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Abstract

Stability is a critical concern in the design and maintenance of power systems.

Di↵erent approaches have been proposed for the analysis of power grid stability in

various scenarios depending on small or large perturbations and the speed of the

phenomenon of interest. In this work, we consider the power grid as a group of flocking

birds, as synchronization is the key issue in both contexts. The framework of partial

di↵erence equation (PdE) is used to analyze the system stability, when designing

the communication network of the power grid network for conveying measurements

between di↵erent power stations. Both the cases where communication network delay

is negligible and non-negligible are studied here. The communication network design

problem is formulated as an optimization problem under the consideration of a stable

power grid. Corresponding optimization algorithms are designed to solve the problem.

To convey measurements of the power network, wireless sensor networks is

adopted, for its non-invasive and easy deployment properties. Periodic sleep

scheduling is adopted to e↵ectively save energy for the wireless sensor networks. To

provide a controllable end-to-end delay for the communication networks, a dynamic

duty cycle control approach is designed, featuring a single-hop delay controller based

on the well known feedback control theory. The delay control approach also features

a queuing delay adaptation scheme that adapts the duty cycle of each node to

unpredictable packet rates, as well as a novel energy balancing approach that extends

the network lifetime by dynamically adjusting the delay requirement allocated to each

hop.
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Chapter 1

Introduction

1.1 Power Grid Stability

The stability is a critical concern in the design and maintenance of power systems

Kundur (1994). Various approaches have been proposed for the analysis of power grid

stability in various scenarios depending on small or large perturbations and the speed

of the phenomenon of interest. Di↵erent devices and algorithms work to stabilize

the power grid following disturbances, such as Power System Stabilizers (PSSs) and

flexible alternating current transmission systems (FACTS) devices. In the near future

smart grids, phasor measurement units (PMUs) Phadke and Thorp (2008) will be

widely deployed to collect the realtime synchronized information that will be critical

for improved control of the power grid.

1.2 Power Grid and Flocking Birds

Flocking is used to describe a phenomenon where di↵erent individuals are moving in

an ordered motion based only on very limited surrounding information and simple

rules. For example, a large group of birds can fly in a approximate same direction with

approximate same speed. In such a group, individual birds seems to move together

as one. This phenomena has been studied extensively in biological science field, to
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answer the questions as why the birds fly in a flock and how do they maintain the

order of a flock. It turns out each bird atomically propel itself based on the distance

from the birds in the vicinity and direction that other birds on flying into Quera et al.

(2010).

Similarly the power grid in this study consists of by synchronized generators

that cannot deviate far or for long from the nominal frequency. The dynamics of

this interactions is similar to those of flocking birds, since in both cases each node

needs to keep the relative ‘distance’ (namely, Euclidean distance in flocking birds and

phase di↵erence in generators) to others. As is well known, the system dynamics in

power grids are characterized by the evolutions of phases and frequencies of di↵erent

generators. We can consider each generator as a flying bird. The phase of each

generator is analogous to the location of each bird in the flocking system, while the

frequency of each generator is analogous to the speed of the corresponding bird. The

di↵erence of phase between generators is analogous to the distance between di↵erent

birds. In the bird flocking system, the speed of each bird can be adjusted according to

the distances to neighboring birds. Similarly, the frequency of each generator is also

a↵ected by the phase di↵erences to neighboring generators. Moreover, the frequency

can also be adjusted by the frequency measurements of neighboring generators. Since

there have been substantial mathematical studies on the bird flocking, it is natural

to introduce the research tools on flocking into the study of power grid stability.

1.3 PdE for network dynamics

In the seminal work Thorp et al. (1998), J. S. Thorp modeled the power grid as a

medium continuous in both time and space, and thus described the electromechanical

perturbations propagated in the power grid using a partial di↵erential equation

(PDE). Although the PDE modeling of power grid dynamics can facilitate the

application of many existing mathematical tools in PDE, the assumption of a spatially

continuous power grid is obviously not true, although it facilitates the analysis and

2



Figure 1.1: An illustration of flocking birds and generators.
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provides insights; moreover, this assumption misses the information of power network

topology and thus cannot evaluate the impact of the power network topology on the

system dynamics. When incorporating the discrete power network topology, the

space becomes discrete and thus the dynamics are determined by ‘di↵erence’, instead

of ‘di↵erential’, in the space. Therefore, it is natural to employ the tool of PdE,

which describes the dynamics in discrete networks and has been applied in the study

of flocking Ferrari-Trecate et al. (2014).

1.4 Delay Control in Wireless Sensor Networks for

Smart Grid

The current power grid is facing several challenges including increasing electricity

demand, power distribution network congestion, and lack of pervasive and e↵ective

communications, etc. According to Gungor et al. (2010), several di↵erent blackouts in

the past few years were caused by power network congestion and safety-relate factors.

To address these challenges, the next generation power grid is being designed as a

smart power grid. People can anticipate improved e�ciency, safety and reliability

in the smart power grid, using smart control and advanced communication systems

and technology. In the smart grid, it is essentially important to build a resilient

and online communication network for reliable information sharing between di↵erent

power stations. With a reliable and online communication network, the impact of

factors such as equipment failure and capacity limitation can be largely avoided.

Gungor et al. (2010)

Traditional power system monitoring and diagnostics are typically conducted by

wired communications. The problem with the wired communication infrastructure is

the cost to deploy the communication cables are expensive and thus is are not widely

implemented between power stations. To alleviate the cost problem and achieve

reliable communications in the power grid, wireless sensor network is an ideal type

4



of infrastructure that can be used in the communication network in power grid to

convey the measurement between di↵erent power station. There have been quite a

few studies focusing on WSN application in power grid such as Tuna et al. (2013),

Liu (2012) and Zhang et al. (2012).

To e↵ectively use wireless sensor network in this scenario, two problems need to be

solved. First, the end-to-end communication delay needs to be controllable. Second,

the life time of the sensor network needs to last for a desired time. In this work, we

propose DutyCon, a dynamic duty cycle control scheme that provides an end-to-end

communication delay guarantee while taking advantage of periodic sleeping to achieve

energy e�ciency. DutyCon is significantly di↵erent from the existing work on delay

and duty cycle management in WSNs in three aspects. First, we control the end-to-

end delay of each data flow in a WSN to a user-specific bound while achieving energy

conservation. Second, we dynamically adjust the duty cycle of each node individually

to adapt to the network condition changes in di↵erent areas in the WSN. Network

conditions in a WSN can vary both spatially and temporally Cerpa et al. (2005).

Third, DutyCon can also adapt to the unpredictable incoming packet rate changes,

which are common in many WSN-based monitoring applications, e.g., packets can be

generated at a higher rate when an emergency event occurs.

5



Chapter 2

Stability in Power Grid with PdE

We first study the power grid stability based on the frameworks of flocking and PdE,

where communication delay can be both negligible or not. In particular, we derive the

conditions of system stability for both cases, based on which we propose an algorithm

for designing the topology of communication network.

2.1 System Model

In this section, we introduce the system model. We first explain the dynamics of

individual generators in power grids. Then, the interconnection among generators is

briefed and we approximate the nonlinear dynamics using a linear one. Finally, we

introduce the model of communication network in the smart grid.

2.1.1 Individual Generator

We consider a power network with N generators. For generator n, its dynamics is

described by the following Swing Equation Kundur (1994):

M
n

�̈(t) +D
n

�̇(t) = P n

m

(t)� P n

e

(t), (2.1)

6



Figure 2.1: An illustration of one node in the power grid.

where � is the phase, P n

m

is the mechanical power and P n

e

is the electric power. M
n

is the rotor inertia constant and D
n

is the mechanical damping constant. We denote

by f = �̇, whose physical meaning is the frequency of rotation. Then, the Swing

Equation can be rewritten as

8
<

:
�̇(t) = f

M
n

ḟ(t) +D
n

f(t) = P n

m

(t)� P n

e

(t)
. (2.2)

2.1.2 Generator Interconnection

We consider the interconnections of the generators. Similarly to the seminal work by

J. S. Thorp Thorp et al. (1998), we do not consider the connection of loads. It is

non-trivial to incorporate the impact of electric loads, which will be our future study.

However, the study on only generators can provide significant insights and pave the

way to more general power network models.

Consider an arbitrary node i as shown in Fig. 2.1, where Z
ik

= R
ik

+ jX
ik

is the

impedance of the transmission line between the adjacent generators i and k, E
i

is the

voltage of generator i and Y
i

is the shunt admittance. Then, for generator k adjacent

7



to i, which is denoted by k ⇠ i, the current in transmission line ij is given by

I
i,k

=
E

i

� E
k

Z
ik

. (2.3)

Then, the current flowing from the voltage source to the node, denoted by I
i

, is given

by

I
i

=
X

k⇠i

I
i,k

+ Y
i

E
i

=
X

k⇠i

(E
i

� E
k

)

Z
ij

+ Y
i

E
i

. (2.4)

We assume that a perfect voltage control is applied such that the voltage of the

generator is constant in magnitude. Hence, we have E
i

= V ej�i , where �
i

is the phase

and V is the constant magnitude. Hence, the real power spent by generator i is given

by

P i

e

= Re [E
i

I⇤
i

]

=
XX

k⇠i

V 2R
ik

|Z
ik

|2 �
X

k⇠i

V 2R
ik

cos(�
i

� �
k

)

|Z
ik

|2

�
X

k⇠i

V 2X
ik

sin(�
i

� �
k

)

|Z
ik

|2 + V 2Re[Y
i

], (2.5)

which is obtained by substituting (2.4) into the expression of P i

e

. Substituting (2.5)

into (2.2), we obtain the dynamics of the generators.

2.1.3 Linearization

Notice that Eq. (2.2) is nonlinear due to the nonlinearity of P i

e

in terms of �
i

� �
k

.

It is very challenging to discuss the nonlinear dynamics directly. To simplify the

analysis, we assume that the system is close to an equilibrium point. We denote the

standard frequency by f
0

and the frequency deviation of generator i by �f
i

. The

8



angle deviation �
i

� f
0

t� ✓
i

(✓
i

is the initial phase of generator i) is denoted by ��
i

.

Then, when �f
i

and ��
i

, i = 1, ..., N , are both su�ciently small, it is easy to verify

that the dynamics can be linearized to the following form:

8
>>><

>>>:

�̇�
i

(t) = �f
i

(t)

M
i

�̇f
i

(t) +D
i

�f
i

(t)

= �P i

m

(t)�
P

k⇠i

c
ik

(��
i

���
k

)

, (2.6)

where �P i

m

is the di↵erence between the actual mechanical power and the stable one

at the equilibrium, and

c
ik

=
V 2R

ik

|Z
ik

|2 sin �
ik

� V 2X
ik

|Z
ik

|2 cos �
ik

, (2.7)

where �
ik

is the stable phase di↵erence between adjacent generators i and k at the

equilibrium state.

To facilitate the framework of PdE, we make the following assumptions which

further simplifies the dynamics of the power grid:

• The damping constants are identical for all generators, which is denoted by D;

• The phase di↵erence �
ik

is relatively small such that sin �
ik

⇡ 0. Hence, we can

assume

c
ik

= �V 2X
ik

|Z
ik

|2 , (2.8)

which implies c
ik

= c
ki

since cos �
ik

= cos �
ki

.

• All the rotor inertias are all equal to 1, i.e., M
n

= 1. This is for simplicity of

notation and numerical simulations. It is easy to extend to the general case,

since we do not use this assumption in the mathematical derivation.

For notational simplicity, we define c
ik

= 0 if generators i and k are not adjacent.

9



2.1.4 Communications

We assume that there exist communications between some physically adjacent

generators. We denote by i $ j that generators i and j can communicate with each

other⇤. A necessary condition for i $ j is i ⇠ j. We assume that the mechanical

power is adjusted according to the feedbacks of frequencies from the communication

channels, i.e.,

�P i

m

(t) = g (�f
i

(t), {�f
k

(t� d)}
k$i

) , (2.9)

where d is the communication delay of the communication link, which is assumed

to be a constant†, and g is control policy of the mechanical power. Note that the

change of the mechanical power can be realized through the governor, fast valving,

the voltage control of the PSS or other devices Cvtkovic and Ilich (2011). Here, we

do not explicitly model the detailed dynamics of such approaches.

For simplicity, we assume that the control of the mechanical power is a linear

function, i.e.,

�P i

m

(t) =
X

k$i

g
ik

(�f
k

(t� d)��f
i

(t� d)) . (2.10)

We assume g
ik

= g
ki

; i.e., the control gains are symmetric. Similarly, we define

g
ik

= 0 if generators i and k cannot communicate with each other. We also assume

that g
ik

� 0 since it is desirable to decrease the mechanical power when �f
i

is large

when compared with the frequency deviations of neighboring ndoes.

Incorporating the control action on the mechanical power into the overall

dynamics, the linearized system dynamics can be written in the following vector

⇤
Theoretically, if the communication network is connected, every two nodes can communicate

with each other, via one or more hops. In this paper, we consider only a single hop communication.

†
In practice, the communication delay could be di↵erent for di↵erent links, or even could be

random, due to random channel conditions or communication congestions. The assumption of

constant delay can substantially simplify the analysis and provide insights for our future study on

the generic case of communication delay.

10



form:

ẋ(t) = Ax(t) +Bx(t� d), (2.11)

where x = (��
1

, ...,��
N

,�f
1

, ...,�f
N

)T . The matrices A and B are given by

A =

0

@ 0 I

�L
p

�DI

1

A , (2.12)

where L
p

is defined as (p means power network)

(L
p

)
ij

=

8
<

:
�c

ij

, i 6= j
P

k⇠i

c
ik

, i = j
, (2.13)

and

B =

0

@ 0 0

0 �L
c

1

A , (2.14)

where L
c

is defined as (p means communication network)

(L
c

)
ij

=

8
<

:
�g

ij

, i 6= j
P

k⇠i

g
ik

, i = j
. (2.15)

It is easy to verify that the matrices L
p

and L
c

are actually the Laplacian matrices

of the power network and communications with weights {c
ik

} and {g
ik

} Chuang

(1997). Laplacian matrix is ver y well studied in the graph theory field. It is a matrix

representation of a graph and consists of a degree matrix and adjacency matrix. The

elements of a Laplacian matrix are given as: 1) at the diagonal position, the elements

value are the connected degree to all neighbors; 2) at the indices where the node has

connected edge, the value is �1; 3) all the other positions have 0 value. Equation

2.16 below is an example of the Laplacian matrix of the graph in Figure 2.2:
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Figure 2.2: Example graph of the Laplacian matrix.

L =

0

BBBBBBBBBBBB@

3 �1 0 0 �1 �1

3 �1 0 0 �1 �1

3 �1 0 0 �1 �1

3 �1 0 0 �1 �1

3 �1 0 0 �1 �1

3 �1 0 0 �1 �1

1

CCCCCCCCCCCCA

, (2.16)

We see that our L
p

and L
c

has the same structure as the example Laplacian matrix

above. The eigenvalues of L
p

and L
c

have the following characteristics:

• All eigenvalues of L
c

are non-negative since all the weights are positive. The

smallest eigenvalue is 0.

• There is one zero eigenvalue for L
p

. The other eigenvalues may be positive or

negative since the weights could be positive or negative.
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2.1.5 Similarity to Flocking System in Control Field

A lot of studies in the control search field has studied the flocking system. Ferrari-

Trecate et al. (2014) summarizes the major studies in the this filed. Based on

Ferrari-Trecate et al. (2014), the interest here is in the coordination phenomena in

applications such as controlling groups of unmanned autonomous vehicle. In such an

application, each agent is usually described by a dynamical system characterizing

the evolution of its position and velocity. Between di↵erent agents, information

are shared through a communication network. Agent connected by communication

link are considered as neighbors and the information from connected neighbors are

immediately available. The analogy here of this control system to flocking system is

each agent need to make moving decision, based on the input information from the

communication network from connected agents in a decentralized way, just like each

bird in flocking system need to make the moving decision based on the observation

on the moving from neighboring birds. We can see the similarity here between our

power grid system and this control system. Di↵erently, in our power grid system,

each power station is deciding on the frequency and phase, instead of the moving

information based on the input from neighboring power station.

2.2 PdE Framework

I n this section, we fit the generator dynamics into the framework of PdE. We first

assume that there is no communication delay and then extend to the case with non-

negligible delay. Although the no-delay case is a special case of the latter, we can use

it to better explain the framework of PdE. Then, we use arguments in the theory of

flocking to analyze the system stability.

13



2.2.1 Field Operators in Networks

We first define various operators for the further analysis. These operators are

the counterparts of operators in traditional field theory, in the context of discrete

networks.

Gradient

First we define the gradient, which is of key importance in traditional field theory

and PDEs. In the calculus over continuous space Rn, the gradient of di↵erentiable

function f(x
1

, ..., x
n

) at point x = (x
1

, ..., x
n

) is defined as

rf(x) =

✓
@f

@x
1

, ...,
@f

@x
n

◆
, (2.17)

where the partial derivative is defined as

@f

@x
i

= lim
�!0

f(x
1

, ..., x
i

+ �, ..., x
n

)

�
. (2.18)

However, in the context networks, we cannot use the same definition of partial

derivative since � ! 0 is not well defined in the discrete space of networks. However,

we can capture the essential meaning of partial derivative, which means the changing

rate between two ‘neighboring’ points with very small distance. Then, in the context

of discrete networks, we can replace the traditional meaning of partial derivative with

the change between to neighboring nodes. Motivated by this analogy, according to

the framework of PdE in Ferrari-Trecate et al. (2014), we define the partial derivative

of a vector function r mapping from a node a in a graph to R2 as

@
b

r(a) = r(b)� r(a), (2.19)
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where b is an adjacent node of a. Intuitively, we can consider node a as the ’anchor’

point, and the edge between b and a as the direction or coordinate in the traditional

calculus.

We can obtain the second order partial derivative as follows:

@2

b

r(a) = r(b)� r(b)� (r(b)� r(a))

= �(r(b)� r(a))

= �@
b

r(a). (2.20)

We define the gradient of r as

rr(a) =
�
@T

b1
r(a), ..., @T

bn
r(a)

�
T

, (2.21)

where b
1

, ..., b
n

are the neighbors of node a. Obviously, rr(a) is the vector consisting

of the partial derivatives of node a corresponding to its neighbors.

Divergence

For a 2n-dimensional vector at node a, s(a) =
�
sT
b1
(a), ..., sT

bn
(a)
�
T

, where each s
m

is

a 2-dimensional vector, we define its divergence as

r · s =
nX

j=1

@
bjsbj(i). (2.22)

Di↵erence and Similarity

We notice the following di↵erences of the definitions of gradient and divergence in

traditional continuous field and the discrete network under study:

• In traditional definition of gradient, the function is scalar, while we can define

the gradient for vector functions in the context of discrete network.
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• In traditional field theory, the divergence of a vector function is scalar, while

the divergence defined here is 2-dimensional.

Despite the di↵erence, both definitions in the context of discrete network are

intuitively similar to those in traditional field theory, if we equalize the di↵erence

in network to the di↵erential in continuous space.

2.2.2 PdE without Communication Delay

First, we assume d = 0, i.e., the communication delay is zero.

Di↵usion Equation

Based on the definition of Laplacian in (2.21), we can consider the system state

x as a set of 2-vectors over the set of nodes in a graph. Each node in the graph

corresponds to a generator and the corresponding vector (say, for generator i) is

r
i

(t) = (��
i

(t),�f
i

(t))T , namely the deviations of phase and frequency. To make the

expression more compact, we add a virtual node, denoted by �, with

r
�

(t) =

 
�

NX

n=1

Z
t

0

�f
i

(s)ds, 0

!
, (2.23)

which is connected to all generators. Then, the linear dynamics in the vector form

can be written as the evolution of vectors over a graph, which is given by

@r
i

(t)

@t
= r · [ (i)rr

i

(t)] , (2.24)

where  (i) is a diagonal matrix coined the di↵usion coe�cient.  (i) can be written

as diag ( 
1

(i), ..., 
n

(i)), where n is the number of neighboring nodes and each  
k

(i)

is a 2⇥ 2 diagonal matrix. When i is not the virtual node and the neighbors are b
1

,

...., b
n

,  
k

(i) is determined by the following rules:
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• When b
k

is the virtual node,  
k

(i) =

0

@ 0, 1

0, �D

1

A;

• When b
k

⇠ i but b
k

$ i is not true (i.e., generator k is adjacent to i while there

is no communication link between them), we have  
k

(i) =

0

@ 0, 0

�c
ik

0

1

A.

• When b
k

⇠ i and b
k

$ i (i.e., generator k is adjacent to i and there is a

communication link between them), we have  
k

(i) =

0

@ 0, 0

�c
ik

, �g
ik

1

A.

When i is the virtual node, we have  
k

(i) =

0

@ 0, �1

0, 0

1

A.

Note that (2.24) has exactly the same form as that of di↵usion equation with

homogeneous di↵usion coe�cients Crank (1975). The only di↵erence is that the

gradient and the divergence have new definitions in the context of dynamics over

graph.

Property of Di↵usion Operator

The dynamics of the power system in the above model are determined by the operator

r · [ r], which is coined the di↵usion operator. Similarly to Ferrari-Trecate et al.

(2014), we define the following ‘Sobolev’ space:

H1 =

(
f

����
NX

i=1

f(i) = 0

)
. (2.25)

Then, we have the following property of the operator r · [ r]:

Lemma 2.0.1. The operator r · [ r] maps from H1 to H1. Its eigenvalues are all

negative if and only if the eigenvalues of the following matrix are negative:

D =

0

@ 0 I

�L
p

�L
c

1

A . (2.26)
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System Stability

Obviously, the origin point ��
i

= 0 and �f
i

= 0 (i.e., the frequencies equal the

standard one) is a stationary point; however, its stability is unknown and is of key

importance to the power grid. Following the definition of stability in Ferrari-Trecate

et al. (2014), we say that the origin point ��
i

= 0 and �f
i

= 0 is stable if for all

t � 0, for any ✏ > 0, there exists a ✓ > 0 such that

kx(0)k  ✓ ) kx(t)k  ✏. (2.27)

Then, the following proposition discloses the su�cient and necessary condition of

the stability of the equilibrium point of the power grid.

Proposition 1. The origin point of the di↵usion process (2.24) is stable if and only

if the eigenvalues of the matrix in (2.26) have negative real parts.

The proof is very similar to that of Theorem 4 in Ferrari-Trecate et al. (2014),

which discusses the bird flocking. We can define a Lyapunov function and then

apply Lemma 2.0.1 and Theorem 2 in Ferrari-Trecate et al. (2014) to prove that the

Lyapunov function decreases with time. The details of the proof are omitted.

The following corollary provides a condition for the stability of the origin point in

a special case.

Corollary 2.0.1. Suppose that the Laplacian matrices L
c

and L
p

have the same

eigenstructure and real eigenvalues. The origin point is stable if and only if the

following inequality holds:

max
0⇢1

max
ktk=1

�⇢
NX

i=1

�c

i

t2
i

�
p
⇢(1� ⇢)min

i

t
i

(�p

i

+ 1) < 0. (2.28)

where �c

i

and �p

i

are the eigenvalues of L
c

and L
p

, respectively.
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Proof. Using the variational expression of eigenvalues, we have

�D

max

= max
kxk=1

xTDx, (2.29)

where D is the matrix in (2.26). We decompose x as (x
1

,x
2

). Then, we have

xTDx

= �xT

2

L
c

x
2

� xT

2

(L
p

+ I)x
1

. (2.30)

Let kx
1

k2 = ⇢
1

and kx
2

k2 = ⇢
2

. Obviously, we have ⇢
1

+ ⇢
2

= 1. Transforming x
1

and x
2

such that L
c

and L
p

become diagonal, we have

xTDx

= �
NX

i=1

�c

i

x2

2i

�
NX

i=1

(�p

i

+ 1)x
1i

x
2i

. (2.31)

Fixing x
2

, we have

�
NX

i=1

(�p

i

+ 1)x
1i

x
2i

 �
p

1� ⇢
2

min
i

(�p

i

+ 1)x
2i

, (2.32)

where the equality is achieved when

x
1i

=

8
<

:

p
1� ⇢

2

, i = i⇤

0 , otherwise
, (2.33)

where i⇤ = argmin
i

(�p

i

+ 1)x
2i

. Hence, we have

xTDx

 �
NX

i=1

�c

i

x2

2i

�
p

1� ⇢
2

max
i

(�p

i

+ 1)x
2i

. (2.34)

Then, the conclusion is obtained by letting t = 1p
⇢2
x
2

.
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2.2.3 PdE with Communication Delay

Now we consider the case in which d is nonzero, i.e., the communication delay is

non-negligible. Using the same argument as the no delay case, the dynamics of the

power grid can be written as

@r(i, t)

@t
= r · [ 

p

(i)rr(i, t)] +r · [ 
c

(i)rr(i, t� d)] , (2.35)

where the matrices  
p

(i) and  
c

(i) can be obtained similarly to the negligible delay

case.

To study the stability of the PdE with communication delay, we need the following

lemma (Lyapunov-Krosovskii Stability Theorem Gu et al. (2003)):

Lemma 2.0.2. Consider a retarded functional di↵erential equation (RFDE):

ż = f(t, z
t

), (2.36)

where f(t, 0) = 0. Suppose that there exist continuous functions u, v and w mapping

from R
+

to R
+

, which are nondecreasing. Moreover, u(s) and v(s) are positive for

s > 0, and u(0) = v(0) = 0. If there exists a continuous di↵erentiable functional V

such that

u(kz(0)k
2

)  V (t, z)  v(kzk
c

), (2.37)

where kzk
c

= max
t

kz(t)k
2

, and

V̇ (t, z)  �w (kz(0)k
2

) , (2.38)

then the trivial solution to (2.36), i.e., z = 0, is uniformly stable. If w(s) > 0 for

s > 0, the solution is uniformly asymptotically stable‡.

‡
A solution to (2.36) is uniformly stable if, for any t0 and ✏ > 0, there exists a �(✏) > 0 such

that kzt0kc  � implies kz(t)k  ✏ for all t > t0. The solution is said to be uniformly asymptotically
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According to Ordinary Di↵erential Equations (ODEs), Lyapunov functions are

scalar functions that can be used to prove the stability of an equilibrium of an ODE.

The Lyapunov functions is a universal method for the investigation of the stability

of nonlinear dynamical systems of general configuration. Informally, a Lyapunov

function is a function that takes positive values decreases (or is non-increasing) along

every trajectory of the ODE. Lyapunov function-based stability analysis of ODEs has

the merit that the actual solution, analytical or numerical, of the ODE is not quired.

Lyapunov (1992)

Then, we can prove the following conclusion about the property of the operator

r · [ 
p

(i)rr(i, t)] +r · [ 
c

(i)rr(i, t� d)].

Proposition 2. The solution of (2.35) is uniformly stable if the eigenvalues of the

following matrix are all nonpositive:

F =

0

@ I 2I

�2L
p

L
c

TL
c

+ I

1

A . (2.39)

If all eigenvalues of the matrix F are negative, the solution is uniformly

asymptotically stable.

Proof. We define the following Lyapunov-Krasovskii functional:

V (x(t)) = kx(0)k2
2

+ kx(t)k2
2

+

Z
0

�d

xT (t+ s)BTBx(t+ s)ds. (2.40)

Obviously, we have

V (x(t))  2kx(t)k2
c

+ d�⇤
max

kx(t)k2
c

, (2.41)

stable if it is uniformly stable and there exists a � > 0 such that, for any ⌘ > 0, there exists a

T = T (�, ⌘) such that kzt0kc  � implies kz(t)k  ⌘ for all t > t0 + T Gu et al. (2003).
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where �⇤
max

is the maximum eigenvalue of BTB which is positive. Hence, we can set

function v as the right hand side of (2.41). We can also set u as u(s) = s2 such that

u(kx(0)k
2

)  V (t,x).

Taking the derivative with respect to t, we have

V̇ (x) = 2ẋTx+ xT (t)BTBx(t)

� xT (t� d)BTBx(t� d)

= 2xTAx+ 2xT (t� d)Bx

+ xT (t)BTBx(t)� xT (t� d)BTBx(t� d)

= 2xTAx+ xT (t)BTBx(t) + xTx

�
�
xTx� 2xT (t� d)Bx

+ xT (t� d)BTBx(t� d)
�

= 2xTAx+ xT (t)BTBx(t) + xTx

� kx�Bx(t� d)k2

 2xTAx+ xT (t)BTBx(t) + xTx. (2.42)

Hence, if all eigenvalues of 2A + BTB + I are nonpositive (negative), V̇ is also

nonpositive (negative). We can set

w(x) = �⇤⇤
max

kxk2
2

, (2.43)

where �⇤⇤
max

is the maximum eigenvalue of 2A + BTB + I. Then, the conclusion is

obtained from the Lyapunov-Krosovskii Theorem.

We observe that the conditions for the stabilities are independent of the delay

d. Hence, the conclusions is a delay-independent one Gu et al. (2003). Delay-

independent stability condition has been studied for quite a while in control study

community, e.g., Aleksandrov et al. (2014), Devane and Lestas (2015) and Ferrari-

Trecate et al. (2014). In the case when delay is infinite, we can view the
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communication link is down and there is no communication between two sub-stations.

Such a situation leads to an open-loop control system, which is still possible to be

stable. However, if the driving force of the dynamic system is a periodic one, for

example, a sinusoidal function with a period of T , but the delay of the feedback

control is T/2, the negative feedback will become positive feedback, which is even

worse than no feedback (i.e. infinite delay). It is much more complicated to obtain

a delay-dependent one, which involves the theory of linear matrix inequalities. As

explained above, the Lyapunov function-based stability does not require an actual

solution to the problem, but provides a theoretical way of deducting the stability

condition of the problem.

2.3 Communication Topology Design

In this section, we study how to design the topology of the communication network

in smart grid. In the case with communication delays, we need to optimize both the

topology and delay, which is a complicated process and beyond the scope of the paper.

To simplify the communication topology design problem, we consider only the case

of no communications delays. Moreover, we assume that the feedback gain g
ik

is a

constant equaling g
0

. It is more interesting to study the joint design of communication

network and control law, which involves mixed integer programming and will be our

future work.

2.3.1 Problem Formulation and Greedy Algorithm

As we have found, the stability of power system when there is no communication

delay is determined by the eigenvalues of matrix D. Hence, the objective could

be minimizing the maximum eigenvalue of D in order to make all eigenvalues

negative. Meanwhile, the communication network is subject to costs since the
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communication links are not free. We denote by a
ik

the cost of building the bi-

directional communication link built between node i and k and assume that the

total budget of the cost is a
tot

. Then, the design of communication topology can be

formulated as the following optimization problem:

min
{zi,k}i 6=k

�D

max

s.t.
X

i 6=k

z
i,k

a
ik

 a
tot

z
i,k

2 {0, 1}, 8i 6= k, (2.44)

where z
i,k

is the variable and means building (not building) the link between

generators i and k when z
i,k

= 1 (0).

Since the variable of the above optimization problem only takes 0 and 1 as

solution to the variable, which is the representation of whether a communication

link exists between two di↵erent power stations, the optimization problem above

is an integer programming problem. More specifically, this problem is a binary

constraint programming problem where only the 0 and 1 can be solution. The type

of constraint programing originates from AI research. For example, in a chess board

game optimization problem, symbolic values, e.g. positions on a chessboard, can be

the variable to solve with the constraint of certain chess piece can only be assigned to

certain position. Whether the position can have a chess piece or not is a 0-1 binary

constraint optimization problem. Since the CP problems are non-convex, the solutions

to solve such a problem usually involves certain exhaustive search algorithm, such as

the ones used in the solver listed in Currie and Wilson (2012). In our communication

topology design problem, assuming the power system has N power stations and they

are completely connected through power lines, then the total number of decision

variables in the communication network is then N

2�N

2

, which shows the size of the

problem is at the order of O(N2). Since each power line is being determined if there

is a communication link between the connected power station, the complexity of the
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problem is O(4N), which is a large number to solve in a binary integer programming

problem, if N is large.

To alleviate the high computational time involved when using the traditional

solver, we design a greedy algorithm to minimize the cost function of the above

optimization step by step. The procedure is given in Procedure 1. In the algorithm,

we try to add one communication link to the communication network in one iteration.

In each iteration, we compute the maximum eigenvalue of all the possible matrices

of adding that additional communication line, subject to the constraint that the

communication line can only be added when there is power line but no communication

line between two power station and when the total cost constraint is not violated. We

then compare all the maximum eigenvalue with di↵erent communication topology and

choose the one that has the minimum max eigenvalue to be the new communication

topology with the new communication line. The program terminates when no more

communication link can be added.

Algorithm 1 Procedure of Communication Network Topology Design
1: Initialize the communication links as an empty set.

2: while The total cost is less than a
tot

do

3: for Each communication link between i and j with z
ij

= 0 do

4: Set z
ij

= 1 temporarily if there is power line between i and j.

5: Compute the maximum eigenvalue of D.

6: end for

7: Choose the link with the minimum cost function.

8: Set the corresponding z
ij

= 1.

9: end while

2.3.2 Problem Relaxation with Semidefinite Program (SDP)

Solution

The previous proposed type of greedy algorithm often gives a quick solution to the

problem, compared with a solver that solves the entire problem rigorously. However,

the heuristic algorithm does not give any performance guarantee. In this subsection,
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we relax the optimization problem in last subsection to a problem that can be

can be solved with well established solvers, such as SDP solvers, such that the

computational complexity can be reduced, compared with solving the original problem

with optimization solver.

Suppose �
0

is the eigenvalue of matrix D, with the corresponding eigenvector

[�T, fT]T , where � is the phase and f is the frequency vectors, we then have

0

@ 0 I

�L
p

�L
c

1

A

0

@ �

f

1

A =

0

@ f

�L
p

� � L
c

f

1

A

= �
0

0

@ �

f

1

A .

(2.45)

We then derive the following equations:

f = �
0

� (2.46)

� L
p

� � L
c

f = �
0

f (2.47)

Hence, plugging Equation (2.46) into Equation (2.47), we have

�2

0

� = (��
0

L
c

� L
p

) �. (2.48)

From Equation (2.48), we know � is an eigenvector of ��
0

L
c

� L
p

, where its

corresponding eigenvalue is �2

0

. Therefore, the eigenvalue of

0

@ 0 I

�L
p

�L
c

1

A is

determined by the following equation

�2

0

= e� (��
0

L
c

� L
p

) (2.49)

where e�(A) denotes the eigenvalue of matrix A.
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Solving the above equation directly is non-trivial work. To simplify the problem,

we make the assumptions that e�(L
c

)  0 and e�(L
p

)  0. We then have

e�
2

(��
0

L
c

� L
p

) � �
0

e�
2

(�L
c

) (2.50)

where e�
2

(A) denotes the second largest eigenvalue of the the corresponding matrix.

From Equation (2.50) we know a larger e�
2

(�L
c

) can improve the lower bound of

e�
2

(��
0

L
c

� L
p

) and thus improve �
0

. Thus, we relax the communication topology

design problem in Equation (2.44) to

max
{zi,k}i 6=k

e�
2

(�L
c

)

s.t.
X

i 6=k

z
i,k

a
ik

 a
tot

z
i,k

2 {0, 1}, 8i 6= k, (2.51)

where the z
i,k

is also the variable and means building (not building) the link between

generators i and k when z
i,k

= 10.

The problem formulation in Equations (2.51) can be easily derived to a convex

optimization problem by further relaxing the second constraint above to a linear

constraint, 0  z
i,k

 1. The solution of the convex relaxation is a superset of

the our original problem, as it uses a linear constraint that includes the original

discrete constraint. We refer to the similar formulation in Ghosh and Boyd (2006)

and formulate such a convex relaxation to the following semidefinite program (SDP)

problem

max s

s.t. s
�
I� (11T/n)

�
� �L

c

X

i 6=k

z
i,k

a
ik

 a
tot

0  z
i,k

 1, 8i 6= k, (2.52)
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The above SDP programing problem can be solved with standard SDP solver,

which usually finds solutions with a reasonable computational complexity.

2.4 Numerical Results

In this section, we evaluate the performance of di↵erent algorithms for solving

the optimization problem discussed in this paper. The power network topology is

randomly generated. We adopt the parameters of the transmission lines from the

IEEE New England 39-bus model. The 39-bus model is a widely adopted model

for testing new framework. It is a abstraction of a greatly reduced model of the

power system in New England. There have been numerous research studies that

adopt this model for both static and dynamic system research. The 39-bus system

has 10 generators, 36 transmission lines, 19 loads and 12 transformers. The model

is an AC power flow model, where real and reactive power flows and power system

nonlinearity are characterized. In the simulation, we use the system topology of

the power networks of the 39-bus model as the base and design the communication

network accordingly. The system model is shown in Figure 2.3.

2.4.1 Greedy Algorithm Performance

We first evaluate the performance of the greedy algorithm proposed in Procedure 1.

The power network is composed of 9 power generators with a randomly generated

power network topology. The algorithm is applied for several settings of g. Fig. 2.4

shows the change of the cost function, the maximum eigenvalue of the matrix D, as

more communication links are added, when the greedy algorithm in Procedure 1 is

applied. We observe that the real part of the maximum eigenvalue is still positive,

although it is close to zero. Although Theorem 1 gives the su�cient and necessary

condition for the power system to be stable, it is the condition at both di↵usion

origin, where both the frequency component �f and the phase component �� is
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Figure 2.3: Illustration of the 39-bus model.
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Figure 2.4: Evolution of the metric obtained in Procedure 1.

29



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.5

0

0.5

1

time (second)

∆
 f

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1.5

−1

−0.5

0

time (second)

∆
 δ

Figure 2.5: Evolution of �f and ��.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

Figure 2.6: Illustration of the power and communication networks.

30



zero. However, due to the existence of phase, the indi↵erence of phase change and

that the phase component �� cannot be recovered to zero since it is accumulated

over time, the origin of the phase and frequency actually cannot be stable. Hence we

tried the conclusion in that theorem that is actually not precisely applicable to the

numerical problem, which leads to the real part of the eigenvalue to be still positive.

It is similar to the belief propagation in machine learning, which behaves well but

lacks a complete theoretical explanation.

Nevertheless, we observe that the cost function is substantially decreased, which

shows the trend that the system is converging to stable with more number of

links added to the communication topology Fig. 2.5 shows that the frequency

deviation converges to zero (the upper figure) while the phase deviations remain

almost constant. This implies that a new criterion is needed to characterize only

the convergence of �f to 0 if it is not necessary to force the phase deviations back

to zero. If the system requires to force the phase deviation back to zero as well, it

is necessary to introduce the phase measurements into the control action, similarly

to the control law in Li and Han (2011). The numerical results show that it works

numerically although there is still no theoretical explanation for it. Two examples of

the power network topology (left) and the optimal communication network topology

(right) are shown in Fig. 2.6. We see that the algorithm can pick links from the

power network and make the communication network.

2.4.2 Greedy Algorithm Vs. Optimization Solver

In this section, we compare the performance of the proposed greedy algorithm and

the existing optimization tool package. From the previous analysis we know that

the complexity of the problem is in the order of O(4N), where N is the number

of power stations. It is therefore an exponential order mixed integer programming

problem. To solve the problem, we use existing optimization solver in this evaluation

section. The optimization package we use to solve this problem is the OPTimization
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Figure 2.7: Evolution of the optimized cost using greedy algorithm and OPTI
optimization sober.

Interface (OPTI) Toolbox, designed for constructing and solving linear and nonlinear

continuous and discrete optimization problems Currie and Wilson (2012). It utilizes

open source solvers to solvers such as IPOPT, SCIP, etc., to solve the problem. Our

problem is a mixed integer nonlinear programing problem, which can be solved using

the OPTI toolbox.

The power topology used in the evaluation is the same nine generators system

with randomly generated power link topology. Figure 2.7 shows the change of the

cost function when the number of the communication links increases with di↵erent

algorithms. We also evaluate the performance using di↵erent g values. From the

results we see that the optimization performance of the OPTI solver outperforms

the greedy algorithm only when the number of communication links is high. And

the performance gain is not significant. However, in our evaluation, the OPTI

solver takes significantly more time to solve the optimization problem as it searches

through the entire possible solution space to find an optimization solution. When
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Figure 2.8: Communication graph (blue) design when g = 20. The top two is the
solution from the greedy algorithm. The bottom row is the solution from the OPTI
package.

the number of communication links is high, the possible solution space is also large,

which makes the OPTI solver slow when solving the problem. Figure 2.8 and 2.9

show the communication graph (in blue) of the di↵erent algorithms when g = 20

and g = 80, respectively. In each graph, the top row is the solution from the greedy

algorithm, while the bottom row is the solution from the OPTI solver. We see that

the communication links are more evenly distributed among di↵erent stations in the

solution from the OPTI solver. Moreover, we see that the greedy algorithm gives a

solution that leaves two power station disconnected in the communication network,

while the OPTI solver solution has a better connection in communication network

among the power stations.

2.4.3 Performance of Greedy Algorithm vs. SDP optimiza-

tion

In section 2.3.2, we relaxed the optimization problem of solving the communication

topology to an SDP optimization problem. Here, we evaluate the optimization

results of the original problem solved with the greedy algorithm and the relaxed
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Figure 2.9: Communication graph (blue) design when g = 80. The top two is the
solution from the greedy algorithm. The bottom row is the solution from the OPTI
package.

SDP optimization problem solved by existing SDP optimization package. The SDP

optimization package we use is CVX, a Matlab based modeling system for convex

optimization Grant and Boyd (2014)Kundur (2008).

We also change the system topology in this evaluation experiment. Di↵erent from

the previous 9 power station system, we use a 15 power station system derived from

the IEEE New England 39-bus model. In the evaluation, the maximum total number

of communication links is increased to 20. The power link topology is randomly

assigned. Figure 2.10 shows the change of the cost function when increasing the

number of communication links. We see that compared with solution to the original

optimization problem solved with the greedy algorithm, the SDP variant of the

original optimization problem shows a higher cost function optimization result. The

reason is that the SDP relaxation aims to optimize e�
2

(�L
c

), which only considers

the communication matrix. Without the information from the power matrix, the

optimization results can not reach a lower cost result. However, an SDP problem is

often easy to solve and provides a theoretical boundary of the optimization results.

The complexity of the solving the SDP problem is much lower than the previous
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solution with optimization solver. Therefore, the SDP variant provides a fast solution

to get a boundary solution of the optimization problem. Figure 2.11 shows the

frequency deviation convergence, where the SDP problem has a faster convergence

speed.
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Chapter 3

End-to-end Delay Control with

Power E�cient Wireless Sensor

Networks

Power systems has three major sub-subsystems, which are power generation, power

delivery and power utilization. Because of the low-cost and non pervasive nature

of wireless sensor networks, recently WSNs have been identified as a promising

technology to be utilized in all of the three subsystems. WSN is considered as a

key enabler to the future smart grid system. WSN, if utilized e↵ectively, can provide

e�cient monitoring the critical smart grid equipment, as well as monitoring and

responding to the change conditions in the smart grid with a proactive manor Tuna

et al. (2013).

Here, we adopt wireless sensor network (WSN) as the infrastructure of the commu-

nication network. To e↵ectively use the WSN technology for power grid monitoring,

we need to provide certain the Quality of Service in the WSN infrastructure. Since

the wireless sensor networks has limited power, the transmission range of a wireless

sensor node is usually limited. To apply WSN in an application such as the power

grid, information transmission between two end nodes are usually relayed by multiple
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di↵erent nodes in between. Therefore, in this chapter, we focusing on solving the

problem of end-to-end delay control of the WSN communication network, such that

it can be better utilized for power grid application. In addition to the end-to-end

delay control problem, we also seeks to prolong the life-time problem of WSN, as the

lifetime of the WSN infrastructure is a major concern when deploying it in real-world

applications.

3.1 Literature Study

Several protocols have been proposed to provide delay guarantees for wireless sensor

and ad hoc networks. Implicit EDF Caccamo et al. (2002) is a collision-free scheduling

scheme which provides delay guarantees by exploiting the periodicity of WSN tra�c.

RAP Lu et al. (2002) uses a velocity monotonic scheduling scheme to prioritize real-

time tra�c based on a packet’s deadline and its distance to the destination. SPEED

He et al. (2003) achieves end-to-end communication delay guarantees by enforcing a

uniform communication speed throughout the network. Karenos et al. Karenos and

Kalogeraki (2006) have also presented a flow-based tra�c management mechanism

to provide delay guarantees. Our work is di↵erent from the aforementioned research.

By dynamically manipulating the sleep interval, we provide delay guarantees for end-

to-end communications, while the delay incurred by sleeping nodes is not considered

in the aforementioned protocols.

Periodic sleeping is a widely adopted approach to saving energy for WSNs. The

existing periodic sleeping approaches can be categorized into two classes: static sleep

scheduling and dynamic sleep scheduling. In the static sleeping approach category,

S-MAC Ye et al. (2002) proposes a synchronous periodic sleeping MAC with fixed

duty cycles for energy savings. D-MAC Lu et al. (2004) is developed especially for

a tree topology network. It aims to reduce sleep latency while decreasing energy

consumption. Several other static sleep scheduling protocols (e.g., van Dam and

Langendoen (2003)Ha et al. (2006)) are also proposed. However, none of the above
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studies provides delay guarantees when utilizing periodic sleeping to save energy. A

static sleep scheduling approach with delay guarantee has been recently proposed

Gu et al. (2009). However, it cannot adapt to network condition changes such as

interference incurred by additional workload at runtime. The second class of periodic

sleeping schemes is dynamic sleeping scheduling. In those approaches, nodes are

allowed to have di↵erent sleep schedules and change their schedules dynamically at

runtime. Min et al. Min et al. (2008) propose to choose di↵erent nodes to go to sleep

at di↵erent time based on the Analytic Hierarchy Process (AHP). Ning et al. Ning

and Cassandras (2008) propose to use the dynamic programing approach to control

sleep time of nodes for energy minimization. Di↵erent from the existing dynamic

sleep scheduling approaches, our work dynamically adjusts the sleep interval of each

node based on the delay constraint and the network condition changes.

The control-theoretic approach has been applied to various computing and

networking systems. A survey of feedback performance control for software services is

presented in Abdelzaher et al. (2003). However, only a few recent studies in wireless

sensor networks start to utilize feedback control theory to provide performance

guarantees. ATPC Lin et al. (2006) employs a feedback-based transmission power

control algorithm to dynamically maintain individual link quality over time in WSNs.

Merlin et al. Merlin and Heinzelman (2008) propose to control the duty cycle of each

node for the desired throughput in a WSN. A control-theoretical approach is also

designed in Le et al. (2007) to achieve the maximum network throughput in multi-

channel WSN. To our best knowledge, this work is the first one that takes advantage

of feedback control theory to dynamically control the sleep interval of every individual

node for end-to-end delay guarantees in WSNs.

3.2 Problem Formulation

In this section, we introduce the formulation of our problem. We assume that the

network is composed of m sources, some relay nodes and multiple sinks. A data
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flow in the network includes a source to generate data packets based on a certain

distribution, multiple nodes to relay the packets hop by hop, and a corresponding

sink node. There are m flows in the network, each of which is generated by one of

the m sources. All flows are assumed to be disjoint with each other because disjoint

flows are widely used in multi-path routing to enhance the system’s fault-tolerance

Wang et al. (2009b)Maimour (2008). However, our approach can be easily extended

to the case where multiple flows share the same nodes by allowing the shared nodes

to wake up at all the wake-up time instants decided by di↵erent flows.

We assume that nodes operate in a periodic sleep schedule where each sleep period

consists of a sleep interval and a wake-up interval. The sleep interval is the time

duration when the node’s radio is o↵ in each sleep period. The wake-up interval is

the time duration that a node has its radio on to transmit packet. Our primary goal

is to design a dynamic duty cycle control policy to dynamically tune the sleep interval

of each node so that the communication on each data flow can achieve an end-to-end

delay guarantee while taking advantage of periodic sleeping to save energy. We first

introduce the following notation:

• G = (E, V ), a WSN where V is the node set and E is the communication link

set of the network.

• f(u
0

, u
n

), a node set which forms a single data flow with source u
0

and

destination u
n

. The node index in a flow is enumerated from 0 to n in the

hop sequence. Specifically, f(u
0

, u
n

)={u
i

|(u
i�1

, u
i

) 2 E, 1  i  n}.

• F , the set of all m flows. Specifically, F = {f
j

|8j : 1  j  m}

• d
i

, the single-hop communication delay on link (u
i�1

, u
i

), which is formally

defined in Section 3.3.

• D
fj

ref

, the end-to-end delay requirement of flow f
j

.

• c
i

, the time length of the sleep interval in one sleep period of node u
i

.
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Our goal is to control the end-to-end communication delay according to a given

end-to-end delay requirement for each data flow. We formulate this problem as

follows:

min
8fj2F

������

X

ui2fj

d
i

�D
fj

ref

������
(3.1)

However, to solve the problem defined above, one must know the global

information of a flow in the WSN, such as the communication delay of each hop. This

is ine�cient, especially when flows have high hop counts. As our goal is to achieve

the end-to-end delay control, we decompose our end-to-end delay control problem

into a set of single-hop delay control subproblems. By achieving the single-hop delay

control goal, we can control the multi-hop end-to-end delay. Specifically, for each flow

f
j

, our objective is:

min
8ui2fj

��d
i

�Di

ref

�� (3.2)

subject to the constraints
X

ui2fj

Di

ref

= D
fj

ref

(3.3)

d
i

� D
min

(3.4)

c
i

� 0 (3.5)

where Di

ref

is the single-hop delay requirement for link (u
i�1

, u
i

) and D
min

is the

minimum transmission time for a packet to be successfully received by the receiver.

Constraint (3.3) enforces the single-hop delay requirement based on the end-to-end

delay requirement. Constraint (3.4) means that the single-hop transmission delay has

a lower bound, which is decided by the transmission rate of the radio and the packet

size. Constraint (3.5) enforces that sleep interval of any node must be non-negative.
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3.3 Single-hop Delay Control

In this section, we first present a single-hop delay model. Our model characterizes the

expected one-hop communication delay by taking into account several realistic factors,

such as network conditions and retransmission delays due to lossy links. Based on

the model, we introduce the design of the single-hop delay controller.

3.3.1 Single-hop Delay Model

We assume that after packets are received by a node, they are immediately ready

for being transmitted to the next hop without a queuing delay. This assumption is

relaxed in Section 3.4. The sender is assumed to know the sleep schedule of receiver.

We will discuss in Section 3.3.4 how this can be achieved. We also assume that the

sender will try to send the packet only once every time the receiver wakes up. If

the packet is not successfully received by the receiver during the wake-up time of the

current sleep period, the sender will go to sleep and try to send the packet at the

receiver’s wake-up time in the next period. This prevents a sender from keeping using

the channel for a long time, so that other nodes cannot get the channel during their

wake-up times, especially when the link quality is low. Thus, the time delay, d(k),

for the kth packet to transmit from the sender to the receiver can be modeled as:

d(k) =
c(k � 1) + t

data

PRR(k)
(3.6)

where c(k�1) is the sleep interval to be used at the receiver after the (k�1)th packet

is received. PRR(k) is the average packet reception ratio estimated when the kth

packet is ready for transmission. It is a metric widely used to quantify the quality of

links Woo et al. (2003). t
data

is the time needed to transmit one packet after getting

the channel, which includes processing time and the time to transmit the packet on

radio. It can be approximated as a constant because the packet size and transmission

rate usually do not change and it is significantly smaller than the sleep period. Since
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Figure 3.1: Single-hop delay is the time length of total sleep periods used to
successfully transmit a packet.

we do not use CSMA, t
data

does not include a backo↵ time. Contention interference

is captured in PRR(k).

Figure 3.1 illustrates the single-hop delay model in Equation (3.6). The total

single-hop delay is the number of transmissions it takes to successfully transmit the

packet multiplied by the time needed for each sleep period, which is the summation

of the sleep interval and the wake-up time to transmit a packet. In the case that the

packets arrive aperiodically, we can simply add a time di↵erence quantity to Equation

(3.6), which is defined as the time di↵erence between the packet arrival time and the

closest wake up time of the sender.

We assume that the average network condition of a link does not change frequently,

compared with the wake-up frequency of the node on that link. In this case, PRR

remains constant between the arrivals of two back-to-back packets. We assume that

the PRR values of the links in our network are higher than a threshold in order to

reach the communication link requirement Woo et al. (2003). Zhao et al. Zhao and

Govindan (2003) show that the PRR value is temporally stable when it is relatively

high. Therefore, we simplify the PRR value to be a constant during the transmission

of two consecutive packets. Using Equation (3.6), we can derive the dynamic model

of our single-hop communication delay as a di↵erence equation in Equation (3.7),

where �c(k) = c(k + 1)� c(k).
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d(k + 1) = d(k) +
�c(k)

PRR
(3.7)

In the above model, PRR is the estimated average success rate of the packet

transmission on a single link. In di↵erent areas of the network, we may have

di↵erent values of PRR due to network condition variations. In order to capture

the uncertainty of the network condition, we add an uncertainty ratio to our model

as:

d(k + 1) = d(k) + g
�c(k)

PRR
(3.8)

where g represents the ratio between the estimation of PRR and the actual

PRR under the current network condition due to the uncertainty of the network

environment. For example, g = 2 means that the actual packet reception ratio of the

current network is half of the estimated packet reception ratio. Note that the exact

value of g is unknown at design time due to the unpredictable network condition. We

explain how we handle this uncertainty in the next subsections.

3.3.2 Feedback Controller Design

The core of any feedback control loop is the controller. In each control period,

the controller monitors and controls a controlled variable by adjusting a system

parameter, calledmanipulated variable, in order to meet a system requirement, usually

called performance reference. In our problem, we try to control the single-hop delay

of each packet to meet the delay requirement by dynamically adjusting the receiver’s

sleep interval. Therefore, the controlled variable in our problem is the single-hop

communication delay of the next packet. Themanipulated variable is the sleep interval

time that the receiver sets for the next packet and the performance reference is the

single-hop delay requirement, denoted as D
ref

.

Note that the model in Equation (3.8) cannot be directly used to design the

controller because the g is used to model the uncertainties in the network conditions

and thus, is unknown at design time. Therefore, we design the controller based on
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an approximate system model, which is model (3.8) with g = 1. In a real network

where the packet reception ratio is di↵erent from the estimation, the actual value of

g may be di↵erent than 1. As a result, the closed-loop system may behave di↵erently.

However, in next subsection, we show that a single-hop delay controlled by the

controller designed with g = 1 can remain stable as long as the variation of g is

within a certain range. This range is established using a stability analysis of the

closed-loop system by considering model variations.

Following standard control theory Franklin et al. (1997), we design a Proportional

(P) controller to achieve the desired control performance, such as stability. We can

derive the receiver’s desired sleep interval for the kth packet as shown in Equation

3.9.

c(k) = (D
ref

� d(k))⇥ PRR + c(k � 1) (3.9)

It is easy to prove that the controlled system is stable and has zero steady state

errors when g = 1. The detailed proofs and design procedures can be found in a

standard control textbook Franklin et al. (1997). As shown in Equation 3.9, the

computational overhead of the P controller is just two additions/subtractions and

one multiplication and is thus small enough to be implemented in a real sensor mote.

3.3.3 Stability Analysis for PRR Variation

In this section, we analyze the system stability when the designed P controller is used

in an area where g 6= 1. A fundamental advantage of the control-theoretic approach is

that it provides confidence for system stability, even when the packet reception ratio

deviates from the estimation.

The closed-loop transfer function for the real-system is:

G(z) =
g

z � (1� g)
(3.10)

The closed-loop system pole in Equation (3.10) is 1�g. In order for the controller

to be stable, the pole must be within the unit circle. Hence, the system will remain

45



stable as long as 0 < g < 2. The result means that despite every link may have a

di↵erent g, in order to achieve stability, the estimated PRR of a link should be less

than twice its actual PRR. In WSN applications, we usually have a lower threshold

of PRR, which is the lowest PRR that can provide an acceptable communication

quality Woo et al. (2003). If the actual PRR of a link is less than the threshold, we

simply cannot use this link for communication. As our goal is to dynamically control

the sleep interval to achieve the delay guarantee, we assume that the links in the

control problem are communication links. Thus, with a lower threshold of PRR, we

can have the stability guarantee. For example, if the threshold of PRR is 0.5 which

indicates that a packet is retransmitted twice on average before it is successfully

received, we can use any estimated PRR value in the controller for stability, since

the estimated PRR is always less than 1. Detailed empirical studies on link quality

and PRR can be found in Woo et al. (2003).

3.3.4 Implementation

A periodic sleeping scheme requires the sender to be aware of the receiver’s sleep

schedule, so that the sender can also wake up to transmit packet when the receiver

wakes up. This means that the information of the sleep interval change of the receiver

needs to be shared by the sender. Therefore, we implement the controller on the

receiver side and take advantage of the ACK packet to feed the updated sleep interval

back to the sender side.

On the sender side, the sender first timestamps the packet when the packet

is received (or generated if the sender is source). Then the sender will add the

transmission times of the current packet in the packet header. This information

is updated every time the packet is being transmitted (or retransmitted). Upon

successfully receiving the packet, the receiver calculates the time delay based on

the time stamp on the sender side and runs the controller to compute the new sleep

interval for the receiver’s sleep scheduling, starting from the next packet. The receiver

then inserts the newly updated sleep interval value in the ACK packet and sends
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the ACK back to the sender. The sender updates the receiver’s sleep scheduling

information on its own side for future transmissions. To handle the loss of ACK

packets, we further adopt a localized synchronization scheme. Whenever the sleep

schedule is successfully updated at both the sender and receiver through an ACK,

we set up a timer with an interval several times longer than the duty cycle. If the

sleep schedule is not updated during this interval, the sender and receiver wake up

themselves and synchronize their schedules.

3.3.5 Integration of Multiple Single-hop Controllers in Tree-

based Topology

The formulation in Section 3.2 is based on the topology that each end-to-end flow is

disjoint with other flows in the network. In this type of network, each relay node only

needs to serve a single sender. As we have introduced in Section 3.2 that tree-based

topology is another widely adopted topology in WSN applications like data collection,

etc. In tree-based topology, each relay node serves more than one senders such that

flows generated from di↵erent sources can share a same relay node for packet relaying.

Since each flow may have di↵erent end-to-end delay requirements, to serve more

than one sender, a relay node needs to schedule its own sleeping scheduling such

that the single-hop delay requirement of all the incoming links can be guaranteed.

One approach to design the feedback control sleep scheduling mechanism for this

multiple incoming links situation is to design a single sophisticated multi-input single-

output controller at the receiver, such that the delay of multiple incoming links can

be considered together. However, a problem with this approach is when the receiver

decide to use a sleep schedule, it cannot take advantage of the ACK packet to send

the new schedule back. Instead, it needs to generate new packets and send them to all

the senders with the new schedule information. This phase increases the transmission

overhead of the network, which leads to undesired delay and energy consumption. In

our approach, we simply allow each node to maintain several sleep schedules at the
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same time, one for each incoming link. The shared node only goes to sleep when all

the sleep schedules are in the sleep state. The shared node wakes up when any one of

the sleep schedule needs to wake the node up. Therefore, although a relay node with

multiple incoming links does not show periodic sleeping behavior overall, it actually

follows periodic sleep scheduling in terms of each incoming link.

3.4 Queuing Delay Adaptation

In the last section, we assume that the incoming packet rate on the sender side is low,

such that the packet is immediately available for transmission without a queuing

delay. However, the packet receiving time (or generating time) at the sender is

usually aperiodic and unpredictable, especially in event-driven WSN applications.

For example, in surveillance applications for a battlefield, packets are generated upon

the detection of intruders in the monitored area, which is usually unknown a priori. If

the packet generation rate is high in such applications, the transmission of the packet

may su↵er additional time latency because of the queuing delay at the sender. With

the queuing delay, the model of our transmission delay in Equation (3.6) is subject to

changes. In this section, we consider the queuing delay caused by the unpredictable

packet rate when adjusting the sleep interval for the next packet.

3.4.1 Impact of Queuing Delay

As introduced previously, when the incoming packet rate is high, the packet may

su↵er additional delay from queuing on the sender side because of the busy MAC

layer. Therefore, we need to consider the queuing delay in our single-hop delay

model. The model from Equation (3.6) is changed as follows

D(k) = tq(k) +
c(k � 1) + t

data

PRR(k)
(3.11)
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where tq(k) is the queuing delay of the kth packet at the sender and D(k) is the total

delay when the queuing delay is counted. Compared with the queuing delay, the

delay incurred by the upper layer for computation purpose is small and negligible.

Therefore, the queuing delay can be calculated as the time di↵erence between the

moment the packet is received and the moment the packet is ready to be sent in the

MAC layer. In essence, the queuing delay of the jth packet in the queue is the time

needed to transmit all the packets that are ahead of packet j in the queue. With

the assumption we made in Section 3.3.1 that the network condition does not change

frequently, the queuing delay for the jth packet in the queue can be calculated as:

tq(j) =
j�1X

n=1

d(n) =
j�1X

n=1

c(n� 1) + t
data

PRR
(3.12)

From Equation (3.12), we know that the queuing delay of the jth packet in the

queue depends highly on the delay of all the packets ahead of it in the queue. The

goal of our design is to choose a sleep interval at the receiver such that the single-

hop delay for the next packet is controlled to the reference D
ref

. Therefore, when

calculating the sleep interval at the receiver for the next packet, we need to consider

its impact on the queuing delays of all the packets in the queue on the sender side.

Suppose that the new sleep interval c(k) will be used until the queue on the sender

side empties. We can calculate the queuing delay of any packet (k+n) (the nth packet

currently in the queue) as:

tq(k + n) =
n(c(k) + t

data

)

PRR
8n : 1  n  j (3.13)

In order to achieve energy e�ciency, we need to choose a maximum sleep interval

c(k) under the constraint that the new sleep interval will not cause any packet in the

queue to violate the delay requirement. We denote the slack time left for the (k+n)th

packet until it expires, based on the single-hop reference D
ref

, as T
slack

(k + n). The
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formulation of this sleep interval calculation is as follows:

max c(k) (3.14)

subject to the constraint:

T
slack

(k + n) �tq(k + n) + d(k + n)

8n : 1  n  j
(3.15)

where j is the total packet number in the queue after the kth packet.

3.4.2 Implementation and Coordination with Single-Hop

Delay Controller

We now discuss the details of the implementation for the sleep interval calculation

when we need to adapt to the queuing delay. Similar to the single-hop delay controller

designed in Section 3.3, we implement the new sleep interval computation on the

receiver side. The di↵erence is that the sender will first compute a minimal nominal

sleep interval only based on the slack time of each packet in the queue, without

considering the network condition. The nominal sleep interval is added to the first

packet in the queue, which is the next packet to be transmitted. Upon receiving the

packet, the receiver will calculate the real desired sleep interval for the next packet,

based on the current network conditions. After the calculation of the new sleep

interval, the receiver uses the ACK packet to feed the sleep interval change back to

the sender.

Since we have two approaches that both dynamically adjust the sleep interval

at the receiver: feedback delay control and queuing delay adaptation, a coordination

scheme must be designed in order to avoid any conflicts. In our design, we use queuing

delay adaptation when the queue at the sender is not empty. The reason is that the

delay controller controls the delay of every packet. If we use the delay controller
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to perform feedback control for every packet when there are packets waiting in the

queue, the packets in the queue after the current packet are likely to miss their delay

requirements. This is because that the delay controller does not consider the queuing

delay incurred by the unpredictable incoming packet rate. If there is no packet in the

queue when the current packet is sent at the sender, we then use the delay controller

to perform the packet-level delay control.

3.5 Single-Hop Delay Requirement in End-to-end

Delay Guarantee

In the previous sections, we have introduced how to control the single-hop delay based

on feedback control and queuing delay adaptation. As our final goal is to control

the end-to-end delay of a flow f based on the requirement Df

ref

, in this section, we

introduce how to set the single-hop delay requirement Di

ref

, which is the function of

Constraint (3.3) in Section 3.2. As long as each hop can meet its single-hop delay

requirement, the desired end-to-end delay is guaranteed.

3.5.1 Worst-case Assignment

The first assignment scheme for the single-hop delay requirement is to use the worst-

case analysis approach from Wang et al. (2009b). Specifically, we perform the

assignment for the single-hop delay requirement by calculating the worst-case PRR

of each hop and assign the single-hop delay requirement proportionally. The worst-

case PRR calculation is explained in detail in Wang et al. (2009b). After obtaining

the worst-case PRR for each link along the flow, we break the end-to-end delay

requirement into a single-hop delay requirement on each hop as:

Di

ref

=
1/PRRw

iP
ui2f (1/PRRw

i

)
⇥Df

ref

(3.16)
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where PRRw

i

is the worst-case PRR for link (u
i�1

, u
i

) on flow f .

The worst-case assignment considers the worst-case scenario in the network such

that a hop with a worse PRRw is assigned a longer single-hop delay requirement.

Those nodes with shorter single-hop delay requirements will wake up more often than

those with longer delay requirements. This is a pessimistic and static assignment,

because the worst-case scenario does not happen frequently in real networks. By

assigning an unnecessarily longer delay requirement to the worse links in the worst-

case scenario, the nodes in the data flow may have unbalanced energy consumption.

3.5.2 Assignment for Energy Balancing

In this section, we introduce the second assignment scheme to determine the single-

hop delay requirements. We propose to periodically update the delay requirement

at each hop in the flow. During the transmission of the packet, each node adds the

actual average packet reception ratio information of its own receiving link into the

packet. The sink will periodically calculate the desired single-hop delay requirement

based on the average packet reception ratio at each hop. The sink then sends out

the updated delay assignment after each calculation. All the nodes update their

single-hop delay requirement information upon receiving this requirement assignment

packet. Since the delay requirements are periodically updated based on the current

network conditions, each hop can have a fair delay requirement, such that the duty

cycle of each receiving node is tuned to be approximately the same, thus leading to

the energy consumption balancing. This procedure incurs a small overhead, as the

calculation is performed periodically. The period can be set to relatively long if the

network condition does not change dramatically.
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3.6 Alleviating Communication Interference with

Multi-channels

One important technique to improve the communication quality of wireless sensor

network is by reducing interference among di↵erent sensor nodes in the network.

Multi-channel has long been identified as a key tool to reduce the interference as

wireless communication in di↵erent channels usually do not interfere each others Wang

et al. (2009a), Wang et al. (2010). Here we propose a flow-based channel assignment

policy to assign channels to each node to further improve the data transmission

quality.

We rely on the worst case link PRR analysis in Wang et al. (2009a) and assign

channels to node based on the giving end-to-end delay requirement. We need to

find a set of disjoint paths from the source nodes to the destination such that the

end-to-end delay of each path is smaller than the giving deadline requirement. The

delay of a path is calculated as the sum of the weights of all the links in the end-

to-end path. Those paths are used to partition the network to form data flows with

bounded communication delays. Therefore, the problem of finding Disjoint Paths with

Bounded Delay (DPBD) can be formulated as a constrained optimization problem

as follows. Given a directed graph G = (V, E) with k source vertices as s
1

, . . . , s
k

,

a destination vertex t, and a set of edges with various weights, we need to find the

maximum number of (k or more) mutually vertex-disjoint (except the sources and

destination) paths from s
i

, (1  i  k) to t. The optimization problem is subject

to the constraint that the weight (i.e., delay) of each path needs to be smaller than

the deadline W . If the number of vertex-disjoint paths is greater than k, some data

flows can have more than one path. If we cannot find a path from a source to the

destination, the end-to-end delay of that data flow cannot be guaranteed to be smaller

than the deadline in the worst case.
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3.6.1 NP-Completeness Proof of DPBD Problem

We now prove that the DPBD problem is NP-Complete by reducing it to a well-known

NP-complete problem, the Maximum Length-Bounded Disjoint Paths (MLBDP)

problem Garey and Johnson (1979), which is stated as follows. Given a graph G’

= (V’, E’) with specified source s, sink t and positive integers k, W 0  kV k, does

G’ contain k or more mutually vertex-disjoint paths from s to t, none involving more

than W 0 edges?

Theorem 3.1. The DPBD problem is NP-Complete.

Proof. We first show that DPBD 2 NP. Suppose that the solution to the DPBD

problem results in k disjoint paths whose lengths are bounded by W . We can verify

this solution with a complexity of O(kW ), which is in polynomial time. Therefore,

DPBD 2 NP.

We now reduce our problem to the MLBDP problem. There are two di↵erences

between our DPBD problem and the MLBDP problem. First, the edges (i.e., links)

in our graph have various weights while the edges in the MLBDP problem have a

uniform weight of 1. Second, we need to find one or more paths from each of the k

source nodes to the same destination. However, the MLBDP problem aims to find k

or more paths between the same source s and the same destination t. We use two

steps to reduce our problem to the MLBDP problem.

In the first step, as the weight of each edge is a rational number, we can always

find the greatest common denominator for all the edge weights in the graph, which

is denoted as c. Thus, the weight of each edge can be expressed as I ⇥ 1/c, where I

is an integer. We then replace this edge with a chain composed of I new edges (with

a weight of 1/c) and I � 1 new intermediate vertices. As a result, the total weight

between the two vertices of the original edge is still I ⇥ 1/c while each edge now has

a uniform weight of 1/c. All the edges in the graph can be replaced in the same way,

which leads to a new graph where all the edges have the same weight. In the second

step, we first add an auxiliary vertex, denoted as s0 to the graph G. We then link s0
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to each of the k source vertices with an edge whose weight is the uniform value, as

shown in Figure ??(b). If we can find k disjoint paths from s0 to t, each source node

will have one path to the destination with bounded delay.

After the two steps, we have transformed our graph to a new graph G’ = (V’,E’)

with specified vertices s0, t and positive integers k, W 0 = W ⇥ c + 1. The DPBD

problem is reduced to a new problem stated as follows. Given the new graph G’, does

G’ contain k mutually vertex-disjoint paths from s0 to t, none involving more than

W 0 edges? The new problem is exactly the MLBDP problem. Therefore, the DPBD

problem is NP-Complete.

3.6.2 Flow-based multi-channel assignment algorithm

In this section, we propose a search algorithm designed based on well-established

heuristics Ronen and Perl (1984) to find the required number of disjoint paths in the

new graph G’ in two steps.

In the first step, the algorithm adopts the Dijkstra’s algorithm to find the shortest

path from s0 to the destination t in the network. If the length of the shortest path is

not bounded by W 0, it is impossible to find k disjoint weight-bounded paths. In that

case, the search algorithm fails. If the length of the shortest path is bounded by W 0,

it is added to the solution set T.

In the second step, based on the shortest path found in the first step, the algorithm

iteratively searches for the k�1 other length-bounded disjoint paths. Every iteration

of the algorithm finds a new path, whose length is bounded by W 0, and guarantees

that all the paths found so far are disjoint. Note that each iteration may modify the

paths found in previous iterations to maximize the number of length-bounded paths.

Specifically, each iteration works as follows.

Starting from s0, the algorithm adopts the Depth-First-Search (DFS) method to

search for a new path toward t whose length is bounded by W 0. Suppose that the

search has reached node n and is looking for the next hop. In order to guarantee
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that the path found by DFS is disjoint from the existing paths in T, the algorithm

first tries to pick the next-hop node of the new path from the neighbors of n that do

not belong to any existing paths (referred to as free neighbors). If such a neighbor is

available and the total length of the path after adding this neighbor is still smaller

than the bound, the neighbor is picked by DFS as the next hop in the new path.

If such a neighbor is unavailable, the algorithm starts an augmentation procedure

called matching. The procedure checks if n has any neighbor, which belongs to a path

in T, can provide a W 0 bounded path toward t. For example, suppose i is such a

neighbor and i belongs to an existing path P in T. The procedure forms a new path

P 0, which includes the current search path from s0 to n, the link between n and i, and

the part of path P from i to t. If the length of the new path is bounded by W 0, P

is deleted from the solution set T and P 0 is added to T. The procedure then uses i’s

predecessor, p i, in path P as the current node. After the matching procedure, the

algorithm starts DFS again from node p i.

Since DFS may fail to find the next hop and need to back o↵, the search may go

back to node s0. In that case, if all the neighbors of s0 have already been visited, it

indicates that the last matching procedure was not successful. The algorithm then

adds path P , which was deleted in the last matching procedure, back to T, and then

removes the new path P 0 established in last matching from T. The algorithm then

rolls back to continue DFS from node p n, which is the predecessor of the current

node n in the last matching procedure.

The whole algorithm terminates under two conditions. First, if the destination t

is reached, the algorithm has successfully found a new disjoint length-bounded path.

Second, if the search goes back to s0 with no more neighbor to visit and all the

matching procedures conducted before have been rolled back, the algorithm fails to

find a new disjoint length-bounded path. The number of paths in T is the maximum

number of disjoint paths with bounded length that the algorithm can find. The

detailed algorithm of finding a new disjoint path in the second step is presented in

the pseudo code (Algorithm ??).
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Based on the analysis in Ronen and Perl (1984), the time complexity for DFS to

find a new path is O(W 0kEk). The time complexity of the matching procedure in the

algorithm is O(W 02kV kkEk). Therefore, the time complexity of finding a new disjoint

path with bounded delay is O(W 02kV kkEk). The algorithm is currently a centralized

procedure but the disjoint path search problem can be solved in a distributed way

with slightly worse solution quality Sidhu et al. (1991)Cheng et al. (1990). The

distributed algorithm includes two steps. In the first step, the sink node sends out a

packet to establish a shortest-path tree rooted at the sink in a distributed way. In the

second step, the sink sends out messages to explore more paths to the source. Each

node individually checks whether a new path is found and notifies the sink to merge

the new path into the solution set if the bound requirement is met. This algorithm

continues until the desired number of paths is found. Similarly, our solution can also

be extended to run on the sensor nodes in the network in a distributed way. The

detailed extension is beyond the scope of this paper. In addition, note that many

real-world WSN applications (e.g., Selavo et al. (2007)Jeong et al. (2005)) adopt

many-to-one communication for data collection, in which the sink is usually a sensor

mote connected to the base station, such as a computer. The base station is commonly

used to make centralized decisions for these applications. Therefore, our algorithm

can also run on the base station computer periodically or in an on-demand manner

with PRR values measured at runtime to handle varying network conditions.

3.7 Hardware Evaluation

In this section, we first validate the design of the two major components, the single

hop controller and queuing delay adaptation control, in our dynamic duty cycle

control (DutyCon) scheme on several simple hardware testbeds. We then evaluate

DutyCon under di↵erent systematic experiments on a hardware testbed consists of

Telosb motes.
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Algorithm 2 Finding One New Disjoint W 0 Bounded Path

Assume we have a solution set T that contains l  k disjoint paths;
n ( s0; Matching Stack Height ( 0;
while n 6= t do
Use DFS to find next free neighbor n+1 that provides W 0 length bounded path
to t;
if no free neighbor available then
Find a neighbor i in path P ✓ T , which can provide a W 0 length bounded path
to t; Establish path P 0 through n and i; Push n into the stack; T ( T�P+P 0;

n ( p i;
Continue;

end if
if no non-free neighbor available then
n ( p n;
if n = s0 then
if matching stack hight = 0 then
Return failure.

else
n ( stack pop out; T = T � P 0 + P ;

end if
end if

end if
end while
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Table 3.1: PRR values in di↵erent periods.

Packet Number PRR
0-100 0.5
101-200 0.25
201-300 0.5
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Figure 3.2: Single-hop delay under control when network conditions change at
runtime.

3.7.1 DutyCon Components Validation

To verify the design of the single-hop feedback controller on the single-hop delay

control performance, we use a pair of Telosb motes. One mote, serving as the sender,

generates packets in a uniform distribution with an average rate of 1 packet per 5

seconds. The other mote serves as the receiver and controls its own sleep scheduling

based using the single-hop feedback controller. In the first experiment, we set the

delay reference of the single-hop transmission to three di↵erent values during three

di↵erent periods in the transmission. The requirements are listed in Table 3.1. The

results are shown in Figure 3.2. We can see that when the single-hop delay reference

changes, the single-hop controller can approximately control the single-hop delay to

the new requirements after a few packets.

In the second experiment, we validate the single-hop controller by emulating the

change of network conditions. To emulate the link quality change, we manually set a

packet retransmission number for the link at a given period such that packet can only

be received correctly after a certain number of retransmission. The retransmission
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Table 3.2: Delay references in di↵erent periods.

Packet Number Delay Requirements (s)
0-100 1
101-200 2
201-300 1.5
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Figure 3.3: Single-hop delay under control when delay requirement changes at
runtime.

requirement (PRR) for each period is listed in Table 3.2. The result is shown in

Figure 3.3. We can see that despite the two instances at packet 100 and 200 when

the network condition changes, delays of all the other packets can be controlled to

the delay reference at all time.

We now verify the queuing delay control component using the same single-hop

transmission experiment setup. In this experiment, the sender generates 45 packet at
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Figure 3.4: Validation result for queueing delay adaptation.
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Figure 3.5: Validation result for tree topology.

the rate of 1 packet every 5s and then generate a burst of 5 packets with the rate of 1

packet every 100ms. By following this packet generation model, the burst of packets

needs to be put in the queue before transmission. From Figure 3.4 we see that if use

single-hop delay controller without the queuing delay adaptation, the single hop delay

increases dramatically when there is burst of packets. With queuing delay adaptation,

the receiver knows that packets are waiting in the queue at the sender, such that the

receiver can adjust its sleep scheduling to adapt to the queuing delay, and the delay

can be controlled to the reference even there is burst of packet.

In the last validation experiment, we put all the di↵erent components together and

use a simple tree-based topology with four Telosb motes. Two motes serve as source

nodes and both send packets to a single relay node. The relay node forwards the

packet from the two sources to the base station. The end-to-end delay requirements

for the two flows are set to 2s and 3s, respectively. The results are shown in Figure

3.5. We can see that the end-to-end delay of both the two flows can be controlled to

their own delay requirements, respectively.
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Figure 3.6: End-to-end delay on the testbed under di↵erent delay requirements.

3.7.2 Single Flow under Di↵erent Deadline Requirements

We now test DutyCon in a scenario of end-to-end communications. The testbed

we use consists of 7 Tmote Sky motes, five of which construct a 4-hop end-to-end

communication flow. The remaining two motes form a single communication link,

periodically transmitting packets and introducing interference to the 4-hop flow. The

distance between each two adjacent motes in the 4-hop flow is 5m. The interference

link is placed 5m apart from the center node of the flow. The source of the 4-hop

end-to-end flow sends out packets, following the uniform distribution at a rate of

averagely 1 packet every 3 seconds. The interference link transmits packets at the

rate of 1 packet per second. 200 packets are sent by the source in each run of the

experiments. We configure the transmitting power of the interference node to be

small, so that they will only interfere with the center node of the end-to-end flow.

We evaluate the end-to-end delay control performance of DutyCon on the single

flow with di↵erent end-to-end delay requirements. We also compare DutyCon with

a Uniform Fixed Duty Cycle baseline. In this baseline, we set the same fixed duty

cycle for every node. The duty cycle we use is the highest duty cycle among all

the links from the experiment using DutyCon scheme. The reason we choose this

duty cycle is that the local interference is usually unknown a priori. With fixed
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Figure 3.7: Average duty cycle on the testbed under di↵erent end-to-end delay
requirements.

duty cycle, we want to prepare for the worst-case scenario. Therefore, we use the

highest possible duty cycle. From the results in Figure 3.6, we can see that DutyCon

can control the average end-to-end delay very close to the delay requirement at all

di↵erent values. However, using the worst-case duty cycle leads to unnecessarily low

end-to-end delays in the Uniform Fixed Duty Cycle scheme. Figure 3.7 shows the

average duty cycle of all motes in the end-to-end flow except the source node. We

can see that the Uniform Fixed Duty Cycle scheme has much higher duty cycles (and

thus more energy consumption) than DutyCon at all di↵erent delay requirements.

The reason is that the baseline statically set the duty cycles of all links to the same

worst-case value, which leads to an unnecessary energy waste.

3.7.3 Tree Topology under Di↵erent Deadline Requirements

In this set of experiments and the experiments in the following two sections, we

evaluate the performance of DutyCon in a tree-based topology. The tree-based

topology used in the experiments includes 13 telosb motes, constructing 6 converging

and intersecting flows in tree topology pattern.
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Figure 3.8: End-to-end delay under di↵erent delay requirements (tree topology).

20%

30%

40%

50%

60%

v
e
r
a
g

e
 
D

u
t
y
 
C

y
c
l
e

DutyCon

Static Uniform Duty Cycle

10%

20%

2 3 4 5 6

A
v

End-to-end Delay Requirement (s)

Figure 3.9: Average duty cycle under di↵erent end-to-end delay requirements (tree
topology).
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We first conduct experiment with di↵erent end-to-end deadline requirements. We

use three flows out of the six flows in the experiments. The end-to-end deadline

requirement of each flow is set to the same in each experiment. The source of each

flow sends out packet with an average interval of . Figure 3.8 shows the average

end-to-end delay now verify the queuing delay control component using the same

single-hop transmission experiment setup. In this experiment, the sender generates

45 packet at the rate of 1 packet every 5s and then generate a burst of 5 packets

with the rate of 1 packet every 100ms. By following this packet generation model,

the burst of packets needs to be put in the queue before transmission. From Figure

3.8 and Figure 3.9 we see that if use single-hop delay controller without the queuing

delay adaptation, the single hop delay increases dramatically when there is burst of

packets. With queuing delay adaptation, the receiver knows that packets are waiting

in the queue at the sender, such that the receiver can adjust its sleep scheduling to

adapt to the queuing delay, and the delay can be controlled to the reference even

there is burst of packet.

3.7.4 Tree Topology under Di↵erent Source Packet Intervals

In this set of experiments, we vary the packet interval at each source node from

the interval of 1s to the interval of 6s. The end-to-end delay requirement for each

flow is set to 3s. Figure 3.11 shows the average end-to-end delay performance from

all the flows. We see that DutyCon can control the average end-to-end delay very

close to the delay requirement. This is because it considers the wireless transmission

quality dynamically, such that the relay node serving more flows can wake up more

often to finish their one hop transmission according to the one-hop delay requirement.

Without the dynamic control scheme, the Static Uniform Duty Cycle can only wake

up every node with the same sleep scheduling according to the worst-case node. This

results in an excessively high duty cycle, which is shown in Figure 3.11, leading to
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Figure 3.10: End-to-end delay under di↵erent source packet intervals (tree
topology).
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Figure 3.11: Average duty cycle under di↵erent source packet intervals (tree
topology).
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Figure 3.12: End-to-end delay under di↵erent number of flows (tree topology).

the unnecessarily low end-to-end transmission delay of every flow and the waste of

energy.

3.7.5 Tree Topology with Di↵erent Number of Flows

In this set of experiment, we vary the number of flows in our experiment from 1 flow

to 6 flows. Each flow has three hops constructed by four nodes. The end-to-end delay

requirement of each is set to 3s while the packet interval at each source is set to 3s,

too. Figure 3.12 and Figure 3.13 are the average end-to-end delay performance and

average duty cycle, respectively. From Figure 3.12 we see that the average end-to-end

delay can be controlled close to the requirement by using DutyCon. However, the

Static Uniform Duty Cycle scheme uses the worst-case node duty cycle for all nodes

in the network, such that the end-to-end delay is unnecessarily low. Both of the two

schemes show increasing trend of average duty cycle when more flows are used in the

experiment as shown in Figure 3.13. This is because nodes need to wake up more often

forward more packets when more flows are sharing one relay node. DutyCon always

has a lower duty cycle than the static duty cycle scheme, which leads to substantial

energy savings.
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Figure 3.13: Average duty cycle under di↵erent number of flows (tree topology).

3.8 Simulation Results

In this section, we present the simulation results in the NS-2 simulator.

3.8.1 Baselines and Simulation Settings

In the following sections, we present the simulation results in the NS-2 simulator. In

order to show the e�ciency of our design, we compare DutyCon with two recently

published baselines: Static Tra�c Shaper (STS) and Dynamic Tra�c Shaper (DTS)

Chipara et al. (2005). Both STS and DTS use tra�c shaper to regulate the packet

transmitting time at every node such that the end-to-end communication delay can

be regulated. The reason we choose these baselines is that STS tries to control

the end-to-end communication delay by regulating tra�c and DTS tries to regulate

packets mainly based on the packet rate, which makes them comparable to DutyCon.

Note that it has been demonstrated in Chipara et al. (2005) that STS and DTS

outperform SYNC Ye et al. (2002), which features a fixed duty cycle. Therefore, by

outperforming STS and DTS, DutyCon also outperforms the baseline protocols used

by them.
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Figure 3.14: End-to-end delay under di↵erent delay requirements.

The di↵erence between STS and DTS is that STS enforces a static tra�c shaping

algorithm according to an end-to-end delay requirement and source data rate, while

DTS dynamically shapes the tra�c only based on the source data rate. STS

decomposes the end-to-end delay requirement and assigns the same delay requirement

to each single hop. It also assigns a level to each node based on the distance from the

destination. It then regulates the sending time at each node based on the local delay

requirements, the node level, and source packet rate. Di↵erent from STS, DTS does

not enforce the end-to-end delay requirement. It always sets the next packet sending

time as the current packet sending time plus the inter-packet time at the source.

Every flow in the following experiments consists of 5 nodes with 100m distance

between each hop in a single flow. Flows are randomly deployed in the topology,

where each flow has intersection with some other flows. The source of each flow

generates packets in a uniform distribution. The average packet rate is one packet

every 3 seconds.
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3.8.2 Di↵erent Delay Requirements

In this set of experiments, we use 3 end-to-end communication flows. We want to

test the average end-to-end delays of DutyCon and baselines under di↵erent end-to-

end delay requirements. Because only the baseline STS enforces an end-to-end delay

requirement, we compare the performance of our protocol only to STS.

Figure 3.14 shows the average end-to-end delay performance under di↵erent delay

requirements. We can see that when the delay requirement is loose (from 3s to 6s),

DutyCon can control the average end-to-end delay very close to the desired value.

The baseline STS does not have e↵ective control of the average end-to-end delay.

When the end-to-end delay requirement is tight (1s and 2s), the average end-to-end

delays of both DutyCon and STS are longer than the delay requirement. However,

DutyCon performs better than STS in these two cases.

The reason for this result is when the end-to-end delay requirement is loose,

DutyCon controls the average delay of each hop to converge to the single-hop delay

requirement, such that the average end-to-end delay can be controlled. When the

desired end-to-end delay is tight, the delay requirements of each single-hop are too

tight such that the controllers of some hops become saturated. When saturation

happens, nodes cannot wake up more often. This is because the minimum sleep

period of each hop is bounded by the minimum one-hop transmission delay. The

saturation of the controller leads to undesired long end-to-end delay. The baseline

STS statically estimates the sending time of each packet, based on the source packet

rate and the single-hop delay requirement. The randomness of packet generation

leads to the inaccurate estimation of the sending time at each hop. Therefore, the

end-to-end delay is not well controlled to the desired value. Moreover, for tight end-

to-end delay requirements, STS cannot give a good end-to-end delay guarantee. This

is because all the nodes of the same level in STS wake up at the same time and try

to send packet, which leads to a higher interference degree in the network.
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Figure 3.15: Average duty cycle under di↵erent end-to-end delay requirements.

Figure 3.15 is the result of the average duty cycle under di↵erent end-to-end

delay requirements. When the desired delay is tight (1s and 2s), the wakeup time

of DutyCon is only half of that of STS. This is because with a tight single-hop

delay requirement, the estimation of the sending time by STS is always earlier than

the actual packet ready time at the sender, resulting in a long wakeup time on the

receiver side. When the delay requirement is 4s and 5s, STS has less duty cycle

than DutyCon. However, the two corresponding points in Figure 3.14 show a longer

delay than the requirements. When the delay requirement is 6s, STS stays awake

for a longer time than DutyCon, which leads to a shorter end-to-end delay in Figure

3.14. The results indicate that when the delay requirements is loose, STS can violate

the end-to-end delay requirement; while in other time it consumes unnecessarily high

energy for an unnecessarily short delay. Di↵erent from STS, DutyCon achieves a good

trade o↵ between energy and end-to-end delay by controlling the delay close to the

requirement.

3.8.3 Di↵erent Flow Numbers

In this section, we evaluate the performance of DutyCon and the two baseline

protocols by varying the number of flows in the network. With more flows, there
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Figure 3.16: End-to-end delay under di↵erent number of flows.

will be additional interference in the network. The end-to-end delay requirement of

each flow is set to 4 seconds.

Figure 3.16 shows the average end-to-end delay performance. DutyCon can always

control the average end-to-end delay close to the requirements. The delay of STS is

always higher than the requirement, especially when there are more flows in the

network. This is because when the number of flows increases, the number of nodes

at the same level increases, leading to a higher degree of interference when they wake

up together and try to send packets. DTS has a shorter delay only when the flow

number is 2. When the flow number is more than 2, DTS shows a significantly

higher delay when compared with DutyCon and STS. The reason is that DTS always

estimates the next packet sending time as the previous packet time plus the packet

interval at the source. This inaccurate estimation causes the packets to be stacked in

the queue, such that all the packets su↵er significant queuing delays. Among these

three schemes, DutyCon shows the best end-to-end delay as it utilizes the feedback

control scheme to dynamically adapt to network environment changes. Furthermore,

it features the queuing delay adaptation scheme to adapt the duty cycle to the queuing

delay, especially when the number of flow is large. More flows incur more interference

in the network, which causes more packets stacked in the queue. However, with
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Figure 3.17: Average duty cycle under di↵erent number of flows.

the queuing delay adaptation scheme, DutyCon can handle this problem significantly

better than the two baselines.

Figure 3.17 shows the average duty cycles of the three protocols with di↵erent

numbers of flows in the network. DTS has a lower duty cycle in all the situations.

This is because the estimation of the next packet sending time is always later than

the packet ready time in most cases. Most packets are stacked in the queue, so that

when the receiver wakes up, there is always a packet ready for sending at the sender.

This leads to a short wakeup time at the receiver. STS shows a higher duty cycle

when there are more flows in the network. The higher degree of interference caused by

additional flows leads to the longer waking up time in STS. DutyCon has a moderate

duty cycle compared with the two baselines.

3.8.4 Benefit of Energy Balancing

In this section, we evaluate the network lifetime and energy balancing on each

node under three single-hop delay assignment schemes. The first one is Worst-case

Assignment, which estimates the worst-case PRR, as introduced in Section 3.5. The

second one is the Energy Balancing scheme proposed in Section 3.5. In this scheme,

we apply the energy consumption balancing scheme to update the delay requirements
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Figure 3.18: Average network lifetime normalized to the maximum under the three
single-hop delay requirement assignment schemes.

of each hop periodically, at a rate of every 500 seconds. The third one is called Even

Assignment, where we assign the delay requirements evenly to each hop of the flow.

Eleven nodes are used to construct a 10-hop single flow in this experiment. Two

additional pairs of nodes, forming two single-hop communication links, are placed

close to node 5 to introduce interferences to the single flow. The interference signal

can be received by nodes 4, 5, and 6. The average packet interval at the source of the

end-to-end flow is set to 5 seconds and the packet interval at the interference pairs

is set to 1 second. We repeat this end-to-end transmission experiment with di↵erent

end-to-end delay requirements. The experiment runs until one of the nodes in the

flow exhausts all of its initial energy. The entire simulation time of each experiment

is considered as the life time of the single-flow network.

Figure 3.18 shows the average network lifetime under each scheme. The values

are normalized to the longest lifetime of all the three schemes. The experiment

is conducted repeatedly with di↵erent delay requirements. The Energy Balancing

scheme always has the longest network lifetime for all the di↵erent delay requirements.

When the end-to-end delay requirement is 3 seconds, theWorst-case Assignment only

achieves an 80% lifetime, normalized to the lifetime of the Energy Balancing scheme.
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Figure 3.19: Remaining energy of each node under the three single-hop delay
requirement assignment schemes.

The results demonstrate that the single-hop delay assignment scheme is critical to

the lifetime of the network when employing DutyCon.

We then examine the distribution of the remaining energy among all the nodes.

In this experiment, the total number of packets that the end-to-end flow needs to

transmit is fixed. Figure 3.19 shows the remaining energy of each node in the single

flow after the completion of all the transmissions. When using Even Assignment, the

remaining energy of nodes 4, 5, and 6 is significantly lower than that of the other

nodes. This is because the Even Assignment scheme does not consider the di↵erent

network conditions in di↵erent areas of the network. With the same single-hop delay

requirement, the interference around nodes 4, 5, and 6 makes the three nodes wake

up more often, leading to additional energy consumption. There is a 15% di↵erence

in the remaining energy between the most and the least remaining energy from all the

nodes. The second scheme, Worst-case Assignment, tends to pessimistically assign an

unnecessarily long delay requirement to the the hops that are estimated o✏ine to have

more interference. Therefore, nodes 4, 5, 6, and 7 have a lower duty cycle than all

other nodes, which leads to their lower energy consumption. The di↵erence between

the most and least remaining energy under Worst-case Assignment is approximately

25% in this experiment. The Energy Balancing scheme has the best energy balancing
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by periodically updating the delay requirements for each hop, based on the current

network conditions. As a result, the di↵erence between the most and least remaining

energy is only approximately 8% under Energy Balancing.
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Chapter 4

Conclusions

In this work, we have applied the frameworks of flocking and PdE to analyze the

stability of power grid with a communication network. The similarity between the

power grid and the bird flocking, as well as the motivation of using PdE to exploit the

network structure is explained. We have considered both cases of negligible and non-

negligible communication delays and obtained conditions for the power grid stability

in terms of the power/communication network topologies and the system parameters.

An algorithm for designing the communication network topology has been proposed,

which has been demonstrated by numerical simulations and compared with existing

optimization solver, as well as an SDP variation of the problem.

Wireless sensor networks is adopted as the communication infrastructure for the

power grid in this work. To e↵ectively utilize WSN in this scenario, we have proposed

DutyCon, a dynamic duty cycle control approach that decomposes the end-to-end

delay guarantee problem into a set of single-hop delay guarantee problems along

each data flow in the network. We then formulate the single-hop delay guarantee

problem as a dynamic feedback control problem. DutyCon is designed rigorously

based on well-established feedback control theory for analytic assurance of delay

control accuracy and system stability. DutyCon also features a queuing delay

adaptation scheme that adapts the node duty cycle to unpredictable packet rates,
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as well as a novel energy balancing approach that extends the network lifetime by

dynamically adjusting the delay requirements allocated to each hop in a data flow.

Both empirical results on a hardware testbed and extensive simulations demonstrate

that DutyCon can e↵ectively achieve the desired tradeo↵ between end-to-end delay

and energy conservation. Our simulation results also show that DutyCon outperforms

two baseline sleep scheduling protocols by having more energy savings while meeting

the end-to-end delay requirements.
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