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Abstract

The general state space models present a flexible framework for modeling dynamic

systems and therefore have vast applications in many disciplines such as engineering,

economics, biology, etc. However, optimal estimation problems of non-linear non-

Gaussian state space models are analytically intractable in general. Sequential Monte

Carlo (SMC) methods become a very popular class of simulation-based methods for

the solution of optimal estimation problems. The advantages of SMC methods in

comparison with classical filtering methods such as Kalman Filter and Extended

Kalman Filter are that they are able to handle non-linear non-Gaussian scenarios

without relying on any local linearization techniques. In this thesis, we present

an advanced SMC method and the study of its asymptotic behavior. We apply

the proposed SMC method in a target tracking problem using different observation

models. Specifically, a distributed SMC algorithm is developed for a wireless sensor

network (WSN) that incorporates with an informative-sensor detection technique.

The novel SMC algorithm is designed to surmount the degeneracy problem by

employing a multilevel Markov chain Monte Carlo (MCMC) procedure constructed

by engaging drift homotopy and likelihood bridging techniques. The observations

are gathered only from the informative sensors, which are sensing useful observations

of the nearby moving targets. The detection of those informative sensors, which are

typically a small portion of the WSN, is taking place by using a sparsity-aware matrix

decomposition technique. Simulation results showcase that our algorithm outperforms
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current popular tracking algorithms such as bootstrap filter and auxiliary particle

filter in many scenarios.
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Chapter 1

Introduction

The deployment of sensor networks allows the collection and distributed processing

of information in challenging environments whose structure is unknown and is

dynamically varying with time. In such environments, the network itself, as well as

humans, are prone to spatiotemporally unpredictable threats that may be generated

due to malicious attacks, functional failures and even human errors. Thus, effective

and rapid detection and tracking of such threats are essential.

However, multi-object identification and trajectory estimation require first a

robust association of sensors information with targets across space and time. Targets

present in the sensing field affect only a small portion of the deployed wireless sensor

networks (WSNs). Thus, given the limited resources, it is pertinent to identify the

sensors that acquire information-bearing observations about the targets and use only

those which provide such information. Many existing tracking techniques require all

sensors to be active Ahmed et al. (2010); Hlinka et al. (2013); Olfati-Saber (2005);

Ozdemir et al. (2009); Zhu et al. (2009) or at least multiple local fusion centers are

required for data processing Coates (2004) which may be resource-consuming given

the locality of the objects affecting only a small number of sensors.

To this end, a distributed algorithmic framework is developed here that associates

targets with the sensors which acquire informative measurements about these targets,
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and subsequently performs tracking using only these informative sensors. Specifically,

sensors which are positioned close to the same target acquire data measurements that

tend to be correlated. Such correlations induce a sparse structure in the sensor data

covariance matrix. Sparsity is an attribute found in many natural and man-made

signals, and it has been exploited in a wide range of applications including sparse

regression, sub-Nyquist sampling and statistical inference, e.g., see Candès et al.

(2006); Tibshirani (1996a).

To facilitate association of sensor measurements with targets a pertinent frame-

work is derived to analyze the sensor data covariance into sparse factors whose

support will indicate subsets of sensors sensing the same target. Different from Guan

et al. (2012); Hoyer (2004a); Lee and Seung (2001); Lin (2007a); Ulfarsson and Solo

(2008); Zou et al. (2006), the matrix factorization scheme developed here does not

impose structural requirements to the unknown factors such as orthogonality and/or

positivity of the factor entries. Covariance sparse factorization was also proposed in

Schizas (2013) to identify sensing units acquiring information about static sources in

a monitored field. However, the work in Schizas (2013) is dealing with stationary

settings where the sources of information present in the field are immobile, while the

assumed linearity in the data models is very restrictive.

Once the information of pertinent sensors has been acquired based on the support

of the sparse factors which are obtained via sparsity-aware data covariance matrix

decomposition, the next step of our framework is to estimate the objects’ trajectories.

This task involves the reconstruction of some unknown state quantities of the system

of interest from noisy observations. We call this type of problems the filtering

problem. In most cases, a mathematical model (typically presented in the form of

stochastic or deterministic partial differential equations) that describes the dynamics

of system and the model of observation are available. Therefore, the prior knowledge

about the system and likelihood function provided through an observation model

allow us to formulate the problem into Bayesian framework, and all the statistical

inference on the unknown state can be obtained based on the posterior distribution

2



in the light of Bayesian theory. In many scenarios, observations arrive sequentially in

time (as in the WSN environment the active sensors keep sensing their nearby field

and obtain new measurements) and we need to perform the statistical inference on-

line, hence it motivates the development of mathematical methods that can update

the posterior distribution sequentially in time as the latest observation becomes

available. A recursive filtering scheme provides the mechanism that processes the

observations sequentially using only most current measurement. There is no need

to store all the available data in the sensors and reprocess them every time in the

computation when new observation arrives. This computational simplicity is another

motivation for sequential (recursive) methods. Such a task of estimating the state of

a system that varies in time based on the observations is common in many disciplines

and applications other than target tracking, including finance, economics, pollution

monitoring, communications, terrain referenced navigation, audio engineering, see the

partial list, Kang and Maroulas (2013); Kang et al. (2014); Liu (2008); Mahler and

Maroulas (2013); Maroulas and Nebenfuhr (2015); Maroulas et al. (2015); Hamilton

and Susmel (1994); Law et al. (2015); Rabiner and Juang (1993); Jelinek (1997);

Hamilton (1989); Hamilton and Raj (2013); Kim et al. (1999, 1998); Bunke and

Caelli (2001); Koski (2001).

Statistically, tracking of objects boils down to estimate the posterior conditional

distribution, p(xi0:k|y
j
1:k), for each target i with state history xi0:k = (xi0, . . . , x

i
k), and

associated observational history yj1:k = (yj1, . . . , y
j
k). The objects’ state vector is related

to pertinent dynamics expressed by a stochastic differential equation (SDE). The

associated data history yj1:k is given by the observation process which provides the

likelihood.

There are many proposed methods that solve different types of filtering problems.

In the case where the system and observation models are linear and noise is distributed

according to a Gaussian distribution, an analytic solution of the posterior distribution

is tractable and optimal using the Kalman filter Kalman (1960); Welch and Bishop

(2006) which provides analytic formulation for updating the mean and covariance
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recursively. If the system model is partially observed, finite state-space Markov model,

the Hidden Markov Model filter is possible to provide an analytic solution Cappé

et al. (2005); Smith et al. (2013). However, there are only a few cases where the

analytic solutions are tractable. The real system is oftentimes much more complicated

and typically contains non-Gaussian noise and nonlinear dynamics in which cases it

is almost impossible to compute the analytic solution of the posterior distribution.

Many approximation schemes are therefore developed over the last few decades. For

example, the extended Kalman filter Bar-Shalom et al. (2004); Ristic et al. (2004)

uses Taylor series expansion to linearize the nonlinear functions and approximates

the posterior by a Gaussian density, therefore performance of EKF will be highly

degraded in the cases that exist severe nonlinearity and non-Gaussianity. Since in

most practical scenarios, the posterior distribution is much more complex than a

Gaussian distribution, the Gaussian sum filter Sorenson and Alspach (1971) attempts

to approximate the posterior distribution by a Gaussian mixture model (GM) which

is a weighted sum of Gaussian densities. Ideally, the approximation can be made as

accurate as required by choosing appropriate weights and components; however, it

is not a trivial task to operate it on-line and in some cases the components of GM

can grow exponentially Ristic et al. (2004). Another class of nonlinear filters employs

statistical linearization techniques (different from Taylor expansion) to approximate

the posterior distribution by a Gaussian distribution. For example, the unscented

Kalman filter Julier et al. (1995); Wan and Van Der Merwe (2000) uses unscented

transformation and choose a set of samples to determine the mean and covariance of

the posterior. These filters play a crucial role in the target tracking scenario where

they carry out the state estimation of moving targets recursively in time. Relying on

these filtering methods, there are a plethora of strategies which address the multi-

target tracking problem, for example see the partial list of Baum and Hanebeck (2013,

2012); Kang et al. (2014); Maroulas et al. (2015); Liu and Chen (1998); Mahler (2007);

Maroulas and Stinis (2012); Vo et al. (2005); Mahler and Maroulas (2013); Maroulas

and Nebenfuhr (2015) and references therein. The aforementioned linear/non-linear
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filters are to a certain extent very successful; nevertheless, they are also very limited

due to the restrictive assumptions (such as linearity and Gaussian posterior) and

can present poor performances in large amount of real applications where substantial

nonlinearity, non-Gaussianity and high-dimensionality exhibited in the systems of

interest.

Sequential Monte Carlo (SMC) methods, or equivalently particle filters Cappé

et al. (2005); Smith et al. (2013), are a set of simulation-based methods that present

very attractive advances in computing the posterior distribution when the system is

highly non-linear and posterior is severely non-Gaussian. The essential idea of particle

filter is to use a set of weighted particles (samples) to form an empirical distribution

that estimates the posterior distribution and the accuracy of the approximation only

depends on the number of samples Crisan and Doucet (2002). Therefore, it is a

powerful alternative in the case of substantial nonlinearity and non-Gaussianity.

Although it has been a popular approach, it may degenerate if several time steps

and multiple targets are involved, or it may require an extremely large number of

particles. The reason is that typically only a few samples have dominant weights

and the rest of weights is close to zero. It has actually been shown in Snyder et al.

(2008) that only one sample carries the approximation and has a nonzero weight

for high dimensional problems. Indeed, the problem of degeneracy carries over in

the multi-target tracking problem and when it comes to tracking in a WSN then

few samples need to be considered due to stringent energy capabilities of sensors.

To this end, the tracking process here is carried out via, what we call, a drift

homotopy likelihood bridging particle filter algorithm (DHLB-PF). We engage the

idea of appending an extra Markov chain Monte Carlo (MCMC) step Berzuini

and Gilks (2001); Gilks and Berzuini (2001); Weare (2009) after the resampling

step which aims to move the particles to statistically significant regions. At the

modified resampling step, particles are resampled based not only on the current

observation (as in the standard resampling technique) but also according to the

previous one. The idea is that highly weighted “children” particles have been
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produced by highly weighted “parent” particles. On the other hand, at the same

time, the nature of the posterior distribution needs to be preserved. Consequently, at

the appended MCMC step, the drift homotopy likelihood bridging (DHLB) technique

considers a two-fold simultaneous approach. On one hand, a sequence of SDEs with

modified drifts that interpolate between the original and modified driftsis considered.

These SDEs correspond to modified dynamics of the objects in the WSN, thus a

sequence of appropriate transition densities, f`(xk|xk−1), ` = 0, . . . , L, is taken into

account. On the other hand, at the same time, we consider a sequence of likelihood

densities, gm(yk|yk−1), 0 ≤ m ≤ 1. The interpolation of dynamics and likelihood

bridgingengage multiple levels, `, m for which at `,m = 0 the modified dynamics and

the uniform likelihoodare, in effect, as opposed at ` = L,m = 1 where the original

transition density (corresponding to the original SDE which represents the dynamics

of objects) and likelihood density are. All levels from 0 to L−1 are auxiliary and aim

to facilitate the MCMC sampling that may start with a very poor initial condition.

Specifically, using an appropriate MCMC scheme, one samples particles at level `

with an initial condition the particles at level `−1. The DHLBtechnique allows us to

gradually morph a particle with a low weight to a particle with a significant weight

while at the same time respecting the nature of the posterior distribution.

The thesis is organized as follows. A review of existing methods is given in chapter

2 discussing popular sensor scheduling schemes and sequential Monte Caro filters. In

chapter 3, we present a novel distributed tracking algorithm comprising a informative

sensor detection method and a new particle filter, also a almost surely convergence of

the particle filter is shown. The last chapter exhibits extensive numerical experiments

showing convincing performance of the DHLB-PF algorithm.
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Chapter 2

Review of existing methods

2.1 Problem formulation

Consider a wireless sensor network (WSN) with a total number of p sensors. Each

sensor is able to communicate with its neighboring sensors which are within its

communication range. The immediate neighborhood for sensor ρ, ρ = 1, · · · , p, is

denoted by Aρ, while the entire WSN is modeled as an undirected graph whose inter-

sensor links are symmetric. The connectivity information of the WSN is summarized

by a p× p adjacency matrix A whose (ρ, ρ′)th entry will be 1 if sensors ρ and ρ′ are

connected and zero otherwise. Sensors monitor a field on which an unknown and

time-varying number of multiple moving targets is present. The targets on the field

are sensed via measurements, denoted by yρ(k), acquired at sensor ρ at time instant k.

For example, as shown in Fig.2.1, each sensor can commute with its nearby neighbors

(connected by red lines) and objects s1, s2 in the field are sensed by only a small

portion of the sensor network in the colored regions. Moreover, we consider that

only one moving object, say the jth target, is close to sensor ρ whereas the rest are

sufficiently far thus their contribution in yρ(k) is very small. This can be realized

when targets are sufficiently separated in space such that no more than one target is

positioned inside the sensing region of a sensor. As the sensing range (and sensing
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region) of the sensors is reduced, objects may be located closer while ensuring the

previous assumption of one dominant target.

Figure 2.1: A sensor network observing a field. Figure courtesy from Ren et al.
(2015).

Let’s assume at time instant k there are Mk objects in the sensing field of the

WSN. The observation model for the local measurements acquired at an arbitrary

sensor ρ, ρ = 1, · · · , p is given as

yρ(k) =

Mk∑
m=1

bρm(k)sm(k) + wρ(k), (2.1)

where sm(k) denotes the intensity of a signal emitted from target m, and bρm(k) =

d−2
ρm(k) quantifies the signal attenuation due to wireless transmission, where dρm(k)

is the Euclidean distance between a sensor ρ and a target m at time instant k. The

driving noise, wρ(k), denotes zero-mean white sensing noise with variance equal to

σ2
w. After fusing all sensor measurements into a vector, eq. (2.1) can be summarized

in a regression form

yk = Bksk + wk, (2.2)

where sk = [s1(k), · · · , sMk
(k)]T contains the intensities of signals emitted by all

targets at time instant k. The noise wk has covariance σ2
wI. The vector yk =
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[y1(k), · · · , yp(k)]T holds all the observations of the p sensors, and Bk = [b1, · · · , bMk
]

is a p ×Mk matrix that corresponds to the unknown regression vectors. Let bm =

[b1m, · · · , bpm]T correspond to the mth column of Bk, which contains the attenuation

a target signal is experiencing to reach all p sensors in the network. The entries in bm

with large amplitudes (i.e. close distance between a sensor and an object) indicate the

informative sensors, while the entries with small amplitudes imply otherwise. Since

targets in practice affectonly a small number of sensors, namely the ones close to the

vicinity of a target, the regression vector bm is expected to be sparse, i.e., only a few

of the entries are of relatively large amplitudes and the rest of the entries are close to

zero. Based on the measurement model of eq.(2.2), and given that the entries of sk

are uncorrelated, the data covariance can be obtained by the following formula

Σy,k = BkDsBkT + σ2
wIp = H̄kH̄k

T
+ σ2

wIp, (2.3)

where Ds is the diagonal covariance matrix of the source vector sk, namely, Ds =

diag(σ2
1, · · · , σ2

Mk
), and H̄k = BkD1/2

s . Let us define

My,k = Σy,k − σ2
wIp = H̄kH̄k

T
. (2.4)

Notice that Bk is a sparse matrix andDs is diagonal matrix, thus H̄k = [h̄1,k, · · · , h̄Mk,k]

is also a sparse matrix that has the same sparsity structure with Bk. Hence, the large

amplitude entries of H̄t also indicate the informative sensors that are close to the

moving targets at time instant k. Therefore, according to eq. (2.4), if the matrix My,k

can be decomposed as the product of two sparse matrices, then it is possible to identify

the set of informative sensors, as well as associate targets with sensor observations

which plays a crucial role in the likelihood function related to trajectory estimation of

the objects in the WSN. Once the informative sensors have been recovered, the second

phase proceeds with tracking the objects. What follows next is a survey of pertinent

matrix decomposition methods involving certain constrains, such as sparsity, as well
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as outline of sequential Monte Carlo techniques which will be employed in the tracking

stage.

2.2 Sparsity methods

The first yet crucial component of the distributed tracking algorithm is to identify

the sensors that acquire informative measurements about sources of interest. There

are a number of existing methods that address the related problem of sensor selection

in WSNs. For example, the algorithm proposed in Gupta et al. (2006) optimized the

sensor scheduling problem while tracking the moving targets at each time instant.

It chooses the sensor randomly according to some probability distribution which is

chosen so as to minimize the expected steady-state error covariance. The scheme was

developed based on Kalman filter and Riccati recursion, therefore it is limited to linear

Gaussian dynamics and Gaussian posterior distribution. It is not straightforward to

generalize such scheme to a more general case, for example, when it has no restrictions

on the distributional properties of the system noises. Since communication power

consumption accounts for 70% of the total power in a sensor network, some sensor

selection techniques are developed based on power constraints. For example, the work

by Thatte and Mitra (2008) presented a method for sensor selection which focuses

on minimizing the power used for communication within SN rather than considering

resources used for sensing and data processing. The sensor network considered in

Thatte and Mitra (2008) consists of a fusion center with different types of topologies,

such as star topology, branch topology and linear topology, see Fig.2.2.

Another interesting sensor activation control algorithm was proposed by Krishna-

murthy et al. (2008), where the decision is made by taking into account an activation

control utility function. This cost function, based on which both modes of activation

and sleeping are evaluated, takes into consideration of the measurement contribution

as well as the power consumption of each sensor. It employs the standard game

theoretic framework to define the utility function and controls the sensor activation
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Figure 2.2: The sensor network topology: (a) star, (b) branch, (c) linear topology.
Figure Courtesy of Thatte and Mitra (2008).

by considering the correlated equilibria. Convex optimization technique has also

been employed for sensor selection problem. As proposed by Joshi and Boyd (2009),

the selection of sensors is based on the maximum-likelihood estimate of state which

is represented in terms of sensor measurements. The quality of estimation can be

written as the volume of the η−confidence ellipsoid, then the subset of sensors is

chosen to minimize the log volume of the resulting confidence ellipsoid. In the work

of Fuemmeler and Veeravalli (2010), sleeping strategies for sensors are designed based

on the assumption that the sensing ranges of the sensors completely cover the region of

interest with no overlap. Each sensor can be in one of the two states: awake or asleep.

Further, object sensing can be operated only in the awake state. The dynamics of

moving object to be tracked is described by a first-order discrete Markov chain whose

state space consists of n + 1 state, where n denotes the number of sensors and the

(n + 1)th state means the object is out of the sensing range. The design of sleeping

policies is developed based on the tracking and predicting locations of objects.
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Under a relatively simple assumption which is that the distribution of the

measurement vector is assumed Gaussian under two hypothesis (event occurring,

event not occurring), the work by Bajović et al. (2011) proposed a method of selecting

sensor subset by considering the Kullback-Leibler(KL) distance of the probability

distributions of the measurement vectors, however a fusion center is also assumed in

their framework.

Sensors that are located close to a target acquire data measurements that tend to

be correlated, and it turns out that the covariance matrix of the sensor measurements

can be analyzed into sparse factors. The problem of determining the measurement-

informative sensors will boil down to the task of decomposing the data covariance

matrix into sparse factors and locate their support entries. Related decomposition

techniques have been studied in the literature.

In fact, the nonnegative matrix and tensor factorization have been a great

interest in matrix factorization since it provides hidden components with physical

or physiological meaning and interpretations. Nonnegative matrix factorization

(NMF) and its extension to 3D nonnegative tensor factorization (NTF) aim to

reconstruct latent nonnegative common structures from typically redundant raw data.

These techniques have vast applications in data analysis such as pattern recognition,

segmentation, clustering, dimensionality reduction, text mining, signal and image

processing and gene separation Lee and Seung (1999); Berry et al. (2007); Sajda

et al. (2004); Cichocki et al. (2006); Brunet et al. (2004).

The following nonnegative constrained linear form has been used as the underlying

model in NMF

Y = WH +N, (2.5)

where Y = (yik) ∈ RI×K is a matrix of observations, W = (wij) ∈ RI×J
+ is an

unknown nonnegative basis matrix, H = (hjk) ∈ RJ×K
+ is matrix of unknown hidden

nonnegative components, and N = (nik) ∈ RI×K denotes a matrix of noise or errors,

where the notation R+ denotes the nonnegative subspace. The low rank J is assumed
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to be known, or it can be easily estimated via singular value decomposition (SVD).

The decomposition can be achieved by alternating minimization of a suitable cost

function, or optionally a set of cost functions, subject to nonnegativity constraints.

The cost function can be typically determined by a prior knowledge on statistical

distribution of noise. Also, other natural constraints such as sparsity, smoothness are

often assumed in the decomposition process.

For normally distributed noisy perturbations, the cost function is usually the

regularized squared Euclidean distance given in the following form,

DF (Y ||WH) =
1

2
‖Y −WH‖2

F + αWJW (W ) + αHJH(H), wij ≥ 0, hjk ≥ 0,∀i, j, k

(2.6)

where ‖ · ‖F denotes the Frobenius norm, αW and αH are nonnegative regularization

parameters, and the terms JW (W ), and JH(H) are used to impose certain character-

istics.

For non-Gaussian distributed noise we can use the α− or β−divergence Cichocki

et al. (2006). For instance, the α−divergence can be expressed as

Dα
W (Y ||WH) =

1

α(α− 1)

∑
ik

(
yαik(WH)1−α

ik − αyik + (α− 1)(WH)ik
)
, α 6= 0 (2.7)

where (WH)ik denotes the ikth entry of WH.

The following methods are typically used for performing the alternating min-

imization of a given cost function (such as eq.(2.6) and eq.(2.7)) , multiplicative

update rules, projected gradient, fixed point alternating least square(ALS), and quasi-

Newton.

The multiplicative update rules are the most commonly used algorithms for

optimizing the cost function Lee and Seung (1999); Berry et al. (2007). For

instance, by applying the standard gradient descent technique to the cost function

and selecting suitable learning rates we obtain the following algorithm. The

entry wi,j is updated recursively by wij
[(Y HT )ij−αWΦW (wij)]+

(WHHT )ij+ε
and hjk is updated by
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wjk
[(WTY )jk−αHΦH(hjk)]+

(WTWH)jk+ε
, where the operator [·]+ is defined as [x]+ = max{ε, x} for

small ε, and ΦW (wij) = ∂JW (W )/∂wij, ΦH(hjk) = ∂JH(H)/∂hjk. Similarly, we can

derive an alternative NMF multiplicative rule for normalized weights by applying

gradient descent technique to the α−divergence, then the entry wij is updated by

wij

 K∑
j=1

(yik/(WH)ik)αhjk

K∑
k=1

hjk

1/α

and hjk is updated by

 I∑
i=1

wij(yik/(WH)ik)α

K∑
k=1

wij

1/α

, Multi-

plicative algorithms are relatively simple and typically parameter free, but with

relatively slow convergence speed Cichocki et al. (2007a). A second method for solving

the problem is the projected gradient method Lin (2007b). According to this method,

the non-negative basis matrix W can be recurrently updated by W = [W − ηWPW ]+.

Similarly, the updated matrix H is given by H = [H − ηHPH ]+, where PW and

PH are descent directions for W and H. There are several rules for choosing the

adaptive learning rates ηW and ηH , see Cichocki et al. (2007b) for details. A third

very powerful technique is the fixed point ALS algorithm. Fixed point alternating

least squares (FP-ALS) algorithms proposed by Cichocki et al. (2007a) do not directly

employ the gradient descent technique but attempt to establish iterative algorithms

based on the Karush-Kuhn-Tucker (KKT) conditions. For instance, one can compute

the gradients of the cost function and set it equal to zero and we can have the FP-

ALS algorithm which updates W by [(Y HT − αWΦW (W ))(HHT )−1]+ and updates

H by [(W TW )−1(W TY − αHΦH(H))]+, where ΦW (W ) = ∂JW (W )/∂W,ΦH(H) =

∂JH(H)/∂H. Instead of minimizing the global cost function we can minimize the set

of local cost functions defined as

Dj
F (Y j||wjHj) =

1

2
‖Y j − wjhj‖2

F + αjWJW (wj) + αjHJH(hj), j = 1 · · · , J, (2.8)

where

Y j = Y −
∑
r 6=j

wrh̄r = Y −WH + wjh̄j, (2.9)
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wj ∈ RI×1
+ are columns of W , h̄j ∈ R1×K

+ are rows of H. Form stationary point

and under sparsity constraint, i.e., JW (wj) = ‖wj‖1 and JH(h̄j) = ‖h̄j‖1, we can

obtain a new set of sequential learning rules, the so-called hierarchical ALS (HALS)

algorithm Cichocki et al. (2007a) that updates wj by 1
h̄j h̄Tj

[Y jh̄Tj −α
j
H ]+ and updates h̄j

by 1
wTj wj

[wTj Y
j − αjH ]+, j = 1, 2, · · · , J. Furthermore, the quasi-Newton (QN) method

Zdunek and Cichocki (2007); Cichocki et al. (2007a) can be used if H is estimated with

solving a highly over-determined system of linear equations :HTW T = Y T , i.e., for

K � J . In order to improve the performance of the NMF algorithms and to reduce

the risk of getting stuck in local minima of a cost function subject to nonconvex

alternating minimization rule, a hierarchical multi-stage procedure combined with

multistart initialization has been developed and details of the algorithms can be

found in Cichocki et al. (2006, 2007b,a).

A very popular and interesting decomposition algorithm with sparseness con-

straints was presented by Hoyer (2004b). The algorithm was an extension on the

non-negative matrix factorization (NMF) technique. It introduced a measure of

sparsity and devised a projected gradient descent algorithm for NMF with sparsity

constraints. To impose sparsity constraints on only one matrix W or H, this

algorithm uses a multiplicative update rule for updating the counter matrix which

suffers from slow convergence. Pascual-Montano et al. (2006) suggested that non-

smooth NMF (nsNMF), which was also developed based on multiplicative update

rules, outperformed previous sparse NMF variants on their numerical experiments.

Pauca et al. (2006) proposed a constrained NMF (CNMF) formulation,

min
W,H
‖Y −WH‖2

F + α‖W‖2
F + β‖H‖2

F , s.t.W,H ≥ 0 (2.10)

where α and β are regularization parameterss. A sparse algorithm using the following

least squares,

min
H
‖Y −WH‖2

F + β‖H‖2
F , (2.11)

15



has been used in Pauca et al. (2004); Gao and Church (2005). This algorithm

forces negative values in H to be zero in the computation, in which case, no theory

guarantees the convergence of the algorithm. However, it is suggested in the literature

that L1−norm based formulations would be more appropriate than L2−norm based

formulations so as to control sparsity Tibshirani (1996b). Kim and Park (2007)

proposed sparse NMFs based on alternating non-negative-constrained least squares.

They introduced two formulations and the corresponding algorithms for sparse NMFs,

i.e. the so-called SNMF/R formulation for sparse H as following

min
W,H

1

2
{‖Y −WH‖2

F + η‖W‖2
F + β

n∑
j=1

‖H(:, j)‖2
1}, s.t.W,H ≥ 0, (2.12)

where H(:, j) is the jth column vector of H, η > 0 is a parameter to suppress ‖W‖2
F ,

and β > 0 is a regularization parameter to balance the trade-off between the accuracy

of the approximation and the sparseness of H. The SNMF/L formulation for sparse

W is given as follows

min
W,H

1

2
{‖Y −WH‖2

F + η‖H‖2
F + α

n∑
j=1

‖W (:, j)‖2
1}, s.t.W,H ≥ 0, (2.13)

where W (i, :) is the ith row vector of W , η > 0 is a parameter to suppress ‖H‖2
F , and

α > 0 is a regularization parameter to balance the trade-off between the accuracy

of the approximation and the sparseness of W . Their formulations imposed the

sparsity on a factor of NMF utilize L1−norm minimization and the corresponding

algorithms are based on alternating non-negativity constrained least squares (ANLS)

which iterates the following until convergence,

min
H
‖(W,

√
βe1×k)

TH − (Y, 01×n)‖2
F , s.t.H ≥ 0 (2.14)
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where e1×k ∈ R1×k is a row vector with all components equal to one and 01×n ∈ R1×n

is a zero vector, the motation (A, a) denotes appending the matrix A a vector a and

min
W
‖(HT ,

√
ηIk)

TW T − (Y T , 0k×m)‖2
F , s.t.W ≥ 0 (2.15)

where Ik is an k×k identity matrix and 0k×m is a zero matrix of size k×m. Eq.(2.14)

minimizes L1-norm of the columns of H which imposes sparsity on H. For SNMF/L

the algorithm runs in the same fashion.

Also, PCA techniques are also involved in developing the sparse matrix decom-

position methods, for example, in d’Aspremont et al. (2007), they proposed a direct

approach for sparse principle components analysis by directly incorporating a sparsity

criterion in the PCA formulation, then forming a convex relaxation of the problem.

The work in Zhou et al. (2012) proposed a fast NMF using low-rank approximation

technique to alleviate the problem of slow convergence for NMF algorithms. Since

the major bottleneck of the slow convergence is caused by the matrix multiplications

with large matrices. Zhou et al. (2012) suggested to replace the large matrices by

much smaller ones, and therefore achieved a much lower time complexity and space

complexity.

We provided a brief summary on the popular matrix decomposition methods

which based on the NMF techniques and also can be used in the case where further

constraints, such as sparsity, are required, and next we move to the sequential Monte

Carlo filters.

2.3 Monte Carlo Filtering methods

2.3.1 Hidden Markov Model

The available dynamics system model and the observation model in the filtering

problems typically form a Hidden Markov Model (abbreviated HMM), or equivalently

state-space model. The hidden Markov model is loosely speaking a Markov chain
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observed through noisy perturbations. The dynamical model compromises a Markov

chain, which we denote by {xk}k≥0, where k ∈ N denotes time instant. We assume this

Markov chain take values in some general state space. Nevertheless, the Markov chain

is hidden which means the stochastic process {xk}k≥0 is not observable. Observer has

access to another stochastic process {yk}k≥0 which is linked to the Markov chain such

that xk, for any k, governs the distribution of the corresponding yk. All statistical

inference on the hidden Markov chain {xk}k≥0 has to be made via {yk}k≥0 only, as

{xk}k≥0 is not observed.

We first briefly revisit the definitions regarding the Markov chain on a general

state space. Assume that two real valued stochastic processes {xk}k≥0 and {yk}k≥0

defined on a probability space denoted by (Ω,F , P ), where Ω is the state space, F is

the σ−algebra and P is the probability measure, and xk ∈ Rnx , and let (Rnx ,B(Rnx))

be the measurable space, where B(Rnx) denotes the Borel σ−algebra over Rnx . We

then provide the definition of a transition kernel and a Markov chain in the following

Definition 2.1. The function K(·, ·) : (Rnx ,B(Rnx)) → [0, 1] is called a Markov

kernel or a transition kernel if

1. for each x ∈ Rnx the mapping A ∈ B(Rnx) → K(x,A) is a probability measure

on (Rnx ,B(Rnx)),

2. for each A ∈ B(Rnx) the mapping x ∈ Rnx → K(x,A) is a B(Rnx)−measurable

function.

Definition 2.2. A sequence of random variables {xk}k∈N on a probability space

(Ω,F , P ) mapping into (Rn,B(Rn)) is called a Markov chain with transition kernel

K if for all n ∈ N and A ∈ B(Rn) one has

P (xk+1 ∈ A|x1, · · · , xk) = P (xk+1 ∈ A|xk) = K(xk, A)
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almost surely. The distribution

π0(A) = P (x1 ∈ A),∀A ∈ B(Rn)

is called the initial distribution.

Definition 2.3. The Markov chain is said to be time-homogeneous if the transition

kernel is independent of time instant k.

To this end, a formal definition of a hidden Markov model can be summarized as

follows

Definition 2.4. A hidden Markov model is a bivariate discrete time process

{xk, yk}k≥0, where {xk}k≥0 is a Markov chain and, conditional on {xk}, {yk}k≥0 is a

sequence of independent random variables such that the conditional distribution of yk

only depends on xk.

A graphical illustration of dependencies is given in Fig.2.3. The distribution of

yk conditionally on the past observations y0, · · · , yk−1 and the past values of the

state x0, · · · , xk, is determined by xk only. We should point out that such graphical

illustration is only used to provide an intuitive perspective rather than mathematically

rigorousness. Also, the Markov chain we consider is time-homogeneous and the

conditional distribution of yk given xk does not depend on k either.

More specifically, let us consider the following generic nonlinear dynamical system

of interest described in state-space form

• System model

xk = a(xk−1, uk−1) (2.16)

• Observation model

yk = b(xk, vk) (2.17)

Equations (2.16) and (2.17) mean the hidden state xk and the observations yk

are assumed to be generated by nonlinear functions a(·) and b(·). The state and
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Xt-1 Xt Xt+1

yt-1 yt yt+1

Figure 2.3: Graphical model demonstrating the dependencies (depicted by arrow
lines) of hidden Markov model between hidden states xt and the observation yt.

observation noise uk and vk are assumed to be independent. We make the assumption

that the stochastic processes {xk} and {yk} generated by (2.16) and (2.17) form a

hidden Markov model. We further assume that the initial state x0 is distributed

according to a known distribution π0(x0).

The joint probability density of states and observations denoted by π0:T,0:T (x0:T , y0:T ),

is given by

π0:T,0:T (x0:T , y0:T ) = π0(x0)g(y0|x0)
T∏
k=1

f(xk|xk−1)g(yk|xk), (2.18)

where f is the transition density and g is the likelihood. Therefore, a sample from

(2.18) can be simulated according to Alg. 1

Algorithm 1 Generating N i.i.d Random Samples from a hidden Markov Model

1: Initialization at time k = 0, {xi0}i=1,··· ,N ∼ π0(x0), yi0 ∼ g(y0|xi0), i = 1, · · · , N
2: for k = 1 : T do
3: Sample xik ∼ f(xk|xik−1), i = 1, · · · , N
4: Sample yik ∼ g(yik|xik−1), i = 1, · · · , N
5: end for
6: (xi0, · · · , xiT , yi0, · · · , yiT ), i = 1, · · · , N are N i.i.d samples from π0:T,0:T (x0:T , y0:T )
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The statistical inference for the general nonlinear dynamic system involves

computing the posterior distribution of a collection of state variables xi:j =

{xi, · · · , xj} conditioned on a batch of observations, y0:k = {y0, · · · , yk}, denoted

by πi:j|0:k(xi:j|y0:k). One may be interested in predicting the state xk based on the

past observations, i.e. j > k, or in refining the estimation xk given past, current,

or future observations (j < k). These are respectively the prediction and smoothing

problems. For i = j = k, it is the filtering problem. A closed form of the posterior

distribution can be computed in only in a very specific cases, for example, the linear

Gaussian model and the discrete hidden Markov model. In the vast majority of

cases, nonlinearity or non-Gaussianity preclude an analytic solution, e.g., see Ristic

et al. (2004); Cappé et al. (2005). For nonlinear dynamic systems, There are also

many filtering methods that can be used to make statistical inference. The extended

Kalman filter (EKF) and its variants are designed to solve nonlinear filtering problem

based on linearization of the state and observation models. However, the EKF

is known to perform poorly Ristic et al. (2004) if the system exhibits substantial

nonlinearity and if the state and the observation noise are significantly non-Gaussian.

Another alternative is the Gaussian sum filter which approximates the posterior

distribution by a Gaussian mixture model Alspach and Sorenson (1972); Kulhavỳ

(1990). More recently, some grid-based algorithms have been developed that use

a set of deterministic points to represent the posterior distribution accurately. For

example, the unscented Kalman filter (UKF) which is based on the sigma points Ristic

et al. (2004). Whereas these techniques have been applied successfully in certain cases

Valverde and Terzija (2011); Chatzi and Smyth (2009); He et al. (2011); Horwood

and Poore (2011), they are valid only if the posterior distribution can be closely

approximated by a Gaussian distribution. Towards that end, SMC methods have

been proposed to bypass the stringent assumptions on the dynamics and posterior

distribution.

The Monte Carlo methods for filtering problem have been existing for several

decades and the pioneering works can be tracked back to Handschin and Mayne
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(1969); Handschin (1970). The bootstrap filter Gordon et al. (1993) was the first

practically successful sequential Monte Carlo method for nonlinear filtering and many

more similar independent works followed afterwards Kitagawa (1996); Del Moral

(1996); Liu and Chen (1998). A key advantage of SMC methods is its great

generality which allows statistical inference of the full posterior distribution in general

state-space model which can be non-linear and non-Gaussian. The accuracy of the

estimation depends only the number of samples. What follows next we discuss the

associated sequential Monte Carlo methods starting with the standard Monte Carlo

technique.

2.3.2 Monte Carlo and Importance Sampling Methods

In the context of filtering problem, we are interest in computing the posterior

distribution at some time instant k, i.e., π0:k|0:k(x0:k|y0:k). In the light of Monte Carlo

methods, we assume that one can generate N identical independently distributed

(i.i.d) samples, called particles herein, from the posterior distribution π0:k|0:k(x0:k|y0:k),

i.e. {xi0:k}i=0,··· ,N , then an empirical distribution that approximates the posterior

distribution is represented by

πN0:k|0:k(dx0:k|y0:k) =
1

N

N∑
i=1

δxi0:k(dx0:k) (2.19)

where δxi0:k(dx0:k) denotes the delta-Dirac mass located at sample point xi0:k. Then

the expectation of f(x) with respect to the posterior distribution, i.e. E(f(x)), is

estimated using the empirical measure 1
N

N∑
i=1

f(xi0:k). By Owen (2013), we have the

following strong law of large number (SLLN).

Theorem 2.5. If the variance of f(x0:k) is finite, i.e. σ2
f < +∞, then

EN(f(x))
a.s.−−→ E(f(x)), N → +∞. (2.20)
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where
a.s.−−→ denotes almost surely convergence.

A central limit theory also holds, e.g. see Chung (2001), which is summarized

below,

Theorem 2.6. The central limit theory holds if samples are i.i.d and the variance of

f(x0:k) is finite,
√
N (EN(f(x))− E(f(x)))

d−→ N (0, σ2
f ) (2.21)

where
d−→ denotes convergence in distribution.

In the case where we cannot draw i.i.d samples from posterior distribution, we

resort an alternative method called importance sampling.

Oftentimes, it is a rather formidable task to draw i.i.d samples from the posterior

distribution π0:k|0:k(x0:k|y0:k). An alternative solution is the importance sampling

method, which introduces a proposal distribution, called importance sampling

distribution, that differs the posterior distribution but has a similar shape. Let denote

the importance sampling distribution by π̃0:k|0:k(x0:k|y0:k) and assume the support of

π0:k|0:k(x0:k|y0:k) is a subset of the support of π̃0:k|0:k(x0:k|y0:k). Then we have that

E(f(x0:k)) =

∫
f(x0:k)w(x0:k)π̃0:k|0:k(x0:k|y0:k)dx0:k∫

w(x0:k)π̃0:k|0:k(x0:k|y0:k)dx0:k

, (2.22)

where w(x0:k) is called the importance weight which is given by

w(x0:k) =
π0:k|0:k(x0:k|y0:k)

π̃0:k|0:k(x0:k|y0:k)
. (2.23)

Eq.(2.22) suggests if we manage to generate N i.i.d samples from π̃0:k|0:k(x0:k|y0:k),

i.e. {xi0:k, i = 1, · · · , N}, then the expectation (2.22) is approximated by

EN(f(x0:k)) =

1
N

N∑
i=1

f(xi0:k)w(xi0:k)

1
N

N∑
j=1

w(xi0:k)

=
N∑
i=1

f(xi0:k)w̃(xi0:k), (2.24)
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where w̃(xi0:k) is called the normalized importance weights given by

w̃(xi0:k) =
w(xi0:k)
N∑
j=1

w(xj0:k)

. (2.25)

The importance sampling also follows a SLLN and CLT, e.g. see Owen (2013);

Cappé et al. (2005), given below,

Theorem 2.7. Suppose π̃0:k|0:k(x0:k|y0:k) is a probability density function with

π̃0:k|0:k(x0:k|y0:k) > 0 whenever π0:k|0:k(x0:k|y0:k) > 0. Let {xi0:k, i = 1, · · · , N} be

i.i.d samples follows π̃0:k|0:k(x0:k|y0:k), and EN(f(x0:k)) the self-normalized importance

sampling estimate given by eq.(2.24), then

EN(f(x0:k))
a.s−→ E(f(x0:k)), N →∞.

where
a.s−→ denotes almost surely convergence.

Theorem 2.8. Let f be a measurable function such that E(|f |) < ∞. Assume that

{xi0:k, i = 1 · · · , N} are i.i.d samples follows π̃0:k|0:k(x0:k|y0:k) and f satisfies

Eπ̃0:k|0:k(1 + f 2)(
π0:k|0:k

π̃0:k|0:k

)2 <∞,

then
√
N(EN(f(x0:k))− E(f(x0:k))

d−→ N(0, σ2
π̃(f)),

where σπ̃(0:k|0:k)(f) = Eπ̃(0:k|0:k)(f − E(f))2(
π0:k|0:k
π̃0:k|0:k

)2.

The importance sampling procedure essentially provide a empirical measure of the

posterior distribution by

πN0:k|0:k(x0:k|y0:k) =
N∑
i=1

w̃(xi0:k)δxi0:k(dx0:k). (2.26)
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The importance sampling is a very useful tool when simple Monte Carlo is hard to

operate due to complexity of posterior distribution. However, to generalize the basic

idea of importance sampling to a sequential setting, we need to design the importance

sampling distribution in a nontrivial way. This is because it is crucial to design an

efficient algorithm that is able to update the posterior distribution using only the

most recent observation instead of reprocessing all the old observations. We will

discuss the strategy for designing the sequential importance sampling scheme in the

following section.

2.3.3 Sequential Monte Carlo Methods

First, the importance distribution, π̃0:k|0:k(x0:k|y0:k), is written as a product according

to the following

π̃0:k|0:k(x0:k|y0:k) = π̃0:k|0:k(x0:k|y0:k)π̃k|k(xk|xk−1, yk). (2.27)

The first factor in the decomposition of eq.(2.27) implies that we keep the old path

and the second signifies that we predict the path to current time instant. The

unnormalized importance weight wk at time instant k can be computed from the

weight at previous time instant k − 1 as follows

wik =
π(x0:k|y0:k)

π̃(x0:k|y0:k)
∝ wik−1

f(xik|xik−1)g(yk|xik)
π̃k(xik|xik−1, yk)

(2.28)

This decomposition indicates that the importance weights can be updated sequentially

without having to reconsider the past observations. The basic sequential importance

sampling method is summarized in Algorithm 2.

SIS can only output accurate estimation for short time periods since the

importance weights will become highly degenerate after a few time steps meaning

the probability mass concentrate on only a small portion of the particles and most of

the particle contribute nothing significant to the empirical distribution. The solution
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Algorithm 2 Sequential Importance Sampling (SIS)

1: Initialization at time k = 0, generate N i.i.d samples {xi0}i=1,··· ,N ∼
π0(x0), i = 1, · · · , N

2: for k = 1 : T do
3: for i = 1, · · · , N do
4: Sample xik ∼ π̃(xk|xik−1), i = 1, · · · , N
5: Compute importance weight: w̃ik = w̃ik−1

g(yk|xik)f(xik|x
i
k−1)

π̃(xk|xik−1,yk)
, i = 1, · · · , N

6: Normalized importance weight: wii =
w̃ik
N∑
j=1

w̃jk

, i = 1, · · · , N.

7: end for
8: end for

proposed by Gordon et al. (1993) to reduce the degeneracy of the importance weights

is based on the concept of resampling. The idea consists in resampling in the current

particle cloud using the normalized importance weights as probabilities of selection.

Therefore, the particles with small importance weights are discarded, whereas those

with large importance weights are generated more copies of themselves proportional

to their weights. After importance sampling, all importance weights are set to be 1
N

.

The generic particle filter is given in Algorithm 3.

The bootstrap filter proposed by Gordon et al. (1993) uses the state transition

density as the importance sampling distribution. Therefore, the importance weight

becomes

wik ∝ wik−1g(yk|xik). (2.29)

The resampling is performed at every time instant so that the importance weight

at previous time instant is always 1/N and can be ignored. In bootstrap filter the

importance weight only depends on the likelihood of the most current observation.

Also, the transition density is used as importance distribution.

Recall that the particle filter schemes generate a particle could associated each

particle with proper weights. The weighted particles provide a weighted empirical

distribution on the path state (or state space for filtering distribution) given in

eq.(2.26). The auxiliary particle filter (APF) proposed by Pitt and Shephard (1999)
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Algorithm 3 Generic Particle Filter

1: Initialization at time k = 0, generate N i.i.d samples {xi0}i=1,··· ,N ∼
π0(x0), i = 1, · · · , N

2: for k = 1 : T do
3: for i = 1, · · · , N do
4: Sample xik ∼ π̃(xk|xik−1), i = 1, · · · , N
5: Compute importance weight: w̃ik = w̃ik−1

g(yk|xik)f(xik|x
i
k−1)

π̃(xk|xik−1,yk)
, i = 1, · · · , N

6: end for
7: Normalized importance weight: wii =

w̃ik
N∑
j=1

w̃jk

, i = 1, · · · , N.

8: if Resampling then
9: Select N particle indices ji ∈ {1, · · · , N} according to the importance

weights {wjk, j = 1, · · · , N}.
10: Set xik−1 = x̃jik−1 and wik−1 = 1/N, i = 1, · · · , N
11: else
12: set xik−1 = x̃ik−1, i = 1, · · · , N .
13: end if
14: end for

uses a different resampling scheme which attempts to favor particles that are more

likely to survive at the next time step. We briefly describe the formulation of APF

in the following.

Let us assume the empirical posterior distribution at a given time instant k − 1,

i.e. πN0:k−1|0:k−1 is available. Then the posterior distribution at time instant k can be

approximated by

πN0:k|0:k(dx0:k|y0:k) ≈
1

C

N∑
i=1

wik−1δxi0:k−1
(dx0:k−1)g(yk|xk)f(xk|xik−1)dxk, (2.30)

where the normalizing constant is C =
N∑
i=1

wik−1

∫
f(xk|xik−1)g(yk|xk)dxk. The

proposal for the new path state xi0:k is generated by

π̃0:k|0:k(dx0:k|y0:k) = π̃0:k−1|0:k(dx0:k−1|y0:k)π̃k(dxk|xk−1, yk)

=

(
N∑
i=1

νik−1δxi0:k(dx0:k−1)

)
· π̃k(dxk|xik−1, yk) (2.31)
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where νik−1 > 0 is the weight of xi0:k−1 and
N∑
i=1

νik−1 = 1. The factorization compromises

two components, a marginal proposal π̃0:k−1|0:k(·) for the past path state x0:k−1 and a

conditional proposal π̃k(·) for the current state xk. The key feature of this proposal

is that the first component depends explicitly on the observations up to current

time instant k. It can be seen as a discrete distribution centered upon the old

particles {xi0:k−1} with the corresponding probability mass designed to be {νik−1}.

The rationale is to propose the past paths x0:k−1 from their marginal conditional

distribution π0:k−1|0:k, i.e.

π0:k−1|0:k(dx0:k−1|y0:k)

∝
∫
π0:k−1|0:k−1(dx0:k−1|y0:k−1)f(xk|xk−1)g(yk|xk)dxk

=
N∑
i=1

wik−1δxi0:k−1
(dx0:k−1)

∫
f(xk|xik−1)g(yk|xk)dxk. (2.32)

The integral can be estimated by any means available. Using the proposal mechanism

in eq.(2.31) we can define a generalized importance weight as follows

w̃ik =
wik−1

νik−1

·
g(yk|xk)f(xik|xik−1)

qk(xik|xik−1, yk)
. (2.33)

A summary of the APF algorithm is given in Algorithm 4.

2.3.4 Importance Density

The choice of importance density is crucial for the design of efficient particle filter

algorithm. When the SMC method is interpreted as a Monte Carlo sampling scheme,

the optimal choice of the importance density is the posterior distribution of interest,

i.e. π0:k|0:k(x0:k|y0:k). However, it is known that generic particle filter (Algorithm.3)

suffers from degeneracy which means the samples are of negligible weights after a few

steps of iterations, and it is an inevitable issue since the variance of the importance

weights increase over time Doucet et al. (2000). A brute force solution is to increase
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Algorithm 4 Auxiliary Particle Filter

1: Initialization at time k = 0, generate N i.i.d samples {xi0}i=1,··· ,N ∼
q0(x0|y0), w̃ =

g(y0|x̃i0)π0(x̃i0)

q0(x̃i0|y0)
, i = 1, · · · , N.

2: for k = 1 : T do
3: Select N particles indices ji ∈ {1, · · · , N} according to weights {νik−1}Ni=1.
4: for i = 1, · · · , N do
5: set xik−1 = x̃jik−1

6: set uik−1 =
w
ji
k−1

ν
ji
k−1

7: end for
8: for i = 1 · · · , N do
9: Sample x̃ik = π̃k(x̃

i
k|xik−1, yk)

10: Compute weight by w̃ik = uik−1

g(yk|x̃ik)f(x̃ik|x
i
k−1)

π̃k(xik|x
i
k−1,yk)

11: end for
12: Normalization wik =

w̃ik
N∑
j=1

w̃jk

, i = 1, · · · , N.

13: end for

the sample size, however, it is very impractical and inefficient. In order to alleviate

the issue of degeneracy, one can choose a good importance density such that the

variance of the importance weights is small. Generally, one can use effective sample

size as a measure of the degeneracy. The effective sample size is defined as follows

ESS =

(
N∑
i=1

wik)
2

N∑
i=1

(wik)
2

(2.34)

where wik =
πk|0:k(xik|y0:k)

π̃k(xik|x
i
k−1,yk)

. Ideally, the optimal importance density can be found by

minimizing the var(wik) conditional upon the simulated trajectory xi0:k−1 and the

observations y0:k. The following proposition by Doucet et al. (2000) provides such

importance density.
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Proposition 2.9. The following importance density minimizes the variance of the

importance weight conditional upon xi0:k−1 and y0:k,

π̃k(x0:k|xi0:k−1, y0:k) = πk(xk|xik−1, yk). (2.35)

Then we have

wik ∝ wik−1

g(yk|xik)f(xik|xik−1)

π̃k(xi0:k|xi0:k−1, y0:k)

= wik−1

∫
g(yk|xk)f(xk|xik−1)dxk (2.36)

The optimal choice of importance density (2.36) will reduce the var(wik) to zero

since any generated sample xik will have the same weight by (2.36). However,

generating samples from (2.35) and evaluating weights for such samples by (2.36)

are not straightforward tasks. A more convenient option is to use the importance

density based on the dynamics model as in Algorithm.3. However, there are cases

when the likelihood function related to observation model eq.(2.17) belongs to the

exponential family of distributions, i.e. p(yk|xk) ∝ exp{ykg(xk) − b(xk)} where g(·)

is a known function and b is the function given in eq.(2.17). In this case as shown

in Lemma 1 Evangelou and Maroulas (2015), the optimal density is skewed and a

skewed normal proposal density has been suggested.
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Chapter 3

A novel methodology

3.1 Introduction

The combination of sensors selection techniques and filtering methods has been used

in target tracking in a sensor network. For example, the classical extended Kalman

filter (EKF) for tracking a single-target is developed which also incorporated with a

probabilistic framework for sensor selection Lin et al. (2009). Further, a distributed

multi-target tracking algorithm using EKF was developed in Ren and Schizas (2013).

Based on the consensus-averaging techniques and the particle filtering framework,

single-target tracking schemes have also been developed for SNs Dias and Bruno

(2013); LIU et al. (2009). For multi-target tracking problems, there are proposed

methods that incorporate data association with particle filtering where observations

are provided from a single sensor Doucet et al. (2002); Gorji et al. (2009); Hue et al.

(2002). The work by Ng et al. (2005) proposed method that employ probabilistic

models on the number of targets and the target-measurement assignments for multi-

target tracking. A centralized algorithm which relies on Markov chain Monte Carlo

(MCMC) performs data association on the observations acquired at a single-sensor

in polynomial time is considered in [38] and it’s been extended to the case of sensor

network in Oh (2012). Other centralized approaches that perform data association in
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time utilize Monte Carlo filtering have also been developed for example see Doucet

et al. (2002); Vermaak et al. (2005).

A distributed algorithm that incorporates joint probabilistic data association with

Kalman filter has been proposed by Sandell and Olfati-Saber (2008). However, the

linear Gaussian assumptions in the model are not suited for vast real-world tracking

applications. A different approach is followed in Tharmarasa et al. (2011) where

multiple fusion centers are allowed in the sensor network and evaluate the posterior

Cramer-Rao lower bound that requires knowledge of the underlying data model. Then

as long as the fusion centers know which targets they are watching, then they can

select the sensors that give the smallest Cramer-Rao lower bound.

3.2 Detecting dynamic objects

3.2.1 Analysis of Data Covariance

The crucial task in identifying the sensors which provide informative data is the

estimation of the data covariance matrix Σy,k of eq.(2.3). Moreover, the data

covariance matrix depends on time, and changes as the targets move and the

correlation structure between the sensor data changes. The estimation process should

consider more recent data while gradually “forgets” the old ones in the data history.

Inspired by Ren et al. (2015), we consider a memory parameter γ ∈ (0, 1), whose

main goal is to amplify recent data and attenuate past measurements. In detail, the

covariance matrix at time k is estimated by

Σ̂y,k =
k∑
τ=0

αk(τ)(yτ − ȳk)(yτ − ȳk)T , (3.1)

where ȳk =
∑t

τ=0 αk(τ)yτ is the adaptive mean estimate and the weighting function

is defined by αt(τ) := γk−τ (1−γ)
1−γk+1 . Notice that the weighting function αk(τ) gives more

weight to the more recent sensing data while gradually discards the previous data
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as needed. Notice that as τ decreases the factor γk−τ also decreases and it becomes

1 while τ = t (for current observation). The scaling factor 1−γ
1−γk+1 is introduced to

ensures that the mean and covariance estimates are unbiased, i.e.,

E(
1− γ

1− γk+1
Σ̂y,k) = Σy,k, E(ȳk) = E(yk).

Given the distributed nature of the sensor network, where no central processing

center is available, the decomposition of the covariance matrix My,k of eq.(2.4) has to

take into account the decentralized topology of the network. To this end, the following

pertinent formulation is considered to factorize the covariance estimate M̂y,k

Ĥk = arg min
Hk

∥∥∥A� (M̂y,k −HkH
T
k )
∥∥∥2

F
+

r∑
m=1

λm,k ‖hm,k‖1 , (3.2)

where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖1 refers to norm one while λm,k are

nonnegative scalars for tuning the sparsity in column hm,k, A is the adjacency matrix

of the network communication graph indicating which sensors can communicate with

other sensors. Notice that � denotes entry-wise multiplication and also encapsulates

the immediate neighboring communication constraints in the WSN. The minimization

of only the first term in eq.(3.2) does not necessarily give a sparse matrix since HkH
T
k

is invariant of unitary rotation, i.e. HkH
T
k = HkU(HkU)T where U is a unitary

matrix. Therefore, we employ `1-regularization mechanisms (second part of the cost

function) to impose sparsity in Hk, see e.g., Tibshirani (1996a); Zou (2006), and

determine therefore information-bearing sensors. Further, the parameters λm,k control

the number of zeros (sparsity level) inside the factors hm,k. The minimization problem

in (3.2) can be tackled by employing a coordinate descent approach where the cost is

minimized with respect to an entry of Hk while keeping the rest of the entries fixed

to their latest update. Thus, the entries of Ĥk can be obtained applying a cyclic

minimization procedure until the update do not change significantly over consecutive
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cycles, see Ren et al. (2015) for more details. A detailed description of the algorithm

along with the actual problem of tracking is described in Sec. 3.2.2.

3.2.2 Sparse Data Association

Starting from the basic regularized matrix decomposition cost function in eq. (3.2),

the following formulation is obtained to decompose the sensor data covariance matrix

∥∥∥A� (M̂y,k −HkH
T
k )
∥∥∥2

F
+

Mk∑
ρ=1

λρ ‖hρ‖1

=

p∑
j=1

∑
j′∈Aj∪{j}

(
M̂y,k(j, j

′)−
Mk∑
`=1

Hk(j, `)Hk(j
′, `)

)2

+

Mk∑
ρ=1

λρ‖hρ‖1, (3.3)

where Aj denotes the neighboring sensors of sensor j, A is the adjacency matrix of

the WSN and � indicates entry-wise multiplication. As explained in Section 3.2.1

the support (nonzero entries) of the factors hρ will point to the sensors acquiring

observations that contain information about target ρ. An iterative algorithm is

employed relying on coordinate descent. At each coordinate descent cycle k, we

update all the entries in the matrix Hk, then move forward to the next cycle m + 1.

Specifically, during the updating process at step m, the entries in Hk are updated

one by one along the columns. We denote the updated matrix after the (m − 1)th

cycle by Ĥm−1
k . Then, at the beginning of the mth cycle, we set Ĥm

k = Ĥm−1
k and

update the entry value Ĥm
k (j, ρ) by minimizing (3.3) with respect to Hk(j, ρ). After

applying first-order optimality conditions it turns out that we can get the update

values according to the following proposition.

Proposition 3.1. The update Ĥm
k (j, ρ) value can be obtained as the value that

minimizes eq. (3.3) among the following three candidates:

1. Zero
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2. the real positive roots of

4h3 + 4

∑
µ∈Aj

[
Ĥm
k (µ, ρ)

]2

− δmµ (j, j, ρ)

h+ λρ (3.4)

−

4
∑
µ∈Nj

δmµ (j, µ, ρ)Ĥm
k (µ, ρ)

 = 0

(3.5)

3. the real negative roots of

4h3 + 4

∑
µ∈Nj

[
Ĥm
k (µ, ρ)

]2

− δmµ (j, j, ρ)

h− λρ (3.6)

−

4
∑
µ∈Nj

δmµ (j, µ, ρ)Ĥm
k (µ, ρ)

 = 0

(3.7)

where δmµ (a, b, c) = My,k(a, b)−
∑r

`=1,` 6=c Ĥ
m
k (a, `)Ĥm

k (`, c), and sensor sj is responsible

for updating the jth row of matrix Ĥk.

Proof. Since at cycle m, we need to optimize the cost entry by entry column-wise,

and suppose we want to update the value of entry Ĥm
k (j, ρ). At this point, all the

entries before Ĥm
k (j, ρ) are updated while the rest are not. We treat all the values

except for Ĥm
k (j, ρ) as constants. After some algebra the cost function of (3.3) is

reduced to a cost function with respect to Ĥm
k (j, ρ) only, which is given as follow

Cm(j, ρ) = (Ĥm
k (j, ρ))4 + λρ|Ĥm

k (j, ρ)|

+ (Ĥm
k (j, ρ))2

2
∑
µ∈Aj

(Ĥm
k (µ, ρ))2 − 2δmM(j, j, ρ)


− Ĥm

k (j, ρ)

4
∑
µ∈Aj

δmM(j, µ, ρ)Ĥm
k (µ, ρ)

 (3.8)
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Therefore, we need to solve the following optimization problem

Ĥm
k (j, ρ) = arg min

Hm
k (j,ρ)

(Hm
k (j, ρ))4 + λρ|Hm

k (j, ρ)|

+ (Hm
k (j, ρ))2

2
∑
µ∈Aj

(Ĥm
k (µ, ρ))2 − 2δmM(j, j, ρ)


− Hm

k (j, ρ)

4
∑
µ∈Aj

δmM(j, µ, ρ)Ĥm
k (µ, ρ)

 (3.9)

Set Hm
k (j, ρ) = h, |Hm

k (j, ρ)| = a, c1 =

(
2
∑
µ∈Aj

(Ĥm
k (µ, ρ))2 − 2δmM(j, j, ρ)

)
, c2 =(

4
∑
µ∈Aj

δmM(j, µ, ρ)Ĥm
k (µ, ρ)

)
, the problem in (3.9) is summarized as

Ĥm
k (j, ρ) = arg min

h
h4 + λρa+ c1h

2 − c2h

subject to h− a ≤ 0

−h− a ≤ 0 (3.10)

Let define f(h, a) = h4 + λρa + c1h
2 − c2h, g1(h, a) = h − a, g2(h, a) = −h − a. The

Karush-Kuhn-Tucker necessary condition implies the following. If h∗ and a∗ are local

optimum, then there exist constants ξ1, ξ2 such that

−∇f(h∗, a∗) = ξ1∇g1(h∗, a∗) + ξ2∇g2(h∗, a∗) (3.11)

ξigi(h
∗, a∗) = 0, i = 1, 2 (3.12)

while ξ1, ξ2 ≥ 0. If h∗ > 0, then (3.11) and (3.12) imply that ξ2 = 0, ξ1 = λρ.

Substituting the values for ξ1, ξ2 in (3.11) proves the condition of positive candidate.

The negative candidate in the proposition can be shown in the same fashion.

We utilize a ‘deflation’ technique to obtain a distributed scheme that is more

computationally efficient. Specifically, instead of applying the aforementioned
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coordinate descent scheme to find jointly all factors in the matrix Hk = [h1, · · · , hMk
],

we employ the method to find a single factor hρ, ρ = 1, · · · ,Mk, at each time. For

example, initially, the first estimated column factor ĥ1 can be obtained by setting

My,k = 1 and using M̂0
y,k = A�M̂y,k (namely, we employ the minimization scheme on

a single column factor), then we use the estimated column factor ĥρ to calculate the

deflated matrix M̂ρ
y,k = A�M̂ρ−1

y,k −A�(ĥρĥ
T
ρ ), then we can obtain the next estimated

column factor ĥρ+1 by running the same method. The deflation based decomposition

algorithm is given in Algorithm 5.

Algorithm 5 Deflation based distributed decomposition algorithm (DSMD)

1: Each sensor Sj initialize the jth row of the covariance matrix M̂0
y,k(j, :) = A(j, :

)� M̂y(j, :)
2: for ρ = 1, · · · , rd do
3: Each sensor initializes Ĥ0(j, ρ) = Ĥ1s(j, ρ) where Ĥ1s(j, ρ) is obtained via

DSMD by setting λ = 0 and M̂ρ−1
x,d .

4: for k = 1, 2, · · · do
5: Each sensor Sj for j = 1, · · · , p
6: Transmits Ĥk−1(j, ρ) to its neighbors in Aj, and receives Ĥk−1(j, ρ) from
µ ∈ Aj

7: Evaluates δkM(j, µ, ρ) for µ ∈ Aj ∪ {j} using {M̂ρ−1
y,k (j, j′)}j′∈Aj∪{j}.

8: Determine the updates {Ĥk(j, ρ)}rρ=1 by minimizing (??).
9: If |Ck(j, ρ)− Ck−1(j, ρ)| ≤ ε, the stop.
10: end for
11: Each sensor Sj updates M̂ρ

y,k(j, j
′) = M̂ρ−1

y,k (j, j′) − Ĥk(j, ρ)Ĥk(j′, ρ) for j′ ∈
Aj ∪ {j}.

12: end for

3.3 An Advanced Sequential Monte Carlo method

3.3.1 Drift homotopy likelihood bridging particle filter

Once the informative sensors have been recovered, the second phase proceeds with

estimating the trajectories of the objects. The tracking procedure is based on a

sequential Monte Carlo method. Consider that the dynamics of the objects in the
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sensing field are described by the following stochastic differential equation (SDE)

dxk = b(xk)dt+ c(xk)dBk, (3.13)

where xk ∈ Rn is the state of the system at time instant k, and Bk is a Brownian

motion. The drift b(·) and the diffusion coefficient c(·) denote nonlinear maps from Rn

to Rn which satisfy suitable regularity properties. However, xk is not fully-observed

but noisy data (expressed in eq. (2.2)) from the informative sensors in the WSN are

collected.

The goal is to estimate the posterior distribution p(x0:k|y1:k) (or just p(xk|y1:k)),

where x0:k = {x0, · · · , xk} is the discrete version of the states of the latent Markov

process generated from (3.13) in [0, k] by assimilating the observational history y1:k =

{y1, · · · , yk} relying on eq.(2.2). In the following description, we will describe the

estimation of the posterior distribution, i.e. p(x0:T |y1:T ), where T denotes the final

time.

In the sequential setting of the hidden Markov model, the posterior distribution

is obtained by using the following two-stage recursion

Prediction: π0:k|0:k−1(x0:k|y1:k−1) = π0:k−1|0:k−1(x0:k−1|y1:k−1)f(xk|xk−1), (3.14)

Update: π0:k|0:k(x0:k|y1:k) =
g(yk|xk)π0:k|0:k−1(x0:k|y1:k−1)

π(yk|y1:k−1)
, (3.15)

where p(x0:k−1|y1:k−1) is the posterior distribution at time instant k − 1, f(xk|xk−1)

is the transition density associated with eq.(3.13), g(yk|xk) is the likelihood related

to eq.(2.2), and p(yk|y1:k−1) is the normalizing constant that is independent of the

state. The posterior distribution, p(x0:T |y1:T ), does not have an explicit form under

general conditions, thus it needs to be approximated. The recursive formula given in

eqs. (3.14) & (3.15) provides the basis of particle filtering which approximates the

posterior distribution by a set of weighted samples, i.e. {wik, xik}Ni=1.
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Particle filter even with the resampling step may need a large number of samples to

approximate the posterior distribution. Moreover, as time evolves, particle filter starts

to degenerate. We mitigate this degeneracy problem of low weighted particles by

appending a Markov chain Monte Carlo (MCMC) step after the particles resampling.

The appended MCMC step though should respect the nature of the posterior filtering

distribution. To this end, we propose the drift homotopy likelihood bridging particle

filter (DHLB-PF).

The algorithmic framework of DHLB-PF performs as the generic particle filter up

to the resampling step as shown in Algorithm 6 from line 1 to line 11. Although the

resampling step aims to create copies of samples with high-valued weights, oftentimes,

only one sample dominates (i.e. wik = 1 for some fixed i) and all the rest are zero

Snyder et al. (2008). Precisely, in order to move the particles to a statistically

significant region at some time instant t, an MCMC step is appended after resampling.

To this end, we consider first a modification on the resampling step in the generic

particle filter. This modification consists of resampling the sample pair (xik−1, x
i
k)

instead of xik according to weights wik, i = 1, · · · , N . Using Bayesian considerations

one can show that the filtering distribution p(xk|y0:k) is preserved if one samples from

f(xk|xk−1)g(yk|xk) where xk−1 is given by the modified resampling step Weare (2009).

The important step here is to sustain the features of the filtering distribution. We

proceed by designing multiple levels of intermediate stationary densities given by

π`,m(xk|xk−1, yk) ∝ f`(xk|xk−1)gm(yk|xk), (3.16)

where 0 ≤ ` ≤ L and 0 ≤ m ≤ 1. When (`,m) = (L, 1), the sample cloud is

distributed according to the filtering distribution p(xk|y1:t) at time instant t. Eq.(3.16)

suggests two ways of addressing the problem. First, the intermediate levels ` of the

transition density, f`(xk|xk−1), aids to move the samples from a low energy region to

a high energy region (similar to simulated annealing). Simultaneously, the likelihood

bridging expressed by the exponent m of the likelihood helps to introduce the
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likelihood in a smooth way. Several times, particle clouds are far from the likelihood

of the data and thus the update step of particle filtering fails because samples cannot

move to statistically significant regions. The likelihood bridging allows the particles

to explore the state space (e.g. at m = 0, g is the uniform distribution) with a

higher degree of freedom. We explain below how we proceed with the sampling of

eq.(3.16) keeping in mind that this is at the appended MCMC step in the particle

filter algorithm.

We first start by constructing a sequence of SDEs with modified drifts and engage

them in a sequential way with the original dynamics being the last one in the sequence.

To this end, we define

dxk = (1− ε`)a(xk)dt+ ε`b(xk)dt+ c(xk)dBk, (3.17)

where ε` = `
L
, ` = 0, 1, · · · , L, and a(·) is a suitably modified drift term that is

different from the original drift b(·). At the `th level, the transition density f`(xk|xk−1)

in eq.(3.16) is determined by the modified dynamics given in (3.17). The original

dynamics given in eq. (3.13) are taken into account at terminal level ` = L and

the modified one alone is considered when ` = 0. The choice of a(·) is problem

specific and its goal is to facilitate the sampling process. Simultaneously, as the level

` changes, the exponent of the likelihood density, m, changes from 0 to 1. This allows

to gradually shrink the width of likelihood density from the uniform to the original.

After the resampling step at time t, there is an available sample cloud xik, i =

1, · · · , N . Consequently we generate a new set of samples by evolving xik, i = 1, · · · , N

according to a Markov chain transition kernel K`,m(dy|x) that leaves p`,m(xk) of

eq.(3.16) invariant. The samples from the previous level are used as the initial

condition at current level. At each level, the acceptance rate is given by

α`,m,k = min{1, J`(xk|x
′
k)f`(x

′
k|xk−1)gm(yk|x′k)

J`(x′k|xk)f`(xk|xk−1)gm(yk|xk)
}, (3.18)
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where f`(xk|xk−1)gm(yk|xk) is the stationary distribution, xk is the current sample

state and x′k is the proposed sample state generated through a proposal distribution

J`(·). Notice that, instead of using a uniform or Gaussian proposal, the design of

the stationary distribution provides an intuitive proposal density, i.e. f`(x
′
k|xk). The

appended multilevel MCMC step improves the quality of the sample cloud by moving

the samples into statistically significant regions and therefore obtain a better empirical

representation of the filtering distribution. The operation is illustrated in the following

Fig.3.1 which shows that at time instant t, one starts with the particle x∗ik and go

through the MCMC procedure to obtain a better sample xL,ik . The novel particle

filter algorithm is tabulated in Algorithm 6.

3.3.2 The MCMC sampler: Generalized hybrid Monte Carlo

We employ a particularly effective Markov chain Monte Carlo method , the so called

generalized Hybrid Monte Carlo (GHMC), in Step 15 of Alg.6 for the solution of multi-

targt tracking in a WSN. In this section, we briefly describe the GHMC sampler in

the general context of sampling from some target distribution f`(xk|xk−1)gm(yk|xk).

Consider a system whose state is determined by T real-valued state variables, i.e.

{xik}Ti=1. and associate them with a set of momentum variables {pik}Ti=1, where xik, p
i
k

are N dimensional real valued vectors. In the context of Monte Carlo simulation, the

momenta serve the purpose of constructing the associated Hamiltonian system. The

auxiliary kinetic energy is defined as K(pk) =
∑T

i=1

|(pik)2|
2

. The total Hamiltonian

of the system is given by H(xk, pk) = U(xk) + K(pk), where U(xk) is the potential

energy defined by U(xk) = −log(f`(xk|xk−1)gm(yk|xk)). A generalized hybrid Monte

Carlo (GHMC) Toral and Ferreira (1994) suggested that we consider the following
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Use the sample pair obtained
after resampling, i.e. (x∗ik−1, x

∗i
k )

f0(xk|x∗ik−1) · g0(yk|xk)x∗ik x0,i
k

f1(xk|x∗ik−1) · g1/L(yk|xk)x0,i
k x1,i

k

· · ·fL−1(xk|x∗ik−1)·g1−1/L(yk|xk)xL−2,i
k xL−1,i

k

f(xk|x∗ik−1) · g(yk|xk)xL−1,i
k xL,ik

Initial Condition

MCMC Update

MCMC Update

MCMC Update

MCMC Update

Figure 3.1: This diagram exhibits the procedure of the appended MCMC sampling.
One starts with the sample pair (x∗ik−1, x

∗i
k ) after resampling where x∗ik−1 is fixed during

the samping and x∗ik is used as the initial condition. After the first level, one obtains
x0,i
k , then use it as the initial condition for the MCMC sampling at the next level.

Finally, the original sample x∗ik is improved by the sample xL,ik after the final level
after MCMC sampling.
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Algorithm 6 Drift homotopy likelihood bridging particle filter (DHLB-PF)

1: for i = 1, · · · , N do
2: Draw i.i.d samples xi0 ∼ p0(x), and wi0 = 1

N
, where p0(x) is the known initial

distribution.
3: end for
4: for t = 1, · · · , T do
5: for i = 1, · · · , N do
6: Draw sample xik−1 ∼ p(xk−1|y1:t−1)
7: Propagation: xik ∼ p(xk|xik−1)
8: Particle weight: ŵik = p(yk|xik)
9: end for

10: Weights Normalization: wik = ŵik/
N∑
j=1

ŵjk, i = 1, · · · , N.

11: Resampling: Generate N independent uniform random variables {θi}Ni=1

from [0, 1]. For i, j = 1, . . . , N , let {x∗ik−1, x
∗i
k } = {xjk−1, x

j
k} where

j−1∑
l=1

wlk ≤ θj <

j∑
l=1

wlk

12: MCMC step:
13: for ` = 0, · · · , L do
14: for m = 0, · · · , 1 do
15: for i = 1, · · · , N do
16: With initial value x∗ik , sample through MCMC the stationary

distribution
π`(xk|xk−1, yk) ∝ gm(yk|xk)f`(xk|x∗ik−1)

17: end for
18: end for
19: end for
20: end for

generalized Hamiltonian system:

dxk
dt

=
∑N

s=1AsP s
k ,

dP sk
dt

= −(As)T dU
dxk

,
(3.19)

where s = 1, · · · , N, xk = (x1
k, x

2
k, · · · , xTK)T and xik = ((xik)

1, · · · , (xik)N)T , i =

1, 2, · · · , T . Similarly, pk = (p1
k, p

2
k, · · · , pTk )T and pik = ((pik)

1, · · · , (pik)N)T , i =

1, 2, · · · , T . Especially, psk = ((p1
k)
s, (p2

k)
s, · · · , (pTk )s)T , for s = 1, · · · , N . Notice
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that in our simulation in Section 4.2.1, the T state variables correspond to the states

on the path between two consecutive observations, i.e. T = 1/∆t.

Suppose the matrix A = {Aij}, 1 ≤ i, j ≤ T , then for each state variable Xi and

the associated momentum Pi, the generalized Hamiltonian system is

dxik
dt

=
∑T

j=1Aijp
j
k,

dpik
dt

= −(A)T dU
dxk

=
∑T

j=1Aji
dU
dxjk

.
(3.20)

A is an arbitrary T ×T matrix which should be chosen to enhance the effectiveness

of proposal (i.e. reduce the correlation between two consecutive proposals) and it was

suggested Alexander et al. (2005a) thatA = circ(1, exp(−α), exp(−2α), · · · , exp(−(T −

1)α)), explicitly

A =


1 exp(−(T − 1)α) · · · exp(−α)

exp(−α) 1 · · · exp(−2α))
...

...
. . .

...

exp(−(T − 1)α) exp(−(T − 2)α) · · · 1

 .

We evolve the system of (3.20) by performing some numerical scheme and then

propose a new state ((xik)
′
, (pik)

′
). A commonly used numerical scheme for solving

Hamiltonian system is the leapfrog discretization Frenkel and Smit (2001). The

Metropolis step afterwards will accept the new state ((xik)
′
, (pik)

′
) with probability

αi = min{1, F̄((xik)
′
,(pik)

′
)

F̄(xik,p
i
k)
}

= min{1, exp(−H((xik)
′
, (pik)

′
) +H((xik)

′
, (pik)

′
)}

= min{1, exp(U(xik)− U((xik)
′) +K(pik)−K((pik)

′)},

(3.21)

where we define the joint distribution of state xk and auxiliary momentum pk as

F̄(xk, pk) ∝ exp(−H(xk, pk)).

In GHMC, the proposal comes from the molecular dynamics simulation. As we

mentioned above, the leapfrog scheme is employed for evolving the dynamics in (3.20).
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The leapfrog scheme first updates the momentum at a half time interval, then evolves

the position over a full time interval. At the end, the momentum is updated over

the other half time interval. Notice that the time index here is different from the

time index we use for the state of system, in GHMC the time index is auxiliary and

only used for proposing a new state. Suppose ∆t is the discretized time interval, the

leapfrog algorithm operates as follows

1. The momentum variable is updated first

pik(t+ ∆t/2) = pik(t)−
∆t

2

∂U
∂xik(t)

,

2. Then state over a full time interval ∆t is updated

xik(t+ ∆t) = xik(t) + ∆t
∂K

∂pik(t+ ∆t)
,

3. Update the momentum over the other half of the time interval

pik(t+ ∆t) = pik(t+ ∆t/2)− ∆t

2

∂U
∂xik(t+ ∆t)

.

Algorithm 7 Generalized hybrid Monte Carlo algorithm (GHMC)

1: Generate initial position state x0 from some known distribution.
2: for t = 1, · · · ,M do
3: Generate a momentum variable pt ∼ p(p) ∝ exp(K(p)), which is a standard

Gaussian distribution N (0, 1).
4: Run L steps leapfrog algorithm with initial state (xt, pt) and step size ∆t to

obtain a new state (x∗t , p
∗
t ).

5: Set xt+1 = x∗t with probability

αk = min(1, exp(U(xt)− U(x∗t ) +K(pt)−K(p∗t ))).

and xt+1 = xt with probability 1− αt.
6: end for
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3.4 A theoretical treatment

We assume the signal process {xk}k≥0 is a Markov process with known initial

distribution, i.e. x0 ∼ π0(x0). Then by Definition 2.2 we have that

P (xk ∈ A|xk−1 = x∗k−1) =

∫
A

K(x∗k−1, dxk), A ∈ B(Rnx). (3.22)

The observations are conditionally independent of X and

P (yk ∈ B|xk = x∗k) =

∫
B

g(dyk|x∗k), B ∈ B(Rny). (3.23)

where xk denotes the random variable and x∗k denotes a realization of xk.

Based on the Markovian assumption and Bayes’ theorem, the joint posterior

distribution can be updated through the following recursion given by eq.(3.14) and

eq.(3.15)

In many cases, we are interested in the filtering distribution and the recursion

formula writes

Prediction: πk|k−1(dxk) =

∫
Rnx

πk−1|k−1(dxk−1)K(xk−1, dxk) (3.24)

Update: πk|k(dxk) =
g(yk|xk)πk|k−1(dxk)∫

Rnx g(yk|xk)πk|k−1(dxk)
(3.25)

Based on the definition, the Markov transition kernel defines an operator on

measurable functions and measures as follows

νK(A) =

∫
ν(dx)K(x,A),

Kφ(x) =

∫
K(x, dy)φ(y),

where ν is a measure, and φ is a measurable function.
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3.4.1 Drift Homotopy and Likelihood Bridging Particle Fil-

tering

The particle filter is a simulation-based method that estimates the statistical inference

based on the posterior distribution at time instant k. Essentially, it provides a cloud of

N suitably weighted particles, i.e {xik, wik, i = 1, · · · , N}, whose empirical distribution

is used as an approximation of the posterior distribution. We denote the empirical

filtering distribution by

πNk|0:k(dxk|y0:k) =
1

N

N∑
i=1

δxik(dxk), (3.26)

where δxik(dxk) denotes the delta-Dirac mass located at point xik, i = 1, · · · , N .

Any statistical inference will be carried out using the empirical measure defined

by (3.26). Another importance feature of the method is that particle filter is a

recursive algorithm in the sense that the empirical measure at next time instant

k+1, i.e. πNk+1|0:k+1(dxk+1|y0:k) is obtained by evolving the current N particles through

some transition density and reassign the importance weights appropriately. Our

proposed novel particle filter inherits the same essential idea and focus on resolving

the degeneracy problem of the framework by appending a well designed multilevel

MCMC procedure, the goal of which is to redeploy the particle cloud so that a better

(in the sense that more particles will locate in statistically significant region) empirical

posterior distribution can be obtained. Even though the particle filter framework is

versatile for non-linear and non-Gaussian case, it might be very inefficient in the case

where a complicated posterior distributed presents and an efficient transition density

is hard to find. In such cases, most particles will be wander around the places with

low probability mass and result in a poor representation of posterior distribution.

The multilevel MCMC procedure aims to mitigate the problem. To this end, the

proposed DHLB-PF algorithm operates in the following order and later in order to

analyze the DHLB-PF algorithm, we will treat each of these steps as a function
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• Initialization: xi0 ∼ π0(x0), i = 1, · · · , N , where π0 is known.

• Prediction: xik ∼ πNk−1|k−1K(xik−1, dxk), i = 1, · · · , N.

• Resampling: xik ∼ π̃Nk|k(dxk), where π̃Nk|k =
N∑
i=1

wki δxik|k(dxk)

• Redeployment: xik
DHLB−−−−→ x∗ik , i = 1, · · · , N.

The prerequisite of the algorithm is that we are able to generate i.i.d samples from

the known initial distribution of state random variable π0(x0), or we can generate i.i.d

samples from an instrumental distribution and compute the corresponding importance

weights. The algorithm takes three extra steps to evolve the weighted particle cloud

(equally weighted if samples are i.i.d). The output of the particle filter is particle cloud

which provides an empirical measure that approximate the posterior distribution at

final time instant. In the following section, we discuss in what sense the empirical

measure provided by our DHLB-PF algorithm is close to the posterior distribution

and under minimal condition it converges to the posterior distribution asymptoticly.

3.4.2 Almost Sure Convergence of the DHLB particle filter

LetM = P(Rnx) be the set of probability measures on the nx-dimensional Euclidean

space Rnx endowed with the topology of weak convergence. We say that a sequence of

probability measures {πN}N≥1, where πN ∈ P(Rnx),∀N , converges weakly to another

probability measure π ∈ P(Rnx) if for any h ∈ Cb(Rnx) such that

lim
N→∞

(πN , h) = (π, h),

where (·, ·) denotes the inner product, i.e. (π, h) =
∫
hdπ, Cb(Rnx) denotes the

set of bounded continues functions on Rnx . We simply write the weak convergence

as lim
N→∞

πN = π. It turns out that the weak convergence can be determined by a

countable set of continuous bounded functions, that is, ∃H = {hi}i>0, and hi ∈
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Cb(Rnx),∀i, such that,

lim
N→∞

πN = π iff lim
N→∞

(πN , hi) = (π, hi),∀hi ∈ H.

We define a distance on the space P(Rnx) by using the functions in H as follows,

d(π, ν) =
N∑
i=1

|(π, hi)− (ν, hi)|
2i‖hi‖

, (3.27)

where ‖hi‖ = supx∈Rnx |hi(x)| is the supremum norm on Cb(Rnx). It is easy to see

that weak convergence by definition indicates that the distance between probability

measures and the limit probability measure goes to zero and vice versa, i.e.

lim
N→∞

d(πN , π) = 0 iff lim
N→∞

πN = π. (3.28)

Now we have stated the convergence property we want to study. In the context of

filtering, πN will be the empirical measure given by the algorithm, where N typically

corresponds to the sample size of the particle cloud and π will be the posterior

distribution at some fixed time instant. At any time instant, we want the empirical

distribution πN to get closer to π as we increase the sample size N . In the following,

we will discuss how we can achieve this convergence and what conditions we need to

impose.

We define the prediction step of the particle filter algorithm at time instant k as

a mapping, qk : P(Rnx) to P(Rnx), namely

qk(π)(dxk) = πK(dxk) =

∫
Rnx

K(xk−1, dxk)π(dxk−1), (3.29)

for all π ∈ P(Rnx). Therefore, we have that (qk(π), h) = (π,Kh), ∀h ∈ Cb(Rnx), and

πk|0:k−1 = qk(πk−1|0:k−1). It turns out that in order to guarantee the weak convergence,

the function qk(·) has to be continuous. We require the transition kernel K, which

defines the mapping qk(·), to be Feller, that is
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Definition 3.2. A transition kernel is Feller if the following holds

Kh ∈ Cb(Rnx),∀h ∈ Cb(Rnx). (3.30)

Hence, if lim
N→∞

πN = π, then by definition 3.4.2 we have

lim
N→∞

(qk(πN), h) = lim
N→∞

(πN , Kh) = (π,Kh) = (qk(π), h),∀h ∈ Cb(Rnx). (3.31)

Therefore, qk(·) is continuous.

We now define the update step of the algorithm to be another mapping from

P(Rnx) to P(Rnx). Namely, we define uk : P(Rnx)→ P(Rnx) as

(uk(π), h) =
(π, hg)

(π, g)
, ∀h ∈ Cb(Rnx). (3.32)

Therefore, πk|k = uk(πk|k−1) = uk ◦ qk(πk−1|k−1). Again, the continuity of function

uk(·) is required to guarantee a convergent algorithm. To ensure the continuity of

the function uk(·), we need that g(yk|·) is a continuous bounded and strictly positive

function, i.e.

g(yk|·) ∈ Cb(Rnx), g(yk|xk) > 0,∀xk ∈ Rnx . (3.33)

Then based on the definition, we can verify that if lim
N→∞

πN = π, then

lim
N→∞

(uk(πN), h) =
lim
N→∞

(πN , hg)

lim
N→∞

(πN , g)
=

(π, hg)

π, g
= (uk(π), h),∀h ∈ Cb(Rnx) (3.34)

Therefore, uk(·) is continuous.

We have now defined the two recursive steps of the particle filter as continuous

functions on the space of probability measures under suitable conditions on the

transition kernel and likelihood function. Let us now consider at any time instant k,

the algorithm can be seen as a composition of the two recursive steps and therefore

define another function that maps the initial probability distribution to the posterior
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distribution at time instant k, i.e., we define

s1:k = sk ◦ sk−1 ◦ · · · ◦ s1,where sk = uk ◦ qk, (3.35)

where ◦ denotes the composition of functions. It is clear that sk and s1:k are continuous

since the uk and qk are continuous functions. Now we have defined the recursion

formula of particle filter as a continuous function, i.e.,

πk|k = sk(πk−1|k−1) = s1:k(π0). (3.36)

The particle filter is a simulation-based realization of (3.36). The idea is to use

random samples to estimate the posterior probability measure. Therefore, a random

perturbation occurs at every time instant k. We define this random perturbation by

mN(π)(w) =
1

N

N∑
i=1

δxi(w) (3.37)

where w ∈ Ω and xi : Ω → Rnx are i.i.d random variables following the probability

distribution π. For a realization of the i.i.d random variables, eq.(3.37) provide an

empirical distribution.

The last step of the proposed algorithm uses an MCMC sampler to redeploy the

particles. This procedure evolves the particles through some Markov transition kernel

for certain steps and uses the end points of the Markov chain as the new particle cloud,

hence it can be defined as

mN(π)K̄M(w) =
1

N

N∑
i=1

K̄Mδxi(w) (3.38)

where K̄M denotes the operation of evolving particles through the MCMC transition

kernel K̄ M steps, which turns out to another transition kernel as discussed below.
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Notice that the transition kernel K̄ of a Markov chain describes the probability

of moving the state one step forward, i.e. for all m ∈ N we have

K̄(x,A) = P (Xm+1 ∈ A|Xm = x). (3.39)

The M step transition kernel can be obtained inductively by

K̄M(x,A) =

∫
Rn
K̄M−1(y, A)K̄(x, dy) =

∫
Rn
K̄(y, A)K̄M−1(x, dy). (3.40)

Now consider integrating over the conditional distribution of the previous step, we

have the following

P(Xm+1 ∈ A|Xm = x) = K̄(x,A),

P(Xm+2 ∈ A|Xm = x)

=

∫
Rn

P(Xm+2 ∈ A|Xm+1 = y,Xm = x)P(Xm+1 ∈ dy|Xm = x)

=

∫
Rn

P(Xm+2 ∈ A|Xm+1 = y)K̄(x, dy) = K̄2(x,A),

· · ·

P(Xm+M ∈ A|Xm = x)

=

∫
Rn

P(Xm+M ∈ A|Xm+M−1, Xm = x)P(Xm+M−1 ∈ dy|Xm = x)

=

∫
Rn

P(Xm+M ∈ A|Xm+M−1 = y)KM−1(x, dy)

= K̄M(x,A).

The M step transition probability from state x to A is P(Xm+M ∈ A|Xm = x) =

K̄M(x,A).

To ensure the weak convergence of the algorithm, we need to ensure that the

accumulated errors of the random perturbation will not explode, and for any fixed

time instant, the empirical measure should converge to the posterior distribution
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asymptotically. The key to guarantee this feature is the following condition,

lim
N→∞

πN = π =⇒ lim
N→∞

mNK̄M(πN) = π,∀πN , π ∈ P(Rnx). (3.41)

Now, let’s consider a simple case of our algorithm where the redeployment step

uses only one level, that is, L = 0. Namely, one directly sample from the posterior

distribution without intermediate levels. We show that the perturbation steps

(resampling and redeployment) satisfy the following lemma.

Lemma 3.3. The random perturbation

mN(π)K̄M(w) =
1

N

N∑
i=1

K̄Mδxi(w)

satisfy the following condition for almost all w ∈ Ω

lim
N→∞

πN = π =⇒ lim
N→∞

mNK̄M(πN) = π,∀πN , π ∈ P(Rnx)

Proof. Let πN , π ∈ P(Rnx) be a sequence of probability measures and its mean, that

is, lim
N→∞

πN = π weakly. We know that the random perturbation mN(πN) generates

N i.i.d samples from π, i.e.{xi, i = 1, · · · , N}. We assume the transition kernel K̄

is reversible and has stationary distribution π. Let {x1
i , i = 1, · · · , N} be the set of

random variables evolved one step through the transition kernel, then it is clear that

P (x1
i ∈ A) = πK̄(A) = π(A) which indicates that {x1

i , i = 1, · · · , N} still follows the

distribution π. Also, we know for each transition kernel K(·, ·) there exists a random

mapping representation, that is a measurable function Φ : Rnx × [0, 1] → Rnx which

satisfies P (Φ(x, Z) ∈ A) = K(x,A), x ∈ Rnx , A ∈ B(Rnx), where the random variable

Z is uniformly distributed. Then, the set of random variables {x1
i , i = 1, · · · , N} can

be defined as

x1
i = Φ(xi−1, Zi), i ≥ 2 (3.42)
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where {Zi, i = 1, · · · , N} are a set of i.i.d random variables with uniform distribution.

Since Φ() is measurable function, {x1
i , i = 1, · · · , N} is a set of independent random

variables. By induction, we have that {xMi , i = 1, · · · , N} are independent ∀M <∞,

where M denotes the steps of Markov chain.

Now let us consider the following

E
(
((mNKM(πN), h)− (πN , h))4

)
= E

(
(

1

N

N∑
j=1

h(xMj )− (πN , h))4

)

= E

(
1

N4
(
N∑
j=1

(h(xMj )− (πN , h)))4

)

=
1

N4
E

(
N∑
j=1

(h(xMj )− (πN , h))4

)

=
1

N4
E

( ∑
1≤i,j,k,`≤N

∏
τ=i,j,k,`

(h(xMτ )− (πN , h))

)
(3.43)

Notice that E
(
h(xMi )− (πN , h)

)
= E(h(xMi )) − (πN , h) = 0. Since {xMi , i =

1, · · · ,M} are independent, then we have

E
(
h(xMi )− (πN , h)3(h(xMj )− (πN , h))

)
= 0,

E
(
h(xMi )− (πN , h)2(h(xMj )− (πN , h))(h(xMk )− (πN , h))

)
= 0,

E
(
h(xMi )− (πN , h)(h(xMj )− (πN , h))(h(xMk )− (πN , h))(h(xM` )− (πN , h))

)
= 0
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, if i, j, k, ` are distinct. Therefore, eq.(3.43) reduces to the following

1

N4
E

( ∑
1≤i,j,k,`≤N

∏
τ=i,j,k,`

(h(xMτ )− (πN , h))

)

=
1

N4

N∑
j=1

E(h(xMj )− (πN , h))4

+
6

N4

N∑
i,j=1,i 6=j

E(h(xMi )− (πN , h))2(h(xMj )− (πN , h))2

≤ 1

N4

(
N · 24‖h‖4 + 6 · N(N − 1)

2
24‖h‖4

)
=

1

N4

(
16N‖h‖4 + 48N(N − 1)‖h‖4

)
=

1

N4

(
16N‖h‖4 + 48N2‖h‖4 − 48N‖h‖4

)
≤ 48‖h‖4

N2
.

Then

E

(
∞∑
N=1

(
(mNK̄M(πN), h)− (πN , h)

)4

)
≤ 48‖h‖4

∞∑
N=1

1

N2
<∞ (3.44)

therefore,

∞∑
N=1

(
(mNK̄M(πN), h)− (πN , h)

)4
<∞, for most all ω ∈ Ω. (3.45)

hence,

lim
N→∞

|(mNK̄M(πN), h)− (πN , h)| = 0, for almost all ω ∈ Ω. (3.46)

by definition, for almost all ω ∈ Ω, the following holds

lim
N→∞

mNK̄M(πN) = π,∀πN , π ∈ P(Rnx). (3.47)

By the same method, we also have that

lim
N→∞

mN(πN) = π,∀πN , π ∈ P(Rnx). (3.48)
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Theorem 3.4. If the transition kernel K is Feller and the likelihood function g is

bounded, continuous and strictly positive, then for the proposed algorithm that uses

one level MCMC, we have lim
N→∞

πNk|0:k = πk|0:k almost surely.

Proof. Notice that the algorithm can be represented as following,

πNk|0:k = mNK̄M ◦ uk ◦mN ◦ qk(πNk−1|0:k−1) = sNk (πNk−1|0:k−1)

πNk|0:k = sN1:k ◦mN(π0) = sN1:k(π
N
0 )

where πN0 = mN(π0). By Lemma 3.4.2, we have lim
N→∞

πN0 = π0, then by the continuity

of qk, we have

lim
N→∞

πN0 = π0 =⇒ lim
N→∞

qk(π
N
0 ) = qk(π0). (3.49)

And by the property of mN in Lemma 3.4.2, we have

lim
N→∞

qk(π
N
0 ) = qk(π0) =⇒ lim

N→∞
mN(qk(π

N
0 )) = qk(π0). (3.50)

Since uk is also continuous as we showed before, we have

lim
N→∞

mN(qk(π
N
0 )) = qk(π0) =⇒ lim

N→∞
uk(m

N(qk(π
N
0 ))) = uk(qk(π0)), (3.51)

then, employ the property of mNK̄N ,

lim
N→∞

uk(m
N(qk(π

N
0 ))) = uk(qk(π0)) =⇒ lim

N→∞
mNK̄N(uk(m

N(qk(π
N
0 )))) = uk(qk(π0)).

(3.52)

Therefore,

lim
N→∞

sNk (πN0 ) = sk(π0), (3.53)
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and by induction on time, it is clear that

lim
N→∞

sN1:k(π
N
0 ) = s1:k(π0). (3.54)

Now let us consider the case where we use multiple levels of MCMC. In such case,

the particles will evolve through different transition kernels designed with different

stationary distributions. We define the following perturbation

mN(π)K̄M
L (w) =

1

N

N∑
i=1

K̄M
L δxi(w). (3.55)

where M denotes the length of Markov chain and L denotes the number of levels.

The key condition we need to check is the following

lim
N→∞

πN = π =⇒ lim
N→∞

mNK̄M
L (πN) = π,∀πN , π ∈ P(Rnx). (3.56)

To show the perturbation satisfies the required condition, the multilevel MCMC

process considers all the levels of MCMC sampling before the final level as auxiliary

levels. The effect of these auxiliary levels is that at the final level the initial

distribution for the particles has been changed, however we will show that the required

condition can still be fulfilled in this case. The following definition and proposition

is needed for the proof.

Definition 3.5. The total variation distance between two probability measures ν1(·)

and ν2(·) is

‖ν1(·)− ν2(·)‖tv = sup
A
|ν1(A)− ν2(A)|.

Proposition 3.6. ‖ν1(·)− ν2(·)‖tv = 1
b−a sup

f :X→[a,b]

|
∫
fdν1 −

∫
fdν2| for any a < b.

Proof. See Roberts et al. (2004).
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Definition 3.7. A Markov chain {xm}m≥1 ∈ Rn is Φ−irreducible if there exists a

non-zero σ−finite measure Φ on Rn such that for all A ⊂ Rn with Φ(A) > 0, and for

all x ∈ Rn, there exists a positive integer M = M(x,A) such that KM(x,A) > 0.

Definition 3.8. A Markov chain with stationary distribution π(·) is aperiodic if there

do not exist d ≥ 2 and disjoint subsets X1, · · · ,Xd ⊂ Rn with K(x,Xi+1) = 1 for all

x ∈ Xi with 1 ≤ i ≤ d − 1 and K(x,X1) = 1 for all x ∈ Xd, such that π(Xi) > 0 for

all i.

Theorem 3.9. If a Markov chain on a state space with countably generated σ−algebra

is Φ−irreducible and aperiodic, and has a stationary distribution π(·), the for π−a.e.,

lim
M→∞

‖KM(x, ·)− π(·)‖tv = 0.

In particular, lim
M→∞

KM(x,A) = π(A) for all measurable A.

Proof. See Roberts et al. (2004).

Lemma 3.10. The random perturbation

mN(π)K̄M
L (w) =

1

N

N∑
i=1

K̄M
L δxi(w)

satisfies the following condition for almost all w ∈ Ω,

lim
N→∞

πN = π =⇒ lim
N→∞

mNK̄M
L (πN) = π,∀πN , π ∈ P(Rnx).

Proof. Let us consider the following expectation, where ν denotes the initial condition

and K̄M
L corresponds to the transition kernel at Mth step of the final level, is

taken with respect to the joint distribution of {xi, i = 1 · · · , N}, say Wν,K̄M
L

, by
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the independence of the random variables, Proposition 3.6 and Theorem 3.9

Eν,K̄M
L

(
((mNK̄

M
L (πN), h)− (πN , h))4

)
= Eν,K̄M

L

(
(

1

N

N∑
j=1

h(xMj )− (πN , h))4

)

= Eν,K̄M
L

(
1

N4
(
N∑
j=1

(h(xMj )− (πN , h)))4

)

=
1

N4
Eν,K̄M

L

(
N∑
j=1

(h(xMj )− (πN , h))4

)

=
1

N4
Eν,K̄M

L

( ∑
1≤i,j,k,`≤N

∏
τ=i,j,k,`

(h(xMτ )− (πN , h))

)
(3.57)

Notice that ∀ε,∃M,∀M >M, such that the following inequality holds

Eν,K̄M
L

(
h(xMi )− (πN , h)

)
= Eν,K̄M

L
(h(xMi ))− (πN , h)

= (νK̄M
L , h)− (πN , h) ≤ sup

‖h‖≤B
|
∫
hd(νK̄M

L )−
∫
hdπN |

= 2B‖νK̄M
L − πN‖tv ≤ ε

Since {xMi , i = 1, · · · ,M} are independent, then we have

Eν,K̄M
L

(
h(xMi )− (πN , h)3(h(xMj )− (πN , h))

)
= 0,

Eν,K̄M
L

(
h(xMi )− (πN , h)2(h(xMj )− (πN , h))(h(xMk )− (πN , h))

)
= 0,

Eν,K̄M
L

(
h(xMi )− (πN , h)(h(xMj )− (πN , h))(h(xMk )− (πN , h))(h(xM` )− (πN , h))

)
= 0
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if i, j, k, ` are distinct. Therefore, eq.(3.57) reduces to the following

1

N4
Eν,K̄M

L

( ∑
1≤i,j,k,`≤N

∏
τ=i,j,k,`

(h(xMτ )− (πN , h))

)

=
1

N4

N∑
j=1

Eν,K̄M
L

(h(xMj )− (πN , h))4

+
6

N4

N∑
i,j=1,i 6=j

Eν,K̄M
L

(h(xMi )− (πN , h))2(h(xMj )− (πN , h))2

+
4

N4

N∑
i,j=1,i 6=j

Eν,K̄M
L

(
|h(xMi )− (πN , h)|3|h(xMj )− (πN , h)|

)
+

12

N4

N∑
i,j,k=1,

i 6=j,i6=k,j 6=k

Eν,K̄M
L

(
|h(xMi )− (πN , h)|2|h(xMj )− (πN , h)||h(xMk )− (πN , h)|

)

+
24

N4

N∑
i,j,k,`=1
i 6=j 6=k 6=`

Eν,K̄M
L

(
|h(xMi )− (πN , h)||(h(xMj )− (πN , h)||(h(xMk )− (πN , h)|

|(h(xM` )− (πN , h)|
)

(3.58)

by taking ε = 1
N

the eq.(3.58) is bounded by the following

1

N4
Eν,K̄M

L

( ∑
1≤i,j,k,`≤N

∏
τ=i,j,k,`

(h(xMτ )− (πN , h))

)

≤ 1

N4

(
N · 24‖h‖4 + 6 · N(N − 1)

2
24‖h‖4 + 4ε · N(N − 1)

2
‖h‖3

+ 12ε2 · N(N − 1)(N − 2)

6
‖h‖2 + 24ε4 · N(N − 1)(N − 2)(N − 3)

24

)
=

1

N4

(
16N‖h‖4 + 48N(N − 1)‖h‖4 + 2(N − 1)‖h‖3

+
2

N
(N − 1)(N − 2)‖h‖2 +

(N − 1)(N − 2)(N − 3)

N3

)
≤ 1

N4

(
16N‖h‖4 + 48N2‖h‖4 − 48N‖h‖4 + 2‖h‖3 + 2N‖h‖2 + 1

)
≤ C

N2
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where C <∞ is an appropriate constant. Then

Eν,K̄M
L

(
∞∑
N=1

(
(mNK̄

M
L (πN), h)− (πN , h)

)4

)
≤ C

∞∑
N=1

1

N2
<∞ (3.59)

therefore,

∞∑
N=1

(
(mNK̄

M
L (πN), h)− (πN , h)

)4
<∞, for most all ω ∈ Ω. (3.60)

hence,

lim
N→∞

|(mNK̄
M
L (πN), h)− (πN , h)| = 0, for almost all ω ∈ Ω. (3.61)

by definition, for almost all ω ∈ Ω, the following holds

lim
N→∞

mNK̄M
L (πN) = π,∀πN , π ∈ P(Rnx). (3.62)

By the same method, we also have that

lim
N→∞

mN(πN) = π,∀πN , π ∈ P(Rnx). (3.63)

Theorem 3.11. If the transition kernel K is Feller and the likelihood function g

is bounded, continuous and strictly positive, then for the proposed algorithm uses

multilevel MCMC, we have lim
N→∞

πNk|k = πk|k almost surely.

Proof. Notice that the algorithm can be represented as following,

πNk|0:k = mNK̄M
L ◦ uk ◦mN ◦ qk(πNk−1|0:k−1) = sNk (πNk−1|0:k−1)

πNk|0:k = sN1:k ◦mN(π0) = sN1:k(π
N
0 )
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where πN0 = mN(π0). By Lemma 3.4.2, we have lim
N→∞

πN0 = π0, then by the continuity

of qk, we have

lim
N→∞

πN0 = π0 =⇒ lim
N→∞

qk(π
N
0 ) = qk(π0). (3.64)

And by the property of mN in Lemma 3.4.2, we have

lim
N→∞

qk(π
N
0 ) = qk(π0) =⇒ lim

N→∞
mN(qk(π

N
0 )) = qk(π0). (3.65)

Since uk is also continuous as we showed before, we have

lim
N→∞

mN(qk(π
N
0 )) = qk(π0) =⇒ lim

N→∞
uk(m

N(qk(π
N
0 ))) = uk(qk(π0)), (3.66)

then, employ the property of mNK̄M
L ,

lim
N→∞

uk(m
N(qk(π

N
0 ))) = uk(qk(π0)) =⇒ lim

N→∞
mNK̄M

L (uk(m
N(qk(π

N
0 )))) = uk(qk(π0)).

(3.67)

Therefore,

lim
N→∞

sNk (πN0 ) = sk(π0), (3.68)

and by induction on time, it is clear that

lim
N→∞

sN1:k(π
N
0 ) = s1:k(π0). (3.69)
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Chapter 4

Numerical applications

4.1 Double well potential dynamics

4.1.1 Double well potential with rugged energy landscape

Understanding the static and dynamical behaviors of complex physical systems is

one of the most challenging problems of modern research in physics, chemistry and

biology. The dynamics of many physical systems can be modeled as being driven by

a double well potential. Such potential has vast applications in modeling dynamics

in quantum mechanics, chemistry, and biology Janke (2007); Zwanzig (1988). For

instance, ammonia molecule, which is a key ingredient of Ammonia Maser, has two

equilibrium states. The nitrogen stays either on top or below of the hydrogens and the

transition from one state to the other is blocked by a energy barrier. This phenomenon

is well described by a double well potential. Also, in phase field models, in order to

describe some given interfacial dynamics, one has to choose a well suited free energy

function. The double well potential, as a popular choice of free energy function, is

used to simulate the behavior of interface.

Furthermore, in many scientific disciplines such as physics and chemistry, a

smooth double well potential may not be sufficient in describing the complicated

characteristics of the objects. Therefore, a more sophisticated free energy model is
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required. Examples such as spin glass, structural glass and protein folding are of great

scientific interest. While the concepts in different research realms are in many respects

quite diverse, certain common features coexist in all these systems. One of the most

prominent joint key features of those fields is rugged free-energy landscape which

generates multi-modality. For example, the study of Frauenfelder Zwanzig (1988)

suggests that the potential surface of a protein might have a hierarchical structure

with potential minima within potential minima, etc. The typical model of the rugged

free-energy landscapes for the protein folding problem and spin glass problem is shown

in Fig.4.1.

Let’s consider a typical smooth double well potential function given by

Uθ(x) =
θ

2
(x4 − 2x2), (4.1)

where θ ∈ R is a parameter that controls the shape of the potential well and x

denotes the state of dynamical system. A rugged energy landscape can be modeled

by a potential function, defined in (4.1), superimposed by another oscillating function.

The superimposed function describes many small potential barriers distributed in a

random way. Potential model of this type has been used in Zwanzig (1988) to simulate

the dynamical behavior of a protein. To this end, let us consider the following SDE

dxεk = −2θxεk(x
ε
k

2 − 1)dt− ε

δ
(cos(

xεk
δ

)− sin(
xεk
δ

))dt+ c(xk)dBk. (4.2)

Notice that eq.(4.2) consists of two parts. The drift part, which describes the

gradient flow of a rugged double well potential

U ε
θ(x, x/δ) =

θ

2
(x4 − 2x2) + ε(cos(

x

δ
) + sin(

x

δ
)), (4.3)

and the random perturbation part adjusted by a diffusion coefficient. A small noise

diffusion coefficient, for example c(xk) = 1
4
, weakens the effect of random noise and
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yields rare transitions. Moreover, when ε = 0, eq. (4.3) yields a smooth double well

potential defined in eq. (4.1) which has two minima at ±1, see Fig. 4.1. The state of

the system described by eq. (4.2) wanders around one of the two equilibrium states,

i.e. ±1, depending on the initial condition. The frequency of transitions between

the two states is determined by the stochastic perturbations and the effect of the

oscillating term. For example, Fig. 4.2 illustrates the dynamics described by eq.

(4.2) for 1,000 time steps. We observe that such transitions occur only once. If one

increases the diffusion coefficient of eq. (4.2), then frequent jumps, which may not

depict the reality, happen. One the other hand, such transitions and the evolution of

the system is typically observed via data. Consider that the observations are additive

Gaussian perturbations of the state process, i.e.

yk = xk + vk, (4.4)

where xk generated by eq.(4.2), and the integrated noise vk is distributed according

to N (0, σ2) and is independent of the noise in eq.(4.2).

Next, we describe the drift homotopy and likelihood bridging particle filter. Take

into account the following L+1 levels of dynamics with the same diffusion coefficient,

dxεk,` = −β(1− ε`)
[
2θxεk,`(x

ε
k,`

2 − 1)− ε

δ
(cos(

xεk,`
δ

)− sin(
xεk,`
δ

))

]
dt

− ε`

[
2θxεk,`(x

ε
k,`

2 − 1)− ε

δ
(cos(

xεk,`
δ

)− sin(
xεk,`
δ

))

]
dt+

1

4
dBk, (4.5)

where ` = 0, · · · , L and β ∈ [0, 1] is the coefficient controlling the steepness of the

potential wells. Specifically, a smaller β corresponds to a double well potential with

shallower wells, hence the samples will have a greater chance of moving between the

two equilibria given the relatively small stochastic noise. The transition densities

f`(xk|xk−1), for ` = 0, · · · , L, are associated with the modified SDEs defined in

eq.(4.5). The likelihood g(yk|xk), which is defined by eq.(4.4), is introduced via

the sequence of the bridging densities, i.e., gm(yk|xk) for m = ε`. Consider, now,
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Figure 4.1: The blue line shows the smooth double well potential defined in eq.(4.1)
and the red curve shows the oscillating double well potential (rugged free-energy
landscape) defined in eq.(4.3).

a partition of the time interval from k − 1 to k into subintervals, denoted by

xk−1 = x0
k−1 ≤ x1

k−1 ≤ · · · ≤ xIk−1 = xk. The stationary distribution at level ` for the

conditional path sampling is gm(yk|xk)
∏I−1

λ=0 f`(x
λ+1
k−1|xλk−1) which is proportional to

exp

[
−m(yk − xt)2

2σ2

] I−1∏
λ=0

exp

[
−

(xλ+1
k−1 −K`(xλk−1))2

2∆t

]
, (4.6)

where ` = 0, · · · , L, m = `
L

, and

K`(xλk−1) = −β(1− ε`)
[
2θxλk−1(xλk−1

2 − 1)− ε

δ
(cos(

xλk−1

δ
)− sin(

xλk−1

δ
))

]
∆t

−ε`
[
2θxλk−1(xλk−1

2 − 1)− ε

δ
(cos(

xλk−1

δ
)− sin(

xλk−1

δ
))

]
∆t.
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Figure 4.2: Trajectory described by eq. (4.2) with Gaussian noise of variance 0.25
and time step size 0.01. We perform 1000 time steps simulation and there is only one
jump occurred.

In the numerical simulations, we define ε = 0.1, θ = 2, δ = 0.02 and ε` = `
L
, ` =

0, · · · , L for eq.(4.5). We track xk over the time interval [0, T ], where T = 10 is

the terminal time. Starting at k = 0, the observations arrive at every 0.1 time

step and transition occurs at integer-valued time steps specifically yk = 1 when k =

2i + 1, i = 0, · · · , 4, and yk = −1 when k = 2i, i = 1, · · · , 4. The variance of the

Gaussian noise, vk, in the observation model is set to be σ2 = 0.05. In addition, the

Euler-Maruyama discretization scheme is employed to simulate the dynamics (4.2)

where time increment is ∆t = 0.01. For the appended MCMC step, we employ the

Metropolis-Hastings scheme and set L = 50. For each stationary distribution in

the sequence, we run 10 MCMC steps. The tracking results of 3 different particle

filters are shown in Fig. 4.3. It indicates that the generic particle filter (also called

sequential importance sampling resampling or abbreviated SISR) can fail to capture

the rare transitions. APF is able to capture the jumps between two equilibrium states

when enough observations become available. DHLB-PF can track the rare transitions

with a lot less data. To show the algorithm is very effective, we plot the change of the
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effective sample sizes (ESS) of the three particle filters as the level increases in Fig. 4.4

at the time when the first jump from 1 to −1 occurred. A detailed description is given

later in Section 4.3. The ESS for all three particle filters behaves very similarly when

jumps occur, therefore the corresponding figures are omitted. The ESS of DHLB-PF

increases from 0 to around 800 out of 800 samples, whereas the ESS’s of the other

two algorithms are close to zero.

0 1 2 3 4 5 6 7 8 9 10

time

-1.5

-1

-0.5

0

0.5

1

1.5

S
ta

te

True Trajectory
Observations
SISR Filter
Auxiliary Particle Filter
DHLB Particle Filter

Figure 4.3: This picture shows the tracking results of three particle filters. We use
800 samples for each filter and 50 levels for the DHLB-PF algorithm.

Notice that our algorithm outperforms the other two popular filter schemes and

behaves very stable as time evolves. The speed of relocation of the empirical filtering

distribution to the true filtering distribution indicates the efficiency of the algorithm,

especially in the case of rare transitions. However, as we can see in Fig. 4.3, the SISR

filter and APF are not able to capture the jumps immediately. This phenomenon is

compounded in the sequential setting since the errors are cumulated as time evolves,

it coincides with the numerical results where the performances of the other filters

are very unstable in tracking the rare transitions. With the given setting in the

observation model, the true filtering distribution will move most of its probability

mass around −1 after 2 or 3 observations. Fig. 4.5 shows that DHLB-PF needs about

the same number of observations to relocate the empirical filtering distribution. SISR
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Figure 4.4: The comparison of the effective sample sizes at the time instant 2 when
the first rare transition occurred. As shown in the figure, DHLB-PF is able to bring
up the effective sample size as level increases, whereas the effective sample sizes of
the other two methods, GPF and APF, are close to zero. (Notice that there is no
levels for GPF and APF hence the ESS for these two filters does not change in the
figure.)

fails to relocate the empirical filtering distribution at the first jump and it needs lots

of observation data to move the empirical filtering distribution. APF performs better

than SISR as it moves the empirical filtering distribution to the statistically significant

region much more quickly than SISR, however still much slower than DHLB-PF.

4.2 Multi-target tracking problem

4.2.1 Multi-target tracking in a wireless sensor network

without fusion center

Adopting the DHLB-PF and the sparsity aware matrix decomposition frameworks,

this section employs this novel framework in a multi-target tracking problem in a
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Figure 4.5: The first row in the figure shows the empirical filtering distribution
p(xk|y1:k) at each time step when observation is available. The second row in the
figure zooms out around the time steps when the first rare transition occurs. It is clear
that GPF fails to relocate the empirical filtering distribution, and APF takes about
6 observation data to relocate the empirical filtering distribution, whereas DHLB-PF
only needs two observational data to move the empirical filtering distribution.
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wireless sensor network (WSN). We first discuss the problem and how we produce

the synthetic data, then present numerical results.

Problem Formulation

We assume that the targets move in a 2 dimensional space. The state of the mth target

at time instant k is represented by a vector xmk = [xmk , ẋ
m
k , y

m
k , ẏ

m
k ], where (xmk , ẋ

m
k )

and (ymk , ẏ
m
k ) are the position and velocity on the x and y axes respectively. At each

time instant k, there are Mk moving targets, and the mth target evolves according to

the following dynamics

xmk = Bxmk−1 + Cumk , (4.7)

where the matrices B = diag{P, P} and B = diag{Q,Q} are as follows P =1 δT

0 1

 , Q = (δT 2/2, δT )′, where (·)′ denotes the transpose of a vector, and

δT denotes the time lag between observations which is set to be 1 in our numerical

experiments. The model noise umk is a Gaussian random vector that consists of two

independent Gaussian random variables, i.e. umk = (umx,t, u
m
y,t), with µmu = 0 and

covariance Σm
u = diag{σ2

x, σ
2
y} where σ2

x = 0.7, σ2
y = 0.7 is used in the simulations.

The synthesized target tracks were created by evolving a number of targets

according to (4.11) and recording the state of each target at each time step. The

observations were obtained based on the model (2.2). The number of targets at each

time instant is Mk = 10 for all k.

Drift homotopy and likelihood bridging

The modified dynamics of the mth target based on the drift homotopy is given by

x`,mk = Bx`,mk−1 + D`,m + Cumk , (4.8)
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where D`,m = (1 − ε`)(µ
m
x,k−1

δT 2

2
, µmx,k−1δT, µ

m
y,k−1

δT 2

2
, µmy,k−1δT )

′
, and ε` = `/L, and

` = 0, · · · , L. In the numerical experiments we set L = 10, namely, 10 levels of drift

homotopy and likelihood bridging, and for the nth sample at time instant t − 1 we

define

µmn,x,k−1 =
µ̄mx − xmn,k−1

δT 2/2
−

2ẋmn,k−1

δT
,

µmn,y,k−1 =
µ̄my − ymn,k−1

δT 2/2
−

2ẏmn,k−1

δT
,

where µ̄mx and µ̄my are mean drifts which offset the individual sample’s properties such

that

µ̄mx =
1

N

N∑
n′=1

(xmn′,k−1 + ẋmn′,k−1δT ),

µ̄my =
1

N

N∑
n′=1

(ymn′,k−1 + ẏmn′,k−1δT ).

In order to represent the path between two observations, we need to partition the

time interval between time instants k − 1 and k using ∆t = 0.1. We consider a

partition on the time interval from k − 1 to k into I subintervals, denoted the states

by xk−1 = x0
k−1 ≤ x1

k−1 ≤ · · · ≤ xIk−1 = xk. The stationary distribution at level ` for

the nth sample using drift homotopy and likelihood bridging can be expressed as

Mk∏
m=1

[
gε`m(ym

k,ĥm,k
|xmn,k)

I−1∏
λ=0

f`,m(xm,λ+1
n,k−1 |x

m,λ
n,k−1)

]
,

where ym
k,ĥm,k

are the observations of informative sensors instead of all sensor

measurements. Specifically, the stationary distribution at level ` is proportional to

Mk∏
m=1

exp

(−‖ym
k,ĥm,t

− dm(xmn,k)‖2

2σ2
w

+
I−1∑
λ=0

[
(xm,λ+1

n,k−1 − S`(x
m,λ
n,k−1))2

(∆t)4σ2
x/2

+
(ym,λ+1
n,k−1 − S`(y

m,λ
n,k−1))2

(∆t)4σ2
y/2

])
(4.9)
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where S`(·) is defined as

S`(xm,λn,k−1) = xm,λ−1
n,k−1 + xm,λ−1

n,k−1 ∆t+ (1− ε`)µmn,x,k−1

∆t2

2
+

∆t2

2
umx,k

S`(ym,λn,k−1) = ym,λ−1
n,k−1 + ym,λ−1

n,k−1 ∆t+ (1− ε`)µmn,y,k−1

∆t2

2
+

∆t2

2
umy,k

and

dm(xmn,k) = [d−2
ρ1,m,n

, d−2
ρ2,m,n

, · · · , d−2
ρ|ĥm,k|

,m,n]T ,

where |ĥm,k| denotes the number of informative sensors at time instant k around target

m, namely it is the number of nonzero entries in the vector ĥm,k which is obtained from

the decomposition algorithm, ρ1, · · · , ρ|ĥm,k| are the indices for informative sensors

nearby target m and dρi,m,n, i = 1, · · · , |ĥm,k| denotes the Euclidean distance between

sensor ρi and target m, and n denotes the sample index in the particle cloud. We

should emphasize that the implementation and choice of MCMC sampler in the

appended MCMC step is crucial for the algorithm to work efficiently. A naive choice

of an MCMC method will increase the computational costs. In this application of

multi-target tracking in WSN, we use the generalized hybrid Monte Carlo sampler as

described in Section 3.3.2.

Simulation results

Fig. 4.6 displays the tracking estimates based on three particle filters, i.e. the generic

particle filter (GPF), the auxiliary particle filter (APF) and our approach the called

drift homotopy likelihood bridging particle filter (DHLB-PF). We observe that the

DHLB-PF successfully detects the tracks of the moving targets in the sensing field,

whereas, the other two popular particle filters fail to follow the moving targets in

the sensing field. The performances of three particle filters are measured by the root-

mean-square error (RMSE) at time k which is defined with reference to the true target
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tracks by the following formula,

RMSE(k) =

√∑Mk

m=1 ‖xmk − E(xmk |y1, · · · , yk)‖2

Mk

, (4.10)

where E(xmk |y1, · · · , yk) is the conditional expectation estimate provided byDHLB-

PF, and xmk denotes the true state of target m at time instant k. We only extract

position information to calculate the RMSE at each time instant and the result is

shown in Fig. 4.7. The number of active sensors during the tracking process is

provided in Fig.
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Figure 4.6: Tracking results of three particle filters in the wireless sensor network,
including GPF, APF and DHLB-PF. The red diamonds denote the sensors in the
field (200 sensor are deployed). The Blue stars are the initial positions of the 10
moving targets. The blue trajectories denote the true moving tracks of the targets and
the green curves denote the tracking estimates obtained using DHLB-PF algorithm.
Black track and cyan track represent the tracking results of GPF (10000 samples) and
APF(1000 samples) respectively. We assume the targets are moving from time instant
0 to time instant 17. As we can see from the results, the DHLB-PF is competent
for following the moving targets in the wireless sensor network and outperforms the
other two particle filters.
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Figure 4.7: RMS errors comparison of GPF, APF and DHLB-PF algorithms. The
RMS error is computed using eq. (4.10). The results show that the RMS error
maintains at the very low level as the time evolves for DHLB-PF. However, the RMS
errors for the other two particle filters blow up quickly. The small window shows
magnified difference of RMS errors between GPF and APF in which we can see that
APF performs slightly better than GPF.
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Figure 4.8: The number of active sensors during the tracking process. The total
number of sensors deployed in the WSN is 200. As we can see, only a small portion
of the WSN is effected during the tracking process.
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4.3 A learning parameter in DHLB-PF

Section 4.2 as well as the studies in Maroulas and Stinis (2012); Kang and Maroulas

(2013); Kang et al. (2014) consider a fixed number of L levels which were employed.

However, in most cases, the MCMC may achieve a convergent result prior to going

through all the auxiliary levels of drift homotopy. In other words, computational time

is unnecessarily spent. However, if one considers a surveillance distributed sensor

network Ren et al. (2015) which employs a particle filter method for monitoring

threats, then it is of paramount importance to execute quickly and accurately the

procedure since there exist stringent power constraints. In other words, a technique,

which decreases the number of levels such that computational time is saved, is urgently

needed. Therefore, we introduce a learning method within the MCMC sampler in the

particle filter. The learning method automatically adjusts the number of levels, `k,

at a given time k.

The learning criterion is the effective sample size (ESS) as defined in eq.(2.34).

The ESS is a measure of how much the samples at any given time k contribute

to the approximation of the filtering distribution.The novel learning drift homotopy

particle filter calculates the ESS after each level of drift homotopy at each time step

when observations are available. Suppose that one generates N i.i.d samples from the

importance distribution q(x), another equivalent ESS formula is defined by,

ESS` =
N

1 + CV2
N,`

,

where CVN,` is the coefficient of variation of the normalized weights given by

CVN,` =

 1

N

N∑
i=1

(
Nw`i∑N
j=1 w

`
j

− 1

)2
1/2

,

where w`i and w`j denote the importance weights for the ith and jth particles

respectively after `th level of drift homotopy. Notice the weights w`i and w`j are still
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calculated by substituting xik by xik,`k , where xik,`k denotes the ith sample at `thk level

at time step k. Based on the definition of ESS, its value is between 1 and N . If the

particles with equal weights 1
N

are considered, then the CVN,` will be equal to zero.

On the other hand, if all the normalized weights but one are null, then the CV2
N,`

will reach its maximum value N − 1 and therefore the ESS will be just 1. Also, the

ESS reveals that using N weighed samples generated from the importance density

to approximate the filtering distribution is equivalent to using N
1+CV2

N,`
i.i.d samples

drawn from the filtering distribution Cappé et al. (2005); Liu (2008).

We can employs the ESS at each time step when observations are available. Since

ESS indicates the number of samples that essentially contributes to the estimation, if

the ESS exceeds an appropriate threshold, it implies that the MCMC step converged

to the filtering distribution, and therefore no more levels in the drift homotopy are

needed.

In the following, we present two examples to illustrate the advantages of

introducing the learning parameter. The first numerical experiment is performed for

the double well potential dynamics and the second is a multi-target tracking problem

with linear and non-linear observation models.

4.3.1 Smooth double well potential dynamics

For the double well potential dynamics, we employ the Metropolis-Hasting algorithm

as the MCMC sampler at each level `k = 0, · · · , L of each time step k. One may

fix both the number of levels, and the steps of MCMC sampling at each time step.

However, this leads to unnecessary consumption of the computational time which

may be disastrous if one tracks threats with a distributed surveillance sensor network.

Therefore, we use the ESS as the parameter that controls levels such that the number

of levels, which are needed in order to reach a convergent result, decreases drastically.

Moreover, a comparison of two ways of implementations is shown in Table 4.1 and

Table 4.2. Table 4.1 displays the results of a DHLB-PF with fixed number of levels
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Table 4.1: This table shows, for fixed 40 levels of drift homotopy and 1 level
of likelihood bridging and 150 MCMC steps, the error at each time step which is
simply the difference between true state and estimation. The number of particles
is considered to be 10. The experiment considers the smooth double well potential
energy.

Time steps L MCMC steps Error
1 40 150 0.016962
2 40 150 0.058091
3 40 150 0.026314
4 40 150 0.046993
5 40 150 0.032146
6 40 150 0.012817
7 40 150 0.012912
8 40 150 0.034872
9 40 150 0.044780
10 40 150 0.026893
11 40 150 0.029236
12 40 150 0.015401
13 40 150 0.071464
14 40 150 0.036774
15 40 150 0.038505
16 40 150 0.039479
17 40 150 0.071885
18 40 150 0.064279
19 40 150 0.000960
20 40 150 0.002162

(L = 40) and 150 MCMC steps. Table 4.2 uses the learning DHLB-PF where the ESS

threshold is set to be 75%. One may observe that we have comparable errors however

with significantly less levels of drift homotopy and MCMC steps. Also, the tracking

error, which is defined as the distance between estimated state and the true state,

is given in the tables for demonstration of the filtering estimation of the partially

observed diffusion. In fact, there were a few instances (t = 2, 6, 14) where sampling

directly from the modified dynamics (` = 0) was sufficient for the filter to reach a

convergent result.
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Table 4.2: This table shows the levels performed before the final level L = 40 and the
MCMC steps, and the error at each time step which is simply the difference between
true state and estimation. The sample size is set to be 10. The ESS threshold is
set to be 75% of the sample size. The experiment considers the smooth double well
potential energy.

Time steps `k MCMC steps Error
1 22 10 0.049871
2 0 1 0.046551
3 1 29 0.048307
4 2 49 0.044896
5 7 83 0.049962
6 0 12 0.004473
7 1 37 0.049107
8 6 57 0.045660
9 24 5 0.048551
10 5 97 0.047620
11 15 15 0.043014
12 9 92 0.046975
13 9 58 0.048404
14 0 45 0.049052
15 3 29 0.047892
16 11 82 0.046791
17 5 70 0.046585
18 6 15 0.041894
19 10 35 0.049664
20 6 44 0.047678
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We next study the performance for a multi-target tracking problem. We consider

two observation models: a linear Gaussian model and a nonlinear non-Gaussian

model.

4.3.2 Case 1: Linear Gaussian model

Suppose there are m targets and the state vector of the mth target at time k is

represented via xmk = [xmk , ẋ
m
k , y

m
k , ẏ

m
k ], where (xmk , ẋ

m
k ) and (ymk , ẏ

m
k ) are the position

and velocity on the x and y axes respectively. The dynamic of each target is given by

xmk = A1x
m
k−1 + A2u

m
k , (4.11)

where the matrices A1 and A2 are as follows

A1 =


1 ∆ 0 0

0 1 0 0

0 0 1 ∆

0 0 0 1

 ,A2 =


∆2/2 0

∆ 0

0 ∆2/2

0 ∆


and ∆ = 1 denotes the time between observations. The noise umk is distributed

according to a 2 dimensional Gaussian distribution with mean 0 and covariance,

Σm
u =

0.7 0

0 0.7

 .

In our simulation, a linear observation model is considered

ynk = x̃mk + vnk , (4.12)
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where x̃mk = (xmk , y
m
k )T is the position of the mth target at time k and vnk is a Gaussian

noise with covariance

Σn
v =

0.004 0

0 0.004

 .

We do not have prior knowledge of target-to-observation association and therefore

we use the Munkres algorithm Burkard et al. (2009) to match the observations with

targets.

4.3.3 Case 2: Nonlinear non-Gaussian model

In this numerical experiment, a nonlinear non-Gaussian observation model is

considered which consists of the measurements of bearing θ and the range r of a

target. Let ynk be the nth observation from the mth target at time k, the observation

model is defined below

ynk =

(
arctan(

ymk
xmk

),
√

(xmk )2 + (ymk )2

)′
+ vnk . (4.13)

where vnk , is distributed according to a suitable Gaussian Mixture Model (GMM)

with probability density

p(vnk ) =
2∑
`=1

wv`N (µn`,v,Σ
n
`,v), (4.14)

where wv1 = 0.8, wv2 = 0.2 and µn1,v = −0.01, µn2,v = 0.01 and the covariance matrices

are defined as follows

Σn
1,v =

0.004 0

0 0.004

 ,Σn
2,v =

0.0001 0

0 0.0001

 .
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Also in this case, the driving noise in the dynamics model is considered to be a suitable

GMM with two Gaussian mixands defined as follows

p(unk) =
2∑
`=1

wu`N (µn`,u,Σ
n
`,u), (4.15)

The means of the two Gaussians are also ±0.01 and the covariance matrices are given

in the following

Σn
1,u =

0.7 0

0 0.7

 ,Σn
2,u =

0.1 0

0 0.1

 .

with weights wu1 = 0.8, wu2 = 0.2 respectively.

In this experiment, the generalized hybrid Monte Carlo Alexander et al. (2005b) is

employed as the MCMC sampler. The numerical results in Table (4.3) show that the

algorithm needs much less levels for some targets at some time steps to obtain good

tracking results. Also, the table specifies that the DHLB-PF with learning parameter

is able to automatically choose the terminating level and does not compromise the

tracking performance as shown in Fig. 4.10. For the nonlinear and Non-Gaussian

case, the tracking result is shown in Fig.4.11. Given that a surveillance distributed

sensor network operates under limited power constraints and a quick detection and

accurate tracking of targets is needed, the the threshold of the ESS has been chosen to

a lower value, precisely, 50%. However, a close examination on the RMSE comparison

presented in Fig. 4.12 implies that the learning drift homotopy algorithm estimates

accurately the states of the targets while at the same time decreases the computational

time by not using all levels as in the drift homotopy. Also, its performance is by far

superior in comparison to particle filtering as showing in Fig. 4.
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Table 4.3: This table shows the levels performed before the final level L= 20 at a
single time step k = 10. The ESS threshold is chosen to be 50% of the sample size.
Samples size is set to be 10 in the algorithm.

Target `k MCMC steps ESS (50%)
1 7 9 7.513377
2 2 16 5.026966
3 0 41 5.016717
4 0 47 7.510589
5 0 33 5.007232
6 0 23 5.012302
7 0 1 9.986915
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Figure 4.9: This figure shows that as the level increases, the ESS increases and
RMSE decreases.
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Figure 4.10: Tracking result for Section 4.3.2 with 7 targets.
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Figure 4.11: Tracking result for Section 4.3.3 with 7 targets.
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Figure 4.12: This figure shows the RMSE comparison of the generic particle filter
(GPF) with 500 samples, the DHLB-PF and the learning drift homotopy particle
filtering with 10 samples in both methods. We also include the RMSE of the learning
DHLB-PF for a nonlinear non-Gaussian model. The lower panel is a zoomed in and
smoothed figure of the upper panel that compares the RMSE of DHLB-PF with and
without learning.
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Bajović, D., Sinopoli, B., and Xavier, J. (2011). Sensor selection for event detection

in wireless sensor networks. Signal Processing, IEEE Transactions on, 59(10):4938–

4953. 12

Bar-Shalom, Y., Li, X. R., and Kirubarajan, T. (2004). Estimation with applications

to tracking and navigation: theory algorithms and software. John Wiley & Sons. 4

Baum, M. and Hanebeck, U. D. (2012). Extended object tracking based on set-

theoretic and stochastic fusion. IEEE Transactions on Aerospace and Electronic

Systems, 48(4):3103–3115. 4

Baum, M. and Hanebeck, U. D. (2013). The kernel-sme filter for multiple target

tracking. In Information Fusion (FUSION), 2013 16th International Conference

on, pages 288–295. IEEE. 4

Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., and Plemmons,

R. J. (2007). Algorithms and applications for approximate nonnegative matrix

factorization. Computational statistics & data analysis, 52(1):155–173. 12, 13

87



Berzuini, C. and Gilks, W. (2001). Resample-move filtering with cross-model jumps.

In Sequential Monte Carlo Methods in Practice, pages 117–138. Springer. 5

Brunet, J.-P., Tamayo, P., Golub, T. R., and Mesirov, J. P. (2004). Metagenes and

molecular pattern discovery using matrix factorization. Proceedings of the national

academy of sciences, 101(12):4164–4169. 12

Bunke, H. and Caelli, T. (2001). Hidden Markov models: applications in computer

vision, volume 45. World Scientific. 3

Burkard, R. E., Dell’Amico, M., and Martello, S. (2009). Assignment Problems,

Revised Reprint. Siam. 81

Candès, E. J., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information. Information

Theory, IEEE Transactions on, 52(2):489–509. 2
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Kulhavỳ, R. (1990). Recursive nonlinear estimation: A geometric approach.

Automatica, 26(3):545–555. 21

Law, K., Stuart, A., and Zygalakis, K. (2015). Data assimilation: a mathematical

introduction, volume 62. Springer. 3

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative

matrix factorization. Nature, 401(6755):788–791. 12, 13

Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization.

In Advances in neural information processing systems, pages 556–562. 2

Lin, C.-J. (2007a). Projected gradient methods for nonnegative matrix factorization.

Neural computation, 19(10):2756–2779. 2

Lin, C.-J. (2007b). Projected gradient methods for nonnegative matrix factorization.

Neural computation, 19(10):2756–2779. 14

Lin, J., Xiao, W., Lewis, F. L., and Xie, L. (2009). Energy-efficient distributed

adaptive multisensor scheduling for target tracking in wireless sensor networks.

Instrumentation and Measurement, IEEE Transactions on, 58(6):1886–1896. 31

93



LIU, H., SO, H. C., CHAN, K. W. F., and LUI, W. K. (2009). Distributed particle

filter for target tracking in sensor networks. Progress In Electromagnetics Research

C. 31

Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science &

Business Media. 3, 77

Liu, J. S. and Chen, R. (1998). Sequential monte carlo methods for dynamic systems.

Journal of the American statistical association, 93(443):1032–1044. 4, 22

Mahler, R. and Maroulas, V. (2013). Tracking spawning objects. IET Radar, Sonar

and Navigation, 7(3):321–331. 3, 4

Mahler, R. P. (2007). Statistical multisource-multitarget information fusion. Artech

House, Inc. 4

Maroulas, V., Kang, K., Schizas, I. D., and Berry, M. W. (2015). A learning drift

homotopy particle filter. In Information Fusion (Fusion), 2015 18th International

Conference on, pages 1930–1937. 3, 4

Maroulas, V. and Nebenfuhr, A. (2015). Tracking rapid intracellular movements: a

bayesian random set approach. Annals of Applied Statistics, 9(2):926–949. 3, 4

Maroulas, V. and Stinis, P. (2012). Improved particle filters for multi-target tracking.

Journal of Computational Physics, 231(2):602–611. 4, 76

Ng, W., Li, J., Godsill, S., and Vermaak, J. (2005). A hybrid approach for online

joint detection and tracking for multiple targets. In Aerospace Conference, 2005

IEEE, pages 2126–2141. IEEE. 31

Oh, S. (2012). A scalable multi-target tracking algorithm for wireless sensor networks.

International Journal of Distributed Sensor Networks, 2012. 31

94



Olfati-Saber, R. (2005). Distributed kalman filter with embedded consensus filters. In

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05.

44th IEEE Conference on, pages 8179–8184. IEEE. 1

Owen, A. B. (2013). Monte Carlo theory, methods and examples. 22, 24

Ozdemir, O., Niu, R., and Varshney, P. K. (2009). Tracking in wireless sensor networks

using particle filtering: Physical layer considerations. Signal Processing, IEEE

Transactions on, 57(5):1987–1999. 1

Pascual-Montano, A., Carazo, J. M., Kochi, K., Lehmann, D., and Pascual-Marqui,

R. D. (2006). Nonsmooth nonnegative matrix factorization (nsnmf). Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 28(3):403–415. 15

Pauca, V. P., Piper, J., and Plemmons, R. J. (2006). Nonnegative matrix factorization

for spectral data analysis. Linear algebra and its applications, 416(1):29–47. 15

Pauca, V. P., Shahnaz, F., Berry, M. W., and Plemmons, R. J. (2004). Text mining

using non-negative matrix factorizations. In SDM, volume 4, pages 452–456. SIAM.

16

Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle

filters. Journal of the American statistical association, 94(446):590–599. 26

Rabiner, L. and Juang, B.-H. (1993). Fundamentals of speech recognition. 3

Ren, G., Maroulas, V., and Schizas, I. (2015). Distributed spatio-temporal association

and tracking of multiple targets using multiple sensors. Aerospace and Electronic

Systems, IEEE Transactions on, 51(4):2570–2589. 8, 32, 34, 76

Ren, G. and Schizas, I. D. (2013). Distributed sensor-informative tracking of targets.

In Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013

IEEE 5th International Workshop on, pages 81–84. IEEE. 31

95



Ristic, B., Arulampalam, M., and Gordon, A. (2004). Beyond kalman filters: Particle

filters for target tracking. Artech House, 66. 4, 21

Roberts, G. O., Rosenthal, J. S., et al. (2004). General state space markov chains

and mcmc algorithms. Probability Surveys, 1:20–71. 57, 58

Sajda, P., Du, S., Brown, T. R., Stoyanova, R., Shungu, D. C., Mao, X., and Parra,

L. C. (2004). Nonnegative matrix factorization for rapid recovery of constituent

spectra in magnetic resonance chemical shift imaging of the brain. Medical Imaging,

IEEE Transactions on, 23(12):1453–1465. 12

Sandell, N. F. and Olfati-Saber, R. (2008). Distributed data association for multi-

target tracking in sensor networks. In Decision and Control, 2008. CDC 2008. 47th

IEEE Conference on, pages 1085–1090. IEEE. 32

Schizas, I. D. (2013). Distributed informative-sensor identification via sparsity-aware

matrix decomposition. Signal Processing, IEEE Transactions on, 61(18):4610–4624.

2

Smith, A., Doucet, A., de Freitas, N., and Gordon, N. (2013). Sequential Monte Carlo

methods in practice. Springer Science & Business Media. 4, 5

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. (2008). Obstacles to high-

dimensional particle filtering. Monthly Weather Review, 136(12):4629–4640. 5, 39

Sorenson, H. W. and Alspach, D. L. (1971). Recursive bayesian estimation using

gaussian sums. Automatica, 7(4):465–479. 4

Tharmarasa, R., Kirubarajan, T., Sinha, A., and Lang, T. (2011). Decentralized

sensor selection for large-scale multisensor-multitarget tracking. Aerospace and

Electronic Systems, IEEE Transactions on, 47(2):1307–1324. 32

96



Thatte, G. and Mitra, U. (2008). Sensor selection and power allocation for distributed

estimation in sensor networks: Beyond the star topology. Signal Processing, IEEE

Transactions on, 56(7):2649–2661. 10, 11

Tibshirani, R. (1996a). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288. 2, 33

Tibshirani, R. (1996b). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288. 16

Toral, R. and Ferreira, A. (1994). A general class of hybrid monte carlo methods. In

Proceedings of Physics Computing, volume 94, pages 265–268. 41

Ulfarsson, M. O. and Solo, V. (2008). Sparse variable pca using geodesic steepest

descent. Signal Processing, IEEE Transactions on, 56(12):5823–5832. 2

Valverde, G. and Terzija, V. (2011). Unscented kalman filter for power system

dynamic state estimation. Generation, Transmission & Distribution, IET, 5(1):29–

37. 21

Vermaak, J., Godsill, S. J., and Perez, P. (2005). Monte carlo filtering for multi

target tracking and data association. Aerospace and Electronic Systems, IEEE

Transactions on, 41(1):309–332. 32

Vo, B.-N., Singh, S., and Doucet, A. (2005). Sequential monte carlo methods for

multitarget filtering with random finite sets. Aerospace and Electronic Systems,

IEEE Transactions on, 41(4):1224–1245. 4

Wan, E. A. and Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear

estimation. In Adaptive Systems for Signal Processing, Communications, and

Control Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158. Ieee. 4

Weare, J. (2009). Particle filtering with path sampling and an application to a bimodal

ocean current model. Journal of Computational Physics, 228(12):4312–4331. 5, 39

97



Welch, G. and Bishop, G. (2006). An introduction to the kalman filter. department

of computer science, university of north carolina. 3

Zdunek, R. and Cichocki, A. (2007). Nonnegative matrix factorization with

constrained second-order optimization. Signal Processing, 87(8):1904–1916. 15

Zhou, G., Cichocki, A., and Xie, S. (2012). Fast nonnegative matrix/tensor

factorization based on low-rank approximation. Signal Processing, IEEE

Transactions on, 60(6):2928–2940. 17

Zhu, H., Schizas, I. D., and Giannakis, G. B. (2009). Power-efficient dimensionality

reduction for distributed channel-aware kalman tracking using wsns. Signal

Processing, IEEE Transactions on, 57(8):3193–3207. 1

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American

statistical association, 101(476):1418–1429. 33

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis.

Journal of computational and graphical statistics, 15(2):265–286. 2

Zwanzig, R. (1988). Diffusion in a rough potential. Proceedings of the National

Academy of Sciences, 85(7):2029–2030. 63, 64

98



Vita

Kai Kang was born on July 14th, 1983 in Shenyang, China. In 2002, he joined

Northeastern University in China in the Department of Mathematics. He received

his B.S. degree in July 2006. He worked as a programmer after graduation.

In August 2009, he started to pursue his Master’s degree at the University

of Tennessee, Knoxville in the Department of Mathematics with concentration in

numerical analysis. He obtained his M.S. degree in 2012. He continued his study in

the Department of Mathematics at the University of Tennessee, Knoxville as a Ph.D.

student with concentration in computational statistics.

He will join the National Institutes of Health as a statistician in August, 2016 in

North Carolina.

99


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2016

	Advanced sequential Monte Carlo methods and their applications to sparse sensor network for detection and estimation
	Kai Kang
	Recommended Citation


	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	2 Review of existing methods
	2.1 Problem formulation
	2.2 Sparsity methods
	2.3 Monte Carlo Filtering methods
	2.3.1 Hidden Markov Model
	2.3.2 Monte Carlo and Importance Sampling Methods
	2.3.3 Sequential Monte Carlo Methods
	2.3.4 Importance Density


	3 A novel methodology
	3.1 Introduction
	3.2 Detecting dynamic objects
	3.2.1 Analysis of Data Covariance
	3.2.2 Sparse Data Association

	3.3 An Advanced Sequential Monte Carlo method
	3.3.1 Drift homotopy likelihood bridging particle filter
	3.3.2 The MCMC sampler: Generalized hybrid Monte Carlo

	3.4 A theoretical treatment
	3.4.1 Drift Homotopy and Likelihood Bridging Particle Filtering
	3.4.2 Almost Sure Convergence of the DHLB particle filter


	4 Numerical applications
	4.1 Double well potential dynamics
	4.1.1 Double well potential with rugged energy landscape

	4.2 Multi-target tracking problem
	4.2.1 Multi-target tracking in a wireless sensor network without fusion center

	4.3 A learning parameter in DHLB-PF
	4.3.1 Smooth double well potential dynamics
	4.3.2 Case 1: Linear Gaussian model
	4.3.3 Case 2: Nonlinear non-Gaussian model


	Bibliography
	Vita

