
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2016

Reducing Power Consumption and Latency in Mobile Devices Reducing Power Consumption and Latency in Mobile Devices

using a Push Event Stream Model, Kernel Display Server, and GUI using a Push Event Stream Model, Kernel Display Server, and GUI

Scheduler Scheduler

Stephen Gregory Marz
University of Tennessee, Knoxville, stephen.marz@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Marz, Stephen Gregory, "Reducing Power Consumption and Latency in Mobile Devices using a Push Event
Stream Model, Kernel Display Server, and GUI Scheduler. " PhD diss., University of Tennessee, 2016.
https://trace.tennessee.edu/utk_graddiss/3943

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Stephen Gregory Marz entitled "Reducing

Power Consumption and Latency in Mobile Devices using a Push Event Stream Model, Kernel

Display Server, and GUI Scheduler." I have examined the final electronic copy of this dissertation

for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Brad T. Vander Zanden, Major Professor

We have read this dissertation and recommend its acceptance:

Wei Gao, Jian Huang, Peiling Wang

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Reducing Power Consumption and Latency in Mobile Devices using a

Push Event Stream Model, Kernel Display Server, and GUI Scheduler

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Stephen Gregory Marz

August 2016

ii

Copyright © 2016 by Stephen Gregory Marz

All rights reserved.

iii

Acknowledgements

I would like to thank my doctoral committee members, Dr. Wei Gao, Dr. Jiang Huang, and

Dr. Peiling Wang for their valuable support and guidance for my research and subsequent

degree. Dr. Qing “Charles” Cao initially served as a committee member and provided

helpful advice at the outset of my dissertation. I would like to add a special thanks to Dr.

Brad Vander Zanden for serving as my advisor, editor, and coach throughout this entire

doctoral experience. Finally, I would like to thank my family and my friends who have

supported me.

iv

Abstract

The power consumed by mobile devices can be dramatically reduced by improving how

mobile operating systems handle events and display management. Currently, mobile

operating systems use a pull model that employs a polling loop to constantly ask the

operating system if an event exists. This constant querying prevents the CPU from entering

a deep sleep, which unnecessarily consumes power.

We have improved this process by switching to a push model which we refer to as

the event stream model (ESM). This model leverages modern device interrupt controllers

which automatically notify an application when events occur, thus removing the need to

constantly rouse the CPU in order to poll for events. Since the CPU rests while no events

are occurring, power consumption is reduced. Furthermore, an application is immediately

notified when an event occurs, as opposed to waiting for a polling loop to recognize when

an event has occurred. This immediate notification reduces latency, which is the elapsed

time between the occurrence of an event and the beginning of its processing by an

application.

We further improved the benefits of the ESM by moving the display server, a

central piece of the graphical user interface (GUI), into the kernel. Existing display servers

duplicate some of the kernel code. They contain important information about an application

that can assist the kernel with scheduling, such as whether the application is visible and

able to receive events. However, they do not share such information with the kernel. Our

new kernel-level display server (KDS) interacts directly with the process scheduler to

v

determine when applications are allowed to use the CPU. For example, when an application

is idle and not visible on the screen, the KDS prevents that application from using the CPU,

thus conserving power. These combined improvements have reduced power consumption

by up to 31.2% and latency by up to 17.1 milliseconds in our experimental applications.

This improvement in power consumption roughly increases battery life by one to four hours

when the device is being actively used or fifty to three-hundred hours when the device is

idle.

vi

Table of Contents

Chapter 1 Introduction .. 1

Technological Advances Enabling the ESM Model ... 3

Contributions... 5

The Event Stream Model .. 7

The Kernel Display Server.. 8

The Categorical GUI Scheduler .. 9

Summary ... 10

Use Cases .. 10

Organization of Dissertation ... 12

Chapter 2 Related Work... 14

Kernel Level Event Models .. 14

Application Level Event Models .. 18

Mobile Operating Systems .. 19

Graphical Display Servers .. 21

Scheduling and Heterogeneous CPU Cores .. 22

Power Aware Programming .. 25

Chapter 3 The Event Stream Model... 29

Problems with the Current Pull Model ... 29

Data Structures .. 34

The Event Waiting State ... 35

vii

The Global Application List ... 35

The Application’s Private Event Queue ... 37

Application API .. 37

Registering ESM Event Handlers ... 38

Waiting for Events .. 39

Kernel Implementation ... 39

Interrupt Handler or Driver ... 40

The Event Interpreter .. 42

The Event Dispatcher .. 42

Connecting to the ESM ... 43

How The ESM Improves Power Consumption and Latency .. 45

Chapter 4 The Kernel Display Server .. 47

Applications Running on the KDS ... 52

Linking Android with the KDS... 53

KDS Implementation .. 55

The Compositor System .. 55

The Drawing System... 56

Example Application Interaction with the KDS ... 58

Chapter 5 The GUI Scheduler .. 62

Coordinating Processes for GUI-Specific Situations .. 64

Shadow Core/Heterogeneous Core Computing .. 71

How Categorized GUI Threads Enable Smarter Power Policy Decisions 71

viii

Improving the Efficiency of Hardware Timer Interrupts by Eliminating Polling

Loops... 74

Chapter 6 Testing and Results ... 77

Methodology ... 78

Measuring Power Consumption .. 78

Measuring Latency.. 79

Pull Model Configuration ... 80

CPU Configuration ... 81

Results ... 81

Tracking Program Overview ... 81

Tracking Program Analysis .. 84

Text Messaging Program Overview ... 84

Text Messaging Program Analysis ... 88

Video Program Overview ... 90

Video Program Analysis ... 90

Summary ... 92

Power Consumption and Latency Reductions Achieved by ESM Alone 96

Battery Life with the ESM/KDS/guiS Model ... 97

Human Noticeable Latency Reduction ... 98

Chapter 7 Conclusions and Future Work ... 100

Future Work .. 102

References ... 105

ix

Appendices .. 115

Appendix A ... 116

Appendix B ... 118

Vita .. 119

x

List of Tables

Table 1: How threads are prioritized based on the category of the running thread. We

make a distinction between a visible app and an app in the foreground. For instance,

if the LCD is turned off, the app is still in the foreground, but is not visible.

Furthermore, when a window decoration covers the top-level application (e.g., the

settings scroll), the app is not visible, but is still in the foreground. 66

Table 2: The battery capacity is a sampling of typical lithium ion batteries in both

smartphones and tablet devices. However, since the TK1 is a development board, it

does not use batteries. Therefore, we used the power consumption numbers and

converted them to battery capacity. The battery life numbers are split between talk /

standby (i.e., busy/idle) and are represented in hours for a typical 4G setup. NOTE:

This table does not take into account user habits or every device configuration and is

only a brief summary of what could be expected using our model with varying

battery capacities. .. 99

xi

List of Figures

Figure 1: A polling loop is a continuous loop which polls for events. If events are present,

the loop retrieves the event and handles them. If there are many events, the loop

never sleeps and continuously handles the events until the queue is exhausted. On

the other hand, if the queue is empty, the polling loop delays by sleeping in order to

rest the CPU before the queue is rechecked for events. .. 6

Figure 2: The ESM accepts events from hardware devices and pushes events into the GUI

application. The KDS tells the ESM to enable/disable certain events depending on

the state of the GUI application, such as its foreground/background status, which is

controlled by the GUI scheduler. Finally, the KDS automatically coordinates with

the ESM, but events are pushed directly to the application. 13

Figure 3: An event’s path in the current pull model. The kernel-level routines take an

event from inception and store it in an event queue for the keyboard (there are

queues for each input device). The application starts a polling loop, which

continually checks the event queue for events. When events are queued, the

application is responsible for reading, translating, and handling the event. 31

Figure 4: The event propagation between the kernel and the application in the current pull

model. With virtual machines, such as Dalvik or ART in Android, an instance of the

VM runs per instance of the application. An event hub is used to marshal events in

temporal order and to decide how each of the connected virtual machines receives

the events. In the GUI context, the event hub is typically integrated with the GUI

xii

display server. Finally, the Android VM pushes events to the application’s event

handlers, much like the ESM does. ... 31

Figure 5: A pictorial comparison of the older pull model (client/server), the new pull

model (megapipe/epoll), and our push model (ESM). The older pull model requires

polling loops from the hardware to the queue and from the queue to the application.

The newer models still require polling loops, but are much more efficient by

bundling, hence aggregating, the polling into one loop and storing into a central

queue. The application then pulls events one-by-one from the central queue. The

ESM is a direct push model from the hardware to the queue to the application. We

show all polling loops converging to a single point for the pull model as this is

typical for normal applications where a “message pump” pumps messages (events)

to a single function to handle all events. The aggregation model may or may not use

a single function to pull or to push messages (events) to. Finally, our push model

pushes to several different handler functions, allowing for near-instantaneous

detection of which type of event was pushed, or at least from which device. 32

Figure 6: An event’s path in the event stream model. An event originates from hardware

in the form of an interrupt. The kernel executes an interrupt routine to respond to the

event. The ESM begins by using an event interpreter to package the event into a data

structure that can be handled by the application and finding the set of applications

interested in the event. The event interpreter forwards this set of applications to the

event dispatcher, which calls the event handlers for each application. 36

xiii

Figure 7: esm_register links an event to an event handler. If the event handler is NULL,

then the event is removed from the application list. ... 40

Figure 8: If events are queued, the next event is immediately pushed to the application.

Otherwise, the application is put into the EV_WAIT state until an event occurs. ... 41

Figure 9: The interrupt routine calls the event interpreter. If a driver is attached to the

interrupt vector, the event interpreter is called after the driver adds the event’s

details. A raw translation with minimal event details from an interrupt vector (for

those without a driver handler) is available through a table look-up. 43

Figure 10: The event interpreter is responsible for repacking a kernel event into an

application event and for finding those applications that are waiting to receive an

event. It then calls the event dispatcher to push events to the applications. The

context shown here is performed while the CPU is in the disabled-interrupt state. For

this reason, the dispatcher is called in a separate kernel thread to perform the

majority of the work.. 44

Figure 11: The event dispatcher will immediately push events to the application if it is

waiting. Otherwise, the event dispatcher queues the event onto the application’s

private event queue. The context shown here is performed outside the interrupt state

and is scheduled like any other kernel thread. .. 45

Figure 12: The current pull model stores events into several queues where it is propagated

to the application which will handle the event. With the current GUI model, the

event is filtered at several layers. This figure shows a breakdown of a typical event

xiv

hub, which is a combination of the display server’s temporal ordering and the

display client’s event filter, for GUI applications. .. 50

Figure 13: The KDS takes care of any type of event filtering by registering and

deregistering event handlers with the ESM and provides a much more direct route

for an event between the kernel and the application. Also, note that all polling loops

are eliminated. ... 50

Figure 14: An application first connects to the KDS through the kds_connect routine,

which opens a central KDS control device located in the device filesystem. The

KDS then creates a private communication device specifically for the application

connecting to the KDS. All further communication between the KDS and the

application is through the new, private communication device. 54

Figure 15: The C-style structure that an application sends to its private KDS control

device to get the KDS to execute a command on its behalf. The request_type is what

command the application wishes to use. The “blob” data is simply a memory pointer

that contains up to “data_length” bytes. ... 54

Figure 16: The KDS composer is a simple layer-flattening algorithm which flattens

multiple-layered surfaces into a single layer surface (bitmap). Surfaces are allocated

for each GUI decoration. For example, one surface is allocated for an application to

draw to whereas another surface is allocated for the system to draw icons, such as

the battery status icons. The composer ensures that the GUI decorations are

appropriately placed so that it looks like a single contiguous picture. 57

xv

Figure 17: The KDS 2-dimensional drawing system draws a composed and flattened

surface to the framebuffer. The drawing system uses the already existing

framebuffer utilities in the Android kernel. The GetFrameBufferForApp is merely a

helper function which returns the framebuffer that the application is allocated. In the

actual kds_draw_2d code, if the pixel being written to (on the last line of the code)

exceeds the bounds of the application’s window, then an error is thrown. Since the

KDS coordinates with the SurfaceFlinger, such an out-of-bounds write should never

happen. However, it is an additional check in case someone uses their own display

manager on top of the KDS and does not provide due diligence to ensure that the

surface drawing area will not intrude on another application. 57

Figure 18: This example pseudocode shows an application attaching, interacting, and

detaching with the KDS by drawing two 15x15 squares. There is a 5x5 pixel overlap

of layer2 on top of layer1. Therefore, during composition, a bottom-right, 5-pixel

square of layer1 will be obscured and overwritten by the pixel values of layer2. This

figure is meant to help the reader understand how the application layer interacts with

the KDS. In practice these commands would be in a middleware package, such as

Android’s Surface Flinger and the application programmer would not have to worry

about writing these commands.. 60

Figure 19: This example pseudocode shows an application separating its code into three

of the individual KDS threads (event handling, background, and drawing are shown

above). For event handling, the KDS duplicates the esm_register routine so that it

xvi

can automatically register and de-register ESM events depending on the foreground

or background state of the application. ... 61

Figure 20: The application connects through the KDS directly or through middleware.

The application then tells the KDS to which of the four threads certain code belongs.

From there, the GUI scheduler will prioritize the threads and schedule them to run

based on their category. .. 66

Figure 21: guis_schedule() is called when a context switch is requested through a

hardware timer “tick” or when a process yields to the scheduler. The scheduling

algorithm determines which type of thread is running (e.g., event handling, drawing,

foreground, or background thread) and schedules it accordingly. If the process is not

a GUI process as in the default case, the scheduler schedules the process normally in

the Completely Fair Scheduler mode. ... 67

Figure 22: When scheduling the event handling thread, this function ensures that events

need to be processed, which the ESM automatically does by setting the process’

state to RUNNING. If the event handling thread is not in the EV_WAIT state, that

means that the event handlers are running, thus the scheduler allows the process to

continue to run. ... 67

Figure 23: The drawing thread only runs if the application is in the foreground and can be

seen by the user. The macro CAN_SEE() is used to check if the LCD screen is on or

off. If the LCD is on, then it stands to reason that any drawing could be seen by the

user, and hence it is necessary to draw to the screen. Otherwise, this scheduling

algorithm keeps the thread in a sleeping state. ... 68

xvii

Figure 24: An application in the foreground thread will only be scheduled to run if the

application is in the foreground. It does not check whether or not the results would

be visible to the user (i.e., if the LCD is turned on or off). 68

Figure 25: Any process in the background thread is scheduled to run regardless of its

state. This is helpful for situations where a programmer still wants to use the CPU

even if the results are not visible by the user. ... 70

Figure 26: The KDS is notified when an application is placed into the background when

the window manager explicitly calls kds_on_background when the application is

moved to the background. The KDS automatically deregisters the event handlers

that cannot run when the application is in the background. Finally, the KDS notifies

the GUI scheduler that the application was placed into the background. 70

Figure 27: The KDS is notified when an application is placed into the foreground when

the window manager explicitly calls kds_on_foreground, and hence the window

becomes visible to the user. The KDS automatically re-registers the event handlers

that were disabled when the application was in the background. Finally, the KDS

notifies the GUI scheduler that the application was placed into the foreground. 70

Figure 28: guis_set_state simply sets the state of the GUI application. This is used by the

individual scheduling algorithms when determining which threads to schedule. For

example, if the state is set to BACKGROUND, meaning that the application is in the

background, then only the background thread will be scheduled to execute. Note that

thread_state and thread_type describe two different elements of the process. The

thread_state indicates the thread’s active state, such as being in the background or

xviii

foreground. On the other hand, thread_type describes the job that the thread is

performing, such as drawing or handling events. ... 72

Figure 29: The kernel looks at the process’ sleep times to determine when to schedule the

next dynamic tick. If all processes have an indefinite sleep, then no hardware tick is

scheduled. In this case, the only interrupt from the hardware would be an event, such

as the user clicking the power button or finger tapping the LCD screen. This figure

simplifies the processes for scheduling dynamic ticks. Rather than iterating through

the entire process list every time a process changes state, the Linux tick scheduler

incrementally updates the dynamic tick time each time an application goes into the

sleeping state with the lesser of the current tick time or the length of the

application’s sleep segment. ... 76

Figure 30: In the stylus motion/click test, the user started at point A and manually traced

the spiral with random stylus presses (mouse clicks). From the starting point (A) to

the ending point (Z), the entire test created 1,614 separate motion and click events.

The blue stars represent when the stylus was pressed down, and the red stars

represent when the stylus was released. The recorded events were then scaled to

different time intervals to automatically generate events. .. 83

Figure 31: Power consumption and latency profile when the events for the spiral tracing

program are condensed into a 10-second user interaction. This experiment models a

situation in which events arrive frequently and the event queue is likely to remain

full. .. 85

xix

Figure 32: Power consumption and latency differences between the ESM/push model and

the pull model for the 10-second spiral test. Positive numbers favor the ESM/push

model... 85

Figure 33: Power consumption and latency profile when the events for the spiral tracing

program are condensed into a 20-second user interaction. This experiment models a

situation in which events arrive moderately frequently and the event queue is likely

to remain full but may occasionally become empty. .. 86

Figure 34: Power consumption and latency differences between the ESM/push model and

pull model in the 20-second spiral test. Positive values favor the ESM/push model.

... 86

Figure 35: Power consumption and latency profile when the events for the spiral tracing

program are condensed into a 60-second user interaction. This experiment models a

situation in which events arrive do not arrive very frequently and the event queue is

likely to become empty on many occasions ... 87

Figure 36: Power consumption differences between the ESM/push model and pull model

in the 60-second spiral test. Positive values favor the ESM/push model. 87

Figure 37: The text messaging program generates a random message and sends it to a

server. The server immediately generates a response. Afterward, there is a 5 second

delay to simulate the user reading the screen or where the user is not in a position to

read their text message. Then the test is repeated until 20 seconds of testing time has

elapsed... 89

xx

Figure 38: The power consumption and latency results of the text messaging service. The

power numbers show the polling loop maintaining a relatively high power usage.

The ESM shows a significant drop in power consumption when the testing program

simulates the user reading the screen. ... 91

Figure 39: Power consumption and latency differences between the ESM/push model and

pull model in the text messaging test. Positive values favor the ESM/push model

over the pull model. .. 91

Figure 40: Power consumption results with the video program playing a 30 second video

clip... 93

Figure 41: Power consumption differences between ESM/push model over traditional

pull model for the 30 second video test. Positive values favor the ESM/push model

and negative values favor the pull model. .. 94

Figure 42: A 2-dimensional chart showing the power consumption reduction and latency

reduction of the five testing programs used in our experiments. This chart shows the

scenarios in which the ESM outperforms the current pull model. Since latency could

not be tested with the video player, we set its latency reduction to zero. 95

1

Chapter 1

Introduction

Mobile devices are an important part of the everyday lives of millions of users

and are increasingly supplanting desktop computers as the primary method for accessing

online material (Frias-Martinez & Virseda, 2012; Maurer, Hausen, Luca, & Hussmann,

2010). However, unlike desktop machines, mobile devices have a limited power supply

that if not properly managed, can leave a user with an unusable device late in the day.

Many mobile operating systems are derived from an existing desktop operating

system and thus inherit many of the disadvantages of desktop operating systems (Searls,

2010). For example, many desktop operating systems are designed to run on a wide array

of different hardware configurations. As such, desktop operating systems are designed for

a generic machine and are therefore unable, or at least unwilling, to exploit an advantage

one machine might have over another (Sungjoo Yoo & Jerraya, 2003). Moreover, Raman

and Chakraborty (2008) find that a solution which fits a desktop machine may not fit a

mobile device no matter how cleverly it is designed.

One such solution that works poorly on mobile devices because of its power

consuming features is the event handling system present in most desktop and mobile

operating systems. Nearly all operating systems use some set of system calls to

communicate events between the kernel and the application (H.-c. Lee, Kim, & Yi,

2011). With very few exceptions, this communication occurs in one direction: the

application initiates the request for events and the kernel responds. The application does

2

so by polling the operating system, and in turn, the operating system executes its own

polling loop which periodically scans the kernel’s devices or internal queues in order to

determine if any events have occurred (see Figure 1). This polling loop periodically

awakens the CPU to perform this device scan, hence preventing the CPU from entering

its most power-efficient, deep-sleep state when the mobile device is otherwise idle. The

CPU’s inability to enter a deep-sleep period during idle periods unnecessarily consumes

power and drains the device’s battery (Alagöz, Löffler, Schneider, & German, 2014).

To illustrate the power draining characteristics of a polling loop, consider a

mobile device sitting idly in a user’s pocket, which is where many mobile devices spend

a large portion of their time (Öquist & Lundin, 2007). During this time, the mobile device

must still poll for events, thus draining the battery’s power. While there are many

techniques used in mobile devices to mitigate the negative effects of the polling loop,

none completely eliminate unnecessary polling, including in the operating system itself

(See Appendix A). In fact, this phenomenon has given rise to “app-killers”, which are

applications designed to close idle, power consuming applications that needlessly poll for

events on an idle device (Stewart, 2011).

A second drawback of polling loops is that they force system or application

programmers to carefully select the polling frequency in order to avoid incurring either

excess latency or bogging down the CPU as it executes the polling loop. For example, if

the event queue is checked frequently, the CPU will spend most of its time checking the

event queue and hence be slow to perform other tasks or enter a lower power state. On

the other hand, if the event queue is checked infrequently, events will start accumulating

3

in the event queue, and users could notice a delay in the application’s responsiveness.

This delay is often called latency.

We define latency as the delay between the time an event arrives at a device and

the time that an application starts processing the event. An alternative definition for

latency is the delay between the time an event is received by a device and the time the

application presents a response to the user. However, the kernel cannot control the length

of time that an application requires to compute its response to an event. It can only

control the length of time that elapses before an application starts processing an event.

Since the latter measure is what we are interested in minimizing in this dissertation, we

have adopted the latter definition for latency.

Technological Advances Enabling the ESM Model

The reason polling loops still exist is that for many mobile devices, the hardware

peripherals do not have a method for notifying the operating system that an event has

occurred. For example, older hardware devices will change one of their internal registers

to signal that an event has occurred, but the operating system must then scan the

hardware in order to determine which hardware device set its register. Since the OS must

“pull” events from the hardware devices using a polling loop, this type of event handling

model is often called a “pull” model.

Recent advances in mobile hardware devices have allowed us to re-think how the

OS can handle events more efficiently. Specifically, new hardware devices can directly

tell the CPU that an event has occurred, thus “pushing” events to the OS. This evolution

has occurred in two steps. The first step was to have the hardware device generate an

4

interrupt by triggering a pin on the CPU. The interrupt caused the CPU to jump to a

certain block of code called the interrupt handler. However, the operating system still had

to determine which hardware device generated the event by scanning all of the hardware

devices attached to the mobile device. Hence, polling loops could not be eliminated since

events still had to be pulled from the device.

The second step and newest improvement for mobile devices is the “vectored

interrupt controller” or VIC. The vectored interrupt controller allows the hardware to

both interrupt the operating system and to provide an identification number so that the

operating system knows what hardware device caused the event. Hence, the OS no longer

needs to pull events from devices by scanning the hardware to determine which device

caused the event. Instead, the input devices can “push” their events to the OS. Desktop

computers already perform this type of interrupt vectoring, but input devices on mobile

platforms are just now starting to catch up with desktop devices, such as with the Generic

Interrupt Controller (GIC) provided by ARM for mobile devices.

Another recent technological improvement in mobile devices is the incorporation of more

power-conserving CPU instructions (Bhadauria & McKee, 2008). The ARM CPU, which

dominates the mobile device consumer marketplace, continues to improve the ways an

operating system can coordinate with the CPU and other hardware devices in order to

reduce unnecessary power consumption. Polling loops do not allow a mobile OS to make

efficient use of these power saving instructions since they constantly rouse the CPU and

prevent it from being placed in a deep sleep state. However, our ESM uses the new

5

interrupt driven hardware devices to eliminate the polling loop, which in turn allows us to

place the CPU in a deep sleep when the applications on a mobile device are idle.

The final technological improvement for mobile devices that we exploit in this

dissertation is the introduction of new, lower power consuming CPU cores known as

“shadow cores”, +1 cores, or big.LITTLE (Kim, Kim, Geraci, & Hong, 2014). Shadow

core, +1, and big.LITTLE describe the same concept of a lower power consuming CPU

core, but the implementation is vendor dependent. The lower power consuming cores

trade performance for increased power efficiency. The ESM exploits this development by

using the smaller cores to process events and determine if any applications need to be

notified, thus leaving the big, power hungry cores undisturbed and in a deep sleep state if

no application cares about an event (the small cores would discard the events in these

cases).

Contributions

 This dissertation exploits the enabling technological advances described in the

previous section by developing the following three new and interrelated techniques for

reducing the power consumption and latency of mobile devices:

1. A push model, called the Event Stream Model (ESM), for pushing events by

hardware input devices to an application without using a polling loop.

2. A kernel level implementation of a display server that coordinates event handling

between the ESM and the application, and that provides information about GUI

applications to the scheduler.

6

Figure 1: A polling loop is a continuous loop which polls for events. If events are present, the loop retrieves

the event and handles them. If there are many events, the loop never sleeps and continuously handles the

events until the queue is exhausted. On the other hand, if the queue is empty, the polling loop delays by

sleeping in order to rest the CPU before the queue is rechecked for events.

3. An improved scheduler that takes advantage of information about GUI

applications, such as whether they are visible and whether they are in the

foreground or background, to make more intelligent scheduling decisions that

save power and reduce latency

An important element of this dissertation’s contributions is that the power

consumption and latency savings are automatically realized by the kernel without explicit

intervention by the application programmer. Previous efforts at using software to reduce

power consumption have relied on the application programmer to make explicit

interventions. Since power consumption is rarely a selling point for applications,

application programmers have tended not to take advantage of language features that

Are Events

Present?

Yes No

SleepHandle Events

7

might reduce power consumption. Thus, the techniques described in this dissertation

provide a way for software to obtain power consumption savings while freeing

application developers to focus on features that are more important for marketing their

apps.

The Event Stream Model

This dissertation makes two improvements to the existing event handling models

in mobile operating systems. First, we take advantage of the recent advances in hardware

devices to implement a push model. Second, we implement the push model in the kernel,

as opposed to either the application or the GUI library used by the application.

Specifically, we have developed and implemented a push-style event handling model in

the kernel of the Android API Level 22 OS (known as “Lollipop” or version 5.1). We

chose Android due to its dominance in the marketplace for both consumers and research

(Holtsnider & Jaffe, 2012). Android’s kernel is derived from Linux and uses the same

scheduling and event handling algorithms as the desktop version of Linux. In particular,

the existing Android kernel uses a pull model with a polling loop.

In Chapter 3, we describe our kernel implementation of a push model, and then in

Chapter 6, we present results that compare its performance with that of Android’s

existing pull model on a 32-bit, NVIDIA TK1 reference board (NVIDIA, 2015). The

TK1 is a cutting-edge, mobile development board that contains the hardware, including a

vectored interrupt controller, required to make the push model work (See Appendix B).

The TK1 design reference is used in the NVIDIA Shield tablet computer and is also used

8

by developers creating future consumer devices, so we are testing with a “real world”

reference board.

The Kernel Display Server

The event stream model by itself significantly reduces both latency and power

consumption (Marz & Vander Zanden, 2015). However, we discovered that the display

servers used by GUI applications offer another area for improvement. Currently, a

middleware software package, called the display server, is responsible for coordinating

an application’s activity with the kernel, including coordinating event handling. For

example, the display server keeps track of the stacking order of applications (i.e., which

applications are on top and which are on the bottom) and is also responsible for providing

a method for individual applications to handle events. One source of inefficiency arises

from the fact that the display server is implemented in user space and is therefore

separated from the kernel. This bifurcation forces the display server to duplicate some of

the kernel’s functionality. For example, the display server contains its own event queues

and state machine in order to track how an application should be displayed and interact

with other applications. Additionally, the display server implements a graphics driver that

is responsible for communicating with the kernel’s hardware graphics driver. This forces

a vendor to write a driver for the display server using the display server’s API and

another driver for the kernel using the kernel’s API. This complicates the programmer’s

job and may discourage certain vendors from optimizing their hardware for a particular

display server and by association a particular operating system.

9

In response to the inconvenient and inefficient nature of current application-level

display servers for mobile devices, we have designed and developed a new display server

in the kernel that we call the Kernel Display Server (KDS). It contains a unified

graphics/video driver, hence removing the need to write two different drivers, and co-

locates its event queues and event system with the kernel through the ESM, which is also

implemented in the kernel. Therefore, the effective distance an event must travel between

the hardware and the application is shortened, the number of queues is reduced, and as a

result, power consumption and latency are reduced.

The Categorical GUI Scheduler

We have capitalized on the placement of the KDS in the kernel to improve the

scheduling of GUI applications. We call our improved scheduler the guiS or GUI

scheduler. GUI applications execute differently than traditional, console-based

applications and might have several interconnected pieces of code that handle items, such

as events, drawing, and processing. While these pieces are unified under one application,

each section of code has a different focus (e.g., some attend to the user, some attend to

the kernel, and some attend to the window manager). The KDS uses this knowledge to

categorize the tasks that are performed by the different code segments of a GUI

application. This enables guiS to skip certain code segments if executing these code

segments would have no effect. For example, the GUI scheduler avoids executing the

drawing code for an application that is not visible. This smarter scheduling removes the

need for many aggressive sleep policies, which can cause applications to incur additional

10

latency. In fact, many applications use wake locks to force the mobile device to stay

awake in order to mitigate the latency penalty from the aggressive sleeping policies;

however, this comes at the cost of increased power consumption since the mobile device

cannot go to sleep while “locked” awake. Wake locks are necessary for certain

applications that cannot tolerate aggressive sleeping policies, such as when the user is

using a movie playing application. The application programmer enables many of these

wake locks, which means that careless programmers could mistakenly force the CPU to

remain in the highest power consuming state, even when there are no tasks for it execute.

Summary

Figure 2 shows how the event stream model interacts with the kernel display

server. We will present experimental results in Chapter 6 that show that the new event

stream model, kernel display server, and GUI scheduler work synergistically to reduce

power consumption by up to 31.2% and to reduce latency by up to 17.1 milliseconds in

our experimental mobile device apps.

Use Cases

 The ESM, KDS, and guiS show improvements over the pull model in power

consumption and latency whenever events arrive in an irregular fashion. The reason is

that the CPU can rest between events and can then immediately respond to an event when

it occurs. In contrast, the pull model must constantly poll for events, thus rousing the

CPU and increasing power consumption, while also forcing the CPU to wait to process

11

an event until the end of the polling loop’s sleep interval, thus increasing latency. Our

push model shows a marked improvement in power consumption when events arrive in

short bursts, followed by long periods of idle time, such as occur in social media

applications where users may engage in a burst of activity followed by long periods of

browsing. For example, a person might either quickly enter some number of keyboard or

voice input events to compose a text message or email response, followed by periods of

inactivity spent browsing text or email messages or figuring out how to compose a

response to such a message. During the long idle times our push model allows the CPU to

rest whereas a pull model will constantly rouse the CPU with its polling loop. While this

dissertation focuses on the event handling in graphical user interfaces, it is quite likely

that our push model would work well in other “bursty” situations that currently use

polling loops, such as cell phone usage and wi-fi usage. Finally our push model improves

power consumption when no events are occurring but an app is performing

computationally expensive activities, such as decoding video. In this case our push model

allows the CPU to stay focused on the computationally expensive task, rather than

periodically switching contexts to check for non-existent events. This allows the CPU to

either finish the task more quickly, or to perform the task at a more leisurely pace that is

less taxing on the CPU.

The one use case where it makes little difference whether the pull or push model

is used is when an app receives events at pre-specified intervals, such as when it is

performing sensor readings for items like velocity or temperature. For example, if an

application wants to display miles per hour, the application would likely sample the

12

velocity sensor as a multiple of an hour (e.g., one sample per second or one sample per

thirty seconds). In this case the sleeping period for the polling loop can be set so that it

exactly corresponds to the period between sensor readings and hence it neither

unnecessarily rouses the CPU or experiences much latency (there might be slight latency

due to timing drift caused by scheduling but it would typically be negligible). We note

that even in these situations, our push model might show a slight improvement in both

power consumption and latency, since the event would be delivered directly to the

application rather than passing through the multiple event queues required by the pull

model.

Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 discusses related

work in the areas of event models and GUI applications. Chapter 3 describes the event

stream model, Chapter 4 describes the kernel display server, and Chapter 5 describes the

GUI scheduler, which is a subsystem of the kernel display server. Chapter 6 describes our

testing platform and testing programs, and presents our experimental results. Finally,

Chapter 7 presents our conclusions and recommendations for future work.

13

Figure 2: The ESM accepts events from hardware devices and pushes events into the GUI application. The

KDS tells the ESM to enable/disable certain events depending on the state of the GUI application, such as

its foreground/background status, which is controlled by the GUI scheduler. Finally, the KDS automatically

coordinates with the ESM, but events are pushed directly to the application.

Applicat ion

Video Framebuffer

Kernel Display Server

Event St ream Model

Hardware

GUI Scheduler

14

Chapter 2

Related Work

Our review of related work focuses on five distinct areas that are related to our

work: (a) kernel and application event models that are used or have been proposed for use

with mobile devices, (b) graphical display servers, (c) mobile operating systems, (d)

schedulers whose main goals are to reduce latency or to reduce power consumption, and

(e) power aware programming.

Kernel Level Event Models

Event models found in mobile operating systems utilize a pull model due to its

simplicity and its wide-range of supporting architectures. Therefore, it is no surprise that

most of the research into event models for mobile devices are improvements over the

traditional pull models.

The majority of research in event modelling has concentrated on how to mitigate

the inefficiencies of the polling loop by aggregating events from multiple devices into a

smaller set of event queues that can then be polled by an application. The idea is that

rather than forcing multiple applications to poll every hardware device queue, the OS can

poll the hardware devices on behalf of multiple applications and store the results in a

smaller set of event queues. Each application can then poll this smaller set of queues in

search of events it should process. The benefit is that polling even one event queue is

CPU intensive, and hence consumes power.

15

 Rossi (2003) first highlighted the problem of having each application poll every

hardware device using Linux's select and poll system calls. The select call blocks the

application from running until it detects an event on one of the hardware devices. It might

seem that blocking the application would permit the CPU to sleep, but unfortunately this

is not true because the select call executes its own polling loop. Each iteration of the loop

takes time to detect activity on event or file descriptors, which is proportional to the size

of the array of descriptors. Rossi notes that “this increases the application latency and

leads to a decrease in the overall system performance". Despite their inefficiencies, the

select and poll system calls remain one of the two principle ways of handling events in

Linux.

Megapipe (Han, Marshall, Chun, & Ratnasamy, 2012), epoll (Strebelow &

Prehofer, 2012), and KQueues (Lemon & Manual, 2013) are event aggregating software

solutions that were designed to improve the efficiency of determining if data (events)

exist on a socket or file descriptor (event queue). Megapipe is a theoretical model that

was not implemented in an actual system that we could find, and epoll is the actual

realization of the Megapipe model. Epoll is now the second principle way of handling

events on Linux systems and is used by the Android OS. KQueues represents a somewhat

similar solution but was implemented in FreeBSD Unix. All three models bundle many

different file descriptors together, such as network sockets and event queues, so that an

application only has to poll one queue rather than all of the queues individually.

Although this querying improves the efficiency of the pull model, it does not eliminate

the polling loop or the power inefficiencies inherent with the polling loop. In fact, these

16

three systems solve a problem that is orthogonal to the push/polling loop problem. They

solve the problem of how to efficiently retrieve events from a large number of event

queues (e.g., network sockets, input events, and file descriptors), but they do not solve the

problem of how to stop an application from ``spinning'' in a polling loop while waiting

for an event to occur. Our research is aimed at stopping the application from spinning in a

polling loop and thus consuming power unnecessarily.

The Linux kernel objects system (known as ``kobjects'') is used in Linux as a

device package (Kroah-Hartman, 2007). Kobjects has a notification model that devices

use when they are added to or removed from the kernel. This notification occurs via a

``uevent", which can be sent to a bus where an application finally pulls the event. Hence,

the bus acts as an aggregator of events. Unfortunately, these events are defined by the

kobjects system and are not native events generated by the hardware devices. Therefore,

the kobject notification model is not flexible enough for our purposes.

EVDEV or “Event Device” is the primary event aggregating system in Linux and

Linux-derived operating systems, such as Android (Pavlik, 2001). EVDEV is written in

the kernel and is responsible for queueing events for a particular input device (e.g.,

mouse or touchpad). EVDEV creates a special file for each input device that is then used

by the application (or delegate, such as epoll) to poll and to retrieve events.

Inotify, or “inode notify”, is a limited kernel level event model used to aggregate

file change events and to notify applications when a file changes (Love & Zhen, 2015). It

works similarly to EVDEV in that it populates an event queue with a notification which

then can be polled by an application. The kernel’s actions are limited to populating an

17

event queue with the event notifications, which means that mobile devices are still forced

to use battery power in order to poll the event queue.

 Parthasarathy (2006) provided a mechanism for software to gracefully reduce the

energy consumed when it is not being fully utilized and involves reducing power

consumption at the hardware level. It also provides key insights into how to reduce power

consumption at the software level, including how to efficiently handle events from

hardware and how to efficiently handle polling an entire bus of hardware devices for

events. Since our research strives to remove polling hardware altogether, we used this

paper as a guide for what type of hypothetical power numbers could potentially be

realized by redesigning the event system in the operating system kernel.

Finally POSIX signals, such as the terminate, kill, and segmentation fault signals,

implement a form of the push model (Kerrisk & Project, 2015). If an application wants to

catch a signal, it must register a function, known as a signal handler, that the kernel calls

when it sends a signal to the application. However, the signal system does not pass the

type of in-depth information required for handling events. Because of this limitation, we

cannot use the signal system to push events to applications. An additional problem with

using the signal system to perform event handling is that the signal system interrupts the

application when a signal is received. For any event model, the application must only be

pushed an event when it has indicated that it is ready to receive events. Otherwise, events

could be received out of order or when the application is not ready to handle them (e.g.,

when it is in the middle of handling another event).

18

Application Level Event Models

Most GUI applications are written on top of middleware that hides from the

application programmer the system calls required to fetch events from the kernel and to

display the application graphics on the screen. The Java Virtual Machine (VM) is one

such piece of middleware. It provides the application programmer with an event push

model (Chen, 2002). Using the Java application framework, a programmer creates an

event-handling function that is used to respond to an event and then registers that

function with the event system. When the Java VM receives an event from the kernel, it

finds the event handling functions that are interested in the event, and calls them, thus

pushing the event to the event handlers. We have adopted these two features, callback

functions and function registration, in the event stream model presented in this

dissertation. However, our event system is broader in scope since it extends from the

initial hardware event all the way to the application. In contrast, Java provides a push

model only after an event has arrived at the application level. The Java virtual machine

still uses a polling loop to pull events from the kernel and display server. It is only after

Java polls and retrieves an event that the event is pushed to the application programmer’s

event handler, and thus this type of push model is only used to make the programmer’s

job easier (Cugola, Margara, Pezzè, & Pradella, 2015).

 GIMP Drawing Kit (GDK) and GLIB are GUI middleware libraries developed by

the open source group GIMP that provide high-level wrappers around the underlying

display server and event model API, for window managers such as X11 or Wayland

(Nilsson, 2015). The goal of GDK and GLIB are to allow a programmer to develop

19

portable applications, meaning application that may be used on several different

operating systems or architectures with little to no modifications. However, these

libraries still use a pull model, which means that while they hide the event polling loop

from the programmer, the polling loop still exists and increases the power consumption

and latency of GDK/GLIB applications.

Mobile Operating Systems

 There are three commonly used mobile device operating systems in use today: (a)

Google Android, (b) Apple iOS, and (c) Windows Mobile. This section examines these

operating systems and the system design principles they incorporate. To our knowledge,

none of these operating systems implement a kernel display server, event stream push

model, or categorical GUI scheduler.

 The Android operating system is developed and distributed by Google, Inc. and is

the most popular mobile operating system. Android is developed from the mainline Linux

kernel but is modified for the Android mobile platform. However, the graphics package

for application developers is a Java virtual machine called Dalvik or, more recently, ART

or Android Runtime (Singh, 2014).

 The graphics interface that Android employs is the typical foreground/background

system where the user interacts with one application at a time but also where many

applications may run in the background. Each application runs on a separate instance of

the Dalvik or ART virtual machine and connects to the graphics interface via two special

processes: (a) surface flinger, which is used to draw GUI components to the screen, and

20

(b) input flinger, which is used to aggregate and to pump GUI events to the applications.

The input flinger system uses Linux’s “epoll” system to poll for and to retrieve events

from the Linux kernel, which means that an event polling loop is used for each

application, regardless of whether it is in the background or the foreground.

 Microsoft Windows Mobile is a mobile version of Windows that is designed for

the mobile ARM processor. It is the principle operating system for many ARM-based

tablet computers. Windows Mobile provides a public API method that suspends a

running thread while it waits for events, but its implementation is a proprietary trade

secret.

 Microsoft has recently released a new operating system called Windows 10

Mobile which is designed for portability with its desktop cousin, Windows 10 ("Windows

10 Experience" 2016). While much is still unknown about the implementation of this new

operating system, application development is done through Microsoft’s .NET framework

and applications may be developed using several different programming languages, such

as Visual Basic or C#. However, the .NET framework still uses the underlying Windows

10 API (written in C and C++) as its GUI event handling system. Further examination

makes it evident that some sort of “message pump” (aka polling loop) is used by

applications to poll and retrieve events from the Windows kernel.

 Apple iOS is a popular mobile operating system developed by Apple, Inc. and is a

competitor to Android and to Windows Phone. Apple iOS’ operating system design and

practices are also proprietary, so the implementation of most of the operating system is a

trade secret. However, Apple provides a guide for users to save energy on their smart

21

phones, which focuses on how to allow your phone to get the maximum amount of sleep

("Maximizing Battery Life and Lifespan," 2016), The guide provides several tips for

saving battery power, such as turning down the brightness of the screen, reducing the

time that elapses between when the last input event is received from the user and when

the device powers itself down, closing applications that are not being used, and turning

off extraneous peripherals. These suggestions reduce the usability of the mobile phone in

exchange for improved battery life. Fortunately, by eliminating the costly event polling

loops, our proposed ESM may improve the battery life of a mobile device without the

user having to restrict how the device is used.

Graphical Display Servers

This section examines some of the most common display servers used in today’s

GUIs. To our knowledge, there are no kernel-level display servers in any modern mobile

operating system, so this section includes only display servers implemented in user space

(i.e., as part of an application).

The most common display server for Unix environments is the X.org display

server, which is the modern fork of the X11 display server (Anderson, Mor, &

Coopersmith, 2002). Graphical user interface applications connect to the X.org display

server in order to draw to the screen and handle events. The X.org server is a middleman

between the application and the kernel and represents an additional hop between the

kernel and the application. Unfortunately, in mobile devices, this generic, distributed

approach leads to increased latency and power consumption.

22

Direct framebuffer or DirectFB is a library and a Linux kernel module that

provides user applications access to graphical drawing commands directly through the

kernel’s graphics driver (Kropp, 2014). DirectFB provides only the essential routines to

implement the drawing side of a display server, however, this means that no event

handling routines are provided through DirectFB. DirectFB is a useful starting point for

our Kernel Display Server’s drawing system. In fact, our KDS uses many of the same

kernel routines as DirectFB in order to draw directly to the screen. Furthermore,

DirectFB has already been extensively tested since it is used by several popular consumer

products, such as Roku.

LightDM is a display manager commonly used in the Ubuntu Linux distribution.

A display manager is responsible for managing multiple connections to a single display

server. However, a display manager can also manage only a single connection to a

display server, which is the common configuration for mobile devices. One item to note,

however, is that LightDM executes a polling loop to retrieve events from the display

server, and the display server in turn executes a polling loop to retrieve events from the

kernel. While the display manager is not the focus of this dissertation, any display

manager that uses a polling loop could potentially benefit from our ESM.

Scheduling and Heterogeneous CPU Cores

The introduction of heterogeneous CPU cores into both mobile and desktop

operating systems creates interesting scheduling questions about which processes should

be placed on which cores. Kim et al. (2014) modified the Linux kernel’s load balancing

23

algorithms for the big.LITTLE architecture, which is ARM’s energy optimization scheme

that pairs high performing, but power consuming cores with lower performing, but lower

power consuming cores ("big.LITTLE Technology," 2016). Kim’s work emphasized how

to allocate processes efficiently among the heterogeneous cores. We used several aspects

of their results to implement the ESM and scheduling models we describe in this

dissertation. For example, we place the lightweight event dispatching processes on the

low energy, power-reducing cores and place the more computationally expensive

application event handling functions on the faster, but higher energy cores.

 Seehwan Yoo, Shim, Lee, Lee, and Kim (2015) describe several conditions which

can decrease the efficiency of the big.LITTLE or shadow core processors. They lay out

several ways to achieve increased power efficiency without sacrificing performance. Our

dissertation uses the knowledge gained from several of their test cases to minimize the

negative effects that occur when switching between the performance cores and the power

efficient cores.

 Hsiu, Tseng, Chen, Pan, and Kuo (2016) examined the current set of process

schedulers and determined they are not suitable for mobile devices with heterogeneous

CPU cores. Their research shows that with the conventional schedulers, such as the

Completely Fair Scheduler (CFS) which is used in most Linux-type OSes, including

Android, energy efficiency and performance are not maximized. Our research, as part of

this dissertation, came to the same conclusions, which provided the impetus for

modifying the scheduler in order to efficiently accommodate the performance cores and

power efficient cores. However, their paper helped guide our approach when we extended

24

the ESM into a single scheduler we call the GUI scheduler (guiS). For example, our guiS

can determine which set of cores is best to balance event handling on, and furthermore,

the guiS can differentiate between a single shadow core and multiple, lower-power

consuming cores and choose the best technique.

 Gaspar, Taniça, Tomas, Ilic, and Sousa (2015) have proposed a framework for an

application-aware task management system for mobile devices using heterogeneous CPU

cores. Their system utilizes the new mobile device CPU technologies, such as

big.LITTLE, in order to improve the performance of applications, as well as using the

objective of the application to better determine how to allocate CPU resources to that

application. We have taken a similar approach in implementing our GUI scheduler. Our

work differs from their work in that our scheduler is specifically designed to work with

mobile GUI applications. In addition, as far as we can determine, their task management

system is a theoretical framework, whereas our GUI scheduler is an actual

implementation.

 Bui, Liu, Kim, Shin, and Zhao (2015) studied the effects of using the larger,

power hungry cores when scheduling mobile GUI applications, specifically Chromium

and Firefox. Their research neatly aligns with ours in that one of this dissertation’s

hypotheses is that the power consumption of GUI applications can be significantly

reduced by smartly managing the different cores.

The current scheduler in the Android operating system and other Linux-based

operating systems is the “Completely Fair Scheduler” (CFS) (Pabla, 2009). This

scheduler aims to provide an equal (fair) proportion of CPU to each running process

25

(Wong, Tan, Kumari, & Wey, 2008). However, the results in this dissertation show that

the unique features of mobile devices might be best served by modifying this scheduler.

The guiS that we designed and tested in this dissertation is a heavily modified CFS

scheduler.

Power Aware Programming

 Power aware programming incorporates the notion that the style of programming

has an impact on the amount of power a mobile device consumes (Honig, Eibel, Kapitza,

& Schroder-Preikschat, 2012). This section describes several power aware programming

languages and power aware programming tools that a developer might use to examine

energy inefficient parts of their code. It also summarizes several papers that examined the

power consumption of GUIs in different settings. In Chapter 6 we demonstrate how our

own improvements to kernel programming can lead to decreased power consumption of

GUIs on mobile devices.

 The Eon programming language is an energy-aware programming language that is

structured to automatically adapt programs to a mobile device’s energy state (Sorber et

al., 2007). Eon is designed to be portable among hardware platforms and to maximize the

performance of an application under several energy conditions. While we do not know of

any application written for Android, iOS, or Window Mobile that uses the Eon

programming language, it does show that there are other ways of conserving power than

simply powering down the device or peripherals of the device.

26

 The ET programming language is also an energy-aware programming language

that specifically targets the Android mobile operating system (Cohen, Zhu, Senem, &

Liu, 2012). Their approach differs slightly from the Eon programming language in that

the ET programming language identifies distinct patterns of program workload, which

can then be used to determine the power state to run the program. The ET programming

language allows the programmer to specify their routine’s energy state or to allow the

compiler to determine the most efficient energy state for their routine.

 Hybrid MPI (Hybrid Message Passing Infrastructure) is a heterogeneous,

distributed message passing infrastructure designed for high performance computing

(HPC) applications (Wickramasinghe, Bronevetsky, Lumsdaine, & Friedley, 2014).

Hybrid MPI balances high performance with energy efficiency since many HPC systems

can be ravenous energy consumers. Therefore, Hybrid MPI can be useful in saving

energy-related operating costs associated with HPC applications.

 Trepn (developed by Qualcomm, Inc.) and.), CodeXL (developed by AMD, Inc.)

are two.), Code Works (developed by NVIDIA, Inc.), and AppScope are energy profiling

tools that a programmer may use to determine which parts of their programs consume the

most battery power. CodeXL in particular can also determine the amount of power that

the GPU is consuming in addition to the CPU. This is important in GUI applications

where the GPU is used to accelerate drawing GUI components to the screen.

It would have been useful if we could use one of these energy profiling tools to

help us determine how much battery power is saved by our redesigned kernel algorithms.

Unfortunately, none of these energy profiling tools work intrinsically with our NVIDIA

27

TK1 reference board. Trepn only supports devices with the Qualcomm Snapdragon

processor, and CodeXL is developed only for Linux and Microsoft Windows running on

an Intel X86/64 platform. Furthermore, its source code is not open to the public, and we

are unable to modify the tool to work with our testing platform. Yoon, Kim, Jung, Kang,

and Cha (2012) developed AppScope, but unfortunately, it was not designed for the

NVIDIA TK1. However, its power formulas could be used to develop a version of

AppScope to work with the NVIDIA TK1. Finally, NVIDIA’s Code Works was designed

for the Android operating system on its platforms. We were able to use Code Works to

profile running code with our hardware testing platform, and we used it to confirm the

accuracy of our results that we obtained using other methods.

 Vallerio, Zhong, and Jha (2006) and Zhong and Jha (2003) have researched

energy efficient GUIs in regard to handheld, mobile devices. Their research confirms our

hypothesis about graphical user interfaces: that GUIs consume a large portion of power in

mobile computers. Their paper shows that power consumption can be improved by

simply designing GUIs with system energy efficiency in mind. We take this step further

by redesigning several operating system algorithms in order to improve energy

efficiency.

 Brotherton, Dietz, McGrory, and Mtenzi (2013) examined the effect of the

operating system in increasing power consumption in regard to the GUI. They examine a

cascading effect where power consumption is reduced by having the operating system

work in conjunction with the GUI. Unlike this dissertation, their research focused on data

centers where energy consumption is compounded by the sheer size of the operating

28

equipment. Furthermore, they suggest removing the GUI altogether from the operating

system, which is something we cannot do with mobile devices. However, their research

provides us insight with what can occur when the operating system is designed with an

increasing number of features rather than a leaner operating system that performs simple

tasks very efficiently.

 Vallerio et al. (2006) and Zhong and Jha (2003) have examined the power

consumption of GUIs on handheld, mobile devices. Their research confirms our

hypothesis about graphical user interfaces: that GUIs consume a significant amount of

power on mobile computers. We take their work one step further by redesigning several

operating system algorithms in order to improve energy efficiency.

 Brotherton et al. (2013) examined how operating systems can increase the power

consumption of GUIs. Their research focuses on a data-centric server system, rather than

mobile OSes, and hence was not directly applicable to our research. However, they do

present the GUI’s overhead in terms of power consumption and performance in server

applications.

29

Chapter 3

The Event Stream Model

This chapter first describes a number of problems with the pull model used by

existing mobile operating systems. We then provide an overview of the event stream

model (ESM). Finally, we provide a detailed description of the implementation of the

ESM, which includes a description of its data structures, a description of the API it

provides the application so that the application may interact with it, and a description of

the kernel routines required to implement it.

Problems with the Current Pull Model

As noted in the introduction, the biggest drawback associated with the current pull

model is its need to constantly execute polling loops to retrieve events from the input

devices. However, it has other drawbacks as well. First, the current event pull model

separates and duplicates storage for events by maintaining event queues in both the

kernel and the application. The kernel first polls hardware devices and populates a kernel

event queue with these events. The application then retrieves the events from the kernel’s

queue and stores the events in its own queue. Figure 3 graphically depicts how an event

propagates through the current pull model.

In practice, the propensity for the pull model to block the application, meaning

that the application spends all of its time waiting for events rather than executing useful

instructions, has given rise to many middleware event hubs that assist in handling events

30

(see Figure 4). Furthermore, in GUI applications, the middleware package is the display

server which typically handles aggregating events for the application. However, many of

these middleware packages include an additional polling loop and event queue. These

middleware packages poll the kernel and then store the event into one of their own event

queues. In turn, the application polls the event hub with yet another polling loop, and the

events are either handled by the application immediately or stored in yet another event

queue inside of the application itself.

An additional drawback of the pull model is that it requires a driver at the

application level to translate a raw event into something that the application can

understand (Mogul & Ramakrishnan, 1997). In contrast, the ESM translates an event

before pushing it to an application. The additional routines and logic that the pull model

requires an application programmer to write to translate an event can add a large amount

of latency and power consumption if not efficiently written. Fortunately, Android

provides this event-translation functionality in its VM, which eliminates the need for the

application programmer to write these translation routines. However, Android’s VM does

not eliminate polling loops. In fact, Android’s event hub uses Linux’s epoll system to pull

events from the kernel, and as we’ve stated in Chapter 2, epoll does not eliminate the

polling loop. For clarity, Figure 5 shows a side-by-side comparison of select, epoll, and

our ESM. Many mobile operating systems, including Android, mitigate a small portion of

latency by setting the event polling interval equal to the refresh interval for the LCD

screen (Vallerio et al., 2006). The idea is that a user generates events in response to what

31

Figure 3: An event’s path in the current pull model. The kernel-level routines take an event from inception

and store it in an event queue for the keyboard (there are queues for each input device). The application

starts a polling loop, which continually checks the event queue for events. When events are queued, the

application is responsible for reading, translating, and handling the event.

Figure 4: The event propagation between the kernel and the application in the current pull model. With

virtual machines, such as Dalvik or ART in Android, an instance of the VM runs per instance of the

application. An event hub is used to marshal events in temporal order and to decide how each of the

connected virtual machines receives the events. In the GUI context, the event hub is typically integrated

with the GUI display server. Finally, the Android VM pushes events to the application’s event handlers,

much like the ESM does.

Hardware

User Types ‘k’

Interrupt Handler

Store Event

Read Keycode ‘k’ From
Keyboard

Poll Hardware
(Determine Which
Caused Interrupt)

Handle Event

Check For Events

Operating
System

Select/Poll
System Call

Application

Event
Queued?

Open Event Queue

Read Event

Translate Event

No

Yes

Start Event
Polling Loop

Application

Poll

Keyboard
Event

Queue

Mouse/Stylus

Keyboard

Joystick/Gamepad

Input Devices

Keyboard
Event
Queue

Mouse
Event
Queue

Joystick
Event
Queue

Kernel-Level
Event
Queues

Application 1

Application 2

Application n

VM For App
1

VM For App
2

VM For App
n

Polling
Loops

VM 1
Event
Queue

VM 2
Event
Queue

VM n
Event
Queue

VM-Level
Event
Queues

Push
Events

Polling
Loops

Hardware
Polling

Epoll
Aggre.
queue

Event
Hub

Input
Flinger

32

Figure 5: A pictorial comparison of the older pull model (client/server), the new pull model

(megapipe/epoll), and our push model (ESM). The older pull model requires polling loops from the

hardware to the queue and from the queue to the application. The newer models still require polling loops,

but are much more efficient by bundling, hence aggregating, the polling into one loop and storing into a

central queue. The application then pulls events one-by-one from the central queue. The ESM is a direct

push model from the hardware to the queue to the application. We show all polling loops converging to a

single point for the pull model as this is typical for normal applications where a “message pump” pumps

messages (events) to a single function to handle all events. The aggregation model may or may not use a

single function to pull or to push messages (events) to. Finally, our push model pushes to several different

handler functions, allowing for near-instantaneous detection of which type of event was pushed, or at least

from which device.

Device
1

Device
2

Device
n

Device
1

Device
2

Device
n

Device
1

Device
2

Device
n

Pull (Client/Server)
Select/Poll

Pull (Aggregation)
Megapipe/epoll

Push
ESM

Application Application
Application

Kernel
Event
Queue

1

Kernel
Event
Queue

2

Kernel
Event
Queue

n

Aggregator

Polling
Loops

Polling
Loops

Polling
Loops

Push

Push

Application’s
Private
Event
Queue

Kernel
Event
Queue

1

Kernel
Event
Queue

2

Kernel
Event
Queue

n

Central
event
queue

Used only
when app
not ready
for events

Polling
Loops

Pull

Event
Handler

Event
Handler

Event
Handlers

33

they see on the screen, and so events only need to be polled when the screen is refreshed.

Typically, the screen refreshes 60 times every second (60 HZ), which requires a polling

loop delay of 16.6ms, meaning that the screen refreshes every 16.6 milliseconds.

Therefore, events will be retrieved by Android’s event hub approximately every 16.6

milliseconds. However, this does not completely eliminate unnecessary polling since the

polling loop will poll every 16.6 milliseconds even when no events have occurred.

Furthermore, the polling loop could still incur latency when the event occurs while the

polling loop sleeps. In that case, the application will not be able to respond before the

next screen refresh interval, which means that the response to the event may be delayed

by a complete screen refresh interval, thus further aggravating the latency issue.

Event Stream Model Overview

 The goals of the event stream model (ESM) are to reduce latency and to reduce

power consumption in mobile devices. The ESM is modeled after streaming graphics

processors, which are based on the principle that events are more efficiently handled

when they are not passed through several layers of event queues (Erez, Ahn, Gummaraju,

Rosenblum, & Dally, 2007). This principle is embodied in the ESM, which significantly

reduces the required number of event queues. Furthermore, the polling loop in the

traditional pull model is eliminated with our ESM. This allows events to “stream”

immediately from their creation to their handling, thereby reducing the power

consumption and the latency associated with having multiple polling loops for a number

of event queues.

34

The ESM kernel implementation consists of three routines: (a) device interrupt

handlers and drivers that initially handle the event and collect information about the

event, (b) an event interpreter that packages the event information into a standardized

data structure that can be handled by an application and finds those application(s)

interested in the event, and (c) an event dispatcher that calls the application's event

handler. Figure 6 demonstrates how these routines cooperate to handle a keyboard event.

Our ESM implementation is modeled after the POSIX signaling system. We could

not directly use the POSIX system because POSIX signals interrupt the running process,

which we do not want to do if the application is processing a pre-existing event, and they

also do not pass enough information to the application. Our ESM modifies the POSIX

model by: (a) notifying the application only if it is ready to receive events, and (b)

packaging an event into an event structure that gives the application's event handler

enough information to handle the event.

Data Structures

We needed to add several new data values and data structures to the kernel in

order to implement the ESM model, including a new process state that indicates that an

application is waiting for events, a new list that keeps track of the events that applications

are interested in handling and the event handling functions that should be called when

these events occur, and new kernel-level, private event queues for each application. The

private event queues eliminate the need for applications to compete for access to a

35

shared, centralized queue, which inevitably leads to complicated locking and exclusion

schemes (Bhatt & Huang, 2010).

The Event Waiting State

A new process state called EV_WAIT was created to allow the application process

to indicate that it is waiting for events. When the application is in this state, the scheduler

can allow the application to sleep until a signal or event occurs. When the application is

not in the EV_WAIT state, then the ESM scheduler will queue events in the application’s

private event queue. The EV_WAIT state prevents the kernel from pushing events to an

application that is not ready to receive them, such as when the application is handling

another event or is executing other instructions.

The Global Application List

A global application list was added to the kernel and is responsible for keeping

track of which events an application is interested in receiving and for storing the address

of the application’s event handler. This is a persistent list that is created when the kernel

is first initialized. The application or delegate is provided with a registration function that

allows it to add or remove event handlers from this list. When an event occurs, the kernel

checks the application list for those applications interested in the event, and then the

event is forwarded to either the appropriate event handler or an application’s event queue,

36

Figure 6: An event’s path in the event stream model. An event originates from hardware in the form of an

interrupt. The kernel executes an interrupt routine to respond to the event. The ESM begins by using an

event interpreter to package the event into a data structure that can be handled by the application and

finding the set of applications interested in the event. The event interpreter forwards this set of applications

to the event dispatcher, which calls the event handlers for each application.

Hardware

User Types ‘k’

Interrupt Handler

Call Event Interpreter

Read Keycode ‘k’ From
Keyboard

Keyboard
Driver

Run Application’s
Event Handler

Iterate Through
Keyboard Event

Handler List

Call Event Dispatcher or
Queue Event

Create Keyboard Event
with ‘k’

Operating
System

Event
Interpreter

Event
Dispatcher

37

depending on the application’s state. In practice, this list is implemented as a look up

table keyed on events, with each event having a list of pointers to objects containing

information about the application handling the event (e.g., the application’s process

block) and the event handler for that function.

The Application’s Private Event Queue

In addition to a global application list, each application contains its own private

event queue which stores events in a first-in, first-out (FIFO) fashion. The private event

queue only stores those events that occur when the application is not ready to receive

events (i.e., when the application is not in the EV_WAIT state). The private event queue

ensures that an application does not miss events that could not be immediately handled.

The FIFO nature of the private event queue guarantees that events will be processed in

the order that they occurred.

The event queue is stored in kernel space since there is a strict separation between

kernel space and application space. If the queue were stored in application space, the

esm_dispatcher would not have access to it unless it copied the queue from application

space into kernel space, modified the queue, and then copied it back to application space.

Placing the queue in the kernel avoids this costly step.

Application API

An application must use two system calls to coordinate with the operating system

when using the ESM. One system call registers event handling routines with the kernel

38

and one tells the kernel that the application is ready to receive events. The application

may interact directly with the kernel or indirectly through a virtual machine or other such

framework, such as Android’s Dalvik or ART, or Microsoft’s .NET framework (i.e., the

application may use the virtual machine’s existing registration methods, and the virtual

machine would be modified to make the ESM registration calls to the kernel).

The application will first execute any code that is needed to establish the initial

program state. As it does so, it will make one or more kernel calls to register events in

which it is interested and to associate callback procedures with these events. When the

application finishes the initialization of its graphics and determines it is ready to receive

events, it will notify the kernel though another system call. The kernel will then put the

application into an event waiting state (called EV_WAIT), which indicates that events

may be pushed directly to the application’s event handlers. The next two sections

describe the registration and notification system calls in further detail.

Registering ESM Event Handlers

The esm_register function adds the application’s event handlers to the kernel’s

event list. This call takes two parameters: the event to register and the event handler to

call when that event occurs. If the application passes NULL as the event handler, the

esm_register call removes the application from the event’s list. Figure 7 provides a

pseudo-code implementation of the esm_register function.

39

Waiting for Events

The second system call, esm_wait, is used to tell the kernel that the application is

ready to receive events. This routine prevents race conditions or potential out-of-order

event handling. For example, if an application is running an event handler for the

keyboard and another key event is pushed before the processing for the previous key is

completed, then the event handling for the next key stroke should be delayed until the

processing for the first key stroke is completed.

The esm_wait function first checks the application’s private event queue in case

events were queued while the application was performing other tasks. If events are

queued, the next event is immediately pushed to the application’s event handler.

Otherwise, esm_wait sets the application’s process state to EV_WAIT to indicate that the

application is ready to receive events. Any other process state signifies that the

application is not ready to receive events and will cause further events to be queued on

the application’s private event queue. Figure 8 shows the pseudo code for the esm_wait

function.

Kernel Implementation

The majority of the event stream model is implemented in kernel space, and by

placing the ESM in the kernel, it has immediate access to many privileged sections of the

CPU and hardware devices. The ESM’s close relationship with the hardware shortens the

path an event must take before being handled by an application. As with graphic

processing units (GPUs), events that are in motion, meaning not stuck in an event queue,

40

Figure 7: esm_register links an event to an event handler. If the event handler is NULL, then the event is

removed from the application list.

are most efficiently processed when they are pushed directly to the application listening

for the event. The ESM routines are split into three separate functions: (a) the interrupt

handler/driver, (b) the event interpreter, and (c) the event dispatcher. We previously

showed where these routines fit along the event pipeline in Figure 6.

Interrupt Handler or Driver

An interrupt handler is a routine that is called by the CPU to respond to an

interrupt. The CPU registers an interrupt handler by storing an interrupt handler’s

memory address into special memory locations and is responsible for gathering

information about events as they are generated by devices. In older generations of

hardware, an interrupt only told the CPU that some hardware device generated

event – the event to register
event_handler -- a pointer to the function that handles the event
application_list – the kernel’s application event handler list

esm_register (application, event, handler) {
 if handler = NULL then
 delete application_list[event][application];
 else
 application_list[event][application] = handler;
 end
}

41

Figure 8: If events are queued, the next event is immediately pushed to the application. Otherwise, the

application is put into the EV_WAIT state until an event occurs.

an event. It would then be the responsibility of the operating system and CPU to poll each

hardware device to determine which one caused the interrupt. With the newer generation

of vectored interrupt controllers, the initial interrupt tells the operating system which

device generated the event, so the interrupt handler knows from which device to retrieve

a hardware event. Typically, the interrupt routine hands off further processing of an event

to a driver, which translates the event into some standard data structure that is understood

by the OS. For example, a keyboard driver would convert the hardware signal into a key

code to identify which key was pressed. Since hardware manufacturers are free to design

their hardware as they see fit, a driver for the specific hardware is necessary to convert

the data stream generated by the device to a data stream that the OS can understand. In

other words, a driver allows the kernel to understand what the hardware is saying. Figure

9 provides a pseudo code implementation of the interrupt handler.

esm_wait(application) {
 if application.event_queue is EMPTY then
 application.state = EV_WAIT;
 else
 while (event = application.event_queue.pop()) do
 application.state = EV_WAIT;
 esm_dispatch(event, application);
 end
 end
}

42

The Event Interpreter

The event interpreter determines where to push an event (i.e., which application is

listening for the event). After the event is translated by either the interrupt routine or

driver, the event interpreter uses the kernel’s application event handler list to determine

which applications want to process the event. If there are no applications willing to

handle the given event, then the event is silently discarded, and no further action is taken.

However, if there are applications interested in the event, the event interpreter makes

separate calls to the event dispatcher for each interested application. This ensures that an

application is not waiting for another application to finish before being pushed an event

(e.g., if the applications are running on separate cores, then each application could

process the event in parallel).

The interpreter does as little work as possible because it runs while the CPU is in

the interrupt state where any additional interrupts are disabled. It is good operating

system design practice to limit the amount of time the CPU is in this state (J. Lee & Park,

2010). Therefore, the event interpreter hands off the majority of the work to be done to

the event dispatcher. Pseudo code for the event interpreter is presented in Figure 10.

The Event Dispatcher

The event dispatcher pushes events from the event interpreter to the applications.

The event dispatcher is distinctly separate from the event interpreter since the CPU

disables further interrupts while it is in the initial event interrupt handler and the event

interpreter. This allows us to “free” the CPU to once again receive important interrupts at

43

Figure 9: The interrupt routine calls the event interpreter. If a driver is attached to the interrupt vector, the

event interpreter is called after the driver adds the event’s details. A raw translation with minimal event

details from an interrupt vector (for those without a driver handler) is available through a table look-up.

the same time that events are being dispatched to the applications.

The event dispatcher only pushes events to applications ready to receive them. If

an application is busy handling events or other routines, the event dispatcher stores the

event on the application’s private event queue in the order that it was received. The

application is then notified of the event when it signals to the kernel that it is again ready

to receive events. Figure 11 provides a pseudo-code implementation for the event

dispatcher.

Connecting to the ESM

The ESM interacts with Android through the Input Flinger service in Android.

Input Flinger is Android’s central event hub ("Android Input Pipeline," 2015), and it uses

epoll to retrieve events from the kernel (Strebelow & Prehofer, 2012). We specifically

interrupt – the interrupt vector number

interrupt_routine(interrupt) {
 driver_handler = get_driver_handler(interrupt);
 if (driver_handler != NULL) then
 event = driver_handler();
 else
 event = default_event_lookup_table[interrupt];
 end
 esm_interpret(event);
}

44

Figure 10: The event interpreter is responsible for repacking a kernel event into an application event and for

finding those applications that are waiting to receive an event. It then calls the event dispatcher to push

events to the applications. The context shown here is performed while the CPU is in the disabled-interrupt

state. For this reason, the dispatcher is called in a separate kernel thread to perform the majority of the

work.

modified Input Flinger to use our ESM so that applications using the Android API could

use the new ESM model without being modified. Our modifications make Input Flinger

coordinate with our new Kernel Display Server (KDS—see Chapter 4), which then calls

esm_wait and esm_register on the application’s behalf. This is beneficial since

application programmers are not required to have any knowledge of the underlying event

system in order to write their mobile applications for the Android OS.

When writing “native” applications that bypass the Android API, the programmer

must register the events they are interested in and the event handlers that will handle

them with the esm_register system call. The programmer must then call esm_wait to put

the application into the event waiting state. Any events that are subsequently received

would be pushed to the application’s event handlers until the application either de-

registers the event handler or the application exits.

event – the event that was just received
application_list – the kernel’s application event handler list

esm_interpret(event) {
 app_event = convert_event_into_application_readable_event(event)
 foreach application in application_list[event] do
 esm_dispatch(app_event, application)
 end
}

45

Figure 11: The event dispatcher will immediately push events to the application if it is waiting. Otherwise,

the event dispatcher queues the event onto the application’s private event queue. The context shown here is

performed outside the interrupt state and is scheduled like any other kernel thread.

How The ESM Improves Power Consumption and Latency

The ESM improves power consumption and latency by: (a) streamlining event

propagation and (b) removing costly polling loops. The polling loops used by the

traditional pull model keep rousing the CPU and thus prevent the CPU from entering a

lower power consuming state. The ESM eliminates these polling loops and hence does

not rouse the CPU when the application is idle. This allows the CPU to more frequently

enter lower power consuming states and reduces the mobile device’s power consumption.

The traditional pull model incurs latency since multiple event queues are polled at

certain frequencies. If the event occurs while a polling loop is delaying, then the event

incurs latency until the polling loop detects its presence. In contrast, the ESM model

event – the event that was just received
application – the application to which to push the event

esm_dispatch(event, application) {
 if application.state = EV_WAIT then
 application.state = RUNNING;
 handler = application_list[event][application];
 handler(event);
 else
 application.private_event_queue.enqueue(event);
 end
}

46

dispatches the event to the appropriate applications as soon as the event occurs, thus

reducing the latency associated with polling loops.

47

Chapter 4

The Kernel Display Server

The Kernel Display Server (KDS) is a GUI display server implemented in the

kernel. A display server is a central GUI component responsible for passing drawing

commands and input events from the application to the kernel, and vice-versa (Lehey,

1995). One very popular display server is the X11 display server (now known as X.org),

which is used in many desktop Linux distributions (Repasky, 2004). The X11 display

server contains its own event queues and own event handling protocol, such as using

proprietary commands like XNextEvent or XPeekEvent inside of a polling loop, which is

how an application would retrieve or poll for input events from the X11 display server.

The placement of the KDS into the kernel differs significantly from the current

practice which implements display servers in the application layer as middleware

between an application and the kernel. By moving the implementation of the display

server to the kernel, we have managed to shorten the path for an event from the hardware

to the application and to improve the scheduling of GUI applications by taking advantage

of the knowledge we gain about a GUI, such as whether it is visible to the user.

The original impetus for the KDS came from our desire to reduce the number of

polling loops that are required by middleware display servers. With current display

servers, applications must retrieve their events directly from the display server, which in

turn retrieves events directly from the kernel’s event system. This means that an event

must first be stored in the kernel, where it is then polled and retrieved by the display

48

server. The display server then stores the same event in its own event queue. Finally, the

application polls the display server for the event, and the display server supplies the

application with the event. Figure 12 shows the different polling loops and event queues

that are required by existing middleware display servers. In mobile devices, these

additional queues and polling loops are costly in terms of both increased power

consumption and increased latency.

The Kernel Display Server removes these additional queues and polling loops by

using the ESM to push events to the application (see Figure 13). The KDS mediates the

interaction between the ESM and the application (or application middleware such as

Android ART) by controlling which event handlers are active. For example, if the user

minimizes an application or puts it into the background, the KDS will automatically

unregister the applications’ input event handlers since the application can no longer

feasibly receive input events. When the application is restored into the foreground, and

hence starts interacting with the user, the KDS reregisters the event handlers with the

ESM and normal event operations resume.

In addition to better event coordination and the elimination of event queues and

polling loops, two additional gains are realized by implementing the display server in the

kernel. First, it eliminates the need to make system calls in order to acquire data from the

kernel’s numerous data structures, such as device event queues. A system call is a special

CPU instruction that causes the CPU to unconditionally jump to a specific system call

kernel routine. To make a system call, the CPU must generate an interrupt to itself by

using a specific service call CPU instruction, context switch from the currently running

49

application to the interrupt handler, and then change the privilege level from application

mode (typically referred to as user mode) to kernel mode. While many architectures and

operating systems have improved the efficiency of this process, it is by no means an

efficient procedure. Our KDS removes many steps in this procedure since it has direct

access to several data structures within the kernel, and hence it improves the efficiency of

handling events from the kernel to the application. In turn, this improved process reduces

power consumption and latency.

A second gain afforded by our kernel implementation of the display manager is

that the KDS is aware of the various roles played by GUI code, some of which is I/O

bound and some of which is CPU bound. For example, a GUI application must be able to

handle inputs, such as a finger tap, which are I/O bound, while simultaneously displaying

feedback to the screen or vibrating the device in response to that input, which are CPU

bound actions. Depending on the application, there could be several more pieces of code

that will traditionally fall into either CPU-bound code, I/O-bound code, or some

percentage of both. For example, a video player will need to decode incoming video,

which will require both constant network access and constant CPU access for decoding.

These types of code can be prioritized in the scheduler for more efficient processing (Qin

& Rusu, 2013).

The KDS fulfills the different needs of each segment of GUI code by allocating

four threads in which the GUI application may place its code: (a) an event handling

thread for handling events pushed by the ESM, (b) a display thread for drawing to the

screen, (c) a background thread for handling constant activity, such as decompressing

50

Figure 12: The current pull model stores events into several queues where it is propagated to the application

which will handle the event. With the current GUI model, the event is filtered at several layers. This figure

shows a breakdown of a typical event hub, which is a combination of the display server’s temporal ordering

and the display client’s event filter, for GUI applications.

Figure 13: The KDS takes care of any type of event filtering by registering and deregistering event handlers

with the ESM and provides a much more direct route for an event between the kernel and the application.

Also, note that all polling loops are eliminated.

Keyboard Event
Queue

Mouse Event
Queue

Temporal Event Queue
(Ordered By Time Event

Received)

ART App 1

ART App 2

ART App 3

ART App n

Kernel

Display Server

ART Virtual Machines

Foreground /
Background
Event Filter

Display Client
(Window Manager)

Polling
Loop

Polling
Loop

Polling
Loop

Interrupt Handler

Event Interpreter

Switches
On/Off

ART App 1

ART App 2

ART App 3

ART App n

Kernel

Kernel Display Server

ART Virtual Machines

Event Dispatcher

51

video frames, and (d) a foreground thread which runs even when the screen is turned off

and which, for example, could allow audio decoding and playing to continue even when

the screen is turned off. The event handling thread should execute event handlers that are

primarily responsible for responding to hardware inputs and hence spend their life

waiting for events. On the other hand, the screen drawing code will be constantly writing

to the display, but it will not have to wait for events. It will occupy both CPU and I/O

time. Typically, there is some sort of main program that will use the foreground and

background threads to process input or output (e.g., code that decodes compressed video

frames) and is typically CPU bound since it requires the processor to accomplish a certain

task. The KDS prioritizes these types of processes by coordinating with the GUI

scheduler to achieve a better use of a CPU’s cores (see Chapter 5). Finally, the threads

that the KDS creates are empty until the programmer specifies the code that should run in

those threads. In other words, the programmer can decide to put whatever code they wish

into whatever thread they wish. The names that we gave the threads are only

recommendations.

By contrast, the traditional middleware display server has no control over

scheduling an application based on the application’s GUI state. Therefore, the scheduler

must schedule the application to run even when it does not need to, such as when it is in

the background. This performance hit is typically mitigated by having the operating

system enforce aggressive sleeping policies, but such policies do not completely

eliminate unnecessary scheduling and can also have a negative impact on latency.

Aggressive sleeping policies contribute to latency because the policy might start

52

powering down the device before the user has a chance to make further inputs. For

example, if a user is reading a text message, the screen will dim. Depending on the sleep

policy, if the user doesn’t react quickly, the screen will shut off. Then, in order to resume

reading the text message, the user will have to awaken the entire device. However, the

increased latency is apparent even with faster mobile processors and hardware devices

when waking the device (Chauhan, Sammakia, & Ghose, 2015).

The shorter event path, improved event coordination, reduction in system calls,

and improved scheduling afforded by the KDS provide a reduction in power consumption

and a reduction in latency at the cost of reduced flexibility, as compared with middleware

display servers. However, even though the KDS is slightly less flexible than the

traditional display server, it still uses portable kernel routines, which allows it to be

reasonably portable between architectures.

The rest of this chapter describes how applications connect to the KDS, how the

KDS coordinates with the ESM and scheduler, and how the KDS is implemented.

Applications Running on the KDS

Generally, an application attaches itself to the kernel display server through the

device file system common in UNIX-style operating systems, including Android. An

application that wishes to communicate with the KDS first opens a control device called

the “kds_control_device” and attaches to it (see Figure 14). If the KDS is able to

accommodate the request, it returns a new, private “communication” device specifically

for that application, which then becomes the main communication pathway between the

53

KDS and the application. This ensures that a malicious application cannot commandeer

other applications’ requests to the KDS. While the communication protocol between the

control device and private device are complex and esoteric (see Figure 15), we have

developed a user-level API that handles encoding and decoding these messages to the

control device. Our API is built into Android’s virtual machine, so application

programmers do not have to initiate any of this communication, but instead, it is

completely handled by Android.

Linking Android with the KDS

Android’s GUI system contains a software service called Surface Flinger which is

responsible for drawing surfaces to the screen ("Android's Surface Flinger," 2015). A

sub-service in the Surface Flinger service is called the hardware composer, which is

responsible for allocating and layering the many GUI components into a single surface as

well as overlaying window decorations, such as the battery status icon and clock. The

KDS embeds itself between Surface Flinger and the hardware composer and between

Surface Flinger and the kernel. Therefore, there are two separate places where the KDS

coordinates the actions of Android’s drawing system.

When an application wishes to draw, it performs the same actions that it would

with Android’s current drawing system. Since the KDS is embedded in Surface Flinger, it

intercepts the screen drawing commands, coordinates with the kernel, and ultimately

writes to the screen’s framebuffer. In other words, Surface Flinger is drawing to a virtual

screen (called a surface), which the KDS then draws to the actual screen after making

54

Figure 14: An application first connects to the KDS through the kds_connect routine, which opens a central

KDS control device located in the device filesystem. The KDS then creates a private communication device

specifically for the application connecting to the KDS. All further communication between the KDS and

the application is through the new, private communication device.

Figure 15: The C-style structure that an application sends to its private KDS control device to get the KDS

to execute a command on its behalf. The request_type is what command the application wishes to use. The

“blob” data is simply a memory pointer that contains up to “data_length” bytes.

kds_connect(application) {
 KDS = open(kds_control_device)
 cdev = KDS.create_communication_device()
 cdev.attach(application)
 close(KDS)
 return cdev
}

KDS_COMMAND
{
 Integer request_type
 Integer data_length
 Blob data
}

55

certain adjustments.

Putting the KDS between Surface Flinger and the hardware composer adds an

additional layer between the application and the screen. However, by using the existing

Android drawing system we allow the end-user applications to ignore which display

system is being used by the mobile OS. In other words, current mobile applications

would not need to be modified in order to incorporate the KDS’ benefits. This allows for

much more flexibility and a much shorter adoption period when mobile devices are

upgraded to the KDS.

KDS Implementation

The KDS has several subsystems that are used to draw graphical objects to the

screen and to coordinate with the ESM and scheduling routines. At the kernel level, the

KDS includes three subsystems: (a) the compositor system, (b) the ESM/scheduler

coordination routines, and (c) the drawing system.

The Compositor System

The KDS flattens layers of drawing objects through the use of a compositor. The

compositor makes sure that the GUI buttons, menus, and so forth look like they are on

top of a window pane. Furthermore, the KDS compositor uses a simple ordered list to

determine how to layer objects into a single image (see Figure 16). The list stores all of

the objects that need to be drawn and is sorted by an increasing “z-index” which is set by

the applications programmer. This means the objects with a lower z-index are drawn first

56

and the objects with a higher z-index are drawn last. Therefore, higher z-index surfaces

“lay” on top of lower z-index surfaces.

The KDS compositor is rather simple in its design due to the fact that most GUI

graphics packages, such as Android’s Surface Flinger handle much of the compositing.

However, the difference is that the KDS’ compositor flattens the entire screen, including

all GUI attachments, whereas Surface Flinger composes for each running application. In

other words, the KDS determines how applications are layered on top of each other, and

Surface Flinger determines how objects are layered on a single application. The KDS

compositor should be set to run in the drawing thread since it is only necessary when the

results can be seen by the user, however the programmer or middleware system must

explicitly place the call to the KDS compositor in the drawing thread.

The Drawing System

The KDS drawing system is a low-level drawing mechanism that is called by the

middleware drawing routine, such as Android’s Surface Flinger, and is responsible for

drawing GUI objects to the graphics framebuffer and runs after the compositor system

has finished executing. Figure 17 depicts the KDS drawing routine. The routine sweeps

through the flattened surface created by the KDS compositor and copies the bits to the

framebuffer.

The KDS makes no automatic placement of the drawing code in the drawing

thread. Instead, the programmer or middleware must ensure that they place the call to the

KDS drawing system in the drawing thread. This is desirable since the KDS cannot

57

Figure 16: The KDS composer is a simple layer-flattening algorithm which flattens multiple-layered

surfaces into a single layer surface (bitmap). Surfaces are allocated for each GUI decoration. For example,

one surface is allocated for an application to draw to whereas another surface is allocated for the system to

draw icons, such as the battery status icons. The composer ensures that the GUI decorations are

appropriately placed so that it looks like a single contiguous picture.

Figure 17: The KDS 2-dimensional drawing system draws a composed and flattened surface to the

framebuffer. The drawing system uses the already existing framebuffer utilities in the Android kernel. The

GetFrameBufferForApp is merely a helper function which returns the framebuffer that the application is

allocated. In the actual kds_draw_2d code, if the pixel being written to (on the last line of the code) exceeds

the bounds of the application’s window, then an error is thrown. Since the KDS coordinates with the

SurfaceFlinger, such an out-of-bounds write should never happen. However, it is an additional check in

case someone uses their own display manager on top of the KDS and does not provide due diligence to

ensure that the surface drawing area will not intrude on another application.

kds_compose(surface) {
 flattened_surface = create_blank_surface()
 //layers in the surface are sorted back to front
 foreach (layer in surface) {
 flattened_surface.draw(layer)
 }
 return flattened_surface
}

kds_draw_2d(dev, flat_surface) {
 foreach (pixel in flat_surface) {
 framebuffer = GetFrameBufferForApp(dev)
 framebuffer[pixel.x][pixel.y] = pixel.rgb
 }
}

58

predict every instance where the programmer wishes to use the KDS’ drawing system.

Example Application Interaction with the KDS

Figure 18 shows how an application would use the commands enumerated in the

previous section to interact with the KDS in order to draw graphics to the screen. Figure

19 shows how an application would use ESM and KDS commands to set up event

handling and to allocate code to different KDS threads. This figure should help the reader

understand how the application layer interacts with the KDS layer to complete a drawing

interaction. In practice, middleware would handle all of the interaction with the KDS and

the application programmer would use the middleware’s drawing commands. Hence,

existing Android applications can work with the KDS without any modification.

 The KDS uses many of the DirectFB routines that are already written in the

Linux/Android kernel. As previously mentioned, DirectFB merely provides helper

functions to draw to the framebuffer using the hardware to improve the drawing speed.

This allowed us to implement the KDS without having to duplicate DirectFB’s

functionality.

The KDS is initialized after the framebuffer system and uses the first enumerated

framebuffer as its drawing surface. This presents a drawback if the device is connected to

an external display, since the KDS won’t recognize it. However, most mobile devices are

not typically used in this manner, and therefore, the KDS is relatively safe in assuming

the first framebuffer is the desired drawing target.

59

 Figure 19 shows an example of how an application programmer might separate

their code into the individual threads that the KDS allocates. When the programmer

directs the KDS to run a function on a thread, the KDS first clears the thread of any

existing code and then replaces it with the code specified by the function pointer. The

KDS is then responsible for scheduling and executing the code on the threads. The four

threads that the KDS automatically allocates may only be used by one task at a time.

However, the application programmer might want to run multiple tasks on a single

thread, such as decoding both audio and video on the background thread. In this example,

the programmer would create a single function that forks two threads, one for the audio

task and one for the video task. The programmer would then pass this function to the

background thread via a KDS command. Since the function executes on the background

thread, any threads that it forks would run on the background thread as well. Luckily,

middleware can hide this messiness from the application programmer. For example, the

programmer could register certain background tasks with the middleware and have the

middleware marshal and fork a thread for each task. The middleware would in turn use

the underlying KDS system and register this function with the background thread.

60

Figure 18: This example pseudocode shows an application attaching, interacting, and detaching with the

KDS by drawing two 15x15 squares. There is a 5x5 pixel overlap of layer2 on top of layer1. Therefore,

during composition, a bottom-right, 5-pixel square of layer1 will be obscured and overwritten by the pixel

values of layer2. This figure is meant to help the reader understand how the application layer interacts with

the KDS. In practice these commands would be in a middleware package, such as Android’s Surface

Flinger and the application programmer would not have to worry about writing these commands.

Main()

{

Device kds_device // This app’s communication channel with the KDS

 KDS_COMMAND cmd

 //This block of code is kds_connect() manually performed by the app

Device kds_control_device = open(“/dev/kds/control”)

 cmd.request_type = ATTACH

 kds_control_device.write(cmd)

 kds_device = cmd.data

 kds_control_device.close()

 Surface surf = Android.SurfaceFlinger.create_new_surface()

 Layer lay1 = surf.create_new_layer(0); // z-index 0

 Layer lay2 = surf.create_new_layer(1); // z-index 1

 lay1.rectangle(0, 0, 15, 15)

 lay2.rectangle(10, 10, 15, 15)

 cmd.request_type = COMPOSE

 cmd.data = surf

 cmd.data_length = surf.size

 kds_device.write(cmd) //calls kds_compose on the main thread

 //We now have two rectangles on a single surface,

 //lay2 on top of lay 1 (higher z-indices are closer to the user)

 FlatSurface flat_surface = cmd.data

 cmd.request_type = DRAW

 cmd.data = flat_surface

 cmd.data_length = sizeof(flat_surface)

 kds_device.write(cmd) //calls kds_draw_2d on the main thread

 cmd.request_type = DETACH

 cmd.data = NULL

 cmd.data_length = 0

 kds_device.write(cmd)

}

61

Figure 19: This example pseudocode shows an application separating its code into three of the individual

KDS threads (event handling, background, and drawing are shown above). For event handling, the KDS

duplicates the esm_register routine so that it can automatically register and de-register ESM events

depending on the foreground or background state of the application.

Device kds_device // This app’s communication channel with the KDS

KDS_COMMAND cmd

Keyboard_Callback(event)

{

Log(“Got keyboard input “ + event.keyCode)

}

Drawing_Thread()

{

 //Insert code like Figure 18 here

}

Background_Thread()

{

 //Perform actions, such as decoding audio

}

Main()

{

 //This block of code is kds_connect() manually performed by the app

Device kds_control_device = open(“/dev/kds/control”)

 cmd.request_type = ATTACH

 kds_control_device.write(cmd)

 kds_device = cmd.data

 kds_control_device.close()

//Register keyboard events with the ESM

//This is registered to the event handling thread, so all events

//are pushed there.

cmd.request_type = ESM_KEYBOARD_EVENT

 cmd.data = Keyboard_Callback //Pointer to the event handling function

 cmd.data_length = sizeof(Keyboard_Callback)

 kds_device.write(cmd) //Calls esm_register on the event handling thread

//Tell the KDS to run function “Drawing_Thread” on the drawing thread

 cmd.request_type = DRAWING_THREAD

 cmd.data = Drawing_Thread //Pointer to the function to run

 cmd.data_length = sizeof(Drawing_Thread)

 kds_device.write(cmd) //Runs Drawing_Thread on the drawing thread

//Tell the KDS to run function “Background_Thread” on the background thread

 cmd.request_type = BACKGROUND_THREAD

 cmd.data = Background_Thread //Pointer to the function to run

 cmd.data_length = sizeof(Background_Thread)

 kds_device.write(cmd) //Runs Background_Thread on the drawing thread

 //Close the connection to the KDS

 cmd.request_type = DETACH

 cmd.data = NULL

 cmd.data_length = 0

 kds_device.write(cmd)

}

62

Chapter 5

The GUI Scheduler

Most desktop OS schedulers are unaware of what an application is doing, and thus

are unable to intelligently schedule how that application runs. This is desirable for

desktop schedulers because it simplifies the process of running applications and because

of the heterogeneity of applications that run on desktop computers. However, mobile

devices have two factors that make it desirable to develop more sophisticated schedulers.

First, they have a limited power source, which make it less appropriate to run a power-

consuming application if it cannot perform useful work (e.g., a polling loop for a GUI

application that is completely obscured by other applications). Second, most of the

applications that run on mobile devices involve GUIs that lend themselves to more

nuanced scheduling (e.g., we would rather not schedule applications that are not visible to

the user).

Because the KDS separates the code for GUI applications into four distinct

threads with well-defined task information and because the KDS is implemented in the

kernel, it is particularly well-suited for assisting the scheduler with performing more

intelligent scheduling. We have therefore developed a more sophisticated scheduler

called guiS that takes advantage of this application-specific information. guiS has three

goals: (a) coordinate process scheduling for GUI-specific situations, such as when an

application is running but is not actively visible to the user, (b) reduce power

consumption by improving the efficiency of hardware timer interrupts, and (c) relay

63

information to the ESM so that it can make smarter power policy decisions, such as when

to shut down the CPU cores. In particular, if all ESM processes are sleeping, the guiS

artificially sets a timer that monitors the amount of time since the last user input in the

dynamic power scaling subsystem to the timeout value. Setting the timer to this value

effectively forces the dynamic scaling subsystem to think that no user input has occurred,

which then starts the process of shutting down the mobile devices hardware elements,

such as the CPU cores and LCD.

guiS is a modified version of the current “Completely Fair Scheduler” (CFS)

system currently employed in the Android OS (Pabla, 2009). Much of guiS looks exactly

like the CFS. In fact, when a running thread is not associated with a GUI application

(e.g., a console application), then the thread is scheduled in accordance with CFS policy,

meaning that the scheduler looks and acts like the current Android OS with non-GUI

applications. Furthermore, if real-time scheduling is desired, guiS’ modified scheduling

algorithm can be completely disabled, in which case scheduling reverts to the original

CFS behavior. Of course, the performance benefits associated with the modified

algorithm are also lost when guiS is reverted back to its compatibility mode.

guiS incorporates several improvements that Hsiu et al. (2016) made in their

heterogeneous CPU core scheduler. Their work determined which proportion of shadow

cores to normal cores are best for balancing performance and power consumption in GUI

applications. We take this result from their scheduler and advance it by allowing guiS to

coordinate with the ESM in order to identify which applications need to run. When the

scheduler determines that no GUI applications need to run, like when the user places their

64

phone in their pocket, it triggers the power subsystem in the Android kernel to power

down the CPU and other peripherals. It also causes the ESM to reprogram the vectored

interrupt controller to target the shadow core for future events. Since the shadow core is

the first line of event processing, the ESM (running on the shadow core) can then make

the decision whether or not the power-hungry CPU cores need to be awoken (see Chapter

3).

Coordinating Processes for GUI-Specific Situations

The KDS divides an application into four threads: the event handler thread, the drawing

thread, the foreground thread, and the background thread. Based on its knowledge of

what each thread accomplishes, the KDS provides hints to the scheduler (see Figure 20),

and then the scheduler schedules the threads as listed in

Table 1. Figure 21 shows a pseudocode example of how the guiS schedules each thread.

All four threads abide by the same scheduling rules that normal process do, namely that a

sleeping process will only be set to run when the sleeping condition is resolved. For

example, if the programmer explicitly calls sleep() in the drawing thread, the drawing

thread will sleep for the desired amount of time, regardless of whether or not the screen

needs to be redrawn.

The event handling thread contains the event handlers registered by the

application via esm_register calls and handles user input, wi-fi traffic, and so forth. The

scheduler will only run this thread when an event occurs which is pushed to an event

handler by the ESM (see Figure 22). When the event handler finishes, the thread is put

65

back to sleep and is left undisturbed until another event occurs or until the application

exits. If the application is placed in the background, then the KDS deregisters the ESM

event handlers that handle input events or other events that should be ignored while the

application is in the background. For example, if there is a mouse handling routine, the

KDS knows that if this application is in the background, it cannot receive mouse inputs,

and hence it deregisters any event handlers that are listening for mouse events.

The drawing thread is only scheduled to run when the application is visible to the

user (see Figure 23). For example, if the LCD is turned off for any reason or the

application is minimized, the drawing thread is suspended. Most of an application’s

drawing routines should be placed in the drawing thread for efficient power management.

The foreground thread is scheduled to run when the application is in the

foreground (see Figure 24). It runs regardless of whether or not the application is visible

to the user. For example, if the LCD screen is turned off, but the application is in the

foreground (i.e., the active application), the foreground thread is scheduled to run. For

example, a video player app, where the programmer wishes to play the audio when the

screen is turned off but wants any output suspended when other apps are activated, would

place the audio decoding and output code in this thread.

The background thread is scheduled to run regardless of the application’s status

(see Figure 25). Programmers should place in the background thread any routines that

must run regardless of whether or not the application is currently interacting with the

user. Typically, non GUI related code would be placed in this thread. For example, the

66

Figure 20: The application connects through the KDS directly or through middleware. The application then

tells the KDS to which of the four threads certain code belongs. From there, the GUI scheduler will

prioritize the threads and schedule them to run based on their category.

Table 1: How threads are prioritized based on the category of the running thread. We

make a distinction between a visible app and an app in the foreground. For instance, if the

LCD is turned off, the app is still in the foreground, but is not visible. Furthermore, when

a window decoration covers the top-level application (e.g., the settings scroll), the app is

not visible, but is still in the foreground.

Process Category Scheduler Runs This Thread

Event Handling Thread

Drawing Thread

Foreground Thread

Background Thread

When event is received from the ESM

When app is visible to the user

When app is in the foreground

Always (foreground and background)

User Opens
Application

Application
Connects to KDS

App Configures
Code Threads

KDS Spawns 4
Threads

Foreground

Background Drawing

Events

guiS Prioritizes
Threads

ESM Events

67

Figure 21: guis_schedule() is called when a context switch is requested through a hardware timer “tick” or

when a process yields to the scheduler. The scheduling algorithm determines which type of thread is

running (e.g., event handling, drawing, foreground, or background thread) and schedules it accordingly. If

the process is not a GUI process as in the default case, the scheduler schedules the process normally in the

Completely Fair Scheduler mode.

Figure 22: When scheduling the event handling thread, this function ensures that events need to be

processed, which the ESM automatically does by setting the process’ state to RUNNING. If the event

handling thread is not in the EV_WAIT state, that means that the event handlers are running, thus the

scheduler allows the process to continue to run.

guis_schedule() {
 process = process_list.next()
 switch (process.thread_type) {
 case EVENT_HANDLING_THREAD:
 guis_schedule_event_handling(process)
 case DRAWING_THREAD:
 guis_schedule_drawing(process)
 case FOREGROUND_THREAD:
 guis_schedule_foreground(process)
 case BACKGROUND_THREAD:
 guis_schedule_background(process)
 default:
 schedule(process) //revert to non-categorical, CFS mode

}
}

guis_schedule_event_handling(process) {
 if (process.state != EV_WAIT)

{
 process.run()
 }
}

68

Figure 23: The drawing thread only runs if the application is in the foreground and can be seen by the user.

The macro CAN_SEE() is used to check if the LCD screen is on or off. If the LCD is on, then it stands to

reason that any drawing could be seen by the user, and hence it is necessary to draw to the screen.

Otherwise, this scheduling algorithm keeps the thread in a sleeping state.

Figure 24: An application in the foreground thread will only be scheduled to run if the application is in the

foreground. It does not check whether or not the results would be visible to the user (i.e., if the LCD is

turned on or off).

guis_schedule_drawing(process) {
 if (process.thread_state = FOREGROUND and CAN_SEE(process)) {
 process.state = RUNNING
 process.run()
 }
}

guis_schedule_foreground(process) {
 if (process.thread_state = FOREGROUND) {
 process.state = RUNNING
 process.run()
 }
}

69

Facebook application would place the routines which retrieve notifications for the user in

this thread.

The KDS coordinates with the ESM and the process scheduler by updating the

status of each GUI application. For example, the KDS is notified whenever an application

moves from the foreground (visible to the user) into the background (not visible to the

user). In this case, the KDS will relay to the scheduler that the application’s drawing

thread and foreground thread should be suspended since an application in the background

cannot possibly draw to the screen. These threads will not execute until the application’s

GUI state changes, which means that they will not require the CPU, and hence reduce

power consumption.

The KDS will also deregister the application’s event handlers from the ESM so

that it will not try to forward events to the application. When the application returns to

the foreground, the KDS will re-register the application’s event handlers with the ESM.

Lastly, when an application is moved to the background or the foreground, either

because of a user action or because of an API command written in the program, the

window manager coordinates with Android’s Input Flinger, which ultimately calls

kds_on_background or kds_on_foreground as shown in Figure 26 and Figure 27,

respectively. Through these two KDS commands, the threads are either started or stopped

based on the new state of the application. The guis_set_state function that

kds_on_background and kds_on_foreground refer to are depicted in Figure 28. This

function is necessary to update the current state of the GUI application (i.e., if the

application is in the background or in the foreground).

70

Figure 25: Any process in the background thread is scheduled to run regardless of its state. This is helpful

for situations where a programmer still wants to use the CPU even if the results are not visible by the user.

Figure 26: The KDS is notified when an application is placed into the background when the window

manager explicitly calls kds_on_background when the application is moved to the background. The KDS

automatically deregisters the event handlers that cannot run when the application is in the background.

Finally, the KDS notifies the GUI scheduler that the application was placed into the background.

Figure 27: The KDS is notified when an application is placed into the foreground when the window

manager explicitly calls kds_on_foreground, and hence the window becomes visible to the user. The KDS

automatically re-registers the event handlers that were disabled when the application was in the

background. Finally, the KDS notifies the GUI scheduler that the application was placed into the

foreground.

guis_schedule_background(process) {
 process.state = RUNNING

process.run()
}

kds_on_background(application) {
 foreach (handler in application.[event|foreground|drawing]_thread) {
 esm_register(application, handler.type, NULL)
 }
 guis_set_state(application, BACKGROUND)
}

kds_on_foreground(application) {
 foreach (handler in application. [event|foreground|drawing]_thread) {
 esm_register(application, handler.type, handler.address)
 }
 guis_set_state(application, FOREGROUND)
}

71

Shadow Core/Heterogeneous Core Computing

Another benefit to adding the GUI scheduler to the KDS and ESM combination is

that the event system can now take advantage of the shadow core technology. As we have

previously mentioned, the shadow core is a lower-performing CPU core that shares cache

and memory with the other CPUs, but only uses a fraction of the power.

The KDS can identify which applications are actively being used by the GUI.

Therefore, it can send hints to the scheduler in order to force all processing to the shadow

core. When no GUI applications are being used, such as when the device is idle in the

user’s pocket, the KDS/guiS will move all event handling to the shadow core. This allows

the main, power hungry CPU cores to maximize their sleep while the shadow core

marshals any events.

When an event occurs, the vectored interrupt controller only awakens the shadow

core. The shadow core then discriminates between those events an application is waiting

for and those that no application is waiting for. If the shadow core determines that an

event needs to be handled by an application, it will awaken the other CPU cores and

resume the normal operating system of the mobile device. However, if no applications

want to handle the given event, the shadow core silently discards the event, and puts the

device back to sleep, thus using only a minimal amount of power.

How Categorized GUI Threads Enable Smarter Power Policy Decisions

Since guiS prioritizes threads based on their category, it allows the scheduler to

allot CPU and I/O time based on what type of code is running on that thread. For

72

Figure 28: guis_set_state simply sets the state of the GUI application. This is used by the individual

scheduling algorithms when determining which threads to schedule. For example, if the state is set to

BACKGROUND, meaning that the application is in the background, then only the background thread will

be scheduled to execute. Note that thread_state and thread_type describe two different elements of the

process. The thread_state indicates the thread’s active state, such as being in the background or foreground.

On the other hand, thread_type describes the job that the thread is performing, such as drawing or handling

events.

example, the event handling thread only needs to run when an event is present, and thus

the event handling thread is only scheduled when an event is pushed to the application.

The existing windowing system in the Android operating system cannot make use

of the KDS’s knowledge of what is running on each thread and hence uses a complicated

system of “wake locks” and aggressive sleeping policies to reduce power consumption. A

wake lock is a lock that an application programmer can set which prevents the CPU from

entering a sleeping state regardless of what activities the applications are performing

(Pathak, Jindal, Hu, & Midkiff, 2012). However, when used improperly, wake locks can

unnecessarily keep the CPU at the highest power state, thus consuming an inordinate

amount of power. While the guiS scheduler cannot completely eliminate wake locks,

programmers can move the code requiring a wake lock into one of the prioritized threads,

such as the background thread, rather than using a wake lock. Theoretically, this should

eliminate the need to keep the CPU awake once the code finishes executing and the CPU

can be automatically powered down thus reducing power consumption. In contrast, wake

guis_set_state(process, state) {
 process.thread_state = state
}

73

locks must be manually deactivated, and an inexperienced application programmer may

forget to remove the lock, thus preventing the mobile device from ever entering a

sleeping state, and hence needlessly consuming the mobile device’s battery (Jindal,

Pathak, Hu, & Midkiff, 2013).

Aggressive sleeping policies are the consequence of attempting to maximize the

limited power source in mobile devices. All mobile operating systems must use some sort

of sleeping policy in order to reduce power consumption by powering down several

peripherals, such as the LCD screen or Wi-Fi card (Pathak et al., 2012). For example,

when the LCD screen on a mobile phone dims and then turns off, that is due to a sleeping

policy that prescribes that the screen will dim after a certain duration, and then turn off

after a longer duration. Unfortunately, sleeping policies are reactive since they involve

some sort of measurement of the last user interaction. The term “aggressive” applied to

sleeping policies means that with mobile devices, the duration between stepping down a

fully awake device to a sleeping device is significantly reduced. Furthermore, since a lag

occurs before a sleeping device fully awakens, aggressive sleeping policies can increase

application latency.

Our guiS solves many of the problems caused by aggressive sleeping policies by

removing several of the situations that require them. By categorizing the type of work

that is performed in each thread, the operating system knows what type of computation is

occurring and hence can eliminate many of the guesses that are made by current sleeping

policies. For example, activities on the background thread should not affect the display,

and hence the LCD screen can be powered down when only the background thread is

74

executing. For example, the background thread might start downloading updated news

articles. The LCD is free to power down since this activity does not require the LCD

screen. In the current implementation, the LCD screen must use an aggressive timer to

determine when to power down since it does not know what the application is doing.

Improving the Efficiency of Hardware Timer Interrupts by Eliminating Polling Loops

Throughout this dissertation, we have indicated that the elimination of polling

loops can reduce the power consumption of a mobile device. The specific mechanism by

which this power reduction is achieved is by the improved scheduling of hardware timer

interrupts. In this section, we discuss how we achieved this improved scheduling.

A kernel tick is a hardware timer interrupt that is used to perform many kernel-

related routines, such as context switching, application timing, and updating the system

clock (Tsafrir, 2007). A periodic tick describes a timer interrupt that occurs at a known

frequency (Love, 2010). This frequency is set when the Android kernel is compiled and is

typically set by the device manufacturer between 250 Hz and 1000 Hz. While periodic

ticks are simple, they have a serious drawback: periodic ticks occur even when all of the

applications are idle (i.e., when the tick would be unnecessary). Hence, periodic ticks

unnecessarily use the CPU and prevent the CPU from ever entering a deep sleep since it

is servicing the periodic ticks.

In order to mitigate the problem with periodic ticks, the Linux kernel can be

configured as a tickless kernel, which means that rather than having ticks occur at a

regular frequency as with periodic ticks, they occur at a variable frequency and they

75

occur only when they are needed. Variable frequency timer interrupts are known as

dynamic ticks, since the interrupt is dynamically scheduled to meet the demand of the

operating system. Unlike periodic ticks, dynamic ticks use a programmable timer in order

to dynamically schedule the next timed interrupt to the CPU. For example, when all

applications are idle, the timer is programmed so that it never interrupts the CPU. Instead,

the CPU is awakened only when a useful interrupt or event occurs, such as a finger tap or

when the power button is pressed. This allows the CPU to sleep for much longer periods

of time, and hence, the CPU consumes only a minimal amount of power (Pathak et al.,

2012).

Since the ESM uses vectored interrupts to process events, it only requires that

dynamic ticks be scheduled when events occur. Figure 29 depicts a simplified version of

the kernel’s tick scheduling algorithm in pseudocode. In contrast, existing pull models

force a dynamic tick to be scheduled for each iteration of a polling loop. For example, if

the polling loop delays for 16 milliseconds, the next dynamic tick must be scheduled at

most 16 milliseconds in the future. By eliminating the polling loop, the CPU sleeps for a

longer period of time, thus reducing the amount of power consumed by the CPU.

76

Figure 29: The kernel looks at the process’ sleep times to determine when to schedule the next dynamic

tick. If all processes have an indefinite sleep, then no hardware tick is scheduled. In this case, the only

interrupt from the hardware would be an event, such as the user clicking the power button or finger tapping

the LCD screen. This figure simplifies the processes for scheduling dynamic ticks. Rather than iterating

through the entire process list every time a process changes state, the Linux tick scheduler incrementally

updates the dynamic tick time each time an application goes into the sleeping state with the lesser of the

current tick time or the length of the application’s sleep segment.

kernel_schedule_tick() {
 total_sleep_time = FOREVER
 foreach (process in process_list) {
 if (process.sleep_time < total_sleep_time) {
 total_sleep_time = process.sleep_time
 }
 }
 hardware_timer.set_period(total_sleep_time)
}

77

Chapter 6

Testing and Results

This chapter presents the results we have obtained by testing our event stream

model with the Android Lollipop 5.1 operating system. We used the NVIDIA Tegra TK1

to perform our tests because it is used by developers to create apps for mobile devices

that use NVIDIA chips and because it contains all of the cutting edge hardware features

that 1) make the event stream model, kernel display server, and GUI scheduler feasible,

and 2) are increasingly appearing on other mobile hardware platforms. This board uses an

ARM Cortex-A15 processor with the 4+1, shadow core technology. Our tests compared

the power consumption and latency between our ESM/KDS/guiS model and the event

pull model.

We created three applications in order to contrast power consumption and latency

between the pull model and the push model. The first application is a gesture tracking

application where we manually recorded and replayed the events that a stylus generated.

This application tests the power consumption and latency in situations where the user is

interacting continuously with their device. The second application is the Android built-in

text-messaging program in which we generate random messages to and from a simulated

respondent. The text messaging application contrasts the pull model and push model in a

“bursty” event situation where a user occasionally engages in a flurry of activity while

preparing a text message, but is spending the majority of his or her time reading text

messages, thus leaving the device in an idle state. The third application is a video playing

78

application. It plays a real video while statistics about power consumption and latency are

recorded. This application tests the pull model and the push model in a situation where no

events are being generated. In other words, this tests the event models when the event

system is idle.

Methodology

In this section, we describe our methodology for measuring the power

consumption and latency of applications. We begin by discussing how we measured

power consumption and latency. We then describe the configuration we used for the pull

model and the configuration we used for the TK1 board’s CPU cores.

Measuring Power Consumption

We measured the NVIDIA TK1’s power consumption device with a software

voltage monitor using a similar to the one that Carroll and Heiser (2010) used in their

power consumption monitoring apparatus. The voltage monitor recorded the voltage

values from a particular section of the NVIDIA board referred to as “R5C11” in the TK1

schematic, which is a 0.005-ohm resistor across the input power. We then converted the

results into milliwatts using Ohm’s law:

𝑚𝑊 = (
𝑉2

𝑅
) × 1,000

After setting up the power measuring equipment, we performed our tests with both

Android’s existing epoll pull model and with our new event stream model.

79

Measuring Latency

To measure latency, we originally sought to use the operating system's process

accounting system, but determined that our results were influenced by the scheduler. The

scheduler's influence is intrinsic for both process scheduling and I/O scheduling inside of

the kernel (Salah, Manea, Zeadally, & Alcaraz Calero, 2011). The default scheduler for

the pull model is called the Completely Fair Scheduler (CFS) which attempts to give an

equal share of CPU time to each process (Wong et al., 2008). Therefore, our testing

process could be starved of CPU time if the scheduler determines the testing process has

consumed more than its fair share of CPU. Applications using the pull model are

particularly likely to be starved of CPU time because their polling loop consumes CPU

time, and as a result, they may be scheduled less frequently than the polling loop desires.

For example, with a polling loop of 16ms, we would not expect the latency to exceed

16ms, but it can because of scheduler-induced latency. Scheduler-induced latency for the

ESM model is mitigated because its applications are not penalized since they do not have

a polling loop. To accurately measure total latency, we needed to capture both scheduler-

induced latency and the latency that would be recorded by the process accounting system.

Hence, we used a wall clock timer that records when an event is received by an input

device and when the event is finally handled by the application.

More specifically, our testing platform used two high-resolution timers (HRTs)

that are built into the NVIDIA K1, ARM-based CPU. We set these timers to measure

time within a one millisecond resolution. For our purposes, this provided us with

sufficient precision to obtain meaningful results. The first timer was set to a fixed 1 kHZ

80

(1,000 HZ) rate and was used to provide a wall clock timer. This timer operated by

automatically increasing its internal counting register by one for each cycle, which gave

us the one millisecond precision. The second timer was an event timer and was used to

interrupt the CPU and simulate an actual event. When the event occurred, the wall clock

timer's counter register was recorded. Then, when the event handler began executing, the

wall clock timer's counter register was also recorded. The difference between the two

recordings gave us our latency reading. It should be noted that while we do artificially

send events by using a timer, the application's response to the event is fully genuine.

Pull Model Configuration

We used Android's existing event model for our pull model tests. Android uses

both the select and epoll methods for querying and for handling events. Our tests were

confined to two event queues, the mouse and the keyboard, so the tests provide an

accurate measure of power savings and latency reduction that can be achieved by

eliminating the polling loop. It is possible that interrupt vectors could provide an

improvement over epoll's event aggregation mechanism, since interrupt vectors deliver an

event directly to the kernel without any querying. However, since we used only two

queues, any advantage gained by interrupt vectors over epoll's event aggregation

techniques should be minimal, and the primary power and latency savings should result

from the elimination of the polling loop.

81

CPU Configuration

All of the power consumption and latency tests that we performed used the

NVIDIA TK1 at its full configuration, meaning that we did not restrict the CPU cores or

restrict the use of the shadow core. This allows us to observe what occurs when the pull

model and ESM have full access to all of the device’s facilities without imposing any

artificial limitations.

Results

This section reports our power consumption and latency results using the testing

configurations described above.

Tracking Program Overview

Our stylus tracking program displayed a spiral for the user to trace with their

stylus (see Figure 30). The user moves the stylus along the spiral and alternately presses

and lifts the stylus at random intervals. When the stylus was pressed, a blue star was

drawn to the screen, and when the stylus was released, a red star was drawn to the screen.

The purpose of this test was to simulate a user navigating their screen and clicking GUI

interaction objects, such as buttons, images, or hyperlinks.

We recorded events for the test by manually tracing the spiral while randomly

pressing the stylus and releasing the stylus. Then, we scaled all of the events to fit into a

10 second test (161.4 events per second), a 20 second test (80.7 events per second), and a

60 second test (26.9 events per second). We chose these timeframes in order to illustrate

82

the efficiencies (or lack thereof) in the event model when handling rapidly occurring

events versus infrequently occurring events. The tests were performed by first using the

traditional pull model where all polling loop delays were set to 16 milliseconds. Then, we

ran the tests again with the KDS/ESM/guiS model. Finally, the results were plotted

together on a line graph.

Figure 31 and Figure 32 show the power and latency profiles for the tracking test,

which was scaled so that all 1,614 events occurred within 10 seconds. This is important

since the event queue is more likely to remain full, and hence the polling loop should not

introduce delays. This shows the inherent latency within the polling loop and event

system in a scenario where the polling loop is not likely to delay.

Figure 33 and Figure 34 show the power and latency profiles for the tracking test,

which was scaled so that all 1,614 events occurred within 20 seconds. This test shows

what happens when events occur with moderate frequency. When events are moderately

frequent, the likelihood that the event queue becomes empty increases, and hence the

likelihood that the polling loop introduces delays is increased, but is still not likely. In

this case events are being generated at roughly 81 events a second and the polling loop is

set to a frequency of 60 events a second, so occasionally an event may miss one of the 16

millisecond polling intervals since the events are not evenly spaced and hence the event

queues will be occasionally empty.

Figure 35 and Figure 36 show the power and latency profiles for the tracking test,

which was scaled so that all 1,614 events occurred within 60 seconds. This test shows

what happens when events occur at a relatively slow rate thus causing the event queue to

83

Figure 30: In the stylus motion/click test, the user started at point A and manually traced the spiral with

random stylus presses (mouse clicks). From the starting point (A) to the ending point (Z), the entire test

created 1,614 separate motion and click events. The blue stars represent when the stylus was pressed down,

and the red stars represent when the stylus was released. The recorded events were then scaled to different

time intervals to automatically generate events.

Mouse Down

Mouse Up

A

Z

Total Events = 1614

84

be frequently empty. In this scenario, the polling loop is likely to check the event queue

when no events exist, which unnecessarily awakens the CPU, and hence, increases power

consumption.

Tracking Program Analysis

The tracking program produced results that agreed with our expectations for the

polling loop and its associated event pull model. When using a push model, our

ESM/KDS/guiS system reduced power consumption over the pull event model in all

three experiments. The 10-second test showed an average of 41.3 milliwatts (5.2%)

reduction, the 20-second test showed an average of 117.9 milliwatts (15.3%) reduction,

and the 60-second test showed an average of 184.7 milliwatts (22.9%) reduction.

Furthermore, latency was also reduced by an average of 0.3 milliseconds for the 10-

second test, 1.9 milliseconds for the 20-second test, and 6.7 milliseconds for the 60-

second test.

Text Messaging Program Overview

Our second test involved Android’s text messaging application. Text messaging is

a very popular way to communicate with mobile phones (Heyer, Brereton, & Viller,

2008). However, text messaging generates events slowly, and in fact, when the user is

reading messages rather than writing them, no input events are being generated.

Therefore, this test shows the amount of power that the pull model might use to service

85

Figure 31: Power consumption and latency profile when the events for the spiral tracing program are

condensed into a 10-second user interaction. This experiment models a situation in which events arrive

frequently and the event queue is likely to remain full.

Figure 32: Power consumption and latency differences between the ESM/push model and the pull model

for the 10-second spiral test. Positive numbers favor the ESM/push model.

Power Consumption Latency

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8 9 10

PULL

KDS

600

650

700

750

800

850

900

950

1 2 3 4 5 6 7 8 9 10

PULL

KDS

Power
(mW)

Latency
(ms)

Testing Time (s) Testing Time (s)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

P
o

w
er

 D
if

fe
re

n
ce

 (
∆

m
W

)

Testing Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

La
te

n
cy

 D
if

fe
re

n
ce

 (
∆

s)

Testing Time (s)

86

Figure 33: Power consumption and latency profile when the events for the spiral tracing program are

condensed into a 20-second user interaction. This experiment models a situation in which events arrive

moderately frequently and the event queue is likely to remain full but may occasionally become empty.

Figure 34: Power consumption and latency differences between the ESM/push model and pull model in the

20-second spiral test. Positive values favor the ESM/push model.

Power Consumption Latency

550

600

650

700

750

800

850

900

0 2 4 6 8 10 12 14 16 18 20

PULL
KDS

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20

PULL
KDS

Power
(mW)

Latency
(ms)

Testing Time (s) Testing Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16

La
te

n
cy

 D
if

fe
re

n
ce

 (
∆

m
s)

Testing Time (s)

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19

P
o

w
er

 D
if

fe
re

n
ce

 (
∆

m
W

)

Testing Time (s)

87

Figure 35: Power consumption and latency profile when the events for the spiral tracing program are

condensed into a 60-second user interaction. This experiment models a situation in which events arrive do

not arrive very frequently and the event queue is likely to become empty on many occasions

Figure 36: Power consumption differences between the ESM/push model and pull model in the 60-second

spiral test. Positive values favor the ESM/push model.

Power Consumption Latency

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

PULL
KDS

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

PULL
KDS

Testing Time (s) Testing Time (s)

Latency
(ms)

Power
(mW)

0

2

4

6

8

10

12

1 7 13 19 25 31 37 43 49 55 61

La
te

n
cy

 D
if

fe
re

n
ce

 (
∆

m
s)

Testing Time (s)

0

50

100

150

200

250

1 7 13 19 25 31 37 43 49 55 61

P
o

w
er

 D
if

fe
re

n
ce

 (
∆

m
W

)

Testing Time (s)

88

its many event polling loops when an application is largely idle, and it also shows how

our model eliminates this waste of power.

The text-messaging test uses a simulated keyboard and the standard Android text

messaging service to generate random messages and send them to a server which

simulates a respondent. The server then responds with a random message to simulate a

reply. After the test program receives the server’s response, it delays for 5 seconds

without any interaction in order to simulate the user reading the text message that was

just received. This process continues until 20 seconds of testing time has elapsed. With

the five-second delay, we see an average of three messages being sent to and from the

server for six total messages. See Figure 37 for a depiction of the testing program’s

process.

Text Messaging Program Analysis

Figure 38 and Figure 39 show that the polling loop causes the pull model to

continually use the CPU in order to check the event queue. Our ESM event model’s

power consumption drops significantly by 218.4 milliwatts when the program enters the

5 second delay. Furthermore, our ESM/KDS/guiS also shows a reduction in power

consumption compared to the traditional pull model during the periods when the

application is handling events.

In addition to a significant reduction in power consumption, latency is also

significantly reduced in this test by up to 17.1 milliseconds. The latency is significantly

higher in the pull model due to the fact that the polling loop is very likely to sleep

89

Figure 37: The text messaging program generates a random message and sends it to a server. The server

immediately generates a response. Afterward, there is a 5 second delay to simulate the user reading the

screen or where the user is not in a position to read their text message. Then the test is repeated until 20

seconds of testing time has elapsed.

Application Starts

App Sends Msg

Msg From Server

Application Exits

Has 20

Seconds

Elapsed?

Yes

No

5s Delay

90

because events seldom occur. Hence, many of the events occur while the polling loop is

sleeping. Furthermore, the scheduling algorithms, display server, and other factors can

also increase latency (as explained earlier in this chapter), which is why some latency

savings exceed the 16ms frequency of the polling loop.

Video Program Overview

The final test we performed to compare the pull model and the ESM model was a

video program that displayed a 30-second movie clip. This program was designed to test

the ancillary tasks that are not necessarily GUI related, such as decoding the video in the

background (in our push model, the decoding was done on the background thread). For

the entire duration of this test, no events were handled, which allowed us to control for

the event model and only compare our KDS and GUI scheduler with the current display

server and scheduler. The movie clip was encoded using MPEG-4, Part 10 (AVC/H.264).

It was 1920 pixels wide by 1080 pixels tall, 29.97 frames per second, and with a start to

finish running time of 30 seconds.

Video Program Analysis

The power consumption results for the video program are shown in Figure 40 and

Figure 41. We see an average reduction in power consumption of about 182.4 milliwatts

using our display server and GUI scheduler, but there are several peak data points where

our model reduced power consumption by nearly 400 milliwatts. The polling loop still

shows an influence over power consumption, albeit to a much lesser extent when the

91

Figure 38: The power consumption and latency results of the text messaging service. The power numbers

show the polling loop maintaining a relatively high power usage. The ESM shows a significant drop in

power consumption when the testing program simulates the user reading the screen.

Figure 39: Power consumption and latency differences between the ESM/push model and pull model in the

text messaging test. Positive values favor the ESM/push model over the pull model.

350

400

450

500

550

600

650

700

750

800

0 2 4 6 8 10 12 14 16 18 20

PULL

KDS

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

PULL

KDS

Power Consumption Latency

Testing Time (s)Testing Time (s)

Power
(mW)

Latency
(ms)

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21

P
o

w
er

 D
if

fe
re

n
ce

 (
∆

m
W

)

Testing Time (s)

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21

La
te

n
cy

 D
if

fe
re

n
ce

 (
∆

s)

Testing Time (s)

92

CPU cores are busy decoding and drawing video to the screen. The reason for the pull

model’s increased power consumption is because the CPU cores were taken off task from

decoding video in order to service the event polling loops. The CPU must then catch up

by decoding the video frames that were delayed while the CPU was diverting attention to

the pull model event system. Upon further analysis, our testing shows that this perturbs

cache locality since the program is required to compute two disjoint tasks (e.g., decoding

video and not test latency since no events were generated during the test. Our latency

testing apparatus tests the time between the generation of an event and the handling of

and event, hence it was unusable when no events were being generated.

Summary

Our experiments show that our ESM/KDS/guiS combination reaps increasing

power savings and latency reductions as the event frequency decreases and hence idle

time increases. Figure 42 shows this relationship by plotting the reduction in latency and

the reduction in power consumption achieved by each of the applications in our

experiments. This chart shows that there is nearly a linear improvement in both power

consumption and latency as event frequencies decrease and idle times increase in our

experiments. Therefore, we are confident in concluding that our model should markedly

improve those applications that spend an inordinate amount of time in an idle state and

that have events arriving at irregular intervals.

93

Figure 40: Power consumption results with the video program playing a 30 second video clip.

2600

2800

3000

3200

3400

3600

3800

4000

4200

0 5 10 15 20 25 30

PULL

KDS

Testing Time (s)

Power

(mW)

94

Figure 41: Power consumption differences between ESM/push model over traditional pull model for the 30

second video test. Positive values favor the ESM/push model and negative values favor the pull model.

-200

-100

0

100

200

300

400

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

P
o

w
er

 D
if

fe
re

n
ce

 (
∆

m
W

)

Testing Time (s)

95

Figure 42: A 2-dimensional chart showing the power consumption reduction and latency reduction of the

five testing programs used in our experiments. This chart shows the scenarios in which the ESM

outperforms the current pull model. Since latency could not be tested with the video player, we set its

latency reduction to zero.

In the two test cases that are event driven and require relatively little use of the

CPU for computations (i.e., the stylus tracking and text messaging applications), our

ESM/KDS/guiS combination significantly reduced power consumption and latency. Our

ESM/KDS/guiS showed a maximal improvement of 184.7 milliwatts in power

consumption reduction over the pull event model when the device was primarily idle.

This confirms our hypothesis that polling loops will constantly rouse the CPU and hence

prevent a mobile device from entering a deep sleep, thus consuming power unnecessarily.

The ESM/KDS/guiS system also provides up to a 17.1 millisecond reduction in latency

when the device is primarily running idle applications. This also confirms our hypothesis

that the polling loop causes increased event handling latency when events occur while the

Video Player

10s Spiral

20s Spiral

60s Spiral

Text Message

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14

R
ed

u
ct

io
n

 in
 P

o
w

er
 (

m
W

)

Reduction in Latency (ms)

96

polling loop sleeps. Furthermore, we see that even when the polling loop does not sleep,

it still incurs a small amount of latency, while the ESM does not. We attribute this to the

number of event queues in the pull model, to the number of polling loops, and to the

overall inefficiencies in event “hopping” that occur in the pull model from the kernel to

the display server, to the window manager, and to the application.

Lastly, our ESM/KDS/guiS system is optimized for situations in which the input

events occur at irregular intervals or where input events are “bursty” (i.e., where input

events cluster in a short period of time followed by extended idle periods). This

phenomenon explains why the text messaging system shows the greatest improvement in

power consumption and latency. Our push model is least likely to improve power

consumption and latency when events occur at regular intervals, such as events from a

temperature or velocity sensor. In these circumstances, the periodicity of the polling loop

can be tuned to match the time intervals between events and the simplicity of the pull

model might make it more attractive than our push model. However, as soon as irregular

events are introduced into the mix, which happens in just about any mobile device that is

not dedicated to sensor-like input, the push model is likely to provide the best

performance.

Power Consumption and Latency Reductions Achieved by ESM Alone

When we first completed the ESM, and had not yet implemented the KDS and

guiS processes, we tested it against two apps that were contrived, as opposed to the real

world apps described above. This testing was done with a single CPU core since the

97

benefits of multi-core scheduling could be achieved only when we had implemented the

KDS and were able to make use of its GUI-specific knowledge. In this more restricted

configuration, the ESM alone reduced power consumption by 23.8% and reduced latency

by an average of 13.6 milliseconds over the current pull model on a gesture tracking app

that was similar to the stylus tracking app described above (Marz & Vander Zanden,

2015). This result, combined with the result from our video decoding application which

showcased the ability of the KDS and guiS processes to reduce power consumption and

latency show that:

1) in low computation applications, most of the power consumption and latency

reductions are attributable to the ESM, with further, albeit more moderate

reductions achieved when the ESM was combined with the KDS and guiS, and

2) in high computation applications with no events, the KDS and guiS combination

can achieve significant power savings.

Battery Life with the ESM/KDS/guiS Model

 The results that we obtained show benefits in terms of power consumption and

latency; however, mobile device users may be interested in how our solution improves

the battery life of their devices. Using simple conversions and typical battery capacities,

Table 2 shows the typical amount of extended battery time. Since the ESM/KDS/guiS

model realizes about a 30% battery life improvement, we added the same percentage to

the 1000 milliamp-hour (mAh) battery capacity. Due to increased internal resistances

inherent in some batteries with higher capacities (Rong & Pedram, 2003), we used the

98

findings by Hoque and Tarkoma (2016) and linearly scaled the ESM’s benefit down to

25% for the 8000 mAh battery capacity.

Human Noticeable Latency Reduction

 We achieved latency reductions of up to 17.1 milliseconds in our experimental

applications. Dragging and scribbling allow the human brain to perceive latency on the

order of one to two milliseconds and seven versus forty milliseconds while drawing to the

screen (Ng, Annett, Dietz, Gupta, & Bischof, 2014). Therefore, our latency reductions

could have a profound affect when the user is using a stylus and dragging across the

screen or entering keyboard input.

In other contexts, a reduction of up to 17.1 milliseconds in latency is not by itself

sufficient to be perceptible to a human. However, if this latency reduction decreased the

overall latency of a response below a certain threshold perceivable to humans, then it

could make a difference. For example, latency exceeding 150 milliseconds is noticeable

to human vision (Jensen, 2006). If our ESM/KDS/guiS system reduces latency from 160

to 143 milliseconds (160 minus 17), then what was previously perceived as latency by a

human might no longer be perceived as latency with our system’s reductions.

99

Table 2: The battery capacity is a sampling of typical lithium ion batteries in both smartphones and tablet

devices. However, since the TK1 is a development board, it does not use batteries. Therefore, we used the

power consumption numbers and converted them to battery capacity. The battery life numbers are split

between talk / standby (i.e., busy/idle) and are represented in hours for a typical 4G setup. NOTE: This

table does not take into account user habits or every device configuration and is only a brief summary of

what could be expected using our model with varying battery capacities.

Battery Capacity (mAh) Life w/ Pull Model (hours) Life w/ ESM/KDS/guiS (hours)

1000

2000

4000

8000

3 / 100

6 / 250

10 / 500

15 / 750

4 / 150

8 / 300

13 / 700

19 / 975

100

Chapter 7

Conclusions and Future Work

Mobile operating systems employ a myriad of techniques to ensure that an idle

device does not drain the battery. For example, an operating system will record the last

user input to determine when to shut down hardware that is not being used. However,

before the hardware can be shut down, the polling loops used by the existing event pull

model will consume CPU time and prevent the CPU from entering lower power states.

Additionally, if the user sporadically uses the device, the timer is reset before the device

can enter a deep sleep, and the polling loops continue to consume battery power.

The event stream model (ESM) described and implemented in this dissertation

takes a novel approach to event handling by pushing events from hardware devices to the

application and thus eliminating the polling loops used by the event pull model. The

elimination of these polling loops reduces the device's power consumption while the

device is idle, and allows it to enter a deep sleep state that cannot be attained when

polling loops are present. Additionally, if the device is employed intermittently, the OS

may be able to place the device in a lighter sleep state that will consume less power. This

is not possible with the existing pull model because the polling loops keep rousing the

CPU.

The kernel display server (KDS) extends the benefits of the ESM by moving the

display server from the application layer to the kernel and thus making available to the

scheduler information that can improve the scheduling of GUI applications. The KDS

101

serves as a “gatekeeper” that controls when the ESM event model pushes GUI events to

the applications and it also logically separates GUI code into four threads (events,

drawing, foreground, background). These four threads can be scheduled to run or not to

run depending on the state of the GUI application (i.e., if the application is visible, in the

foreground, or in the background).

The graphical user interface scheduler (guiS) is a sub-component of the KDS and

is responsible for scheduling or de-scheduling the KDS’s four threads. The KDS tells the

guiS when an application changes state, and the guiS responds by changing how and

when the GUI application is scheduled to run. For backward compatibility, if the

application is not a GUI application, the guiS reverts to “compatibility mode”, where

applications are scheduled according to the current completely fair scheduler (CFS)

algorithms.

Our experiments have shown that the combination of the ESM, KDS, and guiS

reduces the power consumption of certain apps by up to 31.2% and reduces their latency

by up to 17.1 milliseconds when compared with the current pull event model. In low

computation environments with irregularly occurring events, the Event Stream Model’s

removal of polling loops is the main contribution to this power consumption and latency

reduction. The Kernel Display Server makes further modest power consumption and

latency reductions by coordinating with the GUI Scheduler. In high computation

environments with few or no occurring events, the KDS and GUI Scheduler make the

main contributions to power consumption reduction by allowing the CPU to remain

focused on one task rather than having to context switch to polling tasks. The ability to

102

stay on task both reduces memory cache misses and keeps the CPU from having to go to

higher power states to make up for “lost time”.

The components required for the ESM model, such as the power saving CPU

instructions and the vectored interrupts that push events to the kernel are becoming

increasingly available on mobile devices, and hence, the ESM model presents an

opportunity for the designers of mobile OS’s to improve power consumption by moving

event handling into the kernel.

Future Work

Mobile device developers could potentially enhance the ESM/KDS/guiS system

by modifying several aspects of their virtual machines, such as Java's VM or frameworks

such as .NET to use such a push model. Applications written on top of these VM's or

frameworks would not need to be changed in order to benefit from the new event model

and display server.

There are a number of interesting extensions of this work. First, the

ESM/KDS/guiS system does not currently handle direct rendering (DRM) or 3-

dimensional graphics since it does not implement any Embedded Graphics Library (eGL)

routines, and it does not intercept DRM memory map requests; thus, the benefits of the

KDS are not available to these types of applications. Future research in this area could

potentially extend the efficiency of the KDS to 3D applications or applications that utilize

direct rendering.

103

Second, our entire research was based on the Android operating system, primarily

since it is open source and readily available to us at no cost. However, other mobile

operating systems, such as iOS and Windows Mobile, may benefit just as much as

Android does with the ESM. We further hypothesize that other such improvements might

be made around the ESM model. For example, I/O scheduling or memory scheduling

algorithms could be examined to determine if there is any improvement to be made based

on the precepts of the ESM. For example, when a kernel driver makes an I/O request or

memory allocation request, the kernel currently can put the driver into a “spin locked”

mode, where the lock is continually polled to determine if it has been released or not.

However, in these circumstances, an ESM-like notification model that pushes a lock

release notification to code that is locked might prove more useful.

Third, hardware device manufacturers might design their hardware to incorporate

our ESM in order to reduce power consumption and latency. For example, cell phone

(GSM/4G) and wi-fi peripherals consume an inordinate amount of power, but also the

amount of data processed by these devices is a large contributor to power consumption.

Our push model could remove the network polling loops (i.e., those loops that search the

socket buffer queues for data on a network data socket) and replace them with a push

model, like our ESM. In other words, our ESM would reduce the power that an

application would otherwise use polling the cell phone and wi-fi devices.

Fourth, many mobile devices include some type of cellular device for voice

communications and data communications. A cellular device is forced to search for the

strongest signal from the available cellular towers. To perform this operation, the cellular

104

device “pings” the cellular tower and decides which one has the strongest signal. This in

essence is a “pull” model where the cellular device “pulls” information from the tower.

However, future research in this area might be able to remove this constant “pinging” and

implement a push model of some sort.

Lastly, our ESM implementation was limited to mouse, gesture, and keyboard

events. However, there are many other input peripherals with which mobile devices

might be equipped. One obvious example is voice input. Since the underlying hardware

implementation for many such peripherals, including voice, is not trivial or standard, and

since mouse, keyboard, and gesture events are still the workhorses of most GUI apps, we

chose to focus on those three types of events for this dissertation. However other

peripherals such as voice would be an interesting focus for future work.

Since reducing power consumption will be an endless crusade for mobile devices,

it is important to look at both software and hardware innovations that could lead to power

savings. This dissertation has shown how a kernel implementation of a push event model

for GUIs can save power and reduce latency. Its effectiveness at reducing power

consumption suggests that both hardware and software developers might wish to consider

using it both in future kernels and in future hardware designs.

105

References

106

Alagöz, I., Löffler, C., Schneider, V., & German, R. (2014). Simulating the Energy

Management on Smartphones Using Hybrid Modeling Techniques. Paper

presented at the Measurement, Modelling, and Evaluation of Computing Systems

and Dependability and Fault Tolerance - 17th International GI/ITG Conference,

MMB & DFT 2014, Bamberg, Germany, March 17-19, 2014. Proceedings.

Anderson, S., Mor, R., & Coopersmith, A. (2002). X Transport Interface X Consortium

Standard (pp. 22). Dayton, OH: NCR Corporation.

Android's Surface Flinger. (2015). Retrieved from

http://source.android.com/devices/graphics/architecture.html#SurfaceFlinger

Android Input Pipeline. (2015). Retrieved from

http://source.android.com/devices/input/overview.html

Bhadauria, M., & McKee, S. A. (2008). Optimizing Thread Throughput for

Multithreaded Workloads on Memory Constrained CMPs. Paper presented at the

Proceedings of the 5th Conference on Computing Frontiers, New York, NY,

USA.

Bhatt, V., & Huang, C.-C. (2010). Group mutual exclusion in <i>O</i>(log <i>n</i>)

RMR. Paper presented at the Proceedings of the 29th ACM SIGACT-SIGOPS

symposium on Principles of distributed computing, Zurich, Switzerland.

big.LITTLE Technology. (2016). Retrieved from

http://www.arm.com/products/processors/technologies/biglittleprocessing.php

Brotherton, H., Dietz, J. E., McGrory, J., & Mtenzi, F. (2013). Energy overhead of the

graphical user interface in server operating systems. Paper presented at the

http://source.android.com/devices/graphics/architecture.html#SurfaceFlinger
http://source.android.com/devices/input/overview.html
http://www.arm.com/products/processors/technologies/biglittleprocessing.php

107

Proceedings of the 41st annual ACM SIGUCCS conference on User services,

Chicago, Illinois, USA.

Bui, D. H., Liu, Y., Kim, H., Shin, I., & Zhao, F. (2015). Rethinking Energy-Performance

Trade-Off in Mobile Web Page Loading. Paper presented at the Proceedings of

the 21st Annual International Conference on Mobile Computing and Networking,

Paris, France.

Carroll, A., & Heiser, G. (2010, jun). An Analysis of Power Consumption in a

Smartphone. Paper presented at the USENIX Annual Technical Conference,

Boston, MA, USA.

Chauhan, A., Sammakia, B., & Ghose, K. (2015, 15-19 March 2015). Transient power

analysis to estimate the thermal time lag of a microprocessor hot spot. Paper

presented at the Thermal Measurement, Modeling & Management Symposium

(SEMI-THERM), 2015 31st.

Chen, J. (2002). Formal Modelling of Java GUI Event Handling. Paper presented at the

Proceedings of the 4th International Conference on Formal Engineering Methods:

Formal Methods and Software Engineering, London, UK, UK.

Cohen, M., Zhu, H. S., Senem, E. E., & Liu, Y. D. (2012). Energy types. Paper presented

at the Proceedings of the ACM international conference on Object oriented

programming systems languages and applications, Tucson, Arizona, USA.

Cugola, G., Margara, A., Pezzè, M., & Pradella, M. (2015). Efficient Analysis of Event

Processing Applications. Paper presented at the Proceedings of the 9th ACM

108

International Conference on Distributed Event-Based Systems, New York, NY,

USA.

Erez, M., Ahn, J. H., Gummaraju, J., Rosenblum, M., & Dally, W. J. (2007). Executing

irregular scientific applications on stream architectures. Paper presented at the

Proceedings of the 21st annual international conference on Supercomputing,

Seattle, Washington.

Frias-Martinez, V., & Virseda, J. (2012). On the relationship between socio-economic

factors and cell phone usage. Paper presented at the Proceedings of the Fifth

International Conference on Information and Communication Technologies and

Development, Atlanta, Georgia, USA.

Gaspar, F., Taniça, L., Tomas, P., Ilic, A., & Sousa, L. (2015). A Framework for

Application-Guided Task Management on Heterogeneous Embedded Systems.

ACM Trans. Archit. Code Optim., 12(4), 1-25. doi:10.1145/2835177

Han, S., Marshall, S., Chun, B.-G., & Ratnasamy, S. (2012). MegaPipe: A New

Programming Interface for Scalable Network I/O. Paper presented at the

Presented as part of the 10th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 12), Hollywood, CA.

Heyer, C., Brereton, M., & Viller, S. (2008). Cross-channel mobile social software: an

empirical study. Paper presented at the Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, Florence, Italy.

109

Holtsnider, B., & Jaffe, B. D. (2012). IT Manager?s Handbook, Third Edition: Getting

Your New Job Done (3rd ed.). San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc.

Honig, T., Eibel, C., Kapitza, R., & Schroder-Preikschat, W. (2012). SEEP: exploiting

symbolic execution for energy-aware programming. SIGOPS Oper. Syst. Rev.,

45(3), 58-62. doi:10.1145/2094091.2094106

Hoque, M. A., & Tarkoma, S. (2016). Sudden Drop in the Battery Level?: Understanding

Smartphone State of Charge Anomaly. SIGOPS Oper. Syst. Rev., 49(2), 70-74.

doi:10.1145/2883591.2883606

Hsiu, P.-C., Tseng, P.-H., Chen, W.-M., Pan, C.-C., & Kuo, T.-W. (2016). User-Centric

Scheduling and Governing on Mobile Devices with big.LITTLE Processors. ACM

Trans. Embed. Comput. Syst., 15(1), 1-22. doi:10.1145/2829946

Jensen, A. R. (2006). Clocking the mind: Elsevier Ltd.

Jindal, A., Pathak, A., Hu, Y. C., & Midkiff, S. (2013). Hypnos: Understanding and

Treating Sleep Conflicts in Smartphones. Paper presented at the Proceedings of

the 8th ACM European Conference on Computer Systems, New York, NY, USA.

Kerrisk, M., & Project, L. D. (2015). POSIX Signals Manual (3.82 ed.).

Kim, M., Kim, K., Geraci, J. R., & Hong, S. (2014). Utilization-aware load balancing for

the energy efficient operation of the big.LITTLE processor. Paper presented at the

Proceedings of the conference on Design, Automation & Test in Europe, Dresden,

Germany.

110

Kroah-Hartman, G. (2007). Everything you never wanted to know about kobjects, ksets,

and ktypes: LWN.net.

Kropp, D. O. (2014). Direct Frame Buffer (DirectFB).

Lee, H.-c., Kim, C. H., & Yi, J. H. (2011). Experimenting with system and Libc call

interception attacks on ARM-based Linux kernel. Paper presented at the

Proceedings of the 2011 ACM Symposium on Applied Computing, TaiChung,

Taiwan.

Lee, J., & Park, K. H. (2010). Interrupt handler migration and direct interrupt scheduling

for rapid scheduling of interrupt-driven tasks. ACM Trans. Embed. Comput. Syst.,

9(4), 1-34. doi:10.1145/1721695.1721708

Lehey, G. (1995). Setting up X11: A no-tears guide to XFree86 configuration. Linux J.,

1995(15es), 4.

Lemon, J., & Manual, F. S. C. (2013). KQUEUE.

Love, R. (2010). Linux Kernel Development. Upper Saddle River, NJ: Pearson Education.

Love, R., & Zhen, Z. (2015). Inotify - A Powerful Yet Simple File Change Notification

System.

Marz, S., & Vander Zanden, B. (2015). Reducing Power Consumption and Latency in

Mobile Devices Using an Event Stream Model. Retrieved from Department of

Electrical Engineering and Computer Science:

https://www.eecs.utk.edu/resources/library/595

Maurer, M.-E., Hausen, D., Luca, A. D., & Hussmann, H. (2010). Mobile or desktop

websites?: website usage on multitouch devices. Paper presented at the

https://www.eecs.utk.edu/resources/library/595

111

Proceedings of the 6th Nordic Conference on Human-Computer Interaction:

Extending Boundaries, Reykjavik, Iceland.

Maximizing Battery Life and Lifespan. (2016). Retrieved from

https://www.apple.com/batteries/maximizing-performance/

Mogul, J. C., & Ramakrishnan, K. K. (1997). Eliminating receive livelock in an interrupt-

driven kernel. ACM Trans. Comput. Syst., 15(3), 217-252.

doi:10.1145/263326.263335

Ng, A., Annett, M., Dietz, P., Gupta, A., & Bischof, W. F. (2014). In the blink of an eye:

investigating latency perception during stylus interaction. Paper presented at the

Proceedings of the 32nd annual ACM conference on Human factors in computing

systems, Toronto, Ontario, Canada.

Nilsson, A. (2015). GIMP Drawing Kit. Retrieved from

NVIDIA. (2015). NVIDIA Tegra K1 Processor Specifications.

Öquist, G., & Lundin, K. (2007). Eye Movement Study of Reading Text on a Mobile

Phone Using Paging, Scrolling, Leading, and RSVP. Paper presented at the

Proceedings of the 6th International Conference on Mobile and Ubiquitous

Multimedia, New York, NY, USA.

Pabla, C. S. (2009). Completely Fair Scheduler. Linux Journal, 184, 82-83.

Parthasarathy, R. (2006). Energy-Aware User Interfaces and Energy-Adaptive Displays,

39, 31-38.

Pathak, A., Jindal, A., Hu, Y. C., & Midkiff, S. P. (2012). What is Keeping My Phone

Awake?: Characterizing and Detecting No-sleep Energy Bugs in Smartphone

https://www.apple.com/batteries/maximizing-performance/

112

Apps. Paper presented at the Proceedings of the 10th International Conference on

Mobile Systems, Applications, and Services, New York, NY, USA.

Pavlik, V. (2001). Linux Input Drivers. Retrieved from

Qin, C., & Rusu, F. (2013). Scalable I/O-bound parallel incremental gradient descent for

big data analytics in GLADE. Paper presented at the Proceedings of the Second

Workshop on Data Analytics in the Cloud, New York, New York.

http://dl.acm.org/citation.cfm?doid=2486767.2486771

Raman, B., & Chakraborty, S. (2008). Application-specific workload shaping in

multimedia-enabled personal mobile devices. ACM Trans. Embed. Comput. Syst.,

7(2), 1-22. doi:10.1145/1331331.1331334

Repasky, R. R. (2004). Easy access to remote graphical UNIX applications for windows

users. Paper presented at the Proceedings of the 32nd annual ACM SIGUCCS

conference on User services, Baltimore, MD, USA.

Rong, P., & Pedram, M. (2003). An Analytical Model for Predicting the Remaining

Battery Capacity of Lithium-Ion Batteries. Paper presented at the Proceedings of

the conference on Design, Automation and Test in Europe - Volume 1.

Rossi, F. (2003). An Event Mechanism for Linux. Linux J., 2003(111), 7.

Salah, K., Manea, A., Zeadally, S., & Alcaraz Calero, J. M. (2011). On Linux Starvation

of CPU-bound Processes in the Presence of Network I/O. Comput. Electr. Eng.,

37(6), 1090-1105.

Searls, D. (2010). Eof: is Android the "top" Linux? Linux J., 2010(192), 10.

Singh, A. (2014). Google introduces ART(Android Runtime) in KitKat: AndroidAIO.

http://dl.acm.org/citation.cfm?doid=2486767.2486771

113

Sorber, J., Kostadinov, A., Garber, M., Brennan, M., Corner, M. D., & Berger, E. D.

(2007). Eon: a language and runtime system for perpetual systems. Paper

presented at the Proceedings of the 5th international conference on Embedded

networked sensor systems, Sydney, Australia.

Stewart, B. (2011). Is your Android app getting enough sleep? O?Reilly.

Strebelow, R., & Prehofer, C. (2012). Analysis of Event Processing Design Patterns and

Their Performance Dependency on I/O Notification Mechanisms. Paper presented

at the Proceedings of the 2012 International Conference on Multicore Software

Engineering, Performance, and Tools, Berlin, Heidelberg.

Tsafrir, D. (2007). The context-switch overhead inflicted by hardware interrupts (and the

enigma of do-nothing loops). Paper presented at the Proceedings of the 2007

workshop on Experimental computer science, San Diego, California.

http://dl.acm.org/citation.cfm?doid=1281700.1281704

Vallerio, K. S., Zhong, L., & Jha, N. K. (2006). Energy-Efficient Graphical User

Interface Design IEEE Transactions on Mobile Computing (Vol. 5, pp. 846-859):

Institute of Electrical and Electronics Engineers (IEEE).

Wickramasinghe, U. S., Bronevetsky, G., Lumsdaine, A., & Friedley, A. (2014). Hybrid

MPI: a case study on the Xeon Phi platform. Paper presented at the Proceedings

of the 4th International Workshop on Runtime and Operating Systems for

Supercomputers, Munich, Germany.

Windows 10 Experience. (2016). Retrieved from

https://www.microsoft.com/en/mobile/windows10/

http://dl.acm.org/citation.cfm?doid=1281700.1281704
https://www.microsoft.com/en/mobile/windows10/

114

Wong, C. S., Tan, I., Kumari, R. D., & Wey, F. (2008). Towards Achieving Fairness in

the Linux Scheduler. SIGOPS Oper. Syst. Rev., 42(5), 34-43.

Yoo, S., & Jerraya, A. A. (2003). Introduction to Hardware Abstraction Layers for SoC.

Paper presented at the Proceedings of the conference on Design, Automation and

Test in Europe - Volume 1.

Yoo, S., Shim, Y., Lee, S., Lee, S.-A., & Kim, J. (2015). A case for bad big.LITTLE

switching: how to scale power-performance in SI-HMP. Paper presented at the

Proceedings of the Workshop on Power-Aware Computing and Systems,

Monterey, California.

Yoon, C., Kim, D., Jung, W., Kang, C., & Cha, H. (2012). AppScope: Application Energy

Metering Framework for Android Smartphone Using Kernel Activity Monitoring.

Paper presented at the Presented as part of the 2012 USENIX Annual Technical

Conference (USENIX ATC 12), Boston, MA.

Zhong, L., & Jha, N. K. (2003). Graphical user interface energy characterization for

handheld computers. Paper presented at the Proceedings of the 2003 international

conference on Compilers, architecture and synthesis for embedded systems, San

Jose, California, USA.

115

Appendices

116

Appendix A

//----------------SNIP-------------------------------------
bool softwareSync = mUseSoftwareVSync;
nsecs_t timeout = softwareSync ? ms2ns(16) : ms2ns(1000);
if (mCondition.waitRelative(mLock, timeout) == TIMED_OUT) {
 if (!softwareSync) {
 ALOGW("Timed out waiting for hw vsync; faking it");
 }
 // FIXME: how do we decide which display id the fake
 // vsync came from ?
 mVSyncEvent[0].header.type =
 DisplayEventReceiver::DISPLAY_EVENT_VSYNC;
 mVSyncEvent[0].header.id =
 DisplayDevice::DISPLAY_PRIMARY;
 mVSyncEvent[0].header.timestamp =
 systemTime(SYSTEM_TIME_MONOTONIC);
 mVSyncEvent[0].vsync.count++;
}
//----------------SNIP-------------------------------------

Event polling inside of Android’s InputFlinger. If a hardware refresh (vsync) signal is

present, it is used to trigger an event poll. Otherwise, Android uses a 16 millisecond loop

delay.

117

for (;;) {
//----------------SNIP-------------------------------------
 for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) {
 struct fd f;
 f = fdget(i);
 if (f.file) {
 const struct file_operations *f_op;
 f_op = f.file->f_op;
 mask = DEFAULT_POLLMASK;
 if (f_op->poll) {
 wait_key_set(wait, in, out,
 bit, busy_flag);
 mask = (*f_op->poll)(f.file, wait);
 }
 fdput(f);
 /* got something, stop busy polling */
 if (retval) {
 can_busy_loop = false;
 busy_flag = 0;

 /*
 * only remember a returned
 * POLL_BUSY_LOOP if we asked for it
 */
 }
 else if (busy_flag & mask)
 can_busy_loop = true;

 }
 }
 cond_resched();
}
wait->_qproc = NULL;
if (retval || timed_out || signal_pending(current))
break;
...
/* only if found POLL_BUSY_LOOP sockets && not out of time */
if (can_busy_loop && !need_resched()) {
 if (!busy_end) {
 busy_end = busy_loop_end_time();
 continue;
 }
 if (!busy_loop_timeout(busy_end))
 continue;
}
busy_flag = 0;
...

The select system call inside of the Linux/Android kernel uses a polling loop to discover events on a

file descriptor or socket.

118

Appendix B

This table shows the three power states of the NVIDIA TK1 development board. Furthermore, it

depicts the several systems that are activated or deactivated depending on the power state.

This figure depicts the NVIDIA TK1 specification and advertisement sheet. The NVIDIA is a fully-

equipped mobile platform used in real-world, mobile devices.

119

Vita

Stephen Gregory Marz was born on July 6, 1982 in Dunkirk, New York. He earned a

Bachelor’s degree in Computer Science from the Illinois Institute of Technology in

Chicago, Illinois on May, 2004. He entered the Air Force on August, 2000,

commissioned as an Air Force officer on May, 2004, and became a combat rescue

helicopter pilot on November, 2006. After several combat deployments, he retired on

October 8th, 2012. After accepting a position as a graduate teaching assistant, he began

his pursuit toward his Ph.D. in Computer Science at the University of Tennessee on

August, 2012. In the future, he will pursue a job teaching at military universities or

perhaps consulting in regards to national security in the field of computer science.

	Reducing Power Consumption and Latency in Mobile Devices using a Push Event Stream Model, Kernel Display Server, and GUI Scheduler
	Recommended Citation

	Chapter 1 Introduction
	Technological Advances Enabling the ESM Model
	Contributions
	The Event Stream Model
	The Kernel Display Server
	The Categorical GUI Scheduler
	Summary
	Use Cases
	Organization of Dissertation

	Chapter 2 Related Work
	Kernel Level Event Models
	Application Level Event Models
	Mobile Operating Systems
	Graphical Display Servers
	Scheduling and Heterogeneous CPU Cores
	Power Aware Programming

	Chapter 3 The Event Stream Model
	Problems with the Current Pull Model
	Data Structures
	The Event Waiting State
	The Global Application List
	The Application’s Private Event Queue

	Application API
	Registering ESM Event Handlers
	Waiting for Events

	Kernel Implementation
	Interrupt Handler or Driver
	The Event Interpreter
	The Event Dispatcher

	Connecting to the ESM
	How The ESM Improves Power Consumption and Latency

	Chapter 4 The Kernel Display Server
	Applications Running on the KDS
	Linking Android with the KDS

	KDS Implementation
	The Compositor System
	The Drawing System
	Example Application Interaction with the KDS

	Chapter 5 The GUI Scheduler
	Coordinating Processes for GUI-Specific Situations
	Shadow Core/Heterogeneous Core Computing
	How Categorized GUI Threads Enable Smarter Power Policy Decisions
	Improving the Efficiency of Hardware Timer Interrupts by Eliminating Polling Loops

	Chapter 6 Testing and Results
	Methodology
	Measuring Power Consumption
	Measuring Latency
	Pull Model Configuration
	CPU Configuration

	Results
	Tracking Program Overview
	Tracking Program Analysis
	Text Messaging Program Overview
	Text Messaging Program Analysis
	Video Program Overview
	Video Program Analysis

	Summary
	Power Consumption and Latency Reductions Achieved by ESM Alone
	Battery Life with the ESM/KDS/guiS Model
	Human Noticeable Latency Reduction

	Chapter 7 Conclusions and Future Work
	Future Work

	References
	Appendices
	Appendix A
	Appendix B

	Vita

