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Abstract 

 

Translation of mRNA into protein is a critical step in gene expression, but the principles 

guiding its regulation at the genome level are not completely understood.  Translation can be 

quantified at a genome scale by measuring the ribosome loading of mRNA—the extent to which 

mRNA is associated with ribosomes.  In this dissertation, I present investigations into how 

genome-wide ribosome loading is controlled in Arabidopsis thaliana.  In chapter 1, I give an 

overview of regulation of ribosome loading and translation.  In chapter 2, I present research 

demonstrating for the first time that genome-wide ribosome loading in plants is partially 

controlled by the circadian clock.  In chapter 3, I present a study of a computational model that 

describes how various biochemical steps control ribosome loading.  And in chapter 4, I conclude 

by briefly summarizing the dissertation as a whole and discussing future perspectives. 
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Chapter 1 

 

Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2  
All cellular organisms make proteins to carry out the biological processes necessary for life.  

Cells make proteins according to the central dogma of molecular biology, which states that DNA 

is used to make RNA, and RNA is used to make proteins (Crick 1958, Crick 1970).  Cells adjust 

the type and abundance of proteins they make in order to facilitate growth and development and 

to maintain homeostasis in a changing intracellular and extracellular environment.  Since each 

type of protein is encoded by a specific DNA sequence in the form of a gene, understanding how 

genes are used to make proteins is central to understanding how cells function.  The basic 

principles of this process of gene expression are clear.  DNA from each gene is transcribed into 

specific mRNAs by enzymes called RNA polymerases, and mRNAs are translated into specific 

proteins by cellular machines called ribosomes.   

The biochemical steps involved in gene expression have been characterized in much 

detail (Moore 2005).  Many fundamental concepts of mRNA expression were established using 

early hybridization approaches, such as northern blotting, in situ hybridization, RNAse 

protection assays, and reporter gene expression assays, which target one RNA species at a time.  

However, much remains to be understood about how gene expression is regulated.  Stemming 

from advances in technologies for studying RNA in the 1980s and 1990s, including the 

polymerase chain reaction (PCR) and microarrays, much of the research focus on gene 

expression regulation at the genome scale has been at the level of transcription.   

Indeed, mRNA levels are important determinants of protein levels.  But, once 

developments in high-throughput proteomics enabled comparisons of mRNA and protein levels 

at a genome scale, it became clear that mRNA levels are not perfect predictors of protein levels 

(de Sousa Abreu, Penalva et al. 2009), and the importance of post-transcriptional regulation in 

gene expression became increasingly recognized.  Protein synthesis is energetically very costly 
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for a cell, so translation is tightly regulated in order for a cell to manage its resources efficiently 

(Jackson, Hellen et al. 2010, Vogel and Marcotte 2012).   

Advances in experimental and computational approaches now allow detailed exploration 

into post-transcriptional regulation of mRNA.  For instance, a pool of mRNA from a biological 

sample can be fractionated based on the number of ribosomes associated with each mRNA, and 

each fraction can be quantified in order to indirectly estimate the translation efficiency of each 

mRNA species.  Isotope labeling can be used to directly quantify mRNA synthesis and turnover 

rates (Schwanhausser, Busse et al. 2011).  RNA sequencing (RNA-seq), combined with 

techniques for isolating ribosomes and proteins, can be used to track the positions of ribosomes 

and proteins along an mRNA (Ingolia, Ghaemmaghami et al. 2009).  The drug harringtonine 

stalls ribosomes near the start codon of mRNA but allows others to continue translation.  

Cycloheximide causes stalling of ribosomes at any location along mRNA.  Therefore, treatment 

of cultured cells with harringtonine, followed by cycloheximide at various time points and 

sequencing of ribosome-bound mRNA fragments, can be used to monitor the elongation speed of 

ribosomes along mRNA at the genome scale (Ingolia, Lareau et al. 2011).  Combined with 

advances in computer hardware and software for deciphering meaning from data generated from 

high-throughput experiments, the field of study devoted to post-transcriptional regulation of 

mRNA is expanding our understanding of the central dogma.   

The research presented in this dissertation focuses on control of ribosome loading—the 

number of ribosomes associated with an mRNA molecule in a cell.  While proteomics can be 

used to measure absolute protein synthesis rates in a high-throughput manner, it cannot reveal 

how transcription and post-transcriptional factors work in concert to give rise to a particular rate 

of protein synthesis.  Measuring ribosome loading provides a closer look at post-transcriptional 
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processes that act upon mRNA and which, combined with mRNA abundance, control the protein 

synthesis rate.  In this introduction, I first review the process of protein translation in eukaryotes.  

Second, I review high-throughput approaches for quantifying translation, focusing on RNA-

based techniques.  Third, I review the post-transcriptional processes that control ribosome 

loading and translation.  Fourth, I provide context for the research presented in chapter 2, which 

is a research article describing our characterization of diel and circadian regulation of ribosome 

loading in Arabidopsis.  And last, I give a brief overview of the remaining chapters of this 

dissertation.  The research presented throughout involves control of ribosome loading in plants, 

so when relevant, information that is unique to plants is highlighted.   

 

Protein translation: a review 
 

Pre-mRNA processing 
 

Transcription in eukaryotes occurs in the nucleus and produces a precursor mRNA (pre-

mRNA) which is processed into mRNA, complexed with proteins as a messenger 

ribonucleoprotein complex (mRNP), and exported into the cytoplasm.  Pre-mRNA processing 

involves three main steps, all of which are important regulators of ribosome loading and 

translation.   

 

5’ capping 

The first step in pre-mRNA processing is 5’ capping, in which 7-methylguanosine (the 

“5’ cap”) is added to the 5’ end.  Capping is important because the 5’ cap is recognized by the 

eukaryotic initiation factor 4E (eIF4E), which facilitates initiation by recruiting the 43S pre-
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initiation complex (PIC; composition described in “Initiation” section below) to the 5’ end of the 

mRNA through a relay of interacting proteins.  eIF4E interacts with eIF4G, which interacts with 

the eIF3 complex, which binds to the 43S small ribosomal subunit (43S).  eIF4E, eIF4G, and the 

RNA helicase eIF4A are components of the eIF4F complex, which unwinds the mRNA in order 

to allow the PIC to bind near the 5’ cap and scan toward the start codon.  Once the PIC 

recognizes the start codon, the 60S large ribosomal subunit (60S) joins it in order to form the full 

ribosome and begin elongation.   

 

Polyadenylation 

The second step in pre-mRNA processing is polyadenylation, during which multiple 

adenine bases (“poly(A) tail”) are added to the 3’ end.  Polyadenylation is important because the 

3’ poly(A) tail is recognized by the poly(A)-binding protein (PABP) which also interacts with 

eIF4G at the 5’ cap in order to form the “closed loop” configuration.  The closed loop enhances 

translation in two ways—first, by helping to recycle ribosomes after they complete translation, 

and second, by keeping eIF4F associated with the mRNA even if it loses contact with the 5’ end 

(Wells, Hillner et al. , Gray, Coller et al. 2000, Jackson, Hellen et al. 2010).  Polyadenylation 

involves cleavage of the pre-mRNA at the poly(A) cleavage site by a protein complex called 

cleavage and polyadenylation specificity factor (CPSF), followed by polyadenylation by 

polyadenylate polymerase (Mandel, Kaneko et al. 2006, Hunt, Xu et al. 2008).  Many mRNAs 

have multiple poly(A) cleavage sites, so selection among multiple poly(A) sites, termed 

“alternative polyadenylation” (APA), determines the length and nucleotide content of the 3’ 

poly(A) tail (Wu, Liu et al. 2011, Xing and Li 2011).    
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Splicing 

The third and final step in pre-mRNA processing is splicing, during which introns are 

removed and exons are stitched together to form a mature mRNA.  Splicing is an important 

regulator of ribosome loading and translation because it determines the nucleotide sequence of 

the mature mRNA, which influences many aspects of ribosome loading and translation as 

discussed in detail in the section “Post-transcriptional control of ribosome loading and 

translation” in this chapter, as well as the actual protein product.  Following processing and 

export into the cytoplasm, a mature mRNA is ready to be translated into a protein via initiation, 

elongation, and termination, before eventually being destroyed.    

 

Initiation 
 

Initiation involves three main steps, 1) recruitment of the PIC to an mRNA, 2) scanning 

of the 5’ UTR by the PIC, and 3) recognition of and commitment to a start codon.   

The PIC is composed of 1) the 40S, 2) a ternary complex composed of eIF2 bound to 

GTP and a charged methionyl initiator tRNA (eIF2-GTP-Met-tRNAi
Met), and 3) initiation factors 

eIF3, eIF1, and eIF1A.  The eIF4F complex, consisting of subunits eIF4E, eIF4A, and eIF4G, 

associates with the 5’ cap via eIF4E.  eIF4G is a scaffold protein that binds eIF4E, eIF4A, 

PABP, and eIF3.  eIF4G induces a structural conformation of eIF4E which stabilizes its 

association with the cap.  Helicases, including eIF4A, unwind the secondary structure of the 5’ 

UTR, which promotes efficient binding of the PIC.  eIF4H and eIF4B bind to both the mRNA 

and eIF4A and enhance the helicase activity of eIF4A by preventing re-annealing of unwound 

mRNA and promoting movement of the PIC along the 5’ UTR (Marintchev, Edmonds et al. 
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2009, Sun, Atas et al. 2012).  The PIC attaches to the large assembly of proteins at the 5’ UTR 

via eIF3.   

Following attachment of the PIC to the mRNA near the 5’ cap, it scans the 5’ UTR in 

search of a start codon via an alternating sequence of steps consisting of unwinding mRNA 

secondary structure and movement along the unwound mRNA.  Scanning requires that the PIC 

adopts a specific structural conformation that is induced by eIF1 and eIF1A (Pestova and 

Kolupaeva 2002, Passmore, Schmeing et al. 2007).  The unwinding of mRNA secondary 

structure is mediated by some of the same key players as in the initial attachment of the PIC.  

eIF4A, eIF4G, and eIF4B, as well as ATP, are required for scanning, with eIF4A and ATP 

required in amounts that are proportional to the degree of mRNA secondary structure (Jackson 

1991, Svitkin, Pause et al. 2001), demonstrating the importance of unwinding for the scanning 

process.  Many key details of the scanning process are still poorly understood (Pestova and 

Kolupaeva 2002, Jackson, Hellen et al. 2010).   

Third and finally, the PIC recognizes and commits to a start codon.  The start codon 

chosen is usually an AUG in a favorable sequence context—GCC(A/G)CCAUGGG, also termed 

the Kozak consensus sequence named after its discoverer (Kozak 1991).  eIF1 and eIF1A, in 

addition to inducing structural changes in the PIC necessary for scanning (Pestova and 

Kolupaeva 2002, Passmore, Schmeing et al. 2007), help to ensure that the PIC recognizes the 

correct start codon and help to disrupt assembly of ribosomal complexes on incorrect codons 

(Pestova, Borukhov et al. 1998, Pestova and Kolupaeva 2002, Pisarev, Kolupaeva et al. 2006).  

The PIC recognizes start codons via codon-anticodon base pairing, and eIF1 and eIF1A stabilize 

a “closed” conformation of the PIC when it encounters a start codon with a strong Kozak 

consensus sequence (Unbehaun, Borukhov et al. 2004, Pisarev, Kolupaeva et al. 2006).  Once the 
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PIC stops at the correct start codon and eIF1 and eIF1A help to lock the PIC in place, eIF5 binds 

to the 𝛽-subunit of eIF2 (eIF2𝛽) of the PIC and induces eIF2𝛾 to hydrolyze eIF2-GTP into eIF2-

GDP, which leads to displacement of eIF2-GDP, eIF1, eIF1A, and eIF3 and joining of the 60S to 

form the complete 80S ribosome (Shin, Kim et al. 2011).  When initiation ends, Met-tRNAi
Met 

occupies the P site of the ribosome, the A site is vacant, and elongation is ready to begin.    

 

Elongation 
 

Elongation is a repeating process which begins with a peptidyl-tRNA occupying the P 

site of the ribosome (Kapp and Lorsch 2004, Chen, Tsai et al. 2012, Lareau, Hite et al. 2014).  A 

tRNA carrying the next amino acid to be added to the growing peptide becomes associated with 

a ternary complex containing GTP and elongation factor 1A (aa-tRNA-GTP-eEF1A).  While any 

such ternary complex can bind in the A site, conformational changes and hydrolysis of GTP by 

eEF1A ensure that only the correct tRNA is able to remain bound and continue to the next step 

of elongation during which a peptide bond will be formed (Rodnina and Wintermeyer 2001).  In 

this next step, the ribosome carries out its peptidyl transferase reaction, forming a peptide bond 

between the peptidyl-tRNA in the P site and the amino acid associated with the tRNA in the A 

site.  eEF2 then facilitates movement of the tRNA formerly bound to the peptide into the E site 

and the peptidyl-tRNA—now one amino acid longer—into the P site, leaving the A site once 

again vacant.  This cycle continues until the ribosome encounters a stop codon (Wintermeyer, 

Savelsbergh et al. 2001).    
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Termination 
 

Termination results in hydrolysis of the bond between the peptide chain and the tRNA 

occupying the P site of the ribosome in a reaction catalyzed by the peptidyl transferase center of 

the ribosome (Caskey, Beaudet et al. 1971, Rodnina 2013, Yusupova and Yusupov 2014).  This 

peptidyl transferase activity is induced by release factors, which detect the presence of a stop 

codon in the A site of the ribosome (Kapp and Lorsch 2004). 

 

Approaches for quantifying translation at a genome scale 
 

In order to address the question of how a cell regulates translation, translation must be 

quantified.  Translation is a multi-faceted process, so the choice of measurement technique 

depends on the question being asked and the aspect of translation being investigated.  Below, I 

give a brief overview of mass spectrometry-based proteomics and its limitations before 

discussing RNA-based techniques for quantifying translation.   

 

Mass spectrometry-based proteomics  
 

Mass spectrometry has made impressive gains in its ability to measure genome-wide 

protein abundance, and it is beginning to be applied for measuring rates of protein synthesis and 

turnover (Schwanhausser, Busse et al. 2011).  To measure genome-wide rates of protein 

synthesis using mass spectrometry, researchers can monitor the incorporation of a detectable 

label into proteins over time.  For instance, in a technique called “stable isotope labeling by 

amino acids in cell culture”, or SILAC, cultured cells are treated with media containing a heavy 

stable isotope version of an essential amino acid, which can be distinguished from the normal 
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light version by mass spectrometry because of its slightly different mass.  The increase in the 

abundance of the heavy isotope versions of proteins over time can be used to determine the 

protein synthesis rates at a genome scale (Ong, Blagoev et al. 2002).  To compare rates between 

treatments or conditions, an extension of SILAC called pulsed SILAC (pSILAC) can be used.  In 

pSILAC, two isotope versions can be used, with one treatment group being treated with a 

medium-heavy version, and the other treatment group being treated with a heavy version.  

Following this pulse with medium-heavy or heavy isotope amino acids, protein samples are 

prepared from both groups, mixed together (to avoid variance between instrument runs), and 

analyzed by mass spectrometry.  The relative abundance of medium-heavy to heavy versions of 

proteins allows for the estimation of the relative protein synthesis rates between the two 

treatments or conditions (Schwanhäusser, Gossen et al. 2009).   

Despite significant advances, however, mass spectrometry-based proteomics still has its 

limitations.  Proteome coverage, or the percent of proteins that can be quantified for a given 

organism, is only beginning to approach transcriptome coverage.  Even so, to obtain the same 

coverage as a routine RNA-seq experiment requires much more time and effort in sample 

preparation and instrument time, with one group spending 12 days of instrument analysis in 

order to quantify 10,300 proteins, while in the same experiment, routine RNA-seq quantified 

over 12,000 mRNA transcripts (Nagaraj, Wisniewski et al. 2011).  Even as proteomics begins to 

approach transcriptomics in terms of genome coverage, it is still difficult to quantify the dynamic 

cellular processes that give rise to a particular protein expression pattern.  For these reasons, 

while mass spectrometry-based proteomics is an important and growing analytical approach to 

studying translation, techniques that quantify translation by targeting RNA are reasonable and 

powerful alternatives.   
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RNA-based approaches 
 

cDNA microarrays and RNA-seq are the platforms of choice for investigating cellular 

events at the level of mRNA at the genome scale, including synthesis, turnover, molecular 

interactions, and cellular localization, all of which influence translation.  Approaches to 

quantifying genome-wide translation from mRNA measurements can be divided into two 

classes—polysome profiling and ribosome footprinting.  Neither polysome profiling nor 

ribosome footprinting by themselves can distinguish mRNA with actively translating ribosomes 

from mRNA with stalled ribosomes (Ingolia, Lareau et al. 2011), and ribosomes bound to 

mRNA are not necessarily engaged in translation (Guttman, Russell et al. 2013), so two 

assumptions must often be made in order to use ribosome loading as an indication of the protein 

synthesis rate.  The first is that all ribosomes on an mRNA are actively engaged in translation, 

and the second is that all ribosomes carry out elongation at the same rate.  If these assumptions 

hold, then the number of ribosomes bound to an mRNA is proportional to the protein synthesis 

rate.   

 

Polysome profiling 

Polysome profiling is an approach for quantifying how actively translated each mRNA 

species is based on the degree of association of each mRNA species with ribosomes.  Successive 

rounds of initiation on the same mRNA produce an mRNA with multiple ribosomes attached to 

it in a complex called a poly-ribosome, or polysome.  Experimentally, polysomes of different 

sizes (i.e., number of ribosomes) can be separated using centrifugation, yielding multiple 

polysome fractions, with each fraction corresponding to mRNA with a specific number (or range 

of numbers) of ribosomes (Johannes, Carter et al. 1999, Zong, Schummer et al. 1999, Arava, 
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Wang et al. 2003).  Alternatively, polysomes of all sizes can be isolated in one fraction using 

immunoprecipitation with antibodies that recognize ribosomal proteins (Zanetti, Chang et al. 

2005, Branco-Price, Kaiser et al. 2008).  The abundance of each mRNA species in each fraction 

can be quantified by microarray or RNA-seq.  The mRNA abundances in the various fractions 

and the total mRNA sample can be used to calculate a value which reflects the translation 

activity of each mRNA species which is independent of mRNA abundance.  These techniques 

yield measurements commonly referred to as translation state (TL) (Zong, Schummer et al. 

1999), ribosome occupancy (Tiruneh, Kim et al. 2013), or ribosome loading (Kawaguchi, Girke 

et al. 2004).   

Our lab has used an approach to polysome profiling which aims to estimate the number 

of protein molecules being synthesized per mRNA per unit time (Missra, Ernest et al. 2015).  In 

our approach, mRNA is fractionated based on polysome size into three fractions.  The non-

polysomal (NP) fraction corresponds to poorly translated mRNAs having zero or one ribosome.  

The small polysome (SP) fraction corresponds to moderately translated mRNAs having a 

medium number of ribosomes.  And the large polysome (LP) fraction corresponds to highly 

translated mRNAs having many ribosomes.  The expected number of ribosomes bound to mRNA 

in each fraction has been estimated at zero, two, and seven, for NP, SP, and LP, respectively 

(unpublished data from the von Arnim lab).  TL for each gene is calculated as 
2∙𝑆𝑃+7∙𝐿𝑃

𝑁𝑃+𝑆𝑃+𝐿𝑃
, where 

NP, SP, and LP are the abundance of mRNA in those fractions.  Using this approach, TL is an 

estimate of the average number of ribosomes per mRNA and serves as an approximation of the 

number of protein molecules being synthesized per mRNA per unit time.     

 

      



13  
Ribosome footprinting 

A second method for quantifying translation at the genome scale based on mRNA 

measurements is referred to as ribosome footprinting or ribosome profiling (Ingolia 2014).  This 

approach involves enzymatically digesting mRNA that is not protected by ribosomes and using 

RNA-seq to count the number of ribosome-protected fragments, which reflects the number of 

ribosomes bound to each type of mRNA and their positions (Ingolia, Ghaemmaghami et al. 

2009, Ingolia, Brar et al. 2012).  This approach has certain advantages over polysome profiling.  

One advantage is avoiding the polysome fractionation process, which is time- and labor-

intensive and cannot always distinguish large polysomes that differ by only one or two 

ribosomes.  A second advantage is the ability to track positions of ribosomes along mRNAs.  On 

the other hand, without separating mRNA based on ribosome loading, some important 

information is lost.  While the number of ribosome-protected mRNA fragments per gene reflects 

the extent of ribosome loading, it cannot be used to directly quantify the average number or 

distribution of numbers of ribosomes per mRNA. 

 

Post-transcriptional control of ribosome loading and 

translation  
 

In this section, I discuss how ribosome loading and translation of mRNA are controlled 

by key post-transcriptional processes, including translation initiation, elongation, marking for 

degradation, and degradation, and how each process is regulated.  The rates at which each of 

these processes operate determine which of them is rate-limiting for the overall process of 

translation.  The structural and chemical properties of an mRNA molecule, which are determined 

by its sequence, can influence each of the biochemical steps in translation, so these properties of 
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an mRNA molecule have the potential to determine the rate-limiting step in translation and 

therefore, in a sense, to establish the rate of translation.  However, in addition to the mRNA 

sequence, which is generally unchangeable, processes that are dynamically regulated also have 

the potential to modulate each of the biochemical steps.  For instance, initiation may always be 

the rate-limiting step for one gene, so this gene may preferentially modulate initiation in order to 

alter its translation.  A different gene, however, could have elongation as its rate-limiting step, in 

which case it may target elongation in order to regulate its overall translation rate.   

Therefore, as discussed below, the translation rate for a gene is controlled by a 

combination of fixed, mRNA-specific properties, as well as dynamic processes that respond to 

stimuli from inside the cell and from its external environment.  This phenomenon is evident from 

several observations.  First, there can be substantial variation in ribosome density in different 

regions of an mRNA.  For instance, in one of the first ribosome footprinting studies it was found 

that ribosome density was three-fold higher on average in the first 30-40 codons compared to the 

rest of the mRNA across all genes (Ingolia, Ghaemmaghami et al. 2009).  Second, there can be 

substantial variation in ribosome loading of the same mRNA under different environmental 

conditions, as many studies, including ours, have shown (Kawaguchi, Girke et al. 2004, 

Brengues, Teixeira et al. 2005, Juntawong, Girke et al. 2014, Missra, Ernest et al. 2015).  And 

lastly, there is substantial variation in ribosome loading among mRNAs encoded by different 

genes.  For instance, in the same original yeast experiment, there was over 100-fold variation in 

the ratio of ribosome-protected mRNA fragments to total mRNA fragments across genes, and in 

plants, there was nearly 100 thousand-fold variation in the number of ribosome-protected mRNA 

fragments per gene (in ribosome-protected fragments per kilobase per million reads, or rpKM)  

(Juntawong, Girke et al. 2014).       
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Translation regulation via initiation 
 

Initiation is the primary rate-limiting step in translation 

While the question of how each gene utilizes various biochemical processes in 

modulating ribosome loading has not been thoroughly addressed at the genome scale, it has been 

explored.  It is widely held that initiation is the primary rate-limiting step at which translation is 

regulated for most genes.  One major theoretical basis for this assumption is the following.  It is 

assumed that the total amount of mRNA in a cell far exceeds the number of ribosomes and that 

ribosomes that terminate translation on an mRNA dissociate and do not undergo re-initiation.  

Once a ribosome terminates translation of an mRNA from one gene, it will almost certainly be 

“captured” by an mRNA from a different gene.  Therefore, increasing the elongation or 

termination rate for one mRNA species would not be expected to influence the number of 

ribosomes that translate an mRNA species per unit time (Andersson and Kurland 1990, Bulmer 

1991).  However, it is also theorized that if ribosomes are so abundant in a cell that a ribosome 

can bind to an mRNA immediately after the one preceding it moves past the initiation site, then 

the elongation rate can become rate-limiting (Bulmer 1991).  Similarly, an early simulation 

model suggested that elongation could become rate-limiting if it slows drastically, such as in 

response to amino acid starvation (Harley, Pollard et al. 1981).  Nevertheless, most theoretical 

and empirical evidence suggests that initiation is typically rate-limiting.  For instance, ribosome 

occupancy has been shown to be well below the maximum packing density along mRNA in 

several organisms, including E. coli (Ingraham, Maaløe et al. 1983) and yeast (Arava, Wang et 

al. 2003).  Additionally, inserting rare, presumably slowly translated codons into an mRNA 

typically has no effect on the protein synthesis rate (Robinson, Lilley et al. 1984).   
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Computational models describing the dynamics of protein translation have been 

developed which are also consistent with initiation being the primary rate-limiting step in 

translation.  For example, Plotkin’s group developed a model in which each ribosome and tRNA 

in a cell were considered to be either freely diffusing or bound to a specific mRNA molecule at a 

specific codon position.  Rates of translation initiation and elongation depend on values of model 

parameters, such as abundances of ribosomes, tRNA molecules, and mRNA molecules, as well 

as cell volume and other parameters, many of which were previously determined experimentally 

by other researchers.  The model suggested that depletion of free ribosomes, which would slow 

initiation rates for many mRNAs, slowed protein synthesis (Shah, Ding et al. 2013).  As 

discussed above, initiation, like other biochemical steps involved in translation, can be regulated 

by fixed, intrinsic properties of mRNA, as well as dynamically regulated processes. 

 

Regulation of initiation by fixed mRNA properties 

Fixed properties of mRNA that influence initiation include mRNA secondary structure, 

the start codon sequence context, upstream open reading frames (uORFs), mRNA length, and 

indirectly, the elongation rate, as will be explained here.  First, mRNA secondary structure 

influences initiation because tightly folded mRNA in the 5’ UTR can hinder recruitment of the 

PIC and its scanning of the 5’ UTR.  Plotkin’s group in this case took a more experimental 

approach to studying translation by generating 154 different mRNA sequences that all encoded 

the same green fluorescent protein (GFP) but used different combinations of codons (Kudla, 

Murray et al. 2009).  When expressed in E. coli, these sequences yielded 250-fold variation in 

protein abundance, with as much as 59% of this variation explained by the predicted folding 

energy of the first 40 nucleotides.  Consistently, adding an mRNA tag with weak predicted 
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structure to the 5’ end of these mRNAs led to an increase in protein abundance.  These findings 

in prokaryotes and similar findings in both prokaryotes and eukaryotes (Wen, Lancaster et al. 

2008, Cannarozzi, Schraudolph et al. 2010, Fredrick and Ibba 2010, Gu, Zhou et al. 2010, Tuller, 

Carmi et al. 2010, Tuller, Waldman et al. 2010) suggest that weaker mRNA folding near the start 

codon improves PIC recruitment and thus the efficiency of initiation.   

A second example of a fixed property of mRNA influencing its translation at the 

initiation step is the start codon sequence context, or Kozak context.  The closer the start codon 

sequence context adheres to the Kozak consensus sequence, the more efficiently it will be 

recognized by the PIC (Kozak 1986).  In support of this, it was shown that “anti-Kozak” 

sequences, or sequences that differ strongly from the Kozak consensus sequence, in the 30 

nucleotides upstream and downstream of the start codon, help to ensure that initiation occurs 

efficiently at the main start codon (Zur and Tuller 2013).  Tuller et al. speculated in their attempt 

to predict ribosome loading using various sequence features, that considering the Kozak context 

would improve their model’s performance (Tuller, Veksler-Lublinsky et al. 2011).   

A third example of fixed mRNA properties influencing initiation is the presence of start 

codons in the 5’ untranslated region (UTR) of an mRNA, known as upstream open reading 

frames (uORFs).  uORFs are present in 31% of genes in Arabidopsis (Kim, Cai et al. 2007) and 

50% of genes in humans and mice (Calvo, Pagliarini et al. 2009).  They typically repress 

translation, likely by promoting their own initiation and termination, which is followed by 

ribosome dissociation, all of which hinder initiation at the main ORF (Kozak 1991, Morris and 

Geballe 2000, Calvo, Pagliarini et al. 2009).  However, a number of uORFs have been identified 

which instead promote initiation and translation of the main ORF under specific conditions (see 
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subsection “Regulation of initiation by dynamically regulated processes” immediately following 

this one for examples).   

Fourth, ribosome density of mRNA—the number of ribosomes per unit length—is 

negatively correlated with the length of the coding sequence, although the reasons are unclear 

(Arava, Wang et al. 2003).  Fifth and lastly, the elongation rate, which as discussed below is 

largely dictated by an mRNA’s sequence, can potentially affect the initiation rate because it 

affects the rate at which ribosomes are cleared from the initiation site (Chu, Kazana et al. 2013).  

 

Regulation of initiation by dynamically regulated processes 

Since initiation is the primary step at which translation is regulated, its control by 

dynamically regulated processes, including stimuli from a cell’s internal and external 

environments, plays a critical role in gene regulation.  Generally, factors that up-regulate 

initiation in a cell do so in a global manner, affecting many mRNAs.  This is because initiation 

occurs via interactions between the eIF4F complex and the 5’ cap, which most mRNAs have.  

On the other hand, factors that down-regulate initiation do so in either a global or gene-specific 

manner.  During stress, phosphorylation of eIF2α causes it to bind tightly to and inhibit the 

guanine exchange factor (GEF) eIF2B.  Active eIF2B helps to convert eIF2-GDP into eIF2-GTP 

which becomes part of the ternary complex of the PIC, so phosphorylation of eIF2α represses 

initiation by inhibiting PIC assembly.  Thus, repression of initiation via phosphorylation of 

eIF2α is a global event.   

A second mechanism for global repression of initiation is inhibition of the cap-

recognition process (Marcotrigiano, Gingras et al. 1999, Mathews, Sonenberg et al. 2007).  The 

eIF4E-binding proteins (4E-BPs) bind to eIF4E and inhibit its interaction with eIF4G, thereby 
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hindering the ability of the eIF4F complex as a whole to bind to the 5’ cap of mRNA and recruit 

the PIC.  Phosphorylation of the 4E-BPs, for instance, by mTOR in response to nutrients and 

growth factors, inhibits their binding to eIF4E and thus allows efficient initiation of translation 

for many mRNAs (Holz, Ballif et al. 2005).   

While these cellular events repress translation of many mRNAs, some mRNAs are able to 

escape global repression of initiation in response to stress.  In yeast, for example, phosphorylated 

eIF2α (eIF2α-P) promotes translation of GCN4 mRNA by blocking the inhibitory effects of 

uORFs on reinitiation (Hinnebusch, Dever et al. 2007).  In mammalian cells, a similar 

mechanism promotes reinitiation of ATF4 mRNA in response to stress while most mRNAs are 

translationally repressed (Vattem and Wek 2004, Hinnebusch, Dever et al. 2007).   

In contrast to nearly global suppression of initiation in response to certain conditions, 

suppression of initiation can be mRNA-specific.  The classic example of mRNA-specific 

suppression of initiation is microRNAs which, as discussed in the section “Regulation of mRNA 

degradation by dynamically regulated processes”, recognize specific mRNAs by direct base 

pairing with the 3’ UTR of their targets.  While the predominant mode of action of microRNAs 

in plants is to promote degradation of their target mRNAs, they also appear capable of inhibiting 

initiation, although the underlying mechanisms and the extent of this phenomenon in plants are 

controversial (Rogers and Chen 2013).   

 

Translation regulation via elongation 
 

While initiation is the primary step at which translation is regulated for most genes in 

most organisms, several lines of evidence point to an important role for elongation in translation 

regulation, both by properties of mRNA and by dynamically regulated processes.  The fixed 
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properties primarily include the codons used by an mRNA and their arrangement, in addition to 

the three-dimensional structure of an mRNA.  In this section, I first explain how different codons 

can be translated at different rates, before discussing the broader topic of how fixed mRNA 

properties and dynamic processes influence the elongation rate.  

 

How are different codons translated at different rates? 

Over several decades it has been established that synonymous codons, which are different 

codons encoding the same amino acid, are translated at different rates.  It was proposed very 

early that the concentrations of each tRNA species play an important role in regulation of protein 

synthesis (Ames and Hartman 1963).  Once DNA sequence data for several organisms 

accumulated, it was quickly realized that synonymous codons were not used randomly within a 

particular genome and that each organism’s genome used a consistent coding strategy across 

nearly all genes, a concept referred to as the “genome hypothesis” (Grantham 1980, Grantham, 

Gautier et al. 1980, Grantham, Gautier et al. 1981, Ikemura 1985).  Not long after this 

realization, it became clear that an organism’s codon strategy is related to its population of 

isoaccepting tRNAs (Post, Strycharz et al. 1979, Ikemura, Osawa et al. 1980, Post and Nomura 

1980, Ikemura 1981, Bennetzen and Hall 1982, Ikemura 1982), which are tRNAs that are 

charged with the same amino acid but differ in the codon that they recognize.  It was also 

realized that the extent of codon usage bias (CUB) is highly correlated with the level of protein 

expression across genes (Grantham, Gautier et al. 1981, Ikemura 1981, Bennetzen and Hall 

1982, Ikemura 1982, Ikemura and Ozeki 1983).  Specifically, these studies have shown that 

highly expressed genes tend to have extreme CUB, while poorly and moderately expressed genes 

tend to have low to moderate CUB.  The usage of any given isoaccepting tRNA had also been 
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shown to depend heavily on its cellular abundance (Ikemura and Ozeki 1977, Ikemura, Osawa et 

al. 1980, Ikemura 1981, Ikemura 1982, Ikemura and Ozeki 1983, Ikemura 1985).   

Finally, it was directly determined in E. coli that the rate-limiting step of elongation was 

tRNA selection, which nicely explained how the rate of elongation was variable over the length 

of an mRNA (Varenne, Buc et al. 1984).  This finding was repeatedly confirmed and it was 

shown that the translation rate for a given codon specifically depended on the competition over 

recognition of the codon between the cognate amino acyl-tRNA—the correct one—and non- and 

near-cognate amino acyl-tRNAs (Akashi 2003, Fluitt, Pienaar et al. 2007, Man and Pilpel 2007).  

Thus, variation in abundances of different tRNAs, (Ikemura and Ozeki 1977, Dong, Nilsson et 

al. 1996, Kanaya, Yamada et al. 1999, Duret 2000), determined primarily by their gene copy 

numbers (Duret 2000, Reis, Savva et al. 2004, Ran and Higgs 2010, Iben and Maraia 2014), is 

responsible for the variation in translation rate for synonymous codons.  Consistently, it was 

shown in mammalian cells that genome-wide rates of elongation were not constant across 

mRNAs, and that there were over 1,500 loci at which elongation paused (Ingolia, Lareau et al. 

2011).   

 

Regulation of elongation by fixed mRNA properties 

Like initiation, the sequence and structure of an mRNA molecule influence its elongation 

rate.  It has been known for decades that significant variation exists in codon usage and guanine-

cytosine (GC) content across organisms as well as across genes within the same organism 

(Sueoka 1961).  Perhaps unsurprisingly, the GC content of genomes and genes is highly related 

to codon usage, that is, genomes and genes with high GC content tend to have high 

representation of codons and amino acids that also utilize relatively more G and C, and vice-
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versa for adenosine (A) and thymine (T).  Indeed, models can very accurately predict codon 

usage for all amino acids in genomes and genes on the basis of GC content, in (Knight, Freeland 

et al. 2001).  Despite this expected trend, the codons used by an mRNA molecule as well as their 

arrangement, for reasons discussed above, are important for elongation speed.   

As it became clear that protein expression level, tRNA gene copy number, and codon 

usage were so closely related, Ikemura devised four rules that determine which codon is 

“optimal” for each amino acid (Ikemura 1985).  First, the most abundant isoaccepting tRNA is 

preferred.  Second, A-terminated codons are preferred over G-terminated codons.  Third, uracil 

(U)- and C-terminated codons are preferred over A-terminated codons.  And fourth, for (A/U)-

(A/U)-(C/U) codons, C is preferred in the third position over U.   

Sharp and Li proposed the codon adaptation index (CAI, Equations 1.1-1.4) as a measure 

of CUB for a given gene.  CAI indicates how adapted an mRNA sequence is for optimal 

translation, based on its codon usage, compared to a reference set of highly expressed genes 

(Sharp and Li 1987).  Calculation of CAI involves four steps. 

1) The relative synonymous codon usage (RSCU) is determined for each codon from a 

reference set of highly expressed genes (Equation 1.1).  RSCU is the relative occurrence of a 

codon in the reference set compared to all of the synonymous codons that encode the same 

amino acid. 

 𝑅𝑆𝐶𝑈𝑖𝑗 =
𝑥𝑖𝑗

1
𝑛𝑖
∑ 𝑥𝑖𝑗
𝑛𝑖
𝑗=1

. 
( 1.1 ) 

𝑥𝑖𝑗 is the number of occurrences of the 𝑗𝑡ℎ codon for the 𝑖𝑡ℎ  amino acid in the reference set, 

and 𝑛𝑖 is the number of synonymous codons encoding the 𝑖𝑡ℎ amino acid.   
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2) Second, the observed CAI (CAIobs) is calculated, which is the geometric mean of the RSCU 

values for all codons of an mRNA sequence.   

 

𝐶𝐴𝐼𝑜𝑏𝑠 = (∏𝑅𝑆𝐶𝑈𝑘

𝐿

𝑘=1

)

1
𝐿

. ( 1.2 ) 

𝐿 is the number of codons in the mRNA sequence and 𝑘 is the codon number or position in 

the gene sequence.   

3) Third, the maximum CAI (CAImax) is calculated, which is the maximum possible CAI for the 

given amino acid sequence, that is, if all codons were optimal.    

 

𝐶𝐴𝐼𝑚𝑎𝑥 = (∏𝑅𝑆𝐶𝑈𝑘𝑚𝑎𝑥

𝐿

𝑘=1

)

1
𝐿

. ( 1.3 ) 

For each codon, RSCUkmax is the maximum RSCU of all of the synonymous codons coding 

for the same amino acid.   

4) Lastly, CAI is calculated as the ratio of CAIobs to CAImax: 

 
𝐶𝐴𝐼 =

𝐶𝐴𝐼𝑜𝑏𝑠
𝐶𝐴𝐼𝑚𝑎𝑥

. ( 1.4 ) 

 

CAI, therefore, is the observed CAI for the gene relative to the maximum possible CAI 

for a gene with the same amino acid composition.  Savva’s group introduced the tRNA 

adaptation index (tAI), which was inspired by the CAI but instead quantifies how adapted a 

codon is to the tRNA usage in a genome (dos Reis, Wernisch et al. 2003, dos Reis, Savva et al. 

2004).  An optimal codon, according to the tAI, is one that uses the tRNA that has the highest 

gene copy number among all isoaccepting tRNAs and that has perfect codon-anticodon pairing.  



24  
One advantage of the tAI over the CAI is not having to select a reference set of highly expressed 

genes, as a given highly expressed gene may or may not use codons that are optimized for 

translation efficiency.   

The CAI and more recently, the tAI, have been used in a number of studies as indicators 

of translation efficiency in local regions of mRNA.  von der Haar’s group used simulations and 

experimental approaches to show that movement of a ribosome past “slow” codons near the start 

codon of an mRNA could be rate-limiting for initiation (Chu, Kazana et al. 2013) and thus the 

overall process of translation for some genes.  As mentioned above, the elongation rate has been 

shown by several groups to be variable across an mRNA molecule.  Pilpel’s group identified a 

universally conserved “ramp” of translation efficiency, based on the tAI (Cannarozzi, 

Schraudolph et al. 2010, Tuller, Carmi et al. 2010).  In this ramp, the first 30-50 codons at the 

start of mRNAs had low translation efficiency, while the last approximately 50 codons had the 

highest translation efficiency of any location along the mRNA (Cannarozzi, Schraudolph et al. 

2010, Tuller, Carmi et al. 2010).  It was hypothesized that this slowing down of ribosomes early 

in the elongation process and speeding up farther downstream helps to prevent collisions and 

jamming among ribosomes along most of the transcript.   

A number of groups have sought explanations for CUB.  Shah and Gilchrist showed in 

yeast that the CUB in the mRNA sequences of highly expressed genes could be almost 

completely explained by variation in elongation times among synonymous codons, while for 

poorly expressed genes this extent of over-representation could be explained by biased mutation 

rates (Shah and Gilchrist 2011).  This supports the hypothesis that CUB helped to direct 

evolution because it has a real effect on translation.  Other studies have identified correlations, 

both positive and negative, between the length of mRNA and the extent of CUB in different 
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organisms (Moriyama and Powell 1997, Moriyama and Powell 1998, Coghlan and Wolfe 2000), 

which exist as the result of different selective pressures.  As these authors discuss, in one 

organism, strong CUB may facilitate efficient synthesis of long proteins which are energetically 

expensive to make and potentially more prone to missense errors.  In another organism, weak 

CUB may favor the production of many smaller proteins if they are often sufficient to do the job 

of larger proteins.   

Interestingly, selection for pairs of codons occurring next to each other in E. coli appears 

to be quite different from eukaryotes.  Heck’s group took advantage of the fact that transcription 

and translation occur together in prokaryotes in order to empirically compare elongation rates 

among multiple pairs of codons in E. coli (Irwin, Heck et al. 1995).  They created a gene 

expression construct in which if a ribosome proceeded quickly along the mRNA behind RNA 

polymerase, it would run into a stop codon quickly and dissociate from the mRNA, allowing an 

RNA stem-loop structure to form.  However, if the ribosome proceeded slowly and therefore 

remained on the mRNA for a longer period of time, it would obstruct the formation of the stem-

loop structure.  The stem-loop structure was upstream of the structural genes of the lac operon, 

so a relatively fast elongation rate could be detected by increased 𝛽-galactosidase expression.  

Using this experimental approach, Heck’s group demonstrated that highly utilized pairs of 

codons, occurring next to each other in mRNA sequences more often than expected by chance, 

were translated more slowly than pairs that were not over-represented.  This was perhaps due to 

differences in compatibilities of pairs of tRNAs next to each other on a translating ribosome.  

Aside from differences between yeast and E. coli, it is unclear why over-represented single 

codons tend to be those that are translated faster, while over-represented neighboring pairs of 

codons tend to be those that are translated more slowly.  Nevertheless, these observations suggest 
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that specific mRNA sequences have been selected not only to control the structure and function 

of their protein products, but also to influence the rates of peptide elongation.   

One additional way in which the mRNA sequence can affect the elongation rate is in 

determining the charges of amino acids along the polypeptide emerging from the ribosome exit 

tunnel (Tenson and Ehrenberg 2002).  The electrostatic potential of the inside of the ribosome 

exit tunnel is negative, so stretches of positively charged amino acids in the nascent polypeptide 

chain may slow down ribosome movement (Voss, Gerstein et al. 2006, Lu, Kobertz et al. 2007, 

Lu and Deutsch 2008).  This hypothesis was supported by modeling work by Tuller et al. (Tuller, 

Veksler-Lublinsky et al. 2011).  They showed using modeling in yeast and E. coli that negatively 

charged amino acids predicted to be in the ribosome exit tunnel, in addition to higher tAI and 

weaker mRNA folding energy, were correlated with faster elongation rates along specific 

segments of mRNAs (Tuller, Veksler-Lublinsky et al. 2011).  Further, specific amino acid 

sequence motifs in the N-terminus of a polypeptide as it emerges from the ribosome exit tunnel 

have been shown to cause stalling of elongation near its C-terminus (Nakatogawa and Ito 2002).  

Using ribosome footprinting combined with a pulse-chase approach, Weissman’s group 

identified over 1,500 pauses in elongation in the coding sequences of genes and 420 pauses at 

stop codons (Ingolia, Lareau et al. 2011).  Taken together, these observations point to an 

important role of fixed properties of mRNA, especially sequence and structure, in determining 

the elongation rate for an mRNA molecule.     

 

Regulation of elongation by dynamically regulated processes 

In addition to fixed properties of mRNA, elongation can be regulated by dynamic 

processes.  Darnell’s group sequenced polysome-bound mRNAs that were also associated with 
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the FMRP protein in mouse brain cells (Darnell, Van Driesche et al. 2011).  They demonstrated 

that the FMRP protein stalled ribosomes, through an unknown mechanism, and thereby slowed 

elongation, which they viewed as a sort of “translational brake” which protects against fragile X 

syndrome and autism-related disorders (Darnell, Van Driesche et al. 2011).  Thus, the activity of 

the FMRP protein can modulate elongation.   

Stress responses are a second example of elongation regulation by dynamic processes.  A 

large body of evidence since the 1960s suggests that protein folding can begin co-translationally, 

that is, as the polypeptide is being synthesized (Zipser and Perrin 1963, Kiho and Rich 1964, 

Fedorov and Baldwin 1997, Komar 2009, Han, David et al. 2012, Wells, Bergendahl et al. 2015).  

Qian’s group demonstrated that a protein folding inhibitor caused pausing of ribosome 

movement along mRNAs in human cells, which mimicked the effects of disrupting molecular 

chaperones by mutations and chemical inhibitors (Liu, Han et al. 2013).  This suggested that 

molecular chaperones play a role in regulating elongation.  In that study and others (Oh, Becker 

et al. 2011), the site at which ribosomes tend to pause along an mRNA normally (Han, David et 

al. 2012) and in response to stress (Oh, Becker et al. 2011) is 30-60 codons from the start codon.  

Since the ribosome exit tunnel is approximately 40 amino acids long, these observations are 

consistent with the idea that molecular chaperones function in stress response by sensing a stress 

signal and relaying it to the translation machinery through their effects on folding of nascent 

polypeptides that are just emerging from the ribosome exit tunnel.  This may then lead to stalling 

of elongation and, consequently, as discussed above, initiation.  Thus, environmental stresses, 

such as heat shock (Shalgi, Hurt et al. 2013) and oxidative stress (Gerashchenko, Lobanov et al. 

2012), which are known to impact folding, have the potential to impact protein synthesis at 

multiple levels.       
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Translation regulation via mRNA degradation 
 

While translation regulation at the initiation and elongation steps regulate the rate of 

translation from a given amount of mRNA, mRNA degradation impacts the abundance of mRNA 

(Wilusz, Wormington et al. 2001) and thus indirectly regulates translation.  In eukaryotic cells, 

mRNAs that are targeted for destruction, as well as proteins involved in degradation can 

aggregate in foci called processing bodies (P-bodies) (Bashkirov, Scherthan et al. 1997, Sheth 

and Parker 2003, Cougot, Babajko et al. 2004, Teixeira, Sheth et al. 2005).  Because of the 

central role of mRNA degradation in basic cell processes and its potent effects in living systems, 

mRNA degradation has been harnessed in the form of investigational tools and techniques and 

has even shown potential as a therapeutic target in humans (Zimmermann, Lee et al. 2006, 

Frank-Kamenetsky, Grefhorst et al. 2008).  Like the other steps in translation, the influence of 

mRNA degradation on translation can be through fixed properties of an mRNA molecule or 

dynamically regulated processes.   

 

Regulation of mRNA degradation by fixed mRNA properties 

The half-life of mRNA varies widely across genes in a number of model systems, 

including mouse fibroblasts (Friedel, Dölken et al. 2009, Schwanhausser, Busse et al. 2011), 

human cell lines (Yang, van Nimwegen et al. 2003, Friedel, Dölken et al. 2009), Bacillus subtilis 

(Hambraeus, Wachenfeldt et al. 2003), yeast (Miller, Schwalb et al. 2011), and Arabidopsis 

(Narsai, Howell et al. 2007).  Perhaps the most obvious and widely studied property of mRNA 

that affects its half-life is its sequence.  An mRNA’s sequence per se could theoretically 

influence its half-life.  While mRNAs in a cell are generally complexed with proteins which 

protect them from degradative enzymes, the sequence of any region of an mRNA that is not 
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protected may influence the mRNA’s half-life.  In this sense, genome-wide variation in 

sequences of unprotected regions of mRNA may influence mRNA half-lives due to variation in 

their susceptibility to attacks by enzymes, as well as variation in their susceptibility to 

degradation due to oxidation, heat, acidity, and other factors.  Consistently, mRNA half-lives are 

affected by oxygen levels (Klug 1991) and temperature (Goldenberg, Azar et al. 1996) in 

bacteria.   

The more physiologically relevant way in which the sequence of an mRNA affects its 

half-life is through dictating the mRNA’s interactions with proteins and cellular processes that 

affect its stability.  Narsai et al.’s analysis in Arabidopsis mentioned previously (Narsai, Howell 

et al. 2007) revealed three mRNA sequence characteristics that were correlated with half-lives.  

First, genes with one or more introns have longer half-lives than genes with no introns, 

irrespective of mRNA length, number of introns, or nucleotide composition.  Second, specific 

sequence motifs are enriched in the 3’ UTRs of mRNAs with short half-lives, while other motifs 

are enriched in mRNAs with long half-lives.  Third, mRNAs that are targets of microRNAs tend 

to have shorter half-lives than mRNAs that are not.  This and other studies in plants (Abler and 

Green 1996) as well as mammals (Ross 1995), including humans (Shaw and Kamen 1986, Yang, 

van Nimwegen et al. 2003), have also revealed that AU-rich sequence motifs are enriched in the 

3’ UTRs of relatively unstable mRNAs.  Zubiaga et al. found an extremely potent AU-rich motif, 

UUAUUUAUU, enriched in the 3’ UTRs of unstable mRNAs in mouse fibroblasts, which 

accelerated deadenylation and degradation of mRNA (Zubiaga, Belasco et al. 1995).  While 

various patterns and trends regarding the relationship between the sequence of mRNA and its 

decay rate have been identified, a thorough understanding is still lacking.      
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Regulation of mRNA degradation by dynamically regulated processes 

While the half-life of mRNA is under the influence of fixed properties, it can also be 

modulated by dynamic processes.  Like other steps in gene expression, mRNA stability is 

sensitive to a wide variety of stimuli from a cell’s internal and external environment.  For 

example, circadian clock associated 1 (CCA1) mRNA is more rapidly degraded in response to 

light, and this behavior is likely dictated by a sequence in its coding region (Yakir, Hilman et al. 

2007).  In yeast, in the presence of carbon sources that do not require mitochondrial function for 

their metabolism, the Puf3p protein promotes degradation of mRNA targets involved in 

mitochondria-mediated metabolism, while in the presence of carbon sources that do require 

mitochondrial function, this decay activity is suppressed (Miller, Russo et al. 2014).  Numerous 

other examples of mRNA degradation being controlled by environmental cues in yeast (García-

Martínez, Delgado-Ramos et al. 2015, Russo and Olivas 2015, Braun, Dombek et al. 2016) 

plants (Banerjee, Lin et al. 2009), and mammals (Müllner and Kühn 1988) have been reported.  

But how do diverse signals from a cell’s internal and external environment lead to the targeting 

of specific mRNAs to these very generic destruction pathways?  One major way is through 

signaling pathways that lead to RNA-binding proteins recognizing and binding specific mRNAs, 

usually via sequences within the 3’ UTR.  These bound proteins then recruit other proteins to the 

mRNA which facilitate deadenylation, decapping, and exonucleolytic digestion (Shim and Karin 

2002), as in the Puf family of RNA-binding proteins (Olivas and Parker 2000, Ulbricht and 

Olivas 2008, Wang, Opperman et al. 2009, Miller and Olivas 2011).   

A second important way for cells to target specific mRNAs for degradation is through 

RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs), as well as 

microRNAs (Bartel 2004, Filipowicz 2005, Bartel 2009).  Plants (Rhoades, Reinhart et al. 2002, 
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Jones-Rhoades and Bartel 2004, Jones-Rhoades, Bartel et al. 2006) and animals (Selbach, 

Schwanhausser et al. 2008, Friedman, Farh et al. 2009) have hundreds of siRNAs and 

microRNAs, with many targeting large numbers of mRNAs, so RNAi and microRNAs have the 

potential to dramatically affect protein production for a wide variety of genes.  Since mRNA 

degradation mediated by RNAi and microRNAs is a consequence of mRNA sequence, it can be 

considered a fixed property.  However, since abundance of siRNAs and microRNAs is subject to 

regulation of their transcription and processing (Reinhart, Weinstein et al. 2002, Baskerville and 

Bartel 2005), in another sense, it is a dynamically regulated process.   

In RNAi, ~20-bp siRNAs with high sequence complementarity to their target mRNAs are 

synthesized from double-stranded RNAs which are derived from DNA or RNA.  Then, they are 

incorporated into RNA-induced silencing complexes (RISCs) which destroy the target mRNAs 

with the help of the Argonaute family of proteins (Liu, Carmell et al. 2004, Jones-Rhoades, 

Bartel et al. 2006).  MicroRNAs are ~20-bp RNAs derived from genome-encoded RNA 

precursors.  It was supposed that the predominant mode of action of microRNAs in decreasing 

protein levels was via translation repression in animals (Carrington and Ambros 2003, Pillai, 

Bhattacharyya et al. 2005, Baek, Villén et al. 2008) and mRNA degradation in plants (Bartel 

2004, Baumberger and Baulcombe 2005), but more recent analyses suggest that mRNA 

degradation is the predominant mode of action even in animals (Guo, Ingolia et al. 2010).  

Nevertheless, there are interesting differences between animals and plants, with microRNAs 

tending to hybridize imperfectly with their target mRNAs in the 3’ UTR in animals, but nearly 

perfectly with coding regions in plants (Carrington and Ambros 2003).  In plants, microRNAs 

facilitate destruction of mRNA in at least two ways, including promotion of exonucleolytic 

digestion via the deadenylation-dependent degradation pathway (Wu, Fan et al. 2006, Rogers 
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and Chen 2013), as well as by slicing the mRNA somewhere in the middle via endonuclease 

activity by Argonaute proteins (Mi, Cai et al. 2008, Montgomery, Howell et al. 2008, Takeda, 

Iwasaki et al. 2008, Ji, Liu et al. 2011, Maunoury and Vaucheret 2011, Zhu, Hu et al. 2011).  

Whether facilitated by RNA-binding proteins, siRNA, or microRNAs, targeted mRNA 

destruction commonly occurs in P-bodies, although P-bodies are not required.  Evidence from 

yeast suggests that P-bodies form as a result of widespread mRNA degradation in a cell as RNA-

binding proteins from different mRNPs interact and aggregate into larger structures (Teixeira, 

Sheth et al. 2005, Teixeira and Parker 2007) (Eulalio, Behm-Ansmant et al. 2007).    

 

Translation regulation via marking mRNA for degradation 
 

In order for a cell to destroy mRNA, it must first identify which mRNAs to destroy and 

decide how to destroy them, a process that I refer to here as “marking”.  In this section, I focus 

on the predominant means of marking—the deadenylation-dependent pathway.  As with the 

other major biochemical processes controlling ribosome loading of mRNA, I discuss inherent, 

fixed properties of mRNA that influence marking, in addition to dynamically regulated 

processes.      

 

Deadenylation-dependent mRNA degradation 

The predominant pathway in eukaryotes for marking mRNA for degradation is the 

deadenylation-dependent pathway, which consists of three steps, 1) deadenylation of the 3’ 

poly(A) tail by deadenylases, 2) removal of the 5’ cap by decapping enzymes, and 3) digestion 

from the ends of the mRNA by 5’3’ and 3’5’ exonucleases (Moore 2005, Goldstrohm and 

Wickens 2008, Moore and Proudfoot 2009, Chen and Shyu 2011).  The poly(A) tail and PABP 
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protect the 3’ end of mRNA from degradation, so their removal exposes the tail and allows 

3’5’ exonucleolytic digestion (Wilusz, Gao et al. 2001, Mangus, Evans et al. 2003).  However, 

the more important consequence of deadenylation is that the mRNA becomes a substrate for 

decapping enzymes, which remove the 5’ cap and expose the mRNA to 5’3’ exonucleolytic 

digestion and reduce or abolish initiation (Wilson and Treisman 1988, Shyu, Belasco et al. 1991, 

Decker and Parker 1993, Hsu and Stevens 1993, Beelman, Stevens et al. 1996).  Removal of the 

poly(A) tail disrupts the association between the 3’ end and PABP, which may disrupt the closed 

loop and expose the 5’ end to decapping enzymes.  In the third and final step of deadenylation-

dependent degradation, exonucleases digest the mRNA from the unprotected 5’ end.  As 

mentioned above, some marking pathways are closely tied to initiation.   

mRNAs that are translationally repressed by loss of association with ribosomes and are 

associated with decapping machinery can assemble into P-bodies (Franks and Lykke-Andersen 

2008, Chen and Shyu 2013).  It appears that inhibition of initiation, not elongation, is the trigger 

for P-body formation, as the following three lines of evidence suggest.  First, Teixeira, et al. 

reported that in yeast, conditions that cause widespread repression of translation initiation, 

including stress and mutations, caused an increase in the number and size of P-bodies, while 

inhibiting elongation by trapping ribosomes on mRNA caused disassembly of P-bodies 

(Teixeira, Sheth et al. 2005).  Second, this group and others found proteins involved in mRNA 

degradation, mRNA surveillance, translation repression, and RNAi in P-bodies, but not 

ribosomal proteins or other proteins involved in initiation (Andrei, Ingelfinger et al. 2005, 

Teixeira, Sheth et al. 2005).  Third, the average size of P-bodies in a cell was found to be 

correlated with the concentration of ribosome-free mRNA (Franks and Lykke-Andersen 2008).  

mRNAs in P-bodies can either be destroyed or returned to the translationally active pool 
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(Brengues, Teixeira et al. 2005).  While it is clear that P-bodies are important sites of mRNA 

processing, the nature and extent of their cellular functions remain controversial, as questions 

remain about how common it is for mRNA in P-bodies to escape destruction (Arribere, Doudna 

et al. 2011) and how active P-bodies are in dictating the fate of mRNAs residing in them (Franks 

and Lykke-Andersen 2008).       

                                      

Regulation of marking by fixed mRNA properties 

Like the other biochemical processes that control ribosome loading of mRNA, marking 

can be influenced by fixed properties of mRNA as well as dynamically regulated processes.  One 

example of a fixed property of mRNA influencing marking is the effect of the pre-mRNA 

sequence on polyadenylation.  The sequence context around the poly(A) cleavage site at the 3’ 

end of an mRNA is an important determinant of the poly(A) tail length (Tian, Hu et al. 2005, 

Sandberg, Neilson et al. 2008, Shen, Ji et al. 2008), as APA sites vary in their frequency of use 

(Proudfoot, Furger et al. 2002, Xing and Li 2011).  Also, the position of the APA site that is used 

dictates how much of the pre-mRNA is included in the mature 3’ UTR, in other words, whether 

various sequence elements (e.g., microRNA recognition sites) will be included.  These properties 

influence marking and degradation of the mRNA.  Further, alternative polyadenylation (APA) 

dictates the length and nucleotide sequence of the mature mRNA (Wu, Liu et al. 2011, Xing and 

Li 2011).  For genes subject to APA, the sequence context at each poly(A) site in a pre-mRNA, 

as well as alternative splicing (Wachter, Tunc-Ozdemir et al. 2007), influence which site will be 

used and, as a result, also influence marking and degradation.     
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Regulation of marking mRNA for degradation by dynamically regulated properties 

While the sequence of an mRNA—a fixed property—can influence its marking by 

dictating the length and position of the poly(A) tail, the predominant source of influence on 

marking is from dynamically regulated processes.  As discussed above, dephosphorylation of the 

4E-BPs causes inhibition of eIF4E.  This suppresses recruitment of ribosomes to the 5’ end, 

increases access of decapping enzymes (e.g., DCP1) to the 5’ cap, and disrupts the closed loop 

facilitated by the eIF4F complex (Franks and Lykke-Andersen 2008, Arribas-Layton, Wu et al. 

2013).  These events, which often respond to stress, act on mRNAs with a 5’ cap, and thus 

contribute to marking of mRNA for degradation in a global fashion.  On the other hand, a cell 

triggers deadenylation of specific mRNAs through pathways that result in binding of proteins 

with those mRNAs, which they recognize by conserved sequence elements.  Those RNA-binding 

proteins then recruit deadenylases.  One example of this is the PUF family of RNA-binding 

proteins, which regulate cell proliferation, development, and signaling among neurons in various 

animal systems (Crittenden, Bernstein et al. 2002, Wickens, Bernstein et al. 2002, Menon, 

Sanyal et al. 2004).  In yeast, PUF proteins directly interact with POP2, a CAF1-family protein 

and component of the CCR4-CAF1-NOT complex.  In response to upstream cues, PUF proteins 

bind to specific mRNAs by recognizing a specific short sequence element and recruit the CCR4-

CAF1-NOT deadenylase complex to the mRNA.  As a result of PUF proteins’ interaction with 

POP2, the yeast decapping enzymes DCP1 and DHH1 are subsequently recruited to the mRNA 

(Goldstrohm, Hook et al. 2006). 
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Regulation of translation by the circadian clock and other 

factors 
 

In this section, I provide context for chapter 2.  First, I summarize what has been learned 

from genome-wide polysome profiling in Arabidopsis.  Second, I give a basic overview of the 

Arabidopsis circadian clock.  And third, I summarize what was previously known about diel and 

circadian regulation of translation, which provides rationale for the hypothesis tested in chapter 

2, that the circadian clock influences genome-wide ribosome loading in Arabidopsis.   

 

Overview of polysome profiling experiments in Arabidopsis 
 

Progress has been made in understanding how ribosome loading and translation are 

regulated by many molecular events.  However, key questions are still being asked about how 

the translation machinery senses cues from within the cell and its external environment and 

responds to them in order to grow and develop and to maintain homeostasis.  A number of 

groups have measured genome-wide translation states (TLs) by polysome profiling in order to 

investigate how translation is influenced by various environmental conditions and genetic 

backgrounds.  From these experiments in Arabidopsis, which are summarized in Table 1.1, 

several trends have become clear.   
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 Table 1.1: Public genome-wide polysome profiling data sets from Arabidopsis 

Research group Experimental backgrounds Growth conditions References 
Whitham lab, Iowa State University, Ames, IA - Turnip mosaic virus  

- Control  

- Genotypes: Col-O RPL18 

overexpression 

- Age: 4 weeks  

- Soil/media: LC soil 

- Day length: 12h 

- Temperature: 22C 

(Moeller, Moscou et al. 2012) 

Wu lab, Academica Simica, Taipei, Taiwan - Dark  

- 0.5h light  

- 4h light 

- Genotypes: Col-O 

- Age: 4 days 

- Soil/media: Half-strength MS 

media 

- Day length: NA 

- Temperature: 22C 

(Liu, Wu et al. 2012) 

Bailey-Serres lab, University of California, 

Riverside, CA 

- 12h hypoxia 

- Control 

- Genotypes: Ler 

- Age: 7 days 

- Soil/media: MS media 

- Day length: 16h  

- Temperature: 20C 

(Branco-Price, Kawaguchi et al. 

2005) 

Bailey-Serres lab, University of California, 

Riverside, CA 

- 2h, 9h hypoxia 

- 2h, 9h control 

- 9h hypoxia/1h recovery 

- Genotypes: Col-O RPL18 

overexpression 

- Age: 7 days 

- Soil/media: MS media 

- Day length: 16h 

- Temperature: 23C 

(Branco-Price, Kaiser et al. 2008) 

Bailey-Serres lab, University of California, 

Riverside, CA 

3 genotypes (Col-O background) 

- RPL18 overexpression 

- CSP1 overexpression 

- CSP1 knockdown 

2 conditions: cold, control 

- Age: 10 days 

- Soil/media: MS media 

- Day length: 16h 

- Temperature: 23C 

(Juntawong, Sorenson et al. 2013) 

Bailey-Serres lab, University of California, 

Riverside, CA 

- 1h light 

- 1h dark 

- 1h dark/10min re-illumination 

- Genotypes: Col-O 

- Age: 14 days 

- Soil/media: MS media 

- Day length: 16h 

- Temperature: 23C 

(Juntawong and Bailey-Serres 2012) 

Von Arnim lab, University of Tennessee, Knoxville, 

TN 

- Wild type (Col-O) 

- eIF3h mutant (Ws) 

- Age: 10 days 

- Soil/media: MS media 

- Day length: Continuous light 

- Temperature: 22C 

(Kim, Cai et al. 2007) 

Von Arnim lab, University of Tennessee, Knoxville, 

TN 

- Wild type (Col-O) 

- Rpl24b mutant (Ws) 

- Age: 10 days 

- Soil/media: MS media 

- Day length: 16h 

- Temperature: 22C 

(Tiruneh, Kim et al. 2013) 

Von Arnim lab, University of Tennessee, Knoxville, 

TN 

2 genotypes (Col-O background) 

- Wild type 

- CCA1 overexpression 

4 time points: 6am, 12pm, 6pm, 12am 

- Age: 10 days 

- Soil/media: MS media 

- Day length: 16h 

- Temperature: 22C 

(Missra, Ernest et al. 2015) 

Castellano lab, INIA-UPM, Madrid, Spain - Heat  

- Control 

- Genotypes: Col-O 

- Age: 7 days 

- Soil/media: MS media 

- Day length: 16h 

- Temperature: 22C 

(Yángüez, Castro-Sanz et al. 2013) 
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First, TL can be a more responsive state of gene expression than mRNA transcript 

abundance.  The Bailey-Serres group investigated the genome-wide responses to hypoxia at the 

transcriptional and translational levels (Branco-Price, Kaiser et al. 2008).  They measured 

mRNA levels and TLs by microarray in plants maintained in normal conditions for 2 or 9 hours, 

hypoxia for 2 or 9 hours, and hypoxia for 9 hours followed by a 1-hour recovery.  I obtained 

their published microarray data and created a heatmap which shows the genome-wide transcript 

and TL profiles for each experimental group, shown in Figure 1.1.  The genes and samples were 

clustered using hierarchical clustering based on the Pearson coefficient.  Based on the clustering 

pattern and visual inspection, the transcriptional profiles from the 2-hour hypoxia group most 

closely resemble the two control groups, suggesting that 2 hours of hypoxia was not enough time 

for the plants to have a dramatic genome-wide response at the transcriptional level.  However, 

the 9-hour hypoxia group clusters separately from the control groups, suggesting that 9 hours of 

hypoxia was long enough.  The 9-hour-hypoxia/1-hour-recovery plants most closely resemble 

the 9-hour hypoxia plants, suggesting that 1 hour of recovery is not long enough for the plants to 

return to normal in terms of their genome-wide transcriptional profiles.  Looking at the 

translational level gives a different view.  Both hypoxia groups cluster completely separately 

from the control groups, suggesting that 2 hours of hypoxia is enough time for the plants to have 

a dramatic response in their genome-wide TL profiles.  Importantly, though, the 9-hour-

hypoxia/1-hour-recovery plants more closely resemble the control plants than the hypoxia-

treated plants, suggesting that 1 hour of recovery was enough time for the plants to return back to 

normal in terms of their genome-wide TL profiles.                  
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Figure 1.1: Transcriptional and TL profiles in response to hypoxia.   

The data are from the Bailey-Serres hypoxia data set (Branco-Price, Kaiser et al. 2008).  The 

experimental groups include control conditions for 2 (Ctrl 2h) or 9 hours (Ctrl 9h), hypoxia for 

2 (Hypox 2h) or 9 hours (Hypox 9h), and 9 hours of hypoxia followed by a 1-hour recovery 

(Hypox 9h->Rec 1h).  The numbers to the right of the dashes indicate biological replicates 

from the same experimental group.  Both the genes and the samples were clustered using 

hierarchical clustering based on the Pearson coefficient.  The colors reflect the Z-scores, 

which are the number of standard deviations each value is above or below the mean of its row.   

mRNA levels 

TL 
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Second, like the processes of initiation and degradation, TL regulation can be a global 

event, affecting most mRNA species, or mRNA-specific, targeting a few specific ones.  I 

performed analysis of variance (ANOVA) on the same 2008 Branco-Price TL data, treating each 

experimental condition as a different treatment group and TL as the response variable.  From this 

I obtained p-values and retained the 2000 genes with the lowest p-values, which represent genes 

whose TLs were the most strongly influenced by the experimental conditions.  From these 2000 

genes, I created a heatmap as before, which is shown in Figure 1.2.  From this it is clear that 

many genes respond in a co-regulated way, either up- or down-regulated at the TL level in 

response to hypoxia.  However, there are smaller groups of genes that do not follow the major 

trends.  For instance, a few genes have different TLs between the 2-hour control and 9-hour 

control groups, perhaps due to minor differences in growth conditions at those two different time 

points.  Additionally, while many genes behave the same between the controls and 9-hour-

 
Figure 1.2: TL profiles for hypoxia-sensitive genes.   

ANOVA p-values were obtained reflecting the effect of the experimental conditions on TL, 

and 2000 genes with the lowest p-values are shown here.  The colors reflect Z-scores (see 

Figure 1.1). 
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hypoxia/1-hour-recovery groups, small groups of genes remained up- or down-regulated 

compared to the controls after 9 hours of hypoxia.       

Third, TL is influenced by a wide variety of environmental conditions and genetic 

backgrounds, including temperature, oxygen levels, water, light, virus infection, genotype, and 

ecotype.  Close analysis of each of the data sets by the original authors uncovered genes that 

respond at the TL level to each experimental condition, as well as groups of genes that share 

similar TL behavior and biological functions.  Figure 1.3 shows a heatmap that I made from all 

of the TL data sets in Table 1.1, except the 2005 Branco-Price data and the CCA1-ox genotype 

from the von Arnim data, totaling 9 data sets, 29 experimental backgrounds (treating controls or 

wild type from different experiments as different experimental backgrounds), and 72 individual 

samples.  As the authors of each study have found, there are many genes that respond at the TL 

level to the experimental treatments and conditions in each study.  However, there are also clear 

signatures in TL profiles that are unique to each data set and distinct from other data sets, 

independent of the given experimental treatments in each study.  This could reflect differences in 

growth conditions used in different laboratories, plant age, time of day, or other factors which 

have real biological effects on ribosome loading, as well as different protocols used to prepare 

the RNA samples, which do not truly affect ribosome loading.  Further analysis of these meta-

data, for instance, modeling the effects of variables, such as ecotype, age, soil composition, 

sucrose concentration, and light intensity, on TL might help to explain these signatures in TL 

profiles that are unique to each data set. 

 



42  

Figure 1.3: TL profiles for all available data from Arabidopsis.   

The heatmap was made using the public data sets in Table 1.1, with hierarchical clustering used 

to cluster the genes and samples based on the Pearson coefficient.  The colors reflect Z-scores 

(see Figure 1.1). 

 

 

The circadian clock in Arabidopsis 
 

The circadian clock is a physiological system in many organisms that helps them to carry 

out certain activities at the appropriate times (Hsu and Harmer 2014).  In a broad sense, the 

circadian clock is composed of three main parts, the central oscillator, input pathways, and 

output pathways.  The central oscillator is the core of the clock, as it sustains its cyclical nature 

and can operate without external cues.  Input pathways help to set the clock and establish its 

timing.  Output pathways connect the clock timing with the physiological processes that are to 

occur at specific times. 

In plants, the central oscillator is largely set by the light-dark cycle through input 

pathways.  It consists of three sets of genes that repress each other in a cycle over the course of 

the day.  They do this through their protein products, which either directly repress transcription 
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of their target genes or promote transcription of target genes which then lead to repression of 

other genes in the central oscillator.  One set of genes, the “morning genes”, are expressed highly 

in the morning and repress the evening genes.  The day genes are expressed highly during the 

day and repress the morning genes, and the evening genes are expressed highly during the 

evening and repress the day genes.  The genes in the central oscillator not only regulate each 

other, but they also regulate genes outside of the central oscillator through output pathways, 

enabling plants to carry out physiological processes at the appropriate times of day. 

Input pathways help to entrain the clock based on environmental cues.  The light-dark 

cycle is one widely studied environmental cue that is known to affect the expression of central 

oscillator genes at multiple levels, including transcription, mRNA stability, and translation.  For 

instance, the ZEITLUPE (ZTL) protein, encoded by the ZTL gene, responds to light during the 

day by binding with increased affinity to GIGANTEA (GI).  However, as light intensity 

decreases at dusk, ZTL loses its affinity for GI and targets TIMING OF CAB EXPRESSION 1 

(TOC1) and PSEUDO-RESPONSE REGULATOR 5 (PRR5) proteins for degradation via the 

ubiquitin-proteasome pathway (Más, Kim et al. 2003).  Phytochrome proteins sense red and far-

red light, and cryptochrome proteins sense blue light, and both types of proteins help to set the 

speed of the clock (Strasser, Sánchez-Lamas et al. 2010, Hu, Franklin et al. 2013).  Along with 

the light-dark cycle, temperature is also a widely studied factor that affects the clock via input 

pathways.  Like the light-dark cycle, temperature affects the clock at multiple levels of gene 

expression.  For instance, temperature affects the alternative splicing of several clock genes, 

including CCA1, LHY, PRR9, PRR7, PRR5, PRR3, and TOC1, with splicing of CCA1 into its 

full-length vs. truncated variants implicated in cold resistance (James, Syed et al. 2012).                   
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Output pathways connect the clock with the physiological systems that it regulates, 

particularly growth, metabolism, and response to abiotic and biotic stresses.  The hypocotyl, for 

example, exhibits a daily rhythm in growth that is influenced by the clock as well as light, 

sucrose, and hormonal signaling.  Many genes involved in photosynthesis and carbohydrate 

metabolism are regulated by the clock (Michael, Mockler et al. 2008).  Photosynthesis results in 

a daily accumulation of starch during the day, with 95% of it consumed by the plant by the 

following dawn (Graf, Schlereth et al. 2010) at a rate that the plant determines by taking stock of 

the amount of starch accumulated and the anticipated length of the dark period (Pal, Liput et al. 

2013, Scialdone, Mugford et al. 2013).  Lastly, the clock helps plants to respond to abiotic and 

biotic stresses.  A classic example of circadian regulation of responses to abiotic stresses is cold 

resistance (Eriksson and Webb 2011).  C-REPEAT BINDING FACTOR 1 (CBF1), CBF2, and 

CBF3 are clock-regulated transcription factors that promote expression of genes involved in cold 

resistance, which lead to increased levels of cryoprotectant molecules.  Expression of these CBF 

genes peaks at midday under the direction of the clock, and it has been hypothesized that this 

behavior allows plants to “interpret” cold temperatures during the day as a sign of seasonal 

changes, but not cold temperatures at night, which do not signify seasonal changes (Robertson, 

Skeffington et al. 2009).   

The Kay group identified a number of additional examples of physiological systems 

influenced by the clock via output pathways in their study of genome-wide transcriptional 

regulation by the clock in Arabidopsis (Harmer, Hogenesch et al. 2000).  Their analysis indicated 

that 23 genes that had circadian cycles of transcription and reached their peak transcript levels 

before dawn encoded enzymes in the phenylpropanoid biosynthetic pathway (Harmer, 

Hogenesch et al. 2000).  This suggested that the circadian clock helps plants to produce pigments 
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early in the day that protect them from ultraviolet light, which was consistent with previous 

reports (Li, Ou-Lee et al. 1993, Landry, Chapple et al. 1995).  Another clock-regulated output 

pathway suggested by the Kay group’s analysis was cold resistance.  Changes in the fatty acid 

composition of cotton seedlings was previously found to have a circadian pattern that correlated 

with cold resistance (Rikin, Dillwith et al. 1993).  The Kay group found circadian patterns in the 

expression of lipid desaturase enzymes, which peaked just before dusk, as well as transcription 

factors and other genes involved in chilling resistance (Harmer, Hogenesch et al. 2000).  A 

number of genes involved in other physiological processes in plants that are especially important 

at specific times of the day, such as the light-harvesting reactions of photosynthesis, starch 

metabolism, and sucrose metabolism, were also transcribed in a circadian fashion over the course 

of the day. 

 

Diel and circadian regulation of translation 
 

Translation has been known to play a role in the circadian clock for decades.  In the 

1970s, Jacklet found that applying anisomycin, a drug that inhibits protein synthesis by 

interfering with the ribosome, to the eye of the sea slug (Aplysia californica) shifted the phase of 

its circadian pattern of action potentials (Jacklet 1977).  This provided one of the first key pieces 

of evidence that translation of new proteins played a role in the circadian clock in any organism.  

In the 1990s, however, using Northern blotting and other pre-polymerase chain reaction (PCR) 

techniques, researchers uncovered a system of transcriptional regulation that was critical in clock 

function (Aronson, Johnson et al. 1994).  With technological innovations such as PCR and 

microarrays, which greatly accelerated the study of transcription, transcriptional regulation 

became the focus of research on regulation of the circadian clock (Harmer, Hogenesch et al. 
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2000).  Thus, the role of translation regulation, particularly at the genome scale, in the circadian 

clock has received much less attention.   

While the role of translation in the circadian clock has not been thoroughly characterized 

in any organism to date, it has been shown that translation in plants can fluctuate in response to 

daily external cues.  The Stitt group monitored changes in ribosome loading of total cellular 

mRNA over a light-dark cycle in Arabidopsis (Pal, Liput et al. 2013).  They found that the 

percent of total mRNA associated with large polysomes increased in response to light exposure 

and decreased after the lights were turned off again, while the percent of mRNA not associated 

with ribosomes did the opposite.  This suggested that ribosome loading of mRNA in Arabidopsis 

is sensitive to fluctuations in light which occur over the course of a day.  

Given the range of physiological processes that are regulated by the circadian clock in 

plants, the range of physiological processes controlled in part at the level of translation, the 

established link between the clock and translation, and the reports of post-transcriptional gene 

regulation by the circadian clock, it is not difficult to imagine that translation might play an 

important role in the circadian clock in plants.  In chapter 2, I present a research article from the 

von Arnim lab in which genome-wide changes in transcript levels and ribosome loading of 

mRNA under the direction of the circadian clock were characterized in Arabidopsis.  From the 

experimental work by a former post-doctoral fellow, Dr. Anamika Missra, and my data analysis, 

we made several interesting and novel findings.  First, we demonstrated for the first time that 

translation is partially controlled by the circadian clock in plants.  Second, translation for 

ribosomal proteins peaked late at night, suggesting that the clock may help plants to efficiently 

utilize “spare capacity” for translation at a time of day when many other proteins are not needed.  

Third, the clock can actually suppress daily translation cycles and uncouple translation from 
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transcription, adding sophistication to gene regulation.  And lastly, the clock helps many genes to 

adjust transcription in anticipation of daily changes in light.  While this work suggests that clock 

output pathways influence translation, it does not address the mechanism.  Given the range of 

physiological processes that are regulated by clock output pathways, some of which are closely 

tied with translation, such as sucrose metabolism, it is unclear whether translation is regulated 

directly by clock output pathways, or indirectly.   

 

Overview of dissertation 
 

In this first chapter, I have reviewed the process of translation and the principles of its 

regulation and provided context for chapter 2.  Chapter 2 is a research article describing the 

characterization of translational control by the circadian clock in Arabidopsis (Missra, Ernest et 

al. 2015).  In chapter 3, I present a collaborative project with Dr. Michael Gilchrist at The 

University of Tennessee that involved testing and improving a computational model of 

translation that he developed with biological insight from Dr. von Arnim.  The model describes 

how ribosome loading of mRNA is controlled by the rates of several biochemical steps in the 

translation process which were described in this chapter.     
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Chapter 2 

 

The circadian clock modulates global daily cycles of 

mRNA ribosome loading 
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The content of this chapter is published in The Plant Cell in September 2015 (Missra, 

Ernest et al. 2015).  I contributed to this article as a co-first author by designing and performing 

the bulk of the computational analyses.  Raw data are available from the Gene Expression 

Omnibus (GEO) repository at http://www.ncbi.nlm.nih.gov/geo/ with accession number 

GSE61899.  Supplemental datasets and figures not included in this chapter are available online 

from The Plant Cell at http://www.plantcell.org/content/27/9/2582.      

 

Abstract 
 

Circadian control of gene expression is well-characterized at the transcriptional level, but 

little is known about diel or circadian control of translation.  Genome-wide translation state 

profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to 

estimate ribosome loading per mRNA.  The experiments revealed extensive translational 

regulation of key biological processes.  Notably, translation of mRNAs for ribosomal proteins 

and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to 

fluctuations in ribosome loading.  There was no consistent phase relationship between peak 

translation states and peak transcript levels.  The overlay of distinct transcriptional and 

translational cycles can be expected to alter the waveform of the protein synthesis rate.  Plants 

that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, 

with a six hour delay from midnight to dawn or from noon to evening being particularly 

common.  Moreover, cycles of ribosome loading that were detected under continuous light in the 

wild type collapsed in the CCA1 overexpressor.  Finally, at the transcript level, the CCA1-ox 

strain adopted a global pattern of transcript abundance that was broadly correlated with the light-

http://www.ncbi.nlm.nih.gov/geo/
http://www.plantcell.org/content/27/9/2582
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dark environment.  Altogether, these data demonstrate that gene-specific, diel cycles of ribosome 

loading are controlled in part by the circadian clock. 

 

Introduction 
 

To adjust to a changing environment over the course of a day, plant cells regulate gene 

expression in a diel context. In Arabidopsis, for example, about one third of all genes are 

transcribed under the direction of the circadian clock (Covington, Maloof et al. 2008).  Since 

most of the energy required for gene expression is spent on translation, it is plausible that 

translation itself may also be dielly regulated in order for plants to respond to the environment in 

an energy-efficient manner. Indeed, Arabidopsis plants undergo global cycles of ribosome 

loading (Pal, Liput et al. 2013) but not ribosome abundance (Piques, Schulze et al. 2009) over 

the course of the light-dark cycle.   

The translation state (TL) of an mRNA is often estimated from its ribosome loading.  The 

more ribosomes bind to an mRNA, the more efficiently it is translated (Mathews et al., 

2007)(Mathews, Sonenberg et al. 2007).  mRNA-ribosome complexes (polysomes) can be 

fractionated according to the number of ribosomes, and the proportion of the mRNA pool that 

resides in the different fractions can be used to determine TL.  As defined here, TL is 

independent of the mRNA transcript level.  That is, an mRNA's TL value will be the same 

between two different samples, as long as the average number of ribosomes per mRNA molecule 

is the same, even if the total amount of the mRNA differs between the two samples.  TL for 

many Arabidopsis mRNAs is sensitive to a variety of environmental conditions, including 

hypoxia, heavy metal, drought, sugar, virus, heat, and light exposure, as well as various genetic 

backgrounds (Kawaguchi, Girke et al. 2004, Nicolai, Roncato et al. 2006, Kim, Cai et al. 2007, 
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Branco-Price, Kaiser et al. 2008, Juntawong and Bailey-Serres 2012, Liu, Wu et al. 2012, 

Moeller, Moscou et al. 2012, Tiruneh, Kim et al. 2013, Yanguez, Castro-Sanz et al. 2013).  

Extensive co-regulation of TL has been reported, for example, for ribosomal protein mRNAs 

(Kawaguchi, Girke et al. 2004, Kim, Cai et al. 2007, Juntawong and Bailey-Serres 2012, 

Tiruneh, Kim et al. 2013), suggesting that the transcriptome is organized into regulons of 

translational control.    

The central oscillator of the circadian clock in Arabidopsis is based on a group of 

interlocked transcriptional feedback loops.  At the core of the oscillator are three groups of genes 

that regulate gene expression in a cyclical fashion throughout the day by mutual transcriptional 

repression (Nagel and Kay 2012, Pokhilko, Fernandez et al. 2012).  Transcripts for evening 

genes (e.g. TOC1, LUX, ELF3, and ELF4) peak late in the day and repress day genes (e.g. PRR5, 

PRR7, and PRR9).  Day genes repress morning genes, and morning genes (e.g. CCA1 and LHY) 

repress evening genes.  Constitutive overexpression of the morning gene, CCA1, disrupts normal 

clock function (Wang and Tobin 1998, Green, Tingay et al. 2002).  Under continuous light, the 

clock of the CCA1-overexpressor strain (CCA1-ox) is disordered and arrhythmic, as many 

central clock genes and clock output mRNAs are continuously expressed, while the partner of 

CCA1, LHY, is continuously repressed (Wang and Tobin 1998, Matsushika, Makino et al. 

2002).  In contrast, under light-dark cycle conditions, mRNAs for several central clock genes and 

clock outputs continue to cycle in the CCA1-ox strain (Matsushika, Makino et al. 2002).  Clock 

genes such as LHY and CCR2/GRP7 still respond to light in CCA1-ox but typically do not 

anticipate the dark-to-light transition, in keeping with the defect in the clock (Green, Tingay et 

al. 2002).  
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Early studies established that translation of new proteins plays a fundamental role in the 

operation of the circadian clock (Jacklet 1977, Nakashima, Perlman et al. 1981).  However, 

subsequent investigations identified a robust mechanism of transcriptional control at the core of 

several circadian clocks (Hardin, Hall et al. 1992, Aronson, Johnson et al. 1994, Sehgal, 

Rothenfluh-Hilfiker et al. 1995, Schaffer, Ramsay et al. 1998, Wang and Tobin 1998, Strayer, 

Oyama et al. 2000).  Thus, the role of translational control in circadian clock function has not 

been studied in detail at the genome level.  In recent years, post-transcriptional control of diel 

and circadian gene expression has attracted significant attention.  In particular, many clock 

mRNAs are alternatively spliced (Staiger, Zecca et al. 2003, Staiger and Green 2011, Filichkin 

and Mockler 2012, Park, Seo et al. 2012) and this must be regulated for proper clock function 

(Sanchez, Petrillo et al. 2010, Jones, Williams et al. 2012).  Alternative splicing has also been 

implicated in temperature compensation of the clock (James, Syed et al. 2012, James, Syed et al. 

2012, Seo, Park et al. 2012, Kwon, Park et al. 2014).  By comparison, control of diel gene 

expression at the translational level has received comparatively little attention (Kim, Song et al. 

2003).  

Here, we have characterized translational control over the course of the diel light-dark 

cycle by measuring the ribosome loading of mRNAs in ten-day-old Arabidopsis seedlings grown 

in a long day.  Approximately one in seven mRNAs are subject to robust diel cycles of ribosome 

loading.  These cycles are partially controlled by the circadian clock, given that the translation 

cycles are substantially remodeled in the CCA1-ox strain.  Diel and circadian translational 

control are particularly common among mRNAs for ribosome biogenesis, the inner 

mitochondrial membrane, and the photosynthetic apparatus.  In summary, we provide the first 

genome-wide characterization of circadian control of gene-specific translation in a plant. 
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Results 
 

Polysome loading over a diel cycle 
 

We monitored polysome loading in 10-day-old wild-type (WT) Arabidopsis seedlings 

over a 16-hour light, 8-hour dark cycle at 6am (Zeitgeber time ZT0), 12pm (ZT6), 6pm (ZT12), 

12am (ZT18), and again at 6am (ZT24).  RNA was fractionated into non-polysomal (NP), small 

polysomal (SP) and large polysomal (LP) fractions using sucrose density centrifugation.  We 

quantified polysome loading as the fraction of RNA found in SP and LP fractions relative to the 

total, which also includes NP RNA: (SP+LP)/(NP+SP+LP).  In WT, polysome loading began at 

its lowest level at dawn, 6am (ZT0), peaked during the day, remained elevated through 12am 

(ZT18), and returned to low levels again the next dawn (Figure 2.1A, B).  These data, obtained in 

seedlings grown in long day on artificial medium with 1% sucrose, follow a similar pattern as 

those from vegetative rosettes grown in a 12-hour light-dark cycle on soil (Pal et al., 2013), 

although the drop in translation towards dawn was less pronounced in our experiments.  In the 

CCA1-ox strain, which has a disrupted circadian clock due to constitutive overexpression of 

CCA1, the pattern was similar to WT, but less dramatic (Figure 2.1A, C).  Invoking the well-

supported notion that ribosome loading reflects the rate of translation initiation (Mathews et al., 

2007), these data suggested that diel control of translation may depend on a functional clock. 

 In order to obtain gene-specific ribosome loading data over the diel cycle, the mRNAs in 

the NP, SP, LP, and total (TX) RNA fractions were quantified by microarray hybridization at 

6am (ZT0), 12pm (ZT6), 6pm (ZT12), and 12am (ZT18). A translation state (TL) was calculated 

for each mRNA: TL=(2xSP+7xLP)/(NP+SP+LP).  SP and LP fractions were weighted by 2 and 

7, respectively, because mRNA molecules are estimated to be bound by two and seven 
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ribosomes in these fractions, on average (Supplemental Figure 1). TL values were calculated for 

those 12,342 nuclear-encoded genes that were reliably detected in the SP and LP fractions at all 

four time points in all three replicates (Supplemental Dataset 1). TL is defined as the TL at the 

peak minus the TL at the trough. Genes with varying TL across the diel cycle were first 

identified by significance analysis of microarrays, or SAM (Tusher, Tibshirani et al. 2001). 

Using SAM, 1825 mRNAs (15% of 12,342) varied in their TL value across time points at a 

collective false discovery rate (FDR) of 10% (Figure 2.2A and C). In lieu of a gene-wise FDR, 

which SAM does not provide, we calculated an empirical permutation-based p-value, which 

confirmed that, besides a large fraction of strong translation cycles, many of the moderate 

translation cycles (0.3< ΔTL<0.7) were statistically significant (Figure 2.2E). The TL of the 

majority of mRNAs peaked at noon (ZT6) or midnight (ZT18); peaks at dawn (ZT0) or in the 

evening (ZT12) were less common. More frequently than not, peak and trough were offset by 12 

hours (Figure 2.2A). 

Translation states of six representative genes were also analyzed by quantitative real time 

(reverse transcriptase) PCR (qRT-PCR; Supplemental Figure 2) as an independent technique, by 

calculating TL from the levels of transcripts present in the NP, SP, and LP fractions. Evidently, 

qRT-PCR and microarray results showed similar trends. The qRT-PCR data also confirmed that 

the changes in TL reflect diel cycles rather than monotonic trends over developmental time. 
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Figure 2.1: Polysome loading over a diel cycle. 

Ten-day-old wild-type and CCA1-ox seedlings were grown in a 16-h-light/8-h-dark cycle. Tissue 

extracts from five time points harvested every 6 h were individually subjected to polysome 

density gradient centrifugation. The fraction of total RNA recovered in polysomal fractions 

(small and large polysomes) is plotted in (A) as a percentage of total RNA (nonpolysomes and 

small and large polysomes shown in [B] and [C]) at each ZT time. Error bars show standard 

deviations from three biological replicates. The difference in polysome loading between the wild 

type and CCA1-ox was significant by unpaired two-tailed t test for ZT6 (P = 0.0058) and ZT18 

(P = 0.0041). The elevated polysome loading compared with ZT0 was significant in the wild type 

for ZT6, ZT12, and ZT18 and in CCA1-ox for ZT6. 



56  

 

   

Figure 2.2: Diel changes in ribosome loading of Arabidopsis mRNAs. 

TL is an estimate of ribosome numbers per mRNA, and ΔTL is the difference between the highest 

and lowest TL for a gene, averaged over replicate samples. (A), (C), (E), (G), and (I) are the wild 

type. (B), (D), (F), (H), and (J) are CCA1-ox. 

(A) and (B) mRNAs were filtered for a translational cycle using SAM. The mRNAs were first sorted 

into four predefined clusters according to the time of peak TL. Each cluster was then subdivided 

according to the time of the TL trough. Data were displayed using the heatmap.2 function from the 

gplots package in R. The number of mRNAs per cluster is given on the right. 

(C) and (D) Distribution of all ΔTL values (black trace). ΔTL values were binned in increments of 

0.1. The subset of cycling genes that were selected by ANOVA (AOV P < 0.05) (red trace) or SAM 

(10% FDR) (blue trace) is also illustrated.  (E) and (F) Relationship between ΔTL and SAM P value. 

We used the test statistic computed by SAM and its permutation-based null distribution to compute 

an empirical P value for each prefiltered gene. Here, we plotted the negative log of this P value 

versus the ΔTL for each gene. The 2437 genes with P < 0.05 lie to the right of the broken line. 

(G) and (H) Venn diagram showing the overlap among the four classes of differentially translated 

genes. 

(I) and (J) Relationship between raw ANOVA P values from comparing average TL across time 

points and the corresponding adjusted P values using the Benjamini-Hochberg method. For the wild 

type and CCA1-ox, a raw P value of 0.05 (red vertical line) corresponded to a FDR of 0.25 and 0.15, 

respectively. Fifty-four and 1254 genes passed the FDR < 0.05 threshold, respectively (red 

horizontal line). 
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Figure 2.2 continued.  
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Figure 2.2 continued.  
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 Because the SAM filter will miss valid cycling genes because of the arbitrary FDR cutoff 

of 10%, and to capture the majority of true positives while balancing the risk of false positives, 

we applied two other filters to the raw data. One-way analysis of variance (ANOVA), to identify 

significant variation in TL across time points, yielded 2,503 genes (20%) with an uncorrected p-

value below 0.05 and an FDR of below 0.25 (Figure 2.2C, G, and I), indicating that about 2,000 

are true positives. As an alternative to ANOVA, we simply applied a moderately stringent 

threshold (TL>0.7) or a lenient threshold (TL >0.3) to the data (Figure 2.2G, also see 

Supplemental Dataset 1). Based on SAM, ANOVA, and the TL>0.3 threshold, about 4,000 

mRNAs were translationally invariant. Taken together, about 2,000 mRNAs have statistically 

robust translational changes over the diel cycle, about 4,000 mRNAs are invariant, and the 

remaining 6,300 may have statistically marginal changes in their translation. Evidently, a large 

fraction of the seedling transcriptome is affected.  

 We modeled diel variation in TL and TX as sine waves with a 24 hour period (see 

Methods). Figure 2.3A shows four genes whose large R2 values document a good fit to a sine 

model and whose translation states peak around ZT0, ZT6, ZT12 and ZT18. Figure 2.3B shows 

distributions of R2 values for TX and TL in WT and CCA1-ox (see below). We used an R2 value 

of 0.6 as an arbitrary threshold to identify genes with sinusoidal expression, and we identified a 

peak time as the time at which the sine function reached its maximum. The distribution of peak 

times is shown in Figure 2.3C for WT TX and TL, as well as for CCA1-ox.  While the sine 

model makes an additional assumption, it has merit because it uses information that we did not 

previously take into account, namely the wave form of the data. The sine-modeled phase of our 

wild-type transcript cycles (Figure 2.3C) matched those of eleven published experiments 

(Mockler et al., 2007) with R2 values of up to 0.91, confirming the accuracy of our transcript 
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data and the value of the sine modeling approach. In general, the patterns were consistent with 

our original analysis but provided additional information.  At the TL level, in WT there is a 

strong preference for genes to peak at ZT19, with a secondary preference around ZT7 to ZT10.  

It appeared from our original analysis that many mRNAs peaked at ZT18 (12am), while others 

peaked at ZT0 (6am).  The new perspective, made possible by the sine modeling approach, 

suggests that these two groups may actually behave as one larger group, whose TL peaks are 

centered about ZT19. 

 

Comparison of transcript levels and translation state over a diel cycle 
 

In the wild type, the majority of genes had phase offsets between the peak in transcript 

abundance (TX) and the TL peak (Figure 2.4A). After calculating an odds ratio (Figure 2.4B), 

coincidence between the TX and TL peak was slightly overrepresented compared to the three 

other phase relationships. Similar results were obtained when genes were classified by their 

trough times. In summary, phase shifts between TX and TL cycles are common and gene-

specific.  
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Figure 2.3: Diel cycles of transcript levels and translation states modeled as sine waves. 

(A) Examples of the fit of representative translation state data to sine waves. The R2 indicates 

the fraction of the variation in TL that is explained by the sine model.  (B) Distributions of R2 

values for TX and TL in the wild type and CCA1-ox. Genes in CCA1-ox have a greater 

tendency to behave like sine waves in terms of their TX and TL.  (C) Genes with an R2 >0.6 

were selected and were binned according to their estimated peak TX and peak TL under the 

assumption of a sine model. For wild-type TL, the median confidence interval for peak TL 

was estimated by bootstrapping to be ±1.8 h (5th to 95th percentile range 1.0 to 2.6 h). In (A), 

PGR5 is photosystem I protein PROTON GRADIENT REGULATION5. LHCB3 is light-

harvesting chlorophyll a/b binding protein 3 of photosystem II. At5g08570 is annotated as a 

pyruvate kinase family protein. MRPL11 is protein 11 of the mitochondrial ribosomal large 

subunit. 
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Figure 2.4: Relationship between diel cycles of mRNA levels and TL in the wild type and CCA1-

ox. 

Genes were classified as cycling at the TX or TL level, as identified by SAM with a 10% FDR.  

(A) and (C) Gene counts. Genes sharing the same phase relationship between peak TX and peak 

TL were binned together in the indicated cells and counted. Each cell contains the number of 

genes that peaked at the indicated times based on TX and TL. Invariant genes (Inv) were those 

that passed our prefiltering step but whose TX or TL did not vary significantly across time points. 

Coloring indicates the (log2) values in each cell, with yellow indicating lower values, orange 

indicating medium values, and red indicating higher values. A heat map of genes clustered based 

on TX cycles is shown in Supplemental Figure 7. (A) is the wild type, and (C) is CCA1-ox.  (B) 

and (D) Odds ratios for the data shown on the left. Odds ratios were calculated by (1) calculating 

the odds of a transcript with TX peak at time x having a TL peak at time y, (2) calculating the 

odds of a transcript not peaking at time x having its TL peak at time y, and (3) dividing the odds 

from step 1 by the odds from step 2. (B) is the wild type, and (D) is CCA1-ox. 
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Gene ontology enrichment in co-regulated genes over a diel cycle 
 

To identify functional processes that are under diel regulation at the translational level, 

we searched for enriched functional terms among genes with translation peaks at each time point 

using gene ontology analysis (Figure 2.5, Table 2.1). At dawn (ZT0), photosystem proteins were 

enriched, as well as biosynthesis of sulfur compounds such as glucosinolates and sulfur amino 

acids. At noon (ZT6), cell growth and division processes such as microtubules were slightly 

enriched, and these terms were strongly depleted in the evening (ZT12). Of note, hypocotyl 

growth peaks around noon (Nozue, Covington et al. 2007). In WT, there was no enrichment of 

any terms in the evening. The most striking enrichment was observed at night (ZT18). 

Ribosomal protein translation was highly enriched at this time, together with RNA methylation, 

nucleolar proteins and small nuclear ribonucleoproteins. The coordinate diel translation of 

ribosomal protein mRNAs is displayed in Figure 2.6. Evidently, the ribosome loading of the 

majority of these mRNAs was high at midnight (ZT18) to dawn (ZT0) and low around noon 

(ZT6) and evening (ZT12). The small minority of mRNAs that bucked the trend generally 

represented a less expressed paralog within their gene family; some of them had either very low 

or very high ribosome loading (not shown). Taken together, many ribosomal proteins belong to 

one regulon of translational control whose diel ribosome loading peaks at night.  Besides the 

ribosomal proteins, several other small functional categories were preferentially translated at 

night, in particular mitochondrial proteins, the prefoldin complex, a protein that aids in co- or 

post-translational protein folding, V-type proton-ATPase, and the DNA directed RNA 

polymerase IV and V complexes (Figure 2.5, Table 2.1).  
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Figure 2.5: Functional enrichment among groups of mRNAs with common peaks in their 

ribosome loading cycle (wild type). 

Genes identified as cycling by either SAM at 10% FDR, ΔTL > 0.7, or ANOVA were searched 

for enrichment of functional gene annotations. The topGO R package was used with default 

settings and with all 12,342 reliably expressed genes as a background set to identify enriched 

biological processes (BP) and cellular components (CC). Significantly enriched functional 

categories are presented separately in a nested fashion. The table presents the number of genes 

within the background set that are annotated with the given term, the number whose TL peaks at 

the given time, the enrichment factor, and its FDR-corrected P value. FDR values below 1E-10 

are shaded dark green, those below 1E-05 are medium green, and those below 5E-02 are light 

green. FDRs above 0.05 are not listed. E, to the power of 10; bios, biosynthesis; PS, photosystem; 

NDH, NADH dehydrogenase; Pol, polymerase; snRNP, small nucleolar ribonucleoprotein 

particle. 
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Table 2.1: Changes in peak translation upon disruption of the circadian clock in CCA1-ox. 

Cohorts of mRNAs with similar diel ribosome loading cycles were searched for enriched 

functional categories using Gene Ontology (GO). An X indicates that the term is enriched among 

the mRNAs whose translation peaks at the given time; a dash indicates absence of enrichment. 

Detailed data are in Figure 2.5 (wild type) and Supplemental Figure 10 (CCA1-ox). 
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Table 2.1 continued. 

 Peak in Wild Type  Peak in CCA1-ox 

  6 

am 

12 

pm 

 6 

pm 

12 

am 

  6 

am 

12 

pm 

 6 

pm 

12 

am 

GO Enrichment Term         ZT:   0   6 12 18    0   6 12 18 

Translation          

Cytosolic ribosome    X  X    

RNA methylation    X  X    

Prefoldin complex    X  X    

Signal recognition particle       X   

tRNA metabolism       X   

tRNA aminoacylation       X X  

rRNA processing       X   

mRNA catabolism         X 

Mitochondrion          

Inner membrane    X  X    

Envelope    X  X    

Photorespiration    X  X    

Plastid          

Thylakoid X     X X   

Photosystem I X   X  X    

Photosystem II X     X    

Photosystem II assembly    X   X   

Stroma       X   

Plastid nucleoid       X   

Plastid envelope       X   

Protein targeting to plastid       X   

Carbohydrate synthesis        X  

Carbohydrate catabolism      X    

Carotenoid synthesis       X X  

Sulfur compound synthesis X      X   

Amino acid synthesis      X X   

Nucleus          

Nuclear chromatin       X X  

Chromatin silencing         X 

DNA methylation  X        

Histone lysine methylation        X  

RNA Pol IV/V    X      

Cell division          

Cytokinesis or cell cycle  X      X X 

Microtubule  X      X  

Other          

V-type H+ ATPase     X  X    

Proteasome    X   X   

Phosphatidylinositol synthesis    X  X    

ATP binding (kinase, helicase)        X X 

Protein phosphorylation         X 

Protein dephosphorylation X         

Divalent metal ion transport X     X    
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A more detailed view of ribosome loading dynamics in central energy metabolism is 

displayed in Supplemental Figure 4. Of those mRNAs that had significant cycles, photosystem I 

mRNAs were well coordinated (night/dawn peak), as were most of the translocators in the 

plastid envelope (night peak) and a majority of the light harvesting proteins (dawn/noon peak). 

Photosystem II proteins yielded less information and Calvin cycle proteins had essentially no TL 

cycles. Overall, different functional groups of chloroplast proteins have different patterns of 

ribosome loading. Among mitochondrial proteins with translation cycles, most of which function 

in oxidative phosphorylation in the inner membrane, most peaked at night/dawn (pattern I), 

while a smaller subset peaked during the day (pattern II). In glycolysis and associated enzymes, 

ribosome loading tended to peak during the day.  Of note, most glycolytic enzymes did not have 

translation cycles. Of those three that did, phosphofructokinase and pyruvate kinase both 

catalyze energetically downhill reactions, and are considered to be highly regulated. Regulation 

of ribosome loading may add another layer of regulation to these enzymes. Also, of the multiple 

paralogous genes that encode several of these enzymes, not all undergo changes in ribosome 

loading, and the phase of the ribosome loading cycle can differ between paralogs (e.g. invertase, 

phosphoglycerate mutase). This finding suggests that translational regulation is one more way 

for duplicated genes to evolve new and distinct patterns of regulation.  

 



68  

 

 
Figure 2.6: Heatmap of translation states for 189 cytosolic ribosomal protein mRNAs.  

mRNAs (Barakat et al., 2001; Browning and Bailey-Serres, 2015) were matched to probeset 

IDs (228 out of the 249 genes). Of these, 189 genes passed a criterion for sufficient and 

reliable gene expression for at least two time points in wild type. Wild-type ribosome loading 

data were averaged from three replicates and then clustered hierarchically using their Pearson 

correlation coefficient, resulting in the dendrogram on the left. The equivalent data for 

CCA1-ox were not clustered and are displayed in the same gene order as for wild type. For 

display, the ribosome loading of each gene was z-score transformed, where z=+1 (yellow) 

indicates a translation state one standard deviation above the mean translation state of the 

gene. Positive and negative z-scores are yellow and blue respectively. The light period lasts 

from ZT0 to ZT16. Data points with insufficient data, such as low mRNA level, are masked 

in black. Protein names are readable when viewed on a screen with sufficient zoom. 

Row Z-score 
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Two other functional groups of mRNAs with noteworthy translation dynamics are shown 

in Supplemental Figure 5 and 6. Many redox-related enzymes had translation cycles, but the 

timing of peak TL differed among individual mRNAs (Supplemental Figure 5A). These enzymes 

also had a tendency for relatively high absolute ribosome loading (Supplemental Figure 5B). 

Proteins that function in protein turnover also revealed biases in absolute translation states, with 

proteases and proteasome subunits scoring high and E3 ligases scoring low, on average 

(Supplemental Figure 6). Taken together, these data suggest that besides the ribosomal protein 

mRNAs, several other functional groups of mRNAs also form translational regulons.  

 

Global transcript profile in the clock-deficient CCA1-ox strain 
 

To distinguish whether the diel cycles of translation are driven by the circadian clock or 

by diel light-dark changes, we then prepared to compare WT and a strain overexpressing the 

central oscillator gene, CCA1 (CCA1-ox). As a first step we determined transcript cycles of 

clock genes because these had not been described at a global level (Figure 2.7). Compared to 

WT, the majority of transcript profiles in CCA1-ox correlated with light and darkness indicating 

that, as expected, the plants' ability to anticipate the lights-on signal was severely curtailed. In 

contrast, WT had a variety of diel TX patterns, including many genes that appear to anticipate 

light changes.  Assuming that transcript cycles conform to a sine model, in CCA1-ox the 

distribution of TX peak times was relatively narrow, restricted around ZT9 (3pm) and ZT21 

(3am) (Figure 2.3C).  In WT, many more mRNAs peaked between ZT12-ZT16 (evening) and 

between ZT0-ZT6 (morning).  

The broad correlation between light phase and transcript phase is reminiscent of the 

hypocotyl growth in CCA1-ox (Nozue, Covington et al. 2007), which, having escaped from 
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control by the clock, is also strongly driven by light and darkness. As expected (Wang and Tobin 

1998, Green, Tingay et al. 2002, Matsushika, Makino et al. 2002), cycling of key clock-regulated 

transcripts was muted in CCA1-ox (Figure 2.8A), e.g. for ELF4, PRR5, PRR7, PRR9. 

Additionally, LHY was transcriptionally repressed at all time points. Although diel cycling of 

LHY mRNA was clearly disrupted in CCA1-ox, in our hands, LHY retained a small peak at the 

end of night at ZT0. Therefore we cannot rule out that the CCA1-ox plants may retain weak 

residual clock activity in long day. 

In CCA1-ox, the following broad functional annotation patterns were observed 

(Supplemental Figure 8). At dawn (ZT0), the cohort of peak transcripts was enriched for RNA-

biology processes and protein localization. At noon (ZT6) and in the evening (ZT12), the 

majority of enriched processes were chloroplast- and photosynthesis-associated. Remarkably, of 

309 light-reaction mRNAs, 229 peaked during the light period, either at ZT6 or ZT12, a stronger 

enrichment than in the wild type (note red values for chloroplast (ZT6) and PS light reaction 

(ZT12) in Supplemental Figure 8, column WT). Similar trends were seen for many functional 

groups responsible for carbohydrate metabolism. In the evening (ZT12), categories such as 

apoplast, glucose catabolism, and glucosinolates became prominent as well. Finally, at night 

(ZT18), ion transport and defense responses became predominant. Notably, the majority of these 

patterns in CCA1-ox were similar, but more accentuated, as compared to wild type.  However, 

for other functional terms, the transcript patterns in CCA1-ox were muted (e.g. defense response, 

cell wall at ZT18; green values indicate stronger enrichment in WT). The term cytokinesis/cell 

division was biased towards noon (ZT6) in WT, yet only weakly enriched, at ZT12, in CCA1-ox.  

 



71  

 

 
Figure 2.7: Diel cycles of transcript levels in wild type and CCA1-ox.  

Heat map of total mRNA levels obtained under long day conditions at 6am (ZT0), 12pm 

(ZT6), 6pm (ZT12), and 12am (ZT18). Data are averages from three biological replicates. 

Only mRNAs with a fold-change higher than 5-fold are included. (A) WT, 615 genes, (B) 

CCA1-ox. Transcript levels are displayed after z-score transformation (yellow=high). The 

clustering tree on the left reveals how, in CCA1-ox, most mRNAs fall into two large clusters 

that correlate with light (12pm and 6pm) and darkness (6am and 12am). In contrast, in wild 

type, transcript levels fall into four major clusters that were less prone to reflect the light 

environment. Panels (C) and (D) show a line histogram of transcript fold changes for the 

entire dataset (13,625 genes) similar to Figure 2.2C and D. Panels (E) and (F) show the 

relation between ANOVA p-value (AOV) and fold-change in transcript level for 14,218 genes 

(volcano plots). The stippled line represents p=0.05. 

Row  
Z-score 
 

Row  
Z-score 
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Figure 2.8: Phase diagram comparing the expression cycles between the wild type and CCA1-

ox. 

Genes with significant TX cycles ([A] and [B]) or translation cycles ([C] and [D]) were 

identified using SAM with the 10% FDR cutoff. All other genes were called invariant (Inv). 

The genes were binned according to the peak in the wild type and the peak in CCA1-ox.  (A) 

and (C) Numbers of genes with a given phase relationship are indicated as a heat map.  (B) 

and (D) Odds ratios for the data shown on the left. For details, see legend to Figure 2.4. 
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In summary, the defect of the clock in the CCA1-ox strain disturbs the coordinate 

transcription of certain functional classes of mRNAs, but also opens the door to a more tightly 

coordinated transcription for other classes of mRNAs, especially photosynthesis-related mRNAs. 

In wild-type plants the functional clock uncouples large numbers of transcripts from the tight 

control exerted by the overt light environment. 

 

Translational cycling in plants with a disrupted circadian clock 
 

We initially hypothesized that translational regulation by the diel cycle would be 

dampened in CCA1-ox plants. However, polysome microarray analysis of the CCA1-ox strain 

revealed robust translation cycles (Figure 2.2B, 2D). The clusters with dawn and evening peaks 

were enlarged at the expense of the day and night peaks. Thanks in part to a lower variation 

between replicate experiments, the CCA1-ox TL data yielded a larger number of genes (5,521 

versus  2,780 in WT) that were scored statistically significant in their translation cycle by either 

the SAM or ANOVA methods (Figure 2.2D, F, H, J). In CCA1-ox, only 2,533 genes were not 

identified as cycling by any method and were therefore classified as surely invariant.  

In CCA1-ox, TX and TL cycles were more highly coordinated than in WT (Figure 2.4C). 

This was particularly striking at dawn (6am, ZT0), as evident from the high odds-ratios along the 

diagonal in Figure 2.4D. Taken together with the previous data from WT plants (Figure 2.4A and 

B), this observation suggests that the clock does not just regulate translation. The fully functional 

clock in the WT may also work to separate transcriptional control from translational control, 

making them more independent of each other. Whilst in the clock-defective CCA1-ox strain, 

transcription and translation cycles may be coming under an alternative form of joint control, 

possibly light-dark transitions and the associated shift in the cellular energy balance.  
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Diel cycles of translation are disturbed by malfunction of the clock  
 

Next, we examined how the clock defect in the CCA1-ox strain affected the phase of the 

diel translation cycles (Figure 2.8C and D). Among the mRNAs with robust translation cycles in 

WT, about one-third lost their cycle in CCA1-ox (Figure 2.8C). Of those that maintained a cycle 

in CCA1-ox, the minority maintained their peak at the same time as WT, while the majority 

shifted their translation peak to a different time. A 6-hour delay was most common. In particular, 

the vast majority of mRNAs with a WT TL peak at 12am (ZT18) peaked six hours later in 

CCA1-ox. These mRNAs preferentially encode ribosomal proteins and mitochondrial proteins 

(Table 2.1). Finally, we draw attention to more than 3,000 mRNAs that had no robust cycle in 

WT, yet started to cycle in CCA1-ox, thus revealing translation cycles that may be suppressed in 

WT by the fully functional clock (Figure 2.8C). Overall, the shift in TL in the CCA1-ox strain 

was also evident when TL was modeled as a sine wave (Figure 2.3C). Taken together, these data 

indicate that a functional clock is important for maintaining translation cycles for certain mRNAs 

and suppressing the cycles of others.  

For comparison, at the transcript level, it was more common for genes to peak at the same 

time in WT and CCA1-ox (Figure 2.8A and B). Only a small fraction lost their cycle. However, 

like at the translation level, many mRNAs that had no consistent transcript cycle in WT did cycle 

in CCA1-ox.  

The shifts in translation cycles in the CCA1-ox strain stood out in starker contrast after 

gene ontology analysis (Figure 2.5 for WT, Supplemental Figure 9 for CCA1-ox, and Table 2.1 

for a summary). The translation phase of the following major processes was delayed by six 

hours: cytosolic ribosome (Supplemental Figure 3) and RNA methylation, mitochondrial inner 

membrane and envelope, photorespiration, sulfur compound synthesis, and cytokinesis. For some 
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of the smaller categories, such as the prefoldin complex, V-type proton ATPase, and 

microtubules, the 6-hour delay was very striking, given that a sizable fraction of genes in each 

group was translationally regulated in a coordinated fashion.  Second, certain functional classes 

maintained a peak in TL at a given time or showed only a slight shift, for example photosystem 

proteins and metal ion transport. Third, several functional categories only revealed coordinate 

translation in CCA1-ox, after disruption of the clock, but not in WT. For example, mRNAs for 

tRNA metabolism, specifically aminoacyl-tRNA synthetases, typically did not cycle in WT but 

did cycle in CCA1-ox with a peak at ZT6 or ZT12. The opposite pattern, loss of coordinate 

translation, also occurred occasionally (e.g. RNA Polymerase IV/V). 

It should be understood that not all mRNAs within one larger category follow the same 

dynamic. For example, in WT the mRNAs for amino acid biosynthesis had gene-specific 

translation peaks at each time-point (not shown), but appeared to coalesce into a broader peak 

with enrichment at ZT0 and ZT6 in CCA1-ox. These data again underscore coregulation of both 

large and small, functionally related, groups of mRNAs and suggest that, besides the well-known 

ribosomal protein mRNAs, many other mRNAs are targets of translational control.  

The changes in ribosome loading over the diel cycle differ dramatically from changes 

previously described to occur in response to shorter, unexpected, dark or light treatments 

(Supplemental Figure 10). Using k-means clustering, it is evident that three different shifts from 

light to darkness (e.g. ZT12 evening to ZT18 night) did not resemble the response that occurs 

when light-grown seedlings are exposed to one hour of darkness in midday at ZT8 (L1hD, 

Juntawong et al., 2012). Instead, it resembled more closely the response of dark-exposed 

seedlings to reillumination (Juntawong et al., 2012) and the response of dark-grown seedlings to 

four hours of white light, which stimulates their deetiolation (Liu et al., 2012). Vice versa, the 
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diel response to a dark-to-light shift (ZT0 to ZT6) resembled the response to a one hour exposure 

to darkness. Of the six clusters defined by k-means, clusters 1, 2, 3, and 4 all supported this anti-

correlated pattern. In fact, in previous studies, ribosomal proteins were among the most highly 

repressed mRNAs in response to darkness, and induced by light, whereas here, ribosomal 

proteins (cluster 1 and 2) were translationally stimulated during the night (Table 2.1). Evidently, 

many other mRNAs follow a similar pattern, including mitochondrial (Cluster 1) and 

cytoskeletal proteins (Cluster 3), and polysaccharide synthesis (Cluster 4). Only clusters 5 and 6 

(enriched for chloroplast, Golgi, cell wall, glucose catabolism) followed the more intuitive 

expectation of a correlated behavior. These data suggest that mRNAs belonging to the night 

cluster under diel conditions also tend to be translationally inhibited when darkness is 

experienced by the plant as a stress condition. 

 

Translational control of circadian clock mRNAs 
 

Next, we addressed whether clock mRNAs were subject to translational control. Because 

the levels of many central clock mRNAs drop below the reliably detectable limit at one time 

point, and were therefore filtered out in our previous analysis, we re-filtered the raw array data 

such that genes must be present in all three replicates of SP and LP fractions for at least two time 

points, but not all four time points (14,397 genes). In CCA1-ox the transcript cycles of many 

clock-associated genes became muted, and the peaks and troughs often coincided with darkness 

(ZT0, ZT18) or light (ZT6, ZT12, see Figure 2.9A), not unlike the transcriptome as a whole 

(Supplemental Figure 7).  

At the translation level, clock-associated transcripts (Figure 2.9B) fell into two broad 

groups in WT, one with peaks at dawn or noon (ZT0 or ZT6, e.g. GRP8, COP1, PHYD), and a 
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second with peaks in the night (ZT18, e.g. LUX, UVR8). Upon disruption of the clock in CCA1-

ox both groups changed dramatically. The late night group tended to be delayed to dawn or noon 

(e.g. LUX, UVR8), while the dawn-noon group was delayed until noon (GRP8, COP1) or 

evening (e.g. photoreceptors including PHYE, PHYD, CRY2, PHOT2) or beyond (Figure 6B), 

roughly consistent with the pattern across the entire translatome (Figure 2.8C, D).  

 

Figure 2.10 displays the same cycles of transcript levels and translation states in the context of a 

clock wiring diagram (Pokhilko, Fernandez et al. 2012). For WT, several evening genes showed 

a 6-hour phase delay between peak transcript level and peak translation (e.g. TOC1, LUX). 

Among genes with a transcript peak around noon, PRR5 and GI also had an offset in their 

translation peak. In contrast, among genes with a dawn transcript peak, coincidence of TX and 

TL was more common (e.g. LHY, CCA1, also see CRY1, HYH in Figure 2.9). While inferences 

about the behavior of single genes are sensitive to noise, in the aggregate it seems clear that 

translation states are a novel way for plants to fine-tune the expression of clock-regulatory 

mRNAs. These data suggest that the clock relies not only on transcriptional control but also on 

translational control at the level of ribosome loading for proper functionality.
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Figure 2.9: Diel cycles of translation states and mRNA transcript levels for clock-associated genes. 

Diel cycles of translation states and mRNA transcript levels for clock-associated genes. Previously described clock-associated 

genes were hand-selected, focusing on the central oscillator, the light input pathways, and selected outputs. EF1A was included 

for comparison as a weakly cycling mRNA. For better comparability between genes, the signals are row scaled. In detail, for 

each gene, the mean signal was scaled to 0 (gray), and an average SD was calculated. The signal value for each time point was 

row-scaled so as to indicate the number of standard deviations that separate each value from the mean for that gene (unitless Z-

score, yellow = high). Black indicates that the gene did not pass our prefilter for that time point. The original transcript 

abundances and translation states are displayed in Supplemental Figure 8. 

(A) Transcript abundance. Left: the wild type. Genes were clustered according to their original mRNA expression values using 

hierarchical clustering based on Pearson coefficients, with replicates averaged. Four major clusters are boxed to aid in 

interpretation. Middle: CCA1-ox. The genes are ordered according to the wild-type clustering tree. Gene names are shown 

between the left and middle panels and apply to both panels. Right: CCA1-ox data were reclustered on their own; gene names are 

shown on the right. 

(B) Translation patterns of clock-associated genes are displayed as in (A). TL states were calculated as described in Methods. 

Note the large cluster of mRNAs whose TL peak shifted from morning/noon (ZT0/ZT6) in the wild type to evening/night 

(ZT12/ZT18) in CCA1-ox.  
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Figure 2.10: Translation cycles affecting the Arabidopsis circadian clock. 

A wiring diagram for the Arabidopsis clock (Pokhilko et al., 2012) was amended to 

illustrate cycles of TX levels and TLs. Arrows and T-bars indicate stimulation and 

repression, respectively. Yellow suns indicate light-regulated transcription, and blue 

suns indicate light-dependent posttranscriptional effects. TX levels and TLs are 

displayed in the form of heat maps. The upper row of each set of rectangles indicates 

the TX and the lower row indicates the TL. The left set indicates the wild type and 

the right set CCA1-ox. Data are from Supplemental Figure 8; n = 3. For ELF4, TL 

data are omitted because of poor expression data. Black symbolizes mRNA 

expression below threshold. 
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Given that the amplitude of TL cycles is generally small, we wanted to simulate how the 

waveform of the protein synthesis rate might be affected by phase offsets between a TX cycle 

and a TL cycle (Figure 2.11). Panel (A) assumes that TX and TL both follow plain sinusoidal 

patterns. The rate of protein synthesis was calculated by multiplying TX by TL. A 9-hour offset 

between TX and TL causes an asymmetric peak in the synthesis rate, and a 12-hour offset can 

produce a plateau-like pattern. It is very challenging to measure protein synthesis rates 

empirically (Schwanhausser et al., 2011), especially with enough precision to distinguish 

relatively small differences, and especially in plants, where the key technique, stable isotope 

labeling with amino acids, is just barely becoming more common (Lewandowska et al., 2013). 

This is why a simulation is useful. Data from selected Arabidopsis mRNAs are shown to 

exemplify how TL may modulate the synthesis rate (Figure 2.11B-I). The photoreceptors 

PHOT2 and UVR8 (AT5G63860, UV-B receptor) predict that the translation dynamic amplifies 

the TX dynamic or extends the protein synthesis into a plateau-like pattern, respectively. For data 

as those from LP1 (AT2G38540, lipid transfer protein 1) and RCE1 (AT4G36800, Rub1 

conjugating enzyme) the offset between TX and TL cycles causes a delay or advance, 

respectively, in the protein synthesis rate by several hours, which is not expected from the TX 

level alone. For MRPL11 (AT4G35490, mitochondrial ribosomal protein L11) and RPL P1 

(ribosomal protein P1) the protein synthesis rate is driven primarily by the TL pattern, yet phase-

shifted slightly by the weaker TX cycle. Finally, PFK1 and PFK3 are isoforms of 

phosphofructokinase (At4g29220 and At4g26270, Supplemental Figure 4) that differ in their 

phase offsets between TX and TL. The PFK data demonstrate that genes related by an ancient 

gene duplication could evolve different patterns of translational regulation. Taken together, it is 

plausible that differences in the waveform of protein synthesis rates may help to fine-tune gene 
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function. For example, high translation of the TOC1 and LUX mRNAs at night (Figure 2.10) 

may allow these proteins to continue to repress transcription of morning genes, CCA1 and LHY, 

and of day genes such as GI and PRR9, respectively.  In conclusion, relatively shallow cycles of 

ribosome loading that affect a large number of mRNAs may contribute in a non-linear fashion to  

the functioning of complex cellular networks. 

 

Translation cycles in constant light 
 

Finally, we examined the role of the circadian clock in the cycle of translation by 

measuring TLs in continuous light. CCA1-ox plants grown in a light-dark cycle still exhibit 

circadian rhythmicity in transcriptional behavior, but CCA1-ox plants grown in constant light do 

not (Green et al., 2002).  We examined polysome loading during and after a shift from long day 

to constant light conditions (LD>LL) in both WT and CCA1-ox. On a global level (Figure 

2.12A), the fraction of wild-type RNA recovered in polysomes (PL)  rose during the day, as 

expected (Figure 2.1), dropped during the subjective night despite continuous illumination, then 

rose and fell again during Day 2. This pattern was clearly evident in the individual dynamics of 

NP and LP. In CCA1-ox, in contrast, PL stayed high during the first subjective night, and then 

fell during Day 2. These data further indicate that global polysome loading is controlled by the 

circadian clock. 
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Figure 2.11: Simulation of protein synthesis rates from mRNA transcript level data and TL data. 

mRNA levels were multiplied with the corresponding translation states in order to simulate the 

protein synthesis rate from the given mRNA. The results were extrapolated to 42 h to better 

visualize the cycling behavior. The mRNA levels and simulated protein synthesis rates are mean-

centered (mean = 100) and are displayed on the left y axis, while the TL is displayed as is on the 

right y axis.  (A) A mathematical simulation of TX level (stippled trace), TL in three possible 

phases (pale traces), and the three calculated protein synthesis rates (dark traces).  (B-I) Actual 

TX and TL data and the protein synthesis rates calculated from them. The difference in the shape 

of the transcript level trace and the protein synthesis trace is accentuated with dark shading. ZT, 

zeitgeber time. 
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Figure 2.11 continued. 
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We then analyzed the translation states of specific mRNAs using qRT-PCR (Figure 

2.12B). The mRNAs for two chlorophyll binding proteins (CAB4 and LHCA1), and one 

ribosomal protein (RPL26B) experienced dynamic fluctuations in ribosome loading in the wild 

type, wheras in CCA1-ox these fluctuations were suppressed. Two central clock mRNAs, PRR3 

and possibly CCA1, also displayed cyclical changes in wild type but not in CCA1-ox. In 

contrast, the EF1A mRNA maintained an even ribosome loading throughout. Although there was 

considerable variation between replicates, as illustrated in detail for LHCA1 in the wild type, the 

general trend for an amplified dynamic on Day 2 of the time course was consistently observed. It 

is noteworthy that the dynamics in wild type often did not conform to a strict 24-hour period (see 

trough-to-trough period for LHCA1, PRR3, and RPL26B). Together, these observations suggest 

that wild type has a trend for cyclical ribosome loading of various mRNAs, even under 

continuous light, in keeping with the global dynamic (Figure 2.12A). Moreover, a functional 

clock appears to be required for these ribosome loading cycles. However, the erratic patterns 

seen under continuous light suggest that regular light-dark changes assist the clock in organizing 

the ribosome loading of various mRNAs. 
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Figure 2.12: TLs under continuous light conditions. 

Plants were grown for 10 d under long-day conditions (LD) and shifted to continuous light 

(LL) at ZT0. Plant samples were harvested at 6-h intervals for 48 h and fractionated by 

sucrose density gradient into NP, SP, and LP fractions. The left column contains data from the 

wild type and the right column is from CCA1-ox. The subjective night is indicated by gray 

shading.  (A) The percentage of RNA measured by UV absorption that was detected in NP, 

SP, and LP portions of the gradient. The trace labeled PL (polysomes) is the sum of SP and 

LP.  (B) The abundances of individual mRNAs for selected genes were quantified by qRT-

PCR. Translation states were calculated. The traces from the three biological replicates were 

centered on their average TL. The error bars indicate the range of the data from n = 3 

biological replicates (2 for PRR3). For LHCA1 as a representative mRNA, the traces of the 

three individual replicates are also shown with thin lines. Letters above each data point 

indicate which data points are significantly different by ANOVA with Tukey post-hoc test (α 

= 0.05). Data points that share the same letter are not different from each other. Data sets that 

lack lettering had few or no significantly different pairs.  
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Discussion 
 

In this study we document diel and circadian regulation of ribosome loading of mRNA in 

Arabidopsis seedlings.  These fluctuations are extensive, affecting about 15% of transcripts in 

WT seedlings, and affect different classes of genes differently. The specific diel patterns of 

ribosome loading that are observed in wild-type plants require a functional circadian clock. 

Although diel effects on translation have been documented earlier, here we provide information 

across the entire transcriptome, gene by gene. Clock-controlled diel translation must be 

integrated with other internal and external cues that are known to affect translation.  

 

Diel regulation of ribosome loading is extensive  
 

Of approximately 12,000 mRNAs that were reliably detected in Arabidopsis seedlings, 

about one fifth (2,503) passed ANOVA with a standard significance threshold (p<0.05), far more 

than the 600 expected to pass this threshold by chance alone if data were randomly distributed. 

More than 7% (890) of genes were scored as dielly fluctuating by SAM at an FDR of 0.05. These 

are respectable yields of statistically validated genes given that our measure of TL is calculated 

from three independent data points, i.e. NP, SP, and LP mRNA, that each come with their own 

margin of error. To optimize biological inference, we applied different filters to our raw 

translation data, depending on the question at hand. For example, to search for functional 

enrichment using gene ontology, we started with a lenient filter which selected genes through 

any of three different measures of significance. This approach yielded substantial insight into 

translationally co-regulated mRNAs by uncovering enrichment of numerous functional 

categories, which were evaluated rigorously for statistical significance by guarding against 
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multiple comparisons (Figure 2.5). Other analyses, such as comparisons between TX levels and 

TLs, as well as phase shift diagrams between WT and CCA1-ox, were conducted with a more 

rigorously preselected set of genes (SAM with FDR<10%), again while performing downstream 

statistical tests (Figure 2.4, Figure 2.8). 

Here, the diel fluctuations in ribosome loading of Arabidopsis mRNAs were revealed in 

seedling shoots growing on defined medium with 1% sucrose and entrained by a 16-hour day 

(Figure 2.1). When Pal and coworkers performed global analysis of ribosome loading over the 

diel cycle in vegetative rosettes in a 12-hour day (Piques, Schulze et al. 2009, Pal, Liput et al. 

2013), their global drop in ribosome loading was deeper than ours, suggesting that diel 

translation under natural conditions, i.e. with fluctuating levels of photoassimilate, may be more 

pronounced than seen here.  

 

Diel phase affects translation in more than one way 
 

We found peaks in ribosome loading for mRNAs at all four time points that we surveyed, 

dawn, noon, evening, and night.  Together with the large cohort of translationally flat genes, 

there appear to be five groups of mRNAs. Of these five, the groups peaking at night, at dawn, 

and at noon had distinct functional enrichment, underscoring that they are regulated differently. 

The 'night' cohort had the most striking bias, being enriched for mRNAs for cytosolic ribosomal 

proteins, mitochondrial proteins, and several smaller protein assemblies. Significant functional 

biases were also evident in the dawn (ZT0) and noon (ZT6) cohorts. Of the photosynthetic 

apparatus, photosystem I mRNAs were translationally stimulated at night and dawn, 

photosystem II was biased more toward dawn, and most light harvesting proteins were 

stimulated well into the light period, possibly shedding light on translational control of assembly 
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of the photosynthetic apparatus. No positive enrichment was detected among mRNAs whose 

ribosome loading is flat, nor in the smaller evening cohort (peak at ZT12), although the evening 

group was strongly depleted for terms that peak at noon and at night, i.e. cytoskeleton and 

ribosome.   

 Ribosomal protein mRNAs are the best defined translational regulon in plants, being 

coregulated under essentially all experimental conditions that have been examined. Their 

coregulation here further validates the quality of the data. These mRNAs are preferentially 

repressed in their translation after abiotic stress such as heat (Yanguez, Castro-Sanz et al. 2013), 

drought (Kawaguchi, Girke et al. 2004), and hypoxia (Branco-Price, Kaiser et al. 2008). They are 

translationally stimulated  by light (Liu, Wu et al. 2012) and in mutants defective in the 

translation apparatus (Kim, Cai et al. 2007, Tiruneh, Kim et al. 2013). These mRNAs are 

translationally repressed by one hour of unanticipated darkness in the middle of the day 

(Juntawong and Bailey-Serres 2012), while they are translationally stimulated after two hours of 

anticipated darkness at night, in our data. These findings suggest that ribosomal protein mRNAs 

are regulated by darkness in a circadian context. 

 

Diel translation is a function of the circadian clock 
 

Three pieces of evidence indicate that the diel regulation of ribosome loading is an output 

of the circadian clock. First, the clock-compromised CCA1-ox strain has a very distinct 

translational profile compared to WT. Translation cycles continued to be very evident in CCA1-

ox, but the dawn and evening peaks were much more pronounced while the night peak and noon 

peak were relatively smaller. For several specific functional categories, the translation cycles in 

CCA1-ox appear to be delayed by about six hours, for example ribosomal proteins, indicating 
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that the WT clock works to advance the time of peak translation. One caveat when using the 

CCA1-ox strain is that CCA1 may have additional functions that are entirely independent of the 

clock. For example, by exposing the cell to CCA1 protein in the evening, when its level is 

usually low, CCA1 might interact spuriously with partners that have no relation to the clock and 

that CCA1 does not normally encounter. For this reason, experiments were also performed under 

continuous light conditions. Second, cycles of diel translation were also evident in WT under 

free-running continuous light (LL) conditions (Figure 2.12), suggesting that they are governed by 

the circadian clock. Third, these fluctuations of translation under continuous light were broadly 

disrupted in the CCA1-ox strain (Figure 2.12). Given that CCA1-ox is substantially clock-

deficient under continuous light (Wang and Tobin 1998), we conclude that cycles of diel 

translation are driven by the circadian clock.  

The clock's output pathways may well affect translation indirectly, because none of the 

core oscillator components are known translational regulators. Most direct outputs of the clock 

are transcriptional, and these may well mediate the translational effects seen here. For example, 

in CCA1-ox plants many RNA-biology transcripts peak around ZT0, whereas in the wild type 

fewer of them do (Supplemental Figure 8). This result adds credence to the hypothesis that the 

clock may regulate translation via the primary layer of clock output genes. Should one consider 

whether CCA1-dependent changes in translation may be the far-downstream consequence of 

physiological or developmental alterations in the CCA1-ox strain? CCA1-ox does have a clearly 

elongated hypocotyl (Wang and Tobin, 1998). In addition, our wild-type seedlings expressed the 

floral inducer FT, while CCA1-ox plants did not. Overall, however, CCA1-ox is morphologically 

quite normal and physiologically vigorous at the time of our experiments. Therefore, we doubt 
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that the translational changes in CCA1-ox can be attributed solely to mechanisms that are several 

degrees of separation away from the clock itself.  

We collected microarray data of the global transcriptome in CCA1-ox over the diel cycle. 

Many transcripts assume a cycle that mirrors the light and dark conditions, in keeping with the 

clock defect. However, the LHY transcript, while expectedly repressed, rose slightly at ZT0 

(6am), an effect we interpret as a residual anticipation of dawn, and thus residual clock activity 

(Figure 2.9). Even though CCA1-ox is not completely clock-deficient in the light-dark cycle as 

previously noted (Green, Tingay et al. 2002, Matsushika, Makino et al. 2002), the strain was 

broadly affected in its translation, indicating that CCA1 cycling is critical for dielly regulated 

translation. 

The clock-deficient CCA1-ox strain revealed translational cycling of several hundred 

new mRNAs, which did not cycle in WT (Figure 2.8). With the caveat that lack of statistical 

significance does not prove absence of a cycle in WT, this finding suggests that the clock helps 

to suppress fluctuations in ribosome loading driven by diel light-dark cycle conditions. Likewise, 

de-repression of cycles in the CCA1-ox strain was also evident at the transcript level.  

 

Global clock control of ribosome loading 
 

While alternative splicing has been implicated repeatedly as a clock output and as a 

regulator of circadian clock function, clock control of translation or ribosome loading has rarely 

been examined. Aside from the global cycles of ribosome loading (Piques, Schulze et al. 2009, 

Pal, Liput et al. 2013) in Arabidopsis, translation of the LHY mRNA was shown to be stimulated 

by light, a phenomenon thought to sharpen the peak of LHY protein abundance in the morning 

(Kim, Song et al. 2003). Our results also showed higher ribosome loading of LHY in the 
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morning, when LHY mRNA peaks, than at the end of the day, when the mRNA is low. This 

pattern of translational regulation may keep LHY protein levels from rising too early in the night. 

Translational control of a clock output has been described in the dinoflagellate 

Gonyaulax and in the green alga Chlamydomonas (Morse, Milos et al. 1989, Mittag, Lee et al. 

1994). More recently, translational regulation of ribosomal protein mRNAs in the mouse was 

shown to peak at night (Jouffe, Cretenet et al. 2013), which is at first glance similar to the 

situation in Arabidopsis. However, mice are nocturnal animals, feeding at night and living off 

their fat deposits during the day. In Arabidopsis, in contrast, energy is harvested and thus more 

abundant during the day, while the plant lives off its starch deposits at night. Thus, considering 

the overall energy infrastructure of the mouse and Arabidopsis, the resemblance in the nocturnal 

peaks of ribosomal protein translation is probably coincidental.  

Synthesis of ribosomal proteins occupies a substantial fraction of translational capacity 

especially in growing cells (Warner 1999, Piques, Schulze et al. 2009). The question arises why 

the plant would translate ribosomal proteins preferentially at night rather than during the day 

when energy is more directly available, which would circumvent losses during starch deposition 

and conversion. The reason is unknown, but may be associated with the following. Translational 

capacity is finite. Ribosomes lying idle in the cell may be a sign of poor stewardship of growth-

limiting resources, especially nitrogen. During the light period, the cell may utilize most of its 

translational capacity for bulk maintenance, including maintenance of the photosynthetic 

apparatus, leaving little capacity for ribosomal protein translation. Thus, the finding that 

ribosomal protein translation preferentially occurs at night may suggest that the cell has spare 

capacity at that time.  
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Integration of clock-controlled diel translation with other signals 
 

Most signals known to regulate translation are exogenous environmental cues, including 

light, darkness, drought, and temperature. In contrast, only a few endogenous cues are known to 

regulate translation, e.g. sucrose and amino acids (Nicolai, Roncato et al. 2006, Lageix, Lanet et 

al. 2008, Zhang, Wang et al. 2008, Roy and von Arnim 2013). The clock is another endogenous 

mechanism now known to affect translation. Clock-controlled and diel ribosome loading must be 

integrated with other signals that affect ribosome loading simultaneously. These signals can be 

expected to play a relatively minor role under constant light conditions on medium containing 

sucrose, but will affect what happens under light-dark cycle conditions. For example, polysome 

loading rises rapidly upon lights-on, peaking after 1-4 hours and then slowly declining towards 

the end of the day. Conversely, a transient drop in polysome loading occurs around 15-30 

minutes after lights-off (Pal, Liput et al. 2013). How the effects of light-dark transitions, day 

length, photosynthate, and other signals are integrated with signals from the clock will be an 

important area of future research.   

 

Methods 
 

Plant material and polysome gradient fractionation 
 

 Arabidopsis ecotype Columbia was grown on agar plates containing full strength 

Murashige and Skoog salts, pH 5.7, and 1% sucrose for ten days in a 16-hour light (~80  

μmole/m2/sec) and 8-hour dark cycle at 22°C. The CCA1-ox strain overexpresses the CCA1 

protein under the control of the cauliflower mosaic virus 35S promoter (35S:CCA1, (Wang and 

Tobin 1998) and was grown likewise. Three biological replicates were collected. RNA extraction 
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and microarray hybridization closely followed an earlier procedure (Kim, Cai et al. 2007), with a 

few modifications described earlier (Missra et al., 2014). After sucrose-gradient fractionation we 

generated three fractions of mRNAs: the non-polysomal fraction (NP), the small polysomes (SP, 

1-3 ribosomes per mRNA), and the large polysomes (LP, 4 and more ribosomes per mRNA) 

(Supplemental Figure 1). We measured the RNA abundance after fractionation in order to reveal 

the global shift in ribosome loading over the course of the day. Samples for total transcripts were 

also collected alongside. Following manufacturer's protocols, LP, SP, and NP and total RNA 

fractions were converted to cDNA and hybridized to GeneChip® Arabidopsis ATH1 Genome 

Arrays, which contain 22,746 probe sets representing approximately 24,000 genes.  

 If a given experimental treatment causes a global reduction in polysome loading, the 

global shift becomes masked during the standardized experimental procedure. The global shift is 

measured from RNA abundance data after fractionation (Kawaguchi, Girke et al. 2004). A small 

global shift was detected with a peak at ZT6 (noon) and trough at ZT0 (end of night) (Figure 

2.1). However, no global adjustment of our array data was performed. Therefore, a gene that 

displays a TL cycle identical to the global shift will be regarded as non-cycling. The TL cycles 

described in Figure 2.2 are cycles beyond the global cycle.  

 

Microarray data analysis 
 

Statistical and bioinformatic analyses were carried out using R version 3.1.1 (R Core 

Team, 2014) and Bioconductor version 2.14.  Raw signal intensities for each probe set were 

extracted from CEL files, the Affymetrix (Santa Clara, CA) proprietary data format, using the 

affy package version 1.44.0 (Gautier et al., 2004) and normalized using the gcrma package 

version 2.38 (Wu et al.), all with default settings. Normalization using the rma method from the 
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affy package yielded similar results on this dataset. Hybridization signals were classified as 

Present (P), Marginal (M), or Absent (A), using the mas5calls function from the affy package. 

qRT-PCR was performed on a Bio-Rad iQ5 instrument. Primer sequences for qRT-PCR are 

listed in Supplemental Table 1. 

 

Calculation of translation states 
 

Translation states (TLs) were calculated for every time point for genes with P calls in all 

four SP and LP samples, while A calls were permitted in the NP samples.  Genes with a variance 

below 0.001 in hybridization signals for any time point were discarded as artifactual, resulting in 

12,342 genes in WT. Signals from the gcrma output were unlogged and TL was calculated 

according to the following formula: 

TL = (0 x NP + 2 x SP + 7 x LP) / (NP + SP + LP) 

This calculation is based on the estimate that mRNAs in the NP, SP, and LP fractions are 

bound by an average of, respectively, zero, two, and seven ribosomes. If all ribosomes were 

equally active in translation, then TL would indicate a translation rate of proteins produced per 

mRNA per unit time. We cannot rule out that the average number of ribosomes per mRNA 

varies with time, for example, it may be lower than seven in the LP at ZT0, when the global 

polysome loading is lowest. Because we were not able to settle on more precise estimates for 

each timepoint, the given values of two and seven were applied to all samples equally. The 

translation profiles may be skewed slightly as a result. The abundance of total mRNAs (TX) was 

displayed on a log2  scale, as usual.  

 

 



95  

Identification of genes with diel fluctuation of their translation state  
 

For each gene, the difference between the peak TL and trough TL is the TL value. 

Differentially translated mRNAs were identified by one of four criteria, TL >0.3, TL >0.7, 

ANOVA with p<0.05, and SAM (Tusher, 2001) with a collective FDR <0.10. The lenient cutoff 

of 0.3 was only used to identify those genes that clearly lack a translation cycle. For SAM 

(Tusher, et al., 2001) we ran the R function “samr” with response type “Multiclass” to identify 

genes whose TL varied significantly across time points.  We used 1000 permutations to compute 

a test statistic (T) for each gene, as well as a null distribution of 1000 Ts for each gene obtained 

from random shuffling of the class labels.  We then computed an empirical p-value for each gene 

as the number of randomized Ts that were greater than the original, divided by 1000.  As an 

additional check, we permutated the timepoint labels of our WT TL data and then used SAM to 

search for false-positive TL cycles. Such permutations yielded an average of only 46 

translationally cycling genes (range: 0 to 312), as compared to 1825 from the original data. For 

ANOVA with a raw p-value <0.05 we also calculated the FDR per gene using the Benjamini-

Hochberg method.  

 

Modeling diel cycles as sine waves 
 

We modeled diel variation in TX and TL as sine waves using a linear model approach to 

precisely estimate the phase and amplitude, as described elsewhere in more detail (Stolwijk et 

al., 1999).  A sine wave can be described by the function 𝑦(𝑡) = 𝐴 × 𝑠𝑖𝑛 (
2𝜋𝑡

𝑇
− 𝜑), where 𝑡 is 

time, 𝐴 is the amplitude, 𝑇 is the period, and 𝜑 is the phase.  This sine function can be 

transformed into a linear regression formula, 𝑓(𝑡) = 𝛽1 × 𝑠𝑖𝑛 (
2𝜋𝑡

𝑇
) + 𝛽2 × 𝑐𝑜𝑠 (

2𝜋𝑡

𝑇
), and fitting 



96  
a linear model with this formula yields the coefficients 𝛽1 and 𝛽2.  The amplitude can then be 

calculated as √𝛽1
2 + 𝛽2

2, and the phase as arctan (
𝛽1

𝛽2
).  For each gene, we first subtracted the 

mean TX or TL from the data series and then followed this approach to estimate the phase and 

amplitude with the “lm” function from the standard R “stats” package, assuming a period of 24 

hours.  The Pearson coefficient (R2) between empirical data and predicted data indicates the 

percent of the variation in TX or TL for a gene that is explained by the sine wave. This approach 

is convenient due to its simplicity and computational speed, and it has the advantage that the 

phase can be any value over a continuous range from 0 to 2π (ZT0 to ZT24), so the peak and 

trough of TX or TL can occur between the times at which data were collected. A confidence 

interval was calculated for each TL peak time using bootstrapping.  

 

Clustering and higher level analyses 
 

mRNAs with diel fluctuations in TL were clustered using R according to the time of peak 

TL and, secondarily, the time of trough TL. Hierarchical clustering was performed using the 

Pearson coefficient as the similarity metric. This and all overlap plots were made using the 

heatmap.2 function from the gplots package in R package version 2.14.2 (Warnes et al., 2014). 

Where indicated, the data from individual genes were mean-centered and row-scaled by their Z-

score (distance from the mean as multiples of their standard deviation) to better display trends in 

translation over time. When individual expression values in a time series did not pass our data 

quality filter the expression value was replaced with NA. Enrichment of functional annotations 

was determined using the topGO R package version 2.18 (Alexa et al., 2010) with all 12,342 

expressed genes as the reference set. For gene ontology analysis, genes were preselected using 
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SAM, or ANOVA, or a TL value above 0.7. Functional terms had to be significantly enriched 

with an FDR of 0.05 or less in either WT or CCA1-ox to be considered for presentation. Terms 

that were substantially overlapping with other terms were omitted. 

 

Accession numbers  
 

The original microarray hybridization data, metadata, and extracted and normalized data 

are accessible in NCBI-GEO under superseries GSE61899: Polysome profiling in wild type and 

CIRCADIAN CLOCK ASSOCIATED1-overexpressing (CCA1-ox) Arabidopsis thaliana over a 

24-hour diel cycle. Four datasets are grouped together under GSE61899: GSE61895, transcript 

levels in WT; GSE61896, transcript levels in CCA1-ox; GSE61897, polysome WT; GSE61898, 

polysome CCA1-ox. A list of AGI numbers is provided in Supplemental Table 2. 
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Chapter 3 

 

Computational modeling of mRNA ribosome loading 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99  

Abstract 
 

A computational model of translation was previously developed that describes how five 

steps in gene expression—transcription, initiation, elongation, marking for degradation, and 

degradation—control ribosome loading of mRNA.  Empirical data were previously collected 

with the goal of fitting the model to the data in order to quantify the five rates for many genes 

across the Arabidopsis genome.  Despite significant progress, various contributions made toward 

this goal have remained largely isolated due to the inter-disciplinary nature of this collaborative 

research.  In this chapter, I have synthesized the past contributions, including explaining the 

background and procedures involved in terms of biological and computational aspects.  I have 

expanded the usability of the computer code for implementing the model in terms of user-

friendliness, flexibility, and performance.  And I have explored the model’s behavior through 

simulation studies.  A major challenge is that the model output cannot be directly matched to the 

empirical data, and work continues in order to improve the current procedure.  This chapter 

serves as a progress report on the work done by people in the Gilchrist and von Arnim labs in 

developing and testing the model.   

 

Preface 
 

Cellular organisms change their physiology in order to grow and develop and to adapt to 

a changing environment.  A key aspect of this capacity for physiological change at the cellular 

level is the ability to alter the abundance of proteins.  A cell controls protein synthesis by 

controlling the abundance of each mRNA species—through transcription and degradation—and 

the rates of their translation—through initiation and elongation.  Regulation of these processes 
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and their effects on ribosome loading and translation were reviewed in chapter 1.  To summarize, 

ribosome loading and translation are influenced by a variety of post-transcriptional factors, 

which can be classified as either fixed properties of each mRNA species or dynamically 

regulated processes which respond to a cell’s internal or external environment.  Physiologically, 

the most important net effect of these transcriptional and post-transcriptional factors is the 

resulting protein abundance.  However, measuring protein abundance alone is limited in that it 

does not provide information about how various factors combine to yield a particular protein 

abundance, and despite advances in instrumentation and analytics, proteomics measurements are 

still typically limited to a few thousand different proteins.   

The von Arnim lab and others have established that ribosome loading in Arabidopsis is 

regulated in a genome-wide and gene-specific manner by numerous environmental conditions.  

However, the extent to which each gene utilizes transcription and various post-transcriptional 

processes in modulating ribosome loading is not well understood.  The Gilchrist lab developed a 

computational model that describes how a particular pattern of ribosome loading, that is, the 

amount of mRNA with different numbers of ribosomes bound, results from the combined effects 

of five processes which will be referred to as “translation parameters”—rates of transcription, 

initiation, elongation, marking, and degradation.  The von Arnim lab generated genome-wide 

mRNA measurements from nine polysome fractions as well as un-fractionated mRNA.  The two 

research groups share the goal of using the model and the empirical data to quantify the five 

parameters for many genes across the Arabidopsis genome.  Ultimately the model may be used 

to describe how rates of the translation parameters change in response to changing environmental 

conditions.     
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Quantifying the parameters for an individual gene requires an approach for determining 

whether a particular set of parameter values are consistent with the empirical data for the gene.  

This in turn requires predicting the empirical data based on the parameter values.  Mathematical 

optimization is used to search the parameter space for a solution that matches the empirical data.  

In the research presented, the task of accurately predicting the empirical data is especially 

challenging because the model output does not have the same format as the data that were 

collected.  After reviewing the experimental procedures, implementing and testing the 

computational procedures, and attempting to fit the model to the empirical data, it is clear that 

the current procedure for converting the model output into the same format as the empirical data 

is flawed.  Largely for this reason, efforts to fit the model to the empirical data have been 

unsuccessful, and further work is needed to improve the procedure.  Thus, while the ultimate 

goal of this research is to apply the model to the empirical data, this chapter will focus on 

describing the context of the research, the computational procedures and their rationale, model 

implementation improvement, insight from simulation studies, and areas for improvement.     

A number of people have been involved at various stages of this project.  Drs. von Arnim 

and Gilchrist conceived the conceptual basis for the model and how it could be applied to the 

empirical data.  Dr. Gilchrist formalized the model mathematically and, with assistance from his 

student, Nate Pollesch, first implemented it in computer code.  Dr. von Arnim oversaw the data 

collection, including generating plant samples and collecting the microarray data, which was 

primarily done by a post-doctoral fellow, Dr. Ju Guan.  And Joe Carboni began an 

implementation of the model in R.  A major challenge has been to bring together the 

contributions made by the various people in order to progress toward the goals of the research, 

which requires synthesizing concepts and methodologies from mathematics, computer science, 
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and biology.  Moving the research forward requires a comprehensive and centralized 

documentation of the computational and biological rationale and procedures, including data 

collection and model testing, which was previously lacking.   

In addition to synthesizing the work already done, moving the research forward would 

also require improving the usability and efficiency of the implementation of the model.  The 

model had been implemented in Wolfram Mathematica, which is a suitable language and 

computing platform.  However, for practical considerations, a flexible and robust R version that 

expanded on the initial implementation would offer several benefits.  First, R is open source, 

while the Mathematica version was limited in its parallel computing capacity due to its 

commercial license.  Second, R’s wide use across scientific disciplines and the availability of R 

software for computational biology made it an ideal computing platform for continuing this 

collaborative project.  Third, efficient exploration and application of the model would require 

additional computational procedures, for instance, better automation, utilization of high-

performance computing, and visualization, in addition to flexibility in choices of various 

algorithms, inputs, and statistical methods. 

This chapter is organized as follows.  In the introduction, I provide context for the 

research by giving overviews of existing translation models and mathematical optimization, and 

I describe the model.  In the methods, I describe collection and processing of the empirical data 

and the procedures used to implement and improve the model.  In the results, I describe 

simulation studies that should aid future work, and I report results from fitting the model to the 

empirical data.  Lastly, in the discussion, I summarize the insights gained from this research and 

areas that need improvement. 
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Introduction 
 

Existing translation models 
 

Computational models are useful for studying biological processes when they are more 

practical than direct experimentation.  Such is the case for some of the dynamic aspects of 

translation.  Current high-throughput techniques for studying translation, including polysome 

profiling, ribosome footprinting, and proteomics, even paired with isotope-labeling, do not have 

single-molecule resolution, so molecular events cannot be connected to specific mRNA 

molecules.  Thus, dynamic events such as recruitment of a pre-initiation complex (PIC) to a 5’ 

untranslated region (5’ UTR), scanning of a PIC along a 5’ UTR, movement of a ribosome along 

an mRNA, and interactions between mRNA and bound and unbound ribosomes, are difficult to 

monitor directly, so instead their net effects are often quantified in a population of molecules.  

Further, the question of how multiple processes combine in a gene-specific manner to yield a 

protein synthesis rate is difficult to approach through direct experimentation.  Because of these 

issues, a number of computational models have been developed in order to investigate some of 

the dynamic aspects of translation which are often intractable (von der Haar 2012).  These are 

described below and summarized in Table 3.1.  

Stochastic translation models 

A number of translation models are stochastic, incorporating randomness.  In stochastic 

models, a system is represented as various types of reactions or steps, such as recruitment of a 

PIC to mRNA or translocation of a ribosome from one codon to the next.  Each reaction is 

associated with a probability of it occurring in some time interval, with the probability depending 

on other probabilistic factors, such as whether a neighboring codon is occupied by a ribosome 
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and the aminoacyl-tRNA (aa-tRNA) concentration.  Thus, model predictions depend on each of 

the probabilities and can fluctuate, so repeated simulations may be required before predictions 

converge on a stable expected outcome.  Stochastic models can be powerful and accurate 

portrayals of cellular processes because many cellular processes are stochastic in nature, being 

dependent on stochastic processes like diffusion.   

 

Agent-based models 

Agent-based models (ABMs) are a class of stochastic models that simulate a system of 

components or “agents” and their interactions based on rules.  The purpose is often to uncover 

emergent properties of the system that would be difficult to decipher by analyzing the individual 

components or rules separately (An 2001, Bankes 2002, Bonabeau 2002, Grimm, Revilla et al. 

2005, Macal and North 2010).  Chu et al. developed an ABM that simulates the behavior of all 

mRNAs and ribosomes in a system (Chu, Zabet et al. 2012, Chu, Thompson et al. 2014).  In the 

system, mRNAs compete with each other for ribosomes and aa-tRNAs according to first-order 

kinetics, and an elongating ribosome progresses from one codon to the next if the correct aa-

tRNA has bound to the next codon.  Ribosomes may collide with each other along an mRNA, 

causing “traffic jams” which slow translation.  This group applied their ABM to yeast, adding 

support to the hypothesis that the elongation speed for different codons can significantly affect 

the overall protein synthesis rate, but with two caveats.  First, when there are a large number of 

ribosomes translating an mRNA, the translation rate depends on the arrangement of fast and slow 

codons, which can potentially cause traffic jams.  Second, the elongation speed does not affect 

the overall protein synthesis rate if the initiation rate is slow.   
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Table 3.1: Examples of translation models 

Class Sub-type Notes Applications References 

Stochastic Agent-

based, 

TASEP 

Represent 

translation as 

particles moving 

along 1-D lattice 

Describe parallel bio-

polymerization in a 

polysome   

(MacDonald, 

Gibbs et al. 

1968) 

   Describe interactions among 

mRNAs, tRNAs, and 

ribosomes 

(Shah, Ding et 

al. 2013) 

   Relate codon usage bias to 

translation efficiency 

(Gilchrist and 

Wagner 2006) 

   Predict ribosome density 

from codon adaptation, 

amino acid charge, and 

mRNA structure 

(Tuller, 

Veksler-

Lublinsky et al. 

2011) 

   Determine conditions in 

which elongation affects 

translation rate  

(Chu, 

Thompson et 

al. 2014) 

Deterministic  ODEs Limited scale 

due to number of 

equations  

Describe dependence of 

initiation on 5’ UTR and 

poly(A) tail  

(Bi and Goss 

2000) 

   Describe linear and non-

linear protein buildup  

(Gerst and 

Levine 1965) 

 Ribosome 

flow 

 Determine codon order to 

optimize translation  

(Zarai, 

Margaliot et al. 

2014) 
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The totally asymmetric simple exclusion process 

The totally asymmetric simple exclusion process (TASEP) is a stochastic modeling 

approach that describes movement of particles along a one-dimensional lattice of discrete 

positions (Spitzer 1970).  Each position can either be empty or occupied by a particle, and a 

particle at one position blocks movement of the particle at the position behind it.  Particles 

advance along the lattice according to probability.  Particle reservoirs are at each end of the 

lattice, so a particle at the last position on the lattice can jump into the reservoir and a particle in 

the reservoir can jump onto the first position if it is empty.  The goal of TASEP is often to 

determine what set of probabilities for the various events lead to a particular outcome (Blythe 

and Evans 2007).  The applicability to translation, being the movement of ribosomes (the 

particles) along codon positions of an mRNA (the lattice), is obvious.  Some of the first reported 

models of translation used concepts that were later incorporated into TASEP (MacDonald, Gibbs 

et al. 1968, MacDonald and Gibbs 1969), and TASEP has continued to be used for this general 

purpose (Shaw, Zia et al. 2003, Zia, Dong et al. 2011).   

Concepts of TASEP have been applied in different types of translation models, including 

kinetic models which have been used to explore mechanisms that dictate protein synthesis rates 

(Vassart, Dumont et al. 1971, Heinrich and Rapoport 1980, Chou and Lakatos 2004, Gilchrist 

and Wagner 2006, Mitarai, Sneppen et al. 2008, Zia, Dong et al. 2011, Chu and von der Haar 

2012, Chu, Zabet et al. 2012).  Shah et al. developed a TASEP model, more specifically a 

Markov chain model, that tracks all mRNAs, ribosomes, and tRNAs, which they applied to yeast 

(Shah, Ding et al. 2013).  In their model, ribosomes and tRNAs can either be diffusing freely in a 

cell, or they can be engaged in elongation at a specific codon along an mRNA.  This model 

improved upon previous TASEP models in that it assumed a limited supply of ribosomes.  
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Parameterizing the model with empirically-derived measurements, they predicted which genes 

were rate-limited by initiation and which were rate-limited by elongation.  Additionally, they 

were able to recapitulate the “ramp” feature of both types of mRNAs in which ribosome density 

decreases in the 5’3’ direction (Ingolia, Ghaemmaghami et al. 2009, Reid and Nicchitta 2012).  

The reason was due to an increased initiation rate rather than slow codons near the start codon, as 

reported elsewhere (Tuller, Carmi et al. 2010, Reuveni, Meilijson et al. 2011, Tuller, Veksler-

Lublinsky et al. 2011).  In addition, they predicted parameter regimes under which certain 

behaviors would be observed, for example, for which combinations of mRNA concentrations and 

codon adaptation index (CAI) scores would codon usage bias influence the protein synthesis rate.        

 

 

Deterministic models 

A number of translation models are deterministic, not involving any randomness. 

 

Ordinary differential equations 

Ordinary differential equations (ODEs) have been used in translation models, but for 

different purposes than ABMs and TASEP (von der Haar 2012).  To describe all possible 

elongation reactions for an mRNA with 𝑙 codons and a maximum of 𝑛 ribosomes attached would 

require up to (𝑙 − 1)𝑛 ODEs when all possible combinations of ribosome occupancies are 

considered.  Further, ODEs applied in this way would not account for ribosomes hindering each 

other’s movement, as some stochastic models have done by incorporating probabilities of 

ribosomes advancing along an mRNA that are conditional on there being no ribosomes blocking 

them.  Thus, translation models using ODEs to describe the detailed kinetics of elongation have 

been limited in scale (Gerst and Levine 1965, Garrick 1967, Singh 1996, Heyd and Drew 2003, 
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Zouridis and Hatzimanikatis 2007, Zhang, Fedyunin et al. 2010).  Nevertheless, ODEs and 

stochastic differential equations (SDEs) have been used to compute numerical approximations 

describing certain aspects of translation (Bi and Goss 2000, Berthelot, Muldoon et al. 2004, 

Dimelow and Wilkinson 2009, De Silva, Krishnan et al. 2010, You, Coghill et al. 2010).  Dr. 

Gilchrist’s model presented in this chapter uses a system of ODEs to describe how ribosome 

loading depends on transcription, initiation, termination, marking, and degradation.       

Ribosome flow model 

The ribosome flow model (RFM) describes the flow of ribosomes along an mRNA in 

terms of its parameters, an initiation rate and either a constant (Reuveni, Meilijson et al. 2011) or 

codon-specific (Poker, Zarai et al. 2014) elongation rate.  Because the steady-state translation 

rate is a concave function of the initiation rate and one or more elongation rates, a global 

maximum translation rate under a given set of constraints can be computed and used to inform 

the design of efficiently translated mRNAs in synthetic biology (Reuveni, Meilijson et al. 2011, 

Poker, Zarai et al. 2014, Zarai, Margaliot et al. 2014).   

 

Review of mathematical optimization 
 

Mathematical optimization is the process of determining the best solution to a 

mathematical problem.  In our case, the mathematical problem is an objective function, which 

quantifies how closely the model solution for a given set of parameter values matches the 

observed data (empirical or simulated).  Our objective function is nonlinear, so determining the 

optimal parameter values requires nonlinear optimization.  The “search space” or “parameter 

space” is the set of all possible parameter values from which the algorithm can choose.  A 

“point” or “location” in the search space is one particular set of parameter values.  Optimization 



109  
algorithms work by computing the value of the objective function repeatedly with different 

combinations of parameter values.  At each iteration, the algorithm must decide whether it has 

reached an optimal solution or to keep trying.  After each iteration, it decides which parameter 

values to change and by how much, which are simplifications of concepts known as the search 

direction and step distance, respectively.  As discussed below, algorithms differ in the strategies 

they use to search the parameter space.  A number of optimization algorithms are provided in the 

built-in “stats” package (“optim” function) and the “optimx” package (“optimx” function) in R.  

Here, I review these algorithms briefly since they have been reviewed elsewhere (Nocedal and 

Wright 1999, Bonnans, Gilbert et al. 2006, Venter 2010, Marthaler 2013, Nash 2014).  Specific 

references to methods available in optim or optimx are indicated with bold font, and these 

methods are summarized in Table 3.2.     

Nonlinear optimization algorithms can be classified according to several types of criteria.  

First, they can be designed for convex or nonconvex optimization problems.   

 

Convex vs. nonconvex optimization  

In a convex problem, the values of the objective function form a convex set in which 

there is a globally optimal solution (Nash 2014).  Graphically, a convex function forms a bowl 

shape in two or three dimensions.  In a nonconvex problem, such as the one in our study, the 

objective function is not convex, so multiple local optima are possible.  Methods for solving 

convex and nonconvex problems may use gradient or non-gradient methods.   
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Gradient optimization algorithms 

Conceptually similar to a derivative, a gradient is the rate of change in the objective 

function at a given point in the parameter space (Nash 2014).  Gradient methods use the gradient 

in deciding how to vary the search direction and step distance, and their two classes, line search 

and trust region methods, differ in how they use gradient information.   

Line search optimization algorithms 

Line search methods compute the search direction at each iteration and then choose a step 

distance from a sample of trial steps (Nocedal and Wright 1999).  Line search methods differ in 

how they choose the search direction.  Steepest descent (or gradient descent) methods choose the 

direction as the one along which the objective function decreases most rapidly.  Conjugate 

gradient (CG) methods improved upon steepest descent’s efficiency by using information from 

previous search directions.  An early and popular CG method is that of Fletcher-Reeves (“CG”) 

(Fletcher and Reeves 1964), with an update added in the Rcgmin method in optimx.  The 

spectral projected gradient (SPG) method speeds convergence for convex optimization by 

projecting the search direction into the search space without requiring that each iteration 

decreases the objective function (Birgin, Martínez et al. 2001).   

Newton optimization algorithms 

Newton methods are a sub-type of line search methods.  At each iteration, Newton 

methods first formulate a quadratic function, containing the parameters of the objective function, 

that approximates its behavior in the local search space.  Second, they compute the so-called 

Hessian matrix containing the second derivatives of all parameters elementwise with respect to 

all other parameters, as well as the determinant of the Hessian matrix, which is known as the 

Hessian and describes the local curvature of the objective function in terms of multiple (possibly 
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many) parameters.  Newton methods, such as the “nlm” and “nlminb” methods in optimx, 

compute the Hessian in each iteration, which can hinder performance on large-scale problems 

with many parameters (Nash 2014).  However, nlminb performed best out of all algorithms 

tested in terms of identifying the true parameter values in the simulation study presented below, 

perhaps because of the small number of parameters in the objective function.    

Modified Newton optimization algorithms 

To improve the efficiency of the Newton method, modified Newton methods have been 

developed that combine elements of the Newton method with other line search methods.  One 

popular variation, the quasi-Newton or variable metric method, approximates the Hessian once 

and then updates it in each iteration with new information, which speeds convergence (Nash 

2014).  Quasi-Newton variants, such as symmetric-rank-one (SR1) and BFGS, differ in the 

formulas they use to update the Hessian approximation (Nocedal and Wright 1999).  L-BFGS is 

a limited-memory quasi-Newton method that uses the BFGS formula but uses information from 

fewer past iterations to update the Hessian approximation (Byrd, Lu et al. 1995).  Rvmmin and 

L-BFGS-B use the BFGS and L-BFGS strategies, respectively, but also facilitate constraints on 

the parameters being searched (Nash and Varadhan 2011).   

Trust region optimization algorithms 

In contrast to line search methods, which first choose the descent direction and then the 

step distance, trust region methods first choose a step distance, known as a trust region, and then 

choose the search direction.  Newuoa, bobyqa, ucminf, and Levenberg–Marquardt are examples 

of nonlinear optimization algorithms that use trust region strategies (Nielsen and Mortensen 

2009, Bates, Mullen et al. 2014).     
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Derivative-free optimization algorithms 

Derivative-free methods, such as Nelder-Mead, newuoa, and bobyqa, avoid computing 

derivatives and so do not use the gradient (Nash and Varadhan 2011, Nash 2014).  For example, 

Nelder-Mead computes the objective function at vertices of a simplex, which is an extension of a 

polygon to additional dimensions.  In each iteration, the simplex is stretched, shrunken, and/or 

rotated so that it moves toward the lowest possible value of the objective function.   

Stochastic optimization algorithms 

Finally, optimization algorithms can be stochastic.  Simulated annealing (“SANN”) is a 

stochastic algorithm that is typically applied to discrete data (Nash 2014).  It continues to vary 

the parameter values by small amounts as long as the objective function decreases.  However, if 

the objective function does not decrease, it uses a stochastic process to decide whether to move 

to a new search location.  The probability of moving is based on a “temperature” parameter and 

decreases with each iteration.  It repeats this process many times per iteration, keeping track of 

the parameter values that produced the lowest value of the objective function.  Given enough 

time, simulated annealing is guaranteed to find the global optimum.   

 

The model 
 

Basic model overview 

The model uses the five translation parameters to predict the steady-state amounts of an 

mRNA species having different numbers of ribosomes attached.  It describes a system containing 

two states, “unmarked” and “marked”, with each state containing a number of “ribosome 

classes” (Figure 3.1).  Based on the transcription rate (𝜆), mRNA enters the system in unmarked 

class 0 (𝑚0), in which there are no ribosomes associated with the mRNA.  𝑖𝑚𝑎𝑥 denotes the 
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highest ribosome class for a particular mRNA species, which is its maximum ribosome 

occupancy.  From 𝑚0 through 𝑚𝑖𝑚𝑎𝑥−1, mRNA moves up in class according to the initiation rate 

(𝜅).  mRNA moves down in class at the rate at which ribosomes complete elongation and 

termination, which is referred to here as simply the elongation rate (𝜏).  From any unmarked 

class 𝑚𝑖, mRNA enters the corresponding marked class 𝑚𝑖
∗ according to the marking rate (𝜇).  

From any class in the marked state, initiation cannot occur, but ribosomes that are already 

attached can terminate, so mRNA still moves down in class according to the elongation rate.  

From marked class 0 (𝑚0
∗), mRNA exits the system according to the degradation rate (𝛿). 
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Table 3.2: Survey of nonlinear optimization algorithms available in optim and optimx in R 
Algorithm Optimx 

input code  

Search type Derivative 

type 

Allows 

constraints 

Comments References 

Nelder-Mead Nelder-

Mead 

Local, deterministic Derivative-free No Simplex method; popular; default in 

R 

(Nelder and Mead 1965) 

Broyden-Fletcher-Goldfarb-

Shanno 

BFGS Local, deterministic 2nd  No Quasi-Newton; updates Hessian with 

BFGS formula 

(Fletcher 1970, Nash 1979) 

Conjugate gradient CG Local, deterministic 1st  No Poor convergence; ideal for large 

problems; improved in Rcgmin 

(Fletcher and Reeves 1964) 

Limited-memory BFGS with 

box constraints  

L-BFGS-B Local, deterministic 1st  Yes Default for constrained problem; most 

flexible; ideal for large problems 

(Byrd, Lu et al. 1995) 

UNCMIN nlm Local, deterministic 2nd   No Good convergence and efficiency (Schnabel, Koonatz et al. 1985, 

Dennis and Schnabel 1996) 

Nonlinear minimization 

subject to box constraints 

nlminb Local, deterministic 2nd Yes Gradient function recommended; little 
documentation 

(Fox, Hall et al. 1978, Gay 1983, 
Gay 1984, Dongarra and Grosse 

1987) 

Spectral projected gradient spg Local, deterministic 1st Yes Efficient on large-scale problems (Birgin, Jos et al. 2001, Varadhan 

and Gilbert 2009) 

General purpose 

unconstrained optimization 

ucminf Local, deterministic 1st No Blend of line search (BFGS) and trust 

region; similar to Rvmmin 

(Nielsen 2000) 

New unconstrained 

optimization algorithm 

newuoa Local, deterministic Derivative-free No Model-based (Bates, Mullen et al. 2014) 

Bound optimization by 

quadratic approximation 

bobyqa Local, deterministic Derivative-free Yes Newuoa with constraints (Bates, Mullen et al. 2014) 

Nelder-Mead optimization 

algorithm for derivative-free 

optimization 

nmkb Local, deterministic Derivative-free Yes Nelder-Mead with constraints (Kelley 1999) 

Hooke-Jeeves derivative-free 

minimization 

hjkb Local, deterministic Derivative-free Yes Reliable; inefficient (Kelley 1999) 

Conjugate gradient (with 

Dai/Yuan update) 

Rcgmin Local, deterministic 1st Yes Reaches global optimum if conditions 
are met 

(Nash 1979, Dai and Yuan 2001)  

Variable metric nonlinear 

function minimization 

Rvmmin Local, deterministic 1st Yes Constrained version of BFGS (Nash 2014) 

Simulated annealing SANN  
(in optim) 

Global, stochastic Derivative-free No Approximates global optimum with 
enough iterations 

(Claude, xe et al. 1992) 
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 𝑖𝑚𝑎𝑥 for each gene is not known with certainty, but a number of studies have suggested a 

theoretical upper limit of 1/30th of the coding sequence length in nucleotides.  For instance, 

studies involving ribosome-protected mRNA have indicated that in a number of species, 

including Arabidopsis, one ribosome protects approximately 30 nucleotides of mRNA (Steitz 

1969, Ingolia, Ghaemmaghami et al. 2009, Oh, Becker et al. 2011, Bazzini, Lee et al. 2012, 

Juntawong, Girke et al. 2014).  Consistently, empirical measurements in yeast based on 

polysome profiling have suggested a maximum ribosome density of 3.3 ribosomes per 100 

nucleotides (Arava, Wang et al. 2003).  Nevertheless, it is not known whether these findings 

apply equally to mRNAs of different lengths, or how 𝑖𝑚𝑎𝑥 influences ribosome loading for 

individual mRNA species. 

 

Model details 

The model is a system of coupled ordinary differential equations (ODEs) which relate the 

rates of change in mRNA abundance in all unmarked and marked ribosome classes to the rates of 

the translation parameters and the steady-state mRNA abundances in each class.  Flux through a 

particular class is the difference between the flux into it and out of it.  Table 3.3 contains 

definitions of symbols and variables used.  Equations 3.1 and 3.2 contain the ODEs for the 

unmarked and marked states, respectively.  The model predicts steady-state levels of mRNA in 

each ribosome class, so the equations are set to zero.  Only one rate is used per parameter for a 

given gene, which assumes that the rates are independent of the number of ribosomes attached to 

the mRNA.  The model details, including equations and symbols used, have been reproduced 

from Dr. Gilchrist and Nate Pollesch largely in the original format. 
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Figure 3.1: Model schematic.   

The model describes the flux of an mRNA species among unmarked and marked 

ribosome classes.  mRNA enters unmarked class 0 (𝑚0) according to the 

transcription rate (𝜆), where it is not associated with any ribosomes.  𝑖𝑚𝑎𝑥 denotes 

the highest class that a particular mRNA species can occupy, which is the 

maximum number of ribosomes that can be associated with the mRNA.  mRNA in 

class 𝑚0 through 𝑚𝑖𝑚𝑎𝑥−1 moves up in class according to the initiation rate (𝜅).  

mRNA in all unmarked classes moves into the corresponding marked class 

according to the marking rate (𝜇).  mRNA in all classes except 𝑚0 and 𝑚0
∗  moves 

down in class according to the elongation rate (𝜏).  mRNA in the marked class 0 

(𝑚0
∗) exits the system according to the degradation rate.     
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𝑑𝑚0

𝑑𝑡
= 𝜆 + 𝜏 ∙ 𝑚1 − 𝜅 ∙ 𝑚0 − 𝜇 ∙ 𝑚0 

 
𝑑𝑚1
𝑑𝑡

= 𝜅 ∙ 𝑚0 + 𝜏 ∙ 𝑚2 − 𝜏 ∙ 𝑚1 − 𝜅 ∙ 𝑚1 − 𝜇 ∙ 𝑚1 

   ⋮ 
𝑑𝑚𝑖
𝑑𝑡

= 𝜅 ∙ 𝑚𝑖−1 + 𝜏 ∙ 𝑚𝑖+1 − 𝜏 ∙ 𝑚𝑖 − 𝜅 ∙ 𝑚𝑖 − 𝜇 ∙ 𝑚𝑖 

   ⋮ 
𝑑𝑚𝑖𝑚𝑎𝑥
𝑑𝑡

= 𝜅 ∙ 𝑚𝑖𝑚𝑎𝑥−1 − 𝜏 ∙ 𝑚𝑖𝑚𝑎𝑥 − 𝜇 ∙ 𝑚𝑖𝑚𝑎𝑥 

 

( 3.1 ) 

 

 
𝑑𝑚0

∗

𝑑𝑡
= 𝜇 ∙ 𝑚0 + 𝜏 ∙ 𝑚1

∗ − 𝛿 ∙ 𝑚0
∗  

 
𝑑𝑚1

∗

𝑑𝑡
= 𝜇 ∙ 𝑚1 + 𝜏 ∙ 𝑚2

∗ − 𝜏 ∙ 𝑚1
∗ 

   ⋮ 
𝑑𝑚𝑖

∗

𝑑𝑡
= 𝜇 ∙ 𝑚𝑖 + 𝜏 ∙ 𝑚𝑖+1

∗ − 𝜏 ∙ 𝑚𝑖
∗ 

   ⋮ 
𝑑𝑚𝑖𝑚𝑎𝑥

∗

𝑑𝑡
= 𝜇 ∙ 𝑚𝑖𝑚𝑎𝑥 − 𝜏 ∙ 𝑚𝑖𝑚𝑎𝑥

∗ − 𝜇 ∙ 𝑚𝑖𝑚𝑎𝑥  

( 3.2 ) 

 

Table 3.3:  Variables and symbols used in the model 

Symbol Description 

State variables  

𝒎𝒊 mRNA abundance in the unmarked ith ribosome class 

𝒎𝒊
∗ mRNA abundance in the marked ith ribosome class 

Parameter definitions  

𝒊𝒎𝒂𝒙 Maximum number of ribosomes able to bind an mRNA 

𝜿 Translation initiation rate  

𝝉 Translation elongation rate 

𝝁 Marking rate  

𝝀 Production (transcription) rate for mRNA into the unmarked 

class 0 (𝑚𝑜) 

𝜹 Removal (degradation) rate for mRNA from the marked class 

0 (𝑚0
∗) 
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Solving the model 

Solutions to the model are computed using a matrix algebra approach.  The unmarked 

system can be represented as a matrix equation describing the rates of change in the abundance 

of mRNA in each unmarked ribosome class,  

 

(

 
 
 

𝑚0
′

𝑚1
′

⋮
𝑚𝑖
′

⋮
𝑚𝑖𝑚𝑎𝑥
′

)

 
 
 

=

(

 
 
 

−𝜅 − 𝜇 𝜏 0 … … … … … 0
𝜅 −𝜅 − 𝜇 − 𝜏 𝜏 0 … … … … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 … 0 𝜅 −𝜅 − 𝜇 − 𝜏 𝜏 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 … … … … … 0 𝜅 −𝜇 − 𝜏)

 
 
 

(

  
 

𝑚0
𝑚1
⋮
𝑚𝑖
⋮

𝑚𝑖𝑚𝑎𝑥)

  
 
+

(

 
 
 

𝜆
0
0
⋮
0
⋮
0)

 
 
 

. ( 3.3 ) 

Equation 3.3 can also be represented as  

 �⃗⃗� ′ = 𝐴 ∙�⃗⃗� +�⃗� . ( 3.4 ) 

At equilibrium, the rates of change in mRNA abundance in each unmarked ribosome class (left 

side of equation 3.3) are zero, so the mRNA abundances in the unmarked classes are described 

by  

 �⃗⃗� = −𝐴−1 ∙ �⃗� , ( 3.5 ) 

which is equal to 

 �⃗⃗� = −
1

𝐷𝑒𝑡[𝐴]
𝐴𝑑𝑗[𝐴] ∙ �⃗� . ( 3.6 ) 

𝐴𝑑𝑗[𝐴] from equation 3.6 can be simplified and the equation restructured, yielding 

�⃗⃗� = −
1

𝐷𝑒𝑡[𝐴]
∙ 𝜆

|

|

|

𝐷𝑒𝑡[𝐴𝑖𝑚𝑎𝑥−1]

−𝑠1𝐷𝑒𝑡[𝐴𝑖𝑚𝑎𝑥−2]

−𝑠1𝑠2𝐷𝑒𝑡[𝐴𝑖𝑚𝑎𝑥−3]

⋮
(−1)𝑖(∏ 𝑠𝑗

𝑖
𝑗=1 )𝐷𝑒𝑡[𝐴𝑖𝑚𝑎𝑥−(𝑖+1)]

⋮

(−1)𝑖𝑚𝑎𝑥−2(∏ 𝑠𝑗
𝑖𝑚𝑎𝑥−2
𝑗=1 )𝐷𝑒𝑡[𝐴1]

(−1)𝑖𝑚𝑎𝑥−1(∏ 𝑠𝑗
𝑖𝑚𝑎𝑥−1
𝑗=1 )𝐷𝑒𝑡[𝐴0]

|

|

|

. 
( 3.7 ) 
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In equation 3.7, 𝐷𝑒𝑡[𝐴𝑜] = 1, 𝐴𝑖 is the 𝑖 × 𝑖 lower right sub-matrix, and 𝑠𝑖 is the sub-diagonal 

entry in the 𝑖𝑡ℎ row in the full 𝐴 matrix, or 
𝑖𝑚𝑎𝑥−(𝑖−1)

𝑖𝑚𝑎𝑥
𝜅. 

The “Solve” command in Wolfram Mathematica and various manipulations were used to find an 

equation for 𝐷𝑒𝑡[𝐴]: 

𝐷𝑒𝑡[𝐴] = (−1)𝑖𝑚𝑎𝑥+1𝜇∏ (
𝑖

𝑖𝑚𝑎𝑥
𝜅 + 𝜇 + 𝑖𝜏)

𝑖𝑚𝑎𝑥
𝑖=1 . ( 3.8 ) 

For finding the determinants of the submatrices in equation 3.7, one can take advantage of the 

fact that the large matrix in equation 3.3, or 𝐴 in equations 3.4-3.7, is tri-diagonal, taking the 

general form,  

 

(

 
 
 

𝑑0 𝑝0 0 0 0 0
𝑠1 𝑑1 𝑝1 0 0 0
0 𝑠2 𝑑2 𝑝2 0 0
0 0 ⋱ ⋱ ⋱ 0
0 0 0 𝑠𝑛−1 𝑑𝑛−1 𝑝𝑛−1
0 0 0 0 𝑠𝑛 𝑑𝑛 )

 
 
 

, ( 3.9 ) 

 

where 𝑛 is the size of the tri-diagonal matrix, which in our case is the number of ribosome 

classes (𝑖𝑚𝑎𝑥+1). 

 

The determinant of a sub-matrix 𝐴𝑖 (𝐷𝑒𝑡[𝐴𝑖]) of a general tri-diagonal matrix with 𝑛 rows, such 

as that in equation 3.9, can be solved by a recurrence relation, 

 𝑎(𝑛, 𝑖) = 𝑑𝑛−1 ∙ 𝑎(𝑛, 𝑖 − 1) − 𝑝𝑛−𝑖 ∙ 𝑠𝑛−𝑖+1 ∙ 𝑎(𝑛, 𝑖 − 2), ( 3.10 ) 
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with the following equalities,  

 
  𝑑𝑖 = −(

𝑖𝑚𝑎𝑥 − 𝑖

𝑖𝑚𝑎𝑥
𝜅 + 𝜇 + 𝑖𝜏) 

                                         𝑝𝑖 = (𝑖 + 1)𝜏 

                                         𝑠𝑖 = (
𝑖𝑚𝑎𝑥−(𝑖−1)

𝑖𝑚𝑎𝑥
) 𝜅, 

( 3.11 ) 

and with initial conditions, 

                                         𝑎(𝑛, 1) = 𝑑𝑛 

                                   𝑎(𝑛, 2) = 𝑑𝑛−1 ∙ 𝑎(𝑛, 1) − 𝑝𝑛−1𝑠𝑛. 
( 3.12 ) 

The marked class abundances are then calculated as  

 
𝑚𝑖
∗𝑒𝑞 =

𝜇

𝜏

∑ 𝑚𝑖
𝑒𝑞𝑛

𝑗=𝑖

𝛾(𝑖)
, where 𝛾(𝑖) = {

𝛿

𝜏
𝑖 = 0

𝑖 𝑖 > 0
, ( 3.13 ) 

where 𝑚𝑖
∗𝑒𝑞

 is the mRNA abundance in the 𝑖𝑡ℎ marked class at equilibrium, and 𝑚𝑖
𝑒𝑞

 is the 

mRNA abundance in the 𝑖𝑡ℎ unmarked class at equilibrium.   

 

Non-dimensionalization 

The model solutions are not unique. Multiple sets of rates that have the same relative 

values will return the same ribosome class mRNA abundances.  Therefore, when performing 

searches for the parameter values, one parameter can be kept constant.  In this study, the 

termination rate is kept constant, so the model parameters can be interpreted as their rates 

relative to the termination rate, which naturally non-dimensionalizes the system.  This is 

beneficial because it speeds up the parameter searches and increases the identifiability of the four 

parameters that are estimated, although I demonstrate in the simulation study that keeping 

additional parameters constant may be required. 
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Objective function and maximum likelihood estimation 

The maximum likelihood estimation (MLE) approach is used to fit the model.  The 

objective function minimized is the negative logarithm of a likelihood function (negative log-

likelihood, or NLL).  A likelihood function describes the likelihood of observing a specific value 

from a distribution based on specific parameters.  The goal is to find parameter values that 

maximize the likelihood of observing the empirical data, or equivalently, minimize the negative 

likelihood.  It is assumed that the measured mRNA abundance in each polysome fraction is log-

normally distributed.  The probability density function of the normal distribution gives the 

likelihood (𝑙𝑖𝑘) of a value 𝑥 being observed from a normal distribution with mean 𝜇 and standard 

deviation 𝜎:  

 
𝐿𝑖𝑘(𝑥) =

1

𝜎√2𝜋
𝑒
− 
(𝑥−𝜇)2

2𝜎2 . ( 3.14 ) 

Out of convenience and convention, we minimize the NLL, which is the negative logarithm of 

equation 3.14, simplified as    

 
−𝐿𝐿𝑖𝑘(𝑥) = ln(𝜎√2𝜋) +

(𝑥 − 𝜇)2

2𝜎2
. ( 3.15 ) 

Since the first term in equation 3.15 is a constant, the second term only is minimized as our 

objective function.  The denominator of the second term could even be omitted since 𝜎, the 

assumed standard deviation among replicate measurements, is being kept constant in our 

procedures.  The NLL for all of the data for one gene, empirical or simulated, is obtained by 

summing the results over all observations: 

 −𝐿𝐿𝑖𝑘(𝐺) =∑ ∑
(𝑔𝑖𝑗 − 𝑥𝑗)

2

2𝜎2

𝑘

𝑗=1

𝑛

𝑖=1
, ( 3.16 ) 

where 𝑘 is the number of polysome fractions, 𝑛 is the number of replicates per fraction, 𝐺 is the 

full set of values for a gene with 𝑘 fractions and 𝑛 replicates per fraction, 𝑥𝑗 is the model 



122  
prediction for the 𝑗𝑡ℎ fraction, and 𝑔𝑖𝑗 is the empirical observation for the 𝑖𝑡ℎ replicate in the 𝑗𝑡ℎ 

fraction.   

 

Methods 
 

Empirical data 
 

Microarray data 

Genome-wide mRNA abundances were measured by microarray from polysome fractions 

collected along a sucrose density gradient from wild type Arabidopsis.  The plant growth 

conditions and fractionation process, as well as cDNA preparation and microarray hybridization, 

were similar to those described in the Methods section of Chapter 2.  Briefly, from one plant, 

three replicate sucrose gradients were run, and twelve polysome fractions were collected from 

the same positions along each gradient.  For each replicate, fractions 1 through 4 were pooled 

and called the non-polysomal (NP) fraction, and fractions 5 through 12 (F5-F12) were kept 

separate.  The NP fractions, F5-F12, and un-fractionated total mRNA samples for three replicates 

were analyzed by microarray, yielding 30 microarray samples altogether.   

Microarray data processing and normalization 

The microarray data were processed and normalized using the “ProcessRawData” 

function described in the procedures below. 

Relationship between mRNA length and ribosome loading 

mRNA length is correlated with ribosome loading in yeast (Arava, Wang et al. 2003).  I 

examined the correlation between the coding sequence (CDS) length, obtained from the Ensembl 

BioMart database (Kasprzyk 2011), on the log2 scale and the percent of each mRNA species in 
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each fraction across the genome in Arabidopsis.  I found modest positive and negative 

correlations (Figure 3.2), with fraction 7 having the highest negative correlation (𝑅2 = 0.21) and 

fraction 12 having the highest positive correlation (𝑅2 = 0.26).  There was virtually no 

correlation for the NP fraction (𝑅2 = 0.007), which contains mRNA associated with 0 or 1 

ribosome.  The observation that the correlations get increasingly positive in higher polysome 

fractions is consistent with previous studies and with the idea that mRNA length is related to 

ribosome loading.  This relationship could exist because of the influences of at least two factors.  

The first is a longer elongation time for longer mRNAs due to the longer distance a ribosome 

must travel.  If ribosomes take longer to translate and dissociate from longer mRNAs than 

shorter ones, on average, then longer mRNAs would, on average, be associated with more 

ribosomes at any point in time.  A second and closely related possible explanation is differences 

in codon adaptation between longer and shorter mRNAs.  Studies in yeast have shown that 

shorter mRNAs tend to be more highly expressed and have stronger codon usage bias (CUB) 

than longer mRNAs (Coghlan and Wolfe 2000), so in addition to traveling a shorter distance, 

ribosomes may also carry out elongation at a faster rate on shorter mRNAs compared to longer 

ones.  Despite the relationship between mRNA length and ribosome loading, the lack of 

correlation between mRNA length and the percent of each mRNA species in the NP fraction 

implies that factors other than length control ribosome loading of mRNA.       
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Figure 3.2: Correlations between gene length and the percent of mRNA in each polysome fraction. 

The red lines are regression lines fit to the data points which have the Pearson 𝑅2 values and slopes 

indicated.    
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UV absorbance data 

Larger polysomes migrate faster through a density gradient than smaller polysomes.  UV 

absorbance is proportional to RNA concentration, so the resulting UV absorbance spectrum of 

the fractionated sample reflects the relative concentration of total RNA along the gradient, with 

migration distance along the horizontal axis and relative RNA concentration along the vertical 

axis.  A representative example is shown in Figure 3.3. 

 

Connecting the model with empirical data 
 

The microarray data consist of genome-wide mRNA abundances in nine polysome 

fractions, while the model predicts mRNA abundances in a number of ribosome classes 

(unmarked and marked combined).  Since the polysome fractions do not correspond exactly to 

ribosome classes, each fraction is a mixture of mRNA from multiple classes.  Therefore, to 

predict the polysome fraction abundances from a set of parameter values, a procedure is needed 

for converting ribosome class abundances into fraction abundances.  This involves, first, 

estimating how much mRNA from each ribosome class migrates into each polysome fraction, 

and second, correcting the predicted fraction abundances to account for variation in RNA yield 

across fractions.       
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Figure 3.3: UV absorbance profile from the sucrose gradient. 

The large peak on the left corresponds to mRNA with 0 or 1 ribosome.  To the immediate 

right, moving left to right, the peaks correspond to discrete ribosome classes with specific 

numbers of ribosomes per mRNA molecule.  Polysomes corresponding to 2 ribosomes up to 

approximately 8 are visually resolvable.  The diagram of the test tube with polysomes of 

various sizes above the trace is meant to convey the idea that the larger polysomes migrate 

farther through the gradient.  The approximate bounds of the fractions collected from the 

gradient are indicated as NP (non-polysomal) and 5-12 (polysome fractions 5-12).    
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Predicting fraction abundances from class abundances 

To convert ribosome class abundances into fraction abundances, we must predict how far 

along the sucrose gradient a population of polysomes from a given class will migrate.  We 

assume that the migration distances for a population of polysomes of a given class are normally 

distributed.  Nate Pollesch used the coordinates from a UV absorbance profile to derive a 

function that predicts the mean migration distance for polysomes based on their class.  The mean 

migration distances for the first eight ribosome classes were estimated by importing the UV 

profile image into Wolfram Mathematica and using the “get-coordinates” tool to determine the 

coordinates of each peak center.  The first peak corresponds to RNA associated with at most one 

complete ribosome, and peaks 2 through 8 correspond to RNA associated with the same number 

of ribosomes as their rank (i.e., peak 4 corresponds to RNA from ribosome class 4, having four 

ribosomes per polysome).  Ribosome class numbers and the center positions of their 

corresponding peaks were modeled using several types of functions in Mathematica using the 

“FindFit” tool, and the best-fitting type, based on least squares model fitting, was obtained: 

 𝜇𝑓𝑖𝑡(𝑖) =
𝑎 + 𝑏 ∙ 𝑖𝑐

𝑑 + 𝑖𝑐
. ( 3.17 ) 

𝜇𝑓𝑖𝑡(𝑖) is the mean migration distance for polysomes, including all associated RNA, 

corresponding to class 𝑖, and 𝑎, 𝑏, 𝑐, and 𝑑 are coefficients that are obtained from fitting this 

model to data.  The equation from the model solution, referred to as the “migration distance 

function”, was used to predict the mean migration distance for a population of polysomes from a 

given ribosome class 𝑖 (see Figure 3.4 for the model fit):   

 𝜇𝑓𝑖𝑡(𝑖) =
404.49 + 3040.38 ∙ 𝑖0.912

6.56 + 𝑖0.912
. ( 3.18 ) 
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To estimate the migration distance standard deviation (𝜎𝑀𝐷) for a given peak, it was 

assumed that each peak was normally distributed.  A quadratic function was fit to x and y 

coordinates for each peak, and the second derivative was determined.  The second derivative was 

set equal to the equation for the second derivative of the normal distribution function, where the 

only unknown value was 𝜎𝑀𝐷, and 𝜎𝑀𝐷 was determined algebraically.  For simplicity, 𝜎𝑀𝐷 

for each class was averaged to obtain a universal 𝜎𝑀𝐷.  Since the sucrose gradients were split 

evenly into twelve fractions, each fraction corresponds to a lower and upper bound of migration 

distance.  Assuming normality, the probability of an mRNA from a given ribosome class 𝑖 

migrating to a given fraction 𝑗 can be computed by applying the cumulative distribution function 

(CDF) of the normal distribution:    

 Pr[𝑎𝑗 ≤ 𝑋𝑖 ≤ 𝑏𝑗] = Φ(𝑏𝑗) − Φ(𝑎𝑗) ( 3.19 ) 
 

where 

 
Figure 3.4: Model fit of the migration distance function.  

The migration distances predicted by the model solution in equation 3.18 are plotted against 

the corresponding empirical data, with the function in black and the empirical data in red. 
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 𝑋𝑖~𝑁(𝜇𝑓𝑖𝑡(𝑖), 𝜎𝑀𝐷). ( 3.20 ) 

 

Here, 𝑋𝑖 is the theoretical distribution of migration distances for mRNA from a given ribosome 

class 𝑖, 𝑎𝑗 is the lower bound of fraction 𝑗, 𝑏 is the upper bound of fraction 𝑗, 𝜇𝑓𝑖𝑡(𝑖) is the 

predicted mean migration distance for mRNA in class 𝑖, 𝜎𝑀𝐷 is the standard deviation of the 

migration distance, and Φ is the CDF for the normal distribution.  In R, Φ(𝑥) is computed using 

the built-in “pnorm” function, where the argument “x” is the appropriate fraction bound, “mean” 

is the mean migration distance for a given ribosome class, and “sd” is 𝜎𝑀𝐷.  This procedure is 

applied for each combination of ribosome class and polysome fraction, yielding a matrix of 

fraction location probabilities, referred to as the “FLP matrix”, where the rows correspond to 

ribosome classes and the columns correspond to polysome fractions.  The dot product of the FLP 

matrix and ribosome class abundances is computed, yielding predicted fraction abundances. 

Computing correction factors 

The predicted fraction abundances (“model predictions”) are the theoretical abundances 

of mRNA in each fraction for a gene with specific parameter values.  Our goal is to find 

parameter values for each gene for which the model predictions match the empirical data.  A key 

challenge, however, is the fact that the empirical fraction abundances were subjected to two 

adjustments from the experimental procedure, creating a discrepancy between the model 

predictions and the empirical data.  The first adjustment was that the RNA concentrations were 

adjusted to correct for variation in RNA yield across fractions by known “RNA dilution factors”.  

The concentrations were measured by UV absorbance, which measures total RNA, including 

mRNA and ribosomal RNA (rRNA).  After the RNA adjustment, the total RNA concentrations 

were equivalent across samples, but because each fraction has a different size distribution of 
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polysomes, the (mRNA)/(total RNA) ratios varied across fractions.  From these RNA samples, 

cDNA was synthesized by reverse transcription.  Because of the variation in the (mRNA)/(total 

RNA) ratio, the cDNA yield is expected to vary across fractions because the fractions have 

different amounts of mRNA, and mRNA, not rRNA, gives rise to cDNA.  The cDNA 

concentrations were adjusted to the same concentrations by unknown “cDNA dilution factors” 

before being applied to the microarrays.  The cDNA dilution factors are scaling parameters that 

are also expected to create a discrepancy between the model predictions and the empirical data.  

The cDNA dilution factors are unknown because this step and the subsequent microarray 

hybridization were performed according to a standardized protocol that did not allow a record to 

be kept.  The RNA and cDNA dilution factors effectively adjust the amount of mRNA in each 

fraction twice before the mRNA abundances are measured.   

The following is a more formal description of how the RNA and cDNA dilution factors 

affect the expected microarray signals. 

The total amount of UV absorbance in a given fraction (𝑇𝑓) is proportional to the total 

amount of RNA in the fraction, which is the sum of the amounts of mRNA (𝑅𝑚) and rRNA (𝑅𝑟),   

 𝑇𝑓 = 𝑅𝑚 + 𝑅𝑟. ( 3.20 ) 
 

𝑅𝑚 is given by 

 𝑅𝑚 =∑∑𝑛𝑔 ∙ 𝑚𝑖𝑔 ∙ 𝑃𝑓(𝑖)

𝑖𝑔

, ( 3.21 ) 

 

where 𝑔 is a given gene, 𝑖 is a given ribosome class (i.e., number of ribosomes per polysome), 𝑛𝑔 

is the number of nucleotides per mRNA from gene 𝑔, 𝑚𝑖𝑔 is the number of mRNA molecules in 
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ribosome class 𝑖 from gene 𝑔, and 𝑃𝑓(𝑖) is the probability of mRNA from ribosome class 𝑖 

migrating to the fraction.  Similarly, 𝑅𝑟 is given by 

 𝑅𝑟 =∑∑𝑖 ∙ 𝑛𝑟 ∙ 𝑚𝑖𝑔 ∙ 𝑃𝑓(𝑖)

𝑖𝑔

, ( 3.22 ) 

 

where 𝑛𝑟 is the number of nucleotides of rRNA per ribosome.  During the sample preparation, 

after the RNA from the fraction was diluted by the known RNA dilution factor 𝑎𝑓, the resulting 

RNA yield (𝑅𝑡) would be given by 

 𝑅𝑡 = 𝑇𝑓 ∙ 𝑎𝑓 . ( 3.23 ) 

 

cDNA was synthesized by reverse transcription, and the total amount of cDNA (𝐶𝑓) in the 

fraction is proportional to the total amount of mRNA as represented above, multiplied by 𝑎𝑓 and 

a constant 𝐾1 which represents the PCR amplification efficiency,  

 

𝐶𝑓 = (∑∑𝑛𝑔 ∙ 𝑚𝑖𝑔 ∙ 𝑃𝑓(𝑖)

𝑖𝑔

) ∙ 𝑎𝑓 ∙ 𝐾1. ( 3.24 ) 

 

 

The cDNA sample was then diluted by an unknown factor 𝑏𝑓, and resulting cDNA abundance 

(𝐶𝑓
𝑥) would be given by  

 𝐶𝑓
𝑥 = 𝐶𝑓 ∙ 𝑏𝑓 , ( 3.25 ) 

 

which can also be expressed as  

 𝐶𝑓
𝑥 = 𝑅𝑚 ∙ 𝑎𝑓 ∙ 𝐾1 ∙ 𝑏𝑓 . ( 3.26 ) 
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The expected microarray signal for gene 𝑔 from the fraction is equal to the amount of cDNA 

corresponding to the gene and fraction (𝐶𝑔𝑓
𝑥 ), multiplied by a constant 𝐾2 for that gene which 

represents the hybridization efficiency of the cDNA to the microarray chip.  This expected 

microarray signal (𝑥𝑔𝑓) is given by 

 𝑥𝑔𝑓 = 𝐾2 ∙ 𝐶𝑔𝑓
𝑥 . ( 3.27 ) 

 

𝑅𝑚𝑔 is the abundance of mRNA in the fraction corresponding to gene 𝑔,  

 𝑅𝑚𝑔 =∑𝑛𝑔 ∙ 𝑚𝑖𝑔
𝑖

∙ 𝑃𝑓(𝑖). ( 3.28 ) 

 

Therefore, the expected microarray signal for gene 𝑔 from the fraction is given by 

 𝑥𝑔𝑓 = 𝑅𝑚𝑔 ∙ 𝑎𝑓 ∙ 𝑏𝑓 ∙ 𝐾1 ∙ 𝐾2. ( 3.29 ) 
 

𝑅𝑚𝑔 is predicted based on the model output and the fraction location probabilities, 𝑎𝐹 is the 

known RNA dilution factor, and 𝐾1 and 𝐾2 can be assumed to be constant.  Therefore, the only 

unknown quantity remaining is 𝑏𝐹, the unknown cDNA dilution factor.  The greater the mRNA 

abundance in a given polysome fraction, the more cDNA would be synthesized by reverse 

transcription and the more the resulting cDNA sample would need to be diluted in order to be the 

same as the others.  Therefore, 𝑏𝐹 is expected to be proportional to the abundance of mRNA 

across all genes.  The mRNA abundance in a given ribosome class across all genes can be 

determined from the total RNA abundance, since the (mRNA)/(total RNA) ratio is given by the 

ribosome class number (i.e., number of ribosomes per polysome).      

To match the model predictions to the empirical data, we need to adjust the model 

predictions in the same way as the polysome fraction samples were adjusted.  Correcting for the 
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RNA dilution factor is simple—we just divide the model predictions by the known RNA dilution 

factors.  The second correction is more complicated, as it requires estimating 𝑏𝑓, or equivalently, 

the (mRNA)/(total RNA) ratio in each polysome fraction.  Based on reviewing the computational 

and experimental procedures and fitting the model to the empirical data, it appears that this step 

is a main obstacle in being able to fit the model to the data, as I will explain subsequently.  

Nevertheless, I will describe the approach that has been used and discuss in general terms one 

alternative approach that may improve upon the current procedure.   

Calculating unknown cDNA dilution factors in polysome fractions  

Here, I describe the method we have used for estimating the unknown cDNA dilution 

factors (𝑏𝐹) in each polysome fraction (Method 1) and discuss in general terms one alternative 

method (Method 2) that may improve upon the current procedure.   

Method 1  

1) The rRNA/mRNA ratio in each ribosome class (not fraction) 𝑖 is estimated as 

 (
𝑟𝑅𝑁𝐴

𝑚𝑅𝑁𝐴
)
𝑖
=
𝑛𝑟 ∙ 𝑖

𝑛𝑔
 ( 3.30) 

 

where 𝑛𝑟 is the total rRNA length in nucleotides in a ribosome (~5400, from Ju Guan) and 

𝑛𝑔 is the mean mRNA length in nucleotides (1278 in Arabidopsis) (Wortman, Haas et al. 

2003).  This is because in class 𝑖 each polysome consists of 𝑖 ribosomes and 1 mRNA.   

2) The contribution of rRNA from class 𝑖 to fraction 𝑗, relative to mRNA, is calculated as 

 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖𝑗 = 𝑖 ∙ 𝐹𝐿𝑃𝑖𝑗 ∙ (
𝑟𝑅𝑁𝐴

𝑚𝑅𝑁𝐴
)
𝑖
, ( 3.31 ) 
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where 𝐹𝐿𝑃𝑖𝑗 is the probability of an mRNA or polysome in class 𝑖 migrating to fraction 𝑗, 

based on probabilities described above (Equations 3.18 and 3.19), and (
𝑟𝑅𝑁𝐴

𝑚𝑅𝑁𝐴
)
𝑖
 is the 

rRNA/mRNA ratio in polysomes in class 𝑖 estimated in step 1 (Equation 3.30).   

3) For a given polysome fraction, the contributions of rRNA (Equation 3.31) from each class 

are summed and 𝑏𝑓 is estimated as the inverse of this sum, which considers the mRNA 

abundance in the fraction and resulting cDNA yield to be proportional to this estimate of the 

mRNA/rRNA ratio.  This approach also makes the assumption that the total amount of RNA 

in each ribosome class is the same, which is almost certainly not the case.   

Method 2 

The following is a very general description of one alternative method for estimating 𝑏𝐹 

that is currently being developed.  The distributions of migration distances for RNA in higher 

ribosome classes appear to be highly overlapping.  Because of this overlap, RNA from multiple 

ribosome classes can contribute to the total UV absorbance at a given migration distance.  

Therefore, the areas of the peaks from ribosome class 9 and above are less than what is predicted 

by their corresponding peak height and 𝜎𝑀𝐷.  To estimate the relative abundances of RNA 

corresponding to each ribosome class more accurately, an approach should be used that finds 

𝜇𝑓𝑖𝑡(𝑖) (Equation 3.18) and 𝜎𝑀𝐷 for each class that are consistent with the total UV absorbance 

profile.  In other words, at a given migration distance, the total UV absorbance should equal the 

sum of the absorbance resulting from overlapping peaks at that position. 

1) Coordinates are selected along the UV absorbance profile, and the predicted mean migration 

distance for each class 𝑖 is assumed to be 𝜇𝑓𝑖𝑡(𝑖) (Equation 3.18).  
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2) Normal distribution functions are fit to the coordinates, using optimization to find the 𝜎𝑀𝐷 

that yields a UV absorbance profile that best matches the empirical data, based on 

minimizing an objective function.  The “mixtools” R package (Benaglia, Chauveau et al. 

2009) provides methods for implementing this procedure. 

3) The total RNA abundance corresponding to each ribosome class across all genes would be 

estimated by determining the area under each curve.  The percent of total RNA in a given 

ribosome class 𝑖 that is mRNA (𝑃𝑚𝑖) can then be estimated as 𝑃𝑚𝑖 =
𝑛𝑔

𝑛𝑔+𝑛𝑟∙𝑖
.  The relative 

abundance of mRNA from each ribosome class can then be estimated as the product of 𝑃𝑚𝑖 

and the peak area corresponding to each class.   

4) The portion of a given peak in each polysome fraction can be determined using integration to 

find the area under the curve that lies within the fraction bounds, and these percentages can 

be considered as probabilities that a polysome or mRNA from ribosome class 𝑖 migrates to 

the fraction.  From these probabilities, a fraction location probability matrix can be created 

and combined with the estimated mRNA abundances in each ribosome class to estimate the 

abundance of mRNA in each polysome fraction, which would be considered an estimate of 

the unknown cDNA factors (𝑏𝑓). 

Reversing the correction procedure  

Because Method 1 yielded model predictions that consistently did not match the 

empirical data (see results section), I wondered whether any model solutions existed that would 

match the empirical data using Method 1.  Therefore, I developed a procedure for reversing the 

conversion procedure to see what model solutions would be needed in order for Method 1 to 

yield predictions that matched the empirical data.  In the original conversion procedure, as 

described, the fraction abundances are computed as a dot product where the FLP matrix is 
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multiplied by the vector of ribosome class abundances element-wise and the values in each 

column of the resulting matrix are summed.  This can be represented by the following system of 

equations:     

 

𝑎01𝑥0 + 𝑎11𝑥1 +⋯+ 𝑎𝑖𝑚𝑎𝑥1𝑥𝑖𝑚𝑎𝑥 = 𝑏1 

𝑎02𝑥0 + 𝑎12𝑥1 +⋯+ 𝑎𝑖𝑚𝑎𝑥2𝑥𝑖𝑚𝑎𝑥 = 𝑏2 

⋮ 
  𝑎09𝑥0 + 𝑎19𝑥1 +⋯+ 𝑎𝑖𝑚𝑎𝑥9𝑥𝑖𝑚𝑎𝑥 = 𝑏9. 

( 3.32 ) 

  

In Equation 3.32, 𝑎𝑖𝑗 is the probability in the FLP matrix of a polysome in class 𝑖 migrating to 

fraction 𝑗, 𝑥𝑖 is the predicted mRNA abundance in ribosome class 𝑖, and 𝑏𝑗 is the predicted 

mRNA abundance in fraction 𝑗.  The goal of reversing the procedure is to determine the vector of 

ribosome class values 𝑥0 through 𝑥𝑖𝑚𝑎𝑥.  Equation 3.32 can be expressed in a matrix algebra 

form as      

 𝐴 ∙ 𝑋 = 𝐵. ( 3.33 ) 
 

 In Equation 3.33, 𝐴 is now a transpose of the FLP matrix (i.e., its rows and columns have been 

swapped), containing the values of 𝑎 in Equation 3.32, which are treated as coefficients.  As 

before, 𝑋 is the vector of unknown ribosome class abundances, and 𝐵 is the vector of known 

fraction abundances.  Singular value decomposition (SVD) is a technique for solving such a 

system of equations to determine 𝑋.  I used SVD to determine the model solutions in reverse for 

several real genes, and found values that would be impossible for the model to produce, 

including negative values.  This provided clear evidence that Method 1 is not appropriate.  This 

procedure should be useful in the future for testing whether a given procedure can accurately 

convert the model output into predicted microarray data.  
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   Model implementation     
 

Dr. Gilchrist and Nate Pollesch first implemented the model in Wolfram Mathematica.  

Joe Carboni had worked toward an implementation in R, but it needed substantial work before it 

could be fully usable.  I sought to improve upon these previous efforts in three main aspects.  

First, I sought to implement a fully usable version in R.  R is very widely used across scientific 

disciplines, including the computational and life sciences, so we chose to continue working on 

the model in R in order to support continued collaboration.  Second, we wanted to utilize the 

parallel processing functionality in R provided by various packages, for example, “doParallel” 

and “doMPI”.  Mathematica has site licenses that limit the number of CPUs that can be used by a 

program in parallel, while R, being an open-source programming language and computing 

platform, has no such limitations.  Third, we wanted to create an efficient, high-throughput way 

of running parameter searches.  I created command-line scripts written in R that can be submitted 

as batch jobs on the Newton high-performance computing (HPC) system at the University of 

Tennessee.  It uses the doMPI package to divide the parameter searches among a chosen number 

of CPUs, using message passing interface (MPI) to communicate among CPUs on different 

compute nodes.   

 

Procedures 

I created a number of procedures for processing data, exploring the model parameter 

space, fitting the model to data, visualizing results, and other tasks.  I describe some of the most 

important ones here, roughly in the order in which they would typically be used.  These are 

summarized in Table 3.4. 

 



138  

 

 

 

 

 

 

 

 

 

Table 3.4: Procedures for implementing the model 

Procedure Description 

ProcessRawData Process and normalize microarray data 

SelectAOV Find genes with large range in mRNA 

abundance and low noise 

CalcFLPMatrix  Compute FLP matrix 

CalcCorrectionFactors Compute correction factors 

CalcUnmarkedClass Compute unmarked class abundances 

from parameter values 

CalcMarkedClass Compute marked class abundances 

ModelSolveI Compute total class abundances 

AddExp, SubtractExp, CrossProdLogVectors, 

CrossProdLogMatrix, SumExp, 

SubtractLogVectors 

Perform various mathematical 

operations on log-transformed data 

CreateSignal Compute predicted fraction abundances 

NLLikFunction Objective function; compute NLL from 

data and parameter values 

MLELocalMultiSearch Perform MLE parameter search 

CreateBootstrapData Generate bootstrapped data by 

simulation 

MLEBootstrapSearch Parameter search on bootstrapped data 

PlotModelFit Create plot with model predictions and 

data 

CreateProfileImage Draw UV absorbance profile based on 

parameter values 

PlotModelSolveI Interactive visualization tool 
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Processing microarray data 

I created an R function called “ProcessRawData” which processes the raw microarray 

data from CEL files from a specified directory using the “affy” R package (Gautier, Cope et al. 

2004) from Bioconductor (Gentleman, Carey et al. 2004).  It normalizes the data using the “rma” 

method by default, but normalization can be omitted if desired.  It uses the mas5calls function to 

classify each microarray signal as “present” (“P”), “marginal” (“M”), or “absent” (“A”).  It keeps 

genes in the data set if all three total mRNA samples as well as all three replicates for at least one 

polysome fraction had “P” calls.  It removes control probe sets as well as probe sets 

corresponding to chloroplast and mitochondrial genes.  It returns the normalized and processed 

data and optionally exports it to a file.  

Selecting a subset of genes for testing 

I created an R function called “SelectAOV” which is used to select genes with desirable 

properties for testing the model.  A good test set should have low noise in microarray signals 

among replicate measurements from the same polysome fraction and high variance across 

fractions, as this would represent genes that were measured with good precision that also had 

robust, identifiable polysome profiles.  A good test set should also include genes with a range of 

profiles, having peak mRNA abundances in different fractions, as this would test the ability of 

the model and model-fitting process to distinguish among different patterns of ribosome loading.  

The function performs analysis of variance (ANOVA) on each gene, treating sets of replicates 

from each polysome fraction as groups, yielding a p-value for each gene.  Lower p-values have 

higher ratios of between-fraction/within-fraction variance.  Each gene is classified based on the 

polysome fraction in which its mRNA abundance is highest, yielding nine classes of genes.  
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Within each class, the genes are sorted based on their ANOVA p-values.  The function returns 

microarray data for a specified number of genes in each class with the lowest p-values.   

Computing fraction location probabilities 

I created a function called “CalcFLPMatrix” which computes the “fraction location 

probabilities”, stored in a matrix (the FLP matrix), as described above.  The function calculates 

the FLP matrix based on a given 𝑖𝑚𝑎𝑥, migration distance standard deviation (𝜎𝑀𝐷), and 

migration distance function, which by default is Equation 3.18.     

Calculating correction factors  

I created a function called “CalcCorrectionFactors” which calculates so-called 

“correction factors” used to adjust the predicted fraction abundances as discussed above.  The 

function accepts a number of input arguments.  Inputs include 𝑖𝑚𝑎𝑥, 𝜎𝑀𝐷, and the choice of 

adjustment methods.  These methods include Method 1 described above and two modifications 

of Method 1 (not described).  Additional arguments include mean mRNA length (default = 1278 

nucleotides) and total rRNA length (default = 5400 nucleotides).  Lastly, the function gives a 

choice of whether or not to divide the predicted fraction abundances by the dilution factors, with 

the default being to do so.   

Solving the model 

I created an R function called “ModelSolveI” which computes the model solutions, which 

are ribosome class mRNA abundances, based on 𝑖𝑚𝑎𝑥 and the five translation parameters.  It first 

uses another function called “CalcUnmarkedClass” to compute the unmarked class abundances.  

Second, it passes the unmarked class abundances into the function “CalcMarkedClass”, which 

computes the marked class abundances.  The unmarked and marked class abundances are added 

together to yield the model predictions.   
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Avoiding excessively large values by using the log scale 

To compute the unmarked class abundances, CalcUnmarkedClass uses the recurrence 

relation in equation 3.10, which can generate very large numbers that R codes as “Inf” (infinity), 

which is undefined.  To avoid these large numbers, I modified the calculations so that they use 

log2-transformed values.  I wrote several helper functions that carry out the appropriate 

mathematical operations on the log scale.  For instance, the “AddExp” function takes two log-

transformed values and returns a value equal to that obtained by adding them together on the 

original scale and then log-transforming them.  It uses the following identity:        

 log𝑧(𝑥 + 𝑦) = log𝑧𝑥 + log𝑧 (1 +
𝑦

𝑥
) . ( 3.34 ) 

AddExp uses the right side of the equation below to combine two log-transformed values, here 

log𝑧𝑥 and log𝑧𝑦, so that the result is the same as if the values had been back-transformed with 

base 𝑧, added, and then log-transformed again:    

 log𝑧(𝑥 + 𝑦) = log𝑧𝑥 + log𝑧(1 + 𝑧
log𝑧𝑦−log𝑧𝑥). ( 3.35 ) 

Other helper functions that I created use either the same identity or other related ones in order to 

add, subtract, multiply, divide, and perform matrix operations correctly (dot products, cross 

products) using values on the log scale, thus avoiding problems due to very large values in R.   

Predicting fraction abundances from parameters 

I created an R function called “CreateSignal” which computes model predictions, the 

polysome fraction abundances, from a set of parameter values and other inputs.  Many other 

functions and procedures rely on this function.  CreateSignal carries out three steps.   

1) A model solution is computed using ModelSolveI.    

2) The model solutions are converted into polysome fraction abundances by computing 

the dot product of the FLP matrix and the vector of model solutions.   



142  
3) The predicted fraction abundances are adjusted using correction factors as discussed 

above.  A background signal is then added, which by default is 3.0, the approximate 

mean of all expression signals in the empirical data classified as “A” (absent) by the 

mas5calls function.  

All of the optional procedures discussed thus far are available to CreateSignal.  Replicate 

data can be generated, in which case values are sampled randomly from a normal distribution 

with a specified mean and standard deviation.     

Generating data by simulation 

I created an R function called “CreateBootstrapData” which creates a “bootstrapped” data 

set based on given parameters.  It calls CreateSignal a specified number of times to generate one 

or more data sets with a specified number of replicates, adding noise by sampling from a normal 

distribution.     

Calculating the negative log-likelihood 

I created an R function called “NLLikFunction” which computes the negative log-

likelihood (NLL).  It uses CreateSignal to compute model predictions, then compares the model 

predictions to empirical or bootstrapped data using Equation 3.16.  NLLikFunction can accept all 

input arguments that CreateSignal accepts.  NLLikFunction is the objective function that is 

minimized in the optimization procedure. 

Performing an MLE parameter search 

The procedure that is most central to this project is estimating the model parameters.  

This is done using nonlinear optimization to search for parameter values that best fit the data 

based on the NLL.  I created an R function called “MLELocalMultiSearch” which carries out 
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this task.  MLELocalMultiSearch uses either the “optimx” function from the “optimx” R package 

(Nash and Varadhan 2011) or the “optim” function from the built-in “stats” package, depending 

on which optimization method is chosen.  Simulated annealing (option “SANN”) is only 

available in optim.  See Table 3.2 for a survey of the available algorithms.   

Summary of inputs that control the MLE parameter search 

Here, I summarize the most important inputs to MLELocalMultiSearch. 

1) First is a list of gene IDs or corresponding row numbers from a matrix containing the 

data on mRNA abundances per polysome fraction (can be simulated or empirical 

data).   

2) Second are one or more sets of starting values for the five translation parameters plus 

the migration distance standard deviation (𝜎𝑀𝐷).  The five translation parameters, in 

addition to 𝜎𝑀𝐷, the background microarray signal (𝛽Noise), and 𝑖𝑚𝑎𝑥 can be 

optimized, but typically, the termination rate (𝜏), 𝜎𝑀𝐷, and 𝑖𝑚𝑎𝑥 are kept constant.  

𝑖𝑚𝑎𝑥 can be specified in two ways.  First, one or more 𝑖𝑚𝑎𝑥 values can be provided as 

an input argument, in which case each value will be used for each gene in 

combination with all other starting values.  𝑖𝑚𝑎𝑥 values specified in this way can 

either be kept constant or optimized as a parameter in each parameter search.  The 

second way 𝑖𝑚𝑎𝑥 can be specified is by providing as a separate input argument one or 

more values representing the number of nucleotides a ribosome occupies on an 

mRNA.  The total coding sequence (CDS) length for the gene is then divided by this 

number and rounded up to an integer to yield a gene-specific 𝑖𝑚𝑎𝑥.  𝑖𝑚𝑎𝑥 specified in 

this way is kept constant.  Like the first way of specifying 𝑖𝑚𝑎𝑥, each value will be 

used for each gene and in combination with each set of starting values.   
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3) Third are the parameters that should be kept constant.  MLELocalMultiSearch 

handles fixed parameters by defining an objective function that executes 

NLLikFunction with the fixed parameters passed as constant inputs to it, but with the 

parameters to be optimized passed as variables.   

4) One useful additional input specifies whether to optimize the parameters on the log 

scale.  If the parameters are optimized on their original scale, the function sets 

constraints so that parameter search avoids negative values.  Doing this imposes 

limitations due to the fact that, as discussed, some search algorithms cannot 

accommodate constraints.  However, optimizing the parameters on the log scale 

avoids this problem.  If the log scale is used, then for example, instead of optimizing 

the value 𝑥, we optimize 𝑒𝑥.   

Other input arguments can be provided, including those already described which are used 

by the functions called by MLELocalMultiSearch, with most of them being passed into 

CreateSignal.   

Parallelizing the MLE parameter search 

MLELocalMultiSearch divides the parameter searches among available processing cores.  

If run on a local computer (shared memory system) with multiple cores on the same compute 

node, the user must load the “doParallel” package (Analytics and Weston 2014) or a similar 

package which provides “%dopar%” and “foreach” methods.  If run on a distributed memory 

system with cores distributed across multiple compute nodes, such as the Newton HPC system, 

the “doMPI” package (Weston 2013) is required, which relies on the “Rmpi” package to 

communicate among processes using the Open MPI library (Graham, Woodall et al.).     



145  
I implemented the MLE parameter search as a command-line script called 

“mleSearch.R”, which runs on the Newton HPC system.  A typical job file to run the script with 

multiple cores on Newton is shown below. 

“-N MLE” designates “MLE” as the name of the job.  “-q short*” requests a short queue 

on Newton which allows jobs that complete in 2 hours.  “-pe openmpi* 12” instructs the queue 

system to reserve 12 compute nodes.  “-l cores_per_node=12,proc_vendor=Intel” instructs the 

queue system to reserve only compute nodes with 12 cores per node (12 nodes x 12 cores/node = 

144 cores) and only those that use Intel processors.  The latter instruction is necessary because 

the “Rmpi” library (Yu 2002), which doMPI needs, must be compiled and run on the same type 

of processor.  Since Newton contains some compute nodes with Intel processors and some with 

AMD, I compiled Rmpi using both processors so that the code can be run on compute clusters 

with both kinds of processors.  “mpirun” instructs the Newton system to run the command with 

the requested number of processors.  “Rscript” is the R interpreter that executes stand-alone R 

scripts.  “mleSearch.R” is the main R program that runs the parameter search.  “MetaInfo.R” is 

the name of a file containing inputs to the program assigned to variables.  This is where the user 

specifies the data file, genes, algorithm, starting values, output file name, and other inputs.  The 

inputs should be one per line, and set to variables that can be interpreted by R.  For instance, the 

input specifying which genes to use could be “geneIDs = 1:20” or “geneIDs = 

#$ -N MLE 

#$ -q short* 

#$ -pe openmpi* 12 

#$ -l cores_per_node=12,proc_vendor=Intel 

mpirun Rscript mleSearch.R MetaInfo.R >& output.txt 

 

#$ -N MLE 

#$ -q short* 

#$ -pe openmpi* 12 

#$ -l cores_per_node=12,proc_vendor=Intel 

mpirun Rscript mleSearch.R MetaInfo.R >& output.txt 

 

#$ -N MLE 

#$ -q short* 

#$ -pe openmpi* 12 

#$ -l cores_per_node=12,proc_vendor=Intel 

mpirun Rscript mleSearch.R MetaInfo.R >& output.txt 

 

#$ -N MLE 

#$ -q short* 

#$ -pe openmpi* 12 

#$ -l cores_per_node=12,proc_vendor=Intel 

mpirun Rscript mleSearch.R MetaInfo.R >& output.txt 
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c(“10000_at”,”10001_at”)”.  “>& output.txt” specifies that all output should be written to the 

designated file.        

Parametric bootstrapping 

I created an R function called “MLEBootstrapSearch” which performs parametric 

bootstrapping.  Bootstrapping is a general approach for assessing the precision of parameter 

estimates by simulating the process of repeating an experiment and calculating measures of 

precision from the repeated “experiments” (DiCiccio and Efron 1996).  There are four main steps 

in parametric bootstrapping.   

1) Estimate the parameters. 

2) Generate many random data sets from a distribution based on the parameter 

estimates. 

3) Estimate the parameters from the random data sets. 

4) Calculate measures of precision, such as the standard error (SE) and confidence 

intervals (CIs), from the repeated parameter estimates.   

Aside from assessing the precision of parameter estimates, parametric bootstrapping 

enables us to explore how the choice of starting values, noisy data, and various model 

assumptions affect our ability to identify the true parameter values.   

MLEBootstrapSearch reads a file created by CreateBootstrapData which typically 

contains many data sets stochastically generated from the same model parameter values with 

noise added by sampling from a normal distribution with a mean of 0 and a chosen standard 

deviation.  In this context, I use the term “data set” to refer to one specific sampling of values 

from a distribution of data based on a set of parameters, with one data set having the same format 

as a gene from the empirical data.  “Data series” is a collection of data sets generated under the 
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same conditions, that is, using the same parameter values and model assumptions, but with noise 

added.  The user supplies one or more sets of values which are used as starting values along with 

the true parameters used to generate the simulated data.  MLELocalMultiSearch is used to 

perform parameter searches for all bootstrapped data sets and all sets of starting values.  The 

results are exported into a CSV file in a similar format as those from MLELocalMultiSearch, and 

a number of plots are created in a PDF file.  The function can be used to run the full procedure 

described, which can take a long time for many bootstrapped data sets, or to simply read in a 

previous analysis and change the appearance of the plots.  I created an R script called 

“bsSearch.R” which carries out this analysis on Newton in a similar manner as “mleSearch.R”.   

Visualizing model fits 

I created an R function called “PlotModelFit” which draws a plot showing the data used 

to fit the model as well as model predictions based on a set of parameter values.  It is used for 

visualizing how well a set of parameter values fit a data set.  It accepts all input arguments that 

can control ModelSolveI and CreateSignal, including the five translation parameters, 𝑖𝑚𝑎𝑥, 

𝜎𝑀𝐷, 𝛽Noise, and others.  Examples can be seen in the results in Figure 3.9.   

Visualizing UV absorbance profiles predicted by model parameters 

I created an R function called “CreateProfileImage” which draws a plot showing the UV 

absorbance profile that would be expected for one mRNA species based on a set of parameter 

values.  The UV absorbance profile would be expected to change based on the ribosome loading 

of mRNA, since higher ribosome loading causes mRNA to migrate farther through a sucrose 

density gradient.  An example is shown in Figure 3.5.  This plotting routine carries out four 

steps.   
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1) ModelSolveI is used to predict the ribosome class mRNA abundances from the 

parameter values.   

2) For each ribosome class 𝑖, the mean migration distance 𝜇𝑓𝑖𝑡(𝑖) is calculated from 

Equation 3.18.   

3) For each class 𝑖, for a series of positions from 0 to the maximum migration distance 

(for instance, 1000 positions), the probability densities are computed based on a 

normal distribution with a mean of 𝜇𝑓𝑖𝑡(𝑖) and standard deviation of 𝜎𝑀𝐷.  These 

probabilities correspond to the percent of mRNA from class 𝑖 that migrate to each 

position across the gradient.   

4) The expected UV absorbance profile for a single class 𝑖 is obtained by multiplying 

these probabilities by the predicted mRNA abundance for class 𝑖.   

5) Each class-specific profile and the total profile, which is the sum of the class-specific 

profiles, are plotted.   
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Interactive visualization tool 

In order to guide our intuition for how the parameters and different procedures affect the 

model predictions, I implemented the model as an interactive application called 

“PlotModelSolveI”.  PlotModelSolveI uses the “shiny” R package (Chang, Cheng et al. 2015), 

which provides methods for taking input through interactive controls such as slider bars, buttons, 

check boxes, and text input and displaying the output.  A screenshot is shown in Figure 3.6.  

PlotModelSolveI accepts nearly all inputs that have been discussed, including the translation 

parameters, a constant 𝑖𝑚𝑎𝑥 used in calculating the correction factors, and a gene-specific 𝑖𝑚𝑎𝑥 

used in computing the model solutions and converting them into polysome fraction abundances, 

correction factor method, and whether or not to include the dilution factors (first RNA 

 

Figure 3.5: UV absorbance profile. 

The x-axis is the sucrose gradient migration distance, and the y-axis is the relative UV 

absorbance.  For the parameter values shown in the box, the UV profile corresponding to each 

ribosome class (here, class 0 to 38) are plotted individually (“Class-specific”, in black).  The 

total profile, which is the sum across classes, is also plotted (“Total”, in red).  Note that the UV 

profile is for mRNA only; it does not contain the additional contribution from the ribosomal 

RNAs.        
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adjustment discussed above) in computing the correction factors.  PlotModelSolveI displays 

three plots.  The first is a plot of the predicted unmarked, marked, and total mRNA abundances 

in each ribosome class, the second is a plot of the predicted mRNA abundances in each 

polysome fraction, and the third is a plot of the predicted UV absorbance profile.       

 

   

Optimization of computational efficiency 

I profiled the R code to identify bottlenecks in the processing time for performing the 

parameter search.  NLLikFunction is the objective function that is minimized in the parameter 

search and is therefore called many times, so I aimed to optimize this function.  The main 

functions called by NLLikFunction are depicted in Table 3.5.  I used the “Rprof” function from 

the built-in “utils” package in R to determine what percent of the overall processing time of 

NLLikFunction were spent on each function.  Rprof works by checking at specific time intervals 

(by default, every 20 milliseconds) which function is currently being executed.  I executed 

 
Figure 3.6: PlotModelSolveI interactive visualization tool 
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NLLikFunction 1000 times and used Rprof to calculate the time and percent of the total time 

spent on each function called by it.   

As shown in Table 3.5, the bulk of the processing time for NLLikFunction, 94.34%, was 

spent executing ModelSolveI.  ModelSolveI spent most of its time executing 

CalcUnmarkedClass (82.66% of the total for NLLikFunction), and CalcUnmarkedClass spent 

most of its time executing SubDet (58.94% of the total for NLLikFunction).  SubDet computes 

the matrix sub-determinants corresponding to each ribosome class, which are used to solve the 

model, using the recurrence relation in Equation 3.10, and it must be called for every ribosome 

class in the system.  SubDet had already been sped up using memoization, that is, storing the 

result each time it is called with new inputs and returning the pre-computed results when it is 

called with the same inputs again, which avoids repeating the same calculation.  Memoization 

helps speed up recurrence functions because they repeat the same calculation multiple times.  

Memoization was done using the “memoise” function from the “memoise” R package 

(Wickham, Hester et al. 2016).   

I did not see a clear way to further optimize SubDet in the R code.  However, code 

written in the C++ language can be pre-compiled into an R function using the Rcpp R package 

(Eddelbuettel, François et al. 2011), which can provide a speed-up.  Therefore, I implemented 

SubDet (memoized) and several other R functions in C++.  I used the “microbenchmark” 

function from the “microbenchmark” R package to compare the processing times of 

NLLikFunction written in R and C++.  As shown in Table 3.5, the C++ version of SubDet was 

approximately 37 times faster than the R version.  Ultimately, the optimized version of 

NLLikFunction was about three times faster than the original version.  This typically resulted in 

approximately a 3-fold speed-up in the parameter search for any number of genes and sets of 
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starting values.  A single parameter search using the optimized NLLikFunction on one CPU can 

take anywhere from a few seconds to over 30 seconds, depending on the starting values, the 

search algorithm, and 𝑖𝑚𝑎𝑥.  Efforts will continue to further improve the efficiency of the code.       

 

Results 
 

A simulation study 
 

The ultimate goal of this research is to estimate the translation parameters for many genes 

by fitting the model to the empirical data.  Estimating the parameters poses a number of 

challenges, however.  The goal of this simulation study was to better understand two main 

challenges in the parameter estimation process.  First, because the parameter search is a local 

minimization of the objective function, there is no guarantee that a given set of parameter 

estimates are the best ones.  I demonstrate that with poor starting values, some search algorithms 

can yield sub-optimal model fits, likely because they become trapped in local minima where the 

objective function is minimized in the local parameter space while better ones exist elsewhere.  

The “nlminb” algorithm (a Newton method), however, significantly outperforms the others in 

finding parameter estimates that fit the data best, regardless of the starting values.   
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Table 3.5: Improvement in the efficiency of the objective function used in the parameter 

search 

Function Time before 

Optimization 

(% total time) 

Time after 

Optimization 

(% total time) 

Benchmark test 

[median(lq - uq)] 

Before After 

NLLikFunction 

 

 

10.96 secs 

(100%) 

4.82 secs 

(100%) 

15.1 ms 

(14.6-15.9) 

5.95 ms 

(5.79-6.33) 

            CreateSignal 10.88 secs 

(99.27%) 

4.72 secs 

(97.93%) 

16.4 ms 

(14.6-16.0) 

5.9 ms 

(5.7-6.1) 

                      ModelSolveI 10.34 secs 

(94.34%) 

4.36 secs 

(90.46%) 

14.27 ms 

(13.8-15.0) 

5.2 ms 

(5.1-5.4) 

                               CalcUnmarkedClass (eqs. 3.10-.12) 9.06 secs 

(82.66%) 

3.44 secs 

(71.37%) 

12.3 ms 

(12.1-13.0) 

3.8 ms 

(3.6-4.1) 

                                                SubDet (eq. 3.10) 6.46 secs 

(58.94%) 

0.16 secs 

(3.32%) 

9.5 ms 

(9.2-10.0) 

0.26 ms 

(0.24-0.28) 

                                CalcMarkedClass (eq. 3.13) 1.28 secs 

(11.68%) 

0.90 secs 

(18.67%) 

1.53 ms 

(1.47-1.63) 

1.35 ms 

(1.28-1.43) 

The arrangement of the functions illustrates the order in which they are called by NLLikFunction.  For example, 

ModelSolveI calls the function CalcUnmarkedClass, which calls SubDet.  Once CalcUnmarkedClass completes, 

ModelSolveI calls CalcMarkedClass.  NLLikFunction was executed 1000 times, so the timings are estimates of 

the amount of time spent on a particular function when NLLikFunction was run 1000 times.  The percentages 

should not add up to 100% because each function is called within another function, and they are the percentages 

of the total time of NLLikFunction spent on that function.  Microbenchmark was used to compare the processing 

times before and after optimizing the code.  The functions were run 100 times and the distributions of processing 

times compared.  The values in the “Benchmark test” column are the median processing time, with the lower and 

upper quartiles in parentheses.  secs = seconds; ms = milliseconds.  Functions that correspond to specific 

equations in this dissertation are listed with the equation number in parentheses.      
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The second challenge is noise in the data.  With more noise in the data, multiple sets of 

parameter values can fit the same data equally well.  When this is the case, good parameter 

estimates that are close to the true parameter values cannot be distinguished from bad ones based 

on how well they fit the data, making the parameters unidentifiable.  Fortunately, certain 

ribosome loading patterns only result from parameter values that are in specific proportions to 

each other, in which case the relationships among parameters are constrained by the data.  In this 

case, keeping additional model parameters constant limits the range of parameter estimates that 

fit the data, making the parameters more identifiable.  More noise in the data can also make 

parameter estimates less reliable, reflected in wider confidence intervals (CIs) of parameter 

estimates.  Used throughout this simulation study, parametric bootstrapping helps in assessing 

the reliability of parameter estimates, given a certain amount of noise in the data.  Here, I first 

briefly describe the generation of data for this simulation study.  I then describe these 

observations in more detail, all the while discussing their implications for the overall goals of 

this research.           

 

Generation of data by simulation 

Here, “data set” refers to one sampling of data from a distribution based on a set of 

parameter values.  One data set has the same format as the microarray data for one gene, 

consisting of three replicate values from nine polysome fractions.  “Data series” refers to a 

collection of 100 replicate data sets generated from the same parameter values, with noise 

sampled from a log-normal distribution with a specific standard deviation (SD).  I used 

PlotModelSolveI to identify three sets of parameter values that yield low, medium, and high 

ribosome loading profiles (Table 3.6), and I refer to these sets of parameter values and the data 
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as “low RL”, “medium RL”, and “high RL”, respectively.  The low RL data results from a high 

transcription rate combined with relatively low values for the other parameters.  The medium RL 

data results from the initiation rate being moderately higher than the marking rate.  The high RL 

data results from a high initiation rate combined with low values for the other parameters.  I used 

CreateBootstrapData to generate twelve data series, including the three ribosome loading profiles 

and four levels of noise.  Ribosome class abundances, UV absorbance profiles, and polysome 

fraction abundances predicted by the three sets of parameter values are shown in Figure 3.7.  𝜽 

(“theta”) refers to the true parameter values used to generate a data set or series, and can refer to 

one or any number of the five translation parameters.      

 

 

Comparison of algorithms for local parameter searches 

I used MLEBootstrapSearch to run parameter searches for the three data profiles listed in 

Table 3.6 with no noise added to see how well different search algorithms could identify the true 

parameter values (𝜃).  I used 11 of the 15 algorithms listed in Table 3.2.  The exceptions were  

“CG” , “hjkb”, “Rcgmin”, and “Rvmmin” due to various technical issues.  I used 8 sets of 

starting values chosen arbitrarily and ranging from 10,000-fold below to 10,000-fold above 𝜃.  I 

Table 3.6: Parameter values used to generate data with a low, medium, or high ribosome 

loading profile 

Parameter Low ribosome 

loading 

Medium 

ribosome 

loading 

High ribosome 

loading 

Transcription (𝝀) 1000 10 1 

Initiation (𝜿) 1 10 1000 

Marking (𝝁) 1 1 1 

Degradation (𝜹) 1 10 1 

Elongation (𝝉) 1 1 1 
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compared the algorithms in terms of how many good model fits they returned out of 8, as well as 

the total time required for MLEBootstrapSearch to complete the 8 searches.  These and all 

subsequent analyses were carried out on a local Windows 8 computer with 2 physical cores (4 

logical cores), specifically 1.8GHz Intel Core i7 (4th gen) processors.  4 searches were run 

simultaneously.  I considered a model fit “good” if all 4 parameter estimates were within 1% of 

their respective 𝜃.  Table 3.7 gives the numbers of good model fits out of 8 and the run times.    

Just under half of the model fits were nearly perfect, yielding parameter estimates nearly 

identical to 𝜃 along with low negative log-likelihoods (NLLs), so good parameter estimates were 

distinguishable from bad ones.  The nlminb algorithm was the clear winner, yielding parameter 

estimates that were most often virtually identical to 𝜃 along with the lowest NLLs.  For the low 

RL data, all 4 parameter estimates in all 8 model fits were within 1e-7 of 𝜃 and NLLs were 

approximately 1e-14.  For the medium and high RL data, 7 of 8 searches yielded equally good 

parameter estimates and NLLs.  Newuoa performed nearly as well in terms of model fits, but was 

3-4 times slower.  Other algorithms performed nearly as well for parameter searches begun near 

𝜃 but poorly for searches begun farther away.  Nlminb was used for all subsequent parameter 

searches.     
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Figure 3.7: Ribosome loading profiles generated for the simulation study. 

The low (“Low RL”), medium (“Medium RL”), and high (“High RL”) 

ribosome loading profiles used in this simulation study are visualized using 

various plots.  (A) Ribosome class abundances, (B) UV absorbance profiles, 

and (C) polysome fraction abundances.  See PlotClassAbundances and 

PlotModelSolveI procedures for details about (A) and CreateProfileImage 

for (B).  Fraction abundances in (C) were produced from the 

PlotFractionAbundances function and include the RNA and cDNA yield 

corrections and background signal described in the text.   

Low RL                    Medium RL                    High RL 
A 

B 

C 
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 Noise makes the model parameters unidentifiable 

As demonstrated, parameter searches using the nlminb algorithm consistently identified 

the true parameter values (𝜃) for the three data profiles with no noise, and good parameter 

estimates could be distinguished from bad ones because they fit the data much better.  The bad 

model fits resulting from poor starting values were obvious, yielding abnormally large negative 

log-likelihoods (NLLs) and parameter estimates that were far from 𝜃.  In that sense, the 

parameters were highly identifiable.  I demonstrate here that noise in the data does not 

necessarily cause higher occurrences of bad model fits (i.e., bad NLLs).  However, noise can 

make parameters less identifiable because bad parameter estimates can fit the data as well as 

good ones.    

Table 3.7: Performance of 11 search algorithms 

 Low ribosome loading Medium ribosome loading High ribosome loading 

Algorithm No. within 1% Time (s) No. within 1% Time (s) No. within 

1% 

Time (s) 

Nelder-

Mead 

1 

13 

1 

21 

1 

16 

BFGS 3 31 3 17 4 27 

L-BFGS-B 5 18 4 31 6 29 

nlm 3 16 4 12 3 13 

nlminb 8 13 7 20 7 18 

spg 4 338 0 1050 3 284 

ucminf 3 9 6 21 4 141 

newuoa 8 66 6 72 6 47 

bobyqa 6 57 5 119 6 45 

nmkb 2 11 2 21 2 17 

SANN 0 211 0 486 0 465 

Parameter searches were run for the low, medium, and high ribosome loading profiles generated from the 

parameter values in Table 3.6 with no noise.  11 search algorithms were used with 8 sets of starting values 

ranging from 10,000-fold below to 10,000-fold above the true parameter values (𝜃).  The numbers of model fits 

out of 8, for which all 4 parameter estimates were within 1% of 𝜃, are given in the column “No. within 1%”.  

The times in seconds for MLEBootstrapSearch to complete the 8 searches, running 4 in parallel, are given in the 

column “Time (s)”.     
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As mentioned above, I generated data from the same three sets of parameter values with 

varying amounts of noise.  I used CreateBootstrapData to generate 12 data series consisting of 

100 data sets each.  Noise was sampled from a log-normal distribution with a standard deviation 

(SD) of 0.01, 0.1, 0.33, and 0.66, with 0.33 being the average over the polysome fractions across 

all genes in the empirical data.  I ran the parameter searches for these data using 9 sets of starting 

values, including the same as before (ranging from 10,000-fold below to 10,000-fold above 𝜃, 

the true parameter values for each data profile) in addition to 𝜃.  900 parameter searches were 

run on each data series.   

In this simulation study, the true parameter values (𝜃) that produced the data were 

known.  With knowledge of 𝜃, the parameter estimates could be compared in terms of how close 

they were to 𝜃.  Typically, for a given data set, most of the model fits resulting from different 

starting values had low NLLs that were equal to each other to many significant digits, along with 

parameter estimates that were very similar, though to fewer significant digits.  This majority set 

of model fits could be considered to have “good” parameter estimates and NLLs.  Other model 

fits, however, had parameter estimates that were farther from 𝜃, so these estimates could be 

considered “bad”.  In some cases, the bad parameter estimates yielded NLLs that were higher 

than and thus distinguishable from the group of nearly identical, low NLLs.  For that reason, in 

these cases, the parameters would be considered identifiable.  In other cases, the bad parameter 

estimates yielded NLLs that were indistinguishable from those of the good estimates.  In those 

cases, the parameters would be considered less identifiable.  This would be a problem for the 

empirical data, for which we do not know 𝜃 a priori, because we must rely on the NLLs to 

decide which parameter estimates are best.   
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Because noise was added to the data, the set of very similar, good parameter estimates fit 

the data better than exactly 𝜃.  Therefore, the medians of the parameter estimates for a given data 

set, rather than exactly 𝜃, reflected the best-fitting parameter values for the data set.  To 

distinguish the majority set of very similar, good parameter estimates from the bad ones, I 

considered estimates that were within 1% of their median as good, while the others were 

considered bad.  To distinguish the set of nearly identical, lower NLLs from the larger ones, I 

used a stricter criterion, where an NLL was considered bad if it was larger than the minimum 

NLL after rounding to six significant digits.  This criterion was chosen because in this study it 

distinguished the majority set of nearly identical, low NLLs for a given data set from the 

minority set of NLLs that were quite similar to them, but nevertheless larger.  

For each data series, I determined how many model fits had a good NLL out of those 

with at least one bad parameter estimate, and these results are given as fractions in Table 3.8.  

More model fits with bad parameter estimates (denominator) indicate that the parameter 

estimates were relatively more sensitive to the choice of starting values, and a higher number of 

those with good NLLs indicates that the parameters were less identifiable, since bad parameter 

estimates fit the data as well as good ones.  The degradation rate (𝛿) estimates exhibited more 

variability than the other parameter estimates without significantly affecting the model fits, for 

reasons that are discussed below.  𝛿 was thus excluded from the criteria for determining whether 

a model fit had good or bad parameter estimates.   
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For the low and high RL data, more noise was associated with lower parameter 

identifiability.  The low RL data with SD = 0.01 only yielded 3 model fits where one or more 

parameter estimates were considered bad, based on being more than 1% different from the 

median of 9 estimates for the same data set (Table 3.8).  None of the bad parameter estimates 

yielded a good NLL.  As the noise in the low RL data increased, more model fits yielded bad 

parameter estimates, and a higher percentage of them yielded good NLLs.  The high RL data also 

yielded more model fits with bad parameter estimates as the noise in the data was increased, and 

while none of the model fits with bad parameter estimates yielded good NLLs for the data with 

SD = 0.01 or 0.1, these numbers did increase for the data with SD = 0.33 and 0.66.  The medium 

RL data yielded a similar number of model fits with bad parameter estimates for data with all 

levels of noise, but out of these, none yielded good NLLs.  In summary, more noise was 

associated with decreased parameter identifiability, being defined here as  for the low and high 

RL data, but not the medium RL data.     

Noise makes parameters estimates less reliable 

More noise in the data can also decrease the reliability of parameter estimates in that they 

exhibit more variation when the data are re-sampled, or bootstrapped.  Figure 3.8 shows the 

distributions of negative log-likelihoods (NLLs) and parameter estimates resulting from searches 

Table 3.8: Decreasing parameter identifiability with increasing noise  

Data SD = 0.01 SD = 0.1 SD = 0.33 SD = 0.66 

Low RL 0/3 13/66 321/417 472/596 

Medium RL 0/149 0/144 0/137 0/138 

High RL 0/98 0/101 60/192 139/301 

Parameter searches were carried out for 12 data series with the indicated ribosome loading (RL) profiles and 

levels of noise, based on the standard deviations (SDs) of the distributions from which the noise was sampled.  

There were 900 model fits for each data series, resulting from parameter searches using 9 sets of starting values 

for 100 data sets.  The table gives the numbers of model fits that had good negative log-likelihoods (numerators) 

out of those that had bad parameter estimates (denominators).  “Good” and “bad” are defined in the text. 
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begun at the true parameter values (𝜃) for the low, medium, and high ribosome loading (RL) data 

with different amounts of noise.  Consistent with the previous observations, increasing noise 

most dramatically affected the parameter estimates for the low RL data, with more noise 

associated with wider confidence intervals (CIs) for all of the parameter estimates, especially 

data with SD = 0.33 and 0.66.  More noise also yielded wider CIs for the high RL data, 

especially the initiation (𝜅) and degradation (𝛿) rate estimates for data with SD = 0.33 and 0.66.  

As before, parameter estimates for the medium RL data were the least impacted by increasing 

levels of noise.   

One might reasonably speculate that parameter estimates that are closer to 𝜃 fit the data 

better than those that are farther away, but that is not the case.  Figure 3.9 shows an example 

where two very different sets of parameter estimates fit the same data nearly equally well.  The 

example is one data set from the low RL data with SD = 0.33.    
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Figure 3.8: Distributions of negative log-likelihoods and parameter estimates for data with 

different amounts of noise. 

Parameter searches were run for the low (A), medium (B), and high (C) ribosome loading (RL) 

data generated from the parameter values in Table 3.6, with different amounts of noise, as 

indicated by their standard deviations (SDs) on the right.  The distributions of parameter 

estimates are on the natural log scale.  The red lines correspond to the true parameter values (𝜃) 

used to generate the data, and the black dashed lines are at the bounds of the 95% confidence 

intervals.  The 5 columns of plots correspond to the 5 labels at the top.  NLL = negative log-

likelihood.     
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Figure 3.8 continued.    
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  Keeping additional parameters constant can improve identifiability 

As I demonstrated above, noise in the data can make parameters less identifiable, where 

multiple sets of parameter values fit the same data equally well.  I investigated how multiple sets 

of parameter values can fit the same data, and found that even when individual parameters are 

poorly constrained by the data, relationships among them can still be highly constrained.  In 

other words, to yield certain ribosome loading profiles, the parameters can be adjusted in a 

variety of ways as long as they are kept in the same proportions to each other.  In this section, I 

first describe the constraints in the relationships among the parameters in the data used in this 

simulation study.  I then show how these constraints enable some parameters to be more 

precisely estimated, despite noise, by keeping others constant.  I use the data with the highest 

level of noise (SD = 0.66) to illustrate these concepts, since those data suffered the most from a 

lack of parameter identifiability.    

 
Figure 3.9: Example of different sets of parameter values that fit the same data well. 

The original data (“Data” in black) and model predictions (“Model” in red) are shown 

for one data set from the low ribosome loading data with SD = 0.33.  The negative 

log-likelihoods (NLLs) are indicated above the plots.  The parameter values are given 

in the right legend.  See PlotModelFit procedure and Table 3.3 for details and 

symbols used.  
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Constraints in relationships among model parameters 

In the low ribosome loading (RL) data, the ribosome class mRNA abundances (Figure 

3.7A) and resulting polysome fraction abundances (Figure 3.7C) exist in a certain equilibrium 

resulting from a high transcription rate (𝜆) and lower initiation (𝜅) and marking (𝜇) rates that are 

equal to each other.  The same equilibrium results if transcription is slower but initiation is 

sufficiently faster than marking.  The slower transcription rate would cause less mRNA to enter 

the system, but the higher initiation rate, relative to marking, would cause a higher percent of the 

mRNA to move up in ribosome class instead of entering the marked classes where mRNA would 

only move down in class.  This relationship among the three parameters is evident in the nearly 

perfect negative correlation (𝑅2 = 0.9987) between log (𝜆) estimates and log(κ) − log (𝜇) across 

the 100 data sets, which is depicted in Figure 3.10A.   

          

As the initiation rate gets increasingly larger than the marking rate, the transcription rate 

decreases, yielding nearly the same model predictions as 𝜃.  The medium RL data show a similar 

relationship, though not quite as strong (𝑅2 = 0.89), and the range of parameter values is much 

 
 

Figure 3.10: Relationships among estimated rates of transcription, initiation, and 

marking.   

For the low (A), medium (B), and high (C) ribosome loading (RL) data, the 

differences between the ln (initiation) and ln (marking) rate estimates are plotted 

along the x-axis, and ln (transcription) is plotted along the y-axis.  The 𝑅2 values 

are given in the upper right corner of each plot.  
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smaller than in the low RL data.  This correlation is not present in the high RL data (𝑅2 = 0.01), 

however.  The high RL data was based on a high initiation rate (1000) and lower rates for the 

other parameters.  A wide range of initiation rate estimates fit these data well, due to a 

combination of factors.  First, the majority of mRNA in each ribosome class from 21 to 30 is 

predicted to migrate into fraction 11, based on the migration distance function (Equation 3.18) 

and the fraction location probabilities (Equation 3.19).  Second, with the high initiation rate, 96% 

of the unmarked mRNA is predicted to be in class 21 or higher (Figure 3.7A, “High RL”).  

Therefore, most of the unmarked mRNA is found in fraction 11 (Figure 3.7C, “High RL”).  With 

nearly all of the unmarked mRNA in fraction 11, increasing the initiation rate has little effect on 

the distribution of mRNA among polysome fractions.  It could be argued that a higher 𝑖𝑚𝑎𝑥 may 

be more appropriate when the initiation rate is very high, as this would allow more mRNA to 

populate fraction 12, which cannot possibly have more mRNA than fraction 11 with an 𝑖𝑚𝑎𝑥 = 

30.   

The distributions of degradation rate (𝛿) estimates were especially wide for all but the 

lowest noise level (Figure 3.8).  In the low RL data, where mRNA was abundant in the NP 

fraction (Figure 3.7C, “Low RL”), changing degradation alone would affect marked class 0 (𝑚0
∗) 

and therefore the NP fraction.  The model system can compensate for changing the degradation 

rate by changing the transcription and marking rates proportionately in the same direction, which 

maintains the same amount of mRNA in 𝑚0
∗ .  Figure 3.11 shows plots of 𝛿 vs. 𝜆 and 𝜇 estimates 

for the 100 data sets in the three data series with SD = 0.66.  The relationships among 𝛿, 𝜆, and 𝜇 

appear constrained for 56 low RL data sets in the lower left region of Figure 3.11A, where 𝛿 

estimates are highly positively correlated with 𝜆 (𝑅2 = 0.995) and 𝜇 (𝑅2 = 0.988).  The other 44 
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low RL data sets had higher 𝛿 estimates which, for unknown reasons, were not correlated with 

the 𝜆 or 𝜇 estimates. 

 

  

In the medium RL data, the NP fraction has a low abundance of mRNA (Figure 3.7C, 

“Medium RL”).  Increasing degradation alone has little effect on the system, so any value higher 

than 𝜃 (10) can fit the data well.  Accordingly, there is no correlation between the degradation 

rate estimates above 10 and the other parameters (𝑅2 = 0.0013, 0.013, and 0.0022 for 

correlations between 𝛿 and 𝜆, 𝜅, and 𝜇, respectively; Figure 3.11B shows plots of 𝛿 vs. 𝜆 and 𝜇).  

Decreasing degradation alone, however, would increase accumulation of mRNA in 𝑚0
∗ , but the 

system can compensate by decreasing the other three parameter values in concert.  Therefore, the 

 
 

 

Figure 3.11: Relationships among estimated rates of transcription, marking, and 

degradation. 

Estimates of the degradation rate (𝛿) are plotted along the x-axis against estimates of 

transcription (𝜆, black) and marking (𝜇, red) rates along the y-axis.  Both axes are on the 

natural log scale.  The parameter estimates are those resulting from parameter searches for 

the 100 data sets from the low, medium, and high ribosome loading (RL) data with SD = 

0.66.  In (A), the box defines the range of 𝛿 estimates that were highly correlated with 𝜆 

and 𝜇, and the regression lines and 𝑅2 values correspond to the points in the box.  In (B), 

the vertical dashed line is at ln(10) (the true 𝛿 value), and the 𝑅2 values correspond to the 

data to the left of the line.  In (C), the parameter estimates are poorly correlated so no 

regression lines are drawn.   
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degradation rate estimates below 10 are moderately positively correlated with the others (𝑅2 = 

0.38, 0.30, and 0.36 for correlations with 𝜆, 𝜅, and 𝜇, respectively).  The reason why these 

correlations are weaker than those in the low RL data may be because there are more ways to 

compensate for changes in the degradation rate than in the low RL data, so changes in the 

degradation rate are moderately correlated with all three of the others rather than strongly with 

one or two.  In the low RL data, for the 56 data sets that have low degradation rate estimates, the 

system depends almost entirely on modulating transcription and marking, and not initiation, for 

compensating for changes in degradation, while in the medium RL data, the system can modulate 

transcription, initiation, and marking in a variety of ways in order to compensate for changes in 

degradation and yield the same model predictions. 

In the high RL data, the NP fraction also has very little mRNA (Figure 3.7B, “High RL”).  

Therefore, increasing the degradation rate alone has little effect on the model predictions.  

Decreasing the degradation rate alone 100-fold would increase accumulation of mRNA in 𝑚0
∗ .  

However, the parameter searches did not return any degradation rate estimates for the high RL 

data that were this low, likely because there were no values for the other parameters that fit the 

data well when combined with such low degradation rate values.  

In summary, noise in the data can make parameters less identifiable, but relationships 

among the parameters can still be highly constrained by some data.   

Keeping some parameters constant can improve identifiability of others 

As I have demonstrated, noise can make parameters less identifiable, where different 

starting values yield different parameter estimates that fit the same data equally well.  

Nevertheless, constraints in the relationships among parameters from certain data, described 
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above, make it possible to increase the identifiability of those that are estimated by keeping 

others constant.       

I ran parameter searches on the low, medium, and high RL data with the highest level of 

noise (SD = 0.66), estimating two or three parameters, having already carried out searches where 

four were estimated.  As before, I used 9 sets of starting values for each data series, ranging from 

10,000-fold below to 10,000-fold above the true parameter values (𝜃), in addition to 𝜃, for a total 

of 900 model fits for each data series.  I used the same criteria as before for judging the NLLs 

and parameter estimates as “good” and “bad”.  I only considered 𝜅 and 𝜇 in judging whether the 

parameter estimates from a model fit were good or bad, since they were estimated in every 

search.  With these two criteria, I determined how many model fits for each data series had a 

good NLL out of those with either a bad 𝜅 or 𝜇 estimate.  As described above, more model fits 

with bad parameter estimates (denominator) indicate that the parameter estimates were relatively 

more sensitive to the choice of starting values, and a higher percentage of those with good NLLs 

indicates that the parameters were less identifiable, since bad parameter estimates fit the data as 

well as good ones.  These proportions are given in Table 3.9 for parameter searches where two, 

three, and four parameters were estimated.   

 

Table 3.9: Parameter identifiability with different numbers of parameters estimated 

Data 𝜿, 𝝁 𝜿, 𝝁, 𝝀 𝜿, 𝝁, 𝜹 𝝀, 𝜿, 𝝁, 𝜹 

Low RL 0/1 82/94 8/34 472/596 

Medium RL 0/175 0/70 0/148 0/138 

High RL 126/306 160/319 118/321 139/301 

Parameter searches were carried out for low, medium, and high RL data series generated from the parameter 

values in Table 3.6, all with a standard deviation (SD) of 0.66.  There were 900 model fits for each data series, 

resulting from parameter searches using 9 sets of starting values for 100 data sets.  The table gives the numbers 

of model fits that had good negative log-likelihoods (numerators) out of those that had bad parameter estimates 

(denominators).  “Good” and “bad” are defined in the main text.  𝜅=initiation; 𝜇=marking; 𝜆=transcription; 

𝛿=degradation. 
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For the low RL data, when only 𝜅 and 𝜇 were estimated, only 1 out of 900 model fits had 

a bad parameter estimate, but its NLL was also bad, making 𝜅 and 𝜇 identifiable.  When 𝜆 was 

added to the parameters being estimated, 94 model fits had bad parameter estimates, and 82 of 

those had good NLLs.  Thus, good 𝜅 and 𝜇 estimates became less distinguishable from bad ones 

and therefore less identifiable.  Estimating 𝛿 instead of 𝜆 improved identifiability, as 34 model 

fits had bad parameter estimates, with only 8 of them yielding good NLLs.  Estimating four 

parameters yielded the most model fits with bad parameter estimates, with the largest percentage 

of them having good NLLs.   

Because the relationships between 𝜆 and 𝜅 and 𝜇 were highly constrained, keeping 𝜆 

constant limited the range of values that 𝜅 and 𝜇 could take to fit the data well.  Keeping 𝛿 

constant yielded fewer model fits with bad parameter estimates compared to when four 

parameters were estimated, but most of them yielded good NLLs.  This is likely because the 

relationships between 𝛿 and 𝜆 and 𝜇 were not constrained by the low RL data.  Although their 

estimates were highly correlated for 56 of 100 data sets (Figure 3.11A), there were many other 

values that 𝛿 could take that fit the data well that were not dependent on 𝜅 or 𝜇.  Therefore, wide 

ranges of 𝜅, 𝜇, and 𝜆 fit the data well, so parameter searches that begun far away from 𝜃 yielded 

bad parameter estimates that still fit the data well based on their NLLs.  In addition, since the 

data have noise, exactly 𝜃 would not be expected to fit the data as well as another combination of 

values, so fixing parameters at 𝜃 could potentially lead to worse model fits, although this 

possibility has not been systematically explored.    

For the medium RL data, even with four parameters estimated, none of the 138 model fits 

with bad parameter estimates yielded good NLLs.  Thus, the parameters were already 
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identifiable in this case because good parameter estimates could be distinguished from bad ones, 

so keeping additional parameters constant provided little benefit.   

For the high RL data, when four parameters were estimated, 139 model fits yielded good 

NLLs out of 301 that had bad parameter estimates.  Keeping additional parameters constant did 

not improve identifiability for these data because the relationships among them were not 

constrained by the data.  For example, even when only 𝜅 and 𝜇 were estimated for the high RL 

data, 126 model fits yielded good NLLs out of the 306 that had bad parameter estimates.    

Insights from the simulation study 

The goals of the simulation study were to better understand challenges in estimating the 

model parameters in order to guide future work with the empirical data.  One challenge is that 

the parameter search is a local minimization of the objective function, which can yield sub-

optimal model fits when poor starting values are used.  Comparing 11 search algorithms 

indicated that the nlminb algorithm performed nearly perfectly in identifying the true parameter 

values (𝜃) for data with no noise, even with starting values that varied 100 million-fold.  Nlminb 

was several times faster than the newuoa algorithm, the only one that gave comparable 

performance in terms of accuracy.  The nlminb algorithm generally avoids getting trapped in 

local minima if better model fits exist elsewhere in the parameter space.   

The second challenge in estimating the parameters is noise in the data.  I demonstrated 

that with a low amount of noise in the data, the parameter estimates do not depend on the choice 

of starting values, as most of the estimates resulting from different starting values for a given 

data set were nearly identical.  However, with more noise, searches using different sets of 

starting values can yield widely varying sets of parameter estimates that fit the same data equally 

well.  This problem particularly affected the low and high ribosome loading (RL) data, while not 
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affecting the medium RL data as dramatically.  When good and bad parameter estimates fit the 

data equally well, the parameters are unidentifiable.  More noise can also make parameter 

estimates less reliable, where widely different parameter estimates are obtained when the data are 

re-sampled.  As with identifiability, noise particularly affected the reliability of the parameter 

estimates for the low and high RL data, with more noise associated with wider confidence 

intervals (CIs) of each parameter estimate across replicate data sets.   

Although noise can decrease the identifiability of some parameters and the reliability of 

their estimates, the relationships among parameters can be highly constrained by some data.  I 

explained how the low and medium RL data could result from many combinations of 

transcription, initiation, and marking rates, as long as their ratios stay the same.  This relationship 

was evident in the strong correlations among the transcription, initiation, and marking rate 

estimates in the low and medium RL data.  The high RL data did not exhibit such constraints, 

however.  This was because the distribution of mRNA abundances was shifted toward the upper 

polysome fractions as much as possible, so any combination of initiation and marking rates 

would yield the same model predictions as long as the initiation rate was sufficiently higher than 

the marking rate.     

Lastly, I demonstrated that constraints in the relationships among parameters make it 

possible to improve identifiability by keeping additional parameters constant.  The low RL data 

suffered from poor parameter identifiability, but the transcription, initiation, and marking rates 

had to be in the correct proportions to each other in order to fit the data well.  Keeping one of 

those parameters constant, as I demonstrated with the transcription rate, limits the values of the 

other parameters that can fit the data well.  As a result, parameter estimates resulting from 

different starting values become more consistent, and poor parameter estimates are more easily 
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distinguished from good ones because they do not fit the data as well, based on their NLLs.  In 

this way, keeping additional parameters constant can make those that are estimated more 

identifiable.  The medium RL data did not suffer from poor parameter identifiability, so keeping 

additional parameters constant did not improve the parameter estimation.  The high RL data, as 

discussed, did suffer from poor parameter identifiability, but it had no constraints in the 

relationships among the parameters.  Thus, keeping additional parameters constant did not 

improve the parameter search for these data either. 

If keeping additional model parameters constant improves the identifiability of those that 

are estimated, future success in estimating the model parameters for empirical data may require 

empirical knowledge of certain parameter values.  Narsai et al. measured genome-wide decay 

rates of mRNAs in Arabidopsis (Narsai, Howell et al. 2007).  Conceivably, these decay rates 

could be combined with our empirical measurements of mRNA abundance in order to infer 

transcription rates, and the transcription rate, possibly in addition to the degradation rate, could 

be kept constant.  One limitation of this approach might be that microarray expression signals 

cannot typically be compared across different genes due to variation in hybridization properties, 

while RNA-seq measurements are probably more proportional to the true number of mRNA 

molecules per gene in a biological sample.  A number of groups have compared mRNA 

measurements between microarrays and RNA-seq in Arabidopsis (Giorgi, Del Fabbro et al. 

2013).  These data could be used to identify genes for which microarray measurements are good 

predictors of their absolute mRNA abundance, and rates of transcription and degradation that are 

at least proportional to their real rates for these genes could be estimated. 
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Fitting the model to empirical data     

  
The ultimate goal of the research in this chapter is to accurately estimate the translation 

parameters for many genes across the Arabidopsis genome.  As mentioned in the abstract and 

methods sections, efforts to fit the model to the empirical data have been unsuccessful to date.  

Possible sources of problems and suggestions for future work are considered in the discussion 

section below.  Here, I briefly describe typical results from fitting the model to the empirical data 

in order to illustrate the need for future improvement. 

I have focused on a set of 27 genes for testing the model fitting procedure on the 

empirical data.  I selected the genes using the SelectAOV procedure, which first categorizes 

genes according to the polysome fraction where their mRNA abundance is highest, and then 

sorts the genes in each category according to a p-value.  The p-value is from a one-way analysis 

of variance (ANOVA) where the replicate measurements in each fraction are considered as 

treatment groups, so lower p-values reflect higher ratios of between-fraction/within-fraction 

variance.  The reasoning behind this approach is that these genes should represent a range of 

ribosome loading states and should have low noise and distinguishable polysome profiles.  I 

selected 27 genes using this approach, with 3 genes having their peak mRNA abundance in each 

polysome fraction.  The ANOVA p-values for these 27 genes ranged from 1.5e-13 to 5.9e-9, 

while the median 50% of all 14,199 genes was 0.0012 to 0.36.  The polysome profiles for these 

genes are shown as a heatmap in Figure 3.12.   
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I ran parameter searches on these 27 genes in the same way as in the simulation study, 

using the nlminb search algorithm and 24 sets of starting values ranging from 0.0001 to 1e7, 

totaling 648 parameter searches.  The lowest negative log-likelihoods (NLLs) for the 27 genes 

ranged from 51.5 to 226.2.  Model fits for two genes with the lowest NLLs are shown in Figure 

3.13.  Clearly, the best-fitting parameter estimates do not fit the data well.  The model 

predictions are generally on a similar scale as the empirical data, but their shapes are different.  

For both genes, mRNA is relatively abundant in the higher fractions, including fraction 12, but 

the abundances predicted by the parameter estimates have their peak in fraction 10 and are lower 

in fraction 11, with their lowest level in fraction 12.            

 
Figure 3.12: Heatmap of empirical mRNA levels for 27 genes. 

The rows (genes, indicated by their Affymetrix probe ID) were arranged by hierarchical 

clustering, using the Pearson coefficient as the similarity metric.  For coloring, the data in each 

row were scaled so that the colors indicate their Z-scores, which are the number of standard 

deviations below or above the mean of the row.  The column labels indicate the fraction and 

replicate number (e.g., “NP 1” and “F10 2” are non-polysomal replicate 1 and fraction 10 

replicate 2, respectively).        
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There were several similarities between the results of parameter searches in the 

simulation study and for the empirical data.  First, as in the simulation study, the individual 

parameters were not generally constrained by the data, as the parameter estimates resulting from 

different starting values varied widely.  For instance, the relative standard deviations (RSDs) of 

the initiation rate estimates over the 24 model fits for these two genes were 2.7e111% and 

8.2e98% of their medians.  Second, while the parameter estimates varied widely, they were 

highly correlated, with the initiation and marking rate estimates being correlated in this case, as 

Figure 3.14 shows.  Third, the NLLs were highly consistent, despite the widely varying 

parameter estimates.  The RSDs of the NLLs for each gene ranged from 7.3e-8% to 1.5% of their 

medians.  These observations suggest that the problem with fitting the model to the data is not 

because the parameter search gets trapped in local minima.  Rather, there is typically one best 

 
 

Figure 3.13: Plots of model fits for two genes from the empirical data. 

Plots of model fits are shown for two genes from the empirical data with the lowest 

negative log-likelihoods (NLL) from parameter searches.  The original data (“Data”) 

are shown in black, and the model predictions (“Model”) based on the parameter 

estimates are shown in red.  The parameter estimates and constant parameter values 

are indicated in the second legend.  The Affymetrix probe IDs and NLLs are indicated 

above the plots.  See the PlotModelFit procedure and Table 3.3 for more details and 

symbols used.  
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NLL for each gene, and the search finds it, although many combinations of parameter estimates 

yield the same NLL as long as they are in the correct proportions to each other.    

 

     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
 

This chapter is more of a progress report than a report of biological discoveries.  A great 

deal of work has gone into developing the model, implementing and testing it, and collecting 

data by a number of people.  However, their contributions have until now remained largely 

separated, making it difficult to understand the status of the research and the best way to move 

the research forward.  In this chapter, I have synthesized these contributions, including 

explaining the context of the research in terms of the biological and computational aspects and 

 
 

 

Figure 3.14: Relationship between estimated rates of initiation and marking in 

empirical data. 

Parameter searches were run on 27 genes from the empirical data, using 24 sets of 

starting values.  For the two genes with the lowest negative log-likelihoods (NLLs), 

the initiation rate estimates are plotted against the marking rate estimates for the 24 

model fits.  The Affymetrix probe IDs are indicated above the plots, along with the 

Pearson 𝑅2 values. 
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documenting the experimental and computational procedures involved.  In addition to bringing 

together prior contributions, I have made contributions to the research.  I have expanded the 

usability of the computer code for implementing the model in terms of user-friendliness, 

flexibility, and performance.  I have explored the process of parameter estimation through 

simulation studies.  And from fitting the model to the empirical data, I have identified aspects 

that need improvement.  

From the simulation studies, I first demonstrated that search algorithms can get trapped in 

local minima when very poor starting values are used.  However, the nlminb algorithm 

significantly outperforms the others in terms of identifying the true parameter values (𝜃), and it 

is competitive in terms of speed.   

Second, I described the effect of noise in the data on the identifiability of the model 

parameters and the reliability of their estimates.  As I demonstrated for data with no noise, even a 

good search algorithm can occasionally return poor model fits and parameter estimates.  So, to 

tell whether a parameter was identifiable in a given context, I did not focus on what percent of 

the parameter searches gave parameter estimates that were close to 𝜃.  Instead, I assessed 

whether good parameter estimates could be distinguished from bad ones based on how well they 

fit the data.  Typically, most model fits for the same data resulting from different starting values 

had nearly identical negative log-likelihoods (NLLs) and parameter estimates, while fewer of 

them had a higher NLL, a different parameter estimate, or both.  If a particular parameter 

estimate is different from the rest of them, but it fits the data just as well with the same NLL, 

then these good and bad parameter estimates cannot be distinguished, which makes the 

parameters unidentifiable.     
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For some data, higher levels of noise decreased parameter identifiability and the 

reliability of the parameter estimates, but the relationships among the parameters were still 

highly constrained.  I showed that keeping one or two additional parameters constant can 

improve identifiability of other ones in cases where the relationships among parameters are 

constrained by the data.  For the low RL data, the parameters were unidentifiable when all four 

were estimated, but the relationships among the rates of transcription, initiation, and marking 

were highly constrained by the data.  Therefore, keeping the transcription rate constant greatly 

improved the identifiability of the initiation and marking rates.  The medium RL data did not 

suffer from poor parameter identifiability, so keeping additional parameters constant had little 

impact.  The high RL data did suffer from poor parameter identifiability, but the relationships 

among the parameters were not constrained, so keeping additional parameters constant did not 

significantly improve identifiability in this case.  With this knowledge, future work in estimating 

the parameters for the empirical data may, in principle, utilize information about these 

parameters obtained experimentally.   

Finally, I gave examples of typical results from estimating the parameters for the 

empirical data to demonstrate that these efforts have been largely unsuccessful to date.  In 

principle, there are three possible areas in which problems could occur in estimating the 

parameters for the empirical data.  First, the model itself could potentially be a poor 

representation of the regulation of mRNA ribosome loading.  Second, the procedure for 

predicting polysome fraction mRNA abundances based on the model output, which are ribosome 

class mRNA abundances, may not be accurate.  And third, the parameter search could fail to find 

the parameter values that best fit the data and instead become trapped in local minima due to 

poor starting values.   



181  
While no model in biology is perfect, there is no evidence yet that the model itself is the 

main source of the problem.  Additionally, the simulation study indicated that the parameter 

searches nearly always find parameter estimates that fit the data as well as any others, despite 

poor starting values and noise in the data.  In other words, searches using different starting values 

usually reach nearly identical NLLs.  The main challenge in the parameter search, rather, is to 

unambiguously identify the true parameter values when multiple sets of parameter estimates fit 

the same data well.  This leaves the procedure for predicting the empirical data based on the 

model output as a likely source of problems.   

A singular value decomposition approach was used to “undo” the conversion procedure, 

which showed that infeasible model output would be required to match the empirical data based 

on the current procedure.  Further, from a biological standpoint, the conversion procedure makes 

one important assumption that is not supported by empirical evidence or biological intuition.  

The conversion procedure first predicts how much mRNA migrates from each ribosome class to 

each polysome fraction, based on probabilities that are supported by empirical data (i.e., the UV 

absorbance profile).  Second, the conversion procedure attempts to adjust these predicted fraction 

abundances to account for the effect of varying amounts of ribosomal RNA (rRNA) across 

polysome fractions.  The procedure attempts to estimate how much rRNA is present in each 

polysome fraction by first estimating how much rRNA from each ribosome class across all genes 

migrates to each polysome fraction.  The problematic assumption is that the mRNA in a cell 

from all genes is equally distributed among ribosome classes.  The UV absorbance profile, 

however, suggests that there are different amounts of mRNA in each ribosome class, and that 

there is less mRNA in the higher ribosome classes.  Thus, with the problematic assumption, the 
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conversion procedure likely incorrectly estimates the amount of rRNA in each fraction and 

therefore also the expected microarray expression signals. 

Future success in estimating the translation parameters for the empirical data will likely 

require an improved procedure for predicting the empirical data based on the model output.  In 

the methods section, I briefly described an alternative method for estimating how much total 

RNA is in each ribosome class based on the UV absorbance profile.  In this procedure, image 

analysis software would be used to estimate the areas of the absorbance peaks that are well-

defined, which correspond to ribosome classes from 2 up to 8.  A deconvolution approach would 

be used to estimate the areas of the higher peaks that are not well-defined.  The relative areas of 

these peaks would be expected to be proportional to the total RNA abundances, which could then 

be used to easily approximate how much rRNA is in each ribosome class, based on knowing how 

much rRNA corresponds to each ribosome.  This method could possibly serve as an alternative 

to the current statistical approach for estimating the fraction location probabilities.  These 

probabilities give the proportions of mRNA from each ribosome class that are expected to 

migrate to each polysome fraction.  They are computed by assuming that the center of each peak 

represents the mean migration distance for the corresponding mRNA, and the widths of the 

peaks are used to estimate the migration distance standard deviation.  In an alternative method, 

the proportion of a given absorbance peak that is located in each polysome fraction could be 

obtained easily using image analysis software.  These proportions could then be used as fraction 

location probabilities.  While there are no obvious problems with the current procedure, it would 

be worthwhile to compare the original statistical approach with a more empirical approach. 

In conclusion, I have brought together the work of a number of people in the Gilchrist 

and von Arnim labs in developing a computational model of ribosome loading.  The model will 
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hopefully add to our current understanding of gene expression regulation by describing how 

various biochemical steps combine to yield a particular state of protein expression.  The model is 

unique in its field because it is deterministic and based on ordinary differential equations, unlike 

the many stochastic models of translation.  Though efforts to fit the model to the empirical data 

have not been successful to date, important areas for improvement have been identified and work 

continues to address them.       
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Chapter 4 

 

Conclusions and future perspectives 
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In this dissertation, I have presented investigations into translation regulation in 

Arabidopsis thaliana using computational approaches.  As described in chapter 1, translation can 

be quantified at the genome scale by a variety of techniques, most of which target either proteins 

or RNA.  In chapters 2 and 3, measurements of genome-wide translation were based on ribosome 

loading, which is the extent to which mRNA is associated with ribosomes.  In chapter 2, mRNA 

samples were fractionated based on ribosome loading into three fractions which were quantified 

by microarrays and used to compute a translation state (TL) for each gene, yielding 

approximations of protein synthesis rates.  While some information is lost by consolidating 

fractionated mRNA from a density gradient into a few fractions, this procedure made it feasible 

to carry out the large-scale experiment in chapter 2 involving multiple genotypes, polysome 

fractions, time points, and replicates.  In chapter 3, mRNA abundances from nine polysome 

fractions were quantified by microarrays, giving a higher-resolution view of ribosome loading 

and providing data for parameterizing the computational model described.          

The work in chapter 2 yielded new insights into the regulation of gene expression at 

the transcriptional and translational levels by the circadian clock.  That study did investigate 

some biological mechanisms.  For instance, by comparing diel cycles of genome-wide transcript 

levels and TL between wild-type plants and those with a dysfunctional circadian clock—due to 

constitutive overexpression of the CCA1 gene—it revealed that the clock not only regulates a 

large proportion of the Arabidopsis transcriptome, as was already known. The clock also 

regulates the degree of ribosome loading of mRNAs from diverse functional 

categories.  Nevertheless, it did not address the specific mechanisms underlying the diel cycles in 

transcript levels and TL or the differences in these cycles between genotypes.  By contrast, the 

work in chapter 3 explored the mechanisms behind control of ribosome loading itself.  Diel TL 
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cycles, as well as differences in cycles between genotypes described in chapter 2, could be 

explained by changes in the abundance of mRNA in non-polysomal, small polysome, or large 

polysome fractions, or some combination of the three.  Indeed, the simulation studies in chapter 

3 were consistent with the notion that a given pattern of ribosome loading can result from widely 

varying combinations of rates of biochemical translation reactions.  Chapters 2 and 3, therefore, 

complement each other in the following sense.  While chapter 2 was largely descriptive and 

focused on identifying genes whose ribosome loading was influenced by the circadian clock, 

chapter 3 was more mechanistic and focused on the fundamental question of how ribosome 

loading is regulated. 

Chapters 2 and 3 leave a number of questions unanswered and highlight important 

topics for further study.  Chapter 2 revealed that many genes exhibit diel cycles of ribosome 

loading in Arabidopsis and that many of these diel cycles are partially controlled by the circadian 

clock.  It also validated the ribosomal proteins as a “translational regulon” since their TL cycles 

were highly coordinated.  However, one question left open is, what cellular pathways connect the 

clock—specifically the cycling in CCA1 expression—with ribosome loading and 

translation?  Second, the study adds the circadian clock to the large and growing list of both 

environmental and endogenous cues that regulate ribosome loading.  But how does the 

endogenous circadian clock interact with these external factors in regulating transcription and 

translation?  Third, chapter 2 showed that global ribosome loading increased during the day and 

decreased at night under the influence of the clock, as was the case for many specific 

mRNAs.  mRNAs encoding ribosomal proteins did the opposite, with ribosome loading peaking 

at night and dropping to the lowest levels near midday.  This begs the question of how and why 

these mRNAs escape the global ribosome loading pattern and behave in their own way. 
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The computational model presented in chapter 3 and many procedures for implementing 

it are still in active development.  Once the model fits the empirical data better, new challenges 

will likely be encountered.  As the simulation studies showed, the model parameters are largely 

unidentifiable since many combinations of parameter values can yield the same ribosome loading 

pattern.  Success in estimating the model parameters for a large number of genes will likely 

require obtaining some parameter values from empirical measurements in the literature.  Once 

the model parameters can be estimated with good precision, the next goal will be to address the 

question of how the biochemical rates change in response to environmental stimuli, such as 

stresses.  Finally, future studies of the regulation of ribosome loading and translation will likely 

benefit from techniques that are becoming established for studying translation at the genome 

level, including RNA sequencing and mass spectrometry-based proteomics.                  
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