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Abstract 

Pine rocklands are fire-prone ecosystems with limited spatial extent, and have 

experienced reduced area in the previous decades through habitat conversion and urbanization. 

The purpose of this dissertation research was to evaluate the historical range of variability of 

fire activity and spatial patterns of fires in a pine rockland ecosystem in the National Key Deer 

Refuge (NKDR) on Big Pine Key in the Lower Florida Keys. To investigate the temporal and 

spatial patterns in fire activity, I (1) evaluated the temporal patterns for fires in my study area in 

the NKDR, (2) analyzed differences in standard fire history metrics since the advent of land 

management in the 1950s, (3) mapped the spatial extents of fires that scarred > 25% of the 

recording trees, (4) investigated how regression relationships fire activity and microtopographic 

parameters changed with aggregated scale, and (5) calculated global and local indications of 

spatial autocorrelation in the geographic fire-scar data.  

The 2011 fire was no more severe than other historic fires in the dataset, and was within 

a range of expectations for severe fires in the area. The relationships between fire activity and 

microtopography peaked at approximately 50 m (residual topography p < 0.05; curvature p < 

0.10). Finally, spatial autocorrelation analyses found statistically significant (p < 0.01) clustering 

in the fire-scar data network across the study area, and significant low-clustering (p < 0.05) at 

the at smaller scales. Recent lack of fire return intervals consistent with pre-management 

periods confirms the influence that people have had on fire in this ecosystem, and the presence 

of the neighborhood adjacent to the study area in the south may have dampened fire activity in 

that area. 	
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Chapter 1 

Introduction 
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1.1 Purpose for the Research 

Human disturbances are having a detrimental impact on natural fire activity, especially 

in ecosystems that have highly dynamic disturbance regimes. A natural fire for this dissertation 

represents one that ignites and initiates without human intervention, such as arson or 

prescribed fires, and is completely non-anthropogenic. A severe wildfire, determined by U.S. 

Fish and Wildlife officials post-fire based on factors such as intensity during the fire, amount of 

biomass consumed, and forest damage, occurred in the pine rocklands in the National Key Deer 

Refuge (NKDR) on Big Pine Key in September of 2011. Given the severe nature of the 2011 fire, 

my goal for this dissertation was to evaluate fire from both a temporal, and spatial, perspective 

within the NKDR. Specifically, I evaluated the historical range of variability of fire activity and 

spatial patterns of historic fires in a pine rockland ecosystem using dendrochronology and a 

Geographic Information System (GIS). Fire is a major disturbance to affect a pine rockland, and 

plants such as the dominant canopy species, South Florida slash pine (Pinus elliottii var. densa 

Little & K.W. Dorman; referred to in the following pages as slash pine), require fire to 

perpetuate and survive.  

Fire in the subtropics follows a basic ecological principle of fire regimes dominated by 

high-frequency but low-intensity fires, which often counters public opinion of fire (i.e. all fires 

are high-intensity conflagrations and therefore bad for the environment). My research area is 

located at a wildland-urban interface (WUI) where fires are actively suppressed with occasional 

but methodical use of prescribed burns. The highly prevalent and contentious relationship 

between local citizens and wildlife officials regarding controlled burning is primarily due to 
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strong community aversion to fire in the refuge and near neighborhoods. Public opinion that 

fires occur relatively infrequently was addressed by my research using dendrochronology and 

GIS as a means to evaluate historical range of variability and fire frequency in the NKDR. In 

periods of prolonged fire absence, a shift in the pine rockland ecosystem toward more fire-

intolerant hardwood species occurs (Alexander & Dickson, 1972). Therefore, a better 

understanding of fire in pine rockland ecosystems is important for their continued survival. 

Important habitat for endangered species, such as the Key deer (Odocoileus virginianus clavium 

Barbour & G.M. Allen) and Big Pine partridge pea (Chamaecrista lineata var. keyensis (Pennell) 

H.S. Irwin & Barneby), would be lost. 

The Blue Hole Burn in September of 2011 provided a unique opportunity to investigate 

fire regimes in the south Florida Keys due to the extensive removal of underbrush, which made 

scouting and collecting fire-scar data possible. The high-intensity fire created major local and 

regional distress over the health of the forest and the safety of people and their dwellings. The 

maps of historic fire surfaces, and quantitative data on the nature of fire activity throughout the 

pine rocklands, were beneficial outcomes of the research that followed this fire. My research 

will provide the U.S. Fish and Wildlife Service stationed on the Keys with the most current 

scientific information for effective prescribed burning procedures, and the potential for 

predictive fire risk modeling.  

Quantitative measures of fire activity can provide land managers with essential tools for 

protecting the pine rockland ecosystem while implementing safety protocols for the local 

community. The application of dendrochronology to fire science in the subtropics is a newly 
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developing opportunity for research. Demand has grown considerably for reconstructions of 

fire history from tree-ring based fire-scar analyses in subtropical regions, such as the Florida 

Keys. Additionally, fire history research in the southeastern U.S. is becoming a popular research 

avenue as we learn more about the important role of fire in pine rockland ecosystems. My 

research incorporated all of these factors related to dendrochronology into a comprehensive and 

spatially-explicit GIS, which allowed me to evaluate fire activity from a new perspective. 

My dissertation was designed and centered around two general and overarching 

objectives. The first was to precisely determine the pre-management (1956 and earlier) fire 

regime of pine rocklands on Big Pine Key, as compared to a post-management fire regime 

(1957–2014), using a systematic grid-based sampling method. This experimental design was 

constructed in such a way to generate continuous surfaces of fire activity across geographic 

space and through time at an annual resolution. The second general objective was to statistically 

assess the spatial relationship between fire and environmental variables, and within the fire-

scar data to assess spatial autocorrelation from both global and local perspectives. To 

accomplish both of my goals, I geo-located and collected fire-scar cross sections from 94 trees 

(Figure 1.1) within a network of seven plots to accurately capture the spatial and temporal 

patterns of fire activity. 

While pine rocklands in the southern U.S. may have a small geographic range, restricted 

to southern Florida and the Keys, physical and biological similarities between the rocklands and 

adjacent ecosystems make this study area perfect for constructing preliminary fire analysis 

models for geographic locations with low local relief. Furthermore, the rocklands  
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Figure 1.1 An example of a snag, both before (a) and after (b) a cross section was removed from 
the trunk. The scars (c) are found along the basal margin of the snag, preserved as lobe growth 
during the recovery process. BH1008 is the sample ID, indicating Blue Hole plot 1, tree 8. 
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are endangered and thus this dissertation research aimed to provide information that land 

managers could use to supplement the ecologically-sound and research-driven fire 

management plan already in place. A better understanding of fire in this ecosystem will lead to 

better understandings of fire activity in the greater ecoregion as a whole into the future. 

 

1.2 Study Area 

The fieldwork for this project was conducted entirely within the burned perimeter 

(approximately 48.5 total hectares) of the NKDR on Big Pine Key in the south Florida Keys 

(Figure 1.2). The area has low overall local relief (< 1.5 m) with karst limestone bedrock and 

extensive dissolution holes spread throughout the landscape. Well-developed soil is not found 

in this landscape, only a thin covering of organic matter, and many areas have exposed bedrock, 

particularly locations with greater distance from large or well-developed dissolution holes. 

Digital elevation models developed from LiDAR satellite data found local relief in some areas 

varied by as little as one m (Sah et al., 2006). Within the burned area, the ecosystem consists of 

pine rockland, but along the edges, primarily to the west of the NKDR, the pine rocklands 

transition to hardwood hammocks. The bordering hardwood hammocks create an environment 

that is less conducive to fire compared to the adjacent pine rocklands because the vegetation is 

less flammable.  

The Lower Florida Keys lie within a climatically-active region between the Gulf of 

Mexico and the Atlantic Ocean. The northeast tradewinds provide a continuous flow of air 
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Figure 1.2. Big Pine Key study area. The 2011 Blue Hole Burn perimeter is in yellow. The inset 
(upper right) delineates Big Pine Key within the Lower Florida Key island chain.  Source image 
provided by ArcGlobe 10.2.2. 
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across the lowland areas, and the interactions between land and air masses create a maritime 

tropical climate (Hela, 1952). The region also experiences an active tropical storm and hurricane 

season, but the Keys receive less annual precipitation on average compared with areas in 

southern mainland Florida, such the Everglades (Karl et al., 1983; Bergh & Wisby, 1996). Many 

disturbance events, such as fires, hurricanes/tropical storms, and thunderstorms, occur 

concurrently on an annual basis for pine rockland ecosystems. The repercussions of these 

disturbance events (particularly fire) directly influences the canopy vegetation of the Keys, and 

herbaceous species and endangered local wildlife, such as Key Deer (Odocoileus virginianus 

clavium). 

The canopy species in the pine rockland ecosystem is the slash pine and the understory 

consists primarily of species that respond quickly to wildfires through rapid re-sprouting. 

Under low fire activity, or given enough time post-fire disturbance, regrowth in the understory 

layer is extensive, with a mixture of palms and low shrub species (Figure 1.3). The understory is 

dense (Sah et al., 2004; Sah et al., 2006), and common taxa in this shrubby layer include 

buttonbush (Cephalanthus occidentalis L.), poisonwood (Metopium toxiferum (L.) Krug & Urb.), 

and locustberry (Byrsonima lucida (Mill.) DC.). Herbaceous species found in the ground layer 

include Big Pine partridge pea (Chamaecrista lineata var. keyensis (Pennell) H.S. Irwin & 

Barneby), an endangered herbaceous plant dependent on regular occurrence of fire, and  

 



 

 9 

Figure 1.3 Professor Henri D. Grissino-Mayer cuts a slash pine in the NKDWR with a chainsaw. 
Notice the thick underbrush just three years after the 2011 Blue Hole fire. The slash pines 
(background) are the tallest woody species in the rocklands. The ones shown here were not 
damaged in the fire. 
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sand flax (Linum arenicola (Small) H.J.P. Winkl.), and Florida white-top (Rhynchospora floridensis 

(Britton ex Small) H. Pfeiff.) (Table 1.1) (Wunderlin, 1982).  

Geographically, the pine rocklands one of the most spatially-threatened ecosystems in 

Florida (Doren et al., 1993). The pine rocklands on the Keys are endangered, primarily due to 

the advent of fire-suppression, increases in human populations on the Keys, and a pervasive 

and disruptive transportation infrastructure (Noss et al., 1995; Bergh & Wisby, 1996). Larger 

land area specifically on Big Pine Key provides more expansive contiguous sections of 

rocklands, and could expose the rocklands to greater instances of lightning strikes and increases 

the chance of a lightning-caused fire (Bergh & Wisby, 1996). In general, when fires are regularly 

present pine rocklands persist over hardwood hammocks (Alexander and Dickson, 1972; 

Snyder et al., 1990; Bergh & Wisby, 1996).  

 

1.3 Dendrochronology and Slash Pines in the Subtropics 

1.3.1 Fire History Research 

Previous research has established the importance of fire history reconstructions using 

tree rings and fire scars in the southeastern U.S. (Guyette & Spetich, 2003; McEwan et al., 2007), 

in many areas of the American Southwest (Baisan & Swetnam, 1990; Beaty & Taylor, 2007; 

Schoennagel et al., 2007), and beyond (Heyerdahl et al., 2002). Fires sweep through an area and 

leave their mark on trees, either by killing them and leaving charred remains, or by damaging 
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Table 1.1 List of most common herbaceous and woody plant species in all three layers of the 
canopy. The canopy species is slash pine and it has no competition for the canopy layer 
(Wunderlin, 1982). 
Species Name Common Name Forest Level 
Pinus elliottii var. densa slash pine Canopy 
Byrsonima lucida locust-berry Understory 
Cassia chapmanii Bahama senna Understory 
Coccothrinax argentata silver thatch palm Understory 
Conocarpus erectus buttonwood Understory 
Crossopetalum ilicifolium ground-holly Understory 
Eugenia rhombea red stopper Understory 
Metopium toxiferum poisonwood Understory 
Morinda royoc mouse pineapple Understory 
Myrica cerifera wax-myrtle Understory 
Pithecellobium guadalupense blackbead Understory 
Psidium longipes long-stalked stopper Understory 
Serenoa repens saw palmetto Understory 
Thrinax radiata thatch palm Understory 
Acacia pinatorium pine acacia Groundlayer 
Eragrostis elliottii Elliott’s love grass Groundlayer 
Ernodea littoralis golden-creeper Groundlayer 
Rhynchospora spp. white-topped sedge Groundlayer 
Smilax havanensis greenbriar Groundlayer 
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them, with the tree developing the scar post-fire (Smith and Sutherland, 1999). The evidence left 

by a fire that scars trees provides researchers with a wealth of information, including flame 

height, temperature (intensity) of the fire, spatial extent of the burn, fire frequency, and fire 

seasonality. However, some trees may not be scarred in a given fire event if the fire was not 

intense enough to damage the tree and create a fire scar (Speer, 2010). 

Traditionally, dendrochronology has been restricted to biogeographic regions where 

trees undergo a distinct growth period/dormancy period cycle. The seasonality of climate in 

these regions, especially in the middle and higher latitudes, allows for the formation of annual 

rings. With time, a tree that develops annual ring boundaries becomes a standing recorder of 

biological and ecosystem history of that location (Fritts, 1976; Stahle, 1999; Speer, 2010). Part of 

the physical history of the area includes occurrence of fire, which is recorded in fire scars along 

the basal area of the tree trunk. Repeated scars can form distinctive shapes on the tree trunk 

known as “catfaces,” from which we can extract a partial (from a living tree) or complete (from 

a dead tree) section from the trunk with a chain saw. We can then date the tree rings on these 

sections with annual accuracy using standard dendrochronological techniques.  

1.3.2 Dendrochronological Status of Slash Pine 

South Florida slash pine is a subtropical pine species whose extent reaches from lower 

central Florida through the Florida Keys (Landers & Boyer, 1999; Harley et al., 2012b). Slash pine 

is the dominant canopy species in southern pine rocklands, and the species is found specifically 

in the United States in the Lower Florida Keys, Everglades National Park, and Big Cypress 

National Preserve (Snyder et al., 1990; Doren et al., 1993; Harley, 2012). Mature slash pine trees 
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grow to a maximum of 45 m in height and < 1 m diameter at breast height, and live to 

approximately 150 years of age. Given the dynamic nature of the ecosystems, disturbances such 

as fire, hurricanes, and saltwater incursions inhibited slash pines from regularly maturing past 

150 years, although older trees have been found (Harley et al., 2012a). 

Slash pines are considered a foundation species in the pine rockland environment 

(Menges & Deyrup, 2001). Slash pines have developed specific biophysical characteristics that 

allow the species to tolerate fires in a range of intensities as long as flame height and 

temperature do not exceed the critical threshold for mortality. Once the tree passes the seedling 

stage, fire-resistance increases as the fire adaptations of the tree, such as heat-resistant bark 

(Menges & Deyrup, 2001), become stronger and more well-developed (Heyward, 1939). The 

viability of seed is less than one year, thus adult pines have no seed bank capability in the event 

of a canopy-replacing fire. Seed can be stored for many years under optimal environmental 

conditions, but given the lack of a well-developed soil layer, pines must produce new seed 

every year to regenerate.  

 

1.4 GIS and Spatial Analyses 

Geospatial analyses in physical geography combine information from the biophysical 

environment with applied modeling techniques to accurately represent real-world phenomena. 

To holistically evaluate fire activity of an area, a suite of GIS tools is necessary because no single 

method or tool exists to answer all questions. Additionally, no single route or methodology 

exists to evaluate fire activity of an area because no universal solution is viable in all kinds of 
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ecosystem analysis (Rollins et al., 2004), especially for locations that are dynamic, constantly 

changing, and influenced by the human community. Many different tools and methods exist to 

answer the questions for my dissertation; thus I have chosen my methods carefully and have 

defended them throughout the dissertation. Commonly researchers will incorporate field-

collected data with recently-acquired, high-resolution (5 m or less) LiDAR imagery, along with 

various fuel characteristics, to capture important environmental relationships of the burned 

area. Ultimately, the combinations of biophysical data allow scientists to build surfaces of fire 

activity and assess spatial patterns of historic fire better than would be possible with a less 

holistic dataset. 

Methods for converting GPS-located tree and fire-scar point data into fire activity 

surfaces incorporate various types of spatial interpolation (Keane et al., 2001; Rollins et al., 2004). 

Specifically, Inverse Distance Weighted (IDW) and spline interpolations can be used to generate 

surfaces with fire-scar representation at increasing distances from a fire-scarred tree. Fire-

scarred cross sections are collected in the field and dated using standard dendrochronological 

techniques of wood processing, measuring, and crossdating (Stokes & Smiley, 1968; Grissino-

Mayer, 2001a). These cross sections are also tagged with GPS locations (Garmin GPSmap 62s, 

variable error rate +/- 4 m), which makes the dataset inherently spatial, but also provides fire-

scar counts per tree, which gives an additional layer of depth to the dataset. Finally, 

interpolated surfaces can then be generated from point shapefile data (i.e. GPS-tagged trees) to 

create idealized landscapes of historic fire activity.  
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Areas of historically low to high fire activity can be modeled based on frequency and 

spatiotemporal density of past fires. Filters can be applied to the fire history data and 

interpolated surfaces can be generated for years with high fire extent (e.g. > 10% or > 25% trees 

scarred in a given year) to show how the fire “looked” spatially in that year. The final surfaces 

are composed of cells (sometimes referred to as pixels) and record historic fire frequency across 

a continuous landscape. The technique of interpolating fire activity across a landscape is fairly 

new and literature is sparse, but by choosing the appropriate interpolation technique we 

ensured the surfaces will accurately represent fire activity. 

A large suite of environmental predictor variables exist that could be included in an 

effective model of fire activity. Topography is the primary static or unchanging predictor 

variable for fire activity, while dynamic variables such as rate of spread and wind direction are 

also used if available (Rothermel, 1972; Finney, 1998, 2003). Outside of a geomorphic event such 

as a landslide, topographic variables, including slope, aspect, or elevation do not change 

significantly through time. However, variables such as wind speed or direction can vary 

significantly through time, thus they are considered here as dynamic. Additionally, in 

traditional fire risk modeling, soil moisture and heterogeneous fuel loading, if the data are 

available, are used to enhance model results. However, pine rockland ecosystems in the Florida 

Keys have homogeneous groundlayer fuel loads and soil characteristics, with little to no soil 

cover or surface hydrology. Considering pine rocklands are flat, microtopography derivatives 

were isolated as the primary variables of interest in our site. Lastly, by using topographic 

variables only, the techniques for relating fire to the physical landscape can be applied 
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elsewhere, outside of pine rocklands, where biological characteristics will begin to vary. The 

models were not built using variables only found in pine rocklands, which would have 

precluded or inhibited future research using these same techniques in other locales. 

Many fire risk models exist to calculate surfaces of fire activity, with some surfaces 

representing real-time activity if data are available while the fire is burning. One such model is 

LANDIS (Mladenoff et al., 1996), which models fire spread in broadleaf and conifer forests. 

Another model is BEHAVE (Andrews, 1986), which creates object-oriented and discrete event 

simulations for higher relief areas. A third model is FARSITE (Finney, 1998), which uses a wave 

propagation approach to operationally model fire spread. Keane et al. (2004) created a 

comprehensive resource for the various developed fire spread models, which provides 

information on the geographic areas and forest types, in which these models can be used by 

future researchers for best results. I introduce these models to show that fire activity analyses, 

for both historic and current fires, exist in literature and in practice. However, the common 

models listed above and those outlined by Keane et al. (2004) demonstrate the importance of 

high local relief in fire risk and spread modeling, and these fire activity assessments are ill-

suited for areas of low total relief such as locations found in the Florida Keys.  

 

1.5 Methods Overview 

My research design incorporates fire-scar and tree-ring data to analyze changes in fire 

activity through time, establish relationships between fire activity and microtopography, and 

calculate presence/absence of spatial autocorrelation in fire activity in the NKDR. The grid 
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centroid locations in the Blue Hole Burn area were provided by the U.S. Fish and Wildlife 

Service and are spaced 250 m apart along constant parallels of latitude. The grid network 

covered the entirety of Big Pine Key, but I selected seven adjacent locations within the Blue 

Hole Burn boundary in which to sample my slash pines. Each plot, when characterized with 

LiDAR data, encompassed numerous cells, each 1 m2. The contiguous network of cells 

translated to a large (approximately 8.5 ha), spatially-explicit sampling design, and ensured no 

location in the site was missed when scouting trees. By “spatially-explicit” sampling design, I 

mean a continuous network of cells, which collectively cover the entire study area, and which 

prevent a mosaicked collection method whereby certain areas of the study area are overlooked 

when sampling slash pines. Furthermore, the experimental design allowed me to definitively 

evaluate how fire activity changes with changes in spatial scale. For example, fire activity of a 

single cell (e.g. 1 x 1 m resolution) can be compared to fire activity of aggregated resolution (e.g. 

3 x 3 m, 10 x 10 m, and upwards). Additionally, I was able to calculate global and local 

indicators of spatial autocorrelation in my fire-scar data, to delineate locations of clustering or 

dispersion. 

In each of the seven plots, my research team and I conducted reconnaissance for an 

optimal subset of 30 fire-scarred trees. From this 30-tree subset, we chose the 10–15 best trees 

from which to collect cross sections. For the sample tree criteria, I define “best” as those trees 

with old-growth forms, indicating old age and therefore increased sample depth back through 

time (Schulman, 1937; Speer, 2010), and those with high numbers of preserved scars for a more 

extensive temporal record of fire. I was not able to scout exactly 30 fire-scarred trees in every 
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plot because every plot did not have 30 fire-scarred trees, thus more than 10–15 were collected 

from some plots and less from others. In some instances, more trees were collected from a given 

plot to fill in any geographic gaps in data caused by plots with less than 10–15 trees. 

1.5.1 Dendrochronological Methods 

The cross sections collected from each tree were brought back to the laboratory for 

processing. I sanded the cross-section samples to an ultra-fine polish using progressively finer 

sand paper to distinguish earlywood and latewood boundaries and cell structure of each ring 

(Stokes & Smiley, 1968; Orvis & Grissino-Mayer, 2002). Ring boundaries, particularly between 

earlywood and latewood cells within the ring, were particularly hard to define for the slash 

pine species. This difficulty led me to rely on WinDendro™ version 2014b (release date June 9, 

2015; Regent Instruments Inc.) software with a high-resolution digital scanner to record images 

with an average dot-per-square inch (dpi) density of 2000 or greater. Due to memory storage 

constraints, some samples of larger size (greater DBH) required a lower dpi to ensure the entire 

sample could be scanned and analyzed. 

Fire scars were corroborated with fire history records already established for the area to 

achieve correct fire chronology development (Harley et al., 2011). Placement of the fire scar 

within the ring determined the calendar year of each fire, and the estimated season when the 

fire occurred during the growing season of that year based on position of the fire scar within the 

annual ring (Grissino-Mayer, 2001b). A select few fires occurred in the dormant season between 

the latewood of one year and the earlywood of the next calendar year. Most fires occurred later 

in the growing season, before dormancy, where small amounts of latewood cells could be seen 
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after the scar. Major fire years were filtered into two classes, specifically > 10% of samples 

scarred and > 25% scarred for a particular year. For example, if a fire scar was present in the 

1850 calendar year for > 25% of the samples, then this indicated a year with a large, site-wide 

fire. Finally, I split the temporal record into pre- and post-management periods and conducted a 

standard comparison analyses to test for changes in fire regime through time. 

1.5.2 GIS Methods 

I used the fire dates of the larger (> 25% scarred) fires to create a continuous 

spatiotemporal surface of fire across the entire landscape using ArcGIS 10.2. For each major fire 

year, I generated spatially-explicit surfaces of historic fire activity through the use of two 

separate spatial interpolation techniques, specifically Inverse Distance Weighted (IDW) and 

tension splining. Spatial extent of fire activity was evaluated for changes since the pre-

settlement and fire suppression periods. Once evaluated using this grid-based approach, I could 

clearly see the spatial structure of fire activity through time. I was able to address questions 

regarding locations of patchy fire activity, spatial extents of larger fires, and where different 

sections of the study area burned in different fire years, which causes the reduction of fuel 

loads.  

The historic fire activity data were assessed for spatial autocorrelation from both the 

global and local perspectives. I calculated global autocorrelation statistics (Moran’s I and Getis-

Ord G) on the fire-scar count data per tree for evidence of clustering or dispersion. Clustering of 

high and low fire activity indicates clear spatial patterns of fire activity which can be used in 

future analyses for predictive risk assessment or modeling. In addition to the global indicators 
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of spatial autocorrelation, I also calculated local metrics, including Anselin’s Local Moran’s I, 

Getis-Ord Gi*, and Ripley’s K. Each of these metrics evaluated clustering and dispersion from 

the spatial scale of “neighborhoods” in the data. For example, Ripley’s K breaks the study area 

into increasing bands of distance around a fire-scarred tree of interest and evaluates fire-scar 

counts on neighboring trees in those bands. If the trees possess similar fire-scar counts, localized 

clustering of data is present.   

I analyzed the relationships between fire activity and microtopography in the NKDR 

through a suite of linear regressions at aggregated scales. Each of the four primary 

microtopography variables of interest were derived from the original 1 m LiDAR elevation 

model. The predictor variables include: elevation, slope in degrees, residual topography (peaks 

and depressions), and curvature (2nd derivative of slope). A single regression was conducted for 

each scale of interest, specifically 1 x 1 (no scaling), 3 x 3, 10 x 10, 50 x 50, and 100 x 100 (all 

scalar windows in m). I compared the model outputs of each of the five linear regressions to 

assess changes in the predictor-response variable relationship with aggregations in scale. The 

purpose of aggregating the data to coarser resolution was to determine the presence, if any, of 

strengthening or dampening of relationships with decreasing resolution.  

 

1.6 Motivation for the Research 

Pine rocklands are flat, and spatial homogeneity in environmental parameters normally 

included as predictor variables in fire activity models makes robust modeling of fire activity in 

this area difficult. This dissertation research was designed to evaluate fire activity particular to 
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pine rocklands and ecosystems with similar characteristics, specifically those with little to no 

relief, and generally homogenous fuel characteristics. Therefore, this research investigated 

spatiotemporal patterns of fire activity using a spatially-explicit research design in an ecosystem 

that, to the best of my knowledge, has received no attention from fire modelers.  

 Current public resistance to use fire as a tool for ecosystem protection and conservation 

stems largely from two fears: destroying remaining portions of this ecosystem, and destroying 

numerous exurban structures that are heavily concentrated around the refuge. A prime example 

was the frustration and disappointment expressed by the local community after the September 

15, 2011 Blue Hole Burn. This wildfire started as a prescribed burn that escaped prescription 

due to unforeseen weather patterns. The 2011 burn landscape was fairly contiguous 

representing a mosaic of effects that resulted from low, moderate, and high severity fire. Along 

the eastern edge of the burn bordering a primary island thoroughfare, however, the fire burned 

at a much higher intensity and more plants were consumed. Local community upheaval for the 

wildfire reinforced the need for more efficient planning and more effective responses to either 

planned or unplanned fire activity along the WUI. My dissertation provides information on 

historic fire regimes across a large swath of pine rockland along this WUI and may help in the 

development of predictive risk models to locate areas of high-low future fire risk. Furthermore, 

given the likelihood of increased populations, coupled with continued stress on the rocklands 

given observed sea level rises and general habitat loss, the need to better understand these 

fragile and spatially-unique ecosystems is strong. 
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1.7 Dissertation Research Objectives  

1. Conduct a standard fire history reconstruction for our study site within the NKDR 

(Chapter 2);  

2. Place the 2011 Blue Hole Burn fire in the NKDR within the historical range of variability 

for fire activity derived from the fire-scar and tree-ring record (Chapter 2); 

3. Generate surfaces of major historical fire years to spatially display historic fire activity in 

the NKDR (Chapter 2); 

4. Isolate specific topographical variables that display statistically significant relationships 

with historic fire activity (Chapter 3); 

5. Determine if relationships between fire activity and microtopography fluctuate with 

changes in scale (Chapter 3); 

6. Evaluate global spatial patterns of fire activity for the study area (Chapter 4); 

7. Evaluate local spatial patterns of fire activity for the study area (Chapter 4). 

 

1.8 Dissertation Organization 

 My dissertation consists of five chapters, three of which are individual manuscripts 

prepared for submission to peer-reviewed journals. The final chapter of my dissertation 

discussed broad results to holistically discuss and conclude the study. The second chapter of my 

dissertation focused on calculating standard fire regime metrics for Big Pine Key, but also 

investigated the spatial extents of large historic fires through the use of spatial interpolations. I 

discussed how I created fire frequency surfaces from the GPS point data and number of fire 



 

 23 

scars, and the interpolation techniques used and comparisons between methods to establish the 

best possible surface creation method. For the first part of Chapter 2, I focused on the study area 

as a whole, and calculated current fire activity metrics, which I then used to compare with 

historical activity and assessed changes post-1950 (the start of fire suppression practices and 

land management in the NKDR). 

In Chapter 3, I investigated the statistical relationship between fire activity and 

topographical variables derived from 1 m LiDAR data. Essentially, the terrain data were 

deconstructed into various metrics of surface roughness, and then regressed onto the fire 

frequency data through the use of various GIS techniques. Each tool I used to combine the 

raster data (LiDAR) with the point shapefile data (GPS-located trees) is described in detail, and 

with necessary calibration parameters, in the methods section of Chapter 3. I performed 

standard linear regressions at increasing scales to evaluate changes, if any, that exist in the 

relationship between fire activity and microtopography with decreasing resolution (aggregated 

cell windows).  

 In Chapter 4, I evaluate the spatial structure of the fire-scar data, specifically those that 

pass certain filter or cut-off percentages. I conducted two separate investigations into clustering 

and dispersion, first at the global (i.e. study-area-wide) scale, and the second from a localized 

perspective. I chose Moran’s I and Getis-Ord G as my global indicators of spatial 

autocorrelation, and Anselin’s Local Moran’s I, Getis-Ord Gi*, and Ripley’s K as my three local 

indicators. I outlined the details of each operation, including calibration and specification 

parameters, in the methods section in Chapter 4. The purpose of using both global and local 
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indicators was to assess clustering and dispersion from two perspectives because it is possible 

that localized clustering/dispersion is overlooked in global analyses.  
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Chapter 2 
 

Spatiotemporal Fire History Reconstruction and Historical Range of Variability Analysis for 
Pine Rocklands on Big Pine Key, Florida USA 
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This chapter includes sections from Chapter 1 that were modified to fit within the introduction, 
literature review, and site description segments to follow. The use of “we” or “our” in this 
chapter refers to the many people who assisted in the field and laboratory to make this research 
project successful. Details on specific individual involvement can be found in the 
Acknowledgements section at the end of this chapter. This research was funded in part by a 
seed grant from the Initiative for Quaternary Paleoenvironmental Research. I am first author, 
and my contributions to this project include experimental design, data collection and analyses, 
and manuscript completion. This chapter will be submitted to the journal Dendrochronologia for 
publication. 
 
Abstract 
 
Fire disturbance is an important process in ecosystems for maintaining habitat and vegetation. 
Fire regimes of many forest and rockland ecosystems follow a fire regime of high-frequency and 
low-intensity fires, which curtails fuel load accumulation and preserves fire-tolerant plant 
species composition. In 2011, a fire escaped prescription in the pine rocklands on Big Pine Key 
in the Lower Florida Keys, and burned near a residential area causing community upheaval 
regarding what is “natural” for fires in the area. The goal of our project was to determine the 
natural fire regimes of the area and to evaluate spatial relationships of major fires. Our study 
area in the National Key Deer Refuge is a pine rockland and the dominant canopy species is 
South Florida slash pine (Pinus elliottii var. densa). We reconstructed the fire regimes for both 
pre- (1911–1956) and post-management (1957–2014) periods, and evaluated fire history metrics 
for two levels of fire burn percentages (> 10% and > 25%). We used a GIS to spatially analyze the 
fire activity patterns for each of the 21 major fire years (> 25%). We visually assessed the spatial 
relationships between large fires of different years. Fire return intervals were statistically 
different for both time periods (p < 0.01), but were statistically the same for both > 10% and > 
25% fires (p > 0.10). Composite fire interval results show that fires burned approximately once 
every 3 years. Furthermore, we found that fires burned in different spatial arrangements for 
each of the major fire years, and in different locations across the study area. Spatial 
representations of major fire years could distinguish fire scars from separate trees, all with the 
same seasonality placement (e.g. latewood), which resulted from separate fires. Our analyses 
conclude that the 2011 fire statistically fell within the expected historical range of fire variability 
for pine rockland ecosystems. Lastly, we are able to display that fire frequency has decreased in 
the post-management era. 
 
Key words: dendrochronology, fire history, slash pines, GIS, spatial analyses 
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2.1 Introduction 

 Globally, pine rocklands are a spatially-limited ecosystem, occurring in the United States 

only in the southern portions of Florida (Snyder & Robertson, 1990; Noss et al., 1995; Sah et al., 

2004; Harley et al., 2011). The Lower Florida Keys, and specifically Big Pine Key, have a mixture 

of these subtropical pine rocklands and hardwood hammocks that create a unique mosaic 

across the landscape. The pine rocklands are dominated in the canopy layer by the South 

Florida slash pine (Pinus elliottii var. densa Little & K.W. Dorman; hereafter slash pine), with a 

mixture of palm and herbaceous species in the subcanopy (Table 2.1).  With the effects of 

natural disturbances (e.g. hurricanes, insect outbreaks, and sea-level rise) and anthropogenic 

influences (e.g. urbanization and fire suppression), the already naturally-limited rocklands have 

experienced endangering losses in the subtropical U.S. (Abrahamson, 1984; Frost et al., 1986; 

Doren et al., 1993; Ross et al., 1994; Platt et al., 2000; Menges & Deyrup, 2001; Ross et al., 2008; 

Harley et al., 2011). Without regular occurrence of fire in pine rocklands, the ecosystem 

experiences a distinct shift in vegetation, from a pine rockland composition (slash pine 

dominated with an open canopy) to a tropical forest composed of various hardwood species 

with high tree density (Alexander & Dickson, 1972; Snyder et al., 1990).  

 Fire is a natural disturbance in many ecosystems, particularly important for maintaining 

the overall health and productivity of plant communities (Ahlgren & Ahlgren, 1960; Taylor, 

1973; Wagner, 1978; Noble & Slatyer, 1980; Mutch et al., 1993; Sah et al., 2004; Liu et al., 2005; 

Possley et al., 2008; Stevens & Beckage, 2009). Fire is a common ecosystem process in the 

American Southwest (Baisan & Swetnam, 1990; Grissino-Mayer, 1999; Grissino-Mayer & 
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Table 2.1 List of common plant species found in the pine rockland ecosystem. The canopy 
species is slash pine, and it has no competition for the canopy layer (Wunderlin, 1982). 
Species Name Common Name Forest Level 
Pinus elliottii var. densa slash pine Canopy 
Byrsonima lucida locust-berry Understory 
Cassia chapmanii Bahama senna Understory 
Coccothrinax argentata silver thatch palm Understory 
Conocarpus erectus buttonwood Understory 
Crossopetalum ilicifolium ground-holly Understory 
Eugenia rhombea red stopper Understory 
Metopium toxiferum poisonwood Understory 
Morinda royoc mouse pineapple Understory 
Myrica cerifera wax-myrtle Understory 
Pithecellobium guadalupense blackbead Understory 
Psidium longipes long-stalked stopper Understory 
Serenoa repens saw palmetto Understory 
Thrinax radiata thatch palm Understory 
Acacia pinatorium pine acacia Groundlayer 
Eragrostis elliottii Elliott’s love grass Groundlayer 
Ernodea littoralis golden-creeper Groundlayer 
Rhynchospora spp. white-topped sedge Groundlayer 
Smilax havanensis greenbriar Groundlayer 
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Swetnam, 2000; Stephens et al., 2003; Covington & Moore, 2008), and in ecosystems across the 

globe (Larson, 1996; Lindbladh et al., 2003; Drobyshev & Niklasson, 2003; Gavin et al., 2003; 

Horn & Kappelle, 2009; Niklasson et al., 2010). The public often associate sites in the western 

U.S. (such as Colorado or southern California) as those that experience more frequent and more 

severe fire activity, but do not understand the need for fire in forests of the eastern U.S. and 

locations such as the Florida Keys. Additionally, not all forest communities experience fire the 

same way, or as frequently, but fire can vary in frequency, severity, and intensity (Snyder, 1991; 

Swetnam, 1993; Grissino-Mayer & Swetnam, 2000; Kipfmueller & Baker, 2000; Harley et al., 

2011). 

 In the southeastern and subtropical regions of the U.S., low severity, high frequency 

fires were most common until ca. 1950 (Chapman, 1926; Van Lear & Waldrop, 1989; Frost, 1998; 

Swetnam et al., 1999; Harley et al., 2013; Grissino-Mayer, 2016). These lower severity fires rarely 

left the understory, burning fuels that had accumulated on the forest floor (Van Lear & 

Waldrop, 1989; Keeley, 2008). However, larger more ecologically severe forest fires can still 

occur (Heilman et al., 1998; Jenkins et al., 2011; Grissino-Mayer, 2016). Fire is particularly 

important for pine rockland ecosystem health and preservation because it prevents the 

conversion of pine rocklands into hardwood hammocks (Chapman, 1932; Snyder et al., 1990; 

Snyder, 1991). The woody and herbaceous plant species in the rocklands are specifically 

adapted to regular occurrence of low severity fires. For example, pine trees must have 

approximately 18 mm or more of phloem and bark thickness to survive most fires (Hare, 1965; 

Hengst & Dawson, 1994; Pinard & Huffman, 1997). The endangered Big Pine partridge pea 
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(Chamaecrista lineata var. keyensis (Pennell) H.S. Irwin & Barneby) is a rare endemic  species 

found only in select rocklands in the subtropics, and without regular fire it is out-competed for 

resources with other species (Liu & Koptur, 2003; Liu & Menges, 2005; Slapcinsky et al., 2010; 

Maschinski et al., 2011).  

Plant species in ecosystems such as the pine rocklands depend on fire regimes with 

specific ranges of variability both in terms of severity and frequency. The typical fire return 

interval for lower severity fires in southern Florida and pine rocklands is one fire every 2 to 10 

years, or about 1 to 2 times per decade (Harper, 1927; Taylor, 1981; Platt et al., 2002; Liu et al., 

2005), which allows for ecosystem recovery after fire, but also prevents hardwood invasion after 

long absences of fire. Taylor (1981) stated that fires during the pre-European settlement period 

in the Everglades were predominantly caused by lightning during the wet season (June–

October) as a result of increased thunderstorm activity. For Big Pine Key, fires were used during 

the earlier portion of the 1900s to promote quality habitat for Key Deer and for hunting 

purposes (Albritton, 2009). The U.S. Fish and Wildlife Service ignites prescribed fires during 

periods of drier weather conditions within the June–October window (Doren et al., 1993; Platt et 

al., 2002).  

 Our study specifically is concerned with the Blue Hole Burn, a high-intensity fire that 

took place in the National Key Deer Refuge on Big Pine Key in the Lower Florida Keys in 

September of 2011. The Blue Hole Burn was initially a prescribed fire ignited by the U.S. Fish 

and Wildlife Service, and planned to cover ca. four ha. An unexpected weather pattern changed 

the trajectory of the burn front and the fire grew in size to consume approximately 40 ha.  The 
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burn site (Figure 2.1) is located directly adjacent to and west of Key Deer Boulevard which runs 

northwest to southeast on Big Pine Key. The burn perimeter extended approximately 750 m due 

west of Key Deer Boulevard and directly north of the Blue Hole neighborhood. The fire reached 

the slash pine canopy through the subcanopy, completely consuming fuel loads near Key Deer 

Boulevard (Chad Anderson USFWS, personal communication). Fire intensity and severity 

decreased in the northwestern sections due to freshwater marshes and dissolution holes with 

standing water. The level of community dissatisfaction, particularly from citizens owning 

property that bordered the burned perimeter, was severe and appears to be long lasting. The 

distress that community members felt was primarily for the perceived devastation to the health 

of the forest ecosystem, which further perpetuated the stigma of wildfires as being “unnatural.” 

Our primary goal in this study was to evaluate fire activity using the fire-scar record found in 

slash pine trees to accurately place the 2011 fire within the historical range of variability for fires 

in the area.  

We can place contemporary fires either outside or within the historical range of 

variability (Morgan et al., 1994). By determining the extent of this fire relative to other major 

fires of the area, we can provide factual basis for comparison, as opposed to those driven by 

media or personal opinion. By reconstructing the activity of fire for periods before human 

settlement and influence on an ecosystem (Frost, 1998), quantifiable comparisons between fires 

that occur today and those that occurred in the past can be evaluated. Furthermore, fire 

history reconstructions that incorporate dendrochronological techniques provide higher 
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Figure 2.1 The 2011 Blue Hole burn is shown by the yellow polygon (left). Big Pine Key is 
highlighted by the yellow rectangle (lower inset). The location of Big Pine Key in the Florida 
Keys island chain is shown by the yellow rectangle (upper inset). Source for imagery is 
ArcGlobe 10.2.2. 
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temporal detail and accuracy and for longer expanses of time into the past than historical 

records (McEwan et al., 2007; Sherrif & Veblen, 2007). Essentially, researchers can use tree rings 

to evaluate statistical patterns in fire activity through time by analyzing metrics such as 

frequency, variability, and spatial extents of fires in the past (Brown et al., 1999; Gutsell et al., 

2001; Veblen, 2003).   

 Our study examined spatial patterns of fire on Big Pine Key using a Geographic 

Information System (GIS).  Often in GIS research, datasets are packaged or collected in different 

forms, thus making data conversions and basic manipulations necessary for future analyses. 

Data can be of either vector or raster form, which requires the user to convert one dataset into 

the form of another for analyses. Data conversions are often needed in cases of GPS-located 

items (e.g. trees, point shapefiles) being used in conjunction with surface data (e.g. LiDAR 

digital elevation models, cell-based raster layers).  

 The purpose of this research was to reconstruct the history of fire for our study area and 

conduct analyses to quantify the historical range of variability, both temporally and spatially. 

The research questions that guided our project were: (1) What are the fire regime metrics for the 

entire timespan of the data set (historical and contemporary)? (2) Has fire frequency 

significantly changed from pre-management periods (before 1957) after the establishment of the 

NKDR in 1957? And if so, to what degree has fire frequency changed (i.e. become more or less 

frequent)? (3) What were the spatial characteristics of major historical fires in terms of extent 

and patterns of fire activity interspersed with areas of less or no fire activity? (4) How does the 

2011 Blue Hole burn compare in terms of spatial burn patterns and percent severity with other 
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major historical fires in our study area? We chose our research questions to capture information 

about the fire history on Big Pine Key from both a temporal and spatial perspective. By 

including this spatial perspective, we can investigate fire activity on the landscape in a non-

conventional and unique way to complement the traditional analysis of fire activity through 

time. 

 

2.2 Methods 

2.2.1 Big Pine Key Study Area 

 Our study site was located within the National Key Deer Refuge (established in 1957) on 

Big Pine Key (24.70° N, 81.37° W) in the Lower Florida Keys. Pine rocklands have a dense 

understory (Figure 2.2) that consists of numerous herbaceious species of herb and shrubs such 

as silver thatch palm (Coccothrinax argentata (Jacq.) L.H. Bailey), buttonwood (Conocarpus erectus 

L.), and pine acacia (Acacia pinetorum F.J. Herm.). Slash pines are the dominant species in the 

canopy, and are the species we used in our fire history analyses because they produce annual 

rings (Harley et al., 2011), and can record fire events below a fatal intensity threshold. Big Pine 

Key has a tropical savanna climate, with distinct wet summers and dry winter seasons. The 

mean annual precipitation for the area is approximately 980 mm, with approximately 80% of 

rainfall occurring from thunderstorms between June to October (NOAA, 2010).  

Groundlayer characteristics of pine rocklands are unique because soil development is 

limited. Rocklands in general are topographically flat, which distinguishes fire reconstructions 

from those in the high-relief areas of the western and eastern U.S. The lack of 
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Figure 2.2 An example of the canopy and subcanopy of the study site. This area did not 
experience significant burning in the 2011 Blue Hole burn. Notice the thick understory and 
living slash pine canopy.  
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significantly-developed soil layer causes large expanses of exposed limestone bedrock (Miami 

and Key Largo varieties) (Hoffmeister & Multer, 1968). These groundlayer characteristics likely 

create a unique pattern of fire spread due to low relief and spotty fuel loads compared to areas 

with a higher topographic relief, well-defined soils, and contiguous fuels. 

2.2.2 Field Methods 

 We collected our samples in the southern half of the 2011 Blue Hole Burn perimeter 

away from the freshwater marshes. We used a gridded network of plot-center locations set up 

previously by the U.S. Fish and Wildlife Service with each centroid spaced 250 m apart (Figure 

2.3). This sampling design allowed us to create a continuous surface of collection locations 

across seven plots to ensure that no potential fire-scarred slash pine was overlooked, and to 

create a cohesive network of collection points across the burned landscape. 

Our experimental design used a stratified, pseudo-systematic sampling method to 

guarantee we collected similar numbers of samples per plot. We also wanted to ensure that the 

best samples were collected per plot, thus we scouted through the seven plots and targeted the 

30 best trees in each plot. Considering we targeted the best trees, our experimental design is not 

completely systematic, but it was necessary to target the best trees for our fire history 

reconstructions to ensure that most, if not all, past fires were captured in the tree-ring record 

(van Horne & Fulé, 2006).  

Slash pine trees were carefully inspected and then flagged for collection based on total 

number of visible fire scars present along the basal margin of the tree (Figure 2.4). Our sampling 

design began by locating 30 fire-scarred trees per plot, but we soon realized the need to  
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Figure 2.3 Sampling grid with tree locations in yellow. Key Deer Boulevard is the road in the 
eastern section of the image, Blue Hole pond is in the lower right. Source of image is 
ArcGlobe 10.2.2. 
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Figure 2.4 Catface (left) and its fire-scarred cross section (right) for sample BH1008.  
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constrain the number of collectible samples. Some plots had more than 30 optimal trees, while 

others had less than 30 trees. We recorded precise locations with a hand-held Garmin GPSmap 

62s (variable error rate +/- 4 m), counted the number of fire scars present, and recorded standard 

tree descriptions, such as tree height and crown condition. Within each plot, we then collected 

cross-sections from what we considered the 10–15 best trees, focusing primarily on those trees 

with the highest scar counts, the best preservation, and considerable age based on established 

physical characteristics that denote older individuals (Schulman, 1937; Speer, 2010). For plots 

where more than 10–15 optimal trees were found, we collected additional samples to 

supplement data from plots without enough optimal trees (94 total trees collected). For plots 5 

and 6, slash pine tree density decreased, which limited the western extent of the study area in 

terms of sampling.  

 We labeled each cross section we collected with the plot ID and tree number (e.g. 

BH1001 = Blue Hole Burn plot 1, tree 1), so that each sample could be traced back to the original 

GPS location in the field. For trees with large scarred surfaces, we collected sections of the basal 

margin at different heights above the ground (e.g. sample ID would be BH1001a and BH1001b, 

with increasing letter placement closer to the ground surface). Such collecting of multiple 

samples per tree is preferred because trees do not always record every fire across the entire 

length of the cat face (Arno & Sneck, 1977). Rather, some fires only scar a portion of a cat face. 

Each cross section was protected with plastic wrap to ensure no pieces were lost in transport, 

and dried in the woodshop for further processing. 
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2.2.3 Laboratory Methods  

 In the laboratory, the samples were first flat-surfaced with a band saw to remove 

chainsaw grooves, and then progressively sanded with increasingly finer sandpaper grit 

beginning with ANSI 100-grit (125–149 µm) and ending with ANSI 400-grit (20.6–23.6 µm) to 

ensure the best clarity in cellular structure and ring boundaries (Stokes & Smiley, 1968; Orvis & 

Grissino-Mayer, 2002). We then scanned each sample using an EPSON 10000XL flat-bed scanner 

at a minimum of 2000 dpi to create an image record of each sample, and to analyze ring 

boundaries and fire scars at high resolution. We used skeleton plotting to match fire scars in our 

samples with those in the fire chronology created for Boneyard Ridge on Big Pine Key (Harley 

et al., 2013). We also used the Harley et al. (2011) chronology and the list method (Yamaguchi, 

1991) to visually crossdate the tree rings in our samples. The list method uses narrow rings as 

marker years by which we can accurately date fire scars. The use of skeleton plots and the list 

method together allowed evaluation of dead material (e.g. stumps, snags, or remnant wood), 

where the calendar years for the outer rings were not known (Stokes & Smiley, 1968). For the 

few samples that were collected from living trees, the outer rings were known (last ring was 

2014), thus we used the anchored samples to bolster comparison between our fire scars and 

those in the established fire chronology.  

 Each dated fire-scarred sample was entered into a data file in FHX (Fire History 

Exchange) format (Grissino-Mayer, 2001), and then analyzed using FHAES (Fire History 

Analysis and Exploration) software (version 2.0, released November 2015 (open source); Brewer 

et al., 2015) and FHX2 fire analysis software (Grissino-Mayer, 2001). We calculated composite 
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fire history metrics, including mean fire interval and Weibull median probability interval 

(Grissino-Mayer, 1995, 1999), for both total temporal length and pre-/post-management 

segments. We considered the pre-management era to be before ca. 1957 because the NKDR was 

established in 1957 (Williams, 1991), and our study area was completely within the NKDR 

boundary. We applied a threshold filter to our fire-scar dataset at two levels (> 10% and > 25%), 

to determine if return intervals and the spatial patterns of fire activity changed for larger fires 

(Swetnam, 1990; Swetnam & Baisan, 1996; Grissino-Mayer, 1999, 2001). For the composite, filter 

classes, and temporal change (pre-/post-1957) statistics, we used a total sample depth threshold 

cut off of ten trees and a recorder sample threshold of three trees. The temporal analysis data 

were normalized in FHX2, and we conducted a Student’s t-test on the normalized data to 

evaluate statistical changes in fire return intervals pre-/post-management.  

2.2.4 Spatial Analyses 

 The data for our project was packaged as GPS-located point shapefiles that need to be 

converted to a 3D surface of fire activity for interpretation. Data estimation for discrete locations 

without specifically collected data is usually accounted for in GIS analyses by using spatial 

interpolation techniques. This process is similar to interpolation through points on a graph, but 

with a z-coordinate included, whereby data are estimated based on data values of nearby 

locations (Naoum & Tsanis, 2003). Various forms of interpolation exist to generate 2D and 3D 

surfaces from point data (Cressie, 1991), but not all are appropriate for all uses. Ultimately, 

choices on interpolation method are left to the researcher based on specific need and 

appropriateness for methods (Englund, 1990; Genton and Furrer, 1998). Researchers have 
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evaluated different interpolation techniques, with thin plate (splining), Inverse Distance 

Weighted (IDW), and kriging (e.g. ordinary least squares) being the dominant methods 

(Englund, 1990; Genton and Furrer, 1998). 

We used the Spatial Analyst toolset of ArcMap (version 10.3.1 of ArcGIS for Desktop, 

released May 2015; ESRI ™ (non-open source)) to generate 1 m cellular resolution maps of 

major historic fires in our study area. Each tree collectively became the point shapefile we used 

as the foundation for our modeled fire surfaces. With increasing distances from each fire-

scarred tree, the interpolation model must estimate fire activity. For larger regionally expansive 

study areas, estimation between points becomes less robust because more locations without 

anchored points must be estimated. However, our study area is small and less than 30 hectares, 

and our sampling design ensured appropriate coverage of points per plot across the surface. We 

point out that we can only be 100% certain that fire occurred wherever a fire-scarred tree is 

precisely located. Surfaces generated from our models represented estimates for locations 

wherever fire-scarred trees were absent, and actual values for wherever trees were present. 

Nevertheless, our maps still show basic representations of historic fire at high accuracy in 

relation to the small spatial extent of our study area. 

 We used two separate interpolation methods to provide estimates of historic fire activity 

in locations without actual recorded fire-scarred trees: Inverse Distance Weighted (IDW) and a 

tension-based spline to convert the point shapefiles of major fires (> 10% and > 25% burned) to 

raster surfaces. The surfaces are constructed of 1 m raster cells, which collectively compose the 

seven plots in our study area. Each plot is composed of numerous contiguous cells that cover 
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the entire study area. Given the high resolution (i.e. 1 m) of our surfaces, only a single tree was 

ever present in any given cell, which precluded the model from generating erroneous fire scar 

estimates for instances of higher tree densities. Each of the two interpolated surfaces for each 

fire year did not need to be standardized to generate surfaces of similar range because the point 

shapefile dataset for fire years is binary (i.e. 1 = fire in that year, 0 = no fire in that year), thus the 

output rasters all vary around the 0/1 range. Once each major fire surface was created, we 

spatially compared the two different interpolation surfaces to identify specific cells of 

differences, if any, in interpolation results. 

We used the raster calculator tool to locate individual cells of difference between the two 

interpolation methods for our discrepancy analysis. Each of our interpolated surfaces per major 

fire year represent the same geographic location in our study area, thus each 1 m cell from the 

IDW surface has a complement in the spline surface, which allowed us to compare any two cells 

for a given location for discrepancies in cell value. We evaluated each surface and searched for 

any two cells representing the same location with considerable difference in value, which we 

considered as above 0.5. We chose the 0.5 discrepancy limit to reflect the 0/1 range of cell values 

in the dataset; thus a difference of 0.5 would be more than half the cell value range between no 

fire (0) and fire (1). We flagged fire years if the two interpolated surfaces had more than 25% of 

the cells with differences greater than 0.5. For example, if the fire in year X produced two 

different interpolated surfaces with the number of different cells exceeding 25% of the total 

cells, then the spatial pattern for that particular fire interpolation methods can produce 

considerably different surfaces. We chose the difference cut off of 0.5, and the 25% cell 
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threshold, to be conservative when averaging the two surfaces in later steps. We wished to 

ensure that our two interpolation methods did not produce vastly different surfaces, and that 

averaging them in future steps was appropriate. Lastly, our reasoning for the interpolation 

checks was to confirm that our interpolation method was not giving an unusual result based on 

the specific technique or the spatial distribution of the data.  

The Inverse Distance Weighted (IDW) interpolation technique required an input 

shapefile dataset. For our project, the point shapefile was trees in an individual fire year that 

exceeded a burn percentage (> 25%). We calculated burned percentages first in FHAES, and 

then recorded the years that exceeded the burn thresholds. The trees reporting fire scars in 

major burn years were uploaded into the IDW interpolation tool as the starting shapefile. We 

chose to use a power decay of 2, which calculated a smooth exponential decay from a starting 

value of 1 (fire positively burned at this cell location in the given fire year) to 0 (no fire occurred 

at all in this cell location for the given fire year). The range of values for the output raster did 

not exceed the range for the input values and preserved natural variance. The IDW tool 

generated a smooth 1 m cellular resolution surface of estimated fire activity for each major fire 

year. 

We chose the spline interpolation technique because it prevents artificially inflated 

surface features from the point data. Trees with fire scars in major burn years were uploaded 

into the IDW interpolation tool as the starting shapefile. Similar to the IDW technique, we used 

the > 25% threshold for years determined in FHAES and FHX2 as the input data for the splines. 

We customized the spline operation by using the tension option for surface production, which 
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generated a slightly rougher surface than the IDW, but it allowed for tighter conformity to our 

tree locations. Finally, we used 12 nearest-neighbor points for each individual tree location for 

best estimation, which allowed the tool to “look” in the general neighborhood of each tree 

location for scar information from nearby trees, thus producing stronger estimations. The spline 

operation produced an estimated fire activity surface with an output cell size of 1 m cellular 

resolution.  

We overlaid the two interpolated surfaces for each major fire year on each other and 

used map algebra and raster calculator to average each fire surface. After each interpolation 

method, we had created two fire activity surfaces for each of the major fire years, which were 

then combined into a single estimated surface for fire activity using raster calculator. The final 

interpolated surface for each fire year had cells with values in the 0/1 range. We were confident 

in the accuracy of our surfaces based on our thorough interpolation checks, which minimized 

method bias. 

 

2.3 Results 

2.3.1 Fire History 

 From the 94 sampled trees, we successfully dated 63 fire-scarred slash pine samples to 

annual resolution to evaluate fire history at our site. Dating of some samples was unsuccessful 

because of various factors, including heavily-decayed wood, prevalence of extensive beetle 

galleries that obscured ring boundaries and scars, low ring counts (e.g. samples with less than 

approximately 50 rings), or lack of overlap with the established dated chronology. We dated 385 
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fire scars across all years in the dataset, which spanned from 1783 to 2014 (Figure 2.5). From the 

63 samples (Table 2.2) and 385 recorded fire scars, we distinguished 55 separate fire events 

(Figure 2.5). Fires were dated back to 1783, but sample depth did not reach above 10 trees until 

1890. The composite mean fire return interval (MFI) for the Blue Hole Burn site (1890–2014; n = 

63) was 3.03 years with a standard deviation of 1.49 years. The Weibull median probability 

interval (WMPI) was slightly shorter at 2.91 years with a standard deviation of 1.46 years (Table 

2.3). The range of return intervals for all fires was between 1 and 7 years.   

We found 27 fire events that scarred > 10% of our samples, and 20 fire events that scarred > 25% 

of our samples (Table 2.4). The average percent scarred in the > 10% group was 40% and the 

average percent scarred in the > 25% group was 48%. For the > 25% group, the 2011 fire (74% of 

samples scarred) was within the normal quartile range and was not classified as an outlier 

(Figure 2.6). The 1911 and 1918 fires (100% of samples scarred for each) were the only classified 

outliers in either group (Figure 2.6).  The MFI for the > 10% group was 3.57 years with a 

standard deviation 1.85 years, and the WMPI was 3.40 years with a standard deviation of 1.80 

years (Table 2.3). The range for the > 10% group was 1 and 8 years. The MFI for the > 25% group 

was 4.76 years with a standard deviation of 3.43, and the WMPI was 4.23 years with a standard 

deviation of 3.15 years (Table 2.3). The range for the > 25% group was 1 and 14 years.  

 We further analyzed the fire history of our site by dividing the temporal record into two 

parts: 1890–1956 and 1957–2014 to represent the beginning of federal management by the U.S. 

Fish and Wildlife Service on Big Pine Key. Using the > 25% threshold to isolate temporal 

changes in major fires, we found 14 fire events for the 1911–1956 group, and 8 fire 
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Figure 2.5 Fire history of the Blue Hole burn study site (n = 63 samples). Horizontal lines 
represent trees. Vertical tick marks along each horizontal line represent fire events 
recorded by that tree. The dashed lines indicate years that are not recorder years, the 
solid line represents recorder years, and arrows at the end of each horizontal line indicate 
first and last year for each tree. The composite bar shows fire years when the number of 
fires was two or greater.  
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Table 2.2 List of all collected slash pine samples with GPS locations, number of scars per 
sample, recorder years, and condition when collected. 

Sample ID Lat. (N) Long. (W) 
No. of 
Scars Recorder Years Condition 

BH1003 24.7059 81.38435 8 1934–2014 living 
BH1004 24.70588 81.38439 8 1967–2004 snag 
BH1005 24.7061 81.38395 3 1854–1870 stump 
BH1008 24.70631 81.38351 5 1940–2014 stump 
BH1009 24.70631 81.38351 4 1918–2014 stump 
BH1010 24.70621 81.38353 5 1955–2014 living 
BH1017 24.70582 81.38452 2 1971–2014 living 
BH1018 24.7057 81.38422 10 1937–2014 living 
BH1023 24.70616 81.385 6 1963–2004 snag 
BH1027 24.70692 81.38441 9 1924–1955, 1977–2014 living 
BH2002 24.70575 81.38216 5 1924–1955 snag 
BH2009 24.70591 81.38175 4 1967–2014 living 
BH2014 24.70617 81.38184 2 1977–2014 living 
BH2015 24.70617 81.3821 6 1934–2014 living 
BH2016 24.70628 81.38217 3 1977, 2000–2014 snag 
BH2020 24.70569 81.38253 5 1934, 1960–2014 snag 
BH2022 24.70594 81.3828 5 1930–1955 snag 
BH2025 24.70617 81.38315 2 1990–2014 living 
BH2027 24.70675 81.38287 6 1944–2014 snag 
BH2029 24.70672 81.38277 8 1942–2014 living 
BH3002 24.70834 81.38179 5 1951–2014 snag 
BH3008 24.70812 81.38232 4 1985–2014 snag 
BH3010 24.70813 81.38245 5 1951–2014 snag 
BH3017 24.70745 81.38284 10 1934–2014 snag 
BH3018 24.7079 81.38284 4 1971–2014 snag 
BH3019 24.70788 81.38307 6 1938–2014 snag 
BH3021 24.70762 81.38355 8 1882–1918 snag 
BH3026 24.70743 81.38274 6 1940–2014 snag 
BH3029 24.7071 81.3825 7 1838–1887 snag 

 
 
 
 
 
 



 

 53 

Table 2.2 Continued. 

Sample ID Lat. (N) Long. (W) 
No. of 
Scars Recorder Years Condition 

BH3030 24.70694 81.38244 2 1977–2014 snag 
BH3031 24.70737 81.38196 3 1971–2014 living 
BH4001 24.70672 81.38428 3 1971–2014 living 
BH4003 24.70695 81.38398 8 1819–1862 snag 
BH4006 24.70711 81.38348 6 1916–1958 snag 
BH4008 24.70743 81.38364 7 1942–2004 snag 
BH4009 24.70749 81.38378 7 1918–1924, 1934, 1940–1955 snag 
BH4011 24.70784 81.38396 6 1924, 1951, 1967, 1990–2014 snag 
BH4015 24.70778 81.38448 7 1958–2014 snag 
BH4016 24.70792 81.38493 8 1842–1967 snag 
BH4019 24.70825 81.38486 10 1940–2011 stump 
BH4020 24.70825 81.38457 7 1960–2014 living 
BH4021 24.70815 81.38451 6 1942–2014 living 
BH4022 24.70804 81.38419 8 1899–1942 snag 
BH5002 24.70617 81.38144 3 1960–2014 snag 
BH5005 24.70659 81.38165 6 1967, 1977, 1985, 1990–2014 snag 
BH5011 24.70697 81.38157 4 1971–2011 living 
BH5012 24.707 81.38136 5 1958–2014 snag 
BH5017 24.70766 81.38144 8 1934–1977 snag 
BH5018 24.70745 81.38122 5 1953–2014 snag 
BH5021 24.70722 81.38094 4 1960–1967, 1990–2014 snag 
BH5026 24.70692 81.38103 5 1940–1968 snag 
BH5028 24.70695 81.38086 4 1967–1977, 1997–2014 living 
BH5031 24.70675 81.38141 4 1927–1990 snag 
BH5033 24.70644 81.38091 4 1958–2011 snag 
BH6005 24.70706 81.38611 5 1934–1977 snag 
BH6007 24.70899 81.38585 3 1819–1846 stump 
BH7001 24.70871 81.38209 4 1911–1945 snag 
BH7004 24.70843 81.38265 7 1934–2014 snag 
BH7007 24.70846 81.38303 4 1977–2014 remnant 
BH7010 24.70883 81.38335 4 1977, 1990–2014 snag 
BH7013 24.70797 81.3837 6 1924–1955 snag 
BH7014 24.70931 81.38307 4 1955–2014 stump 
BH7015 24.70921 81.38274 6 1948–2014 stump 
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Table 2.3 Fire history statistics for the Blue Hole Burn site for by all fire years, those years when 
> 10% of samples scarred, and those when > 25% of samples scarred. Values are in years.  

Blue Hole Burn (n = 63) MFI1 SD2 WFF3 WMPI4 WSD5 Range 
All 3.03 1.49 0.34 2.91 1.46 1−7 

> 10 % (n = 27) 3.57 1.85 0.29 3.40 1.80 1−8 
> 25 % (n = 20) 4.76 3.43 1.00 4.23 3.15 1−14 

1 mean fire interval (MFI)  
2 mean fire interval standard deviation (SD) 
3 Weibull fire frequency (WFF) 
4 Weibull median probability interval (WMPI) 
5 Weibull standard deviation (WSD) 
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Table 2.4 Fire Years (> 10% and > 25%). Sample depth was at least 10 trees, and the minimum 
recording depth was three trees. 

> 10% Scarred > 25% Scarred 

Year 
Recording 

Depth 
Fire 

Events Percentage Year 
Recording 

Depth 
Fire 

Events Percentage 

1911 3 3 100 1911 3 3 100 
1918 6 6 100 1918 6 6 100 
1924 10 6 60 1924 10 6 60 
1927 10 3 30 1927 10 3 30 
1929 10 2 20 1934 18 11 61 
1930 11 2 18 1938 20 6 30 
1934 18 11 61 1940 24 9 38 
1938 20 6 30 1942 27 9 33 
1940 24 9 38 1946 27 7 26 
1942 27 9 33 1948 28 11 39 
1944 27 4 15 1951 30 11 37 
1946 27 7 26 1955 33 12 36 
1948 28 11 39 1958 36 14 39 
1951 30 11 37 1960 38 15 39 
1955 33 12 36 1967 40 17 43 
1958 36 14 39 1971 41 19 46 
1960 38 15 39 1977 46 30 65 
1963 38 4 11 1990 47 24 51 
1967 40 17 43 1997 47 16 34 
1971 41 19 46 2011 46 34 74 
1977 46 30 65 AVERAGE 48% 
1985 45 8 18 

    1990 47 24 51 
    1997 47 16 34 
    2000 47 10 21 
    2004 47 5 11 
    2011 46 34 74 
    AVERAGE 40% 
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Figure 2.6 Box plot (top) displaying quartile ranges of the > 10% scarred group (n = 27) and the > 
25% scarred group (n = 20). The 1911 and 1918 fires are captured as outliers only in the > 10% 
group. Stem and leaf plot (bottom) displays individual data points for the > 10% group (left) 
and the > 25% group (right).  
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events for the 1957–2014 group. The MFI for the earlier group was 3.38 years with a standard 

deviation of 1.71 years, and a WMPI of 3.25 years with a standard deviation of 1.63 years. The 

range of fire intervals for the earlier group was 1 and 7 years (Table 2.5). The MFI for the later 

group was 7.57 years with a standard deviation of 4.43 years, and a WMPI of 7.14 years with a 

standard deviation of 4.06 years. The range of fire intervals for the later group was 2 and 14 

years (Table 2.5). We conducted a Student’s t-test on the normalized data for the different 

periods and found a statistically significant difference (t=3.1925; p < 0.01) between the pre- and 

post-management fire regimes. This finding suggests a shift in fire regime, with fires occurring 

more frequently before 1957 in the pre-management period than after 1957 in the post-

management period.   

2.3.2 Spatial Representation of Large Fires 

 We classified major fires as those that scarred > 25% of the trees, with a sample depth of 

at least 10 trees and at least 3 recorder trees. The discrepancy results for the interpolated 

surfaces represent the number of cells with difference values above 0.5 for a given location 

given the two different interpolation methods out of the total number of cells for the study area 

(Table 2.6). A difference > 0.5 represents a result based on the interpolation method and not 

necessarily from fire activity. The only two fire years to surpass the defined threshold (more 

than 25% of the total cells have a value > 0.5) in the discrepancy analysis were 1977 and 1997.  

The spatial patterns of past fires in the NKDR distinctly vary from year to year (Figures 

2.7–2.11). Beginning with the 2011 fire, we found a distinct delineation in the fire activity that  
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Table 2.5 Fire history statistics for the Blue Hole Burn site for pre- and post-management 
periods. Values are in years for the > 25% scarred group. Statistical comparisons were 
conducted on the normalized data (via FHX2) for both groups. 

Period MFI1 SD2 WFF3 WMPI4 WSD5 Range 
1911–1956 (n = 14) 3.38* 1.71 0.31 3.25 1.63 1−7 
1957–2014 (n = 8) 7.57* 4.43 0.14 7.14 4.06 2−14 

1 mean fire interval (MFI)  
2 mean fire interval standard deviation (SD) 
3 Weibull fire frequency (WFF) 
4 Weibull median probability interval (WMPI) 
5 Weibull standard deviation (WSD) 
* statistically significance difference (p < 0.01) 
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Table 2.6 Interpolation discrepancies for each fire year.  
Interpolation Discrepancies 

Fire Year Percentage* 
1911 4.3 
1918 4.3 
1924 7.1 
1927 3.2 
1934 12.8 

1938 3.2 
1940 10.9 
1942 12.3 
1946 13.6 
1948 9.9 
1951 19.4 
1955 14.5 
1958 24.7 
1960 16.5 
1967 20.4 
1971 15.7 
1977 84.8 
1990 20.8 
1997 39.5 
2011 10.1 

* Percentages of cells of difference (cell values > 0.5) between the two 
interpolation methods. 
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Figure 2.7 The 2011 fire (A), 1997 fire (B), 1990 fire (C), and 1977 fire (D). Key Deer Boulevard is 
the diagonal black line in the eastern section of each image, and Blue Hole pond is in the lower 
right of each image. Each surface has a color scheme that represents areas of fire activity (shades 
of red) and areas of no fire activity (shades of green).   
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Figure 2.8 The 1971 fire (A), 1967 fire (B), 1960 fire (C), and 1958 fire (D). Key Deer Boulevard is 
the diagonal black line in the eastern section of each image, and Blue Hole pond is in the lower 
right of each image. Each surface has a color scheme that represents areas of fire activity (shades 
of red) and areas of no fire activity (shades of green).   
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Figure 2.9 The 1955 fire (A), 1951 fire (B), 1948 fire (C), and 1946 fire (D). Key Deer Boulevard is 
the diagonal black line in the eastern section of each image, and Blue Hole pond is in the lower 
right of each image. Each surface has a color scheme that represents areas of fire activity 
(shades of red) and areas of no fire activity (shades of green).   
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Figure 2.10 The 1942 fire (A), 1940 fire (B), 1938 fire (C), and 1934 fire (D). Key Deer Boulevard 
is the diagonal black line in the eastern section of each image, and Blue Hole pond is in the 
lower right of each image. Each surface has a color scheme that represents areas of fire activity 
(shades of red) and areas of no fire activity (shades of green).   
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Figure 2.11 The 1927 fire (A), 1924 fire (B), 1918 fire (C), and 1911 fire (D). Key Deer Boulevard 
is the diagonal black line in the eastern section of each image, and Blue Hole pond is in the 
lower right of each image. Each surface has a color scheme that represents areas of fire activity 
(shades of red) and areas of no fire activity (shades of green).   
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ran north-south. The majority of fire-scarred trees were located on the eastern border of the 

study area adjacent to Key Deer Boulevard (Figure 2.7A). The next largest fire occurred in 1977, 

with only four fewer trees scarred than the 2011 fire (34 samples in 2011, 30 samples in 1977). 

The spatial pattern of the 1977 fire suggests a less clustered spread, with more burned areas 

near the Blue Hole pond in the southeast corner of the study area and near the hardwood 

hammocks along the western border (Figure 2.7D). The 1997 fire spread across the majority of 

the study area, focusing in the east and east-central regions, and overlapping with those areas 

burned in the 2011 fire (Figure 2.7B). The 1990 fire was also large, with 24 trees scarred and 

patterns of fire activity to the north-central, southwest, and southeast portions of the study area 

(Figure 2.7C).  The 1958 fire was the largest fire near the pre-management period, and one that 

was also comparable in size and pattern to the 1977 and 2011 fires (Figure 2.8D).  

 Some years with temporally-clustered fires tended to show that areas burned in one fire 

year were fire free in other years. For example, the 1971 and 1967 fires complement each other 

in terms of fire extents, with the central area burning in 1971 (Figure 2.8A) and the southeastern 

portion burning in 1967 (Figures 2.8B). We found that for certain fire years, such as 1960, the  

interpolated surface depicted patchy fire activity where individual trees recorded fire amongs 

other trees that did not record fire (Figure 2.8C). The 1955 fire scarred more trees in the west 

and west-central sections of the study area (Figure 2.9A), while the 1951 fire burned closer to 

Key Deer Boulevard, with smaller burned areas located in the central and southern sections 

(Figures 2.9B). 
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Fires that occurred in the pre-management era also suggest specific spatial patterns in 

fire activity. Several fire years occurred during the 1940s at a rate of one fire almost every two 

years. The 1948 fire surface displays a distinct patchy pattern of fire-scarred trees, with patchy 

fires through the study area (Figure 2.9C). The 1946 fire was clustered almost exclusively in the 

central and south-central section of the study area, with no trees near Key Deer Boulevard 

recording a fire (Figure 2.9D). The 1942 fire was centrally-focused with only a single tree 

recording a fire near Key Deer Boulevard (Figure 2.10A). The 1940 fire had fire-scarred trees 

spread across the majority of the study area, with some clustered in the north-central section 

(Figure 2.10B). The 1938 fire was patchy with three fire-scarred trees located in the north-central 

section and three located along the southern border of the study area (Figure 2.10C). The 1934 

fire displayed relatively the same spatial patterns as larger fires, despite having only 11 trees 

recording a fire scar in that year (Figure 2.10D). Finally, the 1927, 1924, 1918, and 1911 fires were 

the earliest fire years we interpolated and all four had patchy surfaces due to lower sample 

depth and number of fire-scarred trees compared to more contemporary fires (Figures 2.11A-D).  

 

2.4 Discussion 

2.4.1 Fire History  

Our MFI and WMPI results corroborate results from previous research in pine 

rocklands, which found return intervals between 2 and 10 years (Harper, 1927; Taylor, 1981; 

Snyder et al., 1990; Platt et al., 2002; Liu et al., 2005; Harley et al., 2013). Harley et al. (2012) found 

WMPI values between six and nine years from an area of pine rockland on the eastern side of 
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Key Deer Boulevard, and a site on No Name Key (adjacent to Big Pine Key). Short MFI and 

WMPI values indicate a higher frequency of forest fires, which translates to lower intensity and 

lower severity fires. We can not say that high-intensity fires did not occur in our study area, but 

the presence of fire scars back to 1819 indicates that high-intensity, stand-replacing fires are 

unlikely to have occurred or seldom occur in this ecosystem. This frequency-severity 

relationship is primarily due to fuel loading because available fuel loads to support larger and 

more severe fires decrease as fire frequencies increase (Miller & Urban, 2000; Schoennagel et al., 

2004). Overall, our MFI and WMPI values are within the expected range of fire occurrence 

intervals for this type of ecosystem (Harper, 1927; Taylor, 1981; Platt et al., 2002; Liu et al., 2005; 

Harley et al., 2013).  

 Our results demonstrate that the 2011 Blue Hole Burn was within the historical range of 

variability for fire activity on Big Pine Key. While it was the largest fire (trees scarred = 34) in 

our dataset, the next largest fire in 1977 had nearly the same number of samples scarred (trees 

scarred = 30), and both showed a broad spatial extent of fire-scarred trees across the study area. 

The percentage of samples scarred based on sample depth was also similar, with approximately 

74% scarred in 2011 and 65% scarred in 1977. Furthermore, our quartile analysis showed that for 

the > 25% group (n = 20), the 2011 fire was not a statistical outlier, meaning that within all burn 

percentages per fire year for that filter class, the 2011 fire was not outside of the normal quartile 

range. Our results show that this particular fire did not burn a statistically higher percentage of 

trees than other major fires in our study area on Big Pine Key. Furthermore, other large historic 
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fires, such as those that occurred in 1977, 1990, 1958, and 1934, all display spatial extents across 

the study area similar in extent to the 2011 fire.  

Prescribed burning practices on Big Pine Key have been incorporated into U.S. Fish and 

Wildlife Service ecosystem management since ca. 1960, and within the NKDR officially since ca. 

1980.  The extent and overall intensity have varied with each prescribed fire, but all have been 

ignited for the purpose of reducing understory density and preventing hardwood hammock 

encroachment (Bergh & Wisby, 1996). The 1977 fire (second largest fire in our dataset) was a 

prescribed fire ignited on October 25th that burned approximately 40 ha of land on both the west 

and east side of Key Deer Boulevard near Blue Hole Pond (Bergh & Wisby, 1996). The 1990 fire 

(third largest fire in our dataset) was also a prescribed fire and was ignited on September 11th, 

burning approximately 40 ha (Bergh & Wisby, 1996). A precipitation event prior to the 1977 

burn date increased moisture availability in the defined burn perimeter, thus preventing the 

1977 prescribed burn from reaching full intensity as expected. The 1990 fire perimeter stopped 

south of the Jack Watson Nature Trail (northern border of our study area) and north of 6th Street 

(southern border of our study area), with the most destruction to the east and adjacent to Key 

Deer Boulevard. According to Bergy and Wisby (1996), approximately 90–95% of the understory 

was consumed in this fire. The two largest and most severe fires to occur before the 2011 burn 

were just as spatially extensive, and the 1990 fire burned comparable amounts of understory 

vegetation. Historical records on prescribed burning on Big Pine Key add further evidence that 

the 2011 Blue Hole Burn was within the natural range of variability for fires in the area (Bergh & 

Wisby, 1996).  
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Other fires that occurred on Big Pine Key near or within the now established NKDR give 

further insights and corroborate our interpretations of fire activity based on the tree-ring record, 

and to verify the fire surfaces we generated in our analyses. For example, the 1985 fire was 

caused by lightning and started on September 5th, buring approximately 25 ha (Bergh & Wisby, 

1996). The burn perimeter for this fire began to the northwest of our study area, but extended to 

our northwestern border (Bergh & Wisby, 1996). Records indicate that the border of this fire is 

an approximation because it ignited in a remote corner of the refuge with limited road access. 

The 1985 fire likley extended south of Jack Watson Nature Trail and into our study because 

eight of our trees were scarred in the latewood for the 1985 ring. Lastly, the spatial extents of 

both the 1977 and 1990 fires, as outlined by Bergh and Wisby (1996), overlap with those defined 

in our interpolated fire surfaces.  

The statistical analyses on the fire regime metrics for pre-management (1911–1956) and 

post-management (1957–2014) periods found a significant statistical difference in fire frequency 

between these periods. This result is not surprising considering many fire history analyses find 

that the MFI and WMPI for earlier fire periods are shorter than for later periods due to the 

prevalance of fire suppression measures and changes in land-use practices in more recent 

decades. The settlement history of Big Pine Key gives further insights into why fire frequency 

decreased during the post-management period, specifically in regard to changes in land use and 

fire suppression practices.  

The settlement and management history of Big Pine Key offers some insight into 

potential causes for the change in fire frequency through time. Currently, Big Pine Key is a 
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Census Designated Place, with a population of approximately 5,000 people (U.S. Census 

Bureau, 2010), but people have settled Big Pine Key since before 1900 (Simpson, 1982). Total 

population was low in the early 1900s, with a total of 17 people by 1910 (Simpson, 1982; 

Albritton, 2009), and did not increase to an appreciable number until the mid-1900s (Simpson, 

1982). Most property on Big Pine Key before ca. 1950 was owned by railroad companies, with 

little subdivision and neighborhood development (Simpson, 1982; Albritton, 2009). Therefore, 

even though Euro-American settlers were present on the island as far back as the 19th century, 

the island was only very sparsely populated until the mid-20th century when sufficient 

transportation infrastructure was available from mainland Florida (Albritton, 2009). 

Furthermore, the increase in fire frequency through the 1920s to the 1940s can be explained 

through repeated slash and burn management, and hunting practices to flush Key Deer 

(Simpson, 1982). From 1957 to ca. 1980, fire was actively suppressed on Big Pine Key until U.S. 

Fish and Wildlife Service management initiated prescribed burning that continues into the 21st 

century (Chad Anderson, personal communication).  These prescribed burning management 

strategies help to preserve the natural fire regime of the area, and by extension the flora and 

fauna that depend on frequent, low-intensity fires. 

2.4.2 Spatial Representation of Fire 

Our study is the first conducted in subtropical pine rocklands to analyze and evaluate 

fire activity via a spatially-explicit experimental design using interpolated surfaces. The results 

from our study show that fires do not have the same spatial patterns, regardless of percentage 

of trees scarred, from one fire year to another. Furthermore, the 2011 Blue Hole Burn fell within 
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the historical range of variability both temporally and spatially. For example, we demonstrated 

that several other fires, specifically 1990 and 1977, were just as expansive and scarred similar 

numbers of slash pine trees. Our results offer complementary evidence to the historical records 

of prescribed burning on Big Pine Key and within the NKDR, and establish that the 2011 burn 

was not unique. Additionally, when comparing surfaces of fire activity in subsequent years (e.g. 

1967 and 1971), we found that areas that burn in one year are fire-free in the next succeeding fire 

years, adding further insight into the natural rhythms of fire activity in pine rocklands.  

Certain fire years, such as 1960 and 1948, displayed interesting patterns of fire activity 

on a per-tree basis rather than a cohesive region of trees across the study area. The surfaces 

were patchy, with fire-scarred trees for a given fire year interspersed in regions of low to no fire 

activity for that year. This patchy fire activity on a landscape suggests the possibility of multiple 

fires occurring in a single season, an observation not readily apparent when simply evaluating 

fire scars within the tree-ring record. For example, if 20 trees contained a scar in the latewood of 

any particular year, a plausible assumption would be that one large fire occurred in that year. 

However, with spatial interpolations of fire activity, the locations of each scarred tree on the 

surface could give an indication of multiple fires if the landscape displays a patchy fire pattern.  

In a single fire hypothesis, one would expect to find spatial patterns of widespread fires 

consistent with a naturally spreading fire, not a landscape of isolated hot spots. If the fire 

surface is patchy a multi-fire season is possible, but canopy fires could cause fire to spread in a 

non-uniform pattern (i.e. non-continuous fire area). Additionally, select trees could have been 

scarred from embers ignited in distant or non-adjacent areas, creating the appearance of a 
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patchy fire pattern.  Unfortunately, detailed historical records for these older fires do not exist, 

particularly for fire years before the establishment of the NKDR, thus, we cannot definitively 

say that for fire years with patchy patterns, such as the 1948 fire surface, multiple fires occurred 

for that year. However, spatial interpolations of fire can enhance the historical narrative of 

previously unknown fires that conventional dendrochronological methods might overlook by 

elucidating how the fire(s) potentially burned, or if more than one fire occurred in a given 

season.  

Finally, our method of using an average of two interpolation methods was verified in 

our discrepancy analysis. Only two of the 20 major fires (> 25% burned) produced interpolated 

surfaces with more than 25% of the cells varying by a degree larger than 0.5. The values for each 

individual cell ranged from 0–1 (i.e. 0 = no fire, 1 = fire), making a difference value of 0.5 more 

than half the potential range of fire activity. For example, if one cell from the spline 

interpolation had a value of 0.25 (i.e. low end of fire activity spectrum), while the same cell had 

a value of 0.80 (i.e. high end of fire activity spectrum) from the IDW interpolation, then the 

choice of method is causing the fire result and that cell is not necessarily representative of the 

true fire activity. This particular cell would have been tagged in our discrepancy analysis as 

exceeding the difference threshold, and if more than 25% of the cells between the two 

interpolation methods were more than 0.5 different, we determined that the fire surface as 

influenced by the interpolation method. However, this does not mean the averaged fire surface 

(average value per cell from the IDW and splining) is necessarily spatially inaccurate, rather 

that intricate (i.e. finer scale) details in the surface should be examined with caution.  
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The two fire years that surpassed the 25% difference threshold were 1997 and 1977. 

These particular fires had intricate burn conditions, creating patterns of fire activity that would 

likely generate less smooth surfaces. In other words, we found that the likelihood of differences 

in interpolated values at the individual cell level was elevated in years with numerous 

dispersed fire-scarred trees compared to fires with either less samples scarred, or those that 

tended to cluster in one location. We emphasize that any interpolation induces some level of 

error, and likelihood of error in an interpolated surface is compounded if an inappropriate 

interpolation method is used. However, our discrepancy analysis results show that we chose 

two appropriate methods (i.e. IDW and tension splining) based on the level of consistency 

between surfaces for each major fire year. Aside from the 1997 and 1977 fire, the average 

difference percentage among major fire years was less than 13%, meaning that for all other 

major fire years the two interpolation methods generated fire surfaces with less than 13% of the 

total cells having a difference value of more than 0.5. We chose these specific thresholds to be 

conservative in our surface generation techniques and to provide a quantitative basis as to how 

each method produces different results in an effort to remove any bias in our methods.  

 

2.5 Conclusions 

 One of the two primary conclusions is that the 2011 Blue Hole Burn, while large and 

severe, was not an anomaly outside the historical range of variability for fires in the NKDR. This 

prescribed fire was heavily vilified by the media and community, and was considered a severe 

burn well outside the range for what is considered a “normal fire” for the area. Our study 
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demonstrated that, using both statistical analyses and spatial representations, the 2011 fire was 

not a singularity, but in fact a large fire similar to other major fires in the past. The results from 

our study provide the U.S. Fish and Wildlife Service with important background on fire activity 

that justifies the use of prescribed fires as effective management practices and for promoting 

overall ecosystem health. Essentially, the so-called “massive” 2011 fire occurred within 

expectations of a large fire on Big Pine Key.  

Additionally, our results show that MFI values were statistically different for the pre- 

and post-management eras. Fire frequency decreased after the mid-1900s, with the institution of 

the NKDR, the loss fire for hunting Key deer, and the stoppage of any slash and burn land 

management that was in effect. In an age where effective fire suppression takes precedence over 

fires ignited by lightening, our results indicate fires occur with less frequency than this 

ecosystem has seen in approximately 50 years. In fact, the fire years with the three largest 

extents, after settlement increased through the 1920s, occurred in the past 40 years, potentially 

indicating an increase in fire size due to a decrease in fire frequency. Our results show that a 

persistent lack of sufficient fire moving forward could increase the likelihood of even more 

ecologically-severe fires occurring in the near future on Big Pine Key. 

We would also like to address here the idea of a “natural” fire as one that is completely 

without human influence. The prevalence of human impacts on the environment, even before 

European settlement, has created ecosystems today that still reflect those changes, such as those 

seen in fire activity. People were starting fires for land and resource management practices 

before Europeans settled the Florida Keys, thus we would like to present a caveat to our “pre-
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management” conditional era. We consider “pre-management” to be before 1957 with the 

establishment of the NKDR, however people were managing the land via fire, just not officially 

through prescribed burning practices. The argument could be made that human influence on 

fire activity in the early to mid 1900s was land management, but we would like to stress that 

fires started in that period were for the purpose of flushing game, not to preserve the native fire 

regime. Finally, we acknowledge that people have been impacting fire activity on Big Pine Key, 

and that the ecosystem has experienced various fire activity regimes throughout time, thus a 

“natural” fire may have various interpretations.    

 The second primary conclusion reached was the ability to detect spatial patterns of fire 

(e.g. patchy) that temporal analysis may not necessarily reveal. If a fire scar exists in a given 

calendar year for many different samples, we can tell the seasonality of the fire by placement in 

the annual ring itself. If each of the scars is in the latewood for each sample, it is conventionally 

assumed to be the same fire, unless historical records exist that show two fires for a given 

season. If, in fact, this collection of scars all in the latewood for any particular year is 

representative of two fires in that season, it is not as apparent via direct wood analysis. 

However, by spatially representing fire years via a continuous surface, we can begin to 

differentiate patterns in fire activity not obvious from the tree-ring record. This multi-fire per 

season scenario was likely seen in fire years 1960 and 1948 where spotting was present in the 

fire surface that did not follow conventional activity and spread. In other words, fire rarely 

sweeps across a surface and catches single trees at a time, which is what a single-fire theory for 

these surfaces would contend. These surfaces instead show that likely two (more than two in a 
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given season for a single year is rare) fires occurred in 1948 and again in 1960 that would 

otherwise not have been seen in non-spatially represented fire scar data. Overall, our study 

offers an alternative and complementing technique for traditional dendrochronological 

methods for analyzing fire history of an area in the subtropics and beyond.  

The results of our study are informative in numerous ways, including providing a 

definitive description of the range of historical variabililty for fire activity and visual 

representations of historic fires in the NKDR. The fire return intervals for our study area match 

expected intervals for subtropical locations in the southeastern U.S., and the 2011 fire fits within 

the severity boundaries delineated by previous major fires in the NKDR. We also found that fire 

frequency changed pre- and post-management, and became less frequent after approximately 

the late 1950s. The spatial patterns of the major historic fires give indications of potential 

rotational fire activity, where fire free areas in one fire become fire active areas in a later fire. 

Overall, our results give insight into the fire activity of the NKDR that was otherwise unknown. 
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Chapter 3 

Effects of Microtopography on Fire Activity Across Different Scales in a Pine Rockland 
Ecosystem, Big Pine Key, Florida, USA 
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Parts of the introduction, literature review, and site descriptions were adapted from Chapter 1 
of this dissertation. The use of “we” in this chapter refers to the many people who assisted in 
the field and laboratory to make this study possible. Details on specific individual involvement 
can be found in the Acknowledgements section at the end of this chapter. This research was 
funded in part by a seed grant from the Initiative for Quaternary Paleoenvironmental Research. 
I was first author, and my contributions to this research were leading and developing the 
experimental design, data collection, GIS and statistical analyses, and writing the manuscript. 
This chapter will be submitted to the journal Landscape Ecology for publication. 
 
Abstract 

A lack of fire history reconstructions and applied dendrochronology using GIS exists for 
subtropical ecosystems in the Lower US, particularly in low-relief areas. We combined a 
Geographic Information System (GIS) and spatial statistics to investigate the relationship 
between fire occurrence, susceptibility, and surface roughness characteristics in a pine rockland 
ecosystem dominated by south Florida slash pine (Pinus elliottii var. densa Little & K.W. 
Dorman), a fire-tolerant species. We calculated surface roughness parameters (elevation, slope, 
curvature, and residual topography after a 3 x 3 smoothing window was applied) from a 1 m 
resolution LiDAR digital elevation model (DEM). The GIS data analysis was completed in 
ArcGIS 10.2, and the statistical analyses were conducted in NCSS and RStudio using the R 
programming language. We used hierarchical and non-hierarchical clustering analyses on the 
surface roughness dataset to assess structure of the microtopography across the landscape to 
determine potential explanations for weak relationships between fire activity and surface 
roughness. We used five different scaling windows (1 m, 3 m, 10 m, 50 m, and 100 m) to 
evaluate fire occurrence and surface roughness relationships with increasing aggregation. 
Multiple linear regression results indicated a weak but significant relationship between certain 
surface roughness parameters and fire activity with changes in scale. Overall, the model R2 

values for each scale was low throughout, but peaked at the 50 m window aggregation, with a 
value of 0.19. The structure of the microtopography dataset is different than that of the fire-scar 
data, which we determined accounts for the low model success at each scale, even at the 
optimal 50 m aggregated window. We conclude that collection density of slash pines in this 
ecosystem is optimal at the 50 m resolution, and that capturing more data at finer resolutions 
did not provide more explanative power. The techniques we proposed in this chapter can be 
used to investigate microtopography as it relates to fire susceptibility wherever fire history 
analyses are being conducted. We have linked, quantitatively, how various microtopography 
parameters can influence fire regimes of an area, which can be beneficial for future studies 
throughout the southeastern U.S.. Furthermore, we suggest that a larger and more expansive 
sampling design be employed for future analyses to cover a larger spatial area.  
 
Keywords: dendrochronology, Pinus elliottii, pine rocklands, hierarchical and non-hierarchical 
clustering, discriminant analysis. 
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3.1 Introduction 

3.1.1 Pine Rocklands 

Pine rocklands in the Florida Keys and select locations in southern Florida (such as the 

Everglades) are topographically flat with a lower groundlayer fuel compared to other 

subtropical ecosystems such as hardwood hammocks. Pine rocklands have small geographic 

ranges and are often bordered by urbanized areas, particularly in the Florida Keys (Snyder et al. 

1990; Noss et al. 1995; Sah et al. 2004). The surface of pine rocklands typically has little to no soil 

development, and many areas exhibit exposed limestone bedrock of two potential varieties: 

Miami and Key Largo (Hoffmeister & Multer, 1968). Both bedrock types are highly porous and 

the Key Largo limestone is fossiliferous (Ross et al., 1992). Dissolution holes are common for 

these types of bedrock, especially in areas of humid, subtropical climates like the Florida Keys.  

The dominant canopy species is slash pine (Pinus elliottii var. densa Little & K.W. 

Dorman; hereafter referred to as slash pine), with various palm species and West Indian 

hardwoods such as poisonwood (Metopium toxiferum (L.) Krug & Urb.) found in the subcanopy. 

In areas of more frequent burning, the understory layer is sparse and can be traversed easily, 

but the understory becomes very dense without fire. The groundlayer is composed of various 

herbs such as Big Pine partridge pea (Chamaecrista lineata var. keyensis (Pennell) H.S. Irwin & 

Barneby, which is an endangered species that relies on regular fire activity to survive), Florida 

white-top (Rhynchospora floridensis (Britton ex Small) H. Pfeiff), and sand flax (Linum arenicola 

(Small) H.J.P. Winkl) (Table 3.1). All species in this ecosystem, from the groundlayer to the 

canopy, rely on fire to varying degrees for success and survival in pine rocklands. 
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Table 3.1. List of common plant species found in pine rockland ecosystems (Wunderlin, 1982).  
Species Name Common Name Forest Level 
Pinus elliottii var. densa slash pine Canopy 
Byrsonima lucida locust-berry Understory 
Cassia chapmanii Bahama senna Understory 
Coccothrinax argentata silver thatch palm Understory 
Conocarpus erectus buttonwood Understory 
Crossopetalum ilicifolium ground-holly Understory 
Eugenia rhombea red stopper Understory 
Metopium toxiferum poisonwood Understory 
Morinda royoc mouse pineapple Understory 
Myrica cerifera wax-myrtle Understory 
Pithecellobium guadalupense blackbead Understory 
Psidium longipes long-stalked stopper Understory 
Serenoa repens saw palmetto Understory 
Thrinax radiata thatch palm Understory 
Acacia pinatorium pine acacia Groundlayer 
Eragrostis elliottii Elliott’s love grass Groundlayer 
Ernodea littoralis golden-creeper Groundlayer 
Rhynchospora spp. white-topped sedge Groundlayer 
Smilax havanensis greenbriar Groundlayer 
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In our study, we used dendrochronology to detect information about the surrounding 

environment of the ecosystem into the distant past. Each ring of a tree represents a single 

calendar year, and the patterns in ring widths can provide growth activity for as long as the tree 

was photosynthesizing (Fritts, 1976; Speer, 2010). Most dendrochronological studies have been 

historically limited to the temperate regions, where trees experience distinct seasonality and 

therefore grow clear rings. However, previous research has shown that tropical and subtropical 

tree species can produce well-defined rings (Martin & Fahey, 2006; Zuidema, 2006; Harley et al., 

2011; Ferrero et al., 2014).  

 A paucity of fire history reconstructions and applied dendrochronology using GIS exists 

for subtropical ecosystems in the Lower US, particularly in low-relief areas. Research in the 

Florida Keys on slash pine has shown this tree species produces annual rings (Harley et al., 

2011), allowing dendrochronologists to use the pine rocklands to investigate fire activity 

through time. Furthermore, a need exists for a greater knowledge base of fire in the subtropics 

because rising sea levels will cause urbanized areas to encroach on natural ecosystems with 

property loss. Dendrochronology can help scientists and land managers develop a better 

understanding between natural, spatiotemporal fire activity and research-driven management 

practices for these endangered pine rocklands.  

3.1.2 Topography and Fire Activity Analyses 

 Spatial patterns of fire preserved in the tree-ring record can provide insights on possible 

topographic factors that influence fire activity. Variability in the landscape can greatly influence 

the action of fire through time. Stambaugh and Guyette (2008) found that topographic 
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roughness indices were able to explain 46% of the variance in the fire return intervals from 

forests in Missouri. Patterns inherent in landscape structure translate to patterns in other factors 

that directly influence fire activity, such as build-up of biomass and fuel loadings or 

concentrations of stream networks (Downes et al., 2000). Positive relationships often exist 

between surface roughness and fire activity (up to a certain roughness threshold), because of 

the positive influence surface roughness has on other environmental variables, such as 

increased slope generally increases fuel loading to a certain threshold (Wright & Bailey, 1982; 

Downes et al., 2000; Dickson et al., 2006). Surface roughness can express a variety of physical 

characteristics of the landscape depending on which geomorphological elements need to be 

highlighted, such as elevation, slope, curvature, or aspect. Depending on the research project, 

surface roughness could include biotic factors such as canopy or shrub height, but when 

discussing the physical landscape biotic variables are not considered. 

 In high-relief locations, elevation, slope, and aspect directly influence fire activity to an 

appreciable and visible degree, but the relationship is not as clear in low-relief locales. Given the 

low-relief nature of the pine rocklands, potential relationships between fire activity and 

topography may be challenging to establish, but are needed to evaluate fire as a disturbance 

mechanism. Low overall variation in surface roughness makes relying on topography for fire 

modeling difficult because, even in topographically-homogenous landscapes, surface roughness 

may still exact a small influence on fire activity (Cardille et al., 2001; Preisler et al., 2004). 

Dickson et al. (2006) found that probability of fire occurrence increased with increasing surface 

roughness (using a slope-derived metric). Thus, removing topography from the risk prediction 
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because of low variability is not appropriate. For this project, we analyzed the relationship 

between fire occurrence and low levels of surface roughness through changes in scale (increased 

window size). 

 Relationships between predictor-response variables, particularly those in dynamic 

systems such as pine rockland, may not stay consistent across scale. The modifiable areal unit 

problem (MAUP) states that correlations between variables can change when considering 

aggregated versus individual data (Openshaw, 1984; Fotheringham et al., 2000; Dark & Bram, 

2007). For MAUP and spatial data, the scale of operations is important when evaluating model 

results and processes, such as fire, may not produce the same correlations with predictor 

variables across different scales. Thus, analyzing the relationship between fire activity and 

microtopographic parameters, such as slope or curvature, from a single spatial scale is 

insufficient to capture the holistic nature of the relationship. Systematically aggregating the 

microtopographic data to coarser resolution will illuminate the true relationship between the 

predictor-response variables. 

3.1.3 Data Structure Analyses with Clustering Methods 

 Clustering of datasets into natural groups allows researchers to evaluate variance 

structure. Various statistical clustering methods exist to explore structure. We have chosen to 

use both hierarchical and non-hierarchical clustering approaches to prevent bias. A clustering 

analysis, regardless of type, classifies observations in a dataset into specific groups (Ward, 1963; 

Cormack 1971; Anderberg, 1973; Bailey, 1974; Everett 1974; Blashfield, 1976). The agglomerative 

hierarchical methods (e.g. Ward’s Minimum Variance) calculate a variance-covariance matrix 
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(dispersion matrix), which measures similarity/dissimilarity and allows for the formation of 

clusters (Jain et al., 1999). Variations among hierarchical clustering methods are focused 

primarily on the formation of the dispersion matrix, with little differences elsewhere (Johnson, 

1967; Lance & Williams, 1967).  

 The Ward’s Minimum Variance (WMV) hierarchical clustering method combines 

observations in a dataset to minimize within-group variance (Ward, 1963; Blashfield, 1976). 

Each group formed with WMV has been optimized to have the lowest possible variance as 

defined through the dispersion matrix. While a bias exists in this method to produce nearly 

uniform spherical clusters (Cormack, 1971), for our purposes we needed only baseline 

grouping, not perfectly defined individual cluster shapes. By using WMV, we generated our 

clusters through an iterative process that adds successive observations to clusters of ever-

increasing size, until all observations in the dataset were classified. Our aim for this project was 

not to create a new clustering method specific for pine rocklands, but to use established 

clustering methods to evaluate baseline variance structure in the topographic dataset. Thus, we 

have supplemented our hierarchical method with a non-hierarchical fuzzy clustering approach. 

 Fuzzy clustering is a non-hierarchical approach for classifying observations in a dataset 

based on maximum membership probabilities per cluster (Ruspini, 1969; Bezdek, 1981; Dave, 

1992; Jain et al., 1999). This method is different from hierarchical clustering in that each 

observation technically belongs, to some degree, to each cluster in the dataset with varying 

degrees of membership for each. The final cluster membership is set for each observation based 

on the maximum probability membership for all clusters, which represents a hard clustering 
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solution (Jain et al., 1999; de Carvalho, 2007; Miyamoto et al., 2008). Each observation is grouped 

into a specific cluster based on the highest probability of membership, until all observations 

have been placed. For example, if one tree has a membership probability of 0.25 for cluster 1, 

0.25 for cluster 2, and 0.50 for cluster 3 (in a 3 cluster system), it will be placed in cluster 3. 

Fuzzy clustering provides more flexibility in input data structure, while providing robust 

grouping results to outliers and weakly-variable datasets, such as the topographic data from the 

NKDR. 

3.1.4 Research Objectives 

Fires occur in a non-random fashion (Brillinger, 2003; Preisler et al., 2004), thus 

predicting patterns in fire activity through the use of non-random datasets, such as topography, 

could be beneficial to land management. Establishing relationships between historic fire activity 

and topography on Big Pine Key will facilitate more accurate fire risk predictions as a 

multiscalar process. The research objectives for this project were to (1) isolate specific 

topographical variables that display statistically significant relationships with historic fire 

activity, (2) determine if those relationships change with increases in scale (aggregated cellular 

resolution), and (3) evaluate the surface roughness parameters for natural clustering.  

 

3.2 Methods 

3.2.1 Big Pine Key Study Area 

Big Pine Key, Florida, USA (24.6°N, 81.3°W) is the largest island in the Florida Key 

island chain, and it supports the largest contiguous pine rockland. The data for this project 
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included the GPS-located fire-scarred slash pine trees collected from the Blue Hole burn site in 

the NKDR located on Big Pine Key.  The burned area was approximately 48.5 hectares adjacent 

to Key Deer Boulevard in the north central section of the island, and the study site was in the 

southern extent of the burn perimeter (Figure 3.1). Karst limestone is exposed throughout the 

area, with little to no soil development, except near wetter areas. Dissolution holes are 

dispersed across the rocklands, averaging in size from 0.2–5 m in diameter. Larger holes tend to 

hold more water, which in combination with greater limestone erosion, have more soil 

development and groundlayer vegetation. These wetter areas create small wetland complexes, 

one of which is expansive in the north central section of the burned area. The climate of the 

Lower Florida Keys is tropical savanna, and the region lies within a climatically-active region in 

the Gulf of Mexico. Tropical savanna climate types are characterized by hot-wet summers, and 

cool-dry winters, with upwards of 70% of the total rain (approximately 980 mm) occurring 

between May and November (NOAA (CLIM60) 2010; Harley et al. 2011). 

The study area is bordered by mixes of neighborhoods and hardwood hammocks. The 

hardwood hammocks are located to the west of the burned area and are composed of species 

intolerant of regular fire. Lack of regular fire in the pine rocklands through fire suppression has 

allowed encroachment of the hardwoods into the rocklands, especially in areas of higher 

moisture availability. To the north and south of the burned area are neighborhoods, with the 

southern border labeled as a wildland-urban interface (WUI). The eastern border is Key Deer 

Boulevard, which acted as a firebreak in the 2011 Blue Hole burn. Some areas experienced a  
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Figure 3.1 The 2011 Blue Hole burn is shown by the yellow polygon (left). Big Pine Key is 
highlighted by the yellow rectangle (lower inset). The location of Big Pine Key in the Florida 
Keys island chain is shown by the yellow rectangle (upper inset). Source for imagery is 
ArcGlobe 10.2.2. 
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lower intensity fire, which meant less destruction and the continued survival of a well-

developed subcanopy layer (Figure 3.2). 

3.2.2 Experimental Design 

Traditional dendrochronological sampling methods for fire history analyses follow a 

targeted sampling approach for fire-scarred trees. For this study, we created a gridded network 

of cells overlain across the burned area using plot center locations (spaced 250 meters apart) 

provided by the U.S. Fish and Wildlife Service (USFWS), which created a contiguous plot 

network (Figure 3.3). We used a stratified pseudo-systematic sampling design, whereby the 30 

best trees were targeted in each plot. A total of seven plots were explored, and certain plots did 

not have 30 optimal samples, while others had more than 30. In total, we successfully dated and 

included cross sections from 63 trees in this study. No even distribution of trees was found 

across all plots or cells. Given the 1m resolution of the LiDAR, multiple trees per cell was rare. 

We envisioned our sampling design of a contiguous plot network to collect tree-ring and fire-

scar data across a surface, rather than disjointedly targeting trees across the burned area, which 

would have created a mosaicked design. Thus, in the field we collected trees that followed the 

plot network, although an even number of trees per plot was not found. 

3.2.3 Laboratory Methods 

 Each sample was labeled in the field with a specific plot ID and tree number (e.g. 

BH1001 = Blue Hole burn plot 1, tree 1). If a particular scarred tree had a large catface (term for 

scarred surface along basal margin of burned tree; Figure 3.4), we took sections at different  
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Figure 3.2 An example of the canopy and subcanopy of the study site. This area did not 
experience significant burning in the 2011 Blue Hole burn. Notice the thick understory 
and living slash pine canopy. 
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Figure 3.3 Sampling grid with tree locations in yellow. Key Deer Boulevard is the road in the 
eastern section of the image, Blue Hole pond is in the lower right. Source of image is 
ArcGlobe 10.2.2. 
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Figure 3.4 Catface (left) and its fire-scarred cross section (right) for sample BH1008.  
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heights above ground (e.g. sample ID would be BH1001a and BH1001b for top and bottom, 

respectively). The cross sections were secured and protected with plastic wrap, dried in the 

storage room, and then processed in the woodshop. Once the wood was dry, we sanded each 

sample using increasingly finer-grit sandpaper to generate a polished finish on the measuring 

surface. Standard sanding methods were used (Stokes & Smiley, 1968; Orvis & Grissino-Mayer, 

2002), starting with ANSI 100-grit (125–149 µm) and progressing to ANSI 400-grit (20.6–23.6 

µm) to ensure optimal cellular structure could be seen on the surface of interest.   

All cross sections were scanned using a high-resolution EPSON 10000XL scanner at a 

minimum of 2000 dpi for ring boundary preservation. We scanned the samples to preserve a 

digital archive of the slash pine trees for future research, but to also produce high-quality visual 

imagery of ring boundaries during visual crossdating in the WinDENDRO ™ version 2014b 

(release date June 9, 2015; Regent Instruments Inc.). Per standard practice, we used skeleton 

plotting in conjunction with a known and established fire chronology (Harley et al., 2011) to find 

frequency patterns between fire years and dated fire scars from the Blue Hole burn site. For 

samples that were living when collected, the outer ring years were known, and dating of fire 

scars was straightforward. For samples that were snags, remnant stumps, or downed logs when 

collected, the outer year was not known and skeleton plotting was required to date those 

samples (Stokes & Smiley, 1968).  

3.2.4 GIS Methods 

We used two primary datasets in the geographical analyses for this project. Specifically, 

the GPS-located tree and fire scar data were stored as a point shapefile in ArcMap 10.2.2, and 
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the topographical data were all derived from a single 1 m resolution LiDAR elevation model 

(DEM) (Figure 3.5). The topographic parameters used in this project were: elevation (meters), 

slope (degrees; range 0–90), curvature (1/100 z-units), and residual (meters) topography. The 

DEM was uploaded to ArcMap 10.2.2 software (ESRI) and processed using the Spatial Analyst 

(extensions package) toolbox. The GPS point shapefile was processed using basic Attribute 

Table calculations and the Analysis toolbox.  

Each microtopography parameter was in a raster grid form (standard DEM file type), 

and we first calculated each from the LiDAR data, and then converted each final surface to a 

compatible format with the GPS point shapefile. No calculations were required for elevation, as 

the LiDAR dataset is a digital representation of elevation. We calculated slope from the DEM to 

define values for rate of change in the z-axis for each cell using the following algorithm:  

(Eq. 3.1)   𝐷𝑒𝑔𝑟𝑒𝑒𝑠	𝑆𝑙𝑜𝑝𝑒 = 𝑇𝑎𝑛 ∆0
∆1

2
+ 	 ∆0

∆4

2
	×	678

9
 

Curvature was the third microtopographic parameter extracted from the LiDAR DEM for this 

project, and can be thought of as the slope of the slope. The Curvature tool in the Spatial 

Analyst toolbox calculates the second derivative of the DEM for each cell in the grid, and 

assigns a new value to each cell based on steepest descent. The fourth-order polynomial applied 

to the DEM is: 

(Eq. 3.2)  𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = 𝐴𝑥2𝑦2 + 𝐵𝑥2𝑦 + 𝐶𝑥𝑦2 + 𝐷𝑥2 + 𝐸𝑦2 + 𝐹𝑥𝑦 + 𝐺𝑥 + 𝐻𝑦 + 𝐼 

where E is the cell of interest, and A through I are the surrounding cells in the 3x3 window (A in 

upper left and clockwise through I around E). We calculated overall curvature, profile  
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Figure 3.5 A zoomed in look at the GPS-located sample trees overlain on the 1 meter 
LiDAR elevation model. The Blue Hole pond is located in the lower right corner.  
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curvature (curvature of the direction of maximum slope), and planar curvature (curvature 

perpendicular to the direction of maximum slope).  

Residual topography represents residual elevation after a 3 x 3 smoothing spline was 

applied to the LiDAR DEM. This topographic metric isolates specific locations of peaks and 

depressions in the landscape. We used the Focal Statistics tool in the Neighborhood toolset in 

the Spatial Analyst toolbox, with the “mean” operation as our operational smoothing method. 

The tool shifted a 3 x 3 cell window across the DEM grid and calculated average elevation for 

that window, and assigned the average to the center cell in the 3 x 3 window (cell-of-interest). 

The output raster was a smoothed DEM, which was then subtracted from the original DEM to 

achieve residual topography.  

Once each of the new microtopography raster grids was calculated, we converted them 

to point shapefiles to be compatible with the GPS tree data. Centroid locations for every cell in 

each of the microtopographic grids were extracted using the raster conversion macro in ArcMap 

10.2, whereby each point was attributed with characteristics of the parent cell. For example, we 

transformed the slope degree raster to a shapefile of several hundred centroid points, all with 

an attribute table for corresponding slope of the original cell. Batch spatial joining the generated 

a single point shapefile where each centroid point was attributed with each of the 

microtopographic parameters from the parent raster layers. Finally, we joined the 

microtopographic points to the target GPS tree points to create a final dataset of points. The 

spatial joining looked at the 12 nearest centroid locations to each GPS-located tree and 

attributed the average surface parameter to the attribute table of that tree. The final attribute 
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table included fire scar counts, elevation, degrees slope, curvature, and residual topography for 

each of the 63 GPS-located trees. 

To assess potential changes in the relationships between fire activity and 

microtopography, we conducted this analysis at varying levels of cellular resolution using the 

following scaling windows: No Scale (original raster layers), 3 x 3 window, 10 x 10 window, 50 

x 50 window, and 100 x 100 window. The 3 x 3 window is a standard smoothing window for 

raster data layers and focuses only on the immediate eight-cell neighborhood of a cell-of-

interest. We used increasingly large smoothing windows to find a critical cellular resolution to 

capture the highest possible statistical significance between the model variables. Focal statistical 

smoothing operations were conducted on the derived surface rasters, rather than directly on the 

original DEM to preserve as much landscape variance as possible in each successive window 

size. For each scale aggregation, we generated point shapefiles via raster conversion, when we 

then joined with the GPS tree data. In total, we created five final datasets (each representing 

increasing cellular aggregation) via our GIS model and used in statistical analyses of 

relationships between fire activity and surface roughness parameters.  

3.2.5 Statistical Methods 

 The datasets derived from the dendrochronological and GIS methods were analyzed for 

statistical relationships between fire activity and microtopography. First, we conducted a robust 

and unrotated Principal Component Analysis (PCA) on the dataset to evaluate explained 

variance between microtopography and fire activity. A PCA linearizes the combinations of 

variables to find the variance structure of the dataset. We then ran the PCAs on the non-scaled 
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data only, as a measure of overall ability of the microtopography to explain variance in the scar 

frequency.  

We used a varimax rotation to orthogonally optimize cumulative explained variance. 

The varimax rotation eigenvalues were not used in further steps, but rather were used to 

evaluate optimal explained variance possibilities given the microtopography dataset. We 

retained those principal components from the robust and unrotated PCA with eigenvectors 

above the standard 1.0 Kaiser threshold for the clustering and discriminant analyses in later 

steps. We ran hierarchical multivariate analyses on normalized PC scores rather than raw data 

to ensure that we captured the greatest possible variance for enhanced predictive power.  

We next ran linear models in R to assess relationships between microtopographic 

parameters and fire activity. The multiple regressions included the fire-scar data for the 

dependent (response; left-hand side of the equation) variable, and the microtopography data for 

the independent (predictor; right-hand side of the equation) variables. The coefficients for each 

predictor variable were analyzed based on individual value (positive or negative), and 

statistical significance, which is indicated by the p values for each coefficient. Those specific 

predictor variables with significant coefficients were determined to be of higher influence to 

fire-scar susceptibility and activity than those without appropriate significance (p < 0.05). We 

ran multiple linear regressions for each of the five scaling windows, to assess statistical 

significance between the response and predictor variables at each scale. The multiple regression 

model after variable subset selection took the following form: 

(Eq. 3.3)   𝑌HIJKL = 	𝛽8 	+ 	𝛽6𝑋6 + 	𝛽2𝑋2 + 	𝛽O𝑋O…. 
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 We next evaluated the natural clusters in the dataset using both hierarchical and fuzzy 

clustering methods to provide further insights on the variance structure of the 

microtopography. We conducted the clustering analyses due to the low overall model fits of 

each multiple regression across scales. Furthermore, we wished to demonstrate the potential for 

the fire activity and microtopography relationship to change with increasing scale, including 

changes to the clustering structure of the microtopography data.  

Those factors calculated from the original PCA, with eigenvectors above the 1.0 Kaiser 

threshold, were retained for the clustering analyses. We normalized the factor scores for each 

observation from the robust and unrotated PCA based on the following equation, and then used 

as input data for the clustering algorithms: 

(Eq. 3.4)  𝐹𝑎𝑐𝑡𝑜𝑟STKUJVW0XY = 𝐹𝑎𝑐𝑡𝑜𝑟KJZ	×	 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟  

where the eigenvector is the unique value for each of the initial PCs. These scores are the ones 

that are normalized and used in subsequent steps.  

 The hierarchical and fuzzy clustering were conducted in NCSS using pre-constructed 

algorithms for each operation. We did not undertake the clustering methods at each scale, 

rather clustering was used to show overall structure in the microtopography dataset. Having 

already found the optimal scale in the multiple regressions, the purpose of the clustering was to 

show potential discrepancies in clusters based purely on microtopographic data. The natural 

clusters present in the surface roughness data may not follow natural clusters in the scar 

frequency.  
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The hierarchical clustering analysis we used was Ward’s Minimum Variance using a 

Euclidean distance measure between cluster centroids and a cluster distance cutoff of 50 (this 

value is unique to each dataset and must be iteratively chosen). We collected the cluster IDs for 

each clustering operation and then used as inputs for a discriminant analysis to validate each 

cluster group. We validated our analyses using a linear discriminant function with the 

predicted clusters and the original microtopography variables. The classification matrix was 

then evaluated for classification error rates.  

 

3.3 Results 

3.3.1 Principal Component Analyses 

 The eigenvectors for the robust PCA revealed that 77.8% of the cumulative variance 

could be explained by the first two principal components. The third PC was close to the 1.0 

threshold at 0.918. The scree plot shows a distinct elbow (clear decay in eigenvalues in 

decreasing value; ideal elbows take the form of exponential decays) after the third PC, 

indicating no additional PCs should be considered (Table 3.2).  

 The varimax rotation calculated a linearized combination of the microtopography 

variables, but then also orthogonally rotated the dimensions 90 degrees. The first four PCs were 

above the 1.0 Kaiser threshold in the varimax PCA, with a total explained variance of 98.42% (if 

all four PCs are considered). A distinct elbow in the scree plot was not obvious, and overall 

interpretation of the varimax rotation is limited (Table 3.3). In general, this rotation showed the  



 

 109 

Table 3.2 Eigenvalues and explained variance percentages for the regular, unrotated 
PCA. 
Eigenvalues         

No. Eigenvalue Ind. Percent Cumulative Percent Scree Plot 
1 3.552968 59.22 59.22 |||||||||||| 
2 1.114867 18.58 77.8 |||| 
3 0.918339 15.31 93.1 |||| 
4 0.333299 5.55 98.66 || 
5 0.080527 1.34 100 | 
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Table 3.3 Eigenvalues and explained variance percentages for the varimax rotated PCA. 
Eigenvalues         

No. Eigenvalue Ind. Percent Cumul. Percent Scree Plot 
1 2.536161 42.27 42.27 ||||||||| 
2 1.008692 16.81 59.08 |||| 
3 1.010491 16.84 75.92 |||| 
4 1.350033 22.5 98.42 ||||| 
5 0.094623 1.58 100 | 
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potential for distinct orthogonality in the data structure, but provided little in the way of 

interpretation or predictive power. 

3.3.2 Multiple Regression 

3.3.2.1 No Scaling 

The linear model with no scaling produced an R2 value of 0.06846, which translates to 

approximately 6.8% of explained variance in the fire activity data captured with 

microtopographic factors as predictor variables. No coefficients for any microtopography 

parameter were significant (p > 0.05), and the closest to significance was profile curvature (p = 

0.25) (Table 3.4). The residual plot did not indicate patterns or striping in the model residuals, 

and the Normal Q-Q plot indicated a fairly continuous relationship with changes in number of 

fire scars (Figure 3.6). Adjusted R2 was negative. The F-statistic was also low at 0.8377 with 57 

degrees of freedom (p-value = 0.5285). All of these results indicate that, at this scale, the model 

was poorly fit with low explained variance power, and none of the parameters were significant. 

 We aggregated window sizes between the “no-scaling” class to the 100 x 100 class, but 

have only reported results here for a select few “snapshots” across the range of window sizes. 

An upward trend was found in model fit and coefficient significance values with increasing 

window size until approximately the 50 m window size, with decreasing significance following 

50 m to the 100 m window maximum. Therefore, we selected and reported only four window 

sizes succeeding the “no-scaling” class.  
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Table 3.4 Multiple Regression with No Scaling. Coefficients are listed for each parameter, 
with only the intercept significant. (p < 0.05). Planar curvature was a singularity (NA). 
Regression Coefficients -- No Scaling     

Parameter Estimate Std. Error t value Pr(>|t|) 
(Intercept) 6.44196 1.90718 3.378 0.00132 
Elevation –1.56279 2.3727 –0.659 0.51277 

Slope Degrees 0.08916 0.22285 0.4 0.69059 
Residual 21.12523 42.32223 0.499 0.61959 

Curvature –0.08649 0.126 –0.686 0.49524 
Profile Curvature 0.16476 0.14221 1.159 0.25146 
Planar Curvature NA NA NA NA 

Residual Std. Error: 2.052 on 57 DFs 
Multiple R-squared: 0.06846 
Adj. R-squared: -0.01326 
F-statistic: 0.8377, p value: 0.5285 
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Figure 3.6 No Scaling: These two diagnostic plots, 
Residuals vs. Fitted (top) and Normal Q-Q (bottom), 
show no patterns in the residuals or significant 
changes in the relationship with changes in the 
response variable.  
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3.3.2.2 Aggregate 3 x 3 Cell Window 

The linear model with the 3 x 3 aggregated cell window produced an R2 value of 0.1098, 

which means this model could explain roughly 10.9% of the variance in the fire activity. This R2 

value was an improvement from the previous model fit for no scaling, but it was still low. No 

coefficients for any of the microtopography parameters were significant (p < 0.05) (Table 3.5). 

The p-value for elevation dropped, indicating increasing statistical significance, but it was still 

above the 0.05 alpha threshold (p = 0.23345). The residual and Normal Q-Q plots did not show 

any specific trends of merit (Figure 3.7). The adjusted R2 value was 0.03177, which indicated a 

reduction penalty in model fit due to higher numbers of parameters. The F-statistic was low at 

1.407 on 57 degrees of freedom and with a p-value of 0.2356. Again, all of these results for the 3 

x 3 scale aggregate indicated low explained variance power and poor model fit.  

3.3.2.3 Aggregate 10 x 10 Cell Window 

The linear model with the 10 x 10 aggregated cell window produced an R2 value of 

0.1487, indicating the model could explain approximately 14.8% of the observed variance in fire 

activity (scar frequency). Curvature was significant at the 0.05 alpha level and showed a 

negative relationship with fire activity. Both profile curvature and residual microtopography 

were significant at the 0.10 alpha level, with profile curvature displaying a negative relationship 

with fire activity while residual topography had a positive relationship (Table 3.6). The residual 

plot did not indicate a pattern in the model residuals, but the Normal Q-Q plot did indicate a 

change in the relationship depending on the scar counts (Figure 3.8). The model fitted the data 
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Table 3.5 Multiple Regression results with 3 x 3 window size. Coefficients are listed for 
each parameter, with only the intercept significant. (p < 0.05). Planar curvature was a 
singularity (NA). 
Regression Coefficients -- 3 x 3 Window     

Parameter Estimate Std. Error t value Pr(>|t|) 
(Intercept) 7.1787 1.9202 3.739 0.000431 
Elevation –2.7589 2.2909 –1.204 0.23345 

Slope Degrees 0.2187 0.3618 0.605 0.547863 
Residual –270.3389 317.0326 –0.853 0.397385 

Curvature 0.7006 0.9221 0.76 0.450517 
Profile Curvature 0.5693 0.3626 1.57 0.121917 
Planar Curvature NA NA NA NA 

Residual Std. Error: 2.006 on 57 DFs 
Multiple R-squared: 0.1098 
Adj. R-squared: 0.03177 
F-statistic: 1.407, p value: 0.2356 
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Figure 3.7 Aggregated 3 x 3 Scale: The Residual vs. Fitted 
(top) and the Normal Q-Q (bottom) show a lack of patterns 
in the residuals and a consistent relationship between the 
response and predictor variables for the model. 
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Table 3.6 Multiple Regression results with 10 x 10 window. Coefficients are listed for each 
parameter, and Curvature is significant (p < 0.05). Residual and Planar Curvature are not 
significant (p > 0.05). 
Regression Coefficients -- 10 x 10 Window     

Parameter Estimate Std. Error t value Pr(>|t|) 
(Intercept) 7.3435 2.1829 3.364 0.00139 
Elevation –3.0713 2.4472 –1.255 0.21469 

Slope Degrees 0.1958 0.4746 0.413 0.68142 
Residual 4883.6985 2736.1911 1.785 0.0797 

Curvature –31.3969 13.0987 –2.397 0.01989* 
Profile Curvature 14.3451 8.7752 1.635 0.10771 
Planar Curvature –15.1376 8.7764 –1.725 0.09008 

Residual Std. Error: 1.979 on 56 DFs 
Multiple R-squared: 0.1487 
Adj. R-squared: 0.05746 
F-statistic: 1.63, p value: 0.156 
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Figure 3.8 Aggregated 10 x 10 Scale: The Residual vs. 
Fitted (top) and the Normal QQ (bottom) indicate slight 
patterns or trends in the residuals and a breakdown of the 
relationship between the scar frequency and surface 
roughness parameters at the tails of the response 
distribution.  
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less at the tails of the scar frequency distribution. The adjusted R2 value was 0.05746, still 

indicating a decrease in model fit with increases in parameter loadings. The F-statistic was 1.63 

with 56 degrees of freedom and the p-value was 0.156. The scalar representation of the 

microtopography indicated a low level of significance between the predictor variables and fire 

activity, particularly with curvature and its two derivatives. 

3.3.2.4 Aggregate 50 x 50 Cell Window 

 The linear model for the 50 x 50 aggregated cell window produced an R2 value of 0.1971, 

which means the linear model at this scale could capture almost 20% of the variance observed in 

the fire scar data per tree. At this scale, each of the three curvature metrics dropped back out of 

significance. However, residual topography became the strongest parameter of any of the 

previous models (p < 0.05). Curvature was not significant (p > 0.05), although the p-value was 

less than for the 10 x 10 aggregated cell window (Table 3.7). The residual and Normal Q-Q 

diagnostic plots indicated no distinctive pattern in the model residuals and a consistent 

relationship between the dependent and predictor variables throughout the scar frequency 

distribution (Figure 3.9). The adjusted R2 value was 0.111. The F-statistic was 2.291 on 56 degrees 

of freedom with a p-value that was statistically significant (p < 0.05). This scale produced the 

highest statistical significance of any of the five scaling windows.  

3.3.2.5 Aggregate 100 x 100 Cell Window 

The linear model for the 100 x 100 aggregated cell window produced an R2 value of 

0.1338, which indicated a model that could explain approximately 13.3% of the observed 

variance in scar frequency. Residual topography was still significant (p < 0.05), but none of the  



 

 120 

Table 3.7 Multiple Regression results for 50 x 50 window. Coefficients are listed for each 
parameter, and Residual is significant (p < 0.05).  
Regression Coefficients -- 50 x 50 Window     

Parameter Estimate Std. Error t value Pr(>|t|) 
(Intercept) 6.4600 2.793 2.313 0.0244 
Elevation –0.7889 2.404 –0.328 0.7441 

Slope Degrees –0.4871 0.9095 –0.536 0.5944 
Residual –6.81E+04 2.93E+04 –2.33 0.0235* 

Curvature 225.4 129.5 1.74 0.0873 
Profile Curvature –3.821 81.1 –0.047 0.9626 
Planar Curvature –2.468 81.59 –0.03 0.976 

Residual Std. Error: 1.922 on 56 DFs 
Multiple R-squared: 0.1971 
Adj. R-squared: 0.111 
F-statistic: 2.291, p value: 0.04777 
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Figure 3.9 Aggregated 50 x 50 Scale: The Residual vs. 
Fitted (top) shows a slight indication of striping in the 
residuals. The Normal Q-Q (bottom) shows a fairly 
continuous relationship across the response distribution. 
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other microtopography parameters were close to statistical significance (Table 3.8). The 

residual plot showed the presence of patterns in the residuals, further emphasizing poor 

overall model fit, but the Normal Q-Q diagnostic plot indicated a fairly consistent 

relationship between scar frequency and the predictor variables for the length of the scar 

frequency distribution (Figure 3.10). The adjusted R2 value was 0.04096, which 

demonstrated a strong penalty for the number of predictor variables in this model. The F-

statistic was 1.441 on 56 degrees of freedom with a p-value of 0.2154. The adjusted R2 

value and the F-statistic clearly showed a decrease in model fit with the step up in 

aggregated cell window from the previous size. 

3.3.3 Hierarchical Clustering and Discriminant Analysis 

The Ward’s Minimum Variance hierarchical clustering algorithm found four natural 

clusters in the microtopographic dataset. The dendrogram displayed the break down of each 

observation into one of the four clusters (Figure 3.11). The linear discriminant analysis validated 

the clustering with a classification matrix on actual versus predicted cluster values based on the 

original dataset (not the adjusted factor scores) and found a remarkably high classification rate. 

The validation analysis achieved a 100% classification rate, with 63 out of 63 observations 

correctly categorized (Table 3.9). The plot of the first two canonical scores for each observation 

showed a clear and linear clustering of each group with no overlap in distance or group 

membership (Figure 3.12). 

 
 



 

 123 

Table 3.8 Multiple Regression results for 100 x 100 window. Coefficients are listed for 
each parameter, and Residual is significant (p < 0.05). 
Regression Coefficients -- 100 x 100 Window   

Parameter Estimate Std. Error t value Pr(>|t|) 
(Intercept) 5.0252 4.1933 1.198 0.2358 
Elevation –0.4941 2.9663 –0.167 0.8683 

Slope Degrees 0.1455 1.4701 0.099 0.9215 
Residual 3.12E+04 1.52E+04 2.053 0.0447* 

Curvature 29.8853 230.0041 0.13 0.8971 
Profile Curvature –149.2425 225.9281 –0.661 0.5116 
Planar Curvature 141.8709 227.1657 0.625 0.5348 

Residual Std. Error: 1.996 on 56 DFs 
Multiple R-squared: 0.1338 
Adj. R-squared: 0.04096 
F-statistic: 1.441, p value: 0.2154 
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Figure 3.10 Aggregated 100 x 100 Scale: The Residual vs. 
Fitted (top) shows a clear indication of patterns in the 
residuals with slight striping and a clustering of points in 
the center. The Normal Q-Q (bottom) shows a 
continuous relationship across the response distribution, 
with slight shifts along the tails. 
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Figure 3.11 The dendrogram (classification tree) for the Ward’s Minimum Variance 
hierarchical clustering operation. The tree shows four clusters in the microtopography 
dataset. The y-axis is “Distance” which is Euclidean graph distance and measures the 
distance between cluster centroids. The range of values is dataset dependent and 
arbitrary outside of the dendrogram. 
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Table 3.9 Classification Matrix for Linear Discriminant on Ward’s Clustering. Hit ratio on 
the diagonal is 63/63 (100%) successful. 
Classification Contingency Table 
  Predicted   

Actual 1 2 3 4 Total 
1 3 0 0 0 3 
2 0 29 0 0 29 
3 0 0 22 0 22 
4 0 0 0 9 9 

Total 3 29 22 9 63 
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Figure 3.12 Discriminant validation analyses of the clustering results 
from the Ward’s Minimum Variance operation that shows clear linear 
separation between clusters. C18 is the plot reference code for Cluster 
ID. The plot also shows that cluster 1 is likely composed of outliers. 
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3.3.4 Fuzzy Clustering and Discriminant Analysis 

 The fuzzy clustering algorithm found five natural clusters based on maximum cluster 

membership probabilities. No dendrogram for the fuzzy clustering algorithm is produced 

because each observation technically belongs in all five clusters in varying degrees of 

membership. Final cluster membership was given to the cluster for each observation with the 

highest probability. The discriminant analysis validation achieved a strong classification rate of 

84% with 53 out of 63 observations correctly categorized (Table 3.10). The majority of the 

misclassification was found when predicting observations for group 1 from actual groups of 2, 

4, and 5. This misclassification was likely the result of the fuzzifier value, which diluted hard 

cluster boundaries as it was increased. The plot of the first two canonical scores for each 

observation displayed a tighter cluster formation, with some observations overlapping into the 

Euclidean space of more than one cluster (Figure 3.13).  

3.3.5 Variable Profiles by Cluster 

3.3.5.1 Ward’s Minimum Variance Clustering 

Given the different grouping patterns for each clustering algorithm, we thought it 

appropriate to profile each cluster based on each of the microtopography parameters. 

Additionally, we also captured scar frequency per cluster to evaluate any discrepancies between 

the surface roughness groups and the natural breaks in scar frequency. First, the group size for 

the Ward’s method varied depending on the cluster, and the second and third clusters had the 

bulk of observations (Table 3.11). We found little correlation between scar frequency and 

cluster, with the span of scar counts ranging from 2 to 10 per observation per cluster.  
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Table 3.10 Classification Matrix for Discriminant Analysis on Fuzzy clustering. The hit 
ratio on the diagonal is 53/63 (84.1%) successful. 
Classification Contingency Table 
  Predicted   

Actual 1 2 3 4 5 Total 
1 11 1 0 1 0 13 
2 1 12 0 0 0 13 
3 0 0 9 0 0 9 
4 2 0 0 15 0 17 
5 4 1 0 0 6 11 

Total 18 14 9 16 6 63 
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Figure 3.13 This plot comes from the discriminant validation analyses 
for the fuzzy clustering operation. While there is no dendrogram for 
fuzzy clustering, notice that this clustering algorithm found five 
clusters. The separation between clusters is less distinct than the 
Ward’s. Clusters 3 (green) and 5 (orange) have the greatest separating 
distance. 
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Table 3.11 Profiles for each variable per cluster for the Ward’s operation. The units for 
each variable are: Elevation (m), slope (degree), residual (m), curvature (1/100 z-units). 

Cluster No. 1 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 3 4.333333 3.21455 2 8 
Elevation 3 0.64 0.1039279 0.545 0.751 
Slope Degree 3 3.344808 2.53319 1.187114 6.13401 
Residual 3 –0.05888889 0.009311501 –0.06711113 –0.04877776 
Curvature 3 –29.50415 5.527683 –34.947 –23.89537 
Planar Curvature 3 –15.15623 3.280531 –18.73789 –12.29737 
Profile Curvature 3 14.34792 5.349959 10.93221 20.51355 

Cluster No. 2 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 29 5.448276 2.338898 2 10 
Elevation 29 0.8174483 0.1025996 0.6760001 1.027 
Slope Degrees 29 0.9702234 0.576658 0.2937818 2.442944 
Residual 29 0.000704979 0.008357438 –0.01455557 0.01655555 
Curvature 29 1.71319 3.380822 –3.38517 10.65336 
Planar Curvature 29 1.171231 2.582443 –3.316357 7.957017 
Profile Curvature 29 –0.5419594 2.369373 –4.13587 7.073473 

Cluster No. 3 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 22 5.227273 1.571527 2 8 
Elevation 22 0.6713637 0.09675574 0.504 0.8340001 
Slope Degrees 22 2.00969 1.423798 0.2181676 6.662285 
Residual 22 –0.002388886 0.01088407 –0.02888888 0.01955557 
Curvature 22 –2.14515 4.330394 –9.458576 5.675161 
Planar Curvature 22 –1.380502 2.597111 –7.940751 4.191057 
Profile Curvature 22 0.7646486 3.511084 –6.158318 5.747957 

Cluster No. 4 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 9 6.333333 1.581139 3 8 
Elevation 9 0.7602223 0.09264689 0.654 0.9350001 
Slope Degrees 9 1.54062 1.308504 0.4610262 4.47498 
Residual 9 0.03845681 0.01516376 0.02500004 0.06622225 
Curvature 9 17.25778 9.150015 9.159905 37.63522 
Planar Curvature 9 8.355434 5.317347 0.796519 18.77987 
Profile Curvature 9 –8.902342 4.399221 –18.85535 –3.609197 
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We found no natural breaks or clustering in the scar frequency data. Finally, the curvature 

parameters were the only variables that showed strong differences among groups. The first 

cluster had values significantly higher than the other three clusters, which combined with the 

low group size (n = 3) potentially indicated this cluster was composed of outliers. The canonical 

scores plot of Factor 1 vs. Factor 2 reinforced the group separation. 

3.3.5.2 Fuzzy Clustering 

The variable profiles for the fuzzy clustering algorithm were much more even compared 

to the Ward’s clustering (Table 3.12). The results of this algorithm clustered into groups of 

similar sizes: the maximum group size was 17 and the smallest was nine. Additionally, the 

cluster centroids were closer to each other and several observations overlapped onto adjacent 

group territory. However, what is most striking is that even though fuzzy clustering allowed 

for more ambiguous group boundaries, each of the clusters displayed the same distribution for 

scar frequency, with each group ranging from approximately two to ten scars. 

 

3.4 Discussion 

By using a grid-based experimental design for our collection method we were able to 

evaluate relationships between fire activity and surface roughness variables across scales and 

from a spatially-explicit perspective. A targeted approach, when viewed at the study area scale, 

generates information from a more mosaicked perspective, with bundles of samples in certain 

areas, or with individual trees spread across larger spatial expanses. The targeted sampling 
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Table 3.12 Profiles for each variable per cluster for the Fuzzy operation. The units for each 
variable are the same as for Ward’s. 

Cluster No. 1 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 13 5.615385 2.292686 2 10 
Elevation 13 0.8407693 0.1279565 0.6210001 1.027 
Slope Degrees 13 0.9484664 0.6065021 0.3456899 2.369017 
Residual 13 –0.006427343 0.004498944 –0.01455557 –0.00022221 
Curvature 13 –1.42453 1.152811 –3.38517 0.3982511 
Planar Curvature 13 –0.2856596 2.639122 –3.316357 7.471724 
Profile Curvature 13 1.138871 2.325054 –1.991285 7.073473 

Cluster No. 2 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 13 5.307693 1.548366 3 8 
Elevation 13 0.6423077 0.08143852 0.504 0.8050001 
Slope Degrees 13 2.584115 1.536106 0.7059707 6.662285 
Residual 13 0.003888887 0.008239594 –0.01155555 0.01955557 
Curvature 13 0.7429034 2.738651 –4.480378 5.675161 
Planar Curvature 13 –0.1224634 2.175051 –3.683865 4.191057 
Profile Curvature 13 –0.8653667 3.56348 –6.158318 4.6429 

Cluster No. 3 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 9 6.333333 1.581139 3 8 
Elevation 9 0.7602223 0.09264689 0.654 0.9350001 
Slope Degrees 9 1.54062 1.308504 0.4610262 4.47498 
Residual 9 0.03845681 0.01516376 0.02500004 0.06622225 
Curvature 9 17.25778 9.150015 9.159905 37.63522 
Planar Curvature 9 8.355434 5.317347 0.796519 18.77987 
Profile Curvature 9 –8.902342 4.399221 –18.85535 –3.609197 
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Table 3.12 Continued 
Cluster No. 4 

Variables Count Mean Std. Dev. Minimum Maximum 
Scars 17 5.352941 2.370158 2 10 
Elevation 17 0.7880589 0.08481999 0.6760001 1.005 
Slope Degrees 17 0.9791147 0.5537753 0.2937818 2.442944 
Residual 17 0.005934634 0.006129527 –0.00377786 0.01655555 
Curvature 17 3.912284 2.567701 1.194783 10.65336 
Planar Curvature 17 2.159291 1.993019 –0.7507116 7.957017 
Profile Curvature 17 –1.752994 1.419846 –4.13587 0.4318731 

Cluster No. 5 
Variables Count Mean Std. Dev. Minimum Maximum 
Scars 11 4.818182 2.088932 2 8 
Elevation 11 0.7017273 0.1085855 0.518 0.8340001 
Slope Degrees 11 1.801415 1.621702 0.2181676 6.13401 
Residual 11 –0.02515151 0.02282723 –0.06711113 –0.00655556 
Curvature 11 –13.06099 10.91377 –34.947 –4.878641 
Planar Curvature 11 –6.661489 5.900776 –18.73789 –1.466599 
Profile Curvature 11 6.399503 5.774524 1.364916 20.51355 
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approach does not provide the observer with any information between the sampling locations, 

which creates a disjointed landscape interpretation. Our method was the scientific equivalent of 

placing a continuous “sheet” across the pine rockland landscape, whereby any location on the 

sheet had information on the nearest fire scar activity. This kind of experimental design allowed 

for the investigation of changes in response-predictor variable relationships with increasing and 

decreasing scale. Trees were targeted within the plot network based primarily on scar criteria, 

but we made sure to collect as even a distribution of trees across each of the seven plots as 

possible. 

The results from the scaled multiple regressions indicate a clear scalar presence in the 

relationship between fire activity and surface roughness. Even though the changes in R2 value 

for each of the five models were small, we found a clear increase in value to the 50 x 50 cell 

window and then a sharp decline in R2 value at the 100 x 100 cell window. Furthermore, given 

the 50 x 50 scale was the only model with a significant F-statistic (p < 0.05), we can infer that 

scale influences the relationship between the response and predictor variables. Considering 

slash pine trees are the single woody species in the rockland to produce fire scars and they are 

spread approximately 25–30 meters apart, it follows that the surface roughness parameters are 

best suited at that scale. Additionally, closer clustered slash pines could feasibly create micro-

soil environments with increased moisture and humidity, which would dampen the 

relationship between fire activity and microtopography.  

While patterns in fire activity can be classified at different scales, a minimum threshold 

exists below which fire activity cannot be captured.  In this study we found that the least 
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compatible relationships between historic fire activity and the microtopographic surface 

roughness parameters existed at the finest cellular resolution (1 m). These results are to be 

expected considering the high resolution of the original digital elevation model. The finest-scale 

models in the analyses are not detecting relationships between fire activity and 

microtopography, but rather the natural stochasticity and perturbations in the dataset. 

Essentially, we determined that, at finer scales, the noise in the predictor variables dilutes any 

weak relationship that may exist between fire activity and the various surface roughness 

parameters. More fire-scarred slash pine samples across a larger geographic area would be 

needed to make a firm conclusion on coarser scale processes. 

Scaling affects the relationships between environmental variables, and information 

regarding the optimal spatial resolution of an experimental design is highly valuable. For our 

study, we were able to show that, for this landscape and given these surface roughness 

parameters, future research need only collect data at a cell resolution of approximately 50 

meters. Collecting data at any finer of a resolution will not add anything to the results because 

no relationships are found at fine scales. Only with aggregated scale do we begin to see 

statistically significant relationships. Furthermore, collecting fire-scarred slash pines across an 

approximately 50 m sampling spread will remove small fluctuations in fire scar counts, amplify 

the statistical signal, and dampen the stochastic noise. Some trees may have more or less 

scarring based on factors outside of topographic influence. For example, closer proximity to the 

road would likely lead to fewer trees with more scars due to immediate extinguishing of fire or 

removal of trees that appear damaged for safety and aesthetic purposes.  
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The results of the clustering analyses show that natural clustering of the topographic 

data did not follow natural clustering or breaks in the scar frequency data. Grouping structure 

inherent to the topographic data was not influenced by natural structure in the fire-scar data. 

We found that fire-scar counts for each observation varied independently of microtopography. 

For example, trees with low scar counts (1s, 2s, and 3s) were equally likely to be found in areas 

of high or low elevation, slope degree, curvature, or residual topography. In the same example, 

trees with high scar counts (8s, 9s, and 10s) were equally likely to be found in areas of high or 

low elevation, slope degree, curvature, or residual topography. A tree with a low (high) scar 

count was not automatically found in an area of low (high) elevation, slope degree, curvature, 

or residual topographic cell.  

The discrepancies between natural clustering of the two datasets are potentially due to 

two factors: (1) differences in the distributions of each dataset, and (2) patterns in topographic 

fluctuations of low-relief areas occurs at larger scales than fire activity in those areas. To address 

the first, scar frequency follows a Poisson-like distribution while the microtopographic 

parameters are much more Gaussian. Furthermore, the cross validation of each clustering 

algorithm (i.e. Ward’s Minimum Variance or Fuzzy) showed remarkably high classification 

rates, indicating a stronger clustering signal among the variables. To address the second, a 

larger expansive sampling design (now that we have established precedence for collecting trees 

spaced farther apart) could strengthen the relationship between the fire activity and surface 

roughness. 
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3.5 Conclusions 

Future research will investigate potential environmental variables to add to the model 

that would improve overall model fit and predictive power. Such variables could include 

interactions between those surface roughness parameters already in the model, or new variables 

entirely, such as distance to the nearest dissolution hole or estimated soil coverage. These new 

variables could also be calculated from the LiDAR DEM, but some will need to be collected in 

the field, which will require future fieldwork on Big Pine Key. However, two things should be 

noted about our current spatial models, and those with a potentially improved suite of 

predictor variables: (1) even using only DEM-derived surface roughness parameters, our 

models were able to detect and explain approximately 20% of the variance (R2 value of 0.19) in 

fire activity, and (2) including more variables may not improve model fit. The possibility exists 

that, for reasons not explained by our current model, fire activity in these low-relief locations is 

more stochastic than fire activity in the high-relief regions of the western and southwestern US. 

Therefore, even with the best environmental variables added to the model, there could only be a 

marginal increase in the R2 value.  

Avenues for better data selection include isolating variables from a statistical 

perspective, rather than a physical or environmental perspective. Given what we know about 

the distribution of the scar frequency data, it might be beneficial to select variables that also 

have a similar Poisson distribution. A potential variable of interest could be density of 

dissolution holes within “x” meters of a fire scarred slash pine tree. This kind of data set would 

be heavily skewed to low values (e.g. 0s, 1s, 2s, or 3s), with a weak tail at high values, which is 
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similar to the fire scar distribution. In general, there is room for future work in the NKDR, and 

we have isolated several avenues for additional research questions for future projects.  

The foundational outcome of our study is the application of our modeling and 

techniques to isolate potential areas where trees are most susceptible to fire. The techniques we 

used were not new methods, but rather established methods used in innovative ways for 

dendrochronological and fire history research. We have provided a quantifiable means to 

isolate areas where the landscape, and therefore the trees, are most susceptible to fire and 

scarring. Future fire history studies in locales across the southeastern U.S. can take advantage of 

methods proposed in this study to ask questions such as: “Where on the landscape are fires 

most likely to occur?” Our findings are important because, historically, fire history research has 

taken the form of choosing a study area and then investigating if the location is suitable for fire 

history analyses.  

By using the techniques described in our study, the research design can automatically 

include an investigation into the topographic features of the landscape to see if susceptibility of 

fire is high enough to pursue further research in an area. Conventionally, land managers, 

forestry officials, and those invested in fire disturbance research have targeted potential field 

sites via means such as: south-southwest facing slopes, historically high fuel loads, or even 

predominant tree species. These techniques, while valid, are not quantifiable means to 

specifically isolate areas of high-likelihood of scarring. This study will allow future fire history 

research to be more targeted, focused, and prepared before actual sampling begins.  
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Evidence of Spatial Autocorrelation in Fire Activity in Pine Rocklands on Big Pine Key, 
Florida, USA 
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Abstract 
 
Fire is an important disturbance process in forested ecosystems, including southern pine 
rocklands, where many plant species show adaptations for fire survival. Pine rocklands are a 
globally-limited ecosystem, found only in the subtropical portions of the U.S., and select 
locations elsewhere. The dominant canopy species of pine rocklands is the south Florida slash 
pine (Pinus elliottii var. densa), which has been previously used in fire activity analysis because it 
forms annual rings and fire scars along the basal margin of the stem. The activity of fire in pine 
rocklands has been evaluated in previous studies from the perspective of changes in activity 
through time. Our study area was in the National Key Deer Refuge on Big Pine Key, in the 
Lower Florida Keys. The goal of our project was to evaluate spatial associations in fire activity, 
via the fire-scar and tree-ring record, through the use of global (study-area-wide) and local 
(neighborhood) indicators. We built our GIS to incorporate five difference metrics of spatial 
association and autocorrelation, including: Moran’s I, Getis-Ord G, Anselin’s Local Moran’s I 
(ALMI), Getis-Ord Gi*, and Ripley’s K. We found a statistically significant clustering pattern in 
fire-scar activity among trees in our data set using the Moran’s I, with an index value of 0.278 
and z-score of 2.585 (p < 0.01), while no significant high-low clustering was found with the 
Getis-Ord G. Statistically significant clusters of trees with low fire-scar counts exist with the 
ALMI and Gi* local analyses in the south-central location of our study area, and near a 
subdivision to the south. Ripley’s K results indicated a peak in clustering significance at 
approximately 50–65 m, with a lack of significant clustering at closer distances. We propose that 
the cluster of trees with low fire-scar counts is due to the proximity to the subdivision, and 
therefore lack of prescribed burning and quick extinguishing of lightning-caused fires by local 
officials. The results of our research can be used in future analyses of predictive fire risk 
modeling by matching variables found in the area of the low-valued cluster to areas outside of 
our study area.  
 
Key words: dendrochronology, spatial statistics, slash pine, GIS, fire activity 
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4.1 Introduction 

The Lower Florida Keys are home to pine rocklands, which are globally-limited 

ecosystems located exclusively in subtropical regions of the United States (Noss et al., 1995). The 

largest spatial extent of pine rockland vegetation in the Florida Keys is found on Big Pine Key, 

in Monroe County, approximately midway between mainland Florida and Key West. Areas of 

pine rocklands are interspersed with hardwood hammock on Big Pine Key, but these two 

vegetation types are composed of different plant species and have different canopy 

characteristics. The understory layer of pine rockland consists of various palm and shrubby 

herbaceous species (Sah et al., 2004) (Table 4.1), but the canopy is open with slash pine (Pinus 

elliottii var. densa Little & K.W. Dorman; hereafter slash pine) as the sole dominant canopy 

species (Gunderson, 1994; Landers & Boyer, 1999; Menges & Deyrup, 2001). The hardwood 

hammocks have a more diverse and dense assemblage of West Indian hardwoods, with species 

including gumbo limbo (Bursera simaruba (L.) Sarg.), cocoplum (Chrysobalanus icaco L.), and 

Jamaican dogwood (Piscidia piscipula (L.) Sarg.) (Chad Anderson, personal communication). 

Additionally, herbaceous species in the pine rocklands, such as the Big Pine partridge pea 

(Chamaecrista lineata var. keyensis (Pennell) H.S. Irwin & Barneby) and wedge sandmat 

(Chamaesyce deltoidea subsp. serpyllum (Small) D.G. Burch), are adapted to frequent fires, 

whereas plant species in hardwood hammocks are fire-intolerant (Ross et al., 2008; Slapcinsky et 

al., 2010).  
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Table 4.1 List of common plant species found in pine rocklands. The canopy species is slash 
pine (top row), and it has no competition for the canopy layer (Wunderlin, 1982). 
Species Name Common Name Forest Level 
Pinus elliottii var. densa slash pine Canopy 
Byrsonima lucida locust-berry Understory 
Cassia chapmanii Bahama senna Understory 
Coccothrinax argentata silver thatch palm Understory 
Conocarpus erectus buttonwood Understory 
Crossopetalum ilicifolium ground-holly Understory 
Eugenia rhombea red stopper Understory 
Metopium toxiferum poisonwood Understory 
Morinda royoc mouse pineapple Understory 
Myrica cerifera wax-myrtle Understory 
Pithecellobium guadalupense blackbead Understory 
Psidium longipes long-stalked stopper Understory 
Serenoa repens saw palmetto Understory 
Thrinax radiata thatch palm Understory 
Acacia pinatorium pine acacia Groundlayer 
Eragrostis elliottii Elliott’s love grass Groundlayer 
Ernodea littoralis golden-creeper Groundlayer 
Rhynchospora spp. white-topped sedge Groundlayer 
Smilax havanensis greenbriar Groundlayer 
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From a broader perspective, the importance of fire is not unique to pine rocklands, but 

extends to many different ecosystems that depend on fire for overall health and productivity 

(Taylor, 1973, 1981; Wagner, 1978; Nobel & Slatyer, 1980; Sah et al., 2004; Possley et al.,  

2008; Stevens & Beckage, 2009). Numerous studies suggest that fire has played a major part in 

shaping forest ecosystems across North America (Shumway et al., 2001; Stephens et al., 2003; 

Covington & Moore, 2008; Iverson et al., 2008), and globally (Larson, 1996; Lindbladh et al., 2003; 

Drobyshev & Niklasson, 2003; Gavin et al., 2003; Niklasson et al., 2010). In fact, fire is so crucial 

to forest successional pathways that many conifer species have serotinous cones (Beaufait, 1960; 

Johnson & Gutsell, 1993; Verkaik & Espelta, 2006), while other plants have extensive 

underground biomass storage (Abrahamson, 1984; Neary et al., 1999; Bond & Midgley, 2001), 

both of which are traits plants have evolved that enhance survival in fires. 

Pine rocklands are composed of species adapted to fire and most species, including the 

slash pine, depend on frequent fires to maintain dominance (Snyder & Robertson, 1990; Sah et 

al., 2006). The presence of fire in pine rocklands ensures the success of the herbaceous 

groundlayer through fuel reductions in the mid-canopy, and also the prevention of hardwood 

hammock encroachment (Snyder & Robertson, 1990; Snyder, 1991; Sah et al., 2006). The absence 

of fire over a minimum timespan of approximately 50 years will allow a full transition from 

pine rockland to hardwood hammock (Alexander & Dickson, 1972). Studies from across the 

U.S. have found that historically fires were low severity and occurred with high frequency 

(Frost, 1998; Swetnam et al., 1999; Harley et al. 2013; Grissino-Mayer, 2016). Fires burn in pine 

rocklands at a rate of approximately 1 to 2 fires per decade, with some lower severity fires 
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occurring at higher frequency (Harper, 1927; Taylor, 1981; Platt et al., 2002; Liu et al., 2005; 

Harley et al., 2013).  This higher frequency fire regime maintained low fuel loads, prevented 

canopy damage from larger fires, and ensured competitive advantage and survival for fire-

tolerant species, such as slash pine (Liu et al., 2005; Maschinski et al., 2011).  

Specific adaptations in slash pine allow for survival of individual trees in fires of higher 

severity and intensity. Once the tree passes seedling stage, fire-resistance increases as external 

defenses become stronger and well-developed (Heyward, 1939). Due in part to a thin soil layer 

and changes in seed viability throughout the year, no accumulated seed bank exists for slash 

pine past a single year in pine rocklands. However, slash pines exhibit resilient defense 

strategies, such as thick, heat-resistant bark (Menges & Deyrup 2001), and faster juvenile 

development to reach resistance maturity faster than similar southern pines (Brown & Smith, 

2000).  Ultimately, their more southerly distribution, proximity to coastline, and fire-resistance 

promote slash pine as the dominant canopy species in pine rocklands (Snyder & Robertson, 

1990).  

Slash pines record fire occurrence in the surrounding habitat in the form of a fire scar, 

which is a lobe of growth tissue that marks the temporal placement of a fire event within a ring 

as the tree heals (Arno & Sneck, 1977; McBride, 1983). Fire scars can be used in tree-ring analysis 

for fire history reconstructions because they record the calendar year and season in which a fire 

occurred (Grissino-Mayer, 1995, 1999). Physical evidence evaluated post-fire left on the tree, and 

in the vicinity, provides information on fire metrics such as flame height, temperature of the 

fire, spatial extent of the fire, and intensity-recurrence relationships (Speer, 2010). 
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Researchers have previously established the importance of fire activity analysis using 

tree rings in the southeastern U.S. (Guyette & Spetich 2003; McEwan et al. 2007), many areas of 

the southwest (Baisan & Swetnam 1990; Grissino-Mayer & Swetnam, 2000; Beaty et al. 2007; 

Schoennagel et al. 2007), and the Pacific Northwest (Heyerdahl et al. 2002). Work has also been 

done that incorporates conventional fire history analysis with spatial statistics to assess 

experimental design strategies for more effective reconstructions (van Horne & Fulé, 2006). 

Additionally, by incorporating the spatial dimension into fire activity data, scientists have been 

able to relate locations of fire-scarred trees to environmental parameters, such as topography, 

and thereby evaluate relationships between the biotic and abiotic factors of a habitat (Wright & 

Bailey, 1982; Downes et al., 2000; Dickson et al., 2006; Stambaugh & Guyette, 2008). Finally, the 

use of global (study-area-wide) and localized (neighborhood) measures of clustering and 

dispersions using fire-scarred trees can give insight into the spatial patterns of fire activity in a 

study area (Franklin, et al., 1985; Getis & Franklin, 1987; Donnegan & Rebertus, 1999; Mast & 

Wolf, 2004; Youngblood et al., 2004; Wolf, 2005). 

Measures of spatial autocorrelation, such as Moran’s I and Getis-Ord G, are indications 

of correlations between similarly located observations (e.g. fire-scarred trees) in a dataset 

(Moran, 1948, 1950; Cliff & Ord, 1973; Burridge, 1980; Cliff & Ord, 1981; King, 1981; Getis & 

Ord, 1992; Tiefelsdorf & Boots, 1995; Li et al., 2007). Correlation between geographically located 

points in a dataset can be based on any variable of interest, such as fire activity, which is the 

variable attribute we used for this study. By building a basic spatial weights matrix for 

individual points, or fire-scarred trees in a dataset, geographic relationships between points 
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based on their locations can be determined (Getis & Aldstadt, 2004). The null hypothesis for 

metrics such as Moran’s I and Getis-Ord G states that the data are independent of each other 

(i.e. no correlation based on geographic location) (Li et al., 2007). Distance is the most common 

spatial characteristic that is incorporated into an analysis of clustering or dispersion, and can be 

calculated using a GIS.  

Global Moran’s I tests randomness in a dataset (to be rejected if clustering or dispersion 

is found), whereas Getis-Ord G evaluates specific clustering of points with either high or low 

values (Moran, 1950; Getis & Ord, 1992; Getis & Aldstadt, 2004). Both of these statistics can be 

incorporated into a GIS to assess spatial patterns in attributes of interest, such as patterns in fire-

scar counts on trees (Griffith, 1993; Anselin, 1995). Positive z-score values for Moran’s I 

autocorrelation indicate points of similarity are clustered together in space, whereas negative 

values indicate dispersion of similar points. A value of zero indicates perfect randomness. For 

Getis-Ord G, positive z-score values indicate clustering of high values (e.g. trees with high fire-

scar counts), while a negative score indicates clustering of low values (e.g. trees with low fire-

scar counts). A value of zero indicates perfect randomness, with no high-low clustering. Both 

the Moran’s I and Getis-Ord G statistics are useful for fire activity analyses because they assess 

stochasticity in fire-scar data in reference to geographic location, which can determine metrics 

of clustering or dispersion of data within a study area. 

Spatial statistical analyses that break down a study area into smaller units of focus 

provide both a localized evaluation of association, and indications of clustering or dispersion 

amongst subsets of the data (Openshaw, 1993; Anselin, 1995). These localized or subsetted 
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indicators of spatial association and autocorrelation include metrics such as Anselin’s Local 

Moran’s I, Getis-Ord Gi*, and Ripley’s K. Both Anselin’s Local Moran’s I and the Gi* are 

localized versions of the corresponding global indicators and assess spatial autocorrelation from 

the perspective of non-stationarity (i.e. the data changes across space) (Getis & Ord, 1992; 

Anselin, 1995; Ord & Getis, 1995).  Ripley’s K is a mixture of global and local pattern analysis, 

and considers all points in a dataset, but evaluates patterns based on neighborhoods (Ripley, 

1977, 1978; Diggle, 1983; Rossi et al., 1992; Haase, 1995; Franklin, 2010). If the neighborhood is 

the size of the study area, Ripley’s K “acts” like a global indicator of spatial autocorrelation, but 

it can evaluate localized patterns if the neighborhood window is adjusted for different sizes 

(Franklin, 2010).  

We evaluated spatial structure of fire activity in a pine rockland from the perspective of 

spatial dependence among features in our fire-scar dataset. More specifically, we investigated 

how, and to what extent, fire-scarred trees related to neighbors across space in our study area. 

Our research questions include: (1) Are fire-scarred trees with similar fire-scar counts (i.e. 

indication of similar fire activity) located at closer distances to each other than trees with 

dissimilar fire scar counts? (2) To what extent is the fire activity heterogeneous across our study 

area in the National Key Deer Refuge? Do localized areas of similar fire activity exist? Our 

questions were prompted to assess potential statistical relationships within our fire-scarred tree 

network from both global and local spatial indicators of autocorrelation.  
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4.2 Methods 

4.2.1 Big Pine Key Study Area 

The fieldwork for this project was conducted within the 2011 Blue Hole Burn area 

(approx. 48.5 ha) of the National Key Deer Refuge (NKDR) on Big Pine Key, Florida (24.70° N, 

81.37° W) (Figure 4.1). The NKDR was established in 1957 (Bergh & Wisby, 1996) and is 

composed primarily in pine rocklands with areas of interspersed hardwood hammock. The sole 

canopy species of pine rockland is South Florida slash pine (Pinus elliottii var. densa Little & 

K.W. Dorman; hereafter slash pine), and the canopy is open with the majority of sunlight 

reaching the subcanopy (Figure 4.2). Slash pine forms annual rings (Harley et al., 2011) and scars 

whenever fire sweeps through the area at an intensity high enough to wound the tree, but low 

enough to avoid tree fatality (McBride, 1983; Myers, 1985). A variety of species make up the 

groundlayer and subcanopy, such as silver thatch palm (Coccothrinax argentata (Jacq.) L.H. 

Bailey), buttonwood (Conocarpus erectus L.), poisonwood (Metopium toxiferum (L.) Krug & Urb.), 

and pine acacia (Acacia pinetorum F.J. Herm.). 

Pine rockland ecosystems are found in the subtropical locations in the U.S., and select 

locations in the tropics, and experiences a maritime climate due to proximity to coastlines. The 

area has low overall relief with exposed karst limestone bedrock and extensive networks of 

dissolution holes spread throughout the landscape, and a poorly-developed, thin soil layer 

(Hoffmeister & Multer, 1968; Bergh & Wisby, 1996). Two varieties of limestone exist in 

rocklands, Miami and Key Largo (Hoffmeister & Multer, 1968). Digital terrain models 

developed from LiDAR survey data found local relief varied by as little as 1 m in some 
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Figure 4.1 The 2011 Blue Hole burn is shown by the yellow polygon (left). Big Pine Key is 
highlighted by the yellow rectangle (lower inset). The location of Big Pine Key in the Florida 
Keys island chain is shown by the yellow rectangle (upper inset). Source for imagery is 
ArcGlobe 10.2.2. 
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Figure 4.2 An example of the canopy and subcanopy of the study site. This area did not 
experience significant burning in the 2011 Blue Hole burn. Notice the thick understory and 
living slash pine canopy. 

 

 

 

 

 

 



 

 156 

locations, with a total relief of less than 10 m (Sah et al. 2006). The climate is classified as tropical 

savanna, and Big Pine Key experiences wet summers (primarily via thunderstorm activity) and 

dry winters (Hanson & Maul, 1993; NOAA, 2010). Approximately 70% of total annual 

precipitation (980 mm) occurs between May and November (Ross et al., 1994; NOAA, 2010; 

Harley et al., 2011). The region experiences an active hurricane/tropical storm season in the 

growing season, although the Keys receive less total precipitation than the southern region of 

mainland Florida (Hela, 1952; Karl et al., 1983; Bergh & Wisby, 1996). 

4.2.2 Field Methods 

We used fire scars from fire-scarred slash pines to analyze the spatial patterns of fire 

activity from a spatially-explicit perspective. We collected our samples from the section of the 

2011 Blue Hole Burn nearest to Blue Hole pond and the southern region of the NKDR (Figure 

4.3). The grid locations we used in our study were previously established by the U.S. Fish and 

Wildlife Service, spaced 250 m apart along constant parallels of latitude. We used this gridded 

network of point locations as centroid locations for each our seven plots to create a contiguous 

plot network (Figure 4.3). The data were converted to a surface of pixels or cells so that each 

plot was composed of numerous contiguous cells, and thus the entire study area was delineated 

for our statistical analyses into a cell surface.  

The experimental design for our project was constructed in such a way to ensure all 

areas were scouted and inspected, and that the best possible fire-scarred trees were collected. 

Additionally, we wanted a dataset that was an accurate representation of fire activity, via fire- 
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Figure 4.3 Sampling grid with collected tree locations in yellow. Key Deer Boulevard is the 
road in the eastern section of the image, Blue Hole pond is in the lower right, and Watson 
Hammock is the closed canopy woodland on the western edge of the study area.  
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scarred slash pine trees, across the burned landscape, and not just select points or locations with 

geographic gaps in data throughout (i.e. a purely targeted sampling design without a plot 

network). We used a stratified, pseudo-systematic sampling method to collect similar numbers 

of samples whenever possible among each of the seven plots. We chose our samples from each 

plot in a non-random fashion, thus our design is not completely systematic. However, a 

targeted collection approach was necessary within our stratified design to ensure as many past 

fires were captured from the available tree-ring record in our study area as possible (van Horne 

& Fulé, 2006). The associated bias with a targeted approach is a non-random collection of 

samples, which can impose a selection bias to the analyses and representation of results. 

However, a targeted approach is necessary at certain steps in a sample collection for tree-ring 

research because it ensures the best possible fire-scarred trees are collected. 

We conducted reconnaissance to find optimal possible slash pines from which to collect 

cross sections. We defined “optimal” as those trees with the highest visible scar counts, lack of 

apparent or excessive decay (e.g. presence of bark, absence of observable beetle galleries), and 

trees that displayed classic indicators of older age (Schulman, 1937; Grissino-Mayer, 1995; 

Speer, 2010). We limited our sampling design to a maximum of 30 samples per plot for 210 

potential samples to prevent an over-burdening collection. Furthermore, some plots had more 

than 30 optimal, fire-scarred trees, while others had less than 30 trees. The purpose of the 

sampling design, plot layout, and collection strategies was to ensure as many slash pine trees 

were sampled as possible, over as widespread an area as possible.  
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From the initial scouting of the 30 optimal trees, we then selected what we considered 

the best 10–15 trees from which to collect cross sections. Each cross section was labeled with a 

plot ID and tree number (e.g. BH1008 represented Blue Hole Burn, plot 1, tree 8) (Figure 4.4), 

and tagged with a GPS location (recorded on a Garmin GPSmap 62s) so that each individual 

tree had a physical representation traced back in the field. Our goal was to collect all fire scars 

present on each of our best trees, thus for larger trees the catface had to be collected in sections 

(e.g. BH1008a and BH1008b represented Blue Hole Burn, plot 1, tree 8, section a and b, 

respectively). To guarantee that all fire scars were collected from a larger catface, sections were 

necessary because not every fire scar is found along the entire length of the basal margin. A 

total of 93 cross sections were collected from our Blue Hole Burn study area (Table 4.2).  

4.2.3 Laboratory Methods 

 The samples collected in the field were brought back to the laboratory, then flat-surfaced 

using a standing band saw to remove roughness on the ring surface from the chainsaw. Once 

the chainsaw grooves were removed from each sample, we progressively sanded the samples 

with sandpaper, starting at ANSI 100-grit (125–149 µm) and finishing with ANSI 400-grit (20.6–

23.6 µm). By polishing each sample with increasingly finer grit sandpaper, we achieved high 

clarity in ring structure and the best possible definition of the fire scars (Stokes & Smiley, 1968; 

Orvis & Grissino-Mayer, 2002).  

4.2.4 Statistical Methods 

 We calculated two separate variations in metrics for spatial autocorrelation, specifically 

global and local indicators. To begin with the global metrics, we used a Global Moran’s I and a  
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Figure 4.4 Catface (left) and its fire-scarred cross section (right) for sample BH1008.  
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Table 4.2 Sample list. 
ID Lat. (N) Long. (W) Scars 

BH1001 24.70603 81.38417 0 
BH1002 24.70567 81.38407 2 
BH1003 24.7059 81.38435 8 
BH1004 24.70588 81.38439 8 
BH1005 24.7061 81.38395 3 
BH1006 24.70608 81.38387 1 
BH1007 24.7061 81.38372 0 
BH1008 24.70631 81.38351 5 
BH1009 24.70631 81.38351 4 
BH1010 24.70621 81.38353 5 
BH1011 24.706 81.3838 0 
BH1012 24.70625 81.3839 0 
BH1013 24.70637 81.38384 1 
BH1014 24.70648 81.38387 1 
BH1015 24.70649 81.38392 3 
BH1016 24.70587 81.38436 4 
BH1017 24.70582 81.38452 2 
BH1018 24.7057 81.38422 10 
BH1023 24.70616 81.385 6 
BH1024 24.70646 81.38513 1 
BH1026 24.70743 81.38496 4 
BH1027 24.70692 81.38441 9 
BH2001 24.70577 81.38212 7 
BH2002 24.70575 81.38216 5 
BH2009 24.70591 81.38175 4 
BH2014 24.70617 81.38184 2 
BH2015 24.70617 81.3821 6 
BH2016 24.70628 81.38217 3 
BH2020 24.70569 81.38253 5 
BH2022 24.70594 81.3828 5 
BH2025 24.70617 81.38315 2 
BH2027 24.70675 81.38287 6 
BH2029 24.70672 81.38277 8 
BH3002 24.70834 81.38179 5 
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Table 4.2 Continued. 
ID Lat. (N) Long. (W) Scars 

BH3010 24.70813 81.38245 5 
BH3011 24.70791 81.38266 3 
BH3014 24.70765 81.38256 3 
BH3015 24.70768 81.38268 3 
BH3017 24.70745 81.38284 10 
BH3018 24.7079 81.38284 4 
BH3019 24.70788 81.38307 6 
BH3021 24.70762 81.38355 8 
BH3022 24.70735 81.38338 6 
BH3026 24.70743 81.38274 6 
BH3028 24.70698 81.38212 3 
BH3029 24.7071 81.3825 7 
BH3030 24.70694 81.38244 2 
BH3031 24.70737 81.38196 3 
BH3032 24.70782 81.38188 5 
BH4001 24.70672 81.38428 3 
BH4003 24.70695 81.38398 8 
BH4006 24.70711 81.38348 6 
BH4007 24.70718 81.38354 3 
BH4008 24.70743 81.38364 7 
BH4009 24.70749 81.38378 7 
BH4011 24.70784 81.38396 6 
BH4015 24.70778 81.38448 7 
BH4016 24.70792 81.38493 8 
BH4019 24.70825 81.38486 0 
BH4020 24.70825 81.38457 7 
BH4021 24.70815 81.38451 6 
BH4022 24.70804 81.38419 8 
BH5002 24.70617 81.38144 0 
BH5005 24.70659 81.38165 6 
BH5011 24.70697 81.38157 4 
BH5012 24.707 81.38136 5 
BH5017 24.70766 81.38144 8 
BH5018 24.70745 81.38122 5 
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Table 4.2 Continued. 
ID Lat. (N) Long. (W) Scars 

BH5023 24.70734 81.38118 4 
BH5026 24.70692 81.38103 5 
BH5028 24.70695 81.38086 4 
BH5031 24.70675 81.38141 4 
BH5033 24.70644 81.38091 4 
BH6001 24.70648 81.38562 3 
BH6002 24.70663 81.38562 3 
BH6005 24.70706 81.38611 5 
BH6006 24.70767 81.38608 4 
BH6007 24.70899 81.38585 3 
BH6008 24.70874 81.38564 4 
BH6012 24.70713 81.38558 8 
BH6013 24.70668 81.38525 10 
BH7001 24.70871 81.38209 4 
BH7004 24.70843 81.38265 7 
BH7007 24.70846 81.38303 4 
BH7009 24.70833 81.38332 6 
BH7010 24.70883 81.38335 4 
BH7013 24.70797 81.3837 6 
BH7014 24.70931 81.38307 4 
BH7015 24.70921 81.38274 6 
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high-low clustering metric named Getis-Ord G. Each of these two indicators assess overall or 

study-area-wide spatial patterns in specific attributes (i.e. fire-scar counts per tree), with 

Moran’s I measuring similarity between attribute values based on feature locations, while Getis-

Ord G measures instances of clustering in high-low attribute values for features. We calculated 

Anselin’s Local Moran’s I, Getis-Ord Gi*, and Ripley’s K to measure local patterns in spatial 

autocorrelation.  

All five of these metrics work under the same basic principle of correlation across space, 

but the local indicators are used to calculate patterns in attribute values for features at a finer 

scale and under the assumption the data are non-stationary (i.e. feature attributes trend or 

change across space). We use the term “feature” in the following methods to represent 

individual trees, and each of the five indicators is a calculation for each tree in our dataset to 

determine presence/absence and extent of spatial autocorrelation. In a point shapefile, which is 

a GIS data layer composed of point locations, an individual feature is represented by a single 

point on a map (e.g. a fire-scarred tree in our study). We use the term “attribute” in the 

following methods to represent fire-scar counts per tree, and each tree in our dataset will have a 

value for the number of fire scars. We used each of these five correlation metrics to determine if 

trees of similar fire-scar counts are found in similar or dissimilar locations.  

 Global Moran’s I evaluates correlation between attributes of each feature in a dataset 

based on the individual location of each feature, and the relative location of the feature in 

respect to other features in the dataset. The null hypothesis (H0) of this statistic is that the 
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dataset is completely random with no correlation in attribute values among points in the 

dataset. The formula to calculate Moran’s I is: 

(Eq. 4.1)     𝐼 = S
H8

Z\,^
_
^`a 0\0^

_
\`a

0\
b_

\`a
 

where zi is deviation of fire-scar counts for tree i from the mean for fire-scar counts in the 

dataset, n is the number of fire-scarred trees, wi,j is the spatial weight between tree i and tree j, 

and S0 is the aggregate of spatial weights (Goodchild, 1986; Getis & Ord, 1992). We used the 

Euclidean Distance parameter in the Moran’s I tool for our distance method because we wished 

to capture straight line distances, deemed paths “as the crow flies,” between each of the fire-

scarred trees in our dataset. We did not use row-standardization for our spatial weights because 

our sampling design minimized aggregation bias, defined as clustering of trees based on 

collection location rather than an evenly distributed sample network.  Finally, we used the 

Inverse Distance conceptualization for our feature relationships because we wanted 

neighboring trees to have a higher impact and larger influence on the target feature than trees 

farther away. In other words, when we analyzed our spatial correlations between trees in our 

dataset, we did not want to limit the analyses by imposing a fixed distance (e.g. “look” for trees 

within 50 m), rather we wanted the tool to calculate the spatial scale of the relationships based 

on the geographic spread of the points in our dataset. The output result for this tool was a z-

score and p value to accept or reject the H0. 

 Getis-Ord G evaluates specific clustering of high or low attribute values for features, 

based on individual feature locations relative to other features in the dataset. The H0 for G is the 
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same as for Moran’s I, however the interpretation of the z-score is different. High z-scores for G 

indicate clustering of high attribute values, and low z-scores indicate clustering of low attribute 

values. The equation for G is: 

(Eg. 4.2)   𝐺 = 	
Z\,^1\1^

_
^`a

_
\`a

1\1^_
^`a

_
\`a

, 𝑤ℎ𝑒𝑛	𝑗	 ≠ 𝑖 

where xi  and xj  are the fire-scar counts for their corresponding trees i and j, and wi,j is the spatial 

weight matrix between tree i and tree j (Getis & Ord, 1992). To keep the parameters of the 

calculation for the G metric the same as those for Moran’s I, we used the Inverse Distance as our 

spatial relationship conceptualization and Euclidean Distance for our distance calculation 

method. We also did not standardize our spatial weights (wi,j). The output result for this tool 

was a z-score and a p value to accept or reject the H0. 

 Anselin’s Local Moran’s I (ALMI) evaluates attribute correlation between features in a 

dataset from a localized perspective. In other words, ALMI calculates clustering of high values, 

low values, and spatial outliers by “looking” at neighboring subsets of data surrounding the 

target feature, or tree of interest, processing one individual fire-scarred tree at a time, and 

identifying the presence, if any, of localized concentrations of trees of similar fire-scar counts. 

The sum of ALMI values for each fire-scarred tree is proportional to the global Moran’s I 

indicator, thus lack of strong clustering observed with a global Moran’s I will likely mean 

weaker clustering of values at the local scale, although the ability to capture slight clustering is 

still possible (Anselin, 1995). The H0 for ALMI is no local spatial association or autocorrelation.  

The formula for ALMI is: 
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(Eq. 4.3)   𝐼W = 	
1\g	h
H\
b 𝑤W,i(𝑥i − 𝑋)S

im6,inW  

where xi is the fire-scar count for tree i, X-bar is the mean for fire-scar counts, and wi,j is the 

spatial weight matrix between tree i and tree j (Anselin, 1995). Additionally, the denominator of 

the first term, which represents the variance for all locations, is calculated by: 

(Eq. 4.4)    𝑆W2 = 	
(1\gh)b

_
^`a,^o\

Sg6
 

where n is the total number of fire-scarred trees. Finally, we parameterized the ALMI operation 

with the same configurations as for the Moran’s I and Getis-Ord G to be consistent with the 

global indicators.  

The output result for the ALMI tool is a newly-classified shapefile of fire-scarred trees 

for our study with the following attributes for each individual fire-scarred tree: local Moran’s I, 

z-score, p value, and a categorization for cluster-outlier type. The categorization classes for 

cluster-outlier type list statistically significant (p < 0.05) cluster types: HH (feature value is high 

and is surrounded by other high-valued features), LL (feature value is low and is surrounded 

by other low-valued features), outlier HL (feature value is high and is surrounded by low-

valued features), and outlier LH (feature value is low and is surrounded by high-valued 

features). A positive z-score (p < 0.05) indicates a clustering pattern in the dataset, whereas a 

negative z-score (p < 0.05) indicates a dispersion pattern. A z-score near zero indicates 

randomness in spatial association. These results are useful in indicating localized areas on a 
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map of hot/cold spots and label exactly which points fall into the cluster, and the relationships 

among other points in the neighborhood (Anselin, 1995).  

Getis-Ord Gi* evaluates a dataset for statistically significant hot or cold clustered 

locations from the perspective of neighborhoods. Logistically, this local indicator is similar to 

the ALMI metric, but the difference is how the z-scores for Gi* are interpreted: positive z-scores 

indicate clusters of high values and negative z-scores indicate clusters of low values. The H0 for 

Gi* states that no high-low clustering exists in the dataset, and the formula is: 

(Eq. 4.5)   𝐺W∗ = 	
Z\,^1^	g	h Z\,^

_
^`a

_
^`a

H	
_ q\,^

b_
^`a 	r	 q\,^

_
^`a

b

_ra

  

where xj is the fire-scar counts for tree j, n is the total number of fire-scarred trees, and wi,j is the 

spatial weight between tree i tree j. The output for the Gi* analysis is a new shapefile of points, 

and each feature (i.e. fire-scarred tree) is assigned a z-score and p value, and a confidence level. 

These three new attributes for each tree isolate areas of statistically high-valued clusters, areas 

of statistically low-valued clusters, and non-significant locations.  

Ripley’s K evaluates clustering or dispersion similar to ALMI, and from a range of 

distances and neighborhoods of increasing size. The tool isolates an individual tree and 

computes distance “bands” or “buffers” into which other nearby trees are located. Calculations 

for clustering or dispersion occur at increasing distances from the starting feature until all 

features in the dataset are incorporated. By evaluating spatial association based on increasing 

distances from the target feature, Ripley’s K builds a dataset for clustering/dispersion across the 
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study area to pinpoint specifically a distance at which clustering or dispersion becomes clear or 

apparent. The formula for this operation is: 

(Eq. 4.6)   𝐿 𝑑 = 	
u	 v\,^_

^`a,^o\
_
\`a

9S(Sg6)
 

where d is the distance parameter, n is total number of trees, A is the total area of all the features 

(calculated from the spatial extent, or spread, of the tree locations), and ki,j is a weight term. This 

weight term will be one when the distance between tree i and tree j is less than d; otherwise this 

value is zero. We ran this operation with 99 permutations to generate a 99% confidence envelop 

for the observed clustering or dispersion. The output of the Ripley’s K analysis is a dataset of 

observed values, expected values, an upper confidence boundary, and a lower confidence 

boundary. Observed values that fall above the upper confidence boundary are considered 

statistically (p < 0.01) clustered, and those that fall below the lower confidence boundary are 

considered statistically (p < 0.01) dispersed. Anything in-between is considered random across 

space. 

 Each of our spatial association and autocorrelation indicators provides a quantitative 

analysis of fire activity relationships among fire-scarred trees in our dataset. The global 

indicators, specifically Moran’s I and Getis-Ord G, assess statistically significant clustering or 

dispersion patterns across our entire study area, which allows us to isolate any potential 

patterns in fire activity from a “global” scale. The local indicators, specifically Anselin’s Local 

Moran’s I, Getis-Ord Gi*, and Ripley’s K, evaluate statistically significant clustering or 

dispersion in fire activity on a localized scale, or within neighborhoods and distance bands. We 
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chose to incorporate both types of indicators in our analyses of spatial association to evaluate 

fire activity from all possible scales.  

 

4.3 Results 

 We found statistically significant clustering in our global Moran’s I analysis. The index 

(I) was 0.278 and the z-score was 2.584 (p < 0.01), indicating a clustered relationship in fire 

activity (Table 4.3). A distribution of z-scores placed our value in the highest significance 

bracket for “clustered” data (Figure 4.5). Given our calculated z-score (p < 0.01), less than a 1% 

likelihood exists that our results are the consequence of pure chance, and not from inherent 

clustering in our fire-scar data across space. The Moran’s I results clearly indicate strong 

clustering of trees with similar fire-scar values in our study area on Big Pine Key. 

 We found no statistically significant relationships in high or low clustering in our 

dataset for the Getis-Ord G global indicator. This indicator evaluates clustering from a high or 

low perspective, rather than clustering or dispersion as in Moran’s I. The index metric (G) was 

0.002 and the z-score for our results was –0.496 (p > 0.01), indicating a random distribution of 

trees with high or low fire-scar counts (Table 4.3). A distribution of z-scores placed our value in 

the center bracket confirming a random distribution of trees with high or low values (Figure 

4.6). These results do not mean that no clustering was found, rather that no clear clusters or 

patches of high/low fire activity across space exist in our data. In regard to specific clustering of 

high-low fire-scar counts, the pattern we found in our data is not significantly different than a 

random distribution.  
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Table 4.3 Global Indicators of Spatial Autocorrelation 
Global Indicators of Spatial Autocorrelation 

 
Moran's I Getis-Ord G 

z-score 2.584 –0.496 
p value 0.009 0.619 

Metric Value 0.278 0.002 
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Figure 4.5 The z-score distribution for the Moran’s I results. The index 
value calculated for the fire-scar data is in the most significant bracket 
on the positive tail of the z distribution, indicating clustering (p < 0.01). 
We generated the distribution in ArcMap 2.2.1. 
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Figure 4.6 The z-score distribution for the Getis-Ord G results. The index 
value is within the significance bands for high-low clustering, and is 
classified as random (p > 0.01). We generated the distribution in ArcMap 
2.2.1. 
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The Anselin’s Local Moran’s I (ALMI) analysis revealed several areas of local spatial 

association among fire-scarred trees in our dataset. The output of this analysis is not a single 

distribution, as in the global indicators, but rather a new map, with individual trees tagged 

based on their significance classification. A small group of fire-scarred trees with low fire-scar 

counts would be tagged with LL (and vice versa for a group of trees with high fire-scar counts). 

The map we created displayed a single patch or cluster of eight trees in the south-central section 

of our study area with low fire scar counts (Figure 4.7). We did not capture a low-valued cluster 

in the Getis-Ord G calculation because ALMI is a local indicator, rather than a global indicator, 

thus the cluster was “diluted” when using a global scale spatial autocorrelation analysis. 

Finally, a single cluster of trees with high fire-scar counts was located in the center of our study 

area, with three trees tagged with HH (i.e. high fire-scar counts surrounded by other data points 

of high value) (Figure 4.7). The results of the ALMI analysis were crucial to delineating and 

isolating local, or finer scale areas, in our dataset of high or low fire activity. 

 The results of the Getis-Ord Gi* analysis corroborated results from the ALMI and found 

statistically significant localized clusters of fire-scarred trees. The output for this analysis is 

similar to ALMI, without a single z-score distribution, but a z-score attributed to each fire-

scarred tree. The result is a map of z-scores indicating high or low clustering of trees of similar 

fire-scar counts. A single cluster of trees with lower fire-scar counts was isolated in the south-

central section of our field site, approximately 50 m north of the southern border and the 

adjacent neighborhood (Figure 4.8). This low-valued cluster was not found with the Getis-Ord 

G analysis because Gi* is a local indicator and does not calculate clusters based on all points in  
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Figure 4.7 The Anselin’s Local Moran’s I results. Each point is a fire-scarred tree tagged 
with a color representing localized significance of clustering. Yellow indicates no 
statistically significant indication of clustering, orange indicates a tree with a high fire-scar 
count surrounded by trees of lower scar counts (HL), red indicates trees with high fire-scar 
counts in an area of similarly high fire-scar counts (HH), and blue indicates trees of low 
fire-scar count surrounded by trees of similarly low counts (LL).  
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Figure 4.8 The Getis-Ord Gi* results. Each point is a fire-scarred tree tagged with a color 
representing localized significance of clustering. Yellow indicates no evidence of 
significant clustering, shades of red indicate areas of clustering in trees with higher fire-
scar counts (darker red means higher fire-scar count values), and shades of blue 
indicate areas of clustering in trees with lower fire-scar counts (darker blue means 
lower fire-scar count values). 
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the dataset, thereby enhancing power to isolate smaller scale autocorrelation. Finally, Gi* did 

not find the same cluster of high-valued trees as in ALMI, but three isolated trees with high fire-

scar counts were found dispersed across the central and south-central sections of the study area 

(Figure 4.8). The results of the Gi* were beneficial because we were able to capture localized 

clustering not found in the global indicator analyses. 

 Finally, the Ripley’s K analysis used bands of increasing distance around each 

individual fire-scarred tree to find an optimal distance, if possible, where clustering peaked. 

The operation calculated clustering and dispersion over a total distance of 100 m (10 distance 

bands). We found that clustering was most significant (p < 0.01) at approximately 50–65 m 

(Figure 4.9). The observed data surpassed the upper significance threshold representing 

clustered data at approximately 40 m, and did not fall below the threshold at greater distances. 

The observed data never fell below the lower significance threshold representing dispersed data 

(Figure 4.9). The results of our Ripley’s K analysis were valuable because they “looked” at 

spatial autocorrelation and association from a localized perspective, but also allowed for 

increasing distance. We were able to slightly expand on our local analysis by incorporating a 

variable neighborhood, or localized area that increases but does not approach global size.  

 

4.4 Discussion 

 The spatial analysis of fire activity can give insights into how fire spreads in an 

ecosystem. Given what we know about fire activity as it trends or changes with scale (e.g. 

aggregating data from fine to coarse resolution), information on spatial association or  
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Figure 4.9 Ripley’s K results based on bands of increasing distance away from each 
individual fire-scarred tree. The red line is the observed data, the blue line is the 
expected data, and the grey dashed lines are the 99% confidence envelope. 
Distance is measure in meters. 
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autocorrelation of fire activity isolates potential hot or cold spots, and general patterns in 

clustering or dispersion in fire-scar data across space. Our analyses tackled the idea of spatial 

association within our fire-scarred tree network from both the global and local, or 

neighborhood, perspective and helped delineate areas of high or low past fire activity.  

 The analysis of the global indicators of spatial association revelared statistically 

significant clustering of fire activity across the study area but no statistically significant clusters 

of trees with specifically high or low numbers of fire scars. The results from the Moran’s I and 

Getis-Ord G analyses may seem counterintuitive because the former found a strong, statistically 

significant result while the latter found almost a purely random result. While the H0 for each 

metric is similar (i.e. both assuming complete randomness in the spatial association), the 

interpretations of the z-scores for each are different. A high-valued z-score in Moran’s I 

suggests highly-clustered data, whereas a high z-score for G translates to clustering of high-

valued data points only. Therefore, a lack of trees with distinctly high or distinctly low numbers 

of fire scars would translate to a high p-value and z-score of approximately zero for G, whereas 

simple clustering in a dataset would translate to a low p-value and high z-score for I. Dispersion 

is not the opposite of clustering in G as it is in I, which could then allow for a statistically 

significant result for I with no significant result for G.  

Specific high or low clustering in a dataset is harder to detect mathematically when the 

spatial extent of the dataset, or the total areal coverage, is low, particularly when the sample 

size is also small. Given our smaller study area, variations in fire-scar counts by tree becomes 

easily diluted in a global analysis of spatial association. The spatial association “landscape” in a 
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global analysis requires a higher density of points, and more variation among points, to capture 

clusters of high or low values in fire-scar counts. If the total range in fire-scar counts is low, 

isolated locations or clusters of high-low values are harder for Getis-Ord to detect. Therefore, 

our results of the Getis-Ord operation should be taken with caution because they only indicate a 

lack of clustering within our study area. If we were to extend the spatial extent of our study area 

to include more trees from a broader geographic range, the potential for high-low clustering 

could increase.  

We complemented our global indicator analyses of spatial association with three 

separate analyses at the local scale. The results of our Anselin’s Local Moran’s I (ALMI) and 

Getis-Ord Gi* both isolated a single area in the southern section of our study area as containing 

trees with statistically significant low numbers of fire scars. We propose two separate lines of 

reasoning for this low-valued cluster, including: proximity to the southern border and 

neighborhoods, and location in relation to Blue Hole pond. The localized cluster of trees with 

low fire-scar counts for ALMI and Gi* is approximately 50–60 m due north of 6th street, which is 

a perpendicular road that marks the southern extent of our study area. We propose that these 

trees have historically experienced lower fire activity because the neighborhood to the south has 

acted as a “fire lookout” for any fire that may have ignited and initiated in that area. The higher 

density of people and visual proximity to this area of our study area allows citizens living in 

that community to spot a fire earlier and report it to U.S. Fish and Wildlife Service officials or 

the local fire department. Additionally, prescribed fires scheduled in the NKDR would not be 

ignited that close to a neighborhood, both for aesthetic and safety reasons. All of these barriers 
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to fire activity in this location are potential reasons for the low-value cluster found by ALMI 

and Gi*. 

The second potential reason we propose for the low-valued cluster in the south-central 

section of our study area is its relative proximity to Blue Hole pond. The Blue Hole pond area 

has generally lower relief, and the ground surface is closer to the water table. The area directly 

in between the low-valued cluster and Blue Hole Pond contains some of the lowest elevations in 

our study area, potentially causing a micro-environment with a shallower depth to the water 

table and increased fuel moisture and therefore less fire activity (Renkin & Despain, 1992; 

Dennison & Moritz, 2009; Krawchuk & Moritz, 2011). Additionally, the groundlayer of this area 

was particularly barren, with the majority of the ground surface composed of exposed 

limestone bedrock and scarce surface debris. Therefore, fuel loading in this area is lower, which 

would translate to lower fire activity because of general fuel breaks and lower fuel availability 

(Agee et al., 2000; Schoennagel et al., 2004).  

 The results of the Ripley’s K analysis provide a more in-depth analyses of local spatial 

association of fire activity because the distance band around each targeted tree is variable. We 

used 10 distance bands, totaling to 100 m, to evaluate clustering or dispersion around each 

individual tree with increasing neighborhood size. Interestingly, the peak in clustering in our 

fire-scarred tree dataset approximately matched the aggregated scale results for best 

relationship between fire activity and microtopography in our regression analyses. We suggest 

that fire activity in this ecosystem clusters to the highest, most statistically significant degree at 

approximately 50–60 m distances. At finer scales, fire activity was found to be generally random 
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(within the 99% confidence envelope), and no clustering of higher significance was found at 

coarser scales. These results also corroborate our global Moran’s I analyses, which found 

statistically significant clustering across the study area. 

 Two caveats must be mentioned for the global and local indicators of spatial association 

and autocorrelation. Each method is influenced by study area size and locations of sampled 

data because space is an inherent feature in both global and local indicators. We collected slash 

pine samples from a pre-designed plot network, rather than a targeted approach in the field, to 

mitigate sampling bias across space, and prevent erroneous clustering results based on locations 

of sampled trees. If the samples were collected in a clustered pattern, then spatial associations 

among trees would be biased due to sampling design rather than fire-scar counts. We collected 

trees from across the study area to prevent selection bias resulting from a targeted sampling 

approach, and to ensure that any clustering or dispersion observed in our analyses was due to 

actual fire activity. The second caveat to spatial association analyses, and local indicators in 

particular, is that the resulting statistics assume normal data distributions. However, we are 

confident in our analyses because our fire-scar data, while not perfectly Gaussian, is relatively 

normal. A slight skew to lower fire-scar counts does exist in our data, but we do not believe that 

it generated erroneous results.  

  Our analyses and results in this study indicate patterns of fire activity, captured via the 

fire-scar and tree-ring record, at both global and local scales. At the global scale, our Moran’s I 

analysis found statistically significant (p < 0.01) clustering of fire-scar data across our study 

area, although no statistically significant high or low clustering was found in our Getis-Ord 
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analysis (p > 0.01). We found a statistically significant (p < 0.01) localized cluster of trees with 

low fire-scar counts in both the ALMI and Gi* analyses. This cluster of trees was near the 

southern extent of our study area, within approximately 50 m of an adjacent neighborhood, and 

near locations of lower elevation. Finally, our Ripley’s K results indicate a peak in clustering 

significance at a scale of 50–65 m, which supports results found in our scalar analysis in a 

previous chapter.  

 

4.5 Conclusion 

Our research provides a more robust and comprehensive understanding of fire activity, 

which can be used to bolster efforts to protect and conserve the pine rocklands. Quantitative 

measures of spatial association and patterns of fire activity from both a global and local 

perspective can pinpoint locations of potential fire “hot-spots” or “cold-spots.” Through our 

spatial analyses in this project, we showed specific areas of clustering in past fire activity, and 

define a potential scalar threshold for clustering across the study area. Our research is the first 

in this ecoregion to approach an investigation of fire activity from the perspective of a 

contiguous network of plots, rather than a mosaicked targeted approach, which was crucial to 

our ability to provide such spatially-explicit results for a contiguous area within the the NKDR 

on Big Pine Key. 

The implications of our research extend beyond the scope of our project and into the 

realm of predictive risk modeling. While we did not focus on predicting specific fire risk in this 

study, our results provide precise spatial locations of clustered fire activity, and indications of 
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the nature of fire activity in the ecosystem through ALMI, Gi*, and Ripley’s K. Specifically, we 

were able to quantitatively define an area along a wildland-urban interface and the adjacent 

community to the south of our study area that has historically experienced lower fire activity. 

These results allow for investigations into any potential predictor variables responsible for 

lower fire activity that match the environment of the lower-valued cluster, which can be 

extrapolated across our landscape and used to predict other areas of potentially lower fire. For 

example, a future analysis could take the fuel load and moisture characteristics, and distance to 

neighborhoods, found in the location of clustered lower fire activity from our results and isolate 

other locales beyond our study area that match those same characteristics to predict potential 

fire risk. Considering fire is not a purely stochastic process and is based on a suite of potential 

environmental and human-related variables, we can take the distinguishing characteristics of 

the south-central location in our study area and find other similar locations elsewhere. Finally, 

future analyses could expand the spatial extent of our study area to collect a broader spatial 

range of fire-scarred trees, and potentially isolate areas of high-low fire activity.  

Fire in southern pine rocklands is critical to the conservation of this geographically-

limited ecosystem. The analyses we conducted for this research provide scientists and land 

managers with the spatial and quantitative data required to describe how fire should “act” in 

this area, and surrounding locations with similar environmental characteristics. The results of 

this project, and future research conducted in the area, will ensure not only the continued 

survival of these pine rocklands, but also the safety of people living along the borders.  

 



 

 185 

Acknowledgements 

We thank Anne Morkill, Phillip Hughes, Dana Cohen, and Chad Anderson of the U.S. 

Fish and Wildlife service for access to the National Key Deer Refuge. The U.S. Fish and Wildlife 

service provided support from the beginning to end, including permits, off-trail access, GPS 

data, plant identification expertise (particularly with the herbaceous groundlayer species), and 

lodging during summer 2014. We cannot express how extremely appreciative we are for all the 

help, support, and advice. We thank Maegen Rochner and Elizabeth Schneider for fieldwork 

assistance, and Brooke Pearson, Isaac Taylor, and Dhara Naik for assistance in the laboratory. 

We would like to specifically thank the Initiative for Quaternary Paleoenvironmental Research 

and the Stewart K. McCroskey fund of the Department of Geography at the University of 

Tennessee for providing funds to partially cover travel costs for fieldwork in 2013 and 2014. 

 

 

 

 

 

 

 

 

 

 



 

 186 

References 
 

Abrahamson, W.G. (1984). Species responses to fire on the Florida Lake Wales Ridge. American 
Journal of Botany, 1, 35–43. 

 
Agee, J.K., Bahro, B., Finney, M.A., Omi, P.N., Sapsis, D.B., Skinner, C.N., van Wagtendonk, 

J.W., & Weatherspoon, C.P. (2000). The use of shaded fuelbreaks in landscape fire 
management. Forest Ecology and Management, 127, 55–66. 

Alexander, T.R., & Dickson III J.D. (1972). Vegetational changes in the National Key Deer 
Refuge-II. Quarterly Journal of the Florida Academy of Sciences, 35, 85–96. 

Anselin, L. (1995). Local Indicators of Spatial Autocorrelation—LISA. Geographical Analysis, 27, 
93–115. 

Arno, S.F., & Sneck, K.M. (1977). A method for determining fire history in coniferous forests of 
the mountain west. Ogden, Utah, U.S.A.: U.S. Department of Agriculture, Intermountain 
Forest and Range Experiement Station, General Technical Report, INT-42. 35 pp. 

Baisan, C. H., & Swetnam, T. W. (1990). Fire history on a desert mountain range: Rincon 
Mountain Wilderness, Arizona, USA. Canadian Journal of Forest Research, 20, 1559–1569. 

Beaty, R. M., & Taylor, A. H. (2007). Fire disturbance and forest structure in old-growth mixed 
conifer forests in the northern Sierra Nevada, California. Journal of Vegetation Science, 18, 
879–890. 

Beaufait, W.R. (1960). Some effects of high temperatures on the cones and seeds of Jack Pine. 
Forest Science, 6, 194–198. 

 
Bergh, C., & Wisby, J. (1996). Fire history of lower Keys pine rocklands. Nature Conservancy, 

Florida Keys Initiative. 36 pp. 
 
Bond, W.J., & Midgley, J.J. (2001). Ecology of sprouting in woody plants: the persistence niche. 

Trends in Ecology and Evolution, 16, 45–51. 
 
Brown, J.K., & Smith, J.K. (2000). Wildland fire in ecosystems: effects of fire on flora. Ogden, 

Utah, U.S.A: U.S. Department of Agriculture, Rocky Mountain Research Station, General 
Technical Report, RMRS-GTR-42(2). 257 pp. 

 
Burridge, P. (1980). On the Cliff-Ord test for spatial correlation. Journal of the Royal Statistical 

Society, Series B, 42, 107–108. 



 

 187 

Covington, W.W., & Moore, M.M. (2008). Postsettlement changes in natural fire regimes and 
forest structure. Journal of Sustainable Forestry, 2, 153–181. 

 
Cliff, A.D., & Ord, J.K. (1973). Spatial autocorrelation. In Monographs in Spatial and Environmental 

Systems Analysis (No. 5). London, United Kingdom: Pion Limited Press. 
 
Cliff, A.D. & Ord, J.K. (1981). Spatial Processes: Models & Applications Vol. 44. London, United 

Kingdom: Pion Limited Press.  
 
Dennison, P.E., & Moritz, M.A. (2009). Critical live fuel moisture in chaparral ecosystems: a 

threshold for fire activity and its relationship to antecedent precipitation. International 
Journal of Wildland Fire, 18, 1021–1027. 

 
Dickson, B.G., Prather, J.W., Xu, Y., Hampton, H.M., Aumack, E.N., & Sisk, T.D. (2006). 

Mapping the probability of large fire occurrence in northern Arizona, USA. Landscape 
Ecology, 21, 747–761. 

 
Diggle, P.J. (1983). Statistical Analysis of Spatial Point Patterns. New York, New York and London, 

United Kingdom: Oxford University Press, Inc. 
 
Donnegan, J.A., & Rebertus, A.J. (1999). Rates and mechanisms of subalpine forest succession 

along an environmental gradient. Ecology, 80, 1370–1384. 
 
Downes, B.J., Lake, P.S., & Schreiber, E.S.G. (2000). Habitat structure, resources, and diversity: 

the separate effects of surface roughness and macroalgae on stream invertebrates. 
Oecologica, 123, 569–581. 

 
Drobyshev, I., & Niklasson, M. (2004). Linking tree rings, summer aridity, and regional fire 

data: an example from the boreal forests of the Komi Republic, East European Russia. 
Canadian Journal of Forest Research, 34, 2327–2339. 

 
Franklin, J. (2010). Spatial point pattern analysis of plants. In Anselin, L., & Rey, S.J. (eds.) 

Perspectives on Spatial Data Analysis (pp. 113–126). New York, New York: Springer 
Verlag. 

 
Franklin, J., Michaelsen, J., & Strahler, A.H. (1985). Spatial analysis of density dependent pattern 

in coniferous forest stands. Vegetatio, 64, 29–36. 
 
 
 
 



 

 188 

Frost, C.C. (1998). Presettlement fire frequency regimes of the United States: a first 
approximation. In Pruden, T.L., & Brennan, L.A. (eds.) Fire in ecosystem management: 
shifting paradigm from suppression to prescription (pp. 70–81). Tall Timbers Fire Ecology 
Conference Proceedings, No. 20. Tall Timbers Research Station, Tallahassee, Florida, 
USA. 

 
Gavin, D.G., Brubaker, L.B., & Lertzman, K.P. (2003). An 1800-year record of the spatial and 

temporal distribution of fire from the west coast of Vancouver Island, Canada. Canadian 
Journal of Forest Research, 33, 573–586. 

 
Getis, A., & Franklin, J. (1987) Second-order neighborhood analysis of mapped point patterns. 

Ecology, 68, 473–477. 
 
Getis, A., & Ord, J.K. (1992) The analysis of spatial association by use of distance statistics. 

Geographical Analysis, 24, 189–206. 
 
Getis, A., & Aldstadt, J. (2004). Constructing the spatial weights matrix using a local statistic. 

Geographical Analysis, 36, 90–105. 
 
Goodchild, M.F. (1986). Spatial Autocorrelation (Vol. 47 of CATMOG series). Santa Barbara, 

California: The University of California, Geo Books.  
 
Griffith, D.A. (1992). Which spatial statistics techniques should be converted to GIS functions? 

In Fischer, M.M. & Nijkam, P. (eds.) Geographic Information Systems, Spatial Modelling and 
Policy Evaluation (pp. 101–114). Berlin: Springer Verlag.  

 
Grissino-Mayer, H.D. (1995). Tree-ring reconstructions of climate and fire history at El Malpais 

National Monument, New Mexico. (Doctoral dissertation). Retrieved from The 
University of Arizona Campus Research Repository. Accession number 213467866. 

 
Grissino-Mayer, H.D. (1999). Modeling fire interval data from the American southwest with the 

Weibull distribution. International Journal of Wildland Fire, 9, 37–50. 
 
Grissino-Mayer, H.D., & Swetnam, T.W. (2000). Century-scale climate forcing of fire regimes in 

the American Southwest. Holocene, 10, 213–220. 
 
Grissino-Mayer, H.D. (2016). Wildfire as a once-dominant disturbance process in the yellow 

pine and mixed pine/hardwood forests of the Appalachian Mountains. In Greenberg, 
C.H., & Collins, B.S. (eds.) Natural Disturbances and Historic Range of Variation: Type, 
Frequency, Severity, and Post-Disturbance Structure in Central Hardwood Forests (pp. 123–
146). Berlin and New York, New York: Springer Verlag. 



 

 189 

Gunderson, L.H. (1994). Vegetation of the Everglades: determinants of community composition. 
In Davis, S.M., Ogden, J.C., & Park, W.A. (eds.) Everglades: the ecosystem and its 
restoration. (pp. 291–306). Boca Raton, Florida: St. Lucie Press. 

Guyette, R. P., & Spetich, M. A. (2003). Fire history of oak-pine forests in the Lower Boston 
Mountains, Arkansas, USA. Forest Ecology and Management, 180, 463–474. 

Haase, P. (1995). Spatial pattern analysis in ecology based on Ripley’s K-function: introduction 
and methods of edge correction. Journal of Vegetation Science, 6, 575–582. 

Hanson, K., & Maul, G.A. (1993). Analysis of temperature, precipitation, and sea level 
variability with concentration on Key West, Florida for evidence of trace-gas induced 
climate changes. In Maul, G.A. (ed.) Climate Change in the intra-American Sea. (pp. 193–
213. London, England: Edward Arnold Publisher, Ltd. 

 
Harley, G.L., Grissino-Mayer, H.D., & Horn, S.P. (2011). The dendrochronology of Pinus elliottii 

in the Lower Florida Keys: chronology development and climate response. Tree-Ring 
Research, 67, 39–50. 

 
Harley, G. L., Grissino-Mayer, H. D., & Horn, S. P. (2013). Fire history and forest structure of an 

endangered subtropical ecosystem in the Florida Keys, USA. International Journal of 
Wildland Fire, 22, 394–404. 

Harper, R.M. (1927). Natural resources of southern Florida. Annual Report of the Florida Geological 
Survey, 18, 27–206. 

 
Hela, I. (1952). Remarks on the climate of southern Florida. Bulletin of Marine Science, 2, 438–447. 
 
Heyerdahl, E. K., Brubaker, L. B., & Agee, J. K. (2002). Annual and decadal climate forcing of 

historical fire regimes in the interior Pacific Northwest, USA. The Holocene, 12, 597–604. 

Heyward, F. (1939). The relation of fire to stand composition of longleaf pine forests. Ecology, 20, 
287–304. 

Hoffmeister, J.D., & Multer, H.G. (1968). Geology and origin of the Florida Keys. Geological 
Society of American Bulletin, 79, 1487–1502. 

 
Iverson, L.R., Hutchinson, T.F., Prasad, A.M., Peters, M.P. (2008). Thinning, fire, and oak 

regeneration across a heterogeneous landscape in the eastern U.S.: 7-year results. Forest 
Ecology and Management, 255, 3035–3050. 

 



 

 190 

Johnson, E.A., & Gutsell, S.L. (1993). Heat budget and fire behaviour associated with the 
opening of serotinous cones in two Pinus species. Journal of Vegetation Science, 4, 745–750. 

 
Karl, T.R., Metcalf, L.K., Nicodemus, M.L., & Quayle, R.G. (1983). Statewise average climatic 

history, Florida 1981–1982. National Climatic Data Center, Historical Climatology Series 
6-1. 

 
King, M. (1981). A small sample property of the Cliff-Ord test for spatial autocorrelation. Journal 

of the Royal Statistical Society, Series B, 43, 263–264. 
 
Krawchuk, M.A., & Moritz, M.A. (2011). Constraints on global fire activity vary across a 

resource gradient. Ecology, 92, 121–132. 
 
Landers, J.L., & Boyer, W.D. (1999). An old-growth definition for upland longleaf and South 

Florida slash pine forests, woodlands, and savannas. General Technical Report, SRS-29. 
Ashville, North Carolina, USA: US Department of Agriculture Forest Service, Southern 
Research Station GTR-SRS-029. 20 pp. 

 
Larson, C.P.S. (1996). Fire and climate dynamics in the boreal forest of northern Alberta, 

Canada, from AD 1850 to 1989. The Holocene, 6, 449–456. 
 
Lindbladh, M., Niklasson, M., & Nilsson, S.G. (2003). Long-time record of fire and open canopy 

in a high biodiversity forest in southeast Sweden. Biological Conservation, 114, 231–243. 
 
Li, H., Calder, C.A., & Cressie, N. (2007). Beyon Moran’s I: testing for spatial dependence based 

on the spatial autoregressive model. Geographical Analysis, 39, 357–375. 
 
Liu, H., Menges, E.S., & Quintana-Ascencio, P.F. (2005). Population viability analyses of 

Chamaecrista keyensis: effects of fire season and frequency. Ecological Applications, 15, 
210–221. 

 
Maschinski, J., Ross, M.S., Liu, H., O’Brien, J.J., von Wettberg, E.J., & Haskins, K.E. (2011). 

Sinking ships: conservation options for endemic taxa threatened by sea level rise. 
Climatic Change, 107, 147–167 

 
Mast, J.N., & Wolf, J.J. (2004). Ecotonal changes and altered tree spatial patterns in lower mixed-

conifer forests, Grand Canyon National Park, Arizona, USA. Landscape Ecology, 19, 167–
180.  

McBride, J.R. (1983). Analysis of tree rings and fire scars to establish fire history. Tree-Ring 
Bulletin, 43, 51–67. 



 

 191 

McEwan, R. W., Hutchinson, T. F., Ford, R. D., & McCarthy, B. C. (2007). An experimental 
evaluation of fire history reconstruction using dendrochronology in white oak (Quercus 
alba). Canadian Journal of Forest Research, 37, 806–816. 

Menges, E. S., & Deyrup, M. A. (2001). Postfire survival in the south Florida slash pine: 
interacting effects of fire intensity, fire season, vegetation, burn size, and bark beetles. 
International Journal of Wildland Fire, 10, 53–63. 

Moran, P.A.P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society, 
Series B, 10, 243–251. 

 
Moran, P.A.P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17–23. 
 
Myers, R.L. (1985). Fire and the dynamic relationship between Florida sandhill and sand pine 

scrub vegetation. Bulletin of the Torrey Botanical Club, 112, 241–252. 
 
National Oceanic and Atmospheric Administration (NOAA). (2010). Website: 

http://www.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl. Climates of the 
States Report (CLIM60), National Climate Data Center, US Department of Commerce. 
Accessed 3 August 2015. 

 
Neary, D.G., Klopatek, C.C., DeBano, L.F., & Ffolliott, P.F. (1999). Fire effects on belowground 

sustainability: a review and synthesis. Forest Ecology and Management, 122, 51–71. 
 
Niklasson, M., Zin, E., Zielonka, T., Feijen, M., Korczyk, A.F., Churski, M., Samojlik, T., 

Jedrzejewska, B., Gutowski, J.M., & Brzeziecki, B. (2010). A 350-year tree-ring fire record 
from Bialowieza Primeval Forest, Poland: implications for central European lowland fire 
history. Journal of Ecology, 98, 1319–1329. 

 
Noble, I.R., & Slatyer, R.O. (1980). The use of vital attributes to predict successional changes in 

plant communities subject to recurrent disturbances. Succession, 1, 5–21. 
 

Noss, R.F., LaRoe, E.T., & Scott, J.M. (1995). Endangered Ecosystems of the United States: A 
Preliminary Assessment of Loss and Degradation. Washington, DC, U.S.A.: U.S. Department 
of the Interior, National Biological Service. 95 pp. 

 
Openshaw, S. (1993). Some suggestions concerning the development of artificial intelligence 

tools for spatial modelling and analysis in GIS. In Fischer, M.M., & Nijkamp, P. (eds.) 
Geographic Information Systems, Spatial Modelling and Policy Evaluation (pp. 17–33). Berlin: 
Spring Verlag. 



 

 192 

Ord, J.K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an 
application. Geographical Analysis, 27, 286–306. 

 
Orvis, K.H., & Grissino-Mayer, H.D. (2002). Standardizing the reporting of abrasive papers used 

to surface tree-ring samples. Tree-Ring Research, 58, 47–50. 
 
Platt, W.J., Beckage, B., Doren, R.F., & Slater, H.H. (2002). Interactions of large-scale 

disturbances: prior fire regimes and hurricane mortality of savanna pines. Ecology, 83, 
1566–1572. 

 
Possley, J., Woodmansee, S.W., & Maschinski, J. (2008). Patterns of plant composition in 

fragments of globally imperiled pine rockland forest: effects of soil type, recent fire 
frequency, and fragment size. Natural Areas Journal, 28, 379–394. 

 
Renkin, R.A., & Despain, D.G. (1992). Fuel moisture, forest type, and lightning-caused fire in 

Yellowstone National Park. Canadian Journal of Forest Research, 22, 37–45. 
 
Ripley, B.D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society, Series B, 39, 

172–212. 
 
Ripley, B.D. (1978). Spectral analysis and the analysis of pattern in plant communities. Journal of 

Ecology, 66, 965–981. 
 
Ross, M.S., O’Brien, J.J., da Silveira Lobo Sternberg, L. (1994). Sea-level rise and the reduction in 

pine forests in the Florida Keys. Ecological Applications, 4, 144–156. 
 
Ross, M.S., O’Brien, J.J., Ford, R.G., Zhang, K., & Morkill, A. (2008). Disturbance and the rising 

tide: the challenge of biodiversity management on low-island ecosystems. Frontiers in 
Ecology and the Environment, 7, 471–478.  

 
Rossi, R.E., Mulla, D.J., Journel, A.G., & Franz, E.H. (1992). Geostatistical tools for modeling and 

interpreting ecological spatial dependence. Ecological Monographs, 62, 277–314. 
Sah, J.P., Ross, M.S., Koptur, S., & Snyder, J.R. (2004). Estimating aboveground biomass of 

broadleaved woody plants in the understory of Florida Keys pine forests. Forest Ecology 
and Management, 203, 319–329. 

 
Sah, J. P., Ross, M. S., Snyder, J. R., Koptur, S., & Cooley, H. C. (2006). Fuel loads, fire regimes, 

and post-fire fuel dynamics in Florida Keys pine forests. International Journal of Wildland 
Fire, 15, 463–478. 



 

 193 

Schoennagel, T., Veblen, T.T., & Romme, W.H. (2004). The interaction of fire, fuels, and climate 
across Rocky Mountain forests. BioScience, 54, 661–676. 

Schoennagel, T., Veblen, T. T., Kulakowski, D., & Holz, A. (2007). Multidecadal climate 
variability and climate interactions affect subalpine fire occurrence, western Colorado, 
USA. Ecology, 88, 2891–2902. 

Schulman, E. (1937). Selection of trees for climatic study. Tree-Ring Bulletin, 3, 22–23. 
 
Shumway, D.L., Abrams, M.D., & Ruffner, C.M. (2001). A 400-year history of fire and oak 

recruitment in an old-growth oak forest in western Maryland, USA. Canadian Journal of 
Forest Research, 31, 1437–1443. 

Slapcinsky, J. L., Gordon, D. R., & Menges, E. S. (2010). Responses of rare plant species to fire in 
Florida's pyrogenic communities. Natural Areas Journal, 30, 4–19. 

Snyder, J.R. (1991). Fire regimes in subtropical south Florida. Tallahassee, Florida, U.S.A. No. 18. 
Proceedings of the Tall Timbers Fire Ecology Conference, 17, 303–319. 

 
Snyder, J. R., & Robertson, Jr., W. B. (1990). South Florida Rocklands. In R. L. Myers, & J. J. Ewel, 

Ecosystems of Florida (pp. 230–277). Orlando, FL: University of Central Florida Press. 

Speer, J.H. (2010). Fundamentals of Tree-Ring Research. Tucson, Arizona: University of Arizona 
Press. 

 
Stambaugh, M.C., & Guyette, R.P. (2008). Predicting spatio-temporal variability in fire return 

intervals using a topographic roughness index. Forest Ecology and Management, 254, 463–
473. 

 
Stephens, S.L., Skinner, C.N., & Gill, S.J. (2003). Dendrochronology-based fire history of Jeffery 

pine–mixed conifer forests in the Sierra San Pedro Martir, Mexico. Canadian Journal of 
Forest Research, 33, 1090–1101. 

 
Stevens, J.T., & Beckage, B. (2009). Fire feedbacks facilitate invasion of pine savannas by 

Brazilian pepper (Schinus terebinthifolius). New Phytologist, 184, 365–375. 
 
Stokes, M.A., & Smiley, T.L. (1968). An Introduction to Tree-Ring Dating. Tucson, Arizona: 

University of Arizona Press.  
 
Swetnam, T.W., Allen, C.D., & Betancourt, J.L. (1999). Applied historical ecology: using the past 

to manage for the future. Ecological Applications, 9, 1189–1206. 



 

 194 

Taylor, D.L. (1973). Some ecological implications of forest fire control in Yellowstone National 
Park, Wyoming. Ecology, 1, 1394–1396. 

 
Taylor, D.L. (1981). Fire history and fire records for Everglades National Park, 1948–1979. South 

Florida Research Center Report no. T-619. 121 pp. 
 
Tiefelsdorf, M., & Boots, B. (1995). The exact distribution of Moran’s I. Environment and Planning 

A, 27, 985–999. 
 
van Horne, M.L., & Fulé, P.Z. (2006). Comparing methods of reconstructing fire history using 

fire scars in a southwestern United States ponderosa pine fores. Canadian Journal of Forest 
Research, 36, 855–867. 

 
Verkaik, I., & Espelta, J.M. (2006). Post-fire regeneration thinning, cone production, serotiny and 

regeneration age in Pinus halepensis. Forest Ecology and Management, 231, 155–163. 
 
Wagner, C.V. (1978). Age-class distribution and the forest fire cycle. Canadian Journal of Forest 

Research, 8, 220–227. 
 
Wolf, A. (2005). Fifty year record of change in tree spatial patterns within a mixed deciduous 

forest. Forest Ecology and Management, 215, 212–223. 
 
Wright, H.A., & Bailey, A.W. (1982). Fire ecology in the United States and southern Canada. New 

York, New York: John Wiley and Sons Inc. 
 
Wunderlin, R.P. (1982). Guide to the Vascular Plants of Central Florida. Gainesville, Florida: 

University Presses of Florida. 477 pp.  
 
Youngblood, A., Max, T., & Coe, K. (2004). Stand structure in eastside old-growth ponderosa 

pine forests of Oregon and northern California. Forest Ecology and Management, 199, 191–
217. 

 

 

 

 

 



 

 195 

Chapter 5 
 

Conclusions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 196 

5.1 Summary of Dissertation Research  

Fire is a disturbance phenomenon in pine rocklands in the subtropical U.S. The purpose 

of this dissertation research was to assess fire activity in pine rocklands in the National Key 

Deer Refuge on Big Pine Key from both a temporal and spatial perspective. Specifically, the this 

dissertation followed the 2011 Blue Hole Burn, which was a prescribed fire that escaped 

prescription and became a severe wildfire. By assessing fire data from a holistic temporal and 

spatial perspective, I was able to quantitatively evaluate fire activity in this ecosystem. These 

rocklands have experienced marked decline in the past century, and they are at risk for further 

range loss and impacts from anthropogenic habitat changes as the islands and surrounding 

locations become increasingly populated. Increased urbanization and development near the 

NKDR increases the potential for interaction between people and lightning-caused fires in this 

ecosystems, such as what occurred in September of 2011. 

The 2011 Blue Hole Burn was a high-intensity, crown fire in the southern section of the 

NKDR that burned approximately 48 ha near the Blue Hole quarry adjacent to Key Deer 

Boulevard. This particular wildfire inspired considerable response from local community 

members and Big Pine Key citizens because it was viewed as a horrible and costly mistake by 

the U.S. Fish and Wildlife Service. The fire was considered by citizens to have been too severe or 

extensive to be within the historical range of variability for a pine rockland. Furthermore, and 

the likely more dominant reaction from citizens, was in regard to the resulting charred 

landscape which was viewed as uninhabitable for the endangered Key deer.  
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Considering how poorly the 2011 wildfire was perceived by the general public, the goal 

of my dissertation was set to quantitatively establish exactly how fires have acted in the past 

within the fire perimeter. Specifically, I wanted to establish how fire return intervals may have 

changed with increased population and ecosystem management, and what spatial extents can 

be expected for a large (> 10% and > 25% scarred) fires. Additionally, I evaluated the breadth 

and strength of relationships between fire activity and the surrounding microtopographic 

landscape through regressions at varying scales. The goal of these regressions was to (1) 

determine what relationships, if any, existed between fire frequencies per tree and surrounding 

microtopographic features, and (2) assess how, if at all, those relationships changed with 

aggregated scale (i.e. increases in cell window size). Finally, I tested various metrics of local and 

global spatial autocorrelation to locate statistically significant indications of clustering or 

dispersion in the fire-scar data. The purpose of the spatial autocorrelation analyses was to 

determine (1) the presence or absence, and extent, of correlation in fire-scar counts among fire-

scarred trees from a global (i.e. study area) perspective, and (2) determine if localized subsets or 

neighborhoods of data exhibited spatial autocorrelation in fire-scar counts. Holistically, each 

chapter in my dissertation builds upon the next to evaluate fire activity in the NKDR from both 

a temporal and spatial perspective. 

5.1.1 Temporal Analysis of Fire Activity 

In regard to temporal patterns in fire activity, I evaluated the historical range of 

variability for fire activity in pine rocklands within a section of the NKDR that burned in the 

2011 Blue Hole Burn. Specifically, I investigated how, and to what extent, fire activity changed 
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after management practices began in the NKDR in the late 1950s. A statistically significant 

difference existed in my dataset for mean fire interval (MFI) between the pre- and post-

management periods, with post-management fires occurring less often than in the previous 

period. The frequency of fires decreased after the mid-1900s with the loss of slash and burn land 

management which was first institutionalized in the late 1800s for development of the railroad. 

Furthermore, when the NKDR was established in 1957, fires set for hunting Key deer were 

prohibited, which caused the frequency of smaller fires to decrease as well.  

In addition to the standard fire history analyses, I also investigated the spatial extents of 

large fires (> 25%) in the NKDR. For those fires that were highlighted in the temporal analysis as 

having scarred > 25% of the recording trees for that year, I built a GIS that interpolated among 

the fire-scarred trees to generate a surface of past fire activity. The interpolation results 

complement the temporal range of variability analysis and confirm that the 2011 fire was no 

more spatially extensive than other large fires in the dataset, such as the 1990 and 1977 fires. 

Additionally, the 1990 and 1977 fires were also prescribed by the U.S. Fish and Wildlife Service 

on Big Pine Key, and both scarred comparable amounts of trees over a similar spatial area. 

When the results from the temporal and spatial analyses were combined, I provided 

quantitative evidence against the 2011 fire being a uniquely large and extensive fire.  

5.1.2 Scalar Analysis of Fire Activity 

 After analyzing the fire history of my study area in the NKDR, I evaluated relationships 

between fire activity via the fire-scar record and the surrounding microtopography in my scalar 

analysis. I conducted a suite of linear regressions, using fire-scar data as the response variable 
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and four primary microtopography parameters (elevation, slope, residual topography, and 

curvature) as the predictor variables at increasing aggregations. I began my regression using no 

scaling (1 m x 1 m), and increased the window size to 100 m x 100 m. The predictor-response 

relationships at each of these different scales were weak at each scalar increase, but each model 

found increasing statistically significant variables with increasing window size. The peak in 

model and variable significance was with the 50 m x 50 m model with a statistically significant 

model R2, and significant residual and curvature model variables. I used two different 

clustering analyses to verify that my model results were due to inconsistencies in variance 

structure between the predictor and response variables, and not poor model calibration.  

 While the specific results for my dissertation may be anti-climatic in regard to the 

regression modeling, the true power of this study comes in the applicability of these regression 

techniques in different locations across the southeastern U.S. and elsewhere. Future fire history 

analyses can use the GIS techniques from this study to isolate areas on the landscape where fires 

are more likely to occur. Areas of higher local relief, and more heterogeneity in environmental 

features, for example in vegetation composition, surface hydrology, and the presence or absence 

of a developed soil layer, may be able to overcome the dominant stochasticity in my models and 

generate more robust results. Historically, fire history research has taken a more exploratory 

approach, whereby potential locations are first scouted and vetted for fire activity, and in some 

cases rejected after numerous hours of work. The techniques I used in my research would allow 

others to approach sampling and cross-section collections from a more-informed perspective by 

first isolating areas in the landscape that have a higher likelihood of having fire-scarred trees.  



 

 200 

5.1.3 Spatial Autocorrelation Analysis of Fire Activity 

 After establishing relationships between fire activity and microtopography at various 

scales, I analyzed relationships within the fire-scar data in regard to spatial autocorrelation. 

Specifically, I calculated two levels of spatial autocorrelation: (1) global indicators that 

incorporate the whole dataset and give a study-area-wide evaluation of clustering or dispersion, 

and (2) local indicators that break the study area into localized neighborhoods. The global 

Moran’s I was statistically significant for clustering across the study area meaning that fire-

scarred trees in the NKDR of similar fire-scar counts tend to be located at closer distances. I was 

not able to identify specific clustering of trees with high or low scar count numbers. The results 

of the local analyses indicate a small cluster of trees with low fire-scar counts directly adjacent 

to the bordering neighborhood marking the southern extent of the study area. I propose that 

this pocket of low fire activity is the result of no prescribed burning because of the proximity to 

the neighborhood, and people acting as fire lookouts if a lightning-caused fire were to ever 

start. 

 Spatial autocorrelation analyses also provide insight into the structure of fire across an 

area, which can be used similarly to the regression techniques and extrapolated outside of the 

study area. The implications of this research extend into the realm of habitat modeling along 

wildland-urban interfaces, where people and communities may have both direct and indirect 

influence on the natural rhythms of nearby habitats. For example, abiotic and biotic 

characteristics of the pine rocklands surrounding the localized cluster of low fire activity can be 

isolated and then used to delineate areas without fire-scar data that may also experience low 
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fire activity. Lastly, by tackling local indicators of spatial autocorrelation from three different 

metrics, I was able to find a spatial window that displayed a peak in clustering significance. The 

Ripley’s K analysis found a window of approximately 50–65 m where clustering in fire-scar 

data peaked in significance. This window matches the aggregation window from the scalar 

analyses and indicates fire activity in this pine rockland operates within that window. 

 

5.2 Future Work 

5.2.1 Sampling Design Expansion 

 The sampling design for this project was sufficient to protect the robustness of the 

spatial statistics in the analyses of this dissertation, but an augmented sampling design would 

be beneficial to future work on Big Pine Key. Although the extent of my study area was 

appropriate and sufficient for the analyses I conducted, a broader spatial extent would be ideal. 

Specifically, future work should expand the plots into the northern regions of the 2011 burned 

area, and if possible into areas that did not experience the 2011 fire. While a higher density of 

collected samples may not necessarily improve statistical results, primarily because the 

landscape has low local relief, a larger study area may allow for detection of stronger 

relationships among model variables. However, the contiguous nature of the plot design, where 

each plot is adjacent to its neighbor, must be preserved to ensure the ability to generate fire 

surfaces across the study area. Lastly, my study area was within a single pine rockland on a 

single island in the lower Florida Keys, thus future work may benefit from expanding the study 

area to a pine rockland outside of the NKDR.  
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 My second recommendation for the sampling design relates to which specific trees are 

collected and recorded in the dataset. For this research I was interested in capturing as many 

fire scars as possible from an optimally-designed subset of fire-scarred trees. In the future, I 

suggest that all trees are at least recorded, if not necessarily sampled for fire history analysis. 

Clustering analyses and regression modeling for data that historically display Poisson 

distributions (such as fire-scar counts) rely on zero count data just the same as data of higher 

values. My regression models may have demonstrated higher significance if trees without fire 

scars were also included, and with the spatial autocorrelation analyses. Of course in hindsight 

and given another field season trees without fire scars would be GPS-located and included in 

the dataset, but they were absent in the analyses for this dissertation.  

5.2.2 Predictive Risk Modeling 

 Predictive risk modeling is the natural next step for research to expand on the work in 

this dissertation. Results from the regression analyses, and the global and local metrics of spatial 

autocorrelation, indicate the potential for delineating areas of high-low fire risk. Preliminary 

results not included in this dissertation have shown that risk surfaces can be generated, 

although they are tempered by low variability in the current dataset. Expansion of the sampling 

design to include a larger geographic area, or another pine rockland in a different location, will 

help bolster predictive fire risk modeling for this habitat type. Additionally, data should be 

collected on dissolution holes, specifically in regard to locations dispersed throughout the study 

area and the influence they have on fire spread. Finally, even though the rocklands are flat with 
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minimally-variable groundlayer characteristics, other data such as time-since-last-hurricane or 

depth-to-groundwater would provide another layer of information for regression modeling.  

 Quantitatively delineating areas of high-low fire activity is beneficial in predictive 

modeling of fire risk and research on risk assessment from a wildland-urban interface 

perspective. How people view fire, from either a negative or positive vantage point, is 

extremely important when evaluating the holistic nature of fire risk. Future work investigating 

fire risk on Big Pine Key and within the NKDR should include research on public perception of 

personal fire risk to develop a framework by which people become a part of the analysis. 

Personal perception of risk may not directly be a “data point” in a predictive risk model or 

regression, but I believe the information is valuable (e.g. through a public survey) and should be 

included in research dealing with land management. For example, a person with a “high 

perceived risk of wildfire” may maintain a heavily-manicured property with complete removal 

of shrubs or vines attached to the main housing structure. Conversely, a private citizen without 

any perception of individual fire risk may maintain a house covered in thick vines. These may 

seem like overly simple pieces of data, but risk perception as it relates to personal behavior 

could be another layer of data in a fire risk assessment for an area.  
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