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Abstract

Characterizing the fissile content of nuclear materials is of particular interest to the

safeguards and nuclear forensics communities. Short-lived fission product gamma

spectroscopy offers a significant reduction in analysis time and detection limits when

compared to traditional non-destructive assay measurements. Through this work, a

fully generalizable method that can be applied to variations in fissile compositions

and neutron spectra was developed for the modeling and measurement of short-lived

fission product gamma-rays. This method uses a 238-group neutron flux that was

characterized for two pneumatic tube positions in the High Flux Isotope Reactor using

flux monitor irradiations. This flux spectrum was then used in determining theoretical

fission product photopeak emission rates per unit fissile mass during measurement.

From these theoretical values, a mathematical method for characterizing the fissile

material within a sample was established and demonstrated in several cases. The

Oak Ridge National Laboratory’s High Flux Isotope Reactor and Neutron Activation

Analysis Laboratory provided optimal conditions to conduct high-flux irradiations

with short decay periods. Experiments with samples containing nanogram quantities

of 235U, 233U, and 239Pu were accurately characterized through measurement of short-

lived fission product photopeaks. These measured photopeaks were combined with

the simulated theoretical production rates to construct an overdetermined system

of linear equations. Once this overdetermined system was solved, it showed high

accuracy in quantifying fissile content. These experiments resulted in errors less of
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than 10% for quantification of fissile material in single element samples, two element

mixed samples, and varying enrichments of uranium on IAEA swipes.
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Chapter 1

Motivation

Quantifying the fissile content within trace amounts of nuclear material is of

significant importance to safeguards and nuclear forensics communities. Traditionally,

measurement methods have relied on destructive analysis (DA) measurements or

passive detection of gamma/neutron signatures through nondestructive assay (NDA).

These methods are highly accurate and employed globally as both a nuclear forensics

capability and a material accountability measurement. However, common DA

techniques rely on sample dissolution, a time-consuming process which can be

particularly difficult for certain sample matrices, such as melt-glass formed from

nuclear fallout. Likewise, trace quantities of nuclear materials prove difficult

to measure using passive NDA techniques due to relatively low emission rates

and potential interference from activated materials within the sample matrix.

Additionally, the timeliness of fissile material assay is of concern for both treaty

verification and post-nuclear detonation scenarios. Established DA methods, such

as Thermal Ionization Mass Spectrometry (TIMS) and inductively coupled plasma

mass spectrometry (ICP-MS) can effectively characterize uranium and plutonium

isotopic content, but require complete sample dissolution. This sample preparation

requirement challenges the timeliness goals provided by national and international

agencies. Cooley et al. report that the International Atomic Energy Agency’s
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Safeguards Analytical Laboratory (SAL), which utilizes these DA methods, is

capable of measuring environmental samples from a typical enrichment facility within

approximately three weeks [8]. This timeline is recognized by many as a vulnerability

in the international safeguards envelope and significant research has been conducted

on reducing it [9].

One of the most important objectives of the International Atomic Agency (IAEA)

is deterrence of material diversion through timely detection. This is accomplished

by establishing the ability to detect all credible proliferation pathways, often by

conducting material assays throughout the fuel cycle. Since the frequency of IAEA

inspections at declared facilities is typically driven by timeliness goals, rapid analysis

techniques are in some cases paramount. This is due to the fact that the analysis time

of a technique must be comparable to the assayed material’s conversion period for

it to be effective. Assuming that the conversion of HEU metal into material usable

in weapons is approximately 1 week, and that there are many facilities worldwide

containing significant quantities of uranium requiring safeguards measurements, an

assay timeline of less than 1 week is needed to best meet timeliness goals. [9]

Table 1.1 further illustrates the significant gap in fissile material analytical

capabilities. This is a very small sampling of these capabilities, but it is used to

describe the limitations of typical NDA and DA techniques. Most traditional NDA

methods rely on the detection of radiation signatures emitted from the material,

increasing the need for background discrimination, which impacts sensitivities at the

lowest ranges of detection. For state of the art DA techniques, sample dissolution is

necessary to obtain the lowest detection limits and can require a significant timeline

increase. The work presented in this document aims at providing a technique that

may not necessarily surpass DA detection limits, or NDA analysis time, but fills

an important niche in fissile material characterization by providing high accuracy

quantifications at nanogram detection limits without sample dissolution.

Within the NDA realm, dissolution of the sample is generally not necessary, and

signatures such as gamma-rays or neutrons are received by a detector through either

2



Table 1.1: Typical Fissile Isotope Analysis Methods

Technique Detection
Limit (g)

Analysis
Time

Sample
Dissolution

Information
Provided

AWCC [10] 100 Minutes No Fissile isotopes

Passive (γ/n) [11] 10−3 Min-Hrs No (γ/n) isotopes

Neutron Shuffler [12] 10−3 Minutes No Fissile isotopes

XRF/HKED [13] 10−4 Minutes No Elemental

Emission Spectrometry [14] 10−9 Days Yes Elemental

Mass Spectrometry [15] 10−15 Days Yes Isotopic

passive or active interrogation means. Active Well Coincidence Counters (AWCC)

are often used for the assay of fissile material within a large container through use

of a small neutron source. Due to their active interrogation and ability to measure

neutron multiplicities, AWCC systems can obtain lower detection limits than most

well counters [10]. Passive neutron and gamma methods use radioactive signatures

from the fissile isotopes, or their decay precursors, but are limited by background

effects with detection limits on the order of milligrams [11]. A neutron shuffler is

similar to the AWCC in that it has a large sample holding position with active

interrogation, but differs in that it measures the delayed neutrons over several time

bins to obtain a fissile material assay. Neutron shufflers can identify fissile isotope

signatures and are relatively insensitive to background, but are limited to the strength

of the 252Cf neutron source [12]. The combination of X-Ray Fluorescence (XRF)

and K-Edge Densitometry (KED) methods (known as Hybrid K-Edge Densitometry

or HKED) touts some of the lowest detection limits in NDA, but is generally only

capable of characterizing elemental U or Pu. Additionally, HKED is generally only

applicable to optically transparent samples (e.g., solutions, salts, and other less-dense

materials, as KED is a transmission-based measurement) [13].
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There are a vast number of DA methods that can be used to characterize samples

containing fissile material. Emission and mass spectrometry cover several of the

most accurate and widely used DA methods. Emission spectrometry often utilizes

an Inductively Coupled Plasma (ICP), which is commonly used as a source for

mass spectrometry. Due to emission spectrometry’s use of atomic emissions from

collisional excitation, it is only capable of measuring elemental concentrations at

nanogram levels [14]. Mass spectrometry goes even further with accelerating the

charged ions through a magnetic field and quantifying their charge and mass for an

isotopic determination. This method is often seen as the gold standard in isotopic

analysis due to its high-fidelity and detection limits within the femtogram range [15].

The greatest challenge in employing these DA methods is the necessity to conduct a

thorough sample dissolution. Unlike NDA methods, the DA analysis routine requires

significant time and user interaction.

Developing an analysis technique that has low detection limits, isotopic specificity,

and rapid characterization periods is of significant interest. One method that has

been proposed to address this need is the use of short-lived fission product gamma

spectroscopy measurements. This has been the subject of several publications

containing methods that have been developed to identify fissile materials and in some

cases quantify their masses [1, 16, 2]. These methods have been developed for a select

few irradiation facilities, and have experienced challenges in accurate comparison

to predictions from nuclear data. This work presents a generalized approach to

characterizing fissile isotope containing materials using Neutron Activation Analysis

(NAA) and advanced modeling and simulation techniques.
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Chapter 2

Background

2.1 Underlying Physics

The basis of this method is focused on using differences in fission product yields

to characterize the fissile content of samples. Through application of Neutron

Activation Analysis (NAA), short-lived fission products can be created and measured

for the calculation of fissile content. Figure 2.1 shows the vast array of cumulative

fission product yields for 235U and 239Pu [3]. Although there are a large number of

fission products produced in thermal neutron irradiation, only a fraction of them are

detectable by traditional gamma-ray spectroscopy. Most of these fission products are

neutron-rich and undergo beta-delayed gamma emissions. This process involves the

conversion of a neutron to a proton, emission of an antineutrino, and the creation of

an unstable daughter nucleus (Equation 2.1) [4].

A
ZX

∗ →A
Z+1 X

′ + e− + ν̄e (2.1)

The unstable nucleus quickly undergoes a gamma-ray emission with energy and

rate respective to its unique decay scheme and half-life (60Co example shown in

Figure 2.2). These gamma-ray emissions can be measured and the emitting nuclide

can be identified using standard gamma spectroscopy instrumentation such as a
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Figure 2.1: 235U and 239Pu Cumulative Fission Yields [3]

High-Purity Germanium (HPGe) detector and Multi-Channel Analyzer (MCA) [17].

Traditional gamma spectroscopy allows for the radioactive atoms within the sample

to be quantified using a photopeak integral divided by decay and efficiency correction

factors. Using this measured activity, the number of target atoms can be calculated

through application of the activation equation (Equation 2.2). For this version of

the activation equation, the activated material can be used to quantify the parent

element’s concentration using the measured activity (A), reaction cross section (σ),

total neutron flux (φ), decay constant (λ), and irradiation time (tirr), thus providing

an analytical method for quantification of trace elements (Equation 2.2).

Ntarget =
A

σφ(1− e−λtirr)
(2.2)

It is important to note that the cross-section value in Equation 2.2 is most

accurately represented by a 1-group flux-weighted cross-section. This allows for the

reaction rate to be representative of the entire energy spectrum of the interrogating

neutron source. Cross-section processing codes are often used in the calculation of
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Figure 2.2: 60Co Decay Scheme [4]

this value, but the fundamental principle of a cross-section collapse from a multi-

group flux can be represented with Equation 2.3. This is a guiding principle in the

development of this characterization method, and will be revisited in the modeling

and simulation section [18].

〈σ〉g =

∫ Eg

Eg+1
σ(E)φ(E)dE∫ Eg

Eg+1
σ(E)dE

(2.3)

2.2 Short-Lived Fission Products

The physical basis in using Short-Lived Fission Product (SLFP) measurements for

fissile mass characterization has been established over decades of spent fuel assay

experience. Gamma spectroscopy is routinely conducted on spent nuclear fuel and

other forms of high-level waste for the quantification of burnup or cooling time. This is

accomplished through passively measuring the gamma-ray emissions of specific fission

product indicators and comparing to correlations in modeled or experimental data

(such as 154Eu, 137Cs, or 134Cs). In spent nuclear fuel the most commonly measured

gamma emissions originate from medium or long-lived (τ1/2 > 1 yr) fission products

7



residing within the fuel matrix. Although these passive measurements can reveal the

burnup experienced within a fuel matrix, fissile composition cannot be determined

without considerable prior knowledge [19, 20].

To address the need for fissile composition measurements, methods have been

developed to employ active interrogation with integrated gamma-ray spectroscopy

[21]. Active interrogation enables for a known neutron spectrum to be used on samples

containing fissile material, producing predictable fission product yields. With this

additional information, active interrogation methods are capable of obtaining ratios

of fissile materials within the matrix and are often more rapid than their passive

counterparts. Therefore, for a method focused on safeguards, forensics, or Material

Control & Accountability (MC&A), active interrogation methods are more applicable.

Beddingfield et el. [1] showed through evaluation of nuclear data that the majority of

fission products have half-lives less of under an hour and therefore need more rapid

measurements than traditional passive spent fuel gamma spectroscopy (Figure 2.3).

The variety and number of SLFPs within a sample that has been interrogated

by neutrons opens the door for many possibilities for measurements of fissile mass

and isotopic composition. Additionally, the high signal-to-noise ratio makes this

active interrogation technique capable of measuring samples that are radioactive or

contain materials within its matrix that activate. This brings better peak statistics

for more accurate determinations and lower detection limits, opening the door for

use in technical nuclear forensics applications. Lastly, SLFP measurements allow

measurements to be made in rapid succession in time intervals that are shorter than

both passive Non-Destructive Assay (NDA) and destructive chemical assay.

2.3 Gamma-Ray Spectroscopy of SLFPs

Although there are advantages to short-lived fission product gamma spectroscopy,

conducting accurate and reliable measurements is a challenge. The use of digital

MCAs, high-resolution HPGe detectors, and nuclear modeling and simulation

8



 

Figure 2.3: Temporal Distribution of 235U Fission Products [1]

provides significant advantage over prior work. Combining these modern tools with

a new methodology of unfolding gamma-ray spectra enable the methods described

herein to be high-fidelity and generalizable to any reactor facility.

One common challenge in gamma spectroscopy is accounting for large activities

through dead-time corrections. Dead-time (τ) represents the fraction of gamma-

ray counts lost due to the short periods of time required for signal processing and

charge collection . This effect is due to the combined delays from charge collection

and detector electronic processing and is often managed through a traditional

nonparalyzable dead-time correction (Equation 2.4) where n is the true interaction

rate and m is the recorded count rate [17]. As a rule-of-thumb, this correction is often

adequate for isotopes containing half-lives greater than the measurement period and

9



dead times of less than 30%.

n =
m

1−mτ
(2.4)

The issue of dead-time is significantly more complex for quickly decaying isotopes

and large dead-times. Several publications have shown that the activity of a rapidly

decaying isotope is poorly calculated using a traditional nonparalyzable dead-time

correction [17, 5, 22]. Figure 2.4 shows an experiment conducted by Wiernik to

determine the accuracy of various dead-time corrections. In this set of experiments,

varying masses of Au were irradiated in a reactor and measured at a HPGe detector.

The larger Au masses induced larger dead-times and induced increasing errors in the

calculations of real counts in the short-lived 197mAu.

 

DEAD-TIME (%) 

Figure 2.4: Comparison of various dead-time corrections with increasing amounts
of activated Au [5]

Since there are many rapidly decaying isotopes in a SLFP gamma spectrum,

the dead-time is expected to change considerably during the acquisition period. A

correction factor that treats spectra in a homogenized fashion is not appropriate, and
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many of the correction methods tested in Wiernik’s work are not adequate. To address

this issue, Loss Free Counting (LFC) can be applied to the detector acquisition. The

LFC method adds pulses for period of time when the system is not acquiring, which

provides near real time dead-time corrections. Blaauw et al. [23] studied the effects

of LFC on peak width, count rate, and peak position for count rates up to 1 · 105

counts per second using a digital MCA. It was shown through this work that LFC can

accurately measure activity within 2% error at 80% dead time. Further validation of

these methods will be discussed in the experimental section.

2.4 Prior SLFP Work

Within presently established methods of non-destructive gamma-ray analysis, ob-

taining fissile isotopic information is a significant challenge. The generally accepted

methods for quantification of plutonium and uranium isotopic measurements involve

comparative measurements of their low energy gamma-ray emissions. These methods

have established detection limits in the range of hundreds of milligrams to kilograms

of fissile isotopic mass for an analysis time between 15 minutes and 2 hours [11, 24, 25].

Due to the low emission rates and low energies of fissile isotope signatures, detection

limits suffer from any amount of background and matrix activity. Additionally,

significant geometry corrections must be made for low-energy gamma-ray attenuation

in the large sample sizes analyzed. To address these concerns, SLFPs have been

studied by prior work to identify signatures that can provide a high-fidelity and rapid

characterization.

The method being developed at the High Flux Isotope Reactor (HFIR) builds upon

prior Non-Destructive Assay (NDA) active interrogation research and proposes a more

generalized method of fissile mass quantification using only short-lived fission product

gamma spectroscopy. Previous work conducted by Marrs et al. [16], Beddingfield

et al. [1], and Andrews et al. [2] significantly advanced the state of the art by
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incorporating increasingly accurate methods of short-lived fission product gamma-

ray measurements and modeling. A simple comparison of the experimental setup in

these publications can be seen in Table 2.1.

Table 2.1: Prior short-lived fission product gamma spectroscopy work

Author Fissile Mass Analysis Time Neutron Spectrum Isotopes
Marrs et al. 0.19 - 0.57 g 10 - 840 min 14 MeV+Thermal 1

Beddingfield et al. 40 g 26 min Moderated 252Cf 1

Andrews et al. 1.3 µg - 4.3 µg <5 min Thermal 1

Knowles et al. 12 ng - 160 ng <10 min Thermal 2+

Marrs et al. [16] developed a study on 239Pu and 235U fission product gamma-

ray lines of interest for fissile isotope identification by comparing published Eval-

uated Nuclear Data File (ENDF) fission cross sections and yield compilations to

measurements from monoenergetic neutron beam interrogation. The neutron beam

consisted of a 88-in. cyclotron at Lawrence Berkeley National Laboratory that

collided 16-MeV deuteron beam at 1.0-3.3 µA with a beryllium target. The neutrons

were thermalized through steel and polyethelene to produce deuteron neutron beams

centered at 14-MeV and thermal energies. Marrs et al. used HPGe detectors to

identify 18 fission product ratios that could be used to distinguish 239Pu from 235U

fission and compared them to fission product yield compilations prepared by Los

Alamos National Laboratory [26]. This study helped guide preliminary investigations

at HFIR and gave promise to investigating fission product isotopes that are indicators

of different fissile isotopes. The majority of gamma lines explored in the study by

Marrs et al. exceeded the time regime of interest for the current research at HFIR,

and was therefore not used as a benchmark for the methods discussed later.

Research conducted by Beddingfield et al. prompted evolutionary changes to

active interrogation by developing a method for the identification of fissile species
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from short-lived fission product gamma ray emissions. In Beddingfield’s methodology,

weighting factors are developed to distinguish between 239Pu and 235U (Equations 2.5

and 2.6). In these calculations, theoretical photopeak ratios were determined using

ENDF/B-IV fission product yields and decay data for 235U and 239Pu (rU and rPu).

These ratios were incorporated with measured data from interrogation of a sample

(robs). A calculated 235U weighting factor (WU) that is near 100 will show a match

for 235U, while a 239Pu weighting factor (WPu) near 100 indicates a match for 239Pu.

WU =

(
1−

∣∣∣∣robs − rUrPu − rU

∣∣∣∣) 100% (2.5)

WPu =

(
1−

∣∣∣∣robs − rPurPu − rU

∣∣∣∣) 100% (2.6)

In their experiments, Beddingfield et al. irradiated 40 g High Enriched Uranium

(HEU) samples for 100 s using a moderated 252Cf interrogation source. Samples were

decayed for 1100 s, and subsequent HPGe gamma spectroscopy measurements were

conducted over an interval of 350 s. Photopeak ratios were then calculated with the

numerator and denominators given in Table 2.2.

Table 2.2: Beddingfield et al. 235U fission product photopeak results [1]

Numerator
Isotope

Energy
(keV)

Denominator
Isotope

Energy
(keV) rPu rU robs Uncert. Bias

89Rb 1031.9 130Sb/130*Sb 839.4 0.95 2.65 2.05 2.4% -22.6%
89Rb 1031.9 142Ba 1000.9 4.38 9.07 10.88 6.0% -20.0%
94Y 918.8 131Sb 933.1 7.11 10.84 14.01 18.4% 29.2%
90Rb/90*Rb 831.7 130Sb/130*Sb 839.4 0.15 0.38 0.78 3.8% 105.3%
90Rb/90*Rb 831.7 133mTe 912.7 1.32 3.04 3.85 6.8% 26.6%

Despite the significant biases in the observed to theoretical 235U fission product

photopeak ratios (rU to robs) , Beddingfield et al. still conducted successful
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identification of the fissile species through application of the weighting factors

(Equations 2.5 and 2.6). Figure 2.5 shows the results for all of the fission product

ratios considered by Beddingfield et al. in their identification of 235U.

 

Figure 2.5: Beddingfield et al. Weighting Factor Results [1]

Although this method could effectively identify 235U as the parent fissioning

species, the large biases from theoretical to observed ratios would make it impossible

to conduct a fissile mass quantification. These biases may be due to not accounting for

a number of factors, including calculation of appropriate flux-weighted cross sections,

corrections for detector intrinsic efficiency related to photopeak energies, and activity

changes during measurement resulting from fission product decay. Some of the most

challenging isotope ratios were selected from the work of Beddingfield et al. for

benchmarking with the more generalized method proposed in this work.

Andrews et al. advanced the accuracy of fission product photopeak estimations

significantly by applying state of the art modeling and simulation techniques to the

prediction of photopeak production rates. Irradiations of microgram quantities of
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fissile material were conducted at the SLOWPOKE 2 reactor at the Royal Military

College of Canada with a thermal neutron flux of 2.6·1011 n
cm2·s . After a 60 s irradiation

and 15 s of decay, gamma spectroscopy was conducted for 180 s and compared

to simulations conducted using MCNP v6.1.1 (public beta) [2]. (MCNP 6.1, used

in Andrews’ work, contained many updates to MCNP6, including updated delayed

particle time bin structure.) Although these comparisons were of 235U, 233U, and 239Pu

samples, only 235U was used for benchmarking purposes. Through advancements in

modeling and simulation, the ratios of modeled to measured counts exhibit higher

accuracies than fission product ratios in Beddingfield’s prior work.

Table 2.3: Andrews et al. 235U fission product photopeak results [2]

Fission
Product

Photopeak
Energy (keV) C/E Uncertainty

140Cs 602.2 0.81 14.8%
132Sb/132mSb 696.9 1.03 15.5%
93Sr 710.3 0.70 15.7%
145Ce 724.3 0.59 15.3%
90Rb/90mRb 831.7 1.03 15.5%
132Sb/132mSb 973.8 0.93 15.1%
94Sr 427.7 0.62 14.5%

2.5 The High Flux Isotope Reactor and HFIR-NAA

Laboratory

The High Flux Isotope Reactor (HFIR) is an 85 MWth pressurized light water reactor

located at Oak Ridge National Laboratory. The core consists two concentric cylinders

of Highly Enriched Uranium (HEU) fuel plates surrounded by layers of beryllium
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metal (Figure 2.6). A target basket exists in the center of the fuel which reaches

neutron fluxes of over 3 · 1015 n
cm2·s and several irradiation positions exist in the

beryllium. Additionally, HFIR possesses four horizontal beam ports that are used for

thermal and cold neutron scattering research. Each fuel cycle lasts approximately 26

days and 6-7 cycles are run annually.

Figure 2.6: HFIR Core Diagram [6]

The Neutron Activation Analysis (NAA) laboratory at HFIR was used to

conduct irradiations and short-lived fission product measurements to investigate this

generalized method. The two pneumatic tubes (PT-1 and 2) at the NAA laboratory

enter the core at the VXF-7 position in the outer beryllium and the EF-2 position

which is peripheral to the outer beryllium. PT-1 and 2 achieve thermal neutron

fluxes of about 4 · 1014 and 4 · 1013 n
cm2·s , with a thermal-to-epithermal ratio of

about 45 and 250, respectively (see Figure 2.7). These neutron fluxes are monitored

daily using activated Au and Mn diluted in aluminum foil. For samples containing

uranium, the highly thermalized flux in these irradiation positions is advantageous

for simplifying the fissile mass characterization. While neutron-induced fission is the

dominant reaction in 235U, neutron absorption dominates for 238U. This allows for

a simple quantification of 238U mass through neutron activation analysis via 239U

gamma-ray measurements (at 74 keV). In addition, the NAA laboratory contains a

hot cell, fume hoods, delayed neutron counting station, and multiple HPGe detectors
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for sample preparation and measurement. This combination of high neutron flux and

nearby counting equipment allows for rapid irradiations and measurements of trace

quantities of fissile isotopes. (Figure 2.8) At the NAA facility’s current configuration,

samples must be transferred from PT exit to HPGe counting equipment by laboratory

personnel. This limiting factor necessitates the need for 2 to 5 min of decay for

minimizing radiation exposure.
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Figure 2.7: HFIR PT-1 and PT-2 Flux Spectra (data adopted from[7])

In summary, the HFIR-NAA facility contains an excellent array of capabilities to

test the creation and subsequent measurement of short-lived fission product gamma-

rays. The combination of a high thermal flux and fast-transfer pneumatic tube access

allows for some of the lowest NDA detection limits on fissile isotopes to be obtained.

Although the methods described here are developed for HFIR, it is intended to be

fully generalizable to any irradiation facility with rapid irradiation and measurement

capabilities.
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Figure 2.8: HFIR-NAA PT-1 Facility (PT-2 has nearly identical layout)
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Chapter 3

Theory

3.1 Fission Product Modeling and Simulation

Traditionally, NAA facilities have used 2-group cross sections consisting of thermal

(0.0253 eV) and epithermal (>0.5 eV weighted average) values to represent regions

of an interrogating nuclear reactor neutron spectrum [27]. These cross sections are

useful for approximations of reaction rates, but generally experience error due to

their narrow representation of the interrogating flux spectrum’s shape. In the 1970s,

the K0 method was developed in order to closer estimate reaction rates for non-1/v

isotopes in a general nuclear reactor flux spectrum [28]. This method has been highly

touted as an accurate method of Instrumental Neutron Activation Analysis (INAA)

[29], and has been implemented at several facilities around the world. Recent research

at the National Institute of Standards and Technology (NIST) reactor has shown that

limitations exist with this methodology when considering a highly thermalized reactor

spectrum [30]. Additionally, similar experiments were conducted at the HFIR-NAA

facility to confirm the NIST findings. Due to the low energy resonances in many non-

1/v isotopes, the K0 method yields incorrect reaction rates for highly thermalized

fluxes. Since HFIR exhibits this highly-thermalized quality, a more comprehensive
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cross section development method was implemented using a fully weighted 1-group

flux spectrum (Equation 2.3) developed through modeling and simulation.

The bulk of nuclear modeling and simulation was conducted with the SCALE6.1

code suite. SCALE is a modular code system that is globally known for its authority

on safety analysis. It contains modules in cross section processing, criticality safety,

sensitivity/uncertainty, spent nuclear fuel characterization, radiation source terms,

reactor lattice physics, radiation shielding, and nuclear safeguards [31]. SCALE is

developed and maintained by Oak Ridge National Laboratory and is one of the most

widely used nuclear modeling and simulation packages in the world.

For this work, one-group cross sections and fission yields were developed using

the COUPLE module [18] using a multi-group neutron energy spectrum based

on the irradiation positions at the HFIR-NAA laboratory (applying equation 2.3).

These collapsed cross sections were used with ORIGEN [18] to calculate the fission,

transmutation, and decay reactions within the sample to produce calculated fission

product inventories. These fission product inventories were then converted, using

ENDF gamma-ray libraries, to photopeak emission rates and then integrated over

360 linearly interpolated time intervals to produce a gross photopeak recovery. A

visual representation of this process flow is shown in Figure3.1.

In ORIGEN, the production of fission products created after irradiation can be

represented by Equation 3.1. This equates the number of fission product atoms after

irradiation (Nfp) as a function of the collapsed one-group total fission cross section

(σf ), the number of target fissile atoms (N), total neutron flux (φ), irradiation time

(tirr), and individual fission yield (γfy) [29]. Due to differences in neutron spectrum

shape, the total one-group fission cross section and individual fission yields are unique

to each irradiation facility. In this generalized method, this is accounted for by

developing the collapsed one-group cross sections (using COUPLE), which can be

applied to any facility with a known neutron flux profile.

Nfp = Nσfφγfy

(
1− e−λtirr

λ

)
(3.1)
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Figure 3.1: Flow diagram for SCALE simulations

Once the fission product inventories (Nfp) are obtained from ORIGEN simulations

(Figure 3.1), the relative number of photopeak counts per unit mass (Y ) can be

approximated using Equation 3.2. Since Nfp can fluctuate due to decay into or out

of the evaluated isotope, changes over the period of measurement are accounted for

through ORIGEN simulations. The integrated average of Nfp over the measurement

period is then used in Equation 3.2. In this relationship, Nfp is multiplied by the

fission product’s decay constant (λ), measurement time (tm), emission intensity (γi),

detector efficiency (ε), and a decay correction considering decay time (td). The

detector efficiency value is dependent on detector type, geometry, attenuating material

between the source and detector, and energy of the incoming photon [29]. To achieve

an accurate approximation of fission product decay during count, Equation 3.2 is

calculated using ORIGEN decay simulations over many short time steps. These

photopeak yields can then be integrated over the detector measurement time to

approximate total photopeak emissions during count. Once calculated, the solution

to Equation 3.2 can be used in solving for original fissile mass by entering photopeak
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counts per unit mass into Equation 3.3 for each photopeak of interest.

Y = Nfpλtmγiε(e
−λtd) (3.2)

3.2 Neutron Flux Characterization

The previously described SCALE modeling and simulation method uses a 238-group

neutron flux for input into COUPLE. An accurate understanding of the neutron

flux shape is paramount for obtaining reliable fission product generation results. A

poor understanding of this shape can cause significant changes in the final photopeak

yields, which affects fissile isotope characterizations (evidence of this described in

results section). To further generalize these methods, a fully described neutron

flux characterization method was conducted on the PT-2 facility. The software

package STAYSL-PNNL [32] was used to conduct a neutron flux characterization

to demonstrate the generalizability of this method, and develop a high-fidelity model

for PT-2. The SCALE 238-group structure (Appendix A) was used consistently in

both neutron flux characterization and fission product modeling and simulation[33] .

Historically, neutron flux measurements at the HFIR-NAA facility were conducted

using dilute Gold and Manganese monitors in Aluminum foil. Typical masses and

concentrations for these samples can be seen in Table 3.1. The 411 keV and 846

keV photopeaks from Au and Mn activation products (198Au and 56Mn) are easily

measured and can be used to infer on the interrogating neutron flux. Figure 3.2 shows

the ENDF/B-VII.1 capture cross sections for 55Mn and 197Au. As can be seen in this

figure, the Au capture cross section contains a large resonance in the 1-10 eV region,

which makes it a suitable monitor for this epithermal region. This combination of a

strong 1/v absorber (meaning that it has a decreasing logrithmic relationship between

cross section and energy) and an epithermal monitor has been used at the HFIR-NAA

facility to approximate the thermal and epithermal interrogating neutron flux.
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Figure 3.2: 55Mn and 198Au Capture Cross Sections [3]

Although there is an MCNP model [7] of the HFIR PT-1 and 2 neutron spectra,

there has been a history of indications that the calculated PT-2 238-group neutron

spectrum may not be accurate. These inaccuracies were discovered by using the

SCALE photopeak simulation method (Figure 3.1) for comparison of calculated

verses experimental (C/E) activity comparisons of routine Mn and Au irradiation

and measurements. When calculating these values over numerous experiments, PT-

2 has 56Mn C/E recoveries that were approximately 20% different than the 198Au

C/E (Table 3.1). This inaccuracy indicates an error in the neutron flux spectrum

shape, especially in the epithermal region. The nuclides evaluated in this work add

additional importance to understanding this neutron spectrum shape. Figure 3.3

shows that 238U, 239Pu, and 233U contain large resonances in the 0.1-10 eV region,

reinforcing the importance of conducting an accurate characterization. Therefore,

this work proceeded forward by conducting a complete characterization of the PT-2

neutron flux using the STAYSL-PNNL simulation suite. Detailed parameters of this

characterization will be described in the Experimental chapter.
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Table 3.1: PT-2 Au and Mn Flux Monitoring

Monitor Typical Monitor
Mass (mg)

Concentration
in Al (%)

C/E Observed
(%)

After Charac-
terization (%)

Au 70 0.1 100∗ 100∗

Mn 20 0.0879 ≈ 80 ≈ 98

*The Au monitor was used in determining flux magnitude in SCALE simulations,
therefore its C/E recovery is consistently 100%

STAYSL-PNNL is a software suite that contains tools for characterizing an

interrogating neutron flux through gamma spectroscopy measurements of activated

materials. Cross sections of these irradiated materials can be used in combination with

their activation rates in a generalized least-squares approach to calculate a neutron

flux with user-defined bin structure (the ENDF 238-group structure was used for this

work). STAYSL-PNNL originates from the STAY’SL code developed at Oak Ridge

National Laboratory in the late 1970s, and was updated in the 2000s to be more

user-friendly for its current version. STAYSL-PNNL contains several modules for

calculating the interrogating neutron flux including: NJOY99, NJpp, SHIELD, BCF,

SigPhi, and STAYSL-PNNL.

The only third-party software of the suite, NJOY99 is used to take raw data from

the Internal Reactor Dosimetry File of 2002 and compile it into neutron reaction

cross sections and covariances in the user defined bin structure. The output from

NJOY99 is processed using NJpp to format the text file so that it is readable by

STAYSL-PNNL and the SHIELD code. SHIELD uses resonance integrals for the

calculation of resonance self-shielding correction factors that can affect reaction rates

during irradiation. BCF takes irradiation characteristics from the activation foil

measurements to generate flux history correction factors. These factors along with

the resultant activities from foil irradiations are entered into the SigPhi calculator to

develop reaction rate estimate. Finally, STAYSL-PNNL takes both the cross section

and covariance data along with the reaction rate estimates to use a system of linear
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Figure 3.3: Fission cross sections for 235U, 233U, and 239Pu along with neutron
absorption cross section for 238U for low energy resonances [3]

equations to estimate the multi-group neutron energy spectrum for a user defined

energy structure. Figure 3.4 show a simple flow diagram of these modules. The red

colored boxes are modules that are not regularly run, except for when building neutron

cross section libraries. SHIELD may not be needed in every flux characterization run

if the sample types were analyzed previously for another irradiation.

By applying this neutron flux characterization, the methods described herein can

be applied to a reactor facility with unknown flux spectrum. If employed properly,

these methods will enable the development of collapsed cross sections, fission product

production rates, and gamma source terms for use with experimental data. In the

sections following, this modeling and simulation will be put to use in mathematically

solving for a sample’s fissile constituents in a generalizable manner.
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Figure 3.4: Flow diagram for STAYSL-PNNL modeling

3.3 The Generalized System of Equations

A generalized method to characterize fissile mass through short-lived fission product

gamma spectroscopy was developed in this work. This section will describe the

mathematical basis behind solving for fissile isotope mass using short-lived fission

product gamma spectroscopy. This method is generalized to be applicable to

variations in fissile isotopic composition and neutron spectrum by relying on the

prediction of fission product yields upon irradiation and using their yield differences

to simultaneously solve for original fissile isotope concentration. By exploiting

differences in the fission product yields for identifiable short-lived fission products,
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the observed fission product activity for each indicator isotope can be directly related

to the parent fissile masses.

For this approach, fission product photopeak yields are used to construct an

overdetermined system of linear equations and solve for each originating fissile isotope

mass (Equation 3.3). The assumption of a linear system can be made since individual

fissile isotopes will contribute fission products proportionally to the amount of fluence

received given short irradiation periods and minimal burnup (i.e., it is assumed that

the target fissile species does not appreciably deplete given the short irradiation time).

This system of linear equations uses simulated photopeak total counts (Yj) from a

given fission product per unit mass of the parent fissile species, fissile parent isotope

mass (mj), and measured photopeak area (Ap). Since theoretical photopeak yields

will be compared to measured data, SCALE simulation results are used to ensure

that the photopeak of interest is without interferences. A version of this equation

will exist for every fission product photopeak evaluated in the spectrum, thereby

creating an overdetermined system where the fissile mass can be solved for using a

linear least-squares matrix regression.

A1
p = m1Y

1
1 + m2Y

1
2 + · · · + mjY

1
j

A2
p = m1Y

2
1 + m2Y

2
2 + · · · + mjY

2
j

...
...

...
...

Anp = m1Y
n
1 + m2Y

n
2 + · · · + mjY

n
j

(3.3)

3.4 Solving Overdetermined Systems and Error Prop-

agation

Solving large systems of equations using basic algebraic methods can be tedious

and require considerable computational power. Additionally, in an overdetermined

system it is not possible to solve for the solution directly [34]. The systems
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experienced in this work contain between 1-2 dependent variables and 10-15 separate

equations. Therefore, a matrix solution method is what was used for this work.

The first step towards solving this system is to convert Equation 3.3 into three

separate matrices representing the measured photopeaks (Ap), the SCALE calculated

theoretical photopeak emissions (Yj) and the unknown fissile isotope masses (mj)

(Equation 3.4). 
Y 1
1 Y 1

2 · · · Y 1
j

Y 2
1 Y 2

2 · · · Y 2
j

...
...

...

Y n
1 Y n

2 · · · Y n
j




m1

m2

...

mj

 =


A1
p

A2
p

...

Anp

 (3.4)

These matrices are then simplified into the form seen in Equation 3.5 where [A] is

the measured peak areas, [Y] is the SCALE calculated photopeak yields, and [M] is

the unknown fissile isotope masses.

[Y][M] = [A] (3.5)

In order to solve this system using linear least-squares minimization, the matrices are

developed into the normal equations [34].

[Y]′[Y][M] = [Y]′[A] (3.6)

The matrix [α] is often referenced as the curvature matrix because each element is

twice the curvature of σ2 plotted against the corresponding product of variables. This

matrix will be useful in calculating out the standard deviation of the mass variables.

[α] = [Y]′[Y] (3.7)

Substituting [α] into Equation 3.6.

[α][M] = [Y]′[A] (3.8)

28



Multiplying both sides by [α]−1 gives a easily computed solution for the unknown

fissile mass matrix [M].

[M] = [α]−1[Y]′[A] (3.9)

In order to calculate the statistical standard deviation for the fissile mass variables

in matrix [M], the residuals must first be calculated. This is done by multiplying

[Y] and [M] matrices to obtain the calculated values for photopeak area, and then

subtract these values from the measured photopeak areas [A].

[R] = [A]− [Y][M] (3.10)

The calculation of standard deviation for the solved values in [M] is then determined

by the following equation (Equation 3.11), where degrees of freedom n and j are

dimensions of the [Y] matrix and diag{[α]−1} represents only the diagonal elements

of the inverse alpha matrix.

s2M =

(
[R′][R]

n− j

)
diag{[α]−1} (3.11)

These calculations were conducted using the computational software MATLABTM

with basic matrix manipulation methods. All of these manipulations took less than 5

seconds of processing time for even the largest of fission product photopeak matrices.
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Chapter 4

Experimental

4.1 HPGe Detector System and Calibration

For this series of experiments, an Integrated Cryocooling System (ICS) with high-

purity germanium (HPGe) detector was purchased from ORTEC [35]. This p-type

mechanically-cooled coaxial detector is rated at 44% efficiency when compared to a

3x3 NaI detector’s detection efficiency of a 60Co 1332 keV photopeak. Although this

detector is also rated for a full-width at half-maximum (FWHM) of 1.8 keV for the

1332 keV peak, the HFIR-NAA lab experienced consistent results at approximately

2.1 keV, indicating that vibrational noise from the cryocooler may have been causing

peak broadening. The shaping time of this detector was set considerably high at 12

µs in order keep FWHM at its minimum value. This detector was placed inside of a

graded shield consisting of about 2 inches of lead covered on the inside with 2 mm of

cadmium and 2 mm of copper (Figure 4.1). This graded shield was a significant benefit

to the measurements not only because it reduces signal from gamma background in

the laboratory, but also because it shields a majority of theKα x-rays that are emitted

from high energy gamma-bombardment on lead.

The gamma spectroscopy collection software used for all of these experiments was

Canberra’s Genie 2000 [36]. Genie 2000 has been used by research and industry for
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Figure 4.1: HFIR-NAA Facility Graded Shield with HPGe Detector

well over a decade with an easy to use interface for operation and setup of a digital

multi-channel analyzer (MCA). The MCA used in these experiments was a Canberra

Lynx digital MCA [37]. This MCA contains over 32,000 channels and is capable of

operating in Pulse-Hight Analysis (PHA), Multi-Channel Scalar (MCS), and Dual

Loss-Free Counting (DLFC) modes.

Energy and efficiency calibrations were conducted on this detector in order to

identify fission products and approximate actual photopeak emission rates. A series

of single isotope sealed sources, certified by Amersham in October 1st of 1987, were

used to construct these calibrations. Details on these sources can be found in Table

4.1. These sources were used to calibrate energy (Equation 4.1) and efficiencies at

100 mm and 300 mm positions above the detector endcap (Equations 4.2 and 4.3).

Figure 4.2 shows both efficiency calibrations graphically.

E = 0.2133 · (Channel)− 0.042 (4.1)

log(ε) = −2.606 · 10−4E − 2.368 +
1.012 · 102

E
− 6.11 · 103

E2
(4.2)
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log(ε) = −1.407 · 10−4E − 3.358 +
1.851 · 102

E
− 1.603 · 104

E2
+

3.238 · 105

E3
(4.3)

Table 4.1: Sources Used in HPGe Detector Calibration

Source Half-Life Photopeaks Evaluated (keV)
241Am 432.6 y 59.5
133Ba 10.55 y 80.0, 302.9, 276.4, 356.0, 383.9
137Cs 30.08 y 661.7
22Na 2.602 y 1274.5
60Co 5.271 y 1173.2, 1332.5

Figure 4.2: HPGe Calibrated Efficiency Plots for 100mm and 300mm measurement
positions

Post-processing of gamma spectra was conducted using PeakEasy software [38].

PeakEasy was developed by Los Alamos National Laboratory and Sandia National

Laboratories in 2006 for rapid nuclide identification and analysis of gamma-ray

spectra. PeakEasy was used in this work due to its high accuracy in producing
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Gaussian fits to measured photopeaks, and precise replication of those fits over a

batch processing routine.

4.2 Loss Free Counting

As mentioned in the Background section, Dual Loss-Free Counting (LFC) methods

are useful for gamma spectroscopy at high detector dead-times and rapidly decaying

isotopes. The Lynx MCA allows for the use of an LFC mode called Dual Loss Free

Counting (DLFC). In this mode, DLFC allows for the real-time acquisition of events,

and will produce two spectra. One spectrum contains live time corrected counts,

and the other produces the normal uncorrected counts. This allows for uncertainty

to be derived from the uncorrected spectrum, due to the non-Poisson nature of the

corrected spectrum [37]. For the experiments described in this work, the majority of

fission product isotopes measured experience at least one half-life over the period of

measurement and dead-times range between 10% and 35%. These conditions make

DLFC mode of unique utility in making an accurate measurement of a decaying

fission product’s activity during count. Efforts were taken at the HFIR-NAA facility

to validate the accuracy of DLFC mode with known sources in conditions that mimic

the experiments described herein.

Using the same 241Am source from Table 4.1 to steadily increase dead time,

the HPGe detector was operated in both Pulse Height Analysis (PHA) and DLFC

modes while measuring a 137Cs source. Dead-time was increased by steadily bringing

the 241Am closer to the detector endcap and these positions were recorded in PHA

mode and replicated for DLFC measurements. From this set of experiments, DLFC

mode shows a steady count rate throughout the variations in dead time within the

uncertainty bounds. As can be seen in Figure 4.3, increasing dead-times result in

a reduction of count rate in PHA mode when the 137Cs 662 keV photopeak integral

counts are divided by real time. This is regularly corrected for by using the MCA

calculated live-time (Equation 2.4), but this cannot be done for these experiments
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for two main reasons. First, the SCALE modeling and simulations must be an exact

representation of detector acquisition time, without variations due to sample activity.

If PHA mode were to be used, detector live-time would constantly be changing and

making it appear that isotopes were not decaying at their usual rates, thus yielding

unreliable results. Secondly, a changing dead-time causes a continual changes in the

dead-time correction factor, and causes activities to be poorly represented for rapidly

decaying isotopes (shown in Figure 2.4).

Figure 4.3: DLFC and PHA Comparison

Through this set of experiments, it was shown that DLFC mode accurately

replicates a known source’s activity through a wide range of dead times. Likely

the main advantage of this capability is to have detector live time equate to real

time. This allows for theoretical production and decay of short-lived fission product

isotopes to be compared to measured spectra side-by-side.

4.3 Irradiation Setup

The High Flux Isotope Reactor Neutron Activation Analysis (HFIR-NAA) facility was

used for the experiments conducted in this work. As mentioned earlier, this facility

consists of two pneumatic tubes (PT-1 and 2) that were each used in the following
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irradiation experiments. For the fissile isotope irradiations, high density polyethylene

sample containers (“rabbits”) were used to transport each sample into the reactor for

an irradiation of 60 seconds or less. Figure 4.4 shows an example polyethelene rabbit

along with an International Atomic Energy Agency (IAEA) “J-swipe” that is used

in some measurement cases described in this work. Upon exiting the reactor, the

samples are brought back to either a shielded cubicle (Figure 4.5) or a fume hood

(PT-2) for unpackaging. Once unpackaged, each sample is carried by hand into an

adjacent room that contains the HPGe detector described previously (Figure 4.1).

Figure 4.4: High-Density Polyethelene Rabbit with IAEA J-Swipe

4.4 PT-1 Benchmarking Fission Product Photopeak

Simulations to Prior Work

Irradiations and subsequent measurements were conducted at the HFIR-NAA

laboratory to benchmark the SCALE6.1 modeling and simulation scheme (Figure

3.1) to the aforementioned prior work. A comparison to results presented in Table

2.2 was made using similar irradiation and measurement conditions at the HFIR-NAA

laboratory (Table 4.2). This irradiation was conducted using 7 µg of natural uranium

(49.7 ng 235U) from an ICP-MS certified standard with 20 s of irradiation time in
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Figure 4.5: PT-1 Facility with Shielded Cubicle

a PT-1 thermal flux of approximately 4 · 1014 n
cm2·s . The sample was then allowed

875 s of decay before 600 s of measurement with a HPGe detector. These results

exhibit a strong identification of 235U and close the significant gap between biases

in observed to theoretical ratios experienced in Table 2.2, validating the approach

proposed by Beddingfield and thereby suggesting that a more generalized approach

based on short-lived fission product measurements can lead to the quantification of

fissile U and Pu.

Additionally, a comparison to the results in Table 2.3 was made using the HFIR-

NAA laboratory. This irradiation was conducted using the same 7 µg natural uranium

sample and irradiation conditions from the Beddingfield benchmark, but was a prior

600 s measurement that only had 275 s of decay. This shorter decay period more

closely represents the rapid irradiation and decay periods used by Andrews et al. [2].

The comparison of SCALE simulations to HFIR-NAA irradiation and measurements

exhibited comparable accuracy to the work conducted by Andrews et al. (Table 4.3).
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Table 4.2: SCALE simulation and HFIR-NAA benchmark to Beddingfield et al. [1]

Numerator
Isotope

Energy
(keV)

Denominator
Isotope

Energy
(keV) rPu rU robs Uncert. Bias

89Rb 1031.9 130Sb/130*Sb 839.4 0.64 1.96 1.87 11.5% -4.38%
89Rb 1031.9 142Ba 1000.9 2.28 5.27 4.99 12.3% -5.34%
94Y 918.8 131Sb 933.1 0.20 0.37 0.36 9.5% 2.28%
90Rb/90*Rb 831.7 130Sb/130*Sb 839.4 0.41 0.62 0.59 38.8% 4.84%
90Rb/90*Rb 831.7 133mTe 912.7 3.78 5.66 5.25 9.5% 7.14%

Comparisons to these two state of the art short-lived fission product measurement

methodologies show that the SCALE modeling and simulation scheme presented

here performs far above expectations. It is hypothesized that this high accuracy

is due to the application of a 238-group collapsed cross section, DLFC counting

mode, iterative simulations for the detector acquisition period, and careful detector

calibration. Making these accurate determinations of fission product production rates

is paramount to conducting a high-fidelity fissile sample characterization since small

variations in the modeled values for some fission products can cause the system of

equations (Equation 3.3) to yield inaccurate results.

4.5 PT-2 Flux Characterization

As described in the Neutron Flux Characterization section, the MCNP model

developed for PT-2 has shown significant error in routine flux monitor measurements

(Table 3.1). Therefore, it was soon realized that a full flux characterization of the PT-

2 irradiation position had to be conducted. The code package STAYSL-PNNL was

used for this characterization, enabling a full 238-group characterization using a set

of flux monitors. Since the thermal flux of the PT-2 irradiation position is very high,
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Table 4.3: SCALE simulation and HFIR-NAA benchmark to Andrews et al. [2]

Fission
Product

Photopeak
Energy (keV) C/E Uncertainty

140Cs 602.2 0.98 11.1%
132Sb/132mSb 696.9 1.05 4.5%
93Sr 710.3 0.88 7.2%
145Ce 724.3 0.93 4.1%
90Rb/90mRb 831.7 1.29 2.5%
132Sb/132mSb 973.8 0.98 4.2%
94Sr 427.7 0.93 2.9%

characterization of any reactions above the thermal region is a significant challenge.

Therefore, a cadmium-shielded graphite rabbit was used for this irradiation. The
113Cd isotope has a significant thermal absorption cross section until approximately

0.5 eV (Figure 4.6), meaning that it is capable of blocking a majority of the thermal

neutrons experienced in PT-2. Therefore, a characterization of the epithermal and

fast regions of the neutron energy spectrum can be adequately characterized.

A closed cadmium cylinder of 2 mm wall thickness was inserted into a graphite

rabbit for irradiation in PT-2. A graphite rabbit was used for the purpose of heat

dissipation. Since there is an enormous number of thermal neutron reactions with

the 113Cd, it is expected that a polyethylene rabbit may melt. A series of monitors

was prepared and inserted into an aluminum packet, which was then inserted within

the Cd cylinder. Some of these monitors utilized threshold reactions of (n,α) and

(n,p) to sample the flux in epithermal and fast regions, while others maintained

thermal reactions to sample within the lower energy regions of the neutron spectrum.

Table 4.4 lists the samples prepared and their weights. The column labeled 95%

of Reactions Range (MeV) is an optional output of STAYSL-PNNL that shows the

38



Figure 4.6: 113Cd Neutron Absorption Cross Section [3]

neutron energy region of the interrogating spectrum. This was produced after these

experiments were conducted, but serve as a useful guide to understanding the main

characterization regions of each monitor.

This packet of flux monitors was irradiated in the PT-2 facility for 30 minutes at

full reactor power (total flux of 4.1 · 1013 n
cm2·s). After irradiation, the graphite rabbit

sat in a decay station for approximately 12 hours to allow for the short-lived 117Cd and
28Al to decay, which can pose a considerable radiation hazard. These flux monitors

were then removed from the Cd sheath and Al packet to be measured individually on

the described HPGe detector at a height of 300 mm (efficiency defined as Eq. 4.3).

These activities along with irradiation and measurement characteristics were

then entered into the STAYSL-PNNL code suite. In order to perform the spectral

adjustment, a spectrum “guess” must be defined. This was designed to mimic the

HFIR flux spectrum, but in a generalized manner. This was done by taking a 4 group

moving average for the PT-2 MCNP predicted spectrum, up until a neutron energy

of 1 eV. From 1 eV, a flat neutron spectrum at a flux of 1 · 1010 n
cm2·s was given.
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Table 4.4: Flux Characterization Measurement Monitors

Reaction 90% of Reactions Sample Type Sample Product
Range (MeV) Mass (g) Half-Life

27Al(n,α)24Na 6.43 to 17.3 Al Foil 0.0872 15.0 h
46Ti(n,p)46Sc 4.30 to 15.7 Ti Foil 0.0285 83.8 d
47Ti(n,p)47Sc 2.48 to 15.7 Ti Foil 0.0285 3.35 d
48Ti(n,p)48Sc 6.43 to 17.3 Ti Foil 0.0285 43.7 h
54Fe(n,p)54Mn 3.00 to 14.6 Fe Wire 0.0293 312 d
58Fe(n,γ)59Fe 9.25·10−7 to 6.00·10−3 Fe Wire 0.0293 44.5 d
59Co(n,γ)60Co 3.73·10−6 to 1.22·10−4 Co-Al Wire (0.116%) 0.0203 5.27 y
58Ni(n,p)58Co 2.48 to 13.8 Ni Wire 0.0185 70.9 d
197Au(n,γ)198Au 5·10−9 to 4.75·10−6 Au-Al Foil (0.1%) 0.0219 2.70 d

Figure 4.7 shows the adjustment that STAYSL-PNNL conducted on the spectrum

after entering in activities from neutron reactions described in Table 4.4.

One important measure of the effect and success of this methodology is to see how

the STAYSL-PNNL output compares with the MCNP generated 238-group neutron

spectrum. Figure 4.8 shows the two generated spectra side-by-side. There are many

similarities in the features between the two spectra, though with a few key differences.

From simple observation, it was noticed that the thermal flux was slightly higher and

the epithermal and fast flux is significantly depressed. A more quantitative way of

displaying this information is through use of Equation 4.4. In this equation, the

thermal flux at 0.0253 eV is multiplied by the reciprocal of an energy-weighted flux

from 0.5 eV to 20 MeV (grouping structure listed in Appendix A). This value, along

with an integrated thermal flux (sum of all bins from 0–0.5 eV) are reported in Table

4.5.
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Figure 4.7: STAYSL-PNNL Corrected PT-2 Spectrum compared to STAYSL-PNNL
Input Spectrum

Th

Epi
=

φth ·
238∑
g=37

∆Eg

238∑
g=37

φg

(4.4)

Table 4.5: PT-2 Corrected/Uncorrected Spectra Comparison

Total Thermal Flux Th/Epi
(n/cm2s)

MCNP Spectrum 3.8977 · 1013 133.7

STAYSL-PNNL Correction 4.7850 · 1013 625.9

The significant increase in Th/Epi ratio means that a change to reaction rates for

the fissile nuclides can occur. As shown in Figure 3.3, the nuclides measured in this

work have substantial resonances in the epithermal region. The 238-group spectrum
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Figure 4.8: STAYSL-PNNL Corrected PT-2 Spectrum Compared to MCNP
Prediction

directly affects the 1-group cross-section collapse conducted in the SCALE modeling

scheme (3.1), altering the final photopeak yields predicted by nuclear data. The full

effect of this characterization will be described further in the Results section.

With the characterization conducted with STAYSL-PNNL, a 238-group neutron

flux spectrum was able to be made with little prior knowledge of the flux shape. This

gives significant confidence in applying these methods to other reactor facilities that

may not have a fully explicit MCNP model of their irradiation position.

4.6 239Pu and 235U Indicators Scoping Study

Since a binary mixture measurement is more complex, a careful selection of

photopeaks used for analysis was conducted to guide the irradiation and measurement

routine. This selection process involved SCALE simulations of PT-2 irradiations

and post-processing of output in MATLAB to simulate a hypothetical detector

response over the measurement period (Tstart to Tstop). As explained previously,

SCALE simulations were used to generate the expected photopeak counts for each
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fission product nuclide resulting from each fissile parent over many time intervals

(Figure 3.1). Using MATLAB, these gamma-line spectra were then integrated over

hypothetical measurement periods and multiplied by efficiency, which generated an

expected number of counts (n) at a given energy. The outputs of this MATLAB script

were the fractional standard deviation (σ) (Equation 4.5) and indicator photopeak

ratio (Equations 4.6 and 4.7). For this scoping study, only 235U and 239Pu were

evaluated due to the interest in distinguishing these two isotopes.

σ =

√
n

n
(4.5)

235U Indicator Ratio =
Photopeak Counts/235U Fission

Photopeak Counts/239Pu Fission
(4.6)

239Pu Indicator Ratio =
Photopeak Counts/239Pu Fission

Photopeak Counts/235U Fission
(4.7)

The ORIGEN simulations represented 60 s irradiations of 10 ng quantities of 235U

and 239Pu at the PT-2 facility with many variations of measurement intervals from

10 to 1200 s of decay. Additionally, detector characteristics were of a p-type HPGe

of 44% relative efficiency with samples measured at 25 cm from the endcap. Decay

times and source-to-detector distance were determined in anticipation of a new system

configuration in the NAA laboratory where the HPGe detector is significantly closer

to the PT 2 system, and an experimenter does not need to remove a sample from the

system before measurement. The MATLAB script written to evaluate these ORIGEN

simulations rejected 235U and 239Pu indicators that contained photopeak ratios of less

than 1.5 and also required the fractional standard deviation for the photopeak to be

less than 10.0%. Results of this study are displayed graphically in Figure 4.9. The

strongest indicators for 235U and 239Pu are labeled, and the nuclides with the lowest

fractional standard deviations are highlighted and detailed in Table 4.6.

It was soon realized that not all fissile isotope indicators could be collected in the

HFIR-NAA facility with its current configuration. The samples being ejected to a
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Figure 4.9: Graph of Fission Product Indicators for 239Pu and 235U

fume hood or shielded cubicle requires some experimenter manipulation in order to

get the sample to a detector. Therefore, isotopes of Tstop periods of 300 seconds or

less were not expected to be reliably measured. Nevertheless, this set of modeling

scenarios does help inform for future work in the area of fission product indicators,

in which earlier time intervals are expected to be expanded on.

4.7 Samples Evaluated

Table 4.7 lists the standards used in all of the experiments for this work. Each began

with an ICP-MS certified standard and was diluted in 5% HNO3 to the specified

concentration using solution weights. These standards were later verified with delayed

neutron counting methods commonly practiced in the HFIR-NAA facility [39]. Since

these samples are thoroughly dissolved in an acid solution, aliquots were added to

polythene inserts by using a standard micro-liter scale pipette. In order to maintain

the highest accuracy in measurement, inserts were weighed with a mass balance
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Table 4.6: Listed info on FP Indicators for 239Pu and 235U

Parent Fissile
Isotope Tstart(s) Tstop(s)

Photopeak
Energy (keV)

FP
Isotope

Fraction
Std Dev

Photopeak
Ratio

235U

10 100 121.8 90Kr 3.89% 3.62

10 300 397.4 144La 2.51% 1.53

10 300 541.2 144La 3.67% 1.92

10 300 602.3 140Cs 3.70% 1.57

10 600 1427.7 94Sr 3.88% 1.72

40 600 590.2 93Sr 3.42% 1.54

40 600 831.7 90Rb 4.28% 2.49

239Pu

10 300 270.1 106Tc 2.71% 4.61

10 600 424.0 84Br 3.75% 1.87

40 300 135.4 117Ag 2.95% 2.21

40 300 348.7 112Rh 3.86% 1.94

100 1200 358.0 104Tc 2.26% 3.20

300 1200 302.8 107Rh 3.51% 2.72

sensitive to 10−4 g which was tared from the gross weight, measured immediately

after aliquoting the solution to the insert. After this, samples were placed in a drying

oven overnight in order to evaporate all of the acid solution from within the insert.

Following this, inserts were placed within a high density polyethylene rabbit (Figure

4.4) in which the lid was heat-sealed with a soldering iron in preparation for irradiation

in one of the two pneumatic tubes at the HFIR-NAA facility.

4.8 Irradiation and Measurement Characteristics

Table 4.8 shows the irradiation and measurement characteristics for this set of

experiments. These configurations were determined by SCALE modeling and
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Table 4.7: Listed Sample Info for Solutions Containing 239Pu, 235U, and 233U

Concentration (µg/g)
Solution Elemental Fissile
Natural Uranium in 5% HNO3 1000 7.200

Depleted Uranium in 5% HNO3 1000 3.384

High Purity 233U in 5% HNO3 7.851 7.831

Plutonium in 5% HNO3 1.677 1.300

simulation described in the indicators scoping study section. Also prior experiments

conducted with small fissile samples were used to understand the capabilities

for sample removal, processing, and detector response. The objectives of these

configurations were to obtain photopeak statistics of less than 10% uncertainty,

maintain dead times to less than 30%, and keep the total analysis shorter than ten

minutes per sample.

Table 4.8: Irradiation and Measurement Characteristics

Sample Irradiation Decay Measurement Measurement
Set Time (s) Time (s) Time (s) Height (mm)
PT-1 Single Elements 20 120 360 300

PT-2 Single Elements 25 120 360 100

PT-2 Binaries 25 120 360 100

PT-2 IAEA Swipes 60 120 360 300

The fission product isotopes evaluated in these experiments are displayed in Table

4.9. These isotopes were evaluated in previous experiments and modeling to verify

their identities in short-lived fission product gamma spectra, and also verify that

they do not contain interferences with other photopeaks that may be overlapping or

causing the peaks to not be baseline resolved. Additionally, higher energy photopeak
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were preferentially chosen due to the higher predictability in detection efficiency, and

limited spectral effects.

Table 4.9: Fission Product Isotopes and Photopeaks Evaluated

Fission Product Photopeak (keV) Half-Life (m)
94Sr 1427.7 1.25
132Sb 973.9 3.50
94Y 918.7 18.7
93Sr 875.9 7.41
90Rb 831.7 3.40
145Ce 724.3 3.00
132Sb 697.4 3.50
140Cs 602.3 1.06
93Sr 590.2 7.41
108Rh 434.2 6.0
133Te 407.6 12.4
144La 397.4 0.68
104Tc 358.0 18.2
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Chapter 5

Results

5.1 Photopeak Modeling Results

Before solving the overdetermined system of equations (Equation 3.3), the theoretical

fission product photopeak yields had to be calculated. This was computed with

the SCALE modeling and simulation scheme described previously (Figure 3.1) using

an input deck with the adjusted PT-2 and PT-1 238-group neutron fluxes. The

irradiation and decay characteristics input to match each experimental process

displayed in Table 4.8. The gamma source term output was calculated over 450

energy bins (from 70 keV to 1450 keV) and over 360 time iterations (1 per second

of measurement), providing a substantially large matrix. Each gamma source term

(measured in photons per second) was summed for all time iterations then divided

by the time bin width, giving a total photopeak emission value for the period of

measurement. The reason for this time binning and integration was to capture the

effects of isotope ingrowth and decay during measurement. This value was then

multiplied by detection efficiency for a direct comparison to HPGe output. For each

nuclide irradiation case, the computational time on a desktop PC was approximately

10 minutes. Since there were 4 separate experiments conducted, each with its unique

irradiation and decay characteristics, 16 input decks were run in a batch routine

48



with a total computational time of greater than 160 minutes. Even though it was

somewhat time-consuming, this process is not expected to be replicated often for a

facility that has relatively constant flux in the irradiation position used. Since the

photopeak emission rate is normalized to mass, and applied in a generalized manner

using the system of equations, it can be repeated for numerous simple sets containing

varying amounts of fissile mass and combinations of mixtures.

This data processing reduced each SCALE output down to efficiency corrected

photopeak counts per nanogram of fissile material irradiated in either PT-1 or PT-2.

Two tables of data representing this final output are displayed in Table 5.1 and Table

5.2. These values can then be entered in as Yi values in the overdetermined system of

equations (Equation 3.3). It should be noted that more several more of these tables

of data were generated in the analysis of short-lived fission product signatures, but

these are provided as representative of the typical output used.

Table 5.1: Photopeak Modeling Results for PT-1 Single Elements Case

Isotope Photopeak (counts/ng)
(keV) 239Pu 233U 235U

94Sr 1427.7 58.25 56.62 65.62
132Sb 973.9 102.70 28.15 68.26
94Y 918.7 35.95 36.04 35.69
93Sr 875.9 32.01 33.18 33.82
90Rb 831.7 49.71 98.58 82.92
145Ce 724.3 87.22 64.31 77.62
132Sb 697.4 126.02 35.41 82.26
140Cs 602.3 61.29 46.61 64.38
93Sr 590.2 121.07 115.96 122.81
108Rh 434.2 109.09 33.00 46.17
133Te 407.6 57.35 77.67 63.26
144La 397.4 72.51 58.24 73.37
104Tc 358.0 172.92 18.06 35.11
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Table 5.2: Photopeak Modeling Results for PT-2 Single Elements Case

Isotope Photopeak (counts/ng)
(keV) 239Pu 233U 235U

94Sr 1427.7 37.96 38.90 47.46
132Sb 973.9 73.07 21.12 53.66
94Y 918.7 25.97 27.45 28.41
93Sr 875.9 23.14 25.28 26.96
90Rb 831.7 35.88 75.03 66.08
145Ce 724.3 63.25 49.17 62.16
132Sb 697.4 91.39 27.08 65.92
140Cs 602.3 43.61 34.96 50.89
93Sr 590.2 87.97 88.82 98.42
108Rh 434.2 77.27 24.68 36.13
133Te 407.6 40.28 57.42 49.01
144La 397.4 49.13 41.59 55.54
104Tc 358.0 120.04 13.22 26.87

Although the fluxes of PT-1 and PT-2 are just over an order of magnitude in

difference, the photopeak counts per nanogram were maintained generally within a

factor of two between experiments conducted with both systems. This was done by

altering the measuring height from 300mm for PT-1 irradiations to 100mm for PT-

2 irradiations and increasing the irradiation time slightly (from 20 to 25 seconds).

In both Table 5.1 and Table 5.2, certain indicators can be spotted visually. 104Tc

exhibits a strong signature from 239Pu, while it is considerably weaker from 233U and
235U. 90Rb is quite the opposite, with exhibiting strong signatures from both 233U

and 235U while showing a relatively weak signature from 239Pu. Also, of note is the

disparity between 132Sb photopeak yields in 233U and 235U irradiations. All of these

trends will become useful in creating a robust solution to the overdetermined system

of equations, thus providing a fissile sample characterization with low uncertainty.
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5.2 Fission Product Recoveries

A necessary step in this methodology to compare the fission product photopeak

modeling methods against measured data. This is done by conducting calculated

over experimental (C/E) comparisons for each fission product photopeak. Figure 5.1

shows C/E values for the average for sample measurements conducted at both PT-1

and PT-2 for 239Pu, 233U, and 235U. Four separate measurements were conducted for

each facility, totaling 8 averaged measurements for fission products resulting from

irradiation of a fissile isotope. The error bars presented in Figure 5.1 represent

the average photopeak area uncertainty calculated from PeakEasy post-processing.

Sample masses were prepared within a narrow range in order to minimize the effects

of confounding factors to fission product measurement precision. 239Pu was kept

between 30 and 32 ng, 233U was between 46 and 48 ng, and 235U was between 40

and 43 ng. Even though the samples were irradiated in different pneumatic tubes for

different amounts of time, this was taken account for in developing the theoretical

photopeak yields (see Photopeak Modeling Results section). The error bars included

on Figure 5.1 are the average photopeak uncertainty experienced between all eight

measurements. This helps show the consistency in obtaining peak statistics an also

the average peak recovery when compared to theoretically calculated values.

As seen in Figure 5.1, photopeaks generally had less than ±10% uncertainty in

counting statistics. As a whole, they were centered around a C/E of 1.0 with a

margin of error less than 20%. Since an overdetermined system is to be used in

this method, slight deviations of individual fission product photopeaks is less of a

concern than an overall trend in the average. It was noticed that 233U has a slight

negative bias for most fission products, which indicates that there may be an issue

with the total collapsed fission cross section. This is likely due to either a bias in the

neutron flux or the fission cross section. It is hypothesized that a more comprehensive

characterization of neutron flux in the epithermal region between 1 and 10 eV to allow
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Figure 5.1: Fission product photopeak C/E (ORIGEN Calculated divided
by Experimentally measured) values and counting uncertainties for 4 separate
irradiations in PT-1 and 4 irradiations in PT-2 using corrected spectra

for better approximation of reactions happening with the large resonance integral seen

in Figure 3.3.

Figures 5.2, 5.3, and 5.4 show the C/E recoveries for all measurements with box-

and-whisker plot diagrams. The center line of each box represents the data median,

ends of the box represent 2nd and 3rd quartiles, and the lines extend out to maximum
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and minimum points as long as they are within 1.5 times the inner quartile range.

Points that are outside these lines can be considered as statistical outliers, but have

been kept in each plot in order to maintain data transparency. These plots are useful

in showing both the precision and accuracy of this SCALE modeling and simulation

scheme for predicting photopeak yields between PT-1 and PT-2 irradiations.
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Figure 5.2: SCALE predicted photopeak yields divided by the short-lived fission
product photopeak measurements from 239Pu for 4 PT-1 and 4 PT-2 irradiations

Additional insights on the precision of fission product photopeak modeling can

be gained from looking at these figures. It was realized that 90Rb was recovering on

the high side for most measurements. This is likely due to the fact that 90Rb is the

beta-delayed decay product of 90Kr, which is a gas at room temperature. Although

samples are kept within a sealed container, there is a possibility for some gas to

escape during the irradiation process. In addition, significant inconsistency in the
104Tc C/E values was noticed for 233U irradiations. This is potentially due to the

fact that there are very few photon emissions from 104Tc during the measurement

period (see 104Tc photopeak yields in Tables 5.1 and 5.2) and the photopeak is the

lowest energy of the evaluated signatures, meaning that it will suffer from spectral

effects the most. Additionally, 239Pu irradiations showed consistent under predictions
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Figure 5.3: SCALE predicted photopeak yields divided by the short-lived fission
product photopeak measurements from 233U for 4 PT-1 and 4 PT-2 irradiations
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Figure 5.4: SCALE predicted photopeak yields divided by the short-lived fission
product photopeak measurements from 235U for 4 PT-1 and 4 PT-2 irradiations

of 104Tc compared to what was measured in the lab. Even though 104Tc had high

precision, its C/E was consistently around 80% . This gives a strong indication that

the accumulated fission yield may be in error for 239Pu fission into 104Tc. Also 145Ce

has consistently low C/E values across all nuclides. Since 145Ce has relatively low peak
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uncertainty in Figure 5.1 and high measurement precision in Figures 5.2, 5.3, and 5.4,

it may indicate that the fission product branching ratio with all fissile nuclides may

be in error.

In order to gain insight on the accuracy of fission product yield data, a table

of uncertainties from ENDF/B-VII.1 is listed in Table 5.3. As can be seen by this

table, there is very little consistency in the uncertainties for these yields. 233U has

considerably higher uncertainties for almost all fission product yields, with 239Pu and
235U containing less uncertainty for most of the listed fission products. This may

explain the biases seen uniquely in 233U. Although these experiments show some of

the most accurate short-lived fission product recoveries to be published, improvements

in nuclear data could could bring additional accuracy to these methods.

Table 5.3: Table of Fission Product Yield Uncertainties from ENDF/B-VII.1 for
Energy=0.0253 eV [3]

Isotope Thermal Cumulative Fission
Yield Uncertainty (%)
239Pu 233U 235U

94Sr 4.0 32 1.4
132Sb 8.0 64 6.0
94Y 2.0 32 1.0
93Sr 2.8 32 1.0
90Rb 16 11 1.4
145Ce 1.4 4.0 6.0
140Cs 8.0 16 1.4
108Rh 8.0 6.0 6.0
133Te 6.0 23 2.8
144La 8.0 4.0 1.4
104Tc 6.0 64 2.0
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5.3 System of Equations for Single Element Samples

Using the modeled fission product photopeak yields (Tables 5.1 and 5.2), the

overdetermined system of equations (Equation 3.3) can easily be constructed for a

single isotope. Figure 5.5 shows the C/E recovery results for fissile isotope samples of
239Pu, 233U, and 235U along with calculated 238U. 238U mass was calculated simply by

dividing the efficiency corrected theoretical photopeak counts per nanogram by the

measured photopeak area. Both PT-1 and PT-2 irradiations are shown in this figure

in addition to PT-2 data points for the MCNP calculated uncorrected spectrum.

This data uses the 238-group flux prior to the STAYSL-PNNL correction. Error bars

indicated on Figure 5.5 represent the uncertainty at one standard deviation calculated

by Equation 3.11.

Through developing this overdetermined system, highly accurate fissile sample

characterizations could be made with corrected values within 10% of their true

value. A major improvement between the PT-2 uncorrected spectrum and the PT-2

corrected and PT-1 spectra can be seen in all evaluated nuclides. The observed 20%

improvement towards a C/E of nearly 1.0 occurred when using SCALE data from the

corrected PT-2 spectrum. This was expected because of the 20% biases seen in prior

flux monitor measurements (Table 3.1). These results give strong evidence towards

an effective flux characterization on PT-2. One interesting trend that was noticed

is the consistent replicability of small measurement biases between the two different

neutron spectra (PT-1 and PT-2) and experimental conditions. This is likely due to

the small uncertainties experienced in the measured fissile mass in each sample, and

is an indicator of the high sensitivity of methods presented here. These uncertainties

are in the ranges of 0.8-0.9% for 239Pu, 3.2-3.4% for 233U, and 3.4-3.5% for 235U and
238U.

Figure 5.6 shows box and whisker plots for these same single-element measure-

ments for all four nuclides. For these plots, the uncorrected data was removed.

This spread shows that the single-isotope quantifications were highly precise, and
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Figure 5.5: PT-1, PT-2 corrected, and PT-2 uncorrected calculated over certified
values for nanogram quanitites of nuclides from single element irradiations of natural
uranium, high-purity 233U, and plutonium solutions

accurate within 10% of the certified values. The lack of an overdetermined system

for 238U quantification (due to using only one photopeak to make a quantification)

is a main reason for its low variability in C/E determination. Although slightly

larger than 238U, the three fissile isotopes analyzed showed high precision between two

different interrogating neutron spectra. This displays the effectiveness of generating

appropriate gamma sources through the SCALE modeling and simulation methods.

Similarly to Figure 5.5, the C/E values for 233U was observed to be consistently
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Figure 5.6: Box and whisker plots showing the spread of PT-1 and PT-2 corrected
C/E values

biased higher than the other nuclides shown in Figure 5.6. This bias is likely due to

the 238-group collapse’s effect on 233U fission rate, which could be corrected through

an adjustment in the cross section data or a more detailed flux characterization of the

1-10 eV neutron energies. This effect was discussed previously in the Fission Product

Recoveries section.

Another phenomena that has been noticed in these measurements is the tendancy

for 238U C/E values to recover lower than 1.0. This indicates that SCALE modeling

is consistently under-predicting the amount of gamma-rays that are received by the

detector during acquisition. This effect has been seen in the past at the NAA

laboratory because of the Kα gamma-rays that are emitted from lead that is being

bombarded by higher energy gamma rays during measurement. These gamma rays are

emitted at an energy of 72.8 and 74.9 keV, the second of which can pile up underneath

the very large 74.7 keV photopeak from 239U. Even though a graded shield was used
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in all of these experiments, some Kα gamma-rays are expected because of the high

gamma energies and count rates experienced from short-lived fission products.

5.4 Binary Mixtures

To take this analysis a step further, binary mixtures were prepared and analyzed

using the same overdetermined system of equations as before with the single element

samples. These samples were prepared by aliquoting quantities of two solutions

from Table 4.7 and evaporating the solution in a single polyethelene insert using

a drying oven. Figure 5.7 shows the results from running the overdetermined

system of equations for these binary samples after irradiation in PT-2 and using

the experimental procedure described in Table 4.8. The mixtures contained varying

amount of fissile mass and mixtures of 233U in 235U and 239Pu in 235U. The total fissile

mass and fissile ratios are listed Table 5.4.

Table 5.4: Sample Details for Binary Mixtures

Sample Identifier Total Fissile Mass (ng) 239Pu/235U 233U/235U

J22 85.28 0.52 –

J26 81.72 1.03 –

J11 104.41 – 1.50

J14 88.49 – 0.98

Figure 5.7 shows high accuracy in characterizing 239Pu, 233U, 235U, and 238U,

yielding the correct results within a 10% bias. It was noted that 233U possessed the

largest uncertainty, which was likely due to the large variability in fission product

C/E results seen the fission product box and whisker plots (Figure 5.3). This set

of experiments was then repeated with the same fissile mixture samples in the PT-1

spectrum. With over a magnitude of difference in flux in addition to the lower thermal
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Figure 5.7: Calculated over certified mass assay results for fissile mixtures irradiated
in PT-2

to epithermal ratio experienced in PT-1, this was a true test of the capabilities of

this generalized overdetermined system. Figure 5.8 shows that this method exhibited

high accuracy for each sample, and provided results within a 10% bias.

The uncertainties for these binary fissile mixture experiments are considerably

higher than the singe fissile isotope assays, but have little loss in accuracy. This is

likely due to a larger contribution of residuals from the linear fit. Rather than having

to establish a fit that satisfies one nuclide, the binary mixture has to satisfy two;

almost always making residuals larger. According to Equation 3.11 this uncertainty
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Figure 5.8: Calculated over certified mass assay results for fissile mixtures irradiated
in PT-1

at one sigma could be alleviated by obtaining a larger number of reliably modeled

signatures. The C/E results between PT-1 and PT-2 irradiations do have variability

in their characterizations, but are well within the measurement uncertainty. This

indicates that will a slightly less overdetermined system, there can have some small

variability in the assay results if conducted over multiple trials.

By conducting experiments with binary mixtures containing three different fissile

nuclides, this work has shown the advantage of applying an overdetermined system

of short-lived fission products. The C/E values for fissile mixtures were within 10%
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of their true value, with uncertainties less that 15%. This was also demonstrated

for different fissile ratios, and expected to be applicable over a wide range of

concentrations. It is hypothesized that by adding additional short-lived fission

product isotope photopeaks to this analysis, uncertainties can be lowered and

additional nuclides could be evaluated.

5.5 Matrices of Safeguards Interest

Another level of complexity was added by evaluating fissile material in matrices of

safeguards interest. The IAEA J-Swipe and TeX Swipe were used for this next set of

experiments. Both of the swipe versions are cellulosic swipes actively used in typical

IAEA nuclear facility inspection processes. The HFIR-NAA facility has considerable

experience in measuring trace uranium on IAEA J-Swipes using delayed neutron

activation analysis methods [39]. One of the challenges expected to be encountered

in these measurements is the activation products present in the irradiated swipe.

Therefore, a short irradiation and gamma spectroscopy measurement for each swipe

matrix was conducted in order to identify ingrowth of gamma lines that are not present

in the short-lived fission product spectrum. The activation products 24Na, 49Ca, and
108Ag were found with the J-swipe and 24Na, 49Ca, and 27Mg were found for the TeX

swipe. Additionally, to mimic what is already done with delayed neutron methods at

the HFIR-NAA facility, the samples were measured in-rabbit. This added additional

complexity since activation products were created from within the polyethylene rabbit

and radioactive contamination from the pneumatic tube was present on the rabbit’s

outer walls. The activation products identified after an empty rabbit irradiation in

PT-2 were: 56Mn, 28Al, 38Cl, 41Ar, and 51Cr. It is known that the 56Mn, 28Al, and
38Cl are activation products made from within the high-density polyethylene (HDP)

matrix, while 41Ar is created from activation of elemental Argon in air, and 51Cr is

created from activated Chromium acquired from the stainless steel pneumatic tube.

As can be seen in Table 5.5, the major photopeaks of these activation product do not
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give interferences to the short-lived fission product photopeaks used in this analysis.

The high energies of these fission products does cause a significant Compton shelf in

the gamma spectrum, and does raise the baseline for an increase in detection limits.

This effect is investigated further in the Detection Limits section.

Table 5.5: IAEA Swipe Activation Products

Isotope Origin Half-Life Major Photopeaks (keV)
24Na IAEA J-Swipe/TeX Swipe 14 h 1368, 2754
49Ca IAEA J-Swipe/TeX Swipe 8.7 m 3084
108Ag IAEA J-Swipe 2.4 m 633.0
27Mg IAEA TeX Swipe 9.5 m 843.8, 1014
28Al HDP Rabbit 2.2 m 1779
56Mn HDP Rabbit 2.6 h 846.8
41Ar Air inside Rabbit 110 m 1294
51Cr Activated Cr in Steel PT 27.7 d 320.1

The IAEA swipes were tightly folded and placed inside of the polyethylene rabbit

with µL quantities of natural and depleted uranium solution (from Table 4.7) pipetted

onto each swipe. These samples were then placed in a drying oven before being

heat sealed shut within the rabbit using a soldering iron. 235U enrichments are

listed in Table 5.6 and sample masses are indicated in Figure 5.9. These samples

were irradiated for 60 seconds each, given 120 seconds of decay, and measured for

360 seconds at 300mm above the detector endcap. After irradiation, measurement,

and post-processing using PeakEasy, the 235U short-lived fission product photopeak

areas were entered into the system of equations after SCALE modeling developed the

photopeak yield factors. Figure 5.9 shows the recoveries for 235U and 238U in each

sample, with uncertainty calculated to one standard deviation using Equation 3.11.
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Figure 5.9: C/E Recoveries for Uranium on IAEA Swipes

Table 5.6 shows the 235U enrichment results to greater detail. These listed

results gives great confidence in this method being able to perform well with an

activated matrix. This method performed to exceptional accuracy with identifying
235U concentration within 5% error. It is anticipated that matrices with increasing

complexity could be measured in this manner, and is a subject of interest in future

work. Additionally, a larger range of uranium enrichments could be measured in order

to find the accuracy of response for higher enriched uranium.
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Table 5.6: IAEA Swipe Sample Measurement Details

Sample Swipe Certified Uranium Calculated Uranium Uncertainty
Identifier Material Enrichment Enrichment
J29 J-Swipe 0.341% 0.352% 2.0%

J31 TeX Swipe 0.341% 0.354% 2.7%

J33 J-Swipe 0.725% 0.768% 2.8%

J35 TeX Swipe 0.725% 0.767% 2.4%

5.6 Detection Limits

In addition to these series of measurements, detection limits were evaluated with

the previously described irradiation and measurement conditions (Table 4.8) using

the Currie detection limit equation. This equation, when applied to gamma-ray

spectrometry, identifies the 95% confidence limit for photopeak detection above the

continuum counts (NB) by considering emission intensity (γi), detector efficiency (ε),

and measurement time (tm) [40]. NB was determined from the continuum achieved

by separate irradiations of similarly massive 235U and 239Pu samples. This detection

limit is referred to as the Minimum Detectable Activity (MDA) and was determined

using Equation 5.1.

MDA =
4.65
√
NB + 2.71

tmγiε
(5.1)

From this MDA, the collapsed one-group fission cross section multiplied by

accumulated fission yield (σfγfy) was used with irradiation and measurement

conditions to find the mass of target material required to produce the MDA.

Incorporating Avogadro’s number (NA) and atomic mass of the target nuclide (MA)

will cause Equation 5.2 to result in a minimum target mass for fission product
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detection (LT ) in nanograms.

LT =
MDA

φσe−λtd(1− e−λtirr)NAMA109
(5.2)

It was soon found that irradiation time, measurement height, and decay time had

large effect on these simulated detection limits. Therefore, a limitation of 60 seconds

of irradiation, 30mm of measurement height, and 120 seconds of decay was placed

on the measurements. A comparison between the PT-1 samples irradiated for a

shorter amount of time and measured at 300mm and the PT-2 irradiated IAEA swipes

measured at 30mm can be seen in Figure 5.10. Based on these optimized irradiation

and measurement conditions experienced in the single fissile isotope characterization

for the IAEA J-swipe, detection limits for most analyzed fission product isotopes were

found to be less than 1 nanogram. This indicates that fissile sample quantifications

could be made at sub-nanogram levels without making significant changes to the

described fissile sample characterization processes.
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Figure 5.10: Detection Limits for 235U Fission Products
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Chapter 6

Conclusions

6.1 Research Outcomes

This research has shown several successful fissile sample characterizations using

a methodology that is generalizable to variations in the interrogating neutron

spectrum and a sample’s fissile composition. This has been accomplished by

incorporating modern modeling and simulation tools such as SCALE and STAYSL-

PNNL with a multivariate analysis of several fission product photopeaks, ultimately

creating an overdetermined system of equations. An unparalleled accuracy of short-

lived fission product photopeak yield predictions was possible using a thorough

flux characterization, COUPLE 238-group cross section collapse, and ORIGEN’s

transmutation and gamma decay source output. The benchmarking comparison

between Tables 2.2 and 2.3 and Tables 4.2 and 4.3 illustrate this significant

improvement in accuracy. These photopeak simulations were used with measurements

conducted with an HPGe detector and digital MCA operated in dual loss-free counting

to obtain a true dead-time corrected spectrum. Once this overdetermined system

was developed, solving for fissile constituents was relatively simple. The unique

capabilities of the HFIR-NAA facility has enabled these measurements to reach fissile
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mass detection limits never seen before in non-destructive analysis measurements (see

Tables 1.1 and 2.1).

The speed, accuracy, and low detection limits of this method illustrate its

applicability to the safeguards and nuclear forensics technical communities. This

methodology could potentially reduce the time needed to conduct safeguards and

nuclear forensics measurement for samples containing special nuclear materials. In

addition, the high signal-to-noise ratio provides a non-destructive measurement

method that can be less dependent on matrix interferences from the sample matrix

or background than current state of the art.

The generalizability of this method gives great promise towards its implementation

at other reactor-based irradiation facilities. STAYSL-PNNL is a powerful tool for

characterizing an irradiation facility’s neutron spectrum, and can provide an output

applicable to COUPLE cross-section generation. Additionally, these methods are

generalizable to assay other fissile materials. With the necessary computational tools

in place, accurate photopeak yields for other fissile materials interrogated in a neutron

beam can be calculated and used to characterize samples.

6.2 Lessons Learned

Short-lived fission product measurements are both a challenge to measure and to

model. Therefore, a significant portion of this effort went into creating highly reliable

models of fission product photopeak yields. It was found early on that prior work on

short-lived fission product gamma spectroscopy had typically used a simplistic view

of a fission cross sections by not conducting a weighted spectrum collapse. Since

significant errors were present in these research efforts, a full 238-group spectrum

collapse (using COUPLE from the SCALE modeling and simulation suite) was

established. This method used an MCNP model output for each pneumatic tube

irradiation position in HFIR. This approach was very effective at producing accurate

photopeak yields for PT-1, which was used to benchmark against other short-lived
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fission product spectroscopy methods. Although the MCNP modeled spectrum was

satisfactory for PT-1, additional flux characterization efforts had to be undertaken

for PT-2.

When routine PT-2 flux monitor measurements were compared with SCALE

model outputs, there was approximately a 20% difference in the modeled activation

rates and what was actually measured in the lab. This gave significant doubts in

the accuracy of the PT-2 MCNP model. It was soon realized that an experimental

characterization had to be conducted if fissile sample characterizations were to be

completed in the PT-2 NAA facility. This flux characterization utilized several

monitors that possessed thermal, epithermal, and fast neutron reactions that could

be quantified through gamma spectroscopy. By covering these monitors in cadmium,

a better sampling of the epithermal and fast neutron energies (>0.5 eV) was made.

This flux characterization not only gave great improvements in the daily flux monitor

activation modeling, but also for the irradiation of fissile isotopes evaluated in this

method.

Another lesson learned in this research was regarding the appropriate methods

for collecting gamma-ray spectroscopy data for short-lived fission products. Having a

high-resolution HPGe with digital MCA and over 10,000 bins was certainly needed,

but accounting for rapidly decaying and ingrowth of some nuclides had to be

accounted for with specialized software. Traditional neutron activation analysis uses

simple linear dead-time corrections to account for the electronic lag caused high

count rate samples. Since short-lived fission products have very high activities,

decay in short periods of time, and can have ingrowth of some isotopes, an accurate

representation of the fission product activities must be calculated using real-time

dead-time corrections. This is done through the Canberra Lynx MCA through a

mode called Dual Loss-Free Counting. This method was discussed in the Background

section, and shown by other researchers to be accurate at characterizing radioactive

nuclide activities at dead-times as high as 80% [23].
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6.3 Opportunities for Future Work

In order to further prove the generalizability of this method, there are several other

experiments that could be conducted. Although two different irradiation positions

were used in HFIR, their spectra shapes are somewhat similar (see Figure 2.7). It

would be a logical step to move these experiments to a more hardened spectrum within

HFIR, possibly within the flux-trap region (Figure 2.6). Additionally, characterizing

the flux spectra at other reactor-based facilities could lead to developing this same

fissile sample characterization method for other neutron spectrum shapes. Lastly,

testing these methods in a non-reactor neutron spectrum could potentially open

pathways for developing this technique in a more portable manner. These non-reactor

based sources could be 252Cf or Deuterium-Tritium (DT) fusion based generators.

One potential area of further investigation is the bias that was observed in the 233U

fission product modeling. For nearly all fission products evaluated in this work, the

photopeak yields were modeled consistently smaller than their measured counterparts

(see Figure 5.6). This was hypothesized to be an effect created from the total 233U

cross-section collapse. This collapse could be altered because of an error in the 238-

group cross section or the continuous fission cross section of 233U obtained from nuclear

data. Further characterization of the HFIR-NAA laboratory’s pneumatic tube spectra

would have to be conducted in order to narrow down the cause of this discrepancy. If

this bias were to be corrected, there is a possibility for more accurate fissile isotope

characterizations to be made.

Another opporutnity for future work could be to study the sensitivity of

irradiation, decay, and detector acquisition time on the accuracy of a fissile sample

characterization. There may be more methods to optimize detection limits, or guard

against high dead-times. Additionally, there may be more fission product indicators

at longer decay intervals. The methods developed in this work were to optimize a

full characterization scheme taking less than 10 min, but additional time could gain

some accuracy.
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Due to sample handling requirements, there was no capability to characterize

samples with less than two minutes of decay, although alterations to the currently

installed measurement system are currently being made to reduce this decay period

and allow for more signatures to be collected. Additionally, the coupling of Delayed

Neutron Activation Analysis (DNAA) as an orthogonal total fissile mass measurement

could be investigated. It is anticipated that this form of nondestructive fissile mass

characterization will be of interest for nuclear forensics and safeguards measurements

containing trace amounts of fissile material. To serve a broader application and

display further generalizability of this method, more complex sample matrices and

additional fissile nuclides are being looked into for further experimentation.
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Appendix A

SCALE 238-Group Structure

Adopted from Scale6.1Manual Table M4.2.1 [41]

Group Lower Boundary (MeV) Upper Boundary (MeV)

1 1.00E-11 1.00E-10
2 1.00E-10 5.00E-10
3 5.00E-10 7.50E-10
4 7.50E-10 1.00E-09
5 1.00E-09 1.20E-09
6 1.20E-09 1.50E-09
7 1.50E-09 2.00E-09
8 2.00E-09 2.50E-09
9 2.50E-09 3.00E-09
10 3.00E-09 4.00E-09
11 4.00E-09 5.00E-09
12 5.00E-09 7.50E-09
13 7.50E-09 1.00E-08
14 1.00E-08 2.53E-08
15 2.53E-08 3.00E-08
16 3.00E-08 4.00E-08
17 4.00E-08 5.00E-08
18 5.00E-08 6.00E-08
19 6.00E-08 7.00E-08
20 7.00E-08 8.00E-08
21 8.00E-08 9.00E-08
22 9.00E-08 1.00E-07
23 1.00E-07 1.25E-07
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Group Lower Boundary (MeV) Upper Boundary (MeV)

24 1.25E-07 1.50E-07
25 1.50E-07 1.75E-07
26 1.75E-07 2.00E-07
27 2.00E-07 2.25E-07
28 2.25E-07 2.50E-07
29 2.50E-07 2.75E-07
30 2.75E-07 3.00E-07
31 3.00E-07 3.25E-07
32 3.25E-07 3.50E-07
33 3.50E-07 3.75E-07
34 3.75E-07 4.00E-07
35 4.00E-07 4.50E-07
36 4.50E-07 5.00E-07
37 5.00E-07 5.50E-07
38 5.50E-07 6.00E-07
39 6.00E-07 6.25E-07
40 6.25E-07 6.50E-07
41 6.50E-07 7.00E-07
42 7.00E-07 7.50E-07
43 7.50E-07 8.00E-07
44 8.00E-07 8.50E-07
45 8.50E-07 9.00E-07
46 9.00E-07 9.25E-07
47 9.25E-07 9.50E-07
48 9.50E-07 9.75E-07
49 9.75E-07 1.00E-06
50 1.00E-06 1.01E-06
51 1.01E-06 1.02E-06
52 1.02E-06 1.03E-06
53 1.03E-06 1.04E-06
54 1.04E-06 1.05E-06
55 1.05E-06 1.06E-06
56 1.06E-06 1.07E-06
57 1.07E-06 1.08E-06
58 1.08E-06 1.09E-06
59 1.09E-06 1.10E-06
60 1.10E-06 1.11E-06
61 1.11E-06 1.12E-06
62 1.12E-06 1.13E-06
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Group Lower Boundary (MeV) Upper Boundary (MeV)

63 1.13E-06 1.14E-06
64 1.14E-06 1.15E-06
65 1.15E-06 1.18E-06
66 1.18E-06 1.20E-06
67 1.20E-06 1.23E-06
68 1.23E-06 1.25E-06
69 1.25E-06 1.30E-06
70 1.30E-06 1.35E-06
71 1.35E-06 1.40E-06
72 1.40E-06 1.45E-06
73 1.45E-06 1.50E-06
74 1.50E-06 1.59E-06
75 1.59E-06 1.68E-06
76 1.68E-06 1.77E-06
77 1.77E-06 1.86E-06
78 1.86E-06 1.94E-06
79 1.94E-06 2.00E-06
80 2.00E-06 2.12E-06
81 2.12E-06 2.21E-06
82 2.21E-06 2.30E-06
83 2.30E-06 2.38E-06
84 2.38E-06 2.47E-06
85 2.47E-06 2.57E-06
86 2.57E-06 2.67E-06
87 2.67E-06 2.77E-06
88 2.77E-06 2.87E-06
89 2.87E-06 2.97E-06
90 2.97E-06 3.00E-06
91 3.00E-06 3.05E-06
92 3.05E-06 3.15E-06
93 3.15E-06 3.50E-06
94 3.50E-06 3.73E-06
95 3.73E-06 4.00E-06
96 4.00E-06 4.75E-06
97 4.75E-06 5.00E-06
98 5.00E-06 5.40E-06
99 5.40E-06 6.00E-06
100 6.00E-06 6.25E-06
101 6.25E-06 6.50E-06
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Group Lower Boundary (MeV) Upper Boundary (MeV)

102 6.50E-06 6.75E-06
103 6.75E-06 7.00E-06
104 7.00E-06 7.15E-06
105 7.15E-06 8.10E-06
106 8.10E-06 9.10E-06
107 9.10E-06 1.00E-05
108 1.00E-05 1.15E-05
109 1.15E-05 1.19E-05
110 1.19E-05 1.29E-05
111 1.29E-05 1.38E-05
112 1.38E-05 1.44E-05
113 1.44E-05 1.51E-05
114 1.51E-05 1.60E-05
115 1.60E-05 1.70E-05
116 1.70E-05 1.85E-05
117 1.85E-05 1.90E-05
118 1.90E-05 2.00E-05
119 2.00E-05 2.10E-05
120 2.10E-05 2.25E-05
121 2.25E-05 2.50E-05
122 2.50E-05 2.75E-05
123 2.75E-05 3.00E-05
124 3.00E-05 3.13E-05
125 3.13E-05 3.18E-05
126 3.18E-05 3.33E-05
127 3.33E-05 3.38E-05
128 3.38E-05 3.46E-05
129 3.46E-05 3.55E-05
130 3.55E-05 3.70E-05
131 3.70E-05 3.80E-05
132 3.80E-05 3.91E-05
133 3.91E-05 3.96E-05
134 3.96E-05 4.10E-05
135 4.10E-05 4.24E-05
136 4.24E-05 4.40E-05
137 4.40E-05 4.52E-05
138 4.52E-05 4.70E-05
139 4.70E-05 4.83E-05
140 4.83E-05 4.92E-05
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Group Lower Boundary (MeV) Upper Boundary (MeV)

141 4.92E-05 5.06E-05
142 5.06E-05 5.20E-05
143 5.20E-05 5.34E-05
144 5.34E-05 5.90E-05
145 5.90E-05 6.10E-05
146 6.10E-05 6.50E-05
147 6.50E-05 6.75E-05
148 6.75E-05 7.20E-05
149 7.20E-05 7.60E-05
150 7.60E-05 8.00E-05
151 8.00E-05 8.20E-05
152 8.20E-05 9.00E-05
153 9.00E-05 1.00E-04
154 1.00E-04 1.08E-04
155 1.08E-04 1.15E-04
156 1.15E-04 1.19E-04
157 1.19E-04 1.22E-04
158 1.22E-04 1.86E-04
159 1.86E-04 1.93E-04
160 1.93E-04 2.08E-04
161 2.08E-04 2.10E-04
162 2.10E-04 2.40E-04
163 2.40E-04 2.85E-04
164 2.85E-04 3.05E-04
165 3.05E-04 5.50E-04
166 5.50E-04 6.70E-04
167 6.70E-04 6.83E-04
168 6.83E-04 9.50E-04
169 9.50E-04 1.15E-03
170 1.15E-03 1.50E-03
171 1.50E-03 1.55E-03
172 1.55E-03 1.80E-03
173 1.80E-03 2.20E-03
174 2.20E-03 2.29E-03
175 2.29E-03 2.58E-03
176 2.58E-03 3.00E-03
177 3.00E-03 3.74E-03
178 3.74E-03 3.90E-03
179 3.90E-03 6.00E-03
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Group Lower Boundary (MeV) Upper Boundary (MeV)

180 6.00E-03 8.03E-03
181 8.03E-03 9.50E-03
182 9.50E-03 1.30E-02
183 1.30E-02 1.70E-02
184 1.70E-02 2.50E-02
185 2.50E-02 3.00E-02
186 3.00E-02 4.50E-02
187 4.50E-02 5.00E-02
188 5.00E-02 5.20E-02
189 5.20E-02 6.00E-02
190 6.00E-02 7.30E-02
191 7.30E-02 7.50E-02
192 7.50E-02 8.20E-02
193 8.20E-02 8.50E-02
194 8.50E-02 1.00E-01
195 1.00E-01 1.28E-01
196 1.28E-01 1.50E-01
197 1.50E-01 2.00E-01
198 2.00E-01 2.70E-01
199 2.70E-01 3.30E-01
200 3.30E-01 4.00E-01
201 4.00E-01 4.20E-01
202 4.20E-01 4.40E-01
203 4.40E-01 4.70E-01
204 4.70E-01 5.00E-01
205 5.00E-01 5.50E-01
206 5.50E-01 5.73E-01
207 5.73E-01 6.00E-01
208 6.00E-01 6.70E-01
209 6.70E-01 6.79E-01
210 6.79E-01 7.50E-01
211 7.50E-01 8.20E-01
212 8.20E-01 8.61E-01
213 8.61E-01 8.75E-01
214 8.75E-01 9.00E-01
215 9.00E-01 9.20E-01
216 9.20E-01 1.01E+00
217 1.01E+00 1.10E+00
218 1.10E+00 1.20E+00
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Group Lower Boundary (MeV) Upper Boundary (MeV)

219 1.20E+00 1.25E+00
220 1.25E+00 1.32E+00
221 1.32E+00 1.36E+00
222 1.36E+00 1.40E+00
223 1.40E+00 1.50E+00
224 1.50E+00 1.85E+00
225 1.85E+00 2.35E+00
226 2.35E+00 2.48E+00
227 2.48E+00 3.00E+00
228 3.00E+00 4.30E+00
229 4.30E+00 4.80E+00
230 4.80E+00 6.43E+00
231 6.43E+00 8.19E+00
232 8.19E+00 1.00E+01
233 1.00E+01 1.28E+01
234 1.28E+01 1.38E+01
235 1.38E+01 1.46E+01
236 1.46E+01 1.57E+01
237 1.57E+01 1.73E+01
238 1.73E+01 2.00E+01
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Appendix B

Flux Characterizations

Group Structure from Appendix A

Neutron Flux Measured in (n/cm2s)

Group PT-2 STAYSL-PNNL Input PT-2 STAYSL-PNNL Output PT-1

1 3.473E+09 2.600E+10 4.126E+10
2 4.457E+09 1.000E+10 5.342E+10
3 8.298E+09 1.300E+10 1.476E+11
4 1.004E+10 1.000E+10 1.288E+11
5 1.539E+10 1.900E+10 2.130E+11
6 2.767E+10 4.500E+10 3.213E+11
7 3.687E+10 4.600E+10 4.297E+11
8 5.683E+10 5.700E+10 7.234E+11
9 1.191E+11 1.900E+11 1.692E+12
10 1.747E+11 2.160E+11 1.895E+12
11 4.209E+11 9.210E+11 6.671E+12
12 7.397E+11 1.154E+12 8.550E+12
13 4.112E+12 1.346E+13 7.771E+13
14 4.973E+12 4.455E+12 2.691E+13
15 3.895E+12 5.798E+12 5.656E+13
16 4.926E+12 5.762E+12 5.053E+13
17 4.217E+12 4.132E+12 4.296E+13
18 3.436E+12 2.892E+12 3.506E+13
19 2.739E+12 2.016E+12 2.804E+13
20 2.159E+12 1.410E+12 2.199E+13
21 1.674E+12 9.818E+11 1.737E+13
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Group PT-2 STAYSL-PNNL Input PT-2 STAYSL-PNNL Output PT-1

22 1.587E+12 1.953E+12 2.757E+13
23 1.265E+12 1.281E+12 1.464E+13
24 6.036E+11 5.195E+11 7.783E+12
25 2.919E+11 2.182E+11 4.492E+12
26 1.470E+11 9.690E+10 2.908E+12
27 7.073E+10 4.180E+10 2.203E+12
28 4.691E+10 2.510E+10 1.681E+12
29 3.955E+10 1.930E+10 1.510E+12
30 3.565E+10 1.600E+10 1.275E+12
31 2.886E+10 1.200E+10 1.104E+12
32 2.061E+10 7.900E+09 1.026E+12
33 2.053E+10 7.500E+09 9.092E+11
34 2.393E+10 1.590E+10 1.742E+12
35 2.025E+10 1.210E+10 1.550E+12
36 1.879E+10 1.030E+10 1.420E+12
37 1.859E+10 9.400E+09 1.262E+12
38 1.846E+10 4.400E+09 5.957E+11
39 1.727E+10 3.800E+09 5.369E+11
40 1.576E+10 6.900E+09 1.041E+12
41 1.272E+10 5.100E+09 9.546E+11
42 1.088E+10 4.000E+09 8.518E+11
43 1.088E+10 3.800E+09 8.334E+11
44 1.049E+10 3.500E+09 8.242E+11
45 1.000E+10 1.600E+09 3.547E+11
46 1.000E+10 1.500E+09 3.343E+11
47 1.000E+10 1.500E+09 3.594E+11
48 1.000E+10 1.400E+09 3.062E+11
49 1.000E+10 6.000E+08 1.247E+11
50 1.000E+10 5.000E+08 1.145E+11
51 1.000E+10 6.000E+08 1.288E+11
52 1.000E+10 5.000E+08 1.167E+11
53 1.000E+10 6.000E+08 1.466E+11
54 1.000E+10 5.000E+08 1.350E+11
55 1.000E+10 5.000E+08 1.329E+11
56 1.000E+10 5.000E+08 1.297E+11
57 1.000E+10 6.000E+08 1.307E+11
58 1.000E+10 5.000E+08 1.394E+11
59 1.000E+10 5.000E+08 1.461E+11
60 1.000E+10 5.000E+08 1.241E+11
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Group PT-2 STAYSL-PNNL Input PT-2 STAYSL-PNNL Output PT-1

61 1.000E+10 5.000E+08 1.048E+11
62 1.000E+10 5.000E+08 1.100E+11
63 1.000E+10 5.000E+08 1.165E+11
64 1.000E+10 1.200E+09 2.794E+11
65 1.000E+10 1.200E+09 2.771E+11
66 1.000E+10 1.200E+09 2.629E+11
67 1.000E+10 1.100E+09 2.703E+11
68 1.000E+10 2.300E+09 4.733E+11
69 1.000E+10 2.100E+09 4.595E+11
70 1.000E+10 2.100E+09 4.816E+11
71 1.000E+10 2.000E+09 4.373E+11
72 1.000E+10 2.000E+09 4.289E+11
73 1.000E+10 3.400E+09 7.202E+11
74 1.000E+10 3.200E+09 6.975E+11
75 1.000E+10 3.000E+09 6.453E+11
76 1.000E+10 2.900E+09 6.411E+11
77 1.000E+10 2.400E+09 5.129E+11
78 1.000E+10 1.700E+09 3.335E+11
79 1.000E+10 3.400E+09 7.097E+11
80 1.000E+10 2.400E+09 4.838E+11
81 1.000E+10 2.300E+09 5.230E+11
82 1.000E+10 2.000E+09 4.253E+11
83 1.000E+10 2.100E+09 4.475E+11
84 1.000E+10 2.300E+09 4.945E+11
85 1.000E+10 2.200E+09 4.646E+11
86 1.000E+10 2.100E+09 4.231E+11
87 1.000E+10 2.000E+09 4.360E+11
88 1.000E+10 2.000E+09 4.070E+11
89 1.000E+10 5.000E+08 1.454E+11
90 1.000E+10 1.000E+09 1.971E+11
91 1.000E+10 1.800E+09 3.959E+11
92 1.000E+10 6.300E+09 1.301E+12
93 1.000E+10 3.800E+09 7.633E+11
94 1.000E+10 4.200E+09 8.249E+11
95 1.000E+10 1.670E+10 2.091E+12
96 1.000E+10 1.167E+10 5.882E+11
97 1.000E+10 8.030E+09 8.885E+11
98 1.000E+10 6.690E+09 1.221E+12
99 1.000E+10 2.350E+09 4.718E+11
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Group PT-2 STAYSL-PNNL Input PT-2 STAYSL-PNNL Output PT-1

100 1.000E+10 2.240E+09 4.757E+11
101 1.000E+10 2.160E+09 4.191E+11
102 1.000E+10 2.070E+09 4.215E+11
103 1.000E+10 1.200E+09 2.622E+11
104 1.000E+10 7.310E+09 1.374E+12
105 1.000E+10 6.760E+09 1.320E+12
106 1.000E+10 5.440E+09 1.132E+12
107 1.000E+10 8.120E+09 1.479E+12
108 1.000E+10 1.940E+09 3.879E+11
109 1.000E+10 4.610E+09 9.107E+11
110 1.000E+10 3.640E+09 7.059E+11
111 1.000E+10 2.620E+09 5.546E+11
112 1.000E+10 2.690E+09 5.076E+11
113 1.000E+10 3.290E+09 5.931E+11
114 1.000E+10 3.450E+09 7.031E+11
115 1.000E+10 4.820E+09 9.270E+11
116 1.000E+10 1.500E+09 2.994E+11
117 1.000E+10 2.910E+09 5.543E+11
118 1.000E+10 2.760E+09 4.496E+11
119 1.000E+10 3.920E+09 7.652E+11
120 1.000E+10 6.030E+09 1.137E+12
121 1.000E+10 5.410E+09 1.021E+12
122 1.000E+10 4.930E+09 9.444E+11
123 1.000E+10 2.300E+09 4.100E+11
124 1.000E+10 9.000E+08 1.673E+11
125 1.000E+10 2.610E+09 5.576E+11
126 1.000E+10 8.400E+08 1.772E+11
127 1.000E+10 1.400E+09 2.925E+11
128 1.000E+10 1.450E+09 2.620E+11
129 1.000E+10 2.330E+09 4.786E+11
130 1.000E+10 1.510E+09 2.733E+11
131 1.000E+10 1.610E+09 2.917E+11
132 1.000E+10 7.100E+08 1.330E+11
133 1.000E+10 1.960E+09 3.684E+11
134 1.000E+10 1.900E+09 3.492E+11
135 1.000E+10 2.090E+09 3.727E+11
136 1.000E+10 1.510E+09 2.912E+11
137 1.000E+10 2.210E+09 4.432E+11
138 1.000E+10 1.540E+09 2.935E+11
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Group PT-2 STAYSL-PNNL Input PT-2 STAYSL-PNNL Output PT-1

139 1.000E+10 1.040E+09 1.976E+11
140 1.000E+10 1.580E+09 2.850E+11
141 1.000E+10 1.540E+09 2.616E+11
142 1.000E+10 1.500E+09 2.635E+11
143 1.000E+10 5.650E+09 1.030E+12
144 1.000E+10 1.980E+09 3.535E+11
145 1.000E+10 3.610E+09 6.333E+11
146 1.000E+10 2.130E+09 3.643E+11
147 1.000E+10 3.660E+09 6.925E+11
148 1.000E+10 3.070E+09 5.857E+11
149 1.000E+10 2.950E+09 5.296E+11
150 1.000E+10 1.400E+09 2.115E+11
151 1.000E+10 5.260E+09 9.936E+11
152 1.000E+10 6.090E+09 1.071E+12
153 1.000E+10 4.530E+09 7.428E+11
154 1.000E+10 3.730E+09 6.708E+11
155 1.000E+10 2.030E+09 3.612E+11
156 1.000E+10 1.410E+09 2.382E+11
157 1.000E+10 7.804E+10 4.131E+12
158 1.000E+10 1.940E+09 3.186E+11
159 1.000E+10 4.240E+09 6.875E+11
160 1.000E+10 6.800E+08 1.145E+11
161 1.000E+10 9.070E+09 1.240E+12
162 1.000E+10 9.800E+09 1.697E+12
163 1.000E+10 3.850E+09 7.748E+11
164 1.000E+10 6.378E+10 5.333E+12
165 1.000E+10 1.119E+10 1.852E+12
166 1.000E+10 1.080E+09 1.756E+11
167 1.000E+10 1.867E+10 3.057E+12
168 1.000E+10 1.078E+10 1.717E+12
169 1.000E+10 1.496E+10 2.340E+12
170 1.000E+10 1.840E+09 2.948E+11
171 1.000E+10 8.410E+09 1.366E+12
172 1.000E+10 1.128E+10 1.926E+12
173 1.000E+10 2.250E+09 3.604E+11
174 1.000E+10 6.690E+09 1.048E+12
175 1.000E+10 8.480E+09 1.320E+12
176 1.000E+10 1.237E+10 1.892E+12
177 1.000E+10 2.350E+09 3.730E+11
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Group PT-2 STAYSL-PNNL Input PT-2 STAYSL-PNNL Output PT-1

178 1.000E+10 2.410E+10 3.566E+12
179 1.000E+10 1.679E+10 2.372E+12
180 1.000E+10 9.470E+09 1.278E+12
181 1.000E+10 1.903E+10 2.512E+12
182 1.000E+10 1.501E+10 2.184E+12
183 1.000E+10 2.154E+10 3.140E+12
184 1.000E+10 1.026E+10 1.477E+12
185 1.000E+10 2.271E+10 3.159E+12
186 1.000E+10 5.930E+09 9.251E+11
187 1.000E+10 2.200E+09 3.356E+11
188 1.000E+10 8.030E+09 1.231E+12
189 1.000E+10 1.101E+10 1.795E+12
190 1.000E+10 1.520E+09 2.215E+11
191 1.000E+10 5.010E+09 8.806E+11
192 1.000E+10 2.010E+09 2.975E+11
193 1.000E+10 9.140E+09 1.443E+12
194 1.000E+10 1.396E+10 2.428E+12
195 1.000E+10 8.780E+09 1.536E+12
196 1.000E+10 1.608E+10 3.003E+12
197 1.000E+10 1.677E+10 3.415E+12
198 1.000E+10 1.124E+10 2.605E+12
199 1.000E+10 1.078E+10 2.475E+12
200 1.000E+10 2.740E+09 6.009E+11
201 1.000E+10 2.610E+09 4.554E+11
202 1.000E+10 3.700E+09 7.896E+11
203 1.000E+10 3.410E+09 7.653E+11
204 1.000E+10 5.410E+09 1.232E+12
205 1.000E+10 2.300E+09 4.605E+11
206 1.000E+10 2.580E+09 5.066E+11
207 1.000E+10 6.190E+09 1.034E+12
208 1.000E+10 7.500E+08 1.695E+11
209 1.000E+10 5.580E+09 1.301E+12
210 1.000E+10 5.010E+09 1.205E+12
211 1.000E+10 2.740E+09 5.642E+11
212 1.000E+10 9.000E+08 2.210E+11
213 1.000E+10 1.580E+09 3.753E+11
214 1.000E+10 1.240E+09 2.518E+11
215 1.000E+10 5.240E+09 1.156E+12
216 1.000E+10 4.790E+09 9.664E+11
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Group PT-2 STAYSL-PNNL Input PT-2 STAYSL-PNNL Output PT-1

217 1.000E+10 4.900E+09 1.177E+12
218 1.000E+10 2.290E+09 5.073E+11
219 1.000E+10 2.940E+09 7.843E+11
220 1.000E+10 1.640E+09 4.225E+11
221 1.000E+10 1.790E+09 4.187E+11
222 1.000E+10 3.900E+09 1.032E+12
223 1.000E+10 1.213E+10 3.063E+12
224 1.000E+10 1.511E+10 2.349E+12
225 1.000E+10 3.030E+09 3.384E+11
226 1.000E+10 1.348E+10 7.775E+11
227 1.000E+10 3.777E+10 1.416E+12
228 1.000E+10 7.902E+09 3.760E+11
229 1.000E+10 2.768E+10 6.686E+11
230 1.000E+10 1.457E+10 2.151E+11
231 1.000E+10 9.526E+09 4.199E+11
232 1.000E+10 7.242E+09 4.345E+11
233 1.000E+10 3.414E+09 3.565E+11
234 1.000E+10 2.446E+09 4.036E+11
235 1.000E+10 3.428E+09 3.982E+11
236 1.000E+10 4.484E+09 3.861E+11
237 1.000E+10 6.545E+09 3.960E+11
238 1.000E+10 1.265E+08 3.581E+09
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