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ABSTRACT 

Constitutive modeling of granular material behavior has generally been based on 

global response of laboratory-size specimens or larger models with little understanding of 

the fundamental mechanics that drive the global response. Many studies have 

acknowledged the importance of micro-scale and meso-scale mechanics on the 

constitutive behavior of granular materials. However, much knowledge is still missing to 

develop and improve robust micromechanical constitutive models. The research in this 

dissertation contributes to this knowledge gap for many potential applications using novel 

experimental techniques to investigate the three-dimensional (3D) behavior of granular 

materials. Critical micromechanics measurements at multiple scales are investigated by 

combining 3D synchrotron micro-computed tomography (SMT), 3D image analysis, and 

finite element analysis (FEA). 

At the single particle level (micro-scale), particle fracture was examined at strain 

rates of 0.2 mm/min and 2 m/s using quasi-static unconfined compression, unconfined 

mini-Kolsky bar, and x-ray imaging techniques. Surface reconstructions of particles were 

generated and exported to Abaqus FEA software, where quasi-static and higher rate 

loading curves and crack propagation were simulated with good accuracy. Stress 

concentrations in oddly shaped particles during FEA simulations resulted in more 

realistic fracture stresses than theoretical models. A nonlinear multivariable statistical 

model was developed to predict force required to fracture individual particles with known 

internal structure and loading geometry.  
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At the meso-scale, 3D SMT imaging during in-situ triaxial testing of granular 

materials were used to identify particle morphology, contacts, kinematics and inter-

particle behavior. Micro shear bands (MSB) were exposed during pre-peak stress using a 

new relative particle displacement concept developed in this dissertation. MSB for 

spherical particles (glass beads) had larger thickness (3d50 to 5d50) than that of angular 

sands (such as F35 Ottawa sand, MSB thickness of 1d50 to 3d50). Particle morphology 

also plays a significant role in the onset and growth of shear bands and global fabric 

evolution of granular materials. More spherical particles typically exhibit more 

homogeneous internal anisotropy. Fabric of particles within the shear band (at higher 

densities and confining pressures) exhibits a peak and decrease into steady-state. Also, 

experimental fabric produces more accurate strength and deformation predictions in 

constitutive models that incorporate fabric evolution.  
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INTRODUCTION  
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Motivation 

Constitutive models for granular materials have traditionally included global 

inputs such as laboratory or field scale testing measurements to define Mohr-Coulomb 

shear strength parameters, which is generally used in professional practice. Stress-

dilatancy models have also been developed to better describe the behavior of sands (i.e. 

Bolton 1986). These types of classical models, however, are conservative and treat 

granular material as a continuum rather than an assembly of discrete particles that interact 

in a complex fashion across length scales. Particles align themselves to resist macro-scale 

loading, rotate and translate, and react in a multitude of other methods at various length 

scales for various loading conditions. A fundamental approach for better understanding of 

the strength and behavior of granular material is to determine and analyze mechanical 

behavior at smaller scales such as the meso-scale and the micro-scale (single particle 

scale).   

Micromechanical modeling of granular material commences at assessing 

mechanical properties of individual particles, especially for loading conditions that 

involve high strain rates or stresses that cause particle fracture. Investigation of the 

fundamental mechanisms involved in particle fracture lead to a better understanding of 

the macro-scale behavior of the granular materials. In reference to particle fracture, this 

dissertation focuses on the influences of loading rate, particle morphology, and 

mineralogy on the fracture properties of individual particles. Synchrotron micro-

computed tomography (SMT) imaging of the particles before and after fracture aids in 
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assessing mechanisms of fracture, as well as a method of integrating 3D particle shape 

into FEA modeling. FEA modeling provides means to analyze stresses within the particle 

before and during fracture.  

Global behavior of granular materials is highly influenced by micro- and meso-

scale behavior. The importance and significance of smaller scales is well established in 

the literature (e.g. Oda and Iwashita 1999; Hill and Selvadurai 2005). However, limited 

research that considers actual particle shapes using SMT imaging during in-situ loading 

has been published. High resolution SMT imaging allows for analysis of micromechanics 

of laboratory scale experiments at the meso-scale. Particle and contact measurements 

during in-situ loading are calculated and used to quantify particle kinematics and fabric. 

Tools were developed to extract properties from 3D experiments using SMT imaging and 

the data was used to provide a framework for developing micromechanical constitutive 

models that account for the fundamental mechanics of granular material.  

Objectives  

The main objectives of this dissertation are to: 1) Develop new tools to analyze 

real granular materials; 2) Characterize micromechanical material properties, particle 

kinematics, and interaction behavior; 3) Link behavior of granular materials across the 

micro- and meso-scales; and 4) Provide a basis for robust multi-scale constitutive 

modeling and implement findings into current models. These objectives are achieved by 

investigating the response of sand at various length scales using the following 

experimental and numerical techniques. 
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 Micro-scale: defined as properties involving a single particle that can be used to 

assess larger scale phenomena. Physical particle characteristics are quantified using 

SMT imaging. Particle fracture is investigated at various strain-rates using 

experimental and numerical techniques. This dissertation provides new information 

to the geotechnical engineering community regarding particle physical 

characteristics and fracture including:  

o Quantification of particle morphology (sphericity and roundness) using 3D 

images of particles. 

o A methodology to analyze real granular material particle fracture using SMT 

imaging and finite element analysis (FEA). 

o Accurate determination of particle tensile strengths for use in constitutive 

models involving particle fracture. 

o In-depth analyses of particle fracture mechanisms and the affect of particle 

morphology and mineralogy on particle fracture at various loading rates. 

 Meso-scale: defined as properties involving interaction of particles that are in 

contact (particle-to-particle interactions), such as the contact network of granular 

material or particle kinematics (displacements and rotations). Meso-scale 

properties of granular material (such as strain localization or fabric) can be 

incorporated into micro-scale constitutive models for granular material. Micro-

scale effects (such as particle morphology) is integrated into the analysis at the 

meso-scale. Specifically the objectives of the dissertation are to: 
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o Develop an accurate method for characterizing particle and contact 

properties, as well as develop computer code to track particles throughout 

triaxial testing. 

o  Develop a computer code to analyze strain localization within sheared 

granular materials and investigate onset and evolution of shear bands. 

o  Calculate fabric tensors of actual (not assumed) experimental granular 

material for use in micromechanical constitutive modeling. 

o Incorporate experimental fabric evolution into current anisotropic critical 

state constitutive models.   

Properties of granular material at the micro- and meso-scales influence the global macro-

scale behavior, such as continuum strength and deformation. An overview of the research 

plan and dissertation objectives for single particle fracture and meso-scale properties of 

granular materials is presented in Figure I.1, which is generally divided into the two 

scales. The basis of commonality of this research is the utilization of 3D imaging 

techniques. Along the micro-scale track, 3D imaging of single particles before, during, 

and after fracture at various loading rates is employed to analyze fracture mechanisms 

and model real particle shapes. At the meso-scale, 3D imaging of axisymmetric triaxial 

experiments acts as the origin of quantitative analysis, which includes complex particle 

kinematics and fabric evaluation.   
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Figure I.1. Overview of proposed research and expected outcomes  
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Literature Review 

The following sub-sections present a brief review of particle-scale fracture 

mechanics, characterization of particles and particle contacts, strain localization, and 

fabric evolution of granular materials. The importance of each aspect is established, as 

well as methodology to develop constitutive models based on these parameters. 

Knowledge gaps in the current published literature are described along with how the 

proposed research will fill the knowledge gap. 

Particle-scale 

Constitutive behavior of granular materials is highly influenced by the material 

properties at the micro-scale. For example, McDowell and Bolton (1998)  updated the 

relative density index that was proposed by Bolton (1986) to include the mean tensile 

strength of particles, which provides an enhanced micromechanical insight into the 

dilatant behavior of crushable soils. Loading of a granular material causes particles to 

rearrange into force chains that carry the majority of the applied external stresses 

(Edwards and Grinev 1999; Yoshida 2005; Antony 2007; Tordesillas and Muthuswamy 

2009; Maeda et al. 2010). As the applied compressive stresses increase, force chains 

transmit larger forces between particles, eventually leading to particle fracture within the 

force chains (Peters et al. 2005; Cooper 2011; Wang et al. 2011; Cil and Alshibli 2014). 

The first step for modeling particle fracture within force chains in a granular material 

using actual particle morphology is to model and understand the micromechanics of 

compression and fracture of individual particles. 
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Quasi-static particle fracture 

Fracture mechanics of particles when subjected to quasi-static compression is 

controlled by several mechanisms. Particle morphology (texture, shape, and sphericity) is 

a primary determinant of fracture strength. The mechanics of loading of an irregularly 

shaped particle differs from loading of a sphere such that during uniaxial compression of 

a single particle, such that a sphere has one contact at each loading plate while a real 

particle may have multiple. Mechanics of irregular particles during uniaxial compression 

has been thoroughly investigated in the literature (e.g. Shipway and Hutchings 1993; 

McDowell and Bolton 1998; Cavarretta and O'Sullivan 2012; Zhao et al. 2015). Many 

theories and approaches have been reported in the literature to describe quasi-static 

particle fracture. The most common approach is to relate the failure stress within the 

particle to the applied failure force and particle size (or flaw size, if a flaw is present). 

McDowell and Bolton (1998) presented a study of the micromechanical behavior of 

crushable soils and found that tensile strengths of particles of different size and 

mineralogy are consistent with Weibull statistics of brittle fracture. Brzesowsky et al. 

(2011) developed theoretical models that describe particle strength using Weibull 

statistics based on data that were collected from experiments. Cavarretta and O'Sullivan 

(2012) used a micromechanical approach to describe the compression of individual 

particles and developed models that incorporated frictional sliding, bulk particle 

compression, and fragmentation based on geometry and kinematic degradation of 

stiffness.  
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Most of the published research has included statistical descriptions of failure or 

assumed particle geometries and has not integrated real particle morphology into failure 

determination of individual particles. Alshibli et al. (2013) used 3D x-ray diffraction to 

measure strains within individual silica particles in compression and calculated stresses 

based on particle strain, inherently incorporating experimental particle shape. Druckrey 

and Alshibli (2015) used 3D SMT during in-situ compression of sand particles to model 

particle fracture using the extended finite element method (XFEM), capturing actual 

particle shapes through image processing and importing into FEA software. Zhao et al. 

(2015) used x-ray CT to thoroughly investigate sand particle fracture and found that 

initial particle morphology, heterogeneity, and mineralogy are important factors that 

influence fracture patterns.  

Based on current research available in the literature for quasi-static particle 

fracture, there are knowledge gaps that are filled by this study. Analyzing particle stresses 

and fracture of real particle shapes (not assumed) using FEA has not be published by 

others in the literature. Analysis that incorporates real particle shapes will lead to more 

accurate determination of particle failure strength than what is currently known and 

methodology to predict fracture propagation in irregularly shaped particles.  

Particle fracture under dynamic loading 

Fracture and progressive comminution (reduction to minute fragments) of sand 

particles is well known to affect the constitutive and deformation behavior of granular 

materials during quasi-static loading as well as high-rate loading conditions (Allen et al. 
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1957; Cooper and Breaux 2010; Antoun 2012; Iskander et al. 2015). During blast 

loading, energy dissipates partially through sand particle fracture and comminution 

(Braslau 1970; Børvik et al. 2011). Fracture of individual particles could affect the 

dynamic behavior of the ejecta resulting from buried explosives (Regueiro et al. 2014) 

and therefore affect the loading applied to an object such as an armored vehicle. Particle 

fracture occurs in many other high strain rate loadings on granular materials such as 

projectile penetration into sand (Allen et al. 1957; Cole 2010; Cooper and Breaux 2010), 

drilling and mining applications, and impact such as dynamic compaction. Assessing 

dynamic properties of fracture at the particle level is an essential step in understanding 

the behavior of bulk granular materials that experience high strain rates and plays a 

critical role in improving design against such dynamic forces.   

As described earlier, behavior of granular materials is highly influenced by the 

material properties at the micro-scale (particle scale). For example, particle shape 

influences granular material packing density, stiffness, and strength (Cho et al. 2006). 

However, little is known about the micromechanics of granular materials, especially 

when they are subject to high strain rates. High-rate experimental fracture testing of 

individual sand particles provides the initial particle-scale information that can be used in 

dynamic modeling across the scales. In particular, high-rate tests can be used to calibrate 

and validate high fidelity particle-scale poly-ellipsoidal discrete element models (DEM) 

that include particle fracture, which in turn can be used to develop lower fidelity soil blast 

models at larger scale to replace costly and time consuming full scale testing (Antoun 
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2012). Important input parameters to the particle-scale DEM include particle shape, 

loading direction, fracture strength, and fracture mode resulting from dynamic loading.  

Although the importance of particle fracture during dynamic loading is well-

known (Allen et al. 1957; Braslau 1970; Cole 2010; Cooper and Breaux 2010), very little 

research on the dynamic fracture behavior of individual sand particles has been 

published. Some researchers have investigated the high strain rate behavior of sand using 

techniques such as the split-Hopkinson pressure bar (SHPB) on laboratory-scale 

specimens (Charlie et al. 1990; Martin et al. 2009; Luo et al. 2011). Luo et al. (2011) 

found that the grain size distribution shifted significantly, suggesting that many particles 

fractured during SHPB testing at high strain rates.  

Few studies have been published concerning the behavior of single particle failure 

under dynamic loading. Recently, Parab et al. (2014) used a mini-Kolsky bar to 

dynamically compress confined particles during in-situ high speed phase contrast 

imaging (PCI). Two approximately spherical Ottawa sand particles were placed in an 

aluminum housing and were subjected to dynamic loading while 2D radiographs and load 

versus time data were collected. Visual assessments of damage propagation were 

conducted and when particles were tested under dry conditions, and one of the two 

particles had extensive interfacial cracking before pulverization. Wet sand particles broke 

into relatively  large fragments followed by pulverization.  

The published literature regarding dynamic fracture of single particles is limited. 

Very little research has been published involving dynamic experimental fracture of single 
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particles. Data in the literature is limited to few tests with confined loading of semi-

spherical particles. This study will contribute to the body of knowledge by including 

higher loading rate experiments on single particles and analysis of loading rate and 

micro-scale properties on observed fracture loads. FEA modeling of dynamic fracture of 

individual particles is presented and stresses experienced during dynamic compression 

are compared to theoretical stresses within particles. 

Meso-scale Behavior 

Particle gradation, mineralogy, morphology, and contacts are major factors that 

contribute to the fabric of granular materials and to a rather complex interaction between 

particles, which traditionally has been difficult to analyze at the micro-scale. Accurate 

characterization of particles and their interaction is essential for the development of 

micromechanics-based constitutive models for granular materials. X-ray CT image 

acquisition and processing has greatly advanced the quantification of different 

engineering properties of granular materials.  

Characterization of particles and particle contacts 

Extensive research has been published to quantify individual particle 

characteristics such as particle size, shape, spatial coordinates, and orientation using both 

2D and 3D CT imaging (Thompson et al. 2006; Al-Raoush 2007; Cox and Budhu 2008; 

Bloom et al. 2009; Cnudde and Boone 2013; Alshibli et al. 2014). Recently, particle-to-

particle contacts and evolution of the contacts during loading are considered as important 



 

13 

 

factors in fabric evolution and force transmission in granular materials. Few researchers 

have developed methods to determine particle coordination number (CN) and track the 

CN of individual particles as a test progresses based on CT and SMT imaging. However, 

identifying particle contacts and their spatial coordinates do not provide full insight into 

how particles interact with neighboring particles. A more comprehensive definition of 

contact would include location as well as orientation of the contact in 3D space. 

Moreover, calculating the location of the contact and the normal and tangential directions 

to the contact would provide the necessary measurements to quantitatively define the 

contact between two particles. Only few experimental studies have proposed a method to 

quantify particle contact orientation. Viggiani et al. (2013) presented a method to 

determine the orientation of contact based on CT particles composed of voxels (~5000 

voxels per particle) by fitting a plane to the contact voxels between two particles. The 

distribution of the normal unit vector varies based on the type of algorithm that was used 

to separate particles. Vlahinić et al. (2014) used mathematical level set functions on the 

greyscale 3D x-ray CT image to determine the orientation of a given contact.  

Particle kinematics and strain localization into shear bands 

Particle translation and rotation have a significant influence on the constitutive 

behavior of granular materials (Oda et al. 1997; Hall et al. 2010; Hasan and Alshibli 

2012). Resistance to sliding and rolling between particles is the major contributor to shear 

strength of granular materials, and incorporating their contribution into constitutive 

models has yielded better predictions of the behavior of granular materials (Tordesillas 
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and Walsh 2002; Anandarajah 2004). Accurate experimental quantification of particle 

kinematics during shearing will be a significant contribution to constitutive and 

numerical modeling. 

Tracking the displacement and rotation fields of particles has drawn extensive 

research in recent years. X-ray micro-tomography imaging during in-situ testing has 

aided researchers in the ability to track localized displacement and rotation within 

experimental specimens in 3D. Digital image correlation (DIC) and digital volume 

correlation (DVC) based on experimental imaging has been used to determine localized 

deformation and rotation of granular materials, particularly near and within the shear 

band (Rechenmacher 2006; Sjödahl et al. 2012). However, DIC and DVC present a 

continuum approach to the deformation and rotation fields within a sample, ignoring the 

discrete particle kinematics and interaction that occurs between particles. 

Furthermore, research focusing on evolution of particle kinematics while 

subjecting granular mass to in-situ loading has been investigated using x-ray CT. For 

example, Hasan and Alshibli (2010) used SMT to image a plane strain specimen, 

quantified particle orientation within the shear band, and assessed particle-to-particle 

interaction. Hall et al. (2010) acquired multiple in situ CT images of a triaxial specimen 

composed of Hostun RF sand, discretized particles, and analyzed discrete and continuum 

deformation within the specimen. Andò et al. (2012) expanded on Hall’s approach and 

developed the ID-Track computer code to quantify particle kinematics at multiple loading 

stages for many particles within triaxial specimens composed of Hostun RF (angular) and 
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Caicos Ooid (rounded) sands. Similarly, Druckrey and Alshibli (2014) developed an 

algorithm to track kinematics of ASTM 20-30 sand based on SMT images during triaxial 

testing. The failure shear band in many different granular materials has been well defined 

and analyzed in the literature based on particle kinematics; however, a comprehensive 

understanding of the formation of localized shearing during pre-peak loading and 

specimen bulging is still lacking.  

Although the transformation of strain localization into specimen failure via shear 

band during softening and critical states based on particle kinematics has been well-

studied, no investigation exists into the many localized preliminary shear bands that 

develop during the hardening regime and progress into the final failure shear band. Also, 

internal strain localization during specimen bulging has not been investigated. This 

information is new to the geotechnical engineering community and will prove useful in 

bifurcation analysis of granular materials.  

Fabric and fabric evolution in granular materials 

Fabric of a granular material is a general term that characterizes microstructure at 

the meso-scale. The micromechanical fabric of granular materials has a profound 

influence on their global mechanical and hydraulic behavior (Oda 1972). Fabric tensors 

are commonly used as a metric to quantitatively describe granular material fabric in 

tensorial form. Directional data, such as contact normal vectors, can be characterized by 

fabric tensors and several definitions have been proposed in the literature. Kanatani 

(1984) established methods for mathematically quantifying tensors that describe 
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directional data distributions and applied them to characterize inter-particle contact 

distribution in granular materials. Many researchers have adopted a form of Kanatani’s 

fabric tensor of the first kind, or moment tensor, and have applied it to characterize the 

fabric of granular materials based on various geometrical features (Liou and Pan 2003; 

Fonseca et al. 2013; Li and Yu 2014; Fu and Dafalias 2015). 

Extensive research has been published emphasizing the effect of fabric on 

mechanical properties granular material, such as strength and dilatancy, for many loading 

conditions. Oda (1972) varied sample preparation methods to vary the fabric, fixed the 

specimens with resin and quantified fabric of different soils based on thin sections. 

Effects of the initial fabric on deformation behavior and shear strength of soils were 

analyzed and found that the different initial fabrics of the same sand greatly influence 

mechanical properties of mobilized strength, dilatancy rate, and secant deformation 

modulus. Similarly, Mehrabadi et al. (1982) observed that it is easier to relate the fabric 

tensor and its elements to macroscopic quantities than to relate stress directly to 

kinematic quantities. More recently, the discrete element method (DEM) has been 

utilized to investigate the effect of fabric on macroscopic properties of granular material. 

Yimsiri and Soga (2001) found that DEM soil fabric has a profound influence on the 

undrained behavior of sand and Yimsiri and Soga (2010) found that sand becomes stiffer, 

stronger, and more dilative when sheared in the direction of particle contact normal. 

Many others have also used DEM to investigate effects of granular material fabric on 

various properties (e.g. Theocharis et al. (2014), Yang et al. (2014)).  
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Constitutive behavior of granular materials can be modeled based on the 

micromechanics defined by fabric tensors. Several research studies have derived 

relationships between macro-scale measurements, such as global stress and dilatancy, and 

fabric of granular material during loading. Mehrabadi and Nemat-Nasser (1983) derived a 

general dilatancy model that directly involves branch vectors as a measure of fabric and 

successfully relates their derivations to experimental results found in the literature. 

Nemat-Nasser (2000) developed a 2D micromechanics based constitutive model for 

frictional deformation of granular material with four material functions, one of which is a 

parameter defines the evolution of the fabric tensor. Nemat-Nasser and Zhang (2002) 

furthered this approach for the 3D deformation and dilatant behavior of granular material 

and found that the model produced results in reasonable agreement with experimental 

observations. Li and Yu (2013) mathematically derived a stress-force-fabric relationship 

for accurately predicting the stress state for 2D DEM granular materials. 

Accurate prediction of constitutive behavior of granular materials based on fabric 

approaches would require knowledge of 3D fabric in actual granular materials. Most 

studies focus on granular material fabric using 2D or DEM approaches, neither of which 

can fully integrate actual particle shape and contacts. Of the many studies of granular 

material fabric, few have directly measured the 3D fabric of granular material and 

investigated fabric evolution during loading. Fonseca et al. (2013) used CT and image 

analysis tools to investigate stress transmission in granular materials by extracting cores 

from triaxial specimens impregnated with resin. Stershic et al. (2015) modeled the 
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evolution of ion particle contact in a battery using a fabric tensor approach. They used CT 

scans to develop fabric tensors based on spherical and ellipsoidal approximations of 

particles and analyzed fabric tensor evolution with increasing pressure on the particles. 

However, very little research has been published on the experimental 3D measurement of 

granular material fabric during in-situ SMT.  

A limited literature exists that incorporates full 3D experimental fabric tensor 

analysis of actual granular material during in-situ loading. Incorporation of measured 

fabric and fabric tensors calculated based on measured 3D fabric would lead to more 

accurate fabric-based micromechanical constitutive models involving granular material. 

This study quantifies experimental fabric evolution during triaxial compression and 

incorporates the evolution into a constitutive model defined in the literature (Li and 

Dafalias 2011). 

Dissertation Outline 

This dissertation is composed of Chapters focusing on individual components 

described earlier that fulfill the overall objectives. Versions of each Chapter either has 

been or will be published in peer-reviewed technical journals. Chapters 1 and 2 involve 

SMT characterization of granular material. Chapters 3 and 4 present single particle 

fracture experimentation and modeling. Chapters 5 through 7 encompass analysis and 

modeling of triaxial compression using SMT imaging. A brief summary of each Chapter 

is presented as follows. 
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Chapter 1 presents a detailed methodology of 3D SMT imaging and image 

processing. Details of image processing for discretization of individual particles are 

presented, as well as micro-scale particle and contact quantification. Imaging, image 

processing, and measurements of granular material described in Chapter 1 are used 

throughout the dissertation. 

Chapter 2 presents morphology (sphericity and roundness) and surface roughness 

quantification of granular materials that were used in this dissertation. These 

measurements are related to observed responses and were used as input to statistical 

models in Chapters 4 and 7. chapters.  

Chapter 3 presents methodology for quasi-static unconfined compression of single 

particles using FEA that incorporates real particle shape. The extended finite element 

method (XFEM) is used to simulate crack initiation and propagation. Results are 

compared with ideal spherical particles. 

Chapter 4 presents unconfined compression of individual particles at higher 

loading rates using mini-Kolsky bar techniques. A statistical model is developed to 

predict fracture force based on micro-scale characteristics and loading geometry. FEA 

fracture analysis at observed loading rates is conducted and fracture stresses are 

compared with theoretical results.  

Chapter 5 presents an extension of traditional particle kinematics that exposes 

intricate zones of localized shearing during the hardening phase of axisymmetric triaxial 
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compression and the subsequent evolution of localized strain into the final shear band. 

Influence of particle morphology on shearing behavior is assessed and discussed. 

Chapter 6 includes quantification of fabric and subsequent evolution during 

axisymmetric triaxial compression. Contact normal vectors are quantified (Chapter 1) and 

employed in fabric quantification of granular materials for incorporation into a current 

constitutive model.  

Chapter 7 builds on the work of Chapter 6 and incorporates experimental fabric 

evolution into the anisotropic critical state theory (ACST) model. Model prediction 

accuracies are compared with theoretical fabric evolution.  
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CHAPTER 1 

3D CHARACTERIZATION OF SAND PARTICLE-TO-PARTICLE 

CONTACT AND MORPHOLOGY 
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A version of this chapter was originally published in: Druckrey, A. M., Alshibli, 

K. A., and Al-Raoush, R. I. (2016). "3D characterization of sand particle-to-particle 

contact and morphology." Computers and Geotechnics, 74, 26-35. 

My primary contributions to this paper include (i) conduction of experiments as 

well as acquisition and processing 3D SMT images, (ii) modification of quantification 

code and assistance in porting to C++ programming language, (iii) verification and 

validation of code output, (iv) most of the writing. 

Abstract 

Particle morphology, orientation, and contact configuration play a significant role 

in the engineering properties of granular materials. Accurate three-dimensional (3D) 

characterization of these parameters for experiments has historically proven difficult, 

especially in the context of particle contact with small particle size. This paper describes 

a computer code that was developed to analyze 3D images of granular materials to 

measure particle lengths (size), volume, surface area, global centroid location and 

orientation; it also provides a method to calculate particle contact location and 

orientation. Measurements from the proposed code can define a state of the granular 

material’s fabric that can be used as input for micro-mechanics based constitutive models 

and to validate numerical discrete element simulations. A fabric tensor and its evolution 

is calculated based on experimental contact normal vectors that were extracted from SMT 

imaging of an axisymmetric triaxial compression experiment on a natural silica sand 

known as F-35 sand. 
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Introduction 

Granular materials are composed of discrete particles that interact with each other 

in a complex fashion. Particle gradation, mineralogy, morphology, and contacts are the 

major factors that contribute to the fabric of granular materials and to rather a complex 

interaction between particles and mechanical properties, which is difficult to analyze at 

the micro-scale. Accurate characterization of particles and their interaction is essential for 

the development of micro-mechanics based constitutive models for granular materials. X-

ray computed tomography (CT) image acquisition and processing has greatly advanced 

the quantification of different engineering properties of granular materials.  

Extensive research has been published to quantify individual particle 

characteristics such as particle size, shape, spatial coordinates, and orientation using both 

2D and 3D CT imaging (e.g. Thompson et al. (2006); Al-Raoush (2007);  Cox and Budhu 

(2008); Bloom et al. (2009);  Cnudde and Boone (2013); Alshibli et al. (2014)). 

Furthermore, research focusing on fabric evolution while subjecting granular mass to in 

situ loading has been investigated using x-ray CT. For example, Hasan and Alshibli 

(2010) used synchrotron micro-computed tomography (SMT) to image a plane strain 

specimen, quantified particle orientation within the shear band, assessed particle-to-

particle interaction. Hall et al. (2010) acquired multiple in situ CT images of a triaxial 

specimen composed of Hostun RF sand, discretized particles, and analyzed discrete and 

continuum deformation within the specimen. Andò et al. (2012) expanded on Hall’s 

approach and developed ID-Track computer code to quantify particle kinematics at 
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multiple loading stages for many particles within triaxial specimens composed of Hostun 

RF (angular) and Caicos Ooid (rounded) sands. Similarly, Druckrey and Alshibli (2014) 

developed an algorithm to track kinematics of ASTM 20-30 sand based on SMT images 

during triaxial testing.  

Recently, particle-to-particle contact and evolution of contact are considered as 

important factors in fabric evolution and force transmission in granular materials. Few 

researchers have developed methods to determine particle coordination number (CN) and 

track the CN of individual particles as test progresses based on CT and SMT imaging. 

However, identifying particle contact and its spatial coordinates do not provide full 

insight into how particles interact with neighboring particles. A more comprehensive 

definition would include location as well as orientation of contact in 3D space. Moreover, 

calculating the location of contact and the normal and tangential directions to contact 

would provide the necessary measurements to quantitatively define the contact between 

two particles. Few experimental studies have been proposed to quantify particle contact 

orientation. Viggiani et al. (2013) presented a method to determine the orientation of 

contact based on CT particles composed of voxels (~5000 voxels per particle) by fitting a 

plane to the contact voxels between two particles, in which the distribution of the normal 

unit vector varies based on the type of algorithm that was used to separate particles. 

Vlahinić et al. (2014) used mathematical level set functions on the greyscale 3D x-ray CT 

image to determine the orientation of contact.  
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Directional data, such as contact normal vectors, can be characterized by fabric 

tensors and several definitions have been proposed in the literature. Oda (1972) discussed 

the initial fabric of granular materials and how it relates to their mechanical properties. 

Kanatani (1984) established methods for mathematically quantifying tensors that describe 

directional data distributions and applied them to characterize inter-particle contact 

distribution in granular materials. Many researchers have adopted a form of Kanatani’s 

fabric tensor of the first kind, or moment tensor, and have applied it to characterize the 

fabric of granular materials based on various geometrical features. Oda et al. (1985) used 

fabric tensors to investigate stress-induced anisotropy in granular masses of biaxial 

compression tests of oval rods using photo-elastic pictures and contact normals. Others 

have used discrete element method to investigate effects of granular material fabric on 

various properties (e.g. Yimsiri and Soga (2010), Theocharis et al. (2014), Yang et al. 

(2014)). Fonseca et al. (2013) used CT and image analysis tools to investigate stress 

transmission in granular materials by extracting cores from triaxial specimens 

impregnated with resin.  

The accuracy of the current methods relies heavily on the resolution of the 

CT/SMT images, especially sharpness at particle boundaries (phase contrast). Blurry 

particle edges/contacts make it difficult to determine voxels that belong to a particular 

particle during particle separation. Industrial x-ray CT imaging produces unclear particle 

boundaries and questionable contact orientations. This paper presents a method that 

utilizes high-resolution 3D SMT image analysis to quantify individual particle 
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morphology and defines contact that includes contact location and orientation. It includes 

an experimental assessment of fabric evolution of F-35 sand undergoing axisymmetric 

triaxial compression during in situ SMT imaging using fabric tensor techniques. 

Image Acquisition 

In the last three decades, x-ray CT has emerged as a powerful non-destructive 3D 

scanning technique to visualize the internal structure of materials. It involves probing a 

specimen mounted on a rotating stage from different angles and collecting the attenuated 

x-ray using a detector system. Post-scan computer reconstruction and processing involve 

creating multiple slices through the scanned specimen that can be stacked to generate a 

3D volume rendering of the specimen. In this paper, SMT images of silica sands were 

acquired at the Bending Magnet Beamline 13D (13 BMD) at the Advanced Photon 

Source (APS), Argonne National Laboratory (ANL), Chicago, USA. SMT imaging offers 

many advantages when compared to industrial x-ray CT imaging, which is well 

documented in the literature  (e.g. Baruchel et al. (2006), Brunke et al. (2008), Cnudde 

and Boone (2013)). The main advantages include an almost parallel beam and high 

brilliance (which results in high photon flux on the specimen) yielding a much better 

image resolution and signal-to-noise ratio in the images (Baruchel et al. 2006). High flux 

monochromaters can tune the beam to monochromatic radiation for the desired energy 

level to suit specimen size and attenuation level.  

Specimen sizes at beamline 13 BMD can range from a single particle with a 

resolution on the order of 1–2 μm/voxel to a 10 mm × 20 mm miniature triaxial test with 
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resolutions of 8–11 μm/voxel. Specimens can range from dry to fully saturated and can 

include a variety of particle morphologies. Specimens were rotated at a constant velocity 

and radiograph images are obtained by the detector at 0.2
o
 rotational increments. More 

information on the setup of beamline 13BMD can be found in Rivers et al. (2010).  

SMT Image Analysis 

Particle Identification 

3D SMT images must be post-processed to transform the grayscale SMT image to 

a binary image and eventually to an image where each particle is individually identified 

and labeled. The labeled image will be used to compute particle properties as well as to 

characterize particle contacts. Accurate identification and calculations of individual 

particle morphology parameters and particle-to-particle association of the bulk material 

can then be defined and analyzed to provide critical parameters to feed in micro-

mechanics-based constitutive models as well as provide validation for numerical 

modeling. 

Grayscale SMT images were imported into Avizo Fire software using the built-in 

raw data read option (Figure 1.1a). To remove noise within the image while preserving 

particle edges and enhancing the contrast of the edges, an anisotropic diffusion filter was 

applied to the grayscale image. The anisotropic diffusion algorithm compares the value of 

each voxel with its six face-centered neighbors and diffuses the voxel as long as the 

difference does not exceed the input diffusion stop threshold value, which was   
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Figure 1.1. Steps of particle identification process 

  

0.5 mm 
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determined by a parametric study and error analysis (Figure 1.1b). The resulting image is 

a smoothed grayscale image with sharp particle edges between the solid particle material 

and the surrounding medium. 

The next step in image processing was to segment the grayscale image in order to 

separate particles from the surrounding medium. Segmentation by interactive 

thresholding was employed to create a binary image assigning a voxel value of 1 for sand 

(having a higher x-ray attenuation) and 0 for the surrounding medium (usually air, which 

has a lower attenuation). The interactive thresholding produced a binary image that 

represents particles well. The binary image clearly shows particle contacts to the scale of 

image resolution. In other words, if particles are physically in contact at a point as small 

as the resolution, the binary image will represent this contact point. The segmentation 

process leaves small holes within some particles or small fragments of noise within the 

air surrounding particles. Further image processing using morphology operations on the 

image was implemented to remove noise from the images. First, Avizo Fire’s 3D 

algorithm, Fill Holes, which fills all holes that are completely surrounded by material 

(solids) without affecting particle surfaces. Next all small noise must be removed so that 

it is not mistaken for actual particles; this is usually only a few voxels in volume within 

the surrounding air. The opening command was used to clean up other noise without 

affecting overall particle shape. The resulting binary image is depicted in Figure 1.1c and 

will be used later in image processing as a mask to ensure the final labeled image is 

accurate.  



 

39 

 

Now that the binary image accurately represents particles and surrounding void 

space, contacts between particles must be removed in order to label each particle. Avizo 

Fire’s Separate Objects module is a combination of watershed, distance transform, and 

numerical reconstruction algorithms that can accurately remove the small area of contact 

between particles. It works well when particles are mono-sized and generally convex and 

results in separating the binary particles from each other similar to the image in Figure 

1.1d. Next, the Border Kill module was applied to the image to remove all of the voxels 

connected to the edge of the 3D image. Finally, the particles were individually labeled 

from 1 through the number of particles, then particle-to-particle contact was 

reestablished. To omit the unnecessary expanded portions of the particle (regions of the 

particle boundary that were expanded excluding contact points), the image was masked 

with the binary image (Figure 1.1c) that precisely represents particle morphology and 

fabric. The resulting image (Figure 1.1e) accurately represents individually labeled in-

contact particles. 

Each particle label consists of connected voxels that have the same value, and 

each voxel occupies a cubical “point” in 3D space within the image. As a result of the 

high resolution and clarity of SMT images, the 3D voxel representation of particles 

captures morphology very well. Although measurements as small as surface texture 

cannot be accurately quantified using current SMT imaging, other properties such as 

volume, size, surface area, and contact can be accurately defined as demonstrated in the 

following sections. These properties were calculated using a computer code that was 
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developed by the authors. The code is divided into two “loops” one to define individual 

particle properties followed by a double loop to define contact properties. First, the 

labeled image was read into memory as a 3D matrix, and each particle label voxel was 

searched for with the first loop. In each iteration of the loop, the physical location of each 

particle’s voxels were stored in an n×3 matrix, where n is the number of voxels belonging 

to a particular particle on that iteration of the loop. The three columns of the particle 

matrix are the x, y, and z coordinates of voxels that constitute the particle and can be 

easily used to calculate particle physical properties. For example, the volume of each 

particle was calculated as the summation of all voxels within the particle, or simply the 

length of the n×3 matrix. Particle volume was added to a vector containing all particle 

volumes from the preceding iterations after each iteration of the loop. This first loop also 

stores information about each particle surface that will be passed on to the contact 

definition loop. 

Particle Center of Mass 

 Center of mass of each particle is the 3D volumetric center, or center of 

gravity in x, y, and z directions. The 3D matrix of particle voxel locations was used to 

determine the center of mass. An average spatial location was calculated by summing 

voxel locations in each direction (each column of the n×3 voxel location matrix) divided 

by the total volume of the particle  (after Al-Raoush (2007)): 

𝑐𝑔𝑖 =
∑ 𝑖𝑓(𝑖,𝑗,𝑘)𝑖

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
    (1.1) 
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𝑐𝑔𝑗 =
∑ 𝑗𝑓(𝑖,𝑗,𝑘)𝑗

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
    (1.2) 

𝑐𝑔𝑘 =
∑ 𝑘𝑓(𝑖,𝑗,𝑘)𝑘

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
    (1.3) 

where 𝑐𝑔𝑖, 𝑐𝑔𝑗, and 𝑐𝑔𝑘 are the global center of mass of each particle 𝑓(𝑖, 𝑗, 𝑘) in the x, 

y, and z directions, respectively. An accurate determination of center of mass is essential 

in investigating particle kinematic behavior during shearing of granular materials. The 

proposed method determines the exact location of the particle center of mass in 3D space 

regardless of particle translation and/or rotation during testing and can provide valuable 

insight into behavior of granular material under any type of loading condition.  

Particle Surface Area 

Particle surface area influences the behavior of granular materials in many ways. 

Surface area can be used to quantify morphology (sphericity and roundness) of particles, 

which affects the strength and deformation characteristics of granular materials. 

Traditionally, particle surface area has been difficult to measure physically for small 

particles. Emergence of SMT imaging and analysis has greatly enhanced the ability to 

perform surface area measurements on small particles. The high resolution of SMT 

images provides virtual particles that very accurately portray particle shape via voxels, 

and measurements of surface area are not as elusive as before. To calculate the surface 

area of a particle, one must determine which voxels are on the boundary (surface) of the 

particle. Each voxel of the particle was analyzed to determine if it has any free faces in 

each iteration of the loop (free faced voxels have faces not directly adjacent to another 
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voxel that belongs to the same particle but rather either next to void space or another 

particle). To accomplish this analysis, each voxel of a particle was individually analyzed 

to determine if any part of that voxel was on the particle’s surface. There are three 

situations where this can occur. The voxel face, as discussed earlier, can be directly on 

the surface, and there are six possible situations (six cubic faces) that occur where the 

face could be on the surface of the particle (Figure 1.2a). A voxel edge can be on the 

surface, which has 12 possible occurrences for the 12 edges of a cubic voxel (Figure 

1.2b), or one of the eight voxel corners can be touching the surface (Figure 1.2c). 

There are 26 total situations in which a voxel within a particle can be touching the 

surface. Representing these situations numerically entailed creating 26 matrices of length 

n, recalling that n is the total number of voxels within the particle. Six of the matrices 

store locations of the six voxels surrounding each voxel face. Twelve of the matrices 

store locations of the voxels connected to edges of each voxel. Eight of the matrices store 

locations of the voxels connected to corners of each voxel. Among all 26 matrices, the 

location of all voxels surrounding each particle voxel are known and can be searched to 

determine what, if anything, occupies them. If they do not contain the label ID of the 

particle being analyzed (i.e., they contain air or a different particle’s voxel), then the 

voxel they surround is determined to be connected to the surface of the particle. Surface 

voxels are stored, and Figure 1.3 displays an example of voxels located on a particle 

surface. Surface area is calculated as the summation of voxels with free faces on the 

surface of the particle (excluding those with only corners and edges on the surface).   
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Figure 1.2. Example of three types of voxel connectivity 

 

Figure 1.3. Voxel surface of a particle to compute surface area (axis units are in pixels, 

resolution = 10 μm/pixel) 

  



 

44 

 

Another matrix that includes the location of all voxels surrounding the particle, or a shell 

around the particle, is also stored for further use in contact determination. These are the 

voxels that come into contact with the particle at all voxel faces, corners, and edges. 

A sphere made up of voxels (diameter of 151 voxels) was created and analyzed 

with the code to check its accuracy in calculating particle surface area. The code result 

was 71880 voxels
2
, compared to a theoretical value of 71631.45 voxels

2
, resulting in a 

0.3% error between the calculated and theoretical values. The slight deviation is 

attributed to the voxel nature of the sphere. 

Particle Lengths and Orientation 

 Orientations and sizes of particles in granular materials play a critical role 

in determining their behavior. Mostly, particle orientation and shape determines the 

initial fabric and its evolution during shearing. It contributes to the strength and dilatancy 

of granular materials as well as other engineering properties. Three principal lengths of a 

particle in 3D are defined as orthogonal and along the short, intermediate, and long axes 

of the particle. 

Lengths and orientation of each particle are determined using the concept of 

Principal Component Analysis (PCA) on the multi-variant set of points that make up the 

particle voxels. PCA uses linear correlation between the points and applies a trend line to 

the long axis of the data by minimizing distances (x, y, and z) between the data points 

and the line using singular value decomposition. The principal component coefficients 

describe the global angle of the trend line determined by PCA, and the principal 
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component scores represent the fitted location of the voxels on the 1D trend line in 

principal space. The lengths of a particle were calculated as the difference between the 

maximum and minimum scores along each of the trend lines. There are two principal 

component coefficients in a 2D image of a particle governed by the x and y location of 

the points. For example, Figure 1.4 displays a 2D section of a particle composed of 6810 

voxels, along with the results of 2D PCA displayed via a projected view that passes 

through the particle centroid. Principal component coefficients represent the global 

orientation of the particle lengths (vector directions shown in Figure 1.4) and lengths of 

the long and short axes are based on differences in extreme score values (extreme points 

fitted on trend line). The PCA method accurately represents how particles would be 

measured physically (twice the length of vectors shown in Figure 1.4) because it is the 

difference between extreme points of a particle as if measured by a micrometer. It is 

important to note that particle lengths obtained from PCA do not necessarily pass through 

the particle center of mass for non-spherical particles. 

Three orthogonal principal components are defined along the three principal axes 

of the particle in 3D case, representing the long, intermediate, and short axes of a particle. 

Orientations of the three principal axes were calculated as the principal component 

coefficients of the PCA dataset. The long axis length of the particle is the difference 

between the extreme points that make up the first principal component. The intermediate 

and short axes lengths were calculated in the same manner on the second and third 

principal components, respectively. PCA yielded accurate measurements of the   
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Figure 1.4. Example 2D PCA analysis on 6810 pixels of a particle cross section (axis 

units are pixels, resolution = 10 μm/pixel) 
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orientations and principal lengths of each of the particles in 3D. Figure 1.5 displays a 3D 

surface of a particle along with vectors that identify the particle’s global orientation and 

length. The red, blue, and magenta vectors represent the orientations of the long, 

intermediate, and short axes of the particle, respectively (displayed through the particle 

center of mass). Principal components are orthogonal to each other and globally oriented 

based on the statistical computation by PCA. Global orientations of particles were 

extracted and can be used to represent fabric of granular materials as well as to calculate 

particle rotation during shearing. 

A 3D SMT image of a triaxial experiment on ASTM 20-30 Ottawa sand was 

analyzed using the proposed code as a demonstration dataset. Resolution of the SMT 

image was 10.85 micron/voxel, and the image consisted of ~3400 particles. ASTM 20-30 

Ottawa sand has a particle size between US sieves #20 (850 μm) and #30 (600 μm); 

therefore, particle sizes based on the SMT image should fall within that size range. 

Particle size distribution based on SMT image analysis is depicted in Figure 1.6, which 

shows a normal statistical distribution having sizes mostly between 600 and 800 μm with 

a small percentage larger than 850 μm. Particle size is determined from the SMT images 

based on the average of the small and intermediate lengths, which is used to compare 

particle size to mechanical sieving. Averaging these lengths better represents the physical 

process of mechanical sieving; for example, a particle’s small axis length might fit 

through sieve mesh where its orthogonal intermediate axis might not. Based on this, a 

small portion of the particles are larger than what is expected. 
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Figure 1.5. Illustrative example in 3D identifying particle global orientation and principal 

length. 

 

Figure 1.6. Particle size distribution of 3400 particles of ASTM 20-30 sand based on 

SMT image analysis. 
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Coordination Number and Particle-to-Particle Contact Definition  

Identification of contact between particles involves analysis of the boundary 

shells that were described earlier for each particle. A matrix was generated that initially 

contained all voxels surrounding the particle surface (the shell around the particle 

determined from the first loop). The voxels of the shell that do not contain another 

particle (the void space) are then removed from the matrix based on the labeled image. 

What remains in the matrix is the portion of the shell that is occupied by other particles in 

contact with the particle being analyzed. Furthermore, data can be extracted on each 

particle that is in contact with the particle being analyzed by searching the original 

labeled image for the particle ID whose voxels occupy that space on the boundary. 

Coordination number is calculated as the total number of unique particle IDs within that 

matrix, which is the total number of particles in contact with the particle being analyzed. 

The contact between particles was computed within the second loop of the code. 

Definition of contact between two particles consists of identifying which voxel faces, 

corners, and/or edges share a mutual face, corner, and/or edge with a neighboring particle 

and calculating the location and directions of that contact. The outer loop cycles through 

each particle and collects the spatial location indices of contact in a vector as well as a 

vector contains particle numbers which are in contact with the particle being analyzed. 

These two vectors were passed to inner loop that calculated contact properties. The code 

searches the labeled image to match a particle number to its contact location, and the 

number of voxels that defines the contact between two particles is a representation of a 
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surface between them. Even with high-resolution SMT images, this contact surface is 

only relative to the image and cannot be quantified with any real physical meaning. 

Figure 1.7b displays an example contact (shown in red) between two voxel particles. 

Contact location was calculated by adding the voxel locations in each direction (x, y, z) 

and dividing them by the total “area” of contact, similar to the calculation of particle 

centroids. 

Contact between two particles is not always a single continuous surface. 

Roughness of particle surface or complex morphology could lead to several contact 

points, especially in very angular or rough granular materials. Considering that particle 

contacts may not be continuous, contact voxels do not lie in a plane as evident from 

Figure 1.7c. Although this definition of contact does not take into account the 

discontinuity of the contact surface, some researchers considered a global average of the 

voxel locations in calculating the contact and orientation. Contact area is relatively small 

and the global definition of contact between two particles will produce an overall average 

of the contact. This provides a good basis for determining fabric of a granular material, 

but may not prove as valuable for particle fracture assessment, since particle fracture 

depends heavily on contact and inter-particle forces. To define the contact between two 

particles, the 3D global direction of contact must be known as well as its location. The 

normal and tangent vectors to contact can play a significant role in determining how the 

particles will interact with each other upon loading and shearing. For example, if the 

loading direction is parallel to the vector normal to contact, then the forces transmitted   
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Figure 1.7. Illustration of contact voxels between two particles (axis units are in pixels, 

resolution = 10 μm/pixel). 
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between particles will be higher than if the loading direction was perpendicular to the 

normal contact vector. A statistical analysis was conducted on the contact voxels using 

PCA to determine contact orientation. The first and third principal coefficients represent 

the tangent vector to contact (first principal component along long axis or plane of 

contact voxels) and the normal vector to contact (third principal component along 

shortest axis of voxels). Essentially, the 3D normal and tangent vectors are on the best fit 

plane as determined by PCA. Figure 1.8 shows example normal and tangent contact 

vectors located at the center of contact for the particles depicted in Figure 1.7. PCA of the 

contact voxels provides the global orientation of contact and insight into how particles 

interact with each other when they are loaded. Defining the global contact location and 

normal between particles is useful in determining force transfer through the granular 

material. Even if the contact is discontinuous, PCA determines the statistical center and 

normal/tangent vectors of contact. It represents the location and direction in which force 

will statistically be transmitted between particles, which is valuable input in micro-

mechanics based constitutive models.  

The code flow chart is shown in Figure 1.9. The code consists of two main loops. 

Input for the first loop is the labeled image, and volume, center of mass, surface area, 

coordination number, lengths and orientations are calculated for each particle and stored 

as output. Coordination number and contact voxel location are used as input for the 

second loop, which is a double for loop. The outer loop collects the contact locations for 

a particle, as well as particle numbers that are in contact with the particle being analyzed.   
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Figure 1.8. Normal and tangent contact vectors between two particles (axis units are in 

pixels, resolution = 10 μm/pixel). 
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Figure 1.9. Flow chart of the code  
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The inner loop determines the contact orientation with PCA and the centroid of contact. 

Contact centroid and orientation is stored for each contact of each particle. Validation and 

verification of the code described in Figure 1.9 was conducted at each output, as 

described earlier.  

Some difficulties were encountered in calculating contact between particles 

within the code. PCA requires more than one pixel being in contact for calculation of the 

three principal components. When contacts are limited to only one voxel, whether from 

pieces of noise within the image or a physically small contact (less than image 

resolution), those points are omitted from the analysis. They make up a negligible 

percentage of the total contacts within any SMT image using the current image  

processing analysis. Another situation that can possibly occur and cause errors in 

defining contact orientation is when a particle has an extremely concave surface and 

wraps around another particle. This type of contact does not accurately fit a plane to the 

contact voxels well; however, PCA statistically determines the best fit contact 

orientation. The types of sand used in analysis with this code can be chosen so that this 

error is not likely to occur.  

Contact orientation of F-35 sand during axisymmetric triaxial 

compression 

Many definitions of fabric for granular material are reported in the literature using 

various geometrical aspects of the material such as contact normal vectors, branch 

vectors (vector connecting centroids of contacting particles), particle orientation and void 
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space. This paper investigates the evolution of contact normal during axisymmetric 

triaxial compression experiment on F-35 sand from in situ SMT images. The experiment 

was conducted on 10 mm diameter x 20 mm height cylindrical dense specimen (relative 

density = 90%) that was subjected to 400 kPa confining pressure. Further description of 

the sand, experimental setup, and experiment can be found in Alshibli et al. (2014), 

Druckrey and Alshibli (2014) and Tordesillas et al. (2015). SMT images were acquired at 

axial strains of 0, 1, 2, 3.5, 5, 7, 9 and 17.5% and processed by the previously described 

methods. The SMT images had a resolution of 11.18 μm/pixel and the principal stress 

ratio (PSR) versus axial strain for the experiment is depicted in Figure 1.10. Peak stress is 

reached at ~5% axial strain and critical state was reached at approximately 13% axial 

strain. 

Normal contact vectors were converted into spherical coordinate system with a 

rotated coordinate system in order to represent data in the loading direction (z-direction) 

with a full rose diagram (0 to 360 degrees, rather than 0 to 180 degrees). YZ direction 

was chosen in this paper due to limited pages of the paper and the normal contact vector 

and branch vector distributions are shown as rose diagrams in Figure 1.11 for axial 

strains of 0%, 2% (pre-peak stress state), 5% (peak stress state), and 17.5% (critical 

state). Before loading, contact normal vectors adduce a directional preference toward the 

horizontal which is expected as particles lay in the most stable position when they are 

deposited. As loading progresses, the directional preference of the contact normal vectors 

gravitates toward the loading direction (z-direction), and at peak and critical states   
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Figure 1.10. Axial strain versus principal stress ratio of axisymmetric triaxial 

compression experiment on F-35 sand. 
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Figure 1.11. Distribution of fabric descriptors for axisymmetric triaxial compression 

experiment on F-35 sand at 0, 2, 5, and 17.5% axial strains. 
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contact normal vectors display a preference to resist the vertical load. This trend of 

contact normals aligning to resist the load agrees with published research on the  

evolution of contact normals (e.g. Kanatani (1984), Theocharis et al. (2014)). There is 

only a small difference between the contact vectors at 5% axial strain (peak principal 

stress ratio state) and 17.5% axial strain (critical state). At the peak state, the shear band 

has nearly fully developed and rotation and kinematics of particles outside the shear band 

is relatively constant; meaning all particles outside the shear band are either moving as a 

rigid body (above shear band) or not moving at all (below shear band). As a result, most 

particle contact vectors remain relatively constant outside the shear band. Branch vector 

orientations follow a similar trend, although not as dramatic as contact normal vectors. 

This is attributed to the angularity of the F-35 particles. If all particles were spherical, 

contact normal and branch vector distributions would be identical. 

Kanatani (1984) fabric tensors were adopted in this paper. Fabric tensors of the 

first kind, which is the moment tensor of the contact normal vectors for each scan, is a 

symmetric tensor calculated as (second order):  

𝑁𝑖𝑗 =
1

𝑁
∑ 𝑛𝑖

𝛼𝑛𝑗
𝛼𝑁

𝛼=1      (1.4) 

where 𝑛𝑖
𝛼 is the 𝛼th contact normal vector and N is the number of contacts. Fabric tensors 

of the second kind order two is a deviatoric fabric tensor calculated as:  

𝐹𝑖𝑗 =
15

2
(𝑁𝑖𝑗 −

1

3
𝛿𝑖𝑗)     (1.5) 

where 𝛿𝑖𝑗 is the Kronecker delta. The second order probability density function (PDF) of 

the contact normal is: 
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𝑓(𝑛)~
1

4𝜋
𝐹𝑖𝑗𝑛𝑖𝑛𝑗      (1.6) 

Moment tensors, deviatoric fabric tensors, and PDF can be calculated to any even order. 

Second order descriptions of directional data are limited to ellipsoidal shapes for 3D data, 

while fourth and higher orders can represent more complex distributions. Completely 

uniform directional data would be represented by a sphere in 3D, or circle in 2D. Second 

and fourth order deviatoric fabric tensor surface representations are displayed in Figure 

1.11 for 3D contact normal vectors. Again, the second order tensor representation is 

limited to ellipsoidal shape while the fourth order tensor describes the data more 

accurately. Both orders show how the contact normal vectors are initially distributed 

more towards the horizontal and shift towards the vertical loading direction to resist the 

applied load.  

To describe the evolution of internal structure anisotropy, the normalized second 

invariant of the second order deviatoric fabric tensor (𝐹𝐼𝐼) was calculated at each loading 

stage, similar to Yang et al. (2014) and Theocharis et al. (2014). Figure 1.12 shows the 

evolution of 𝐹𝐼𝐼 during shearing of the F-35 sand. Fabric anisotropy increases rapidly 

during pre-peak stress state and reaches a maximum at peak state. The fabric anisotropy 

neutralizes and is relatively constant during the post-peak regime, implying that once the 

peak stress is reached minimal changes in overall contact normal direction occur. 

Computational Requirements 

The code was originally developed using MATLAB R2012b for relatively small 

images. For example, a 300×300×300 voxel image with 120 particles requires   



 

61 

 

 

Figure 1.12. Evolution of 𝐹𝐼𝐼 during axisymmetric triaxial test of F-35 sand. 
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approximately 1 GB of memory and ~2 minutes to process the data on a workstation with 

48 GB RAM. As the images increase in size and the number of particles increases, the 

computational time increases because the images are loaded into memory and they are 

searched many times within the code. Some of the large SMT images can be in excess of 

1920×1920×2600 voxels and contain over 100,000 particles. Running the MATLAB 

version of the code requires hundreds of gigabytes of RAM and several weeks of 

processing time. For this reason, the code was ported to C++ programming language. 

Once ported, analysis on the large images required approximately 70 GB RAM and 4– 5 

hours of compute time. The C++ version of the code can analyze even the largest images 

available from current SMT technology. 

Summary and Conclusions 

The paper presented a method of 3D SMT image analysis to quantify particle 

morphology as well as particle contacts. High resolution SMT images were obtained and 

processed using Avizo Fire software. SMT imaging and anisotropic diffusion filtering 

provided grayscale images with very little noise and clear particle boundaries. The SMT 

images were processed, and individual particles were labeled with their contact points 

intact. A code was developed in Matlab and ported to C++ language to analyze the 

largest labeled images available from current SMT technology. Accurate values of 

particle volume, surface area, center of mass, lengths, and orientations were computed for 

individual particles. Contact was defined based on contact voxels between particles. 
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Those contact voxels were statistically analyzed using PCA to determine the normal and 

tangent vectors to contact.  

Contact normal distributions were analyzed during in situ SMT imaging of 

triaxial compression of F-35 sand. Moment and fabric tensors were calculated to 

characterize the distribution. Contact normal distribution was initially oriented away from 

the loading direction, and upon compression the contact normal vectors oriented more in 

the loading direction to resist the load. Anisotropy of the fabric based on contact normal 

vectors increased dramatically until peak stress state was reached, then decreased to 

almost a constant value.   

Quantitative particle characteristics described by this paper provides valuable 

insight into the fabric and failure mechanisms of granular material. Loading paths 

through granular material depend on particle shape, orientation, and contact, which are 

defined by the current study. Results from this analysis can be used in many future 

applications such as tracking particle kinematics at progressive loading, verifying 

numerical models, or input for force chain models, to name a few. This research provides 

a first step for future development of accurate micromechanical models that can 

eventually be used to design many different types of granular systems.  
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CHAPTER 2 

QUANTIFYING MORPHOLOGY OF SANDS USING 3D IMAGING 
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A version of this chapter was originally published in: Alshibli, K., Druckrey, A., 

Al-Raoush, R., Weiskittel, T., and Lavrik, N. (2014). "Quantifying Morphology of Sands 

Using 3D Imaging." Journal of Materials in Civil Engineering, 04014275. 

My primary contributions to this paper include (i) surface roughness and SMT 

data collection, (ii) analysis of surface roughness and SMT data, (iii) determination of 

influence of particle morphology and surface roughness on granular material friction 

angle, (iv) some of the writing.  

Abstract 

Particle morphology plays a significant role in influencing engineering behavior 

of granular materials. Surface texture, roundness, and sphericity represent distinct multi-

scale measures needed to fully describe particle morphology. Most studies reported in the 

literature rely on 2D projected images of particles with few 3D images that mostly 

focused on relatively large-size aggregate samples. In this paper, 3D Synchrotron Micro-

Computed Tomography (SMT) was used to acquire high-resolution images of glass 

beads, F-35 Ottawa sand, #1 dry glass sand, GS#40 Columbia sand, Toyoura sand, and 

Hostun RF sand. New roundness and sphericity indices are proposed and calculated for 

the samples based on 3D measurements of surface area, volume, and three orthogonal 

diameters of particles. In addition, surface texture of particles was measured using optical 

interferometry technique. The measurements reported in this paper can serve as a good 

source for other researchers working on sands to build on these intrinsic particle 

properties to link engineering behavior of sands to their morphology. 
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Introduction 

Morphology, mineralogy, and gradation of particles have a significant influence 

on engineering properties of granular materials. Sedimentologists generally express 

particle morphology in terms of surface texture (roughness), roundness, and sphericity.  

Surface texture is used to describe the surface of particles (e.g. polished, greasy, frosted, 

etc.) that are too small to affect the overall shape.  Roundness refers to those aspects of 

particle surface (sharpness of corners and edges) that are on a larger scale than those 

classed as surface texture, but that are smaller than the overall dimensions of the particle.  

Sphericity is used to describe the overall form of the particle irrespective of the sharpness 

of edges and corners.  It is a measure of the degree of conformity of particle shape to that 

of a sphere.  Wadell (1932) was the first to point out that the terms shape and roundness 

were not synonymous, but rather include two geometrically distinct concepts.  He defined 

roundness of a particle based on a 2D image as the ratio of the average of radii of all 

corners of the particle to the maximum radius of an inscribed circle..There are also are 

many other scale definitions for the roundness (e.g., Russel and Taylor 1937; Pettijohn 

1949; Powers 1953, 1982).  Powers (1953) emphasized that roundness does not depended 

on particle’s shape instead it depends on the sharpness of edges.  Wadell (1932) was also 

the first to choose the sphere as a standard.  Ideally, the property of sphericity may be 

defined as the ratio of the volume of a sphere of the same volume as the fragment in 

question to the actual volume of the particle. Powers (1953) introduced the sphericity 

terminology to describe the shape as well as the roundness index.  In 1982 Powers 
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modified this chart to include more classes for sphericity and assigned index numbers for 

the different roundness and sphericity classes.   

A definition of particle shape in terms of sphericity and roundness is widely 

accepted.  However, methods have not been standardized because of the tedious task of 

making numerous readings. Zavala (2012) presented a review of particle shape indices 

reported in the literature. Advances in digital imaging and computed tomography (CT) 

technqiues have served as valuable tools to characterize aggregate morphology based on 

2D images (e.g., Kwan et al. 1999; Wang et al. 2005; Al-Rousan et al. 2006; Cox and 

Budhu 2008; Bessa et al. 2012; Sun et al. 2012) or 3D images (e.g., Komba et al. 2013; 

Garbout et al. 2013). Garboczi and Bullard (2013) acquired 3D images of spherical glass 

beads and calculated the the sphericity of the beads. Fonseca et al. (2012) compared 2D 

to 3D measurements of particle morphology of natural sands and found a clear difference 

between 2D and 3D shape measurements. Al-Raoush (2007) calculated sphericity and 

roundness indices of one sand sample based on 3D CT images. 

The shape/roundness of granular particles can be evaluated using different indices 

such as the Form Factor (FF), which is widely used in the literature for 2D images: 

𝐹𝐹 =
4𝜋𝐴

𝑝2
     (2.1) 

Where A is the projected area of the particle and P is the perimeter of A. Sukumaran and 

Ashmawy (2001) quantified 2D particle shape using a normalized shape factor (SF) and 

angularity factor (AF) on projections of particles as well as ideal shapes such as circle, 

cross, and four pointed star. They fitted a polygon inside the particle projection and 
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measured lengths and angles at sampling various sampling intervals. Bloom et al. (2009) 

extended Sukumaran and Ashmawy (2001) approach to 3D by conducting the analysis on 

2D cross sections throughout the particle and taking a statistical mean for the particle (not 

a true 3D measurement).  They also used common methods such as Fourier analysis and 

invariant moments to compare the shapes. 

Masad et al. (2001) introduced the surface Texture Index (TI) in which they 

referred to the fast Fourier transform, a good correlation between TI and the rutting 

resistance for hot-mix asphalt was found in their study.  In 1998, Grigoriev et al. studied 

the surface texture at the nano-scale level and concluded that it affects the contact 

behavior between two surfaces.  James and Vallejo (1997) defined the roughness as the 

general shape and surface irregularity and emphasized that roughness is an important 

characteristic that affects the mass behavior of the soil. The surface texture/roughness has 

been also mesured using more accurate and complicated methods such as Fractal 

Geometry, fuzzy uncertainty texture spectrum (Lee et al. 1998), Structural 3-D 

approaches (Hong et al. 1999), SURFASCAN 3D (Content & Ville 1995), photometric 

stereo acquisition and gradient space domain mapping (Smith 1999), and optical 

interferometry (Alshibli and Alsaleh, 2004). 

This paper proposes new roundness and sphericity indices for glass beads and five 

silica sands including Ottawa sand, #1 dry glass sand, GS#40 Columbia sand, Toyoura 

sand, and Hostun RF sand based on high resolution 3D SMT images. Additionally, 

surface texture of the glass beads and the sands were quantified using optical 
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interferometry. The measurements reported in this paper can serve as a good source for 

other researchers working on sands to build on these intrinsic particle properties to link 

engineering behavior of sands to their morphology, state (density), applied stress 

condition, boundary condition, etc. 

Sand Properties 

Three silica sands known as F-35 Ottawa sand, #1 Dry Glass sand, and GS#40 

Columbia grout sands were acquired and only size portion between US sieves #40 (0.429 

mm) and #50 (0.297 mm) were used in this study (Table 2.1). These are silica sands with 

different morphology ranging from rounded to angular particle classes (Table 2.1). The 

authors plan to conduct triaxial experiments on these sands in the near future to 

investigate the influence of particle morphology on strength properties of poorly-graded 

(uniform) sand. Glass beads with similar grain size as these sands are also included in the 

investigation to provide baseline measurements for roundness and sphericity. In addition, 

samples of Toyoura and Hostun RF sands were analyzed.  Toyoura sand is a poorly 

graded silica sand with a mean particle size (d50) of 0.22 mm and has been extensively 

tested by Japanese geotechnical researchers under many loading and state conditions. 

Hostun RF sand is also a poorly graded sand with d50 = 0.34 mm and has been widely 

tested by many geotechnical researchers in France under complex loading paths and 

conditions. Figure 2.2 shows the grain size distribution curves for Toyoura and Hostun 

RF sands. Furthermore, many constitutive models reported in the literature have used 

Toyoura and Hostun RF sands for calibration and validation. Therefore, reporting  
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Table 2.1.  Properties of sands and glass beads 

Material Gs d50 

(mm) 

emin emax Source Supplier Grain Size  

F-35 Ottawa  

Sand 

2.650 0.36 0.570 0.763 Ottawa, IL, 

USA 

 Size 

portion 

between 

US sieves 

#40 (0.42 

mm) and 

#50 

(0.297 

mm) 

#1 Dry Glass 

Sand 

2.650 0.36 0.715 0.947 Berkeley 

Springs, WV, 

USA 

US Silica 

Company 

GS#40 Columbia 

Grout Sand 

2.650 0.36 0.693 0.946 Columbia, 

SC, USA 

 

Glass beads 2.550 0.36 0.686 0.800 Soda lime 

glass 

Jaygo inc. 

Hostun RF Sand 2.658
+
 0.34 0.592

+
 0.978

+
 France Prof. Viggiani  Figure 2.2 

Toyoura Sand 2.648
+
 0.22 0.621

+
 1.034

+
 Japan Prof. Tatsuoka Figure 2.2 

+ 
Duttine et al. (2008) 
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Figure 2.1. SEM images of the sands and the glass beads 

 

Figure 2.2. Grain size distribution curves for Toyoura and Hostun RF sands  
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morphology properties of these sands will have a broad impact and will be valuable 

measurements for future experimental studies.  

Particle Roundness and Sphericity 

Synchrotron Micro-computed Tomograhy (SMT) Image Acquisition and Processing 

Since the early1990’s, x-ray computed tomography (CT) has emerged as a 

powerful non-destructive 3D scanning technique to study geomaterials and visualize their 

internal structure. It is a technique in which the x-ray beam of a computerized 

tomography scanner passes through an object and is collected with a detector; the beam is 

rotated to produce the equivalent of a “slice” through the area of interest. The x-ray 

information collected during the rotation is then used by a computer program to 

reconstruct 3D image of the scanned object. X-ray CT has been extensively used to 

characterize geomaterials and there is extensive literature on the subject area. A 

significant enhancement to conventional x-ray tomography systems is the use of 

synchrotron radiation source which generates higher intensity beams (10
6
 times greater 

than a conventional x-ray beam). This has several advantages over conventional x-ray 

sources, including high intensity of photon flux (number of photons per second), high 

degree of collimation (source divergence leads to image blur), and the ability to tune the 

photon energy over a wide range using an appropriate monochromator for obtaining 

specific-element measurements (Kinney and Nichols 1992). Synchrotron micro-

computed tomography (SMT) produces images with higher resolution and less noise 
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when compared with conventional CT systems. SMT imaging also produces a relatively 

crisp boundary between solid and air phases which is beneficial for image analysis. Otani 

and Obara (2004), Desrues et al. (2006), and Alshibli and Reed (2010) reported the latest 

advances on applications of CT and SMT on soils, concrete, and rocks.  

In this study, a sample of Toyoura sand was placed inside a capillary tube that has 

an inner diameter of 0.85 mm and scanned at Beamline 13D, Advanced Photon Source 

(APS), Argonne National Laboratory (ANL). The specimen was scanned at 20 KeV 

energy using 0.20 degree rotation increments with a spatial resolution of 2.01 

micron/voxel. Since other sands and glass beads have larger grain size, they were placed 

inside an aluminum tube with inner diameter of 2.35 mm and scanned at 28 KeV energy 

yielding SMT images with a spatial resolution of 3.79 micron/voxel. Figure 2.3a&c show 

an example axial SMT image of F-35 Ottawa sand. 

The 3D SMT images were post-processed using Avizo Fire software. Images were 

first filtered using an anisotropic diffusion filter which enhances the phase contrast at the 

boundary of particles as well as smoothes out noise within the particle continuum. Next, 

the images were segmented into solid and air phases using interactive thresholding. In the 

grayscale SMT image, solid material volumetric pixels (voxels) have higher intensities 

than air, and at some points it is difficult to differentiate between voxels belonging to 

solid and voxels belong to air. Errors resulting from incorrect segmentation can cause 

significant differences in particle shape, especially when conventional CT systems are 

used. This is because conventional CT systems sometimes do not provie 3D images with 
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clear material boundaries. However, voxel values between the solids and air in SMT are 

vastly different and boundaries are crisp as a result, especially after applying anisotropic 

diffusion filtering (Figure 2.3a&b). To demenstrate this, an error analysis on using 

different thresholding values on the effect on particle shape indices is presented later in 

this paper. After segmentation, particles were separated from each other using built-in 

separation algorithms and the tube and particles adjacent to the image boundaries were 

then removed to prevent partial particle count and the tube from being included in the 

calculations. Each of remaining particles was assigned a unique label that represents the 

actual particle shape very closely (Figure 2.3d). The 3D images were then saved for 

further processing and analysis using a special code that was developed by Al-Rausch 

(2007) using Matlab software. Particle volume was calculated by summing the voxels 

belonging to the particle. Similarly, particle surface area was computed as the summation 

of exterior faces of boundary voxels belonging to the particle. The shortest (dS), 

intermediate (dI), and longest (dL)  diameters of the particle that pass through the center 

of mass of the particle were calculated using the concept of principal component analysis 

on the 3D particle voxels. The three orthogonal directions were statistically calculated 

using singular value decomposition and the distances between the extreme points along 

those directions represent the three particle lengths. To demonstrate the accuracy of the 

code calculations, grain size distribution of Toyoura sand was calculated using dS values 

and displayed in Figure 2.2 which shows that the images-based grain size distribution 

slightly deviates from sieve analysis. While shaking a sample in the sieve analysis, it is   
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Figure 2.3. Example axial SMT image F-35 Ottawa sand and associated segmented image 
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difficult to align particles to pass through using their shortest diameter which caused the 

slight difference in grain-size distribution between image-based analysis and sieve 

analysis. 

Roundness and Sphericity Measurements 

In this paper, two new indices are introduced to define the sphericity and 

roundness of particles based on high-resolution 3D SMT images.  The sphericity index 

(𝐼𝑠𝑝ℎ) is defined as:  

𝐼𝑠𝑝ℎ =
𝑉𝑝

𝑉𝑠
     (2.2) 

Where 𝑉𝑝 and  𝑉𝑠 are the actual volume of the particle and the volume of sphere with a 

diameter equals to dS, respectively. 𝐼𝑠𝑝ℎ equals to unity for spherical particle. In most 

cases, 𝐼𝑠𝑝ℎ  has a value more than unity but it may have values less than unity for kidney-

shaped and discoidal particles (e.g., Figure 2.4a). The roundness index (𝐼𝑅) is defined as: 

𝐼𝑅 =
𝐴𝑝

4𝜋(
𝑑𝐿+𝑑𝐼+𝑑𝑠

6
)2

    (2.3) 

Where 𝐴𝑝 is the actual 3D surface area of the particle. The denominator in Equation 2.3 

represents the surface area of a sphere that has a diameter equals to the average of dS, dI 

and dL. 𝐼𝑅 equals to unity for a particle that has no asperities on its surface and has the 

same surface area as a sphere with an equivalent average diameter.  

To demonstrate the effect of segmentation errors on particle shape indices, an 

image subset containing 70 particles of F35  sand was processed several times, with the 

only variation being the threshold value. The resulting sphericity and roundness indices   
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Figure 2.4. (a) Example image showing a particle with Isph <1; (b) Image demonstrate that 

a correction is necessary in particle perimeter calculation 
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were compared for each of the chosen values. The thresholding values chosen were at 

various voxel intensities close to the lower voxel range of solid material (where it begins 

to get difficult to determine whether a voxel belongs to solid phase or air phase). Once 

this value was estimated, a range of ±200 intensity units was used to evaluate the effect 

on shape indices. The average error in sphericity between the lowest chosen thresholding 

value and the highest chosen thresholding value was less than 1% which demonstrates 

that the estimated thresholding value, as long as it is close the edge of solid material, has 

negligble effect on 𝐼𝑅 and  𝐼𝑠𝑝ℎ values.     

Figure 2.5 and Table 2.2 show the normalized histograms and a summary of 

statistical parameters for 𝐼𝑠𝑝ℎ and 𝐼𝑅, respectively. The mean value (MV) and standard 

deviation (SD) of  𝐼𝑅 for glass beads are 0.965 and 0.043, respecively. The SEM images 

of glass beads (Figure 2.1a) revealed that the manufacturing and handling processes 

resulted in the beads not being perfectly spherical, rounded and smooth. Variation of the 

bead morphology from the processes produced a distribution in the sphericity, roundness, 

and surface roughness measurements. In fact,  some beads are fused together which also 

explains the slight deviation of the MV of 𝐼𝑅 from unity. The MV and SD of  𝐼𝑠𝑝ℎ of 

glass beads are 1.096 and 0.433, respectively, where a higher SD is expected since 

roundness mainly measures the sharpness of particle corners whereas sphericity captures 

the overall volume of a particle normalized with respect to the volume of a sphere. Also, 

the distribution of 𝐼𝑠𝑝ℎ is greatly skewed because of the fused particles (Vp > Vs), leading 

to the seemingly large SD. Figure 2.5 shows that 𝐼𝑅 have normal distributions for all   
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Figure 2.5. Normalized histograms of roundness and sphericity of the sands and the glass 

beads  
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Table 2.2.  Statistical summary of roundess and sphericity measurements 

  Current Study Komba et 

al. (2013), 

Fonseca 

et al. 

(2012) 

Garboczi 

and 

Bullard 

(2013) 

Material Parameter dS 

(mm) 

dI 

(mm) 

dL 

(mm) 

ISph IR 3D 

Sphericity 

Sph3D 

Glass 

Beads 

Minimum 0.151 0.165 0.1658 0.781 0.767 0.555 0.414 

Maximum 0.429 0.476 0.6673 7.879 1.515 1.089 1.136 

Mean 0.339 0.348 0.3696 1.096 0.965 0.996 0.995 

SD 0.042 0.039 0.061 0.433 0.043 0.045 0.063 

F-35 

Ottawa 

Minimum 0.178 0.238 0.312 0.768 0.665 0.442 0.294 

Maximum 0.445 0.570 0.798 7.278 1.653 1.173 1.271 

Mean 0.331 0.433 0.545 1.872 0.959 0.872 0.817 

SD 0.048 0.049 0.073 0.732 0.083 0.070 0.097 

Number 

1 Dry 

Glass 

Minimum 0.169 0.194 0.249 0.524 0.553 0.336 0.195 

Maximum 0.464 0.609 0.895 9.891 1.636 1.023 1.035 

Mean 0.309 0.417 0.535 1.704 0.937 0.773 0.682 

SD 0.050 0.054 0.091 0.859 0.106 0.085 0.110 

GS40 

Columbia 

Grout 

Minimum 0.165 0.200 0.242 0.648 0.542 0.422 0.274 

Maximum 0.472 0.692 0.989 10.585 1.532 1.007 1.010 

Mean 0.309 0.412 0.530 1.674 0.924 0.796 0.712 

SD 0.049 0.055 0.0948 0.799 0.099 0.080 0.105 

Toyoura Minimum 0.123 0.160 0.207 0.795 0.623 0.464 0.316 

Maximum 0.251 0.327 0.564 3.877 1.373 1.102 1.157 

Mean 0.183 0.238 0.313 1.665 0.906 0.839 0.772 

SD 0.026 0.035 0.053 0.579 0.097 0.091 0.124 

Hostun 

RF 

Minimum 0.150 0.183 0.192 0.618 0.580 0.261 0.133 

Maximum 0.520 0.658 1.284 11.496 2.351 1.088 1.134 

Mean 0.315 0.442 0.575 1.833 0.904 0.773 0.683 

SD 0.066 0.068 0.102 0.971 0.136 0.091 0.118 
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sands and glass beads with Hostun RF sand has the highest SD whereas F-35 Ottawa 

sand has the lowest SD among the sands (Table 2.2).  𝐼𝑠𝑝ℎ histograms (normalized) are 

skewed and have wider distribution ranges when compared to 𝐼𝑅 (Figure 2.5) which is 

also manifested in higher SD where Hostun RF sand again has the highest SD followed 

by #1 dry glass sand (Table 2.2). 

For each of the materials, Table 2.2 also compares Isph to 3D sphericity as 

presented by Fonseca et al. (2012)  and Komba et al. (2013), 𝒔𝒑𝒉𝒆𝒓𝒊𝒄𝒊𝒕𝒚 =
√𝟑𝟔𝝅𝑽𝟐𝟑

𝑨
, as 

well as 𝑺𝑷𝑯𝟑𝑫 =  
𝟔𝝅𝟏/𝟐𝑽

𝑺𝑨𝟏.𝟓  presented by Barboczi and Bullard (2013). The mean of the 

new proposed measure, Isph, deviates more from unity than the either of the sphericity 

indices presented in the literature, especially for as particles that are non-sphericial. The 

SD is also much larger for the new proposed Isph. This is an indication that the proposed 

Isph amplifies the effect of non-spherical particles. No comparison of roundness is 

presented in this paper because there is a lack of well-defined equations to calculate 3D 

roundness in the literature.   

2D Versus 3D Roundness and Sphericity Measurements 

It is common to use 2D images to quantify roundness and sphericity of granular 

materials. The question is: does 2D projection image of a particle yield a correct measure 

of particle roundess and sphericity? To answer the question, the roundess (𝐼𝑅−2𝐷) and 

sphericity (𝐼𝑠𝑝ℎ−2𝐷) indices for 2D images are defined as: 

𝐼𝑠𝑝ℎ−2𝐷 =
𝐴𝑎

𝐴𝑠
     (2.4) 
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𝐼𝑅−2𝐷 =
0.78 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

𝜋(
𝑑𝐿+𝑑𝑠

2
)

    (2.5) 

Where 𝐴𝑎  and  𝐴𝑠 are the actual area of the particle and the area of a circle with a 

diameter equal to dS, respectively. In a digital image (e.g., Figure 2.4b), square pixels are 

counted to calculate the perimeter of particles in 2D which slightly overestimates the 

value of perimeter; therefore a factor of 0.78 in Equation 2.5 is necessary to correct the 

perimeter measurement from digital images. It is found based on a simple calibration 

process by digitally calculating the perimeter of a spherical particle and comparing it to 

d where d is particle diameter. 

Figure 2.6 shows a comparison between 2D and 3D roundness and sphericity of 

all granular materials used in this study. Initial investigation of this data gives the 

impression that the 2D and 3D samples do not produce the same results (same mean and 

standard deviation), and warrants quantative statistical analysis. To test the null 

hypothosis that the two means are the same, a two-sample t-test was condcuted on each 

of the materials. The null hypothesis was rejected for every sample even at very low 

significance levels (<0.001). For spheres with smooth surfaces, one expects no difference 

between 2D and 3D analysis. However, the variance of morphology of the glass beads 

from the manufacturing process (Figure 2.1a)  caused  a statistical difference between 2D 

and 3D roundness and sphericity indices. However, there is a difference between 2D and 

3D roundness and sphericity indices for the sands where were much more statistically 

different as determined by visual inspection of the histograms (Figure 2.6) and from the 

two-sample t-test analysis. 𝐼𝑅 has smaller values than 𝐼𝑅−2𝐷 whereas 𝐼𝑠𝑝ℎ has higher   
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Figure 2.6. Comparison of 2D versus 3D sphericity and roundness indices for glass beads 

and F-35 sand  
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values than 𝐼𝑠𝑝ℎ−2𝐷 and spreads over a wider range. These results demonstrate that 

quantifying particle sphericity and roundness based on 2D projection image of a particle 

will result in a different classification of particle morphology when compared to 3D for 

non-spherical particles and it is necessary to use 3D images to obtain accurate measures 

of roundness and sphericity. The differences between 2D and 3D are caused by several 

factors. In particular, the orientation of a particle in a 2D slice might not show the true 

short and/or long axes, which would certainly affect the roundness of the particle. This is 

evident from Figure 2.6 as the 3D roundness for each sample has a wider distribution. 

Also, indices based on 2D projects, even if aligned perfectly to display the shortest and 

longest axes of the particle, do not provide any information about the third dimension. If 

the third dimension had no effect on the particle morphology, the distributions could be 

the same. The effect of the third dimension and true particle lengths (short, intermediate, 

long) on the response of a granular system could be significant. For example, a 

cylindrical particle could have the same short and long diameters as a flat, platy particle. 

However, the platy particle will resist rolling in the intermediate direction much more 

than a cylindrical particle. 

Surface Texture Measurements 

Surface texture measurements were conducted using VEECO IMOA optical 

surface profiler of the Center for Nanophase Materials Sciences (CNMS) of Oak Ridge 

National Laboratory (ORNL).  It is a non-contact optical profiler that uses two techniques 

to measure a wide range of surface heights. Figure 2.7 shows a photograph of the profiler.   
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Figure 2.7. Photo of the Veeco optical profiler 
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 It has two operating phase; Phase Shifting Interferometry (PSI) mode allows measuring 

smooth surfaces and steps, while the Vertical Scanning Interferometry (VSI) measures 

rough surfaces and steps up to millimeters high. Vertical scanning interferometry (VSI) 

measurement mode was used to collect spatial surface profile of the area. VSI is more 

ideal for capturing the surface profile for relatively rough surfaces (roughness greater 

than 100 μm) or surfaces with discontinuities greater than 135 nm, which is a common 

occurrence in natural particles. The maximum vertical scan range of VSI (10 μm) was 

needed because the particles were relatively large and discontinuities within the field of 

view (FOV) were often close to or exceeded 10 μm, especially if the FOV was located 

near the edge of a particle. To overcome large discontinuities within the FOV, surface 

profiles were taken on areas of the particle that were normal to the lens, minimizing lost 

data. The resolution of the system at the VSI mode is 10 nm. Scanning processing include 

subtracting the effect of the curvature of the particle surface. 

Particles of each sand type were placed on a glass slide and inserted on to the 

sample stage. A lens with 10X zoom was used to locate a specific particle and the turret 

was rotated to the 50X lens with a 2.0X objective, resulting in an overall magnification of 

100X and a 0.06 x 0.05 mm FOV.  Figure 2.8 shows example 3D renderings of particles’ 

surface profile of glass beads, #1 dry glass sand, and GS#40 Columbia sand. 

Approximately 30 particles from each of the sands were scanned, with 2 to 3 scans per 

particle.  They were arbitrarily selected among each slide. The profilor is supplemented 

with computer software in which a series of mathematical algorithms are executed for   
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Figure 2.8. Example surface profiles showing particle surface texture of glass beads, #1 

dry sand, and GS#40 Columbia sand  
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each scan to estimate different texture indices. The following texture indices were 

calculated for each sand particle: 

 Average texture ( ): is the arithmetic mean of the absolute values of the surface 

departure from the mean plane. 

𝑅𝑎 =
1

𝑀𝑁
∑ ∑ 𝑍𝑖𝑗

𝑁
𝑗=1

𝑀
𝑖=1     (2.6) 

Where M and N are the number of pixels in X and Y direction,  is the surface height at 

a specific pixel relative to the reference mean plane. Ra is usually used to describe the 

texture of a finished surface, so it can be used to describe the texture of the sand particle 

surface.  The main disadvantage that might be encountered here is, with average texture, 

the effect of a single spurious, non-typical peak or valley will be averaged out and have 

only small influence on the overall texture.  So this index or average will give no 

information about the shape of the irregularities or the surface of the particle. For 

granular materials and particle–to–particle friction,  represents, to some extent, the 

overall texture used for friction calculations.  

 Root mean square texture ( ): is calculated as follows: 

𝑅𝑞 = √
1

𝑀𝑁
∑ ∑ 𝑍𝑖𝑗

2𝑁
𝑗=1

𝑀
𝑖=1      (2.7) 

It represents the standard deviation of the surface heights.  Rq has the same disadvantage 

as the Ra does.  The advantage of using Rq over Ra is that Rq squares the heights, giving 

more significance to the valleys and peaks. 

Table 2.3 lists a statistical summary of surface texture measurements of glass 

beads and the sands. One can notice that statistical parameters for Rq are slightly higher 
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than those for Ra for each of the sands and glass beads.  As expected, the glass beads 

have the lowest surface texture. Toyoura sand has the lowest mean and SD of both Ra and 

Rq among sands, which corresponded with observations of SEM images (e.g., Figure 

2.1e) where particles consisted of faceted relatively smooth surfaces. GS#40 Columbia 

sand has the highest SD of Ra and Rq values as well as the highest maximum values of 

both Ra and Rq. 

Influence of Particle Morphology on Friction Angle of Granular 

Materials 

The effect that sphericity, roundness, and surface texture have on the behavior of 

granular material is studied by comparing the friction angle of the relatively spherical, 

rounded, and smooth glass beads to that of the F35 sand, which is more angular and 

rough. To determine the friction angle, samples of glass beads and F35 sand were 

prepared at the same relative density and tested at the same confining pressure. The peak 

friction angle of the glass beads for the test was found to be 29.6
o
 and for F35 sand was 

37
o
. Figure 2.9 shows the friction angle of the two granular materials as a function of 

sphericity, roundness, and surface roughness and demonstrates that the friction angle 

seems to be impacted by sphericity and surface roughness. However, further analysis is 

warrented because the increase in friction angle could be a result from one, two, or all 

three of these measures. Therefore, a more detailed statistical study on the effects of   
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Table 2.3.  Statistical parameters for Ra and Rq 

Sand Statistics Ra (μm) Rq (μm) Sand Statistics Ra 

(μm) 

Rq (μm) 

G
la

ss
 B

ea
d

s 

Minimum  0.048 0.082 

G
S

#
4

0
 C

o
lu

m
b

ia
 G

ro
u

t Minimum  0.081 0.102 

Maximum  6.994 8.051 Maximum  9.467 11.099 

Mean 0.248 0.381 Mean 1.504 1.923 

Median 0.142 0.240 Median 1.189 1.581 

Root mean square 0.859 1.015 Root mean 

square 

2.228 2.754 

SD 0.829 0.947 SD 1.654 1.986 

Standard error 0.100 0.114 Standard error 0.191 0.229 

F
-3

5
 O

tt
aw

a 

Minimum  0.175 0.235 

T
o

y
o

u
ra

 

Minimum  0.381 0.499 

Maximum  9.259 11.284 Maximum  3.930 4.901 

Mean 1.612 2.084 Mean 1.436 1.847 

Median 1.291 1.649 Median 1.265 1.660 

Root mean square 2.124 2.677 Root mean 

square 

1.616 2.065 

SD 1.392 1.693 SD 0.748 0.932 

Standard error 0.165 0.201 Standard error 0.097 0.120 

#
1

 D
ry

 G
la

ss
 

Minimum  0.282 0.386 

H
o

st
u

n
 R

F
 

Minimum  0.275 0.362 

Maximum  3.976 5.273 Maximum  3.711 4.862 

Mean 1.570 1.990 Mean 1.505 1.972 

Median 1.319 1.701 Median 1.333 1.715 

Root mean square 1.823 2.287 Root mean 

square 

1.692 2.207 

SD 0.933 1.135 SD 0.781 1.001 

Standard error 0.108 0.131 Standard error 0.103 0.133 
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Figure 2.9. Example of the effects that sphericity, roundness, and surface roughness on 

friction angle of a granular material    
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sphericity, roundness, and surface roughness on the shear strength and particle kinematics 

will soon be conducted in order to better quantify the individual and combined effects of 

these measures.  

Summary and Conclusions 

Morphology of five sands and glass beads were quantified and discussed in this 

paper. 3D synchrotron micro computed tomography was used to acquire high-resolution 

images of particles of sands and glass beads. New sphericity and roundness indices are 

introduced to calculate roundness and sphericity using 3D SMT images of particles. They 

are independent measures that represent two different morphological properties of 

granular materials. The use of 2D images give different results when compared to 3D 

images if particles are not spherical and do not have a smooth surface, therefore it is 

necessary to use 3D images to obtain accurate measures of roundness and sphericity.  

Surface texture was also accurately quantified for the sands and glass beads using 

optical interferometry technique.  Texture parameters were defined and calculated for the 

sands and glass beads used in the study. It is apparent that particle morphology and 

surface roughness can play a role in the friction angle of granular material, and a more 

detailed analysis of these effects on the strength of granular material is justified and will 

soon be conducted.   
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CHAPTER 3 

3D FINITE ELEMENT MODELING OF SAND PARTICLE 

FRACTURE BASED ON IN SITU X-RAY SYNCHROTRON 

IMAGING 
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A version of this chapter was originally published in: Druckrey, A. M., and 

Alshibli, K. A. (2016). "3D finite element modeling of sand particle fracture based on in 

situ X-Ray synchrotron imaging." International Journal for Numerical and Analytical 

Methods in Geomechanics, 40(1), 105-116. 

My primary contributions to this paper include (i) formulating objectives and 

evaluating current research in the area, (ii) conducting experiments during in-situ SMT 

imaging, (iii) development of methodology to conduct finite element analysis on real 

particle shapes using SMT imaging, (iv) implementation of fracture model to simulate 

experimental particle fracture, (v) analysis of experimental and finite element simulation 

results, (vi) most of the writing.  

Abstract 

Compressive loading of granular materials causes inter-particle forces to develop 

and evolve into force chains that propagate through the granular body. At high-applied 

compressive stresses, inter-particle forces will be large enough to cause particle fracture, 

affecting the constitutive behavior of granular materials. The first step to modeling 

particle fracture within force chains in granular mass is to understand and model the 

fracture of a single particle using actual three-dimensional (3D) particle shape. In this 

paper, fracture mode of individual silica sand particles was captured using 3D x-ray 

radiography and Synchrotron Micro-computed Tomography (SMT) during in situ 

compression experiments. The SMT images were used to reconstruct particle surfaces 

through image processing techniques. Particle surface was then imported into Abaqus 
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finite element (FE) software where the experimental loading setup was modeled. The 

constitutive behavior of the particle was modeled using the extended finite element 

method (XFEM) where particle fracture was compared to experimental fracture mode 

viewed in radiograph images that were acquired during experimental loading. Load-

displacement relationships of the FE analysis were also compared with experimental 

measurements. 3D FE modeling of particle fracture offers an excellent tool to map stress 

distribution and monitors crack initiation and propagation within individual sand 

particles. 

Introduction 

Particle fracture plays a significant role in the constitutive behavior of granular 

materials at high applied stresses. For example, McDowell and Bolton (1998) updated the 

relative density index proposed by Bolton (1986) to include the mean tensile strength of 

particles because it provides a more micromechanical insight into the dilatant behavior of 

crushable soils. More micromechanical insight can be achieved by determining the 

interaction of particles and how force chains develop and evolve during meso-scale 

testing. The geometry of force chains in a granular material mass is influenced by the 

fabric, boundary conditions, and applied stresses. Fabric or structure is defined here as 

the arrangement of particles, particle groups, and the associated pore space. It is directly 

affected by particle morphology (e.g. Edwards and Grinev 1999; Maeda et al. 2010; 

Tordesillas and Muthuswamy 2009; Wang et al. 2011). As applied compressive stresses 

increase, force chains transmit larger forces between particles, eventually leading to 
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particle fracture. The first step to modeling particle fracture within force chains in a 

granular material using actual particle morphology is to model and understand the 

micromechanics of compression and fracture of a single particle. 

Many theories and approaches have been reported in the literature to describe 

particle fracture, and most common approach is to try to relate the failure stress within 

the particle to the applied failure force on the particle or granular mass. For example, 

Brzesowsky et al. (2011) have developed theoretical models that describe particle 

strength and flaw size using Weibull statistics based on failure data obtained from 

experiments. Cavarretta and O'Sullivan (2012) used a micromechanical approach to 

describe the compression of individual particles and developed models that incorporated 

frictional sliding, bulk particle compression, and fragmentation based on geometry and 

kinematic degradation of stiffness. More recently, Alshibli et al. (2013) used 3D x-ray 

diffraction to measure strains within individual silica particles in compression and 

calculated the stresses based on particle strain. 

The objective of this paper is to import a high-resolution 3D representation of a 

single particle from an SMT image into FE modeling Abaqus software and model particle 

fracture using the XFEM. Crack initiation and propagation is modeled and compared to 

radiograph images that capture fracture of individual silica sand particles. The radiograph 

images are fast enough to capture live in situ images of particle fracture whereas accurate 

high-resolution 3D volume representation of particles is created using the SMT 

technique. Similar achievements have been reported in the medical field F(e.g. Barrett et 



 

105 

 

al. 2010; Cattaneo et al. 2001; Tajima et al. 2009; Tsuda et al. 2008); however to the best 

our knowledge, SMT images of individual sand particles have not been collected during 

in-situ compression and fracture.  

Experimental measurements 

Unconfined Compression Experiments 

One-dimensional (1D) unconfined compression experiments were conducted on 

individual particles of ASTM 20-30 Ottawa sand using the apparatus shown in Figure 

3.1. ASTM 20-30 Ottawa sand is a natural silica sand with rounded to sub-rounded 

particles with particle size between US sieve #20 (0.85 mm) and sieve #30 (0.59 mm). 

The particle is placed between two 0.4 mm diameter aluminum plates (#4 and #7 in 

Figure 3.1) that are kept concentric using an aluminum cylindrical guide tube (#5 in 

Figure 3.1). The bottom loading plate is fixed to the bottom plate of the loading cell 

whereas the top loading plate rests freely on the particle. A stepper motor drives the top 

end plate at a constant displacement rate of 1 μm/minute and a 90 lb load cell was used to 

record the axial load with resolution of 0.1%. An initial load of 0.3 N was first applied to 

stabilize the particle during the first x-ray SMT scan that was acquired to obtain a high-

resolution reconstructed image of the particle. Since it takes few minutes to acquire SMT 

images and we wanted continuous loading up to fracture stage to capture particle fracture 

initiation and propagation; multiple radiographs were collected while loading the particle. 

Radiographs represent 2D projection image of the particle and takes a fraction of second   
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Figure 3.1. Experimental 1D unconfined compression test setup for a single sand particle 

  

150 mm 
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to acquire each. Displacements during experiments were measured with SMT images and 

radiographs to very high accuracy.  

Imaging Acquisition and Post-Scan Processing 

SMT is a non-destructive high-resolution imaging technique that can produce 3D 

images of the particle using x-ray transmission. The specimen is placed between the x-ray 

source and the detector, and a high-energy monochromatic x-ray beam produced by 

synchrotron sources is attenuated as it travels through the particle. The absorption level 

primarily depends on the properties of the scanned object (chemical composition and 

geometry) and the energy level of the x-ray. A scintillator converts the transmitted beam 

to visible light which is projected onto a detector and recorded by a camera system 

(Figure 3.2).  

The x-ray SMT and radiograph images were collected at GeoSoilEnviroCARS 

(GSECARS) of the Advanced Photon Source (APS), Argonne National Laboratory 

(ANL), Illinois, USA. Beamline 13D was used to collect the data using a beam size of 

1.38 mm horizontal × 1.03 mm vertical. Scans were acquired at 1
o
 rotation increments by 

rotating the specimen between 0
o
 and 180

o
 with 1 second exposure time, resulting in a set 

of 2D radiographs with spatial resolution of 1.98 μm/voxel (see (Rivers et al. 2010) for 

more information about the setup of beamline 13BMD). An example radiograph image of 

a particle is shown in Figure 3.3a. The reconstructed SMT data provides an accurate 3D 

image of the particle as depicted in Figure 3.3b. Each voxel has a unique attenuation   
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Figure 3.2. GSECARS Beamline 13BMD Experimental Hutch Setup 

 

Figure 3.3. Images of (a) corrected preprocessed data (radiograph) and (b) slice of 3D 

reconstructed SMT image. 

  

0.5 mm 
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coefficient based on the x-ray attenuation of that particular voxel resulting in different 

shades of greyscale. 

The goal of post-scan image processing is to create an accurate 3D triangulated 

surface of only the particle by eliminating the surrounding air and loading plates. A filter 

within Avizo Fire software was first applied to smooth the images while preserving the 

boundary contrast. A comparison of the original image and filtered image is depicted in 

Figure 3.4a&b. Next the image was binarized for further image processing. Since there 

was a small contrast between the background and particle, the entire image excluding the 

boundary between particle and air was segmented (Figure 3.4c). Small holes within the 

image were then filled (Figure 3.4d) and the particle was separated from the surrounding 

air and loading plates (Figure 3.4e). Finally, borders were deleted leaving only a binary 

image of the particle (Figure 3.4f). 

A 3D surface of the particle was generated using Avizo Fire software so that a 

tetrahedral volume mesh can be implemented in the finite element analysis software. The 

surface is generated using triangular elements that are smoothed to inhibit the voxelated 

nature of the 3D image. The smoothing is necessary to mimic the physical particle 

surface more realistically and is valid since the voxel size is significantly smaller than the 

size of any pertinent surface features of the particle. The triangulated surface of the 

particle (Figure 3.5) is completely closed and saved as a stereolithography (STL) file in 

order to be exported to Abaqus Finite Element (FE) software.  
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Figure 3.4. Workflow of the image post-processing steps 

 

 

Figure 3.5. Triangulated particle surface with greyscale ortho-slice  

0.5 mm 
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Finite Element (FE) Analysis 

Model Setup 

Abaqus FE software was used to model particle fracture behavior. The STL file of 

the triangulated surface was imported into Abaqus through a plug-in tool of Abaqus. 

Using the edit mesh toolset, the 3D shell of triangular elements was converted into a solid 

mesh of tetrahedral elements. The mesh is constructed to optimize the efficiency of each 

element and the tetrahedral element faces are approximately the same size as the 

triangular elements. 3D revolved discrete rigid shell surfaces were created and assembled 

on the particle to simulate the experimental setup of the loading plates. Discrete rigid 

shells do not deform but can measure contact force at each node, similar to the interaction 

between the experimental load cell and the particle.  

The general contact algorithm in Abaqus-Standard was implemented to define 

contact between the loading plates and the particle. The particle was defined as the slave 

mesh and the loading plates were the master. Contact properties were assigned to not 

allow the meshes to overlap. Because of the rough nature between the loading plate and 

particle as seen in the x-ray SMT images (Figure 3.3), the tangential behavior in the 

model was defined to be rough. When friction was used in the model with penalty friction 

formulation, the particle completely separated from the loading plates during analysis 

even when a high friction coefficient was assumed. Therefore rough friction formulation 

was adopted to model the experiment.   
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Material Properties 

Elements are assumed to have a linear isotropic elastic behavior before failure. 

Although silica sand particles have slight anisotropic material properties, no crystalline 

structure data was collected on these particular particles and anisotropy could not be 

implemented in the FE model. The Young’s elastic modulus and Poisson’s ratio of silica 

sand are assumed to be 94.4 GPa and 0.118, respectively (Heyliger et al. 2003). In this 

paper the cracks are modeled as enriched features using XFEM since it allows for the 

detection of crack initiation and propagation and the crack can be visualized within the 

particle. Fracture and propagation of a discrete crack in XFEM is based on stresses (or 

strains) within the particle and the crack is mesh-independent. However, the material and 

geometrical nonlinearities introduced during fracture requires extremely small time steps 

and step stabilization for convergence as the crack propagates through the particle.  

XFEM mitigates problems of meshing cracked surfaces which occur in traditional 

FE fracture models and allows for a solution-dependent path without the requirement of 

remeshing. XFEM was first introduced by Belytschko and Black (1999)) as an extension 

to the FE method that incorporates nodal enrichment functions based on the concept of 

partition of unity. Nodal enrichment functions allow discontinuities within the continuum 

by enriching degrees of freedom with special displacement functions u (ABAQUS 2011): 

     𝑢 = ∑ 𝑁𝐼(𝑥)[𝑢𝐼 + 𝐻(𝑥)𝑎𝐼]𝑁
𝐼=1     (3.1) 

where 𝑁𝐼(𝑥) are the FE shape functions, 𝑢𝐼 is the nodal displacement vector of the 

continuum observed in standard FE solutions, 𝐻(𝑥) = {
1 𝑖𝑓 (𝑥 − 𝑥 ∗). 𝑛 ≥ 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 is the 
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discontinuous jump function where x is a Gauss point, x* point on the crack closest to 

that Gauss point and n is the unit outward normal to the crack at x, and 𝑎𝐼 is the nodal 

enriched degree of freedom vector. The first term within the brackets applies to all nodes 

within the enriched part of model as normal and the second term applies when nodes 

within the shape function are cut by the crack. Near-tip asymptotic singularity is not 

considered within this approach because the computational effort for a propagating crack 

is too demanding, requiring the crack to propagate across an entire element at a time 

while not having to follow mesh contours. This assumption is valid in the current 

research because we are more interested in determining how cracks propagate through the 

particle rather than analyzing exact stresses at the crack tip. 

 The XFEM approach used in this research is based on traction-separation 

cohesive behavior and phantom nodes, which is very general and can be used for 

modeling brittle or ductile fracture (ABAQUS 2011). The phantom node is completely 

constrained to the real node when the element is intact. When a crack propagates through 

the element, the element splits into two parts connected by the phantom node but free to 

move apart. The cohesive law input into the model determines the magnitude of 

separation of the real and phantom nodes until element degrades to zero cohesive 

strength. Modifying the cohesive law controls whether the fracture is brittle or ductile and 

determines the rate of crack propagation. 

Maximum nominal stress criterion was used to determine the initiation of fracture 

in the particle. Purely compressive states will not initiate damage and the tensile and 
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shear stresses at failure are required for the model, which coincides with particles 

fracturing because of tensile forces. Cracks are introduced or extended when the fracture 

criterion, 𝑓 = 𝑚𝑎𝑥 {
𝑡𝑛

𝑡𝑛
𝑜 ,

𝑡𝑠

𝑡𝑠
𝑜 ,

𝑡𝑡

𝑡𝑡
𝑜}, reaches one within a small tolerance. 𝑡𝑛 is the stress 

normal to the crack (tensile stress) and 𝑡𝑠 and 𝑡𝑡 are the shear stresses to the cracked 

surface in the simulation. The failure stresses are input as 𝑡𝑛
𝑜, 𝑡𝑠

𝑜, and 𝑡𝑡
𝑜. Stresses within 

particles of silica sand during compression were determined experimentally by Alshibli et 

al. (2013) using high-energy synchrotron diffraction up to fracture. The results of their 

research provided nominal normal and shear stresses at the failure stage of individual 

particles. The tensile stress at failure was determined to be 25.3 MPa and the two shear 

components were determined to be 12.6 MPa and 8.7 MPa. The crack will initiate and/or 

propagate when stress within the particle reaches the specified failure stresses. 

After initial damage (i.e. fracture criterion is reached) particles of silica sand, a 

natural quartz, are known to fail via a brittle mode (Bieniawski 1967; Chelidze et al. 

1994) therefore, damage evolution (crack propagation) in the model should reflect this 

behavior. Damage evolution in Abaqus can be defined in many ways for a brittle material 

and the methods for choosing damage evolution are rather empirical. In this paper, the 

damage evolution law is based on the rate of degradation of cohesive stiffness after 

damage is initiated. Mode-independent fracture energy with linear softening was defined 

with relatively small fracture energy to represent the quick and brittle nature of the crack. 

The cohesive strength of the real and phantom nodes will quickly reach zero after failure 

stresses are reached.  
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Boundary Conditions 

To simulate experimental loading, the bottom load plate in the model was fixed 

with zero degrees of freedom throughout the analysis. The top plate was allowed one 

degree of freedom in the vertical direction, while the particle was unrestrained and 

permitted to move and rotate during loading. A constant displacement was applied on the 

top plate to load the particle in the same way as the experiment. The FE simulations were 

ran until crack onset and propagation. 

Results 

2D Mesh Analysis 

An initial mesh sensitivity analysis was first conducted on a 2-dimensional (2D) 

particle to assess the effect of mesh size on particle loading and failure mode. A 2D 

model of a disc with diameter of 0.8 mm (close to size of analyzed particles) was used to 

simulate a particle. All material properties were kept the same for each of the simulations, 

varying only the approximate global seed size for mesh generation. FE analysis was 

conducted on the 2D particle with varying mesh sizes until divergence occurred. 

Divergence occurs as the crack quickly propagates through the particle (brittle failure) 

because of numerical instabilities inherent in the model, therefore cracks propagate to 

different lengths. Crack length in the 2D model was not of much concern because once 

initial damage occurs (crack initiation), the failure mode is brittle and the crack would 

theoretically propagate entirely through the particle with minimal increase in the load. 
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The 2D analysis could not capture the entire crack propagation because of model 

divergence, and the results for several mesh sizes (above and below element sizes used 

for 3D analysis) are depicted in Figure 3.6. The crack in each of the 2D FE simulations 

initiates immediately next to the contact area between the particle and loading plate when 

failure tensile stress is reached within a small tolerance. The crack initiates closer to the 

center of the particle for the smaller mesh sizes but the difference is negligible. The stress 

distribution before initiation of fracture is best defined in the finest mesh, but the 

differences are also negligible.  

The force-displacement relationships for each of the 2D mesh simulations is 

shown in Figure 3.7 where no load was recorded at the beginning of the simulation 

because the loading plates had not yet made contact with the particle. Once contact was 

initiated, the force increased almost linearly until failure (peak of each curve). Again, the 

failure happens when a crack is initiated and subsequently propagated through the 

particle without any increase in the load. Most FE simulations failed at approximately the 

same load, while the simulation with the smallest element size resulted in a slightly larger 

load. Because of the small differences between local fracture and global loading curves, 

3D meshes were created with approximately the same element size as the 2D particle 

meshed with a global seeding size of 0.03. 

Behavior of a Spherical Particle 

It is common to model the behavior of granular materials using ideal spheres. 

Here, we will perform FE analysis on spherical particles and compare it to the behavior   
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Figure 3.6. 2D mesh size analysis of XFEM cracking when analysis diverged 

 

 

Figure 3.7. Force-displacement relationships of top plate for 2D mesh analysis  
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of actual shapes of sand. A 3D FE model was developed to compress an ideal spherical 

particle with no flaws or imperfections. A particle with a 0.8 mm diameter was analyzed. 

Cracking and fracture of the sphere occurred in several phases with increasing load as 

shown in Figure 3.8. As the top plate moves downward at a constant displacement rate, 

cracks initiated at the top and bottom of the particle next to the contact area with the 

loading plates which is similar to the failure mode of 2D simulations. After initiation at 

both ends, the cracks propagated until they met in the middle of the particle as viewed in 

yellow in Figure 3.8b. Upon further loading, the crack began to split open (Figure 3.8c) 

and then the particle fractured into what would be many small pieces (Figure 3.8d).  

Particle Failure based on Experimental Radiograph Images 

The small loading rate during in-situ radiograph imaging permitted experimental 

monitoring of fracture initiation and propagation within the particle. The top loading 

plate moves only ~0.0167 μm between consecutive radiograph images, allowing time to 

collect radiographs immediately before and after fracture. Due to the brittle nature of 

sand fracture, it takes only a fraction of second for the particle to disintegrate into small 

fragments. Figure 3.9 shows the radiographs of Particle 1 immediately before and after 

the fracture. Particle 1 in Figure 3.9 developed two cracks next to the contact between the 

particle and the loading plates, where the highest tensile stresses occurs (Kschinka et al. 

1986; Shipway and Hutchings 1993). This indicates that tensile stresses in these locations 

reach the failure point and the particle fractured. The second particle where radiograph   
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Figure 3.8. Visualization of ideal spherical particle loading and fracture mode 

 

 

Figure 3.9. Radiograph visualization of first fracture within Particle 1  

0.5 mm 



 

120 

 

data was collected also demonstrated that fracture occurred immediately outside of the 

area of contact with end plates.  

XFEM Using Physical Particle Shapes 

SMT imaging of particles during in-situ loading helps to better understand the 

fracture mode that occurs and gives a baseline for model validation. The objective of 

particle fracture modeling in this paper is to accurately determine crack location and 

measure the force during loading and fracture using actual particle shapes. Understanding 

fracture at the particle level is the first step to growing the model to multi-particles and 

laboratory sized samples, leading to development of better constitutive models that 

involve particle fracture.  

Particles experience elastic deformation before failure. The Von Mises stress 

distribution as the load increases from FE analysis of Particle 1 is shown in Figure 3.10. 

The stress concentration occurs at the contacts and propagates as the compressive load 

increases, which is similar to other theories such as the well-known Hertzian contact 

theory. Once a crack is initiated, the XFEM model in Abaqus required extremely small 

time steps and several days of computation time because of the discontinuous nature of 

cracking from geometrical and contact nonlinearities. Figure 3.11 displays the first crack 

locations within the two different particles from the XFEM model and radiograph 

images. Cracks initiated outside the contact area when the tensile stress reached the 

failure tensile stress. Once fracture is initiated, the propagation of the cracks occurred 

almost instantaneously in real time (not compute time) and are nearly perpendicular to   
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Figure 3.10. Stress distribution within Particle 1 at increasing load increments before 

fracture 

 

Figure 3.11. Crack locations of the two particles analyzed from (a) XFEM results and (b) 

radiographs during experiments  

0.5 mm 
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the loading plates. There are, however, slight differences between cracking in the model 

and the experiment. These differences could be due to the material being slightly 

anisotropic while an isotropic material was assumed in the model or imperfections in the 

sand grains or the experimental setup that are not captured by the model. 

Initially, the particles rotated in the model and experiment and did not record a 

significant load until rigid body stability was achieved. Following initial rotation, 

particles undergo an elastic response until initial fracture (Figure 3.12). The ideal 

spherical particle experienced a relatively smooth elastic response until fracture which 

occurred at higher load and displacement when compared to experiments and FE 

simulations using real particle shapes. In the experiment, several asperities are damaged 

in Particle 1 before complete failure and the load-displacement curve reflects fracturing 

of the asperities via multiple small reductions in load. After asperity fracture, elastic 

response of the particle occurred until a major splitting failure. The XFEM model of 

Particle 1 did not capture the asperity fracture of the experiment, but replicates the major 

splitting fracture very well. 

Particle 2 had the same fracture stresses input to the model as Particle 1, but 

required a larger force to fracture it with a behavior similar to an ideal sphere. Particle 2 

also had sphericity and roundness indices closer to that of a sphere. The XFEM model of 

Particle 2 has more particle motion and rearrangement during loading, resulting in local 

peaks of the force-displacement curve prior to failure. From these results, it is clear that   
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Figure 3.12. Load-displacement relationships from experiments and FE model for ideal 

sphere and the two analyzed particles  
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particle shape influences its fracture behavior and modeling sand particles using spheres 

does not give the best match for experimental measurements. 

Conclusion 

Synchrotron x-ray radiography and 3D SMT techniques were used to collect 

images of individual particles of silica sand during in-situ unconfined compression 

experiments. Radiograph images allowed for the visualization of cracks in the particles, 

giving insight into fracture patterns caused by compression. The cracks initiated next to 

the contact area between the loading plates and the particle, indicating that tensile stresses 

reached failure in these locations. Once fracture is initiated, the built up elastic stressed in 

the particle suddenly released causing an abrupt, brittle major splitting failure through the 

particle. 

The XFEM model works well to capture the cracking and fracture behavior of an 

ideal spherical particle. The initial elastic response was relatively smooth until fracture 

load which was higher than fracture loads of FE simulations of real particle shapes and 

experiments. A crack propagated entirely through the particle and then began to separate. 

Shortly after the crack began to separate, complete fracture occurred in the ideal sphere. 

The XFEM model analysis on the actual particle shape simulated fracture of the 

particle very similar to what was visualized using the radiograph images during 

compression. Fracture predicted by the model was in the same location as the 

experimental fracture. With the assumed parameters, XFEM analysis on actual particle 

produced a load-displacement curve similar to the experimental curve. Rotation of the 
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particle was captured, along with the elastic response and fracture mode. Finally, shape of 

sand particles influences their fracture behavior and modeling sand particles using 

spheres does not give the best match for experimental measurements.  
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CHAPTER 4 

EXPERIMENTAL FRACTURE OF INDIVIDUAL SAND 

PARTICLES AT HIGH LOADING RATES AND ASSESSMENT 

USING 3D X-RAY IMAGING 
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A version of this chapter is under revision in the Journal of Dynamic Behavior of 

Materials. The author list is: A. Druckrey, K. Alshibli, D. Casem, E. Huskins.  

My primary contributions to this paper include (i) development of problem based 

on overall research objectives at various length scales, (ii) conduction of all experimental 

aspects of paper, (iii) waveform data analysis to force and velocity versus displacement, 

(iv) development of non-linear multivariable statistical models to predict fracture forces, 

(v) simulation of particle fracture using finite element analysis, (vi) analysis of all results, 

(vii) most of the writing.  

Abstract 

High strain rate loading conditions such as blast, impact, or projectile penetration 

cause major damages to infrastructure and soils. Sand particles will likely fracture if they 

are exposed to such loading conditions. Modeling the constitutive behavior of sands 

when subjected to dynamic loading requires a high-fidelity particle-scale analysis, 

calibration, and validation using experimental measurements. In this paper, natural sand 

particles with varying morphology, mineralogy, and grain size were randomly selected 

from the bulk material and separated based on particle size and mineralogy. Intact 

particles were first imaged using a desktop x-ray computed tomography (CT) scanner to 

obtain morphology and provide further input to the mineralogy and internal structure. 

Each particle was then placed between incident and transmitter bars of a Kolsky bar setup 

and two optical images (side and top views) were collected to visualize the loading 

geometry and direction. Each particle was then dynamically compressed to failure and 
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load, compression, and compression rate were measured. Recovered particle fragments 

were imaged using synchrotron micro-computed tomography (SMT) to determine the 

fracture mode and fracture surface. Weibull statistics were performed and multivariable 

nonlinear regression was implemented with particle characteristics as predictors. Also, a 

finite element model was used to simulate particle fracture at the strain rate reported in 

this paper and particle fracture stresses were compared with theoretical particle strength. 

The paper discusses the influence of morphology, mineralogy, internal structure and size 

of particles on dynamic particle failure strength. 

Introduction 

Fracture and comminution of sand particles is well known to affect the 

constitutive and deformation behavior of granular material during quasi-static loading as 

well as high-rate loading conditions (Allen et al. 1957; Antoun 2012; Cooper and Breaux 

2010; Iskander et al. 2015) . During blast loading, energy dissipates partially through 

sand particle fracture and comminution (Børvik et al. 2011; Braslau 1970).  Fracture of 

individual particles could affect the dynamic behavior of the ejecta resulting from buried 

explosives (Regueiro et al. 2014) and therefore affect the loading applied to an object 

such as an armored vehicle or structures close to the explosive source. Particle fracture 

may occur in many other high strain rate (HSR) loadings on granular materials such as 

projectile penetration into sand (Allen et al. 1957; Cole 2010; Cooper and Breaux 2010), 

drilling and mining applications, and impact. In this paper, intermediate and HSR for 

granular materials is considered to be between 10%/s and 10
7
%/s.  Assessing dynamic 
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properties of fracture at the particle level is an essential step in understanding the 

behavior of bulk granular materials that experience high strain rates and plays a critical 

role in improving design against such dynamic forces.  Constitutive behavior of granular 

materials at the macro-scale is highly influenced by the material properties at the particle 

scale. For example, it is well known that quasi-static loading of a granular material causes 

force chains to develop that carry the majority of the applied external loads. Particle 

fracture takes place within those force chains when jamming occurs within the system. 

Jamming is when other phenomenon including initial compression of the grains, particle-

particle friction, and particle rearrangement due to such particulate friction are suppressed 

(Cil and Alshibli 2014; Cooper 2011; Peters et al. 2005; Wang et al. 2011). Individual 

particle properties significantly affect macroscopic properties in these particulate 

assemblies (Antony 2007; Yoshida 2005).  

The HSR behavior of sand has been investigated using various techniques. 

Suescun-Florez et al. (Suescun-Florez et al. 2015) compiled a comprehensive review on 

HSR testing of granular soils, including different dynamic testing techniques and selected 

results. Many researchers have utilized techniques such as the Kolsky bar, also known as 

split-Hopkinson pressure bar (SHPB), on laboratory-scale specimens (e.g. Knodel et al. 

1990; Luo et al. 2011; Martin et al. 2009). Luo et al. (2011) found that the grain size 

distribution shifted significantly, suggesting that many particles fractured during Kolsky 

testing at HSR. Force chains have also been found to develop within granular material 

during dynamic loading, although dynamic structures differentiate from those during 
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static and quasi-static loading (Behringer et al. 2014; Dwivedi et al. 2008; Felice and 

Gupta 2009; Omidvar et al. 2012). Similar to static and quasi-static loading, particles 

within these dynamic force chains experience the largest stresses and are the first to 

fracture. Particles within dynamic force chains have less time to rearrange, which 

increases stresses within the particles, but also have less time to fracture (Suescun-Florez 

et al. 2015). Therefore, particle stress at fracture would be theoretically larger during 

dynamic loading than quasi-static.  

Extensive research on experimental fracture mechanics at the single particle level 

has been conducted using quasi-static loading using a variety of experimental methods 

and theories (e.g. Brzesowsky et al. 2011; Cavarretta and O'Sullivan 2012; Cil and 

Alshibli 2012; Druckrey and Alshibli 2015; McDowell and Bolton 1998; Mitchell et al. 

2007; Zhao et al. 2015). For example, Druckrey and Alshibli (2015) modeled the fracture 

behavior of real particle shapes using 3D finite element (FE) analysis based on 3D 

images that were acquired using SMT imaging during quasi-static compression. Zhao et 

al. (2015) reported a comprehensive investigation of quasi-static single particle fracture 

using x-ray CT. However, quasi-static fracture of individual particles do not account for 

dynamic processes and do not account for any strain rate effect that might be present.  

High rate testing of individual sand particles provides the initial particle-scale 

information that can be used in dynamic modeling across the scales. In particular, HSR 

tests can be used to calibrate and validate high fidelity particle-scale poly-ellipsoidal 

discrete element models (DEM) that include particle fracture, which in turn can be used 
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to develop lower fidelity soil blast models at larger scale to replace costly and time 

consuming full scale testing (Antoun 2012). Important input parameters to the particle-

scale DEM modeling include particle shape, loading direction, fracture strength, and 

fracture mode resulting from high-rate loading. Furthermore, high-rate finite element 

analysis (FEA) of real particle shapes would further describe actual stresses within 

particles at fracture which has thus far been difficult to measure. Few studies have been 

published to investigate the behavior of single particle failure under dynamic loading. 

Parab et al. (2014) used a confined Kolsky bar to dynamically compress particles during 

in-situ high speed phase contrast imaging (PCI). Two confined approximately spherical 

Ottawa sand particles were placed in a hollow cylindrical aluminum housing and were 

subjected to dynamic load while 2D radiographs and load versus time data were 

collected. Visual assessments of damage propagation were conducted and when particles 

were dry, one of the two particles had extensive interfacial cracking followed by 

pulverization. Wet sand particles broke into large fragments followed by pulverization. 

Borg et al. (2015) used uniaxial compression to fracture 20 particles while acquiring 

images with a high-speed camera and used particle reflectivity to visualize fracture. 

Assuming spherical grains and Hertzian contact, approximate particle strains were 

calculated from the images and based on the force at fracture approximate particle 

stresses were calculated. Borg et al. (2015) observed similar phenomena between 

dynamic single particle fracture and particle fracture within a granular media during dart 

penetration.     
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This paper uses 3D imaging and recently developed mini-Kolsky bar techniques 

to assess the dynamic behavior of non-spherical natural sand particles with different 

mineralogy and morphology. To capture the initial morphology of the particles, 3D CT 

images of intact particles before testing were acquired using a desktop x-ray CT system. 

Each particle was then placed in an unconfined mini-Kolsky bar setup similar to (Casem 

et al. 2014; Casem et al. 2012) with a normal displacement interferometer (NDI) to 

measure the low-magnitude transmitted pulse in the transmitter bar. Optical images were 

taken with the particle in place before loading, and the fragments were collected after 

loading for post-test SMT imaging. Multivariable nonlinear regression was performed to 

determine a combined effect of particle properties in determining the fracture force. Also, 

Weibull statistical analysis was performed on particle characteristic tensile strengths with 

good statistical correlation. FEA was performed to validate the fracture and loading of 

particles at the experimental displacement rate, where fracture stresses determined from 

FEA were compared with the assumed characteristic tensile strength of each particle. 

This procedure provides essential information about alignment of the particle in any 

numerical analysis, collection of the load-displacement and velocity measurements as 

well as 3D analysis of particle fracture mode. Determining particle fracture strength 

and/or forces required to fracture a particle is an important first step in hierarchical 

upscaling to laboratory specimen size scale and eventually to field scale simulations. 



 

136 

 

Experimental Procedure 

The experiments reported in this paper were developed as a contribution to a 

larger project described in Regueiro et al. (2014), an integrated experimental mechanics 

and multiscale computational model concurrent with a multiscale approach to simulate 

soil ejecta. The project required the use of natural sand in experiments and modeled using 

continuum finite element and discrete element methods to provide robust multiscale 

measurements. The research objectives of Regueiro et al. (2014) are to numerically 

predict (a) the propagation of blast waves in soils (accounting for particle scale physics), 

(b) explosive device fragmentation interaction with soil, and (c) the triphasic soil 

deformation, fracture, fragmentation and ejecta resulting from the detonation in various 

types of soil. This research was conducted to experimentally and numerically validate 

and verify DEM particle fragmentation at the pore-grain-scale (Scale I) as well as 

determine the forces on particles and the intra-particle stresses that develop and cause 

fracture during higher rate loading. Larger meso-scale HSR experiments are being 

concurrently conducted, and some of the results can be found in (Luo et al. 2014; Luo et 

al. 2011) for SHPB testing of sand. Current DEM modeling efforts can be found in 

Regueiro et al. (2014) and other numerical simulations based on this natural sand that 

include hierarchical upscaling in (Homel et al. 2015; Huq et al. 2016; Meyer Jr and 

Brannon 2012). The materials, experimental procedure, and modeling involved in this 

paper were chosen based on the needs of the parent research project. 
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Material 

A natural sand from a quarry in Longmont, Colorado (Colorado Materials, Inc.), 

known as mason sand, was selected in this study because of its heterogeneous grain 

properties as a representative of a natural sand deposit. It is not a typical “research” sand 

which is generally uniform and has well-defined properties. This sand was chosen to 

provide experimental inputs for the development of robust particle-scale and multi-scale 

models. X-ray powder diffraction was performed on the full spectrum of Mason sand 

(without excluding any particles) and diffraction curves were analyzed using RockJock 

quantitative mineralogy software (Eberl 2003). The sand is composed of 27.8% quartz 

and 24.8% tridymite; a polymorph of quartz, 15.6% plagioclase, 15.4% potassium 

feldspar (denoted Kspar), 5.6% ferrihydrite, 3.2% pyroxene, 2.5% mica, 2% psilomelane, 

1.4% hornblende, 1% calcite, and 0.7% other minerals. Particles were also separated by 

color (an approximate means of mineralogy) and additional powder diffraction curves 

were collected on each color and were analyzed in order to aid in visual mineral 

identification of individual particles that were tested. The particle size distribution of 

mason sand is shown in Figure 4.1 and it is classified as a poorly graded sand (SP) with 

D10 = 0.15 mm, D30 = 0.3 mm, D60 = 0.52 mm, Cc = 1.15, and Cu=3.47 according to 

ASTM-D2487 standard classification system.   
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Figure 4. 1.  Particle size distribution of Mason sand   
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Pre-Loading Imaging 

To provide information on the initial properties of each particle, 3D CT scans 

were acquired using a commercial SkyScan 1172 microCT x-ray scanner. Ten particles 

were placed on a sample holder using double sided tape and care was taken to keep track 

of the orientation of the particles relative to the x-ray beam.  The sample holder was 

placed in the x-ray machine and 720 projections were collected at 0.25° rotation 

increments. Projections were reconstructed to create a 3D image with a resolution of 4.02 

μm/voxel (volumetric pixel). Grayscale images of the intact particles were processed and 

individual particle sizes of axis lengths (short, intermediate, and long) and volume were 

computed according to the method reported in Druckrey et al. (2016) and presented in 

Table 4.1. Morphology of each of the tested particles was calculated based on  

Alshibli et al. (2014) and are also presented in Table 4.1 in terms of sphericity (Isph) and 

roundness (IR). A large variation of sphericity was present among the tested particles (as 

well as in Mason sand as a whole). Individual particle morphology affects how the 

particle will be loaded and influences its fracture mode. Each particle had a unique 

morphology (therefore unique loading parameters such as contact points on the loading 

bars) and 3D images of the intact particles are used to construct, verify, and validate 

fracture models. Examples of fracture modeling using FEA are presented later in this 

paper. 

The internal structure of a particle, which indirectly relates to the particle 

mineralogical composition, affects its fracture behavior. Internal flaws create stress   
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Table 4.1. Summary of particle properties obtained from CT imaging, XRD, and visual 

photographs 

Particle 

Number 

Particle 

Short 

Axis, ds 

(mm) 

Particle 

Int. 

Axis, di 

(mm) 

Particle 

Long 

Axis, dl 

(mm) 

Particle 

Volume 

(mm
3
) 

Isph IR 

Internal 

Structure 

Classifi-

cation  

Visual Mineral 

Classifi- 

cation
1 

1 0.67 0.80 0.96 0.22 1.39 1.03 5 Biotite Mica 

2 0.59 0.80 1.15 0.24 2.23 0.93 5 Granite 

3 0.64 0.84 1.02 0.22 1.60 0.86 6 Granite 

4 0.90 1.16 1.45 0.59 1.52 0.95 4 Granite 

5 1.03 1.33 1.67 0.82 1.44 0.93 5 Granite 

6 1.36 1.98 2.06 2.25 1.70 0.96 4 Granite 

7 1.40 1.52 1.72 1.48 1.03 0.92 5 Granite 

8 1.26 1.57 2.21 1.73 1.65 0.90 4 Kspar Orthoclase 

9 0.77 0.78 1.07 0.26 1.06 0.93 3 Kspar Orthoclase 

10 1.21 1.31 1.77 1.07 1.15 0.89 4 Kspar 

Anorthoclase 11 1.47 1.60 2.50 2.27 1.36 0.88 4 Kspar Orthoclase 

12 0.44 0.93 1.01 0.17 3.83 0.74 3 Kspar Orthoclase 

13 0.58 0.61 1.45 0.19 1.78 0.75 3 Kspar Orthoclase 

14 0.63 1.09 1.24 0.32 2.44 0.79 3 Kspar Orthoclase 

15 0.68 1.03 1.22 0.30 1.84 0.74 4 Kspar Orthoclase 

16 0.97 1.26 2.05 0.93 1.93 0.82 2 Kspar Orthoclase 

17 0.98 1.04 1.62 0.77 1.59 0.99 2 Kspar Orthoclase 

18 1.19 1.56 2.55 1.78 2.00 0.78 3 Kspar Orthoclase 

19 1.29 2.01 2.22 2.01 1.76 0.89 3 Kspar Orthoclase 

20 0.94 1.42 2.18 1.43 3.29 0.95 5 Muscovite Mica 

21 1.18 1.51 2.00 1.14 1.32 0.83 3 Plagioclase 

22 0.57 1.01 1.28 0.24 2.44 0.78 4 Plagioclase Albite 

23 0.52 0.92 1.25 0.26 3.56 0.66 5 Plagioclase 

Oligoclase 24 0.57 0.81 1.30 0.32 3.36 0.86 6 Plagioclase 

Oligoclase 25 0.61 0.80 1.10 0.17 1.37 0.74 6 Plagioclase 

Oligoclase 26 0.87 1.17 1.51 0.67 1.90 0.90 6 Plagioclase 

Oligoclase 27 1.17 1.19 1.74 1.01 1.20 0.93 6 Plagioclase 

Oligoclase 28 0.72 1.06 1.10 0.33 1.68 0.83 4 Pryoxene Augite 

29 0.91 1.64 1.90 1.48 3.68 0.76 2 Psilomelane  

30 0.50 0.72 1.46 0.24 3.60 0.82 3 Pyroxene 
    1

Pre-experiment CT images and optical images aided in mineral identification 
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Table 4.1 Continued. Summary of particle properties obtained from CT imaging, XRD, 

and visual photographs 

Particle 

Number 

Particle 

Short 

Axis, ds 

(mm) 

Particle 

Int. 

Axis, di 

(mm) 

Particle 

Long 

Axis, dl 

(mm) 

Particle 

Volume 

(mm
3
) 

Isph IR 

Internal 

Structure 

Classifi-

cation  

Visual Mineral 

Classifi- 

cation
1 

31 1.00 1.39 1.57 0.80 1.53 0.80 4 Pyroxene 

32 0.64 0.81 1.24 0.21 1.55 0.75 1 Quartz 

33 0.60 0.98 1.28 0.27 2.30 0.78 1 Quartz 

34 0.79 1.17 1.44 0.61 2.33 0.86 1 Quartz 

35 0.72 1.04 1.25 0.31 1.60 0.79 2 Quartz 

36 0.75 0.94 1.12 0.27 1.22 0.89 1 Quartz 

37 1.15 1.70 2.13 1.06 1.34 0.75 1 Quartz 

38 1.12 1.57 1.98 1.12 1.52 0.81 1 Quartz 

39 1.09 1.42 1.61 0.94 1.40 0.86 2 Quartz 

40 0.74 1.50 1.68 0.84 3.94 0.96 2 Quartz 

41 1.21 1.47 1.52 0.96 1.05 0.92 2 Tridymite 

42 0.82 1.37 2.31 1.35 4.66 0.99 2 Tridymite 

43 1.36 1.51 2.46 2.23 1.70 0.90 2 Tridymite 
    1

Pre-experiment CT images and optical images aided in mineral identification 
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concentrations within a particle upon loading and/or provide initial fracture planes (if 

flaws are micro-cracks). To quantify the internal structure of each particle, a rating 

system from one to six was developed based on the overall internal structure. The internal 

structure of a particle can include flaws such as voids, micro-cracks, or inclusions. 

Inclusions are various minerals embedded within the particle that create a mineral 

boundary and possible fracture plane. Figure 4.2 shows examples of each of the six 

internal structure ratings. Only flaws or inclusions with sizes greater than that of the 

image resolution can be detected, and any flaws smaller than the resolution were ignored 

at this level. A rating of 1 (Figure 4.2a) is a nearly solid internal structure with no 

apparent flaws. Rating 2 has few very small internal flaws (Figure 4.2b) and rating 3 

(Figure 4.2c) has small sporadic flaws throughout the particle. A rating of 4 has several 

flaws within the particle (Figure 4.2d). A rating of 5 (Figure 4.2e) has many concentrated 

flaws and micro-cracks, while rating of 6 (Figure 4.2f) means that the particle is 

internally covered with flaw and micro-cracks. Internal flaws occasionally manifest 

towards the surface of a particle (especially for particles with ratings of 4-6), and the 

optical images aided in determining the internal structure rating. Rating for all of the 

tested particles is shown in Table 4.1.  

Based on the optical images, XRD mineralogy results, and internal structure 

rating, a visual mineral classification for each of the tested particles is also listed in Table 

4.1. It was obvious from the CT and optical images that some of the particles were not a 

pure mineral. Rather, they were a mixture of several different minerals. Those particular   
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Figure 4.2. Examples of internal structural rating system for particles   
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particles were labeled as granite, which have inclusions of iron and occasional micro-

cracks at mineral boundaries.  

Kolsky Bar Experiments 

A Kolsky bar (Figure 4.3) was used for the high rate compression experiments. 

Individual sand specimens were compressed directly between the incident and transmitter 

bars. The bars were both made from high strength steel, sufficiently strong that they were 

undamaged after testing the specimen (no platens were needed). The incident bar was 

made of Maraging-350 steel (𝑐0 = 4908 m/s, ρ = 8095 kg/m
3
) and was 508 mm long and 

4.77 mm in diameter.  A set of strain gauges was mounted 403.2 mm from the specimen 

end to measure the incident and reflected signals
1
. The output bar is also made from 

Maraging-350 steel but measures 1.58 mm in diameter and 76 mm in length. A smaller 

diameter was selected to increase the magnitude of the transmitted signal due to 

compression of the relatively weak samples. Because of the small diameter, strain gages 

could not be used accurately on the transmitter bar and so instead a Normal Displacement 

Interferometer (NDI) was used in its place, similar to that done in  (Casem and Zellner 

2013). The end of the transmitter bar is polished to a specular finish and serves as the 

moving mirror in the interferometer. The incident beam (532 nm) is aligned 

perpendicular to the end of the bar and split to a fixed reference leg using the B1 beam 

splitter, and recombined to two photodetectors (Thorlabs PDA10A) using the B2 beam   

                                                 
1 Note the strain gauges are not centered in the typical fashion to permit measurement of longer loading pulses than 

would be measurable from centered gauges, at the expense of measuring the reflected pulse.  These longer duration 

experiments are not discussed in this paper. 
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Figure 4.3. Schematic of mini-Kolsky bar setup with NDI to measure displacement of 

transmitter bar due to transmitted pulse (after Casem et al., 2012)  
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splitter. The data collected by the detectors (redundant) is due to the interference of the 

two beams and is correlated to the motion of the end of the bar, ultimately providing a 

measurement of free-end velocity. This essentially replaces the typical measurement of 

strain due to the transmitted pulse. Using a common analysis approach, velocity of the 

interface between the incident bar and the sample (𝑣1) can be determined as: 

𝑣1 = 𝑐0,𝑖(휀𝑖 − 휀𝑟)       (4.1) 

where 𝑐0,𝑖 is the elastic wave speed of the incident bar, 휀𝑖 is the strain due to the incident 

pulse , and 휀𝑟 is the strain due to the reflected pulse. In principle, the force (𝑃1) at this 

interface can be calculated as:  

𝑃1 = (휀𝑖 + 휀𝑟)𝐸𝑖𝐴𝑖        (4.2) 

where 𝐸𝑖 and 𝐴𝑖 are the elastic modulus and cross sectional area of the incident bar. 

However, Equation 4.2 is inaccurate because of the relatively low loads required to fail 

the particle in comparison to the impedance of the incident bar. Force and velocity at the 

interface between the specimen and the transmitter bar with time (𝑃2(𝑡) and 𝑣2(𝑡), 

respectively) can be determined as described in Casem et al. (2012): 

𝑣2(𝑡) = 𝑣(−𝐿𝑇 , 𝑡) =
1

2
[𝑣𝑓 (

𝐿𝑇

𝑐0
+ 𝑡) + 𝑣𝑓 (

−𝐿𝑇

𝑐0
+ 𝑡)]   (4.3) 

𝑃2(𝑡) = 𝑃(−𝐿𝑇 , 𝑡) =
𝐴𝑡𝜌𝑡𝑐0

2
[𝑣𝑓 (

𝐿𝑇

𝑐0
+ 𝑡) − 𝑣𝑇 (

−𝐿𝑇

𝑐0
+ 𝑡)]  (4.4) 

where 𝑣𝑓 is the velocity of the free surface, and 𝐿𝑇, 𝐴𝑡, ρ𝑡, and 𝑐0 are the length, cross 

sectional area, density and wave speed of the transmitter bar. As mentioned above, the 

rationale behind the reduced area of the transmitter bar is that it increases the magnitude 

of the transmitted signal and increases the resolution of the force measurement.  This is 
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further enhanced by the use of the NDI, which is several orders of magnitude more 

sensitive than standard strain gauges.  A similar approach was adopted in Casem et al. 

(2014). In addition, the force measurement in Equation 4.4 is valid for all time as long as 

there is NDI data.  Such approach allows identification of any reloading of the particle 

after the initial loading pulse from reverberating stress waves in the bars.  

Each particle was placed between the incident and transmitter bar with the help of 

a thin film of vacuum grease, typically allowing the particle to freely fall after fracture as 

a result of the initial pulse in the incident bar applied by the striker bar. A housing was 

placed around the particle, without touching it, to collect fragments after the experiment. 

Striker bar speed was initially varied by changing the pneumatic pressure that launches 

the striker to determine the optimum pulse transmitted to the particle. Once the optimum 

pulse was identified, all tests were conducted using the same pressure to launch the 

striker bar. Pulse lengths were 35 micro-seconds and strain rates were on the order of 

1000 to 3500 s
-1

, similar to larger scale experiments conducted on bulk material. 

Figure 4.4 shows a sample of the transformed data for the NDI waveform and 

combined strain gauge signals. The transformed NDI signal is indicative of loading of the 

particle and repeats throughout sampling, unless a reload occurs. If a particle is reloaded 

by a secondary waveform, a change in the transformed NDI signal is present and can be 

analyzed. The strain signal displays the first incident pulse and concurrent reflected 

pulses from reflection off of the bar’s free ends. The first reflected pulse is off of the 

loading end of the incident bar and the second reflected pulse is the one reflected from   
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Figure 4.4. Waveform data collected from strain gauges and transformed NDI signal 

during particle loading  
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the free surface opposite to where the particle is loaded. First and second reflected pulses 

are close because the wave travels 104.8 mm from the free end of the bar the strain 

gauges, while traveling in the other direction the pulse travels 403.2 mm to reflect from 

the loading end of the incident bar. Incident and first reflected pulses are easily separable 

from others and are used in the analysis of the loading curve applied to the particle.   

By detecting the local maxima and minima of the fringes from the NDI 

waveform, displacement of the free end of the bar was calculated using the concepts 

presented in Casem et al. (2012) and displacements converted to velocity according to 

Equation 4.3. Incident and reflected pulses were truncated and separated by user 

inspection of the data, as well as the free end velocity that resulted from loading of the 

first incident pulse. Pulses and truncated velocity were then shifted in the time domain to 

overlay over the same time (Figure 4.5a). Strain gauge pulses were typically shifted 

approximately 0.08 ms and the NDI pulse shifts were approximately 0.0175 ms. With the 

shifted pulses and truncated free end velocity, loading displacement and loading velocity 

applied to the particle were calculated based on the difference between the displacements 

of the loading end of the incident bar and loading end of the transmitter bar. Force was 

also calculated from the incident pulse, resulting in force-displacement and velocity-

displacement relationships for each particle (e.g., Figure 4.5b). To check whether a 

particle was re-loaded, fringes from the NDI were analyzed for the entire duration of the 

data collection. Force based solely on NDI measurements (Equation 4.4) was calculated   
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Figure 4.5. Analysis and results of particle loading: (a) truncated, shifted incident and 

reflected pulses and transmitted free end velocity, (b) force and velocity vs. displacement 

applied to particle and (c) NDI force over duration of experiment   
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and peaks after the initial loading infers the particle was re-loaded by a secondary 

reflected wave as shown in Figure 4.5c.  

SMT Image Collection of Particle Fragments 

To accurately examine fracture mode of the particles, SMT images of the 

fragments collected from the tested particles were acquired using the bending magnet 

beamline 13D (13 BMD) at the Advanced Photon Source (APS), Argonne National 

Laboratory (ANL), Chicago, Illinois, USA. Fragments belonging to a particle were glued 

onto a wooden dowel rod for stability and were clamped using a drill chuck mounted on 

the translation/rotation stage in the beam line. A parallel x-ray beam with high brilliance 

was sized and tuned to 28.1 keV energy by two upstream slits and a monochromator. X-

rays were then attenuated by the particle fragments as they passed through them,  

converted to visible light by a scintillator, and reflected off a 45° mirror into a 

Grasshopper3 charged coupled device (CCD) detector, resulting in a radiograph image. 

720 radiographs were acquired at 0.25° rotation increments. Radiographs were then pre-

processed and reconstructed according to (Rivers et al. 2010), resulting in 3D SMT 

images with a resolution of 2.06 μm/voxel. High quality SMT images facilitate 3D 

qualitative analysis of the fracture mode and visualization of the fracture surface. Due to 

beam time restraints, not all fractured particles were imaged. 
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Experimental Results 

3D images of intact particle, dynamic loading curve and velocity with optical 

image for loading direction, and 3D image of collected fragments can be used in 

modeling fracture behavior of individual particles, which in turn can be used as input to 

model dynamic loading on granular materials. Figure 4.6 shows an example of full 

experimental results for a particle. The CT image of the intact particle was post-processed 

to a binary image and a 3D surface reconstruction was generated. Surface reconstructions 

were aligned to match experimental alignment using two optical images of each particle 

after it was placed on the bar. Post-fracture SMT images obtained at APS were used to 

determine the fracture mode and describe the fracture surface, as well as create 3D 

surface reconstructions of the fractured particle. Experimental results of tested particles 

are summarized in Table 4.2. The loading diameter, or distance between the incident and 

transmitter bars, was measured using the optical images and is also presented in Table 

4.2. When placed in-between transmitter and incident bars, particles generally rearrange 

such that their short or intermediate axis length is close to the loading diameter. Whether 

each particle was loaded in a triangular manner or not is also noted in Table 4.2. 

Triangular loading of a particle arises when one bar contacts the particle at two or three 

spread out contact points and the opposite bar contacts the particle at a location 

centralized between the spread contact points. This can occur when a particle is very 

angular and/or concave and is an indirect result of its morphology. Initial fracture loads 
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Figure 4.6. Example of experimental results from mini-Kolsky bar testing and particle 

imaging at Army Research Lab (ARL) and Advanced Photon Source (APS)  
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Table 4.2. Results of dynamic particle fracture using mini-Kolsky and imaging 

techniques 

Particle 

Number 

Loading 

Diameter 

dload 

(mm) 

Triangle 

Loading? 

(y/n) 

Fracture 

Load 

(N) 

Loading 

Velocity 

(m/s) 

Reload? 

Max 

Reload  

(N) 

Fracture 

Mode
1
 

Fracture 

Surface
1
 

1 0.67 yes 10.5 2.25 yes 29 4 angular 

2 0.59 yes 9.15 2.5 yes (2x) 7 4 rough/angular 

3 0.64 yes 11.75 2.5 yes (2x) 14 4 rough/angular 

4 1.04 no 19 2.1 no n/a n/a n/a 

5 1.18 no 15.4 2.5 no n/a n/a n/a 

6 1.36 no 40.4 2.25 yes 8 3 rough/angular 

7 1.45 no 16.5 2.5 yes 13.5 4 rough 

8 1.26 no 28.5 2.22 no n/a n/a n/a 

9 0.78 no 21.3 2.75 no n/a 4 angular 

10 1.39 yes 3.98 2.5 yes (2x) 7.4 4 rough/angular 

11 1.49 no 29 2.25 no n/a 3 rough/angular 

12 0.44 yes 7.55 2.5 no n/a 3 smooth/ang. 

13 0.67 yes 4 2.25 yes 4.5 n/a n/a 

14 0.67 no 24.8 2.15 no n/a 3 rough/angular 

15 0.78 yes 6.08 2.57 yes 4.84 n/a n/a 

16 0.97 no 68.8 2.25 no n/a 4,2 angular 

17 0.98 yes 19.6 2.5 yes 17.5 n/a n/a 

18 1.19 no 26 2.5 no n/a 3 angular 

19 1.29 no 38.65 2.5 yes 31.3 n/a n/a 

20 0.96 no 46.6 2 no n/a n/a n/a 

21 1.18 no 19.8 2.3 no n/a 3 angular 

22 0.74 yes 12 2.1 yes 14.8 n/a n/a 

23 0.56 no 16.3 2.75 yes 13 3 rough 

24 0.61 yes 3.25 2.25 yes (2x) 18.5 3,2 angular 

25 0.74 no 2.75 2.5 yes (2x) 16.75 2 rough/angular 

26 0.90 no 15 2.4 yes (2x) 13 3 rough/angular 

27 1.17 yes 4.2 2.75 yes 4.25 4 rough/angular 

28 1.13 yes 3.85 2.4 yes (2x) 15 1 angular 

29 0.92 no 82 2.75 no n/a 4 angular 

30 0.93 yes 4.5 2.5 yes 1.3 n/a n/a 
    1

Refer to Figure 4.8 for fracture description. Not all tested particles were imaged post-mortem.  
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Table 4.2 Continued. Results of dynamic particle fracture using mini-Kolsky and imaging 

techniques 

Particle 

Number 

Loading 

Diameter 

dload 

(mm) 

Triangle 

Loading? 

(y/n) 

Fracture 

Load 

(N) 

Loading 

Velocity 

(m/s) 

Reload? 

Max 

Reload  

(N) 

Fracture 

Mode
1
 

Fracture 

Surface
1
 

31 1.00 no 32.5 2.25 no n/a 1 rough/angular 

32 0.64 yes 2.8 2.3 no 20.5 3 smooth 

33 0.67 yes 2.6 2.4 yes 17.4 3,1 smooth 

34 0.86 no 86 2 no n/a 3,2 smooth/ang. 

35 0.93 no 17.1 2.3 yes (2x) 10.5 3 angular 

36 1.03 yes 6.48 2.55 no n/a n/a n/a 

37 1.15 no 42.5 2.25 no n/a 3 smooth 

38 1.22 yes 27 2.55 yes 21.75 n/a n/a 

39 1.33 no 20.75 2.5 no n/a 1 angular 

40 1.63 yes 7.3 2.3 no n/a n/a n/a 

41 1.21 no 29.15 2 no n/a 3 rough/angular 

42 1.25 no 58.2 2.5 no n/a 2 smooth 

43 1.51 no 62.3 2.5 no n/a n/a n/a 
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and loading velocities are also listed in Table 4.2, along with whether or not each particle 

was reloaded and the severity of the reload. 

Based on Nakata et al. (2001) and other literature, Parab et al. (Parab et al. 2014) 

summarized the different types of failure mechanisms that occur within a particle is 

loaded to and beyond failure stage and classified failure into 5 modes: (1) single abrasion 

fracture; (2) multiple abrasion fractures; (3) major splitting into two or more particles; (4) 

breakage of sub-particles; and (5) pulverization into many small pieces (Figure 4.7a). 

Dynamic loading mechanisms such as blast or impact loading causes many particles to 

fracture in a pattern similar to groups 3 and 4, which is the realm of this paper. Luo et al. 

(Luo et al. 2014) observed shifts in particle size distribution before and after HSR loading 

using SPHB testing that corresponded to particle fracture mostly in modes 3 and 4. 

Loading speed was optimized such that most of the particles would fail by these two 

failure modes, allowing the capability to collect fractured particle fragments. The fracture 

mode and fracture surface were qualitatively described based on SMT images (if 

collected) of particle fragments. Fracture surfaces are described as smooth, rough, 

angular, or a combination of these modes (Figure 4.7b). The fracture mode and surface 

description of imaged particles are presented in Table 4.2. 

Individual assessment of the influence of quantitative parameters such as particle 

size, volume, internal structure, morphology, and contact points (to determine if particle 

is triangularly loaded) each exhibit a trend with fracture loads but do not yield a strong 

statistical correlation. Therefore, a multivariable nonlinear regression was conducted with   
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Figure 4.7. Description of particle failure based on (a) (1) single abrasion fracture (2) 

multiple abrasion fractures (3) major splitting into two or more particles (4) breakage of 

sub-particles (5) pulverization into many small pieces orders of magnitude smaller than 

the original particle (after Nakata et al. 2001; Parab et al. 2014) and (b) Fracture surface 

description examples  
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predictors of loading diameter, axis lengths, particle volume, internal structure rating, 

sphericity, roundness, and whether or not the particle was triangularly loaded (0 or 1) for 

the 43 observations. Other combinations of predictors were also investigated, but these 

predictors resulted in the most accurate predictions. To fit the trend of the fracture data 

and demonstrate the validity of the statistical analysis, an exponential model function in 

the following form was used: 

𝑓(𝑏, 𝑥) = 𝑒𝑥𝑝 (𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛)     (4.5) 

where 𝑏 is an estimate for each of the 𝑛 = 9 coefficients for each predictor value 𝑥. 

Predictors and fracture loads were analyzed using Matlab software to generate the 

multivariable nonlinear model. A summary of coefficients and their standard error (SE), p 

value, and 95% confidence interval are listed in Table 4.3. The predictive model had a 

root mean squared value (RMS) of 8.26 N, and R squared value of 0.88 and adjusted R 

squared value of 0.852. When the predictors with large p value were removed (di, dl, and 

volume) individually or removed in any combination, the fit (in terms of R squared, 

adjusted R squared and RMS) became worse. The model can potentially be scaled up to 

predict individual particle fracture based on forces on the particle in larger scale 

specimens, provided CT data is available.  

Another and more common analysis method of single particle fracture results is 

the use of Weibull statistics. To characterize failure stress of a particle many researchers 

(e.g. Brzesowsky et al. 2011; Cil and Alshibli 2012; McDowell and Amon 2000; 

McDowell and Bolton 1998; Nakata et al. 2001) have followed Jaeger (1967) (or a 

variation thereof) that defines the characteristic tensile stress of a particle as:   
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Table 4.3. Results of dynamic particle fracture using mini-Kolsky and imaging 

techniques 

Predictor Coefficient (b) SE p Value 95% CI 

dload -4.628 0.574 <0.001 -5.79 to -3.46 

ds 4.585 0.999 <0.001 2.56 to 6.61 

di -0.426 0.363 0.25 -1.16 to 0.31 

dl 0.398 0.230 0.09 -0.07 to 0.87 

Volume 0.162 0.219 0.47 -0.28 to 0.61 

Int. Struct. -0.458 0.052 <0.001 -0.56 to -0.35 

Isph 0.441 0.127 <0.001 0.18 to 0.70 

IR 4.577 0.750 <0.001 3.05 to 6.10 

Tria. Loading -0.241 0.049 <0.001 -0.34 to -0.14 
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𝜎𝑓 =  
𝐹𝑓

𝑑2     (4.6) 

where 𝜎𝑓 is the characteristic tensile stress at failure, 𝐹𝑓 is the force required to fracture 

the particle, and 𝑑 is particle length in the loading direction. Weibull (1951) proposed a 

statistical distribution function that has been used in the literature to describe probability 

of survival as:  

𝑃𝑠 = 𝑒𝑥𝑝 [− (
𝜎𝑓

𝜎0𝑓
⁄ )

𝑚𝑓

]     (4.7) 

where 𝑃𝑠 is the probability of survival for a particular particle 

(𝑃𝑠 =
# 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑐𝑟𝑢𝑠ℎ𝑖𝑛𝑔 𝑎𝑡 𝜎 ≥ 𝜎𝑓

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
), 𝑚𝑓 is the Weibull modulus, and 𝜎0𝑓 is the 

characteristic tensile stress at which the probability of survival is 37%, which can be 

determined from the plot of ln(𝜎𝑓) versus ln [ln (1
𝑃𝑠

⁄ )] as shown in Figure 4.8a. The 

Weibull modulus is the slope of the best fit line and the characteristic tensile stress is the 

intersection of the best fit line with the x axis. The Weibull modulus and 𝜎0𝑓 of this data 

are 1.25 and 26.86, respectively, and has a good statistical fit. Weibull statistics were also 

performed on quasi-static experiments of 23 Mason sand particles (Figure 4.8b). Weibull 

modulus and 𝜎0𝑓 of quasi-static experiments data are 1.25 and 27.0, respectively. No 

significant difference is observed between loading rates using Weibull statistics.  

FEA Modeling of Single Particle Fracture   

Five particles (Particles #32, 34, 35, 41, 42) were analyzed using FEA. Particles with 

relatively solid internal structures were selected here because of difficulties in   
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a) 2.5 m/s experiments 

 

b) Quasi-static experiments 

Figure 4.8. Wiebull distribution of characteristic tensile stresses for Mason sand particles   
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capturing internal flaws in FE meshes. External features and particle morphology can be 

easily captured and particles can be aligned similar to the experiment. The FEA model 

for particle fracture was setup with similar methodology as Druckrey and Alshibli (2015). 

Triangulated particle surfaces were generated from binary images of intact particles, 

imported into Abaqus FEA software, and filled with volumetric tetrahedral elements. The 

FE simulated particles in this paper contained approximately 45,000-70,000 tetrahedral 

elements per particle depending on the particle size. Each particle was assigned linear 

elastic material properties and density to simulate particle behavior before fracture. 

Discrete rigid bars were generated to represent the incident and transmitter bars of the 

experiment, and aligned on the particle based on the optical images that were collected 

during experiments. General contact in Abaqus Explicit was defined with hard normal 

contact and frictional tangential behavior. Load was generated by applying velocity to the 

incident bar in the simulation that matches the velocity for each experiment. 

Determination of stresses within a particle as well as the failure strength during 

high rate loading is an important first step to modeling the fundamental behavior of 

granular material subject to HSR loading. Currently there are very few experimental 

techniques to quantify stresses within natural sand particles with complex morphology 

during loading, including determination of the fracture strength of a particle (without 

making considerable assumptions). One method is to use x-ray crystalline diffraction 

during loading such as in Alshibli et al. (2013), but this is currently limited to quasi-static 

loading and stress averaged throughout the particle (no determination of stress 
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concentrations). Brittle sand particles typically fail due to tensile stresses, and to 

represent this, the brittle cracking model was adopted to in the simulations. The failure 

stress was initially assumed and was adjusted until the loading curves from the FE 

simulations reasonably matched experimental loading curves. The final failure stress 

(when the loading curves match) can be a good representation of the actual failure stress 

of the particle. Post-failure behavior was implemented with brittle shear and brittle 

failure. Brittle shear is represented by a shear retention facture at a certain crack opening 

strain. For particles in this research, the shear retention factor is 1 before the particle fails 

(zero crack opening strain) and 0 when the crack opening strain is very small. Brittle 

failure was used within the model to remove elements that have failed, allowing a particle 

to break apart and/or comminute, and allowing post-failure behavior to be captured in the 

FE simulations. When brittle failure is implemented, a particle can break in half and the 

fragments continue to carry load, similar to what would occur in high strain-rate 

experiments.   

The force-displacement relationships for the experiment and FE simulation for 

particle 35 are depicted in Figure 4.9. In the experiment, initial fracture occurs at ~0.017 

mm displacement and the load drops. After initial fracture, particle fragments are then 

loaded until the fragments fracture. This trend is successfully simulated in FEA over the 

loading duration from the first incident wave. Fracture of the particle in the FE simulation 

is shown in Figure 4.10. Figure 4.10a is the particle before fracture occurs, Figure 4.10b 

shows the initial fracture of the particle (after the first major drop of load in the loading   
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Figure 4.9. Experimental and FEA simulated force-displacement curves for particle 35 
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curve at ~0.018 mm displacement), and Figure 4.10c displays successive secondary 

fracture of the particle (after the second large drop in load observed from the loading 

curve). Simulations were thoroughly inspected to confirm that observations in loading 

curve pertained to physical observations in the simulation, such as particle rotation or 

fracture. Changes in the loading curve were therefore contributed to phenomena observed 

at the particle scale and not to simulated dynamic waves.  

Failure stresses for the 5 particle simulations are listed in Table 4.4, along with 

the characteristic tensile stress from Equation 4.6. The characteristic tensile stress may 

work well enough for relatively spherical particles, but can lead to a large error for 

particles with more complex morphology, especially when triangular loading of a particle 

is present. The characteristic tensile stress of the particles significantly underestimates the 

failure stress of all particles, especially when triangular loading occurs (particle 32). 

Also, the averaged stress in the particle does not take into account any stress 

concentrations, which may have contributed to underestimating tensile failure stresses. 

Observed differences in FE simulation failure stress may also be due to material 

heterogeneities or flaws not observable at the current resolution.  

Also included in Table 4.4 are failure stresses determined from FEA for two silica 

Mason sand particles subject to quasi-static compression. Observed failure of quasi-static 

particle 1 was a large fragment fracture, while quasi-static particle two was bulk failure 

near the center of the particle. Failure stresses observed during quasi-static compression 

of the two particles were less than the observed failure stresses in the 2.5 m/s   
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Figure 4.10. Simulation results of particle 35 a) before fracture, b) after initial fracture, 

and c) after secondary fracture  

 

 

Table 4.4. FEA simulation failure stress results compared with conventional failure stress 

techniques 

Particle Number 
Experimental Failure 

Load (N) 

Failure tensile stress 

determined by FEA 

(MPa) 

Characteristic 

tensile stress 

𝜎 =  
𝐹𝑓

𝑑2 (MPa) 

32 2.8 78 6.8 

34 86 156 115.2 

35 17.1 212 19.7 

41 29.15 75 19.9 

42 58.2 112 37.5 

Quasi-static 1 8.7 68 11.9 

Quasi-static 2 54.1 56 47.0 
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experiments. Although the fracture loads for each of the quasi-static particles were 

significantly different, fracture stresses were similar. Actual fracture stresses of particles 

at higher loading rate may be larger because of less time to fracture, but more data is 

required for a comprehensive conclusion.  

Discussion  

A wide range of peak loads were measured within the tested particles and is 

attributed to the complex morphology, particle size, internal structure (a form of 

mineralogy), and loading geometry imposed onto particles. In this paper, these 

parameters are known quantitatively or at least qualitatively. The load required to fracture 

particles at the strain-rate reported in this paper generally increased with particle size 

(loading diameter, particle lengths and volume) and with increasing sphericity, and 

decreased with increasing internal structure rating and decreased significantly when 

loaded triangularly. Generalized trends are apparent from the data but the fracture loads 

do not correlate strongly with any individual parameter and include a lot of scatter.  

An internal structure rating from 1 to 6 was assigned to each individual particle 

(Figure 4.2 and Table 4.1). Particles with less flaws (more solid internal structure) 

generally exhibited higher fracture loads, and the internal structure of the particles related 

to the mineralogy of each particle. Silica particles (quartz and tridymite) had relatively 

solid internal structures and were rated 1 or 2. Fracture surfaces of these particles were 

typically smooth to sub-conchoidal and generally fractured into only a few fragments or 

had asperities fracture. For example, Figure 4.11a shows an optical image of quartz   
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Figure 4.11. Optical images before testing and SMT slices of select fractured particles 
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particle 32 before testing and an SMT image of the fractured particle that shows locations 

of air, glue, and particle fragments. This particle was loaded triangularly, where it has 

two spread out contact on the transmitter bar and a central concentrated contact on the 

incident bar and split into two major fragments and one smaller fragment. 

Granite particles were a mixture of several minerals, and typically had iron 

inclusions within each particle, resulting in internal structure ratings from 4 to 6. 

Inclusions created mineral boundaries on which fracture could occur by separation of 

minerals at the boundaries. Figure 4.11b shows an optical image and fractured CT slice of 

granite particle 6. The bright spots within the CT image are iron inclusions and internal 

mineral boundaries became exposed after fracture. Fracture surfaces of these types of 

particles were hackly. The only psilomelane particle tested (particle 29, Figure 4.11c) has 

a high CT attenuation (due to mineralogy) and has very few internal voids/inclusions. 

This particle fractured into many fragments and has angular fracture surfaces. The 

internal structure of Kspar particles ranged from 2 to 4, of which most flaws were small 

internal voids or concentrations of internal voids.  

The Kspar anorthoclase particle 10 has a rating of 4 and is shown in Figure 4.11d, 

which was also loaded in a triangular manner. Fracture surfaces of this particle were 

rough and angular. A Kspar orthoclase particle is shown in Figure 4.11e, which had an 

internal structure rating of 2 and angular fracture surfaces, similar to the rest of the Kspar 

orthoclase particles.  
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The plagioclase group of particles ranged from 3 to 6 depending on the type of 

plagioclase, some with many internal flaws. Figure 4.11f shows an example of a 

plagioclase particle. The internal structure has many flaws, and the roughness manifests 

on the surface of the particle. Plagioclase particles exhibited rough and angular fracture 

surfaces. Both mica particles (biotite-particle 1 and muscovite-particle 20) have many 

flaws (rating of 5) with concentrations of flaws and micro-cracks. Pyroxene particles had 

internal structure rating of 3 or 4 and rough/angular fracture surfaces.  

Although there are no strong individual trends between any of the quantitative 

parameters and fracture load, a relatively accurate multivariable nonlinear statistical 

model to predict fracture load was developed based on the quantitative parameters as 

predictors. In the model, each predictor is interrelated with all other predictors such that 

one predictor might not have as much effect on the results if other predictors are altered. 

Overall, the strongest predictor was whether or not particle was loaded in a triangular 

manner, which is also evident in the low fracture loads observed experimentally for 

particles with triangular loading configuration. The loading diameter and particle short 

axis (combined) also effected fracture load prediction significantly. When they deviate 

from each other (i.e. particle short axis is progressively smaller than loading diameter) 

the predicted force required to fracture the particle decreases significantly. That is, when 

a particle is loaded along its short axis it will require more force to fracture than if it were 

loaded on its intermediate or long axis. When loaded along short axis stress is distributed 

along a larger cross-sectional area, which may contribute to higher fracture forces. 
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Particle intermediate axis length, long axis length, and volume do not contribute 

significantly to the predicted load, but are necessary to form a more accurate prediction 

and statistically viable model. Sphericity, roundness, and internal structure play an 

intermediate role in prediction of the fracture force, depending on the loading diameter, 

short axis length, and triangular loading. 

A more traditional approach to analyze the fracture stress, Weibull statistics, was 

also performed based on the characteristic tensile stress of a particle (Equation 6) and the 

Weibull statistical distribution function (Equation 7). The Weibull modulus for these 

experiments was 1.25 and the characteristic tensile stress corresponding to 37% 

probability of survival (𝜎0𝑓) was 26.86 MPa. These particles have a much lower Weibull 

modulus and 𝜎0𝑓 than the relatively spherical and homogeneous ASTM 20/30 sand 

during quasi-static testing reported in (Cil and Alshibli 2012). The lower Weibull 

modulus is due to a greater variance in characteristic tensile stress attributed to the 

particles. Also, the more angular and non-spherical particles generally require a lower 

fracture load than spherical particles, resulting in lower 𝜎0𝑓.  

To determine fracture tensile strength of a particle (other than the assumption in 

Equation 4.6), FE simulations of particle compression on actual particle shapes was 

conducted using a loading rate similar to the experiments. FEA tensile strength exhibited 

a similar trend to the tensile strength calculated from Equation 4.6, but Equation 4.6 

significantly underestimated the tensile strength. Several factors contribute to this 

observation. Equation 4.6 does not account for low fracture loads due to triangular 
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loading or for the morphology of the particle. FEA on the actual particle shapes 

inherently accounts for particle morphology and loading geometry and leads to more 

accurate internal stresses. Also, Equation 4.6 is an average stress for the entire particle, 

when in actuality stress concentrations occur and are captured by FEA and incorporated 

into the tensile strength.  

Summary and Conclusions  

Natural sand particles with complex morphology and mineralogy were imaged 

using 3D CT imaging and dynamically compressed in an unconfined Kolsky bar. Particle 

fragments were collected and analyzed using SMT imaging to determine the fracture 

mode and fracture surface properties. Dynamic force required to fracture a particle is 

highly influenced by particle properties and loading conditions which is affected by 

particle morphology. Although the effect of individual particle properties do not correlate 

well with fracture load, multivariable nonlinear regression with all of the predictors 

discussed in this paper lead to a fairly accurate statistical model. Loading configuration, 

loading diameter, particle short axis diameter, and particle sphericity are the major 

parameters that influence the force required to fracture a particle, while including the 

other parameters mentioned in this paper lead to a more accurate statistical model. All 

parameters interact with each other in the model to predict the fracture force. Another 

predictor that can eventually be added is the loading rate to determine the effect of 

loading rate on the force required to fracture a particle. Analyzing loading rate effect is 

beyond the scope of this paper. However, CT data can be used to quantify all of the 
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predictors within a sample and/or distributions can be assumed to upscale from single 

particle to determining particle fracture forces in bulk granular material.  

Particle fracture at the loading rate described in this paper also follows Weibull 

statistical distribution well, resulting in a Weibull modulus of 1.25 and 𝜎0𝑓 of 26.86 MPa. 

These values can be used to compare the fracture strength of particles to other loading 

rates, particle morphologies, size, or internal structure and is subject for future work. 

FEA was used to simulate the experimental particle fracture using actual particle 

shapes and loading rate. At this loading rate, FEA captured the fracture of an individual 

particle that was similar to experimental fracture, and the experimental loading curve was 

matched from the simulation with relatively good accuracy. Fracture strength determined 

from FEA is significantly higher than using the characteristic tensile strength from 

Equation 4.6, which was developed for quasi-static loading. Current assumed particle 

tensile strength formulations, such as that in Equation 4.6 or variations thereof, do not 

account for stress concentrations within a particle. Therefore, actual stresses within a 

particle at fracture are higher than assumed stresses and FEA demonstrates fracture 

stresses more accurately.  

  



 

174 

 

References 

Allen, W. A., Mayfield, E. B., and Morrison, H. L. (1957). "Dynamics of a Projectile 

Penetrating Sand." Journal of Applied Physics, 28(3), 370-376. 

Allen, W. A., Mayfield, E. B., and Morrison, H. L. (1957). "Dynamics of a Projectile 

Penetrating Sand. Part II." Journal of Applied Physics, 28(11), 1331-1335. 

Alshibli, K., Cil, M., Kenesei, P., and Lienert, U. (2013). "Strain tensor determination of 

compressed individual silica sand particles using high-energy synchrotron 

diffraction." Granular Matter, 1-14. 

Alshibli, K., Druckrey, A., Al-Raoush, R., Weiskittel, T., and Lavrik, N. (2014). 

"Quantifying Morphology of Sands Using 3D Imaging." Journal of Materials in 

Civil Engineering, 04014275. 

Antony, S. J. (2007). "Link between single-particle properties and macroscopic properties 

in particulate assemblies: role of structures within structures." Phil. Trans. R. 

Society, 365, 12. 

Antoun, T., Herbold, E., Johnson, S. (2012). "Dynamic Behavior of Sand: Annual Report 

FY 11." Lawrence Livermore National Laboratory. 

Behringer, R. P., Bi, D., Chakraborty, B., Clark, A., Dijksman, J., Ren, J., and Zhang, J. 

(2014). "Statistical properties of granular materials near jamming." Journal of 

Statistical Mechanics: Theory and Experiment, 2014(6), P06004. 



 

175 

 

Borg, J. P., Van Vooren, A., and Morrissey, M. (2015). "Chapter 6 - In Situ 

Characterization of Projectile Penetration into Sand." Rapid Penetration into 

Granular Media, Elsevier, Oxford, 187-227. 

Børvik, T., Olovsson, L., Hanssen, A. G., Dharmasena, K. P., Hansson, H., and Wadley, 

H. N. G. (2011). "A discrete particle approach to simulate the combined effect of 

blast and sand impact loading of steel plates." Journal of the Mechanics and 

Physics of Solids, 59(5), 940-958. 

Braslau, D. (1970). "Partitioning of energy in hypervelocity impact against loose sand 

targets." Journal of Geophysical Research, 75(20), 3987-3999. 

Brzesowsky, R. H., Spiers, C. J., Peach, C. J., and Hangx, S. J. T. (2011). "Failure 

behavior of single sand grains: Theory versus experiment." Journal of 

Geophysical Research: Solid Earth, 116(B6), B06205. 

Casem, D., and Zellner, M. (2013). "Measurements of Particle Velocity Within a Kolsky 

Bar with Applications to Wave Separation." Dynamic Behavior of Materials, 

Volume 1, V. Chalivendra, B. Song, and D. Casem, eds., Springer New York, 57-

65. 

Casem, D. T., Dwivedi, A. K., Mrozek, R. A., and Lenhart, J. L. (2014). "Compression 

response of a thermoplastic elastomer gel tissue surrogate over a range of strain-

rates." International Journal of Solids and Structures, 51(11–12), 2037-2046. 



 

176 

 

Casem, D. T., Grunschel, S. E., and Schuster, B. E. (2012). "Normal and Transverse 

Displacement Interferometers Applied to Small Diameter Kolsky Bars." Exp 

Mech, 52(2), 173-184. 

Cavarretta, I., and O'Sullivan, C. (2012). "The mechanics of rigid irregular particles 

subject to uniaxial compression." Geotechnique, 62(8), 11. 

Cil, M. B., and Alshibli, K. A. (2012). "3D assessment of fracture of sand particles using 

discrete element method." Géotechnique Letters, 161-166. 

Cil, M. B., and Alshibli, K. A. (2014). "3D evolution of sand fracture under 1D 

compression." Géotechnique, 351-364. 

Cole, R. P. (2010). "Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and 

Pulverized Rubber of Various Grain Sizes." M.S.M.E., University of South 

Florida. 

Cooper, W. (2011). "Communication of Stresses by Chains of Grains in High-Speed 

Particulate Media Impacts." Dynamic Behavior of Materials, Volume 1, T. Proulx, 

ed., Springer New York, 99-107. 

Cooper, W., and Breaux, B. (2010). "Grain fracture in rapid particulate media 

deformation and a particulate media research roadmap from the PMEE 

workshops." International Journal of Fracture, 162(1-2), 137-150. 

Druckrey, A. M., and Alshibli, K. A. (2015). "3D finite element modeling of sand 

particle fracture based on in situ X-Ray synchrotron imaging." International 

Journal for Numerical and Analytical Methods in Geomechanics. 



 

177 

 

Druckrey, A. M., Alshibli, K. A., and Al-Raoush, R. I. (2016). "3D characterization of 

sand particle-to-particle contact and morphology." Computers and Geotechnics, 

74, 26-35. 

Dwivedi, S. K., Teeter, R. D., Felice, C. W., and Gupta, Y. M. (2008). "Two dimensional 

mesoscale simulations of projectile instability during penetration in dry sand." 

Journal of Applied Physics, 104(8), 083502. 

Eberl, D. D. (2003). "User's guide to RockJock -- A program for determining quantitative 

mineralogy from powder x-ray diffraction data." U.S. Geological Survey, 

Boulder, CO. 

Felice, C. W., and Gupta, Y. M. (2009). "Penetration Physics at the Meso-Scale." U. S. 

A. F. O. o. S. Research, ed. 

Homel, M. A., Brannon, R. M., and Guilkey, J. (2015). "Controlling the onset of 

numerical fracture in parallelized implementations of the material point method 

(MPM) with convective particle domain interpolation (CPDI) domain scaling." 

International Journal for Numerical Methods in Engineering, n/a-n/a. 

Huq, F., Brannon, R., and Graham-Brady, L. (2016). "An efficient binning scheme with 

application to statistical crack mechanics." International Journal for Numerical 

Methods in Engineering, 105(1), 33-62. 

Iskander, M., Omidvar, M., and Bless, S. (2015). "Chapter 2 - Behavior of Granular 

Media Under High Strain-Rate Loading." Rapid Penetration into Granular 

Media, Elsevier, Oxford, 11-63. 



 

178 

 

Jaeger, J. (1967). "Failure of rocks under tensile conditions." International Journal of 

Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4(2), 219-227. 

Knodel, P. C., Charlie, W. A., Ross, C. A., and Pierce, S. J. (1990). "Split-Hopkinson 

Pressure Bar Testing of Unsaturated Sand." Geotech. Test. J., 13(4), 291. 

Luo, H., Cooper, W. L., and Lu, H. (2014). "Effects of particle size and moisture on the 

compressive behavior of dense Eglin sand under confinement at high strain rates." 

International Journal of Impact Engineering, 65, 40-55. 

Luo, H., Lu, H., Cooper, W. L., and Komanduri, R. (2011). "Effect of Mass Density on 

the Compressive Behavior of Dry Sand Under Confinement at High Strain Rates." 

Experimental Mechanics, 51(9), 1499-1510. 

Martin, B. E., Chen, W., Song, B., and Akers, S. A. (2009). "Moisture effects on the high 

strain-rate behavior of sand." Mechanics of Materials, 41(6), 786-798. 

McDowell, G. R., and Amon, A. (2000). "THE APPLICATION OF WEIBULL 

STATISTICS TO THE FRACTURE OF SOIL PARTICLES." SOILS AND 

FOUNDATIONS, 40(5), 133-141. 

McDowell, G. R., and Bolton, M. D. (1998). "On the micromechanics of crushable 

aggregates." Geotechnique, 667-679. 

Meyer Jr, H. W., and Brannon, R. M. (2012). "A model for statistical variation of fracture 

properties in a continuum mechanics code." International Journal of Impact 

Engineering, 42, 48-58. 



 

179 

 

Mitchell, M. R., Link, R. E., Luscher, W. G., Hellmann, J. R., Segall, A. E., Shelleman, 

D. L., and Scheetz, B. E. (2007). "A Critical Review of the Diametral 

Compression Method for Determining the Tensile Strength of Spherical 

Aggregates." Journal of Testing and Evaluation, 35(6), 100793. 

Nakata, Y., Hyodo, M., Hyde, A. F. L., Kato, Y., and Murata, H. (2001). 

"MICROSCOPIC PARTICLE CRUSHING OF SAND SUBJECTED TO HIGH 

PRESSURE ONE-DIMENSIONAL COMPRESSION." Journal of the Japanese 

Geotechnical Society : soils and foundation, 41(1), 69-82. 

Nakata, Y., Kato, Y., Hyodo, M., Hyde, A. F. L., and Murata, H. (2001). "ONE-

DIMENSIONAL COMPRESSION BEHAVIOUR OF UNIFORMLY GRADED 

SAND RELATED TO SINGLE PARTICLE CRUSHING STRENGTH." Journal 

of the Japanese Geotechnical Society : soils and foundation, 41(2), 39-51. 

Omidvar, M., Iskander, M., and Bless, S. (2012). "Stress-strain behavior of sand at high 

strain rates." International Journal of Impact Engineering, 49, 192-213. 

Parab, N. D., Claus, B., Hudspeth, M. C., Black, J. T., Mondal, A., Sun, J., Fezzaa, K., 

Xiao, X., Luo, S. N., and Chen, W. (2014). "Experimental assessment of fracture 

of individual sand particles at different loading rates." International Journal of 

Impact Engineering, 68, 8-14. 

Peters, J. F., Muthuswamy, M., Wibowo, J., and Tordesillas, A. (2005). "Characterization 

of force chains in granular material." Physical Review E, 72(4), 041307. 



 

180 

 

Regueiro, R., Pak, R., McCartney, J., Sture, S., Yan, B., Duan, Z., Svoboda, J., Mun, W., 

Vasilyev, O., Kasimov, N., Brown-Dymkoski, E., Hansen, C., Li, S., Ren, B., 

Alshibli, K., Druckrey, A., Lu, H., Luo, H., Brannon, R., Bonifasi-Lista, C., 

Yarahmadi, A., Ghodrati, E., and Colovos, J. (2014). "ONR MURI Project on Soil 

Blast Modeling and Simulation." Dynamic Behavior of Materials, Volume 1, B. 

Song, D. Casem, and J. Kimberley, eds., Springer International Publishing, 341-

353. 

Regueiro, R. A., Zhang, B., and Shahabi, F. (2015). " Micromorphic continuum stress 

measures calculated from three-dimensional ellipsoidal discrete element 

simulations on granular media." Proc., Geomechanics from Micro to Macro, CRC 

Press, London, 195-200. 

Rivers, M. L., Citron, D. T., and Wang, Y. (2010). "Recent developments in computed 

tomography at GSECARS." SPIE, 3, 780409-780409. 

Suescun-Florez, E., Omidvar, M., Iskander, M., and Bless, S. (2015). "Review of High 

Strain Rate Testing of Granular Soils." 

Wang, Z., Yang, X., Chen, Q., Zhang, Y., and Zhao, Y. "Study of the contact forces and 

grain size distribution during grain crushing." Proc., Multimedia Technology 

(ICMT), 2011 International Conference on, 2617-2622. 

Weibull, W. (1951). "A Statistical Distribution Function of Wide Applicability." Journal 

of Applied Mechanics, 18(3), 293-297. 



 

181 

 

Yoshida, Y. (2005). "Force chains and the fragmentation of granular materials." MSCE 

Master's Thesis, University of Pittsburgh. 

Zhao, B., Wang, J., Coop, M., Viggiani, G., and Jiang, M. (2015). "An investigation of 

single sand particle fracture using X-ray micro-tomography." Géotechnique, 

65(8), 625-641. 

 

  



 

182 

 

CHAPTER 5 

3D STRAIN LOCALIZATION AND LOCAL SHEAR BAND 

EVOLUTION IN SHEARED GRANULAR MATERIALS USING 

SYNCHROTRON MICRO-COMPUTED TOMOGRAPHY 
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A version of this chapter has been submitted to Geotechnique. The author list is: 

A. Druckrey, K. Alshibli.  

My primary contributions to this paper include (i) development of problem 

statement, (ii) conduction of most experiments during in-situ SMT imaging, (iii) 

processing and quantification of SMT images, (iv) development of code to track particles 

and quantify kinematics, (v) development of relative displacement code to expose 

intricate areas of localized strain, (vi) processing, analysis, and interpretation of 

experimental data, (vii) most of the writing.  

Abstract 

It is well known that the constitutive behavior of granular materials is highly 

influenced by strain localization into zones of intensive shearing known as shear bands. 

The failure mode of specimens tested under axisymmetric triaxial compression is 

commonly manifested through single or multiple shear bands or diffuse bifurcation 

(bulging). The ability to monitor the evolution of strain localization has been enhanced by 

measuring particle kinematics using discrete element method or 3D imaging techniques 

such as x-ray computed tomography. However, particle kinematics cannot expose 

intricate localized shearing during pre-peak regime and internal granular material 

behavior before reaching the peak deviator stress is still unknown. This paper presents the 

results of 3D synchrotron micro-computed tomography (SMT) scans of sand and glass 

beads that were acquired at multiple strains during triaxial experiments. Individual 

particles were identified and tracked through multiple strains and particle translations 
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were calculated. Each particle’s neighboring particles were identified, and translation 

fields for each of the neighboring particles were calculated. The second order norm 

between the particle translation vector and neighboring particles translation vectors were 

averaged, resulting in a relative displacement value for each particle. The relative 

displacement concept is effective to uncover the onset of localized shearing within 

sheared granular materials. Progression of local shearing into a final well-defined single 

or multiple shear bands provides a micro-mechanics insight into mechanisms that 

describe the failure mode of sheared granular materials.  

Introduction 

Granular materials are composed of discrete particles that translate and rotate 

against neighboring particles when they are subjected to global stresses applied at the 

laboratory specimen or soil mass boundaries. Rowe (1962) thoroughly discussed the 

approach of treating granular materials as a set of discrete 2D particles rather than a 

continuum, where strength and volume change of the material is influenced by micro-

scale properties that cause local shearing. Loading of soils will eventually cause the soil 

mass to fail through shearing along zones of intensive shearing known as shear bands. 

Localization of plastic shear strains and subsequent development of shear bands initiates 

during the pre-peak regime in true triaxial experiments, as detected through sudden 

strength reduction, and failure is a consequence of shear band (bifurcation) rather than a 

constitutive response of the material itself (Lade 2002).  
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Investigations of mechanisms leading to strain localization in granular material 

experiments have been difficult to quantify until the emergence of discrete or distinct 

element method (DEM) (Jiang et al. 2010; Kuhn and Bagi 2004; Oda and Iwashita 2000; 

Oda et al. 1997), digital image correlation (DIC) (Hall et al. 2009; Rechenmacher and 

Finno 2004), x-ray computed tomography (CT) (Andò et al. 2012; Druckrey and Alshibli 

2014; Fu et al. 2008; Hall et al. 2010; Hasan and Alshibli 2012; Sjödahl et al. 2012), as 

well as theoretical and numerical methods (Alsaleh et al. 2006; Alshibli et al. 2006; 

Walker et al. 2013). For example, Oda and Iwashita (2000) developed a modified DEM 

approach and laboratory biaxial experiments to investigate onset of shear bands  in 

granular materials. Local strains exposed mini shear bands at peak stress state that 

eventually developed into a single major shear band during the critical state. Column-like 

structures parallel to the major principal stress direction nucleated and collapsed during 

strain pre-peak and were regenerated during  post-peak PSR softening by means of 

particle rolling. Also, stress states were found to be different across shear band 

boundaries. Jiang et al. (2010) noticed the birth of mini shear bands near peak stress state 

that enetually developed into a single shear band after the phase-change point during 

DEM simulations of biaxial experiments. Hall et al. (2009) found evidence of complex 

evolving internal structures consisting of bands of localized deformation on specimen 

surfaces using DIC of biaxial experiments. Hall et al. (2010) applied 3D volume digital 

image correlation (V-DIC) to x-ray micro-tomography (XRCT) images and observed and 

quantified the onset and evolution of localized deformation in sand. X-ray images were 



 

186 

 

acquired at multiple compressive axial strains and V-DIC was used to characterize shear 

band development throughout the experiment using grain scale kinematics of 

displacements and rotations. Using particle kinematics, the final shear band in the 

experiments reported by Hall et al. (2010) was well defined during the post-peak PSR 

softening and critical state. Andò et al. (2012) expanded on the work of Hall et al. (2010) 

and developed ID-track, a computer code that discretized each particle within an XRCT 

image and tracked particle kinematics throughout subsequent images of an experiment. 

Using this method, final shear bands were initially apparent near the peak principal stress 

ratio (PSR) that fully developed during the post-peak PSR softening and critical state of 

the experiments.  

Experimental quantification of 3D particle kinematics can be useful in 

micromechanical quantifications such as shear band thickness that are important for 

strain localization and bifurcation models that incorporate strain localization at failure. 

However, traditional particle kinematics alone do not uncover intermittent strain 

localization during pre-peak regime or the evolution of strain localization into a single 

shear band at failure. Andò et al. (2012) presented an  interesting concept at the particle 

level by differentiating particles displacing upward and downward, but important particle 

level features were still relatively masked as localized strains were not observed until 

peak stress state and no localized strain was observed during the pre-peak regime. Such 

techniques have led to particle-scale and meso-scale discoveries of the onset and 

evolution of failure in granular material via shear bands that have proved valuable in 
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developing theories that account for strain localization and bifurcation (Da Cruz et al. 

2002; Nicot and Darve 2007; Nicot et al. 2009) 

Few researchers have investigated intermittent micro-band formation during pre-

peak phase using 2D DEM and DIC techniques. Kuhn (1999) used DEM experiments to 

investigate local void-based fabric parameters and found that thin obliquely trending 

bands were the predominant deformation structures in which slip deformation was most 

intense. These thin structures, named microbands, appeared at the beginning of the test 

and spontaneously throughout loading. Unlike shear bands, micro-bands are relatively 

thin (one to four times the mean particle size (d50) in thickness) and are neither static nor 

persistent. Kuhn (2003) and Kuhn (2005) expanded on the DEM microband concept 

using strain gradients in granular materials and concluded that strain localization is not an 

isolated phenomenon and microbands and non-persistent shear bands develop before the 

final stationary band. These microbands can be modeled using second-gradient linear 

models, while a more complex non-linear model can predict the deformation profile of a 

non-persistent shear band during pre-peak. Few researchers have found experimental 

evidence of micro-bands within biaxial experiments using DIC. Based on surface 

observations on biaxial experiments, Rechenmacher (2006) noticed that multiple and 

conjugate shear bands initiated during the pre-peak regime, but the persistent final shear 

band was not fully obvious until post-peak PSR softening. Bouil et al. (2014) was able to 

detect extremely small  heterogeneous strains (of the order of 10
-5

) with DIC of biaxial 

experiments, finding intermittent microband development and subsequent collapse 
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between 2.5% axial strain and peak deviator stress, where a final persistent shear band 

dominates. Structured deformations such as microbands seem to occur sporadically 

during the pre-peak phase of a given experiment especially biaxial specimens and 

eventually lead to the development of a persistent shear band during post-peak PSR 

softening and critical states. Evidence of micro-bands has been detected using DEM and 

DIC; however, traditional discrete particle kinematics fall short in determining micro-

band formation in experiments on sand. Also, if failure of the granular material is through 

diffuse bifurcation, detection of localized shearing using particle kinematics is difficult 

during critical state. To the author’s best knowledge, 3D experimental micro-band 

analysis is not reported in the literature. 

This paper uses 3D measurements of individual particle kinematics during 

axisymmetric triaxial experiments to track the onset of strain localization within granular 

material using synchrotron micro-computed tomography (SMT). A new technique is 

proposed to calculate the displacement vectors of individual particles relative to 

displacement vectors of neighboring particles using the second order norm, or Euclidian 

length difference, which gives the particle’s discrete relative displacement. Particle 

relative displacement (rd) is a measure of how much a particle translates relative to all of 

its contacting neighbors. rd technique uncovered the onset of multiple micro-bands that 

develop during the pre-peak phase and eventually evolve into fewer persistent shear 

bands. The paper discusses the influence of particle morphology and confining pressure 

on the failure mode of triaxial experiments in 3D.  
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The concept of critical state has been disputed and defended by many in the 

literature (e.g. Been et al. 1991; Mooney et al. 1998; Riemer and Seed 1997; Verdugo 

and Ishihara 1996). Critical state will be referred to in this paper, and the rest of this 

dissertation, as the point during the experiment where strength behavior of the material 

reaches steady-state. At this point deformation behavior may or may not be at steady 

state, depending on the material. Using particle relative displacements, this paper exposes 

that shear banding within the material reaches a steady –state when strength behavior of 

the material reaches critical state. Formation and destruction of internal shear bands no 

longer occurs within the specimen at critical-state and failure only occurs within areas of 

localized shearing that have already formed.  

Materials Description and Experiments 

Four granular materials of different morphologies described in Alshibli et al. 

(2014) were used in this paper. Three silica sand known as F-35 Ottawa sand, GS#40 

Columbia grout, and #1 dry glass, along with glass beads with particle sizes between U.S. 

sieves #40 (0.429 mm) and #50 (0.297 mm) were used in the experiments. Average 

micro-scale particle morphology properties of sphericity and roundness based on 3D 

images of particles are presented in Alshibli et al. (2014) and summarized in Table 5.1. 

The glass beads have average sphericity (Isph ) of 1.096 and roundness (𝐼𝑅) of 0.965;  

closest to unity, being the most spherical and least angular of the four granular materials. 

F-35 sand has the highest sphericity value (least spherical, Isph = 1.872), followed by #1 

dry glass sand (Isph = 1.704) and GS#40 Columbia grout sand (Isph = 1.674), which are 
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relatively close in sphericity to each other. Of the three sands, F-35 has a roundness index 

closest to unity (𝐼𝑅 = 0.959) after glass beads, followed by the more angular dry glass 

sand (𝐼𝑅 = 0.937) and the most angular GS#40 sand (𝐼𝑅 = 0.924).   

A small triaxial apparatus described in Hasan and Alshibli (2012) and Druckrey 

and Alshibli (2014) was setup in beamline 13BMD of Advanced Photon Source (APS), 

Argonne National Laboratory (ANL), Illinois, USA. Specimens are cylindrical and 

initially measure about 10 mm in diameter by 20 mm in height. Eight axisymmetric 

triaxial compression experiments were conducted on very dense dry specimens under 

drained condition at two confining pressures (𝜎3 = 15 𝑘𝑃𝑎 𝑜𝑟 400 𝑘𝑃𝑎,  Table 5.1). 

Specimens were prepared in 5 lifts, lightly tamping each lift using 9 mm rod to densify 

before adding the next lift. The prescribed 𝜎3 was applied to the specimen and the 

apparatus was mounted on the stage of the x-ray beam for SMT imaging.  

Advantages of SMT imaging are summarized in Druckrey et al. (2016), some of 

which are high resolution and sharp particle edges. Individual scans were acquired at 

increasing displacements, pausing the experiment to collect 900 radiograph images at 

0.2° rotation increments, and radiographs were reconstructed to create 3D SMT images. 

Resolution for images in each experiment are listed in Table 5.1. More information on 

image collection and reconstruction can be found in (Rivers 2012; Rivers et al. 2010). An 

initial image was acquired, the top end plate was moved at a constant compressive 

displacement rate of 0.2 mm/minute to a predetermined target displacement, loading was 

paused and the next image was acquired. It took approximately 50 minutes to collect   
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Table 5.1. Summary of the experiments 

Material Exp. 𝐼𝑠𝑝ℎ 𝐼𝑅 Initial 

void 

ratio 

σ3 

 

(kPa)  

 Dr 

(%) 

Resolution 

(μm/voxel) 

F-35 

Ottawa  

sand 

(F35) 

F35-15kPa 

1.872 0.959 

0.510 15 131 11.14 

F35-400kPa 0.531 400 120 11.18 

#1 Dry 

glass sand 

(DG) 

DG-15kPa 
1.704 0.937 

0.637 15 134 11.14 

DG-400kPa 0.667 400 121 11.18 

GS#40 

Columbia 

grout sand 

(GS40) 

GS40-15kPa 

1.674 0.924 

0.627 15 126 11.14 

GS40-400kPa 0.644 400 119 8.16 

Glass 

beads 

(GB) 

GB-15kPa 

1.096 0.965 

0.518 15 170 11.14 

GB-400kPa 0.556 400 144 11.18 
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one SMT scan. Particle kinematics can be determined between each of these incremental 

displacements (or strains), as particles translate and rotate as a result of the global 

loading. Strain increments are hereafter referred to as the interval between successive 

images.  

Compressive Load and displacement measurements were also collected during 

each of the experiments and the principal stress ratio (PSR = σ1/σ3) and volume change 

(휀𝑣) versus nominal axial strain (ε1) relationships for all experiments are presented in 

Figure 5.1.  Markers in Figure 5.1 label axial strains at which SMT scans were acquired 

(marks were omitted on 휀𝑣 curves for clarity). Under relatively high confining pressure 

(𝜎3 = 400 kPa), all specimens exhibited a gradual increase in PSR to a peak state 

followed by a small post-peak PSR softening (Figure 5.1a). The #1 dry glass sand (DG-

400kPa) exhibited the highest peak PSR of 4.2 at 휀1 = 7.1%, followed by a small post-

peak PSR softening. The F35-400kPa sand specimen reached a peak PSR of 3.9 at 휀1 =

 4.9%, followed by relatively more post-peak PSR softening. The GS40-400kPa 

specimen closely followed F35-400kPa where it reached the peak PSR of 3.8 at 휀1 =

 5.0% followed by a small post-peak PSR softening. The glass beads specimen reached a 

peak PSR of 2.8 at 휀1 = 3.7% followed by a very small post-peak PSR softening. Of the 

four materials under 𝜎3 = 400 kPa, DG-400kPa experiment was the only specimen that 

did not exhibit a well-defined single shear band at critical state. Specimens tested under 

low confining pressure (𝜎3 = 15 kPa) did not exhibit a peak PSR but rather an initial 

increase in PSR followed by a smaller rate of increase as compression   
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Figure 5.1. Principal stress ratio (PSR) versus axial strain and volumetric strain versus 

axial strain for the experiments 
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progressed and leveling off at critical state (Figure 5.1b); a typical behavior of a very 

dense specimen tested at low confining pressure. The 400 kPa experiments exhibit a 

volume increase after a small initial contraction whereas the 15 kPa experiments dilate 

throughout the experiments with no initial contraction.   

Image Processing and Particle Tracking 

To quantify discrete particle kinematics at multiple strains, images must be 

processed to uniquely label each particle within the image. Image processing was 

conducted using the procedure described in Druckrey et al. (2016). Grayscale SMT 

images were initially filtered and binarized, and particles were separated using a 

combination of watershed, distance transform, and numerical reconstruction algorithms 

that removed small areas of contact between particles. With particles no longer in 

contact, each particle was assigned a unique label number and contacts were restored. 

Example grayscale and final labeled images are shown in Figure 5.2 for the initial scan of 

F35-400kPa experiment. SMT technique produced high quality grayscale images that 

resulted in accurate particle identification after processing. Images at each axial strain 

increment were then quantified using the code described in Druckrey et al. (2016) and 

particle centroid, volume, surface area, short axis length, intermediate axis length, long 

axis length, and contact information were extracted and saved for each particle. In 

addition, orientation of the particle long, intermediate, and short axes were computed and  

saved in output files for further analysis. Initial void ratios were calculated from 

the images based on the volumetric ratio of voids (within the membrane encasing the   
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Figure 5.2. Example SMT grayscale image and labeled image after processing it   
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specimen) to total particle volume and are listed in Table 5.1, as well as the relative 

density (Dr) that was calculated from the specimen void ration, the maximum and 

minimum index densities for calculating relative densities that were measured according 

to ASTM-D4253 and ASTM-D4254 standard procedures, respectively. It is interesting to 

notice that specimens have Dr values higher than 100%. Lo Presti et al. (1992) reported 

similar observations.  

The same particle is assigned a different number in different images which is 

caused by rearrangement of particles during experimentation and the nature of computer 

algorithm used to identify particles, which labels particles in an image from the top to 

bottom. In order to quantify particle kinematics between strain increments, each particle 

needs to be identified from one strain increment to the next. An incremental particle 

tracking code was developed to track individual particles using particle morphology data, 

similar to the particle tracking code in Druckrey and Alshibli (2014). A search box large 

enough to consider particle displacement from global loading was first isolated around 

the centroid of the particle of interest in the first SMT image. Particles in the next SMT 

image within the search box were compared to the particle of interest using particles’ 

surface area, volume, and the three particle lengths. If particles within the search box 

matched all particle properties within the certain tolerance set by the user, they were 

considered for matching. If no particles were matched, they were omitted for that 

increment. Typically, only one particle matched the particle of interest within all set 

tolerances, but occasionally more than one particle would be a match (especially if 
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particles are very uniform) and occasionally zero matches occurred. In the case of 

multiple matching particles, the particle in the second SMT image with the closest 

matching features was considered as the counterpart to the particle of interest in the first 

SMT image. The magnitude of particle displacement was then calculated as the distance 

between the centroid of a particle in the first SMT image (𝑥1, 𝑦1, 𝑧1) and the centroid of 

the matching particle in the second SMT image (𝑥2, 𝑦2, 𝑧2) as: 

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2  (5.1) 

Particle rotations were also calculated based on differences in long axis 

orientations between the increments. Applying this particle kinematics analysis to an 

entire specimen at multiple strains is similar to 3D digital volume correlation. An 

example of particle kinematics for F35-D-400kPa experiment is shown in Figure 5.3 in 

the plane parallel to specimen shear band at critical state, displaying the shear band at its 

narrowest point of view. Particle displacements shown in Figure 5.3 are normalized for 

each strain increment by the axial displacement of the specimen top plate (i.e., global 

compression). The specimen failed via a single well-defined shear band that initiated near 

the peak PSR (휀1~ 4.9%) and is easily identified from particle displacements and 

rotations during the post-peak PSR softening (휀1 = 8.9%-11.8%) and critical state (휀1 = 

8.9%-11.8%) of the experiment. Particle rotations do not exhibit localization during 

earlier stages of the experiment. Particle displacements show a nucleation of the shear 

band, but are not definitively localized until post-peak PSR softening. Such conventional 

particle kinematics can be used to analyze and quantify failure shearing behavior of  



 

198 

 

 

 

Figure 5.3. Particle kinematics of F35-400kPa experiment  

5 mm 
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granular material, but mask many intricacies and lesser intermittent localized strains 

(micro shear bands, MSB) during pre-peak that lead to failure, especially if a specimen 

fails through bulging.  

Intricate zones of localized strain within a specimen that are not exposed by 

particle kinematics can be mined from the data by comparing a particle’s displacement 

vector with that of all of its neighboring particles. The concept of relative particle 

displacement branches from kinematic displacements and relates a particle displacement 

vector (δ) to that of all neighboring particles in contact with that particle (δ1, δ2, …, δ𝑛), 

using the second order norm of vector differences:  

𝑟𝑑𝑖 = 𝑛𝑜𝑟𝑚(𝛿 − 𝛿𝑖)           (5.2) 

𝑟𝑑 =
1

𝑛
∑ 𝑟𝑑𝑖

𝑛
𝑖=1          (5.3) 

where 𝑟𝑑𝑖 is the magnitude of relative displacement for a single contacting neighboring 

particle and n is the number of contacting particles. The overall magnitude of relative 

displacement is the average of all individual relative displacement vectors (rd). Figure 5.4 

shows an illustration of particle relative displacement, where particles 1, 2, and 3 have 

displacements δ1, δ2, and δ3, respectively. Quantifying particle displacements (as in 

Figure 5.3) would not show a quantifiable difference between particle 1 and the other two 

particles in either Figure 5.4a or 4b because the magnitude of displacements are all the 

same. Relative displacement for particle 1 would be zero for the case demonstrated in 

Figure 5.4a (same direction and magnitude of displacements) and a larger value for the 

case demonstrated in Figure 5.4b because direction is considered in calculating particle   
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Figure 5.4. Illustrative example of particle relative displacements having a) the same 

relative displacement and b) different relative displacements   
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relative displacement. Relative displacement not only differentiates vertical 

displacements, but localized displacement in any 3D direction. Relative displacement 

better captures the shear between particles, exposes small localized strains within a 

granular material, and allows for quantification and visualization of local MSB 

throughout the experiment as well as analysis of mechanisms that contribute to the onset 

and growth of the major shear band if any. 

Results 

Very dense specimens tested under high confining pressure (𝝈𝟑 = 400 kPa) 

Incremental relative displacements of individual particles were calculated from 

the SMT images where the previous SMT image was taken as the reference for relative 

displacement of particles in the current SMT image. Relative displacements are 

normalized by the global axial compression imposed by the top end plate. Figure 5.5 

displays the Incremental relative displacements for F35-400kPa experiment (slices are 

taken normal to final shear band for better visualization). Strain pre-peak for this 

experiment took place between 휀1 = 0-4.9%, peak PSR was reached between 휀1 = 4.9% - 

6.9%, followed by post-peak PSR softening between 휀1 = 6.9% - 11.8%, and critical state 

transpires thereafter (Figure 5.1a). Zones of localized strain, not necessarily shear bands, 

sporadically developed as early as the first strain increment (휀1 = 0-1%). Then at 휀1 = 

1%-2%, strains localized  into multiple MSB with thicknesses of 1d50 to 3d50, where d50 

is the mean particle size (0.36 mm). The MSB exhibited preferred orientations parallel   
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Figure 5.5. Normalized relative displacements for F35-400kPa experiment   

5 mm 
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and perpendicular to the inclination of the of final major shear band that would develop at 

a higher strain. The MSB became more developed and more defined in the third strain 

increment (휀1 = 2%-3.4%), where multiple cross-hatched MSB develop in multiple 

directions. These multiple intersecting MSB typically extend over the entire width of the 

specimen in conjugate directions with orientations similar to the final shear band. The 

MSB began to retreat and merge into a zone of entropy near the center of the specimen at 

the end of strain pre-peak phase of the experiment (휀1 = 3.4%-4.9%). MSB within this 

strain increment have thicknesses of 2d50 to 5d50. The zone of highly disordered particle 

relative displacements near the end of pre-peak is still in the general direction of the final 

shear band, although MSB in other directions are still growing from the zone of disarray. 

During the peak PSR phase (휀1 = 4.9%-6.9%), most MSB have merged into a large zone 

of disordered relative displacements that has an overall inclination of the final major 

shear band, while few minor MSB were still extend from the zone of intensive shearing. 

The final major shear band fully develops during the post-peak PSR softening phase of 

the experiment and continues through the critical state phase. Particles within the final 

major shear band exhibit a high relative displacement values which uncovers an 

interesting experimental evidence that intensive shearing and interaction takes place 

between particles within the shear band. The thickness of the shear band is 9d50 to 10d50  

and edges are delineated by transition bands with a thickness of d50 to 3d50 that have 

slightly less relative displacements than particles within the major shear band. 
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Relative displacements show much more intricate detail of particle behavior 

during pre-peak than conventional particle kinematics approach. The onset of multiple 

MSB in several directions is exposed using relative displacements that are not apparent 

when quantifying particle displacements or rotations of experiment F35-400kPa. The 

MSB merge and contribute to the development of the final shear band in a very complex 

shear evolution process, which is not captured based on calculating particle 

displacements or rotations. The final shear band is well defined and delineated with high 

relative displacements, while conventional particle displacement calculations and 

rotations do not expose the d50 to 3d50 delineation with as much detail. Figure 5.6 

displays slices that are parallel to the final shear band (orthogonal to those shown in 

Figure 5.5). During pre-peak and peak PSR phases, MSB initiate and progress similar to 

the orthogonal direction, suggesting a complex 3D network of MSB formation and 

evolution. During post-peak PSR softening and critical state, Figure 5.6 shows that the 

MSB merge and form the final shear band, as evident in the centralized zone of localized 

strain at 휀1 = 8.9%-11.8% in Figure 5.6.  

Relative displacements for GB-400kPa experiment are depicted in Figure 5.7. 

Strain pre-peak takes place between 휀1 = 0-3.7%, peak PSR was reached between 휀1 = 

3.7% - 5.2%, followed by post-peak PSR softening between  휀1 = 5.2% - 7.3%, and 

critical state transpires thereafter (Figure 5.1b). The increment containing the final image 

(εa = 12.5-18.3%) is not included in the analysis due to difficulty in tracking relatively 

spherical particles over such a large strain increment. Critical state was reached during   
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Figure 5.6. Normalized relative displacements parallel to final shear band for F35-400kPa 

experiment  

 

Figure 5.7. Normalized relative displacements for GB-400kPa experiment   

5 mm 

5 mm 
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the previous two increments and the final increment did not uncover many changes in 

relative displacements; therefore omitting the last increment does not impact the results. 

Similar to the F3-400kPa experiment, zones of localized strain emerged during the first 

휀1 increment (휀1 = 0-1%) and MSB with thickness 3d50 to 5d50 began to nucleate during 

the second 휀1 increment (휀1 = 1%-2.1%) and continued to grow throughout the pre-peak 

phase. The thickness of MSB in this experiment is larger than F35-400kPa and are not as 

well defined as the F35-400kPa experiment. The majority of MSB within GB-400kPa 

experiment typically orient in the same direction as the final single shear band, while few 

MSB develop at the same inclination and opposite direction of the major shear band.  

During the peak PSR phase (휀1 = 3.7%-5.2%), most MSB merged into a large zone of 

disorder within the specimen and align in the direction of the final major single shear 

band. During post-peak PSR softening, the disorder localizes into the final well-defined 

single shear band that continues to evolve and develop during the critical state. The final 

shear band is much thicker (13d50 to 14d50) than that of the less spherical and more 

angular F35 sand (Figure 5.5) and is not as well defined. There are also some sporadic 

particles with large relative displacement outside of major shear band. Large relative 

displacement of individual (or small groups of) particles outside MSB or the major shear 

bands is attributed to stick-slip nature of glass beads at critical state, as reflected by 

frequent drops in the PSR response in Figure 5.1a. Alshibli and Roussel (2006) presented 

a detailed experimental investigation of slick-slip phenomena in glass beads which is not 

limited to particles within the shear band. 
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Relative displacements for GS40-400kPa experiment are shown in Figure 5.8. 

The experiment exhibits strain pre-peak up to 휀1 = 4.7%. Peak PSR phase for this 

experiment is broad and endures through increments 5 and 6 (휀1 = 4.7-6.7% and 휀1 = 6.7-

8.6%), while slight post-peak PSR softening occurs during increment 7 (휀1 = 8.6-11.4%), 

and critical state thereafter. The initial 휀1 increment (휀1 = 0-1%) did not show an 

evidence of MSB where only two horizontal layers of larger relative displacement are 

apparent as a result of image processing errors and should not be considered as strain 

localization. Through increments 2 and 3 during strain pre-peak phase, a complex 

network of MSB emerges similar to those in F35-400kPa experiment, and had 

thicknesses of 2d50 to 4d50. Many MSB develop in conjugate directions with inclinations 

similar to the final major shear band, some of MSB extend through the entire specimen. 

Near the end of strain pre-peak (increment 4, 휀1 = 3.3%-4.7%) the MSB began to merge 

and show a preferential alignment with that of the final major shear band. During peak 

PSR phase, few MSB remain and the final shear band is nearly fully developed. Full 

development of the final shear band commenced during the minor post-peak PSR 

softening and continued through critical state phase. The final shear band for GS40-

400kPa experiment have a thickness of 10d50 to 13d50, and is not as well defined nor as 

delineated as the shear band for F35-400kPa experiment (that have a thickness of 9d50 to 

10d50).  However, the final shear band for GS40-400 kPa experiment is more delineated 

and better defined than the shear band in GB-400kPa experiment (thickness 13d50 to 

14d50), advocating the influence of particle morphology on the onset and growth of shear   
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Figure 5.8. Normalized relative displacements for GS40-400kPa experiment   

5 mm 
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bands in granular materials. Of the three 400 kPa experiments that exhibited a final shear 

band, the thickness of the final shear band for the least spherical material (F35 sand, Isph = 

1.872) was the thinnest, followed by GS40 sand (Isph = 1.674) and the final shear band in 

glass beads (Isph = 1.096) was the thickest. This trend was also apparent for MSB 

thicknesses, where F35 sand had the thinnest MSB, followed by GS40 sand and glass 

beads. Interlocking and rotation between less spherical particles result in thinner shear 

bands than that of specimens with more spherical particles, which have to translate 

around each other (less particle interlocking). 

Relative displacements for DG-400kPa experiment are displayed in Figure 5.9. 

This experiment experienced strain pre-peak up to 휀1 = 5%, peak PSR at 휀1 = 6.9%, and 

very minor post-peak PSR softening into critical state during increment 6 (휀1 = 6.9%-

8.9%). Failure of this specimen was characterized as bulging based on specimen surface 

deformation, but more complex internal failure modes occur. Strain localization began to 

form during the first 휀1 increment (휀1 = 0-1%). In the second 휀1 increment (휀1 = 1%-2%), 

MSB have formed in a diagonal direction through the specimen, which seemingly would 

be early evidence of a major well-defined single shear band. However, during the third 휀1 

increment (휀1 = 2%-3.5%) several MSB develop throughout the specimen in the opposite 

direction and began to compete with the previously developed MSB. MSB in this 3
rd

 

increment have thicknesses of 3d50 to 4d50. During the 4
th

 휀1 increment (휀1 = 3.5%-5%) a 

complex network of MSB emerges with a preferential inclination; however intersecting 

MSB cause a relatively large zone of disorder in the middle of the specimen. In the   
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Figure 5.9. Normalized relative displacements for DG-400kPa experiment   

5 mm 
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increment approaching peak PSR (휀1 = 5%-6.9%) MSB develop in opposite directions 

resulting in the development of two conical shearing surfaces near the top and bottom of 

the specimen and a large amount of disarray in the middle part of the specimen. 

Conflicting MSB in a cross-hatched pattern continue to battle throughout the remainder 

of the experiment, retaining the conical shaped shearing zones near the top and bottom of 

the specimen and many MSB in the central zone. Cross-hatching of MSB force other 

lateral MSB to manifest and push outward toward the specimen surface, as well as push 

groups of particles outward, resulting in specimen bulging at the surface. During the last 

two increments, particle disorder was very high in the central part of the specimen 

resulting in difficulty in tracking particles, leading to many particles with zero relative 

displacement in that zone.  

Very dense specimens tested under low confining pressure (𝝈𝟑 = 15 kPa) 

The failure mode of very dense specimens sheared at relatively low confining 

pressure (𝜎3 = 15 kPa) was through bulging based on observations of the specimens’ 

surface. F35-15kPa experiment (Figure 5.10) showed early signs of randomly oriented 

MSB with thicknesses of 2d50 to 3.5d50 concentrated in the central part of the specimen 

until approximately 휀1 = 3.5%-5%, where MSB have mostly merged into a centralized 

zone, with the exception of  conical shearing zones near the top and bottom of the 

specimen. Subsequently, F35-15kPa experiment (Figure 5.10) retained the conical zones 

of shearing at the top and bottom of the specimen, with shearing concentrated between 

the two conical zones. As shearing progressed, a centralized hourglass-like (x-shaped in   
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Figure 5.10. Normalized relative displacements for F35-15kPa experiment   

5 mm 
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2D slice visualizations) shearing pattern dominates the internal microstructure, forcing 

particles outwards toward the surface of the specimen in the lateral direction where some 

of these particles were part of MSB (see Figure 5.10, increment 8, 휀1 = 11.9%-17.4%, 

where thick transparent markers are added to the image to show hourglass pattern and 

thin lines show structured MSB being forced outwards). The outthrust of particles and 

MSB cause specimen surface bulging. Cross sectional slices within the conical shearing 

zones at the top and bottom of the specimen as well as a cross section near the mid height 

of the specimen for 휀1 = 11.9%-17.4% increment are displayed in Figure 5.11. The 

circular pattern within the top and bottom cross-sectional slices reveals that the shape of 

the failure zone is in fact conical. The middle cross sectional slice shows disarray 

between the conical shearing zones and multiple MSB with no preferred orientation other 

than random relative particle displacement outward in the lateral direction (axisymmetric 

plane of the specimen). 

 GS40-15kPa experiment (Figure 5.12) also exhibited early signs of MSB 

development (thicknesses of 3.5d50 to 4d50) and retained several major MSB after 휀1 = 

5% with inclination similar to the conical shape observed at the top and bottom of F35-

15kPa experiment, resulting in a centralized cross-hatched shearing pattern. Ends of the 

MSB pushed towards the specimen surface and particles outside those shearing zones 

were forced to move outwards in the lateral direction resulting in bulging at the specimen 

surface. A similar failure mode is observed in DG-15kPa experiment at early strains   
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Figure 5.11. Slices of strain increment ε_1 = 11.9-17.4% for F35-15kPa experiment 

displaying conical shearing zones and lateral MSB and particle group expulsion  

 

5 mm 
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Figure 5.12. Normalized relative displacements for GS40-15kPa experiment  

  

5 mm 
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(Figure 5.13), with MSB thicknesses of 3d50 to 3.5d50. A cross-hatched MSB pattern 

forms and conical shearing zones at the top and bottom of the specimen develop and 

persist. However, particle relative displacements eventually show a large centralized zone 

of particle entropy pushing particle groups outward in the lateral direction to cause 

specimen bulging. GB-15kPa experiment (Figure 5.14) exhibited many distributed MSB 

and zones of localized shearing throughout the experiment, many of which are 

sporadically distributed throughout the specimen. Thicknesses of MSB at early strain 

increments are 3d50 to 5d50. Some structure is retained in cross-hatched MSB; however 

some of the structured deformation is randomly orientated and shearing zones near the 

top and bottom of the specimen do not have a well-defined conical structure. Specimen 

bulging is caused by MSB ends pushing out towards the specimen surface as well as 

pushing groups of particles in the lateral direction.  

The role of confining pressure on internal shearing mechanisms of granular 

material is significant. A cross-hatched MSB failure pattern develops during strain pre-

peak for both low (σ3 = 15 kPa) and high (σ3 = 400 kPa) confining pressures. However, 

under lower confining pressure, MSB are thicker and shearing zones are not as well 

structured as under a higher confining pressure. This is attributed to a more stable 

microstructure imposed by higher confining pressure. With exception of experiment DG-

D-400kPa, where a high confining pressure typically forces MSB and shearing zones to 

merge into a single well-defined shear band during peak PSR and post-peak PSR 

softening phases. In experiments conducted at low confining pressure, the failure was   



 

217 

 

 

Figure 5.13. Normalized relative displacements for DG-15kPa experiment   

5 mm 
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Figure 5.14. Normalized relative displacements for GB-15kPa experiment   

5 mm 
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manifested in bulging of the specimen surface with a complex network of internal MSB. 

Cross-hatched MSB were the typical mode of internal failure mode (singular hourglass 

pattern in F35-D-15kPa experiment), where the cross-hatched MSB forced groups of 

particles and lateral MSB outward and conical shearing zones at the top and bottom of 

the specimens. Particle morphology, mainly Isph, influenced the thicknesses of MSB 

during pre-peak as well as the thicknesses of critical state shear bands (in experiments 

that developed critical state shear bands). In all cases, glass beads (most spherical) had 

the thickest MSB, followed by GS#40 and #1 dry glass sands, which have intermediate 

Isph. F35 sand was the least spherical particles and exhibited the thickest MSB.   

Conclusions 

3D SMT was used to capture the evolution of failure mode of triaxial specimens 

composed of uniform sands and glass beads. The concept of relative particle 

displacement is introduced and used to visualize and quantify intricate zones of localized 

strains and micro shear bands that cannot be exposed when one uses particle translation 

and rotation alone. The following conclusions are drawn from this paper: 

a) Micro shear bands in triaxial experiments can be better analyzed and quantified in 3D 

using the second order norm of differences in displacement vectors. This technique 

exposes more intricate strain localizations than conventional particle kinematics 

approach.  

b) All experiments developed MSB during strain pre-peak. In specimens that exhibit a 

single well defined shear band at failure, persistent MSB that nucleate and mature 
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during the pre-peak phase merge to form the single shear band. In specimens that 

exhibit bulging, MSB develop into either a cross-hatched or hourglass pattern that 

push groups of particles and small lateral MSB outwards in the lateral direction.  

c) Particle morphology influences thickness and delineation of MSB. Specimens with 

less spherical particles have thinner well-defined MSB and critical state shear bands, 

caused by interlocking of the less spherical particles  

d) Confining pressure influences the thickness and delineation of MSB. MSB that 

develop during strain pre-peak are more structured and better defined when the 

specimen is tested at a high confining pressure.  
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CHAPTER 6 

3D EXPERIMENTAL QUANTIFICATION OF FABRIC 

EVOLUTION OF SHEARED GRANULAR MATERIALS USING 

SYNCHROTRON MICRO-COMPUTED TOMOGRAPHY 
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A version of this chapter is under review in Granular Matter Journal. The author 

list is: A. Druckrey, K. Alshibli.  

My primary contributions to this paper are (i) formulating objectives and 

evaluating current research in the area, (ii) conducting most experiments during in-situ 

SMT imaging, (iii) quantifying particle contact normal vectors and fabric tensors based 

on contact normal vectors (iv) comparison fabric evolution for various granular materials, 

(v) most of the writing.  

Abstract 

Experimental studies have established that mechanical response of granular 

materials is highly influenced by micro-structural fabric and fabric evolution. In the 

literature, theories and quantification of fabric evolution have been developed based on 

microstructural observations using discrete element modeling (DEM) or simple two-

dimensional experiments with simple particle shapes. Emergence of x-ray computed 

tomography (CT) technique has made quantification of such experimental microstructural 

properties possible. This paper used synchrotron micro-computed tomography (SMT) to 

collect 3D images during in-situ triaxial compression experiments on granular materials 

with different morphologies to experimentally quantify fabric and fabric evolution. 

Effects of confining pressure, and particle morphology on the initial fabric and fabric 

evolution are presented. The results show that particle morphology plays a significant 

role on initial anisotropy of granular material (fabric is a measure of internal anisotropy) 

as well as the magnitude of fabric evolution throughout triaxial compression experiment. 
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Relatively higher applied confining pressure causes less anisotropic initial state in 

granular materials of any morphology, and fabric evolves in correspondence with 

evolution of strength; if material strength peaks and reaches a steady-state, fabric will 

also peak and become constant shortly thereafter. 

Introduction 

Micro-scale properties and particle-to-particle association of granular materials 

contribute to its macroscopic strength and dilatancy behavior as well as other engineering 

properties. An important micro-scale property is the internal structure, or fabric, which 

describes its internal anisotropy. Fabric is defined as the arrangement of particles, particle 

groups and associated pore space. Experimental and discrete element methods have 

demonstrated that fabric anisotropy greatly influences mechanical properties of granular 

material when varying the fabric of the material or the loading direction (Oda 1972; Oda 

et al. 1985; Lam and Tatsuoka 1988; Yimsiri and Soga 2001; Li and Yu 2009; Yimsiri 

and Soga 2010; Li and Yu 2014). For example, Oda (1972) used various sands, 

preparation methods, and 2D thin section microscopy  to find that initial fabric anisotropy 

is a direct result of particle shape and sample preparation technique, differences in initial 

fabric greatly influence mechanical properties, and specimens with contact normal 

vectors preferential orientation toward the direction of loading have a more stable fabric. 

Li and Zeng (2014) used experimental bender element techniques and found that fabric 

anisotropy is affected by sand morphology and density, and fabric affects the shear 

modulus of the material. Furthermore, Yimsiri and Soga (2010) used DEM and showed 
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that initial fabric has profound effects on stiffness, strength, and dilation properties of 

granular materials. Although the importance of initial fabric and fabric evolution 

resulting from particle deposition, morphology, and applied loadings is well documented 

in the literature, they remain difficult to completely and effectively quantify and model 

experimentally in 3D.  

Fabric tensors characterize the geometric arrangement of granular material 

microstructure and quantify internal anisotropy of the material. Any micro-scale 

directional data of granular material used to represent fabric can be used in quantitative 

analysis of fabric tensors. Several different microstructural quantities have been used in 

formulating fabric tensors. Directional microstructural data such as particle long axis 

orientations, branch vectors, particle contact normal vectors, and void vectors are 

commonly used to define fabric of granular materials. To analyze the different 

microstructural fabric tensor parameters, Fonseca et al. (2013) terminated triaxial 

experiments at different axial strain levels during shearing and impregnated the 

specimens with epoxy resin. Cores were then extracted from several locations within the 

specimens and CT scans were acquired to quantify and compare microstructural data 

using rose diagrams and an eigenvalue analysis of fabric tensors, as well as analyze 

evolution of fabric in the specimens. Li et al. (2009) developed a new anisotropic fabric 

tensor based on void cell anisotropy that correlated with the macro behavior of granular 

material via numerical simulations and stated that it is a more effective definition than 

those based on particle orientations or contact normal. Few researchers have found a 
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strong correlation between fabric tensors based on contact normal vectors and void space 

vectors (Theocharis et al. 2014; Fu and Dafalias 2015), but contact normal tensors have 

had the disadvantage of being difficult to accurately quantify experimentally (Theocharis 

et al. 2014). However, forces transmit through a mass of granular material via contact 

normals and force chains (e.g. Oda et al. 2004; Peters et al. 2005; Peña et al. 2009; 

Tordesillas and Muthuswamy 2009), and accurate experimental contact normal tensors 

would prove valuable for micro-mechanics constitutive models. Experimental contact 

normal tensors inherently incorporate other particle-scale properties if accurate 

characterization of contact in 3D space is quantified.  

Many researchers have adopted a form of fabric tensor quantification for granular 

materials based on, or similar to, 2
nd

 order (rank 2) fabric tensors of the first or second 

kind that was proposed by Kanatani (1984). They are symmetric tensors that provide the 

structural anisotropy of directional data. It been shown that 4
th

 order tensors better 

represent material anisotropy, but are not commonly utilized due to difficulty in 

calculating and analyzing the 4
th

 order tensors (Millet et al. 2009; Stershic et al. 2015). 

Interpretation of fabric tensor parameters has not been consistent in the literature, but 

generally attempts to quantify material fabric resistance to loading with fabric direction 

and magnitude relative to the global stress direction applied at specimen boundaries (e.g. 

Barreto et al. 2009; Li and Dafalias 2011; Fonseca et al. 2013; Zhao and Guo 2013; 

Theocharis et al. 2014; Fu and Dafalias 2015). Li and Dafalias (2011) introduce a fabric 

anisotropy variable (FAV) A which is a tensorial product of the normalized fabric tensor 
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F (normalized such that at critical state 𝐹𝑐 = √𝐅: 𝐅 = 1) and the unit-norm deviatoric 

tensor-valued loading direction n, where FAV 𝐴 = 𝐅: 𝐧. A accounts for fabric direction 

and magnitude relative to loading direction for all possible loading combinations. 

Several researchers have incorporated initial fabric and fabric evolution into 

constitutive modeling of granular material. For example, Nemat-Nasser (2000) developed 

a robust micromechanically-based constitutive model that accounts for pressure 

sensitivity, friction, dilatancy, and, most importantly, fabric and fabric evolution. Model 

parameters were estimated in Nemat-Nasser and Zhang (2002) based on results of cyclic 

shearing experiments and then were used to predict other experimental results with good 

correlation. Li and Dafalias (2000) developed a micro-mechanical constitutive model for 

cohesionless soils (without fabric input) and later developed the anisotropic critical state 

theory (ACST) that incorporates fabric anisotropy in the model using FAV A integrated 

into the state parameter (Li and Dafalias 2011).  

Theoretical values of fabric and models of fabric evolution were assumed in the 

current literature based on rudimentary experimentation or DEM, with no 3D 

experimentally quantified fabric tensors to validate them. This paper provides 3D 

experimental measurements of contact normal fabric and fabric evolution for a series of 

axisymmetric triaxial compression experiments on granular materials of different 

morphologies while utilizing in-situ SMT. The influences confining pressure, particle 

morphology, and tensor quantification parameters are analyzed and discussed. Results of 

this study can be used to formulate and validate constitutive models that incorporates 
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material anisotropy and fabric evolution. To the author’s best knowledge, no other 

research of this kind is reported in the literature to supplement the models. 4
th

 order fabric 

tensors are also analyzed and compared to 2
nd

 order tensors that are commonly used in 

granular material research and modeling.   

Materials Description and Experiments 

Four granular materials described in Alshibli et al. (2014) were used in this paper. 

Three silica sands known as F-35 Ottawa sand, GS#40 Columbia grout, and #1 dry glass 

sand, along with glass beads with grain-size between U.S. sieves #40 (0.429 mm) and 

#50 (0.297 mm) were used in the experiments. Micro-scale particle properties of 

sphericity, roundness, and surface roughness are presented in Alshibli et al. (2014). Of 

these materials, glass beads have an average sphericity (Isph = 1.096) and roundness 

indices closest to unity (spherical). F-35 sand has the highest sphericity value (least 

spherical, Isph = 1.872), followed by #1 dry glass sand (Isph = 1.7046) and GS#40 

Columbia grout (Isph = 1.674), which are relatively close in sphericity to each other. The 

three sands have similar average roundness indices.   

 A small triaxial apparatus described in (Hasan and Alshibli 2012; Druckrey and 

Alshibli 2014) was setup in beamline 13BMD of Advanced Photon Source (APS), 

Argonne National Laboratory (ANL), Illinois, USA. Ten axisymmetric triaxial 

compression experiments were conducted at various confining pressures as summarized 

in Table 6.1. Specimens were prepared in 4-5 lifts, lightly tamping each lift to densify 

before adding the next lift. A constant confining pressure was applied to the specimen   
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Table 6. 1.Properties of the tested specimens 

Material Exp. Initial 

void 

ratio (e) 

σ3 

 (kPa)  

 Dr
a
 

(%) 

Scan acquired at  

axial strains (%) 

Resolution 

( m/voxel) 

F-35 

Ottawa  

sand (F35) 

F35-15kPa 0.510 15 131 0.0, 1.0, 2.0, 3.5, 

5.0, 6.94, 8.9, 11.9, 

17.4, 22.3 

11.14 

F35-400kPa 0.531 400 120 0.0, 1.0, 2.0, 3.4, 

4.9, 6.9, 8.9, 11.8, 

17.2 

11.18 

#1 Dry 

glass sand 

(DG) 

DG-15kPa 0.637 15 134 0.0, 2.0, 3.5, 5.0, 

6.9, 8.9, 11.9, 17.4 

11.14 

 DG-400kPa 0.667 400 121 0.0, 1.0, 2.0, 3.5, 

5.0, 6.9, 8.9, 11.9, 

17.4 

11.18 

GS#40 

Columbia 

grout sand 

(GS40) 

GS40-15kPa 0.627 15 126 0.0, 1.0, 2.0, 3.5, 

5.0, 7.0, 9.0, 12.0, 

17.5 

11.14 

GS40-400kPa 0.644 400 120 0.0, 1.0, 1.9, 3.3, 

4.7, 6.7, 8.6, 11.4, 

14.7 

8.16 

Glass 

beads (GB) 

GB-15kPa 0.518 15 170 0.0, 1.0, 2.0, 3.6, 

5.1, 7.1, 9.2, 12.2 

11.14 

GB-400kPa 0.556 400 144 0.0, 1.0, 2.1, 3.7, 

5.2, 7.3, 9.4, 12.5, 

18.3 

11.18 

a
Dr = Relative Density = 

𝑒𝑚𝑎𝑥−𝑒

𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛
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and the test cell was mounted on the stage of the x-ray beam for SMT imaging. 

Experiments with 400 kPa confining pressure were conducted on F-35 sand (experiment 

F35-400kPa), glass beads (experiment GB-400kPa), GS#40 sand (experiment GS40-

400kPa), and dry glass sand (experiment DG-400kPa). Similarly, experiments with 15 

kPa confining pressure were conducted on F-35 sand (experiment F35-15kPa), glass 

beads (experiment GB-15kPa), GS#40 sand (experiment GS40-15kPa), and dry glass 

sand (experiment DG-15kPa).  

The advantages of SMT imaging are summarized in Druckrey et al. (2016). 

Multiple scans were acquired at increasing displacements, pausing the experiment to 

collect 900 radiograph images at 0.2° rotation increments for each scan, and radiographs 

were reconstructed to create 3D SMT images with resolutions listed in Table 6.1. 

Information on image collection and reconstruction can be found in (Rivers et al. 2010; 

Rivers 2012). Load and compression displacement data were also collected during each 

of the experiments. SMT images were acquired at increasing axial strains for each 

experiment listed in Table 6.1. Initial void ratios were calculated from the images based 

on the volumetric ratio of voids (within the membrane encasing the specimen) to total 

particle volume and are listed in Table 6.1, as well as the relative density (Dr) that was 

calculated from the specimen void ration, the maximum and minimum index densities for 

calculating Dr that were measured according to ASTM-D4253 and ASTM-D4254 

standard procedures, respectively. It is interesting to notice that specimens have Dr values 

higher than 100%. Lo Presti et al. (1992) reported similar observations.  
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Quantifying fabric and fabric evolution 

In order to quantify fabric, 3D SMT images were processed and data was 

extracted using the procedure described in Druckrey et al. (2016). Each loading step of all 

experiments was processed to individually label each particle. Labeled images were then 

processed using the code described in Druckrey et al. (2016), producing microstructural 

data of particle lengths (short, intermediate, and long axes), volume, surface area, 

orientation, coordination number, contact locations, contact normal vectors, and contact 

tangent vectors for each particle in the entire specimen. Specimens contained 25,000 to 

50,000 particles depending on the material and density. Failure via a well-defined shear 

band was observed in experiments F35-400kPa, GB-400kPa and GS40-400kPa by means 

of particle kinematics and visual inspection. Experiment DG-400kPa, as well as all 

experiments with 15 kPa confining pressure exhibited bulging failure. In order to 

additionally quantify fabric within and outside of the shear band (to differentiate from 

global fabric), shear bands in the 400 kPa experiments were identified during critical state 

and volume of interests (VOI) were extracted from locations within the shear band and 

outside of the shear band. An example of VOI locations within cross sectional grayscale 

and labeled images for experiment F35-400kPa at 11.8% axial strain are depicted in 

Figure 6.1, where VOI 1 contains particles outside of the shear band whereas VOI 2 

contains particles within the shear band. Particles within the VOI’s were tracked 

throughout the entire experiment for analysis of fabric on those specific particles. For 

experiment DG-400kpa that did not exhibit a single well-defined shear band, a VOI was   
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Figure 6.1. Grayscale and labeled slices through experiment F35-400kPa at 11.8% axial 

strain and depiction of VOI selection   

5 mm 
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chosen in the middle of the specimen at failure, where intersecting bands in an hourglass 

pattern was the cause of bulging, and another VOI was chosen outside of the shearing 

zone. VOI’s contain approximately 600 to 800 particles. 

Distribution of Contact Normal Vectors 

Contact normal vectors and their distribution have been extensively used in the 

literature for fabric quantification and were correlated to other parameters such as void 

vectors to quantify fabric. Transmission of force takes place through contacts and is 

commonly associated with stiffness and strength (Kuhn et al. 2015). Therefore, 3D unit 

contact normal vectors, quantified with x, y, and z components, were extracted from the 

SMT images and were used in fabric quantification. For visualization of the distribution 

of contact normal vectors, all contact normal vectors were projected onto the YZ plane (Z 

axis is the major principal stress direction) and plotted in 2D rose diagrams. The YZ 

plane is perpendicular to the critical state shear band such that the band is well defined in 

the YZ plane. As demonstrated in Druckrey et al. (2016), contact normal vector rose 

diagrams initially have a greater degree of anisotropy than branch vectors and exhibit a 

greater degree of evolution throughout triaxial compression experiments. Also, force 

transmission through contacts in granular materials, justifying contact normal-based 

fabric as a more desirable parameter to quantify fabric for micro-mechanics constitutive 

models.  
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Fabric tensor calculation 

Kanatani (1984) proposed a framework to quantify fabric tensors from any 

microstructural directional data, such as contact normal vectors. Fabric tensors of the first 

kind, also known as moment tensors, are conventionally used to define fabric in granular 

materials as (unweighted): 

𝑁𝑖𝑗 =
1

𝑁
∑ 𝑛𝑖1

𝛼 𝑛𝑖2

𝛼𝑁
𝛼=1 … 𝑛𝑖𝑟

𝛼     (6.1) 

where 𝑛𝑖
𝛼 is the 𝛼th contact normal vector, N is the number of contacts, and r is the order 

of the tensor. Moment tensors can be calculated to any even order r. The second kind of 

fabric tensor most closely approximates the microstructural distribution function, and 

higher orders of fabric tensor  𝐹𝑖1…𝑖𝑟
 better represents the orientation distribution 

function, defined as (Moesen et al. 2012):   

𝑓(𝑛)~
1

4𝜋
𝐹𝑖1…𝑖𝑟

𝑛𝑖1
… 𝑛𝑖𝑟

    (6.2) 

Explicit definitions for second and fourth order fabric tensors of the second kind are 

(Kanatani 1984): 

𝑭𝑖𝑗 =
15

2
(𝑁𝑖𝑗 −

1

3
𝛿𝑖𝑗)     (6.3) 

𝑭𝑖𝑗𝑘𝑙 =
315

8
(𝑁𝑖𝑗𝑘𝑙 −

2

3
𝛿(𝑖𝑗𝑁𝑘𝑙) +

1

21
𝛿(𝑖𝑗𝛿𝑘𝑙))   (6.4) 

where δ is the Kronecker delta. Fabric tensors of the second kind are adopted in this 

paper. 2
nd

 order fabric tensors are typically used to calculate and fabric in the literature, 

and all quantification of fabric in this paper will be executed using 2
nd

 order fabric 

tensors. Surface representations of 2
nd

 and 4
th

 order fabric tensors will be plotted in a later 

Section to display differences between the two.   
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Quantification of fabric tensors 

2
nd

 order fabric tensors (2
nd

 kind) are expressed in a 3×3 symmetric matrix that 

describes the internal anisotropy of the material and is decomposable into deviatoric and 

isotropic components. The deviatoric is the part of fabric that contributes to differences in 

material strength attributed to anisotropic fabric. The main constituents of micro-

mechanical interpretations of fabric are direction and magnitude, which can be 

incorporated into a macroscopic continuum mechanics description. Li and Dafalias 

(2011) considers the norm of tensor F (norm F ≥ 0) as a measure of the magnitude and 

the unit-norm deviatoric tensor-valued direction 𝐧𝐹 of F to describe the direction of 

fabric, where 

𝑭 = 𝐹𝒏𝐹, 𝐹 = √𝑭: 𝑭, 𝒏𝐹: 𝒏𝐹 = 1, 𝑡𝑟𝒏𝐹 = 0          (6.5) 

To incorporate the resistance of fabric against loading, Li and Dafalias (2011) included 

the unit-norm deviatoric tensor-valued loading direction n, where 𝐧: 𝐧 = 1 and tr𝐧 = 0. 

FAV A is calculated as: 

 𝐹𝐴𝑉 𝐴 = 𝑭: 𝒏 = 𝐹𝒏𝐹: 𝒏 = 𝐹𝑁     (6.6) 

F is normalized such that at critical state 𝐹𝑐 = 1, resulting in FAV A to approach 

𝐴𝑐 = 1. Normalized FAV A will hereafter be referred to as FAV A.  It accounts for both 

the orientation of fabric relative to loading direction as well as the magnitude of fabric 

and will be adopted in this paper to experimentally characterize fabric and its evolution.  
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Results 

Contact normal rose diagrams 

Full evolution of global contact normal vector distributions are represented in rose 

diagrams for 400 kPa specimens of F-35 sand (F35-400kPa) and glass beads (GB-

400kPa) at axial strains (εa) where SMT images were acquired are shown in Figures 6.2 

and 6.3, respectively. Experiment F35-400kPa (Figure 6.2) exhibited an initial 

preferential orientation (εa = 0.0%) of contact normal vectors towards the horizontal 

plane which is expected as particles lay along their long axis when they are deposited.  

Then, the global contact normal distribution evolved during early stages of loading (up to 

~εa = 4.9%) into a more vertical orientation to resist the applied axial load. Minimal 

changes in global contact normal orientation occur after εa = 6.9%. Experiment GB-

400kPa (Figure 6.3) has preferential contact orientation towards the horizontal and 

vertical directions. The spherical nature of the glass beads resulted in a more cubical 

packing of the particles, as manifested in the rose diagram of initial state. Although glass 

beads exhibit rather cubical packing (global contact normal vectors in the vertical and 

horizontal directions), the majority of contacts in the initial state slightly tend towards the 

horizontal direction rather than vertical. Glass beads used in this study are not completely 

spherical (see Alshibli et al. (2014)) and initial contact orientation preference indeed 

reflects it. Global contact normal orientation evolved to a more vertical preference until 

~εa = 9.4% and becomes relatively consistent afterwards and retain cubical-like packing.   
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Figure 6.2. Global contact normal distribution rose diagrams for full evolution of F35-

400kPa experiment   
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Figure 6.3. Global contact normal distribution rose diagrams for full evolution of t GB-

400kPa experiment   
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Contact normal vector distributions in VOI’s of experiments F35-400kPa and GB-

400kPa are depicted in Figures 6.4 and 6.5, respectively. The initial contact distribution 

within the VOI’s is similar to global distributions for both experiments. Throughout 

different compression strain stages, particle contacts outside of the shear band evolved 

similar to the global fabric; however, evolution towards the loading direction was less 

intense. In experiment F35-400kPa, contact normal vectors within the shear band evolved 

from horizontal preference to preferred orientation approximately perpendicular to the 

shear band, coinciding with formation of columnar structures within the band resisting 

global forces from particles above the shear band. Similar phenomenon was observed 

within the shear band of experiment GB-400kPa. Contacts evolved to prefer vertical 

orientation up to 9.4% axial strain with much less horizontal orientation preference than 

global or outside the shear band, and during critical state at εa = 18.3% orientations 

tended to align vertically as well as perpendicular to the shear band.  

Global contact normal vector distributions for 400 kPa experiments on #1 dry 

glass sand (DG-400kPa) and GS#40 (GS40-400kPa) sand are depicted in Figure 6.6. 

Some strain stages are not included in Figure 6.6 since no major fabric changes took 

place between some compression stages. Global contact normal distribution of DG-

400kPa specimen (Figure 6.6a) evolved from a horizontal to a vertical orientation until 

about ~εa = 6.9%, afterwards it became relatively constant. Similar trend was observed in 

GS40-400kPa  specimen (Figure 6.6b) which evolved to resist vertical load up to εa = 

6.9% and then became relatively constant distribution thereafter.  
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Figure 6.4. VOI contact normal distribution rose diagrams at various axial strains of 

experiment F35-400kPa for (a) Particles within the shear band; and (b) particles outside 

the shear band   
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Figure 6.5. VOI contact normal distribution rose diagrams at various axial strains of 

experiment GB-400kPa for (a) Particles within the shear band; and (b) particles outside 

the shear band   
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Figure 6.6. Global contact normal distribution rose diagrams at various axial strains for 

(a) DG-400kPa; and (b) GS40-400kPa experiments   
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Distributions of contact normal vectors within the VOI’s for DG-400kPa and 

GS40-400kPa experiments are shown in Figures 6.7 and 6.8, respectively. Particles 

within all VOI’s have similar initial contact distribution to the global trends, although 

slightly more disorganized (mainly due to the global fabric being an average of all 

particles’ contacts). Particles within the centralized shearing zone of DG-400kPa (the 

specimen that bulged) develop contact distribution with two preferential directions 

approximately 45° from the vertical, somewhat perpendicular to the intersecting shear 

bands that developed within the specimen which caused bulging. Particles within the VOI 

outside of the shearing zone develop contact orientation that evolves from initially more 

horizontal to more vertical preference with increasing strain. Experiment GS40-400kPa 

failed through a major shear band associated with smaller secondary shear bands 

intersecting it. A high concentration of contact normal vectors distributed relatively 

perpendicular to the orientation of the major shear band, with a smaller amount of contact 

normal vector preference in the direction perpendicular to the minor band that develops at 

εa = 6.7% (Figure 6.8). Very little change is observed in the VOI outside of the shear 

band for the same experiment.  

Global contact normal distributions for the 15 kPa specimens (prepared in same 

manner as 400 kPa specimens) are displayed in Figure 6.9 of initial state, two 

intermediate states, and at end of experiment. Distribution of global contact normal 

vectors in F35-15kPa  experiment (Figure 6.9a) was initially extremely anisotropic with 

preference of contact normal vectors toward the horizontal. Contact evolved towards the   
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Figure 6.7. VOI contact normal distribution rose diagrams at various axial strains of 

experiment DG-400kPa for (a) Particles within the shear band: and (b) particles outside 

the shear band 
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Figure 6.8. VOI contact normal distribution rose diagrams at various axial strains of 

experiment GS40-400kPa for (a) Particles within the shear band; and (b) particles outside 

the shear band  
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Figure 6.9. Global contact normal distribution rose diagrams at various strains for all 15 

kPa experiments   



 

251 

 

vertical loading direction until εa = 11.9%, where distribution remained relatively 

unchanged for the remainder of the experiment. Glass beads (Figure 6.9b, experiment 

GB-15kPa) initially exhibited evidence of cubic packing with preference of contact 

normal vectors toward horizontal. Throughout the experiment, contacts aligned more 

toward the vertical, retaining evidence of cubic packing. #1 dry glass sand (Figure 6.9c, 

experiment DG-15kPa) had initial contact distribution similar to the F-35 sand, but the 

contact normal distribution did not reach a steady state and continuously evolved toward 

the vertical throughout the entire experiment. Similar contact distribution evolution was 

observed in the GS40 sand (Figure 6.9d, experiment GS40-15kPa), where the contact 

normal distribution was continuously evolving towards the vertical. 

Influence of particle morphology on initial fabric  

F-35 Ottawa sand has the highest overall sphericity index value (least spherical) 

of all the granular materials considered in this paper, and among the 400 kPa experiments 

had the highest initial contact normal anisotropy. Contact normal vectors were distributed 

more in the horizontal plane than any other of the granular materials as evident in the rose 

diagrams. #1 dry glass and GS#40 sands had similar initial anisotropic contact normal 

distributions, but not to the extent of F-35 sand. Cubical-like packing of glass beads (the 

most spherical of the materials) resulted in contacts being distributed more evenly 

between the horizontal and vertical directions with a slight initial bias towards the 

horizontal direction. These trends are also evident in the initial contact normal rose 

diagrams of 15 kPa experiments. 
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Influence of confining pressure on initial fabric 

Experiments were prepared in the same manner before application of confining 

pressure. The influence of confining pressure on initial global fabric can be determined 

through investigating the initial contact normal distributions (Figures 6.2, 6.3, 6.6 and 

6.9, εa = 0.0%). All 15 kPa experiments have a more anisotropic fabric with preferential 

contact normal direction to the horizontal than the same granular material when confined 

with 400 kPa pressure. Application of a relatively higher confining pressure causes 

particle contact normal vectors to align into a more heterogeneous configuration to resist 

all-around loading. Application of a relatively large confining pressures (barring particle 

breakage) may induce an initially isotropic fabric of a granular material.  

2
nd

 and 4
th

 order fabric surface representations 

To illustrate the difference between 2
nd

 and 4
th

 order fabric tensors, recalling that 

4
th

 order tensors better represent material anisotropy, surface representations of fabric 

tensors for experiments F35-400kPa and GB-400kPa at various loading stages are shown 

in Figure 6.10. Shape of the surface representations depict the overall direction (and 

magnitude) of contact normal vectors, and would follow the shape of 3D rose diagrams. 

Surface representations of fabric tensors for both experiments show preferential 

alignment of fabric towards the horizontal and evolution towards the vertical (to resist the 

applied axial load), similar to the rose diagrams that were discussed earlier. 2
nd

 order 

tensor surface representations are limited to ellipsoidal shapes, and the 2
nd

 order tensors 

of F-35 sand (Figure 6.10a) begins elongated horizontally at the beginning of the   
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Figure 6.10. Evolution of 2nd and 4th order fabric tensor surface representations for (a) 

F35-400kPa experiment; and (b) GB-400kPa experiment   
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experiment and changes to more vertical orientation towards the end of the experiment. 

4
th

 order tensor surface representations for F-35 better capture 3D contact orientation 

anisotropy, especially for the initial fabric. The difference between orders is even more 

pronounced for the glass beads (Figure 6.10b), which initially have contact normal 

orientations tending towards cubic packing. Ellipsoidal representations cannot fully 

capture 3D contact orientations of cubical-type packing. Even though 4
th

 order tensors 

better capture fabric anisotropy, conventional 2
nd

 order fabric tensors are adopted for the 

remainder of this paper to coincide with the literature for use in current micromechanical 

models that incorporate fabric. 

Evolution of FAV A 

FAV A was calculated for each SMT image of all experiments listed in Table 6.1 

and for the VOI’s in the 400 kPa experiments, taking into account the unit-norm 

deviatoric tensor-valued loading direction n for triaxial compression. In order to compare 

with theoretical evolution of F and FAV A in (Li and Dafalias 2011), maximum FAV A 

for each experiment was normalized to unity (𝐴𝑐 = 𝐴𝑚𝑎𝑥 = 1). Normalizing FAV A 

scales the initial fabric and does not affect fabric evolution. Evolution of FAV A and 

principal stress ratio (PSR = σ1/σ3) versus axial strain for all 400 kPa experiments 

considered in this paper are shown in Figure 6.11. Initial FAV A for F35-400kPa 

experiment is 0.22 and steadily increased until εa = 6.9%, where it began to approach 

unity shortly after the peak PSR. Initial FAV A for GB-400kPa experiment is 0.63 and 

increased at a smaller rate than F-35 sand. FAV A for glass beads peaked at ~εa= 8%,   
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Figure 6.11. Evolution of PSR and global FAV A for 400 kPa experiments  
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which is about 4% after the peak PSR. In general, FAV A for specimens that were 

subjected to 400 kPa confining pressure peaked and remained relatively constant between 

5%-10% axial strain. FAV A closely follows observations from contact normal rose 

diagrams and fabric tensor surface representations. Fabric evolved (in terms of FAVA) to 

the most stable configuration possible in the experiment at approximately the same axial 

strains as contact normal distributions become relatively constant. 

Evolution of FAV A within the VOI’s (Figure 6.12) exhibited different behavior 

than the global behavior, which is a representation of all particles whether they are within 

the shearing zone or not. FAV A for particle contacts within shear band/zone VOI show a 

strong peak near or slightly after peak PSR, while particle contacts in the VOI outside of 

shearing zones produce FAV A evolution that gradually increases throughout the 

experiment. The continual increase of FAV A of particle contacts outside of shearing 

zones agrees with theoretical evolution found in the literature, where particle contacts 

gradually orient to resist global load. FAV A in the shear band of experiment F35-400kPa 

(Figure 6.12a) peaks during the post-peak PSR softening, whereas shear band particle 

contact FAV A in the other 400 kPa experiments peak at the peak PSR. After the failure 

shear band or at the onset of shear band, FAV A within the shear zones is not consistent, 

implying a larger level of contact creation and destruction in several directions. In 

experiment GB-400kPa (Figure 6.12b), an initial decrease of FAV A (inside and outside 

of shear band) is noticed during the first strain increment which is not observed in the 

global FAV A. Such decrease corresponds to the slight PSR change observed as a result   
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Figure 6.12. Evolution of PSR and VOI FAV A for 400 kPa experiments 
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of particle contacts rearrangment to a more stable state at low PSR before orienting to 

resist global load. The VOI chosen for particles outside of failure shear band is near the  

top end platen, where most initial activity occurs and small strain localizations develop 

near the center of the specimens in these experiments. Fabric evolves differently within 

and outside of the shear zones. Global fabric is a diluted combination of particles within 

the shear zone and outside the shear zone, masking many interesting localized changes. 

Specimens subjected to 15 kPa confining pressure did not exhibit peak PSR states 

(Figure 6.13). All experiments had an initial sharp increase in PSR followed by a slow 

steady increase of PSR for the remainder of the experiment. Fabric of experiment F35-

15kPa initially had FAV A of 0.27, increased to a local peak at εa = 5%, exhibited a slight 

decrease until εa = 7%, then increased to the maximum observed value at εa = 11.9%. 

Experiment GB-15kPa followed a similar trend, starting at an initial FAV A of 0.54 and 

had peaks at εa = 3.6 and εa = 9.2%. In general, fabric of DG-15kPa and GS40-15kPa 

experiments (initial FAV A of 0.25 and 0.23, respectively) followed a trend similar to the 

PSR curve, having an initially steep slope followed by more gradual continuous increase 

throughout the experiment. A sharp fabric peak is exhibited in experiment DG-15kPa at 

εa = 3.5%, but continued to follow the continually increasing trend afterwards. The 

observed peak is shortly after PSR slope changes when an intense area of strain 

localization initially formed in the specimen.  

Although FAV A alone does not provide significant insight into initial fabric, it 

does amply describe evolution of fabric throughout an experiment under a given   
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Figure 6.13. Evolution of PSR and global FAV A for 15 kPa experiments   



 

260 

 

conditions (i.e., confining pressure), especially if a maximum is reached and maintained 

for a reasonable amount of axial strain. Theoretical evolution of FAV A in (Li and 

Dafalias 2011) for triaxial compression approached unity near 100% shear strain (γ = ε1 - 

ε3) as a power function. This theoretical evolution agrees with experimental evolution of 

FAV A for fabric outside the shearing zones, and somewhat agrees for global FAV A of 

specimens that were subject to 15 kPa confining pressure, especially for #1 dry glass sand 

(experiment DG-15kPa without the anomalous peak at εa = 3.9%) and GS#40 

(experiment GS40-15kPa) specimens. The PSR of these two specimens is also 

continuously increasing throughout the experiment duration and global FAV A is a 

reflection of the PSR. 15 kPa experiments on the F-35 sand (F35-15kPa) and glass beads 

(GB-15kPa) exhibit a local minimum of FAV A in the experiment and a decrease in FAV 

A near the end of the experiment with no apparent strength variations. Lower confining 

pressure could result in less stability of the fabric, allowing for particles to rearrange 

more freely. FAV A enhances features of fabric that may not be discernable from visual 

inspection of contact normal orientation rose diagrams. 

Global fabric (as described by FAV A) of the 400 kPa experiments tend to be 

much more stable. For all experiments, fabric evolved to a peak shortly after peak PSR 

and maintained somewhat uniform fabric for the remainder of the experiments. During 

strain hardening and peak stages of triaxial experiments on granular materials with 400 

kPa confining pressure, particles throughout the specimen stabilize and allow the onset of 

a single shear band or multiple shear bands. After the development of a dominant shear 



 

261 

 

band or several shear bands, particle and contact arrangement is generally localized 

within the shear band(s). Zones of shearing (shear bands) within the specimen contain a 

small percentage of particles to not reflect in the overall contact normal distribution, 

therefore global rose diagrams and FAV A stabilize (as depicted in Figures 6.2-3, 6.6, and 

12). The same cannot be deduced when analyzing particles solely within or outside of the 

shear band. A continual increase of fabric to resist loading is observed in particles outside 

the shear band, while fabric of particles with the shear band peak (near peak PSR or 

during softening), decreases, and becomes relatively unstable at critical state.  

Of the 400 kPa experiments, F-35 sand exhibited the most intense initial increase 

of global FAV A and reached maximum at the lowest axial strain, while glass beads had 

the most gradual increase of global FAV A to a maximum value. Global fabric of #1 dry 

glass and GS#40 sands evolved at an intermediate rate, implying that particle sphericity 

affects the initial fabric and influences fabric evolution. Global fabric of glass beads had 

the least degree of fabric evolution when considering the difference between maximum 

(1) and minimum values of global FAV A. F-35 had the largest degree of fabric change 

among the 400 kPa specimens. Definitive conclusions on degree of fabric change cannot 

be formed for 15 kPa specimens because fabric for some of the experiments was still 

evolving upon termination of the experiments.   

Initial FAV A values may not be an ideal indicator of initial fabric anisotropy as 

they are normalized, a variable of loading direction, and dependent on the intensity of 

fabric evolution. However, for the 400 kPa experiments, where global FAV A has a 
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definitive peak and steady-state, initial FAV A values coincide with particle sphericity. 

Glass beads have the highest initial FAV A and are the most spherical. F-35 sand has the 

lowest initial FAV A and is the least spherical, while dry glass and GS#40 sands have 

approximately equivalent sphericity and initial FAV A (Figure 6.11). 

Fabric of granular material can be calculated from any quantifiable 

microstructural measurements, and contact normal vector based fabric is discussed 

extensively in the literature. Conventional 2
nd

 order fabric tensors may not fully capture 

the full anisotropy of a granular material, whereas 4
th

 order tensors capture more details 

of material anisotropy. Many factors influence granular material fabric and fabric 

evolution, which contribute to strength and volume change properties. Experimental data 

reported in this paper can be used to develop fabric evolution laws that can be 

incorporated in anisotropic material models. 

Conclusions 

A series of triaxial compression experiments were conducted on four different 

granular materials while acquiring in-situ SMT imaging. Experiments were conducted at 

two confining pressures and paused to acquire SMT images at multiple axial strains. 

Images were processed and analyze to quantify microstructural variables such as contact 

normal vectors. Contact normal vector distributions were analyzed and fabric tensors 

were calculated for each strain state of each experiment, and initial fabric and fabric 

evolution was analyzed for global contacts, contacts of shear zone particles, and contacts 
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of particles outside of shear zones. Based on the experimental contact normal distribution 

and fabric evolution, the following conclusions are drawn: 

1. 4
th

 order fabric tensors are more accurate to quantify material anisotropy than 

conventional 2
nd

 order tensors found in the literature. Incorporating 4
th

 order 

tensors in micromechanical models would provide more accurate fabric insight. 

2. For preparation methods used in this study, particle contact normal vectors have 

an initial bias towards the horizontal and globally evolve to resist the vertical 

applied stress. 

3. Particle sphericity has a major influence on the initial fabric of granular material 

and the evolution of fabric. Less spherical materials produce a more anisotropic 

material and a larger work is required to evolve global fabric to a steady-state 

during shearing.  

4. A higher confining pressure forces an initial arrangement of particle contact 

normal vectors into a more isotropic state. 

5. Global fabric evolution, in terms of FAV A, is dependent on confining pressure. 

At 400 kPa confining pressure, fabric evolves to a constant state shortly after peak 

PSR is reached. At 15 kPa confining pressure, fabric continues to evolve as PSR 

increases. 

6. Global fabric (not fabric solely within the shear band) reaches a steady-state 

shortly after PSR reaches a critical state. 
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7. Fabric of particles within shearing zones evolve much differently than fabric of 

particles outside of shearing zones. Contacts within the shearing zone orient 

themselves relatively perpendicular to shear bands (coinciding with columnar 

structure formation within band), while particles outside of the shear band 

continually orient towards the vertical loading direction. Global fabric is a 

combination of the two, which masks interesting localized fabric features. 
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CHAPTER 7 

APPLICATION OF ANISOTROPIC CRITICAL STATE THEORY 

USING EXPERIMENTAL FABRIC EVOLUTION IN SAND 

TRIAXIAL COMPRESSION 

  



 

271 

 

A version of this chapter is in preparation for submittal to a technical journal. The 

author list is: A. Druckrey, K. Alshibli.  

My primary contributions to this paper are (i) formulating objectives and 

evaluating current research in the area, (ii) conducting most experiments during in-situ 

SMT imaging (iii) incorporating fabric tensors obtained from Chapter 6 into the 

Anisotropic Critical State Theory model, (iv) analysis of influences on model behavior 

and comparison with experiments, (v) most of the writing.  

Abstract 

The concept of critical state soil mechanics has been adopted and implemented 

into many successful models without full understanding of material micro-mechanics. 

Some granular materials may not always approach a single critical state state depending 

on gradation, morphology, and applied stresses. Material fabric plays a major role in 

influencing the constitutive behavior of granular materials. Fabric evolution based on 

theoretical, numerical, and rudimentary experimental techniques has been successfully 

integrated into several models. However, a limited published research that utilizes a  

comprehensive 3D experimental quantification of evolution of fabric has been reported 

for granular material. This paper assesses the accuracy of the anisotropic critical state 

theory (ACST) model which incorporates fabric evolution using 3D experimental 

measurements of fabric evolution of dry axisymmetric triaxial compression experiments 

where fabric was quantified using synchrotron micro-computed tomography (SMT) and 

image processing techniques. Also, multivariable statistical models (using particle-scale 
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input determined from imaging) are proposed to estimate the critical state parameters. 

The ACST model was calibrated using a single experiment and was extended to predict 

the behavior of granular materials during axisymmetric triaxial compression at various 

initial mean stresses and densities with good accuracy.  

Introduction 

Critical state, also known as steady-state, is an important and widely used concept 

in soil mechanics and is considered to be the state where stress and void ratio approach a 

constant with increasing shear strain (Wood 1991). The concept of critical state has been 

successfully implemented into many soil constitutive models models without a 

comprehensive understanding of the contributing micro-mechanics properties (e.g. 

Bolton 1986; Gens and Potts 1988; Kurtay and Reece 1970; Roscoe et al. 1958). For 

granular materials, the concept of critical state based on a steady state void ratio has been 

difficult to implement because of non-unique void ratio at the critical state at varying 

densities and confining pressures (Been et al. 1991; Mooney et al. 1998; Riemer and Seed 

1997; Verdugo and Ishihara 1996). Thus, other micro-properties such as particle 

interactions and kinematics, boundary conditions, and fabric anisotropy may contribute to 

the non-uniqueness of the critical state void ratio in granular materials. Isolating and 

experimentally measuring individual micro-mechanical properties of granular material 

and subsequent evolution that has been the subject of extensive research in recent years.  

Fabric of granular material is defined as the geometrical arrangement of particles, 

particle groups and associated pore space. Fabric has been found to greatly influence 
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constitutive behavior of granular material (Lam and Tatsuoka 1988; Li and Yu 2009; Li 

and Yu 2014; Oda 1972; Oda et al. 1985; Yimsiri and Soga 2001; Yimsiri and Soga 

2010). For example, Oda (1972) used various sands, preparation methods, and 2D thin 

section microscopy and found that initial fabric anisotropy is a direct result of particle 

shape and sample preparation technique where differences in initial fabric greatly 

influenced mechanical properties, and specimens with contact normal vectors preferential 

orientation toward the direction of loading have a more stable fabric. Li and Zeng (2014) 

used experimental bender element techniques and found that fabric anisotropy is affected 

by sand morphology and density, and fabric affects the shear modulus of the material. 

Furthermore, Yimsiri and Soga (2010) used discrete element modeling (DEM) to 

demonstrate that the initial fabric has profound influence on stiffness, strength, and 

dilation properties of granular materials. Although the importance of initial fabric and 

fabric evolution resulting from particle deposition, morphology, and applied loadings is 

well documented in the literature, they remain difficult to be accurately quantified and 

model experimentally in 3D.  

Fabric is typically quantified using tensors, and any micro-scale directional data 

of granular material can be used to represent fabric. Many researchers have defined fabric 

using a variety of particle scale features. Fonseca et al. (2013) terminated triaxial 

experiments at different axial strain levels during shearing and impregnated the 

specimens with epoxy resin. Cores were then extracted from several locations within the 

specimens and CT scans were acquired to quantify and compare microstructural data 
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using rose diagrams and an eigenvalue analysis of fabric tensors, as well as analyzed 

evolution of fabric in the specimens. Li et al. (2009) developed a new anisotropic fabric 

tensor based on void cell anisotropy that was correlated with the macro behavior of 

granular material via numerical simulations and concluded that it is a more effective 

definition than those based on particle orientations or contact normal. Few researchers 

have found a strong correlation between fabric tensors based on contact normal vectors 

and void space vectors (Fu and Dafalias 2015; Theocharis et al. 2014); however, contact 

normal tensors have had the disadvantage of being difficult to accurately quantify 

experimentally (Theocharis et al. 2014). Forces transmit through a mass of granular 

material via contact normals and force chains (e.g. Oda et al. 2004; Peña et al. 2009; 

Peters et al. 2005; Tordesillas and Muthuswamy 2009), and accurate experimental 

measurements of contact normal tensors would prove valuable for micro-mechanics 

constitutive models. Experimental contact normal tensors inherently incorporate other 

particle-scale properties if accurate characterization of contact in 3D space is quantified.  

Several researchers have incorporated initial fabric and fabric evolution into 

constitutive modeling of granular material. For example, Nemat-Nasser (2000) developed 

a robust micromechanics-based constitutive model that accounts for pressure sensitivity, 

friction, dilatancy, and, most importantly, fabric and fabric evolution. Model parameters 

were estimated in (Nemat-Nasser and Zhang 2002) based on results of cyclic shearing 

experiments and then were used to predict other experimental results with a good 

accuracy. However, most constitutive models that incorporate fabric evolution are based 
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on fabric properties obtained from theories, discrete element method, or rudimentary 

experiments. Experimental evolution of fabric in 3D has only recently began to emerge as 

new techniques  such as x-ray computed tomography (CT) and synchrotron micro-

computed tomography (SMT) were developed to quantify micro-scale properties of 

granular materials. This paper utilizes SMT imaging of axisymmetric triaxial 

compression experiments on dry sand specimens to quantify fabric evolution. Fabric 

evolution obtained from the experiments is used in the anisotropic critical state theory 

(ACST) to model the strength and deformation behavior of granular materials at various 

densities and initial mean stresses. Also, empirical multivariable statistical models that 

incorporate micro-scale particle parameters are developed and used for estimating the 

critical state parameters in the model.  

Model Description 

Li and Dafalias (2000) proposed a critical state soil mechanics model for granular 

materials that incorporated state dependent dilatancy to describe the internal state of the 

material. The state parameter was defined as the difference between the current void ratio 

and the critical state void ratio was shown to be an effective parameter to measure how 

far the material state is from the critical state. The model was modified by Li and 

Dafalias (2002) to include the influence of the initial fabric anisotropy of the material. 

Then, Li and Dafalias (2011) incorporated fabric evolution into the model of Li and 

Dafalias (2000) through the fabric anisotropy variable A (FAV A), which is a tensorial 

product of the normalized fabric tensor F (normalized such that at critical state 𝐹𝑐 =
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√𝐅: 𝐅 = 1) and the unit-norm deviatoric tensor-valued loading direction n. F is 

decomposable into magnitude F and unit-norm deviatoric tensor-valued direction 𝐧𝐹 as:  

𝑭 = 𝐹𝒏𝐹, 𝐹 = √𝑭: 𝑭, 𝒏𝐹: 𝒏𝐹 = 1, 𝑡𝑟𝒏𝐹 = 0    (7.1) 

To incorporate the resistance of fabric against loading, Li and Dafalias (2011) included 

the unit-norm deviatoric tensor-valued loading direction n, where 𝐧: 𝐧 = 1 and tr𝐧 = 0. 

FAV A is calculated as: 

 𝐹𝐴𝑉 𝐴 = 𝑭: 𝒏 = 𝐹𝒏𝐹: 𝒏 = 𝐹𝑁        (7.2) 

 and FAV A accounts for fabric direction and magnitude relative to loading direction for 

all possible loading combinations.  

The dilatancy state parameter (DSL, ζ) in Li and Dafalias (2011) replaces the state 

parameter originally proposed by Li and Dafalias (2000) and proposed an expression for 

fabric as: 

휁 = 𝜓 − 𝜓𝐴 = 𝑒 − �̂�𝑐(𝑝) − �̂�𝐴(𝑒, 𝑝)(𝐹𝐴𝑉 𝐴 − 1)    (7.3) 

where 𝑒 is the current void ratio, �̂�𝑐(𝑝) is an expression for the critical state line (CSL) as 

a function of the means stress 𝑝, and �̂�𝐴(𝑒, 𝑝) assumed to be 𝑒𝐴, a constant independent of 

e and p, which is obtained from a parallel translation of the CSL by an amount equal to  

𝑒𝐴(𝐹𝐴𝑉 𝐴 − 1). The CSL is defined  (Li and Wang 1998):  

�̂�𝑐(𝑝) = 𝑒𝛤 − 𝜆𝑐(
𝑝

𝑝𝑎
)𝜉     (7.4) 

where 𝑒𝛤 and 𝜆𝑐 are material parameters, 𝜉 is a material constant and 𝑝𝑎 is atmospheric 

pressure. The remaining model equations from Li and Dafalias (2011) are as follows for 

triaxial loading; elastic strain rates: 
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   휀�̇�
𝑒 =

�̇�

3𝐺
  and  휀�̇�

𝑒 =
�̇�

𝐾
             (7.5)  

with the elastic shear (G) and bulk (K) moduli as: 

 𝐺 = 𝐺0
(2.97−𝑒)2

1+𝑒
√𝑝𝑝𝐴  and  𝐾 = 𝐺

2(1+𝜈)

3(1−2𝜈)
      (7.6) 

where 𝐺0 is a material constant and 𝜈 is Poisson ratio. The plastic strain rates are: 

휀�̇�
𝑝 =

𝑝

𝐾𝑝
휂̇  and  휀�̇�

𝑝 = 𝐷휀�̇�
𝑝
      (7.7) 

where 휂̇ =
�̇�

�̇�⁄  , 𝐷 , and 𝐾𝑝 are determined by: 

𝐷 = 𝑑(𝑀𝑐𝑒𝑚𝜁 − 휂) and 𝐾𝑝 = ℎ(𝑀𝑐𝑒−𝑛𝜁 − 휂)     (7.8) 

where parameters m and n can be determined at the phase transformation state (D = 0) 

and drained peak stress state (Kp = 0), respectively. The coefficients 𝑑 and ℎ were 

assumed to be: 

𝑑 =
𝑑0

𝑀𝑐
  and ℎ =

𝐺[ℎ1(1+𝐹𝐴𝑉 𝐴)+ℎ2(1−𝐹𝐴𝑉 𝐴)]

𝜂
   (7.9) 

with 𝑑0, ℎ1, and ℎ2 as model constants and 𝑀𝑐 is the critical stress ratio for triaxial 

compression. Theoretical evolution of the fabric was proposed by Li and Dafalias (2011) 

as: 

�̇� = 𝑐(±1 − 𝐹)|휀�̇�
𝑝|     or 𝐹 = ±1 ∓ (1 ∓ 𝐹𝑖𝑛)𝑒−𝑐|𝜀𝑞

𝑝
|
   (7.10) 

where c is taken as a constant and 𝐹𝑖𝑛 is the initial value of F. Li and Dafalias fabric and 

its evolution were used without 3D experimental verification. In this paper, theoretical 

fabric evolution is replaced with fabric evolution calculated from 3D experimental 

measurements. 
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Experimental Measurement of Fabric 

Synchrotron Micro-Computed Tomography 

To experimentally quantify fabric, a small triaxial apparatus described in 

(Druckrey and Alshibli 2014; Hasan and Alshibli 2012) was setup in beamline 13BMD 

of Advanced Photon Source (APS), Argonne National Laboratory (ANL), Illinois, USA. 

Drained axisymmetric triaxial compression experiments were conducted on dry dense 

specimens of angular F35 Ottawa sand and glass beads with initial mean stress  (𝑝′0) of 

400 kPa. Specimens were prepared in 4-5 lifts, lightly tamping each lift to densify before 

adding the next lift. Multiple scans were acquired for both experiments at increasing 

displacements, pausing the experiment to collect 900 radiograph images at 0.2° rotation 

increments for each scan, and radiographs were reconstructed to create 3D (SMT) images 

with resolution of 11.18 μm/voxel. Both experiments exhibited a single shear band at 

failure, and the stress ratio versus axial strain of the two experiments is shown in Figure 

7.1. SMT imaging produces high resolution images with high clarity, and advantages of 

SMT imaging over conventional x-ray (CT) can be found in Druckrey et al. (2016).  

3D SMT images were processed and data was extracted using the procedure 

described in Druckrey et al. (2016). Each loading step of all experiments was processed 

to individually label each particle. Labeled images were then processed using the code 

described in Druckrey et al. (2016), producing microstructural data of particle lengths 

(short, intermediate, and long axes), volume, surface area, orientation, coordination 

number, contact locations, contact normal vectors (CNV), and contact tangent vectors for   
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Figure 7.1. Stress ratio versus axial strain for experiments with in-situ SMT images   
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each particle in the entire specimen. In granular material, transmission of force takes 

place through particle contacts and is commonly associated with stiffness and strength 

(Kuhn et al. 2015). Also, CNV fabric has been found to correlate well with void vector 

fabric (a quasi-measure of deformation) (Fu and Dafalias 2015; Theocharis et al. 2014). 

Therefore, CNVs were used to quantify fabric in this paper. CNVs were quantified 

globally (all CNVs within specimen) as well as CNVs in a volume of interest (VOI) 

within the final shear band as well as a VOI outside the final shear band. CNVs in the 

VOIs were quantified by identifying the shear band at critical state, extracting particle 

contact information, and tracking those particles’ contacts through decreasing strains. For 

visualization of the distribution of contact normal vectors, CNVs were projected onto the 

YZ plane (Z axis is the vertical or major principal stress direction) and plotted in 2D rose 

diagrams. Distribution of CNVs for the F35 sand is shown in Figure 7.2 at various strains 

for the VOI within the shear band as well as the global CNV network. CNVs demonstrate 

initial anisotropy with preference to the horizontal direction (direction of minor principal 

stress). Upon loading, they evolve to resist the vertical loading direction and near the 

peak deviator stress have preferential orientation towards the vertical. During softening 

and critical state, CNVs show some preference of orientation perpendicular to the shear 

band, which is evident in the distribution of CNVs of particles within the final shear band 

(Figure 7.2a).  
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Figure 7.2. Rose diagrams of contact normal distribution for F35 sand at various axial 

strains   
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Fabric Quantification 

Kanatani (1984) proposed a framework to quantify fabric tensors from any 

microstructural directional data, such as contact normal vectors. Fabric tensors of the first 

kind, also known as moment tensors, are conventionally used to define fabric in granular 

materials as (unweighted): 

𝑁𝑖𝑗 =
1

𝑁
∑ 𝑛𝑖1

𝛼 𝑛𝑖2

𝛼𝑁
𝛼=1 … 𝑛𝑖𝑟

𝛼     (11) 

where 𝑛𝑖
𝛼 is the 𝛼th contact normal vector, N is the number of contacts, and r is the order 

of the tensor. Moment tensors can be calculated to any even order r. The second kind of 

fabric tensor most closely approximates the microstructural distribution function, and 

higher orders of fabric tensor  𝐹𝑖1…𝑖𝑟
 better represents the orientation distribution 

function, defined as (Moesen et al. 2012):   

𝑓(𝑛)~
1

4𝜋
𝐹𝑖1…𝑖𝑟

𝑛𝑖1
… 𝑛𝑖𝑟

    (7.12) 

Explicit definitions for second order fabric tensors of the second kind are (Kanatani 

1984): 

𝑭𝑖𝑗 =
15

2
(𝑁𝑖𝑗 −

1

3
𝛿𝑖𝑗)     (7.13) 

where δ is the Kronecker delta. Fabric tensors of the second kind are adopted in this 

paper. 2
nd

 order fabric tensors are typically used in the literature to quantify fabric.  

FAV A was quantified based on the fabric tensors at discrete strains throughout 

the experiments for all CNVs and CNVs in VOIs within and outside of the final shear 

band, all normalized such that maximum FAV A for each experiment was normalized to 

unity (𝐴𝑐 = 𝐴𝑚𝑎𝑥 = 1). Normalizing FAV A scales the initial fabric and does not affect 
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fabric evolution, and FAV A for the triaxial experiment on F35 sand is presented in 

Figure 7.3a. Global fabric (in terms of FAV A) grew steadily until nearly reaching 1 at 

approximately 휀𝑎 =0.05, mirroring CNV evolution from horizontal preferential 

alignment to a preferential alignment towards the vertical loading direction during strain 

hardening. Fabric within the band evolved similarly to global evolution at early strains. 

However, during softening, a decrease in FAV A was observed until leveling at the 

critical state. This corresponds with CNV orientation shifting from initial horizontal bias 

to a preference towards the vertical loading direction at peak stress state. During 

softening, the final shear band develops and CNVs demonstrate some preferential 

alignment towards normal to the shear band rather than the vertical loading direction. 

FAV A of particles outside the shear band demonstrates a milder incline, most similar to 

theoretical evolution. Fabric is thus quantified at each strain point where an SMT image 

was acquired. In order to quantify a continuous evolution of FAV A with strain, two-term 

Fourier models were fit to each of the data sets to capture local maxima and minima 

within the evolution (Figure 7.3b). Cutoff strain values in the Fourier models (strain to 

which no more variation occurs) were determined to be where evolution of experimental 

FAV A became relatively constant. Theoretical evolution of FAV A based on eq. 7.10 

with 𝐹𝑖𝑛 = 0.4 and c = 5.7 is also presented in Figure 7.3b (constants were chosen to 

demonstrate differences in fabric evolution between Li and Dafalias (2011) and the 

current work). Evolution of FAV A for glass beads is presented in Figure 7.3c. The initial 

fabric of glass beads is larger than F35 sand, and band FAV A peaks and then decreases   
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Figure 7.3. Experimental evolution of FAV A and two-term Fourier series fits to 

experimental fabric  
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to a steady state close to the initial value (𝐹𝑖𝑛). Global evolution of glass beads FAV A is 

similar to that of global F35 sand. Experimental fabric evolves faster than the theoretical, 

which was assumed to reach 1 at very late strains. Theoretical fabric can be modified to 

closer match experimental by increasing the constant c, but cannot capture any decreases 

in fabric (such as fabric of CNVs within the shear band).  

Critical State Model Parameters  

This particular model is relatively sensitive to critical state inputs, and many 

experiments have shown that on the same sand, at different initial void ratios, initial mean 

stresses, and testing conditions, do not converge to a single critical state void ratio or 

critical state friction angle (e.g. Been et al. 1991; Ferreira and Bica 2006; Konrad 1990; 

Riemer and Seed 1997; Riemer et al. 1990; Shipton and Coop 2015). Similar 

observations were observed during drained triaxial experiments on dry F35 sand and 

glass beads used in this research, which are poorly graded and uniform (particle sizes 

between 0.3 mm to 0.425 mm, mean particle size, d50 = 0.36). Table 7.1 shows a 

summary of test initial conditions for F35 sand. Loose, medium dense, and dense 

experiments were subjected to initial mean stresses (p0’) of 15 kPa, 50 kPa, 100 kPa, and 

400 kPa. Stress ratio (q/p’) and void ratio (e) versus axial strain for these experiments are 

depcited in Figure 7.4. From the experiments, it is evident that the critical stress ratio (Mc 

= (q/p’)cs) used in eq. 8 and the critical void ratio (eq. 7.4) are variable with varying 

initial mean stress and initial void ratio. To estimate these parameters, empirical  
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Table 7.1. Summary of drained triaxial experimental conditions on dry F35 Ottawa sand 

Experiment 

Initial mean 

stress, p0’ 

(kPa) 

Initial void ratio 

(e0) 

L15 15 0.735 

L50 50 0.731 

L100 100 0.726 

L400 400 0.738 

MD15 15 0.617 

MD50 50 0.612 

MD100 100 0.611 

MD400 400 0.615 

D15 15 0.491 

D50 50 0.496 

D100 100 0.498 

D400 400 0.491 

 

 

 

 

Figure 7.4. Results of drained axisymmetric experimental at various densities and initial 

mean stresses for F35 sand   
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statistical models were developed using several granular material of varying morphology 

and size similar to those used in this research and are presented in the next Section.  

Critical State Line 

Void ratio and mean effective stress at critical state were determined from drained 

traixial experiments and data points were plotted in the e – (p’/pa)
α
 plane following (Li 

and Wang 1998), where pa is atmospheric pressure and α = 0.7. Figure 7.5 shows results 

of F35 sand for each density state, indicating a nearly parallel shift in the critical state 

void ratio with density. The location of the best fit line crossing the y-axis corresponds to 

𝑒𝛤 in eq. 7.4. A total of 48 experiments were performed on four granular material (F35 

sand, GS#40 sand, #1 Dry Glass sand, and glass beads) with varying morphologies and 

surface roughness (sphericity Isph, roundness IR, and surface roughness Rq) determined 

from Alshibli et al. (2014), each producing unique critical state void ratios. Each density 

state for each sand yielded unique 𝑒𝛤, and the results of relative density (Dr) versus 𝑒𝛤 for 

all experiments are shown in Figure 7.6. 𝑒𝛤 varies with density, and it is apparent that it 

varies with other material parameters. 

To estimate 𝑒𝛤 for poorly graded granular materials, a generalized multivariable 

linear regression model with predictors of Isph, IR, Rq, and Dr was constructed using 

values of each resulting 𝑒𝛤. The objective of this empirical model is to estimate 𝑒𝛤 of 

similarly graded granular materials with known Isph, IR, Rq, and Dr. The model took the 

form of: 

𝑓(𝑏, 𝑥) = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 +  𝑏𝑛+1   (7.14) 
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Figure 7.5. Results of e – (p’/pa)
α
 for F35 sand at each density state demonstrating a 

nearly parallel shift in critical state void ratio with density (α = 0.7) 

 

Figure 7.6. Experimental results of 𝑒𝛤 versus Dr of four granular materials, demonstrating 

the effect of density and other variables on 𝑒𝛤 
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where 𝑓(𝑏, 𝑥) is 𝑒𝛤, 𝑏 is an estimate for each of the 𝑛 = 4 coefficients for each predictor 

value 𝑥 and an additional statistical constant (𝑏𝑛+1) was added for better statistical 

regression. The statistical constant has no physical meaning and is determined solely 

from the multiple regression. A summary of the coefficients, their standard error (SE), 

and p-values are listed in Table 7.2. Negative coefficients are a result of negative 

correlation of that predictor with 𝑒𝛤. The coefficient of determination of the model is 

0.98, indicating a good statistical correlation.  

Critical State Stress Ratio 

For critical stress ratio, a multivariable model similar to eq. 7.4 was constructed to 

predict 𝑓(𝑏, 𝑥) = critical state friction angle 𝜑𝑐𝑠, where 𝑀𝑐 =
6 sin 𝜑𝑐𝑠

3− sin 𝜑𝑐𝑠
. An additional 

predictor, normalized mean stress (p0’/pa), was added to incorporate the effect of initial 

mean stress (note from Table 7.1 and Figure 7.4a that initial mean stress resulted in 

variation of Mc). Results from Toyora and Huston sands are also included in the critical 

stress ratio model, and a summary of the model is presented in Table 7.3 (n = 5 

predictors). The coefficient of determination of the critical state friction angle model is 

0.92. Results of experiments versus model predictions for 𝑒𝛤 and 𝜑𝑐𝑠 are shown in Figure 

7.7, along with a 1:1 fit line. Predictions from the empirical statistical models will be 

input into the anisotropic critical state theory model for generalized behavior prediction 

of the granular materials and are presented in the next Section.   
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Table 7.2. Results of multivariable statistical model for 𝑒𝛤 

Predictor Coefficient (b) SE p Value 

Isph -1.517 0.289 <0.001 

IR 0.419 0.382 0.279 

Rq 0.641 0.044 <0.001 

Dr -0.100 0.003 <0.001 

Statistical Constant 1.856 0.005 <0.001 

 

 

Table 7.3. Results of multivariable statistical model for critical state friction angle φcs 

Predictor Coefficient (b) SE p Value 

Isph 5.805 2.968 0.055 

IR -88.322 8.765 <0.001 

Rq 0.787 1.321 0.553 

Normalized p0’ -0.793 0.113 <0.001 

Dr 0.030 0.003 <0.001 

Statistical Constant 105.12 7.878 <0.001 

 

 

 

 
 

Figure 7.7. Experimental critical state parameters versus statistical model predictions   
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Model Results 

The model was calibrated for F35 sand and glass beads using the experiments in 

which SMT images were acquired and fabric was quantified (Figs. 1 and 3), and model 

constants are shown in Table 7.4. Model results of the F35 triaxial experiment using 

global, shear band, and theoretical fabric evolution are shown in Figure 7.8. Axial strain 

versus deviatoric stress and volume change are presented, as well as void ratio versus 

deviatoric stress. Critical stress ratio used in the model predictions presented in Figure 

7.8 was determined directly from the experiment, while the remaining critical state 

parameters were estimated using the proposed empirical statistical model. Model 

predictions are much more accurate using experimental fabric rather than theoretical 

fabric. Strength and deformation behavior of the sand predicted by the model is nearly 

identical to the experiment when experimental fabric is used. Experimental global fabric 

results result in slightly more accurate prediction of deformation behavior, while shear 

band fabric results in slightly more accurate strength behavior prediction.  

Model predictions for experiments described in Table 7.1 and Figure 7.4 are 

presented in Figure 7.9 using model constants from Table 7.4. Critical state parameters 

were obtained from the statistical models presented earlier, and the only two remaining 

inputs are the initial void ratio and p0’. Global fabric evolution of F35 sand (Figure 7.3) 

was used for dense and medium dense cases (Figure 7.9a and b), while fabric of particles 

not within the shear band produced the best results for loose cases (Figure 7.9c). Slight 

deviations in peak deviatoric stress were observed between experiments and the model   
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Table 7.4. Model constants for F35 sand and glass beads 

Material Elastic parameters 
Dilatancy 

parameters 

Hardening 

parameters 

F35 Sand 

G0 = 125 d0 = 1.8 h1 = 0.35 

𝜈 = 0.05 m = 2 h2 = 0.2 

  
n = 3 

Glass Beads 

G0 = 125 d0 = 1.8 h1 = 0.4 

𝜈 = 0.05 m = 3 h2 = 0.2 

  
n = 3 
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Figure 7.8. Results of ACST model using experimental fabric and theoretical fabric for 

F35 sand   
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Figure 7.9. ACST Strength and void ratio prediction of F35 sand at various initial mean 

stress and void ratio using experimentally-estimated fabric evolution   
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for dense and medium dense cases at p0’ = 100 kPa and p0’ = 400 kPa. This deviation 

may be attributed to differences in fabric evolution of these experiments compared to 

experimental fabric determined in Figure 7.3. Currently there are no available in-situ 

methods to quantify fabric evolution in large scale specimens (without destruction of the 

specimen). 

To test the validity of the model on more spherical granular material, 

conventional drained triaxial experiments were conducted on glass beads with various 

initial void ratios and p0’ = 100 kPa (Figure 7.10). Global experimental fabric was 

implemented into the model, critical state model parameters were obtained using the 

statistical models presented earlier, and remaining model constants for glass beads from 

Table 7.4 are used. Model predictions of deviatoric stress versus axial strain and void 

ratio are also presented in Figure 10. Model predictions are extremely accurate for the 

dense and medium dense cases (omitting stick-slip responses observed in experiments). 

Model results are more accurate for spherical material because fabric evolution for glass 

beads would be relatively consistent due to their spherical nature.   

Summary and Conclusion 

Anisotropic critical state theory model developed by (Li and Dafalias 2011) was 

implemented using experimental fabric evolution that was determined from SMT 

imaging and quantification for F35 Ottawa sand and glass beads. It has been found that 

global and shear band CNV based fabric (FAV A) in conventional drained triaxial 

experiments peaks during strain hardening (when shear band develops) and reaches   
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Figure 7.10. ACST Strength and void ratio prediction of glass beads using 

experimentally-estimated fabric evolution (p0’ = 100 kPa)  
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steady-state shortly thereafter. Fabric of particles within the shear band peaks and 

exhibits a decrease during shear band formation before reaching steady-state. Such local 

intricacies can be captured by two-term Fourier series fits with a limiting strain value for 

steady state fabric. Experimental fabric was found to evolve quite differently than either 

theoretical fabric evolution or fabric evolution observed by numerical simulations, where 

ultimate state was reached at large strains.  

Empirical multivariable statistical models were developed to estimate critical state 

parameters of uniform sands with known average morphology (Isph, IR) and surface 

roughness (Rq) for input into the critical state model. The multivariable regressions fit the 

data very well, suggesting particle level characteristics of morphology and surface 

roughness, along with relative density and initial mean stress, are respectable input 

parameters for estimation of critical state parameters during drained triaxial compression 

on dry granular materials. Using critical state parameters measured from experiments (not 

estimated from statistical methods) lead to more accurate results (Figure 7.8), but the 

objective of a predictive model is to estimate behavior of the material at any initial mean 

stress or density without prior knowledge of the critical state parameters.  

Modeling behavior of granular material during drained traixial compression using 

the anisotropic critical state theory with experimental fabric evolution produces more 

accurate results than using theoretical or numerical fabric evolution. One triaxial 

experiment during in-situ SMT imaging is required to quantify fabric evolution and 

particle morphology and determine model parameters, while critical state parameters can 
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be determined by statistical means mentioned previously. Using experimental fabric, 

critical state parameters, and model constant, granular material can be modeled 

accurately with any initial void ratio and initial mean stress. 
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CONCLUSIONS AND RECOMMENDATIONS 

Summary and Conclusions 

In this dissertation, SMT imaging served as the foundation for quantification and 

analysis of granular material mechanics at micro- and meso-scales. At the micro-scale 

(single particle level), SMT images were used in fracture analysis of single particles at 

two loading rates (0.2 mm/min and ~2.5 m/s). 3D FEA was conducted on particles that 

closely match the real particle morphology to investigate crack onset and propagation as 

well as fracture stresses. Also, an empirical statistical model that incorporated micro-

scale particle properties was developed to predict the fracture loads of particles subjected 

to unconfined compression at a loading rate of 2.5 m/s. Results from micro-scale fracture 

analysis can be implemented in up-scaled bulk material models that incorporate 

individual particle fracture.  

At the meso-scale, an extension of particle kinematics, termed particle relative 

displacement, was developed to examine intricate strain localization during axisymmetric 

triaxial testing. Strain localization during hardening was observed and progression into 

softening and critical state was discussed. Also, at the meso-scale, fabric evolution was 

quantified during axisymmetric triaxial compression, and experimental fabric was 

implemented into the ACST model that resulted in a better accuracy in strength and 

behavior predictions. Influence of micro-scale quantifications (particle morphology) on 

meso-scale behavior was also studied. Micromechanical insight gained from this study 
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contribute to the overall objective of geotechnical engineering; accurate modeling of 

complex granular material systems.  

The summary of findings of this dissertation are as follows: 

1. Quantitative particle characteristics determined from SMT image processing and 

analyses provides valuable insight into the fabric and failure mechanisms of 

granular materials. Loading paths of granular material depend on particle shape, 

orientation, and contact, which are defined by Chapter 1. Results from this analysis 

can be used in many applications such as tracking particle kinematics at 

progressive loading, verifying numerical models, or input for force chain models, 

to name a few. This research provides a first step for future development of 

accurate micromechanical models that can eventually be used to design many 

different types of granular systems.  

2. New morphology indices are proposed in Chapter 2 to calculate roundness and 

sphericity of particles using 3D SMT images. They are independent measures that 

represent two different morphological properties of granular materials. Surface 

texture was also accurately quantified for granular materials using optical 

interferometry technique. Particle morphology and surface roughness can be used 

as inputs into micro-mechanically based constitutive models. 

3. The XFEM model was utilized to predict fracture within spheres and real particle 

shapes.  Simulated fracture of the particle was very similar to what was 

experimentally visualized using the radiograph images of tested sand particles 
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during compression. Fracture predicted by the model was in the same location as 

the experimental fracture. With the assumed parameters, XFEM analysis on actual 

particle produced a load-displacement curve similar to the experimental 

measurements. Rotation of the particle was captured, along with the elastic 

response and fracture mode. Finally, shape of sand particles influences their 

fracture behavior and modeling sand particles using spheres does not give the best 

match for experimental measurements. 

4. The dynamic force required to fracture a particle is highly influenced by particle 

properties and loading conditions which are affected by particle morphology. 

Although the effect of individual particle properties does not correlate well with 

fracture load, multivariable nonlinear regression with all of the predictors 

discussed in Chapter 4 lead to a fairly accurate statistical model. 

5. At loading rate of 2.5 m/s, FEA captured the fracture of individual particles that 

was similar to experimental fracture, and the experimental loading curve was 

matched from the simulation with relatively good accuracy. Fracture strength 

determined from FEA is significantly higher than using the characteristic tensile 

strength from Equation 4.6, which was developed for quasi-static loading. Current 

assumed particle tensile strength formulations, such as that in Equation 4.6 or 

variations thereof, do not account for stress concentrations within a particle. 

Therefore, actual stresses within a particle at fracture are higher than assumed 

stresses and FEA determines fracture stresses more accurately.  
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6. Micro shear bands (MSB) in triaxial experiments can be better analyzed and 

quantified in 3D using the second order norm of differences in displacement 

vectors. This technique exposes more intricate strain localizations than 

conventional particle kinematics approach.  

7. All experiments exhibited MSB during strain hardening. In specimens that exhibit 

a single well defined shear band at failure, persistent MSB that nucleate and 

mature during the hardening phase merge to form the single shear band. In 

specimens that exhibit bulging, MSB develop into either a cross-hatched or 

hourglass pattern that push groups of particles and small lateral MSB outwards in 

the lateral direction.  

8. Particle morphology influences thickness and delineation of MSB. Specimens with 

less spherical particles have thinner well-defined MSB and critical state shear 

bands, caused by interlocking of the less spherical particles.  

9. Confining pressure influences the thickness and delineation of MSB. MSB that 

develop during strain hardening are more structured and better defined when the 

specimen is tested at a high confining pressure.  

10. For preparation methods used in this study, particle contact normal vectors have an 

initial bias towards the horizontal and globally evolve to resist the vertical applied 

stress. Global fabric (not fabric solely within the shear band) reaches a steady-state 

shortly after PSR reaches a critical state. 
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11. Particle sphericity has a major influence on the initial fabric of granular materials 

and the evolution of fabric. Less spherical materials produce a more anisotropic 

material and a larger work is required to evolve global fabric to a steady-state 

during shearing. Also, higher confining pressure forces an initial arrangement of 

particle contact normal vectors into a more isotropic state. 

12. Global fabric evolution, in terms of FAV A, is dependent on confining pressure. At 

400 kPa confining pressure, fabric evolves to a constant state shortly after peak 

PSR is reached. At 15 kPa confining pressure, fabric continues to evolve as PSR 

increases. 

13. Fabric of particles within shearing zones evolve much differently than fabric of 

particles outside of shearing zones. Contacts within the shearing zone orient 

themselves relatively perpendicular to shear bands (coinciding with columnar 

structure formation within band), while particles outside of the shear band 

continually orient towards the vertical loading direction. Global fabric is a 

combination of the two, which masks interesting localized fabric features. 

14. Modeling behavior of granular material during drained triaxial compression using 

the anisotropic critical state theory with experimental fabric evolution produces 

more accurate results than using theoretical or numerical fabric evolution. One 

triaxial experiment during in-situ SMT imaging is required to quantify fabric 

evolution and particle morphology and determine model parameters, while critical 

state parameters can be determined by statistical means mentioned previously. 
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Using experimental fabric, critical state parameters, and model constant, granular 

material can be modeled accurately with any initial void ratio and initial mean 

stress. 

Limitations and Recommendations 

Techniques and methodologies introduced in this dissertation were developed to 

solve specific problems while being as robust as possible. Many instances occur in which 

several (or many) techniques were executed for some cases. However certain limitations 

for each exist and are discussed here. In Chapter 1, physical particle characteristics and 

contacts were characterized through image processing and an analysis code. The first 

stipulation for production of accurate results using methodology presented in Chapter 1 is 

that high resolution images with little noise must be available. Lower resolution or noisy 

images will cause deviation from expected results. Concurrently, proper image 

processing techniques must be implemented to discretize particles and contacts. Errors 

resulting from inaccurate particle or contact characterization would lead to inability to 

track particle kinematics and quantify accurate fabric. Limitations from Chapter 1 

propagate to all other chapters in the dissertation with regard to image processing.  

Chapter 2 presented morphology and surface quantification of granular material. 

Morphology measurements were developed for 3D particles that are generally convex. 

Particles exhibiting concavity may cause erroneous results. Intricate 3D measures such as 

surface area are exploited in morphology measurements. Accurate particle quantification 

is a must for accurate morphology. Limitations also exist for surface roughness 
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measurements obtained and presented in Chapter 2. Sudden large changes on a particle 

surface may not be able to be measured by the optical profiler. The vertical limit of the 

profiler was 10 microns. Spherical convexity of particles is accounted for in surface 

roughness measurements.   

Chapter 3 presented methodology to import real particle shapes into FEA 

software and simulate fracture. A large limitation of the current dissertation is inability to 

model flaws smaller than voxel size. Internal flaws on the order of several voxels can be 

meshed as internal voids in the mesh, but particles were chosen in this dissertation that 

did not have any visible internal flaws. Also, any slight variance of material properties 

influences fracture. This dissertation assumes homogeneous linear elastic material, when 

in actuality the crystalline structure of silica particles is somewhat heterogeneous. 

Loading silica in one direction may produce very different fracture results than another. 

Fracture model implemented in FEA will also effect simulations.  

Limitations exist in the higher rate loading of particles in Chapter 4 additional to 

the FEA simulation limitations discussed for Chapter 3. Very little correlation exists 

between fracture force and any one measured characteristic, while the nonlinear 

multivariable model represents the data fairly well. Some inputs to the model are 

qualitative and highly variable (such as internal structure). Results are also limited to one 

particle sand, even though the sand is highly heterogeneous. Other types of sand particles 

may not exhibit the same behavior.  



 

312 

 

Chapter 5 presents relative particle displacement method that exposes intricate 

zones of strain localization. Accurate particle kinematics is required for this method. 

Relatively large global loading strains between images somewhat prevents analysis of 

MSB formation and progression. Henceforth, with the experiments and images presented 

in Chapter 5, it is difficult to precisely relate localized shearing to global strength and 

deformation behavior.  

Fabric and fabric evolution of several granular materials during triaxial 

compression was presented in Chapter 6. As discussed in this dissertation, fabric is a 

generalized micromechanical parameter that groups all contact orientations into a single 

direction and magnitude (relative to loading direction). More micromechanical insight 

would be gained if individual contacts are analyzed. Pertaining to VOI fabric, only a 

small section of the shear band was analyzed. Although representative REV’s were used, 

fabric of the entire shear band may deviate from observed results. Fabric within a VOI 

below the shear band may vary from the VOI’s chosen above the shear band. Also, as 

observed in Chapter 5, strain localization exists outside the shear band and the VOI 

groups all intricate localized strains.  

Chapter 7 was included in this dissertation to prove the effectiveness of using 

experimental fabric in a current model. However, many limitations of the model itself 

inherently exist and will not be discussed. Also, fabric evolution will slightly vary 

between conventional experiments and experiments during in-situ imaging exist to 

generalize fabric evolution for a certain material.  
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The following recommendations are proposed for future research: 

1. Incorporating loading rate into the empirical statistical fracture force model 

presented in Chapter 4. SMT images during quasi-static fracture (similar to 

Chapter 3) would provide basis for input into the model and better 

micromechanical assessment of loading rate can be determined (rather than 

Weibull statistics). 

2. A more thorough analysis of fracture stresses within particles at various loading 

rates. Specifically, incorporation of particle flaws into FEA and determination of 

their effect on fracture stress/load should be investigated. 

3. Incorporation of strain localization during hardening and subsequent evolution into 

final shear band at critical state into bifurcation models for granular materials. The 

tools to investigate intricate zones of strain localization presented in this 

dissertation can be extended to develop/modify constitutive models based on 

micro-scale observations. 

4. Analysis of fabric evolution with various initial fabric, initial density, loading 

conditions, and stress paths. Methodology presented in this dissertation can be 

extended to any initial fabric, density, and stress path provided that SMT images 

are available. Thorough analyses of these conditions are essential for robust input 

into anisotropic constitutive models.    
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