amplitude range of 1000:1 (-5 m V to -5 V) with an input rise-time of 2 ns. 

In 1981, Wozniak et al. [14] reported on a modification to the Maier and Landis [10] 

CFD circuit. In the modified circuit, the AMD AM685 ECL constant-fraction and arming 

comparators were replaced with the Plessey SP9685 [15] high-speed ECL comparators. The 

reported walk for the modified circuit was 30 ps compared to 500 ps for the unmodified 

circuit for an amplitude range of 25:1 (0.1 V to 2.5 V) with an input rise-time of 1 ns. 

Additionally, the walk for the modified circuit was reported at 100 ps for an amplitude range 

of 50:1 (50 m V - 2.5 V) with the same input rise-time ofl ns. 

In 1983, Maier reported a CFD constructed with only two integrated circuits [16]. One 

of these circuits was the Plessey SP9687 dual version of the SP9685 high-speed ECL 

comparator [15], and the second was a Motorola MECL lOK [9] ECL flip-flop configured as a 

one shot. Traditional arming was used; however, no AND gate was directly used. Instead, 

the inverting outputs of the high-speed ECL arming and constant-fraction comparators were 

connected together creating negative wired-OR logic that implemented the required AND 

function. The reported walk performance of this circuit, used for scintillation-detector 

timing, was comparable to that of the earlier Wozniak circuit. 

Widely used, modem, commercial CFDs, including the Tennelec 455 [17] and the 

ORTEC 583 [18] NIM-module CFDs, utilize the Plessey SP9685 family of high-speed ECL 

comparators (or alternate sources) for constant-fraction and arming comparators. 

Additionally, ECL logic from the Motorola MECL lOK, lOKH, or MECLIII families [9] is 

used for arming logic in these circuits. Most of the commercial circuits, including those 

previously mentioned, have arming circuits that can be configured for either traditional 
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arming or slow-rise-time reject arming. The slow-rise-time reject logic consists of a D flip

flop with AND logic preceding its clock input (Figure 5-1) and is especially useful for 

semiconductor-detector timing applications where the input rise-time varies widely. 

Additionally, the commercial circuits can be configured for amplitude-rise-time-compensated 

(ARC) operation (through the choice of external constant-fraction delay) for use with 

semiconductor detectors. The commercial CFD circuits have walk performance in the 

±30 ps (60 ps) to ±120 ps (240 ps) range for an input-amplitude range of 100:1 (25 mV to 

2.5 V) with an input-signal rise-time of 1 ns. 

The CFDs used in Siemens/CTI 931, 951, ECAT EXACT (921 ), and ECAT EXACT HR 

(961) series of commercial PET tomographs [19] utilize a dual high-speed ECL comparator 

from the Plessey 9685 [15] family and MECL lOKH ECL [9] arming logic. The arming 

circuits are configured as slow-rise-time reject circuits using a D flip-flop with logic similar 

to AND logic preceding the clock input (Figure 5-1). The CFDs used in the Siemens/CTI 711 

time-of-flight PET tomograph use the same comparator circuits but use a slow-rise-time 

(SRT) reject arming circuit consisting of a D flip-flop without logic preceding the clock input 

(Figure 5-1) [19]. Although the slow-rise-time reject arming configurations (Figure 5-1) are 

intended mainly for semiconductor-detector (e.g., Ge(Li)-detector) applications where slow

rise-time inputs can occur, slow-rise-time reject arming has been found experimentally to 

give better operation over traditional arming for PET EGO/photomultiplier scintillation

detector systems [20]. 

CFD circuits using comparators faster than the Plessey 9685 family of high-speed ECL 

comparators have been reported. Circuits using the VTC VC7695 high-speed ECL 

comparator [21] have been reported by Binkley and Casey [22] and by Turko [23]. The 

measured walk for the CFD (using the VC7695 comparator) reported by Binkley and Casey 

is 40 ps for an input dynamic range of 100:1 (25 mV - 2.5 V) with an input rise-time of 

1.3 ns. The measured walk for the circuit reported by Turko (using the VC7695 comparator) 

is 100 ps for an input dynamic range of 100:1 (25 m V - 2.5 V) for narrow pulses having a 

pulse width of 1.5 -15 ns FWHM. The measured walk for this circuit was also reported by 

Turko for the Honeywell HCMP96850 [24] and Analog Devices AD96687 [25] high-speed 

ECL comparators, with a reported value of approximately 200 ps. The circuit reported by 

Turko is not a delay-line CFD; instead, it is a differentiation circuit formed by differencing a 

single-pole-lowpassed version of the input signal from the input signal. This circuit will be 

described later. Finally, circuits using GaAs comparators have been reported by Bialkowski 
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et al. [2]. The reported walk for this circuit is 40 ps for an input dynamic range of 100:1 

(20 m V - 2 V) with an input rise-time of 1 ns. 

Although most commercial CFDs use one of the arming circuits shown in Figure 5-1, 

more elaborate arming circuits have been reported. These circuits are designed to permit 

more reliable arming for signals with widely varying rise-times from Ge(Li) detectors. 

These circuits attempt to minimize leading-edge timing errors caused by improper CFD 

arming while minimizing the rejection of good events. One such circuit, reported by White 

and Mc Donald [26, 27], and Robertson [28], consists of three paralleled CFDs operating at 

fractions of 10%, 30%, and 50%. The timing marks from each of these circuits are compared 

in time to determine if the input-signal rise-time is within acceptable limits. Another 

arming circuit reported by Bedwell and Paulus uses two arming comparators with initial 

arming derived from an arming comparator having a threshold of one-half that of a final 

arming comparator [29, 30, 31]. Since the final arming comparator ultimately qualifies 

events, signals from accepted events are guaranteed to exceed the initial arming threshold 

by a factor of at least two. This eliminates the leading-edge timing errors associated with 

signals that barely cross the arming threshold. 

All of the CFD circuits described so far have been fabricated from discrete electronic 

devices or integrated circuits combined with discrete devices. A hybrid CFD (requiring an 

external delay line) was reported by Bedwell and Paulus in 1978 [32] and this circuit was 

used in the CTI/Siemens 911 series of PET tomographs [19]. Passive summing was used in 

this hybrid circuit, consisting of a wideband transformer for signal inversion of the delayed 

signal and a passive summing network for the attenuated signal. Although circuit details 

were not described for this hybrid circuit [32], high-speed ECL voltage comparators and 

ECL logic circuits were probably used. 

Binkley et al. reported a monolithic CMOS CFD requiring an external delay-line and 

attenuation network in 1991 (actually first reported at the 1989 IEEE Nuclear Science 

Symposium held in January of 1990) [33]. This circuit, fabricated in a standard 2-µ CMOS 

process, has measured walk of 1.4 ns for a 10:1 input-amplitude range (-200 m V to -2000 m V 

input voltage) with an input-signal rise-time of 20 ns. The walk performance, which was 

shown to be adequate for PET EGO timing, is dominated by the walk associated with the 

single-stage CMOS comparator. The walk performance of the monolithic CMOS CFD 

reported later in this section is considerably improved from the first CMOS circuit. Most 

recently, Tanaka et al. reported a monolithic bipolar CFD which does not require an 

external delay line (first reported at the IEEE Nuclear Science Symposium in November of 
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1991) [34]. In this circuit, the Nowlin CFD circuit consisting of a single-pole highpass filter 

is used. The reported measured walk for this circuit is 1 ns for a 31.6:1 input-amplitude 

range (10 - 316 mV input voltage) and an input-signal rise-time of 10 ns which is 

considerably above the reported SPICE-simulated value of 100 ps. The power consumption 

of this circuit is 190 mW (the power dissipation was given in the submitted paper summary 

only). The monolithic CMOS CFD reported later in this section uses the Binkley CFD 

circuit and is believed to be the first fully-integrated CMOS monolithic (no external delay 

line or attenuation network) CFD. The power dissipation of the CMOS CFD circuit, 

expected to be approximately 70 mW in the final design, is considerably below the 

approximate 190-mW power dissipation of the Tanaka CFD circuit. 

Other Reported Time Pick-Off Circuits 

Delay-line CFDs contain both a delayed and attenuated signal path. In the non-delay

line CFD circuits previously described, the delayed path of the delay-line CFD is replaced 

with highpass networks (Nowlin CFD) or allpass/lowpass networks (Binkley CFD). In 

addition to the delay-line and non-delay-line CFDs discussed, other timing circuits have 

been reported. 

The simplest time pick-off circuit is the leading-edge discriminator discussed earlier in 

Section 2. This circuit produces amplitude and rise-time walk for any nonzero threshold 

voltage, but can offer adequate timing performance for input-signals having a narrow 

amplitude range or having sufficiently fast rise-times (much less than the desired timing 

resolution). 

Fast-crossover timing provides amplitude-insensitive timing for scintillation

photomultiplier detectors [35]. In this time pick-off circuit, the anode of the photomultiplier 

tube is connected to a zero-crossing discriminator and to a shorted stub of transmission line. 

A bipolar shaping signal results at the photomultiplier output due to the presence of the 

shorted transmission line. The zero-crossing time of this bipolar signal is independent of 

signal amplitude as is true for bipolar signals from all linear shaping circuits. 

Fast-crossover timing has the advantage of circuit simplicity compared to the delay-line 

CFD as it requires a single transmission line or delay line and no attenuation network [35]. 

Additionally, circuit arming is simplified because the zero-crossing time occurs after the 

rise-time of the input signal. However, fast-crossover timing has the disadvantage of higher 

timing jitter compared to the delay-line CFD because of increased shaping-signal noise and 

decreased shaping-signal slope. Additionally, fast-crossover timing is sensitive to input-
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signal rise-time and shape. Fast-crossover timing retains the complexity associated with a 

delay line, making a complete monolithic implementation impractical. 

In 1969, Kinbara and Kumahara reported a timing shaping circuit where a 

differentiated version of the input signal is compared with a delayed version [36]. Later, 

Hartmann and Klein made a theoretical analysis of the Kinbara and Kumahara circuit and 

concluded that better performance is available by comparing a delayed, differentiated 

version of the input signal with the input signal [37]. Both timing shaping circuits retain 

the complexity of a delay line and are not in general use. 

Conventional-crossover timing provides amplitude-insensitive timing from the bipolar 

shaping signals available at the output of bipolar shaping amplifiers [35]. Either double

delay-line or CR-RC-shaping circuits can be used for the shaping. Since most shaping 

amplifiers are optimized for energy performance and significant integration or lowpass 

filtering is usually present, the shaping-signal rise-time is significantly reduced resulting in 

significantly increased timing jitter compared to the delay-line CFD. Conventional

crossover timing, however, is useful for timing where optimum timing resolution is not 

required. 

Timing can also be derived from the output of energy shaping amplifiers through the 

use of a trailing-edge CFD [35]. In this circuit, the unipolar or bipolar output from a 

shaping amplifier is passed directly into one side of a timing comparator while a pulse

stretched and attenuated version is passed into the other side. The timing point is derived 

on the falling edge of the input signal (the signal from the shaping amplifier) when the 

input is equal to a selected fraction of the peak input signal. The pulse stretcher is used to 

obtain the peak input signal, and the attenuation network is used to select the fraction. 

Like conventional-crossover timing, the trailing-edge CFD is useful for timing off pulses 

shaped for energy measurements. However, like conventional crossover timing, time 

derivation is dependent upon the input-signal rise-time and shape, and timing jitter 

performance is not optimized because of operation with low-bandwidth pulses optimized for 

energy measurements. Although conventional-crossover and trailing-edge-CFO circuits do 

not require a delay-line (if CR-RC-shaping circuits are used in the preceding energy-shaping 

amplifier circuits), these circuits are not optimized for minimum timing jitter compared to 

the wider bandwidth Nowlin and Binkley non-delay-line CFD circuits. 

Recently, Turko reported a non-delay-line timing circuit for use with pulses having 

narrow pulse widths [23]. In this circuit, the input is connected directly to one timing

comparator input and a single-pole-lowpassed version of the input is connected to the other 
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timing-comparator input. The resulting circuit response is that of a single-pole highpass 

filter which acts as an approximate differentiator. The zero crossing of the output signal 

from this approximate differentiator occurs near the peak of the input signal where the 

signal slope is zero. Reported walk performance for this circuit (using the VTC VC7695 

high-speed ECL voltage comparator [21]) is 100 ps for pulses with a pulse width of 

1.5 -15 ns FWITh1 having an 100:1 input-amplitude range (25 mV - 2.5 V). Although the 

circuit is actually equivalent to the Binkley single-pole Gaussian CFD with a fraction of 

100% (a disallowed fraction value for the Binkley Gaussian circuit), its principle of operation 

is considerably different. The Turko circuit is a differentiation circuit sensing the peak of a 

narrow input pulse whereas the Binkley Gaussian CFD is sensing the leading-edge of the 

input signal independent of the pulse width. 

Operation of CFO Circuits 

Operation of CFD Arming and Constant-Fraction Comparators 

As described by Binkley and Casey [22], a CFD provides walk-free timing (excluding any 

walk errors in the arming-logic circuitry) for a linear shaping network and an ideal, walk

free constant-fraction comparator. Walk errors for practical CFD circuits, however, are 

usually dominated by walk in the constant-fraction comparator. 

Comparator walk performance in CFD applications can be inferred from the reported 

walk performance of CFD circuits previously discussed [2, 3, 4, 8, 10, 14, 16, 17, 18, 23, 33]. 

Measured walk performance for comparators not configured in CFD applications has 

recently been reported by Turko [38] following the paper by Binkley and Casey [22] in which 

detailed SPICE-simulated comparator walk data was reported. Turko measured comparator 

walk using a variable threshold voltage to provide triggering with different levels of input 

overdrive [38]. The resulting comparator input-signal underdrive changed with overdrive, 

decreasing as overdrive increased. The measured walk for high-speed bipolar ECL voltage 

comparators was approximately 210 ps (AD9685 [39]), 250 ps (VC 7695 [21]), 880 ps (HCMP 

96870 [24]), and 1030 ps (AM685 [12]). The measured walk for high-speed Ga.As ECL 

voltage comparators was approximately 220 ps (10G012B [ 40]), and 805 ps (TQ6330 [ 41 ]). 

These walk measurements are for overdrives between 10 mV and 1 V (100:1 dynamic range) 

for a 1-V input signal having a rise-time of 140 ps. The SPICE-simulated comparator-walk 

data reported by Binkley and Casey [22] was 185 ps for the VC7695 high-speed ECL voltage 

comparator with step inputs having symmetrical overdrive and underdrive between 10 m V 

and 1 V (100:1 dynamic range). Although the input-signal underdrive and rise-time 
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conditions are somewhat different, the simulated walk (185 ps) is near the walk (250 ps) 

measured by Turko. 

Recently, several new high-speed, ECL voltage comparators have been introduced which 

should be considered for high-performance discrete timing circuits. The MAX9685 

(MAX9687 is the dual version) [ 42] is an improved version of the widely-used AD9685 [39], 

SP9685 [15], and AM6685 [43] family of high-speed, ECL voltage comparators. The 

propagation delay for the improved comparator is nearly a factor of two faster at 1.3 ns 

typical, 1.8 ns maximum for a 100-m V step input having a 10-m V overdrive. The AD96685 

(AD96687 is the dual version) [25] high-speed, ECL voltage comparator is another improved 

version of the widely-used AD9685, SP9685, and AM6685 family of comparators. The 

propagation delay for this improved comparator is essentially the same at 2.5 ns typical, 

3.5 ns maximum for the same 100-mV step input having a 10-mV overdrive. However, the 

walk for the improved comparator is specified at 50 ps typical for a step input with input 

overdrives ranging from 100 m V to 1 V. 

The fastest, high-speed, ECL voltage comparator recently introduced is the SPT9689A 

[24], which is a dual comparator. The specified propagation delay is 650 ps typical, 850 ps 

maximum for a step input having an overdrive of 20 mV, and the specified walk is typically 

less than 100 ps for overdrives between 5 m V and 50 m V. Although this bipolar circuit (all 

of the high-speed, ECL comparators mentioned are bipolar) has considerably improved 

propagation delay over other high-speed, ECL comparators, it still has a comparable DC 

gain of approximately 2,000. 

Binkley et al. reported the walk performance of a single-stage CMOS voltage 

comparator used in a monolithic CMOS CFD that utilized an external delay line [33]. The 

measured walk for this comparator was 2 ns for a 20-ns rise-time input signal having 

symmetrical overdrive and underdrive between 100 m V and 2 V (20:1 dynamic range). 

Although this walk performance is considerably poorer than the walk performance of the 

multistage Bipolar and GaAs voltage comparators previously described, the resulting CFD 

timing performance was adequate with careful walk adjustment for BGO/photomultiplier 

scintillation-detector PET applications. As mentioned earlier, the CMOS comparator 

included in the fully-monolithic CMOS CFD (described later in this section) has 

considerably improved walk performance over the previously-reported single-stage design. 

The performance improvements are the result of a multi-stage design having considerably 

improved gain-bandwidth product. Design approaches for minimizing comparator walk will 
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be discussed later in the discussion of the CMOS comparator used in the fully-monolithic 

CMOSCFD. 

Recently, a family of high-speed, 0. 7-µ CMOS analog cells has been introduced by NCR 

[44]. One of these cells is a voltage comparator (CP1101), which has a typical propagation 

delay of 21 ns for an input overdrive of 10 mV and load capacitance below 1 pF, a typical 

input-offset voltage of 5 mV, and a typical power consumption of 2.11 mW (+5 Vat 422 µA). 

As is typical for most commercial comparators, no walk specification is given for this circuit. 

Operation of CFD Walk-Adjustment Circuits 

In practical CFD circuits, time-walk adjustment is required to obtain optimum timing 

performance. Time-walk may be adjusted by applying input signals of varying amplitude 

and monitoring the CFD bipolar shaping signal. A DC offset voltage is then applied to the 

shaping signal until the zero crossings of the shaping signal occur at nearly the same point. 

This DC offset voltage corrects for DC offset errors in the circuitry. 

In addition to monitoring the CFD bipolar shaping signal, it is also possible to monitor 

the constant-fraction comparator output during time-walk adjustment. Adjusting this 

output for equal timing edges will compensate for DC offset errors and, to some degree, 

comparator walk errors. Some compensation of comparator time walk is possible by 

effectively boosting the level of small shaping signals with an additive DC offset. 

In Siemens/CTI PET tomographs, CFD time walk is adjusted by observing the output of 

the constant-fraction comparator with no input signal present [19]. This output consists of 

amplitude-limited noise because of the high constant-fraction comparator gain. The shaping

signal DC offset (the time-walk adjustment) is then adjusted to obtain symmetrical constant

fraction comparator output noise indicating that circuitry is biased in the center of its linear 

region. Such a time-walk adjustment does not compensate for comparator time-walk errors 

but is adequate for BGO timing with high-performance constant-fraction comparators (e.g., 

high-gain, high-speed ECL comparators like those in the Plessey SP9685 [15] family). 

Automatic walk adjustment for CFDs has been reported in the literature [2, 16]. These 

circuits sense the DC-offset error in the shaping signal and, through feedback, correct for 

this error. A gated-baseline restorer circuit can be used where the correction circuitry is 

disabled during the presence of a signal [16], or continuous baseline-restoration can be used 

[2]. Gated-baseline restoration minimizes baseline error at high count rates since false 

correction during the presence of a signal is disabled. A gated, autozero time-walk circuit 

will be outlined in Section 6 for possible future enhancement of the monolithic CMOS CFD 

described later in this section. 
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Optimum time-walk adjustment is available by experimentally adjusting CFD time walk 

to obtain minimum walk for input signals having a given amplitude dynamic range. This 

can be done using a fixed test-input pulse source with an attenuation network to provide 

input signals having various amplitude levels. The attenuation network must introduce 

negligible time walk (for different settings of signal attenuation) for this technique to be 

useful. Time-walk was adjusted in this manner for the CMOS CFD (using an external delay 

line) described by Binkley et al. [33]. The time walk for this circuit is shown in Figure 5-2 

for input signals having a 20-dB and 30-dB amplitude dynamic range. The time walk 

initially decreases as the input-signal amplitude increases reaching a minimum before 

beginning to increase. The time walk then increases for large input-signal amplitudes. As 

mentioned earlier in Section 2, increasing comparator propagation delay with increasing 

signal level is sometimes observed for large input-signal amplitudes, even though this 

propagation-delay behavior is in conflict with the comparator charge-sensitivity model. 

Critical time-walk adjustments were required for the CMOS CFD reported because of the 

relatively poor (compared to the high-gain, high-speed ECL comparators previously 

mentioned) constant-fraction comparator walk performance. The walk performance of the 

constant-fraction comparator contained in the monolithic CMOS CFD described later in this 

section is considerably improved over the previous Binkley et al. CMOS CFD circuit, 

eliminating the need for experimental time-walk adjustments. 

Operation of CFD Arming Circuits 

CFD arming circuits are required to prevent triggering on baseline noise. This noise 

includes both electronic noise and photoelectron-emission noise pulses that occur after the 

initial timing discrimination. Photoemission noise is particularly severe for low 

photoelectron-yield detectors, as illustrated in Figure 5-3 for a typical 511-keV event 

detected by a EGO/photomultiplier scintillation detector. The detector-output waveform 

shown was developed using Monte Carlo simulation (described in Section 3) using the 

detector characteristics described in Figure 5-3. The waveform includes the effects of a two

pole front-end amplifier having a composite time-constant of 4.55 ns (4.55 nsl..fi each pole) 

with a 10 - 90% rise-time of 10 ns. As seen in the waveform, it is necessary to block or 

inhibit CFD operation for at least 550 ns (nearly two 300-ns decay time constants) following 

timing discrimination to prevent CFD retriggering on photoelectron-emission pulses. This 

blocking time is required for a CFD arming threshold of 40 µA (25% of the 511-keV signal 

level). 
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CFD arming operation is illustrated in Figure 5-4 for the standard arming circuits 

shown in Figure 5-1. As shown in Figure 5-4, there are three possible CFD arming 

situations: ,wrmal, leading-edge, and random. The particular arming situation depends on 

the time relationship between the CFD arming comparator signal (denoted by Arm 1, 

Arm 2, and Arm 3 for each arming situation in Figure 5-4) and the CFD constant-fraction 

comparator signal (denoted by CF in Figure 5-4). The ,wrmal arming situation results in no 

timing errors, the leading-edge situation results in no timing errors for slow-rise-time (SRT) 

reject arming circuits only, and the random situation always results in timing errors. Each 

of these arming situations is described below. 

In the ,wrmal arming situation (for arming signal Arm 2 in Figure 5-4), the constant

fraction signal is quieted or driven to the inactive state (caused by the negative-going 

shaping signal at the constant-fraction comparator input) prior to the presence of the 

arming signal. Afterwards, the arming signal becomes active followed by the transition of 

the constant-fraction signal to the active state. In this situation, both the ANDing of the 

arming and constant-fraction signals or the D-flip-flop qualification of the constant-fraction 

signal (Figure 5-1) results in a timing output that is related in time to the constant-fraction 

signal. The ,wrmal arming situation occurs if the CFD input moderately exceeds the 

arming threshold. 

In the leading-edge arming situation (for arming signal Arm 3 in Figure 5-4), the 

operation is identical to the ,wrmal situation except that the constant-fraction signal 

transitions to the active state before the arming signal becomes active. In this situation, 

ANDing of the arming and constant-fraction signals results in a timing signal that is related 

in time to the arming signal, resulting in leading-edge timing instead of the desired 

constant-fraction timing. Leading-edge timing is prevented for this situation by the use of 

slow-rise-time (SRT) reject arming circuits, such as D-flip-flop qualification of the constant

fraction signal (Figure 5-1). The D flip-flop prevents leading-edge timing because it will not 

produce a timing output if the constant-fraction signal precedes the arming signal. The 

leading-edge arming situation occurs when the CFD input signal only slightly exceeds the 

arming threshold or when the input-signal rise time is long compared to the CFD 

discrimination time. 

In the random arming situation (for arming signal Arm 1 in Figure 5-4), the constant

fraction signal is quieted after the arming signal becomes active. In this situation, either 

the ANDing of the arming and constant-fraction signals or the D-flip-flop qualification of the 

constant-fraction signal (Figure 5-1) results in a timing output that is derived from the noise 
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triggerings of the constant-fraction comparator. Such timing is random and early compared 

to the actual timing point. The random arming situation occurs when the input signal 

greatly exceeds the arming threshold. The random arming situation can also occur if a 

delay is introduced in the constant-fraction signal to permit more time (and accumulation of 

better statistics) for the CFD arming decision. Such a delay will be shown to improve CFD 

energy-discrimination performance with low photoelectron-yield detectors. 

The choice of arming circuits is strongly dependent upon the application and no attempt 

will be made to select the optimum configuration for applications outside of 

BGO/photomultiplier scintillation-detector timing. As mentioned earlier, slow-rise-time 

(SRT) reject circuits are often used for Ge(Li)-detector timing because of the presence of 

some signals with slow rise-times that will cross the arming threshold after the constant

fraction timing signal is generated. Experimental measurements made at CTI PET 

Systems, Inc. with BGO/photomultiplier scintillation detectors have shown that better 

timing performance is available using a slow-rise-time reject D-flip-flop arming circuit 

(Figure 5-1) [20]. Additionally, Bialkowski has reported that less CFD retriggering occurs 

for BaF 2 scintillation detectors if a slow-rise-time reject D-flip-flop arming circuit is used [1]. 

The slow-rise-time reject D-flip-flop arming circuit will, however, introduce some timing 

error. These errors are due to the fact that the setup and hold times for the D-flip-flop will 

be violated for some percentage of events because of the random time relationships between 

the arming and constant-fraction signals. The propagation delay of ECL D flip-flops varies 

in the 100 - 200 ps range for signals violating the setup or hold times [2, 20]. 

There is not believed to be any substantive data to indicate which of the slow-rise-time 

D-flip-flop arming circuits shown in Figure 5-1 offers the best performance. In the 

monolithic CMOS CFD described later, the clock input to the arming D flip-flop can be 

selected from either an ANDing of the arming and constant-fraction signals or a direct 

connection of the constant-fraction signal. Additionally, the traditional arming circuit can 

be selected by setting the D input of the D flip-flop active and ANDing the arming and 

constant-fraction signals at the clock input. All reported measurements of CMOS CFD 

performance are for a slow-rise-time D-flip-flop arming circuit with ANDing of the arming 

and constant-fraction signals at the clock input. The other arming configurations were 

evaluated, but little difference in CMOS CFD performance was observed. 

CFD arming design is complex for the case of Ge(Li)-detector signals because of widely

varying rise-time and shape. Anning design is also complex for the case of low

photoelectron-yield scintillation detectors such as BGO/photomultiplier detectors because of 
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the very limited statistics available for making an arming decision. Arming-circuit design 

involves a compromise between minimizing the rejection of valid events (those with 

acceptable energy) and minimizing timing errors. 

Design of a Fully-Monolithic CMOS CFD 

Circuit Overview 

A fully-monolithic CMOS CFD was designed and fabricated using a standard 2-µ, 

double-poly, double-metal, n-well, digital CMOS process. This circuit will be included in a 

larger monolithic CMOS circuit under development for front-end signal processing in 

CTI/Siemens commercial PET systems. 

A top-level circuit diagram, illustrating subcircuits and interconnections, is shown in 

Figure 5-5 for the CMOS CFD. Each subcircuit will be described briefly and detailed 

descriptions will follow for selected subcircuits. Full circuit descriptions and schematics are 

not given for competitive protection of CTI PET Systems, Inc. 

Subcircuit Xl is an arming filter, threshold circuit which provides lowpass filtering 

(single-pole time constant of 4 ns) and threshold offset for the arming signal. This 

subcircuit is followed by an arming comparator (subcircuit X2) which derives the arming 

logic signal. Hysteresis is included in the arming comparator to minimize noise triggering. 

Subcircuit X3 is the CFD shaping circuit which is a Binkley five-pole Gaussian CFD circuit. 

The CFD shaping circuit is followed by the constant-fraction comparator (subcircuit X4). 

The constant-fraction comparator derives the constant-fraction timing logic signal. 

Subcircuit X5 is an arming delay generator which provides a nominal 10-ns delay at the 

constant-fraction-comparator output. As discussed earlier in Section 4, the use of this delay 

significantly improves CFD energy-discrimination performance by permitting additional 

time for the accumulation of arming statistics. 

Two independent sets of arming-logic circuits are included in the CMOS CFD (Figure 5-

5): traditional saturating CMOS-logic circuits (subcircuits X9 - Xll) and specially-designed 

linear CMOS-logic circuits (subcircuits X6 - X8). The specially-designed linear CMOS-logic 

circuits consists of source-coupled logic circuitry having topology similar to bipolar ECL 

logic circuitry. These circuits are designed to introduce much lower power-supply switching 

noise compared to traditional CMOS saturating logic. Both the saturating and source

coupled arming logic circuits are configurable (through the assignment of three mode input 

pins) for the traditional arming or slow-rise-time reject arming configurations shown in 

Figure 5-1 (page 226). 
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Subcircuit X12 (Figure 5-5) is a process-tuning circuit designed to regulate the 

resistance associated with 4 µ/4 µ (drawn-channel width/drawn-channel length) P-channel 

MOSFETs operated in the ohmic region. This circuit regulates the resistance of these ohmic 

devices at 15-k.Q by sensing a voltage drop of 1.5 V for an applied current of 100 µA. The 

15-k.Q ohmic devices are used as resistors having low parasitic capacitance since only 

diffusion and poly-silicon resistors are available in the CMOS process used. 

Subcircuit X13 develops reference voltages for cascode current sources and cascode 

current sinks which are used to develop bias currents in the CMOS CFD. A reference 

current of 100 µA is externally provided for subcircuit X13. The remaining subcircuit, X14, 

is used for miscellaneous logic functions. These functions include logic inversion and 

combinational gating for arming-logic mode and reset control. The arming logic remains 

latched following a CFD output until an external reset signal is provided. 

A layout plot of the CMOS CFD is shown in Figure 5-6. The circuit was laid out using 

the MAGIC geometrical layout editor (a public domain program) [ 45] onto an Orbit 

Semiconductor [46] tiny-chip die frame having dimensions of 2.4 mm x 2.4 mm. The CMOS 

CFD contains 640 CMOS transistors and consumes 135 mW for supply voltages of +5 V and 

-5.2 V. A differential output driver in the CMOS CFD (subcircuit XS in Figure 5-5) 

consumes 50 mW of the total 135 mW power consumption. The transistor count and power 

consumption of the final circuit will be approximately one-half that of the prototype circuit 

because of the elimination of multiple logic sections and other extra circuits included for 

testing various constant-fraction arming configurations. 

CMOS Process Characteristics 

Nominal process characteristics for the 2-µ, double-poly, double-metal, n-well CMOS 

process used are given in Table 5-1 [ 46]. Prototyping services are currently available for 

this process through the Orbit Foresight service (run closings every week) [46] and through 

the MOSIS service (run closings every other month) [47]. Current prototype prices are 

$1500.00 for 12 tiny chips (2.4 mm x 2.4 mm die size) with a turn-around time of 

approximately 6 weeks (Orbit Foresight service) and $510.00 for 4 tiny chips with a turn

around time of approximately 10 weeks (MOSIS service). The development of the high

speed CMOS analog circuits is greatly facilitated by the availability of low-cost, fast turn

around prototype services. 
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Table 5-1. Nominal Process Characteristics for the 2-µ, Double-Poly, Double
Metal, N-Well CMOS Process Used. 

Parameter N-Ch P-Ch 

Threshold Voltage, VT (V) 0.75 -0.75 

Body Effect Para.meter, y ( ./v) 0.25 0.55 

Transconductance Parameter, K = µ0C0 x (V2/µ.A) 46 15 

Subthreshold Slope (V"3/decade) 100 100 

Channel Length Lateral Diffusion, Lri (µ) 0.3 0.4 

Channel Width Lateral Diffusion, W D (µ) not specified not specified 

Gate Oxide Thickness, T ox (A) 400 400 

Nominal para.meters given for Orbit Semiconductor 2-µ, 2-metal, 2-poly, n-well process. 

SPICE simulations for the CMOS CFD were performed using BSIM (level 4) MOSFET 

models which model circuit-parameter sensitivities to channel length and channel width 

[48]. Extracted BSIM parameters from MOSIS run n09e (extracted in early 1990) were used 

for simulations. These parameters are believed to be representative for an average process 

run based on comparisons of approximately ten process-parameter sets. Extracted BSIM 

parameters were not available for the Orbit Foresight prototype run used for fabrication of 

the CMOS CFD. 

Binkley Five-Pole Gaussian CFD Shaping Circuit 

A Binkley five-pole Gaussian CFD shaping circuit was implemented in the CMOS CFD. 

The use of this shaping circuit eliminated the external delay line required for the delay-line 

CFD and permitted a fully-monolithic implementation of the CMOS CFD. A nominal time 

constant of 0. 75 ns was selected for each of the real poles used in the Binkley five-pole 

Gaussian CFD shaping circuit giving a delay time constant of 1.677 ns ( ../5 x 0. 75 ns). This 

time constant was selected using Monte Carlo simulations to obtain a timing resolution of 

approximately 3 ns FWHM with the EGO/photomultiplier scintillation detector. A fraction 

of 50% was used for the Binkley Gaussian CFD shaping circuit because, as described in 

Section 4, zero-crossing slope is maximized and timing jitter is minimized for this fraction 
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value. The DC gain (and ratio of output overdrive to input-signal amplitude) of the Binkley 

Gaussian CFD is equal to one minus the fraction (1 - {). This gain is equal to one-half for 

the fraction of 50%, so an additional gain of two was added to give a nominal DC gain of one. 

As discussed in Section 4, gain can be applied to the Binkley Gaussian CFD circuit to make 

the shaping-signal underdrive, overdrive, and zero-crossing slope comparable to that of the 

delay-line CFD. 

A CMOS continuous-time (non-switched) filter was used to implement the Binkley five

pole Gaussian CFD shaping circuit. There are two primary CMOS continuos-time filters in 

use: MOSFET-C and gm-C filters. Both MOSFET-C and gm-C filters are voltage-mode filters 

with input-voltage and output-voltage signals. In MOSFET-C filters, voltage integrators 

are constructed from operational amplifiers using capacitive feedback and MOSFET 

resistors (MOSFETs operating in the ohmic region) connected between the input signal and 

the integrator virtual ground [49, 50, 51, 52, 53]. In gm-C filters, a transconductor or 

operational transconductance amplifier (OTA) is used to convert input voltage to current, 

and this current flows into a capacitive load creating an integrator [49, 54, 55, 56]. The 

integrators created by both MOSFET-C and gm-C filters can be combined to create active 

biquad or state-variable filters. 

In MOSFET-C and gm-C filters, differential signal operation is generally used. 

Differential-signal operation results in even-order circuit-distortion cancellation (resulting 

in lower distortion and nonlinearity), zero systematic differential-signal offsets, and 

enhanced power-supply rejection compared to single-ended operation. Differential 

continuous-time filter circuits, however, usually require common-mode feedback circuits to 

establish common-mode signal levels. These circuits increase circuit complexity and may 

deteriorate large-signal transient response. 

A special fully-differential, current-mode CMOS continuous-time filter was developed for 

the Binkley five-pole Gaussian CFD shaping circuit. This circuit has the advantages of 

circuit simplicity, the requirement of no common-mode feedback, and very wideband 

performance (> 100 MHz for the 2-µ CMOS process) compared to traditional MOSFET-C and 

gm-C filters. A schematic diagram of the continuous-time filter is shown in Figure 5-7. 

In the continuous-time filter shown in Figure 5-7, a linearized transconductor consisting 

of a cross-coupled differential pair (MOSFETs Ml, M2, M3, and M4) is used to convert 

input-signal voltage to signal current. This transconductor is required for the CMOS CFD 

prototype because voltage signals are used for testing. In the final CMOS CFD, the input 
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transconductor will be removed as the continuous-time filter will be driven directly from an 

internally-generated current signal. 

Linearized transconductors are an important component in MOSFET gm -C continuous

time filters as they are dominant contributors of circuit distortion and noise. Linearized 

transconductors consist of cross-coupled differential pairs, differential pairs with resistive 

degeneration, and other circuit topologies designed to significantly reduce the large-signal 

distortion of a simple differential pair [56, 57, 58, 59]. In the cross-coupled differential pair 

of Figure 5-7, the feedback pair (MOSFETs M3 and M4) is used to cancel the third-order 

distortion of the primary pair (MOSFETs Ml and M2). Even-order distortion (excluding the 

effects of device mismatches) is canceled through differential operation. 

In the linearized transconductor, the primary pair (MOSFETs Ml and M2) devices are 

nearly replicated from those used in the feedback pair (MOSFETs M3 and M 4). The 

primary pair devices consist of a 3 µ/5 µ device in parallel with a 4 µ/5 µ device. The 

feedback pair devices consist of single 3 µ/5 µ devices. Device replication is used to minimize 

ratio mismatches between the primary and feedback pairs as a result of lateral (width) 

diffusion variations in the process. The device geometry ratios between the primary and 

feedback pair control the third-order distortion cancellation. 

In the continuous-time filter (Figure 5-7), the input transconductor differential-output 

current is mirrored with cascode current mirrors into two paths: a (Binkley CFD) fraction 

path with output at the drains of MOSFETs Ml 8 and M24, and a (Binkley CFD) lowpass

filtered path with output at the drains of Ml 6 and M22. Signal current in the lowpass

filtered path is then directed through two cascaded grounded-gate stages: M25 and M26 

which constitute the first stage, followed by M27 and 1\,128 which constitute the second 

stage. The (input) sources of these grounded-gate devices are loaded with capacitance to 

create single-pole lowpass filters having a time constant of nearly 0. 75 ns. The output of the 

second cascaded grounded-gate stage, the drains of M27 and 1\.128, is then connected to a 

cascode current mirror with inputs at the drains of M32 and M34. The input of this current 

mirror is capacitively loaded to create another single-pole lowpass filter with a time constant 

of nearly 0. 75 ns. The output of this current mirror, the drains of M36 and M38, is then 

connected to two final cascaded grounded-gate stages: M40 and M41 constituting one stage, 

and M42 and M43 constituting the second stage. The (input) sources of these grounded-gate 

devices are capacitively loaded to create single-pole lowpass filters with time constants of 

nearly 0. 75 ns, resulting in a total of five single-pole lowpass stages for the (Binkley CFD) 

lowpass-filtered path in the continuous-time filter. Five single-pole lowpass stages are 
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provided by four grounded-gate stages and one current-mirror stage, each of which is 

capacitively loaded to set the real-pole time constant. 

The five-pole lowpass-output current at the drains of MOSFETs M42 and M43 is 

combined with the fraction output current at the drains of M18 and M24 in the continuous

time filter (Figure 5-7). These currents are summed at the inputs (sources) of the grounded

gate stage consisting of M44 and M45. The summed currents then flow into ohmic-load 

devices, consisting of M46 and M4 7, where a differential voltage is developed. This 

differential-output voltage is buffered with a source-follower stage consisting of M51 and 

M52 to permit the driving of capacitive loads associated with the input capacitance of the 

following stage (the constant-fraction comparator) and interconnection trace capacitance. 

MOSFET transmission gates, M59 and M60, are included to permit DC monitoring of the 

continuous-time filter output voltage prior to output buffering. Such monitoring capabilities 

are useful for monitoring intermediate-stage outputs in a complex analog integrated circuit. 

The DC current gain from the input current (drains ofM14 and M20) of the continuous

time filter (Figure 5-7) to the output of the fraction path (drains of M18 and M24) is unity. 

However, the DC current gain from the input to the output of the lowpass-filtered path 

(drains of M42 and M43) is two. AE a result, the DC current gain is one and the fraction is 

effectively 50% for the Binkley five-pole Gaussian CFD shaping circuit. AE discussed 

earlier, gain was included to maximize shaping signal overdrive, underdrive, and zero

crossing slope (the DC gain is normally one-half for the Binkley CFD shaping circuit with a 

fraction of 50%). The continuous-time input transconductor transconductance is slightly 

under 100 µS, and the resistance associated with the ohmic loads (M46 and M4 7) is 

approximately 10 kn. The resulting DC voltage gain for the continuous-time filter is then 

slightly under one, being equal to the product of input transconductance, current gain, and 

load resistance. The subtraction of the fraction path from the lowpass-filtered path in the 

continuous-time filter is provided by circuit inversion in the fraction path. 

The continuous-time filter of Figure 5-7 is considerably simpler than a corresponding 

MOSFET-C or gm-C filter implementation. These implementations would require five 

integrator sections (one for each lowpass-filter pole), summing circuitry to set the Q and 

gain of two second-order sections and the gain of one first-order section, and circuitry for 

subtracting the fraction path from the filtered path. In addition, common-mode feedback 

circuitry would probably be required to establish common-mode signal levels. Also, it would 

be difficult, if even possible, to generate real poles with time constants of 0. 75 ns (the 
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corresponding -3-dB frequency is 212 MHz) in a 2-µ CMOS process using integrator sections 

configured in biquad or state-variable active filters. 

The continuous-time filter presented here (Figure 5-7) introduces only real poles in the 

lowpass-filtered path whereas complex-poles for Butterworth, Bessel, Chebyshev, etc., filters 

can be introduced by MOSFET-C and gm-C filters. Interestingly, as discussed in Section 4, 

the subtraction of a fraction path from a Gaussian lowpass-filtered path results in a network 

response having real poles and a combination of real and complex zeros (assuming more 

than a second-order Gaussian filter is used). It is possible that complex poles could be 

introduced in the continuous-time filter presented here with the use of added feedback 

circuitry. 

The variation in filter pole and zero locations with integrated-circuit process variations 

must be evaluated in continuous-filter design in order to determine what filter tuning, if 

any, is required. In the Binkley five-pole Gaussian CFD continuous-time filter (Figure 5-7), 

the time constants associated with real poles introduced by the Gaussian lowpass circuitry 

are set by the parallel combination of circuit capacitance and MOSFET transconductance. 

The time constant associated with the input node (source) of each grounded-gate stages is 

approximated by 

Cs Cs 
't d d - - = --.====== groun e -gatestage - r21 . K'W/L , 

gm "'+J bias 

(5-1) 

where gm, K', W, L, and !bias is the transconductance, transconductance factor for saturation 

operation in strong inversion, effective channel width, effective channel length, and bias 

current for the grounded-gate MOSFET device. C 8 is the total capacitance connected to the 

grounded-gate MOSFET source terminal which includes the MOSFET gate-source 

capacitance, the MOSFET source diffusion capacitance, and externally connected 

capacitance. 

From Equation 5-1, the time constant associated with each grounded-gate stage varies 

as the inverse square root of the transconductance-factor (K') and shape-factor (W / L) 

product (]bias is held constant). This product is expected to vary by ±20% over the CMOS 

process resulting in a time-constant variation of ±10%. The time constant associated with 

each grounded-gate stage varies directly with total source capacitance (C8 ) which is 

expected to vary below ±15% over the CMOS process, due to ±15% variations in poly-poly 

capacitors and lower variations in MOSFET gate-source capacitance. The total time-
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constant variation is then expected to be below ±25% over the CMOS process, ±10% due to 

MOSFET transconductance variations and less than ±15% due total source capacitance 

variations. The same time-constant variation is expected for the single pole introduced by 

the current mirror in the lowpass filter path (input at MOSFETs M32 and M34) because 

this time constant is controlled by MOSFET transconductance and shunt capacitance as 

well. 

In the continuous-time filter (Figure 5-7), tuning is not used to correct for filter time

constant variations caused by CMOS process variations. The change in timing resolution 

resulting from the expected ±25% variation in delay time constant for the continuous-time 

filter (Binkley five-pole Gaussian CFD shaping circuit) can be estimated by considering the 

change in Monte Carlo timing resolution for a Binkley four-pole Gaussian CFD shaping 

circuit. From the Monte Carlo timing resolution shown in Figure 4-24 (page 168) for the 

Binkley four-pole Gaussian CFD shaping circuit, timing resolution is 3.5 ns FWHM for a 

delay time constant of 1.5 ns (J:i x 0.75 ns; 0.75 ns time constant for each individual real 

pole in the continuous-time filter) varying by less than ±9% for ±25% variations in delay 

time constant. Variations in CMOS CFD timing resolution of ±9% resulting from CMOS 

process variations are acceptable. Variations in the CFD continuous-time filter zero

crossing time will, however, be corrected for by an adjustable delay generator in the final 

PET front-end monolithic CMOS circuit. These zero-crossing variations are expected to be 

±2.5 ns over the CMOS process and will add to propagation-delay variations (±2 ns) 

expected for the CMOS CFD constant-fraction comparator and arming logic circuitry. 

In Figure 5-8, SPICE-simulated signals are shown for the Binkley Gaussian CFD 

continuous-time filter (Figure 5-7). SPICE simulation was performed using BSIM model 

parameters and full layout parasitic capacitances. In Figure 5-8, the continuous-time filter 

input voltage, transconductor output current, fraction output current, Gaussian-lowpass 

stage output currents, CFD output current, and CFD output voltage are shown. The input 

signal has amplitude of 1 V and rise-time of 10 ns (10 - 90%) which models the 

photomultiplier-tube and two-pole-lowpass amplifier described in Figure 4-21 (page 166). 

All signals shown for the continuous-time filter in Figure 5-8 are differential voltage or 

current signals. 

In Figure 5-8, the signal delay introduced by the Gaussian lowpass-filter stages is shown 

for the Binkley Gaussian CFD continuous-time filter. The delay for each of the five single

pole lowpass stages is nominally 0.75 ns (equal to the time constant associated with that 

stage). It was necessary, however, to shorten the delay of the final two stages to compensate 
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for excessive delay in the third stage, which is a cascode current mirror stage. The single

pole lowpass stages were retuned to compensate for layout parasitics by adjusting the value 

of the associated poly-poly capacitors. 

The output voltage signal (Figure 5-8) for the Binkley five-pole Gaussian CFD 

continuous-time filter has an underdrive of -81 m V, an overdrive of + 770 m V, and a zero

crossing slope of 46 mV/ns for the input voltage of 1 V. If the filter voltage gain were unity 

(it is actually 0. 77), the zero-crossing slope would be 60 m V/ns or 68% of the peak input

voltage slope of 88 mV/ns (occurring at 36.4% of the peak input voltage). The filter, when 

set for unity DC gain, nearly preserves the input-signal slope. 

The filter voltage gain of 0. 77 is approximately equal to the transconductance of the 

input transconductor multiplied by the value of load resistance used to develop the output 

voltage signal. Additionally, there is a slight loss in gain caused by the output source

follower buffers due to MOSFET body effect. As mentioned earlier, the DC current gain 

from the input transconductor output to the output load resistance is unity. 

SPICE-simulated DC linearity of the CFD continuous-time filter is shown in Figure 5-9 

for both current and voltage output signals for DC input voltages up to 2 V. The circuit 

transconductance (output current divided by input voltage) is 0.88 µS, and the circuit 

voltage gain (output voltage divided by input voltage) is 0.77. The SPICE-simulated small

signal voltage gain (also shown in Figure 5-9) is equal to 0. 772, 0. 769, 0. 771, and 0. 7 80 for 

input levels of O V, 1 V, 1.5 V, and 1.8 V. This corresponds to a differential nonlinearity of 

less than ±0.002% for input signals between O and 1.5 V. 

Low circuit distortion is needed to minimize large-signal time walk introduced by circuit 

distortion. Actual circuit distortion will be higher than that shown in Figure 5-9 because of 

MOSFET mismatches. Device mismatches result in incomplete cancellation of second-order 

distortion provided through differential operation. Additionally, mismatches result in 

incomplete cancellation of third-order distortion cancellation provided in the linearized 

input transconductor (MOSFETs Ml, M2, M3, and M4). Measured DC output voltage is 

shown in Figure 5-9 illustrating that DC nonlinearity is not visually discernible in the 

figure. As only limited measurements were taken, no analysis of measured DC linearity 

was done. The measured DC gain is 0. 7 46, approximately 3% below the SPICE-simulated 

gain of 0. 77 (BSIM SPICE parameters used are from a nominal run as parameters were not 

available for the actual fabrication run). 

SPICE-simulated walk performance for the CFD continuous-time filter is shown in 

Figure 5-10 for the input signal (representative of the EGO/photomultiplier output) used in 
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Figure 5-8. The simulated walk (Figure 5-10) is equal to 15 ps for input-signal overdrives 

ranging from 0.1 -1 V, increasing to 50 ps and 80 ps respectively when input-signal 

overdrive is extended to 1.5 V and 2.0 V. Actual walk will be higher due to device 

mismatches causing increased circuit distortion, but time walk is expected to be negligible 

for EGO/photomultiplier detector applications. The effect of continuous-time filter walk on 

CMOS CFD timing performance will be evaluated later. 

SPICE-simulated frequency response and group delay for the CFD continuous-time 

filter is shown in Figure 5-11 and Figure 5-12. The -3-dB frequency is approximately 

75 MHz for the fraction current, 50 1\1Hz for the five-pole lowpass current, 140 MHz for the 

CFD output current, and 120 MHz for the CFD output voltage. The group delay drops by 

only 10% at 30 MHz for the fraction and lowpass currents, indicating nearly constant signal 

delay. However, group delay drops rapidly above 5 MHz for the CFD output current and 

voltage. The nearly flat frequency response for the CFD output combined with the highly 

nonlinear phase response (nonconstant group delay) results in severe distortion for 

transient inputs. This transient distortion is, in this case, responsible for the desired CFD 

output characteristic: a bipolar pulse with good underdrive and zero-crossing slope levels. 

Total SPICE-simulated output noise for the continuous-time filter is 1,600 µV rms. The 

commercial version of SPICE used does not properly model the noise of ohmic-region 

MOSFETs, as it bases the noise on the operating transconductance and not on the drain

source ohmic resistance [60]. The noise contribution of the ohmic-load MOSFETs is 

expected to be negligible compared to the input noise of the input transconductance stage. 

However, the actual continuous-time filter output noise is expected to be 1.5-2 times higher 

than the value predicted by SPICE due to increased MOSFET noise (for saturation 

operation) over the simple transconductance noise model which predicts an effective device 

noise resistance of 0.67/gm. Additionally, there will be some increase in noise due to 1/f 

noise in the small N-channel MOSFET input-transconductor devices (Ml - M4), but this is 

not expected to be significant for a CFD noise bandwidth of over 100 MHz (Figure 5-11). A 

wideband, continuous-time filter output noise of 3,200 µV rms (two times the SPICE

simulated value) will be assumed for later CFD timing jitter estimation. 

Constant-Fraction Comparator Circuit 

Comparator Propagation-Delay Modeling 

As discussed in the charge-sensitivity model of Section 2, comparator propagation delay 

is dependent on input-signal slope and overdrive giving rise to time walk. The modeling of 
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comparator propagation delay, however, is considerably more complex than that predicted 

by the charge-sensitivity model. Actual comparator propagation delay consists of a fixed 

delay component, a component that is dependent upon input-signal slope and overdrive, and 

a component that is dependent to a lesser degree on input-signal underdrive [38]. 

Additionally, the monotonically-decreasing propagation delay with increasing input-signal 

overdrive predicted by the charge-sensitivity model is not always valid as propagation delay 

can actually begin to increase for large levels of overdrive. This has been observed for some 

CMOS comparators designed and evaluated at CTI PET Systems, Inc. [20], including the 

constant-fraction comparator developed for the CMOS CFD. 

Comparator propagation-delay models will not be developed in this work except for one 

model which gives good accuracy compared to SPICE simulations. The comparator modeled 

is the VTC VC7695 [21] high-speed, ECL voltage comparator with SPICE-simulated 

propagation delay reported by Binkley and Casey [22] and measured propagation delay 

reported by Turko [23, 38]. 

The comparator propagation-delay model is considered for triggering along the edge of 

an input signal having constant slope. From the charge-sensitivity model, comparator 

propagation delay is given (Equation 2-10, page 24) by 

t p,op(tcigge,ing on ,ignal edge) = ~ 2: , (5-2) 

where K is the input-signal slope and A is a constant denoting comparator charge 

sensitivity. The charge-sensitivity model is modified to consider comparator slew-rate 

limitations and the presence of a fixed (latent) propagation delay. The modified 

propagation-delay model is given by 

f2A 
t prop(triggeringon signal edge) = 11 K + tzatmcy , where 

V eff 

(5-3) 

1 

Kerr = ~(l I K)2 + (1 / Kzim )2 ' 
(5-4) 

and Kum is the limiting input-signal slope (or slew rate) due to slew-rate limitations within 

the comparator, and tzatency is the fixed comparator propagation delay. 
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A comparison of modeled and SPICE-simulated delay is given in Table 5-2 for the 

VC7695 comparator. Values for the charge-sensitivity area (A), fixed delay (tzatency), and 

limiting input-signal slope (Kzim) are given in the table along with the calculated effective 

input slope (Kerr>, calculated (modeled) delay, SPICE-simulated delay, and error between the 

calculated and SPICE-simulated delay. As shown in the figure, the modeling error (relative 

to SPICE simulations) is surprisingly good, within ±0.25% for input-signal slopes ranging 

from 5 - 1,000,000 V/µs. Although measurements of comparator propagation delay are not 

presented in the table, SPICE-simulated walk is believed to be reasonably accurate since 

Turko [38] reported measured walk of 250 ps which compares favorably with the SPICE

simulated walk of 185 ps reported by Binkley and Casey [22]. These walk measurements 

and simulations were for step inputs having input-signal overdrive between 10 m V and 1 V 

(100:1 dynamic range). 

The comparator propagation-delay model just described is offered as a starting point for 

propagation-delay modeling beyond the simple charge-sensitivity model. Additional model 

development should include the case of comparator triggering after the signal edge as well 

as the case considered for comparator triggering along the signal edge. Additionally, 

nonlinear effects, such as possible propagation-delay increases with large input-signal 

overdrive, should be considered in future modeling. 

Table 5-2. Comparison of Modeled and SPICE-Simulated Propagation Delay for 
the VC7695 High-Speed, ECL Voltage Comparator. 

Input-Signal Effective Modeled t 
f""~P 

SPICE t Error prop 
Slope (V tµs) Slope (V tµs) (ns) (ns) (Modeled vs. 

SPICE) 

6 4.926 2.686 2.680 +0.236% 

10 9.440 2.398 2.403 -0.220% 

20 16.390 2.217 2.220 -0.147% 

60 24.826 2.110 2.105 +0.234% 

100 27.498 2.087 2.090 -0.150% 

1,000,000 28.600 2.078 2.083 -0.226% 

Model Parameters: Klim = 28.6 V/µs,A = 2.66E-6 (V µs), tlatency = 1.647 ns 
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Comparator Design Fundamentals 

The comparators considered here are continuous-time comparators where regeneration 

is not used. A continuous-time comparator is required if the comparator decision time is 

arbitrary, which is the case for CFD applications. Clocked comparators employing 

regeneration are used to sample an input at a given point in time. Wu and Wooley [61] 

reported that the amplification required in a comparator is best achieved by regeneration 

from positive feedback. It is possible, however, to use limited positive feedback and raise 

comparator gain without regeneration for continuous-time comparator applications. This 

has been reported by Allstot [62]. 

Comparator design methods for minimizing propagation delay have been reported in the 

literature by Doernberg, Gray, and Hodges [63], by Wu and Wooley [61], and by others. 

Design methods for minimizing comparator walk, however, are not believed to have been 

reported. 

Doernberg, Gray, and Hodges [63] give a method for determining the number of stages 

and the gain of each stage for achieving minimum comparator propagation delay for a 

selected total gain. In this method, identical cascaded single-pole-lowpass amplifier stages 

are considered. The gain-bandwidth of each stage is given by 

A 0 11n 

GBW=Aw =-=--
P 't 't 

(5-5) 

where A, wP' and-care the gain, 3-dB frequency, and time-constant associated with a single 

stage, and G is the total comparator gain. The total comparator delay is then given by 

nGvn 
tprop = n-c = GBW , (5-6) 

which is minimized (by solving for n when the derivative of Equation 5-6 with respect ton is 

equal to zero) for the number of stages and gain of each stage given by 

n = ln(G), and (5-7) 

A=e. (5-8) 

From this analysis, total comparator delay is minimized using a stage gain of e (2. 718) v..ith 

the number of stages set by the total comparator gain. The result of this analysis has been 

200 



used to size cascaded digital CMOS inverters for driving an external load where the width

to-length ratio of successive inverters increases by nearly e [64]. The result of another 

comparator-propagation-delay analysis, reported by Wu and Wooley [61], is nearly identical 

to the analysis just described. 

Comparator walk performance is dependent upon total comparator gain-bandwidth 

product, assuming linear circuit operation. Comparator walk is minimized for maximum 

values of total gain-bandwidth product. A high DC gain ensures full output-signal 

transitions for different input-signal levels, and a high bandwidth ensures quick output

signal transitions with small changes in propagation delay (walk) for different input-signal 

levels. 

The conditions for minimizing comparator propagation delay are different from those for 

minimizing comparator time walk. Propagation delay is minimized using as many cascaded 

stages with gains of e as required to obtain the desired gain. Time walk is minimized 

(assuming linear circuits) using an infinite number of stages to maximize total gain

bandwidth product. In practice, there is a tradeoff between comparator delay, time walk, 

and the number of cascaded stages feasible. 

Linear-circuit operation, or small-signal operation closely approximating linear 

operation, is assumed in the propagation-delay and time-walk analysis previously described. 

In practical comparator circuits, circuit nonlinearity contributes to time walk. Walk is 

introduced by varying comparator recovery time (from saturated output levels) with input

signal underdrive and overdrive. 

Comparator Walk Comparisons for CMOS Integrator and Single-Pole-Lowpass 
Stages 

Comparator output zero-crossing time (propagation delay) and time walk will be 

considered for a CMOS integrator and single-pole-lowpass amplifier stage. Zero-crossing 

propagation delay and time walk are largely independent of circuit gain because 

infinitesimal gain is required to obtain an output zero crossing (following an input zero 

crossing). Zero-crossing propagation delay, however, is a useful measure of inherent circuit 

response time. Additionally, zero-crossing time walk is a useful measure of walk caused by 

circuit nonlinearities. It will be shown that output zero-crossing time walk is much worse 

for the CMOS integrator compared to the single-pole-lowpass amplifier. 

In the CMOS integrator stage of Figure 5-13, MOSFETS Ml and M2 form a differential 

pair which is biased at constant current. MOSFETS M3 and M4 are current sources which 

are regulated to set the integrator output common-mode voltage at 3 V. Integrator stages 
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have the disadvantage of requiring common-mode feedback circuits to set the common-mode 

output level. Integrator output-voltage limiting is provided by diodes on the differential

integrator outputs to model circuit limiting. Output limiting is inherently present for 

integrator stages, limiting occurring through MOSFETs which enter the ohmic region or 

through a circuit limiter such as diode-connected MOSFETs. In the single-pole-lowpass 

stage of Figure 5-13, the integrator current sources M3 and M4 are replaced with resistive 

loads and the limiting diodes are removed. The single-pole-amplifier stage with resistive 

loads has the advantage of well-defined internal limiting since the voltage across the load 

resistance is equal to zero when load current is switched off and is equal to the limiting 

voltage (the product of current and load resistance) when load current is switched on. 

Additionally, the single-pole-amplifier has the advantage of requiring no common-mode 

feedback to stabilize the common-mode output voltage. 

SPICE-simulated (level 2) time-walk performance of the differential CMOS integrator 

comparator stage (Figure 5-13) is illustrated in Figure 5-14 for linear-edge, differential 

signals having rise times of 10 ns. The integrator output zero-crossing propagation delay is 

measured from the zero crossing of the input signal (at 5 ns) to the zero crossing of the 

differential output signal. Integrator output zero-crossing propagation delay is 4.5 ns, 

3.4 ns, and 1.4 ns for input levels of -10 mV to 10 mV, -100 mV to 100 mV, and -1000 mV to 

1000 mV. The time walk for this 100:1 input-signal dynamic range is 3.1 ns which is quite 

large relative to the input-signal rise-time and integrator propagation delay. Time walk is 

large once the integrator outputs are limited because the time required for the output to 

return of zero is dependent on output slew rate, which is itself dependent on the input

signal level. 

SPICE-simulated (level-2) time-walk performance of the differential CMOS single-pole

amplifier comparator stage (Figure 5-13) is illustrated in Figure 5-15 for the same linear

edge input signals considered for the integrator stage. The single-pole-amplifier output 

zero-crossing propagation delay is approximately 0.60 ns, 0.60 ns, and 0.57 ns for the input 

levels of-10 mV to 10 mV, -100 mV to 100 mV, and -1000 mV to 1000 mV. The time walk for 

this 100:1 input-signal dynamic range is 30 ps which is quite low relative to the input-signal 

rise-time and single-pole-lowpass amplifier propagation delay. Unlike the integrator stage 

considered, time walk for the single-pole-lowpass amplifier with resistive loads remains low 

once the outputs are limited. It is interesting to note that differential amplifiers with 

resistive loads provide excellent, low phase-noise limiters for phase-lock-loop frequency 
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synthesizers [65]. The low phase noise of differential limiters indicates that timing jitter is 

very low for these circuits, even in the presence of hard limiting. 

The small-signal gain-bandwidth product of the integrator stage is 1.7 GHz for a small

signal gain of 48 and delay (equal to single-pole time constant) of 4.5 ns. The small-signal 

gain-bandwidth product of the single-pole-lowpass amplifier is comparable at 1.9 GHz for a 

small-signal gain of 7.3 and delay of 0.6 ns. Even though the gain-bandwidth products are 

comparable, the single-pole-amplifier stage considered has only 30 ps of output zero-crossing 

walk compared to 3.1 ns (a factor of one-hundred higher) for the integrator stage. The only 

advantage of the integrator is higher gain in a single stage. Equivalent gain (53.3 = 7 .3 x 2), 

however, is available with much less propagation delay (1.2 ns = 0.6 ns x 2) and walk (in the 

neighborhood of 30 ps) by cascading two single-pole-lowpass amplifier stages. The improved 

walk performance of the two cascaded single-pole-lowpass stages is due to the much lower 

walk present in each stage because of limiting providing by resistive loads. 

Differential input signals (with common-mode voltages of zero) were used for the 

integrator and single-pole-lowpass amplifier stages considered. SPICE simulations indicate 

that time walk is much worse (approximately a factor of four worse for step inputs) for 

single-ended input signals compared to differential input signals [20]. Differential signals 

are used throughout the CMOS CFD to minimize even-order distortion and maximize 

power-supply rejection. Improved comparator walk performance is another advantage in 

using differential signals. 

In addition to the integrator (high impedance) and resistive loads considered, MOSFET 

diode-connected loads can be used in a comparator. A 1.6-µ CMOS three-stage comparator 

using MOSFET diode-connected loads has been reported [63]. Like resistive loads, 

MOSFET diode-connected loads have the advantage of requiring no common-mode feedback. 

MOSFET diode-connected loads were considered initially for low-walk comparator design, 

but SPICE simulations indicated inferior walk performance (over a factor of two worse) 

compared to the performance available using resistive loads. Inferior walk performance is 

due in part to the slow subthreshold MOSFET pull up of load voltage when current into the 

load is switched off. In contrast, aggressive pull up of load voltage is available when current 

into a resistive load is switched off. 

A 4-µ CMOS three-stage comparator has been reported using MOSFET diode-connected 

limiters to provide limiting for MOSFET active loads [66]. Common-mode feedback was not 

required for these load networks. Walk performance was not considered for these load 

203 



networks, although it was previously shown that walk performance is poor for circuits 

having high-impedance (integrator) loads and diode limiters (Figure 5-14). 

Comparator Walk Performance of Multiple CMOS Stages Having Ohmic-MOSFET 
Loads 

In Figure 5-16, a CMOS comparator stage containing MOSFET resistive loads is shown. 

This stage approximates a single-pole-lowpass amplifier and, like the previously presented 

integrator and single-pole-pole lowpass amplifier stages, is fully differential. The input 

differential pair (MOSFETs Ml and M2) is cascoded with MOSFETs M3 and M4 to 

minimize input capacitance due to Miller effect. Resistive loads are provided by MOSFETs 

M5 and M6, which are operated in the deep ohmic region. The parasitic capacitance of 

these small MOSFET loads is lower than diffused resistors or polysilicon resistors. Output 

source followers (MOSFETs M7 and MB) provide output level shifting and buffering to 

permit driving cascaded stages. The remaining MOSFETs provide bias currents for the 

input differential pair and source followers. 

The small-signal gain of the CMOS comparator stage (Figure 5-16) is approximated by 

A= R g = Vlim ~2(1 · I 2)K'W/L = Vlim ~K'W/L 
L m J . bzas J J . ' 

~w ~ ~w 

(5-9) 

where gm, K', W, and L is the transconductance, transconductance factor for saturation 

operation in strong inversion, effective channel width, and effective channel length for 

differential-pair MOSFET devices (MOSFETs Ml and M2). Additionally, RL is the load 

resistance, Vzirn is the limiting voltage, and !bias is the differential input-pair bias current. 

In Equation 5-9, MOSFET source follower gain is assumed to be unity which assumes 

negligible source-follower body effect (this is a reasonable assumption since the nominal 

body-effect parameter is 0.25 for the process considered) and negligible source-follower 

loading by the bias current sources (also a reasonable assumption since the current sources 

are cascoded). 

The small-signal gain of a multistage comparator using the CMOS comparator stage of 

Figure 5-16 is dependent on the input differential-pair transconductance, load resistance, 

and the number of cascaded stages. Multistage comparator small-signal gain is given from 

Equation 5-9 by 
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(5-10) 

The small-signal delay of the CMOS comparator stage (Figure 5-16) can be 

approximated assuming a single-pole response. The pole associated with the load resistance 

and shunt capacitance is considered whereas the parasitic poles associated with the cascode 

and source-follower devices are neglected. The effects of these parasitic poles will be 

considered later using SPICE simulation. The approximate small-signal delay of the CMOS 

comparator stage is given by 

RC Viim C 
't= LL=--· L, 

]bias 
(5-11) 

where CL is the total capacitance appearing across the load resistance. 

The approximate small-signal delay of a multistage comparator using the CMOS 

comparator stage of Figure 5-16 is dependent on the load resistance, load capacitance, and 

the number of cascaded stages. Multistage comparator small-signal delay is approximated 

from Equation 5-11 by 

Viim C 
tprop = n't = n-- L 

[bias 
(5-12) 

The multistage small-signal gain-bandwidth product, defined as the gain divided by the 

effective time constant for bandwidth, is approximated from Equations 5-10 and 5-11 as 

(5-13) 

The gain-bandwidth product is generally maximized for increasing n, Vzim, K', and W/L and 

for decreasing Cv As mentioned earlier, time walk is minimized for increasing gain

bandwidth product assuming linear circuit operation. The load capacitance CL is somewhat 

dependent on the differential-pair MOSFET capacitance (which is related to the product of 
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MOSFET Wand L) because the source-follower devices do not provide full isolation from the 

input capacitance of successive stages. Additionally, the critical frequencies of parasitic 

poles associated with the cascode and source-follower devices are strongly dependent on 

differential-pair MOSFET geometry making these poles, in general, nonnegligible. SPICE 

analysis is required to consider the effects of parasitic poles and to consider nonlinear circuit 

operation for large signals. 

Walk performance for a comparator constructed of four cascaded single-pole-lowpass 

amplifier stages (Figure 5-16) will be evaluated for different limiting voltages (Vzim) and 

differential-pair MOSFET geometry. The output of the fourth stage is loaded into the input 

of another identical stage to consider circuit loading. The input signals considered for the 

comparator model the photomultiplier-tube and two-pole-lowpass amplifier described in 

Figure 4-21 (page 166), and a Binkley two-pole Gaussian CFD with a delay time constant of 

3 ns and a fraction of 50%. The input signals considered are representative of the CFD 

signals present in the CMOS CFD. These input signals are shown later in Figure 5-21 

(page 244). 

Comparator propagation delay will be measured from the zero crossing of the input 

signal (at 11. 728 ns) for CFD signals having amplitudes (final values) ranging from 10 m V 

to 1 V (100:1 dynamic range). A series of computer programs was developed to modify 

differential-pair MOSFET width, compute SPICE geometry parameters (drain and source 

area, perimeter, and numbers of squares) for the differential-pair MOSFETs, submit the 

circuit file to SPICE, and analyze the SPICE waveforms to determine propagation delay. 

Level-2 SPICE analysis was used because of convergence difficulties with level-4 (BSIM) 

runs. These convergence problems were later solved with a newer version of a commercial 

SPICE program. BSIM SPICE simulations are used later for characterization of the 

constant-fraction comparator used in the CMOS CFD. 

The differential-output zero-crossing time (propagation delay) for the first comparator 

stage is shown in Figure 5-17 as a function of input signal level. Three different limiting 

voltages (Vlim) are considered: 1.1 V, 1.5 V, and 2.2 V, and three different (drawn) 

differential-pair MOSFET widths (W) are considered: 24 µ, 50 µ, 100 µ. All MOSFET 

(drawn) lengths (L) are 2 µ and the (drawn) widths of the remaining MOSFETS are given in 

the figure along with the bias currents. 

As shown in Figure 5-17, comparator output zero-crossing propagation delay is 

minimized for minimum limiting voltage which corresponds to minimum load resistance 

since load resistance is equal to the limiting voltage divided by the differential-pair bias 
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current. Additionally, propagation delay is minimized for minimum input differential-pair 

MOSFET width since output loading from the input capacitance of the succeeding stage is 

dependent on this width. Propagation delay is also minimized for minimum input 

differential-pair MOSFET width since the output capacitance of the input-pair MOSFETS is 

dependent on this width. This output capacitance parasitically loads the input of the 

cascode devices. 

Zero-crossing time walk at the comparator first-stage output (Figure 5-17) is minimized 

for the same conditions that minimize propagation delay: minimum limiting voltage and 

minimum input differential-pair MOSFET width. Time walk is minimized because a 

smaller differential input voltage and smaller input differential-pair width result in less 

switching of differential-pair currents. This results in more linear circuit operation over a 

larger range of input signal voltages. Zero-crossing time walk (for 10-mV to 1-V input 

signals) is 278 ps, 37 ps, and 2 ps for a limiting voltage of 2.2 V, 1.5 V, and 1.1 V and input 

differential-pair width of 100 µ, 50 µ, and 24 µ. 

Differential-output zero-crossing time (propagation delay) at the fourth comparator 

stage output is shown in Figure 5-18 as a function of input signal level (the input signal is 

applied to the first stage input). As was true for the first stage output, zero-crossing time 

walk is minimized for minimum limiting voltage and minimum input differential-pair 

MOSFET width. Zero-crossing time walk (for 10-mV to 1-V input signals) at the fourth 

stage output is 703 ps, 231 ps, and 19 ps for a limiting voltage of 2.2 V, 1.5 V, and 1.1 V and 

input differential-pair width of 100 µ, 50 µ, and 24 µ. The zero-crossing time walk present 

at the fourth stage output is considerably higher than the zero-crossing time walk present 

at the first stage output. This is because the zero-crossing time walk is dependent on circuit 

nonlinearity which increases with the number of stages. 

Zero-crossing propagation delay and time walk has been considered for the first and 

fourth stage outputs of the multistage CMOS comparator. As mentioned earlier, zero

crossing propagation delay and time walk are largely independent of circuit gain because 

infinitesimal gain is required to obtain an output zero crossing (following an input zero 

crossing). Zero-crossing propagation delay and time walk are a useful measure, however, of 

circuit response time and linearity respectively. 

In actual comparator applications, the output signal would be required to reach some 

nonzero level to trigger successive circuitry. The comparator propagation delay for the 

differential-output signal to reach +0.5 V is shown for the fourth-stage output in Figure 5-

19. The walk (for 10-mV to 1-V input signals) for a limiting voltage of 2.2 V and differential-
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pair width of 100 µ is 750 ps, which is nearly the same as the zero-crossing walk of 703 ps 

shown in Figure 5-18. For this case, walk is dominated by circuit nonlinearity and not by 

limited gain or gain-bandwidth product. The single-stage gain and gain at the fourth-stage 

output (from Equation 5-10) is approximately 8.94 and 6,390, respectively. It is interesting 

to note that the fourth-stage propagation delay monotonically increases with input signal 

level for the case considered, in direct conflict with the comparator charge sensitivity model 

which predicts monotonically decreasing propagation delay with increasing input signal 

level. 

In contrast with the 2.2-V limiting voltage and 100-µ input differential-width case just 

considered, time walk for a fourth-stage 0.5-V output crossing is dominated by the effects of 

limited comparator gain for a 1.1-V limiting voltage and 24-µ differential-pair width. The 

single-stage gain and gain at the fourth-stage output (from Equation 5-10) is approximately 

2.19 and 23, respectively. The gain is much lower for this case because of the low load 

resistance associated with the 1.1-V limiting voltage and the low input differential-pair 

transconductance associated with 24-µ input-pair widths. The total four-stage comparator 

gain (given in Equation 5-10) is a strong function of these parameters since the total gain is 

equal to the gain of a single stage raised to the fourth power. The propagation delay for a 

fourth-stage 0.5-V output crossing decreases strongly with increasing input signal level 

resulting in an extremely high walk (for 10-mV to 1-V input signals) of 8,485 ps. 

A 1.5-V limiting voltage and 50-µ differential-pair width results in a good compromise 

between minimum propagation delay and minimum walk for a fourth-stage 0.5-V output 

crossing (Figure 5-19). The single-stage gain and gain at the fourth-stage output (from 

Equation 5-10) is approximately 4.31 and 345 respectively. The walk (for 10-mV to 1-V 

input signals) for a 0.5-V output crossing is 611 ps which is somewhat above the zero

crossing walk (Figure 5-18) of 231 ps due to limited comparator gain. In the arming and 

constant-fraction comparators used in the CMOS CFD, the 1.5-V limiting voltage and 50-µ 

differential-pair width will be used with an additional (fifth) comparator stage added to 

increase the comparator gain-bandwidth and further reduce 0.5-V output-crossing walk. 

Comparator walk is controlled primarily by circuit nonlinearities (as observed by zero

crossing walk) and by circuit gain and gain-bandwidth product (as observed by the 

additional propagation delay required for the comparator output to reach a nonzero output 

threshold voltage). As previously illustrated, these two components of walk performance 

can be in conflict with each other. For example, a small limiting voltage and small 

MOSFET differential input-pair width gives low walk due to circuit nonlinearity but high 
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walk due to limited circuit gain and gain-bandwidth. Comparator design for minimizing 

walk is further complicated by the fact the comparator propagation delay and walk are each 

optimized differently. Comparator design involves complex compromises between walk 

performance, propagation delay, and circuit size and power dissipation. Such design is best 

optimized (especially considering circuit nonlinearities) using circuit iterations with the 

most accurate SPICE simulation available. 

Measured and Simulated Performance of a Three-Stage CMOS Comparator 

A three-stage comparator was fabricated in a standard 2-µ, double-metal, double-poly, p-

well CMOS process using the MOSIS [ 4 7] prototyping service. The measured and SPICE

simulated propagation-delay and walk performance for this comparator is given here to 

validate SPICE comparator simulations. Validation of SPICE simulation is necessary since 

it was not possible to measure comparator performance in the CMOS CFD, as test 

comparators could not be included in the prototype circuit. 

The three-stage comparator fabricated consists of the stages shown in Figure 5-16, 

except that single-transistor current sources are used. The MOSFET input-pair devices (Ml 

and M2) are 100 µ/2 µ devices and the ohmic-load devices (M5 and M6) are 3 µ/2 µ devices 

giving a limiting voltage of 1.1 V for the bias current of 100 µA. A saturating-logic output 

stage is included consisting of a differential-to-single-ended conversion stage and four 

tapered logic inverters (MOSFET widths increasing in successive stages) for driving an 

output pin. The additional gain provided by the output circuitry lowers the comparator 

walk compared to the walk present for the three-stage comparator alone. 

The measured and SPICE-simulated propagation-delay and walk for the three-stage 

comparator are given in Table 5-3 for single-ended input pulses of equal underdrive and 

overdrive having a rise-time of 1 ns. BSIM (level-4) MOSFET SPICE modeling was used 

with extracted parameters from the comparator fabrication run. 

Measured and SPICE-simulated values of comparator propagation delay (Table 5-3) are 

within 10% of each other indicating good SPICE-simulation accuracy. Both the measured 

propagation delay and walk are higher than simulated values. The measured comparator 

walk is 540 ps compared to simulated walk of 330 ps for input-signal amplitudes of 

10 - 1000 mV. Most of the increase in measured walk compared to simulated walk is due to 

a 140-ps and 260-ps decrease in measured propagation delay for input signals between 

20 - 50 mV and 500 -1000 mV, respectively. As mentioned earlier, comparator time walk is 

reduced for differential input signals compared to single-ended input signals which were 
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Table 5-3. Measured and SPICE-Simulated Propagation Delay and Walk for a 
Three-Stage CMOS Comparator. 

Input-Signal Level (m V) SPICE tprop (ns) Measured t prop 
(ns) 

10 11.00 11.73 

20 10.78 11.61 

60 10.71 11.47 

100 10.77 11.53 

200 10.80 11.61 

500 10.83 11.45 

1000 10.67 11.19 

Walk: 10 -1000 mV 0.33 0.54 

Walk: 20 -1000 mV 0.16 0.42 

Walk: 50- 500 mV 0.12 0.16 

Input signal: -V to +V with 1-ns rise time. tprop measured when output reaches 2 V. 

Output load capacitance is 10 pF. 

considered here. Differential input signals will be used to evaluate the constant-fraction 

comparator used in the CMOS CFD. 

Design of the Constant-Fraction Comparator 

A five-stage comparator circuit based on the MOSFET ohmic-load stage of Figure 5-16 

was used for the CMOS CFD constant-fraction comparator. A limiting voltage of 1.5 V and 

a differential-pair MOSFET channel width of 50 µ (the channel length is 2 µ) was selected 

based on the walk performance described earlier for the four-stage comparator. A fifth stage 

was added to the constant-fraction comparator to reduce walk due to gain and gain

bandwidth limitations. A schematic diagram of the constant-fraction comparator is shown 

in Figure 5-20. 
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In the constant-fraction comparator (Figure 5-20), triple cascode current sources are 

used instead of double cascode current sources used in the MOSFET ohmic-load stage of 

Figure 5-16. All current sources used in the constant-fraction comparator are connected to 

V ss (-5.2 V) to avoid the extra biasing circuitry required if the source-follower current 

sources were connected to ground. This increases total power consumption to 13.8 mW 

(1.35 mA at +5 V and -5.2 V) from a level of 9.64 mW that would be required if the source

follower current sources were connected to ground. Since the current sources are connected 

to V88 , triple cascode sources are required to limit the drain-source voltage <Vns> of current

source MOSFETs. The use of voltages above 5 V (for NMOS devices with drawn gate 

lengths of 2 µ) could result in long-term hot-electron degradation and possible "snap-back" 

parasitic breakdown. 

The ohmic MOSFET loads in the constant-fraction comparator (Figure 5-20) are tuned 

to values of 15 kn using the CMOS CFD process tuning circuit previously described 

(subcircuit X12 in Figure 5-5). The load resistance of 15 kn gives the 1.5-V limiting voltage 

for the differential-pair current of 100 µA. The interstage source followers in the CFD 

operate at currents of 50 µA whereas the output source followers operate at currents of 

200 µA. Higher bias currents are required in the output source followers to permit driving 

the 200-FF load capacitance present due to long (2000 µ x 4 µ) integrated-circuit metal 

traces. Long traces are required to connect the comparator output to both source-coupled 

logic and saturating-logic arming circuits. The output source followers contain both a direct 

output and a level-shifted output, the direct output connecting to source-coupled logic 

circuitry and the level-shifted output connecting to saturating-logic circuitry. A differential 

pair (consisting of MOSFETs M88 and M89) is included to provide a monitoring output for 

the constant-fraction comparator. This output permits external observation of CFD walk 

adjustment. 

In Figure 5-21, SPICE-simulated interstage and output signals are shown for the 

constant-fraction comparator. Additionally, the input signal is shown which models the 

photomultiplier, front-end amplifier, and CFD shaping circuit as described in the preceding 

multistage comparator analysis. The input signal is applied differentially with a common

mode voltage of +2.5 V to represent the signal coming from the CFD continuous-time filter. 

SPICE simulation was done using BSIM (level 4) modeling with full post-layout 

interconnection capacitances. Additionally, a load capacitance of 200 FF was connected to 

each output to model the previously mentioned interconnection capacitance associated with 
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long output traces connecting to the source-coupled logic and saturating logic arming 

circuits. 

The SPICE-simulated output zero-crossing propagation delay for each constant-fraction

comparator stage (Figure 5-21) is approximately 1.5 ns. The total output zero-crossing 

propagation delay is approximately 8.1 ns for the direct output (Voutl) and 8.7 ns for the 

level-shifted output (V out2). This propagation delay is comparable to the "less than 10 ns" 

delay reported for a 1.6-µ CMOS ac-coupled three-stage comparator using MOSFET diode

connected loads [63]. Additionally, the CFD propagation delay is nearly half that of the 

typical delay (16.9 ns) specified for a commercial 2-µ CMOS high-speed comparator cell [44]. 

SPICE-simulated walk performance is shown in Figure 5-22 for the constant-fraction 

comparator. The representative CFD signal used for comparator simulations of Figure 5-21 

was used for walk simulations. The simulated walk performance is 175 ps over the full 

10 - 2000 mV input range, 158 ps over an input range of 10 -1000 mV, and 76 ps over an 

input range of 100 - 1000 mV. The simulated walk of 158 ps for input-signal amplitudes of 

10 - 1000 m V is somewhat lower than the measured walk of 210 ps (AD9685 [39]) and 250 ps 

(VC 7695 [21]) for high-speed bipolar ECL comparators [38]. The effects of constant-fraction 

comparator walk on CMOS CFD timing performance will be considered later. 

It is interesting to note that the constant-fraction-comparator propagation delay 

increases (Figure 5-22) with increasing signal level. As mentioned earlier, increasing 

propagation delay with increasing signal level is in conflict with the comparator charge

sensitivity model. Walk performance for the constant-fraction comparator is dominated by 

circuit limiting (nonlinearity) effects since a linear comparator model would predict 

decreasing propagation delay with increasing signal level. 

SPICE-simulated small-signal frequency response is shown in Figure 5-23 for each 

constant-fraction comparator stage. The single-stage gain is approximately four and the 

total comparator gain is approximately 1,024 which agrees well with calculated values of 

4.308 and 1,485 using Equation 5-10. The total gain-bandwidth product, defined as the gain 

multiplied by the -3-dB bandwidth, is equal to 680 MHz ( 4 x 1 70 MHz) for a single stage and 

61.4 GHz (1,024 x 60 MHz) for the total comparator. The single-stage gain-bandwidth 

product of 680 MHz is comparable to the value of 500 MHz reported for a three-stage 1.6-µ 

CMOS ac-coupled comparator with diode-connected MOSFET loads [63]. 

SPICE-simulated wideband input noise for the constant-fraction comparator is 70 µV 

rms. As described for the continuous-time filter, the commercial SPICE program used does 

not consider the noise associated with ohmic-region MOSFETs, but this noise component is 

212 



expected to be negligible compared to input noise of differential-pair MOSFETs. Also, as 

described for the continuous-time filter, a noise level of two times the SPICE-simulated 

value will be used to model MOSFET noise in excess of the simple transconductance noise 

model. The estimated comparator input noise is then 140 µV rms, which is negligible when 

compared (in an uncorrelated sense) with the estimated 3200 µV rms output noise of the 

continuous-time filter. As a result, the comparator input noise does not affect timing jitter 

for the CMOS CFD. 

CFD Arming Logic Circuits 

Two independent sets of arming-logic circuits are included in the CMOS CFD (Figure 5-

5): traditional saturating CMOS-logic circuits (subcircuits X9 - Xll) and specially-designed 

linear CMOS-logic circuits (subcircuits X6 - XB). As mentioned, the specially-designed 

linear CMOS-logic circuits consists of source-coupled logic circuitry having topology similar 

to bipolar ECL logic circuitry. Like ECL circuits, these circuits operate by switching 

constant currents into resistive or MOSFET diode-connected loads and use source-follower 

devices as output devices. Although considerably more complex than traditional saturating 

CMOS-logic circuits, the source-coupled CMOS logic circuits introduce much less power

supply noise (approximately two-orders of magnitude less [67]) and are more easily 

interfaced to linear circuits because of the use of small logic swings (e.g., 1.5-V is used in the 

CMOS CFD). Source-coupled CMOS logic circuits have been evaluated by Maskai, Kiaei, 

and Allstot [67] and Binkley [68]. 

Both the saturating and source-coupled arming-logic circuits include combinational 

logic, high-performance D flip-flops, and output-pin drivers. The arming logic circuits are 

configurable (through the assignment of three mode input pins) for the traditional arming 

or slow-rise-time reject arming configurations shown in Figure 5-1 (page 226). 

The high-performance D flip-flops (both the saturating logic and source-coupled logic 

circuit) have been designed for minimum change in propagation delay or walk as a function 

of changing flip-flop setup time. This is analogous to design for minimum flip-flop 

metastability where the window of setup times resulting in increased flip-flop propagation 

delay is minimized. In CFD arming applications, operating flip-flop setup time changes 

with event energy, the setup time being minimum for those events with signal levels 

slightly above the arming threshold. 

The saturating-logic D flip-flop is based on a previously reported master/slave cascode 

design optimized for minimum metastability [69]. The source-coupled D flip-flop is based on 

a master/slave design having similar topology to ECL D flip-flops [68]. MOSFET device 
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sizes were chosen for each flip-flop design through the use of a computer program that 

evaluated propagation delay walk as a function of setup time for various device sizes. 

SPICE-simulated propagation delay walk for the saturating D flip-flop is approximately 

+500 ps for setup times ranging from 2.2 -1.7 ns and is nearly zero for setup times greater 

than 2.2 ns. SPICE-simulated propagation delay walk for the source-coupled D flip-flop is 

approximately +600 ps for setup times ranging from 0.8 - 0.3 ns and is nearly zero for setup 

times greater than 0.8 ns. Setup times for both flip-flops were varied up from 100 ps above 

the setup-time threshold (the threshold of flip-flop operation). AF, true for all CMOS CFD 

SPICE simulations, post-layout parasitic capacitances were included in the simulations, and 

simulations were run using a set of extracted BSIM parameters that are believed to be 

nominal for the process (extracted BSIM parameters were not available for the CMOS CFD 

fabrication run). The effect of arming flip-flop propagation-delay walk on CMOS CFD 

timing performance will be considered later. 

Estimation of CMOS CFD Walk 

CMOS CFD time walk is controlled by walk contributions from the continuous-time 

filter (CFD shaping circuit), constant-fraction comparator, and arming flip-flop. The SPICE

simulated continuous-time filter walk (previously given) is +15 ps, +15 ps, and +80 ps for 

CFD input signals ranging from 100 - 1000 m V, 10 - 1000 m V, and 10 - 2000 m V with rise

times (10 - 90%) of 10 ns. The SPICE-simulated constant-fraction comparator walk 

(previously given) is +76 ps, +158 ps, and +175 ps for the same CFD input-signal ranges. 

The walk contributions of the continuous-time filter and the constant-fraction comparator 

add, giving a composite walk of +91 ps, +173 ps, and +255 ps for the CFD input-signal 

ranges considered. 

AB described earlier, propagation-delay walk of D flip-flops used in CFD arming circuits 

contributes to CFD walk. It is necessary, however, to ascertain the flip-flop setup times 

resulting from given CFD input-signal levels in order to evaluate flip-flop walk. The SPICE

simulated propagation-delay walk (previously given) is +500 ps for setup times ranging from 

2.2 - 1. 7 ns for the CMOS CFD saturating-logic flip-flop and +600 ps for setup times ranging 

from 0.8 - 0.3 ns for the CMOS CFD source-coupled logic flip-flop. The flip-flop propagation

delay walk is essentially zero for CFD input signals sufficiently above the arming threshold 

since flip-flop setup times would be greater than the setup times specified that result in 

propagation-delay walk. It is interesting to note that CMOS CFD flip-flop propagation

delay walk actually decreases with increasing CFD input signal level because the resulting 

flip-flop setup time increases. The flip-flop propagation-delay walk could then be expected 
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to partially cancel the increasing propagation delay associated with the continuous-time 

filter and constant-fraction comparator. For evaluation of the CMOS CFD, it will be 

assumed that CFD input signals sufficiently exceed the arming threshold, resulting in no 

walk cancellation from the arming flip-flop. 

The estimated CMOS CFD walk (from the continuous-time filter and constant-fraction 

comparator) is +91 ps for 100 - 1000 mV input signals with rise-times (10 - 90%) of 10 ns. 

The corresponding propagation-delay slope is +101 psN, which can be multiplied by the 

input-voltage resolution of the CMOS CFD to estimate the timing resolution resulting from 

walk errors (Equation 2-19, page 26). Assuming a CFD input photopeak voltage of 0.8 V 

with a Gaussian resolution of 14% FWHM, the resulting timing resolution due to walk 

errors is 11.3 ps FWHM. This level of timing error is, of course, totally negligible compared 

to the EGO/photomultiplier detector statistical resolution of approximately 3 ns FWHM. 

Although walk errors for the CMOS CFD are negligible for the EGO/photomultiplier 

detector application considered, walk errors may be significant for subnanosecond timing 

resolution systems. The effects of CFD walk errors can be considered for such systems by 

including walk effects in Monte Carlo simulations of timing resolution. In particular, the 

setup time of a D flip-flop used for CFD arming can be evaluated for each simulated event 

and mapped to a corresponding flip-flop propagation delay. Similarly, constant-fraction 

comparator underdrive, zero-crossing slope, and overdrive can be evaluated for each 

simulated event and mapped to a corresponding propagation delay. The inclusion of CFD 

walk errors in Monte Carlo timing simulations would address effects that are difficult to 

evaluate analytically, such as correlation effects between event energy and CFD walk. 

Estimation of CMOS CFD Timing Jitter 

The output noise of the CMOS CFD continuous-time filter combines with the input noise 

of the constant-fraction comparator giving rise to timing jitter when the constant-fraction 

comparator senses the zero crossing of the CFD shaping signal. The total shaping-signal 

noise is 3,203 µV rms which is the uncorrelated combination of the continuous-time filter 

output noise (previously given as 3,200 µV rms) and the constant-fraction comparator input 

noise (previously given as 140 µV rms). 

CMOS CFD timing jitter is found by dividing the CFD shaping-signal noise by the 

shaping-signal zero-crossing slope (Equation 2-20, page 27). The resulting timing jitter is 

70 ps rms or 164 ps FWHM for a shaping-signal noise of 3,200 µ V and a shaping-signal zero

crossing slope of 46 mV/ns (Figure 5-8) resulting from a 1-V CMOS CFD input with a 10-ns 

rise-time. The CMOS CFD timing jitter of 164 ps FWHM is negligible when combined in an 
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uncorrelated sense with the EGO/photomultiplier statistical timing resolution of 

approximately 3 ns F\\triM. 

Monte Carlo Simulations of CMOS CFD Energy-Discrimination and Timing Performance 

Monte Carlo simulation of CFD energy-discrimination and timing performance was 

illustrated in Section 4, and an example was given for a delay-line CFD. Monte Carlo 

simulations will be performed for the CMOS CFD using the same EGO-scintillator, 

photomultiplier, and front-end amplifier characteristics previously used (Figure 4-21, page 

166). The CFD shaping-signal and arming-signal impulse responses used in the Monte 

Carlo simulation were found from post-layout SPICE simulations. As mentioned earlier, a 

nominal set of ESIM MOSFET parameters was used for all CMOS CFD simulations. 

Performance without Compton Scatter 

Compton scatter was not considered in the first Monte Carlo simulation in order to 

evaluate the slight degradation in timing resolution caused by Compton scatter. A Gaussian 

energy spectrum with photopeak energy of 511 keV and resolution of 14% FWHM:, 

representative of the energy resolution for EGO block detectors used in CTI/Siemens 

commercial PET systems [19], was used in the simulation. All detector events were 

collected in the Monte Carlo simulation as energy discrimination was not used since 

Compton scatter was not present. 

The Monte Carlo simulated timing spectrum is shown in Figure 5-24. The timing 

resolution is 3.28 ns FWHM and 6.63 ns FWTM which is comparable to the measured 

resolution of 3.30 ns FWHM and 6.40 ns FWTM for the commercial delay-line CFD given in 

Figure 4-32 (page 173). The commercial delay-line CFD measurements were made with the 

low level of Compton scatter present from a 1 x 1 x 1 inch EGO crystal excited by 511-keV 

gamma rays from a 22N a point source. 

Performance with Low-Level Compton Scatter 

The next Monte Carlo simulations were performed for the low level of Compton scatter 

present for a 1 x 1 x 1 inch EGO crystal excited by 511-keV gamma rays from a 22Na point 

source. This EGO crystal and source were used for experimental measurements for both the 

delay-line CFD and the CMOS CFD. A detector energy resolution of 14% and a scatter 

fraction of 0% were used in the simulations, which closely model the energy resolution and 

Compton scatter for the EGO crystal and source. CFD energy-discrimination performance 

was considered, and an energy threshold of 200 keV (as observed by the intersection of the 

accepted and rejected energy spectra) was used for all simulations. Simulations were 
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performed with and without the optional 10 ns constant-fraction comparator delay discussed 

in Section 4. This optional delay improves the statistical arming performance of the CFD, 

resulting in less rejection of valid photopeak events and better rejection of low-energy 

Compton scatter. 

The total-, accepted-, and rejected-event energy spectra are shown in Figure 5-25 for the 

CMOS CFD with no optional constant-fraction comparator delay. The 511-keV photopeak 

loss in the accepted spectrum is 2.5%, which would correspond to a coincidence loss of nearly 

twice this (5%) in a PET application. The timing spectrum corresponding to accepted C:F'D 

events is shown in Figure 5-26. The Monte Carlo timing resolution of 3.43 ns FWHM and 

6.69 ns FWTM is comparable to the measured resolution of 3.30 ns FWHM and 6.40 ns 

FWTM for the commercial delay-line CFD given in Figure 4-34 (page 173). As mentioned, 

the commercial CFD measurements were made using the low scatter and approximate 14% 

energy resolution of the 1 x 1 x 1 inch BGO crystal excited by 511-keV gamma rays from a 

22Na point source. The measured total-event energy spectrum for the commercial CFD 

(Figure 4-33, page 172) has comparable Compton scatter (neglecting the backscatter peak) 

and energy resolution as the simulated total energy spectrum shown in Figure 5-25. 

The total-, accepted-, and rejected-event energy spectra are shown in Figure 5-27 for the 

CMOS CFD with the optional 10-ns constant-fraction comparator delay. The 511-keV 

photopeak loss in the accepted spectrum is only 0.5%, which is considerably lower than the 

loss of 2.5% simulated without the optional delay. In PET applications, the coincidence loss 

would be nearly 1 % and 5% respectively with and without the optional delay, indicating an 

advantage for the better CFD arming performance available with the optional delay. The 

timing spectrum corresponding to accepted CFD events (using the optional delay) is shown 

in Figure 5-28. The Monte Carlo timing resolution is 3.45 ns FWHM and 6. 71 ns FWTM, 

which is unchanged within statistical-simulation errors from timing resolution of 3.43 ns 

FWHM: and 6.69 ns FWTM (Figure 5-26) for the case without the optional delay. 

Performance with High-Level Compton Scatter 

The final Monte Carlo simulations were performed for the high level of Compton scatter 

present from a 20-cm diameter, cylindrical, uniform radiation phantom filled with water. 

The scatter from this phantom approximates scatter from a patient being imaged in PET. A 

detector energy resolution of 14% and a scatter fraction of 32% was used in the simulations 

to model the energy resolution and Compton scatter observed in commercial CTI/Siemens 

PET BGO block detectors [19]. As chosen for the low-level Compton scatter simulations, a 

CFD energy threshold of 200 keV was used. Although experimental measurements were 
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not made for the case of high-level Compton scatter, Monte Carlo simulations give an 

indication of the degradation in timing resolution present for a high-level of scatter 

compared to a low-level of scatter (where experimental measurements were made). 

The total-, accepted-, and rejected-event energy spectra are shown in Figure 5-29 for the 

CMOS CFD with the optional 10-ns constant-fraction comparator delay. The 511-keV 

photopeak loss in the accepted spectrum is only 0.4%, which is comparable to the loss seen 

for the low-scatter case (Figure 5-27). The timing spectrum corresponding to accepted CFD 

events (corresponding to Figure 5-29) is shown in Figure 5-30. The Monte Carlo timing 

resolution is 3.64 ns FWHM and 7.12 ns FWTM, which is approximately 5.5% above the 

low-scatter timing resolution of 3.45 ns FWHM and 6. 71 ns FWTM (Figure 5-28) and 11 % 

above the no-scatter timing resolution of 3.28 ns FWHM and 6.63 ns FWTM (Figure 5-24). 

Compton scatter increases the timing resolution by lowering the mean detected-event 

energy. As discussed in Section 3, Poisson timing resolution goes inversely with 

photoelectron rate, which directly tracks energy deposition in the scintillation detector. 

Measured Performance of the Fully-Monolithic CMOS CFD 

Measured Timing Walk and Jitter 

Time walk for the CMOS CFD was measured using input pulses having a 10-ns rise

time (10 - 90%). The measured walk was -255 ps for input signals ranging from 

100 -1000 mV compared to a SPICE-simulated walk of +91 ps given earlier. The measured 

propagation delay decreased with increasing signal level (negative walk) whereas the 

SPICE-simulated propagation delay increased with increasing signal level (positive walk). 

Measured CMOS CFD walk for input signals ranging from 1000 - 2000 m V was positive, 

however, indicating that propagation delay increased with signal level for large input 

signals (as predicted by SPICE simulations). 

Several sources of measurement and SPICE-simulation errors may explain the 

differences observed between measured and SPICE-simulated walk for the CMOS CFD. 

Measurement errors can result from a bipolar test circuit used to convert single-ended 

signals into differential signals to drive the CMOS CFD. Although this test circuit was 

designed with significant amounts of degeneration to minimize distortion, distortion and 

time walk was not evaluated for the test circuit. SPICE simulation errors could result from 

the fact that device mismatches were not considered in the CMOS CFD walk simulations. 

As mentioned earlier, device mismatches can significantly increase circuit distortion 

because of incomplete second-order distortion cancellation and incomplete third-order 
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distortion cancellation for the linearized transconductor used in the CMOS CFD continuous

time filter. Increased circuit distortion (nonlinearity) can result in increased time walk. 

Although measured CMOS CFD time walk was approximately a factor of three higher 

than SPICE-simulated walk, the SPICE-simulated walk of +91 ps (for an input-signal range 

of 100 -1000 mV) was found earlier to contribute only 11.3 ps FWHM of timing resolution 

error. Such walk errors would have to be significantly higher before affecting timing 

resolution for the EGO/photomultiplier detector application considered where detector 

statistical timing resolution is approximately 3 ns FWHM. 

CMOS CFD timing jitter was measured for 1-V input pulses having a rise-time 

(10 - 90%) of 10 ns. The measured timing jitter is shown in Figure 5-31 and is 140 ps 

FWHM which is in good agreement with the previously given SPICE-simulated jitter of 

164 ps FWHM. As mentioned earlier, timing jitter at this level is negligible for the 

EGO/photomultiplier detector application considered where detector statistical timing 

resolution is approximately 3 ns FWHM. 

Measured Timing and Energy Performance for Low-Level Compton Scatter 

Measured energy and timing spectra were taken using the prototype CMOS CFD. The 

measurements were made using a 1 x 1 x 1 inch EGO crystal coupled to a 1-inch 

photomultiplier, which was connected to a front-end amplifier. A 22Na point source was 

used to provide 511-keV gamma rays. The EGO crystal, photomultiplier tube, and front-end 

amplifier have characteristics used in the Monte Carlo simulations, which are given in 

Figure 4-21 (page 166). The detector energy resolution and Compton scatter is near the 14% 

FWHM resolution and scatter fraction of 0% used in the low-scatter Monte Carlo 

simulations. A comparison of the total-event energy spectra will be given for both Monte 

Carlo simulations and experimental measurements. All measured CMOS CFD energy and 

timing spectra were made as described in the EG&G ORTEC application note, AN-42 [35], 

using a CFD energy threshold of 200 keV (also used for Monte Carlo simulations). 

The measured total-, accepted-, and rejected-event energy spectra are shown in Figure 

5-32 for the CMOS CFD configured without the optional constant-fraction comparator delay. 

The measured 511-keV photopeak loss is 3.6%, which is slightly above the 2.5% Monte Carlo 

simulated loss (Figure 5-25). The measured CFD timing spectrum, corresponding to the 

accepted-event energy spectrum, is shown in Figure 5-33. The measured timing resolution 

is 3.26 ns FWHM and 6.50 ns FWTM, which is comparable to the Monte Carlo timing 

resolution of 3.43 ns FWHM and 6.69 ns FWTM (Figure 5-26). 
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The measured total-, accepted-, and rejected-event energy spectra are shown in Figure 

5-34 for the CMOS CFD configured with the optional 10-ns constant-fraction comparator 

delay. The measured 511-keV photopeak loss is 1.8%, which is one-half the measured 

photopeak loss of 3.6% (Figure 5-32) present without the optional constant-fraction 

comparator delay configured. The measured photopeak loss of 1.8% present with the 

optional constant-fraction comparator delay configured is somewhat above the 0.5% Monte 

Carlo simulated loss (Figure 5-27) for the same configuration. The measured photopeak 

loss, using the alternate source-coupled arming logic circuitry included in the CMOS CFD 

(the saturating-logic arming circuits were used for all measurements presented), was 0.44% 

which is in good agreement with the Monte Carlo simulated loss. It is possible that the 

saturating-logic circuits did not provide a full 10 ns of constant-fraction comparator delay 

compared to the source-coupled logic circuits, and this will be investigated before completion 

of the final PET front-end CMOS integrated circuit. The measured 1.8% photopeak loss, 

using the saturating-logic arming circuitry with the constant-fraction comparator delay 

included, is acceptable for the PET application considered. 

The measured CFD timing spectrum for the optional constant-fraction delay configured, 

corresponding to the accepted-event energy spectrum shown in Figure 5-34, is shown in 

Figure 5-35. The measured timing resolution is 3.25 ns FWHM and 6.50 ns FWTM, which 

is essentially unchanged from the timing resolution of 3.26 ns FWHM and 6.50 ns FWTM 

(Figure 5-33) obtained without the optional delay configured. The Monte Carlo timing 

resolution was also essentially unchanged for the CMOS CFD configured with and without 

the optional delay configured (Figures 5-26 and 5-28). 

The measured timing resolution for the CMOS CFD (Figures 5-33 and 5-35) is 

comparable to the measured timing resolution for the commercial delay-line CFD (Figure 4-

34, page 1 73). The measured CMOS CFD timing resolution was 3.26 ns FWHM and 6.50 ns 

FWTM compared to the measured resolution for the delay-line CFD of 3.30 ns FWHM and 

6.40 ns FWTM. A fully-monolithic CMOS CFD was successfully implemented having timing 

resolution comparable to existing, delay-line CFD circuits for the EGO/photomultiplier 

detector application considered. 

References for Section 5 

[1] Bialkowski, J., M. Moszynski, and D. Wolski, "Remarks on Constant Fraction 
Discriminators Applied for BaF 2 Crystals," Nuclear Instruments and Methods in 
Physics Research, vol. A281, 1989, pp. 657-659. 

220 



[2] Bialkowski, J., A. Dijksman, and W. Schoeps, "Study of GaAs Fast Comparators for 
Application in CFD/LED Timing Circuitry," Nuclear Instruments and Methods in 
Physics Research, vol. A287, 1990, pp. 532-537. 

[3] Gedcke, D. A., and W. J. McDonald, "A Constant Fraction of Pulse Height Trigger 
for Optimum Time Resolution," Nuclear Instruments and Methods, vol. 55, 1967, 
pp. 377-380. 

[4] Gedcke, D. A., and W. J. McDonald, "Design of the Constant Fraction of Pulse 
Height Trigger for Optimum Time Resolution," Nuclear Instruments and Methods, 
vol. 58, 1968, pp. 253-260. 

[5] Engstrom, R. W., Burle Photomultiplier Handbook, Burle Industries, Inc. (formerly 
RCA Photomultiplier Division), Lancaster, Pennsylvania, 1980. 

[6] Chase, R. L., "Pulse Timing System for Use with Gamma Rays on Ge(Li) Detectors," 
Review of Scientific Instruments, vol. 39, no. 9, September 1968, pp. 1318-1326. 

[7] Cho, Z. H, and R. L. Chase, "Improved Amplitude and Rise Time Compensated 
Timing with Ge Detectors," IEEE Transactions on Nuclear Science, vol. NS-19, no. 
1, February 1972, pp. 451-460. 

[8] Maier, M. R., and P. Sperr, "On the Construction of a Fast Constant Fraction 
Trigger with Integrated Circuits and Application to Various Photomultiplier Tubes," 
Nuclear Instruments and Methods, vol. 87, 1970, pp. 13-18. 

[9] MECL Device Data, Motorola Inc. DL122, Rev. 4, Phoenix, Arizona, 1989. 

[10] Maier, M. R., and D. A. Landis, "Second Version of a Constant-Fraction Trigger 
Redesigned with New Integrated Circuits and Results with Semiconductor 
Detectors," Nuclear Instruments and Methods, vol. 117, 1974, pp. 245-247. 

[11] Hall, T. M., "Lifetime System with Stabilized Timing Discriminators," Nuclear 
Instruments and Methods, vol. 117, 1974, pp. 253-259. 

[12] Linear and Interface Data Book, Advanced Micro Devices, Inc., Sunnyvale, 
California, 1977. 

[13] Gabriel, F., H. Koepernik, and K Schops, "A Timing System for Ge(Li) Detecton,," 
Nuclear Instruments and Methods, vol. 103, 1972, pp. 501-502. 

[14] Wozniak, G. J., L. W. Richardson, and M. R. Maier, "Time-Walk Characteristics of 
an Improved Constant-Fraction Discriminator," Nuclear Instruments and Methods, 
vol. 180, 1981, pp. 509-510. 

[15] Data Converters and Voltage References IC Handbook, Plessey Semiconductors, 
Wiltshire, United Kingdom, 1989. 

[16] Maier, M. R., "A Simple Multifunction Discriminator for Multichannel Triggers," 
IEEE Transactions on Nuclear Science, vol. NS-30, no. 1, February 1983, pp. 335-
338. 

221 



[17] Instruction Manual, TC455 Quad CF Discriminator, Rev. 3.0, Oxford Instruments 
(formerly Tennelec), Nuclear Measurements Group, Oak Ridge, Tennessee, 1985. 

[18] Model 583 Constant-Fraction Differential Discriminator, Operation and Service 
Manual, EG&G ORTEC, Oak Ridge, Tennessee, 1978. 

[19] Internal PET technical information, CTI PET Systems, Inc., Knoxville, Tennessee, 
1991. 

[20] Experimental measurements made by D. M. Binkley et al., CTI PET Systems, Inc., 
Knoxville, Tennessee, 1988 - 1992. 

[21] Linear Signal Processing (LSP) Data Book, VTC Incorporated, Bloomington, 
Minnesota, 197 8. 

[22] Binkley, D. M., and M. E. Casey, "Performance of Fast Monolithic ECL Voltage 
Comparators in Constant-Fraction Discriminators and other Timing Circuits," IEEE 
Transactions on Nuclear Science, vol. NS-35, no. 1, February 1988, pp. 226-230. 

[23] Turko, B. T., and R. C. Smith, "A Precision Timing Discriminator for High Density 
Detector Systems," Conference Record of 1991 IEEE Nuclear Science Symposium 
and Medical Imaging Conference, November 1991. 

[24] Signal Processing Technologies, 1991-1992 Product Catalog, Signal Processing 
Technologies (formerly Honeywell, Inc.), Colorado Springs, Colorado, 1991. 

[25] 1990 I 1991 Linear Products Databook, Analog Devices, Norwood, Massachusetts, 
1990. 

[26] White, D. C. S., and W. J. McDonald, "Recent Developments in Subnanosecond 
Timing with Coaxial Ge(Li) Detectors," Nuclear Instruments and Methods, vol. 115, 
1974, pp. 1-11. 

[27] Mc Donald, W. J., and D. C. S. White, "Triple Constant-Fraction Discriminator," 
Nuclear Instruments and Methods, vol. 119, 1974, pp. 527-532. 

[28] Robertson, B. C., "An Evaluation of the Triple Constant Fraction Discriminator", 
Nuclear Instruments and Methods, vol. 152, 1978, pp. 575-576. 

[29] Bedwell, M. 0., and T. J. Paulus, "A New Constant-Fraction Timing System with 
Improved Time Derivation Characteristics," IEEE Transactions on Nuclear Science, 
vol. NS-23, no. 1, February 1976, pp. 234-243. 

[30] Bedwell, M. 0., "The Application of a Rejection Technique for Slow Risetime Signals 
to ARC Timing with a Ge(Li) Detector", Ph.D. Dissertation, The University of 
Tennessee-Knoxville, 1977. 

[31] Bedwell, M. 0., and T. J. Paulus, "A Constant Fraction Differential Discriminator 
for Use in Fast Timing Coincidence Systems," IEEE Transactions on Nuclear 
Science, vol. NS-26, no. 1, February 1979, pp. 422-427. 

222 



[32] Bedwell, M. 0., and T. J. Paulus, "A Versatile Constant Fraction Discriminator 
100 MHz Discriminator," IEEE Transactions on Nuclear Science, vol. NS-25, no. 1, 
February 1978, pp. 86-92. 

[33] Binkley, D. M., M. L. Simpson, and J. M. Rochelle, "A Monolithic, 2-µm CMOS 
Constant-Fraction Discriminator for Moderate Time Resolution Systems," IEEE 
Transactions on Nuclear Science, vol. NS-38, no. 6, December 1991, pp. 1754-1759. 

[34] Tanaka, M., et al., "Development of a Monolithic Constant Fraction Discriminator," 
Conference Record of 1991 IEEE Nuclear Science Symposium and Medical Imaging 
Conference, November 1991, pp. 611-615. 

[35] EG&G ORTEC, "Principles and Applications of Timing Spectroscopy," Application 
Note AN-42, Oak Ridge, Tennessee. 

[36] Kinbara S., and T. Kumahara, "A Leading-Edge Time Pickoff Circuit", Nuclear 
Instruments and Methods, vol. 67, 1969, pp. 261-266. 

[37] Hartmann, G., and J. W. Klein, "Theoretical Explanation of a New Triggering 
Method", Nuclear Instruments and Methods, vol. 75, 1969, pp. 317-319. 

[38] Turko, B. T., W. F. Kolbe, and R. C. Smith, "ffitra-Fast Voltage Comparators for 
Transient Waveform Analysis," IEEE Transactions on Nuclear Science, vol. 37, 
no. 2, April 1990, pp. 424-429. 

[39] 1988 Linear Products Databook, Analog Devices, Norwood, Massachusetts, 1988. 

[40] Gigabit Logic 1988 GaAs IC Data Book & Designer's Guide, Gigabit Logic, Inc., 
Newbury Park, California, 1988. 

[41] "Product Data Sheet, TQ6330N," Triquent Semiconductor, Inc., Beaverton, Oregon, 
1989. 

[42] MAXIM 1990 New Releases Data Book, Maxim Integrated Products, Sunnyvale, 
California, 1990. 

[43] Analog and Communications Products, Advanced Micro Devices, Sunnyvale, 
California, 1983. 

[44] Analog ASIC Data Book, NCR Corporation, Microelectronics Division, San Jose, 
California, 1991. 

[45] MAGIC layout software described in, "1986 VLSI Tools; Still More Works from the 
Original Artists," Document no. UCB/CSD86/272, University of California, Berkeley, 
1986. 

[46] Foresight User's Manual, Rev. 1.4, Orbit Semiconductor, Inc., Sunnyvale, 
California, 1991. 

[47] Lewicki, G., "Prototyping and Small-Volume Parts Through MOSIS," University of 
Southern California Information Science Institute, Reprint Series ISI/RS-85-160, 
1985. 

223 



[48] Sheu, B., et al., "BSIM: Berkeley Short-Channel IGFET Model for MOS 
Transistors," IEEE Journal of Solid-State Circuits, vol. 22, no. 4., August 1987, pp. 
558-566. 

[49] Kardontchik, J. E., Introduction to the Design of Transconductor-Capacitor Filters, 
Kluwer Academic Publishers, Norwell, Massachusetts, 1992. 

[50] van der Plas, J., "MOSFET-C Filter with Low Excess Noise and Accurate Automatic 
Tuning," IEEE Journal of Solid-State Circuits, vol. 26, no. 7, July 1991, pp. 922-929. 

[51] Ismail, M., and D. Ganow, "MOSFET-Capacitor Continuous-Time Filter Structures 
for VLSI," 1986 IEEE International Symposium of Circuits and Systems, 1986, pp. 
1196-1200. 

[52] Ismail, M., and D. Rubin, "Improved Circuits for the Realization of MOSFET
Capacitor Filters," 1986 IEEE International Symposium of Circuits and Systems, 
1986, pp. 1186-1189. 

[53] Tsividis, Y., and P. Antognetti, Design of MOS VLSI Circuits for 
Telecommunications, Prentice-Hall, Englewood Cliffs, New Jersey, 1985. 

[54] Kwan, T., and K. Martin, "An Adaptive Analog Continous-Time CMOS Biquadratic 
Filter," IEEE Journal of Solid-State Circuits, vol. 26, no. 6, June 1991, pp. 859-867. 

[55] Gopinathan, V., et al., "Design Considerations for High-Frequency Continuous-Time 
Filters and Implementation of an Antialiasing Filter for Digital Video," IEEE 
Journal of Solid-State Circuits, vol. 25, no. 6, December 1990, pp. 1368-1378. 

[56] Krummenacher, F., and N. Joehl, "A 4-MHz CMOS Continuous-Time Filter with 
On-Chip Automatic Tuning," IEEE Journal of Solid-State Circuits, vol. 23, no. 3, 
June 1988, pp. 750-758. 

[57] Toumazou, C., F. J. Lidgey, and D. G. Haigh, Analogue IC Design: The Current
Mode Approach, Peter Peregrinus Ltd., London, 1990. 

[58] Silva-Martinez, J., M. S. J. Steyaert, and W. M. C. Sansen, "A Large-Signal Very 
Low-Distortion Transconductor for High-Frequency Continuous-Time Filters," IEEE 
Journal of Solid-State Circuits, vol. 26, no. 7, July 1991, pp. 946-955. 

[59] Czarnul, Z., S. C. Fang, and Y. Tsividis, "Improving Linearity in MOS Fully
Integrated Continuous-Time Filters," 1986 IEEE International Symposium of 
Circuits and Systems, 1986, pp. 1169-1172. 

[60] Commercial PSPICE Circuit Simulation Software, Micro Sim Corporation, Irvine, 
California, 1992. 

[61] Wu, J-T., and B. A. Wooley, "A 100-MHz Pipelined CMOS Comparator," IEEE 
Journal of Solid-State Circuits, vol. 23, no. 6, December 1988, pp. 1379-1385. 

[62] Allstot, D. J., "A Precision Variable-Supply CMOS Comparator," IEEE Journal of 
Solid-State Circuits, vol. SC-17, no. 6, December 1982, pp. 1080-1087. 

224 



[63] Doernberg, J., P.R. Gray, and D. A. Hodges, "A 10-bit 5-Msample/s CMOS Two-Step 
Flash ADC," IEEE Journal of Solid-State Circuits, vol. 24, no. 2, April 1989, pp. 241-
249. 

[64] Steyaert, M., et al., "A Full 1.2-µm CMOS ECL-CMOS-ECL Converter with 
Subnanosecond Settling Times," Proceedings of the IEEE 1990 Custom Integrated 
Circuits Conference, 1990, pp. 11.4.1-11.4.4. 

[65] Binkley, D., M., "A Low Noise 45 - 75 MHz Phase-Locked Loop Frequency 
Synthesizer for a High Performance Communications Receiver," Master's Thesis, 
The University of Tennessee, Knoxville, March 1984. 

[66] Agazzi, 0., and A. Adan, "An Analog Front End for Full-Duplex Digital Transceivers 
Working on Twisted Pairs," Proceedings of the IEEE 1988 Custom Integrated 
Circuits Conference, 1988, pp. 26.4.1-26.4.4. 

[67] Maskai, S. R., S. Kiaei, and D. J. Allstot, "Synthesis Techniques for CMOS Folded 
Source-Coupled Logic Circuits," IEEE Journal of Solid-State Circuits, vol. 27, no. 8, 
August 1992, pp. 1157-1167. 

[68] Binkley, D. M., "The Development of a High-Speed, Linear, Source-Coupled CMOS 
Logic Family Optimized for Integration with Analog CMOS Circuits," Unpublished 
Course Project for the University of Tennessee, Knoxville, December 1990. 

[69] Kim, L., and R. W. Dutton, "Metastability of CMOS Latch/Flip-Flop," IEEE Journal 
of Solid State Circuits, vol. 25, no. 4, August 1990, pp. 942-951. 

225 



Attenuator 

Appendix for Section 5 - Figures 

CF 

Arm 

CF 

Arm 

CF 

Traditional Arming 

One 
Shot 

Output 

SRT Arming with 
Clock Gating 

-------D a Output 

SAT Arming without 
Clock Gating 

'--------D Q 
Output 

Figure 5-1. Block Diagram of Standard CFD Arming Circuits. 

226 



en 
~ 
,:,: 
"iii 
~ 
Cl 
C: .E 

i-= 

1000 

500 

0 

-500 

-1000 

Optimized for 20 dB Range 

Optimized for 30 dB Range 

© 1991 IEEE from Binkley, D. M., et al., "A Monolithic 2 µm CMOS 
Constant-Fraction Discriminator for Moderate Time Resolution 
Systems," IEEE Transactions on Nuclear Science, vol. 38, no. 6, 
December 1991, p. 1757. 

Input Signal Risetime = 20 ns 

3970 

-1500 L--~~~...__~~~....__~~~-'-~~~-'-~~~---L.~~~-..l~~~~.__~~~ ....... ~~~....l.....~~---" 
0 -0.4 -0.8 -1.2 -1.6 -2.0 -2.4 -2.8 -3.2 -3.6 -4.0 

Signal Magnitude (V) 

Figure 5-2. Measured Time Walk for the CMOS CFD Reported by Binkley et al. 

227 



0 100 200 300 400 500 

t (ns) 

600 700 800 900 1000 

Figure 5-3. Illustration of Statistical Noise for BGO/Photomultiplier Scintillation 
Detector. 

228 



Input Signal 

Vthld3 

Constant-Fraction Shaping Signal 

Arming, Constant-Fraction Logic Signals 

Arm 1 (Random Triggering) 

Arm 2 (Normal Triggering) 

Arm 3 (Leading-Edge Triggering*) 

CF 

IIIIIIIIIIIHII.__ _ ___. 
......._ Timing Edge ~~:ring Quieting 

• The use of D flip-flop prevents 
leadl~dge timing. 

Figure 5-4. Illustration of CFD Arming Operation. 

229 



t.:> 
CIJ 
0 

Signal 
Input 

Arming Arming Filter Arm/CF 
DC Monitor Threshold Time Constant 

~11 
~ 
Cll 
i:: 

I I I I ~ I + 11 m ,qo N _. U C:: C:: 
.-I .-I .-I .-t "t:I O 0 

~.::!~~ E 65 
>>>> ~ gg 

Xl 

cfdannO 

Arming Thld/Filter 
Circuit 

"t:11 Clll"t:1 "t:I Cll r=: 
> > §;' ..... 1"'1...,1 .... Cll Cll Cll Cll 

"' "' "' "' g ~ ~ g 

..... 
N~~ "t:I 

Cll Cll Cll Cll 

"t:I Cll "' "' "' "' 
"t:I Cll & ...... g g g > > > -§; 

~ 
X3 

cfdctfO -
CFD Continuous-

Time Filter 
(Shaping Circuit) 

I 
.-I 

+ I ~ 
.lo( .lo( Cll 
.-I .-I i:: 

"' "' 0 
): ): -e "t:I "t:I ..... ..... ..... 
u u u 

> 

~ij lg 
CFD Walk 
Adjust 

Notes: 

CJ represents pin numbers. 

Varm+ 

Varm-

Vcf+ 

Vcf-

µ 

i 
i:: 

~ 
~ ~ 

X2 

comparmO 

Arming Comparator 
Circuit 

"t:11 Cll 
:lZ :!! "21~1~1 2 1: §;' ~ ~ g ~ 

.g ~ 

:gl :i1i1]!]1~1 ~ >>>-§;-§;>> 

X4 
compcfdO 

Constant-Fraction 
Comparator 

i:: 

~ 
~ 

Cll 

"' ~ 

1----------------+---_:_V.:.co::.:mp~~ 
Vcomparml-

Vcompann2+ 

Vcompann2-

r--------------+----V:....:c:....:o:....:m~p~ 
Vcompcfl-

:g I :i 1 !J BI~ I~ I ~ >>>-§;-§;>> 

X5 

cfddelO 

Delay Generator 

> I >, ..... "' ..... .-I 
~ ~ 
i... "t:I > .... 

Vcompcf2+ ----Vcompcf2-

Vcfdlyl+ 

Vcfdlyl-

Vcfdly2+ 

Vcfdly2-

--

Figure 5-5. Top-Level Circuit Diagram for the CMOS CFD. 

Arming 
Signals 

CF Signals 

Delayed 
CF Signals 



Vcom arml+ ---- Scld+ 

Vcomparml- Scld-
X6 x7 xa 

Vcompcfl+ Sclclk+ Sclq+ ~ut+ r.;t;'\. 
-- scllogO scldffO scloutO & 

Vcornpcfl- CFD Logic Sclclk- D Flip-Flop Sclq- Output Driver ut-

Vcfdlyl + (Source-Coupled) Pre (Source-Coupled) (Source-Coupled) 

_ Vcfdlyl- Clr 

~ ~ i ~ ~ ll>o ~ ~ ~ ~ ~ ~ ~ 11~1~1~1 I ~1~1 11~1~ !>...-t""l'"'i ~tr.lD'lD'lO,tr.1 ~......i......i> ~......i......i 

~~ ~~t;t;~~ . gg . gg 
........ 
tJ tJ 

+ I 
0 .--4 .--4 0 0 

I I ] ~ ~ ~ ~ ~ ~ i1 I 11 i1 I! "Cl ., i:: -rl -.-< .., ., ., "Cl "Cl "Cl ., i:: "Cl "' i:: 
"Cl ., t,, ..0 ..0 1--< .... .... .... .... "Cl "' t,, "Cl "' t,, 

Vcornparm2+ > > > > > <ll u u u u _:_atd _ > > > > > > 

N> vcornparm2- Satclk+ 
CA) X9 t-------- Xl O Xll 
,_. Vcornpcf2+ Satclk- Satq+ 1 Satout I 

------- satlogO casdffO satoutO · -30 
_ Vcompcfl-_ CFD Logic D Flip-Flop Satq- Output Driver 

Vcfdly2+ (Saturating) Pre (Cascode) (Saturating) 

Vcfdly2- --i ~ (Saturating) 

Notes: 

(J represents pin numbers. 

Figure 5-5. Continued. 



t..:> 
CJ,j 
t..:> 

il_ ~-

~ L}J~ ~rµ~~~L¥ 
u 

w ... ...... ...... ... ...... ""(IJ ~ ~ :l 
~ 

u ... 
t/l 

Vbiasl 3 
X12 X13 Vbias2 

u r-· 

tnnohrnO ireferO Vbias3 
..-----r-

Ohmic-Load Tuning 
Circuit 

ascode Current 
Vbias4 

,urce Reference 

'"Cl "' '"Cl ..., .... 
'"Cl "' "' "' "' > > O' "' "' > ........ 

,, 
" '"01"' '"Cl "' > > 

..a ~ > 

' 

u u ~ 
-< O' 

~ ~'"Ol !h~~ '"Cl "' "' '"Cl "' 
~ ;{; g, ;>Z g 

~ 5 ,S '~ 33 37 28 3' 

Notes: 

CJ represents pin numbers. 

Figure 5-5. Continued. 

Srtsel-
r---X14 Cfsel- ~ 

cfdmodeO Cfdarmsel-
CFD Mode and ,·----

Sr 
Misc. Logic .... 

Clr- -
u "' u 
8' ;{; 0, 
...... ~ 

~ 
'"Cl 

"' g 



Figure 5-6. Integrated-Circuit Layout for the CMOS CFD. 

233 



I::,:) 

;e 

1225 

! ~::'"'"' ··'""'!;~.~! i 12s i 12s l 12s ! 125 + 125 + 125 + 125 + 125 
(Vdd) -

(Vbiasl) ,,JM13 =;IM~ c~ (Vu) 
M47 M48 (Vcfdmonsel-) 

5/4 ---j 100/2 
60/2 

Ml8 1
M59 ± (Vcfdmon+) 

(Vbiaa2)- rtt- II I 3/2 
a•••• __J--i__ (Vcfdmon-) 

3/2 M60 

(Vdd) 

MSl 
(Vqnd) ---i 

Im ~ ,.,l Cl C~ 

24/2 

l J-T-lo MS2 

+ M25 M26 M43 24/2 t--- (Vcfd+) 
M29 .--t-

50/2 50/2 
(Vcfd-) 

50/2 165 • 
m~ 

""~ ... - ,av I MS3 
M41 24/2 (Vqnd) 

**M~ ~~4 
M27 M28 

(Vin-) ~ 
20/3 

50/2 50/2 
50/2 50/2 ~.9 s~o ,,. '}JC. '1/C. JIIC 

M54 
(Vbias3) 

20/2 
(Vin•) _J I I 11 so12lc6 I --- --i, ]00/2 

MSS 
(Vbiu4) 

20/2 

(VbiuJ) 
I~!!) I~!!' l~r!JU ,,~r!JZ 

! 
·=i 50/21 l~MJ6 '1100/l (Vu) 

100/2 + 100 + 100 

M37 
(Vbiaa4) 'J 10/2 'J 60/2 ']24/2 ~1= l l =r (Vu) - +50 + JOO + 125 rs + 125 + 250 + 250 1225 

Notes: 
Capacitors 

All current values are in uA. }~ CS, C6 not laid out as JO FF All capacitor values are in FF. 
is present in layout capacitance 

Transistor sizes are 11/L in u. Poly! Poly2 

Figure 5-7. Schematic Diagram of the Binkley Gaussian CFD Continuous-Time 
Filter Used in the CMOS CFD. 



0 5 10 15 

Time (ns) 

20 25 30 

Figure 5-8. SPICE-Simulated Signals for the Binkley Gaussian CFD Continuous
Time Filter Used in the CMOS CFD. 

i 
__J 

! o.8 f I -

0.6 t-----t-------"l-------+-"""-----::;~----+------i----------ll-------+----+----

0.4 -l----~---t--7"""~ 
I 

--1----+----+----l 

0.2 +-----bl ..s~ ___, __ -+-----+------+-----+------+------+------------i 

o~'f=r-'-+--f-+-L+---t--+---"-+--+-141~1-+---+-+-+-! +!+!-+-~!+!-+--t-+-+-+-+-+-+--,-~·~+--+-+-+--+-~-+---+-+--+--1 ~1-1--+1~1 

0 02 0.4 0.6 0.8 1.2 1.4 1.6 1.8 

Vin (V) 

Figure 5-9. SPICE-Simulated DC Linearity for the Binkley Gaussian CFD 
Continuous-Time Filter Used in the CMOS CFD. 

235 

2 



14 14.1 14.2 14.3 14.4 14.5 

t (ns) 

14.6 14.7 14.8 14.9 15 

Figure 5-10. SPICE-Simulated Walk for the Binkley Gaussian CFD Continuous
Time Filter Used in the CMOS CFD. 

1 ·2 + Post Layout,, BSIM Simulation I Output Loaded into CF Comparator t Vin (differential, Vern =1.5 V) I [ 

1L I -------=="',31 

C + ~<~~ '~ 
'ffi 0.8 ~ '( , . I 

C, t=-- ~', '··, "'4 I \ 
' " ·, i i Gain: _ '" ·"'. \, \. 

~ 0
·
6 

(Fraction Current, 1) = -100 uS I ·,\ l \ \ 
E (Lowpass Current, 2) = 200 uS 1 , I \\ \ 

~ o.4 , (CFDCurrent,3)=100uS-1- T,·\,\+,~-;,...,,.,\ ________ 1 

(CFD Voltage, 4) = 1.0 _j__ 
1 

'," '\ I 

0.2 r-- ,. ~.----'<',,_-,,, ---~ 

i "","'~'~ 
0 .t--+---+ -+---+-- +-r-- I --:----~ I / 

10 100 1000 

Frequency (MHz) 

Figure 5-11. SPICE-Simulated Frequency Response for the Binkley Gaussian CFD 
Continuous-Time Filter Used in the CMOS CFD. 
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Figure 5-23. SPICE-Simulated Frequency Response for the Constant-Fraction 
Comparator Used in the CMOS CFD. 
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Figure 5-26. Monte Carlo Timing Spectrum with Low Compton Scatter for the 
CMOS CFD without Optional Arming Delay. 
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Figure 5-27. Monte Carlo Energy Spectrum with Low Compton Scatter for the 
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Figure 5-28. Monte Carlo Timing Spectrum with Low Compton Scatter for the 
CMOS CFO with Optional Arming Delay. 
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Figure 5-29. Monte Carlo Energy Spectrum with High Compton Scatter for the 
CMOS CFD with Optional Arming Delay. 

1 
ooo tso ps Chan~els j j !100,000 Co~nts j --r I 

!Filtering, Sigma = 100 P5j /r--\ I BGO: N = 3?0, Tri-exp. ~octet I I 

800 ±.I -r' ----11---/-,'/~I \ .. IEnergyResi·,.=14%FW~M--r I 

, 

1 

/ 'I \ I scatter Fract. = 0.32 I I i 

600 t--t- . ~\jCMOSCFD . i ! 

~ I L' I / 3.S4ns FWHM~ I f ~-+' I 8 
400 

t-------
1

. I / ~ '. \ . /Tcfclelay = 110 ns I 
+ ; --r-·--~1Tffsu = 2 ns1 - ----i 
1 II I 

1 

1 \ !Vphotopeak = 0.8 V i 
I " I I I I 

200 t t-----f--+---------+-' - ':,~ Arming Thldl
1 
= 200 keV I 

____ 7-+.12nsFWTM /~ I I 

O L~J_ / , " I " :h,-,~I I 

14 '16 18 20 22 24 26 28 30 

t (ns) 

Figure 5-30. Monte Carlo Timing Spectrum with High Compton Scatter for the 
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Figure 5-32. Measured Energy Spectrum with Low Compton Scatter for the CMOS 
CFD without Optional Arming Delay. 
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Figure 5-33. Measured Timing Spectrum with Low Compton Scatter for the CMOS 
CFD without Optional Arming Delay. 
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Figure 5-35. Measured Timing Spectrum with Low Compton Scatter for the CMOS 
CFD with Optional Arming Delay. 
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6. CONCLUSION 

Summarizing Discussion 
A fully-monolithic CMOS CFD, believed to be the first such reported circuit, was 

developed and experimentally evaluated. The measured timing resolution of 3.26 ns 

FWHM, 6.50 ns FWTM (Figure 5-33, page 250) for this circuit is comparable to the 

measured timing resolution of 3.30 ns FWHM, 6.40 ns FWTM (Figure 4-34, page 173) for a 

commercial bipolar CFD utilizing an external delay line. Both CFD circuits were evaluated 

with a EGO/photomultiplier scintillation detector excited by 511-keV coincident gamma rays 

from a 22Na point source. The scintillation detector considered has energy resolution 

(approximately 14% FWHM) and timing resolution (approximately 3 ns FWHM using 

standard delay-line CFD circuits) for 511-keV gamma rays that is comparable to detectors 

used in commercial PET medical tomographs. The development of a fully-monolithic CMOS 

CFD is significant for PET and other systems where many channels of time pick-off circuits 

are required. The use of monolithic CMOS technology permits integration of the CFD with 

high-density, mixed analog and digital circuits. 

Key to the development of the fully-monolithic CMOS CFD was the development and 

analysis of non-delay-line CFD timing circuits (described in Section 4) since it is not feasible 

to integrate delay lines into monolithic circuitry. The non-delay-line CFD circuit reported 

by Nowlin [1, 2], utilizing approximate differentiator networks in place of the delay line 

used in the standard CFD, was evaluated. Additionally, what is believed to be a new class 

of non-delay-line CFD circuits was presented. These circuits, designated as Binkley CFD 

circuits [3], utilize lowpass or allpass networks in place of the delay line used in the 

standard CFD. 

It was shown that the Binkley CFD, utilizing a single-pole lowpass filter, has identical 

performance as the Nowlin CFD, utilizing a single-pole highpass filter, with an appropriate 

interchange of fraction values for the CFD circuits. Additionally, it was shown that CFD 

shaping-signal underdrive, zero-crossing slope, and timing-jitter performance is improved in 

the Binkley CFD with increasing circuit order for lowpass, delay-line approximation filters. 

Performance of the delay-line CFD and the Binkley non-delay-line CFD (utilizing 1 - 4-pole 

Gaussian lowpass delay-line approximation filters) is compared in Tables 4-4, 4-5, 4-6, and 

4-7 (pages 138, 139, 141, and 142) for lowpass-filtered step inputs with bandlimited noise. 

Both single- and two-pole step inputs, resulting from lowpass filtering of a step input in the 

presence of white noise, are considered. The performance of the Binkley CFD, utilizing a 

four-pole Gaussian lowpass delay-line approximation filter, is shown to be comparable to the 
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performance of the delay-line CFD for two-pole step inputs. A two-pole step input models 

the signal present from the EGO/photomultiplier scintillation detector considered with 

subsequent front-end preamplification. The Binkley non-delay-line CFD circuits are 

advantageous for monolithic integration because high-order (four pole or more) lowpass 

delay-line approximation filters can be readily implemented. 

In order to develop the fully-monolithic CMOS CFD, it was necessary to predict the CFD 

timing performance for the EGO/photomultiplier scintillation detector application 

considered. This is necessary because experimental adjustment of circuit parameters is not 

feasible following integrated-circuit fabrication. Monte Carlo analysis was developed 

(presented in Section 3) which modeled detector photoemission statistical noise, 

photomultiplier single-electron gain and transit-time statistics, and the impulse response of 

the photomultiplier tube, front-end preamplifier, and CFD (or other) time pick-off circuit [4]. 

This is believed to be the first such reported analysis that considers the characteristics of 

front-end preamplification and time pick-off circuitry. 

Monte Carlo timing resolution, for the EGO/photomultiplier scintillation detector 

considered, was presented (Figures 4-24 and 4-25, page 168) for the delay-line CFD and non

delay-line Binkley CFD (utilizing 1 - 4-pole Gaussian lowpass delay-line approximation 

filters) as a function of constant-fraction delay. Monte Carlo timing resolution was 

experimentally verified for various constant-fraction delays for the delay-line CFD as 

illustrated in the figures. Comparable Monte Carlo timing performance was shown (Table 

4-8, page 147) for the delay-line CFD and the Binkley non-delay-line CFD (utilizing 

1 - 4-pole Gaussian lowpass delay-line approximation filters). This established the 

feasibility of using the Binkley CFD timing circuits in the fully-monolithic CMOS CFD to 

obtain timing performance comparable to existing delay-line CFD circuits. 

In addition to timing-resolution prediction, Monte Carlo analysis was extended (Section 

4) to predict time pick-off circuit energy discrimination. Monte Carlo timing and energy 

spectra (Figures 4-31 and 4-32, pages 171 and 172) are shown to be in good agreement with 

measured timing and energy spectra (Figures 4-33 and 4-34, pages 1 72 and 1 73) for a 

commercial delay-line CFD connected to the EGO/photomultiplier scintillation detector 

considered. Monte Carlo timing resolution of 3.22 ns FWHM, 6.41 ns FWTM is comparable 

to the measured resolution of 3.30 ns FWHM, 6.40 ns FWTM. The Monte Carlo predicted 

511-keV photopeak loss is 2.2% comparable to the measured loss of 2.5%. The photopeak 

loss is due to limited energy-discrimination resolution in the CFD. 
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The addition of a time delay (10 ns for the EGO/photomultiplier scintillation detector 

considered) at the output of the CFD constant-fraction comparator was described (Section 4) 

as a way of reducing CFD photopeak loss by improving energy-discrimination performance. 

CFD energy-discrimination performance is improved because the arming decision time is 

delayed permitting better accumulation of arming-discrimination statistics. Monte Carlo 

simulations predicted the 511-keV photopeak loss for the CMOS CFD at 2.5% (Figure 5-25, 

page 246) without the constant-fraction comparator delay and 0.5% (Figure 5-27, page 24 7) 

with the delay. The measured CMOS CFD photopeak loss was 3.6% (Figure 5-32, page 250) 

without the delay and 1.8% (Figure 5-34, page 251) with the delay. Measured photopeak 

loss with the delay, using alternate source-coupled arming logic circuitry included in the 

CMOS CFD~ was 0.44% which is in close agreement with the Monte Carlo prediction of 

0.5%. This indicates that the saturating-logic arming logic circuitry used for most of the 

reported CMOS CFD measurements may not have provided the full 10 ns of constant

fraction comparator delay, and this will be investigated before completion of an entire PET 

front-end CMOS integrated circuit. The measured 1.8% photopeak loss, using the 

saturating-logic arming circuitry with the constant-fraction comparator delay included, is 

acceptable for the PET application considered. Minimizing CFD photopeak loss improves 

the detection efficiency of PET tomography systems resulting in better image statistics. 

Monte Carlo predicted timing resolution for the CMOS CFD was in good agreement with 

measured data. The Monte Carlo timing resolution, without inclusion of the constant

fraction comparator delay, was 3.43 ns FWHM, 6.69 ns FWTM (Figure 5-26, page 246) 

compared to measured resolution of 3.26 ns FWHM, 6.50 ns FWTM (Figure 5-33, page 250). 

The Monte Carlo timing resolution, with inclusion of the constant-fraction comparator 

delay, was 3.45 ns FWHM, 6. 71 ns FWTM (Figure 5-28, page 24 7) compared to measured 

resolution of 3.25 ns :F'WHM, 6.50 ns FWTM (Figure 5-35, page 251 ). Both the Monte Carlo 

and measured timing resolution were essentially unaffected when constant-fraction 

comparator delay was included to improve energy-discrimination performance. 

In addition to Monte Carlo analysis of timing and energy-discrimination performance, 

analysis of timing walk and jitter was presented (Section 2) for time pick-off circuits. 

Comparator walk was discussed using the charge-sensitivity model to describe changing 

comparator propagation delay with input-signal overdrive and slope. Additionally, optimal 

(matched) filters for minimizing timing jitter are presented along with suboptimal filters. 

An optimal filter was developed (Figures 2-11 and 2-12, pages 55 and 56) for minimizing 

timing jitter associated with a linear-edge signal in the presence of white noise. Timing 
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jitter performance is compared (Figure 2-13, page 57) for the optimal filter developed and a 

single-pole lowpass filter where it is shown that timing jitter is at least 10.8% higher using 

the single-pole lowpass filter. Although timing walk and jitter are not dominant sources of 

error for the fully-monolithic CMOS CFD, analysis of these errors is included for 

completeness and to permit development of other timing systems, including BGO/avalanche

photodiode timing systems where timing jitter is significant. 

Following the presentation of timing walk, jitter, and detector-statistical analysis 

(Monte Carlo analysis), and the presentation of delay-line and non-delay-line CFD timing 

circuits, previously reported practical CFD circuits were reviewed (Section 5). Following 

this, circuits developed for the fully-monolithic CMOS CFD were presented. These circuits 

were developed using a standard, digital, 2-µ, double-metal, double-poly, n-well CMOS 

process. The CMOS circuits developed include a wideband (>100 MHz bandwidth, Figure 5-

11, page 236) continuous-time filter configured as a Binkley CFD circuit having a five-pole 

Gaussian lowpass delay-line approximation filter. This fully differential circuit (Figure 5-7, 

page 234) did not require common-mode feedback as is typically required in differential 

CMOS continuous-time filter circuits. 

As a part of the constant-fraction comparator design for the CMOS CFD, design analysis 

was presented for minimizing comparator time walk. This analysis, believed to be the first 

such reported analysis, considers the tradeoffs between small-signal gain-bandwidth and 

circuit nonlinearities on walk performance. It was shown that walk is much less for 

differential CMOS stages with ohmic (resistive) loads compared to walk when current

source loads are used (Figures 5-14 and 5-15, page 239). The improvement in walk 

performance is due to well-controlled circuit limiting, where limiting voltage is equal to the 

voltage drop across an ohmic load when full differential-pair bias current is switched to the 

load). Graphs (Figures 5-17, 5-18, and 5-19, pages 241 and 242) of comparator propagation 

delay and walk, generated from multiple SPICE simulations, are shown for cascaded, 

differential CMOS stages with ohmic loads. These graphs permit selection of differential

pair MOSFET transistor size and circuit limiting voltage for a required comparator 

propagation delay and walk specification. 

The constant-fraction comparator (Figure 5-20, page 243) for the CMOS CFD consists of 

five differential comparator stages with ohmic loads and was designed using the comparator 

walk-optimization analysis previously described. The SPICE simulated walk performance is 

158 ps (Figure 5-22, page 244) for 10 - 1000 mV input signals having rise-times (10 - 90%) of 

approximately 10 ns, which is comparable to the measured walk of 210 ps (AD9685 [5]) and 
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250 ps (VC7695 [6]) for high-speed bipolar ECL comparators [7]. The propagation delay of 

the CMOS constant-fraction comparator, however, is higher at 8 ns compared to 2.5 ns for 

the ECL comparators. 

Following presentation of the CMOS CFD circuit design and analysis, performance was 

experimentally verified using the EGO/photomultiplier scintillation detector considered. As 

mentioned, the measured timing resolution of 3.26 ns FWHM, 6.50 ns FWTM (Figure 5-33, 

page 250) is in good agreement with the Monte Carlo timing resolution of 3.43 ns FWHM, 

6.69 ns FWTM (Figure 5-26, page 246). Additionally, the measured CMOS CFD timing 

resolution is comparable to the measured timing resolution of 3.30 ns FWHM, 6.40 ns 

FWTM (Figure 4-23, page 173) for a commercial delay-line CFD. Comparable timing 

performance between the fully-monolithic CMOS CFD and existing delay-line CFD circuits 

indicates that the CMOS CFD was successfully developed. 

Suggestions for Future Work 
The development of the fully-monolithic CMOS CFD presented here was for PET 

EGO/photomultiplier scintillation detector applications. All of the timing walk, jitter, and 

Monte Carlo statistical analysis presented can be extended to other applications, including 

BGO/avalanche-photodiode detector applications. Additionally, the non-delay-line CFD 

circuits presented can be optimized for other detector applications. Finally, the 2-µ CMOS 

circuits presented can be developed in faster processes if wider-band non-delay-line CFD 

circuits or faster constant-fraction comparator circuits are needed for other detector 

applications. 

In the CMOS CFD presented here, arming threshold and CFD walk adjustments were 

provided externally. Arming threshold and walk adjustments can be provided on the 

monolithic circuit, and this is planned for a complete PET front-end, CMOS integrated 

circuit under development at CTI PET Systems, Inc. CFD arming threshold, under digital 

control, can be provided by a CMOS D/A converter circuit. CFD walk adjustment can be 

provided using a gated baseline restorer circuit (as described in Section 5). Such a circuit 

could sample the constant-fraction comparator differential output (at the final output or an 

intermediate stage) and, through negative feedback, inject a circuit offset to maintain a 

differential output voltage of zero when no input pulse is present. This will correct for CFD 

shaping-signal offset voltage and constant-fraction comparator offset voltage. The use of a 

gated baseline restorer circuit inhibits offset correction during the presence of a signal 

pulse. This improves offset correction and minimizes offset shifts with pulse count rate. 
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Monte Carlo predictions of CFD energy and timing spectra presented here did not 

include constant-fraction comparator and arming flip-flop walk errors as these errors were 

negligible for the application considered. These walk errors could be included in Monte 

Carlo analysis to predict energy and timing spectra for general timing systems. 

No analytical expression for predicting CFD energy and timing spectra is believed to 

exist that fully considers detector photoemission statistics, photomultiplier single-electron 

gain and transit-time statistics, and impulse response of the photomultiplier, front-end 

preamplifier, and CFD circuit. The development of such an analytic expression, if possible, 

would be useful if it could be evaluated faster than Monte Carlo analysis or provide insight 

not available with Monte Carlo analysis. 

Additionally, analytical expressions or modeling (most likely Monte Carlo) that 

simultaneously considers noise-induced timing jitter and detector statistical noise would be 

useful for applications, such as BGO/avalanche-photodiode applications, where timing 

performance is controlled by both circuit-noise induced timing jitter and detector statistical 

noise. Such analysis could permit the development of optimal filtering and timing shaping 

circuits for minimum timing resolution where tradeoffs between circuit-noise and detector 

statistical noise are considered. 
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APPENDIX A. CATALOG OF NORMALIZED CFO PERFORMANCE FOR 
LOWPASS-FIL TEAED STEP INPUTS 

Characteristics of Single-Pole Step Inputs 
A single-pole step-input signal consists of a step input and white noise source that are 

both lowpass filtered by a single-pole lowpass filter having a time-constant of tin· The signal 

and noise characteristics of the single-pole step signal are summarized in Table A-1. These 

signal and noise characteristics are needed for interpretation of normalized CFD 

performance for single-pole step inputs. 

Table A-1. Characteristics of Single-Pole Step Input. 

Parameter Equation (Eq.) 

Waveform 
Vin (t ~ 0) = Vinpk(l - e-tltin) 

4-17 

Peak Slope Kinpk(t = 0) = Vinpk I tin 4-19 

Noise Power-Spectral 4-21 

Density 
2 [ ] 

en l 
Sin(ro)=- 2 

2 l+(rotin> 

Total Noise (rms) 4-24 
en 

a vin = Ji;;; 
2 tin 

Minimum Timing Jitter 4-27 

(rms) a vin en Ji;;; 
CJtin (min/t =0) = -- = --

Kinpk 2\'inpk 
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Characteristics of Two-Pole Step Inputs 

A two-pole step-input signal results from a step input and white noise source that are 

both lowpass filtered by a two-pole lowpass filter having real poles with time-constants of 

tinh[2.. The 10 - 90% rise-time for the two-pole step-input is approximately equal to that of 

the single-pole step-input having a (single) time-constant of tin- The signal and noise 

characteristics of the two-pole step signal are summarized in Table A-2. These signal and 

noise characteristics are needed for interpretation of normalized CFD performance for two

pole step inputs. 

Table A-2. Characteristics of Two-Pole Step Input. 

Parameter 

Waveform 

Peak Slope 

Noise Power-Spectral 

Density 

Total Noise (rms) 

Minimum Timing Jitter 

(rms) 

Equation 

V. ( 
-litlt r;; I \ 

Vin (t ~ 0) = inpk l - e "' (1 +" 2 t tin)) 

r;; Duin en~ 
Dtin (rnin/t = ~n I '1~) = -- = -1 

Kinpk 2 /2 e Vinpk 
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Delay-Line CFD with Single-Pole Step Inputs 

Table A-3 contains a directory of figures (data plots) and equations giving delay-line 

CFD performance for single-pole step-input signals. CFD performance is normalized to the 

input-signal characteristics which are given in Table A-1. The single-pole step-input signal 

and resulting constant-fraction-discriminator shaping signal are shown in Figure A-1. 

Table A-3. Delay-Line CFD Performance for Single-Pole Step Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform 4-33 A-1 
( -t!t(t!t )) Ver ( t ~ td) = Vinpk (l - {) - e u,. e d in - f 

Zero-Crossing Time 4-34 A-2 

ter(t ~ td) = tin In ( /dftm - f 1 
l-f 

U nderdrive 
-Va· kf(l-e-td!tin) 

4-36 A-3 
Ver ( underdrive) = mp , 

Overdrive Ver ( overdrive) = Vinpk(l - f) 4-37 

Zero-Crossing Slope Ker = Vinpk(l - f) I ~n 4-39 A-4 

Total Noise (rms) 
0 ver = 0 vin . + - e ~12 {2 2{ -ltdllt;,. 

4-44 A-5 

Timing Jitter (rms) 4-46 A-6 

Over OvinJ12 +{2 -2fe-ltdllt;,. 
Otcr =--= 

Vinpk(l - f) I tin Ker 
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(td/tin) 

Figure A-3. Delay-Line CFD Underdrive for Single-Pole Step Input. 

v 
CD 

0.9 

o_ 0.8 

02 

I 

I 

t 
I 

I 

I 

i 
I 

I 

I 

0.1 

I I 
I 

i 
I : 
I 

: I t 
I ! 

I I I I 
I 

! 

I 

I 
I 

I I i i 

I ! I i 

I i I I ! I 
I I ! i I i I 

i I i I i 
! I 

I i I I I I 

j I i i 

I i ! I I 
I I I I i 
I I I I I 

I I I I 
I 
I 

Fraction (f) I ! 

I 
I 

I I 

I I I 

I 

'i I I 

! ! 
I 
I 

I i 

I I 

I I 
I i 

! i 
I ! I 

I I 

I 
i ! 
t 

I 
i 

I 

! 
I 

i 

I 

! 

f=0.1r+T1 

I ' I I 

f =0.2 

I I I 

f = 0_3 1 I I I 

I f11l 'Trti f=051-l+-,1H-~ ,11 I!! 
I ITTl t=6.aWJ 

10 

Constant-Fraction Delay Normalized to Input-Signal Time-Constant 
(td/tin) 

Figure A-4. Delay-Line CFD Zero-Crossing Slope for Single-Pole Step Input. 

263 



Vl 
2 
O:::'. 

0.1 

I I 

! I I 

I i i 11 

Constant-Fraction Delay Normalized to Input-Signal Time-Constant 
(td/tin) 

10 

Figure A-5. Delay-Line CFD Noise for Single-Pole Step Input. 
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Delay-Line CFD with Two-Pole Step Inputs 
Table A-4 contains a directory of figures (data plots) and equations giving delay-line 

CFD performance for two-pole step-input signals. CFD performance is normalized to the 

input-signal characteristics which are given in Table A-2. The two-pole step-input signal 

and resulting CFD shaping signal are shown in Figure A-7. 

Table A-4. Delay-Line CFD Performance for Two-Pole Step Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform Vef (t) A-7 

Zero-Crossing Time ter A-8 

Underdrive Vet (underdrive) A-9 

Overdrive Vef ( overdrive) = Vinpk(l - f) 4-37 

Zero-Crossing Slope Ket A-10 

Total Noise (rms) 0 vef A-11 

Timing Jitter (rms) A-12 
Ovef 

Otcf =--
Ket 
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Figure A-8. Delay-Line CFD Zero-Crossing Time for Two-Pole Step Input. 
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Constant-Fraction Delay Normalized to Input-Signal Time-Constant 
(tdltin) 

Figure A-9. Delay-Line CFD Underdrive for Two-Pole Step Input. 
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Figure A-10. Delay-Line CFD Zero-Crossing Slope for Two-Pole Step Input. 
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Binkley Single-Pole Gaussian CFD with Single-Pole Step Inputs 

Table A-5 contains a directory of figures (data plots) and equations giving performance 

for the Binkley single-pole Gaussian CFD with single-pole step-input signals. CFD 

performance is normalized to the input-signal characteristics which are given in Table A-1. 

The single-pole step-input signal and resulting CFD shaping signal are shown in Figure A-

13. 

Table A-5. Binkley Single-Pole Gaussian CFD Performance for Single-Pole Step 
Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform Ver(t) A-13 

Zero-Crossing Time ter A-14 

Underdrive Ver (underdrive) A-16 

Overdrive Ver ( ouerdrive) = Vin pk (l · f) 4-37 

Zero-Crossing Slope Ker A-16 

Total Noise (rms) Over A-17 

Timing Jitter (rms) A-18 
Over 

Otcf =--
Ket 
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Figure A-14. Binkley Single-Pole Gaussian CFO Zero-Crossing Time for Single
Pole Step Input. 
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Figure A-15. Binkley Single-Pole Gaussian CFD Underdrive for Single-Pole Step 
Input. 

I Fractio~ (f) 
/ f = 0.5-

Constant-Fraction Delay Normalized to Input-Signal Time-Constant 
(tdltin) 

10 

Figure A-16. Binkley Single-Pole Gaussian CFD Zero-Crossing Slope for Single
Pole Step Input. 
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Figure A-17. Binkley Single-Pole Gaussian CFD Noise for Single-Pole Step Input. 
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Figure A-18. Binkley Single-Pole Gaussian CFD Timing Jitter for Single-Pole Step 
Input. 
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Binkley Single-Pole Gaussian CFD with Two-Pole Step Inputs 

Table A-6 contains a directory of figures (data plots) and equations giving performance 

for the Binkley single-pole Gaussian CFD with two-pole step-input signals. CFD 

performance is normalized to the input-signal characteristics which are given in Table A-2. 

The two-pole step-input signal and resulting CFD shaping signal are shown in Figure A-19. 

Table A-6. Binkley Single-Pole Gaussian CFD Performance for Two-Pole Step 
Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform Vef (t) A-19 

Zero-Crossing Time ter A-20 

Underdrive Vef (underdrive) A-21 

Overdrive Vef ( overdrive) = Vinpk(l • f) 4-37 

Zero-Crossing Slope Ket A-22 

Total Noise (rms) Ovef A-23 

Timing Jitter (rms) A-24 
Ovef 

Otcf =--
Ket 
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Figure A-19. Binkley Single-Pole Gaussian CFD Shaping Signal for Two-Pole Step 
Input. 
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Figure A-20. Binkley Single-Pole Gaussian CFD Zero-Crossing Time for Two-Pole 
Step Input. 
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Figure A-21. Binkley Single-Pole Gaussian CFD Underdrive for Two-Pole Step 
Input. 
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Figure A-22. Binkley Single-Pole Gaussian CFD Zero-Crossing Slope for Two-Pole 
Step Input. 
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Figure A-23. Binkley Single-Pole Gaussian CFD Noise for Two-Pole Step Input. 
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Figure A-24. Binkley Single-Pole Gaussian CFD Timing Jitter for Two-Pole Step 
Input. 
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Binkley Two-Pole Gaussian CFD with Single-Pole Step Inputs 
Table A-7 contains a directory of figures (data plots) and equations giving performance 

for the Binkley two-pole Gaussian CFD with single-pole step-input signals. CFD 

performance is normalized to the input-signal characteristics which are given in Table A-1. 

The single-pole step-input signal and resulting CFD shaping signal are shown in Figure A-

25. 

Table A-7. Binkley Two-Pole Gaussian CFD Performance for Single-Pole Step 
Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform Ver(t) A-25 

Zero-Crossing Time ter A-26 

Underdrive Ver ( underdrive) A-27 

Overdrive Ver ( overdrive) = Vinpk(l - f) 4-37 

Zero-Crossing Slope Ker A-28 

Total Noise (rms) Over A-29 
t 

Timing Jitter (rms) A-30 
Over 

0 tcr =--
Kef 
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Figure A-25. Binkley Two-Pole Gaussian CFD Shaping Signal for Single-Pole Step 
Input. 
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Figure A-26. Binkl«~Y Two-Pole Gaussian CFD Zero-Crossing Time for Single-Pole 
Step Input. 

278 



0.1 

Constant-Fraction Delay Normalized to Input-Signal Time-Constant 
(td/tin) 

10 

Figure A-27. Binkley Two-Pole Gaussian CFD Underdrive for Single-Pole Step 
Input. 
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Figure A-28. Binkley Two-Pole Gaussian CFD Zero-Crossing Slope for Single-Pole 
Step Input. 
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Figure A-29. Binkley Two-Pole Gaussian CFD Noise for Single-Pole Step Input. 
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Figure A-30. Binkley Two-Pole Gaussian CFD Timing Jitter for Single-Pole Step 
Input. 
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Binkley Two-Pole Gaussian CFD with Two-Pole Step Inputs 

Table A-8 contains a directory of figures (data plots) and equations giving performance 

for the Binkley two-pole Gaussian CFD with two-pole step-input signals. CFD performance 

is normalized to the input-signal characteristics which are given in Table A-2. The two-pole 

step-input signal and resulting CFD shaping signal are shown in Figure A-31. 

Table A-8. Binkley Two-Pole Gaussian CFO Performance for Two-Pole Step 
Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform Ver(t) A-31 

Zero-Crossing Time ter A-32 

Underdrive Ver ( underdrive) 
I A-33 

Overdrive Ver (overdrive)= Vinpk(l · f) 4-37 

Zero-Crossing Slope Ker A-34 

Total Noise (rms) Over A-35 

Timing Jitter (rms) A-36 
Over 

0 tcr =--
Ker 
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Figure A-31. Binkley Two-Pole Gaussian CFO Shaping Signal for Two-Pole Step 
Input. 
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Figure A-32. Binkley Two-Pole Gaussian CFO Zero-Crossing Time for Two-Pole 
Step Input. 
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Figure A-33. Binkley Two-Pole Gaussian CFD Underdrive for Two-Pole Step 
Input. 
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Figure A-34. Binkley Two-Pole Gaussian CFD Zero-Crossing Slope for Two-Pole 
Step Input. 
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Figure A-35. Binkley Two-Pole Gaussian CFD Noise for Two-Pole Step Input. 
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Figure A-36. Binkley Two-Pole Gaussian CFD Timing Jitter for Two-Pole Step 
Input. 
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Binkley Four-Pole Gaussian CFD with Single-Pole Step Inputs 

Table A-9 contains a directory of figures (data plots) and equations giving performance 

for the Binkley four-pole Gaussian CFD with single-pole step-input signals. CFD 

performance is normalized to the input-signal characteristics which are given in Table A-1. 

The single-pole step-input signal and resulting CFD shaping signal are shown in Figure A-

37. 

Table A-9. Binkley Four-Pole Gaussian CFD Performance for Single-Pole Step 
Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform Vef (t) A-37 

Zero-Crossing Time ter A-38 

Underdrive Vet (underdrive) A-39 

Overdrive Vet ( overdrive) = Vinpk(l - f) 4-37 

Zero-Crossing Slope Ket A-40 

Total Noise (rms) Dvef A-41 

Timing Jitter (rms) A-42 
Dvcf 

Otcf =--
Ket 
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Figure A-38. Binkley Four-Pole Gaussian CFD Zero-Crossing Time for Single-Pole 
Step Input. 
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Figure A-39. Binkley Four-Pole Gaussian CFD Underdrive for Single-Pole Step 
Input. 
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Figure A-40. Binkley Four-Pole Gaussian CFD Zero-Crossing Slope for Single
Pole Step Input. 
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Figure A-41. Binkley Four-Pole Gaussian CFD Noise for Single-Pole Step Input. 
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Figure A-42. Binkley Four-Pole Gaussian CFD Timing Jitter for Single-Pole Step 
Input. 
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Binkley Four-Pole Gaussian CFD with Two-Pole Step Inputs 
Table A-10 contains a directory of figures (data plots) and equations giving performance 

for the Binkley four-pole Gaussian CFD with two-pole step-input signals. CFD performance 

is normalized to the input-signal characteristics which are given in Table A-2. The two-pole 

step-input signal and resulting CFD shaping signal are shown in Figure A-43. 

Table A-10. Binkley Four-Pole Gaussian CFD Performance for Two-Pole Step 
Inputs. 

Parameter Equation (Eq.) (Fig.) 

Waveform Vef (t) A-43 

Zero-Crossing Time ter A-44 

Underdrive Vef ( underdrive) A-45 

Overdrive Vet ( overdrive) = Vinpk(l • f) 4-37 

Zero-Crossing Slope Ket A-46 

Total Noise (rms) Ovef A-47 

Timing Jitter (rms) A-48 
CTvef 

Otcf =--
Ket 
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Figure A-47. Binkley Four-Pole Gaussian CFD Noise for Two-Pole Step Input. 
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Figure A-48. Binkley Four-Pole Gaussian CFD Timing Jitter for Two-Pole Step 
Input. 
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APPENDIX 8. MONTE CARLO TIMING ANALYSIS PROGRAM 

/* cfdmont.c 

*I 

This program generates a CFD (or leading-edge) timing spectrum using 
Monte Carlo analysis. The program assumes a Poisson detector impulse 
distribution in time, a Gaussian detector energy spectrum, a 
Gaussian PMT transit time spectrum, a Gaussian PMT single-electron 
gain spectrum, and a PMT/electronics impulse response that is in the 
form of a lookup table. The program finds the threshold crossing times 
of the CFD (or leading-edge) signal from the PMT/electronics system to 
evaluate the timing spectrum. Multiple spectra are provided by the 
program: the detector energy spectrum, the detector timing spectrum, 
the PMT transit time spectrum, the PMT single-electron gain spectrum, 
the coincidence spectrum for two detectors, and the coincidence 
spectrum for the detector against a plastic detector. Additionally, 
the voltage-underdrive spectrum is found along with the zero-crossing
slope spectrum. Both raw spectra (identical to MCA spectra) and filtered 
spectra are outputted to a file for reading by the Microsoft Excel 
spreadsheet program. Finally, the filtered spectra are analyzed and their 
centroid, half channels, and tenth channels reported in the report file. 

The detector energy spectrum can include Compton scatter by the selection 
of a flag. All energies above a selected energy threshold will be used 
for Monte Carlo timing analysis to simulate CFD (or leading-edge) energy 
qualification (see cfdmontl.c for full CFD energy qualification analysis). 

Dave Binkley, 11-05-92 Revision; Added triexponential BGO scintillation 
model. 

Dave Binkley, 10-19-92 Revision; Added Compton scatter and energy thld. 

Dave Binkley, 6-18-92 Revision; Added voltage-underdrive spectrum and 
zero-crossing-slope spectrum. 

Dave Binkley, 8-26-91 

#include <stdio.h> 
#include <ctype.h> 
#include <math.h> 
#include <string.h> 

/************Program Parameters**************************************/ 

#define SPICE_IMPULSE_RESPONSE_PRINT_FILE 
#define REPORT_FILE_FOR_SPECTRA 

"cfdnetm.tmp" 
"cfdmont.xls" 

#define KLIMIT 1000 I* 
#define ILIMIT 3001 I* 
#define TSTEP lOe-12 I* 

#define TEND 30e-9 /* 

#define VTHRESHOLD 0.0 
#define EPSILON lOOe-6 

Maximum number of Poisson points permitted*/ 
maximum number of time data points per event*/ 
time step size used - MUST MATCH STEP SIZE USED 

IN IMPULSE RESPONSE LOOKUP TABLE*/ 
ending time for producing poisson time points *I 

/* threshold voltage for timing crossing*/ 
/* amount signal must go below (negative) from 

threshold prior to a threshold crossing*/ 
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#define PHE_YIELD_511KEV 300.0 

#define TAUl 
#define TAUl YIELD 
#define TAU2 
#define TAU2 YIELD 
#define TAURISE 

#define SIGMA ENERGY 
#define MEAN ENERGY 

#define SIGMA PMTDELAY 
#define MEAN PMTDELAY 

#define SIGMA PMTSER 
#define MEAN PMTSER 

#define SIGMA PLAST 
#define MEAN PLAST 

300e-9 
0.9 
60e-9 
0.1 
1.5e-9 

0.06 
1.0 

0.298e-9 
5e-9 

0.694 
1.0 

63.Se-12 
0.0 

#define FLAG_COMPTON_SCATTER 1 
#define PHOTOFRACTION 0.54 
#define SCATTERFRACTION 0.00 

#define SCATTERKNEE 0.88 

#define PHOTOPEAK KEV 511.0 
#define ENERGY_THLD_KEV 200.0 

#define NEVENTS 100000 

/* number of photoelectrons per 
511 keV event (floating point) */ 

/* primary scint. decay time constant*/ 
/* yield (0.0 - 1.0) of primary decay*/ 
/* secondary scint. decay time constant*/ 
/* yield (0.0 - 1.0) of secondary decay*/ 
/* scint. rise time time constant*/ 

/* FWHM = 2.35*sigma */ 
/* mean energy is 1.0 (for 511 keV) */ 

/* FWHM = 2.35*sigma */ 
/* mean pmt delay*/ 

/* FWHM = 2.35*sigma */ 
/* mean pmt SER*/ 

/* FWHM = 2.35*sigma */ 
/* mean plastic detector delay*/ 

/* 1 for Compton scatter, O otherwise*/ 
/* Photofraction for BGO scintillator*/ 
/* 0.00 for needle source, 0.32 for 20cm 

water-filled phantom*/ 
/* knee of scatter relative to mean energy 

of 1.0 */ 

/* photopeak energy in keV (norm. 1.0) */ 
/* energy threshold in keV */ 

/* number of events to be histogrammed */ 

/* SEE INITIALIZATION OF MCA STRUCTURES FOR MCA SETUP VALUES*/ 

#define MCA_CHANNELS_MAX 10000 /* maximum number of MCA channels*/ 
#define MCA_TITLE_MAX 100 
#define MCA_LABEL_MAX 100 

/* Flag Assignments*/ 

#define TRUE 1 
#define FALSE 0 

/* maximum character length of MCA title*/ 
/* maximum character length of MCA label*/ 

/* assignments for flags*/ 
/* assignments for flags*/ 

/**************Data Structure for MCAs ********************************* */ 

struct mca 
{ 

int raw[MCA_CHANNELS_MAX]; /* mca array (raw data), indexed 0,1,2 */ 
float fil[MCA_CHANNELS_MAX]; /* mca array (filtered data), floating pt 

used for filtered result*/ 

/* The following values must be inputted*/ 

float begin; 
float end; 
float ch_wid; 
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float ch_units; 
int fil_nos; 

float fil_sig; 

/* output listing channel units*/ 
/* number of points used on each 

side of point for filtering*/ 
/* value of sigma (chs) for Gaussian 

filtering*/ 
char title [MCA_TITLE_MAX]; 
char label(MCA_LABEL_MAX]; 

/* title for mca */ 
/* label for mca channel, counts*/ 

/* The following values are computed*/ 

int ch_nos; 
int nos_in; 
int nos_out; 

/* number of mca channels*/ 
/* counts in mca */ 
/* counts outside of mca */ 

/* The following computed values describe the characteristics of the 
filtered spectrum; locations are in units defined by ch_units */ 

float cent; /* location of centroid (peak) ch*/ 
float cent_cnts; /* centroid ch counts*/ 
float half!; /* location of low 1/2 ch*/ 
float halfh; /* location of high 1/2 ch*/ 
float fwhm; /* FWHM of spectrum*/ 
float tenth!; /* location of low 1/10 ch */ 
float tenthh; /* location of high 1/10 ch*/ 
float fwtm; /* FWTM of spectrum*/ 

/* *********************************************************************** */ 
/**************Beginning of Main() ************************************* */ 
/* *********************************************************************** */ 

main () 

/* MCA structures for timing, energy, and single-electron gain spectra*/ 

struct mca mca_tdet; I* Detector (single) timing spectrum */ 
struct mca mca_tplas; /* Plastic detector (single) timing spectrum*/ 
struct mca mca_tplasdet; /* Detector against plastic timing spectrum*/ 
struct mca mca_tdetdet; /* Detector against detector timing spectrum*/ 
struct mca mca_pmttran; /* PMT transit time spectrum*/ 
struct mca mca_pmtser; /* PMT single-electron gain spectrum */ 
struct mca mca_edet; /* Detector energy spectrum*/ 
struct mca mca_vnegpk; /* Underdrive-voltage spectrum*/ 
struct mca mca_kzero; /* Zero-crossing-slope spectrum*/ 

/*********Function declarations**************************************/ 

double gauss(); 

int gpritr(); 

int gpoisson_times(); 
double baseEnergy(); 

/* void clear_mca(); 
/* void load_mca(); 

/* function to return element from 
gaussian dist. */ 

/* function to load impulse response array from 
SPICE .PRINT listing of impulse response*/ 

/* function to get poisson time points*/ 
/* function to return scatter and photofraction 

between 0.0 and 1.0 with photopeak at 1.0 */ 

function to clear mca */ 
function to load mca */ 
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/* void filter_mca(); 
/* void print_spectrum(); 

function to filter mca and analyze FWHM etc.*/ 
function to print spectrum to report file*/ 

I************** program variables************************************/ 

int n· 
' /* 

int i· 
' /* 

int k· 
' /* 

int k_total; /* 
int k_thld; /* 

float tpoisson[KLIMIT]; /* 
float tpmtdelay[KLIMIT]; /* 
float tpmt [KLIMIT]; /* 
int tpmt_i [KLIMIT]; /* 
float gpmt [KLIMIT] ; /* 
float event_energy; /* 
int t_i; /* 

float v, vprev; I* 
float vnegpk; /* 
float kzero; /* 

float t_thld_crossing; /* 

index for events - starts at 1 */ 
index for time step for each event -

starts at 0 */ 
index for Poisson points for each event 

starts at 0 */ 
total number of Poisson points used*/ 
total number of Poisson points up to 

threshold crossing*/ 

array of Poisson time points*/ 
array of PMT Transit-time points*/ 
array of PMT impulse-time points*/ 
array of PMT impulse-time points in TSTEP */ 
array of PMT SER gain points*/ 
event energy normalized to 1.0 (511 keV) */ 
time value used (in TSTEP units) to find 

timing waveform*/ 
present and prev. voltage value in waveform*/ 
peak negative (underdrive) voltage in wform */ 
zero-crossing slope (V/ns) in waveform*/ 

time of threshold crossing for event*/ 
float t_thld_crossing_prev; /* time of threshold crossing for previous 

float t_plastic; 

int flag_eps_crossed; 
int flag_thld_crossed; 

float h [ILIMIT]; 
int i_total; 

float base_energy; 

FILE *fptr; 

event*/ 
/* time of plastic detector for event*/ 

/* flag to mark crossing of epsilon for event*/ 
/* flag to mark crossing of threshold for event*/ 

/* impulse response lookup table*/ 
/* total numer of points read from SPICE impulse 

response lookup table*/ 

/* normalized scatter, photopeak energy before 
Gaussian blurring*/ 

/* file pointer for MCA output file*/ 

/*********Initialization of MCA Structures***************************/ 

/* Detector (single) timing spectrum*/ 

mca_tdet.begin = 5e-9; /* beginning mca channel (sec) */ 
mca tdet.end = 30e-9; /* ending mca channel (sec) */ 
mca_tdet.ch_wid = 50e-12; /* channel width (sec) */ 
mca_tdet.ch_units = le-9; /* channel units (sec) */ 
mca_tdet.fil_nos = 4; /* number of sym. filter channels*/ 
mca_tdet.fil_sig = 2.0; /* sigma (channels) for filtering*/ 
strcpy (mca tdet.title,"Detector (Single) Timing Spectrum"); 
strcpy (mca=tdet.1abe1,"ns\tcounts\tfcounts"); 
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/* Plastic detector against detector timing spectrum*/ 

mca_tplasdet.begin = 5e-9; 
mca_tplasdet.end = 30e-9; 

/* beginning mca channel (sec) */ 
/* ending mca channel (sec) */ 

mca_tplasdet.ch_wid = 50e-12; 
mca_tplasdet.ch_units= le-9; 
mca_tplasdet.fil_nos = 4; 
mca_tplasdet.fil_sig = 2.0; 
strcpy (mca_tplasdet.title, 

/* channel width (sec) */ 
/* channel units (sec) */ 
/* 
/* 

number of sym. filter channels*/ 
sigma (channels) for filtering*/ 

"Plastic Detector Against Detector Timing 
strcpy (mca_tplasdet.label,"ns\tcounts\tfcounts"); 

Spectrum"); 

/* Detector against detector timing spectrum*/ 

mca_tdetdet.begin = -15e-9; /* beginning mca channel (sec) */ 
mca tdetdet.end = 15e-9; /* ending mca channel (sec) */ 
mca_tdetdet.ch_wid = lOOe-12; /* channel width (sec) */ 
mca_tdetdet.ch_units = le-9; /* channel units (sec) */ 
mca_tdetdet.fil_nos = 4; /* number of sym. filter channels*/ 
mca_tdetdet.fil_sig = 2.0; /* sigma (channels) for filtering*/ 
strcpy (mca tdetdet.title,"Detector Against Detector Timing Spectrum"); 
strcpy (mca=tdetdet.label,"ns\tcounts\tfcounts"); 

/* Plastic detector (single) timing spectrum*/ 

mca_tplas.begin = -0.5e-9; /* beginning mca channel (sec) */ 
mca_tplas.end = 0.5e-9; /* ending mca channel (sec) */ 
mca_tplas.ch_wid = 5e-12; /* channel width (sec) */ 
mca_tplas.ch_units = le-9; /* channel units (sec) */ 
mca_tplas.fil_nos = 6; /* number of sym. filter channels*/ 
mca_tplas.fil_sig = 3.0; /* sigma (channels) filtering*/ 
strcpy (mca tplas.title,"Plastic Detector (Single) Timing Spectrum"); 
strcpy (mca=tplas.label,"ns\tcounts\tfcounts"); 

/* Detector energy spectrum*/ 

mca_edet.begin = 0.0; /* beginning mca channel(norm. energy)*/ 
mca edet.end = 2.5; /* ending mca channel (norm. energy) */ 
mca_edet.ch_wid = lOe-3; /* channel width (norm. energy) */ 
mca_edet.ch_units = 1.0; /* channel units (norm. energy) */ 
mca_edet.fil_nos = 4; /* number of sym. filter channels*/ 
mca_edet.fil_sig = 1.0; /* sigma (channels) for filtering*/ 
strcpy (mca edet.title,"Detector Energy Spectrum"); 
strcpy (mca=edet.label,"enorm\tcounts\tfcounts"); 

/* PMT single-electron spectrum*/ 

mca_pmtser.begin = 0.0; /* beginning mca channel (norm. gain) */ 
mca_pmtser.end = 2.5; /* ending mca channel (norm. gain) */ 
mca_pmtser.ch_wid = 50e-3; /* channel width (norm. gain) */ 
mca_pmtser.ch_units = 1.0; /* channel units (norm. gain) */ 
mca_pmtser.fil_nos = 4; /* number of sym. filter channels*/ 
mca_pmtser.fil_sig = 2.0; /* sigma (channels) for filtering*/ 
strcpy (mca_pmtser.title, "PMT Single-Electron Gain Spectrum"); 
strcpy (mca_pmtser.label,"gnorm\tcounts\tfcounts"); 
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/* PMT transit-time spectrum*/ 

mca__pmttran.begin = 2.5e-9; /* beginning mca channel (sec) */ 
mca__pmttran.end = 7.5e-9; /* ending mca channel (sec) */ 
mca__pmttran.ch_wid = 25e-12; /* channel width (sec) */ 
mca__pmttran.ch_units = le-9; /* channel units (sec) */ 
mca__pmttran.fil_nos = 4; /* number of sym. filter channels*/ 
mca__pmttran.fil_sig = 2.0; /* sigma (channels) for filtering*/ 
strcpy (mca__pmttran.title,"PMT Transit-Time Spectrum"); 
strcpy (mca_pmttran.label,"ns\tcounts\tfcounts"); 

/* Underdrive voltage spectrum (voltage treated positively) */ 

mca_vnegpk.begin = 0.0; /* beginning mca channel (V) */ 
mca_vnegpk.end = 0.2; /* ending mca channel (V) */ 
mca_vnegpk.ch_wid = 1.0e-3; /* channel width (V) */ 
mca_vnegpk.ch_units = 1.0; /* channel units (V) */ 
mca_vnegpk.fil_nos = 4; /* number of sym. filter channels*/ 
mca_vnegpk.fil_sig = 2.0; /* sigma (channels) for filtering*/ 
strcpy (mca vnegpk.title,"Underdrive-voltage Spectrum"); 
strcpy (mca=vnegpk.label,"V\tcounts\tfcounts"); 

/* Zero-crossing slope spectrum (slope units V/ns) */ 

mca_kzero.begin = 0.0; /* beginning mca channel (V/ns) */ 
mca kzero.end = 0.1; /* ending mca channel (V/ns) */ 
mca_kzero.ch_wid = 1.0e-3; /* channel width (V/ns) */ 
mca_kzero.ch_units = 1.0; /* channel units (V/ns) */ 
mca_kzero.fil_nos = 4; /* number of sym. filter channels*/ 
mca_kzero.fil_sig = 2.0; /* sigma (channels) for filtering*/ 
strcpy (mca kzero.title,"Zero-crossing Slope Spectrum"); 
strcpy (mca=kzero.label,"V/ns\tcounts\tfcounts"); 

/************clear the MCAs **************************************** */ 

clear mca {&mca_tdet); 
clear mca {&mca_tplas); 
clear mca {&mca_tplasdet); 
clear mca (&mca_tdetdet); 
clear_mca (&mca_edet); 
clear mca (&mca_pmttran); 
clear mca (&mca_pmtser); 
clear mca {&mca_vnegpk); 
clear_mca (&mca_kzero); 

/****read the impulse response lookup table from SPICE output file**/ 

if (gpritr (SPICE_IMPULSE_RESPONSE_PRINT_FILE,h,&i_total)) 
{ 

printf ( "Error Reading SPICE lookup table. Program terminated. \n") ; 
exit (1); 

if (i_total != !LIMIT) 
printf ( 

"WARNING - Impulse response lookup table length not equal to ILIMIT.\n"); 
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/* 

*/ 

printf ("Impulse Response Lookup Table Read from SPICE .out File.\n"); 
printf ("Starting Event Generation and Histogramming. \n\n"); 

/* Special Impulse Response Lookup Table for 1st Photoelectron timing*/ 
/* *** Comment Out for regular timing analysis**** */ 

h[O] = 0.0; 
h [1] = 1. O; 
h[2] = 0. O; 
h[3] = 0.0; 
h[4] = 0.0; 
h[5] = 0.0; 

for (i=6; i<ILIMIT; ++i) 
h[i] = 0.0; 

/* **** End of Special Impulse Response**** 

/***********Main Loop for Events**********************************/ 

for (n=l; n<=NEVENTS; ++n) 
{ 

/* get event energy (mean is 1.0 (511 keV)); 
continue getting if energy is below selected threshold*/ 

if (!FLAG_COMPTON_SCATTER) /* Compton scatter not selected*/ 
{ 

do 
{ 

event_energy = SIGMA_ENERGY*gauss() + MEAN_ENERGY; 

while (event_energy < (ENERGY_THLD_KEV/PHOTOPEAK_KEV) ); 

else 
{ 

do 
{ 

/* Compton scatter selected*/ 

*/ 

base_energy = baseEnergy(); /* base_energy ranges from 0.0 to 
1.0 with scatter below 1.0 and 
photopeak at 1.0 */ 

event_energy = base_energy 
+SIGMA_ENERGY*sqrt(base_energy)*gauss(); 

while (event_energy < (ENERGY_THLD_KEV/PHOTOPEAK_KEV) ); 
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/* get poisson time points*/ 

k total= gpoisson_times (tpoisson,event_energy*PHE_YIELD_511KEV, 
TAU1,TAU1_YIELD,TAU2,TAU2_YIELD,TAURISE,TEND); 

/* get pmt single-electron delays, pmt impulse times, 
and pmt single-electron gains*/ 

for (k=O; k<k_total; ++k) 
{ 

tpmtdelay[k] = SIGMA_PMTDELAY*gauss() + MEAN_PMTDELAY; 
tpmt[k] = tpoisson[k] + tpmtdelay[k]; 
tpmt_i[k] = (int) (tpmt[k]/TSTEP +0.5); 
while ( (gpmt[k] = SIGMA PMTSER*gauss() + MEAN PMTSER) < 0.0) 

/* get another point if point negative*/ 

/*****find voltage waveform and threshold crossing for event***/ 

flag_eps_crossed = FALSE; 
flag_thld_crossed = FALSE; 

vnegpk = 0.0; 
kzero = 0.0; 

for (i=O; i<ILIMIT; ++i) /* loop for each time point in waveform*/ 
{ 

V = 0.0; 

for (k=O; k<k_total; ++k) /* loop for poisson points*/ 

/* t_i is in units of TSTEP */ 
{ 

ti= i tpmt_i[k]; 
if (t_i < 0) 

else 
V: V +gpmt[k]*h[t_i]; 

if (flag_eps_crossed) 
{ 

/* can occur on 2nd or higher pass*/ 

else 
{ 

if (v>VTHRESHOLD) 
{ 

flag_thld_crossed = TRUE; 
t_thld_crossing = (float)i*TSTEP 

-TSTEP*(v-VTHRESHOLD)/(v-vprev); 
kzero = ((v -vprev)/TSTEP)*le-9; /* V/ns units*/ 
break; 

if ((VTHRESHOLD -v) > EPSILON) 
flag_eps_crossed = TRUE; 

if (v < vnegpk) /* find vnegpk */ 
vnegpk = v; 
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vprev = v; 

/* Continue looking for threshold crossing*/ 

/****Threshold Crossing Determined for Event******************/ 

/* Threshold Crossing Did NOT Occur - Do NOT Load MCAs */ 

if (!flag_thld_crossed) /* MCA will reject event*/ 
{ 

printf ("Threshold Crossing Not Found for Event %d of %d.\n", 
n, NEVENTS); 

/****Threshold Crossing Did Occur - Load MCAs **************** */ 

else 
{ 

/* Find k thld (number of Poisson points up to threshold crossing) */ 

#if O /* Not used at first Poisson point loaded in PMT spectra*/ 

#endif 

for (k=O; k<k_total; ++k) 
{ 

if (tpmt[k] > t_thld_crossing) 
break; 

k thld = k; 

/* Load Detector Energy Spectrum MCA*/ 

load mca (&mca_edet,event_energy); 

/* Load Detector Timing Spectrum MCA*/ 

load_mca (&mca_tdet,t_thld_crossing); 

/* Load Plastic Detector Timing Spectrum MCA*/ 

t__plastic = SIGMA_PLAST*gauss() +MEAN_PLAST; 
load_mca {&mca_tplas,t__plastic); 

/* Load Detector Against Plastic Timing Spectrum MCA*/ 

load mca (&mca_tplasdet,t_thld_crossing -t__plastic); 

/* Load Detector Against Detector Timing Spectrum MCA*/ 
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if (n > 1) /* Do not load MCA on first event as previous one reqd. */ 
load mca (&mca_tdetdet,t_thld_crossing -t_thld_crossing_prev); 

/* Load PMT single-electron gain and transit-time spectra MCA*/ 

k_thld = 1; /* only the first detector impulse is loaded*/ 
for (k=O; k<k_thld; ++k) 

{ 

load_mca (&mca_pmttran,tpmtdelay[k]); 
load_mca (&mca_pmtser,gpmt[k]); 

/* Load Underdrive-Voltage Spectrum MCA (make underdrive positive) */ 

load mca (&mca_vnegpk,-vnegpk); 

/* Load zero-Crossing-Slope Spectrum MCA (units V/ns) */ 

load mca (&mca_kzero,kzero); 

/* Print status of Event Histograms for Each 1000 events*/ 

if ( (n % 1000) -- O) 
{ 
printf ("Event %d of %d has been histogrammed. \n" ,n,NEVENTS); 
printf 

("Energy: %d (in) %d {out) Time {det-det): %d (in) %d {out) \n\n", 
mca_edet.nos_in,mca_edet.nos_out, 
mca_tdetdet.nos_in,mca_tdetdet.nos_out); 

t_thld_crossing_prev = t_thld_crossing; /* store value for previous 
crossing*/ 

} /*****************Go get next event****************************/ 

/***************Load File with MCA Spectra Data********************/ 

/* Compute all filtered MCA values and analyze each spectrum*/ 

filter mca (&mca_tdet); 
filter mca (&mca_tplas); 
filter mca (&mca_tplasdet); 
filter mca (&mca_tdetdet); 
filter_mca {&mca_edet); 
filter_mca (&mca_pmttran); 
filter_mca (&mca_pmtser); 
filter mca (&mca_vnegpk); 
filter mca (&mca_kzero); 
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/* Open Report File*/ 

if { (fptr = £open {REPORT_FILE_FOR_SPECTRA, "w")) ==NULL) 
{ 

printf ("Report File Cannot Be Opened. Program Terminated.\n"); 
exit {1); 

printf {"Report File Opened.\n"); 

/* Label General Information on Report File*/ 

fprintf{fptr,"Monte Carlo Spectra Results from cfdmont.c\r\n\r\n"); 

fprintf {fptr, 
"NO {51lkeV) = %f;taul {ns) = %f @%f;tau2 {ns) = %f @%f;taurise {ns) = 
%f\r\n'', 

*/ 

PHE_YIELD_511KEV,TAUl*le9,TAUl_YIELD,TAU2*1e9,TAU2_YIELD, 
TAURISE*le9); 

fprintf {fptr, "Detector Energy {norm. to 51lkeV) :Mean = %f;FWHM =%f; \r\n", 
MEAN_ENERGY,2.35*SIGMA_ENERGY); 

if { !FLAG_COMPTON_SCATTER) 
fprintf{fptr,"Compton Scatter Not Selected.\r\n"); 

else 
fprintf{fptr,"Compton Scatter Selected.\r\n"); 

fprintf{fptr,"Energy Threshold= %f {keV);\r\n", ENERGY THLD KEV); 
fprintf{fptr,"Scat. Fract. = %f; Scat. Knee= %f; Photofract-:- = %f;\r\n", 

SCATTERFRACTION, SCATTERKNEE, PHOTOFRACTION); 
fprintf {fptr, "PMT Transit Time: Mean = %f {ns); FWHM = %f {ns); \r\n", 

MEAN_PMTDELAY*le9,2.35*SIGMA_PMTDELAY*le9); 
fprintf {fptr, "PMT SER Gain {Norm): Mean = %f; FWHM = %f; \r\n", 

MEAN_PMTSER,2.35*SIGMA_PMTSER); 
fprintf{fptr,"Plastic Detector Timing:Mean = %f {ns);FWHM = %f {ns);\r\n", 

MEAN PLAST*le9,2.35*SIGMA PLAST*le9); 
fprintf{fptr,"TSTEP = %f {ns); TEND= %f {ns);\r\n",le9*TSTEP,le9*TEND); 

printf {"General Information in Report File Labelled.\n"); 

print_spectrum (fptr,&mca_tdet); I* Print detector timing spectrum*/ 
print_spectrum (fptr,&mca_tdetdet); I* Print det-det timing spectrum*/ 
print_spectrum {fptr,&mca_tplasdet); I* Print plastic-det timing spect */ 
print_spectrum {fptr,&mca_tplas); /* Print plastic timing spectrum*/ 
print_spectrum {fptr,&mca_edet); /* Print detector energy spectrum*/ 
print_spectrum {fptr,&mca_pmttran); /* Print PMT transit-time spect *I 
print_spectrum {fptr, &mca_pmtser); /* Print PMT SER spectrum*/ 
print_spectrum {fptr,&mca_vnegpk); /* Print Underdrive spectrum */ 
print_spectrum {fptr,&mca_kzero); /* Print Zero-crossing slope spect. 

printf {"Report File Spectra Data Completed. \n"); 
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if ( fclose (fptr) !=NULL) 
{ 

printf ("Report File Cannot Be Closed. Program Terminated. \n"); 
exit (l); 

printf ("Report File Closed. \n"); 

/* List Sununary for Single-Detector Timing Spectrum*/ 

printf ("\n"); 
printf ("Sununary of Single-Detector Timing Spectrum (units = %e). \n", 

mca tdet.ch units); 
printf ("Cent-;oid = %f, filtered centroid counts= %f.\n", 

mca tdet.cent/mca tdet.ch units, mca tdet.cent cnts); 
printf ("1/2 chs: low= %f,-high = %f,-FWHM = %f-:-\n", 

mca tdet.halfl/mca tdet.ch units, 
mca-tdet.halfh/mca-tdet.ch-units, 
mca-tdet.fwhm/mca tdet.ch ~its); 

printf ("1/10 chs: low= %f:- high= %f, FWTM = %f.\n", 
mca tdet.tenthl/mca tdet.ch units, 
mca-tdet.tenthh/mca-tdet.ch-units, 
mca-tdet.fwtm/mca tdet.ch units); 

printf ("\n"); - -

printf ("Monte Carlo Analysis Program Completed.\n"); 
printf ("\n"); 

/* Function to clear raw MCA data*/ 

clear_mca (m) 

struct mca *m; 

int n; 
m->ch_nos = (int) ((m->end -m->begin)/m->ch_wid +0.5) +1; 
for (n=O; n<m->ch nos; ++n) 

m->raw[n] = O; 
m->nos_in = O; 
m->nos_out = O; 

/* Function to load raw MCA data*/ 

load mca (m, value) 

struct mca *m; 
float value; 

int mca_ch; 
mca_ch = (int) ( (value -m->begin)/m->ch_wid +0.5 ); 
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if ( (mca_ch < 0) I I (mca_ch > (m->ch_nos -1)) ) 
{ 

else 
{ 

++(m->nos_out); 

++(m->nos_in); 
++(m->raw(mca_ch]); 

/* Function to compute filtered MCA and analyze spectrum*/ 
/* Function is called AFTER raw MCA has been fully loaded*/ 

#define MAX_NOS_COEF 

filter_mca (m) 

100 /* maximum number of total filter coeficients */ 

struct mca *m; /*mis mca structure*/ 

int n; /* variable for indexing mca values*/ 
int n_cent; /* mca index for centroid channel*/ 
int ktotal; /* total number of filter points*/ 
int k; /* variable for indexing filter points*/ 
int flag_halfl; /* flag for lower half channel found*/ 
int flag_halfh; /* flag for higher half channel found*/ 
int flag_tenthl; /* flag for lower tenth channel found*/ 
int flag_tenthh; /* flag for higher tenth channel found*/ 
float coef[MAX NOS COEF]; 

- I* the filter coefs are symmetrical and sum to 1.0*/ 
float sum; /* sum of filter coefs; used for normalization*/ 
float half cent_cnts; /* one-half of centroid counts*/ 
float tenth_cent_cnts; /* one-tenth of centroid counts*/ 

/* Build filter coeficient array*/ 

ktotal = (m->fil_nos)*2 +1; 
sum= o.o; 
for (k=O; k<ktotal; ++k) 

{ 

coef[k] = exp( -(float) (k -(m->fil_nos))*(float) (k -(m-fil_nos))/ 
(2.0*(m->fil_sig)*(m->fil_sig)) ); 

sum= coef[k] + sum; 

for (k=O; k<ktotal; ++k) 
coef[k] = coef[k]/sum; 

/* Compute filtered mca array*/ 

for (n=O; n<m->ch_nos; ++n) /* loop through all MCA channels*/ 
{ 

/* bottom and top fil nos channels are not filtered*/ 
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if ( (n < m->fil_nos) I I (n > (m->ch_nos -m->fil nos -1)) ) 
{ 

else 
{ 

m->fil[n] =(float) (m->raw[n]); 

/* all other channels are filtered*/ 

m->fil[n] = 0.0; 
for (k=O; k<ktotal; ++k) /* loop for all filter points*/ 

m->fil[n] = m->fil[n] 
+coef[k]*(float) (m->raw[n +k -m->fil_nos]); 

/* Analyze filtered mca spectrum*/ 

/* set half/tenth points and fwhm/fwtm to -ch wid as an error 
condition if half and tenth points are not found*/ 

m->halfl = -m->ch_wid; 
m->halfh = -m->ch_wid; 
m->tenthl = -m->ch_wid; 
m->tenthh = -m->ch_wid; 
m->fwhm = -m->ch_wid; 
m->fwtm = -m->ch_wid; 

/* find centroid (peak) value *I 

n_cent = O; 
m->cent cnts = 0.0; 
for (n=O; n<m->ch_nos; ++n) 

if (m->fil[n] > m->cent_cnts) 
{ 

m->cent cnts = m->fil[n]; 
n_cent = n; 

m->cent = (float)n_cent*m->ch_wid +m->begin; 

/* find channel 1/2, 1/10 counts*/ 

half_cent_cnts = 0.5*m->cent_cnts; 
tenth_cent_cnts = O.l*m->cent_cnts; 

/* find lower 1/2, 1/10 point channels*/ 

flag_halfl = FALSE; 
flag_tenthl = FALSE; 

for (n=n_cent -1; n>= O; --n) /* start at one point down from 
centroid and go down*/ 

if ( !flag_halfl && (m->fil[n] < half_cent_cnts) 
{ 

flag_halfl = TRUE; 
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m->halfl = (float)n*m->ch_wid +m->begin 
+ m->ch_wid*(half_cent_cnts - m->fil[n])/ 

(m->fil[n+l] -m->fil[n]); 

if ( !flag_tenthl && (m->fil[n] < tenth_cent_cnts) 
{ 

flag_tenthl = TRUE; 
m->tenthl = (float)n*m->ch_wid +m->begin 

+ m->ch_wid*(tenth_cent_cnts - m->fil[n])/ 
(m->fil[n+l] -m->fil[n]); 

/* lower 1/2, 1/10 ch not found if centroid at bottom ch*/ 

/* find upper 1/2, 1/10 point channels*/ 

flag_halfh = FALSE; 
flag_tenthh = FALSE; 

for (n=n_cent +1; n<m->ch_nos; ++n) /* start at one ch up from 
centroid and go up*/ 

if ( !flag_halfh && (m->fil[n] < half_cent_cnts) 
{ 

flag_halfh = TRUE; 
m->halfh = (float)n*m->ch_wid +m->begin 

- m->ch_wid*(half_cent_cnts - m->fil[n])/ 
(m->fil[n-1] -m->fil[n]); 

if ( !flag_tenthh && (m->fil[n] < tenth_cent_cnts) 
{ 

flag_tenthh = TRUE; 
m->tenthh = (float)n*m->ch_wid +m->begin 

- m->ch_wid*(tenth_cent_cnts - m->fil[n])/ 
(m->fil[n-1] -m->fil[n]); 

/* upper half, tenth points not found if centroid last ch*/ 

/* compute fwhm, fwtm if both high and low points found*/ 

if (flag_halfl && flag_halfh) 
m->fwhm = m->halfh -m->halfl; 

if (flag_tenthl && flag_tenthh) 
m->fwtm = m->tenthh -m->tenthl; 
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/* Function to Print Each Spectrum in Report File*/ 

print_spectrum (fptr,m) 
FILE *fptr; 
struct mca *m; 

int n; /* index for printing out spectrum values*/ 

/* Print title, number of events, and data label*/ 

fprintf (fptr,"\r\n\r\n\r\n\r\n"); /* put in blank lines to separate*/ 
fprintf (fptr,m->title); fprintf (fptr, "\r\n"); 
fprintf (fptr, "Total Events = %d: %d (in) %d (out) \r\n", 

NEVENTS,m->nos_in,m->nos_out); 
fprintf (fptr,"Channel: nos= %d, width= %e\r\n", 

m->ch_nos,m->ch_wid); 

fprintf (fptr,"Nos of sym filter chs = %d,Filter sigma (chs) = %f\r\n", 
m->fil nos,m->fil sig); 

fprintf (fptr,"\r\n-;); 

fprintf (fptr,"Spectrum Analysis(units same as spectrum listing)\r\n"); 
fprintf (fptr,"Centroid = %f, filtered centroid counts= %f\r\n", 

m->cent/m->ch units, m->cent cnts); 
fprintf (fptr,"1/2 chs: low= %f, high= %f, FWHM = %f\r\n", 

m->halfl/m->ch units, m->halfh/m->ch units, m->fwhm/m->ch units); 
fprintf (fptr,"1/10 chs: low= %f, high= %f, FWTM = %f\r\n7.", 

m->tenthl/m->ch units, m->tenthh/m->ch units, m->fwtm/m->ch units); 
fprintf (fptr,"\r\n"); - -

fprintf (fptr,m->label); fprintf (fptr,"\r\n"); 

/* Print channel values, raw counts, filtered counts*/ 

for (n=O; n<m->ch nos; ++n) 
fprintf (fptr, "%6. 3f\t%6d\t%8. lf\r\n", 

((float) (n)*(m->ch_wid) + m->begin)/(m->ch_units), 
m->raw[n], 
m->fil [n]); 

/* Function to get Poisson time points*/ 

int gpoisson_times (tpoisson,n0,taul,yieldl,tau2,yield2,taurise,tend) 

float tpoisson[], 
no, 
taul, 
yieldl, 
tau2, 
yield2, 
taurise, 
tend; 

/* array of poisson time points (returned) */ 
/* photoelectron yield*/ 
/* primary scint. decay time constant*/ 
/* yield (0.0 - 1.0) of primary decay*/ 
/* secondary scint. decay time constant*/ 
/* yield (0.0 - 1.0) of secondary decay*/ 
/* scint. rise time time constant*/ 
/* ending time for finding points*/ 
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double ran3(); 
int k; 
float t, 

rate, 
x; 

k = O; 
t = 0.0; 

/* function for returning random number*/ 
/* index for poisson time points*/ 
/* time of present poisson point*/ 
/* present rate of photoelectrons*/ 
/* random number between 0.0 and 1.0 */ 

/* rate is photoelectrons/sec; rate is increased slightly 
to consider loss during rise time*/ 

/* Poisson point rejected if ran3() > {1.0 -exp{-t/taurise)) to 
accomplish unbiased, random rejection of photoelectrons 
during rise time and generate rise time in Poisson 
spectrum*/ 

while ( (t<tend)&&(k<KLIMIT-1) ) /* max value of k is KLIMIT-1 */ 
{ 

do 
{ 

while ( {x=ran3())<=0.0) /* do not accept value<= 0.0 */ 

' 
rate= (nO*taul/(taul-taurise))* ( 

{yieldl/taul)*exp(-t/taul) 
+{yield2/tau2)*exp(-t/tau2) ) ; 

t = t -(1.0/rate)*log{x); /* compute Poisson times*/ 

while ran3() > (1.0-exp(-t/taurise)) ) 

tpoisson[k] = t; 
++k; 

return (k); /* function returns number of poisson points*/ 

/* Function to return a value between 0.0 and 1.0 corresponding to scatter 
with an impulse photopeak at 1.0; Original function written by 
Mike Casey, CTI PET Systems*/ 

double baseEnergy() 
{ 

double x,a,b,c; 
double ran3(); 
a= SCATTERFRACTION +SCATTERKNEE*(l.0-SCATTERFRACTION)* 

(1.0-PHOTOFRACTION); 
b = 1.0 -(1.0 -SCATTERFRACTION)*PHOTOFRACTION; 
x = ran3{); 
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if (x < a) 
X = x*SCATTERKNEE/a; 

else if (x < b) 
x = (x-a)*(l.0-SCATTERKNEE)/(b-a) +SCATTER.KNEE; 

else 
X = 1.0; 

return (x); 

/* Function to return a zero mean, unity variance Gaussian Distribution. 
From Numerical Recipes in C. */ 

double gauss () 
{ 

static inti =O; 
static double vl,v2,r,fac,gl,g2; 

double ran3(); 
if (i == 0) 

else 

r=l.O; 
while (r >= 1.0) 

{ 

vl=2.0*ran3()-1.0; 
v2=2.0*ran3()-1.0; 
r=vl*vl+v2*v2; 
} 

fac = sqrt( -2.0 * log (r)/r); 
gl = vl*fac; 
g2 = v2*fac; 
i = 1; 
return (gl); 
} 

i = O; 
return (g2); 
} 

#if 0 /* Original Random Number Generator Tried; Not Used Ultimately*/ 

/* Function to return a uniformly distributed random number between O and 1. 

*I 

Portable routine using one shuffled linear congruential generator 
modified from ran2() in Numerical Recipes in C. 

#define M 714025 
#define IA 1366 
#define IC 150889 

double ran2 () 
{ 

static long seed= -12567; 
static long random_list[97],hold_it; 
static int initial_flag=O; 
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int j; 
if( seed< O I I initial_flag -- 0) /* runs for first call only*/ 

{ 

initial_flag=l; 
if(( seed= (IC-(seed)) % M) < 0) 

seed= -(seed); 
for (j=O; j < 97; j++) 

{ 

seed= (IA*{seed)+IC) % M; 
random_list[j]=seed; 
} 

seed= {IA*(seed)+IC) % M; 
} 

j = {97 * {seed))/M; 
I* o <= j < 96 */ 
hold it= random_list[j]; 
seed= (IA*{seed)+IC) % M; 
random list[j]={seed); 
return - { {double) hold_it/M); 
} 

#endif 

/* Function to return a uniformly distributed random number between O and 1. 
Portable routine using subtractive technique modified from ran3{) in 
Numerical Recipes inc. 

*/ 

#define MBIG 1000000000 
#define MSEED 161803398 
#define MZ O 
#define FAC {l.0/MBIG) 

float ran3 {) 

static int idum = -12567; 
static int inext,inextp; 
static long ma[56]; 
static int iff=O; 

/* if negative, reseed*/ 

long mj,mk; 
int i,ii,k; 

if {idum < o I I iff == 0) { 
iff=l; 
mj=MSEED-{idum < 0? -idum 
mj %= MBIG; 
ma[55]=mj; 
mk=l; 

idum); 

311 



for (i=l;i<=54;i++) 
ii=(2l*i) % 55; 
ma[ii]=mk; 
mk=mj-mk; 
i~ (mk < MZ) mk += MBIG; 
mj=ma[ii]; 

for (k=l;k<=4;k++) 
for (i=l;i<=55;i++) { 

ma[i] -= ma[l+(i+30) % 55]; 
if (ma[i] < MZ) ma[i] += MBIG; 

inext=O; 
inextp=31; 
idum=l; 

if (++inext == 56) inext=l; 
if (++inextp == 56) inextp=l; 
mj=ma[inext]-ma[inextp]; 
if (mj < MZ) mj += MBIG; 
ma[inext]=mj; 
return m j *FAC; 

#undef MBIG 
#undef MSEED 
#undef MZ 
#undef FAC 

/* 
GET PRINT TRANSIENT FILE FUNCTION 
by Dave Binkley and Steve Hudson 
CTI PET Systems, Inc. 
8-23-91 

This function will scan a PSpice PRINT transient file and extract a list of 
voltages found within. This listing is stored in a floating-point array 
called gpritr_array. 

EXAMPLE: In the data file shown below, the column marked V(3) would be scanned 
and would produce the output shown. 

INPUT FILE: 

*** 08/22/91 11:32:00 ******** PSpice 4.05 (Jan 1991) ******** ID# 62683 **** 

CFD COMPARISON OF SHAPED WAVEFORMS, CFDCOMP.CIR 

**** TRANSIENT ANALYSIS TEMPERATURE= 27.000 DEG C 

***************************************************************************** 
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TIME V(3) 

O.OOOOOOOE+OO O.OOOOOOOE+OO 
1.0000000E-02 -6.6360076E-06 
2.0000000E-02 -4.6051674E-05 
3.0000000E-02 -l.2385810E-04 
4.0000000E-02 -2.3905132E-04 
5.0000000E-02 -3.9046015E-04 

OUTPUT FILE: 

*/ 

O.OOOOOOOE+OO O.OOOOOOOE+OO 
1.0000000E-02 -6.6360076E-06 
2.0000000E-02 -4.6051674E-05 
3.0000000E-02 -1.2385810E-04 
4.0000000E-02 -2.3905132E-04 
5.0000000E-02 -3.9046015E-04 

int gpritr(filein,gpritr_array,numdata) 

#define MAXNAME 16 
#define MAXDATA 1500 

/* maximum filename length*/ 
/* maximum number of data elements*/ 

char filein[MAXNAME]; /* input filename*/ 
/* data array*/ float gpritr_array[MAXDATA]; 

int *numd.ata; /* number of elements in array*/ 

{ 
#define MAXBUFFER 150 /* maximum character length for buffer*/ 

/* pointer for input file*/ FILE *fpin; 
char *compare; 
char buffer[MAXBUFFER]; 
char *result; 
double num,dwnnum; 
int x,y; 

/* comparison string to indicate data header*/ 
/* string buffer*/ 
/* result of comparison; dwmny character*/ 
/* data number; dwmny number*/ 
/*counters*/ 

if 
{ 

(fpin = fopen(filein,"r")) == NULL) /* open input file*/ 

printf ("SPICE Impulse Res. File Cannot Be Opened. Prog. Term.\n"); 
return (l); /* return 1 as file not found*/ 

compare= "TRANSIENT ANALYSIS"; 
fgets(buffer, MAXBUFFER, fpin); 
result= NULL; 

/* set comparison string*/ 

/* loop to search for header string*/ 
while ((result = strstr(buffer,compare)) == NULL) 
{ 

if (fgets(buffer, MAXBUFFER, fpin) == NULL) /* check for EOF */ 

printf("******* ERROR - data not found *******\n"); 
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fclose {fpin); 
return (2); 

/* close input file*/ 
/* return 2 as data not found*/ 

X = O; 
y = O; 

/* loop to read data elements*/ 
while (fgets(buffer, MAXBUFFER, fpin) != NULL) 
{ 

x = (sscanf(buffer,"%lg%lg",&dumnum,&num)); 
if {x == 2) 

gpritr_array[y++] = num; 

fclose {fpin); 
*numdata = y; 

return (0); 

/* close input file*/ 
/* set number of elements in array*/ 

/* return with no errors*/ 
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