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Abstract

In this dissertation, we consider the problem of simulation of stochastic differential

equations driven by Brownian motions or the general Lévy processes. There

are two types of convergence for a numerical solution of a stochastic differential

equation, the strong convergence and the weak convergence. We first introduce

the strong convergence of the tamed Euler-Maruyama scheme under non-globally

Lipschitz conditions, which allow the polynomial growth for the drift and diffusion

coefficients. Then we prove a new weak convergence theorem given that the drift and

diffusion coefficients of the stochastic differential equation are only twice continuously

differentiable with bounded derivatives up to order 2 and the test function are third

order continuously differentiable with all of its derivatives up to order 3 satisfying a

polynomial growth condition. We also introduce the multilevel Monte Carlo method,

which is efficient in reducing the total computational complexity of computing the

expectation of a functional of the solution of a stochastic differential equation. This

method combines the three sides of the simulation of stochastic differential equations:

the strong convergence, the weak convergence and the Monte Carlo method. At

last, a recent progress of the strong convergence of the numerical solutions of

stochastic differential equations driven by Lévy processes under non-globally Lipschitz

conditions is also presented.

vi



Table of Contents

1 Introduction 1

2 Preliminaries on Stochastic Differential Equations 9

2.1 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Stochastic Differential Equations and Partial Differential Equations . 13

2.3 Numerical Solutions of Stochastic Differential Equations Driven by

Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Stochastic Differential Equations Driven by Lévy Processes . . . . . . 19

3 Strong Convergence of Numerical Approximations of SDEs Driven

by Brownian Motion under Local Lipschitz Conditions 25

3.1 Strong Convergence of Euler-Maruyama Approximations of SDEs

under Local Lipschitz Conditions . . . . . . . . . . . . . . . . . . . . 25

3.2 A Tamed Euler Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Euler Approximations with Superlinearly Growing Diffusion Coefficients 43

4 Weak Convergence of Euler-Maruyama Approximation of SDEs

Driven by Brownian Motion 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Preliminaries of Malliavin Calculus . . . . . . . . . . . . . . . . . . . 61

4.3 Weak Convergence of the EM scheme using Malliavin Calculus . . . 63

vii



5 Variance Reduction and Multilevel Monte Carlo Methods 76

5.1 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Monte Carlo Methods and the Simulation of Stochastic Differential

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Multilevel Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 81

6 Strong Convergence of Numerical Approximations of SDEs Driven

by Lévy Noise under Local Lipschitz Conditions 96

6.1 Strong Convergence of Tamed Euler Approximations of SDEs Driven

by Lévy Noise with Superlinearly Growing Drift Coefficients . . . . . 97

Bibliography 110

Appendices 118

A Inequalities 119

A.1 Elementary Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 Gronwall’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.3 Probability Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B MATLAB Codes 124

B.1 MATLAB Codes for Generating the Graph in Section 3.2 . . . . . . . 124

B.2 MATLAB Codes for Generating the Graph in Section 3.3 . . . . . . . 126

B.3 MATLAB Codes for Generating the Graph in Section 6.1 . . . . . . . 127

Vita 130

viii



List of Figures

3.1 Log-log plot of the strong error from the tamed Euler approximation

versus the time step ∆t with the drift coefficients superlinearly growing. 43

3.2 Log-log plot of the strong error from the numerical approximation

versus the time step ∆t with the drift and diffusion coefficients

superlinearly growing. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Log-log plot of the strong error from the numerical approximation for

a SDE driven by Lévy motion with superlinearly growing drift . . . . 109

ix



Chapter 1

Introduction

Stochastic differential equations (SDEs) driven by Brownian motions or Lévy

processes are important tools in a wide range of applications, including biology,

chemistry, mechanics, economics, physics and finance [2, 31, 33, 45, 58]. Those

equations are interpreted in the framework of Itô calculus [2, 45] and examples are

like, the geometric Brownian motion,

dX(t) = µX(t)dt+ σX(t)dW (t), X(0) = X0, (1.1)

which plays a very important role in the Black-Sholes-Merton option pricing model,

or, the Feller’s branching diffusion in biology,

dX(t) = αX(t)dt+ σ
√
X(t)dW (t), X(0) = X0 > 0,

where W (t) is the Brownian motion in both examples. Another example of SDE

driven by a Lévy process is the following jump-diffusion process [40]:

dS(t) = a(t, S(t−))dt+ b(t, S(t−))dW (t) + c(t, S(t−))dJ(t), 0 ≤ t ≤ T,
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where the jump term J(t) is a compound Poisson process
∑N(t)

i=1 Yi, the jump

magnitude Yi has a prescribed distribution, and N(t) is a Poisson process with

intensity λ, independent of the Brownian motion W (t). This equation is used to

model the stock price which may be discontinuous and is a generalization of equation

(1.1).

Usually, the SDEs we encounter do not have analytical solutions and developing

efficient numerical methods to simulate those SDEs is an important research topic.

The goal of this thesis is to introduce the recent development of those numerical

methods, including our own work on the weak convergence of the Euler-Maruyama

scheme using Malliavin Calculus. Unlike the deterministic differential equations, there

are two kinds of convergence measuring the approximation performance of a numerical

scheme and they are used in different scenarios [33, 49].

Definition 1.1 (Strong convergence). Suppose Y is a discrete-time approximation

of the solution X(t) of a given SDE with maximum step size ∆ > 0. We say that

Y converges to X(t) in the strong sense with order γ ∈ (0,∞] if there exists a finite

constant C > 0 and a positive constant ∆0 such that

E[‖X(T )− Y (T )‖] ≤ C∆γ (1.2)

for any time discretization with maximum step size ∆ ∈ (0,∆0).

Definition 1.2 (Weak convergence). Suppose Y is a discrete-time approximation of

the solution X(t) of a given SDE with maximum step size ∆ > 0. We say that Y

converges to X(t) in the weak sense with order β ∈ (0,∞] if for any function g in a

suitable function space there exists a finite constant C > 0 and a positive constant ∆0

such that

|E[g(X(T ))]− E[g(Y (T ))]| ≤ C∆β (1.3)

for any time discretization with maximum step size ∆ ∈ (0,∆0).
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Usually, the weak convergence order of a numerical scheme is higher than the

strong convergence order of the same scheme, due to that the weak convergence is in

the distributional sense.

Now consider a general SDE driven by a Brownian motion,

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), t ∈ (0, T ], X(0) = X0, . (1.4)

The most commonly used numerical scheme to solve the above SDE is the Euler-

Maruyama (EM) scheme. It takes Y0 = X0 and

Yk+1 = Yk + µ(tk, Yk)∆ + σ(tk, Yk)∆Wk,

where tk = k T
N
, ∆Wk = W (tk+1) − W (tk). It is well known that the EM scheme

converges strongly with order 1
2

if the coefficients µ(t, x) and σ(t, x) satisfy the

global Lipschitz condition and the linear growth condition (see Section 2.3 for more

details). But these two conditions are so strict that many SDEs do not have such

nice properties. In fact, a very large number of SDEs have C1 functions as their

coefficients and only satisfy the local Lipschitz condition. For example, the following

stochastic Ginzburg-Landau equation:

dX(t) = (X(t)−X3(t))dt+X(t)dW (t).

Therefore, the development of efficient numerical schemes for such SDEs has been and

will continue to be an important research topic in the area of SDEs. To the author’s

knowledge, Hu [24] and Higham, Man and Stuart [23] were the pioneers of studying

the strong convergence problem of the EM scheme under local Lipschitz conditions.

In [23], although σ is still assumed to be globally Lipschitz continuous, µ only need to

satisfy a one-sided Lipschitz condition and a polynomial growth condition, which is a

substantial progress compared with the previous results. They proposed the following

3



implicit (backward) Euler scheme

Yk+1 = Yk + µ(Yk+1)∆t+ σ(Yk)∆Wk

and proved that the scheme also achieves order 1
2
strong convergence. But the

shortcoming of this method is that it is an implicit scheme, which requires much

more computational effort due to the need of solving a nonlinear equation in each time

step. To overcome this problem, Hutzenthaler, Jentzen and Kloeden [28] proposed

an explicit (tamed) Euler scheme,

Yk+1 = Yk +
µ(Yk)∆t

1 + ‖µ(Yk)‖∆t
+ σ(Yk)∆Wk,

assuming the same conditions as in [23] and still achieving the strong convergence

order 1
2
. Then it was Sabanis [55] with another 1

2
order strong convergent scheme,

Yk+1 = Yk +
µ(k/N, Yk)/N

1 +N−1/2‖Yk‖3l/2+2
+
σ(k/N, Yk)(W (k+1

N
)−W ( k

N
))

1 +N−1/2‖Yk‖3l/2+2
,

allowing also a polynomial growth condition on σ (see more details in Section 3.3).

All of these have made the EM family a useful and prosperous computing toolbox for

solving SDEs numerically.

The idea of taming can also be applied to the following SDEs driven by Lévy noise

under local Lipschitz conditions:dX(t) = a(X(t−))dt+ b(X(t−))dW (t) +
∫
Rd f(X(t−), y)Ñ(dt, dy),

X(0) = x0,

where a(x) may have a polynomial growth. The tamed Euler scheme is quite similar

to those we discussed above. We refer to Chapter 6 for more details.

Another problem of the EM scheme occurs in the context of the weak convergence.

Unlike the strong convergence, the weak convergence depends largely on the regularity
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of the coefficients µ, σ and the test function g. Let f(t, x) = E[g(X(T ))|X(t) = x].

As long as µ(t, x), σ(t, x) and g(x) satisfy some regularity conditions (see Section 2.2

for more details), we can rewrite the difference in (1.3) as

E[g(X(T ))]− E[g(Y (T ))]

= −E
N−1∑
i=0

[
f
((i+ 1)T

N
, Yi+1

)
− f

(iT
N
, Yi

)]
= E

N−1∑
i=0

∫ ti+1

ti

[
(µ(s, Y (s))− µ(ti, Yi))

∂f

∂x
(s, Y (s))

]
ds

+ E
N−1∑
i=0

∫ ti+1

ti

[1

2
(σ2(s, Y (s))− σ2(ti, Yi))

∂2f

∂x2
(s, Y (s))

]
ds (1.5)

Most of the research which deals with analysis of the weak convergence error is based

on the above decomposition. For example, in [60], each difference in the first equality

of (1.5) is expanded further using the Taylor expansion. While in [33], the analysis

is mainly based on the second equality of (1.5). It is well known that the EM

scheme converges weakly with order 1 if, among other conditions, µ, σ and g are

fourth order continuously differentiable with all of their derivatives up to order 4

satisfying a polynomial growth condition (i.e. µ(x), σ(x), g(x) ∈ C4
p(Rm)) [33], or µ

and σ are infinitely differentiable with all of their derivatives of any order bounded

(i.e. µ(x), σ(x) ∈ C∞b (Rm)) and g are only measurable and bounded (or with the

polynoimal growth) [5]. In Chapter 4, we prove that the weak convergence also

holds with order 1 in the 1 dimensional case if µ and σ2 are only twice continuously

differentiable with bounded derivatives up to order 2 (i.e. µ(x), σ2(x) ∈ C2
b (R)) and

g are third order continuously differentiable with all of its derivatives up to order 3

satisfying a polynomial growth condition (i.e. g(x) ∈ C3
p(R)). In our proof, we apply

the integration by parts technique from Malliavin calculus to the decomposition (1.5).

By this method, we can decrease the smoothness conditions on µ, σ and g as compared

with [5] or [33]. To the best of the author’s knowledge, this result has not been

provided before. It is also worthwhile mentioning that the analytical methods we use
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in this section are largely numerical scheme-independent and can also be generalized

to other numerical schemes like the Milstein scheme or the schemes we introduce in

Chapter 3.

Unlike the deterministic differential equations, the solution of a given SDE is a

stochastic process. Usually, in practical applications we need to find the expectation

E[g(X(T ))], where X(T ) is the terminal value of the solution and g is a function

of X(T ). Typically, the distribution of g(X(T )) is unknown and E[g(X(T ))] can

not be computed directly. The most commonly used method to address this issue

is the Monte Carlo method. We first generate N independent discretized Brownian

paths, and then use these Brownian paths and the numerical scheme to generate N

independent sample paths of the solution. Denote by Y (i)(T ) the approximate value

of X(T ) at the ith sample path, then the expectation E[g(X(T ))] can be computed

as

E[g(X(T ))] ≈ 1

N

N∑
i=1

g(Y (i)(T )). (1.6)

The total computational complexity of finding E[g(X(T ))] depends both on the

number of sample paths and the number of steps in the time discretisation. In fact,

the mean square error (MSE) of the Monte Carlo estimation is asymptotically

MSE ≈ O(N−1) +O(∆2k), (1.7)

where ∆ is the uniform step size of the time discretisation and k is the weak

convergence order of our numerical scheme. Therefore, to reach the RMSE

(RMSE=
√
MSE) O(ε), the total computational cost of computing E[f(X(T ))] is

O(ε−(2+1/k)), which is very computationally expensive. It is well known that we can

manage to reduce the total computational complexity considerably if proper variance

reduction method is used [33]. To do so, Giles [16] proposed a multilevel Monte Carlo

method, dealing with the problem from the perspective of variance reduction. The

new method adopts different levels of time steps and uses the numerical solution from

6



one level of the discretisation as a control variate of the numerical solution from the

next level. Suppose we use L levels in total. In each level l, the time step hl is equal

to hl = M−lT , where l = 0, 1, · · · , L and M ≥ 2 is an integer. Denote by P̂l the

approximation to f(X(T )) using a numerical scheme with time step hl. Then we can

write

E[P̂L] = E[P̂0] +
L∑
l=1

E[P̂l − P̂l−1].

Therefore, to give E[f(X)] an estimate, the simplest way is to estimate the

expectations on the right hand side of the above equality using a standard Monte

Carlo estimator. For l = 0, we use the following estimator

E[P̂0] ≈ 1

N0

N0∑
i=1

P̂
(i)
0 .

For l ≥ 1,

E[P̂l − P̂l−1] ≈
Nl∑
i=1

(P̂
(i)
l − P̂

(i)
l−1),

where both P̂ (i)
l and P̂ (i)

l−1 are obtained from the ith Brownian path. We can see that, in

this procedure, we need to determine the number of levels L and the number of sample

paths Nl in each level l. Once those values are determined, we can give an estimate of

E[f(X)] and the total computing complexity of obtaining it (see Section 5.3 for the

details of how to determine L and Nl). It turns out that the multilevel Monte Carlo

method is very efficient and can reduce the total computational complexity by a large

extent. For example, to reach RMSE O(ε), the total computational cost of the Monte

Carlo estimation with EM scheme needs to be O(ε−3), while it is only O(ε−2(log ε)2)

for the multilevel Monte Carlo method (see Theorem 5.1 for more details). Another

interesting point about the multilevel Monte Carlo method is that it depends heavily

on the strong convergence of a numerical scheme to estimate the variance of the Monte

Carlo estimation at each level if the test function is Lipschitz continuous, although

our target (find E[g(X(T ))]) is a weak convergence type problem. What is even more

7



interesting is that we can combine the strong convergence and the multilevel Monte

Carlo method to estimate E[g(X(T ))] without knowing the weak convergence of the

numerical scheme and without excessively increasing the total computational cost, if

the test function is Lipschitz continuous. This idea is extremely attractive considering

the weak convergence of a numerical scheme requires too much on the smoothness of

the coefficients of the stochastic differential equation and the test function, while the

strong convergence does not (see more details in Section 5.3).

Organization of the Dissertation

In Chapter 2 we give preliminaries of the theory of SDEs that are needed in

our dissertation. Chapter 3 is mainly focused on the strong convergence of the

numerical solutions of SDEs driven by Brownian motions under non-globally Lipschitz

conditions. Some numerical experiments are also presented. In Chapter 4 we state

and prove a new weak convergence theorem under some mild conditions mentioned

above. In Chapter 5, we introduce the multilevel Monte Carlo method. Finally,

in Chapter 6, we present a new result on the strong convergence of the numerical

solutions of SDEs driven by Lévy processes under non-globally Lipschitz conditions.

Some important and often used inequalities as well as their proofs are included in

Appendix A. Simulations and figures were obtained using Matlab. The Matlab codes

are provided in Appendix B.

8



Chapter 2

Preliminaries on Stochastic

Differential Equations

This chapter provides the preliminaries for the whole dissertation. We give an

overview of stochastic differential equations driven by Brownian motion or Lévy

motion. We shall introduce the existence and uniqueness theorems of such equations.

We shall also introduce the connection between stochastic differential equations driven

by Brownian motion and partial differential equations, which is indispensable in

the analysis of weak approximations of such stochastic differential equations. For

a thorough introduction of the theory of stochastic differential equations, we refer to

[2, 31, 39, 45].

2.1 Existence and Uniqueness

Throughout this dissertation, (Ω,F ,F = {Ft}t≥0, P ) will always denote a filtered

probability space satisfying the usual hypothesis of right-continuity and completeness.

9



We first consider the stochastic differential equations driven by Brownian motion:dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), t ∈ (0, T ]

X(0) = x0,

(2.1)

where X(t) ∈ Rm for all t ∈ [0, T ], W (t) is a d-dimensional Brownian motion (Wiener

process) starting at 0, µ : [0, T ] × Rm → Rm and σ : [0, T ] × Rm → Rm×d. We

also assume that x0 is F0-measurable and independent of (W (t), 0 ≤ t ≤ T ). The

boundedness condition on x0 can be flexible. For now we only assume that E[x2
0] is

finite.

The following Lipschitz and linear growth condition are standard in the theory of

stochastic differential equations.

• (Lipschitz condition) For all x, y ∈ Rm and all t ∈ [0, T ],

‖µ(t, x)− µ(t, y)‖+ ‖σ(t, x)− σ(t, y)|| ≤ K(T )‖x− y‖. (2.2)

• (Linear growth condition) For all (t, x) ∈ [0, T ]× Rm,

‖µ(t, x)‖+ ‖σ(t, x)‖ ≤ K(T )(1 + ‖x‖). (2.3)

In (2.2) and (2.3), the constant K is positive and only depends on T . Sometimes, we

also use the following Lipschitz and linear growth condition interchangeably.

• (Lipschitz condition) For all x, y ∈ Rm and all t ∈ [0, T ],

‖µ(t, x)− µ(t, y)‖2 ∨ ‖σ(t, x)− σ(t, y)‖2 ≤ K(T )‖x− y‖2. (2.4)

• (Linear growth condition) For all (t, x) ∈ [0, T ]× Rm,

‖µ(t, x)‖2 ∨ ‖σ(t, x)‖2 ≤ K(T )(1 + ‖x‖2). (2.5)

10



Here, a ∨ b := max(a, b) for any a, b ∈ R.

Theorem 2.1 (existence and uniqueness, [31], Theorem 5.4). Suppose µ and σ satisfy

the Lipschitz condition (2.2) and linear growth condition (2.3), and x0 is independent

of (W (t), 0 ≤ t ≤ T ) with E[‖x0‖2] < ∞, then the equation (2.1) has a unique

solution and satisfies

E
[

sup
0≤t≤T

‖X(t)‖2
]
< C(1 + E[‖x0‖2]),

where C depends only on K and T .

Throughout this dissertation, we use C > 0 to denote a generic constant which

varies at different occurrences. If needed, the parameters on which C depends will

also be specified in the parentheses after it.

Actually, the Lipschitz condition can be replaced by the local Lipschitz condition:

• (Local Lipschitz condition) For every real number R > 0 and T > 0, there exists

a positive constant K, depending on T and R, such that for all t ∈ [0, T ] and

all x, y ∈ Rm with ‖x‖, ‖y‖ ≤ R,

‖µ(t, x)− µ(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K(T,R)‖x− y‖. (2.6)

This condition is locally Lipschitz in x uniformly in t.

The existence and uniqueness theorem still holds under the local Lipschitz

condition.

Theorem 2.2 (existence and uniqueness, [31], Theorem 5.4). Suppose µ and σ

satisfy the local Lipschitz condition (2.6) and linear growth condition (2.3), and x0 is

independent of (W (t), 0 ≤ t ≤ T ) with E[‖x0‖2] < ∞, then the equation (2.1) has a

unique solution and satisfies

E
[

sup
0≤t≤T

‖X(t)‖2
]
< C(1 + E[‖x0‖2]),

11



where C depends only on K and T .

Having the local Lipschitz condition, many functions such as functions having

continuous partial derivatives of first order with respect to x on [0, T ]×Rm can serve

as the drift and diffusion coefficients. But it still excludes some common functions like

−|x|2x as the coefficients. The following theorem relaxes the linear growth condition.

Theorem 2.3 (existence and uniqueness, [39], Theorem 2.3.5). Assume that the local

Lipschitz condition (2.6) holds, but the linear growth condition (2.5) is replaced with

the following monotone condition: there exists a positive constant C such that for all

(t, x) ∈ [0, T ]× Rm,

xTµ(t, x) +
1

2
‖σ(t, x)‖2 ≤ C(1 + ‖x‖2). (2.7)

Then there exists a unique solution X(t) to equation (2.1) and satisfies

E

∫ T

0

‖X(t)‖2dt <∞.

For example, consider the following SDE:

dX(t) = [X(t)−X3(t)]dt+X2(t)dW (t), t ∈ [0, T ].

Although the coefficients are local Lipschitz continuous, they do not satisfy the linear

growth condition. Nevertheless, the monotone condition is satisfied:

x(x− x3) +
1

2
x4 ≤ x2 ≤ 1 + x2.

Therefore by Theorem 2.3, it admits a unique solution.

We conclude this section by giving the Lp-estimates of the solution of (2.1).

Theorem 2.4 ([39], Theorem 2.4.1). Assume X(t) is the unique solution of the

equation (2.1). Let p ≥ 2 and x0 ∈ Lp(Ω;Rm). Assume that there exists a constant

12



α > 0 such that for all (t, x) ∈ [0, T ]× Rm,

xTµ(t, x) +
p− 1

2
‖σ(t, x)‖2 ≤ α(1 + ‖x‖2). (2.8)

Then

E[‖X(t)‖p] ≤ C := 2
p−2
2 (1 + E[‖x0‖p])epαt (2.9)

for all t ∈ [0, T ].

Note that the linear growth condition (2.3) is just a special case of (2.8). So the

above Lp-estimate is also true if the linear growth condition is fulfilled.

Corollary 2.4.1 ([39], Corollary 2.4.2). Let p ≥ 2 and x0 ∈ Lp(Ω;Rm). Assume

that the linear growth condition (2.3) holds. Then inequality (2.9) holds with α =
√
K +K(p− 1)/2.

2.2 Stochastic Differential Equations and Partial

Differential Equations

There is a close relation between stochastic differential equations and partial

differential equations (PDE). The Kolmogorov backward equation is one of the most

important and useful relations between the two. This PDE will play an important

role in our analysis of weak approximations of the solutions of SDEs in Chapter 4.

Theorem 2.5 (Kolmogorov’s Equation, [31], Theorem 6.9). Let X(t) be the solution

of the equation (2.1) with m = 1. Assume that the coefficients µ(t, x) and σ(t, x)

are locally Lipschitz and satisfy the linear growth condition. Assume in addition that

they possess continuous partial derivatives with respect to x up to order two, and that

they have at most polynomial growth. If g(x) is twice continuously differentiable and

satisfies together with its derivatives a polynomial growth condition, then the function

13



f(t, x) = E[g(X(T ))|X(t) = x] satisfies


∂f
∂t

(t, x) + µ(t, x)∂f
∂x

(t, x) + 1
2
σ2(t, x)∂

2f
∂x2

(t, x) = 0, t ∈ [0, T ), x ∈ R,

f(T, x) = g(x).

(2.10)

The multi-dimensional version can be found in, e.g. [45]. For convenience, we

often use the following second order differential operator

Ltf(t, x) := µ(t, x)
∂f

∂x
(t, x) +

1

2
σ2(t, x)

∂2f

∂x2
(t, x),

and write equation (2.10) as


∂f
∂t

(t, x) + Ltf(t, x) = 0, t ∈ [0, T ), x ∈ R,

f(T, x) = g(x).

(2.11)

To discuss the differential properties of the function f(t, x), we use a more general

version of equation (2.1):

dX(θ) = µ(θ,X(θ))dθ + σ(θ,X(θ))dW (θ), θ ∈ (t, T ]

X(t) = x.

(2.12)

Note that here X(θ) is still Rm-valued. We write the solution in the form X t,x(θ) to

represent the dependence of X(θ) on the initial data (t, x). Therefore, f(t, x) can be

written as f(t, x) = E[g(X t,x(T ))].

The differentiability of X t,x(θ) with respect to x depends on the smoothness of

the coefficients µ and σ.

Proposition 2.6 ([38], Theorem 2.3.3). Let k be a positive integer and 0 < α ≤

1. Suppose that coefficients µ and σ are Ck,α functions of x for some α and their

derivatives up to k-th order are bounded. Then the solution X t,x(θ) is a Ck,β function

of x for any β less than α.

14



With this theorem, we can discuss the differentiability of f(t, x) due to its

definition f(t, x) = E[X t,x(T )]. More details can be found in Chapter 4.

2.3 Numerical Solutions of Stochastic Differential

Equations Driven by Brownian Motion

It is common that the equation (2.1) does not have a closed-form solution in many

cases, where a numerical solution becomes a necessity. But unlike in the deterministic

differential equations, there are two kinds of convergence of the numerical solutions

of SDEs. The first kind of convergence is the strong convergence.

Definition 2.7. Suppose Y is a discrete-time approximation of the solution X(t) of

(2.1) with maximum step size ∆ > 0. We say that Y converges to X(t) in the strong

sense with order γ ∈ (0,∞] if there exists a finite constant C > 0 and a positive

constant ∆0 such that

E[‖X(T )− Y (T )‖] ≤ C∆γ (2.13)

for any time discretization with maximum step size ∆ ∈ (0,∆0).

The other kind of convergence is the weak convergence.

Definition 2.8. Suppose Y is a discrete-time approximation of the solution X(t) of

(2.1) with maximum step size ∆ > 0. We say that Y converges to X(t) in the weak

sense with order β ∈ (0,∞] if for any function g : Rm → R in a suitable function

space there exists a finite constant C > 0 and a positive constant ∆0 such that

|E[g(X(T ))]− E[g(Y (T ))]| ≤ C∆β (2.14)

for any time discretization with maximum step size ∆ ∈ (0,∆0).

The function space in the Definition 2.8 can be flexible. For example, it can be

the space of all polynomial functions. It can also be the space Ck
p (Rm) in which all
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the functions are k-th continuously differentiable and all their partial derivatives up

to order k have polynomial growth.

Complete reviews of the numerical solutions of SDEs driven by Brownian motion

can be found in, e.g. [22, 33, 48].

In the following we first introduce the most commonly used numerical scheme to

solve (2.1), the Euler-Maruyama (EM) scheme. Given a fixed integer N > 0, set the

time step ∆t = T/N . For any integer k satisfying 0 ≤ k ≤ N , set tk = k∆t. We

define at each node in [0, T ]: Y0 := x0 and

Yk+1 := Yk + µ(tk, Yk)∆t+ σ(tk, Yk)∆Wk, 0 ≤ k ≤ N − 1, (2.15)

where ∆Wk = W (tk+1) − W (tk). Furthermore, we define the continuous-time

approximation of the solution of (2.1) as:

Y (t) := Yk + µ(tk, Yk)(t− tk) + σ(tk, Yk)(W (t)−W (tk))

= Yk +

∫ t

tk

µ(tk, Yk)ds+

∫ t

tk

σ(tk, Yk)dW (s) for t ∈ [tk, tk+1). (2.16)

It is obvious that Y (tk) = Yk. If we define the shift operator in the following way:

η(t) = tk, t ∈ [tk, tk+1),

then scheme (2.16) can be written as

Y (t) = Y0 +

∫ t

0

µ(η(t), Y (η(t)))ds+

∫ t

0

σ(η(t), Y (η(t)))dW (s), t ∈ [0, T ]. (2.17)

Similar to getting Corollary 2.4.1, if µ(t, x) and σ(t, x) satisfy the linear growth

condition and x0 ∈ Lp(Ω), p ≥ 2, it then follows that,

sup
0≤t≤T

‖Y (t)‖ ∈ Lp(Ω). (2.18)
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There are also many other numerical schemes to solve (2.1), such as the Milstein

scheme, the Runge-Kutta type scheme, the Itô-Taylor expansion scheme, etc.. We

refer to [33] for a thorough treatment of the common numerical schemes we encounter

in the field of numerical solutions of SDEs.

For the Euler-Maruyama approximate solutions, the strong convergence order is
1
2
. This is the following theorem.

Theorem 2.9 ([39], Theorem 2.7.3). Assume that the Lipschitz condition (2.2) and

the linear growth condition (2.3) hold. Let X(t) be the unique solution of equation

(2.1), and Y (t) be its Euler-Maruyama approximate solution. Then

E
[

sup
0≤t≤T

‖Y (t)−X(t)‖2
]
≤ C

N
, (2.19)

where the constant C depends on K,T and E[‖x0‖2].

If µ and σ do not depend on the time variable t and satisfy the global Lipschitz

condition, then for any p ≥ 1, we also have

E
[

sup
0≤t≤T

‖X(t)− Y (t)‖p
]
≤ C(p, T )

Np/2
. (2.20)

See e.g. Bouleau and Lepingle [8].

In fact, the above convergence is stronger than the strong convergence we defined

in Definition 2.7. The error estimation is uniform with respect to the whole sample

path rather than just the terminal value of it. This advantage can be very useful in

many cases. For example, in the context of the Asian options, the payoff of the option

at the expiration time depends on the average of the whole sample path

1

T

∫ T

0

S(t)dt,

where S(t) is the price of underlying stock.
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We also remark that the assumed globally Lipschitz condition and the linear

growth condition in Theorem 2.9 are very strong conditions and may fail to hold

in many situations. For example, the one-dimensional stochastic Ginzburg-Landau

equation takes the formdX(t) = (X(t)−X3(t))dt+X(t)dW (t), t ∈ (0, 1],

X(0) = 1,

The drift coefficient takes the form µ(x) = x − x3, which is clearly not globally

Lipschitz continuous. But it is continuously differentiable and thus locally Lipschitz

continuous. In fact, the family of SDEs with C1 drift and diffusion coefficients consist

of a very large part of SDEs we encounter in research. Hu [23] and Higham, Mao and

Stuart [24] were the first to study the strong convergence problem of EM approximate

solutions under the non-globally Lipschitz continuous conditions. After that, the

study of numerical solutions of SDEs with local Lipschitz continuous coefficients has

been a very active area. We will give a thorough introduction of such problems in

Chapter 3.

As for the weak convergence of the Euler-Maruyama scheme, the convergence

order is typically 1, but it can be under different conditions. For example, in

Theorem 14.1.5 of [33], to achieve weak convergence order 1, it assumes µ(t, x) and

σ(t, x) being twice continuously differentiable and the test function g(x) being fourth

continuously differentiable, together with some other conditions (Hölder continuity,

etc.). While in Theorem 14.5.1 of [33], it assumes a homogeneous equation and

functions µ(x), σ(x) and g(x) being in C4
p(Rm), among some other conditions. Both

of the two theorems require strongly smooth conditions on µ, σ and g. In [5], also for

the homogeneous equation, the test function is assumed to be only measurable and

bounded (or with polynomial growth), but µ(x) and σ(x) are required to be C∞ with

bounded derivatives of any order. In Chapter 4, we will give some improvements of

the conditions assumed on µ, σ and g.
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2.4 Stochastic Differential Equations Driven by Lévy

Processes

Unlike Brownian motion, Lévy processes are stochastic processes allowing for jumps

in their sample paths. In the following, we will give a short introduction to such

processes. For an excellent and intuitive introduction to Lévy processes, we refer

to [46]. We also refer to [56] for a thorough introduction to the infinitely divisible

distributions and [2] for stochastic calculus with respect to Lévy processes. For Lévy

processes in finance, see e.g. [10, 49, 57, 58].

In general, we say a càdlàg (right continuous with left limits) and adapted

stochastic process L = L(t), 0 ≤ t ≤ T defined on a filtered probability space

(Ω,F ,F = (Ft)t≤0, P ) is a Lévy process if the following conditions are satisfied:

(L1) L(0) = 0 a.s.;

(L2) L has independent and stationary increments;

(L3) L is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P (‖L(t)− L(s)‖ > a) = 0.

By definition, Brownian motion is a special Lévy process. Other examples of Lévy

processes are like Poisson process, compound Poisson process, α-stable process, etc.

[2, 7, 10, 56].

It is often convenient to use Poisson random measure to analyze the jumps of a

Lévy process. Consider a set A ∈ B(Rd\{0}) such that 0 /∈ A and let 0 ≤ t ≤ T .

Define the random measure of the jumps of the process L by

N(ω, t, A) = #{0 ≤ s ≤ t; ∆L(s, ω) ∈ A}

=
∑
s≤t

1A(∆L(s, ω)). (2.21)
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Therefore, N(ω, t, A) counts the jumps of the process L of size in A up to time t. It

can be verified that for fixed A, N(ω, t, A) is a Poisson process with intensity ν(A) =

E[N(ω, 1, A)] and for fixed t, N is a Poisson random measure. The compensated

Poisson measure is then defined as

Ñ(t, A) := N(t, A)− tν(A).

Definition 2.10. The measure ν defined by

ν(A) = E[N(ω, 1, A)] = E
[∑
s≤1

1A(∆L(s, ω))
]

is called the Lévy measure of the Lévy process L.

In general, the Lévy measure describes the expected number of jumps of a certain

size in a time interval of length 1 and satisfies

ν({0}) = 0, and
∫
Rd

(1 ∧ ‖x‖2)ν(dx) <∞.

It can be proved that if ν(Rd) <∞, then almost all paths of L have a finite number

of jumps on every compact interval. In this case, the Lévy process has finite activity.

If ν(Rd) =∞, then almost all paths of L have an infinite number of jumps on every

compact interval. In this case, the Lévy process has infinite activity. See e.g. Theorem

21.3 in Sato [56] for the proof.

We can also define an integral with respect to the Poisson random measure N .

Consider a set A ∈ B(Rd\{0}) such that 0 /∈ A and a function f : Rd → Rm, Borel

measurable and finite on A. We define the integral with respect to N as follows:

∫
A

f(x)N(t, dx) =
∑
s≤t

f(∆L(s))1A(∆L(s)).
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Note that the above integral is a Rm-valued stochastic process. In the following, we

use ∫ t

0

∫
A

f(x)N(ds, dx)

to denote this process. Similarly, for f ∈ L1(A), we define

∫ t

0

∫
A

f(x)Ñ(ds, dx) =

∫ t

0

∫
A

f(x)N(ds, dx)− t
∫
A

f(x)ν(dx).

With the help of Poisson random measure, we have the following decomposition

of a Lévy process.

Theorem 2.11 (Lévy-Itô Decomposition, [2], Theorem 2.4.16). Let L be a Rd-valued

Lévy process, then there exists b ∈ Rd, a Brownian motion WA(t) with covariance

matrix A and an independent Poisson random measure N on R+ × (Rd − {0}) such

that, for each t ≥ 0,

L(t) = bt+WA(t) +

∫ t

0

∫
‖x‖<1

xÑ(ds, dx) +

∫ t

0

∫
‖x‖≥1

xN(ds, dx). (2.22)

Sometimes it is convenient to write

WA(t) = (W 1
A(t), · · · ,W d

A(t))

in the form

W i
A(t) =

m∑
j=1

σijW
j(t),

whereW 1, · · · ,Wm are standard one-dimensional Brownian motions and σ is a d×m

real-valued matrix for which σσT = A. If L is only a real-valued Lévy process,

the term WA(t) can be replaced by σW (t), where σ ≥ 0 and W (t) is a standard

one-dimensional Brownian motion.

It can be proved that L(t) ∈ Lp(Ω), p ≥ 1 if and only if
∫
‖x‖≥1

‖x‖pν(dx) <∞. In

particular, L(t) ∈ L1(Ω) if and only if
∫
‖x‖≥1

‖x‖ν(dx) <∞. Therefore, if we assume
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E[‖L(t)‖] <∞, we can rewrite (2.22) as

L(t) = b1t+WA(t) +

∫ t

0

∫
Rd
xÑ(ds, dx), (2.23)

where b1 = b+
∫
‖x‖≥1

xν(dx).

In general, the simulation of a Lévy process is more complex than a Brownian

motion. The simulation method varies from one kind of Lévy process to another. We

refer to Cont and Tankov [10], Platen and Bruti-Liberati [49], Asmussen and Rosinski

[3], Rosinski [52, 53] for the details.

In view of (2.22), we consider the following stochastic differential equation driven

by a stochastic process with jumps,

X(t) = X(0) +

∫ t

0

a(X(s−))ds+

∫ t

0

b(X(s−))dW (s)

+

∫ t

0

∫
‖y‖<1

f(X(s−), y)Ñ(ds, dy) +

∫ t

0

∫
‖y‖≥1

g(X(s−), y)N(ds, dy), (2.24)

where X(0) is F0-measurable, X(t) is a Rm-valued stochastic process, W and N

are independent of F0, a : Rm → Rm, b : Rm → Rm×d, f : Rm × Rd → Rm and

g : Rm × Rd → Rm. There exists a unique solution to the equation if the following

conditions are satisfied [2, 50]:

• Lipschitz condition: there exists a constant C > 0 such that for all x1, x2 ∈ Rm,

‖a(x1)− a(x2)‖2 + ‖B(x1, x1)− 2B(x1, x2) +B(x2, x2)‖

+

∫
‖y‖<1

‖f(x1, y)− f(x2, y)‖2ν(dy) ≤ C‖x1 − x2‖2;

• Growth condition: there exists a constant C > 0 such that for all x ∈ Rm,

‖a(x)‖2 + ‖B(x, x)‖+

∫
‖y‖<1

‖f(x, y)‖2ν(dy) ≤ C(1 + ‖x‖2);
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• Big jump condition: g is jointly measurable and x 7→ g(x, y) is continuous for

any y ∈ {y : ‖y‖ ≥ 1}.

Here B(x1, x2) = b(x1)b(x2)T and we use the seminorm on the matrix B:

‖B‖ =
m∑
i=1

|Bii|.

In view of (2.23), we sometimes consider the following SDE:

X(t) = X(0) +

∫ t

0

a(X(s−))ds+

∫ t

0

b(X(s−))dW (s) +

∫ t

0

∫
Rd
f(X(s−), y)Ñ(ds, dy).

(2.25)

It can be proved that there exists a unique solution to (2.25) if the following conditions

are satisfied [21]:

A-1. There exists a constant C such that for any x ∈ Rm,

〈x, a(x)〉+ ‖σ(x)‖2 +

∫
Rd
‖f(x, y)‖2ν(dy) ≤ C(1 + ‖x‖2).

A-2. For every R > 0, there exists a constant C(R), depending on R, such that for

any ‖x1‖, ‖x2‖ ≤ R,

〈x1 − x2, a(x1)− a(x2)〉+ ‖b(x1)− b(x2)‖2 +

∫
Rd
‖f(x1, y)− f(x2, y)‖2ν(dy)

≤ C(R)‖x1 − x2‖2.

A-3. The function a(x) is continuous in x ∈ Rm.

Condition A-1 is a monotone condition. Condition A-2 states that a satisfies the

one-sided local Lipschitz condition and b and f satisfy the local Lipschitz condition.

Furthermore, if E[‖X(0)‖p] <∞ for some p ≥ 2 and if there exists a constant C1 > 0,

such that ∫
Rd
‖f(x, y)‖pν(dy) ≤ C1(1 + ‖x‖p)
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for any x ∈ Rm, then we have

E
[

sup
0≤t≤T

‖X(t)‖p
]
≤ C, (2.26)

with C := C(T, p, C1, E[‖X(0)‖p]). See e.g. Lemma 2.2 in [11] for the proof.
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Chapter 3

Strong Convergence of Numerical

Approximations of SDEs Driven by

Brownian Motion under Local

Lipschitz Conditions

3.1 Strong Convergence of Euler-Maruyama Ap-

proximations of SDEs under Local Lipschitz

Conditions

We first consider the following stochastic differential equation with homogeneous

coefficients: dX(t) = µ(X(t))dt+ σ(X(t))dW (t), t ∈ (0, T ]

X(0) = x0.

(3.1)
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Like in the assumptions of (2.1), X(t) ∈ Rm for all t ∈ [0, T ], W (t) is a d-dimensional

Brownian motion starting at 0, µ : Rm → Rm and σ : Rm → Rm×d, x0 is F0-

measurable and independent of (W (t), 0 ≤ t ≤ T ). But in this section, we assume

that all the pth moments of x0, p > 0 are finite.

In this case, the local Lipschitz condition is

• (Local Lipschitz Condition) For every real number R > 0, there exists a positive

constant C, depending only on R, such that for all x, y ∈ Rm with ‖x‖, ‖y‖ ≤ R,

‖µ(x)− µ(y)‖+ ‖σ(x)− σ(y)‖ ≤ C(R)‖x− y‖, (3.2)

or

‖µ(x)− µ(y)‖2 ∨ ‖σ(x)− σ(y)‖2 ≤ C(R)‖x− y‖2. (3.3)

We still use the notations from section (2.3) to express the approximate solution of

(3.1). Given the homogeneous coefficients, the discrete approximation in this section

takes the form:

Yk+1 := Yk + µ(Yk)∆t+ σ(Yk)∆Wk, 0 ≤ k ≤ N − 1. (3.4)

Furthermore, the continuous-time approximation of the solution of (3.1) is

Y (t) := Yk + µ(Yk)(t− tk) + σ(Yk)(W (t)−W (tk)) for t ∈ [tk, tk+1). (3.5)

Sometimes, it is more convenient to work with the equivalent definition

Y (t) := Y0 +

∫ t

0

µ(Y (s))ds+

∫ t

0

σ(Y (s))dW (s), (3.6)

where Y (t) is defined by

Y (t) := Yk, for t ∈ [tk, tk+1).
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It is obvious that Y (tk) = Y (tk) = Yk. The following theorem is about the strong

convergence of the Euler-Maruyama approximate solution of equation (3.1) under the

local Lipschitz condition.

Theorem 3.1 ([23], Theorem 2.2). Suppose the coefficients µ and σ in equation (3.1)

satisfy the local Lipschitz condition and for some p > 2 there is a constant A such

that

E
[

sup
0≤t≤T

‖Y (t)‖p
]
∨ E

[
sup

0≤t≤T
‖X(t)‖p

]
≤ A. (3.7)

Then the Euler-Maruyama solution (3.5) satisfies

lim
∆t→0

E
[

sup
0≤t≤T

‖Y (t)−X(t)‖2
]

= 0. (3.8)

Proof. First, we define

τR := inf{t ≥ 0 : ‖Y (t)‖ ≥ R},

ρR := inf{t ≥ 0 : ‖X(t)‖ ≥ R},

θR := τR ∧ ρR,

and

e(t) := Y (t)−X(t).

Recall the Young inequality: for r−1 + q−1 = 1,

ab ≤ δ

r
ar +

1

qδq/r
bq, ∀a, b, δ > 0.

We thus have for any δ > 0

E
[

sup
0≤t≤T

‖e(t)‖2
]

= E
[

sup
0≤t≤T

‖e(t)‖2
1{τR>T,ρR>T}

]
+ E

[
sup

0≤t≤T
‖e(t)‖2

1{τR≤T or ρR≤T}

]
≤ E

[
sup

0≤t≤T
‖e(t ∧ θR)‖2

1{θR>T}

]
+

2δ

p
E
[

sup
0≤t≤T

‖e(t)‖p
]
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+
1− 2/p

δ2/(p−2)
P (τR ≤ T or ρR ≤ T ) (3.9)

Now

P (τR ≤ T ) = E
[
1{τR≤T}

‖Y (τR)‖p

Rp

]
≤ 1

Rp
E
[

sup
0≤t≤T

‖Y (t)‖p
]
≤ A

Rp
,

using (3.7). A similar result can be derived for ρR such that

P (τR ≤ T or ρR ≤ T ) ≤ P (τR ≤ T ) + P (ρR ≤ T ) ≤ 2A

Rp
.

Using these bounds along with

E
[

sup
0≤t≤T

‖e(t)‖p
]
≤ 2p−1E

[
sup

0≤t≤T
(‖Y (t)‖p + ‖X(t)‖p)

]
≤ 2pA

in (3.9) gives

E
[

sup
0≤t≤T

‖e(t)‖2
]
≤ E

[
sup

0≤t≤T
‖Y (t ∧ θR)−X(t ∧ θR)‖2

]
+

2p+1δA

p
+

(p− 2)2A

pδ2/(p−2)Rp
. (3.10)

Using

X(t ∧ θR) := x0 +

∫ t∧θR

0

µ(X(s))ds+

∫ t∧θR

0

σ(X(s))dW (s),

(3.6) and Cauchy-Schwarz, we have

‖Y (t ∧ θR)−X(t ∧ θR)‖2

=
∥∥∥∫ t∧θR

0

µ(Y (s))− µ(X(s))ds+

∫ t∧θR

0

σ(Y (s))− σ(X(s))dW (s)
∥∥∥2

≤ 2
[
T

∫ t∧θR

0

‖µ(Y (s))− µ(X(s))‖2ds+
∥∥∥∫ t∧θR

0

σ(Y (s))− σ(X(s))dW (s)
∥∥∥2]
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From the local Lipschitz condition (3.3) and Doob’s martingale inequality (A.9) we

have for any τ ≤ T ,

E
[

sup
0≤t≤τ

‖Y (t ∧ θR)−X(t ∧ θR)‖2
]

≤ 2C(R)(T + 4)E

∫ τ∧θR

0

‖Y (s)−X(s)‖2ds

≤ 4C(R)(T + 4)E

∫ τ∧θR

0

(
‖Y (s)− Y (s)‖2 + ‖Y (s)−X(s)‖2

)
ds

≤ 4C(R)(T + 4)
(
E

∫ τ∧θR

0

‖Y (s)− Y (s)‖ds+ E

∫ τ

0

‖Y (s− θR)−X(s− θR)‖2ds
)

≤ 4C(R)(T + 4)
(
E

∫ τ∧θR

0

‖Y (s)− Y (s)‖2ds

+

∫ τ

0

E
[

sup
0≤r≤s

‖Y (r ∧ θR)−X(r ∧ θR)‖2
]
ds
)
. (3.11)

To bound the first term in the parentheses on the right-hand side of (3.11), given

s ∈ [0, T ∧ θR), let ks be the integer for which s ∈ [tks , tks+1). Then

Y (s)− Y (s) = Yks −
(
Yks +

∫ s

tks

µ(Y (s))ds+

∫ s

tks

σ(Y (s))dW (s)
)

= −µ(Yks)(s− tks)− σ(Yks)(W (s)−W (tks)).

Therefore,

‖Y (s)− Y (s)‖2 ≤ 2
(
‖µ(Yks)‖2∆t2 + ‖σ(Yks)‖2‖W (s)−W (tks)‖2

)
. (3.12)

By the local Lipschitz condition (3.3), for ‖x‖ ≤ R, we have

‖µ(x)‖2 ≤ 2(‖µ(x)− µ(0)‖2 + ‖µ(0)‖2) ≤ 2
(
C(R)‖x‖2 + ‖µ(0)‖2

)
,

and, similarly,

‖σ(x)‖2 ≤ 2
(
C(R)‖x‖2 + ‖σ(0)‖2

)
.
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Hence, in (3.12),

‖Y (s)− Y (s)‖2 ≤ 4
(
C(R)‖Yks‖2 + ‖µ(0)‖2 ∨ ‖σ(0)‖2)(∆t2 + ‖W (s)−W (tks)‖2

)
.

Using (3.7) and the Lyapunov inequality (A.8)

E

∫ τ∧θR

0

‖Y (s)− Y (s)‖2ds

≤ E

∫ τ∧θR

0

4
(
C(R)‖Yks‖2 + ‖µ(0)‖2 ∨ ‖σ(0)‖2

)(
(∆t)2 + ‖W (s)−W (tks)‖2

)
ds

≤
∫ τ

0

4E
[(
C(R)‖Yks‖2 + ‖µ(0)‖2 ∨ ‖σ(0)‖2

)(
(∆t)2 + ‖W (s)−W (tks)‖2

)]
ds

≤
∫ T

0

4
(
C(R)E[‖Yks‖2] + ‖µ(0)‖2 ∨ ‖σ(0)‖2

)(
(∆t)2 + d∆t

)
ds

≤ 4T
(
C(R)A2/p + ‖µ(0)‖2 ∨ ‖σ(0)‖2

)
∆t(∆t+ d).

In (3.11) we then have

E
[

sup
0≤t≤τ

‖Y (t ∧ θR)−X(t ∧ θR)‖2
]

≤ 16C(R)(T + 4)T∆t(∆t+ d)
(
C(R)A2/p + ‖µ(0)‖2 ∨ ‖σ(0)‖2

)
+ 4C(R)(T + 4)

∫ τ

0

E sup
0≤r≤s

[
‖Y (r ∧ θR)−X(r ∧ θR)‖2

]
ds.

Applying the Gronwall inequality (A.7) we obtain

E
[

sup
0≤t≤T

‖Y (t ∧ θR)−X(t ∧ θR)‖2
]
≤ C∆t(C(R)2 + 1)e4C(R)(T+4),

where C is a universal constant independent of ∆t, R and δ. Inserting this into (3.10)

gives

E
[

sup
0≤t≤T

‖e(t)‖2
]
≤ C∆t(C(R)2 + 1)e4C(R)(T+4) +

2p+1δA

p
+

(1− 2/p)2A

δ2/(p−2)Rp
. (3.13)
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Given any ε > 0, we can choose δ so that 2p+1δA/p < ε/3, then choose R so that

(1− 2/p)2A

δ2/(p−2)Rp
< ε/3,

and then choose ∆t sufficiently small for

C∆t(C(R)2 + 1)e4C(R)(T+4) < ε/3

so that in (3.13),

E
[

sup
0≤t≤T

‖e(t)‖2
]
≤ ε,

as required.

This theorem establishes the strong convergence of Euler-Maruyama approximate

solutions of (3.1). But the bounded condition it assumes for the pth moment of X(t)

and Y (t) is not satisfying. Although it may be possible to verify the bound of the

pth moment of X(t), as many textbooks have done it, the bound of the pth moment

of Y (t) is often very difficult to verify and sometimes may fail to hold. Besides, the

convergence (3.8) is a very general one and does not involve the explicit convergence

rate.

To remove the bound restriction on the pth moment of Y (t), the same author in

[23] proposed a new numerical scheme called the split-step backward Euler (SSBE)

method, which is defined by taking Z0 = x0 and

Z?
k = Zk + ∆tµ(Z?

k), (3.14)

Zk+1 = Z?
k + σ(Z?

k)∆Wk. (3.15)

They proved that the new SSBE method converges strongly without assuming any

bound of the pth moment of the approximate solution. But more restrictions on the

drift and diffusion coefficients are needed. This is the following theorem.
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Theorem 3.2 ([23], Theorem 3.3). Suppose the functions µ and σ in (3.1) are C1,

and there exist a constant C > 0 such that

〈x− y, µ(x)− µ(y)〉 ≤ C‖x− y‖2, ∀x, y ∈ Rm, (3.16)

‖σ(x)− σ(y)‖2 ≤ C‖x− y‖2, ∀x, y ∈ Rm. (3.17)

Consider the SSBE (3.14)-(3.15) applied to the SDE (3.1) under the above assump-

tion. There exists a continuous-time extension Z(t) of the numerical solution (so that

Z(tk) = Zk) for which

lim
∆t→0

E
[

sup
0≤t≤T

‖Z(t)−X(t)‖2
]

= 0.

Proof. See [23] for the details.

The condition this theorem assumes on the drift coefficient µ is called a one-sided

Lipschitz condition. A good example is the following polynomial function

f(x) = −xp + x, where p ≥ 3 is an odd integer.

It can be easily verified that it satisfies the condition (3.16). By taking y = 0, (3.16)

and (3.17) also imply

〈µ(x), x〉 ∨ ‖σ(x)‖2 ≤ α + β‖x‖2, ∀x ∈ Rm, (3.18)

where α := 1
2
‖µ(0)‖2 ∨ 2‖σ(0)‖2 and β := (C + 1

2
) ∨ 2C. Condition (3.18) is actually

a monotone-type condition (see condition (2.7)). Note that µ and σ are also locally

Lipschitz continuous (µ, σ are C1). Therefore, by Theorem 2.3, under the assumptions

of Theorem (3.2), there exists a unique solution of (3.1).

To remove the bound restriction on the approximate solution and give an explicit

convergence rate at the same time, [23] also proposed the Backward Euler scheme by
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setting U0 = x0 and

Uk+1 = Uk + µ(Uk+1)∆t+ σ(Uk)∆Wk. (3.19)

Theorem 3.3 ([23], Theorem 5.3). Suppose the conditions in Theorem (3.2) hold.

Moreover, assume that there exist constants C > 0 and q ∈ Z+ such that all x, y ∈ Rm,

‖µ(x)− µ(y)‖2 ≤ C(1 + ‖x‖q + ‖y‖q)‖x− y‖2. (3.20)

Consider the backward Euler method (3.19) applied to SDE (3.1). There exists a

continuous-time extension U(t) of the numerical solution (so that U(tk) = Uk) for

which

E
[

sup
0≤t≤T

‖U(t)−X(t)‖2
]

= O(∆t). (3.21)

Note that if µ satisfies condition (3.20), µ behaves polynomially or is superlinearly

growing. Obviously, by the mean value theorem for derivatives, if the derivative of a

function grows at most polynomially, this function must satisfy the condition (3.20).

So sometimes we also define the polynomial growth of a function from the derivative

perspective (see condition (3.23)).

This theorem provides a possibility of the computation of the numerical solutions

of many SDEs which take nonlinear functions as the drift coefficients satisfying (3.16)

and (3.20).

However, the backward Euler scheme (3.19) is an implicit method and its

implementation requires too much computational effort. On the other hand, the

explicit Euler-Maruyama scheme may not converge in the strong sense to the exact

solution of an SDE with the one-sided Lipschitz continuous (inequality (3.16)) and

superlinearly growing (inequality (3.20)) drift coefficients. Even worse, Theorem 1

in [27] also shows for such an SDE that the absolute moments of the explicit Euler

approximations at a finite time point T ∈ (0,∞) diverge to infinity. To address

this issue, Hutzenthaler, Jentzen and Kloeden [28] proposed a “tamed” version of
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the explicit Euler scheme which is strongly convergent for SDEs with superlinearly

growing drift coefficients. This is our next section.

3.2 A Tamed Euler Scheme

In this section, we still consider the SDE (2.1), but in a different form. Let σ =

(σ1, σ2, · · · , σd), where the σi’s, 1 ≤ i ≤ d, are the column vectors of the matrix σ.

Let W = (W (1),W (2), · · · ,W (d)) be the d-dimensional Brownian motion. The SDE is

then expressed as

X(t) = x0 +

∫ t

0

µ(X(s))ds+
d∑
i=1

∫ t

0

σi(X(s))dW (i)(s) (3.22)

for all t ∈ [0, T ].

In this section, we still assume that σ is globally Lipschitz continuous. We also

assume that the drift coefficient µ : Rm → Rm is a continuously differentiable (i.e.

C1) and globally one-sided Lipschitz continuous function whose derivative grows at

most polynomially. That is, there exists a positive real number C such that

‖µ′(x)‖ ≤ C(1 + ‖x‖C), (3.23)

‖σ(x)− σ(y)‖ ≤ C‖x− y‖, (3.24)

〈x− y, µ(x)− µ(y)〉 ≤ C‖x− y‖2. (3.25)

Note that if µ satisfies (3.23), then by the mean value theorem for derivatives, it

also satisfies (3.20). As we discussed in Theorem 3.3, the numerical scheme (3.19)

converges strongly to the real solution of SDE (3.22) as long as (3.23), (3.24) and

(3.25) are satisfied. However, in each time step of (3.19), the zero of a nonlinear

equation has to be determined, which requires more computational effort. To solve

this problem, in their seminal paper [27], Hutzenthaler, Jentzen and Kloeden proposed
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a new explicit Euler scheme by defining V0 = x0 and

Vk+1 = Vk +
µ(Vk)∆t

1 + ‖µ(Vk)‖∆t
+ σ(Vk)∆Wk, 0 ≤ k ≤ N − 1. (3.26)

This scheme is called the tamed Euler scheme. Note that the drift term is “tamed”

by the factor 1 + ‖µ(Vk)‖∆t and thus bounded by 1. And this prevents the large

excursions generated by the drift term of the numerical scheme. Since the diffusion

term σ is still required to be globally Lipschitz continuous, we can expect that the

numerical scheme (3.26) behaves nicely and does not have a possibility of blowing up.

After a small transformation, the numerical scheme (3.26) becomes

Vk+1 = Vk + µ(Vk)∆t+ σ(Vk)∆Wk − (∆t)2 µ(Vk)‖µ(Vk)‖
1 + ‖µ(Vk)‖∆t

. (3.27)

We can see that this is the Euler-Maruyama scheme added by a second-order term. As

usual, we also define the continuous-time approximation of the tamed Euler scheme.

It is natural to have

V (t) := Vk +
(t− tk)µ(Vk)

1 + ‖µ(Vk)‖∆t
+ σ(Vk)(W (t)−W (tk)) (3.28)

for all t ∈ [tk, tk+1), k = 0, 1, · · · , N − 1.

Theorem 3.4 ([28], Theorem 1.1). Suppose that the drift coefficient µ(x) is a

continuously differentiable and globally one-sided Lipschitz continuous function whose

derivative grows at most polynomially. Suppose also that the diffusion coefficient σ(x)

is globally Lipschitz continuous and E[‖x0‖p] <∞ for all p ≥ 1. Then there exists a

family Cp ∈ [0,∞), p ∈ [1,∞), of real numbers such that

(
E
[

sup
t∈[0,T ]

‖X(t)− V (t)‖p
])1/p

≤ Cp ·N−1/2 (3.29)

for all N ∈ N and all p ∈ [1,∞).

To prove this theorem, we need the following two lemmas.
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Lemma 3.4.1 ([28], Lemma 3.9). Let Vk be given by (3.26). Then we have that

sup
N∈N

sup
k∈{0,1,··· ,N}

E[‖Vk‖p] <∞ (3.30)

for all p ∈ [1,∞).

This lemma is very crucial in the proof of Theorem 3.4. See Lemma 3.1–3.9 for

the proof.

Lemma 3.4.2 ([28], Lemma 3.10). Let Vk be given by (3.26). Then we have that

sup
N∈N

sup
k∈{0,1,··· ,N}

E[‖µ(Vk)‖p] <∞, (3.31)

sup
N∈N

sup
k∈{0,1,··· ,N}

E[‖σ(Vk)‖p] <∞ (3.32)

for all p ∈ [1,∞).

Proof. First of all, by the polynomial growth property of µ(x), we have

‖µ(x)− µ(0)‖ ≤ C(1 + ‖x‖C)‖x‖

= C‖x‖+ C‖x‖C+1

≤ C(1 + ‖x‖C+1) + C(1 + ‖x‖C+1)

≤ 2C(1 + ‖x‖C+1).

Therefore, we have

‖µ(x)‖ ≤ (2C + ‖µ(0)‖)(1 + ‖x‖C+1). (3.33)

Combining (3.33) and Lemma 3.4.1, we have

sup
N∈N

sup
k∈{0,1,··· ,N}

‖µ(Vk)‖Lp(Ω;Rm)

≤ (2C + ‖µ(0)‖)
(

1 + sup
N∈N

sup
k∈{0,1,··· ,N}

‖Vk‖(C+1)

Lp(C+1)(Ω;Rm)

)
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<∞

Additionally, the inequality ‖σ(x)‖ ≤ C‖x‖+‖σ(0)‖ for all x ∈ Rm and again Lemma

3.4.1 show that

sup
N∈N

sup
k∈{0,1,··· ,N}

‖σ(Vk)‖Lp(Ω;Rm)

≤ C
(

sup
N∈N

sup
k∈{0,1,··· ,N}

‖Vk‖Lp(Ω;Rm)

)
+ ‖σ(0)‖

<∞

for all p ∈ [1,∞).

Next, we give the proof of Theorem 3.4.

Proof. We first define the shift operator

η(t) = ti, if ti ≤ t < ti+1, i = 0, 1, · · · , N − 1.

In this notation, equation (3.28) reads as

V (s) = x0 +

∫ s

0

µ(V (η(u)))

1 + T/N‖µ(V (η(u)))‖
du+

∫ s

0

σ(V (η(u)))dW (u) (3.34)

for all s ∈ [0, T ] P-a.s.. Our goal is then to estimate the quantity E[sups∈[0,t] ‖X(s)−

V (s)‖p] for t ∈ [0, T ] and p ∈ [1,∞). Using (3.22) and (3.34), we get

X(s)− V (s) =

∫ s

0

(
µ(X(u))− µ(V (η(u)))

1 + T/N‖µ(V (η(u)))‖

)
du

+
d∑
i=1

∫ s

0

(
σi(X(u))− σi(V (η(u)))

)
dW (i)(u)
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for all s ∈ [0, T ] P-a.s.. Itô’s formula hence gives that

‖X(s)− V (s)‖2 = 2

∫ s

0

〈X(u)− V (u), µ(X(u))− µ(V (u))〉du

+ 2

∫ s

0

〈X(u)− V (u), µ(V (u))− µ(V (η(u)))〉du

+
2T

N

∫ s

0

〈
X(u)− V (u),

µ(V (η(u)))‖µ(V (η(u)))‖
1 + T/N‖µ(V (η(u)))‖

〉
du

+ 2
d∑
i=1

∫ s

0

〈X(u)− V (u), σi(X(u))− σi(V (η(u)))〉dW (i)(u)

+
d∑
i=1

∫ s

0

‖σi(X(u))− σi(V (η(u)))‖2du

By the one-sided Lipschitz continuity of µ, the global Lipschitz continuity of σ and

Cauchy-Schwarz inequality, we have

‖X(s)− V (s)‖2 ≤ (2C + 2C2d)

∫ s

0

‖X(u)− V (u)‖2du

+ 2

∫ s

0

‖X(u)− V (u)‖ · ‖µ(V (u))− µ(V (η(u)))‖du

+
2T

N

∫ s

0

‖X(u)− V (u)‖ · ‖µ(V (η(u)))‖2du

+ 2
∣∣∣ d∑
i=1

∫ s

0

〈X(u)− V (u), σi(X(u))− σ(V (η(u)))〉dW (i)(u)
∣∣∣

+ 2C2d

∫ s

0

‖V (u)− V (η(u))‖2du

for all s ∈ [0, T ] P-a.s.. Therefore,

sup
s∈[0,t]

‖X(s)− V (s)‖2

≤ 2(C + C2d+ 1)

∫ t

0

‖X(s)− V (s)‖2ds+

∫ T

0

‖µ(V (s))− µ(V (η(s)))‖2ds

+
T 2

N2

∫ T

0

‖µ(V (η(s)))‖4ds+ 2C2d

∫ T

0

‖V (s)− V (η(s))‖2ds
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+ 2 sup
s∈[0,t]

∣∣∣ d∑
i=1

∫ s

0

〈X(u)− V (u), σi(X(u))− σi(V (η(s)))〉dW (i)(u)
∣∣∣

P-a.s.. for all t ∈ [0, T ]. The Minkowski’s inequality (A.5), Minkowski’s integral

inequality (A.6) and Burkholder-Davis-Gundy type inequality (A.11) yield that

∥∥∥ sup
s∈[0,t]

‖X(s)− V (s)‖2
∥∥∥
Lp/2(Ω;R)

≤ 2(C + C2d+ 1)

∫ t

0

‖X(s)− V (s)‖2
Lp(Ω;Rm)ds

+

∫ T

0

‖µ(V (s))− µ(V (η(s)))‖2
Lp(Ω;Rm)ds

+
T 2

N2

∫ T

0

‖µ(V (η(s)))‖4
L2p(Ω;Rm)ds

+ 2C2d

∫ T

0

‖V (s)− V (η(s))‖2
Lp(Ω;Rm)ds

+ p
( d∑
i=1

∫ t

0

‖〈X(s)− V (s), σi(X(s))− σi(V (η(s)))〉‖2
Lp/2(Ω;R)ds

)1/2

(3.35)

for all t ∈ [0, T ] and all p ∈ [4,∞). Next the Cauchy-Schwarz inequality, the Hölder

inequality and ab ≤ a2

2
+ b2

2
imply that

p
( d∑
i=1

∫ t

0

‖〈X(s)− V (s), σi(X(s))− σi(V (η(s)))〉‖2
Lp/2(Ω;R)ds

)1/2

≤ p
( d∑
i=1

∫ t

0

‖X(s)− V (s)‖2
Lp(Ω;Rm)‖σi(X(s))− σi(V (η(s)))‖2

Lp(Ω;Rm)ds
)1/2

≤ p
(

sup
s∈[0,t]

‖X(s)− V (s)‖Lp(Ω;Rm)

)(
C2d

∫ t

0

‖X(s)− V (η(s))‖2
Lp(Ω;Rm)ds

)1/2

≤ 1

2
sup
s∈[0,t]

‖X(s)− V (s)‖2
Lp(Ω;R) +

p2C2d

2

∫ t

0

‖X(s)− V (η(s))‖2
Lp(Ω;Rm)ds

≤ 1

2

∥∥∥ sup
s∈[0,t]

‖X(s)− V (s)‖
∥∥∥2

Lp(Ω;R)
+
p2C2d

2

∫ t

0

‖X(s)− V (η(s))‖2
Lp(Ω;Rm)ds (3.36)
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for all t ∈ [0, T ] and all p ∈ [4,∞). Inserting inequality (3.36) into (3.35) and applying

the estimate (a+ b)2 ≤ 2a2 + 2b2 then yields that

∥∥∥ sup
s∈[0,t]

‖X(s)− V (s)‖
∥∥∥2

Lp(Ω;R)

=
∥∥∥ sup
s∈[0,t]

‖X(s)− V (s)‖2
∥∥∥
Lp/2(Ω;R)

≤ 2
(
C + C2d+ 1 +

p2C2d

2

)∫ t

0

‖X(s)− V (s)‖2
Lp(Ω;Rm)ds

+

∫ T

0

‖µ(V (s))− µ(V (η(s)))‖2
Lp(Ω;Rm)ds

+
T 2

N2

∫ T

0

‖µ(V (η(s)))‖4
L2p(Ω;Rm)ds

+ (2C2d+ p2C2d)

∫ T

0

‖V (s)− V (η(s))‖2
Lp(Ω;Rm)ds

+
1

2

∥∥∥ sup
s∈[0,t]

‖X(s)− V (s)‖
∥∥∥2

Lp(Ω;R)

and therefore, we obtain that

1

2

∥∥∥ sup
s∈[0,t]

‖X(s)− V (s)‖
∥∥∥2

Lp(Ω;R)

≤ 2
(
C + C2d+ 1 + p2C2d

)∫ t

0

‖X(s)− V (s)‖2
Lp(Ω;Rm)ds

+

∫ T

0

‖µ(V (s))− µ(V (η(s)))‖2
Lp(Ω;Rm)ds

+
T 2

N2

∫ T

0

‖µ(V (η(s)))‖4
L2p(Ω;Rm)ds

+ (2C2d+ p2C2d)

∫ T

0

‖V (s)− V (η(s))‖2
Lp(Ω;Rm)ds

for all t ∈ [0, T ] and all p ∈ [4,∞). By Gronwall’s lemma, we have

∥∥∥ sup
t∈[0,T ]

‖X(t)− V (t)‖
∥∥∥2

Lp(Ω;R)

≤ 2e4T (p2C2d+C+1)
(∫ T

0

‖µ(V (s))− µ(V (η(s)))‖2
Lp(Ω;Rm)ds
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+
T 2

N2

∫ T

0

‖µ(V (η(s)))‖4
L2p(Ω;Rm)ds

+ 2p2C2d

∫ T

0

‖V (s)− V (η(s))‖2
Lp(Ω;Rm)ds

)
and hence, the inequality

√
a+ b+ c ≤

√
a +
√
b +
√
c for all a, b, c ∈ [0,∞) gives

that

∥∥∥ sup
t∈[0,T ]

‖X(t)− V (t)‖
∥∥∥2

Lp(Ω;R)

≤
√

2Te2T (p2C2d+C+1)
(

sup
t∈[0,T ]

‖µ(V (t)))− µ(V (η(s)))‖Lp(Ω;Rm)

+
T

N

[
sup

k∈{0,1,··· ,N}
‖µ(Vk)‖2

L2p(Ω;Rm)

]
+ pC

√
2d
[

sup
t∈[0,T ]

‖V (t)− V (η(s))‖Lp(Ω;Rm)

])
(3.37)

for all p ∈ [4,∞). Additionally, the Burkholder-Davis-Dundy type inequality (A.11)

shows that

sup
t∈[0,T ]

‖V (t)− V (η(s))‖Lp(Ω;Rm)

≤ T

N

(
sup
t∈[0,T ]

∥∥∥ µ(V (η(s)))

1 + T/N‖µ(V (η(s)))‖

∥∥∥)
+ sup

t∈[0,T ]

∥∥∥∫ t

η(t)

σ(V (η(t)))dW (s)
∥∥∥
Lp(Ω;Rm)

≤ T√
N

(
sup

k∈{0,1,··· ,N}
‖µ(Vk)‖Lp(Ω;Rm)

)
+
p
√
Td√
N

(
sup

i∈{1,2,··· ,d}
sup

k∈{0,1,··· ,N}
‖σi(Vk)‖Lp(Ω;Rm)

)
for all p ∈ [2,∞). Lemma 3.4.2 hence implies that

sup
N∈N

(√
N
[

sup
t∈[0,T ]

‖V (t)− V (η(s))‖Lp(Ω;Rm)

])
<∞ (3.38)
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for all p ∈ [1,∞). In particular, we obtain that

sup
N∈N

sup
t∈[0,T ]

‖V (t)‖Lp(Ω;Rm) <∞ (3.39)

for all p ∈ [1,∞) due to Lemma 3.4.1. Moreover, the estimate

‖µ(x)− µ(y)‖ ≤ C(1 + ‖x‖C + ‖y‖C)‖x− y‖, x, y ∈ Rm

gives that

sup
t∈[0,T ]

‖µ(V (t))− µ(V (η(s)))‖Lp(Ω;Rm)

≤ C
(

1 + 2 sup
t∈[0,T ]

‖V (t)‖CL2pC(Ω;Rm)

)(
sup
t∈[0,T ]

‖V (t)− V (η(s))‖L2p(Ω;Rm)

)
(3.40)

for all p ∈ [1,∞). Inequalities (3.38) and (3.39) hence show that

sup
N∈N

(√
N
[

sup
t∈[0,T ]

‖µ(V (t))− µ(V (η(t)))‖Lp(Ω;Rm)

])
<∞ (3.41)

for all p ∈ [1,∞). Combining (3.37), (3.38), (3.41) and Lemma 3.4.2 finally shows

(3.29).

Numerical Experiments

The example we use for our numerical experiment in this section is the 1-

dimensional stochastic Ginzburg-Landau equation,

dX(t) = (X(t)−X3(t))dt+X(t)dW (t), X(0) = 1.

Here, µ(x) = x − x3, σ(x) = x and t ∈ [0, 1]. Clearly, µ(x) satisfies a one-sided

Lipschitz condition and grows superlinearly. We use 5 different time steps: ∆t =

2−12, 2−11, 2−10, 2−9, 2−8 and 1000 realizations for each discretisation. The following
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Figure 3.1: Log-log plot of the strong error from the tamed Euler approximation
versus the time step ∆t with the drift coefficients superlinearly growing.

figure is the loglog plot of the experimental error with respect to the 5 different time

steps. We can see that the numerical scheme converges strongly with order 1
2
.

3.3 Euler Approximations with Superlinearly Grow-

ing Diffusion Coefficients

The tamed Euler scheme we introduced in section 3.2 is a significant progress in the

computation of numerical solutions of stochastic differential equations. It is an explicit

numerical scheme and only assumes that the drift coefficient is one-sided Lipschitz

and its derivative grows at most polynomially. However, it still requires the global

Lipschitz continuity of the diffusion coefficient. In Sabanis [55], the author introduces

a new explicit Euler-type numerical scheme to compute the numerical solutions of

SDEs whose diffusion coefficients can be superlinearly growing. We introduce this

43



new scheme in this section based on [55]. For the Milstein-type numerical scheme to

address this issue, see e.g. [37].

In this section, we consider the following stochastic differential equation:dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), t ∈ (0, T ]

X(0) = x0,

(3.42)

where X(t) ∈ Rm for all t ∈ [0, T ], W (t) is a d-dimensional Brownian motion starting

at 0, µ : [0, T ] × Rm → Rm and σ : [0, T ] × Rm → Rm×d. We also assume that x0

is F0-measurable, almost surely finite and independent of (W (t), 0 ≤ t ≤ T ). Let

p0, p1 ∈ [2,∞) be positive constants. We consider the following conditions.

A-1. E[‖x0‖p0 ] <∞.

A-2. µ(t, x) and σ(t, x) are locally Lipschitz continuous in x for any t ∈ [0, T ] (see

(2.6)).

A-3. There exist positive constants l and L such that, for any t ∈ [0, T ],

2〈x− y, µ(t, x)− µ(t, y)〉+ (p1 − 1)‖σ(t, x)− σ(t, y)‖2 ≤ L‖x− y‖2

and

‖µ(t, x)− µ(t, y)‖ ≤ L(1 + ‖x‖l + ‖y‖l)‖x− y‖

for all x, y ∈ Rm.

A-4. There exists a positive constant K such that,

2xTµ(t, x) + (p0 − 1)‖σ(t, x)‖2 ≤ K(1 + ‖x‖2)

for any t ∈ [0, T ] and x ∈ Rd.
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Note that, due to A-2, µ(t, x) and σ(t, x) are locally bounded in x for any t ∈ [0, T ].

That is, for every R ≥ 0, there exists a positive constant NR such that

sup
‖x‖≤R

‖µ(t, x)‖ ≤ NR

sup
‖x‖≤R

‖σ(t, x)‖ ≤ NR

for any t ∈ [0, T ]. We also observe that if A-2, A-3, and A-4 hold, then

‖µ(t, x)‖ ≤ ‖µ(t, x)− µ(t, 0)‖+ ‖µ(t, 0)‖ ≤ L(1 + ‖x‖l)‖x‖+N0 ≤ C(1 + ‖x‖l+1)

(3.43)

for any t ∈ [0, T ] and x ∈ Rm, where C is a positive constant. Similarly, by A-4, we

obtain

‖σ(t, x)‖2 ≤ K(1 + ‖x‖2) + 2C(1 + ‖x‖l+1)‖x‖ ≤ C(1 + ‖x‖l+2) (3.44)

for any t ∈ [0, T ] and x ∈ Rm. A-1, A-2 and A-4, by Theorem 2.3, guarantee that

there exists a unique solution of equation (3.42).

We now consider the numerical scheme. To be consistent with the two numerical

schemes we are going to introduce in this section, we will use the following unified

notation. For every N ≥ 1, the following numerical scheme is defined

dXN(t) = µN(t,XN(κN(t)))dt+ σN(t,XN(κN(t)))dW (t), ∀ t ∈ [0, T ], (3.45)

with the same initial value x0 as equation (3.42), where µN(t, x) and σN(t, x) are

B(R+)⊗B(Rd)-measurable functions which take values in Rm and Rm×d respectively

and κN(t) := [Nt]/N . Note that the function κN(t) jumps with size 1/N , while the

shift operator function η(t) we defined in the last section jumps with size T/N . In

other words, there are N + 1 nodes within the interval [0, 1] in the numerical scheme

(3.45), while there are N +1 nodes within the interval [0, T ] in the numerical schemes
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we introduced in the previous sections. We can see that, by defining the numerical

scheme as in (3.45), we already have a continuous-time approximation of the solution

of equation (3.42).

The following condition we assume is very important for our arguments.

B. There exists an α ∈ (0, 1/2] and a constant C such that, for every N ≥ 1,

‖µN(t, x)‖ ≤ min(CNα, ‖µ(t, x)‖) and ‖σN(t, x)‖ ≤ min(CNα, ‖σ(t, x)‖)

(3.46)

for any t ∈ [0, T ] and x ∈ Rm.

Let α ∈ (0, 1/2], we now define

• Model 1:

µN(t, x) :=
1

1 +N−α‖µ(t, x)‖+N−α‖σ(t, x)‖
µ(t, x) (3.47)

and

σN(t, x) :=
1

1 +N−α‖µ(t, x)‖+N−α‖σ(t, x)‖
σ(t, x) (3.48)

for any t ∈ [0, T ], x ∈ Rm and N ≥ 1.

• Model 2:

µN(t, x) :=
1

1 +N−α‖x‖3l/2+2
µ(t, x) (3.49)

and

σN(t, x) :=
1

1 +N−α‖x‖3l/2+2
σ(t, x) (3.50)

for any t ∈ [0, T ], x ∈ Rm and N ≥ 1.

It can be verified easily that both Model 1 and Model 2 satisfy the condition B for

any t ∈ [0, T ] and x ∈ Rd. Let p∗0 be the largest even number which is smaller than

or equal to p0. In order to ease the notation, we say that the p-condition is satisfied

if one of the following two cases hold true:
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• (Model 1) The coefficients µN and σN are given by equations (3.47) and (3.48)

with α = 1/2, p < p1 and either p ≤ p0
5l/2+3

if l ∈ (0, 2)∩ (0, p0
4
− 1] or p ≤ p∗0

2(l+1)

if l ∈ (0,
p∗0
4
− 1] and m = d = 1.

• (Model 2) The coefficients µN and σN are given by equations (3.49) and (3.50)

with α = 1/2, p < p1, p ≤ p0
5l/2+3

and l ≤ p0 − 2.

We then can recover the optimal rate of strong convergence for Euler approximations.

Theorem 3.5 ([55], Theorem 2). Suppose A-1–A-4 and the p-condition hold, then

the numerical scheme (3.45) converges to the true solution of SDE (3.42) in Lp-sense

with order 1/2, i.e.

sup
0≤t≤T

E
[
‖X(t)−XN(t)‖p

]
≤ CN−p/2 (3.51)

where C is a constant independent of N .

The uniform Lp convergence for smaller values of p is given below.

Theorem 3.6 ([55], Theorem 3). Suppose A-1–A-4 and the p-condition hold, then

the numerical scheme (3.45) converges to the true solution of SDE (3.42) in uniform

Lq-sense with order 1/2, i.e.

E
[

sup
0≤t≤T

‖X(t)−XN(t)‖q
]
≤ CN−q/2 (3.52)

where C is a constant independent of N , for all q < p.

To prove the above two theorems, we need the following five estimates.

Lemma 3.6.1 ([55], Lemma 1). Consider the numerical scheme (3.45) and let A-1–

A-4 and B hold and

sup
N≥1

sup
0≤t≤T

E[‖XN(t)‖q] <∞, (3.53)
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for some q ≥ 2, then for any p ≤ 2
l+2
q and l ∈ (0, q − 2],

sup
0≤t≤T

E‖XN(t)−XN(κN(t))‖p ≤ CN−p/2, (3.54)

where C is a positive constant independent of N .

As in Section 3.1 and Section 3.2, the following three bound estimates of the

numerical solution is crucial in our proof of strong convergence.

Lemma 3.6.2 ([55], Lemma 7). Consider the numerical scheme (3.45) with coeffi-

cients given by (3.47) and (3.48) with α = 1/2. Suppose that A-1–A-4 with l ∈ (0, 2)

hold, then for some C := C(p, T,K,E[‖x0‖p]),

sup
N≥1

sup
0≤t≤T

E
[
‖XN(t)‖p

]
< C (3.55)

for every p ≤ p0.

Lemma 3.6.3 ([55], Lemma 5). Consider the numerical scheme (3.45) with coeffi-

cients given by (3.49) and (3.50) with α = 1/2. Let also A-1–A-4 hold true. Then,

for every p ≤ p0

sup
N≥1

sup
0≤t≤T

E
[
‖XN(t)‖p

]
< C (3.56)

where the constant C := C(p, T,K,E[‖x0‖p]).

Lemma 3.6.4 ([55], Lemma 9). Consider the numerical scheme (3.45) with coef-

ficients given by (3.47) and (3.48) with α = 1/2 when m = d = 1. Suppose that

A-1–A-4 hold, then for some C := C(p, T,K,E[‖x0‖p]),

sup
N≥1

sup
0≤t≤T

E
[
‖XN(t)‖p

]
< C (3.57)

for every p ≤ p∗0.
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Lemma 3.6.5 ([55], Lemma 10). Consider the numerical scheme (3.45). Suppose

A-1–A-4 and the p-condition hold. Then,

E
[ ∫ T

0

‖µ(s,XN(κN(s)))− µN(s,XN(κN(s)))‖pds
]
≤ CN−αp (3.58)

and

E
[ ∫ T

0

‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖pds
]
≤ CN−αp (3.59)

We refer to [55] for the proof of the above four lemmas. We now give the proof of

the two main theorems of this section.

Proof of Theorem 3.5. We first consider, for every N ≥ 1 and t ∈ [0, T ], the difference

processes,

χN(t) := X(t)−XN(t),

βN(t) := µ(t,X(t))− µN(t,XN(κN(t))),

αN(t) := σ(t,X(t))− σN(t,XN(κN(t))).

Therefore, by (3.42) and (3.45), we have

dχN(t) = βN(t)dt+ αN(t)dW (t).

Note that (|x|p)′ =
(

(x2)p/2
)′

= px|x|p−2 and (|x|p)′′ = p(p − 1)|x|p−2. By Itô’s

formula,

d‖χN(t)‖p = p‖χN(t)‖p−2
(
〈χN(t), βN(t)〉+

p− 1

2
‖αN(t)‖2

)
dt

+ p‖χN(t)‖p−2〈χN(t), αN(t)dW (t)〉. (3.60)

Therefore,

‖χN(t)‖p ≤ p

2

∫ t

0

‖χN(s)‖p−2
(

2〈χN(s), βN(s)〉+ (p− 1)‖αN(s)‖2
)
ds
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+ p

∫ t

0

‖χN(s)‖p−2〈χN(s), αN(s)dW (s)〉. (3.61)

Note that in the above equality, for any ε > 0,

2〈χN(s), βN(s)〉+ (p− 1)‖αN(s)‖2

= 2〈X(s)−XN(s), µ(s,X(s))− µ(s,XN(s))〉

+ 2〈X(s)−XN(s), µ(s,XN(s))− µ(s,XN(κN(s)))〉

+ 2〈X(s)−XN(s), µ(s,XN(κN(s)))− µN(s,XN(κN(s)))〉

+ (p− 1)
(
‖σ(s,X(s))− σ(s,XN(s))‖2

+ ‖σ(s,XN(s))− σ(s,XN(κN(s)))‖2

+ ‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖2

+ 2
(√

ε/2‖σ(s,X(s))− σ(s,XN(s))‖
)(√

2/ε‖σ(s,XN(s))− σ(s,XN(κN(s)))‖
)

+ 2
(√

ε/2‖σ(s,X(s))− σ(s,XN(s))‖
)(√

2/ε‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖
)

+ 2‖σ(s,XN(s))− σ(s,XN(κN(s)))‖‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖
)

≤ 2〈X(s)−XN(s), µ(s,X(s))− µ(s,XN(s))〉

+ 2〈X(s)−XN(s), µ(s,XN(s))− µ(s,XN(κN(s)))〉

+ 2〈X(s)−XN(s), µ(s,XN(κN(s)))− µN(s,XN(κN(s)))〉

+ (p− 1)
(

(1 + ε)‖σ(s,X(s))− σ(s,XN(s))‖2

+ 2(1 +
1

ε
)‖σ(s,XN(s))− σ(s,XN(κN(s)))‖2

+ 2(1 +
1

ε
)‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖2

)
. (3.62)

Due to A-3, we have that

(p1 − 1)‖σ(t, x)− σ(t, y)‖2 ≤ L‖x− y‖2 − 2〈x− y, µ(t, x)− µ(t, y)〉

≤ C(1 + ‖x‖l + ‖y‖l)‖x− y‖2. (3.63)
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If ε is small enough, one can get that (1 + ε)(p− 1) ≤ p1 − 1 based on the condition

that p < p1. By A-3, (3.63) and Cauchy-Schwarz inequality, we have

2〈χN(s), βN(s)〉+ (p− 1)‖αN(s)‖2

≤ C‖χN(s)‖2 + C(1 + ‖XN(s)‖2l + ‖XN(κN(s))‖2l)‖XN(s)−XN(κN(s))‖2

+ ‖µ(s,XN(κN(s)))− µN(s,XN(κN(s)))‖2

+ C‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖2. (3.64)

Due to (3.46), Hölder’s inequality, (3.44), Lemma 3.6.2, Lemma 3.6.3 and that 2p < p0

and (l + 2)p < p0 (or 2p < p∗0 and (l + 2)p < p∗0 when we consider the Model 1 with

m = d = 1) due to the p-condition, we have

E
[ ∫ T

0

‖χN(s)‖2(p−2)‖αTN(s)χN(s)‖2ds
]

≤ 4E
[ ∫ T

0

‖χN(s)‖2(p−1)‖σ(s,X(s))‖2ds
]

≤ 4

∫ T

0

(
E
[
‖χN(s)‖2p

])(p−1)/p(
E
[
‖σ(s,X(s))‖2p

])1/p

ds

≤ C

∫ T

0

(
E
[
‖X(s)‖2p + ‖XN(s)‖2p

])(p−1)/p(
E
[
1 + ‖X(s)‖(l+2)p

])1/p

ds

≤ C. (3.65)

Therefore we get

E
[ ∫ T

0

‖χN(t)‖p−2〈χN(t), αN(t)dW (t)〉
]

= 0.

Note also that
1

p/(p− 2)
+

1

p/2
= 1.
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Therefore, taking expectation on both sides of (3.61) and using (3.62), (3.64) and

Young’s inequality, we can get

E[‖χN(t)‖p]

≤ CE
[ ∫ t

0

{
‖χN(s)‖p + (1 + ‖XN(s)‖2l + ‖XN(κN(s))‖2l)p/2‖XN(s)−XN(κN(s))‖p

+ ‖µ(s,XN(κN(s)))− µN(s,XN(κN(s)))‖p

+ ‖σ(s,X(κN(s)))− σN(s,XN(κN(s)))‖p
}
ds
]
. (3.66)

Moreover,

E(t) := E
[ ∫ t

0

C(1 + ‖XN(s)‖lp + ‖XN(κN(s))‖lp)‖XN(s)−XN(κN(s))‖pds
]

≤ C

∫ t

0

(√
E[‖XN(s)−XN(κN(s))‖2p]

)
ds

due to Hölder’s inequality, (3.56), (3.57) and the fact that 2lp < p0 (or 2lp < p∗0 when

we consider the Model 1 with m = d = 1) due to the p-condition. By (3.54), we have

sup
0≤t≤T

E(t) ≤ CN−p/2. (3.67)

By (3.66), (3.67), Lemma 3.6.1 (taking α = 1/2), we finally have

sup
0≤t≤T

E[‖χN(t)‖p] ≤ CN−p/2.

To prove Theorem 3.6, we need another lemma.

Lemma 3.6.6 ([55], Lemma 11). Let T ∈ [0,∞) and let f := {ft}t∈[0,T ] and g :=

{gt}t∈[0,T ] be non-negative continuous Ft-adapted processes such that, for any constant

c > 0,

E[fτ1{g0≤c}] ≤ E[gτ1{g0≤c}]
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for any stopping time τ ≤ T . Then, for any stopping time τ ≤ T and γ ∈ (0, 1),

E
[

sup
t≤τ

fγt

]
≤ 2− γ

1− γ
E
[

sup
t≤τ

gγt

]
.

Proof of Theorem 3.6. Let p satisfy the p-condition and let χN , βN and αN be defined

as in the proof of Theorem 3.5. Define φ(t) : [0, T ]→ R by

φ(t) := exp(−(L+ 2)t).

Then, by Itô’s formula,

d(φ(t)‖χN‖2)p/2

=
p

2
φ(t)p/2‖χN(t)‖p−2(2χN(t)dχN(t) + (p− 1)‖αN(t)‖2dt)− p(L+ 2)

2
φ(t)p/2‖χN(t)‖pdt

=
p

2
φ(t)p/2‖χN(t)‖p−2(2χN(t)βN(s) + (p− 1)‖αN(t)‖2)dt− p(L+ 2)

2
φ(t)p/2‖χN(t)‖pdt

+ pφ(t)p/2‖χN(t)‖p−2χN(s)αN(s)dW (t).

By (3.64), we have

(φ(t)‖χN‖2)p/2

≤
∫ t

0

[p
2
φ(t)p/2‖χN(t)‖p−2

(
(L+ 2)‖χN(t)‖2 + ζN(t)

)
− p(L+ 2)

2
φ(t)p/2‖χN(t)‖p

]
dt

+

∫ t

0

pφ(t)p/2‖χN(t)‖p−2χN(s)αN(s)dW (t)

=

∫ t

0

(p
2
φ(t)p/2‖χN(t)‖p−2ζN(t)

)
dt+

∫ t

0

pφ(t)p/2‖χN(t)‖p−2χN(s)αN(s)dW (t)

(3.68)

where

ζN(t) := C
(

(1 + ‖XN(s)‖2l + ‖XN(κN(s))‖2l)‖XN(s)−XN(κN(s))‖2

+ ‖µ(s,XN(κN(s)))− µN(s,XN(κN(s)))‖2
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+ ‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖2
)
,

where C > 0 is independent of N . Since the equality (3.65) holds, it is immediately

that

E

∫ t

0

pφ(t)p/2‖χN(t)‖p−2χN(s)αN(s)dW (t) = 0.

Note also that φ(t)p/2 ≤ φ(t)(p−2)/2. Then by (3.68), for any stopping time τ ≤ T ,

E[(φ(τ)‖χN(τ)‖)p/2] ≤ p

2
E
[ ∫ τ

0

(
φ(t)‖χN(t)‖2

)(p−2)/2

ζN(t)dt
]
.

Therefore, by Lemma 3.6.5,

E
[

sup
t≤T

(φ(t)‖χN(t)‖2)pγ/2
]
≤ CE

[( ∫ T

0

(
φ(t)‖χN(t)‖2

)(p−2)/2
ζN(t)dt

)γ]
for any γ ∈ (0, 1). Then, for p > 2, by Young’s inequality ( 1

p/(p−2)
+ 1

p
= 1),

E
[

sup
t≤T

(φ(t)‖χN(t)‖2)pγ/2
]
≤ 1

2
E
[

sup
t≤T

(φ(t)‖χN(t)‖2)pγ/2
]

+ CE
[( ∫ T

0

ζN(t)dt
)pγ/2]

.

It implies that

E
[

sup
t≤T

(φ(t)‖χN(t)‖2)pγ/2
]
≤ CE

[( ∫ T

0

ζN(t)p/2dt
)γ]

≤ C
(
E
[ ∫ T

0

ζN(t)p/2
])γ

,

where the last inequality is due to the concavity of the function xγ when γ ∈ (0, 1).

By (3.68), it is very easy to see that the above inequality is also true if p = 2. By the

definition of ζN , (3.67) and Lemma 3.6.5, we have

E
[ ∫ T

0

ζN(t)p/2dt
]
≤ C

{
E(t) + E

[ ∫ T

0

‖µ(s,XN(κN(s)))− µN(s,XN(κN(s)))‖pdt
]

+ E
[ ∫ T

0

‖σ(s,XN(κN(s)))− σN(s,XN(κN(s)))‖pdt
]}
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≤ CN−αp.

Thus,

E
[

sup
t≤T

(φ(t)‖χN(t)‖2)pγ/2
]
≤ CN−αpγ,

which leads to

E
[

sup
t≤T
‖χN(t)‖pγ

]
≤ exp((L+ 2)T )E

[
sup
t≤T

(φ(t)‖χN(t)‖2)pγ/2
]

≤ CN−αpγ.

Since γ ∈ (0, 1), we are done.

Numerical Experiments

The example we use for our numerical experiment in this section is a 1-dimensional

stochastic differential equation,

dX(t) = X(t)(1− |X(t)|)dt+ |X(t)|3/2dW (t), X(0) = 1.

Here, µ(x) = x(1 − |x|), σ(x) = |x|3/2 and t ∈ [0, 1]. Clearly, µ(x) and σ(x) satisfy

the monotone conditon and the polynomial growth condition with l = 1. We use

Model 2 as our numerical scheme with α = 1/2. We use 5 different time steps: ∆t =

2−12, 2−11, 2−10, 2−9, 2−8 and 1000 realizations for each discretisation. The following

figure is the loglog plot of the experimental error with respect to the 5 different time

steps. We can see that the numerical scheme converges strongly with order 1
2
.
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Figure 3.2: Log-log plot of the strong error from the numerical approximation versus
the time step ∆t with the drift and diffusion coefficients superlinearly growing.
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Chapter 4

Weak Convergence of

Euler-Maruyama Approximation of

SDEs Driven by Brownian Motion

4.1 Introduction

Let us consider the following stochastic differential equation:dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), t ∈ (0, T ]

X(0) = x0,

(4.1)

where W (t) is a one-dimensional Wiener process starting at 0, X(t) is a one-

dimensional stochastic process and µ(t, x), σ(t, x) satisfy the following Lipschitz and

linear growth condition

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| < K(T )|x− y|, t ∈ [0, T ] (4.2)

|µ(t, x)|+ |σ(t, x)| ≤ K(T )(1 + |x|), t ∈ [0, T ] (4.3)
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such that the solution of (4.1) exists and is unique. Since we will use the second

moment of the solution in our proof, we also assume that x0 is independent of

{W (t), 0 ≤ t ≤ T} and E[x2
0] <∞ such that

E
[

sup
0≤t≤T

X2(t)
]
< C(1 + E[x2

0]), (4.4)

where the constant C depends only on K and T .

We now give the Euler-Maruyama scheme. In this section, the time step is denoted

by ∆ = T/N . For any integer i satisfying 0 ≤ i ≤ N , set ti = i∆. We define at each

node in [0, T ]: Y0 := x0 and

Yi+1 := Yi + µ(ti, Yi)∆ + σ(ti, Yi)∆Wi, 0 ≤ i ≤ N − 1, (4.5)

where ∆Wi = W (ti+1)−W (ti). The continuous-time approximation is defined as:

Y (t) := Yi + µ(ti, Yi)(t− ti) + σ(ti, Yi)(W (t)−W (ti)) (4.6)

= Yi +

∫ t

ti

µ(ti, Yi)ds+

∫ t

ti

σ(ti, Yi)dW (s) for t ∈ [ti, ti+1). (4.7)

Let us also recall the definition of the weak convergence of a numerical scheme.

We say that a time discrete approximation Y converges in the weak sense with order

β ∈ (0,∞] if for any function g in a suitable function space there exists a finite

constant C and a positive constant δ0 such that

|E[g(X(T ))]− E[g(YN)]| ≤ Cδβ (4.8)

for any time discretization with maximum step size δ ∈ (0, δ0).

Before we continue, we first define some notations of function spaces. We denote by

C l
b([0, T ]×R) the space of l times continuously differentiable functions f : [0, T ]×R→

R for which all its partial derivatives up to order l are bounded uniformly in t (f may

not be bounded). C l
b(R) is defined in a similar way. We also denote by C l

p([0, T ]×R)
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the space of l times continuously differentiable functions f : [0, T ]×R→ R for which

all its partial derivatives up to order l have polynomial growth uniformly in t.

It is well established that, provided µ, σ and g satisfy certain conditions, the Euler-

Maruyama scheme has weak convergence rate 1 [5, 33, 60]. For example, in [33], if

both µ(t, x) and σ(t, x) are homogeneous, it is required that µ(x), σ(x)2 and g(x)

are all in the function space C4
p(Rm), together with some other conditions. While in

[5], although g is only required to be measurable and bounded (or has a polynomial

growth), µ and σ are assumed to be homogeneous and to be C∞ functions with

bounded derivatives of any order. See also [25, 34] for other related results.

Due to the close relation between the weak approximation of the solution of (4.1)

and the Kolmogorov backward partial differential equation, Malliavin calculus, which

is powerful to deal with the derivatives of functions of random variables, can serve as

an efficient tool to analyze the approximation error. For example, in [5, 25, 34, 35],

techniques from Malliavin calculus, like integration by parts, are used very often to

assist to get the expressions of the approximation errors.

Another advantage of using Malliavin calculus to deal with the weak convergence

problems is that it can also handle stochastic integrals with anticipating integrand.

Therefore, the weak approximation problem of stochastic differential equations with

terminal conditions can also be dealt with in the frame of Malliavin calculus, see

e.g. [35]. In history, it had been believed for a long time that such equations with

terminal conditions were not amenable to the analysis of approximation errors, due

to the inability of Itô integral for anticipating integrands.

In this section, we do not assume the drift and diffusion terms are homogeneous

or C∞ functions. We only need µ(t, x) ∈ C2
b ([0, T ] × R), σ2(t, x) ∈ C2

b ([0, T ] × R)

and g(x) ∈ C3
p(R). As we introduced in Section 2.2, if µ(t, x), σ(t, x) and g(x) satisfy

such conditions and the linear growth condition, then f(t, x) := E[g(X(T ))|X(t) = x]
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satisfies the following Kolmogorov backward equation:
∂f
∂t

(t, x) + Ltf(t, x) = 0, 0 ≤ t < T, x ∈ R

f(T, x) = g(x),

(4.9)

where Lt is the second order differential operator defined by

Ltf(t, x) = µ(t, x)
∂f

∂x
(t, x) +

1

2
σ2(t, x)

∂2f

∂x2
(t, x). (4.10)

By the definition of f , we have

E[f(0, x0)] = E[E[g(X(T )|X(0) = x0)]] = E[g(X(T ))]. (4.11)

By the boundary condition, we have

E[f(T, Y (T ))] = E[g(Y (T ))]. (4.12)

The traditional technique in the proof of the weak convergence of the Euler scheme

is to write

E[g(X(T ))]− E[g(Y (T ))]

= −
(
E[f(T, Y (T ))]− E[f(0, Y0)]

)
(by (4.11) and (4.12))

= −E
N−1∑
i=0

[
f
((i+ 1)T

N
, Yi+1

)
− f

(iT
N
, Yi

)]
(4.13)

and apply Taylor’s formula on each difference of the above equality [59, 60]. In

addition, equation (4.9) may also be used in the computations. In this section, we

apply the techniques from Malliavin Calculus, such as the chain rule and integration

by parts, in the computations, which results in less need of the smoothness of the

drift, diffusion and test functions.
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4.2 Preliminaries of Malliavin Calculus

There are many good monographs on Malliavin Calculus, see e.g. [4, 42, 43, 44]. In

this section, we only introduce the materials that are necessary to our computations.

Suppose W (t) is a one dimensional Wiener process on the filtered probability

space (Ω,F ,F = {Ft}0≤t≤T , P ). For h(t) ∈ L2([0, T ]), we denote by W (h) the Itô

stochastic integral
∫ T

0
h(t)dW (t).

Let S denote the set of all random variables of the form

f(W (h1), · · · ,W (hm)),

where m is a positive integer, f : Rm → R is a C∞ function such that f and its partial

derivatives have at most polynomial growth, and hi ∈ L2([0, T ]), i = 1, · · · ,m. Before

we continue, we point out a fact that the space S is dense in Lp(Ω) for every p ≥ 1

[43].

Definition 4.1. Let F ∈ S, the Malliavin derivative of F is a stochastic process

defined by

DtF =
m∑
i=1

∂f

∂xi
(W (h1), · · · ,W (hm))hi(t).

We often write DtF as DF if there is no confusion. Specifically, if F =∫ T
0
h(t)dW (t), then DF = DtF = h(t).

The operator D : S ⊂ Lp(Ω) → Lp(Ω, L2([0, T ])) is closable for any p ∈ [1,∞).

We denote by D1,p the closure of S with respect to the norm

||F ||D1,p =
(
E[|F |p] + E[||DF ||pL2 ]

)1/p
,

and

D1,∞ = ∩p∈ND1,p.

It is immediate, using the definition of D, that the product rule holds. That is, if

F,G ∈ D1,p, then FG ∈ D1,p and D(FG) = FDG+GDF .
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Proposition 4.2 (Chain rule, [4], Proposition 10). Let φ : R→ R be a continuously

differentiable function with bounded derivative. Suppose F ∈ D1,p for some p ≥ 1.

Then φ(F ) ∈ D1,p and we have

Dφ(F ) = φ′(F )DF.

If F ∈ D1,∞, then the conclusion is true for φ which is a continuously differentiable

function with its derivative having a polynomial growth.

The following proposition is very useful in our proof.

Proposition 4.3 ([44], Corollary 3.13). Let u = u(s), s ∈ [0, T ], be an Ft-adapted

stochastic process and assume that u(s) ∈ D1,2 for all s. Then

1. Dt(s), s ∈ [0, T ], is Ft-adapted for all t;

2. Dtu(s) = 0 for t > s.

We now introduce the adjoint operator of D.

Definition 4.4. We denote by Dom(δ) the subset of L2(Ω, L2([0, T ])) composed of

those elements u such that there exists a constant c > 0 satisfying

∣∣E[〈DF, u〉L2 ]
∣∣ ≤ c

√
E[F 2] for all F ∈ D1,2. (4.14)

Fix u ∈ Dom(δ). By (4.14), the linear operator F 7→ E[〈DF, u〉L2 ] is continuous

from S, equipped with the L2(Ω) norm, into R. So we can extend it to a linear

operator from L2(Ω) into R. By the Riesz representation theorem, there exists a

unique element in L2(Ω), noted δ(u), such that E[〈DF, u〉L2 ] = E[Fδ(u)]. This is our

next definition.

Definition 4.5. If u ∈ Dom(δ), then δ(u) is the unique element of L2(Ω)

characterized by the following duality formula:

E[Fδ(u)] = E[〈DF, u〉L2 ] (4.15)
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for all F ∈ D1,2.

Formula (4.15) is often called an integration by parts formula. Usually, if u

is a FT -measurable stochastic process and is such that E[
∫ T

0
u2dt] <∞, δ(u) is often

written as
∫ T

0
uδW (t) and we call it the Skorohod integral. We also point out that

if u, in addition, is adapted to the filtration Ft, the Skorohod integral
∫ T

0
uδW (t) is

nothing but the Itô integral
∫ T

0
udW (t). Therefore, if s1 < s2 and u is a fixed Fs1-

measurable random variable , it is straightforward that
∫ s2
s1
uδW (t) =

∫ s2
s1
udW (t) =

u · (W (s2)−W (s1)).

The following proposition is useful in many situations.

Proposition 4.6 ([42], Proposition 2.5.4). Let F ∈ D1,2 and u ∈ Dom(δ) be such

that the three expectations E[F 2||u||2L2 ], E[F 2δ(u)2] and E[〈DF, u〉2L2 ] are finite. Then

Fu ∈ Dom(δ) and

δ(Fu) = Fδ(u)− 〈DF, u〉L2 . (4.16)

For example, if F ∈ D1,2 and u = 1, then we have

∫ T

0

FδW (t) = F

∫ T

0

1δW (t)−
∫ T

0

DtF ·1dt = F (W (T )−W (0))−
∫ T

0

DtFdt. (4.17)

We will use this trick very often in our proof to find
∫ T

0
FδW (t).

4.3 Weak Convergence of the EM scheme using

Malliavin Calculus

We now state the main theorem of this chapter, which assumes weaker conditions

on the drift and diffusion coefficients. This new theorem is included in Rosiński and

Wang [54].

Theorem 4.7 ([54], Theorem 3.1). Suppose the following conditions hold:

1. µ(t, x) ∈ C2
b ([0, T ]× R), σ2(t, x) ∈ C2

b ([0, T ]× R) and g(x) ∈ C3
p(R);
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2. the linear growth condition for µ(t, x) and σ(t, x) hold;

3. all the partial derivatives of µ(t, x) and σ(t, x) with respect to x up to order 2

are bounded by a constant M > 0 for any t;

4. there exists a positive number L such that |σ(t, x)| ≥ L for any (t, x) ∈ [0, T ]×R.

Then the Euler-Maruyama scheme (4.5) has weak convergence order 1. That is, there

exists a positive number C, which depends on M,T and L, such that

∣∣E[g(X(T ))]− E[g(Y (T ))]
∣∣ ≤ CN−1. (4.18)

Before we prove this theorem, we first give two lemmas that are needed in our

proof.

Lemma 4.7.1. Suppose F,G ∈ D1,2 and
∫ T

0
DtGdt 6= 0 a.e.. Let φ : R → R be a

continuously differentiable function with bounded derivative, then

E[Fφ′(G)] = E
[
φ(G)δ

( F∫ T
0
DtGdt

)]
. (4.19)

If φ(x) is continuously differentiable with polynomial growth and G ∈ D1,∞, the above

conclusion is also true.

Proof. By chain rule, we have

∫ T

0

FDtφ(G)dt =

∫ T

0

Fφ′(G)DtGdt = Fφ′(G)

∫ T

0

DtGdt.

Observing that
∫ T

0
DtGdt is nonzero, by duality, we have

E[Fφ′(G)] = E
[∫ T

0
FDtφ(G)dt∫ T
0
DtGdt

]
= E

[〈
Dtφ(G),

F∫ T
0
DtGdt

〉
L2

]
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= E
[
φ(G)δ

( F∫ T
0
DtGdt

)]
.

If φ(x) is continuously differentiable with polynomial growth and F ∈ D1,∞, by the

same argument above and Proposition 4.2, we can easily get (4.19).

See [5, 29] for a more general result with φ defined on Rm.

It is well known that, as long as µ(t, x) and σ(t, x) satisfy the linear growth

condition, one has [8], for any p ≥ 1,

sup
0≤t≤T

‖Y (t)‖ ∈ Lp(Ω). (4.20)

Note also that

Y (s) = Yi + µ(ti, Yi)(s− ti) + σ(ti, Yi)(W (s)−W (ti)).

By the chain rule (Proposition 4.2), one has the following:

Lemma 4.7.2. Suppose µ(t, x), σ(t, x) and g(x) are assumed as in Theorem 4.7,

then Y (s) ∈ D1,2 and

DτY (s) = σ(ti, Yi)1(ti,s](τ), s ∈ (ti, ti+1], τ ∈ (ti, T ]. (4.21)

Furthermore, F (s) := f(s, Y (s)) ∈ D1,2 and

DτF (s) =
∂f

∂x
(s, Y (s))DτY (s). (4.22)

We now give the proof of Theorem 4.7.

Proof. First of all, by (4.10) and (4.13),

E[g(X(T ))]− E[g(Y (T ))]
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= −E
N−1∑
i=0

[
f
((i+ 1)T

n
, Yi+1

)
− f

(iT
n
, Yi

)]
= −E

N−1∑
i=0

∫ ti+1

ti

[∂f
∂t

(s, Y (s)) + µ(ti, Yi)
∂f

∂x
(s, Y (s)) +

1

2
σ2(ti, Yi)

∂2f

∂x2
(s, Y (s))

]
ds

= −E
N−1∑
i=0

∫ ti+1

ti

[
µ(ti, Yi)

∂f

∂x
(s, Y (s)) +

1

2
σ2(ti, Yi)

∂2f

∂x2
(s, Y (s))− Ltf(s, Y (s))

]
ds

= −E
N−1∑
i=0

∫ ti+1

ti

[
(µ(ti, Yi)− µ(s, Y (s)))

∂f

∂x
(s, Y (s))

+
1

2
(σ2(ti, Yi)−

1

2
σ2(s, Y (s)))

∂2f

∂x2
(s, Y (s))

]
ds

= E
N−1∑
i=0

∫ ti+1

ti

[
(µ(s, Y (s))− µ(ti, Yi))

∂f

∂x
(s, Y (s))

]
ds

+ E
N−1∑
i=0

∫ ti+1

ti

[1

2
(σ2(s, Y (s))− σ2(ti, Yi))

∂2f

∂x2
(s, Y (s))

]
ds

=: IN + JN (4.23)

In the following, we consider the individual differences in IN and JN .

By (4.17), Lemma 4.7.1 and Lemma 4.7.2,

∫ ti+1

ti

E
[
µ(ti, Yi)

∂f

∂x
(s, Y (s))

]
ds

=

∫ ti+1

ti

E
[
F (s)δ

(µ(ti, Yi)1(ti,ti+1]

σ(ti, Yi)(s− ti)

)]
ds

=

∫ ti+1

ti

E
[
F (s)

∫ ti+1

ti

µ(ti, Yi)

σ(ti, Yi)(s− ti)
δW (τ)

]
ds

=

∫ ti+1

ti

E
[
F (s)

µ(ti, Yi)∆Wi

σ(ti, Yi)(s− ti)

]
ds. (4.24)

Similarly,

∫ ti+1

ti

E
[
µ(s, Y (s))

∂f

∂x
(s, Y (s))

]
ds

=

∫ ti+1

ti

E
[
F (s)δ

(µ(s, Y (s))1(ti,ti+1]

σ(ti, Yi)(s− ti)

)]
ds
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=

∫ ti+1

ti

E
[
F (s)

δ(µ(s, Y (s))1(ti,ti+1])

σ(ti, Yi)(s− ti)

]
ds

=

∫ ti+1

ti

E
[
F (s)

µ(s, Y (s))∆Wi −
∫ ti+1

ti
Dµ(s, Y (s))dτ

σ(ti, Yi)(s− ti)

]
ds

= E

∫ ti+1

ti

F (s)
µ(s, Y (s))∆Wi −

∫ ti+1

ti

∂µ
∂x

(s, Y (s))DτY (s)dτ

σ(ti, Yi)(s− ti)
ds

= E

∫ ti+1

ti

F (s)
µ(s, Y (s))∆Wi

σ(ti, Yi)(s− ti)
− F (s)

∂µ

∂x
(s, Y (s))ds (4.25)

By (4.24) and (4.25), we have

IN = E
N−1∑
i=0

∫ ti+1

ti

[(µ(s, Y (s))− µ(ti, Yi))
∂f

∂x
(s, Y (s))]ds

= E
N−1∑
i=0

∫ ti+1

ti

F (s)
[(µ(s, Y (s))− µ(ti, Yi))∆Wi

σ(ti, Yi)(s− ti)
− ∂µ

∂x
(s, Y (s))

]
ds (4.26)

Similarly, for F (ti) = f(ti, Y (ti)) = f(ti, Yi), we have DτF (ti) = ∂f
∂x

(ti, Yi)DτY (ti) =

0, τ ∈ (ti, ti+1]. We have, by duality,

0 = E

∫ ti+1

ti

µ(s, Y (s))− µ(ti, Yi)

σ(ti, Yi)(s− ti)
DτF (ti, Yi)dτ

= E
[
F (ti)δ

(µ(s, Y (s))− µ(ti, Yi)

σ(ti, Yi)(s− ti)

)]
= E

[
F (ti)

((µ(s, Y (s))− µ(ti, Yi))∆Wi

σ(ti, Yi)(s− ti)
− ∂µ

∂x
(s, Y (s))

)]
(4.27)

Adding (4.27) to (4.26), and observing ∆Wi = W (s)−W (ti) + W (ti+1)−W (s), we

have

IN = E

N−1∑
i=0

∫ ti+1

ti

[(µ(s, Y (s))− µ(ti, Yi))
∂f

∂x
(s, Y (s))]ds

= E
N−1∑
i=0

∫ ti+1

ti

(F (s)− F (ti))
[(µ(s, Y (s))− µ(ti, Yi))∆Wi

σ(ti, Yi)(s− ti)
− ∂µ

∂x
(s, Y (s))

]
ds

=
N−1∑
i=0

∫ ti+1

ti

E
{

(F (s)− F (ti))
[(µ(s, Y (s))− µ(ti, Yi))(W (s)−W (ti))

σ(ti, Yi)(s− ti)
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− ∂µ

∂x
(s, Y (s))

]}
ds, (4.28)

where in the last equality we used the fact that W (ti+1) −W (s) is independent of

{Ft, 0 ≤ t ≤ s} and E[W (ti+1)−W (s)] = 0.

To reduce the notation burden in the following, we fix an interval (ti, ti+1] and

denote by ∆s = s−ti and ∆µσ = µ(ti, Yi)(s−ti)+σ(ti, Yi)(W (s)−W (ti)), s ∈ (ti, ti+1].

In view of (4.20), it follows directly that, for any positive integer k,

E[|µ(ti, Yi)|k] ≤ E[(1 + |Yi|)k] ≤ C(k, T ), (4.29)

E[|σ(ti, Yi)|k] ≤ E[(1 + |Yi|)k] ≤ C(k, T ). (4.30)

The following lemma gives the bound of the increment of ∆µσ = µ(ti, Yi)(s− ti) +

σ(ti, Yi)(W (s)−W (ti)).

Lemma 4.7.3. Suppose µ(t, x) and σ(t, x) satisfy the linear growth condition, then

there exists a positive constant C(T ) such that:

E[|∆µσ|] ≤ C(T )∆1/2
s , (4.31)

E[|∆µσ|2] ≤ C(T )∆s. (4.32)

Proof. This is straightforward by combining the linear growth condition, the bound

of Yi and Cauchy-Schwarz.

E[|µ(ti, Yi)(s− ti) + σ(ti, Yi)(W (s)−W (ti))|]

≤ E[|µ(ti, Yi)∆s|] + E[|σ(ti, Yi)(W (s)−W (ti))|]

= ∆sE[|µ(ti, Yi)|] + E[|W (s)−W (ti)|]E[|σ(ti, Yi)|]

≤ ∆sE[1 + |Yi|] + ∆1/2
s E[1 + |Yi|]

= ∆1/2
s

(
∆1/2
s E[1 + |Yi|] + E[1 + |Yi|

)
≤ C(T )∆1/2

s .
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The L2 bound of ∆µσ can be proved in a similar way.

In fact, applying the same argument as in Lemma 4.7.3, one obtains the following

estimate with no difficulty:

E[|∆µσ|k] ≤ C(k, T )∆k/2
s .

We now look at the terms in the last equality of (4.28). By Taylor expansion,

F (s)− F (ti) = f(ti + ∆s, Yi + ∆µσ)− f(ti, Yi)

= ∆s
∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi) +R1, (4.33)

where R1 is the Lagrange-type residual of the expansion and takes the form

R1 =
1

2
∆2
s

∂2f

∂t2
(ti + c1∆s, Yi + c1∆µσ) +

1

2
∆2
µσ

∂2f

∂x2
(ti + c1∆s, Yi + c1∆µσ)

+ ∆s∆µσ
∂2f

∂t∂x
(ti + c1∆s, Yi + c1∆µσ), (4.34)

where c1 ∈ (0, 1). Since f ∈ C3
p(R) and the bound of ∆µσ holds (Lemma 4.31), it is

obvious that

E[|R1|] ≤
√
E[|R1|2] ≤ C(T,M)∆s. (4.35)

Similarly,

(
µ(s, Y (s))− µ(ti, Yi)

)(
W (s)−W (ti)

)
=
(

∆s
∂µ

∂t
(ti, Yi) + ∆µσ

∂µ

∂x
(ti, Yi) +R2

)
·
(
W (s)−W (ti)

)
, (4.36)

where R2, similar to R1, takes the form

R2 =
1

2
∆2
s

∂2µ

∂t2
(ti + c2∆s, Yi + c2∆µσ) +

1

2
∆2
µσ

∂2µ

∂x2
(ti + c2∆s, Yi + c2∆µσ)

+ ∆s∆µσ
∂2µ

∂t∂x
(ti + c2∆s, Yi + c2∆µσ), (4.37)
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where c2 ∈ (0, 1), and has the following bound

E[|R2|] ≤
√
E[|R2|2] ≤ C(T,M)∆s. (4.38)

By the same arguments of getting (4.35) and (4.38), we also have

E[|R1R2|2] ≤ C(T,M)∆4
s, (4.39)

E
[∣∣∣R2

(
∆s

∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

)∣∣∣2] ≤ C(T,M)∆3
s, (4.40)

E
[∣∣∣R1

(
∆s

∂µ

∂t
(ti, Yi) + ∆µσ

∂µ

∂x
(ti, Yi)

)∣∣∣2] ≤ C(T,M)∆3
s. (4.41)

Lastly,
∂µ

∂x
(s, Y (s)) =

∂µ

∂x
(ti, Yi) +R3 (4.42)

where R3 takes the form

R3 = ∆s
∂2µ

∂t∂x
(ti + c3∆s, Yi + c3∆µσ) + ∆µσ

∂2µ

∂x2
(ti + c3∆s, Yi + c3∆µσ), (4.43)

where c3 ∈ (0, 1). Similar to getting (4.35), R3 also satisfies

E[|R3|] ≤
√
E[|R3|2] ≤ C(T,M)∆1/2

s . (4.44)

Similar to the arguments of getting (4.39) and (4.40), we can also have

E[|R1R3|] ≤ C(T,M)∆3/2
s , (4.45)

E
[∣∣∣R3

(
∆s

∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

)∣∣∣] ≤ C(T,M)∆s, (4.46)

E
[∣∣∣R1

∂µ

∂x
(ti, Yi)

∣∣∣] ≤ C(T,M)∆s. (4.47)
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Combining (4.33) and (4.36), we get that

(F (s)− F (ti))
(µ(s, Y (s))− µ(ti, Yi))(W (s)−W (ti))

σ(ti, Yi)(s− ti)

=
W (s)−W (ti)

σ(ti, Yi)∆s

[
∆2
s

∂f

∂t
(ti, Yi)

∂µ

∂t
(ti, Yi)

+ ∆s∆µσ

(∂f
∂t

(ti, Yi)
∂µ

∂x
(ti, Yi) +

∂f

∂x
(ti, Yi)

∂µ

∂t
(ti, Yi)

)
+ ∆2

µσ

∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi) +R2

(
∆s

∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

)
+R1

(
∆s

∂µ

∂t
(ti, Yi) + ∆µσ

∂µ

∂x
(ti, Yi)

)
+R1R2

]
. (4.48)

Since W (s) −W (ti) is independent of {Ft, 0 ≤ t ≤ ti}, the first term on the right

hand side of (4.48) satisfies

E
[W (s)−W (ti)

σ(ti, Yi)∆s

∆2
s

∂f

∂t
(ti, Yi)

∂µ

∂t
(ti, Yi)

]
= 0. (4.49)

Therefore, the second term on the right hand side of (4.48) satisfies

∣∣∣E[W (s)−W (ti)

σ(ti, Yi)∆s

∆s∆µσ

(∂f
∂t

(ti, Yi)
∂µ

∂x
(ti, Yi) +

∂f

∂x
(ti, Yi)

∂µ

∂t
(ti, Yi)

)]∣∣∣
≤ E

[∣∣∣W (s)−W (ti)

σ(ti, Yi)
∆µσ

(∂f
∂t

(ti, Yi)
∂µ

∂x
(ti, Yi) +

∂f

∂x
(ti, Yi)

∂µ

∂t
(ti, Yi)

)∣∣∣]
≤ C(L,M)E[|(W (s)−W (ti))∆µσ|]

≤ C(L,M)
√
E[(W (s)−W (ti))2]

√
E[∆2

µσ]

≤ C(L,M, T )∆s. (4.50)

Similarly, observing E[W (s)−W (ti)] = 0, E[(W (s)−W (ti))
3] = 0, the third term in

(4.48) satisfies

∣∣∣E[W (s)−W (ti)

σ(ti, Yi)∆s

∆2
µσ

∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi)

]∣∣∣
=
∣∣∣E[W (s)−W (ti)

σ(ti, Yi)∆s

(
∆2
sµ

2(ti, Yi) + 2∆s(W (s)−W (ti))µ(ti, Yi)σ(ti, Yi)
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+ (W (s)−W (ti))
2σ2(ti, Yi)

)∂f
∂x

(ti, Yi)
∂µ

∂x
(ti, Yi)

]∣∣∣
=
∣∣∣E[(W (s)−W (ti))∆sµ

2(ti, Yi)

σ(ti, Yi)

]
+ 2E[(W (s)−W (ti))

2µ(ti, Yi)]

+ E
[(W (s)−W (ti))

3σ(ti, Yi)

∆s

∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi)

]∣∣∣
= |0 + 2E[(W (s)−W (ti))

2µ(ti, Yi)] + 0|

= |2E[(W (s)−W (ti))
2]E[µ(ti, Yi)]|

≤ C(T )∆s. (4.51)

By (4.40)), the fourth term on the right hand side of (4.48) satisfies

∣∣∣E[W (s)−W (ti)

σ(ti, Yi)∆s

R2

(
∆s

∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

)]∣∣∣
≤ C(L)

∆s

E
[∣∣∣(W (s)−W (ti))R2

(
∆s

∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

)∣∣∣]
≤ C(L)

∆s

√
E[(W (s)−W (ti))2]

√
E
[∣∣∣R2

(
∆s

∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

)∣∣∣2]
≤ C(L,M, T )

∆s

∆1/2
s ∆3/2

s

≤ C(L,M, T )∆s. (4.52)

Similarly, the fifth term on the right hand side of (4.48) satisfies

∣∣∣E[W (s)−W (ti)

σ(ti, Yi)∆s

R1

(
∆s

∂µ

∂t
(ti, Yi) + ∆µσ

∂µ

∂x
(ti, Yi)

)]∣∣∣ ≤ C(L,M, T )∆s. (4.53)

Finally, by (4.39), the last term on the right hand side of (4.48) satisfies

∣∣∣E[W (s)−W (ti)

σ(ti, Yi)∆s

R1R2

]∣∣∣ ≤ C(L)

∆s

E[|(W (s)−W (ti))R1R2|]

≤ C(L)

∆s

√
E[(Ws −Wti)

2]
√
E[|R1R2|2]

≤ C(L,M, T )

∆s

∆1/2
s ∆2

s

= C(L,M, T )∆3/2
s . (4.54)
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Combining (4.48), (4.49), (4.50), (4.51), (4.52), (4.53) and (4.54), we have

∣∣∣E[(F (s)− F (ti))
(µ(s, Y (s))− µ(ti, Yi))(W (s)−W (ti))

σ(ti, Yi)(s− ti)

]∣∣∣ ≤ C(L,M, T )∆s. (4.55)

On the other hand, by (4.33) and (4.42), the other term in (4.28) is

(
F (s)− F (ti)

)∂µ
∂x

(s, Y (s))

=
(

∆s
∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi) +R1

)(∂µ
∂x

(ti, Yi) +R3

)
= ∆s

∂f

∂t
(ti, Yi)

∂µ

∂x
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi) +R1

∂µ

∂x
(ti, Yi)

+R3

(
∆s

∂f

∂t
(ti, Yi) + ∆µσ

∂f

∂x
(ti, Yi)

)
+R1R3 (4.56)

Due to the assumption that µ(t, x) ∈ C2
b (R) and f ∈ C3

p(R), the first term of the

right hand side of (4.56) satisfies

∣∣∣E[∆s
∂f

∂t
(ti, Yi)

∂µ

∂x
(ti, Yi)

]∣∣∣ ≤ C(M)∆s. (4.57)

Similarly, the second term of the right hand side of (4.56) satisfies

∣∣∣E[∆µσ
∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi)

]∣∣∣
=
∣∣∣E[∆sµ(ti, Yi)

∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi) + (W (s)−W (ti))σ(ti, Yi)

∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi)

]∣∣∣
=
∣∣∣E[∆sµ(ti, Yi)

∂f

∂x
(ti, Yi)

∂µ

∂x
(ti, Yi) + 0

]∣∣∣
≤ C(T,M)∆s. (4.58)

The estimates of the remaining terms on the right hand side of (4.56) are exactly

(4.45), (4.46) and (4.47). Therefore, by (4.56), (4.57), (4.58), (4.45), (4.46) and

(4.47), we have

∣∣∣E[(F (s)− F (ti)
)∂µ
∂x

(s, Y (s))
]∣∣∣ ≤ C(T,M)∆s. (4.59)
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Finally, by (4.28), (4.55) and (4.59), we have

|IN | ≤
N−1∑
i=0

∫ ti+1

ti

∣∣∣E[(F (s)− F (ti))
(µ(s, Y (s))− µ(ti, Yi))(Ws −Wti)

σ(ti, Yi)(s− ti)

]∣∣∣
+
∣∣∣E[(F (s)− F (ti)

)∂µ
∂x

(s, Y (s))
]∣∣∣ds

≤
N−1∑
i=0

∫ ti+1

ti

C(L,M, T )∆s + C(T,M)∆sds

≤ C(L,M, T )
N−1∑
i=0

1

2
(ti+1 − ti)2

= C(L,M, T )
N−1∑
i=0

1

2
∆2 ≤ C(L,M, T )∆. (4.60)

As for JN , let us compare JN to IN first. IN takes the form

IN = E
N−1∑
i=0

∫ ti+1

ti

[
(µ(s, Y (s))− µ(ti, Yi))

∂f

∂x
(s, Y (s))

]
ds, (4.61)

and JN takes the form

JN = E
N−1∑
i=0

∫ ti+1

ti

[1

2
(σ2(s, Y (s))− σ2(ti, Yi))

∂2f

∂x2
(s, Y (s))

]
ds

= E
N−1∑
i=0

∫ ti+1

ti

[1

2
(σ2(s, Y (s))− σ2(ti, Yi))

∂

∂x

∂f

∂x
(s, Y (s))

]
ds. (4.62)

Therefore, if σ2(t, x) satisfies the same conditions as µ(t, x) does and ∂f
∂x

(t, x) satisfies

the same conditions as f(t, x) does, then JN should have the similar estimates as

IN has, as shown in (4.60). Recall that our assumptions in Theorem 4.7 state that

µ(t, x) ∈ C2
b ([0, T ] × R), σ2(t, x) ∈ C2

b ([0, T ] × R) and g(x) ∈ C3
p(R). Therefore,

similar to (4.60), JN also has the following estimate

|JN | =
∣∣∣E N−1∑

i=0

∫ ti+1

ti

[1

2
(σ2(s, Y (s))− σ2(ti, Yi))

∂2f

∂x2
(s, Y (s))

]
ds
∣∣∣
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≤ C(L,M, T )∆. (4.63)

Then, by (4.23), (4.60) and (4.63), it is straightforward that

|E[g(X(T ))]− E[g(Y (T ))]|

=
∣∣∣E N−1∑

i=0

∫ ti+1

ti

[
(µ(s, Y (s))− µ(ti, Yi))

∂f

∂x
(s, Y (s))

]
ds

+ E
N−1∑
i=0

∫ ti+1

ti

[1

2
(σ2(s, Y (s))− σ2(ti, Yi))

∂2f

∂x2
(s, Y (s))

]
ds
∣∣∣

= |IN + JN | ≤ |IN |+ |JN |

≤ C(L, T,M)∆. (4.64)
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Chapter 5

Variance Reduction and Multilevel

Monte Carlo Methods

In this chapter, we introduce the variance reduction techniques in Monte Carlo (MC)

sampling methods. The standard Monte Carlo method converges very slowly. By

performing variance reduction, we can reduce the number of operations or computing

complexity and keep the desired level of accuracy at the same time. In 2008, Giles

[16] introduced a new variance reduction method to the computing of the expectation

of functionals of solutions of stochastic differential equations, called Multilevel Monte

Carlo (MLMC) , so that the computing complexity can be reduced considerably. After

that, this method has been applied extensively in many areas of stochastic simulation

involving the Monte Carlo sampling. For a comprehensive introduction of the recent

progress of Multilevel Monte Carlo methods, we refer to the webpage edited by Giles

himself: https://people.maths.ox.ac.uk/gilesm/mlmc_community.html.

5.1 Monte Carlo Methods

In general, the purpose of Monte Carlo simulation is to estimate the quantity E[g(X)],

where X is a random variable and g(x) is a deterministic function. The common
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examples are like the statistical moments of X, or the expected payoff of a financial

derivative such as option. The MC estimator takes the form

E[g(X)] ≈ 1

N

N∑
i=1

g(X(ωi)), (5.1)

where ωi, i = 1, 2, · · · , N are independent samples of the random variable X, and N

is the total number of samples. Note that the MC estimator 1
N

∑N
i=1 g(X(ωi)) is a

random variable itself and that

E[g(X)] = E
[ 1

N

N∑
i=1

g(X(ωi))
]
.

The error of the MC estimation is defined as

ε(g,N) := E[g(X)]− 1

N

N∑
i=1

g(X(ωi)).

Again, ε(g,N) is also a random variable and obviously E[ε(g,N)] = 0. In the

following, we denote by V [X] the variance of the random variable X. By the Law of

Large Numbers and the Central Limit Theorem, the MC estimator (5.1) converges

to the expectation E[g(X)] when N →∞ and the estimation error decays as

√
V [ε(g,N)] ≈

√
V [g(X)]

N
.

There are two parts in the estimation error: the variance of g(X) and the total

number of samples N . Suppose V [g(X)] < ∞ is a fixed constant, then the MC

estimation error decays in the order O(N−1/2). This is a rather slow decay. For

example, given V [g(X)] < ∞ fixed, if we want to reduce the estimation error by a

factor of 10, we need to increase the number of samples by a factor of 100. Therefore,

to accelerate the convergence of MC estimation by increasing the number of samples

is very computationally expensive. But we can also look at this problem from the
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V [g(X)] perspective. Suppose the desired error of the MC estimation is at most ε,

then the number of samples to reach such an accuracy should be at least

N ≈ V [g(X)]

ε2
.

To achieve a desired error ε, if we can reduce the standard deviation of g(X) by a

factor of 10 (or reduce the variance of g(X) by a factor of 100), the required number

of samples can be reduced by a factor of 100. Therefore, variance reduction is a very

effective way to accelerate the convergence of MC estimation. There are many well-

established variance reduction techniques, such as antithetic variables, importance

sampling, control variates, etc.. We refer to [20, 47, 51] for a thorough introduction

of these methods. In the following, we only introduce the control variates method,

due to its close relation to the Multilevel Monte Carlo method.

Control Variates. Suppose h(X) is another function of X with E[h(X)] known.

Then E[g(X)] can be written as

E[g(X)] = E[h(X)] + E[g(X)− h(X)].

Since E[h(X)] is known, in order to estimate E[g(X)], we only need to estimate the

expectation E[g(X)− h(X)]. The corresponding estimator takes the form

E[g(X)− h(X)] ≈ 1

N

N∑
i=1

[g(X(ωi))− h(X(ωi))].

By our analysis above, this estimation error decays as√
V [g(X)− h(X)]

N
.

If we can choose such a function h(x) that h(X) fluctuates around its mean in a

similar way as g(X) does, we can expect the variance of g(X)−h(X) is much smaller

than the variance of g(X). By doing so, the required number of samples can be
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reduced considerably given a certain level of error tolerance. For example, for a fixed

error tolerance ε, if the standard deviation of g(X)− h(X) is only 1
10

of the standard

deviation of g(X), then the required number of samples to estimate E[g(X)− h(X)]

is only 1
100

of the required number of samples to estimate E[g(X)]. We conclude this

part by remarking that E[h(X)] does not need to be close to E[g(X)]. All we need

is that h(X) has a similar variability as g(X).

5.2 Monte Carlo Methods and the Simulation of

Stochastic Differential Equations

In this section, we still consider the m-dimensional SDEdX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), t ∈ (0, T ]

X(0) = x0.

(5.2)

The setting of this equation is as usual. For now, we only assume there exists a unique

solution to (5.2). As we discussed before, people are often motivated to compute

the expected value of f(X(T )), where f is a scalar function satisfying some smooth

conditions. For example, for an European call option, its payoff is equal to f(X(T )) =

max(X(T )−K, 0), where X(T ) is the terminal price of the underlying stock and K

is the exercise price of the option at expiration.

Suppose a numerical scheme with time step h solves the equation (5.2) numerically.

We denote by X̂T/h the value of the numerical solution at time T . Suppose we have

generated N independent path simulations by the numerical scheme. Then the Monte

Carlo estimate of the expectation E[f(X(T ))] is

E[f(X(T ))] ≈ 1

N

N∑
i=1

f(X̂
(i)
T/h),
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where X̂(i)
T/h is the terminal value of the numerical solution on the ith sample path.

Denote by Y := E[f(X(T ))] and Ŷ := 1
N

∑N
i=1 f(X̂

(i)
T/h). Then the mean square error

of the MC estimate is

MSE ≡ E
[
(Ŷ − E[Y ])2

]
.

We decompose the MSE in the following way:

E
[
(Ŷ − E[Y ])2

]
= E

[
(Ŷ − E[Ŷ ] + E[Ŷ ]− E[Y ])2

]
= E

[
(Ŷ − E[Ŷ ])2

]
+
(
E[Ŷ ]− E[Y ]

)2
+ 2E

[
(Ŷ − E[Ŷ ])(E[Ŷ ]− E[Y ])

]
= E

[
(Ŷ − E[Ŷ ])2

]
+
(
E[Ŷ ]− E[Y ]

)2

The first part is the variance of the MC estimate and the other part is the bias

introduced by the approximation. Due to the mutual independence of the sample

paths, the variance of Ŷ is

V [Ŷ ] = V
[ 1

N

N∑
i=1

f(X̂
(i)
T/h)

]
=

1

N2
V
[ N∑
i=1

f(X̂
(i)
T/h)

]
=

1

N
V [f(X(T ))].

As we discussed in Section 2.3, if we use Euler-Maruyama scheme to solve equation

(5.2), as long as µ, σ and f satisfy certain smooth conditions, the weak convergence

has order 1. In this case, (
E[Ŷ ]− E[Y ]

)2
= O(h2).

Therefore, with Euler-Maruyama scheme, the MSE of the MC estimate Ŷ is

asymptotically

MSE ≈ O(N−1) +O(h2).
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To make the root mean square error (RMSE=
√
MSE) O(ε), the MSE should be O(ε2).

So it requires that N = O(ε−2) and h = O(ε). The total computational cost is then

O(ε−3).

In general, if a numerical solution of equation (5.2) has week convergence order

k, then to achieve the RSME O(ε), the total computational cost of computing

E[f(X(T ))] is O(ε−(2+1/k)).

For a general introduction to the variance reduction methods which can be applied

to the computation of functionals of solutions of (5.2), we refer to Chapter 16 of [33].

5.3 Multilevel Monte Carlo Methods

Multilevel Monte Carlo (MLMC) method is a control variate type variance reduction

approach. As we discussed earlier, to compute E[f(X)] and use the control variate

method, we need to choose another function g such that E[g(X)] is known and g(X)

has a similar variability as f(X). We know that the solution of a SDE usually does

not have a closed-form expression, let alone the existence of an available control

variate of it. However, if we do not ask too much about the availability of the value

of E[g(X(T ))], a control variate is not so difficult to find. For example, for a given

Brownian path W (t), let P denote the random variable f(X(T )) and P̂h denote the

approximation to P using a numerical discretisation with time step h. Using the same

Brownian path and a larger step size 2h, we can expect that the new approximation

P̂2h would not fluctuate too differently from P̂h. Therefore, we can use P̂2h as a control

variate of P̂h. If we use more levels of time steps, it will give us a multilevel Monte

Carlo method.

Consider a SDE like (5.2) and the Monte Carlo path simulations with a geometric

series of time steps hl = M−lT , where l = 0, 1, · · · , L and M ≥ 2 is an integer. In

level 0, there is only one time step for the whole time interval [0, T ], whereas level

l ≥ 1 has M l uniform time steps. We denote by P the random variable f(X(T )).
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Let W (t) be a given Brownian path, and let X̂l and P̂l denote the approximations to

X(T ) and P using a numerical scheme with time step hl.

Our goal is to estimate the quantity E[f(X)]. In general, the weak approximation

error decreases as the step size of the discretisation decreases [5, 33, 60]. Then it is

natural to write

E[P̂L] = E[P̂0] +
L∑
l=1

E[P̂l − P̂l−1].

Therefore, to give E[f(X)] an estimate, the simplest way is to estimate the

expectations on the right hand side of the above equality using a standard Monte

Carlo estimator. Note that we may need to use different numbers of sample paths to

give the Monte Carlo estimates of those expectations. Denote by Ŷ0 the estimator of

E[P̂0] using N0 sample paths and Ŷl the estimator of E[P̂l − P̂l−1] using Nl sample

paths. For l = 0,

Ŷ0 =
1

N0

N0∑
i=1

P̂
(i)
0 .

For l ≥ 1,

Ŷl =
1

Nl

Nl∑
i=1

(P̂
(i)
l − P̂

(i)
l−1),

where both P̂ (i)
l and P̂ (i)

l−1 are obtained from the ith Brownian path. Note that P̂ (i)
l

and P̂ (i)
l−1 use the same Brownian path, although they come from two approximations

with different time steps. In our setting at the beginning, we initiated a geometric

series of time steps. The reason of doing this is now clear. For two approximations

with consecutive levels of time steps, P̂ (i)
l and P̂

(i)
l−1, we first evaluate P̂ (i)

l using M l

Brownian increments. Then we sum those increments in groups of sizeM to generate

M l−1 Brownian increments in preparation for the computation of P̂ (i)
l−1. Obviously,

E[Ŷ0] = E[P̂0], E[Ŷl] = E[P̂l − P̂l−1], l ≥ 1,

and

V [Ŷ0] = N−1
0 V0, V [Ŷl] = N−1

l Vl, l ≥ 1,
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where V0 and Vl are the variance of P̂0 and P̂l − P̂l−1, respectively.

Finally, the estimator of E[f(X)] is

Ŷ =
L∑
l=0

Ŷl.

By our previous analysis,

E[Ŷ ] = E[P̂L], V [Ŷ ] =
L∑
l=0

N−1
l Vl,

and the total computational cost is asymptotically proportional to

L∑
l=1

Nlh
−1
l .

As usual, the MSE of the MLMC estimator can be decomposed as

MSE = E
[
(Ŷ − E[P ])2

]
= E

[
(Ŷ − E[Ŷ ] + E[Ŷ ]− E[P ])2

]
= E

[
(Ŷ − E[Ŷ ])2

]
+ (E[Ŷ ]− E[P ])2

= E
[
(Ŷ − E[Ŷ ])2

]
+ (E[P̂L]− E[P ])2.

The first part is the variance of the MLMC estimator and

E
[
(Ŷ − E[Ŷ ])2

]
= V [Ŷ ] =

L∑
l=0

N−1
l Vl.

The second part is the square of the weak approximation error of the scheme with

smallest step size M−lT . Given an error tolerance ε2 on MSE, we need to determine

the values of Nl and L such that

E
[
(Ŷ − E[Ŷ ])2

]
≤ 1

2
ε2 (5.3)
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and

(E[P̂L]− E[P ])2 ≤ 1

2
ε2. (5.4)

Hopefully, after Nl and L are determined, the total computational cost can be reduced

considerably compared with using the standard MC method.

Inequality (5.4) is typically a weak convergence result. Suppose for a well-

established numerical scheme, there exist a positive real number k and a positive

constant C independent of the time step hL, such that

|E[P̂L]− E[P ]| ≤ ChkL.

Since hL = M−LT , we must have

C2T 2kM−2kL ≤ 1

2
ε2,

which leads to

L ≥ 1

k
logM(

√
2CT kε−1) =

log(
√

2CT kε−1)

k logM
.

Since L is also an integer, we can take

Lmax =
⌈ log(

√
2CT kε−1)

k logM

⌉
, (5.5)

where dxe is the smallest integer not less than x.

Usually, like in our previous chapters, we often use ∆t = T/N as our step size,

where N is the total number of steps. In this case, the number of L has a very simple

expression. In fact, we have M−LT = T/N , which leads to

L =
logN

logM
.

Our next step is to choose Nl to make (5.3) hold and to minimize the variance

V [Ŷ ] for the fixed computational cost C =
∑L

l=0 Nlh
−1
l at the same time. Actually,
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we can treat Nl as continuous variables and use the Lagrange multiplier to find the

minimum of
L∑
l=0

N−1
l Vl + λ

( L∑
l=1

Nlh
−1
l − C

)
.

Taking partial derivative of the above expression with respect to each Nl and setting

them to be 0, we get

−N−2
l Vl + λh−1

l = 0,

which gives

Nl = λ−1/2
√
Vlhl.

Therefore,

V [Ŷ ] =
L∑
l=0

N−1
l Vl =

L∑
l=0

√
λVl√
Vlhl

=
√
λ

L∑
l=0

√
Vl/hl.

Note that we also need V [Ŷ ] ≤ ε2

2
. Therefore,

λ−1/2 ≥ 2ε−2

L∑
l=0

√
Vl/hl

and the optimal number of sample paths for level l is

Nl =
⌈
2ε−2

√
Vlhl

L∑
l=0

√
Vl/hl

⌉
.

So the total computational cost will be approximately

L∑
l=0

Nlh
−1
l ≈ 2ε−2

( L∑
l=0

√
Vl/hl

)2

. (5.6)

To have a rough idea what the computational complexity in (5.6) looks like, we take

the Euler-Maruyama scheme for example. Here we assume both µ and σ depend only

on x and they are infinitely many times differentiable with all of their derivatives

bounded. We also assume that the function f(x) is Lipschitz continuous. Assuming
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also some other conditions, Bally and Tally [5] showed that the Euler-Maruyama

approximate solution converges to the real solution weakly with order 1. Meanwhile,

by Theorem 2.9, the Euler-Maruyama scheme also has strong convergence with order

1/2. Hence, when l is large enough,

E[P̂l − P ] = E[f(X̂l)− f(X(T ))] = O(hl), (5.7)

and

E[‖X̂l −X(T )‖2] = O(hl). (5.8)

Since f(x) is Lipschitz continuous, we also have

V [P̂l − P ] ≤ E[(P̂l − P )2]

= E[(f(X̂l)− f(X(T )))2]

≤ C2E[‖X̂l −X(T )‖2],

where C is the Lipschitz constant. Hence, by (5.8),

V [P̂l − P ] = O(hl). (5.9)

What is more,

Vl = V [P̂l − P̂l−1]

= V [(P̂l − P )− (P̂l−1 − P )]

≤ 2(V [P̂l − P ] + V [P̂l−1 − P ]).

Combining this with (5.9) gives that

Vl = O(hl).
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Getting Vl back to the computational cost (5.6), we have

2ε−2
( L∑
l=0

√
Vl/hl

)2

= O(ε−2L2).

Note that, by (5.5), for Euler-Maruyama scheme (k = 1), L = O(log(ε−1)) and thus

the total computational cost is

O
(
ε−2(log ε)2

)
.

To compare this computational cost by MLMCmethod with the standard MC method

whose cost is O(ε−3), we take ε = 0.001. Then (log ε)2 ≈ 48, which is much less than

ε−1 = 1000.

From the above computation, we can see that it is very crucial for us to figure

out what Vl = V [P̂l − P̂l−1] is. To achieve this goal, in the Euler-Maruyama case,

we used the fact that it has O(h1/2) strong convergence and that f(x) is Lipschitz

continuous. It is very interesting to point out that, even if we are looking at a weak

approximation problem (computing E[f(X(T ))]) here, the key point is to use the

strong convergence of the underlying numerical scheme. Furthermore, the only place

where the weak convergence is used is when we use it to determine the value of L.

Recall that

L ≥ log(
√

2CT kε−1)

k logM
,

where k is the weak convergence order. It is obvious that the weak convergence order

k is not so important in determining the value of L, compared to log(ε−1). To be

more specific, in the Euler-Maruyama scheme, suppose for now we do not know the

weak convergence order of the scheme but know the strong convergence order 1/2

instead. If the test function f(x) is Lipschitz continuous, it is immediate that

∣∣E[f(X̂l)− f(X(T ))]
∣∣ ≤ CE[‖X̂l −X(T )‖] = O(h

1/2
l ).
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Taking k = 1/2, it follows that

L ≥ 2 log(
√

2CT 1/2ε−1)

logM
, k = 1/2

which is not so far away from it is when k = 1:

L ≥ log(
√

2CTε−1)

logM
, k = 1.

See also [19] for examples in which the non-Lipschitz continuous test functions are

involved.

Another disadvantage of using the weak convergence is that it requires too much

on the smoothness of µ, σ and f(x) (see our remarks in Section 2.3 for more details).

While the strong convergence often does not ask too much on those things (see e.g.

Theorem 2.9 or our main theorems in Chapter 3). Because of these two points, there

has been a great motivation of developing strongly convergent numerical methods for

SDE (5.2) [23, 26, 28, 32, 55, 61].

Next we give the complexity theorem of the MLMC method. It is stated in a

very general way such that it can be applied to various cases. This theorem does not

specify which numerical scheme is used either.

Theorem 5.1 ([16], Theorem 3.1). Let P denote a functional of the solution of

stochastic differential equations (5.2) for a given Brownian path W (t), and let P̂l

denote the corresponding approximation using a numerical discretisation with time

step hl = M−lT . If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α ≥ 1
2
, β, c1, c2, c3 such that

i) |E[P̂l − P ]| ≤ c1h
α
l ;

ii) E[Ŷl] =

E[P̂0], l = 0,

E[P̂l − P̂l−1], l ≥ 0;

iii) V [Ŷl] ≤ c2N
−1
l hβl ;

88



iv) Cl, the computational complexity of Ŷl, is bounded by

Cl ≤ c3Nlh
−1
l ,

then there exists a positive constant c4 such that for any ε < e−1 there are values L

and Nl for which the multilevel estimator

Ŷ =
L∑
l=0

Ŷl,

has a mean-square-error with bound

MSE ≡ E
[
(Ŷ − E[P ])2

]
< ε2

with a computational complexity C with bound

C ≤


c4ε
−2, β > 1,

c4ε
−2(log ε)2, β = 1,

c4ε
−2−(1−β)/α, 0 < β < 1.

Proof. We start by choosing

L =
⌈ log(

√
2c1T

αε−1)

α logM

⌉
,

so that
1√
2
M−αε < c1h

α
L ≤

1√
2
ε, (5.10)

and hence, because of properties i) and ii),

(
E[Ŷ ]− E[P ]

)2 ≤ 1

2
ε2.
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This 1
2
ε2 upper bound on the square of the bias error, together with the 1

2
ε2 upper

bound on the variance of the estimator to be proved later, gives an ε2 upper bound

on the estimator MSE.

Also,
L∑
l=0

h−1
l = h−1

L

L∑
l=0

M−l <
M

M − 1
h−1
L .

By (5.10), we also have

h−1
L < M

( ε√
2c1

)−1/α

.

Given α ≥ 1
2
and ε < e−1, it follows that

ε−1/α ≤ ε−2.

Then the above three inequalities give that

L∑
l=0

h−1
l <

M2

M − 1

(√
2c1

)1/α
ε−2. (5.11)

Now we consider the different possible values for β.

a) If β = 1, we set Nl = d2ε−2(L+ 1)c2hle so that

V [Ŷ ] =
L∑
l=0

V [Ŷl] ≤
L∑
l=0

c2N
−1
l hl ≤

1

2
ε2,

which is the required upper bound on the variance of the estimator.

To bound the computational complexity C we begin with an upper bound on

L given by

L ≤ log ε−1

α logM
+

log(
√

2c1T
α)

α logM
+ 1.

Given that 1 < log ε−1 for ε < e−1, it follows that

L+ 1 ≤ c5 log ε−1,
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where

c5 =
1

α logM
+ max

(
0,

log(
√

2c1T
α)

α logM

)
+ 2.

Upper bounds for Nl are given by

Nl ≤ 2ε−2(L+ 1)c2hl + 1.

Hence the computational complexity is bounded by

C ≤ c3

L∑
l=1

Nlh
−1
l ≤ c3

(
2ε−2(L+ 1)2c2 +

L∑
l=0

h−1
l

)
.

Using the upper bound for L + 1 and inequality (5.11), and the fact that 1 <

log ε−1 for ε < e−1, it follows that

C ≤ c4ε
−2(log ε)2,

where

c4 = 2c3c
2
5c2 + c3

M2

M − 1

(√
2c1

)1/α
.

b) For β > 1, setting

Nl =
⌈
2ε−2c2T

(β−1)/2
(
1−M−(β−1)/2

)−1
h

(β+1)/2
l

⌉
,

then

V [Ŷ ] =
L∑
l=0

V [Ŷl] ≤
1

2
ε2T−(β−1)/2

(
1−M−(β−1)/2

) L∑
l=0

h
(β−1)/2
l .

Using the standard result for a geometric series,

L∑
l=0

h
(β−1)/2
l = T (β−1)/2

L∑
l=0

(
M−(β−1)/2

)l
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< T (β−1)/2
(

1−M−(β−1)/2
)−1

,

and hence we obtain an 1
2
ε2 upper bound on the variance of the estimator.

Using the Nl upper bound

Nl < 2ε−2c2T
(β−1)/2

(
1−M−(β−1)/2

)−1
h

(β+1)/2
l + 1,

the computational complexity is bounded by

C ≤ c3

(
2ε−2c2T

(β−1)/2
(
1−M−(β−1)/2

)−1
L∑
l=0

h
(β−1)/2
l +

L∑
l=0

h−1
l

)
.

Using inequalities (5.10) and (5.11) gives

C ≤ c4ε
−2,

where

c4 = 2c3c2T
β−1
(
1−M−(β−1)/2

)−2
+ c3

M2

M − 1

(√
2c1

)1/α
.

c) For β < 1, setting

Nl =
⌈
2ε−2c2h

−(1−β)/2
L

(
1−M−(1−β)/2

)−1
h

(β+1)/2
l

⌉
,

then

V [Ŷ ] =
L∑
l=0

V [Ŷl] <
1

2
ε2h

(1−β)/2
L

(
1−M−(1−β)/2

) L∑
l=0

h
−(1−β)/2
l .

Since

L∑
l=0

h
−(1−β)/2
l = h

−(1−β)/2
L

L∑
l=0

(
M−(1−β)/2

)l
< h

−(1−β)/2
L

(
1−M−(1−β)/2

)−1

, (5.12)
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we obtain an 1
2
ε2 upper bound on the variance of the estimator. Using the Nl

upper bound

Nl < 2ε−2c2h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1
h

(β+1)/2
l + 1,

the computational complexity is bounded by

C ≤ c3

(
2ε−2c2h

−(1−β)/2
L

(
1−M−(1−β)/2

)−1
L∑
l=0

h
−(1−β)/2
l +

L∑
l=0

h−1
l

)
.

Using inequality (5.12) gives

h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1
L∑
l=0

h
−(1−β)/2
l < h

−(1−β)
L

(
1−M−(1−β)/2

)−2

.

The first inequality in (5.10) gives

h
−(1−β)
L <

(√
2c1

)(1−β)/α
M1−βε−(1−β)/α.

Combining the above two inequalities, and also using inequality (5.11) and the

fact that ε−2 < ε−2−(1−β)/α for ε < e−1, gives

C ≤ c4ε
−2−(1−β)/α,

where

c4 = 2c3c2

(√
2c1

)(1−β)/α
M1−β(1−M−(1−β)/2

)−2
+ c3

M2

M − 1

(√
2c1

)1/α
.

Remark 5.2. Condition i) often depends on the weak convergence results of numerical

approximations of SDEs. We refer to Section 2 and 4 for more details of such things.

The main challenge is condition iii). We have shown that, with a Lipschitz test
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function, we can use the strong convergence results to obtain the variance estimation.

But, in general, this task may not be so trivial. We also refer to [16, 17, 18] for more

remarks.

The following theorem is given in Giles [18], and is a slight generalization of

Theorem 5.1.

Theorem 5.3 ([18], Theorem 2.1). Let P denote a functional of the solution of a

stochastic differential equation, and let P̂l denote the corresponding level l numerical

approximation. If there exist independent estimators Ŷl based on Nl Monte Carlo

samples, and positive constants α, β, γ, c1, c2, c3 such that α ≥ 1
2

min(β, γ) and

i) |E[P̂l − P ]| ≤ c12−αl;

ii) E[Ŷl] =

E[P̂0], l = 0,

E[P̂l − P̂l−1], l > 0;

iii) V [Ŷl] ≤ c2N
−1
l 2−βl;

iv) Cl ≤ c3Nl2
γl, where Cl is the computational complexity of Yl,

then there exists a positive constant c4 such that for any ε < e−1 there are values of

L and Nl for which the multilevel estimator

Ŷ =
L∑
l=0

Ŷl,

has a mean-square-error with bound

MSE ≡ E[(Ŷ − E[P ])2] < ε2
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with a computational complexity C with bound

C ≤


c4ε
−2, β > γ,

c4ε
−2(log ε)2, β = γ,

c4ε
−2−(γ−β)/α, 0 < β < γ.

This theorem specifies the value of M to be 2. Of course, M can also be other

natural numbers. See e.g. [16] on how to choose an optimal value for M . Since

the computational complexity on level l is changed to be dependent on γ, the new

classification of the total computational cost is based on the comparison between β

and γ accordingly, rather than between β and 1.

In [17], Giles provided another generalization of the complexity theorem based on

Cliffe, Giles, Scheichl, and Teckentrup [9], which allows for applications in which the

simulation cost of individual samples is itself random. See [17] for more details.

For MLMC for SDEs driven by jump processes, we refer to Dereich [12] and Xia

[62] and references therein. For MLMC for stochastic partial differential equations,

see e.g. [6] and [9].

As in the classic Monte Carlo simulation, there is also a central limit theorem

corresponding the multilevel Monte Carlo Euler simulation. We refer to [1] for the

details. We also refer to [13] for the central limit theorem of the multilevel Monte

Carlo Euler simulation for SDEs driven by Lévy noise.
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Chapter 6

Strong Convergence of Numerical

Approximations of SDEs Driven by

Lévy Noise under Local Lipschitz

Conditions

In this chapter, we introduce the strong convergence of numerical approximations of

SDEs driven by Lévy noise under local Lipschitz condtions. As far as the author

knows, the literature on this topic is very sparse. [11, 36] might be among the first

few papers addressing this issue and there is still much space to be explored.
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6.1 Strong Convergence of Tamed Euler Approxi-

mations of SDEs Driven by Lévy Noise with

Superlinearly Growing Drift Coefficients

In this section, we mainly consider the following SDE driven by a Lévy noise:dX(t) = a(X(t−))dt+ b(X(t−))dW (t) +
∫
Rd f(X(t−), y)Ñ(dt, dy),

X(0) = x0,

(6.1)

or, equivalently, the following integral form:

X(t) = X(0) +

∫ t

0

a(X(s−))ds+

∫ t

0

b(X(s−))dW (s) +

∫ t

0

∫
Rd
f(X(s−), y)Ñ(ds, dy),

(6.2)

where x0 is F0-measurable, X(t) is an Rm-valued stochastic process, W (t) is a

standard d-dimensional Brownian motion and N an independent Poisson random

measure on R+ × (Rd − {0}) with associated compensator Ñ and intensity measure

ν, where we assume that ν is a Lévy measure. Besides, W and N are independent of

F0. We also assume that a : Rm → Rm, b : Rm → Rm×d and f : Rm × Rd → Rm. In

the following, we will write X(t) instead of X(t−) on the right hand side of the above

equation. This will not cause any problem since the compensators of the martingales

driving the equation are continuous.

We assume the following conditions for the above SDE:

A-1. There exists a constant C > 0 such that for any x ∈ Rm,

〈x, a(x)〉+ ‖b(x)‖2 +

∫
Rd
‖f(x, y)‖2ν(dy) ≤ C(1 + ‖x‖2).
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A-2. There exists a constant C > 0 such that for x1, x2 ∈ Rm,

〈x1 − x2, a(x1)− a(x2)〉+ ‖b(x1)− b(x2)‖2 +

∫
Rd
‖f(x1, y)− f(x2, y)‖2ν(dy)

≤ C‖x1 − x2‖2.

A-3. The function a(x) is continuous in x ∈ Rm.

A-4. E[‖x0‖p] <∞ for some fixed p ≥ 2.

A-5. There exists a constant C > 0 such that for any x ∈ Rm,

∫
Rd
‖f(x, y)‖pν(dy) ≤ C(1 + ‖x‖p).

Note that if condition A-3 is fulfilled, then it is obvious that a(x) is locally bounded.

That is, for any R > 0, there exits a constant C(R) > 0, such that

a(x) ≤ C(R) (6.3)

for any ‖x‖ ≤ C(R). As we introduced in Section 2.4, if SDE (6.2) satisfies conditions

A-1–A-3, there exists a unique solution to (6.2). If, in addition, conditions A-4 and

A-5 are also satisfied, the following p-th moment bound holds for the solution:

E
[

sup
0≤t≤T

‖X(t)‖p
]
≤ C.

In the following, we also assume

A-6. There exist constants C > 0, q ≥ 2 and χ > 0 such that

∫
Rd
‖f(x1, y)− f(x2, y)‖qν(dy) ≤ C‖x1 − x2‖q,

‖a(x1)− a(x2)‖2 ≤ C(1 + ‖x1‖χ + ‖x2‖χ)‖x1 − x2‖2, (6.4)
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for any x1, x2 ∈ Rm and a δ ∈ (0, 1) such that max{(χ + 2)q, qχ
2
q+δ
δ
} ≤ p. Note that

for now p ≥ (χ+ 2)q > 4. By (6.3) and (6.4), it is immediate that

‖a(x)‖2 ≤ C(1 + ‖x‖χ+2) (6.5)

for any x ∈ Rm.

To solve (6.2) numerically, Dareiotis, Kumar and Sabanis [11] proposed a tamed

Euler scheme defined by

dXN(t) = aN(XN(κN(t)))dt+ b(XN(κN(t)))dW (t) +

∫
Rd
f(XN(κN(t)), y)Ñ(dt, dy),

(6.6)

where XN(0) = x0,

κN(t) :=
[Nt]

N

for any t ∈ [0, T ], and

aN(x) =
a(x)

1 +N−1/2‖a(x)‖
.

Its integral form is

XN(t) = x0 +

∫ t

0

aN(XN(κN(s)))ds+

∫ t

0

b(XN(κN(s)))dW (s)

+

∫ t

0

∫
Rd
f(XN(κN(s)), y)Ñ(ds, dy). (6.7)

It is obvious that

‖aN(x)‖ ≤ ‖a(x)‖,

and

‖aN(x)‖ =
∥∥∥ a(x)

1 +N−1/2‖a(x)‖

∥∥∥ ≤ ∥∥∥ a(x)

N−1/2‖a(x)‖

∥∥∥ = N1/2. (6.8)

Furthermore, for any x ∈ Rd, we have

‖aN(x)− a(x)‖ =
∥∥∥ a(x)

1 +N−1/2‖a(x)‖
− a(x)

∥∥∥
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=
∥∥∥N−1/2a(x)‖a(x)‖

1 +N−1/2‖a(x)‖

∥∥∥
≤ N−1/2‖a(x)‖2. (6.9)

Before we give the main theorem of this chapter, we state several lemmas that

will be useful in its proof.

Lemma 6.0.1. Let r ≥ 2. There exists a constant C, depending only on r, such that

for every real-valued, B([0, T ])× B(Rd)-measurable function g satisfying

∫ T

0

∫
Rd
‖g(t, y)‖2ν(dy)dt <∞,

the following estimate holds,

E
[

sup
0≤t≤T

∥∥∥∫ t

0

∫
Rd
g(s, y)Ñ(ds, dy)

∥∥∥r]
≤ CE

(∫ T

0

∫
Rd
‖g(t, y)‖2ν(dy)dt

)r/2
+ CE

∫ T

0

∫
Rd
‖g(t, y)‖rν(dy)dt. (6.10)

It is known that if 1 ≤ r ≤ 2, then the second term in (6.10) can be dropped.

This lemma is a simplified version of Lemma 2.1 in [11]. The proof can be found

in [41].

The following estimation on the p-th moment of the numerical solution XN(t) is

crucial in the whole section.

Lemma 6.0.2 ([11], Lemma 3.2). Let A-1–A-5 be satisfied. Then,

sup
N∈N

E
[

sup
0≤t≤T

‖XN(t)‖p
]
≤ C,

with C := C(T, p, E[‖x0‖p]) independent of N .

Proof. See Lemma 3.2 in [11].
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Lemma 6.0.3 ([11], Lemma 3.3). Let assumptions A-1–A-5 be satisfied. Then the

numerical scheme (6.6) satisfies

sup
0≤t≤T

E[‖XN(t)−XN(κN(t))‖r] ≤ CN−1

for any 2 ≤ r ≤ p with C := C(T, p, E[‖x0‖p]) which does not depend on N .

Now we introduce the main theorem in this section, the convergence rate of

numerical scheme (6.6).

Theorem 6.1 ([11], Corollary 3.2). Let Assumptions A-1–A-6 be satisfied. Then the

numerical scheme (6.6) converges in the Lq sense, i.e.

E
[

sup
0≤t≤T

‖X(t)−XN(t)‖q
]
≤ CN−

q
q+δ , (6.11)

where constant C > 0 does not depend on N .

Proof. Let e(t) := X(t)−XN(t) and define

ā(t) := a(X(t))− aN(XN(κN(t))), (6.12)

b̄(t) := b(X(t))− b(XN(κN(t))), (6.13)

f̄(t, y) := f(X(t), y)− f(XN(κN(t)), y). (6.14)

By (6.2) and (6.6), the error process e(t) satisfies

e(t) =

∫ t

0

ā(s)ds+

∫ t

0

b̄(s)dW (s) +

∫ t

0

∫
Rd
f̄(s, y)Ñ(ds, dy), (6.15)

for any t ∈ [0, T ]. By Itô’s formula, one obtains

‖e(t)‖q = q

∫ t

0

‖e(s)‖q−2e(s)ā(s)ds+ q

∫ t

0

‖e(s)‖q−2e(s)b̄(s)dW (s)

+
q(q − 2)

2

∫ t

0

‖e(s)‖q−4‖b̄(s)T e(s)‖2ds+
q

2

∫ t

0

‖e(t)‖q−2‖b̄‖2ds
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+ q

∫ t

0

∫
Rd
‖e(s)‖q−2e(s)f̄(s, y)Ñ(ds, dy)

+

∫ t

0

∫
Rd

(
‖e(s) + f̄(s, y)‖q − ‖e(s)‖q − q‖e(s)‖q−2e(s)f̄(s, y)

)
N(ds, dy)

(6.16)

for all t ∈ [0, T ]. We write

e(s)ā(s) = (X(s)−XN(s))
(
a(X(s))− a(XN(s))

)
+ (X(s)−XN(s))

(
a(XN(s))− a(XN(κN(s)))

)
+ (X(s)−XN(s))

(
a(XN(κN(s)))− aN(XN(κN(s)))

)
. (6.17)

Hence, by condition A-2, Cauchy-Schwarz inequality and Young’s inequality,

‖e(s)‖q−2e(s)ā(s)

≤ ‖e(s)‖q−2
(
C‖e(s)‖2 + ‖e(s)‖2 + ‖a(XN(s))− a(XN(κN(s)))‖2

+ ‖a(XN(κN(s)))− aN(XN(κN(s)))‖2
)

= C‖e(s)‖q + ‖e(s)‖q−2‖a(XN(s))− a(XN(κN(s)))‖2

+ ‖e(s)‖q−2‖a(XN(κN(s)))− aN(XN(κN(s)))‖2

≤ C‖e(s)‖q + C‖a(XN(s))− a(XN(κN(s)))‖q

+ C‖a(XN(κN(s)))− aN(XN(κN(s)))‖q, (6.18)

where we used the conjugate equality

1

q/(q − 2)
+

1

q/2
= 1
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for the last inequality. Therefore, taking suprema over [0, u] for any u ∈ [0, T ] and

expectations on both sides of (6.16), we obtain

E
[

sup
0≤t≤u

‖e(t)‖q
]

≤ CE

∫ u

0

‖e(s)‖qds+ CE

∫ u

0

‖a(XN(s))− a(XN(κN(s)))‖qds

+ CE

∫ u

0

‖a(XN(κN(s)))− aN(XN(κN(s)))‖qds

+ qE
[

sup
0≤t≤u

∥∥∥∫ t

0

‖e(s)‖q−2e(s)b̄(s)dW (s)
∥∥∥]

+
q(q − 2)

2
E

∫ u

0

‖e(s)‖q−4‖b̄(s)T e(s)‖2ds+
q

2
E

∫ u

0

‖e(t)‖q−2‖b̄‖2ds

+ qE
[

sup
0≤t≤u

∥∥∥∫ t

0

∫
Rd
‖e(s)‖q−2e(s)f̄(s, y)Ñ(ds, dy)

∥∥∥]
+ E

[
sup

0≤t≤u

∫ t

0

∫
Rd

(
‖e(s)‖q−2‖f̄(s, y)‖2 + ‖f̄(s, y)‖q

)
N(ds, dy)

]
= G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8. (6.19)

In the following we estimate G1 – G8 one by one. Firstly,

G1 := CE

∫ u

0

‖e(s)‖qds ≤ C

∫ u

0

E
[

sup
0≤r≤s

‖e(r)‖q
]
ds (6.20)

for any u ∈ [0, T ]. By the second inequality of assumption A-6, Hölder’s inequality

and Lemma 6.0.2, G2 can be estimated by

G2 := CE

∫ u

0

‖a(XN(s))− a(XN(κN(s)))‖qds

≤ CE

∫ u

0

(1 + ‖XN(s)‖χ + ‖XN(κN(s))‖χ)q/2‖XN(s)−XN(κN(s))‖qds

≤ C

∫ u

0

(
1 + E[‖XN(s)‖χ

q
2
q+δ
δ ] + E[‖XN(κN(s))‖χ

q
2
q+δ
δ ]
) δ
q+δ

·
(
E[‖XN(s)−XN(κN(s))‖q+δ]

) q
q+δ
ds

≤ C

∫ T

0

(
E[‖XN(s)−XN(κN(s))‖q+δ]

) q
q+δ
ds. (6.21)
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The estimate of G3 is trivial:

G3 := CE

∫ u

0

‖a(XN(κN(s)))− aN(XN(κN(s)))‖qds

≤ CE

∫ T

0

‖a(XN(κN(s)))− aN(XN(κN(s)))‖qds. (6.22)

Due to Burkholder-Davis-Gundy inequality, we have

G4 := qE
[

sup
0≤t≤u

∥∥∥∫ t

0

‖e(s)‖q−2e(s)b̄(s)dW (s)
∥∥∥]

≤ CE
[ ∫ u

0

‖e(s)‖2q−2‖b̄(s)‖2ds
]1/2

≤ E
[

sup
0≤s≤u

‖e(s)‖q−1
(∫ u

0

‖b̄(s)‖2ds
)1/2]

. (6.23)

Using Young’s inequality and Hölder’s inequality, we get

G4 ≤
1

8
E
[

sup
0≤s≤u

‖e(s)‖q
]

+ CE
[( ∫ u

0

‖b̄(s)‖2ds
)q/2]

≤ 1

8
E
[

sup
0≤s≤u

‖e(s)‖q
]

+ CE

∫ u

0

‖b̄(s)‖qds (6.24)

for any u ∈ [0, T ]. Due to Cauchy-Schwarz inequality and Young’s inequality, G5 and

G6 can be estimated together by

G5 +G6

:=
q(q − 2)

2
E

∫ u

0

‖e(s)‖q−4‖b̄(s)T e(s)‖2ds+
q

2
E

∫ u

0

‖e(t)‖q−2‖b̄‖2ds

≤ CE

∫ u

0

‖e(t)‖q−2‖b̄‖2ds

≤ C

∫ u

0

E
[

sup
0≤r≤s

‖e(r)‖q
]
ds+ CE

∫ u

0

‖b̄(s)‖qds (6.25)

for any u ∈ [0, T ]. Combining (6.24) and (6.25), we have

G4 +G5 +G6
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≤ 1

8
E
[

sup
0≤s≤u

‖e(s)‖q
]

+ C

∫ u

0

E
[

sup
0≤r≤s

‖e(r)‖q
]
ds+ CE

∫ u

0

‖b̄(s)‖qds. (6.26)

We now split b̄(s) as

b̄(s) =
(
b(X(s))− b(XN(s))

)
+
(
b(XN(s))− b(XN(κN(s)))

)
. (6.27)

Then by assumption A-2 and (6.26), we obtain

G4 +G5 +G6 ≤
1

8
E
[

sup
0≤s≤u

‖e(s)‖q
]

+ C

∫ u

0

E
[

sup
0≤r≤s

‖e(r)‖q
]
ds

+ C

∫ T

0

E‖XN(s)−XN(κN(s))‖qds (6.28)

for any u ∈ [0, T ]. To estimate G7 and G8, we split f̄(s, y) as

f̄(s, y) =
(
f(X(s), y)− f(XN(s), y)

)
+
(
f(XN(s), y)− f(XN(κN(s)), y)

)
. (6.29)

Therefore, G7 can be estimated by

G7 := qE
[

sup
0≤t≤u

∥∥∥∫ t

0

∫
Rd
‖e(s)‖q−2e(s)f̄(s, y)Ñ(ds, dy)

∥∥∥]
≤ CE

[
sup

0≤t≤u

∥∥∥∫ t

0

∫
Rd
‖e(s)‖q−2e(s)(f(X(s), y)− f(XN(s), y))Ñ(ds, dy)

∥∥∥]
+ CE

[
sup

0≤t≤u

∥∥∥∫ t

0

∫
Rd
‖e(s)‖q−2e(s)(f(XN(s), y)− f(XN(κN(s)), y))Ñ(ds, dy)

∥∥∥].
(6.30)

By Lemma 6.0.1, it follows that

G7 ≤ E
[( ∫ u

0

∫
Rd
‖e(s)‖2q−2‖f(X(s), y)− f(XN(s), y)‖2ν(dy)ds

)1/2]
+ E

[( ∫ u

0

∫
Rd
‖e(s)‖2q−2‖f(XN(s), y)− f(XN(κN(s)), y)‖2ν(dy)ds

)1/2]
(6.31)

105



for any u ∈ [0, T ]. As obtaining (6.24), we use Young’s inequality and Hölder’s

inequality and obtain,

G7 ≤
1

8
E
[

sup
0≤s≤u

‖e(s)‖q
]

+ E
[ ∫ u

0

(∫
Rd
‖f(X(s), y)− f(XN(s), y)‖2ν(dy)

)q/2
ds
]

+ E
[ ∫ u

0

(∫
Rd
‖f(XN(s), y)− f(XN(κN(s)), y)‖2ν(dy)

)q/2
ds
]
. (6.32)

By Assumption A-2, it then follows that

G7 ≤
1

8
E
[

sup
0≤s≤u

‖e(s)‖q
]

+

∫ u

0

E
[

sup
0≤r≤s

‖e(r)‖qds
]

+

∫ T

0

E[‖XN(s)−XN(κN(s))‖q]ds (6.33)

for any u ∈ [0, T ]. Finally, we can write G8 as

G8 := E
[

sup
0≤t≤u

∫ t

0

∫
Rd

(
‖e(s)‖q−2‖f̄(s, y)‖2 + ‖f̄(s, y)‖q

)
N(ds, dy)

]
= E

∫ u

0

∫
Rd
‖e(s)‖q−2‖f̄(s, y)‖2ν(dy)ds+ E

∫ u

0

∫
Rd
‖f̄(s, y)‖qν(dy)ds

=: H1 +H2 (6.34)

for any u ∈ [0, T ]. By the splitting (6.29), Cauchy-Schwarz inequality and assumption

A-2, we have

H1 ≤ E

∫ u

0

∫
Rd
‖e(s)‖q−2‖f(X(s), y)− f(XN(s), y)‖2ν(dy)ds

+ E

∫ u

0

∫
Rd
‖e(s)‖q−2‖f(XN(s), y)− f(XN(κN(s)), y)‖2ν(dy)ds

≤ CE

∫ u

0

‖e(s)‖qds+ CE

∫ u

0

‖e(s)‖q−2‖XN(s)−XN(κN(s))‖2ds (6.35)

for any u ∈ [0, T ]. Using Young’s inequality again, we obtain

H1 ≤ C

∫ u

0

E
[

sup
0≤r≤s

‖e(s)‖q
]
ds+ C

∫ T

0

E[‖XN(s)−XN(κN(s))‖q]ds (6.36)
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for any u ∈ [0, T ]. Using again the splitting (6.29), Cauchy-Schwarz inequality and

assumption A-2, we get

H2 ≤ C

∫ u

0

E
[

sup
0≤r≤s

‖e(s)‖q
]
ds+ C

∫ T

0

E[‖XN(s)−XN(κN(s))‖q]ds (6.37)

for any u ∈ [0, T ]. Combining (6.36) and (6.37), we obtain

G8 ≤ C

∫ u

0

E
[

sup
0≤r≤s

‖e(s)‖q
]
ds+ C

∫ T

0

E[‖XN(s)−XN(κN(s))‖q]ds. (6.38)

Combining (6.19), (6.20), (6.21), (6.22), (6.26), (6.33) and (6.38), we obtain

3

4
E
[

sup
0≤t≤u

‖e(t)‖q
]
≤ C

∫ u

0

E
[

sup
0≤r≤s

‖e(r)‖q
]
ds

+ C

∫ T

0

(
E[‖XN(s)−XN(κN(s))‖q+δ]

) q
q+δ
ds

+ CE

∫ T

0

‖a(XN(κN(s)))− aN(XN(κN(s)))‖qds

+ C

∫ T

0

E[‖XN(s)−XN(κN(s))‖q]ds. (6.39)

Applying Gronwall’s inequality (A.7), we have

E
[

sup
0≤t≤T

‖e(t)‖q
]
≤ C

∫ T

0

(
E‖XN(s)−XN(κN(s))‖q+δ

) q
q+δ
ds

+ CE

∫ T

0

‖a(XN(κN(s)))− aN(XN(κN(s)))‖qds

+ C

∫ T

0

E‖XN(s)−XN(κN(s))‖qds. (6.40)

By (6.5) and (6.9), we can get

‖a(XN(κN(s)))− aN(XN(κN(s)))‖ ≤ N−1/2‖a(XN(κN(s)))‖2

≤ CN−1/2(1 + ‖XN(κN(s))‖χ+2). (6.41)
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By Lemma (6.0.2), it then follows that

E
[

sup
0≤t≤T

‖e(t)‖q
]
≤ CN−

q
q+δ ,

which completes the proof.

Numerical Experiments

The example we use for our numerical experiment in this section is a 1-dimensional

stochastic differential equation driven by Lévy motion,

dX(t) = −X5(t)dt+X(t)dW (t) +

∫
R
X(t)yÑ(dt, dy), X(0) = 1.

Here, t ∈ [0, 1]. The jump size follows standard normal distribution and the jump

intensity is 2. We use 5 different time steps: ∆t = 2−12, 2−11, 2−10, 2−9, 2−8 and 1000

realizations for each discretisation. The following figure is the loglog plot of the

experimental error with respect to the 5 different time steps.
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Figure 6.1: Log-log plot of the strong error from the numerical approximation for
a SDE driven by Lévy motion with superlinearly growing drift

109



Bibliography

110



[1] M. B. Alaya and A. Kebaier. Central limit theorem for the multilevel Monte

Carlo Euler method. The Annals of Applied Probability, 25(1):211–234, 2015. 95

[2] D. Applebaum. Lévy Processes and Stochastic Calculus, 2nd edition. Cambridge

University Press, 2009. 1, 9, 19, 21, 22

[3] S. Asmussen and J. Rosiński. Approximations of small jumps of Lévy processes

with a view towards simulation. Journal of Applied Probability, 38:482–493, 2001.

22

[4] V. Bally. Introduction to Malliavin Calculus. Lecture Notes, available at

http://perso-math.univ-mlv.fr/users/bally.vlad, 2007. 61, 62

[5] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential

equations I: convergence rate of the distribution function. Probability Theory

and Related Fields, 104(1):43–60, 1995. 5, 18, 59, 65, 82, 86

[6] A. Barth and A. Lang. Multilevel Monte Carlo method with applications to

stochastic partial differential equations. International Journal of Computer

Mathematics, 89(18):2479–2498, 2012. 95

[7] J. Bertoin. Lévy Processes. Cambridge University Press, 1998. 19

[8] N. Bouleau and D. Lepingle. Numerical Methods for Stochastic Processes. John

Wiley & Sons, 1994. 17, 65

[9] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel

Monte Carlo methods and applications to elliptic PDEs with random coefficients.

Computing and Visualization in Science, 14(1):3–15, 2011. 95

111



[10] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman &

Hall/CRC, 2004. 19, 22

[11] K. Dareiotis, C. Kumar, and S. Sabanis. On tamed euler approximations of

sdes driven by Lévy noise with applications to delay equations. arXiv preprint

arXiv:1403.0498, 2014. 24, 96, 99, 100, 101

[12] S. Dereich. Multilevel Monte Carlo algorithms for Lévy-driven SDEs with

Gaussian correction. The Annals of Applied Probability, pages 283–311, 2011.

95

[13] S. Dereich and S. Li. Multilevel Monte Carlo for Lévy-driven SDEs: central limit

theorems for adaptive Euler schemes. The Annals of Applied Probability, 26(1):

136–185, 2016. 95

[14] L. C. Evans. Partial Differential Equations, 2nd edition. American Mathematical

Society, 2010. 119, 122

[15] G. B. Folland. Real Analysis: Modern Techniques and Their Applications. John

Wiley & Sons, 2013. 121

[16] M. B. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56

(3):607–617, 2008. 6, 76, 88, 94, 95

[17] M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328, 2015.

94, 95

[18] M. B. Giles and L. Szpruch. Multilevel Monte Carlo methods for applications in

finance. arXiv preprint arXiv:1212.1377, 2012. 94

[19] M. B. Giles, D. J. Higham, and X. Mao. Analysing multi-level Monte Carlo

for options with non-globally Lipschitz payoff. Finance and Stochastics, 13(3):

403–413, 2009. 88

112



[20] P. Glasserman. Monte Carlo Methods in Financial Engineering, volume 53.

Springer Science & Business Media, 2003. 78

[21] I. Gyöngy and N. V. Krylov. On stochastic equations with respect to

semimartingales I. Stochastics: An International Journal of Probability and

Stochastic Processes, 4(1):1–21, 1980. 23

[22] D. J. Higham. An algorithmic introduction to numerical simulation of stochastic

differential equationns. SIAM Reviews, 43(3):525–546, 2001. 16

[23] D. J. Higham, X. Mao, and A. M. Stuart. Strong convergence of Euler-

type methods for nonlinear stochastic differential equations. SIAM Journal of

Numerical Analysis, 40(3):1041–1063, 2002. 3, 4, 18, 27, 31, 32, 33, 88

[24] Y. Hu. Semi-implicit Euler-Maruyama scheme for stiff stochastic equations. In

Stochastic Analysis and Related Topics V, pages 183–202. Springer, 1996. 3, 18

[25] Y. Hu and S. Watanabe. Donsker delta functions and approximations of heat

kernels by the time discretization method. J. Math. Kyoto Univ., 36:499–518,

1996. 59

[26] M. Hutzenthaler and A. Jentzen. Numerical approximations of stochastic

differential equations with non-globally Lipschitz continuous coefficients, volume

236. American Mathematical Society, 2015. 88

[27] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden. Strong and weak divergence

in finite time of Euler’s method for stochastic differential equations with non-

globally Lipschitz continuous coefficients. Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, 467(2130):1563–

1576, 2011. 33, 34

[28] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden. Strong convergence of

an explicit numerical method for SDEs with nonglobally Lipschitz continuous

113



coefficients. The Annals of Applied Probability, 22(4):1611–1641, 2012. 4, 33, 35,

36, 88, 123

[29] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion

Processes. Elsevier, 2014. 65

[30] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition.

Springer Science & Business Media, 2012. 122

[31] F. Klebaner. Introduction to Stochastic Calculus with Applicaitons, 3rd edition.

Imperial College Press, 2012. 1, 9, 11, 13

[32] P. Kloeden and A. Neuenkirch. Convergence of numerical methods for stochastic

differential equations in mathematical finance. arXiv preprint arXiv:1204.6620,

2012. 88

[33] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential

Equations. Springer, 1992. 1, 2, 5, 6, 16, 17, 18, 59, 81, 82

[34] A. Kohatsu-Higa. High order Itô-Taylor approximation to heat kernels. J. Math.

Kyoto Univ, 37:129–150, 1997. 59

[35] A. Kohatsu-Higa. Weak approximations. a Malliavin Calculus approach. Math.

Comp., 70(233):135–172, 2001. 59

[36] C. Kumar and S. Sabanis. On tamed Milstein schemes of SDEs driven by Lévy

noise. arXiv preprint arXiv:1407.5347, 2014. 96

[37] C. Kumar and S. Sabanis. On Milstein approximations with varying coefficients:

the case of super-linear diffusion coefficients. arXiv preprint arXiv:1601.02695,

2016. 44

[38] H. Kunita. Stochastic differential equations and stochastic flows of

diffeomorphisms. In École d’Été de Probabilités de Saint-Flour XII-1982, pages

143–303. Springer, 1984. 14

114



[39] X. Mao. Stochastic Differential Equations and Applicatios, 2nd edition. Elsevier,

2007. 9, 12, 13, 17

[40] R. C. Merton. Option pricing when underlying stock returns are discontinuous.

Journal of Financial Economics, 3(1-2):125–144, 1976. 1

[41] R. Mikulevicius and H. Pragarauskas. On Lp-estimates of some singular integrals

related to jump processes. SIAM Journal on Mathematical Analysis, 44(4):2305–

2328, 2012. 100

[42] I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus,

from Stein’s Method to Universality. Cambridge University Press, 2012. 61, 63

[43] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Springer,

2006. 61

[44] G. Di Nunno, B. Øksendal, and F. Proske. Malliavin Calculus for Lévy Processes

with Applications to Finance. Springer, 2009. 61, 62

[45] B. Øksendal. Stochastic Differential Equations: An Introduction with

Applications, 6th edition. Springer, 2003. 1, 9, 14

[46] A. Papapantoleon. An introduction to Lévy processes with applications in

finance. arXiv preprint arXiv:0804.0482, 2008. 19

[47] E. Pardoux. Markov Processes and Applications: Algorithms, Networks, Genome

and Finance. John Wiley & Sons, 2008. 78

[48] E. Platen. An introduction to numerical methods for stochastic differential

equations. Acta Numerica, 8:197–246, 1999. 16

[49] E. Platen and N. Bruti-Liberati. Numerical Solution of Stochastic Differential

Equations with Jumps in Finance. Springer Science & Business Media, 2010. 2,

19, 22

115



[50] P. E. Protter. Stochastic Integration and Differential Equations, 2nd edition.

Springer, 2003. 22

[51] C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Science &

Business Media, 2013. 78

[52] J. Rosiński. Series representations of Lévy processes from the perspective of

point processes. In Lévy Processes, pages 401–415. Springer, 2001. 22

[53] J. Rosiński. Simulation of Lévy processes, encyclopedia of statistics in quality

and reliability: Computationally intensive methods and simulation, 2008. 22

[54] J. Rosiński and L. Wang. Weak convergence of the Euler scheme for SDEs via

Malliavin calculus. in preparation, 2016. 63

[55] S. Sabanis. Euler approximations with varying coefficients: the case of

superlinearly growing diffusion coefficients. to apprear in Annals of Applied

Probability, 2016. 4, 43, 44, 47, 48, 49, 52, 88

[56] K. Sato. Lévy Processes and Infinitely Divisible Distributions, 2nd edition.

Cambridge University Press, 2013. 19, 20

[57] W. Shoutens. Lévy Processes in Finance: Pricing Finanicial Derivatives. John

Wiley & Sons, 2003. 19

[58] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models.

Springer, 2004. 1, 19

[59] D. Talay. Efficient numerical schemes for the approximation of expectations of

functionals of the solution of a SDE, and applications. In Filtering and Control

of Random Processes, pages 294–313. Springer, 1984. 60

[60] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes

solving stochastic differential equations. Stochastic Analysis and Applications, 8:

483–509, 1990. 5, 59, 60, 82

116



[61] M. Tretyakov and Z. Zhang. A fundamental mean-square convergence theorem

for SDEs with locally Lipschitz coefficients and its applications. SIAM Journal

on Numerical Analysis, 51(6):3135–3162, 2013. 88

[62] Y. Xia. Multilevel Monte Carlo for jump processes. PhD thesis, University of

Oxford, 2013. 95

117



Appendices

118



Appendix A

Inequalities

A.1 Elementary Inequalities

The following elementary inequalities are taken from the appendices of Evans [14].

1. Cauchy’s inequality.

ab ≤ a2 + b2, a, b ∈ R. (A.1)

Proof. 0 ≤ (a− b)2 = a2 − 2ab+ b2.

2. Young’s inequality. Let 1 < p, q <∞, 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+
bq

q
, a, b > 0. (A.2)

Proof. Since the mapping x 7→ ex is convex,

ab = eln a+ln b = e
1
p

ln ap+ 1
q

ln bq

≤ 1

p
eln ap +

1

q
eln bq

=
ap

p
+
bq

q
.
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3. Cauchy-Schwarz inequality.

‖〈x, y〉‖ ≤ ‖x‖‖y‖, x, y ∈ Rm. (A.3)

Proof. Let ε > 0 and note

0 ≤ ‖x± εy‖2 = ‖x‖2 ± 2ε〈x, y〉+ ε2‖y‖2.

Consequently,

±〈x, y〉 ≤ 1

2ε
‖x‖2 +

ε

2
‖y‖2.

Minimizing the right hand side by setting ε = ‖x‖
‖y‖ , provided y 6= 0.

4. Hölder’s inequality. Assume 1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1. Then if u ∈ Lp(Ω;Rm),

v ∈ Lq(Ω;Rm), we have

∫
Ω

|〈u, v〉|P (dω) ≤ ‖u‖Lp(Ω;Rm)‖v‖Lq(Ω;Rm). (A.4)

Proof. By homogeneity, we may assume ‖u‖Lp = ‖v‖Lq = 1. Then Young’s

inequality implies for 1 < p, q <∞ that

∫
Ω

|〈u, v〉|P (dω) ≤ 1

p

∫
Ω

‖u‖pP (dω) +
1

q

∫
Ω

‖v‖qP (dω) = 1 = ‖u‖Lp‖v‖Lq .

5. Minkowski’s inequality. Assume 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω;Rm). Then

‖u+ v‖Lp ≤ ‖u‖Lp + ‖v‖Lp . (A.5)
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Proof.

‖u+ v‖pLp

=

∫
Ω

‖u+ v‖pP (dω) ≤
∫

Ω

‖u+ v‖p−1(‖u‖+ ‖v‖)P (dω)

≤
(∫

Ω

‖u+ v‖pP (dω)
) p−1

p
((∫

Ω

‖u‖pP (dω)
)1/p

+
(∫

Ω

‖v‖pP (dω)
)1/p)

= ‖u+ v‖p−1
Lp

(
‖u‖Lp + ‖v‖Lp

)
.

6. Minkowski’s inequality for integrals. Suppose that (X,M, µ) and (Y,N , ν) are

σ-finite measure spaces, and let f be an (M⊗N )-measurable function onX×Y .

If f ≥ 0 and 1 ≤ p <∞, then

[ ∫
X

(∫
Y

f(x, y)dν(y)
)p
dµ(x)

]1/p

≤
∫
Y

[ ∫
X

f(x, y)pdµ(x)
]1/p

dν(y). (A.6)

Proof. The proof can be found on page 194 in Folland [15]. See also a generalized

version of this inequality on that page.

A.2 Gronwall’s Inequality

Let f(t) be a nonnegative, integrable function on [0, T ] which satisfies for a.e. t the

integral inequality

f(t) ≤ C1

∫ t

0

f(s)ds+ C2

for constants C1, C2 ≥ 0. Then

f(t) ≤ C2(1 + C1te
C1t) (A.7)

for a.e. 0 ≤ t ≤ T .
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Proof. The proof can be found on page 625 in Evans [14].

A.3 Probability Inequalities

All the inequalities in this section occur in a general probability space (Ω,F , P ).

1. Lyapunov inequality. Let X be a Rm-valued random variable and not

concentrated on a single point. If E[‖X‖s] exists for some s > 0, then for

all 0 < r < s and a ∈ Rm,

(E[‖X − a‖r])1/r ≤ (E[‖X − a‖s])1/s. (A.8)

Proof. Note that 1
s/r

+ 1
s/(s−r) = 1. Then this inequality is just a simple

application of the Hölder’s inequality (A.4).

2. Doob’s martingale inequality. Suppose M(t) is a martingale (or a positive

submartingale) on the interval [0,∞), then for any p > 1 and t ∈ [0,∞),

E
[

sup
0≤s≤t

|M(s)|p
]
≤
( p

p− 1

)p
E[|M(t)|p]. (A.9)

Proof. See e.g. pages 13-14 in Karatzas and Shreve [30] for a proof.

3. Burkholder-Davis-Gundy inequality. Suppose M(t) is a local martingale on the

interval [0, T ], null at 0. There are constants cp and Cp depending only on p,

such that

cpE
[(

[M,M ](T )
)p/2]

≤ E
[(

sup
0≤t≤T

|M(t)|
)p]
≤ CpE

[(
[M,M ](T )

)p/2]
,

(A.10)

for 1 ≤ p < ∞. Here [M,M ](t) is the quadratic variation process of M . If,

moreover, M(t) is continuous, then the result holds also for 0 < p < 1.

Proof. The proof can be found on e.g. page 166 in Karatzas and Shreve [30].
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4. Burkholder-Davis-Gundy inequality for stochastic integrals. Let k ∈ N and

let Z : [0, T ] × Ω → Rk×d be a predictable stochastic process satisfying

P (
∫ T

0
‖Z(s)‖2ds <∞) = 1. Then we obtain that

∥∥∥ sup
s∈[0,t]

∥∥∫ s

0

Z(u)dW (u)
∥∥∥∥∥

Lp(Ω;R)
≤ p
(∫ t

0

d∑
i=1

‖Z(s)~ei‖2
Lp(Ω;Rk)ds

)1/2

(A.11)

for all t ∈ [0, T ] and all p ∈ [2,∞), where ~ei is the ith standard unit vector in

the space Rd.

Proof. This inequality is a straightforward corollary of Doob’s martingale

inequality and Burkholder-Davis-Gundy inequality. See Lemma 3.7 in [28] for

the detailed proof.
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Appendix B

MATLAB Codes

B.1 MATLAB Codes for Generating the Graph in

Section 3.2

% Author: Liguo Wang

% Department of Mathematics

% University of Tennessee, Knoxville

% April, 2016

% Tamed Euler scheme for SDEs

% Solves 1-dim dX(t) = (X(t)-X^3(t))dt + X(t)dW(t), X(0) = 1

% Discretized Brownian path over [0,1] has dt = 2^(-12)

% Find the exact solution by using the timestep dt

% E-M uses 5 different timesteps: 16dt, 8dt, 4dt, 2dt, dt

% Examine strong convergence at T=1: E | X_L - X(T) | using Monte-Carlo

clc;

clear all;

close all;

randn(’state’,100)

T = 1; N = 2^12; dt = T/N; %

124



M = 1000; % number of paths sampled

Xerr = zeros(M,5); % preallocate array

for s = 1:M

Xtrue = 1;

dW = sqrt(dt)*randn(1,N); % Brownian increments

for i=1:N

Xtrue = Xtrue + (Xtrue-Xtrue^3)*dt/(1+(Xtrue-Xtrue^3)*dt)...

+ Xtrue*dW(1,i);

end

for p = 1:5

R = 2^(p); Dt = R*dt; L = N/R; % L Euler steps of size Dt = R*dt

Xtemp = 1;

for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + (Xtemp-Xtemp^3)*Dt/(1+(Xtemp-Xtemp^3)*Dt)...

+ Xtemp*Winc;

end

Xerr(s,p) = abs(Xtemp - Xtrue); % store the error at t = 1

end

end

Dtvals = dt*(2.^([1:5]));

% subplot(221) % top LH picture

loglog(Dtvals,mean(Xerr),’b*-’), hold on

loglog(Dtvals,(Dtvals.^(.5)),’r--’), hold off % reference slope of 1/2

axis([1e-4 1e-1 1e-5 1])

xlabel(’\Delta t’), ylabel(’Sample average of | X(T) - X_L |’)

title(’Strong Convergence of Tamed Euler Scheme’,’FontSize’,10)

legend(’Tamed Euler Scheme’,’Reference line with slope .5’)
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B.2 MATLAB Codes for Generating the Graph in

Section 3.3

% Tamed Euler scheme for SDEs with superlinealy growing diffusion

% Solves 1-dim dX(t) = X(t)(1-|X(t)|)dt + |X(t)|^{3/2}dW(t), X(0) = 1

% Discretized Brownian path over [0,1] has dt = 2^(-12)

% Find the exact solution by using the timestep dt

% E-M uses 5 different timesteps: 16dt, 8dt, 4dt, 2dt, dt

% Examine strong convergence at T=1: E | X_L - X(T) | using Monte-Carlo

clc;

clear all;

close all;

randn(’state’,100)

T = 1; N = 2^12; dt = T/N; %

M = 1000; % number of paths sampled

Xerr = zeros(M,5); % preallocate array

for s = 1:M

Xtrue = 1;

dW = sqrt(dt)*randn(1,N); % Brownian increments

for i=1:N

Xtrue = Xtrue + Xtrue*(1-abs(Xtrue))*dt/(1+dt^(0.5)*abs(Xtrue)...

^(3.5)) + abs(Xtrue)^(1.5)*dW(1,i)/(1+dt^(0.5)*abs(Xtrue)^(3.5));

end

for p = 1:5

R = 2^(p); Dt = R*dt; L = N/R; % L Euler steps of size Dt = R*dt

Xtemp = 1;

for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Xtemp*(1-abs(Xtemp))*Dt/(1+Dt^(0.5)*abs(Xtemp)...

^(3.5)) + abs(Xtemp)^(1.5)*Winc/(1+Dt^(0.5)*abs(Xtemp)^(3.5));
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end

Xerr(s,p) = abs(Xtemp - Xtrue); % store the error at t = 1

end

end

Dtvals = dt*(2.^([1:5]));

% subplot(221) % top LH picture

loglog(Dtvals,mean(Xerr),’b*-’), hold on

loglog(Dtvals,(Dtvals.^(.5)),’r--’), hold off % reference slope of 1/2

axis([1e-4 1e-1 1e-5 1])

xlabel(’\Delta t’), ylabel(’Sample average of | X(T) - X_L |’)

title(’Strong Convergence of Tamed Euler Scheme’,’FontSize’,10)

legend(’Tamed Euler Scheme’,’Reference line with slope .5’)

B.3 MATLAB Codes for Generating the Graph in

Section 6.1

% Author: Liguo Wang

% Department of Mathematics

% University of Tennessee, Knoxville

% April, 2016

% Tamed Euler scheme for SDEs with superlinealy growing diffusion

% Solves 1-dim dX(t) = -X^5(t)dt+X(t)dW(t)+\int_{R}X(t)y\tilde{N}(dt,dy)

% The jump size follows standard normal distribution

% Discretized Brownian path over [0,1] has dt = 2^(-12)

% Find the exact solution by using the timestep dt

% E-M uses 5 different timesteps: 16dt, 8dt, 4dt, 2dt, dt

% Examine strong convergence at T=1: E | X_L - X(T) | using Monte-Carlo

clc;

clear all;

close all;
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randn(’state’,100)

T = 1; N = 2^12; dt = T/N;

M = 1000; % number of paths sampled

lambda = 2; % intensity of the Poisson random var.

Xerr = zeros(M,5); % preallocate array

for s = 1:M

Xtrue = 1;

dW = sqrt(dt)*randn(1,N); % Brownian increments

dN = poissrnd(lambda*dt, 1, N);

for i=1:N

Xtrue = Xtrue - Xtrue^5/(N+N^(0.5)*abs(Xtrue)^5)...

+ Xtrue*dW(1,i) + Xtrue*dt*sum(randn(1,dN(1,i)));

end

for p = 1:5

R = 2^(p); Dt = R*dt; L = N/R; % L Euler steps of size Dt = R*dt

Xtemp = 1;

for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));

Ninc = sum(dN(R*(j-1)+1:R*j));

Xtemp = Xtemp - Xtemp^5/(N+N^(0.5)*abs(Xtemp)^5) + Xtemp*Winc...

+ Xtemp*Dt*sum(randn(1,Ninc));

end

Xerr(s,p) = abs(Xtemp - Xtrue); % store the error at t = 1

end

end

Dtvals = dt*(2.^([1:5]));

% subplot(221) % top LH picture

loglog(Dtvals,mean(Xerr),’b*-’), hold on

loglog(Dtvals,(Dtvals.^(.5)),’r--’), hold off % reference slope of 1/2

axis([1e-4 1e-1 1e-5 1])
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xlabel(’\Delta t’), ylabel(’Sample average of | X(T) - X_L |’)

title(’Strong Convergence of Tamed Euler Scheme’,’FontSize’,10)

legend(’Tamed Euler Scheme’,’Reference line with slope .5’, ’Location’, ...

’southeast’)
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