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Abstract 

This dissertation describes the synthesis of polymer brush-grafted nanoparticles (hairy NPs) 

and an analysis of their behavior or utility in multiple areas. The hairy NPs were synthesized from 

silica NPs functionalized with initiating moieties by surface-initiated atom transfer radical 

polymerization. A brief introduction to hairy NPs, with a focus on the synthesis and behavior of 

stimuli-responsive polymer brush-grafted particles, is given in Chapter 1 to provide context for 

this work.  

Chapters 2 and 3 present the synthesis of thermosensitive diblock copolymer brush-grafted 

nanoparticles designed as hairy NP analogues in place of thermosensitive block copolymers 

micelles for the construction of hybrid, physical hydrogels. Chapter 2 details a series of hairy NPs 

with a thermosensitive poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA) inner block 

and a charge-bearing, poly(DEGMMA-co-2-(methacryloyloxy)ethyltrimethylammonium iodide) 

(PDEGMMA-co-TMAEMA-I) outer block.  These hairy particles underwent a reversible, cooling-

induced gelation at moderate concentrations in water, based on the packing of hairy NPs due to 

the LCST-driven increase in brush volume fraction upon cooling. Another series of 

thermosensitive hairy NPs was made with brushes composed of P(TMAEMA-I)-b-PDEGMMA, 

which exhibited a heating-induced reversible gelation at concentrations as low as 3 wt % in water, 

due to the association of PDEGMMA outer blocks at temperatures above their LCST. The inner 

hydrophilic polyelectrolyte block served to bridge these domains and NPs to form a three-

dimensional gel network.  

Chapter 4 details the use of NPs grafted with oil-soluble poly(lauryl mathacrylate) as 

lubricant additives. These hairy NPs showed superior stability in a poly(alphaolefin) (PAO) base 

lubricating oil, and the addition of 1.0 wt % hairy NPs to PAO yielded significant reductions in 
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both friction and material wear. These gains were attributed to the formation of a load-bearing 

tribofilm at the rubbing interface. Chapter 5 explores the brush microphase separation of poly(n-

butyl acrylate)-b-polystyrene (PnBA-b-PS) brush-grafted particles with PnBA as inner block. 

From TEM analysis, there appeared an evolution of phase morphology from a stripe-like 

nanostructure to a more uniform layered structure with increasing PS molecular weight, in 

qualitative agreement with simulation studies.  Chapter 6 includes a look back on this dissertation 

work in its entirety and possible future work.   
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1.1  Introduction 

This dissertation work is focused on the synthesis, behavior, and applications of polymer 

brush-grafted nanoparticles (hairy NPs). These hybrid particles are composed of a particle core 

and a layer of surface-tethered polymer. Section 1.1.1 presents a general introduction to hairy NPs, 

including the scope and the synthesis of these hybrid materials. A significant portion of this 

dissertation work is concerned with thermosensitive polymer-brush grafted nanoparticles. 

Thermosensitive water-soluble polymers have been widely studied for the drastic physical changes 

in water upon heating or cooling to a given temperature. A brief introduction to stimuli-responsive 

polymers and thermosensitive hairy NPs is given in Section 1.1.2. Section 1.1.3 then describes the 

self-assembly of multicomponent polymer brushes tethered to a substrate and the nanostructures 

that they form on the particle surface. An overview of the dissertation is given at the end of Chapter 

1 (Section 1.2). 

  

1.1.1 Introduction to Polymer Brush-Grafted Particles 

Polymer brush-grafted particles are hybrid materials composed of distinct core and outer 

layer. The core can be formed from a wide variety of materials including inorganic substances 

such as silica or iron oxide, metals such as gold and copper, organic latexes or microgels, and 

others. On the surface of these substrates is a covalently end-tethered layer of polymer, which, at 

sufficiently high grafting densities, extends outward from the substrate surface to relieve crowding 

at the grafting site. This extended polymer layer has led to brush-grafted particles commonly being 

referred to as “hairy” particles. The particle substrates are often spherical, but can include other 

regular or irregular shapes and feature mesoporous or hollow structures as well. Likewise, the 

grafted polymers can be of various architectures including homopolymer brushes, mixed brushes, 



3 

 

block copolymer brushes, cyclic brushes, and others. In this way, hairy particles are a highly 

versatile class of materials, exhibiting desired functionalities of both core substrates, e.g. 

mechanical, optical, or magnetic properties, and grafted polymer. Among the benefits imparted to 

hairy particles by their outer brush layer is environmental compatibility. As a result of their 

extended conformation, dispersion behavior of hairy particles is dominated by the grafted polymer; 

if the polymer is compatible with a given medium, this favorable enthalpic interaction is usually 

sufficiently strong so as to overcome any incompatibility between medium and substrate. In the 

case of nanoparticles, the ever-present danger of irreversible aggregation is minimized if not 

completely eliminated through a combination of this solubilizing and steric stabilization. 

Three methods are generally available for the synthesis of polymer brush-grafted particles: 

“grafting to,” in situ formation of core particles, and “grafting from,” as described in Scheme 1.1. 

“Grafting to” refers to the linkage of pre-formed polymers to the surface of the core substrate. This 

linkage is typically accomplished with polymers and substrates having, or being made to have, 

complementary functionalities, such as a thiol terminated polymer for grafting to gold 

nanoparticles1 or the use of “click” chemistry to attach azide-terminated polymers to an alkyne-

functionalized metal-oxide.2 This method is perhaps the most straightforward route to hairy 

particles, with well characterized polymers, but steric interactions between grafted and incoming 

polymer chains typically result in relatively low grafting densities. This effect can be abated 

somewhat by forming the particle substrates in situ. This method also makes use of preformed 

polymers, which, in this case, are typically block copolymers. These block copolymers can be 

made to assemble, e.g. into micelles or networks, which can serve as a directed locus for the  
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Scheme 1.1. Three general strategies for the synthesis of polymer brush-grafted particles: “grafting 

to” (A), “in situ” (B), and “grafting from” (C).3 (Adapted from Ref. 3 with permission from John 

Wiley and Sons) 
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synthesis of core particles through the reduction of metal salts, chemical crosslinking, or other 

means. This route avoids much of the steric repulsion that hinders “grafting to,” but grafting 

density is still limited by the number of chains present in the formative polymer assemblies, and 

multiple particles can sometimes form in these assemblies. Also, the range of hairy particles 

available for synthesis by this method is somewhat limited by the relatively stringent reaction 

conditions. 

The third method, “grafting from,” is named in reference to the use of initiator-functionalized 

particles, from which polymer chains are grown. One of the earliest examples of this method is the 

immobilization of azo-initiators onto silica gels by Pruker and Rühe, who used these functionalized 

particles to grow surface-bound polystyrene via conventional radical polymerization.4 Also 

referred to as surface-initiated polymerization, the “grafting from” method has the potential for 

high grafting density, as reaction rates are governed by diffusion of monomer, as opposed to 

preformed polymer, to the surface-bound reaction sites. The disadvantage of not having preformed 

polymers, in terms of ease of synthesis and characterization, has been lessened significantly by the 

progress of controlled radical polymerization techniques, namely nitroxide mediated radical 

polymerization (NMRP), reversible addition-fragmentation chain transfer (RAFT), and atom 

transfer radical polymerization (ATRP). These so-called “living” radical polymerizations have 

been used to synthesize brushes of well-defined architectures and molecular weights from a variety 

of substrates. Initiator-functionalized particles are typically made using silane chemistries , similar 

to those used in the fabrication of self-assembled monolayers (SAMs),5 thiol groups for 

functionalization of coinage metals, and catechol groups.6 Surface-initiated controlled radical 

polymerizations are typically carried out in the presence of a small molecule “sacrificial” initiator, 

which results in free polymers that can be used to indirectly monitor and characterize their surface-
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bound counterparts; bound and free polymers made in this way have been found on many 

occasions to be essentially identical in terms of molecular weights and molecular weight 

distributions.7 

1.1.2  Stimuli-Responsive Hairy Particles 

The designation of stimuli responsive brush-grafted particles is given typically in reference 

to functionality of the grafted polymer. Although there is certainly potential for stimuli 

responsiveness in core substrates, with examples including magnetic nanoparticles, light 

responsive titania, quantum dots, and, of course, polymeric substrates designed using stimuli-

responsive polymers. Nevertheless, as it is perhaps more germane to this dissertation work, the 

following discussion will focus on responsiveness imparted by grafted polymers or their 

constituent monomer units.  

1.1.2.1 Thermosensitive Polymer 

Stimuli-responsive polymers exhibit sudden, significant physical changes in response to 

alteration in some facet of their environment.8 Generally, the stimuli to which these polymers 

respond are considered to be chemical or physical in nature. Perhaps the most commonly explored 

chemical stimulus is pH, but other chemical stimuli include reducing/oxidizing agents, ionic 

strength, charge interactions, and other complementary chemical species. On the other hand, 

physical stimuli include temperature, magnetic fields, mechanical force, light, and others. 

Responsiveness to physical stimuli are particularly attractive as they are often more easily tuned 

in situ, and, of these, temperature is by far the most studied. 

Polymers exhibiting thermosensitivity in water can be divided into two categories: those with 

an upper critical solution temperature (UCST) and those with a lower critical solution temperature 

(LCST). The former are polymers that are insoluble at lower temperatures, but, upon heating above 
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a transition temperature, become soluble. This transition is based on the weakening of interchain 

attractive forces, usually due to coulombic or hydrogen bonding interactions.9 Indeed, the two 

major types of polymers with UCST transitions in water are zwitterionic polymers, such as the 

heavily studied poly(3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate), or 

polymers with a large degree of hydrogen bonding, with the preeminent example being poly(N-

acryloylglycinamide) (PNAGA).9  

Unlike UCST polymers, which undergo enthalpy-driven transitions upon heating in solution, 

LCST type polymers become insoluble upon heating above a transition temperature due to entropic 

effects, as shown in Figure 1.1. The most intensively studied LCST-type polymer is poly(N-

isopropyl acrylamide) (PNIPAAm). As with all water-soluble polymers, PNIPAAm is able to 

interact with water through its polar moieties, particularly the hydrogen bonding acrylamide group. 

PNIPAAm, however, has significant nonpolar regions which cannot interact with water in an 

energetically favorable fashion, forcing water molecules around these groups to form ordered 

domains, referred to as clathrate or ice-like structures.10 This hydrophobic effect acts to reduce 

mixing entropy; at higher temperatures, when this entropic penalty is no longer energetically 

tenable, these ice-like structures are said to “melt,” as evidenced by an endotherm upon analysis 

by differential scanning calorimetry, causing a dehydration driven collapse and subsequent phase 

separation. This phase transition is often referred to as the cloud point due to the increase in 

turbidity observed in solutions of PNIPAAm at or above this temperature. The terms cloud point 

and LCST are often used interchangeably, but a distinction should be made as the former refers to 

a transition temperature at a given concentration whereas the latter refers to the lowest temperature 

at which this transition occurs, i.e. the “bottom” of the phase boundary. Perhaps the reason these 

terms are sometimes conflated is that, while some dependence of cloud point on concentration can   
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Figure 1.1. Reversible clouding transition of an aqueous solution of a thermosensitive polymer 

and a schematic of an LCST transition illustrating the melting of ordered water surrounding 

hydrophobic domains upon heating and the aggregation of polymer chains.11 (Adapted from Ref. 

11 with permission from Elsevier) 
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be observed, it is often small for LCST type polymers compared to UCST polymers and is very 

small for PNIPAAm in particular.12 

The transition from hydrophilic to hydrophobic chains is key to the application of 

thermosensitive polymers, but a significant portion of their utility is not found in the application 

of free homopolymers, but as block copolymers in the formation of micelles. Thermosensitive 

micelles can be formed by pairing a thermosensitive block with a hydrophilic block or a 

hydrophobic block. By using thermosensitive-hydrophobic block copolymers, micelles comprised 

of a thermosensitive outer shell and hydrophobic core can be engineered. These micelles are 

formed at lower temperature, i.e.  below the LCST of the thermoresponsive block, and undergo 

reversible aggregation/dispersion around the LCST of the micellar corona. Thermosensitive-

hydrophilic block copolymers, on the other hand, yield reversible micelles with a thermosensitive 

core which disassociates into unimers at temperatures around the LCST of the thermosensitive 

block.8 Thermoresponsive properties, including the temperature of micellization, can be tuned by 

modifying the LCST of the thermosensitive polymer; one method to this is the selection of a 

polymer with a more desirable LCST, but a more flexible approach is the incorporation of a second 

stimulus-responsive moiety into the responsive block.13 For example, Yin and coworkers 

synthesized a P(NIPAAm-co-propylacrylic acid) random copolymer, the LCST of which could be 

increased by deprotonating the weak acid groups by increasing solution pH.13d  It has also been 

observed that end-groups, particularly those of a specifically hydrophilic or hydrophobic nature, 

can significantly alter the effective transition temperature of thermosensitive polymers.14  

A particularly useful feature of this reversible transition from unimers to micelles is the 

potential for reversible hydrogels; above the critical gelation concentration, which is typically ~20 

wt % for star-like block copolymer micelles, the increase in volume fraction associated with 
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micellization is sufficient to form packing-based hydrogels.8, 10-11 An example of this type of 

thermosensitive block copolymer-based gel, also referred to as injectable hydrogels as they can be 

injected via syringe below the LCST of the core-forming block before gelling at higher 

temperature, can be found in aqueous solutions of block copolymers of poly(ethylene oxide) (PEO) 

and the thermosensitive poly(propylene oxide) (PPO), such as PEO-b-PPO-b-PEO.15 Above the 

LCST of PPO, the block copolymers self-associates to form micelles with collapsed, PPO cores. 

As temperature is further increased, the PEO corona also undergoes a decrease in length. As this 

shrinkage will eventually reduce the micellar volume fraction below that required for gelation, 

these packing-based micellar hydrogels often have a C-shaped phase diagram at moderate 

concentrations, referring to the lower temperature sol-gel transition occurring upon micellization 

and the gel-sol transition observed at higher temperatures, as shown in Figure 1.2.16  

Our group has done much work investigating the unimer-micelle and sol-gel transitions of 

doubly thermosensitive diblock copolymer micelles, which can be said to be an amalgam of the 

two types of thermosensitive micelles described above; the block with the lower transition 

temperature (LCST1) acts as the core-forming block in the reversible formation of micelles, and 

the block with the higher transition temperature (LCST2) acts as a thermosensitive corona, 

shrinking due to dehydration upon sufficient heating and, at temperatures sufficiently above their 

LCST cause reversible aggregation and precipitation of micelles.17 Visually, these gels are 

transparent in the low temperature sol and gel state, but become cloudy when heated to 

temperatures above LCST2. Both the sol-gel and gel-sol transitions were able to be modified by 

incorporating a small amount of weak acid, e.g. acrylic acid, into the first and second block, 

respectively. 
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Figure 1.2. Digital optical images of an aqueous, 20 wt % solution of a doubly thermosensitive 

diblock copolymer at various temperatures17a (top) and a schematic illustration of the transition 

from a clear molecular sol to a clear micellar sol, clear micellar gel, clear micellar sol, and cloudy 

mixture upon increasing temperature.17b (Adapted from Refs. 17a and 17b with permission from 

the American Chemical Society) 
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Another type of these so-called injectable hydrogels is based on the formation of a three-

dimensional physically crosslinked network in water. These network-based gels are typically 

composed of ABA or ABC triblock copolymers in which the center block is a relatively long, 

hydrophilic block, and the outer blocks are thermosensitive.16a, 18 As before, these thermosensitive 

blocks will associate into micellar cores at temperatures above their LCSTs; gelation, however, is 

brought about through the bridging of the cores by the hydrophilic block, as shown in Figure 1.3. 

These gels exhibit a sol-gel transition based on the LCST of the thermosensitive block similar to 

the packing-based micellar hydrogels described above, but the interconnected nature of this 

gelation system requires significantly less polymer, often ~5 wt % or less.19 The strategy of 

incorporating small quantities of responsive groups into thermosensitive polymers is still viable 

for network-based gels, and thermosensitive micellar gels have been synthesized with sensitivity 

toward pH,20 light,19b enzyme,19a and other stimuli for the tuning of sol-gel transition temperature 

to good effect.  

Micellar hydrogels based on thermosensitive diblock copolymers are an intriguing class of 

materials with potential applications in drug delivery, tissue engineering and the design of other 

“smart” materials. However, in aqueous systems, towards which a large portion of research is 

focused due to biocompatibility and environmental considerations, these reversible micellar gels 

are limited to polymeric, hydrophobic cores. Chapters 2 and 3 of this dissertation describe unique, 

hybrid injectable gels which may lead to more versatile gelation systems with a wider array of 

potential payloads and functionalities. 
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Figure 1.3. Digital optical pictures of a 10.0 wt% aqueous solution of an ABA triblock copolymer 

with thermosensitive A blocks and a hydrophilic B block at three temperatures (top) and a 

schematic illustration of the reversible formation of a three-dimensional network above the LCSt 

of the A blocks.19b (Adapted from Reference 19b with permission from the Royal Society of 

Chemistry) 
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1.1.2.2. Synthesis and Behavior of Stimuli-Responsive Hairy Particles 

Stimuli-responsive polymers can be utilized to impart environmental sensitivity to brush-

grafted particles as well. Particles grafted with thermosensitive polymer brushes undergo an 

overall decrease in hydrodynamic volume at temperatures above the LCST of the tethered 

polymer. The nature of this transition is not unlike that observed in micelles with a thermosensitive 

corona, and the dehydration of grafted polymers at higher temperatures will eventually lead to 

aggregation similar to what is observed in those systems. The transition behavior of 

thermosensitive hairy particles, however, is often more complex than that of individual chains or 

micelles, as it is influenced by substrate size, curvature, and grafting density. One example of this 

substrate effect can be seen in the work performed by the Tenhu research group, who prepared 3.2 

nm gold nanoparticles (NPs) with PNIPAAm tethered by thiol-gold linkages. These brush grafted 

NPs exhibited two phase transitions according to microcalorimetry: a narrow transition at 30.2 °C 

and a broader transition at 39.0 °C. These brushes were synthesized via RAFT using a cumyl-

dithiobenzoate chain transfer agent (CTA), and the polymer prior to grafting exhibited a single 

transition at 34.3 °C.21 As mentioned previously, grafted polymers assume an extended 

conformation to relieve chain crowding. The fixation of the end group results in a gradient decrease 

in segmental density as distance from the substrate surface is increased, particularly for NPs of a 

few nanometers. This inhomogeneity leads to broad or even step-wise transitions because the 

higher segmental density near the surface impedes hydration and results in a lower LCST, while 

the segments further from the grafting sites are subjected to this effect to a lesser, or even 

nonexistent, degree.22 Using a “grafting from” method, our group synthesized thermosensitive 

brush-grafted silica particles using oligo(ethylene glycol) methacrylates, which are another class 
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of monomers for use in the synthesis of LCST type polymers.23 These hairy particles exhibited a 

relatively broad LCST transition at temperatures consistently lower than those of free polymer.24 

An interesting feature of thermosensitive brush-grafted particles is their ability for 

spontaneous transfer between two phases, namely from water to an immiscible liquid phase and 

vice versa.3 At temperatures above the LCST transition, the brushes become hydrophobic and will 

drive the transfer to another appropriate liquid phase. This transport of particles can be reversible; 

cooling below the brush LCST will trigger the migration back to the aqueous layer.  The extent of 

this transfer is dependent on the relative affinities of the brushes for either phase below and above 

their LCST. For example, using poly(methoxytri(ethylene glycol) methacrylate) (PTEGMMA) 

brush-grafted particles, our group observed a quantitative transfer from water to ethyl acetate upon 

heating to 60 °C, as shown in Figure 1.4; the LCST of unbound PTEGMMA is 48 °C.25 When 

partitioned between water and 1-butanol, only a 60 % transfer from water was observed, and no 

transfer was observed when using toluene as the organic phase. Interestingly, Wang and coworkers 

were able to facilitate the transfer of poly(methoxydi(ethylene glycol) methacrylate)-co-

poly(ethylene glycol) methacrylate (P(DEGMMA-co-PEGMMA)) brush-grafted gold NPs, from 

water into toluene by adding sodium chloride to the aqueous layer.26 The addition of salt typically 

lowers the effective LCST of thermosensitive polymers,10 and, in this case, decreased their affinity 

toward water such that transfer to toluene became thermodynamically favored; this transfer was 

reversed when cooled below 5 °C. In another example of modulating the driving force of phase 

transfer, our group observed the reversible transfer of PTEGMMA-grafted particles between water 

and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([EMIM][TFSI]), but particles grafted with brushes of PDEGMMA, which has the lower LCST of 

26 °C and, therefore, less hydrophilicity, did not return to water after transfer to the ionic liquid,  
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Figure 1.4. Optical images of aqueous and ethyl acetate layers after seventh cooling in an ice/water 

bath (a); seventh heating in an 60 °C oil bath (b); eighth cooling (c); eighth heating (d); ninth 

cooling (e); and ninth heating (f). The PTEGMMA brush-grafted nanoparticles were originally 

dispersed in water-saturated ethyl acetate at 63 °C (concentration:  1.0 mg/mL).25 (Reprinted from 

Ref. 25 with permission from the American Chemical Society)  
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despite being kept at 0 °C for a prolonged period.27 The ability to transfer substances across a 

liquid-liquid interface, especially in a reversible manner using thermoresponsive brush-grafted 

particles, has potential applications in purification and payload delivery and is particularly useful 

in the engineering of recyclable catalysts. 28 

1.1.3 Multicomponent Polymer Brush-Grafted Particles 

Another type of environmental responsiveness available to hairy particles is that of 

multicomponent brushes, specifically substrates to which two or more immiscible polymers are 

tethered. Perhaps the most studied case of this class of hairy particles is mixed polymer brush-

grafted particles, which consist of two different polymers grafted randomly or alternately to a 

substrate. These grafted polymers undergo microphase separation in an attempt to minimize 

contacts between unlike segments while also minimizing the entropically unfavorable stretching 

of individual chains. In this way, they are much like the analogous AB diblock copolymers, which 

have long been known to exhibit microphase separation into A or B-rich domains. The phase 

behavior of diblock copolymers are governed primarily by the Flory-Huggins interaction 

parameter (χ), degree of polymerization (DP), and volume fraction of each block (fA and fB);29 

additional parameters for mixed brushes include distribution of grafting sites, grafting density, and 

substrate curvature. As both polymers are covalently tethered to the substrate and limited in the 

extent they can rearrange, the responsive properties of mixed brushes are dictated by the interaction 

between each polymer and the environment.30 Marko and Witten first theorized that melt state 

mixed brushes would undergo phase separation into a laterally segregated “ripple” state, as 

opposed to a layered structure. In selective solvents, mixed brushes assume the layered structure 

with the swollen, solvophilic block encompassing the solvophobic block, forming what is 

essentially tethered micelles, as shown in Scheme 1.2.30-31  For example, poly(acrylic acid)/PS 
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Scheme 1.2. A schematic illustration of the self-assembly of mixed homopolymer brushes under 

equilibrium melt conditions and in neutral or selective solvents.30 (Reprinted from Ref. 30, with 

permission from the American Chemical Society). 
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mixed brush-grafted silica particles were found to form stable dispersions in both chloroform, a 

poor solvent for PAA, and methanol, a poor solvent for PS.7b 

Our group has extensively studied mixed brush-grafted particles to elucidate the effect of 

various parameters on phase morphology, primarily through the use of silica particles 

functionalized with an asymmetric “Y-initiator” which allowed for the synthesis of well-defined 

mixed brushes by sequential controlled radical polymerizations, e.g. ATRP and NMRP. Poly(tert-

butyl acrylate)(PtBA)/PS mixed brushes were made in this way, and the nanodomains formed were 

studied by TEM using RuO4 as a selective staining agent for PS. By keeping the PtBA molecular 

weight constant and increasing the length of PS, an evolution was observed from isolated, spherical 

PS domains to short cylindrical domains to an essentially bicontinuous morphology at similar 

values of Mn,PS and Mn,PtBA to isolated PtBA nanodomains at larger Mn,PS (Figure 1.6).32 Similar 

studies were carried out to observe the effects of grafting density and overall molecular weight.33 

Another type of multicomponent brush system is that of diblock copolymer brush-grafted 

particles. End-tethered diblock copolymers and their phase behavior have recently garnered 

interest and have been studied via simulation.34 These morphologies differ from their analogues 

observed in mixed brushes in multiple ways, primarily in the vertical nature of this microphase 

separation and in the existence of substantial uniform phases at both low and high volume fractions 

of the outer (A) block. As this block is increased in length, the uniform phase is expected to give 

way to A-rich dots, stripes, holes, and full coverage as fA approaches 0.5. This prediction has not 

yet been observed experimentally, and an initial exploration of this phase behavior is presented in  

Chapter 5. 
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Figure 1.6. Top-view TEM micrographs of Mixed PtBA/PS brush-grafted silica particles with 

Mn,PS < Mn,PtBA (A and B), Mn,PS ≈ Mn,PtBA (C) and Mn,PS >Mn,PtBA (D), with schematic illustrations 

of the observed morphologies. The hairy particles were cast from CHCl3, a nonselective good 

solvent for both PtBA and PS, and thermally annealed and stained with RuO4 vapor.32 (Adapted 

from Ref. 32 with permission from the American Chemical Society) 
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1.2. Dissertation Overview 

This dissertation work is focused on the synthesis of polymer brush-grafted NPs and their 

applications in dispersed systems. The first portion presents the use of diblock copolymer brush-

grafted particles in lieu of micelles in the formation of reversible, physical hydrogels. The second 

part explores the use of hydrophobic brush-grafted NPs as additives for lubricating oil, and the 

final part presents a preliminary analysis of the microphase separation of poly(n-butyl acrylate)-b-

PS brushes grafted on silica particles. 

As mentioned previously, micellar gels composed of thermosensitive block copolymers are 

a useful system for many applications, especially targeted delivery and release of drugs or other 

payloads. These hydrogels, however, are typically limited to hydrophobic, polymeric cores, 

limiting their versatility in terms of potential cargo.  Thermosensitive brush-grafted NPs, on the 

other hand, can be made with mesoporous or hollow cores, which can be functionalized as desired, 

making them intriguing candidates for the engineering of uniquely adaptable hydrogel systems. 

Inspired by the collapse of thermosensitive brushes above their LCST and their similarity to the 

gel-sol transition observed in micellar gels of doubly thermosensitive diblock copolymers, we 

synthesized a series of thermosensitive hairy NPs for use in packing-based hydrogels. Sufficiently 

concentrated dispersions of these brush-grafted NPs were expected to form gels upon cooling due 

to the hydration-induced stretching of brushes and the subsequent increase in volume fraction. 

Upon heating, the gel would reversibly transition into a sol. A problem with both thermosensitive 

brush-grafted NPs and micelles with thermosensitive coronas is the clouding out and eventual 

precipitation at higher temperatures. To avoid this issue and maintain a homogenous system at 

higher temperatures, diblock copolymer brushes were grown from 17 nm silica NPs using a one 

pot SI-ATRP of DEGMMA, during which a second monomer, N,N-dimethylaminoethyl 
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methacrylate (DMAEMA), was added to produce brushes of PDEGMMA-b-P(DEGMMA-co-

DMAEMA). The tertiary amine moieties were quaternized to yield P(DEGMMA-co-TMAEMA-

I), a permanently charged outer block, which served to prevent heat-induced irreversible 

aggregation. This block was also found to modulate the gel-sol transition temperature and the 

LCST transition itself, as revealed by DLS experiments.  

Encouraged by the success of these particles in packing-based hydrogels, we pursued the use 

of thermosensitive diblock copolymer brush grafted NPs to form three-dimensional network-based 

gels. In Chapter 3, the synthesis of hairy NPs composed of a hydrophilic, charged inner block and 

a thermosensitive outer block though sequential SI-ATRPs of DMAEMA and DEGMMA is 

described. The outer PDMAEMA block was converted to a permanently hydrophilic, charged 

polymer. These hairy NPs were easily dispersed in water, and these dispersions underwent a sol-

gel transition at sufficiently high temperatures. The mechanism of this gelation is the association 

of the collapsed PDEGMMA blocks into micellar cores, which were linked to the NP substrates 

by the long, bridging hydrophilic polyelectrolyte block. We envision these hairy NP-based 

hydrogels as a step towards the synthesis of injectable hydrogels with truly designer properties and 

applications not available to conventional micellar hydrogels.  

Chapter 4 marks somewhat of a departure from Chapters 2 and 3. Nanoparticles of various 

materials have great potential as lubricant additives.35 Indispersibility of NPs in oils and the 

propensity of NPs to aggregate have led to some difficulties fully realizing this potential. Brush-

grafted NPs, however, are known both for dispersibility and stability in dispersion due to the 

strongly favorable interaction between brushes and good solvents. We synthesized a series of oil-

soluble hairy NPs through SI-ATRP of lauryl methacrylate. The brush-grafted NPs were easily 

dispersed in poly(alpha olefin) (PAO) lubricating base oil to yield homogenously additized 
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lubricants that exhibited excellent stability across a range of temperatures. Significant gains in 

friction reduction and wear prevention were observed upon the addition of 1.0 wt % of these hairy 

NP additives into PAO, relative to neat PAO, as confirmed through tribological analysis. Both 

molecular weight and concentration of NPs were found to affect tribological performance. 

Chapter 5 details the initial steps in the elucidation of phase behavior of diblock copolymer 

brushes tethered on particles. PnBA-b-PS brushes were grown from 171 nm silica particles, and 

their microphase separation was observed via TEM, having selectively stained the PS domains 

using RuO4. In qualitative agreement with the simulation work performed by Matsen and 

coworkers,34c we observed what appeared to be a progression from stripes to full coverage as PS 

block length was increased. While this study is preliminary in nature, we expect that these results 

will prove useful in the exploration of this system. 
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Chapter 2. Reversible Sol-Gel Transitions of Aqueous Dispersions of Silica 

Nanoparticles Grafted with Diblock Copolymer Brushes Composed of a 

Thermosensitive Inner Block and a Charged Outer Block 
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Abstract 

This chapter presents the synthesis of thermosensitive diblock copolymer brush-grafted silica 

nanoparticles (hairy NPs) and the study of thermally induced, reversible sol-gel transitions of their 

aqueous dispersions. The brushes consisted of a thermosensitive poly(methoxydi(ethylene glycol) 

methacrylate) (PDEGMMA) inner block and a charge-carrying, poly(DEGMMA-co-2-

(methacryloyloxy)ethyltrimethylammonium iodide) outer block, which were prepared by a one-

pot, surface-initiated atom transfer radical polymerization and subsequent quaternization of 

tertiary amine moieties in the second block with iodomethane. Above a critical concentration, the 

aqueous dispersion of hairy NPs with an appropriate block copolymer composition exhibited a 

reversible transition from a free flowing liquid to a free standing hydrogel upon cooling from 

elevated temperatures, which was driven by the lower critical solution temperature transition of 

the thermosensitive inner block of hairy NPs as confirmed by dynamic light scattering study. At 

the same concentration of hairy NPs, the sol-gel transition temperature was higher when the highly 

hydrated, charged outer block was longer. The transition temperature decreased with decreasing 

the concentration of hairy NPs in the dispersion; reversible gelation was achieved with a 

concentration of hairy NPs in water as low as 5.5 wt %. Interestingly, the LCST transition of the 

inner thermosensitive PDEGMMA block disappeared and no sol-gel transition was observed in 

the studied temperature range when the charged outer block was sufficiently long.        
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2.1. Introduction 

Micellar hydrogels of thermosensitive hydrophilic block copolymers have received 

substantial attention due to their ability to exhibit in situ sol–gel transitions in response to 

temperature changes.1 These hydrogels, often referred to as injectable hydrogels, can offer utility 

in a wide range of applications, particularly in the controlled release of substances.1,2 Unlike their 

chemically crosslinked counterparts, aqueous solutions of thermosensitive block copolymers can 

be injected as free-flowing liquids via syringe and needle and turn into hydrogels upon exposure 

to temperature variations. There are generally two types of thermosensitive injectable block 

copolymer micellar hydrogels: (i) 3-dimensional network hydrogels formed by the bridging of a 

soluble middle block, typically, of an ABA triblock copolymer among micellar cores,1,3 and (ii) 

packing-based hydrogels made up of discrete micelles.1,4,5 Our lab recently showed that the 

incorporation of a small amount of pH- or light-responsive moieties into the thermosensitive outer 

blocks of ABA triblock copolymers led to 3-D micellar network hydrogels with tunable sol–gel 

transition temperatures.6 Examples of the second type of micellar gels include those of 

thermosensitive diblock copolymers and PEO-b-PPO-b-PEO.4,5 While the critical gelation 

concentration (CGC) for 3-D network gels can be as low as 5 wt %,3c,6a the CGC for packing-based 

polymer micellar hydrogels is typically ~ 20 wt %.1,5  

Polymer brush-grafted nanoparticles (NPs), also known as hairy NPs, are composed of a 

core, typically inorganic or metallic, and a dense layer of polymer chains with one end bound 

covalently on the core surface.7-9 These NPs, with a distinct core and a shell, are structurally similar 

to block copolymer micelles in some sense. Our lab has been interested in the synthesis and 

behavior of well-defined stimuli-responsive, particularly thermosensitive, hairy NPs.10 The 

brushes grafted on the NPs can undergo swelling-collapse transitions in response to external 
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stimuli, which alter the solvophilicity of hairy NPs and can be exploited to control the accessibility 

of functional groups or substances within the brushes or core NPs.11  

Given that thermosensitive hairy NPs are structurally and conceptually similar to block 

copolymer micelles, it should be possible to use them to fashion injectable hydrogels by utilizing 

the lower critical solution temperature (LCST) transitions induced by temperature changes. Similar 

to block copolymer micellar hydrogels, it is possible to achieve the gelation of aqueous dispersions 

of hairy NPs through the two mechanisms mentioned earlier. These hybrid hydrogels, if realized, 

would add additional functions to the traditional block copolymer micellar hydrogels and thus 

expand the area of injectable hydrogels. Unlike thermosensitive block copolymer micelles where 

the core of the micelles is typically organic and hydrophobic, hairy NPs can be fabricated using a 

wide variety of inorganic and metallic NPs with various material functionalities,7-11 such as 

magnetic and optical properties.12 The rigid nature of the core also lends itself to various shapes, 

such as disk-like or cubic,13 which are not easily accessible by polymer micelles. In addition, the 

core NPs can be porous or hollow,13,14 and the interior surface can be made hydrophobic or 

hydrophilic, charged or neutral, allowing for loading of a variety of substances and effectively 

overcoming the limitations of block copolymer micelle systems. 

Motivated by these prospects, we initiated an effort to develop hybrid hydrogels solely based 

on stimuli-responsive hairy NPs. In the present work, we synthesized thermosensitive diblock 

copolymer brush-grafted, 17 nm silica NPs. The brushes were poly(methoxydi(ethylene glycol) 

methacrylate)-b-poly(methoxydi(ethylene glycol) methacrylate-co-2-

(methacryloyloxy)ethyltrimethylammonium iodide) (PDEGMMA-b-P(DEGMMA-co-

TMAEMA-I)), which were prepared by one-pot surface-initiated atom transfer radical 

polymerization (ATRP) using monomers DEGMMA and N,N-dimethylaminoethyl methacrylate 
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(DMAEMA) and subsequent quaternization of DMAEMA units in the second block with 

iodomethane (Scheme 2.1). The second monomer, DMAEMA, was added into the polymerization 

mixture after a desired conversion of DEGMMA was achieved. PDEGMMA is a thermosensitive 

polymer with a lower critical solution temperature (LCST) of 26 C in water.15 The outer block 

contains quaternized DMAEMA units; these permanently charged moieties are introduced to 

facilitate the dispersion of hairy NPs in water and to grant stability against aggregation at elevated 

temperatures. We show that at a sufficient concentration, aqueous dispersions of these hairy NPs 

can undergo in situ, reversible transitions from free-flowing liquids to free standing hydrogels 

upon cooling from elevated temperatures. The sol-gel transition can be achieved with a 

concentration of hairy NPs in water as low as 5.5 wt %, far less than the typical CGC of 

thermosensitive diblock copolymers (~ 20 wt%). This is the first example of temperature-induced 

sol-gel transitions of aqueous dispersions of thermoresponsive polymer brush-grafted inorganic 

NPs, demonstrating the potential of hairy NPs in the area of hybrid polymer hydrogels.  

 
2.2. Experimental Section 

2.2.1. Materials 

MIBK-ST, a dispersion of silica nanoparticles (NPs) with a size of 10–15 nm (according to 

the manufacturer) in methyl isobutyl ketone (MIBK) (30-31 wt % SiO2), was from Nissan 

Chemical. Chlorodimethylsilane (98%) was obtained from Alfa Aesar and stored in a refrigerator. 

Karstedt’s catalyst (Platinum-divinyltetramethyldisiloxane complex in xylene, 2.1~2.4% Pt 

concentration in xylene) was purchased from Gelest, Inc. Tetrahydrofuran (THF) and toluene were 

each distilled from sodium and benzophenone and used immediately. CuBr (98%, Aldrich) was  
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Scheme 2.1. Synthesis of PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) Brush-Grafted Silica 

Nanoparticles (NPs) by a Surface-Initiated, One-Pot Atom Transfer Radical Polymerization and 

Subsequent Quaternization of Tertiary Amine Units with Iodomethane 
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stirred in glacial acetic acid overnight, filtered, and washed with absolute ethanol and diethyl ether. 

The purified CuBr powder was dried under high vacuum and stored in a desiccator. CuBr2 

(anhydrous, 99%) and iodomethane (99%, stabilized) were purchased from Acros and used as 

received. N, N, N', N', N"-Pentamethyldiethylenetriamine (PMDETA, 99%, Aldrich) and ethyl 2-

bromoisobutyrate (EBiB, 98%, Aldrich) were dried with calcium hydride, distilled under reduced 

pressure, and stored in a desiccator. Methoxydi(ethylene glycol) methacrylate (or di(ethylene 

glycol) methyl ether methacrylate, DEGMMA, 95%, Aldrich) was stirred in the presence of CaH2, 

distilled under vacuum, and stored in a refrigerator. N, N-Dimethylaminoethyl methacrylate 

(DMAEMA, 99%, Acros) was passed through a short column of silica gel (bottom)/activated basic 

aluminum oxide (top) (2/1, v/v) to remove the initiator and stored in a refrigerator. 10-Undecenyl 

2-bromoisobutyrate was synthesized according to a literature procedure.10b
 All other chemical 

reagents were purchased from either Aldrich or Fisher and used without further purification.  

2.2.2. Characterization  

Size exclusion chromatography (SEC) was carried out at ambient temperature using an SEC 

system composed of a Waters 510 pump, a Knauer Smartline 2300 RI detector, and three PSS 

GRAM linear columns in series (each 8  300 mm, 3000 Å, 1000 Å, 100 Å, Polymer Standards 

Service-USA, Inc.). HPLC grade N,N-dimethylformamide (DMF) with 0.1 M LiBr was used as 

the mobile phase with a flow rate of 1.0 mL/min. The system was calibrated by using polystyrene 

standards, and the data were processed using CirrusTM GPC/SEC software. 1H NMR spectra were 

recorded on a Varian VNMRS 500 MHz spectrometer, and the residual solvent proton signal was 

used as the internal standard. Thermogravimetric analysis (TGA) was carried out in air at a heating 

rate of 20 C/min from room temperature to 800 ºC using a TA Discovery TGA-MS. Transmission 

electron microscopy (TEM) was performed using a Zeiss Libra 200 HT FE MC microscope with 



36 

 

an accelerating voltage of 200 kV, and bright field images were taken with a bottom-mounted 

Gatan UltraScan US1000XP CCD camera. Samples were drop-cast from dispersions in chloroform 

with a concentration of ~ 4 mg/mL onto a carbon-coated, copper TEM grid using a glass pipet and 

were allowed to dry at ambient conditions.  

2.2.3. Synthesis of ATRP Initiator-Functionalized, 17 nm Silica NPs 

10-Undecenyl 2-bromoisobutyrate (2.002 g, 6.27 mmol) was added to a 50 mL two-necked 

flask and dried under high vacuum. Chlorodimethylsilane (3.0 mL, 27 mmol) was added to the 

flask under an N2 atmosphere, followed by the injection of a solution of Karstedt’s catalyst in 

xylene (75 µL). After the reaction was complete, as demonstrated by the disappearance of the 

double bond peaks in the 1H NMR spectrum of the reaction mixture, the unreacted excess 

chlorodimethylsilane was removed in vacuo and the obtained 11-(chlorodimethylsilyl)undecyl 2-

bromoisobutyrate was dissolved in THF (5 mL).   

MIBK-ST (6.663 g, corresponding to 1.999 g bare silica NPs) was added to a 100 mL three-

necked flask and diluted with 15 mL anhydrous toluene. A portion of the solvents (~10 mL) was 

then distilled off under vacuum to azeotropically remove the trace amount of water. Dry toluene 

(15 mL) was then injected into the flask, and the azeotropic distillation was carried out again. This 

process was repeated for a total of three times, followed by the addition of dry THF (20 mL). The 

dispersion was concentrated and diluted again with THF (20 mL). The resultant dispersion of silica 

NPs in the mixture of MIBK, toluene, and THF, totaling 30 mL, was transferred into the flask 

containing the chlorodimethylsilane–terminated ATRP initiator described in the preceding 

paragraph. The mixture was heated to 70 °C, and the reaction was carried out at this temperature 

under N2 for 42 h. The initiator-functionalized silica NPs (initiator NPs) were then diluted in DMF 

and collected via centrifugation (Beckman Optima L-90K Ultracentrifuge with type 60 Ti rotor, 



37 

 

35,000 rpm, 30 min). The initiator NPs were then dispersed in DMF and centrifuged again. This 

dispersion-centrifugation cycle was repeated for a total of 4 times. The purified initiator NPs were 

dried under a stream of air, affording a slightly brown powder (1.901 g).  

2.2.4. Synthesis of PDEGMMA-b-P(DEGMMA-co-DMAEMA) Brushes on 17 nm Silica NPs 

The initiator NPs (1.057 g) were placed into a 100 mL three-necked flask, followed by the 

addition of anisole (44.046 g). The mixture was ultrasonicated until a homogeneous dispersion 

was obtained. DEGMMA (20.074 g, 0.107 mol), copper(I) bromide (30.9 mg, 2.15  10-4 mol), 

copper(II) bromide (7.7 mg, 3.5  10-5 mol), and ethyl 2-bromoisobutyrate (29.7 mg, 1.52  10-4 

mol) were added to the dispersion. After PMDETA (30.2 mg, 1.74  10-4 mol) was injected, the 

mixture was immediately degassed by three freeze–pump–thaw cycles. The flask was then placed 

in a thermostated oil bath at 60 °C. The polymerization was monitored by 1H NMR spectroscopy, 

using the peaks located at 4.34 and 4.16 ppm, which were from the -CH2OOC- of monomer 

DEGMMA and polymer PDEGMMA, respectively. After the reaction proceeded for 4.5 h, a 

monomer conversion of 29.8% was reached, at which a large sample (17.785 g, 27.25 wt %) was 

removed from the polymerization mixture for the characterization of free polymer PDEGMMA 

and PDEGMMA brush-grafted NPs (HHP). The degree of polymerization (DP) of the polymer 

was calculated to be 101, taking into consideration both the free initiator and the surface-

immobilized initiator.16 

Immediately after the large sample was taken from the polymerization mixture at the 

monomer conversion of 29.8%, DMAEMA (9.312 g, 59.23 mmol), having been degassed via 

freeze-pump-thaw, was injected by syringe. A small aliquot was withdrawn for use as the t = 0 

min sample in the 1H NMR characterization of the synthesis of the second block, using the integral 

of the vinyl peak at 6.15 ppm along with the summed integrals of all -COOCH2- peaks from 4.35 
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to 4.00 ppm. Portions of the reaction mixture were removed at t = 90 min (the free diblock 

copolymer was designated as BCP-1 and the hairy NPs was designated as BHP-1), 195 min (the 

free copolymer designated as BCP-2 and the hairy NPs designated as BHP-2), and 400 min (the 

free copolymer designated as BCP-3 and the hairy NPs designated as BHP-3) after the injection 

of DMAEMA, corresponding to the monomer conversions of 8.6, 15.2, and 30.3 %, respectively, 

on the basis of the new t = 0 min sample. (i.e., the monomer conversion of DEGMMA for the first 

block was excluded in the calculation of these monomer conversions.) The DPs were found to be 

42, 75, 149 for the second block of three samples, respectively. Each withdrawn portion was 

opened to air, and diluted with DMF. The hairy NPs were isolated via ultracentrifugation 

(Beckman Optima L-90K Ultracentrifuge with type 60 Ti rotor, 35,000 rpm, 45 min), and washed 

five times with DMF through a cycle of re-dispersion, ultracentrifugation, and decanting of the 

supernatant solution. A portion of the supernatant liquid from the first cycle was passed through a 

column of silica gel (bottom)/activated basic aluminum oxide (top) (2:1, v/v). The free polymers 

were analyzed by SEC and 1H NMR spectroscopy after precipitation in hexane and drying under 

vacuum.  

2.2.5. Quaternization of PDEGMMA-b-P(DEGMMA-co-DMAEMA) Brush-Grafted Silica 

NPs Using CH3I  

Below is a representative procedure for the quaternization of DMAEMA units of BHP-3 

using CH3I, producing charged PDEGMMA-b-P(DEGMMA-co-TMAEMA-I brush-grafted silica 

NPs (BHP-3-Q). BHP-3 (215.1 mg, 0.237 mmol DMAEMA units) was added into a 25 mL two-

necked flask and dispersed in dry THF (10 mL) under N2. The flask was then completely wrapped 

with aluminum foil to protect the reaction mixture from exposure to light. Iodomethane (2.103 g, 

14.82 mmol) was added into the NP dispersion, which was then stirred at ambient temperature 
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overnight. After water (10 mL) was added into the mixture, the volatile components were removed 

under high vacuum, yielding a pale yellow NP dispersion. The obtained hairy NPs, designated as 

BHP-3-Q, were purified by three cycles of ultracentrifugation (Beckman Optima L-90K 

Ultracentrifuge with type 60 Ti rotor, 35,000 rpm, 45 min) and re-dispersion using water. The NPs 

were collected as a transparent yellow gelatinous solid, re-dispersed in water, and freeze-dried 

overnight using a LABCONCO FreeZone 1 Liter Benchtop Freeze Dry System, yielding a light, 

fibrous solid (187.6 mg). 

2.2.6. Preparation of Aqueous Dispersions of PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) 

Brush-Grafted Silica NPs  

The freeze-dried quaternized hairy NPs were added into a pre-weighed vial, to which Milli-

Q water was added to achieve the desired concentration. The mixture was sonicated in an ice/water 

ultrasonic bath (Fisher Scientific Model B200 Ultrasonic Cleaner) to disperse the NPs, followed 

by sonication in warm water to facilitate dispersal. For rheological samples, the vials were stored 

in a refrigerator (∼ 4 °C) overnight and further sonicated at room temperature to obtain a 

transparent, homogeneous dispersion. 

2.2.7. Rheology Studies  

Rheological experiments were conducted on a TA Instruments rheometer (Model TA 

AR2000ex). A cone-plate geometry with a cone diameter of 20 mm and an angle of 2° (truncation 

52 μm) was used; the temperature was controlled via a Peltier plate. In each rheological 

measurement, an aqueous dispersion of quaternized hairy NPs (90 μL), which was warmed at an 

elevated temperature to facilitate the transfer, was added onto the bottom plate by a micropipet. 

To minimize water evaporation during the rheological measurement, the solvent trap was filled 

with water and covered. Dynamic storage modulus G′ and loss modulus G′′ were recorded from 
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oscillatory shear experiments performed at a fixed frequency of 1 Hz in a temperature ramp with 

a heating or cooling rate of 3 °C/min. The frequency dependences of G′ and G′′ at certain 

temperatures were obtained by frequency sweep tests from 0.1 to 100 Hz. A strain amplitude of γ 

= 1.0 % was used in all dynamic tests. 

2.2.8. Dynamic Light Scattering (DLS) Studies of Thermoresponsive Properties of 

PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) Brush-Grafted Silica NPs  

The DLS studies of thermoresponsive properties of quaternized hairy silica NPs in water at 

a concentration of 0.2 mg/g were carried out on a Brookhaven Instruments BI-200SM goniometer 

equipped with a PCI BI-9000AT digital correlator, a temperature controller, and a solid-state laser 

(model 25-LHP-928-249, λ = 633 nm). The scattering angle was set at 90°. The aqueous 

dispersions of quaternized hairy NPs were filtered, using Millipore hydrophilic PTFE filters, into 

borosilicate glass tubes with an inner diameter of 7.5 mm, and the tubes were sealed with PE 

stoppers. The sample was placed in the sample holder of the DLS system, and the temperature was 

gradually varied. At each temperature, the DLS sample was equilibrated for 20 min before the data 

were recorded. A Laplace inversion program (CONTIN) was used to analyze the DLS data. For 

each temperature, multiple measurements (15 – 30 measurements) were taken, and the average 

apparent hydrodynamic size was calculated along with the standard deviation. 

 
2.3. Results and Discussion 

2.3.1. Synthesis of PDEGMMA-b-P(DEGMMA-co-DMAEMA)  Brushes on 17 nm Silica NPs 

Three PDEGMMA-b-P(DEGMMA-co-DMAEMA) brush-grafted silica NP samples with 

the same molecular weight for the first (inner) PDEGMMA block but different block lengths for 

the second (outer) P(DEGMMA-co-DMAEMA) block were synthesized through a one-pot, 

surface-initiated ATRP from initiator-functionalized silica NPs.  
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The silica NPs used in this work had an average size of 17 nm, determined from transmission 

electron microscopy (TEM) micrographs, and were surface-functionalized with a 

chlorodimethylsilane-terminated ATRP initiator, 11-(chlorodimethylsilyl)undecyl 2-

bromoisobutyrate. To ensure the anhydrous conditions required for the immobilization of the 

chlorosilane-terminated initiator, the original dispersion of silica NPs in methyl isobutyl ketone 

was azeotropically distilled with toluene under vacuum three times to remove the trace amount of 

water in the dispersion. The remaining dispersion of silica NPs was subjected to a stepwise solvent 

exchange with anhydrous THF, which was freshly distilled from sodium/benzophenone, before a 

solution of 11-(chlorodimethylsilyl)undecyl 2-bromoisobutyrate in THF was added. The mass 

ratio of the chlorodimethylsilane-terminated initiator to silica NPs was 1.30 : 1.00. The 

immobilization reaction was carried out at 70 °C under a N2 atmosphere for 42 h. The initiator-

functionalized NPs were purified by multiple rounds of ultracentrifugation/re-dispersion in THF. 

After drying with a stream of air, the initiator NPs were collected as a slightly brown powder that 

can be readily dispersed in common organic solvents such as THF, CHCl3, and DMF.  

PDEGMMA-b-P(DEGMMA-co-DMAEMA) brushes were then grown from the initiator 

NPs by a one-pot, surface-initiated ATRP polymerization (Scheme 2.1). The initiator NPs were 

fully dispersed in anisole by ultrasonication before the addition of the first monomer, DEGMMA, 

and the catalyst. A free initiator, ethyl 2-bromoisobutyrate, was added into the reaction mixture to 

achieve a finer control of the surface polymerization and to produce a more easily characterized 

free polymer for 1H NMR spectroscopy and size exclusion chromatography (SEC) analysis. The 

surface-initiated ATRP of DEGMMA was conducted at 60 °C using CuBr/CuBr2/PMDETA as the 

catalyst system. After the DEGMMA conversion reached 29.8%, determined by 1H NMR 

spectroscopy, a portion of the polymerization mixture was removed using a degassed syringe for 
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the characterization of free polymer PDEGMMA and the PDEGMMA brush-grafted silica NPs 

(HHP). From SEC analysis of the free homopolymer (Figure 2.1A), a unimodal peak was observed 

with Mn,SEC of 22.8 kDa and a polydispersity index (PDI) of 1.24, indicating that the 

polymerization was controlled. TGA showed that the weight retentions of the initiator NPs and the 

purified HHP at ~ 800 C were 89.4 and 22.8%, respectively (Figure 2.1B, curve i and ii), which 

confirmed that PDEGMMA brushes were successfully grown on the initiator NPs.  

To study the molecular weight and molecular weight distribution of the grafted PDEGMMA 

brushes in HHP, we used HF to etch the silica core,7c,17 collected and analyzed the cleaved polymer 

by SEC.16 The SEC traces of the free PDEGMMA and the PDEGMMA cleaved from HHP were 

superimposed, indicating that the molecular weights and PDIs were essentially identical (Figure 

2.2). By using the monomer conversion and the molar ratio of DEGMMA to the sum of free and 

surface-bound initiators, the degree of polymerization (DP) of PDEGMMA was calculated to be 

101. Note that the amount of the surface initiator that successfully initiated polymerization was 

calculated from the ratio of the weight of grafted PDEGMMA brushes to the total weight of both 

free and grafted PDEGMMA by using the free initiator as reference. The mass of the PDEGMMA 

brushes grafted on silica NPs was determined from the TGA data and the amount of initiator NPs; 

the total weight of PDEGMMA was found from the monomer conversion and the amount of 

monomer DEGMMA used in the polymerization.16 

Immediately after the removal of the first portion from the polymerization mixture, the 

second monomer, DMAEMA, which had already been degassed, was injected into the reaction 

system for the synthesis of the second block, P(DEGMMA-co-DMAEMA). Excluding both the  
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Figure 2.1.  (A) Size exclusion chromatography (SEC) traces of free homopolymer PDEGMMA 

and PDEGMMA-b-P(DEGMMA-co-DMAEMA) diblock copolymers (BCP-1, BCP-2, and BCP-

3). (B) Thermogravimetric analysis of (i) ATRP initiator-functionalized silica nanoparticles (NPs), 

(ii) PDEGMMA brush-grafted silica NPs (HHP), and (iii)-(v) PDEGMMA-b-P(DEGMMA-co-

DMAEMA) brush-grafted silica NPs (BHP-1, BHP-2, and BHP-3, respectively). 
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Figure 2.2. Size exclusion chromatography (SEC) traces of (A) the free PDEGMMA formed in 

the synthesis of PDEGMMA brush-grafted silica nanoparticles (HHP), (B) the PDEGMMA brush 

cleaved from HHP, (C) the free diblock copolymer PDEGMMA-b-P(DEGMMA-co-DMAEMA) 

(BCP-3) formed in the synthesis of diblock copolymer brush-grafted silica NPs (BHP-3), and (D) 

the polymer cleaved from hairy NPs BHP-3. The SEC analysis was performed using a PL-GPC 

50 Plus with DMF as the carrier solvent. 
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reacted and the removed DEGMMA, the second phase of the polymerization had a feed 

DMAEMA-to-DEGMMA ratio of 1.09 : 1.00. The reaction was allowed to continue at 60 °C; two 

large samples were removed when the monomer conversion reached 8.6 % and 15.2 %, based on 

the amount of the two monomers immediately after the addition of DMAEMA. The corresponding 

free block copolymers were designated as BCP-1 and BCP-2, and the hairy NPs were designated 

as BHP-1 and BHP-2, respectively. The polymerization was stopped at the monomer conversion 

of 30.3 % (the free diblock copolymer: BCP-3 and the hairy NPs: BHP-3). These three sets of 

hairy NPs had the same PDEGMMA block with a DP of 101 but different block lengths for the 

second block. From the SEC analysis of the three free diblock copolymers (Figure 2.1A), the peak 

gradually shifted to the high molecular weight side with the increase of the monomer conversion 

and remained narrow, indicating that the polymerization was controlled and that the removal of 

large portions of the reaction mixture did not adversely impact the “living” nature of the 

polymerization. The Mn,SEC values for BCP-1, BCP-2, and BCP-3 were 30.0, 36.1, and 50.4 kDa, 

respectively, and the corresponding PDIs were 1.24, 1.25, and 1.30. TGA analysis showed that the 

weight retention at 800 C decreased progressively from 22.80 % for HHP to 17.36 % for BHP-1, 

14.97 % for BHP-2, and 11.23 % for BHP-3 (Figure 2.1B).  

Similar to the study of the molecular weight of PDEGMMA brushes, we found that the SEC 

traces of BCP-3 and the diblock copolymer cleaved from BHP-3 using HF were basically the same 

(Figure 2.2C and D). Using the same method for the determination of the DP of PDEGMMA, the 

block lengths of the second block in the three block copolymer samples were calculated to be 42, 

75, 149, respectively, on the basis of the monomer conversions and the monomer-to-initiator ratio, 

which were re-defined after the addition of the second monomer.16 The molar percentage of 

DMAEMA units in each sample was determined from the 1H NMR spectrum of the free diblock 
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copolymer using the peak at 2.56 ppm, which was from –CH2N- of DMAEMA units, and the peak 

at 3.38 ppm, which was from –OCH3 of DEGMMA. Given that the DPs of both blocks were 

known, the composition of the second block was obtained, and the numbers of DMAEMA units 

in BCP-1, -2, and -3 were found to be 17, 32, and 57, respectively. Figure 2.3 shows representative 

TEM micrographs of hairy NPs BHP-1, -2, and -3 cast from chloroform dispersions. Although we 

are not certain if hairy NPs in each sample achieved perfect close-packing via self-assembly during 

the solvent evaporation, it is clear that qualitatively, the interparticle distance increased from BHP-

1, to BHP-2, and to BHP-3, consistent with the increased block lengths for the second block of 

three samples in the same order. 

Using the average size of silica NPs (17 nm), TGA data, DPs of the polymers, and assuming 

that the density of silica NPs was 2.07 g/cm3, the grafting densities of PDEGMMA brushes in HHP 

and diblock copolymer brushes in BHP-1, -2, and -3 were calculated, and were found to be 0.60 – 

0.61 chains/nm2. This further confirmed the “living” characteristic of the one-pot ATRP for the 

synthesis of homopolymer and diblock copolymer brushes. The characterization data for all hairy 

NPs and the corresponding free polymers are summarized in Table 2.1. 

2.3.2. Quaternization of DMAEMA Units in PDEGMMA-b-P(DEGMMA-co-DMAEMA) 

Brush-Grafted Silica NPs  

To enhance the dispersibility and stability of thermosensitive hairy silica NPs in water, we 

converted the DMAEMA units in the PDEGMMA-b-P(DEGMMA-co-DMAEMA) brushes to 

quaternized ammonium iodide units using CH3I,
17 affording PDEGMMA-b-P(DEGMMA-co-

TMAEMA-I) brush-grafted silica NPs. The reaction was carried out at room temperature in 

anhydrous THF under an N2 atmosphere. The flask was wrapped in aluminum foil to prevent 

exposure to light, as strong discoloration would occur otherwise. After the reaction proceeded  
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Figure 2.3. Bright field TEM micrographs of (A) PDEGMMA-b-P(DEGMMA-co-DMAEMA) 

diblock copolymer brush-grafted silica NPs (BHP-1), (B) BHP-2, and (C) BHP-3. The hairy NPs 

were cast onto carbon-coated, copper TEM grids from the CHCl3 dispersions with a hairy NP 

concentration of ~ 4 mg/mL.  
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Table 2.1. Characterization Data for PDEGMMA Brush-Grafted Silica NPs, PDEGMMA-b-

P(DEGMMA-co-DMAEMA) Brush-Grafted Silica NPs, and the Corresponding Free Polymers. 

Polymer Brush-Grafted 

Nanoparticle Sample  

Mn,SEC (kDa) and PDI 

of Free Polymer a  

DPs of 1st and 

2nd Block b 

nDMAEMA 
c 

 
(chains/nm2) d 

HHP e 22.8, 1.24 101, 0 0 0.61 

BHP-1 e 30.0, 1.24 101, 42 17 0.61 

BHP-2 e 36.1, 1.25 101, 75 32 0.61 

BHP-3 e 50.0, 1.30 101, 149 57 0.60 
a The values of Mn,SEC and polydispersity indices (PDI) were obtained by size exclusion 

chromatography (SEC) calibrated with polystyrene standards. b The degree of polymerization (DP) 

was calculated using the monomer conversion and the molar ratio of monomer(s) to both free and 

surface-bound initiators. c The number of DMAEMA monomer units in each sample was 

calculated using the 1H NMR spectrum of the free copolymer along with the DPs of the 1st and 2nd 

block. d The grafting densities of polymer brushes were calculated by using TGA data, DPs of 

polymers, and the core silica nanoparticle size of 17 nm. e HHP and BHP stand for homopolymer 

brush-grafted NPs and diblock copolymer brush-grafted silica NPs. Their corresponding free 

polymers are PDEGMMA and BCP-1, -2, and -3, respectively.  
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overnight, the NPs were washed with water via repeated ultracentrifugation. Figure 2.4 shows the 

1H NMR spectra of BHP-3 before and after the reaction. The complete alkylation was evidenced 

by the disappearance of the -N(CH3)2 peak at 2.4 ppm and the appearance of -N+(CH3)3 peak at 

3.2 ppm. Note that we also conducted a control quaternization experiment using BCP-3 under the 

similar conditions and found that the reaction was complete after 90 min.16 

2.3.3 Thermally-Induced, Reversible Sol-Gel Transitions of Aqueous Dispersions of 

BHP-1-Q.  

The purified, quaternized hairy NPs collected after ultracentrifugation were re-dispersed in 

Milli-Q water and freeze-dried, which allowed for easier storage and dispersal. For study of 

thermally induced sol-gel transitions, the quaternized hairy NPs were dispersed in Milli-Q water 

through several cycles of ultrasonication in cold and warm water baths before storing in a 

refrigerator overnight to ensure homogeneity. The resultant dispersions were transparent and either 

pale yellow (BHP-1-Q and -2-Q) or colorless (BHP-3-Q). To obtain desired concentrations, water 

was either added or evaporated under a gentle nitrogen stream. The dispersions of hairy NPs were 

then heated and ultrasonicated until homogeneity was achieved. We note here that it is extremely 

difficult, if not impossible, to disperse freeze-dried HHP, the PDEGMMA brush-grafted silica 

NPs, in water at sufficiently high concentrations, despite the presence of a layer of PDEGMMA 

brushes. 

Aqueous dispersions of BHP-1-Q were found to exhibit a reversible, cooling-induced 

gelation at low-to-moderate concentrations. To visually examine the sol-gel transition of a 6.5 wt 

% aqueous dispersion of BHP-1-Q, the sample, which was a free-flowing, slightly viscous liquid 

at and above room temperature, was gradually cooled from elevated temperatures; the dispersion 

was allowed to equilibrate at a given temperature for 20 min before the vial was tilted to check if  
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Figure 2.4. 1H NMR spectra of (A) PDEGMMA-b-P(DEGMMA-co-DMAEMA) brush-grafted 

silica nanoparticles (BHP-3) in CDCl3 and (B) PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) 

(BHP-3-Q) in D2O. 

 

 

 

 

 

 

 



51 

 

the sample was a liquid or a gel. As shown in Figure 2.5, the dispersion was a free-flowing liquid 

at 35 °C, but was found to be a stationary gel at 15 °C. The sol-gel transition temperature (Tsol-gel) 

obtained in this way was Tsol-gel = 17 °C. The sol-gel transition was reversible; increasing 

temperature converted the gel into a sol. The gelation did not noticeably alter the appearance of 

the dispersion, nor did any visual change or loss in transparency occur at temperatures well above 

or well below Tsol-gel or the cloud point of PDEGMMA (26 C). This consistency suggests that the 

charged outer block indeed stabilized the hairy NPs in the aqueous dispersion and prevented the  

irreversible aggregation of hairy NPs against temperature variations. We previously observed that 

clear micellar hydrogels of doubly thermosensitive diblock copolymers turned into clear and then 

opaque liquids upon heating from below to above the cloud point of the thermosensitive corona 

polymer.5c  

To quantitatively characterize the thermally-induced reversible sol-gel transition of the 6.5 

wt % aqueous dispersion of BHP-1-Q, we carried out oscillatory shear experiments at a fixed 

frequency of 1 Hz in a temperature ramp with a cooling rate of 3 °C/min (Figure 2.6A). A strain 

amplitude of γ = 1.0 % was used, which was in the linear viscoelastic regime, as demonstrated by 

a strain sweep experiment performed at 5 °C (Figure 2.6C). The values of dynamic storage 

modulus G′ were lower than those of dynamic loss modulus G′′ at higher temperatures, indicative 

of a liquid state. As the temperature decreased, G′ slowly increased, eventually surpassing G′′ after 

a crossover point of 18.1 °C, suggesting that the aqueous dispersion of hairy NPs had changed 

from a viscous liquid into a gel. The crossover point in the temperature ramp is often taken as the 

Tsol-gel.
19 The NP dispersion was also subjected to a heating ramp at the same rate, from which the 

gel-to-sol transition temperature (Tgel-sol) was obtained as 20.0 °C (Figure 2.6B); the small 

difference between Tsol-gel (18.1 °C) and Tgel-sol (20.0 °C) demonstrated a minimal hysteresis  
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Figure 2.5. Digital optical pictures of a 6.5 wt % aqueous dispersion of PDEGMMA-b-

P(DEGMMA-co-TMAEMA-I) brush-grafted silica NPs (BHP-1-Q) at 35 and 15 °C. 
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Figure 2.6. Plots of dynamic storage modulus G′ and loss modulus G′′ of a 6.5 wt % aqueous 

dispersion of PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) brush-grafted silica nanoparticles 

(BHP-1-Q) versus temperature obtained from an oscillatory shear experiment performed (A) in a 

cooling ramp using a frequency of 1 Hz, a strain amplitude of 1.0 %, and a cooling rate of 3 °C/min 

and (B) in a heating ramp using a frequency of 1 Hz, a strain amplitude of 1.0 %, and a heating 

rate of 3 °C/min; (C) A strain sweep performed at 5 °C on the 6.5 wt % aqueous dispersion of 

BHP-1-Q using a frequency of 1 Hz. 

  



54 

 

between cooling and heating processes. Compared with moderately concentrated aqueous 

solutions of doubly thermosensitive diblock copolymers (e.g., 20 wt %),5 where G′ and G′′ usually 

changed rather rapidly with temperature, the sol-gel/gel-sol transitions of the current system were 

quite broad, spanning a temperature range of ~ 15 C, which might be related to the less drastic 

change in the volume fraction of hairy NPs with temperature than that of thermosensitive diblock 

copolymers transitioning from unimers to micelles as well as the relatively small volume fraction 

of the thermosensitive block in the hairy NPs. As will be discussed later, one source of the slow 

change of the volume fraction of hairy NPs with temperature is the broad LCST transition of the 

inner PDEGMMA block.  

The effect of temperature on the rheological properties of the 6.5 wt % aqueous dispersion 

of BHP-1-Q was further studied by means of frequency (f) sweep experiments in the range of 0.1 

to 100 Hz at selected temperatures using a strain amplitude of 1.0 % (Figure 2.7). At 30 °C, well 

above the Tsol-gel, the G′′ scaled with f in a linear fashion, while G′, in addition to being lower in 

magnitude at lower frequencies, scaled approximately with the square of f. These are the 

characteristic of a viscoelastic fluid. At 23 °C, G′ and G′′ were effectively congruent, scaling with 

f 0.5 as is typical for a system transitioning between liquid and elastic solid states. Finally, at 5 °C, 

as expected for a gelled system, G′ was essentially independent of f from 0.1 Hz to ~ 50 Hz, and 

G′′ varied only slightly with a minimum around 4 Hz. These frequency sweeps at different 

temperatures also demonstrated the sol-gel transition with decreasing temperature.          

The observed thermally induced reversible sol-gel/gel-sol transitions of the 6.5 wt % aqueous 

dispersion of BHP-1-Q are believed to originate from the LCST transition of the inner PDEGMMA 

block. At lower temperatures, the inner block is more hydrated and assumes more extended 

conformations, increasing the volume fraction of hairy NPs in the dispersion. When the volume  
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Figure 2.7. Plots of dynamic storage modulus G′ and loss modulus G′′ of a 6.5 wt % aqueous 

dispersion of PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) brush-grafted silica NPs (BHP-1-Q) 

versus frequency at (A) 30 °C, (B) 23 °C, and (C) 5 °C using a strain amplitude of 1.0 %. 
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fraction is at or above the critical value for packing,1 the hairy NPs cannot pass one another, 

resulting in the formation of a hydrogel (Scheme 2.2). Above the LCST transition, the PDEGMMA 

block collapsed, driving the transition from a gel to a sol. This mechanism is similar to those for 

thermally induced sol-gel transitions of aqueous solutions of thermosensitive hydrophilic diblock 

copolymers and aqueous dispersions of chemically crosslinked, spherical poly(N-

isopropylacrylamide) microgels.5,20 

To investigate the effect of hairy NP concentration on Tgel-sol, heating ramp experiments were 

performed on aqueous dispersions of BHP-1-Q with various NP concentrations using the same 

conditions as for the determination of Tgel-sol of the 6.5 wt % aqueous dispersion (that is, a 

frequency of 1 Hz, a strain amplitude of 1.0 %, and a heating rate of 3 C/min).16 As summarized 

in Figure 2.8, with the increase of BHP-1-Q concentration, Tgel-sol increased, from 13.3 °C at 6.0 

wt % to 45.9 °C at 8.0 wt %. No sol-gel or gel-sol transition was observed visually or rheologically 

for the 5.0 wt % aqueous dispersion of BHP-1-Q in the temperature range of 5 to 65 C, indicating 

that the critical gelation concentration for BHP-1-Q is between 5 – 6 wt %. 

Apparently, the greater volume fraction of hairy NPs in the dispersion afforded by the increase 

in the number of hairy NPs reduces the need for a higher degree of swelling of the thermosensitive 

inner block to achieve gelation. (i.e., the brushes do not need to stretch to such an extent to prevent 

the dispersion from flowing.) While it may seem unusual for the sol-gel/gel-sol transitions to occur 

at temperatures above the commonly reported cloud point of free PDEGMMA in water (26 C) 

for aqueous dispersions with concentrations higher than 7.0 wt %, there are three possible reasons. 

(i) The Tgel-sol and Tsol-gel are related to the mechanical properties of the hydrogels; they are related 

to but not directly determined by the LCST transition of the PDEGMMA block.5c (ii) The LCST  
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Scheme 2.2. Proposed Mechanism for Hydrogel Formation from Aqueous Dispersion of 

Thermosensitive Diblock Copolymer Brush-Grafted Silica NPs by Packing (for Simplicity, 

Counteranions are Omitted). 
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Figure 2.8. Tgel-sol of aqueous dispersion of BHP-1-Q (black square) and BHP-2-Q (red circle), 

obtained from rheological measurements, as a function of concentration of hairy nanoparticles. 

For BHP-2-Q, the Tgel-sol at 7.0 wt % was determined by visual examination.  

 
 
 
 
 
 
 
 
 
 
 
 



59 

 

transition of the inner PDEGMMA block is very likely different from that of the free PDEGMMA 

because one end is grafted to the surface of silica NPs and the other end is covalently bonded to 

the charged outer block. (iii) It has been commonly observed and generally accepted that with the 

increase of temperature, the solvent quality of water becomes increasingly poor for the PEO-type 

thermosensitive water-soluble polymers.1,5,21   

2.3.4. Solution Behavior of Aqueous Dispersions of BHP-2-Q and BHP-3-Q at Low-to-

Moderate Concentrations  

We also examined the solution behavior of aqueous dispersions of BHP-2-Q and BHP-3-Q 

in response to temperature changes. At a sufficiently high concentration, the aqueous dispersion 

of BHP-2-Q, which had a longer charged outer block than that of BHP-1-Q, also underwent 

thermally-induced, reversible sol-gel transitions. Figure 2.9 shows the optical pictures of a 6.0 % 

aqueous dispersion of BHP-2-Q at 50 and 25 C as well as the cooling and heating ramps of the 

same sample from rheological measurements. The Tsol-gel and Tgel-sol, determined from temperature 

ramps, were found to be essentially the same (35.2 and 35.0 C, respectively). Although the 

concentration of BHP-2-Q in Figure 2.9 was lower than that of BHP-1-Q in Figures 2.5 and 2.6, 

the Tsol-gel and Tgel-sol were higher. The concentration effect on Tgel-sol of aqueous dispersion of BHP-

2-Q was also investigated, and the results are summarized in Figure 2.8. Similar to BHP-1-Q, the 

Tgel-sol increased with the increase of hairy NP concentration, from 20.9 C at 5.5 wt % to 80 C at 

7.0 %. The latter was determined by visual examination using a temperature-controlled oil bath 

due to instrumental limitation. At a given concentration, the Tgel-sol of BHP-2-Q was significantly 

higher, by > 20 C, than that of BHP-1-Q, which should be the result of a longer charged outer 

block of BHP-2-Q, making the volume of single hairy nanoparticle larger and thus the Tgel-sol 

greater. Furthermore, the increase in Tsol-gel with concentration was found to be steeper than that  
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Figure 2.9. Digital optical pictures of a 6.0 % aqueous dispersion of BHP-2-Q at 50 and 25 C 

(top), and temperature ramps (bottom) from oscillatory shear experiments using a fixed frequency 

of 1 Hz, a strain amplitude of 1.0 %, and a heating/cooling rate of 3 C/min. 
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of BHP-1-Q. For instance, the Tgel-sol was 35.0 °C at 6.0 wt % and 80 °C at 7.0 wt % for BHP-2-

Q, compared to 13 °C and 26.4 °C at the same concentrations, respectively, for BHP-1-Q. This is 

likely due to the increased hydrophilicity granted by the more substantial charged block of BHP-

2-Q; a greater temperature is required to decrease the volume fraction of hairy NPs to below a 

critical value. As a result, the Tgel-sol of BHP-2-Q spanned over an even larger temperature range 

than that of BHP-1-Q. 

To investigate the lower limit of Tgel-sol, a sample with 5.0 wt % BHP-2-Q was prepared and 

was found to be a free flowing fluid in the temperature range of 0 to 65 C by visual inspection. 

Since the 5.5 wt % aqueous dispersion of BHP-2-Q exhibited a thermally induced sol-gel 

transition, the CGC for BHP-2-Q should be between 5.0 and 5.5 wt %, and is likely lower than 

that of BHP-1-Q. This is reasonable because the outer charged block in BHP-2-Q was longer, 

making the hydrodynamic volume of individual hairy NPs larger.  

Among the three sets of hairy NPs, BHP-3-Q had the longest charged outer block with a DP 

of 149 in comparison to 75 for BHP-2-Q and 42 for BHP-1-Q (Table 2.1). For this set of hairy 

NPs, we found by visual examination that the aqueous dispersion with a concentration of 4.0 wt 

% or higher remained a gel in the temperature range of 0 to ~ 100 C, while the 3.0 wt % dispersion 

appeared to be a liquid and no sol-gel transition was observed from 0 C to 65 C (Figure 2.10). 

There was also no change in the appearance of these two aqueous dispersions of BHP-Q-3 with 

temperature, though the sample was markedly less yellow than either BHP-1-Q or BHP-2-Q. 

Rheology study also showed that the 4.0 wt % aqueous dispersion of BHP-3-Q was a gel in the 

temperature range of 5 – 70 C.16 Likely, this is because the charged outer block of BHP-3-Q was 

too long, making the LCST transition of the inner PDEGMMA block either too weak to drive a 

sol-gel transition or simply disappear in the studied temperature range.    
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Figure 2.10. Digital optical pictures of aqueous dispersions of BHP-3-Q with concentrations of 

4.0 (left) and 3.0 wt % (right) at ambient conditions. 
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2.3.5. Dynamic Light Scattering (DLS) Study of PDEGMMA-b-P(DEGMMA-co-TMAEMA-

I) Brush-Grafted Silica Nanoparticles in Milli-Q Water  

The observed thermally induced, reversible sol-gel transitions of aqueous dispersions of 

BHP-1-Q and BHP-2-Q were believed to be driven by the LCST transition of the inner 

thermosensitive PDEGMMA block, and the fact that no sol-gel transitions were observed for 

aqueous dispersions of BHP-3-Q was likely a result of the very weak or no LCST transition of the 

PDEGMMA block due to the long charged outer block, as mentioned earlier. To confirm the origin 

of the solution behavior of BHP-1-Q, -2-Q, and -3-Q in water at low-to-moderate concentrations, 

we conducted DLS studies of thermoresponsive properties of these hairy NPs in Milli-Q water. 

The concentration of hairy NPs in the aqueous dispersion was 0.2 mg/g for all three samples. The 

temperature was gradually increased, and at each selected temperature the DLS sample was 

equilibrated for 20 min before the measurements were taken. Figure 2.11 shows the plots of 

average apparent hydrodynamic size (Dh) versus temperature along with standard deviations for 

the three sets of hairy NPs. For BHP-1-Q, Dh remained essentially the same in the temperature 

range of 5 – 15 C, and began to decrease when the temperature was above 15 °C, from ~ 117 nm 

to ~ 89 nm in the range of 15 °C to 55 °C. The onset temperature of the LCST transition appeared 

to be at ~ 20 C. Above 55 °C, the Dh leveled off.  

Our lab previously reported that the LCST transition of thermosensitive polymer brushes 

grafted on silica (nano)particles began at a lower temperature and continued over a broader 

temperature range (4 – 10 C) than those of the free polymers in water (< 2 C).10c Interestingly, 

the LCST transition of the PDEGMMA block in BHP-1-Q was even more broadened, over a range 

of nearly 40 C. This is presumably because one end of the PDEGMMA block was fixed to the 

surface of silica NPs and another end was covalently bonded to the P(DEGMMA-co-TMAEMA- 
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Figure 2.11. Average apparent hydrodynamic size Dh, obtained from DLS study of 0.2 mg/g 

aqueous dispersion of PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) brush-grafted silica NPs in 

Milli-Q water using CONTIN analysis, along with the standard deviation as a function of 

temperature for BHP-1-Q (black square), BHP-2-Q (red circle), and BHP-3-Q (blue triangle).  
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I) block. The outer block is charged and highly solvated (hydrated), which opposes the contraction 

force arising from the LCST transition and thus weakens the LCST transition. In addition, both 

blocks of the brushes are not monodisperse but polydisperse in nature, despite the relatively low 

PDI (1.24 for the free BCP-1). Moreover, the relatively high grafting density of polymer brushes 

resulted in increased intersegmental and interchain interactions, which decreased as the distance 

from the grafting site increased due to substrate curvature. The segment-segment interactions 

reduce water-monomer interactions, which is the source of LCST type behavior, making the LCST 

transition occur at a lower temperature and over a wider temperature range. Combining all these 

factors, it is understandable that the inner PDEGMMA block collapses in a significantly non-

uniform manner and the LCST transition of the PDEGMMA block in BHP-1-Q is much broader 

than that of the corresponding free polymer. The broader LCST transition should be at least one 

source of the broader sol-gel transitions observed in Figure 2.6.  

A similar behavior was observed for BHP-2-Q. The LCST transition began at ~ 30 C, which 

was ~ 10 – 15 C higher than that of BHP-1-Q, and continued over the temperature range of 30 – 

65 C. The size change in the studied temperature range, from ~ 152 nm at 5 – 30 C to ~ 135 nm 

at 65 C, was smaller than that of BHP-1-Q, and did not appear to level off even when the 

temperature reached 65 C. All these observations indicate that the LCST transition of BHP-2-Q 

was even weaker than that of BHP-1-Q. Apparently, the higher onset temperature for the LCST 

transition of BHP-2-Q is caused by the longer charged outer block of BHP-2-Q (DP = 75) 

compared with that of BHP-1-Q (DP = 42). It is known that the LCST of a thermosensitive polymer 

is higher when linked to a more hydrophilic polymer.1,22 The charged P(DEGMMA-co-

TMAEMA-I) block was highly solvated, imposing a stronger resistance to the LCST transition-

induced shrinking of the PDEGMMA block. 
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Different from BHP-1-Q and -2-Q, the variation of the Dh of BHP-3-Q was very small, and 

no obvious LCST transition was observed. This suggests that the resistance to collapse of the inner 

PDEGMMA block from the long, highly solvated polyelectrolyte block was so large that the 

PDEGMMA block was unable to undergo the LCST transition, with an essentially constant Dh of 

~ 200 nm across the studied temperature range. Consequently, there were no sol-gel transitions for 

aqueous dispersions of BHP-3-Q, simply because the volume fraction of hairy NPs in the 

dispersion did not change to any significant extent with temperature.  

2.4. Conclusion 

A series of thermosensitive PDEGMMA-b-P(DEGMMA-co-TMAEMA-I) diblock 

copolymer brush-grafted silica NPs with an identical PDEGMMA inner block but different block 

lengths for the charged outer block was synthesized by a one-pot surface-initiated ATRP from 

initiator-functionalized, 17 nm silica NPs and subsequent quaternization of tertiary amine groups 

using iodomethane.23 At a sufficient concentration, aqueous dispersions of hairy NPs with an 

appropriate composition for the diblock copolymer brushes underwent in situ, reversible 

transitions between a free-flowing, slight viscous liquid and a free-standing hydrogel in response 

to temperature changes. The sol-gel transition temperature increased with increasing the NP 

concentration. Dynamic light scattering studies confirmed that the thermally-induced sol-gel 

transitions of hairy NPs in water were driven by the LCST transition of the thermosensitive 

PDEGMMA inner block. When the charged outer block was too long, no obvious LCST transition 

was observed, and the aqueous dispersions did not exhibit sol-gel transitions in response to 

temperature changes. Currently, we are working on stimuli-responsive polymer brush-grafted 

mesoporous silica NPs and hollow silica NPs with mesoporous walls to demonstrate the formation 
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of both physically crosslinked 3-D network hydrogels and packing-based hybrid hydrogels. The 

utility of these hairy NPs in specific applications will be shown in due course.  
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Appendix A 

for  

Chapter 2: Reversible Sol-Gel Transitions of Aqueous Dispersions of Silica 

Nanoparticles Grafted with Diblock Copolymer Brushes Composed of a 

Thermosensitive Inner Block and a Charged Outer Block 
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A.1. Cleavage of Polymer Brushes from Hairy Silica NPs Using HF.  

The following is the procedure for the cleavage of PDEGMMA-b-P(DEGMMA-co-

DMAEMA) diblock copolymer brushes from BHP-3 hairy NPs. A similar procedure was used to 

cleave PDEGMMA brushes from HHP. PDEGMMA-b-P(DEGMMA-co-DMAEMA) brush-

grafted silica NPs (BHP-3, 10.1 mg) were dispersed in THF (5 mL) in a Teflon tube. Hydrofluoric 

acid (HF, 48 ~ 51 % aqueous solution, 0.5 mL) was then added to the dispersion, and the mixture 

was stirred overnight. After the excess HF was neutralized using a saturated aqueous solution of 

Ca(OH)2, the cleaved polymer from hairy NPs was extracted with methylene chloride at 35 °C. 

The free polymer and the cleaved polymer were analyzed back-to-back using a PL-GPC 50 Plus, 

an integrated GPC/SEC system from Polymer Laboratories, Inc. with a differential refractive index 

detector, one PSS GRAL guard column (50  8 mm, Polymer Standards Service-USA, Inc.), and 

two PSS GRAL linear columns (each 300  8 mm, molecular weight range from 500 to 1,000,000 

according to Polymer Standards Service-USA, Inc.) at ambient conditions. DMF was the carrier 

solvent with a flow rate of 1.0 mL/min. Narrow-disperse polystyrene standards (Polymer 

Laboratories, Inc.) were used for calibration. 

A.2. Calculation of Degree of Polymerization (DP) of PDEGMMA Formed in Synthesis of 

PDEGMMA Brush-Grafted, 17 nm Silica Nanoparticles (HHP).  

The DP of PDEGMMA formed in the synthesis of HHP was calculated using monomer 

conversion, determined by 1H NMR spectroscopy, and TGA data of hairy NPs and initiator NPs.  

The TGA curve of the initiator NPs was shifted vertically so that the weight retentions of 

initiator NPs and HHP at 100 C were identical. (The difference in weight retentions of initiator 

NPs and HHP at 100 C is believed to come from the absorbed moisture despite drying under high 

vacuum.) The corrected weight retention of the initiator NPs at 800 C is 89.90 %. The ratio of the 
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silica residue to the volatile portion at 800 C is 100 : 11.23 for initiator NPs and 100 : 338.60 for 

HHP. As the mass of the initiator NPs used in the polymerization was 1.057 g, the total mass of 

the grafted polymer is [(338.60 – 11.23)/(100 + 11.23)]   1.057 g = 3.111 g. Because the mass of 

DEGMMA used in the polymerization was 20.074 g and the monomer conversion was 29.84 %, 

the total mass of polymer, both free and grafted polymer, is 5.990 g. Thus, the mass of free polymer 

is 2.879 g. Using the ratio of free to bound polymer and the amount of free initiator used (29.7 mg, 

152.3 µmol), the surface initiator that successfully initiated polymerization was found to be 164.6 

mol. Therefore, as the sum of the free initiator and the surface initiator is 316.9 mol and the 

amount of monomer added was 106.7 mmol, the monomer-to-initiator ratio was calculated to be 

337 : 1. Thus, the DP of PDEGMMA is 101.  

A.3. Calculation of Grafting Density of PDEGMMA Brushes Grafted on 17 nm Silica 

Nanoparticles (HHP)  

For the calculation of grafting density of PDEGMMA brushes, assuming that the silica NPs 

are spherical and the density is 2.07 g/cm3, the mass of a single NP with a diameter of 17 nm is 

5.32 × 10-18 g. Therefore, the amount of the grafted PDEGMMA on one silica NP is 1.74 × 10-17 

g. The molecular weight of PDEGMMA calculated from DP is 19010 g/mol. Thus, the number of 

the grafted PDEGMMA chains on one silica NP is (1.74 × 10-17 g/19010 g/mol) × 6.022 × 1023 = 

551 chains. The surface area of one bare silica NP is πD2 = 908 nm2. Therefore, the grafting density 

of PDEGMMA brushes on silica NPs is 0.61 chains/nm2.  

A.4. Calculation of the DP of PDEGMMA-b-P(DEGMMA-co-DMAEMA)  

To determine the total monomer conversion in the synthesis of the second block, the small 

sample removed for 1H NMR spectroscopy analysis immediately after the addition of DMAEMA 

was designated as t = 0 min for this phase of the polymerization. The sum of the integrals of the 
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two vinyl peaks at 6.15 and 6.13 ppm was compared against the t = 0 sample, using the summed 

integrals of all -COO CH2- peaks (from 4.35 to 4.00 ppm), which was a constant through the 

polymerization, as internal reference. In this way, a conversion was obtained regarding only the 

polymerization of the second block. To calculate the new monomer-to-initiator ratio, it must be 

recalled that a significant portion of the polymerization mixture (27.25 wt %) had been removed, 

and the amounts of DEGMMA and both free and bound initiator must be recalculated accordingly: 

mmol DEGMMA = 106.7 mmol  (1 – 0.2725)  (1 – 0.2984) = 54.46 mmol, where 0.2984 

corresponds to the fraction of monomer having already been polymerized (monomer conversion), 

and mmol initiator = (free initiator + bound initiator) = 316.9 µmol   (1 – 0.2725) = 230.5 µmol.  

Therefore, the ratio of monomer-to-initiator is (54.46 mmol DEGMMA + 59.23 mmol 

DMAEMA)/230.5 µmol initiator = 493 : 1. In the case of BCP-1, the monomer conversion for the 

second block was 8.6 %, making the DP of the second block 0.086  493 = 42 units and the total 

DP = 101 + 42 = 143. To calculate the number of DMAEMA units (nDMAEMA), the molar 

percentage of DMAEMA units was obtained from the 1H NMR analysis of the free polymer by 

comparing the integral of the peak at 2.56 ppm (-CH2N(CH3)2 from DMAEMA units) to the 

integral of the peak at 3.38 ppm (-OCH3 from DEGMMA units). The molar content of DMAEMA 

units in BCP-1 was found to be 12.1 %. Therefore, nDMAEMA = 143  0.121 = 17, making the 

composition of the second block 17 DMAEMA units and 25 DEGMMA units. The DPs and the 

values of nDMAEMA and nDEGMMA units in the second block of BCP-2 and BCP-3 were calculated 

using the same method.  

A.5. Calculation of Grafting Density of Diblock Copolymer Brushes  

The grafting densities of PDEGMMA-b-P(DEGMMA-co-DMAEMA) brushes in BHP-1, -

2, and -3 were calculated using the same method as for that of PDEGMMA brushes. 
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A.6. Quaternization of PDEGMMA-b-P(DEGMMA-co-DMAEMA) (BCP-3) Using CH3I 

A control quaternization experiment using free diblock copolymer BCP-3 was performed 

under the similar conditions as for BHP-3 to further confirm that the quaternization of DMAEMA 

units with iodomethane went to completion. BCP-3 (190.3 mg, 0.2394 mmol DMAEMA units) 

were added to a 25 mL two-necked flask and dissolved in dry THF (10 mL) under an N2 

atmosphere. The flask was then completely wrapped in aluminum foil, preventing any exposure to 

light. Iodomethane (1.953 g, 13.76 mmol) was added to the solution, which was then stirred at 

ambient temperature for 90 min. All volatile portions were removed under vacuum and the 

polymer residue was characterized using 1H NMR spectroscopy. As shown in Figure A1, the 

reaction was complete after 90 min.  
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Figure A1. 1H NMR spectra of free diblock copolymer BCP-3 PDEGMMA-b-P(DEGMMA-co-

DMAEMA) before (A) and after (B) quaternization with iodomethane for 90 min. 
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Figure A2. Plots of dynamic storage modulus G (black square) and loss modulus G (red circle) 

of aqueous dispersions of BHP-1-Q at various concentrations versus temperature. The data were 

collected from oscillatory shear experiments performed in heating ramps by using a frequency of 

1 Hz, a strain amplitude of 1.0 %, and a heating rate of 3 °C/min. 
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Figure A3. A strain sweep performed on the 6.0 wt % aqueous dispersion of BHP-2-Q at 5 °C 

using a frequency of 1 Hz.  
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Figure A4. Plots of dynamic storage modulus G′ and loss modulus G′′ of a 6.0 wt % aqueous 

dispersion of BHP-2-Q versus frequency at (A) 40 °C, (B) 35 °C, and (C) 5 °C with a constant 

strain amplitude of 1.0 %. 
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Figure A5. Plots of dynamic storage modulus G (black square) and loss modulus G (red circle) 

of aqueous dispersions of BHP-2-Q at various concentrations versus temperature. The data were 

collected from oscillatory shear experiments performed in heating ramps by using a frequency of 

1 Hz, a strain amplitude of 1.0 %, and a heating rate of 3 °C/min. 
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Figure A6. Plot of dynamic storage modulus G (black square) and loss modulus G’ (red circle) 

of a 4.0 wt% aqueous dispersion of BHP-3-Q. The data were collected from an oscillatory shear 

experiment performed in a heating ramp by using a frequency of 1 Hz, a strain amplitude of 1.0 

%, and a heating rate of 3 °C/min. 
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Chapter 3. Physically Crosslinked Hydrogels Formed Solely by 

Thermosensitive Hairy Silica Nanoparticles 
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Abstract 

This Chapter describes thermally-induced reversible formation of three-dimensional 

network-based hydrogels from aqueous dispersions of thermosensitive diblock copolymer brush-

grafted silica nanoparticles (hairy NPs). These hairy NPs consisted of a silica core, a water-soluble 

polyelectrolyte inner block of poly(2-(methacryloyloxy)ethyltrimethylammonium iodide), and a 

thermosensitive poly(methoxydi(ethylene glycol) methacrylate) (PDEGMMA) outer block 

synthesized by sequential surface-initiated atom transfer radical polymerizations and post-

polymerization modification. Moderately concentrated dispersions of these hairy particles in water 

underwent an in situ transition from free flowing liquid to self-supporting gel upon heating to 

sufficiently high temperatures; the transition was fully reversible upon cooling. The gelation was 

driven by the lower critical solution temperature (LCST) transition of the outer PDEGMMA block, 

which self-associated into hydrophobic domains upon heating acting as physical crosslinking 

points for the gel networks. Rheological studies showed that the sol-gel transition temperature 

decreased with increasing hairy NP concentration, and gelation was achieved at concentrations as 

low as 3 wt %. 
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3.1. Introduction 

Polymer brush-grafted nanoparticles (hairy NPs) are unique hybrid materials consisting of 

polymer chains end-tethered to the surface of core NPs.1,2 They have shown great promise in a 

wide range of applications such as advanced polymer nanocomposites, chemical sensing, catalysis, 

and lubrication.1-3 The NP cores are typically inorganic1-2,4-5 or metallic6 in nature with a variety 

of possible shapes and functionalities.7,8 Hairy NPs with high grafting densities are often 

synthesized by growing the brushes from the NP surface, i.e., “grafting from”. By coupling this 

approach with “living”/controlled radical polymerization techniques such as atom transfer radical 

polymerization (ATRP), nitroxide-mediated radical polymerization, or reversible addition 

fragmentation chain transfer polymerization, well-defined polymer brushes with controlled 

molecular weights have been synthesized from a variety of NPs.1-2,4,9-11 Hairy particles allow for a 

combination of desired properties from both the polymer, such as stimuli-responsiveness12 or 

environmental compatibility,2,13 and the NPs, including optical,14 magnetic,15 or other physical 

properties.16-18 

We have been particularly interested in environmentally responsive polymer brush-grafted 

NPs, e.g., thermosensitive hairy NPs, and their behavior in response to external stimuli.12,19-23 

Thermoresponsive hairy NPs, typically made with polymers displaying a lower critical solution 

temperature (LCST) in water, exhibit a decrease in hydrodynamic volume when the temperature 

is raised from below to above the LCST. Polymer brushes also determine the interactions between 

hairy NPs and their environments. For example, our group discovered that thermosensitive hairy 

NPs can be reversibly and quantitatively transferred between water and an immiscible liquid phase, 

either organic solvents or hydrophobic ionic liquids upon heating/cooling.12,19-20,23 
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Thermosensitive hairy NPs are structurally similar to block copolymer micelles with a 

thermosensitive corona. Thermosensitive block copolymers have received considerable attention 

for their utility in the formation of physical hydrogels, which exhibit reversible, in situ sol-gel 

transitions in response to temperature changes.24-27 These hydrogels have advantages over their 

chemically cross-linked analogues for some applications, e.g., site-specific drug delivery where 

their unique sol-gel transition behavior can allow them to be injected as a free-flowing solution 

which turns into a gel immediately due to the temperature change. There are generally two types 

of injectable block copolymer hydrogels: gels based on the packing of discrete micelles24,28-29 and 

gels based on the bridging of micellar cores by a water-soluble block, usually the center block of 

ABA or ABC triblock copolymers.24,30-32 The similarity between thermosensitive block copolymer 

micelles and hairy NPs presents the opportunity to fashion injectable hydrogels with NP properties 

not typically available to block copolymer micellar hydrogels. For example, one can use 

mesoporous or hollow NP8,33 to make thermoresponsive hairy NPs; the mesopores or hollow 

interiors can be functionalized to allow for loading of substances incompatible with the 

hydrophobic polymer-based cores. In a recent work, we took advantage of the structural similarity 

of hairy NPs to thermosensitive block copolymer micelles to achieve hydrogels based on the 

cooling-induced jamming of diblock copolymer brush-grafted silica NPs.34 These NPs were 

composed of a silica core with a thermosensitive inner block, which underwent a dehydration-

hydration transition at lower temperatures, and a hydrophilic polyelectrolyte outer block, which 

served to prevent aggregation at higher temperatures. 

In the present work, the formation of 3-D network hydrogels using thermosensitive diblock 

copolymer brush-grafted silica NPs is achieved. The hairy NPs were synthesized by sequential 

surface-initiated ATRPs of N,N-dimethylaminoethyl methacrylate (DMAEMA) and 
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methoxydi(ethylene glycol) methacrylate (DEGMMA) (Scheme 3.1). PDEGMMA is a 

thermosensitive water-soluble polymer with a LCST of 26 C. The tertiary amines of PDMAEMA 

were converted to permanently charged trimethylammonium iodide moieties by alkylation with 

methyl iodide, yielding brushes with a hydrophilic inner block and a thermosensitive outer block. 

At sufficiently high concentrations and above the LCST of the outer block, the PDEGMMA blocks 

self-assembled into hydrophobic domains (micellar cores), which were linked to core silica NPs 

by the bridging polyelectrolyte chains in a manner similar to thermosensitive ABA or ABC 

micellar gels (Scheme 3.2). The gel properties were studied by rheological measurements. 

 

3.2. Experimental Section 

3.2.1. Materials 

A dispersion of silica NPs with a size of 10–15 nm, according to the manufacturer, in methyl 

isobutyl ketone (30 -31 wt%) was obtained from Nissan Chemical. Karstedt’s catalyst (2,1-2.4 % 

Pt in xylene) was purchased from Gelest. Chlorodimethylsilane (98%, Alfa Aesar) was stored in a 

refrigerator prior to use. 10-Undecenyl 2-bromoisobutyrate was synthesized according to a 

literature procedure.19 CuCl (98%, Aldrich), CuCl2 (98%, Aldrich) were used as received. N, N, 

N', N', N"-Pentamethyldiethylenetriamine (PMDETA, 99%, Aldrich), ethyl 2-bromoisobutyrate 

(EBiB, 98%, Aldrich), and methoxydi(ethylene glycol) methacrylate  (DEGMMA, 95%, Aldrich) 

were dried over calcium hydride, distilled under vacuum, and kept in a desiccator. N, N-

Dimethylaminoethyl methacrylate (DMAEMA, 99%, Acros) was passed through a column of 

silica gel and basic alumina (2/1, v/v) to remove the inhibitor. All monomers were stored in a 

refrigerator prior to use. Methyl iodide (99%, stabilized) was purchased from Acros and used as  
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Scheme 3.1. Synthesis of P(TMAEMA-I)-b-PDEGMMA brush-grafted silica NPs by sequential 

surface-initiated atom transfer radical polymerizations (SI-ATRP) of DMAEMA (M1) and 

DEGMMA (M2) followed by quaternization with methyl iodide, and molecular structures of 

DMAEMA and DEGMMA. 
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Scheme 3.2. Thermally reversible physically crosslinked 3-dimensional network hydrogels 

formed solely by thermosensitive diblock copolymer brush-grafted silica nanoparticles composed 

of a hydrophilic inner block and thermosensitive outer block. 
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received. All other chemical reagents were purchased from either Aldrich or Fisher and used 

without further purification. 

3.2.2. Characterization 

In order to characterize the polymers cleaved off the nanoparticles as well as the untethered 

polymers produced from the free initiators during the synthesis of hairy nanoparticles, size 

exclusion chromatography (SEC) was carried out at ambient temperature using a PL-GPC-50 from 

Polymer Laboratories, Inc. with a differential refractive index detector, a guard column (PLgel 10 

µm, 50  7.5 mm, Agilent Technologies), and three PLgel 10 µm Mixed-B columns (300  7.5 

mm, Agilent Technologies) with a linear range from 500 to 10,000,000 Da according to the 

manufacturer. N,N-Dimethylformamide (DMF) with 0.1 M LiBr was used as the mobile phase 

with a flow rate of 1.0 mL/min. The data were processed using CirrusTM GPC/SEC software, 

according to a calibration with PS standards. 1H NMR spectra were obtained using a Varian 

VNMRS 500 MHz spectrometer; the residual solvent proton signal (either D2O or CDCl3) was 

used as reference peak. Thermogravimetric analysis (TGA) was carried out in air using a Seiko 

6300 TG/DTA at a heating rate of 20 C/min. Transmission electron microscopy (TEM) was 

performed on a Zeiss Libra 200 HT FE MC microscope at an accelerating voltage of 200 kV. 

Bright field images were recorded using a bottom-mounted Gatan UltraScan US1000XP CCD 

camera. Hairy silica NPs were cast from chloroform (~2 mg/mL) onto a carbon-coated, copper 

TEM grid and allowed to dry at ambient conditions. 

3.2.3. Synthesis of ATRP Initiator-Functionalized Silica Nanoparticles 

10-Undecenyl 2-bromoisobutyrate (6.020 g, 18.85 mmol) was added into a 50 mL two-

necked flask and dried under high vacuum, followed by the injection of chlorodimethylsilane (3.1 

mL, 27.9 mmol) under an N2 atmosphere and a solution of Karstedt’s catalyst in xylene (75 µL). 
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After the 1H NMR spectroscopy analysis showed that the reaction was complete, the remaining 

chlorodimethylsilane was evaporated in vacuum, and the obtained 11-

(chlorodimethylsilyl)undecyl 2-bromoisobutyrate was dissolved in toluene (5 mL).   

MIBK-ST (26.700 g dispersion, corresponding to 8.010 g bare silica NPs) was added into a 

250 mL three-necked flask and diluted with 20 mL anhydrous toluene. A portion of the mixture 

(~15 mL) was then distilled off under vacuum to azeotropically remove any trace amount of water. 

Dry toluene (20 mL) was then injected into the flask, and the azeotropic distillation was carried 

out again. This process was repeated for a total of three times.  The resultant dispersion of silica 

NPs had a volume ~ 60 mL. The solution of the freshly synthesized 11-

(chlorodimethylsilyl)undecyl 2-bromoisobutyrate in toluene was added into the dispersion, and the 

mixture was heated to 90 °C and stirred under a N2 atmosphere for 64 h. The initiator-

functionalized silica NPs were then diluted in DMF and isolated via centrifugation (Beckman 

Optima L-90K Ultracentrifuge with type 60 Ti rotor, 35,000 rpm, 30 min). The initiator NPs were 

re-dispersed in DMF and centrifuged again. This dispersion-centrifugation cycle was repeated for 

a total of three times. Fractionation of the initiator NPs was carried out to achieve a more uniform 

size distribution. The obtained initiator NPs were dispersed in DMF and the dispersion was 

centrifuged at 20,000 rpm. The NPs deposited at the bottom of the tube were removed, and the 

supernatant dispersion was then centrifuged at 30,000 rpm. The NPs collected in this fraction were 

dried under a stream of air, affording a slightly brown powder (2.401 g).  

3.2.4. Synthesis of PDMAEMA Brushes from Initiator NPs 

ATRP initiator-functionalized NPs (0.291 g) were ultrasonicated in anisole (7.301 g) in a 25 

mL two-necked flask to yield a homogeneous dispersion. N,N-Dimethylaminoethyl methacrylate 

(DMAEMA, 2.907 g, 18.49 mmol), copper(I) chloride (12.8 mg, 1.29  10-4 mol), copper(II) 
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chloride (4.7 mg, 3.5  10-5 mol), and ethyl 2-bromoisobutyrate (EBiB, 3.9 mg, 1.99  10-5 mol) 

were added into the dispersion. The flask was then sealed under nitrogen, and N, N, N', N', N"-

pentamethyldiethylenetriamine (PMDETA, 41.2 mg, 2.38  10-5 mol) was injected into the 

reaction mixture immediately before degassing by three freeze–pump–thaw cycles. The 

polymerization was carried out at 85 °C and monitored by 1H NMR spectroscopy. After 8.5 h, the 

monomer conversion reached 65.8 %, and the reaction was halted. The degree of polymerization 

(DP) of the polymer was calculated to be 271 accounting for both the free and surface-bound 

initiator, as described in a previous work.34 

The PDMAEMA brush-grafted silica NPs were collected and purified through five cycles of 

re-dispersion in THF and ultracentrifugation. The PDMAEMA homopolymer brush-grafted NPs 

were designated as HP. A portion of the supernatant liquid from the first cycle was passed through 

a column of silica gel (bottom)/activated neutral aluminum oxide (top) (2:1, v/v) to obtain the free 

polymer. The PDMAEMA free polymer was purified by precipitation in a mixture of hexane and 

diethyl ether (v/v, 10 : 1), dried under high vacuum, and stored in a stock solution in anisole for 

use as a free macroinitiator in the synthesis of diblock copolymer brush-grafted NPs. 

3.2.5. Synthesis of PDMAEMA-b-PDEGMMA Brush-Grafted Silica NPs 

Two samples of PDMAEMA-b-PDEGMMA brush-grafted silica NPs were synthesized with 

differing PDEGMMA block lengths using the same PDMAEMA brush-grafted NPs. Below is the 

synthesis of PDMAEMA-b-PDEGMMA brushes on silica NPs with the PDEGMMA outer block 

DP of 100 (DB-100); another sample with the PDEGMMA outer block DP of 195 (DB-195) was 

made in a similar fashion.  

PDMAEMA brush-grafted silica NPs (206.3 mg) were dispersed in anisole (3.555 g) and 

added into a 25 mL, two-necked flask. Free PDMAEMA (89.1 mg, 2.10  10-6 mol) and 
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DEGMMA (0.873 g, 4.63 mmol) was then added, followed by copper(I) chloride (3.1 mg, 3.4  

10-5 mol), and copper(II) chloride (2.3 mg, 1.7  10-5 mol). PMDETA (5.7 mg, 3.3  10-5 mol) was 

injected into the mixture immediately before freezing for degassing. The mixture was subjected to 

three freeze-pump-thaw cycles and heated to 65 °C. After 80 min, the reaction was halted by 

exposure to air and dilution with THF. The hairy NPs were collected and purified by repeated 

ultracentrifugation as done for PDMAEMA brush-grafted NPs. The free diblock copolymer 

PDMAEMA-b-PDEGMMA (FDB-100) was purified by precipitation in a mixture of hexane and 

diethyl ether (v/v, 10:1), dried under vacuum and analyzed by 1H NMR spectroscopy to determine 

the DP of PDEGMMA using the DP of the PDMAEMA block as the basis.  

3.2.6. HF Cleavage of Polymer Brushes from Silica NPs 

The following procedure was used for the cleavage of P(DMAEMA-b-DEGMMA)  brushes 

from silica NPs (DB-100) by HF for direct characterization; a similar process was employed for 

the cleavage of PDMAEMA brushes from HP. Please note that HF is particularly hazardous and 

should not be used when alone or without proper safety precautions, including ready access to 

calcium gluconate gel. 

DB-100 hairy NPs (10.1 mg) and THF (10 mL) were added into a Teflon tube and sonicated 

to achieve a homogeneous dispersion. Hydrofluoric acid (HF, 48 ~ 51 % in water, 0.5 mL) was 

added slowly. The mixture was stirred at room temperature for 24 h and then neutralized with a 

saturated aqueous solution of calcium hydroxide. The mixture was then partitioned between 

methylene chloride and water at 35 °C; the aqueous phase was then extracted with methylene 

chloride (5 mL  4). The extracts were combined and dried over anhydrous sodium sulfate. The 

cleaved polymer was then analyzed using SEC. 

 
 



93 

 

3.2.7. Quaternization of PDMAEMA-b-PDEGMMA Brush-Grafted NPs with CH3I 

Described below is the quaternization of tertiary amine moieties in DB-100, producing hairy 

NPs denoted as Q-100. A similar procedure was used for the quaternization of DB-195, yielding 

Q-195. A dispersion of DB-100 (203.1 mg, 0.764 mmol DMAEMA units) in THF (10 mL) was 

prepared in a 25 mL two-necked flask by ultrasonication and sealed under a N2 atmosphere. The 

flask was covered with aluminum foil to prevent exposure to light prior to the addition of methyl 

iodide (2.816 g, 19.84 mmol). The reaction mixture was stirred overnight. The mixture was then 

diluted with water and placed under vacuum to remove THF and excess methyl iodide. The 

quaternized polymer brush-grafted silica NPs, denoted as Q-100, were isolated from the resultant 

aqueous dispersion by ultracentrifugation (35000 rpm, 45 min) and washed by three subsequent 

rounds of ultracentrifugation/re-dispersion in water. 

3.2.8. Rheological Study of Gelation of Aqueous Dispersions of P(TMAEMA-I)-b-

PDEGMMA Brush-Grafted Silica NPs  

Aqueous dispersions of P(TMAEMA-I)-b-PDEGMMA brush-grafted silica NPs were 

prepared by ultrasonication in an ice water bath (Fisher Scientific Model B200 Ultrasonic 

Cleaner), and stored in a refrigerator. The aqueous dispersions obtained were both transparent and 

homogeneous. 

Rheological analysis was carried out using a rheometer from TA Instruments (Model TA AR 

2000ex) to elucidate the gelation behavior and gel properties of aqueous dispersions of both Q-

100 and Q-195. A cone–plate geometry with a cone diameter of 20 mm and an angle of 2° 

(truncation 52 μm) was employed; the temperature was controlled by the bottom Peltier Plate. For 

each rheological experiment, an aqueous dispersion of quaternized hairy NPs (90 μL), which was 

cooled in an ice water bath to aid in sample loading, was added directly onto the plate by a 
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micropipette. The solvent trap was filled with water and a solvent trap cover was used to minimize 

water evaporation during rheological measurements. Dynamic storage modulus G′ and loss 

modulus G′′ were recorded from oscillatory shear experiments performed by using a fixed 

frequency of 1 Hz and strain amplitude (γ) of 0.2 % in a temperature ramp with a heating or cooling 

rate of 3 °C/min. The frequency and strain amplitude dependences of G′ and G′′ at the desired 

concentrations and temperatures were obtained by frequency sweep tests from 0.1 to 100 Hz using 

a strain amplitude of 0.2 % and strain amplitude sweeps from 0.1 to 100 % strain using a frequency 

of 1 Hz, respectively. 

 

3.3. Results and Discussion 

3.3.1. Synthesis of PDMAEMA-b-PDEGMMA Brush-Grafted Silica NPs 

PDMAEMA-b-PDEGMMA diblock copolymer brush-grafted silica NPs were synthesized 

by sequential SI-ATRPs of DMAEMA and DEGMMA. The NPs with a size of 23.5 nm measured 

by TEM were surface-functionalized with an ATRP initiator-terminated chlorosilane, 11-

(chlorodimethylsilyl)undecyl 2-bromoisobutyrate, according to a procedure similar to that used in 

a previous work.34  Briefly, anhydrous toluene was added into the dispersion of silica NPs in 

methyl isobutyl ketone and was distilled off under vacuum to azeotropically remove any water 

present, which was repeated additional two times. A solution of freshly prepared 11-

(chlorodimethylsilyl)undecyl 2-bromoisobutyrate in toluene was then added to the dispersion; the 

mass ratio of initiator silane to NPs was 97 : 100. The reaction mixture was then heated to 90 °C 

and stirred for 64 h before the immobilization reaction was stopped. The initiator-functionalized 

silica nanoparticles were isolated and purified by repeated ultracentrifugation and re-dispersion in 

DMF.  
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PDMAEMA brushes were then grown from the initiator-functionalized silica NPs; the 

initiator NPs were dispersed in anisole and the SI-ATRP of DMAEMA was carried out at 85 °C 

using a catalyst system of CuCl/CuCl2/PMDETA. Additionally, a free initiator, ethyl 2-

bromoisobutyrate, was added into the polymerization mixture to facilitate the characterization of 

PDMAEMA brushes through the formation of analogous free polymer, which is known to closely 

mirror the molecular weight and dispersity of their surface-tethered counterparts.35,36 These free 

polymer analogues allow for more convenient and faster characterization of brush molecular 

weights by SEC than the cleavage and analysis of polymer brushes. However, we note here that 

given the amount of the surface initiator on silica nanoparticles, it is certainly possible to achieve 

living radical polymerization without the addition of a free initiator. The polymerization was 

monitored by SEC and 1H NMR spectroscopy and was stopped after 8.5 h, at which the monomer 

conversion reached 65.8 %. The PDMAEMA brush-grafted silica NPs, denoted as HP, were 

isolated and purified through multiple cycles of ultracentrifugation and dispersal. SEC analysis of 

the free PDMAEMA (Figure 3.1) yielded an Mn,SEC of 54.6 kDa and a PDI of 1.17 relative to 

polystyrene standards, suggesting that control was maintained throughout the polymerization. 

TGA revealed a decrease in weight retention at 800 °C from 89.9 % for initiator-functionalized 

NPs to 18.3% for HP, verifying the presence of tethered PDMAEMA on the surface of silica NPs 

(Figure 3.2). The DP of PDMAEMA was calculated using the TGA data alongside the monomer 

conversion to calculate the mass of grafted polymer and total polymer. The proportion of the 

surface-bound polymer was then used to back-calculate the amount of the “effective” surface 

initiator, the portion of the surface initiator that successfully initiated polymerization, and to define 

the molar ratio of monomer DMAEMA to the total initiating species. The molar ratio of 

DMAEMA to total initiator was then multiplied by the monomer conversion determined by  
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Figure 3.1. Size exclusion chromatography (SEC) analysis of (i) free PDMAEMA formed in the 

synthesis of PDMAEMA brush-grafted silica NPs, (ii) free PDMAEMA-b-PDEGMMA with the 

PDEGMMA block DP of 100 (FDB-100) formed in the synthesis of DB-100 hairy NPs, and (iii) 

free PDMAEMA-b-PDEGMMA with the PDEGMMA block DP of 195 (FDB-195) formed in the 

synthesis of DB-195 hairy NPs.  
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Figure 3.2. Thermogravimetric analysis (TGA) of (i) initiator-functionalized silica NPs, (ii) 

PDMAEMA brush-grafted silica NPs, (iii) PDMAEMA-b-PDEGMMA brush-grafted silica NPs 

with PDEGMMA block DP of 100 (DB-100), and (iv) PDMAEMA-b-PDEGMMA brush-grafted 

silica NPs with PDEGMMA block DP of 195 (DB-195). 
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1H NMR spectroscopy analysis to yield a DP of 271 for PDMAEMA. 

 Following the purification of HP and the free PDMAEMA by centrifugation and 

precipitation, respectively, a subsequent SI-ATRP was performed to grow a thermosensitive 

PDEGMMA block from the Cl-capped chain ends of surface-bound PDMAEMA chains. As such, 

HP was used in the presence of the free PDMAEMA which acted as a “sacrificial” macroinitiator 

in the same vein as ethyl 2-bromoisobutyrate in the SI-ATRP of DMAEMA described above. The 

ATRP of DEGMMA was carried out at 65 °C using a catalyst system of CuCl/CuCl2/PMDETA. 

The polymerization was monitored by SEC. After 80 min, the reaction was stopped, and the  

diblock copolymer brush-grafted NPs (DB) and free copolymer (FDB) were purified in the same 

manner as HP and PDMAEMA through centrifugation and precipitation, respectively. Two hairy 

NP samples were made. From SEC analysis, the peak shifted to the high molecular weight side 

(Figure 3.1); one had an Mn,SEC of 83.9 kDa with a PDI of 1.20, and another one had  an Mn SEC of 

151.7 kDa with a PDI of 1.27. The DPDEGMMA for the two diblock copolymers was found to be 

100 and 195, respectively, calculated from the 1H NMR spectra of PDMAEMA-b-PDEGMMA 

free polymers by comparing the integrals of the peaks at 3.50 - 3.75 ppm from -

OCH2CH2OCH2CH2OCH3 of DEGMMA monomer units to the peak at 2.20 - 2.35 ppm from -

N(CH3)2 of DMAEMA units.  

TGA analysis showed a further reduction in weight retention at 800 °C after the growth of the 

second block, with the shorter diblock copolymer brush-grafted silica NPs (DB-100) at 15.1 % 

and the longer (DB-195) at 11.6% (Figure 3.2). Figure 3.3 shows the representative TEM 

micrographs of HP, DB-100, and DB-195 cast from chloroform dispersions with the same 

concentration. The interparticle distance for DB-100 in Figure 3.3B appears to be larger than that 

for DB-195 in Figure 3.3C, through it is uncertain that these hairy NPs achieved close-packing 
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Figure 3.3. Bright field TEM micrographs of (A) PDMAEMA brush-grafted silica NPs, (B) 

PDMAEMA-b-PDEGMMA brush-grafted silica NPs with PDEGMMA block DP of 100 (DB-

100), and (C) PDMAEMA-b-PDEGMMA brush-grafted silica NPs with PDEGMMA block DP 

of 195 (DB-195). The scale bars are the same for the three TEM micrographs. The TEM samples 

were prepared by drop casting of the dispersions of hairy NPs in chloroform with a concentration 

of 2 mg/mL onto carbon-coated, copper TEM grid. 
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during the evaporation of the solvent. Finally, the numbers of the grafted PDMAEMA  

chains on HP and the PDMAEMA-b-PDEGMMA brush chains on DB-100 and -195 were obtained 

using a core NP size of 23.5 nm, silica density of 2.07 g cm-3, and TGA data. The grafting density 

was found to be between 0.43 and 0.47 chains/nm2. The characterization data for hairy NPs and 

the corresponding free polymers are summarized in Table 3.1. 

To confirm that the brush molecular weight and molecular weight distribution can be represented 

by those of the free polymer formed from the free initiator, the core silica NPs of HB were etched 

away using HF and the cleaved polymer was evaluated by SEC. The analysis revealeda molecular 

weight distribution essentially identical to that of PDMAEMA free polymer (Figure 3.4A). A 

similar cleavage was performed using DB-100, and the SEC analysis showed that the SEC curves 

of the cleaved polymer brushes and the free diblock copolymer almost overlapped (Figure 3.4B), 

confirming the validity of using the free polymer to estimate the molecular characteristics of the 

grafted polymer chains.   

3.3.2. Quaternization of Tertiary Amine Moieties in PDMAEMA-b-PDEGMMA Brush-

Grafted Silica NPs by CH3I  

To enhance the hydrophilicity of the inner block, making it more capable of serving as a 

bridging chain between particles and domains of associated PDEGMMA chains, we subjected the 

tertiary amine groups to exhaustive alkylation using methyl iodide. The converted monomer unit 

(TMAEMA-I) possess a permanently positive charge, greatly increasing solubility in water. The 

resultant P(TMAEMA-I)-b-PDEGMMA brush-grafted silica NPs were designated as Q-100 (from 

DB-100) and Q-195 (from DB-195). The quaternization reaction was carried out at ambient 

temperature in THF under a nitrogen atmosphere. Exposure to light was minimized by covering 

the reaction flask in aluminum foil to decrease light-induced discoloration. After the reaction  
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Table 3.1. Characterization Data for PDMAEMA and PDMAEMA-b-PDEGMMA Brush-Grafted Silica 

NPs and Their Corresponding Free Polymers 

Polymer Brush-Grafted 

Silica NP Sample 

Mn,SEC a  

(kDa) 

PDI a DPDMAEMA 
b DPDEGMMA 

c Grafting density 
d 

HP e 54.6  1.17 271  0.47 chains/nm2 

DB-100 e 83.9 1.24 271 100 0.44 chains/nm2 

DB-195 e 151.7 1.27 271 195 0.43 chains/nm2 

a determined by size exclusion chromatography (SEC) calibrated with polystyrene standards. b The degree 

of polymerization (DP) of the inner PDMAEMA block was calculated using monomer conversion and the 

ratio of monomer to initiating moieties (both free and surface-bound). c The DP of the outer PDEGMMA 

block was calculated using the 1H NMR spectrum of the free block copolymer. d The grafting densities of 

polymer brushes were calculated using TGA data, the DPs of both blocks, and the core silica nanoparticle 

size of 23.5 nm. e HP and DB are designations for homopolymer brush-grafted NPs and diblock copolymer 

brush-grafted silica NPs. Their corresponding free polymers are PDMAMEA, FDB-100, and FDB-195, 

respectively.  
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Figure 3.4. SEC analysis of the cleaved polymer (red) and the free polymer (black) corresponding 

to PDMAEMA brush-grafted NPs (A) and DB-100 (B). 
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proceeded overnight, the hairy NPs were isolated and purified by repeated ultracentrifugation in 

water. The 1H NMR spectra of DB-100 and Q-100 show nearly complete alkylation of tertiary 

amine moieties, evidenced by the almost disappearance of the -N(CH3)2 peak at 2.4 ppm and the 

appearance of -N+(CH3)3 peak at 3.2 ppm (Figure 3.5). Quantitative analysis using the residual 

peak area at 2.4 ppm showed that approximately 5 % of tertiary amine moieties remained after the 

reaction, which should not affect the gelation of aqueous dispersions of hairy NPs because of the 

highly charged hydrophilic inner block.    

3.3.3. Reversible Sol-Gel Transitions of a 6.0 wt% Dispersion of Q-100 in Water 

Quaternized diblock copolymer brush-grafted silica NPs were relatively easily dispersed in 

water by ultrasonication in an ice water bath, and the dispersions were transparent; Q-100 showed 

a yellow coloration while Q-195 was essentially colorless. At moderate concentrations, aqueous 

dispersions of Q-100 underwent sol-gel transitions upon heating. For example, a 6.0 wt % 

dispersion of Q-100 was a flowing liquid at 20 °C (Figure 3.6A) and a self-supporting gel at 50 °C 

(Figure 3.6B); this gelation was fully reversible. The sol-gel transition temperature was determined 

visually by heating the dispersion to selected temperatures, equilibrating at those temperatures for 

several minutes, and inverting the vial to assess the state of the sample; the lowest temperature at 

which a free-standing gel was observed for a 6.0 wt % Q-100 aqueous dispersion was 43.5 °C. 

Further heating the gel did not noticeably alter the appearance of the dispersion.  

To obtain a more quantitative picture of this thermally-induced gelation, oscillatory shear 

experiments were performed using a 6.0 wt % aqueous dispersion of Q-100 (Figure 3.7). A 

temperature ramp was performed at a frequency of 1.0 Hz at a heating rate of 3 °C min-1. The 

strain amplitude was set at 0.2 %, which was well within the linear viscoelastic regime. Dynamic 

storage modulus (G) and loss modulus (G) were measured throughout the temperature range of  
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Figure 3.5. 1H NMR spectrum of (A) PDMAEMA-b-DEGMMA brush-grafted silica NPs (DB-

100) in CDCl3 and (B) P(TMAEMA-I)-b-PDEGMMA brush-grafted NPs (Q-100) in D2O after 

quaternization with CH3I. 
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Figure 3.6. Digital optical pictures of a 6.0 wt % aqueous dispersion of P(TMAEMA-I)-b-

PDEGMMA brush-grafted silica NPs (Q-100) at 20 °C and 50 °C. 
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Figure 3.7. Plots of dynamic storage modulus G′ and loss modulus G′′ of a 6.0 wt % aqueous 

dispersion of P(TMAEMA-I)-b-PDEGMMA brush-grafted silica nanoparticles (Q-100) obtained 

from oscillatory shear experiments performed in a temperature ramp at a frequency of 1 Hz, a 

strain amplitude of 0.2 %, and (A) a heating rate of 3 °C/min or (B) a cooling rate of -3 °C/min. 

(C) Strain sweep at a frequency of 1 Hz and 55 °C. 
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5 to 60 C, with the magnitude of G and G being low at low temperatures and G surpassing G 

at higher temperatures, indicative of a heating-induced sol-gel transition (Figure 3.7A). The 

crossover point was shown to be 39.2 °C; this point is often taken as the sol-gel transition 

temperature and is close to 43.5 °C observed visually. The transition was marked by a relatively 

sharp increase in both G and G beginning slightly before the crossover temperature was reached. 

Shortly after the crossover point at 39.2 °C, a slower increase in both moduli was observed, with  

the gel strength apparently increasing with temperature. Finally, beginning around 50 °C, G 

reached a plateau while G kept increasing. A similar result was obtained from the cooling ramp 

(Figure 3.7B), with the crossover point differing slightly at 37.4 °C, indicating a small hysteresis. 

The initial fast gelation should be similar to that for the thermally induced formation of 3-D 

network micellar hydrogels of thermosensitive ABA and ABC block copolymers as illustrated in 

Scheme 3.2. When the concentration is above the critical gelation concentration and the 

temperature is above the LCST of the thermosensitive outer block, the PDEGMMA collapsed and 

self-assembled into hydrophobic domains or micellar cores, which served to physically crosslink 

the polymer brush-grafted NPs to form a three dimensional network. Following the rapid sol-gel 

transition, the G increased gradually, indicating strengthening of the gel with increasing 

temperature. This suggests an increase in the number of bridging chains. It has been shown 

previously that the LCST transition of thermosensitive polymers can be modulated strongly by the 

attached end-groups.37 In the present case, the inner hydrophilic, charged P(TMAEMA-I) block  

likely increased the LCST of the thermosensitive block, and the polydispersities of core NP size 

and block lengths likely played a role.  

We note here that the linear viscoelastic regime for the gel of the 6.0 wt% aqueous dispersion 

of Q-100 at 55 C was only 2 % strain, much narrower than what would normally be expected of 
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a three-dimensional network hydrogel of, e.g., an ABA triblock copolymer with thermosensitive 

outer blocks, which was ~ 15% or above.28 The main difference between our hairy NP-based  

hydrogels and ABA triblock copolymer 3-D micellar network gels is the covalent linkage of 

polymer chains to the inorganic core. For thermosensitive ABA triblock copolymer network 

hydrogels, upon shearing/deformation, the collapsed A block can be pulled out from a micellar 

core to relieve local stresses (e.g., due to the stretching of the bridging chains). The outer block of 

a diblock copolymer brush-grafted NP can also react to deformation in this way, but the inner 

block would require the scission of the chemical bond to detach from the core. Therefore, hairy 

NP-based hydrogels likely have fewer modes of relaxation upon deformation, potentially making 

these gels more brittle than their micellar counterparts of ABA or ABC triblock copolymers. 

3.3.4. Reversible Sol-Gel Transitions of Dispersions of Q-195 in Water 

P(TMAEMA-I)-b-PDEGMMA brush-grafted silica NPs with a longer thermosensitive outer 

block (Q-195) were also tested in aqueous dispersions for gelation. Like Q-100, aqueous 

dispersions of Q-195 underwent reversible, thermally-induced sol-gel transitions. The increased 

length of the outer PDEGMMA block significantly decreased the temperature required to achieve 

gelation; a 6.0 wt% aqueous dispersion of Q-195 became a free standing gel, by visual inspection, 

at 32 °C, 11.5 °C lower than Q-100 at the same concentration. Figure 3.8 shows this dispersion as 

a flowing liquid at 20 °C and a free-standing gel at 40 °C. Similarly, rheological measurements 

performed during heating and cooling ramps (Figure 3.9A and B) showed a crossover point of 29.3 

and 27.0 °C, respectively, which were ~ 10 °C lower than the sol-gel and gel-sol transition 

temperatures observed in the same analysis of the 6.0 wt % aqueous dispersion of Q-100. The 

evolution of G and G with temperature for Q-195 is similar to that of Q-100, with four distinct 

regions. First, a low magnitude liquid region dominated by G is observed at low temperatures. 
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Figure 3.8. Digital optical pictures of a 6.0 wt% aqueous dispersion of P(TMAEMA-I)-b-

PDEGMMA brush-grafted silica NPs (Q-195) at 20 °C and 40 °C. 
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Figure 3.9. Plots of dynamic storage modulus G′ and loss modulus G′′ of a 6.0 wt % aqueous 

dispersion of P(TMAEMA-I)-b-PDEGMMA brush-grafted silica nanoparticles (Q-195) obtained 

from oscillatory shear experiment performed (A) in a heating ramp at a frequency of 1 Hz, a strain 

amplitude of 0.2 %, and a heating rate of 3 °C/min, and (B) in a cooling ramp using a frequency 

of 1 Hz, a strain amplitude of 0.2 %, and a cooling rate of -3 °C/min (B). (C) Strain sweep at a 

frequency of 1 Hz and 55 °C. 
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Second, a sharp increase in both moduli begins around 26 °C, with G overtaking G at 29.3 °C, 

similar to the transition observed for Q-100, albeit shifted to a lower temperature. Third, a region 

of slower moduli growth with temperature can be seen; this region is much shorter and less 

pronounced than that exhibited by the Q-100 sample. Finally, a flat, plateau region can be seen 

where the dynamic moduli were essentially independent of temperature. This region was 

partiallyobserved for Q-100 (Figure 3.7A), where G in particular appeared to cease increasing 

with temperature, but G was not fully realized in the temperature range examined. In general, it 

appears that the higher molecular weight PDEGMMA block of Q-195 eased the transition from 

sol to gel and led to a stronger gel, as evidenced by higher values of G, which reached 1126 Pa at 

55 C. However, the 6.0 wt% Q-195 dispersion still exhibited the same brittleness seen previously, 

as shown by the breakdown of the gel at even moderate strain amplitudes (Figure 3.9C). 

The thermally induced sol-gel transition of the 6.0 wt% aqueous dispersion of Q-195 was 

also examined by frequency sweep measurements at various temperatures (Figure 3.10). At 10 °C, 

G was consistently greater than G, indicative of a liquid state. At 27 °C, G and G essentially 

overlapped, suggesting that the system was in a transitory state, and at 55 °C, G was greater than 

G and nearly independent of frequency, characteristic of a gelled system. 

3.3.5. Effect of Concentration on Gelation of Aqueous Dispersions of P(TMAEMA-I)-b-

PDEGMMA Brush-Grafted Silica NPs 

 To study the dependencies that the gelation of aqueous dispersions of Q-100 and Q-195 

had on the concentration of hairy nanoparticles in the dispersion, heating ramp experiments were 

performed at various concentrations of hairy NPs. As before, temperature ramps were performed 

using a heating rate of 3 °C min-1, a frequency of 1 Hz, and a strain amplitude of 0.2 %. The results 

are summarized in Figure 3.11. In general, increasing the weight fraction of hairy NPs in aqueous  
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Figure 3.10. Plots of dynamic storage modulus G′ and loss modulus G′′ versus frequency for a 

6.0 wt% aqueous dispersion of P(TMAEMA-I)-b-PDEGMMA brush-grafted silica nanoparticles 

(Q-195) obtained from oscillatory shear experiments performed at 10 C (A), 27 C (B), and 55 

°C (C)) at 0.2 % strain amplitude.  
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Figure 3.11. Plot of Tsol-gel versus concentration for aqueous dispersions of  Q-100 (red solid circle) 

and Q-195 (black solid square), obtained from rheological measurements. 
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dispersion decreased the sol-gel transition temperature. For Q-100 hairy NPs, Tsol-gel decreased 

from 43.3 °C at 3 wt % to 38.0 °C at 8 wt %. A similar decrease can be seen for dispersions of Q-

195, which exhibited a decrease in Tsol-gel from 33.4 °C at 3 wt % to 29.0 at 8 wt %. This may be 

a result of increased bridging efficiency; as the number density of hairy NPs increases, the 

stretching required of the inner block to accommodate the association of the thermosensitive 

PDEGMMA blocks forming physical “crosslinks” is decreased.  

3.3.6. Recovery Test of Physically Crosslinked Hydrogels of Hairy NPs 

Given that the proposed mechanism for the gelation of P(TMAEMA-I)-b-PDEGMMA 

brush-grafted silica NPs is the association of collapsed PDEGMMA blocks into hydrophobic 

domains, forming a network of NPs and PDEGMMA domains bridged by long, polyelectrolyte 

chains, these hydrogels should reform following disruption of the gel network, e.g., by large 

amplitude shearing. As discussed above, these gels are somewhat brittle, likely owing to the 

covalent bonding of the P(TMAEMA-I) block to core NPs, among other factors, and can be broken 

at relatively low strain amplitudes. To confirm the recoverability of these gels, 6.0 wt% aqueous 

dispersions of Q-100 and Q-195 at 55 °C, i.e., in the gel state, were subjected to alternating periods 

of 0.2 % strain amplitude, during which the gels were maintained, and 100 % strain amplitude, 

during which the gels failed and G was larger than G. Upon return to the lower strain amplitude, 

the gels were able to reform quickly due to the physical nature of the networks (Figure 3.12). 

3.4. Conclusions 

Thermosensitive PDMAEMA-b-PDEGMMA diblock copolymer brush-grafted 23.5 nm 

silica NPs were synthesized by sequential SI-ATRP of DMAEMA and DEGMMA from ATRP 

initiator-functionalized NPs.38 The DMAEMA monomer units in the brushes were converted to 

permanently charged TMAEMA-I units through quaternization with methyl iodide. Appropriately  
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Figure 3.12. Plots of dynamic storage modulus G′ and loss modulus G′′ (left axis) of a 6.0 wt % 

aqueous dispersion of Q-100 (A) and Q-195 (B) obtained from oscillatory shear experiments 

performed at 55 C using a frequency of 1 Hz. The strain amplitude was oscillated between 0.2 % 

and 100 % amplitude (right axis) at given intervals. 
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concentrated aqueous dispersions of these hairy NPs exhibited a heating-induced transition from 

a free-flowing liquid to a self-supporting gel; this transition was found to be fully reversible with 

minimal hysteresis. Similar to 3-D micellar network hydrogels formed by thermosensitive ABA 

or ABC block copolymers, this gelation was the result of the self-association of collapsed 

PDEGMMA blocks into hydrophobic domains at temperatures above the LCST. These domains 

served as physical “crosslinks” and formed a three-dimensional network of hairy NPs in water. 

These gels were found to be somewhat more brittle than typical ABA systems, likely due to 

fewer relaxation modes upon deformation to relieve local strain. It was also observed that by 

increasing the length of the outer, thermosensitive block, Tsol-gel decreased significantly at the same 

concentration. The sol-gel transition temperature decreased with increasing NP concentration. We 

believe that the future utility of these brush-grafted NP-based hydrogels lies in their core NPs, 

which are as varied and have as much potential as NPs in general and may lead to hydrogels with 

properties appropriate for a wide array of applications. 
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Figure B1. 1H NMR Spectra of free PDMAEMA-b-PDEGMMA corresponding to DB-100 (left) 

and free DB-195 (right). The DP of PDEGMMA was found by comparing the integrations of 

ethylene glycol protons (3.50 - 3.75 ppm, -OCH2CH2OCH2CH2OCH3) to the pendant methyl 

groups of PDMAEMA (2.20 - 2.35 ppm, -N(CH3)2). 
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Figure B2. Plots of dynamic storage modulus G′ and loss modulus G′′ of a 8.0 wt % aqueous 

dispersion of P(TMAEMA-I)-b-PDEGMMA brush-grafted silica nanoparticles (Q-100) obtained 

from oscillatory shear experiments performed across a temperature ramp at a frequency of 1 Hz, a 

strain amplitude of 0.2 %, and a heating rate of 3 °C/min (A). Frequency sweep experiments were 

performed at 5, 35, and 55 °C (B-D) using a 0.2 % strain amplitude. (E) Strain sweeps performed 

at 55 °C using a fixed frequency of 1 Hz. 
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Figure B3. Plots of dynamic storage modulus G′ and loss modulus G′′ of aqueous dispersions of 

P(TMAEMA-I)-b-PDEGMMA brush-grafted silica nanoparticles (Q-100) with a concentration of 

5.0 wt% (A), 4.0 wt% (B), and 3.0 wt% (C) obtained from oscillatory shear experiments performed 

across a temperature ramp at a frequency of 1 Hz, a strain amplitude of 0.2 %, and a heating rate 

of 3 °C/min.   
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Figure B4. Plots of dynamic storage modulus G′ and loss modulus G′′ of an aqueous dispersion 

of P(TMAEMA-I)-b-PDEGMMA brush-grafted silica nanoparticles (Q-195) with a concentration 

of 10.0 (A), 8.0 (B), 5.0 (C), 4.0 (D), and 3.0 wt % E) obtained from oscillatory shear experiments 

performed across a temperature ramp at a frequency of 1 Hz, a strain amplitude of 0.2 %, and a 

heating rate of 3 °C/min. 
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Abstract 

Increasingly higher industrial standards and environmental concerns are demanding high 

performance lubricants. This chapter presents the synthesis of oil-soluble polymer brush-grafted 

inorganic nanoparticles (hairy NPs) and demonstrates their use as highly effective lubricant 

additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-

grafted silica NPs were synthesized by surface-initiated atom transfer radical polymerization. 

These hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in 

transparency was observed after being kept at -20, 22, and 100 °C for  55 days. High contact 

stress ball-on-flat reciprocating sliding tribological tests at 100 °C showed that the addition of 1 

wt% of hairy NPs into PAO resulted in significant reductions in coefficient of friction (up to ~ 

30%) and wear volume (up to ~ 90%). The excellent lubricating properties of hairy NPs were 

further elucidated by the characterization of the tribofilm formed on the flat using the focused ion 

beam (FIB) technique and transmission electron microscopy. These hairy NPs represent a new 

type of lubricating oil additives with high efficiency in friction and wear reduction. 
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4.1. Introduction 

Lubricants play an indispensable role in enhancing the durability and efficiency of 

automotive engines and industrial machinery. They are believed to form stable interfacial films 

between two rubbing solid materials, decreasing the solid-to-solid contact and improving the load-

carrying capabilities. Fully formulated commercial engine lubricants are composed of a base oil 

(e.g., poly(alphaolefin) (PAO)) and a variety of additives for various functions including anti-wear 

(AW) agent, friction reducer, antioxidant, detergent, dispersant, viscosity index improver, etc.1,2 

The most commonly used AW and friction reduction agent is zinc dialkyldithiophosphate 

(ZDDP).3,4 However, it has been reported that ZDDP may cause damage to the catalysts in the 

catalytic converters, and the emission of sulfur from ZDDP also raises an environmental concern.2 

While tremendous progress has been made in the lubricant industry, as evidenced by the 

increasingly longer intervals for engine oil changes for vehicles, the sheer ubiquity of these 

systems means that even a small increase in lubricant performance could result in a large decrease 

in energy costs. These potential gains coupled with increased awareness of the need for 

environmental protection drive the pursuit of more efficient lubrication and environmentally 

benign additives.  

Nanoparticles (NPs) have been suggested to have great potential as effective lubricant 

additives for reducing friction and wear.5-19 Various NPs with different chemical compositions and 

geometries have been evaluated as lubricant additives, including metals (e.g., Cu, Fe, Ni),5-9 metal 

oxides (e.g., Fe2O3, TiO2, SiO2),
10-15 and metal sulfides (MoS2, WS2, ZnS).16-19 While the 

tribological effects of layered nanomaterials such as MoS2 and WS2 mainly derive from 

progressive delamination under shearing conditions, releasing nanolayers into the interfacial 

zone,19 spherical NPs are thought to behave like mini rolling elements at local asperities and to 
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create, together with the base oil, mechanically strong, uniform load-bearing films between two 

rubbing solid surfaces, which reduce surface-to-surface contact and decrease interfacial friction. 5-

18, 20-22 Moreover, NPs could be physically pressed by the mechanical load onto the contact area or 

wear track to form a deposition layer (a tribofilm), protecting the rubbing surfaces.5-25 To realize 

the tribological benefits of NPs, a critical requirement is that the NPs must be well dispersed in the 

base oils, forming homogeneous dispersions that exhibit long-term stabilities. While various 

organic compounds and surface modification methods have been employed to disperse NPs in base 

oils, achieving the full potential of NPs as lubricant additives and the long-term stability of NPs in 

lubricating oils remains a great challenge. An example is shown in Figure 4.1., in which the dark 

additive of a lubricating oil has precipitated onto the vial wall after being stored at ambient 

conditions for an extended period of time. 

Polymer brush-grafted NPs, also called hairy NPs, consist of an inorganic, metallic, or 

polymeric core and a layer of polymer chains covalently tethered by one end onto the surface of 

the core NP with a high grafting density.26-32 Among various interesting properties and behavior 

exhibited by hairy NPs, their exceptional dispersibility and stability in good solvents are worthy 

of a special note. The favorable enthalpic interactions between polymer brushes and solvents, 

which can be clearly “seen” from 1H NMR spectra of hairy NPs in good solvents, and the entropic 

steric interactions between polymer brushes from different hairy NPs endow hairy NPs with 

superior solubility and stability in good solvents. Furthermore, polymer brushes have been shown 

to exhibit excellent lubricating properties.33 Nevertheless, the tremendous potential of hairy NPs 

as additives for lubricating oils have not yet been explored.  Here we present the synthesis of oil-

soluble NPs by surface-initiated atom transfer radical polymerization (SI-ATRP) (Scheme 4.1) and  
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Figure 4.1. Example of an additized lubricant in which the additive is no longer stable in the 

lubricating oil, as evidenced by the dark vial wall and the clarity of the oil. This lack of stability 

has likely compromised lubrication performance. 
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Scheme 4.1. Schematic Illustration for Synthesis of Oil-Miscible Poly(lauryl methacrylate) 

(PLMA) Brush-Grafted Silica Nanoparticles (NPs) by Surface-Initiated Atom Transfer Radical 

Polymerization (SI-ATRP). 
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their use as lubricant additives. High-contact tribological analysis shows that these NPs are highly 

effective lubricant additives for friction and wear reduction and at the same time exhibit long-term 

stability in PAO. 

 

4.2. Experimental Section 

4.2.1. Materials 

MIBK-ST, a dispersion of silica nanoparticles (NPs) with a size of 10–15 nm (according to 

the manufacturer) in methyl isobutyl ketone (MIBK) (30-31 wt % SiO2), was obtained from Nissan 

Chemical. Chlorodimethylsilane (98%) was purchased from Alfa Aesar and stored in a 

refrigerator. Karstedt’s catalyst (Platinum-divinyltetramethyldisiloxane complex in xylene, 

2.1~2.4% Pt concentration in xylene) was purchased from Gelest, Inc. CuBr (98%, Aldrich) was 

stirred in glacial acetic acid overnight, filtered, and washed with absolute ethanol and diethyl ether. 

After being dried under vacuum, the purified CuBr powder was stored in a desiccator. CuBr2 

(anhydrous, 99%) was purchased from Acros and used as received. N, N, N', N', N"-

Pentamethyldiethylenetriamine (PMDETA, 99%, Aldrich) and ethyl 2-bromoisobutyrate (EBiB, 

98%, Aldrich) were dried with calcium hydride, distilled under reduced pressure, and stored in a 

desiccator. Lauryl methacrylate (LMA, 97%, Acros) was dissolved in tetrahydrofuran (THF) and 

passed through a column of silica gel (bottom)/activated basic aluminum oxide (top) (2/1, v/v) to 

remove the inhibitor; after the removal of THF under high vacuum, the LMA monomer was stored 

in a refrigerator prior to use. 10-Undecenyl 2-bromoisobutyrate was synthesized from 10-

undecenyl-1-ol and 2-bromoisobutryl bromide.34
 Chlorodimethylsilane (98%) was purchased from 

Alfa Aesar and stored in a refrigerator. The polyalphaolefin (PAO) used in the present work was 

SpectrasynTM 4, obtained from Exxon-Mobile. The kinematic viscosities of this PAO at 40 and 
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100 C are 19.0 and 4.1 cSt, respectively, and its pour point was – 87 C. ZDDP was purchased 

from Lubrizol, containing 5-10 % mineral oil (10 wt% phosphorus). All other chemical reagents 

were purchased from either Aldrich or Fisher and used without further purification.  

4.2.2. General Characterization  

Size exclusion chromatography (SEC) of the free polymers formed in the synthesis of oil 

soluble brush-grafted NPs (Hairy NPs) was carried out at ambient temperature using a PL-GPC 20 

(an integrated SEC system from Polymer Laboratories, Inc.) with a refractive index detector, one 

PLgel 5 μm guard column (50 × 7.5 mm), and two PLgel 5 μm mixed-C columns (each 300 × 7.5 

mm, linear range of molecular weight from 200 to 2 000 000 Da). THF was used as the carrier 

solvent, and the flow rate was 1.0 mL/min. The SEC system was calibrated using narrow-disperse 

polystyrene standards. The data were processed using Cirrus GPC/SEC software (Polymer 

Laboratories, Inc.). 1H NMR spectra were recorded on a either a Varian VNMRS 500 MHz or a 

Mercury 300 MHz spectrometer, and the residual solvent proton signal was used as the internal 

standard. DLS analysis of hairy NPs was performed using a Malvern Zetasizer (λ = 633 nm) at a 

scattering angle of 173°. The NP concentrations in THF were 0.2 mg/mL. The samples were 

filtered using Millipore hydrophilic PTFE filters (0.4 μm pore size). Thermogravimetric analysis 

(TGA) was carried out in air at a heating rate of 20 C/min from room temperature to 800 ºC using 

a TA Discovery TGA-MS or TGA Q-50. Transmission electron microscopy (TEM) was performed 

using a Zeiss Libra 200 HT FE MC microscope with an accelerating voltage of 200 kV, and bright 

field images were taken with a bottom-mounted Gatan UltraScan US1000XP CCD camera. TEM 

samples of hairy NPs were prepared by drop-casting dispersions in chloroform with a 

concentration of ~ 4 mg/mL onto a carbon-coated, copper TEM grid using a glass pipet and were 

allowed to dry at ambient conditions. The wear track formed on the cast iron flat that was used in 
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the tribological test of the PAO containing 1 wt% HNP-SiO2-4.1k was examined by TEM for 

studying the tribofilm. The sample for cross-sectional TEM imaging was prepared using a Zeiss 

Auriga 40 dual beam scanning electron microscope/focused ion beam (SEM/FIB) system. The 

sample surface was first protected from the electron beam by applying a thin layer (ca. 0.5um) of 

high resistance, conductive carbon “ink” using a microscopy pen (Ted Pella, Redding, CA). The 

surface was further protected by electron beam deposition of a thin platinum layer prior to use of 

the FIB. 

4.2.3. Synthesis of ATRP Initiator-Functionalized Silica Nanoparticles 

Two batches of ATRP initiator-functionalized silica nanoparticles were made and 

fractionated using ultracentrifugation: INP-SiO2-I and INP-SiO2-II. Below is the detailed 

procedure for the synthesis of INP-SiO2-II; INP-SiO2-I was prepared using a similar process. 

10-Undecenyl 2-bromoisobutyrate (6.020 g, 19.14 mmol) was added into a 50 mL two-

necked flask and dried under high vacuum, followed by the addition of chlorodimethylsilane 

(3.041 g, 32.14 mmol) under an N2 atmosphere and the injection of a solution of Karstedt’s catalyst 

in xylene (75 µL). After the reaction was complete according to 1H NMR spectroscopy, the 

remaining chlorodimethylsilane was removed under vacuum, and the obtained 11-

(chlorodimethylsilyl)undecyl 2-bromoisobutyrate was dissolved in toluene (~ 5 mL).   

MIBK-ST (26.670 g, corresponding to 8.001 g bare silica NPs) was added to a 250 mL three-

necked flask and diluted with ~25 mL anhydrous toluene. A portion of the mixture (~15 mL) was 

then distilled off under vacuum in an effort to azeotropically remove any trace amount of water. 

Dry toluene (~20 mL) was then injected into the flask, and the azeotropic distillation was carried 

out again. This process was repeated for a total of three times.  The resultant dispersion of silica 

NPs totaled ~ 60 mL. The solution of the freshly synthesized 11-(chlorodimethylsilyl)undecyl 2-
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bromoisobutyrate in toluene was added to the dispersion, and the mixture was heated to 90 °C and 

stirred under a N2 atmosphere overnight. The initiator-functionalized silica NPs (INP-SiO2-II) 

were then diluted in THF and isolated via centrifugation (Beckman Optima L-90K Ultracentrifuge 

with type 60 Ti rotor, 35,000 rpm, 30 min). The initiator NPs were then dispersed in THF and 

centrifuged again. This dispersion-centrifugation cycle was repeated for a total of three times. 

Fractionation of the initiator particles was carried out to achieve a more uniform size distribution. 

The obtained initiator NPs were dispersed in DMF and the dispersion was centrifuged at 20,000 

rpm. The NPs deposited at the bottom of the tube were removed, and the supernatant dispersion 

was then centrifuged at 30,000 rpm. The nanoparticles collected in this fraction, designated INP-

SiO2-II, were dried to yield a slightly brown powder.  

4.2.4. Synthesis of Poly(lauryl methacrylate) (PLMA) Brush-Grafted Silica Nanoparticles  

Described below is the synthesis of HNP-SiO2-38.0k from INP-SiO2-I via surface-initiated 

ATRP; other PLMA brush-grafted silica NP samples were synthesized using a similar procedure 

from INP-SiO2-I except HNP-SiO2-9.0k, which was made from INP-SiO2-II. The initiator NPs 

(INP-SiO2-I, 1.002 g) were added into a 100 mL three-necked flask, followed by the addition of 

anisole (35.138 g). The mixture was ultrasonicated until a homogeneous dispersion was obtained. 

LMA (14.724 g, 0.0579 mol), copper(I) bromide (43.0 mg, 3.00 × 10-4 mol), copper(II) bromide 

(20.4 mg, 9.13 × 10-5 mol), and ethyl 2-bromoisobutyrate (7.6 mg, 3.9 × 10-5 mol) were added to 

the dispersion. PMDETA (81.3 mg, 4.69 × 10-4 mol) was injected, and the polymerization mixture 

was immediately deoxygenated by three freeze–pump–thaw cycles. The flask was then placed in 

a thermostated oil bath with a pre-set temperature of 50 °C. The polymerization was monitored by 

1H NMR spectroscopy analysis. After the reaction proceeded for 445 min, the polymerization was 

stopped by removing the flask from the oil bath, exposing the mixture to air, and diluting it with 
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THF. The final monomer conversion was found to be 34.0% from 1H NMR spectroscopy analysis, 

corresponding to a DP of 117, and the final PLMA hairy silica nanoparticles were designated as 

HNP-SiO2-38.0k. The DP was calculated using the monomer conversion, as determined by 1H 

NMR spectroscopy, and the molar ratio of monomer to the sum of free and surface initiators.34  

The PLMA brush-grafted silica NPs, HNP-SiO2-38.0k, were purified by five cycles of 

dispersion-ultracentrifugation as for the initiator NPs, dried under vacuum, and characterized by 

TGA and TEM. The free polymer formed from free initiator EBiB was purified by passing through 

a column of silica gel (bottom)/activated basic aluminum oxide (top) (2:1, v/v) to remove the 

copper catalyst and subsequent precipitation in methanol three times. SEC analysis showed that 

the Mn,SEC value, relative to polystyrene standards, was 38.0 kDa with a PDI of 1.09. 

4.2.5. Preparation of Dispersions of Hairy Silica NPs in PAO and Stability Studies.  

PLMA brush-grafted silica NPs were dried under high vacuum and dispersed directly in PAO 

by ultrasonication to yield a 1 wt % dispersion that was both homogeneous and transparent. To 

test the stability of dispersions of hairy silica NPs in PAO at different temperatures, HNP-SiO2-

4.1k was selected and dispersed in PAO at a concentration of 1 wt% using the above procedure. 

Each dispersion was then divided into portions and transferred into three vials, which were kept 

still at – 20 C (in a freezer), room temperature (22 C), and 100 C (in an oil bath). Digital 

photographs were taken at given time intervals to record the appearance of the hairy NP 

dispersions.  

4.2.6. Tribological Testing 

To investigate the tribological properties of oil-soluble PLMA brush-grafted silica NPs as 

additives for lubricating base oil PAO, high contact stress ball-on-flat reciprocating sliding 

tribological tests were performed using a Phoenix Tribology Plint TE 77. PAO SpectrasynTM 4 



136 

 

base oil was compared with PAO lubricants containing desired concentrations of hairy NP 

additives, typically 1 wt %. These boundary lubrication tests were conducted at 100 C for a total 

sliding distance of 1000 m under a point contact load of 100 N. The AISI 52100 steel balls 

reciprocated against stationary CL35 cast iron flats submerged in a lubricant at a stroke of 10 mm 

and an oscillation frequency of 10 Hz. The friction force was captured in situ by a piezoelectric 

load cell and the friction coefficient was calculated by normalizing by the load. Wear volumes 

were measured using a Wyko NT9100 optical profilometer after each tribological test. 

 
4.3. Results and Discussion  

4.3.1. Synthesis and Characterization of ATRP Initiator-Functionalized Silica Nanoparticles 

Bare silica NPs from Nissan Chemical (MIBK-ST) were surface-functionalized with a 

chlorodimethylsilane-terminated ATRP initiator, 11-(chlorodimethylsilyl)undecyl 2-

bromoisobutyrate, for use in the surface-initiated ATRP of LMA to yield oil-soluble polymer 

brush-grafted silica NPs.  As anhydrous conditions are required for the immobilization of the 

chlorosilane-terminated initiator, the original dispersion of silica NPs in methyl isobutyl ketone 

was azeotropically distilled with toluene under vacuum three times to remove any trace amount of 

water in the NP dispersion. The solution of freshly-prepared 11-(chlorodimethylsilyl)undecyl 2-

bromoisobutyrate in toluene was added into the silica NP dispersion in toluene. The mass ratio of 

the chlorodimethylsilane-terminated ATRP initiator to silica NPs was 0.97 : 1.00. After the 

immobilization reaction was carried out at 90 °C under an N2 atmosphere for 64 h, the initiator-

functionalized NPs were purified by multiple rounds of ultracentrifugation/re-dispersion in THF. 

The initiator-functionalized NPs were then fractionated using a speed of 20,000 rpm to remove 

larger nanoparticles and collected at 30,000 rpm to exclude exceedingly small nanoparticles. After 

drying with a stream of airflow, the initiator NPs were obtained as a slightly brown powder. 
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Analysis by TEM yielded an average size of 23.8 (± 3.9) nm for INP-SiO2-I and 23.5 nm (± 5.7 

nm) for INP-SiO2-II. 

4.3.2. Synthesis of PLMA Brush-Grafted Silica NPs 

Poly(lauryl methacrylate) (PLMA) brushes were synthesized from initiator-functionalized 

silica NPs (Scheme 4.1) by surface-initiated atom transfer radical polymerization (SI-ATRP). 

PLMA was chosen for this work as it is known to be soluble in many oils, including PAO, due to 

the favorable enthalpic interactions between oil and its large, twelve-carbon pendant groups.1,35 

This strong affinity with PAO is necessary to stabilize the otherwise indispersible silica NPs as a 

long term stability is crucial for the effectiveness of any NP additive. To better control the SI-

ATRP and facilitate the characterization of the grafted polymer chains, we added a free initiator, 

ethyl 2-bromoisobutyrate (EBiB), into the polymerization mixtures. Many researchers have 

reported that the molecular weights and polydispersities of the grafted polymers on NPs are 

essentially identical to those of the free polymers formed from the free initiators.28,34,36 Four PLMA 

hairy silica NP samples with differing molecular weights were made using INP-SiO2-I and another 

one using INP-SiO2-II. The corresponding free polymers were analyzed by size exclusion 

chromatography (SEC) relative to polystyrene standards, and unimodal distributions were 

observed with number average molecular weights (Mn,SEC) of 38.0, 21.7, 11.8, 4.1, and 9.0 kDa, 

respectively, and polydispersity indices (PDIs) of < 1.15 (Figure 4.2). The hairy NPs were 

designated as HNP-SiO2-38.0k, HNP-SiO2-21.7k, HNP-SiO2-11.8k, HNP-SiO2-4.1k, and HNP-

SiO2-9.0k, respectively, by appending the SEC number average molecular weight to the end of 

each sample name. 
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Figure 4.2. Size exclusion chromatography (SEC) traces of free PLMA polymers formed in the 

synthesis of (i) HNP-SiO2-38.0k (Mn SEC = 38.0 kDa, PDI = 1.09), (ii) HNP-SiO2-21.7k (Mn SEC = 

21.7 kDa, PDI = 1.10), (iii) HNP-SiO2-11.8k (Mn SEC = 11.8 kDa, PDI = 1.13), (iv) HNP-SiO2-9.0k 

(Mn SEC = 9.0 kDa, PDI = 1.12 and (v) HNP-SiO2-4.1k (Mn SEC = 4.1 kDa, PDI = 1.14). 
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Thermogravimetric analysis (TGA) showed that the weight retention at 800 °C of hairy NPs 

decreased with increasing brush molecular weight (Figure 4.3). By using degrees of 

polymerization (DPs), TGA data, and NP size, the grafting densities of four samples synthesized 

from INP-SiO2-I were calculated and found to be in the range of 0.67 – 0.72 chains/nm2 (Table 

4.1). HNP-SiO2-9.0k, made from INP-SiO2-II, was found to have a similar grafting density of 0.73 

chains nm-2 (Table 4.1). By assuming that the tethered polymer chains formed a uniform brush 

layer in the dry state on the surface of a silica core NP, we obtained the volume of the PLMA layer 

using the TGA data shown in Figure 4.3 and the density of PLMA (0.929 g cm-3) and, through 

simple geometric relationships, calculated the dry thickness of the polymer brushes. The dry brush 

thickness was found to be 14.1 nm for HNP-SiO2-38.0k, 10.2 nm for HNP-SiO2-21.7k, 7.9 nm for 

HNP-SiO2-11.8k, 4.2 nm for HNP-SiO2-9.0k, and 1.6 nm for HNP-SiO2-4.1k. Transmission 

electron microscopy (TEM) analysis of hairy silica NPs cast from their dispersions in CHCl3, a 

good solvent for PLMA, revealed that the hairy NPs self-assembled into close-packed patterns and 

the interparticle distance decreased with decreasing brush molecular weight (Figure 4.4)). 

Dynamic light scattering experiments were performed using dilute (0.2 mg/mL) dispersions of 

PLMA hairy NPs in THF, showing a progression in size with brush molecular weight (Figure 4.5).  

4.3.3. Dispersibility and Stability Study of PLMA Hairy Silica Nanoparticles in PAO 

All hairy silica NP samples can be well dispersed from a dry state via ultrasonication in a 

lubricating base oil, PAO SpectrasynTM 4 (Exxon-Mobile), forming completely transparent 

dispersions as if no NPs were present at a concentration of 1 wt %. Note that 1H NMR spectrum 

of PLMA hairy NPs in CDCl3 is essentially identical to that of free PLMA (Figure 4.6), indicating 

strongly favorable enthalpic interactions between PLMA brushes and good solvents. To examine 

the stability of hairy silica NPs in PAO, three dispersions of HNP-SiO2-4.1k were prepared and  
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Figure 4.3.Thermogravimetric analysis (TGA) of ATRP initiator-functionalized silica NPs, INP-

SiO2-I (vii) INP-SiO2-II (vi), with an average size of 23.8 nm and 23.5 nm, respectively, HNP-

SiO2-4.1k (i), HNP-SiO2-9.0k (ii), HNP-SiO2-11.8k (iii), HNP-SiO2-21.7k (iv), and HNP-SiO2-

38.0k (v). HNP-SiO2-9.0k was synthesized from INP-SiO2-II; all other PLMA brush-grafted NP 

samples were synthesized using INP-SiO2-I. TGA was performed in air at a heating rate of 20 

C/min. 
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Table 4.1. Characterization Data for PLMA Brush-Grafted Silica Nanoparticles and 

Corresponding Free PLMA Polymers 

    Hairy NPs a    DP    Mn,SEC  (kDa) c     PDI c Grafting density  

(chains nm-2) d 

HNP-SiO2-38.0k    117 b    38.0     1.09     0.70  

HNP-SiO2-21.7k    66 b    21.7     1.10     0.72  

HNP-SiO2-11.8k    31 b    11.8     1.13     0.72  

HNP-SiO2-9.0k e   18 b    9.0     1.12     0.73  

HNP-SiO2-4.1k    5 b    4.1     1.14     0.67 

a HNP stands for “hairy NPs”; the Mn,SEC is appended to the end of the sample name. b The degree 

of polymerization (DP) was calculated using the monomer conversion and the molar ratio of 

monomer to the sum of free and surface initiators. c The Mn,SEC and polydispersity index (PDI) 

were obtained by SEC relative to polystyrene standards. d The grafting densities of polymer 

brushes were calculated by using TGA data, DPs, and the core NP size. e HNP-SiO2-9.0k was 

synthesized using INP-SiO2-II; all other PLMA brush-grafted NPs were synthesized from the same 

initiator NPs, INP-SiO2-I. 
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Figure 4.4. Bright field TEM micrographs of PLMA brush-grafted silica NPs with Mn,SEC of 38.0 

kDa (A), 21.7 kDa (B), 11.8 kDa (C), 9.0 kDa (D), and 4.1 kDa (E). The hairy NPs were cast onto 

carbon-coated, copper TEM grids from dispersions in CHCl3, a good solvent, with a concentration 

of 4 mg/mL. 
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Figure 4.5. Intensity-weighted size distributions obtained by DLS. The average sizes were 102.6 

nm for HNP-SiO2-38k (i), 95.1 nm for HNP-SiO2-21.7k (ii), 59.2 nm for HNP-SiO2-11.8k (iii), 

56.9 nm for HNP-SiO2-9.0k (iv), and 44.1 nm for HNP-SiO2-4.1k (v). 
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Figure 4.6. 1H NMR spectrum of HNP-SiO2-21.7k in CDCl3 exhibits all characteristic peaks of 

PLMA, indicating that the HNPs are well dispersed. 
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kept at – 20 C (in a freezer), 22 C (room temperature), and 100 C (in a thermostated oil bath), 

respectively. The dispersions stayed clear and no change in transparency was observed after 55 

days (Figure 4.7), demonstrating the superior stability of these hairy NPs in PAO. 

4.3.4. Tribological Properties of PLMA Hairy Silica Nanoparticles as Additives for PAO 

The lubricating performances of 1 wt% dispersions of hairy silica NP samples in PAO were 

evaluated using a Plint TE-77 tribo-tester in a ball-on-flat (52100 steel ball against CL35 cast iron 

flat) reciprocating configuration at 100 C. The normal load was 100 N, the oscillation frequency 

was 10 Hz with 10 mm stroke, and the sliding distance was 1000 m. Two repeat tests were carried 

out for each lubricant and averaged (all individual tribological runs in this work are included in 

Appendix C). The wear volumes were measured using a Wyko NT9100 optical profilometer after 

each tribological test. The results are summarized in Figure 4.8 and Table 4.2. For neat PAO, the 

coefficient of friction (COF) started below 0.08, but rapidly increased to above 0.14, indicating 

that scuffing occurred.37,38 The base oil exhibited some recovery from this “wear-in” process, 

reaching a COF of 0.11 at 115 m, from which a gradual increase to 0.14 was observed over the 

testing period. The addition of 1 wt% of hairy silica NPs into the PAO greatly improved the 

lubricating performance; for HNP-SiO2-38.0k, the COF was noticeably lower than that of neat 

PAO over the entire sliding experiment, approaching 0.12 at 1000 m. The addition of 1 wt% HNP-

SiO2-21.7k had a similar effect on COF, with a slightly lower value of 0.11 at 1000 m. The use of 

lower molecular weight samples, HNP-SiO2-11.8k and -4.1k, showed a marked improvement in 

COF even over their higher molecular weight analogues, with values lower throughout the testing 

range and the final COFs around 0.10 at 1000 m; HNP-SiO2-4.1k performed slightly better in the 

beginning and at the end of the testing with the COF at 1000 m reduced by ~ 30% compared with 

neat PAO. Overall, there appears to be a general trend that with decreasing brush molecular weight,  
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Figure 4.7. Photos of 1 wt% dispersions of HNP-SiO2-4.1k in PAO in the initial state (A) and after 

being kept at -20, 22, 100 C for 55 days (B).  
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Figure 4.8. Friction curves for PAO SpectraSynTM 4 (A), PAO containing 1 wt% of free PLMA 

with a Mn,SEC of 38.0 kDa (B), HNP-SiO2-38.0k (C), HNP-SiO2-21.7k (D), HNP-SiO2-11.8k (E), 

HNP-SiO2-9.0k (F), and HNP-SiO2-4.1k (G). The tribological tests were performed using a Plint 

TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of 1000 m. 
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a Volume of material removed during tribological testing. The wear volumes were 

obtained using optical profilometry.  

 

  

Table 4.2. Wear Volumes for Balls and Flats from Tribological Tests 
 

Lubricant Sample Wear Volume a 

Flat (× 107 m3) Ball (× 107 m3) 

PAO 112.99 0.786 

PAO + 1 wt% PLMA 19.08 0.059 

PAO + 1 wt% HNP-SiO2-38.0k 15.20 0.091 

PAO + 1 wt% HNP-SiO2-21.7k 16.48 0.157 

PAO + 1 wt% HNP-SiO2-11.8k 17.48 0.035 

PAO + 1 wt% HNP-SiO2-9.0k 17.06 0.085 

PAO + 1 wt% HNP-SiO2-4.1k 8.12 0.052 
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the friction reduction increases. In addition, all samples showed a marked decrease in wear volume 

(Table 4.2), partially due to the prevention of scuffing at the beginning of the tribological test. The 

wear scars formed during tribological analysis were also examined by using an optical microscope, 

with scar size qualitatively showing a decrease in wear volume using HNP additives relative to 

neat PAO (Figure 4.9). The 1 wt % HNP-SiO2-4.1k dispersion showed the least amount of wear. 

Free polymer PLMA with a Mn,SEC of 38.0 kDa was tested for comparison with hairy silica 

NPs. As shown in Figure 4.8, the 1 wt% solution of free PLMA in PAO performed similarly to 

neat PAO for the most part of the sliding though slightly better in the beginning and the end of the 

experiment, likely a result of interactions between polar ester groups of PLMA and the positively 

charged metal surface, which help reduce direct metal-metal asperity contact induced adhesion to 

prevent microwelding or scuffing. Since the 1 wt% solution of free PLMA contained more polymer 

than any tested hairy NP-additized PAO lubricant, it can be inferred that a substantial portion of 

the benefit of blending hairy NPs into PAO stems from the inorganic NPs, though it is unclear if 

the polymer brush lubrication mechanism operates here due to the much harsher conditions used 

compared with those typical for brush lubrication studies.33 This is further bolstered by the 

apparent superiority of lower molecular weight samples in friction reduction, which is likely a 

result of their high number density of NPs at 1 wt%, a trend somewhat suggested by the lowest 

wear volume being observed with HNP-SiO2-4.1k additized oil (Table 4.2).  

To investigate the concentration effect of hairy silica NPs on lubrication performance, 

tribological tests were carried out using three additional dispersions of HNP-SiO2-21.7k in PAO 

with concentrations of 0.25, 2.0, and 4.0 wt% (Figure 4.10). The COF was observed to decrease 

with increasing NP concentration, but there was a limit; the 4.0 wt% lubricant performed only 

slightly better that the 2.0 wt% sample. It is interesting to note that at 2.0 wt% and 4 wt% HNP- 
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Figure 4.9. Optical micrographs of wear scars on the iron flats following tribological testing of 

neat PAO (A), and 1 wt% dispersion of HNP-SiO2-38.0k (B), HNP-SiO2-21.7 (C), HNP-SiO2-

11.8k (D), HNP-SiO2-9.0k (E), and HNP-SiO2-4.1k (F) in PAO. Note the entire width of the wear 

scar obtained from neat PAO testing was too large to be fully shown in the viewing area, a result 

of the scuffing observed in the corresponding COF curve. 
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Figure 4.10. Friction curves for PAO dispersion containing (A) 0.25 wt%, (B) 1.0 wt%, (C) 2.0 

wt%, and (D) 4.0 wt% of HNP-SiO2-21.7k performed using a Plint TE-77 tribo-tester at 100 °C 

under a point contact load of 100 N for a sliding distance of 1000 m. 
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SiO2-21.7k performed similarly to HNP-SiO2-11.8k and -4.1k. A clear trend was also observed in 

wear reduction, with wear decreasing with increasing concentration (Table 4.3).  

Finally, the friction reduction of hairy silica NPs was compared with commercially used 

friction reduction additives: amine phosphate and ZDDP. The tribological data for amine 

phosphate were obtained from another work, in which tribological testing and conditions were 

identical to those described above.39 This additive was tested at 1.67 wt % at 100 °C and was found 

to have a comparable COF profile to the 1 wt% dispersion of  HNP-SiO2-4.1k in PAO (Figure 

4.11). The COF for 1.67 wt% amine-phosphate was higher at the beginning of the experiment (< 

~ 400m). At longer sliding distance, it was lower than the 1 wt% HNP-SiO2-4.1k dispersion, 

eventually reaching a value of ~0.09 at 1000 m. The performance of PAO additized with 1 wt % 

ZDDP was comparable to the 1 wt% dispersion of HNP-SiO2-4.1k; COFs are virtually the same 

for the two lubricants at the beginning and end of the experiments, while the 1 wt% HNP-SiO2-

4.1k dispersion exhibited slightly higher COFs in the middle of the friction curve. Overall, HNP-

SiO2-4.1k performed similarly to the commercial additives in terms of friction reduction. It should 

be noted here that our lab has also synthesized PLMA brush-grafted TiO2 nanoparticles with a 

brush molecular weight of 8.1k. The size of the TiO2 NPs was 15 nm according to the 

manufacturer. At 1 wt%, this sample exhibited better friction properties than both of the 

commercial additives (Figure 4.11). This bodes well for the future of hairy NPs as lubricant 

additives.40 

4.3.5. Characterization of the Tribofilm Formed from Tribological Testing  

The observed friction and wear reductions for hairy SiO2 NP-additized PAO lubricants are 

believed to result from the function of NPs at the interfacial zone between the two rubbing surfaces 

and the formation of a tribofilm. To confirm the existence of the tribofilm and to further its  
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a Volume of material removed during tribological testing. Wear volumes were 

obtained using optical profilometry  

 

  

Table 4.3. Wear Volumes for Balls and Flats from Tribological Testing 
 

Lubricant Sample Wear Volume a 

Flat (× 107 m3) Ball (× 107 m3) 

PAO + 0.25 wt% HNP-SiO2-21.7k 85.20 0.572 

PAO + 1.0 wt% HNP-SiO2-21.7k 16.48 0.157 

PAO + 2.0 wt% HNP-SiO2-21.7k 14.55 0.080 

PAO + 4.0 wt% HNP-SiO2-21.7k 12.55 0.037 
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Figure 4.11.  Friction curves for PAO additized with (A) 1 wt% HNP-SiO2-4.1k, (B) 1.67 wt % 

amine phosphate,39 (C), 1 wt% HNP-TiO2-8.1k,40 and (D) 1 wt% ZDDP. Measurements were 

performed using a Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a 

sliding distance of 1000 m. 

  



155 

 

characterization, we used the focused ion beam (FIB) technique to extract a thin, cross-sectional 

lamella from the wear scar formed on the cast iron flat during the tribological testing of PAO 

lubricant containing 1 wt% HNP-SiO2-4.1k. The interfacial zone was analyzed using TEM. As 

shown in Figures 4.12 and 4.13, a 200-400 nm thick tribofilm can be clearly seen between the cast 

iron substrate and the carbon layer (for protecting the surface during the FIB process). A closer 

examination reveals that the tribofilm is an amorphous matrix embedded with small nanocrystals 

(Figures 4.12 and 4.13). Interestingly, both the thickness and morphology of the NP-formed 

tribofilm are similar to the tribofilms formed by organic AW additives such as ZDDP3,4 or ionic 

liquids41,42. Energy-dispersive X-ray spectroscopy (EDS) analysis showed that the tribofilm 

contains high concentrations of silicon, iron, and oxygen. We believe that under the rather harsh 

tribological testing conditions (a point contact load of 100 N at 100 C), complex mechano-

chemical reactions, which involved hairy NPs, occurred, producing a nanostructured tribofilm on 

the wear track. Such a dynamic, self-healing tribofilm provided a protective boundary for the 

underneath material, thereby preventing scuffing and reducing friction and wear.39,43,44   

 
4.4. Conclusions 

A series of oil-soluble polymer brush-grafted SiO2 NPs were synthesized through the SI-

ATRP of LMA from initiator-functonalized NPs. These hairy NPs were shown to be a promising 

class of friction and wear reduction additives for lubricating oils. Unlike bare or even initiator-

functionalized silica NPs, the PLMA hairy NPs can be well dispersed in PAO, exhibiting 

exceptional stability at both low and high temperatures; no changes in transparency were observed 

over a period of 55 days. Significant reductions in both COF and wear were observed with the 

addition of 1 wt% hairy silica NPs in PAO; the lubrication performance increased with decreasing  
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Figure 4.12. (A) Transmission electron micropscopy (TEM) micrograph of the cross-section of 

the wear scar on the cast iron flat tested with 1 wt% HNP-SiO2-4.1k-additized PAO. The element 

mapping data of Si, C, Fe, and O of the selected area are shown on the left. The cross-section TEM 

sample was prepared using the focused ion beam (FIB) technique. (B) Higher magnification TEM 

micrograph of the area of the tribofilm pointed to by the arrow. 
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Figure 4.13. Transmission electron micropscopy (TEM) micrographs of the cross-section of the 

wear scar on the cast iron flat tested with 1 wt% HNP-SiO2-4.1k-additized PAO. The element 

mapping data of Fe, O, Si, C, and a combined overlay of the selected area are shown on the bottom 

row. The cross-section TEM sample was prepared using the focused ion beam (FIB) technique.  
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brush molecular weight and increasing concentration of Hairy NPs in PAO. The friction reduction 

of the lowest molecular weight PLMA hairy silica NPs was found to compare well with 

commercial additives, specifically amine phosphate and ZDDP. Cross-sectional TEM analysis 

revealed a protective tribofilm formed at the rubbing interface during the tribological test. In light 

of these positive results, we believe that the use of oil-soluble polymer brushes to functionalize 

inorganic NPs makes it possible to realize the full potential of NPs as lubricant additives for friction 

and wear reduction, opening up new opportunities to further improve durability and efficiency in 

mechanical systems. 
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Figure C1. Individual friction curves for neat PAO obtained using a Plint TE-77 tribo-tester at 

100 °C under a point contact load of 100 N for a sliding distance of 1000 m. 
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Figure C2. Individual friction curves for 1 wt% free PLMA-38.0k PAO solution obtained using a 

Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of  

1000 m. 
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Figure C3. Individual friction curves for 1 wt% HNP-SiO2-38.0k PAO dispersion obtained using 

a Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of 

1000 m. 
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Figure C4. Individual friction curves for 1 wt% HNP-SiO2-22.7k PAO dispersion obtained using 

a Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of 

1000 m. 
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Figure C5. Individual friction curves for 1 wt% HNP-SiO2-11.8k PAO dispersion obtained using 

a Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of 

1000 m. 
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Figure C6. Individual friction curves for 1 wt% HNP-SiO2-9.0k PAO dispersion obtained using a 

Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of  

1000 m. 
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Figure C7. Individual friction curves for 1 wt% HNP-SiO2-4.1k PAO dispersion obtained using a 

Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of  

1000 m. 
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Figure C8. Individual friction curves for 0.25 wt% HNP-SiO2-21.7k PAO dispersion obtained 

using a Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance 

of 1000 m. 
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Figure C9. Individual friction curves for 2 wt% HNP-SiO2-21.7k PAO dispersion obtained using 

a Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of 

1000 m. 
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Figure C10. Individual Friction curves for 4 wt% HNP-SiO2-21.7k PAO dispersion obtained using 

a Plint TE-77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of 

1000 m. 
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Figure C11. Individual friction curves for 1 wt% ZDDP PAO solution obtained using a Plint TE-

77 tribo-tester at 100 °C under a point contact load of 100 N for a sliding distance of 1000 m. 
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Chapter 5.  Synthesis, Characterization, and Microphase Separation of 

Poly(n-butyl acrylate)-b-Polystyrene Diblock Copolymer Brushes Grafted 

on Silica Particles 
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Abstract 

Inspired by the theoretically predicted phase morphologies of diblock copolymer brushes 

grafted on spherical nanoparticles, this chapter presents the synthesis of a series of poly(n-butyl 

acrylate)-b-polystyrene (PnBA-b-PS) brush-grafted silica particle samples and a preliminary TEM 

study of their morphologies. The brushes were synthesized by sequential surface-initiated atom 

transfer radical polymerizations of n-butyl acrylate and styrene from initiator-functionalized silica 

particles with the addition of a sacrificial initiator in each step. A cleavage experiment using HF 

to etch the silica core confirmed the targeted diblock copolymer architecture. Differential scanning 

colarimetry analysis of a free PnBA-b-PS diblock copolymer, formed in the synthesis of a diblock 

copolymer brush sample, revealed two distinct glass transitions, indicating the microphase 

separation of two blocks. For TEM studies, the PnBA-b-PS brush-grafted particles were drop cast 

onto carbon-coated, copper grids and stained with RuO4. A preliminary investigation showed that 

there appeared to be an evolution from a stripe-like nanostructure to a more uniform layered 

structure with the increase of the outer PS block molecular weight. The results were qualitatively 

in line with theoretical predictions, and will likely serve as a starting point for further investigation. 
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5.1 Introduction 

Block copolymers are composed of two or more chemically distinct polymers covalently 

linked to each other. These polymers are usually incompatible due to the low mixing entropy of 

macromolecules, causing microphase separation into block rich domains.1 These domains 

typically have dimensions on the nanoscale and can have a long range order on the mesoscale or 

even larger. The two-component, AB diblock copolymers are the best understood in terms of the 

phase morphology. The primary parameter governing microphase separation is the Flory-Huggins 

interaction parameter, χ, which is a measure of the energetic cost of AB contact per monomer unit.2 

Other factors include the total degree of polymerization, N, the increase in which further lowers 

mixing entropy of unlike blocks and thus increases incompatibility, and the volume fraction of A-

type monomer units, fA, which determines the morphology of the microphase-separated domains. 

As fA is increased, an evolution of A-rich domains can be observed from spherical microdomains 

at low fA, to cylinders, bicontinuous gyroid, to lamellar structures when fA approaches 0.5; when 

fA exceeds the volume fraction of the B-block, inverse morphologies are formed.2-5 The most 

favorable phase morphology for a given block copolymer system is determined by two opposing 

forces: the minimization of unfavorable segment-segment interactions and maximizing the 

conformational entropy of polymer chains. Decreasing A-B contact is achieved in the AB system 

by forming block-rich nanodomains, but can only be brought about by the stretching of polymer 

chains. This stretching decreases the number of conformations available to the polymer chains and 

results in an entropy-driven force attempting to restore the random coil.4  

Diblock copolymers end-tethered to a substrate, i.e., block copolymer brushes, also exhibit 

microphase separation dependent on the chemical nature of constituent blocks, block size, and DP 

as well as grafting density of polymer chains on the surface of the substrate.6 For the diblock 
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copolymer brushes on a flat surface with the B block grafted on the substrate and the A block being 

the outer block, four equilibrium phases have been predicted to form with increasing fA: hexagonal, 

stripe, inverse hexagonal, and a laterally uniform phase. The uniform layered state is the most 

entropically favorable morphology. The driving force for diblock copolymer brushes to form 

periodic structures is the reduction of interfacial A-B contact. As was the case in the bulk state, 

this force is balanced by the entropic penalty of chains stretching to form unique domains. These 

morphologies can be shifted to lower or higher fA by increasing B-block or A-block affinity for 

the environment: increased grafted B block surface tension decreases the appearance of 

nonuniform phases, and increased outer A block surface tension encourages the formation of B-

rich domains at the brush-air interface.6,7 This is a unique facet of grafted diblock copolymer brush 

films, as non-tethered diblocks will simply rearrange to place the higher surface tension block in 

contact with the generally more hydrophilic substrate. Other more complex morphologies like the 

pinned micellar “garlic” and “onion” nanostructures, as well as metastable structures, may be 

observed in the presence of selective solvents.8-10 

Experimentally, O’Driscol et al. used linear diblock copolymers terminated with thiol and 

hydroxyl groups to form brushes on gold-coated silicon and silica wafers, respectively. Using 

atomic force microscopy, morphologies were observed that agree qualitatively with 

simulations.7,10 Recently, considerable work has been done to predict the phase behavior of diblock 

copolymer brushes on a sphere. Predicted morphologies consisted of dots, stripes, and holes as fA 

was increased, as shown in Figure 5.1.11-13 The phase morphology of linear AB diblock brushes 

on spherical substrates have not yet been studied experimentally, and the direct observation of the 

evolution of morphology as a function of fA using TEM is likely to be enlightening. We note here  
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Figure 5.1. Evolution of phase morphologies of diblock copolymer brushes grafted by the B block 

to a spherical substrate. B-rich domains are transparent, while A-rich domains are red.13 (Reprinted 

from Ref. 13 with permission from the Royal Society of Chemistry) 
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that the majority of the nanostructures predicted for diblock copolymer brushes grafted on spheres 

are of great interest to explore patchy particles, a topic that is being intensively studied. 

The work presented in this chapter represents our first step toward the synthesis of well-

defined diblock copolymer brushes on silica particles and the study of their phase morphology, 

especially with respect to block volume fraction. In this work, we first functionalized silica 

particles with a chlorosilane-terminated ATRP-initiator. Poly(n-butyl acrylate)-b-polystyrene 

(PnBA-b-PS) brushes with various molecular weights for the two blocks were then grown from 

the surface of initiator-modified silica particles by means of sequential surface initiated ATRP of 

nBA and styrene (Scheme 5.1).  

 

5.2 Experimental 

5.2.1 Materials 

CuBr (98%) was purchased from Aldrich and was purified prior to use by stirring in glacial 

acetic acid overnight. It was then filtered, washed with absolute ethanol and diethyl ether, dried in 

vacuum, and stored in a desiccator. N, N, N', N', N"-Pentamethyldiethylenetriamine (PMDETA, 

99%, Aldrich), ethyl 2-bromoisobutyrate (98%, Aldrich), styrene (99%, Aldrich), and n-butyl 

acrylate (99%, Aldrich) were dried with calcium hydride and distilled under reduced pressure. 

Chlorodimethylsilane (98%) was purchased from Alfa Aesar and stored in a refrigerator. Platinum-

divinyltetramethyldisiloxane complex in xylene (2.1~2.4% Pt concentration in xylene) was 

purchased from Gelest, Inc. and stored in a desiccator. 10-Undecen-1-yl 2-bromo-2-

methylpropionate was synthesized according to the literature procedure.14 All other chemical 

reagents were purchased from either Aldrich or Fisher and used without further purification.  
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Scheme 5.1. Synthesis of PnBA-b-PS brush-grafted silica particles from ATRP initiator-

functionalized silica particles through sequential SI-ATRP of nBA and styrene.  
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5.2.2 Characterization 

Size exclusion chromatography (SEC) was carried out at ambient temperature using PL-GPC 

20 (an integrated SEC system from Polymer Laboratories, Inc.) with a refractive index detector, 

one PLgel 5 μm guard column (50 × 7.5 mm), and two PLgel 5 μm mixed-C columns (each 300 × 

7.5 mm, linear range of molecular weight from 200 to 2,000,000 according to Polymer 

Laboratories, Inc.). The data were processed using CirrusTM GPC/SEC software (Polymer 

Laboratories, Inc.). THF was used as the carrier solvent at a flow rate of 1.0 mL/min. Polystyrene 

standards (Polymer Laboratories, Inc.) were used for calibration. 1H NMR spectra were recorded 

by means of a Varian Mercury 300 NMR spectrometer or Varian VNMRS 500 MHz spectrometer. 

Thermogravimetric analysis was performed in air at a heating rate of 20 °C/min from 30 °C to 800 

°C using a TA Discovery TGA-MS. Transmission electron microscopy (TEM) was performed 

using a Zeiss Libra 200 HT FE MC microscope with an accelerating voltage of 200 kV, and bright 

field images were taken with a bottom-mounted Gatan UltraScan US1000XP CCD camera. 

5.2.3 Synthesis of Bare Silica Particles  

The bare silica particles was synthesized by means of the Stöber process. Ammonium 

hydroxide (25% in water, 19.932 g) and tetraethoxysilane (TEOS, 10.504 g) were each dissolved 

in ethanol (each 10 mL). The two solutions were added into a 500 mL flask that contained 280 mL 

ethanol under vigorous stirring. The mixture was stirred vigorously at room temperature for 5 h. 

The particles were then isolated by centrifugation (Eppendorf 5804 centrifuge, 6000 rpm, 15 min), 

re-dispersed in ethanol, and centrifuged again. This washing process was repeated with ethanol 

one more time, water four times, and ethanol again. The silica particles were then dried with a 

stream of air. The average size of the particles was 171 nm, as determined by TEM. 
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5.2.4 Synthesis of ATRP Initiator-Functionalized Silica Particles (IP) 

10-Undecen-1-yl 2-bromo-2-methylpropionate (342 mg, 1.08 mmol) was added into a 25 

mL two-necked round bottom flask and mixed with chlorodimethylsilane (4.00 mL, 37.9 mmol) 

under a nitrogen atmosphere, followed by the injection of Pt complex in xylenes (40 μL). The 

mixture was stirred at 45 °C and was monitored by 1H NMR spectroscopy. Once the reaction 

proceeded to completion, excess chlorodimethylsilane was removed by vacuum, and the product 

was dissolved in anhydrous THF (3.0 mL).  This solution was then added dropwise to the 

dispersion of bare silica particles (900 mg) in anhydrous THF (10 mL) prepared by ultrasonication.  

The resultant mixture was then placed in a 70 °C oil bath and stirred overnight. The particles were 

isolated by centrifugation, re-dispersed in THF, and isolated again. This washing process was 

repeated an additional four times. The initiator-functionalized particles, designated as IP, were 

dried with a stream of air flow. 

5.2.5 Synthesis of PnBA Brush-Grafted Silica Particles  

Copper(I) bromide (16.4 mg, 0.114 mmol), copper(II) bromide (3.5 mg, 1.6  10-5 mol), and 

initiator particles (137.3 mg) were placed into a 50 mL two-necked flask and dried under high 

vacuum at 35 °C for 150 min. The mixture was then placed under an N2 atmosphere, and a solution 

of n-butyl acrylate (10.072 g, 78.560 mmol) and anisole (664 mg) was added into the flask.  The 

particles were then dispersed by means of sonication. A solution of ethyl 2-bromoisobutyrate 

(EBiB, 17.8 mg, 9.12  10-5 moles), PMDETA (20.3 mg, 1.17  10-4 moles), and anisole (1.306 

g) was then injected. An initial 1H NMR sample was taken, and the solution was degassed by three 

freeze–pump–thaw cycles before being placed in a thermostated oil bath at 95 °C. The 

polymerization continued for 185 min, until a monomer conversion of 22.5 % was reached, 

calculated by 1H NMR using the integrals of peaks located at 4.25 and 4.04 ppm, corresponding 
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to the COOCH2 signals of nBA and PnBA, respectively. This monomer conversion and the 

monomer-to-free initiator molar ratio were used to find a degree of polymerization of 193.  

The flask was removed from the oil bath, opened to air, and diluted with THF.  The PnBA 

brush-grafted particles were then isolated by centrifugation (Eppendorf 5804, 11000 rpm, 15 min). 

The copper catalyst was removed from the free polymer supernatant solution by passing it through 

a neutral aluminum oxide/silica gel column using THF as an eluent. The free polymer was then 

dried under high vacuum to remove monomer. The free polymer was characterized by SEC and 

found to have an Mn of 23.0 kDa and a PDI of 1.15. The PnBA hairy particles were re-dispersed 

in THF and isolated by centrifugation. This purification process was repeated an additional four 

times. The PnBA brush-grafted silica particles were open to air and allowed to dry naturally. The 

particles were then transferred into a 25 mL two-necked flask and dried under high vacuum 

overnight. A small portion of the particles was examined using thermogravimetric analysis (TGA). 

5.2.6 Synthesis of PnBA-b-PS Brush-Grafted Silica Particles 

A subsequent ATRP polymerization of styrene was then carried out at 95 °C using the PnBA 

brushes as surface-tethered macroinitiator and the free PnBA polymer formed in the synthesis of 

PnBA brush-grafted particles as sacrificial initiator. PnBA brush-grafted particles (136.3 mg) were 

dried under high vacuum and dispersed in anisole (10.107 g) before being added into a 50 mL two-

necked flask, along with copper(I) bromide (17.6 mg, 0.123 mmol), copper(II) bromide (3.4 mg, 

1.5  10-5 mol), and styrene (4.732 g, 0.0454 mol).  A solution of PnBA (458.6 mg, 1.951  10-5 

mol) in anisole (3.257 g) was also added to the flask.  Immediately after adding PMDETA (24.5 

mg, 0.141 mmol), the mixture was degassed by three freeze–pump–thaw cycles, and the flask was 

placed in a thermostated oil bath with a temperature of 95 °C. The polymerization was monitored 

by SEC.  Large samples (~ 3.5 mL) were taken at 120, 155, 180, and 215 minutes. Each sample 
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was exposed to air, diluted with THF, and purified in a manner similar to that of the PnBA brush-

grafted particles described above. These diblock copolymer brush-grafted particles were referred 

to according to their time in the reaction mixture: DBP-120, DBP-155, DBP-180, and DBP-215, 

respectively. The free block copolymers, designated correspondingly as BC-120, BC-155, BC-

180, and BC-215, were characterized by SEC and 1H NMR.  

5.2.7 Cleavage of PnBA-b-PS Brushes from Silica Particles 

The PnBA-b-PS brushes from the sample taken at 180 min (DBP-180) were cleaved from 

silica particles by HF and analyzed by SEC. DBP-180 (9.98 mg) was dispersed in 5.00 mL toluene 

in a 60 mL plastic bottle. Hydrofluoric acid (HF, 48~51% aq., 0.3 mL) was added, and the mixture 

was stirred at room temperature for ~ 4 h. A saturated aqueous solution of calcium hydroxide (4 

mL) was then added, along with 4 mL of water.  The toluene layer was removed and concentrated, 

and the polymer dried under high vacuum. The cleaved polymer was characterized by SEC and 

found to have an Mn,SEC of 55.9 kDa and a PDI of 1.09. Note that the Mn,SEC and PDI of the 

corresponding free polymer were 54.9 kDa, and 1.15, respectively.   

5.2.8 Differential Scanning Calorimetry of Free PnBA-b-PS 

The free diblock copolymer BC-155 (taken from the reaction mixture at reaction time of 155 

min) was used for DSC analysis. BC-155 (9.017 mg) was heated to 140 °C, cooled to -80 °C, and 

subjected to a second heating ramp at 20 °C/min. DSC analysis was performed on a TA Q-1000 

DSC instrument calibrated with a sapphire standard. 

5.2.9. Transmission Electron Microscopy Study of PnBA-b-PS Brush-Grafted Particles 

PnBA-b-PS diblock copolymer brush-grafted particles were dispersed in chloroform, a 

nonselective good solvent for PnBA and PS, by ultrasonication at a concentration of 1 mg mL-1. 

The particle dispersion was drop cast onto a carbon-coated, copper TEM grid and dried at ambient 
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conditions. The TEM samples were annealed with CHCl3 vapor at room temperature for several 

hours and were then allowed to air dry for ~ 30 min. The samples were then stained with 

RuO4 vapor at room temperature for 20 min.  

 

5.3 Results and Discussion 

5.3.1 Synthesis of PnBA Brush-Grafted Silica Particles 

PnBA brush-grafted silica particles were synthesized by surface-initiated ATRP as shown in 

Scheme 5.1. The bare silica particles were prepared by the Stöber process, which is known to 

produce spherical particles with a relatively narrow size distribution. The bare particles were 

surface-functionalized with 11-(2-bromo-2-methyl)propionyloxyundecyldimethylchlorosilane. 

The initiator particles, designated as IP, were then used to make polymer brush-grafted particles 

by surface-initiated ATRP. A free initiator, ethyl 2-bromoisobutyrate (EBiB), was added into the 

reaction mixture to facilitate the control of surface-initiated polymerization. It also allowed the 

progress of polymerization to be monitored by 1H NMR spectroscopy for monomer conversion 

and size exclusion chromatography (SEC) analysis of the molecular weight of the free polymer 

grown from the sacrificial initiator. The resultant free PnBA was found to have a DP of 193, 

calculated by monomer conversion as determined by 1H NMR. SEC analysis showed a unimodal 

distribution with an Mn of 23.0 kDa with a PDI of 1.15 (Figure 5.2), indicating a well-controlled 

polymerization. TGA was used to confirm the presence of PnBA grown from the surface of the 

ATRP initiator-functionalized silica particles, with a weight retention of 68.9 % at 800 °C, as 

compared to 86.4 % for IP at the same temperature (Figure 5.3). By using the size of silica particles, 

DP of PnBA, and the TGA data, the grafting density of PnBA was calculated to be 0.46 chains 

nm-2. 
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Figure 5.2. SEC traces of free PnBA (i), PnBA-b-PS diblock copolymer withdrawn from the 

polymerization mixture at 120 min (ii, BC-120), 155 min (iii, BC-155), 180 min (iv, BC-180), and 

215 min (v, BC-215).  
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Figure 5.3. Thermogravimetric analysis of initiator particles, PnBA brush-grafted particles (i), 

DBP-120 (ii), DBP-155 (iii), DBP-180 (iv), and DBP-215 (v). 
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5.3.2 Synthesis of PnBA-b-PS Diblock Copolymer Brush-Grafted Silica Particles 

Using PnBA brush-grafted particles as macroinitiator, four samples of diblock copolymer 

brushes with differing PS molecular weights were obtained by removing large portions of the  

reaction mixture during the polymerization of styrene. Like EBiB in the SI-ATRP of nBA, free 

PnBA was used as a sacrificial macroinitiator, allowing for the regulation of the surface 

polymerization, monitoring of the reaction by SEC, and convenient characterization of the tethered 

diblocks. The diblock copolymer brush-grafted particles were purified by repeated centrifugation- 

redispersion cycles in THF. The PnBA-b-PS brush-grafted silica particles are designated as DBP-

120, DBP-155, DBP-180, and DBP-215, according to their reaction time in the polymerization 

mixture. 

Each sample was analyzed by TGA, and the weight retention at 800 °C were found to 

decrease with increasing PS molecular weight (Figure 5.2). All diblock copolymer brush particles 

had lower weight retentions than that of the PnBA brush-grafted particles and much lower than 

that of initiator particles, as shown in Figure 5.2. From SEC analysis, the Mn,SEC was shown to 

increase relatively smoothly from the initial macroinitiator to diblocks with increasing reaction 

time (Figure 5.1). The polydispersity indices of the free diblock copolymers were consistently 

between 1.15 and 1.17, indicating that the polymerization was well controlled and that the removal 

of large portions of the reaction mixture did not adversely impact the polymerization. The DP of 

PS in each sample was determined from 1H NMR spectra of purified free diblock samples by 

comparing the aromatic peaks of PS at 6.3 ppm to 7.2 ppm (5H) to the peaks corresponding to the 

ester moieties of PnBA at 4.1 ppm (2H), using the known DP of PnBA as a reference. By using 

the size of bare silica particles, TGA data, and the DPs of both blocks of the free block copolymers, 
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the grafting densities of the PnBA-b-PS brush-grafted particles were calculated to be in the range 

of 0.42-0.47 chains nm-2.  A summary of all characterization data can be found in Table 5.1. 

It has been reported that the molecular weight and molecular weight distribution of polymer 

brushes on silica particles synthesized by surface-initiated “living”/controlled radical 

polymerization are essentially identical to those of the free polymer formed from free initiator.  

While there was no mechanistic reason that this should not also be the case for ATRP from tethered 

and free macroinitiators, we took advantage of the silica substrate’s ability to be etched away by 

hydrofluoric acid to confirm that the control was maintained both on the surface and in solution. 

DB-180 was selected as an example and was etched with HF. After neutralization with Ca(OH)2 

and extraction with toluene, the cleaved polymer was found to have a molecular weight distribution 

essentially identical to that of the corresponding free polymer BC-180 by SEC (Figure 5.4), with 

an Mn,SEC of 55.9 kDa and a PDI of 1.09.  This molecular weight was very close to that of the free 

diblock BC-180 (Mn,SEC = 54.9 kDa), and, interestingly, the PDI was lower than that of free 

polymer BC-180 (1.15). This result confirmed the validity of the use of free polymers grown from 

the sacrificial macroinitiator to mirror their surface-tethered counterparts. 

To ensure that the molecular weights of PnBA-b-PS diblock copolymers were sufficiently 

large to enable microphase separation, BC-155 was examined by differential scanning calorimetry 

(DSC). The polymer was first heated to 140 °C to erase the thermal history, then cooled to -80 °C, 

and heated again to 140 °C at a heating rate of 20 °C per minute. Two distinct glass transition 

temperatures were observed (Figure 5.5): one at -44 °C corresponding to PnBA and another one 

at 84 °C corresponding to PS. The existence of two glass transition temperatures suggests that the 

diblock copolymer microphase separated into nearly pure microdomains. 
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Table 5.1. Characterization Data for PnBA and PnBA-b-PS Brush-Grafted Silica Particles and 

Their Corresponding Free Polymers 
 

Brush-Grafted 

Particle Sample 

Mn,SEC 

(kDa) a 
PDI a DPPnBA 

b DPPS 
c fPS 

d Grafting 

Density e 

PnBA Particle e 23.0 1.15 193 0 0 0.46 chains nm-2 

DBP-120 e 41.6 1.17 193 153 0.40 0.45 chains nm-2 

DBP-155 e 50.1 1.16 193 207 0.47 0.43 chains nm-2 

DBP-180 e 54.8 1.15 193 247 0.52 0.42 chains nm-2 

DBP-215 e 56.5 1.16 193 261 0.53 0.47 chains nm-2 
a As determined by size exclusion chromatography (SEC) calibrated with polystyrene standards. 
b The degree of polymerization (DP) of the inner, PnBA block was calculated using monomer 

conversion. c The DP of the outer, PS block was calculated using the 1H NMR analysis of the 

free block copolymers. d fPS , the volume fraction of PS in PnBA-b-PS, was calculated using the 

molecular weights of both blocks and the densities of 1.050 g cm -3 for PS and 1.087 g cm -3 for 

PnBA. e The grafting densities of polymer brushes were calculated using TGA data, the DPs of 

both blocks, and the core silica nanoparticle size of 171 nm. e PnBA Particle and DBP are 

designations for PnBA brush-grafted particles and PnBA-b-PS brush-grafted silica NPs. Their 

corresponding free polymers are PnBA, BC-120, -155, -180, and -215 respectively.  
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Figure 5.4. SEC traces of the diblock copolymer cleaved from DBP-155 and free BC-155 PnBA-

b-PS (red). 
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Figure 5.5. DSC trace of PnBA-b-PS with Mn,SEC = 50.1 kDa and PDI = 1.16, showing two distinct 

glass transition temperatures: one at -44 °C corresponding to PnBA and another one at 84 °C 

corresponding to PS. 
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5.3.3 TEM Study of Microphase Separation of PnBA-b-PS Brushes Grafted on Particles 

Microphase separation of PnBA-b-PS brushes was primarily studied by transmission 

electron microscopy (TEM). The TEM samples were prepared by drop-casting from a 1 mg/mL 

dispersion in chloroform onto carbon film coated copper grids; chloroform was chosen as it is a 

good solvent for both PnBA and PS and is essentially nonselective between the two polymers. 

After the solvent was evaporated, the samples were annealed at room temperature using 

chloroform vapor for several hours, aiding in the equilibration of microphase separated domains. 

The brushes were then stained with RuO4 vapor, which is known to selectively stain aromatic 

moieties, such as those of PS, causing PS domains to appear darker under bright-field TEM.  

DBP-120, the sample with the lowest fPS, appears to exhibit clear microphase separation 

(Figure 5.6). The particles were arrayed hexagonally, and microphase separation was particularly 

evident on the top of the particles, where dark stripe-like nanostructures can be seen. According to 

the theoretical prediction by Matsen and coworkers, a fPS of 0.40 would fall in the window of the 

hole morphology.6,12 It should be noted, however, that theoretical predictions were made by 

considering only one hairy particle, and the assembly of the particles shown in the TEM 

micrographs certainly influenced the morphology through interparticle interactions. In addition, 

the non-uniform collapse of brushes on particles during the solvent evaporation process also 

affected the morphology. These effects were investigated in a recent work for mixed PtBA/PS 

brushes grafted on silica particles.15 With the increase of PS block length from DB-120 to DB-

155, DB-180, and DB-215, the dark stripe-like nanodomains became more connected (Figure 5.6 

– 5.9), indicating the progression toward the uniform layered morphology. In particular, for DB-

215, the bright PnBA layer was more visible at the particle edge, possibly signaling the advent of 

full PS coverage and the increased segregation strength between two blocks. In fact, increasing fPS  
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Figure 5.6. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 153 (DBP-120). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 
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Figure 5.7. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 207 (DBP-155). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 
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Figure 5.8. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 247 (DBP-180). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 
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Figure 5.9. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 261 (DBP-215). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 
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to 0.58, the PS volume fraction of DBP-215, seems to have tipped the system fully into the uniform 

layered phase morphology. The PS phase appears clearly for DBP-215 (Figure 5.9), with relatively 

sharp distinction between the light PnBA grafted on the particle and the dark PS domain 

surrounding it. Nevertheless, more detailed TEM study is needed for both individual, uniformly 

collapsed hairy particles and the assemblies of particles. 

 
5.4 Conclusion 

A series of well-defined diblock copolymer brush-grafted, 171 nm silica particles were 

synthesized by sequential SI-ATRPs of nBA and styrene, yielding hairy particles with a grafted 

PnBA block with a DP of 193 and PS outer blocks with varying DPs. Using TGA and 1H NMR 

data, the grafting densities of PnBA-b-PS brushes were found to be in the range between 0.42 and 

0.47 chains/nm2, comparing well with the grafting density of PnBA brush-grafted particles (0.46 

chains/nm2). TEM studies were carried out by using RuO4 to stain PS domains, which appeared 

dark under TEM. With the increase of PS block length, there seems to be an evolution from stripe-

like nanostructure to a more uniform layered structure. More detailed TEM study is needed to fully 

elucidate the phase morphologies of these diblock copolymer brushes on silica particles. 
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Chapter 5.  Synthesis, Characterization, and Microphase Separation of 

Poly(n-butyl acrylate)-b-Polystyrene Diblock Copolymer Brushes Grafted on 

Silica Particles 
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Figure D1. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 153 (DBP-120). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 
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Figure D2. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 207 (DBP-155). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 
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Figure D3. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 247 (DBP-180). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 

 

 

 

 

 

 



205 

 

 

 

 

 

 

 

 

           

Figure D4. Bright field TEM micrographs of PnBA-b-PS brush-grafted silica particles with 

DPPnBA of 193 and DPPS of 261 (DBP-215). The hairy NPs were cast onto carbon-coated, copper 

TEM grids from CHCl3, a nonselective good solvent, at a concentration of 1 mg mL-1. 
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Chapter 6. Conclusions and Future Work 
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Homopolymer and diblock brush-grafted silica (nano)particles were synthesized by surface-

initiated atom transfer radical polymerization (SI-ATRP) in the presence of a sacrificial, free 

initiator, which allowed for the synthesis of free analogues to the polymer brushes. These free 

polymers have been demonstrated on multiple occasions to be representative of their grafted 

counterparts, and allowed for convenient molecular characterization and analysis of these hairy 

particles. The polymer brush-grafted nanoparticles themselves were studied as dispersions in water 

(Chapters 2-3) and lubricating base oil poly(alphaolefin) (Chapter 4) by rheological and 

tribological measurements, respectively. Variations in molecular weight and composition were 

shown to have a significant effect on the physical properties of these nanoparticle dispersions. 

Chapters 2 and 3 report the use of stimuli-sponsive hydrophilic hairy nanoparticles for the 

formation of physical hydrogels and their subsequent characterization by rheological experiments. 

Thermosensitive block copolymers are capable of forming micelles in water under appropriate 

conditions, and, depending on the molecular architecture and chemical nature of these polymers, 

are capable of undergoing reversible gelation as well. As thermosensitive hairy particles are 

conceptually similar to micelles with a thermosensitive corona, the use of hairy particles in place 

of these micelles for the formation of physical hydrogels was explored. Such hydrogels could be 

made to incorporate the unique properties of various nanoparticles (NPs) into systems with which 

they would otherwise have been incompatible. Classic block copolymer micellar hydrogels 

comprises two types: packing-based gels and network-based gels.1 Chapter 2 presents the synthesis 

of thermosensitive diblock copolymer brush-grafted 17 nm silica NPs for use in packing-based 

hydrogels. The brushes consisted of a thermosensitive poly(methoxydi(ethylene glycol) 

methacrylate) (PDEGMMA) grafted block and a poly(methoxydi(ethylene glycol) methacrylate-

co-N,N-dimethylaminoethyl methacrylate) (P(DEGMMA-co-DMAEMA)) outer block; the 
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tertiary amine moieties in the outer block were quaternized with methyl iodide to yield a 

permanently charged, poly(DEGMMA-co-2-(methacryloyloxy)ethyltrimethylammonium iodide) 

(P(DEGMMA-co-TMAEMA-I) block.2 This charged block aided in the dispersion of the hairy 

nanoparticles in water and prevented aggregation at temperatures above the lower critical solution 

temperature (LCST) of the grafted thermosensitive block. These hairy NPs were found to exhibit 

cooling-induced, reversible sol-gel transitions at concentrations as low as 5.3 wt % in water. The 

gel-sol transition temperature (Tgel-sol) was measured rheologically and found to increase with 

increasing NP concentration and with length of the charged outer block. The sol-gel transition was 

found to be a result of the swelling of the thermosensitive inner block at lower temperature, as 

confirmed by dynamic light scattering experiments. This swelling resulted in an increase in brush 

volume fraction and, below the Tgel-sol, this volume fraction was sufficient to prevent flow; this 

mechanism of gelation is analogous to the packing of micelles of thermosensitive diblock 

copolymers.3  

Chapter 3 presents a complementary work to Chapter 2, in that thermosensitive hairy 

nanoparticles were used to make hydrogels analogous to the other classic type of micellar gel: 3D 

network physical gels.4 Brush-grafted silica NPs were synthesized with a P(TMAEMA-I) grafted 

block and a thermosensitive PDEGMMA outer block by sequential SI-ATRP of DMAEMA and 

DEGMMA and quaternization with methyl iodide. Aqueous dispersions of these hairy NPs were 

observed to undergo gelation at concentrations as low as 3 wt % upon heating to temperatures 

sufficiently above the LCST of the outer block; upon cooling, the liquid sol state was restored. 

This reversible sol-gel transition resulted from the association of the PDEGMMA blocks into 

hydrophobic domains above the LCST. These PDEGMMA domains acted as physical crosslinks 

connected to the silica NPs by the grafted polyelectrolyte block, resulting in a gel network like 
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those observed for thermosensitive ABA or ABC systems.5 This gelation was studied 

rheologically, and Tsol-gel was found to decrease with increasing NP concentration.  

Chapter 4 reports the synthesis of oil-soluble polymer brush-grafted silica NPs and their use 

as effective lubricant additives.6 Through the SI-ATRP of lauryl methacrylate (LMA), a series of 

oil-miscible hairy nanoparticles were synthesized. These hybrid nanoparticles were found to form 

transparent dispersions in poly(alpha olefin) (PAO) base oil and exhibited superb stability; no 

sedimentation or change in appearance was observed after being kept for more than 55 days at -

20, 22, and 100 °C. Tribological characterization of additized PAO was performed using high 

contact stress reciprocating ball-on-flat experiments at 100 °C. The addition of 1 wt % hairy NPs 

was found to significantly reduce the coefficient of friction (COF) and material wear, with 

reductions as high as ~30 % and ~90 %, respectively. Cross-sectional TEM analysis of an iron flat 

used in tribological experiments revealed the formation of a tribofilm, a load bearing film that 

served to reduce contact at the rubbing interface and minimize scuffing and micro-welding.  

Chapter 5 describes a preliminary exploration of the phase morphology of grafted diblock 

copolymers on silica particles. It has been shown theoretically that diblock copolymers tethered to 

a spherical substrate exhibit interesting phase morphologies. At sufficiently high segregation 

strength and grafting density, an evolution of dot, stripe, hole, and uniform nanostructures are 

expected to arise with increasing volume fraction of the outer block.5 Sequential SI-ATRP of n-

butyl acrylate and styrene with initiator-functionalized 171 nm silica particles was employed to 

synthesize a series of PnBA-b-PS brushes with the same inner block length and increasing PS 

block length; in this way, the effect of the outer PS block volume fraction was investigated. 

Microphase separation was observed between the two blocks on the surface of the silica particles 

by TEM, using RuO4 as a selective staining agent, and an evolution was observed from a stripe-
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like morphology to full PS coverage. A more thorough investigation of block volume fraction and 

other parameters, however, is warranted to more fully understand the rich phase behavior of this 

system. Nevertheless, insights gleaned from this work may prove useful in fabrication of 

nanostructured particles for use in various technologies. 

Hairy NPs are a unique class of materials with a varied set of properties and potential 

applications.8 Possible future work in the exploration of brush-grafted NP-based hydrogels would 

include the use of functional NPs as substrates. These functions could include magnetic properties 

for the syntheses of unique magneto-rheological fluids and gels. Another area of exploration could 

be the use of mesoporous or hollow NP substrates. Where micellar hydrogels are typically limited 

to hydrophobic cores, these particles could be functionalized as desired for the loading and delivery 

of a variety of drugs and other payloads. Release profiles could be further modulated both by 

physical gel properties and the use of a grafted thermosensitive or other stimuli-responsive block 

on the NP surface to impede or even prevent flow in and out of the pores under the desired 

conditions. 
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