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ABSTRACT 

In Part I, the effect of dietary sulfur . on glutathione 

S-transferase (GSH S-T) activity was evaluated in mala Sprague-Dawley 

rats. The animals were fed di�ts containing inorganic sulfate (So4
=) 

at the levels of 0.0072%, 0.027%, or 0.427%. At each level of so4
=, 

there was either no organic sulfur supplementation or supplementation 

with cysteine or methionine. 

There was no effect of dietary So4
= on GSH S-T activity in lung 

and liver supernatants when the group means were analyzed by the 

method of planned comparisons. There were significant interaction 

effects between treat�ents. 

Supplamentation of diets with organic sulfur reduced GSH S-T 

activity in both tissues. GSH S-T activity was greater in lung 

supernatants when rats were fed diets containing cysteine versus 

methionine. The opposite effect was observed in liver supernatants. 

In Part II, the effect of dietary sulfur on the hepatic 

metabolism and urinary·excretion of acetaminophen (APAP) in rats was 

exami,,ed. Male Sprague-Dawley rats were fed diets identical to those 

used in Part I. Twenty-four hours prior to sacrifice, rats received 

an injection (i .p.) of APAP (300 mg/kg) in saline. Control animals 

received an injection of saline alone. 

In the liver administration of APAP increased tissue glutathione 

(GSH) concentration but did not affect the activities of GSH S-T, 

sulfotransferase (ST), and UDP-glucuronyltransferase (UDP-GT). 

Dietary S04
= had no effect on hepatic enzyme activities or GSH 

concentration. 
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Hepatic GSH S-T activity was decreased and GSH concentration was 

increased in rats fad di�ts supplemented with organic sulfur. 

In the urine, the excretion of APAP sulfate was unaffected by 

either the level of dietary S04= or the presence or type of organic 

sulfur supple�entation. The excretion of APAP glucuronide, free APAP, 

and APAP mercapturic acid was greatest at the lowest {0.0072%) level 

of dietary S04= and tended to decrease as the level of dietary S04= 

increased. Supplementation of diets with organic sulfur reduced the 

excretion of APAP glucuronide and APAP mercapturic acid. Only the 

excretion of APAP glucuronide was affected by the type of organic 

sulfur supplementation. 

This study provides evidence that xenobiotic metabolism in rats 

is affected by dietary sulfur. 
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PART I: THE EFFECT OF DIETARY SULFUR ON GLUTATH IONE S-TRANSFERASE 

ACTIVITY IN RAT LUNG AND LIVER 



CHAPTER I 

INTRODUCTION 

The metabolism of drugs and other foreign compounds generally 

occurs in two phases. In Phase I,  the foreign compound or xenobiotic 

undergoes oxidation, reduction, dehalogenation, oxygenation, or 

desulfuration to fonn a more hydrophilic product. This reaction is 

catalyzed by the mixed function oxidase (MFO) system located in the 

endoplasmic reticulum of the cell and usually results in detoxication 

of a harmful compound (1). In Phase I I, conjugation of the metabolite 

produced by the Phase I MFO system occurs. The xenobiotic metabolite 

is conjugated with a small molecule such as glucuronic acid, glucose, 

glycine, glutathione, glutamine, acetic acid, or sulfate to produce a 

more polar, hydrophilic compound that is readily excreted .(2). 

Most research examining the effect of diet on xenobiotic 

metabolism has focused on the Phase I MFO system. Studies have shown 

that the activities of these microsomal enzymes are sensitive to 

dietary manipulations. In particular, the level of intake of protein, 

carbohydrate, lipid, zinc, iron, and vitamins A and C may affect the 

ability of the MFO enzymes to metabolize xenobiotic compounds in 

laboratory animals (3). In this laboratory, Acuff and Smith (4) have 

shown that the tissue lavel of cytochrome P-450 is altered in rats fed 

diets containing different levels of inorganic sulfate. 

The response of the Phase I I  or conjugating enzymes involved in 

xenobiotic detoxication to dietary manipulations remains largely 

uninvestigated. In particular, very little is known about the effect 

2 
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status on the activity of the glutathione 

S-transferases. In one diet-related study, Sikic et al. (5) examined 

the effect of ascorbic acid deficiency on both liver microsomal 

enzymes and the glutathione S-transferases in guinea pigs. The 

activities of both enzyme species were decreased in the scorbutic 

liver. Benson et al. (6) examined the effect of dietary 

anti-oxidants on glutathione S-transferase activity in the livers of 

female CD-1 mice and male Sprague-Dawley rats. The administration of 

BHA [2{3)-tert-butyl-4-hydroxyanisole] and ethoxyquin dramatically 

increased the hepatic activity of the glutathione S-transferases in 

both mice and rats with 1, 2-dichloro-4-nitrobenzene, 

1-chloro-2, 4-dinitrobenzene, p-nitrobenzylchloride, and 

�5-androstene-3, 17-dione as second substrates. The increase in 

glutathione S-transferase activity was considerably larger in the 

mouse (4-10 fold) than in the rat. 

The present study measured glutathione S-transferase activity in 

rat lung and liver in order to assess the effect of varying dietary 

levels of inorganic sulfate on xenobiotic metabolism. In addition, 

the question of whether enzyme activity is affected by dietary 

supplementation with organic sulfur was addressed. Since the level of 

cytochrome P-450 is altered by dietary sulfur in the rat, it is 

conceivable that glutathione S-transferase activity may also be 

affected by dietary sulfur manipulations in this laboratory animal. 



CHAPTER I I  

REVIEW OF  LITERATURE 

Importance� Dietary Sulfur 

Compounds containing sulfur are ubiquitous in nature and are 

required by micro-organisms, plants, and animals for growth and 

development (7). Included among the significant cellular 

sulfur-containing compounds are Coenzyme A, the vitamins thiamin, 

lipoic acid, and biotin, in addition to the amino acids methionine, 

cysteine, cystine, homocysteine, and cystathionine. Other important 

cellular constituents containing sulfur include glutathione, 

S-adenosyl-methionine, taurine, and inorganic sulfate (8). 

In the animal kingdom, there are two dietary sources of 

sulfur--organic and inorganic. In animals, the need for organic 

sulfur is met primarily by the coenzymes and the amino acids 

methionine, cysteine, and cystine (9). A need for dietary inorganic 

sulfate by humans has not been clearly established (10), although 

inorganic sulfate has been shown to be an important nutrient for the 

rat (11). 

Following the identification of methionine as an essential 

dietary nutrient, efforts were made to determine the function of this 

amino acid and to identify the factors that regulate its metabolism. 

It has been shown that methionine is incorporated into proteins and 

serves as a precursor in 

cystine, and taurine 

S-adenosyl-methionine 

the formation of cysteine, homocysteine, 

(9). Methionine is also converted to 

(SAM) in a reaction involving 
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adenosine-5 1 -triphosphate (ATP) and functions in this capacity as the 

primary methyl group donor in ma11111alian tissues. A number of 

important compounds are methylated by SAM, including histamine, 

acetylserotonin, plant phytosterols, and phosphatidylethanolamine 

(12). An extensive listing of endogenous and exogenous compounds that 

derive their methyl groups from SAM is given by Baker (8). 

Although an early study in the area of sulfur nutrition described 

cystine as an indispensible dietary constituent for the rat (13), 

Jackson and Block (14) later established methionine as an essential 

amino acid, with dietary cystine supplementation becoming important 

only when dietary methionine levels are reduced to a sub-optimal point 

(15). Since the presence of cystine in the diet reduces the need for 

methionine, cystine is said to "spare" methionine (9). Indeed, 

Finkelstein and Mudd (16) investigated the methionine-sparing effect 

of cystine and concluded that in rats fed a diet low in methionine and 

supplemented with cystine, cystine prevented the irreversible 

conversion of methionine to cysteine and allowed methionine to either 

remain in the remethylation pathway or be utilized for protein 

synthesis. 

In view of the ability of cystine to reduce methionine 

catabolism, the replacement value of cystine for methionine has been 

estimated. Values differ among animal species, but it has been shown 

that cystine can supply from 17 to 68% of the total sulfur amino acid 

requirement in rats (8, 15). In humans, cystine can replace 

approximately 80% of the methionine requirement (17). 
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The function of dietary inorganic sulfate has also been studied. 

There is evidence that inorganic sulfate is incorporated into 

sulfomucopolysaccharides (9), sulfolipids, heparin, and fibrinogen 

(8). It is also used in the biosynthesis of taurine and chondroitin 

(18) and is incorporated into cysteine but not methionine. Indeed, 

with the observation that sulfate could be incorporated into cysteine, 

it was determined that from 7 to 9% of the dietary sulfur· amino acid 

requirement can be met by inorganic sulfate in chicks (19). 

In this laboratory, the metabolic role of dietary inorganic 

sulfate has been investigated extensively. It has been shown that the 

addition of inorganic sulfate to the diets of rats improved feed 

efficiency ratios (20), increased the incorporation of 35so4 into rib 

cartilage mucopolysaccharides (21), reduced the urinary excretion of 

taurine (22), and altered the glycocholic:taurocholic acid ratio in 

bile extracted from sections of rat intestines (23). Other work 

demonstrated an alteration in collagen metabolism (24) and a reduction 

in aorta breaking strength (25) in rats fed diets low in inorganic 

sulfate. 

The demonstration that dietary inorganic sulfate is an important 

nutritional factor for the rat led Smith (26) to determine the optimal 

dietary level of inorganic sulfate required by this mammal. Test 

diets were fed to adult male Long-Evans rats for 7 days. At the end 

of this period, either 1-14c-methionine or u-14c-cysteine was 

administered and the expired 14co2 was collected and measured. Since 

14co2 expiration from labelled methionine was approximately three 

times greater than that from cysteine, methionine was selected for 
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determining the optimal dietary level of inorganic sulfate. Using 

five levels of inorganic sulfate (0.01, 0.02, 0.03, 0.04, 0.05%), 

Smith showed a reduction in 14co2 expiration when rats were fed diets 

containing 0.02% inorganic sulfate. Based on these data, Smith 

concluded that the optimal dietary level of inorganic sulfate is 0.02% 

for the rat. 

A role for inorganic sulfate in the regulation of a number of 

metabolic processes has been suggested by Smith. An increased 

incorporation of the carbon skeleton of u-14c-cysteine into glycogen 

in the livers of rats fed diets containing the optimal level of 

inorganic sulfate (0.02%) has been demonstrated. In addition, the 

concentration of glutathione is greatest in the liver but not kidneys 

of rats fed diets containing 0.02% inorganic sulfate (11). 

Lipogenesis is also sensitive to the level of dietary inorganic 

sulfate as evidenced by alterations in the activities of acetyl-CoA 

carboxylase, citrate cleavage enzyme, and malic enzyme (27). 

Characterization of the Glutathione S-Transferases ------- - - ----- ------

The glutathione S-transferases (E. C. 2.5.1. 18) constitute a 

family of enzymes involved both in the biotransformation of drugs and 

other foreign compounds (28) and in the transport and intracellular 

storage of endogenous compounds such as bilirubin (29). These enzymes 

are widely distributed in biological materials and have been studied 

extensively in the rat and humans (30). In the rat, glutathione 

S-transferase activity has been detected in liver, lung, kidney, 

spleen, small intestine, brain, heart, testis, ovary, and the adrenals 

( 31) . 
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Purification of the glutathione S-transferases (GSH S-T) from the 

supernatant fractions of rat liver and kidney homogenates indicates an 

enzyme molecular weight of approximately 45,000 - 50,000 daltons (32, 

33). Each enzyme species consists of two of three possible subunits 

with the following molecular weights: subunit a - 22,000 daltons; 

subunit b - 23,500 daltons; subunit c - 24,000 daltons (34). Scully 

and Mantle (35) have postulated that the dimers are produced from a 

common homodimer (cc) via a proteolytic mechanism. 

Early studies described the glutathione S-transferases as 

cytosolic enzymes (32), but there is evidence that they are also found 

in the microsomal fraction of rat liver homogenates (36, 37). 

Friedberg et al. (38) detected GSH S-T activity in a number of cell 

organelles, including the rough and smooth reticuli, microsomes, 

nucleus, plasma membrane, and the Golgi apparatus. 

In their roles as Phase II enzymes in the biotransformation of 

xenobiotics, the glutathione S-transferases catalyze the conjugation 

of reduced glutathione with a variety of foreign compounds having an 

electrophilic center. This is the first step in mercapturic acid 

formation (39). Figure 1 outlines the fonnation of a mercapturic acid 

with glutathione and 1-chloro-2,4-dinitrobenzene as substrates. 

Mercapturic acids are N-acetyl-L-cysteine derivatives that function as 

the biliary and urinary excretion products of potentially harmful 

electrophilic compounds (28, 40). The tripeptide glutathione has been 

identified as the source of the mercapturic acid cysteine moiety (41). 

In addition to their catalytic properties, the glutathione 

S-transferases function as binding proteins (42). Reyes et al. (43) 



Glutathione 

Glutathione S-Transferase 

�-Glutamyltransferase 

Cysteinylglycinase 

I 

� 

1-Chloro-2,4-dinitrobenzene 

I/ 

9 

0 
It 

NH-C-CH3 
\ ,,o 

0
S-CH2-C�-OH S-CH -CH-C-OH 0'", N02 NH2 ---==--->-'!> 

� 
N02 Acetyl-CoA HS-CoA N02 

Figure 1. The biosynthesfs of a mercapturic acid from the substrates 
glutathione and 1-chloro-2,4-dfnitrobenzene, as adapted from (39). 
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and Levi et al. (44) examined the ability of two cytoplasmic 

proteins, Y and Z, to bind the organic anion bilirubin and 

sulfobromophthalein in rat liver. Y protein, in particular, has been 

studied intensively and was previously designated azo-dye binding 

protein or corticosteriod binder I (39). It is widely recognized that 

this cytoplasmic protein is identical to glutathione S-transferase B 

or ligandin. Ligandin is one member of a family of organic 

anion-binding proteins now known to be synonymous with the glutathione 

S-transferases (30, 33). 

Litwack et al. (45) and other researchers (43, 44, 46, 47) 

report that the ligandin proteins will bind non-covalently a variety 

of compounds, including steroids, bilirubin, sulfobromophthalein, 

azo-dyes, and carcinogenic hydrocarbons. Kamisaka et al. (42) 

describe the ligandins as intracellular binding proteins. They 

postulate that the human glutathione S-transferases may serve as 

intracellular storage sites for bilirubin in particular and as a 

transport mechanism for a variety of ligands from plasma into the 

liver cell. 

Bharga�a et al. (47) investigated both bilirubin binding and 

glutathione S-transferase activity and report that these separate 

functions occur independently of each other. According to these 

researchers, two bilirubin binding sites exist on the ligandin 

molecule--a primary site requiring cysteine residues and a secondary 

site in which sulfhydryl groups are not essential for catalytic or 

binding activity. 
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The kinetic mechanism of the GSH S-T catalyzed reaction has been 

studied by Pabst et al. (48). Using a variety of substrates, these 

researchers determined that at physiological concentrations of reduced 

glutathione (3-10 mM in rat liver), the kinetic mechanism follows an 

ordered sequential pathway with glutathione binding initially to the 

enzyme molecule. At low glutathione concentrations, a ping-pong 

kinetic mechanism is evident in which the second substrate binds 

first. This theory has not been accepted by Jakobson et al. (49) who 

propose an alternate kinetic mechanism involving the random binding of 

substrates to the enzyme molecule and product inhibition of enzyme 

activity. 

It was orginally thought that the glutathione S-transferases were 

specific for glutathione as a primary substrate (39), but Habig et al. 

(50) showed that an equimolar concentration of homoglutathione 

(�-glutamyl-cysteinyl-,l3-alanine) was as active as glutathione in GSH 

S-T catalyzed conjugation reactions. Regarding the second substrate, 

the glutathione S-transferases exhibit considerable variability in 

substrate specificity. Initially, these enzymes were named according 

to the primary type of second substrate conjugated--e.g., glutathione 

S-aryl-, alkyl-, or epoxide transferase (32, 33, 51, 52). They are 

now designated AA, A, B, C, D, E, and M based on their elution order 

from carboxymethyl cellulose columns (39). 

Induction of the glutathione S-transferases by the administration 

of phenobarbital and polycyclic aromatic hydrocarbons has been 

demonstrated (39). Clifton and Kaplowitz (53) studied the effect of 

oral administration of phenobarbital, 3,4-benzo(a)pyrene, and 
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3-methylcholanthrene on GSH S-T activity in rat liver, intestine, and 

kidney. All three inducing agents significantly increased enzyme 

activity in rat liver with the following substrates: 

3,4-dichloronitrobenzene, p-nitrobenzyl chloride, and ethacrynic acid. 

GSH S-T activity in rat liver was not significantly increased by 

3,4-benzo(a)pyrene with the substrate 1-chloro-2,4-dinitrobenzene. 

Enzyme activity in the rat intestine and kidney was variable in 

response to the inducing agents. 

An early study by Darby and Grundy (54) reported a small increase 

in rat liver GSH S-aryltransferase activity following phenobarbitone 

treatment. Sulfobromophthalein, 1, 2-dichloro-4-nitrobenzene, and 

1-chloro-2,4-dinitrobenzene were used as substrates. A sex difference 

was observed; males showed a significant increase in GSH S-T 

conjugation with 1-chloro-2,4-dinitrobenzene as the second substrate. 



General Plan 

CHAPTER III  

EXPERIMENTAL PROCEDURE 

The purpose of this study was to examine the effect of dietary 

sulfur on glutathione S-transferase activity in rat lung and liver. 

The experimental plan employed a balanced design so that at each 

inorganic sulfate level, there was either no organic sulfur 

supplementation or supplementation with either cysteine or methionine. 

Figure 2 presents the basic experimental fonnat regarding diet 

designations and outlines the contrasts made in the statistical 

analysis of the data (see Statistical Analyses, pages 20-23). 

Male Sprague-Dawley rats (300-400 grams) were randomly selected 

from the rat colony of The University of Tennessee Department of 

Nutrition and Food Sciences. Rats were housed in stainless steel 

cages with wire-mesh bottoms. No more than three rats were housed in 

one cage; cages were segregated by diet. Distilled water was freely 

available. Diets were fed ad libitum for 21 days. 

At the end of the dietary period, the rats were killed by 

decapitation. Lungs and livers were removed, homogenized, and finally 

centrifuged to prepare the supernatant fraction. Glutathione 

S-transferase activity was determined spectrophotometrically using the 

method of Habig et al. (50). The substrate 

1-chloro-2,4-dinitrobenzene was selected because it reacts readily 

with the glutathione S-transferases to give the product 

S-(2,4-dinitrophenyl)-glutathione (40, 50). The reaction is shown in 

13 



Organic Sulfur 
Supplementation 

None 

Cysteine 

Methionine 

- ·  -

Level of Dietary Inorganic Sulfate 

0 .0072% 0.027% 0.427% 

Diet 1 Diet 4 Diet 7 
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Diet 3 Diet 6 Diet 9 

I 
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Figure 2. Basic experimental format. 
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Figure 3. The method of Lowry et al. (55) was used to determine 

tissue protein concentration with bovine serum albumin as the 

standard. 

Description of Diets 

Semi-purified diets were fonnulated to maintain general good 

health in adult rats. Previous work in this laboratory has 

established a level of 0.02% inorganic sulfate in the diet as the 

optimal level for the rat; a level of 0.0002% inorganic sulfate in the 

diet is inadequate in tenns of sparing the catabolism of methionine in 

rats (26). In this experiment, dietary inorganic sulfate levels were 

0.0072%, 0.027%, and 0.427%. 

The composition of the diets is listed in Tables 1 and 2. Rats 

were fed the basal diet (Table 1) plus one of the diet formulations 

listed in Table 2. Diets were fed ad libitum for a period of 21 days. 

Metabolic alterations have been demonstrated in rats fed diets 

containing 0.0002%, 0.10%, and 0.42% inorganic sulfate for a period of 

17 days (22). 

Measurement of Glutathione S-Transferase Activity 

At the end of the dietary period, the rats were stunned by a blow 

to the head and quickly decapitated. Livers and lungs were removed, 

placed immediately in tared beakers chilled on ice containing about 50 

ml of 10 mM TRIS buffer, pH 8.0, and weighed. The livers and lungs 

were homogenized with a motor-driven Teflon pestle, diluted with the 

TRIS buffer to make a 10% homogenate, and centrifuged (Model A, 

Lourdes Instrument Corp., Brooklyn, NY) at 40 for 1.5 hours at 10,000 

X g. 



Cl 

1-Chloro-2,4-
dinitrobenzene 

Glutathione 

Glutathione S-transferase 
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S-Glutathione 

S-(2,4-dinitrophenyl)
glutathione 

Figure 3. Reaction catalyzed by the glutathione S-transferases with 
the substrates 1-chloro-2,4-dinitrobenzene and glutathione (30, 50). 
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TABLE 1 

Composition of the Basal �iet 

Component 

g/100 g Diet 

Caseinl 15. 00 

Cornstarch 30.00 

Sucrose 30.00 

Vegetable Oi]2 2.00 

Vegetable Shortening3 6.00 

Vitamin Mixture4 2.00 

Basal Salt Mixtures 1.34 

Variable Components See Table 2 

l ICN Biochemicals, Inc., Cleveland, Ohio 44128. 

2wesson Oil, Hunt-Wesson Foods, Inc., Fullerton, California 92634. 

3crisco, Procter and Gamble, Cincinnati, Ohio 45202. 

4 1cN Biochemicals, Inc. Cleveland, Ohio 44128. 
Vitamin Diet Fortification Mixture fonnulated to supply the following 
amounts of vitamins (g/kg vitamin premix): thiamin hydrochloride, 1.0, 
riboflavin 1.0, niacin 4.5, p-amino-benzoic acid 5. 0, calcium panto
thenate 3.0, pyridoxine hydrochloride 1.0, ascorbic acid 45.0, inositol 
5.0, choline chloride 75.0, menadione 2. 25, biotin 0.020, folic acid 
0.090, vitamin 812 0.00135, alpha-tocopherol 5.0, vitamin A 9 x 105 

units, vitamin D 1 x 105 units, and sufficient glucose to make 1 kg. 

SICN Biochemicals, Inc. Cleveland, Ohio 44128. 
Hubbell, Mendel & Wakeman Salt Mixture provided the following (%): 
calcium carbonate 54.3, magnesium carbonate 2.5, magnesium sulfate•7H20 
1.6, sodium chloride 6.9, potassium chloride 11.2, potassium phosphate 
(monobasic) 21.2, ferric phosphate 2.05, potassium iodide 0.008, mag
nesiu� sulfate·H20 0.035, sodium fluoride 0.1, aluminum potassium 
sulfate 0.017, copper sulfate·SH20 0.09. 



Diet 

1 

2 

3 

4 

5 

6 

7 

8 

9 

TABLE 2 

Variations of the Basal Diet 

Dietary Components 

Inorganic 
S04" CaS04• 2H20 CaC03 DL-Methfonine 

'I, - - - - - - - - - - - - - - g/100 g Diet -

0.0072 0.0 1.34 o.o 
0.0072 o.o 1.34 0.0 

0.0072 o.o 1.34 0.65 

0.027 0.04 1.32 0.0 

0.027 0.04 1.32 o.o 
0.027 0.04 1.32 0.62 

0.427 o. 75 0.91 o.o 
0.427 0.75 0.91 o.o 
0.427 0.75 0.91 0.62 

ltcN Biochemicals, Inc. Cleveland, Ohio 44128. 

2Alphacel, ICN Biochemicals, Inc. Cleveland, Ohio 44128. 
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Cysteine 
1 Free Base 

Non-Nutri tl ve 
Bulle. 

- - - - - - - - - - - - - -

0.0 12.32 

0.53 11.79 

0.0 11.67 

0.0 12.30 

0.50 11.80 

o.o 11.68 

0.0 12.00 

0.50 11.50 

0.0 11.38 
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Following centrifugation, floating lipid was removed and the 

supernatant decanted into chilled beakers. For the liver 

preparations, a 1:25 dilution of the supernatant was made (1 ml 

supernatant to 24 ml 10 mM TRIS buffer, pH 8.0). The lung supernatant 

was diluted 5-fold with 10 mM TRIS buffer, pH 8. 0. One ml of the 

diluted supernatant was combined with 3 ml of a reaction mixture 

containing 25. 3 mg l-chlora-2,4-din1trobenzene (1. 0 mM), 5 ml pure 

ethanol, and 38.5 mg reduced glutathione (1. 0 mM) in a .141 M 

potassium phosphate buffer, pH 6.5. The rate of the enzyme-catalyzed 

reaction was measured spectrophotometrically (Model DU, Beckman 

Instruments, Inc., Fullerton, CA 92634) by following the change in 

absorbance at 340 nm at one minute intervals for 5 minutes. This 

method is outlined by Habig et al. (50). All samples were run in 

duplicate. 

Measurement of Tissue Protein 

The method of Lowry et al. (55) was used to determine tissue 

protein concentration with bovine serum albumin as a standard (200 

)Lg/ml .5 N NaOH). The liver supernatants were diluted 2-fold with 1 

N NaOH. The lung supernatants were diluted 2-fold with 1 N NaOH and 

then 3-fold with . 5  N NaOH. One ml of the final diluted liver and 

lung samples was added to 5 ml of reagent A (1 ml 2. 7% NaK•C4H405•4H2, 

1 ml 1% CuS04·SH2, and 100 ml 2% Na2C03), mixed with a Vortex-Genie, 

and allowed to stand for 10 minutes. After 10 minutes, 0.5 ml of the 

Folin reagent was added and the sample mixed immediately. After the 

color had been allowed to develop for 30 minutes, the absorbance of 

\ 
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the samples was read at 750 nm. Duplicate samples for determining 

protein concentration were analyzed. The following equation was used 

to calculate protein concentration: 

Absorbance (Sample) x Cone. (Std) x Dilution Factor = mg protein 

Absorbance ( Std) 

Statistical Analyses 

The data were analyzed by the method of planned comparisons. The 

use of this statistical method allowed the researcher to answer a 

restricted number of specific questions. That is, the researcher 

determined � priori that these questions were the most important ones 

in terms of the purpose and design of the experiment. In general, the 

comparisons selected were designed to be independent in contrasting 

means or groups of means and ensured that non-overlapping, 

non-redundant bits of information were obtained from the data (56). 

A sample comparison is defined by Hays (56) as follows: 

r = c1M1 + • • •  + CJMJ = 

where t.J} (psi hat) equals a weighted sum of numbers, Cj is a weighted 

sum for trea��ent j, and Mj is the sample mean for treatment j. When 

the sum of the weights is zero, the comparison is called a contrast. 

In this study, four questions were considered important in view 

of the constraint of being allowed (J minus 2) contrasts where J = 

number of treatments. The specific contrasts used to analyze the data 

from this study are outlined in Figure 2. The four central questions 

were as follows: 

1. Does enzyme activity differ in rats fed diets containing 
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0. 0072% inorganic sulfate versus those fed 0. 027% inorganic 

sulfate (Contrast ' .0072 vs . 027 1 )? 

2. Does enzyme activity differ in rats fed diets containing 

0.027% inorganic sulfate versus those fed 0. 427% inorganic 

sulfate (Contrast ' .027 vs .427 1 )? 

3. Does supplementation with organic sulfur (cysteine + 

methionine) affect enzyme activity (Contrast ' supple vs no 

supple ' )? 

4. Does the nature of the supplementation (cysteine versus 

methionine) affect enzyme activity (Contrast ' cys vs meth ' )? 

The General Linear Models (GLM) Procedure of the Statistical 

Analysis System (SAS) package was used to evaluate the data (57). The 

SAS computer program used to generate the contrast statements by the 

GLM Procedure (PROC GLM) command is outlined in Appendix A. 

Disproportionality in sample size was accounted for by the PROC GLM 

command in making independent contrasts between treatment means. In 

evaluating statistical differences an alpha level of 0. 05 was 

selected. 

To test for significant differences in glutathione S-transferase 

activity in rat lung and liver as a result of varying dietary 

inorganic sulfate levels, two contrasts were made. The 1 .0072 vs 

. 027 1 contrast compared the group mean of diets 1, 2, and 3 with the 

group mean of diets 4, 5, and 6 (see Figure 2, page 14 ). The 1 .027 vs 

. 427 1 contrast compared the group mean of diets 4, 5, and 6 with the 

group mean of diets 7, 8, and 9. The effect of dietary 

supplementation with organic sulfur (Contrast ' supple vs no supple ' )  
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on GSH S-T ac tivity in rat lung and liver was made by comparing the 

group mean of diets l ,  4 ,  and 7 with the group mean of diets 2 ,  3 ,  5 ,  

6 ,  8 ,  and 9 .  Contrast ' cys v s  meth ' was made by comparing the group 

mean of diets 2 ,  5 ,  and 8 with the group mean of diets 3 ,  6 ,  and 9 .  

The ' cys vs meth ' contrast allowed a comparison o f  the effect o f  the 

type of dietary organic sulfur supplementation on GSH S-T ac tivity in 

rat l ung and liver .  

Before the data could be analyzed using the method of planned 

comparisons , the values of enzyme activity for all variables had to be 

adj usted for diets 1 ,  3 ,  4 ,  6 ,  8 ,  and 9 .  This wa s necessary since it 

was observed that the reaction mixture used in the enzyme as say in 

tissue sample s of rats fed these diets lost potency over a 5-day 

period . Therefore , the value s for enzyme activity for each variable 

were plotted by diet and analyzed by analysis of covari�nce using the 

SAS package . 

Analysis of covariance ( ANCOVA) is a type of regression model 

that ca n be used to reduce experimental errors ( 58 ) . In analysis of 

covariance , an independent quantitative variable is selected and 

designated the covariable X .  The relationship between the covariable 

X and the dependent variable Y is then examined and used to remove 

extraneous variation in Y due to X ( 59 ) . In this study , the 

covariable X was time ( day 1-5 ) ; the dependent variable Y was enzyme 

activity . The ANCOVA program outlined in Appendix B wa s used to test 

for interaction effects between X ( time ) and Y ( enzyme activity) for 

each lung and liver variable . ,The non- significant F-values for 

interaction effects for each variable shown in Appendix C indicate 
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that the regression lines are parallel. The significance of this is 

that evidence of parallelness among the regression lines indicates 

that the values of Y (enzyme activity) are not confounded by the 

covariable X (time). Therefore, statements can be made about the 

"true" values of Y (60). 

In the general ANCOVA model, the values of Y are evaluated at the 

median value of X (in this study, day 3). However, since the 

regression lines are parallel, Y values can be inspected at any value 

of X (60). Therefore, day 1 was selected as the inspection point 

since the reaction mixture was freshest on this day. The PROC GLM 

statement of the SAS package was used to generate solutions to normal 

equations in order to adjust the values of Y (enzyme activity) to day 

1. These adjusted values were then analyzed by the method of planned 

comparisons as discussed previously. 



CHAPTER IV 

RESULTS 

The purpose of this investigation was to determine the effect of 

dietary sulfur on the activity of the glutathione S-transferases in 

rat lung and liver. Rats were fed diets containing 0. 0072%, 0. 027i, 

or 0. 427i inorganic sulfate with either no organic sulfur 

supplementation or supplementation with cysteine or methionine. The 

study was designed to answer four basic questions: 

1. Does glutathione S-transferase (GSH S-T) activity differ in 

rats fed 0. 0072i versus 0.027i inorganic sulfate (Contrast 

I .0072 V S  .027 ' )? 

2. Does GSH S-T activity differ in rats fed diets containing 

0.027% versus 0. 427i inorganic sulfate (Contrast ' .027 

vs . 427 ' )? 

3. Does supplementation with organic sulfur (cysteine + 

methionine) affect GSH S-T activity in rat lung and liver 

(Contrast ' supple vs no supple ' )? 

4. Does GSH S-T activity differ in rats fed diets supplemented 

with cysteine versus those fed diets supplemented with 

methionine (Contrast ' cys vs meth ' )? 

Effect of Dietary Sulfur on Glutathione S-Transferase Activity .!!!_ Rat 
Lung - -

The differences between group means with respect to dietary 

inorganic sulfate levels and the presence and type of organic sulfur 

supplementation were compared by the method of planned comparisons. 

24 
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The data and analysis of variance summary for enzyme activity 

expressed as nmoles CDNB conjugated/mg protein/minute are given in 

Tables 3 and 4 .  The data and analysis of variance summary for enzyme 

activity expressed on a wet weight basis are shown in Tables 5 and 6. 

In order to evaluate the effect of dietary inorganic sulfate 

(So4
= ) on GSH S-T activity in rat lung, two contrasts were made : 

1 .0072 vs .027 1 and 1 . 027 vs . 427 1 

• As shown in Tables 4 and 6, 

dietary inorganic sulfate appeared to have no effect on enzyme 

activity when the data were analyzed by the method of planned 

comparisons. This was true whether the data were expressed as either 

nmoles 1-chloro-2, 4-dinitrobenzene (CDNB) conjugated/mg protein/min. 

or on a wet weight basis (�moles CONS conjugated/g lung tissue wet 

weight). However, even though there were no statistically significant 

differences between the group means as defined by the contrast 

statements, the pattern of the effect of dietary inorganic sulfate on 

GSH S-T activity in lung tissue was similar regardless of how the data 

were expressed (see Tables 3 and 5 ): GSH S-T activity was lowest in 

the lung supernatant of rats fed diets containing the optimal level of 

so4
= (0. 027%), intermediate at the 0. 0072% so4

= level, and highest at 

the 0 . 427% So4= level. 

Since it has been shown that the activities of the enzymes 

involved in the trans-sulfuration pathway are sensitive to the dietary 

levels of cystine and methionine (16), the effect of dietary 

supplementation with organic sulfur (cysteine + methionine) on GSH S-T 

activity was evaluated. This was accomplished by using the ' Supple vs 

No Supple ' contrast. The data presented in Table 3 indicate that GSH 



TABLE 3 

The Effect of Di etary Sul fur on Gl utathi one S-Transferase Ac ti v i ty i n  Rat Lung Expressed as nmol es CDNB1 

Conj uga ted/mg Protei n/Mi nute 

Level of Di etary I norganic  Sul fate 

Organic Sul fur 0 .0072'1, 0 .02n, 0 . 427'.l, 

nmol es CDNB conj ugated/mg protei n/mi nute 

None 4 . 7  + 1 . 12 ( 5 ) 3 

Cystei ne 7 . 4  + 1 . 1 ( 5 ) 
( 0 . 5  g/ 100 g di et) 

Meth i oni ne 3 . 5  + 1 . 1 ( 5 ) 
( 0 .6 g/ 100 g di et) 

Group Means 5 .2  + 0 .6 ( 1 5 )  

lcoNB = 1 -Chl oro-2 ,4-di ni trobenzene . 

2val ues represent mean : SEM .  

3 .6 + 1 . 1 ( 5 )  10 .8 + 1 . 1 ( 5 ) 

5 . 6 + 0 .8 ( 1 1 )  3 . 5  + 1 . 2  ( 4 )  

3 . 7  + 1 . 1 ( 5 )  3 . 4  + 1 . 1 ( 5 ) 

4 . 3  + 0 .6 ( 21 ) 5 . 9 + 0 . 7  ( 14 )  

3Number i n  parentheses i ndi cates the number o f  experi mental animal s 1Jsed . 

Group Means 

6 . 4  + 0 . 6 ( 1 5 )  

5 . 5  + 0 .6 ( 20)  

3 . 5  + 0 .6 ( 1 5 )  

N 
O'I 



TABLE 4 

Anal ysi s of Vari ance Sunmary for Gl utathi one S-Transferase Acti vi ty i n  Rat Lung Expressed as  
nmol es l-Chl oro-2 ,4-di nitrobenzene Conj ugated/mg Protei n/Mi nute 

Source  Degrees of Freedom Sums of Squares F-Val ue P-Val ue 

Sul fate Level 2 20 . 1684 1 . 60 0 . 2141 

Suppl ementati on 2 63 . 1946 5 .01  0 . 01 1 3  

I nteracti on 4 161 . 8502 6 . 42 0 . 0004 

Contrasts Between Group Means 

I .0072 \#S .027 ' 1 6 . 467 1 1 . 03 0 . 3169 

I . 027 V S  .427 1 

1 19 . 7 396 3 . 13 0 .0842 

' Supp le  vs No Suppl e '  1 33 . 5821 5 . 33 0 . 026 1 
1 Cys v s  Meth • 1 31 . 4693 4 . 99 0 .0309 

N 
-.J 



TABLE 5 

The Effec t of Di etary Sul fur on Gl utathi one S-Transferase Acti vi ty i n  Rat Lung Expressed as  
.,u.mol es CDNBl Conj ugated/ g Lung Ti ssue ( Wet Wei ght) 

Level of  Di etary Inorgani c  Sul fate 

Organ i c  Sul fur 0 . 0072't 0 .027't 0 . 427'.l. Group Means 
-------- -- -· - - - ------

..L'mol es CDNB conjugated/g l u ng ti ssue ( wet wei ght)  

None .425 + . 1 192 ( 5 ) 3 . 397 + . 1 19 ( 5 )  1 . 004 + . 1 19 ( 5 )  .608 + . 068 ( 1 5 )  

Cystei ne .639 + . 1 19 ( 5 ) . 569 + . 080 ( 1 1 )  . 330 + . 1 32 ( 4 )  . 5 12 + .065 ( 20 )  
( 0 . 5  g/100 g di et) 

Me thi oni ne .437 + . 1 19 ( 5 )  . 453 + . 1 19 ( 5 )  . 409 + • 119 ( 5 ) . 433 + .068 ( 1 5 )  
( 0 . 6 g/100 g di et) 

-

Group Means . 500 + .068 ( 15 )  .473 + .062 ( 21 )  . 581 + .071 ( 14 )  

-------------------------------------�----------------------------------------�----------------

lcoNB = l -Chl oro-2 ,4-di ni trobenzene . 

2val ues represent mean .:!:. SEM .  

3Number i n  parentheses i ndi cates the number of  experimental ani mal s used . 
N 
CX) 



TABLE 6 

Anal ysi s of Vari ance Sunmary for Gl utathi one S-Transferase Acti v i ty i n  Rat Lung Expressed as 
,LC,mol es 1-Chl oro-2 ,4- di ni trobenzene Conj ugated/g Lung Ti ssue ( Wet Wei ght) 

------ - ------------------ -------------------

Sourc e Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
----- -------- -- __ _._.,.._ ______ 

Sul fate Level 2 9 . 4974 0 . 68 0 . 5 106 

Supp l ementati on 2 23 . 2552 1 . 66 0 . 2034 

I nterac ti on 4 130 . 9908 4 . 66 0 . 0034 

Contrasts Between Group Means 

I . 0072 VS .027 I 1 0 . 6268 0 . 09 0 . 7666 

I .027 VS .427 I 1 9 . 2290 1 . 31 0 . 2583 

' Supp le  vs No Suppl e '  1 18 . 77 20 2 . 67 0 . 1097 

' Cys vs  Meth 1 1 5 .0345 0 . 72 0 . 4020 

N 
"° 
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S-T activity in rat lung was significantly increased in rats fed diets 

l�cking organic sulfur when the data were expressed as nmoles CDNB 

conjugated/mg protein/min. When expressed on a wet weight basis as 

shown in Table 5, enzyme activity was increased in rats fed diets 

deficient in organic sulfur. 

The ' cys vs meth ' contrast tested whether there was a difference 

in the effect of the amino acids cysteine and methionine on GSH S-T 

activity in rat lung. The question of whether cysteine and methionine 

were metabolically equivalent in their effect on GSH S-T activity was 

considered important since previous data collected in this laboratory 

had demonstrated differences in cysteine and methionine 

supplementation (11). Tables 3 and 4 show that when the data were 

expressed as nmoles CDNB conjugated/mg protein/min., the effect of 

supplementation of the diets with cysteine or methionine on GSH S-T 

activity in rat lung was significantly di fferent. Glutathione 

S-transferase activity was increased in the lung supernatant of rats 

fed diets supplemented with cysteine. Supplementation of the diets 

with cysteine increased GSH S-T activity in rat lung when the data 

were expressed on a wet weight basis (Table 5), although this increase 

was not statistically significant. 

As shown in Tables 4 and 6, there were significant interaction 

effects between organic sulfur supplementation and the level of 

inorganic sulfate. The data presented in Tables 3 and 5 indicate that 

as the level of S04
= increased from 0. 0072% to 0. 427%, enzyme activity 

was altered as a function of organic sulfur : with no organic sulfur 

supplementation, enzyme activity increased as the level of S04= 
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increased ; with cysteine supplementation, enzyme activity decreased as 

the level of so4= increased; with methionine supplementation, enzyme 

activity was unaffected by increasing levels of so4=
. 

Effect of Dietary Sulfur on Glutathione S-Transferase Activity � Rat 
Liver � � 

The statistical method used to evaluate the effect of dietary 

sulfur on glutathione S-transferase activity in rat liver was the 

method of planned comparisons as described previously (see pages 

20-23). The data and analysis of variance summary for enzyme activity 

expressed as _.u.moles CDNB conjugated/mg protein/minute are presented 

in Tables 7 and 8. The data and analysis of variance summary for 

enzyme activity expressed on a wet weight basis are given in Tables 9 

and 10. 

The data presented in Tables 8 and 10 show that there was no 

apparent effect of dietary inorganic sulfate on GSH S-T activity in 

rat liver when the data were analyzed by the method of planned 

comparisons. This was true whether the data were expressed as )£,moles 

CDNB conjugated/mg protein/min. or on a wet weight basis (,a.moles 

CDNB conjugated/g liver tissue wet weight). 

Supplementation of diets with organic sulfur (cysteine + 

methionine) significantly decreased GSH S-T activity in rat liver when 

the data were expressed on a wet weight basis (Table 10). When the 

data were expressed as moles CDNB conjugated/mg protein/min., 

supplementation of the diets with organic sulfur decreased GSH S-T 

activity in rat liver, although the reduction was not statistically 

significant (Table 8). 



TABLE 7 

The Effect of Di etary Sul fur on Gl utathi one S-Transferase Acti v i ty i n  Rat Li ver Expressed as 
...u,mol es CDNBl Conjugated/mg Pro tei n/Mi nute 

---�-------------------------------------------------------------------------�-----------����-

Organ i c  Sul fur 
--------------

None 

Cystei ne 
( 0 . 5  g/ 100 g di et) 

Methi oni ne 
( 0 . 6 g/ 100 g di et) 

Group Mea ns 

-------

Level of Di etary I norgani c Sul fate 

o .0012i 0 .027'1, 0 . 427'1, Group Means 
---------- ------------------------------------------·---·------

).L.moles  CDNB conj ugated/mg protei n/mi nute 

.412 + . 0492 ( 5 ) 3 . 375  + .049 ( 5 )  . 287 + . 049 ( 5 ) . 358 + . 029 ( 1 5 )  

. 134 + . 049 ( 5 )  . 249 + . 035 ( 10 )  . 364 + . 049 ( 5 )  . 249 + . 026 ( 20 )  

.382 + . 049 ( 5 )  . 349 + .049 ( 5 )  . 392 + . 049 ( 5 ) . 374 + .028 ( 1 5 )  

.309 + . 028 ( 15 )  . 325 + .026 ( 20 )  . 348 + . 028 ( 1 5 )  

----· ----------- -------------------------

lcoNB = 1 -Chl oro-2 ,4-di n itrobenzene . 

2val ues represent mean !. SEM . 

3Number i n  parentheses i ndi cates the number of experimental animal s u sed . 
w 

N 



TABLE 8 

Anal ysi s of Vari ance Summary for Gl utathi one S-Transferase Acti vi ty i n  Rat Li ver Expressed 
as .,tt.mol es l-Chl oro-2 ,4-di ni trobenzene Conj ugated/mg Protei n/Mi nute 

Source Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
----·-- ----------------------------------------------------

Sul fate Level 2 1 . 1 168 0 . 47 O . 6 302 

Supplementati on 2 15 .6697 6 . 55 0 . 0034 

I nteraction 4 16 . 797 1 3 . 5 1 0 . 0148 

Contrasts Between Group Means 

I .0072 VS . 027 ' 1 0 . 1914 0 . 16 0 . 6912  

I .027 V S  .427
1 

1 0 . 4329 0 . 36 0 . 5507 

' Supp l e  vs  No Suppl e '  1 2 . 1892 1 . 83 0 . 1834 

' Cys vs  Meth ' 1 12 . 8982 10 . 79 0 . 002 1 

----------·--------------------------------------------------------------------------------

w 

w 



TABLE 9 

The Effec t of Di etary Sul fur on Gl utathi one S-Transferase Acti v i ty i n  Rat Li ver Expressed as 
�mol es CONBl Conj ugated/g Li ver Ti ssue ( Wet Wei ght) 

Level of Di etary I norgan i c  Sul fate 

Organi c  Sul fur 0 . 0072'.I. 0 .027'1. 0 . 427'1. Group Means 
--------------------� ------------------·---- --------�------------

...l£,.mol es CDNB conj ugated/g l i ver ti ssue ( wet wei ght) 

None 31 .9  + 3 . 42 ( 5 ) 3 

Cystei ne 13 . 3  + 3 . 4 ( 5 )  
( 0 . 5  g/100 g d i et) 

Methi oni ne 26 . 3  + 3 .4 ( 5 ) 
( 0 . 6  g/ 100 g d i et) 

Group Means 23 .8  + 1 . 9 ( 1 5 )  

l coNB = 1 -Chl oro-2 .4-di n i trobenzene . 

2val ues represent mean � SEM. 

27 . 2  + 3 . 4 ( 5 )  23 . 3  + 3 . 4 ( 5 )  

20 . 2  + 2 . 4 ( 10 )  23 . 4  + 3 .4  ( 5 ) 

25 .9  + 3 . 4 ( 5 ) 2 3 . 0  + 3 . 4 ( 5 ) 

24 . 4  + 1 . 8 ( 20 )  23 . 2  + 1 . 9  ( 15 )  

3Number i n  parentheses i ndi cates the number o f  experimental animal s used . 

27 . 5  + 1 . 9 ( 1 5 )  

1 9  • 0 + 1 .  8 ( 20 ) 

25 . l + 1 .  9 ( 1 5 )  

w 
� 

/ 



TABLE 10 

Anal ysi s of Variance Sumnary for Gl utathi one S-Transferase Acti v i ty i n  Rat Li ver Expressed 
as fa'-mol es 1-Chl oro-2 ,4-di n i trobenzene Conjugated/g Li ver Ti ssue ( Wet/ Wei ght) 

Source  Degrees o f  Freedom Sums of Squares F-Val ue P-Val ue 
--------------------------------------------------------�-------------------------------

Sul fate Level 2 1 1 . 854 1 0 . 10 0 . 9009 

Suppl ementati on 2 640 .9572 5 . 66 0 . 0068 

Interaction 4 474 . 8776  2 . 10 0 . 0987 

Contrasts Between Group Means 

I .0072 V S  .027 I 1 2 . 977 2 0 . 05 0 . 8198 

' .027 VS .427 ' 1 1 1 . 8207 0 . 2 1 0 . 6502 

' Supp l e  vs No Suppl e '  1 305 .0812  5 . 39 0 .0253  
1 Cys vs  Meth 1 1 303 . 2100 5 . 35 0 . 0258 

---------------------------------------------------------------------------------- ------------

w 
<.11 
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Regardless of the manner in which the data were expressed, the 

nature of the organic sulfur supplementation had a significant effect 

on GSH S-T activity in rat liver. The data presented in Tables 7 and 

9 indicate that GSH S-T activity was increased in the liver 

supernatant of rats fed diets supplemented with methionine . 

As with the lung data, there were significant interaction effects 

between treat�ents (Table 8) in terms of enzyme activity in the liver. 

As the level of S04
= increased from 0.0072% to 0. 427% as shown in 

Tables 7 and 9, the following changes in enzyme activity were 

observed : with no organic sulfur supplementation, enzyme activity 

decreased ; with cysteine supplementation, enzyme activity increased ; 

with methionine supplementation, enzyme activity remained unchanged. 



CHAPTER V 

D I SCUSSION 

The optimal l evel of di etary i norgani ,: sul fate for the rat i s  

0 .02% as establi shed by Smi th ( 26 ) . He has shown that metabol i c  

al terati ons i n  carbohydrate and l i p i d  metaboli sm occu r i n  rat ti ssues 

at levels of di etary i norgan ic  sulfate other than the opti mal level . 

I n  addi ti on , he has provi ded ev i dence that xenobi oti c metaboli sm may 

be altered i n  response to vary i ng level s of di etary i norgani c  sulfate . 

For example , an i �crease i n  the level of di etary i norga n i c  sul fate 

from 0 . 0002% to 0 . 42% has been shown to reduce the rati o of 

gl ucuron i de-sal i cylami de to sulfate-sali cyl ami de excre ted i n  rat uri ne 

{ 1 1 ) . Al so , an i ncrease i n  the level of di etary i norgan ic  sul fate 

from 0 . 0002% to 0 . 02% wi th ei ther cystei ne  or meth i oni ne 

supplementati on i ncreased sl eep time i n  rats i nj ected wi th sodi um 

pentobarb i tal ( 4 ) . Si nce these parameters of xenobi otic metabol i sm 

were affected by di etary i norgani c sul fate , the response of the Phase 

I I  gl utath i one S-tran sferases to i norgan i c  sulfate as a di etary 

con sti tuent was i nvesti gated . 

I n  thi s study , no effec t of di atary i norgani c sulfate on 

gl utathi one S-tran sferase ( GSH S-T) acti v i ty was evi dent i n  rat lung 

or li ver when the data ( group means ) were analyzed by the method of 

pl anned compari sons . However , an exami nati on of the data for GSH S-T 

acti v i ty i n  rat lung and l i ver reveals several trends : as the level 

of di etary i norgani c sul fate i ncreased , enzyme acti v i ty i ncreased , 

decrea sed , or remai ned unchanged ,  dependi ng upon the presence and type 
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of organic sulfur supplementation. Normally, the strengths of these 

associations would be tested statistically by regression analysis. 

However, the regression model was not considered appropriate for these 

data because the levels of dietary inorganic sulfate used did not 

represent consistent increments in value. If the levels of inorganic 

sulfate in the diets had been 0.0001%, 0.001%, 0.01%, 0.1%, and 1.0%, 

for example, the use of regression analysis would have been justified 

(58). 

Several investigations in this laboratory have demonstrated that 

the supplementation of diets with organic sulfur affects a number of 

metabolic processes in rats (11). The urinary excretion of taurine 

was increased in rats fed diets containing 0. 42% inorganic sulfate 

(S04
=) + 35s-cysteine when compared to the taurine excretion level of 

rats fed diets containing 0. 42% so4
= without cysteine supplementation 

(22). The addition of cysteine to the diets of rats fed so4
= at the 

level of 0. 42% significantly reduced the number of lung lesions 

observed following the intratracheal instillation of benzo(a) pyrene 

(61). The activities of citrate cleavage enzyme and malic enzyme were 

reduced in the livers of rats fed diets containing 0. 42% so4= 
+ 

cysteine when compared to those fed diets containing only so4
= at the 

level of 0. 42%. Similar results were obtained when the 0. 42% So4
= 

diet was supplemented with methionine (27). 

In this investigation, glutathione S-transferase activity was 

decreased in the lungs and liver of rats fed diets supplemented with 

organic sulfur. This observed decrease in the in vitro rate of the 

enzyme-catalyzed reaction may be a reflection of altered in vivo rates 
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of enzyme synthesis and degradation or modification of enzyme 

efficiency (62). In general, enzyme activity or efficiency can be 

rapidly modified in vivo by negative feedbac� inhibition, 

post-translational chemical alteration of enzyme confonnation, or the 

action of a1 1 osteric effectors and inhibitors (63). The availability 

of substrate(s) and the removal of product(s) are also controlling 

factors in regulating in vivo enzyme activity (62). 

In vitro, the concentration of enzyme in a tissue sample is 

estimated by determining its catalytic activity under standard 

conditions--i. e ., fixed pH, temperature, and near-saturating 

concentrations of substrates and coenzymes (64). In this study, GSH 

S-T activity was determined by measuring spectrophotometrica1 1 y  the 

change in absorbance at 340 nm under specific assay conditions (50). 

The rate of absorbance change was a reflection of the rate of product 

[ S-(2, 4-dinitropheny1 )-g1 utathione] formation. The data indicate 

that, in general, the rate of in vitro product formation was greater 

in tissue samples of rats fed diets deficient in organic sulfur than 

in tissue samples of rats fed diets supplemented with cysteine and 

methionine . 

Several explanations can be offered for the increase in GSH S-T 

activity seen in homogenates of rats fed diets deficient in organic 

sulfur. The increase in GSH S-T activity may be a function of 

enhanced enzyme synthesis or retarded enzyme degradation in vivo (65). 

In addition, if conversion of an inactive to an active form of the 

enzyme is required for the expression of enzyme activity, the rate of 

enzyme activation may be increased under these conditions. An 
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increase in the rate of formation of active enzyme moleculgs may 

result from covalent modification of the enzyme (63) or cooperativity 

of ligand binding (66). Evidence for the existence of active and 

inactive forms of the glutathione S-transferases has not been 

presented in the literature. However, Vander Jagt et al. (67) have 

reported that bilirubin binding to a secondary non-specific site 

exhibiting catalytic activity may alter enzyme conformation and affect 

transferase activity in rat liver. 

The observation that methionine can be pulled from the 

re-methylation pathway to be converted to cysteine (68) suggests that 

dietary methionine supplementation would produce metabolic effects 

similar to those seen with dietary cysteine supplementation. Data 

collected previously in this laboratory (11) and the data presented 

here indicate that methionine and cysteine are not equivalent in terms 

of their metabolic effects in rats. This investigation demonstrates a 

significant difference in glutathione S-transferase activity in the 

lung and liver supernatant of rats fed diets supplemented with 

cysteine versus methionine. 

In addition, the nature of the effect differs in lung and liver 

tissue. In lung tissue, GSH S-T activity was greater when the dietary 

source of organic sulfur was cysteine as opposed to methionine (Table 

3, page 26, and Table 5, page 28). In the liver, supplementation of 

diets with methionine produced a significant increase in GSH S-T 

activity (Table 7, page 32, and Table 9, page 34). The significance 

of these tissue differences is difficult  to interpret. Finkelstein 

(68) reported tissue differences in the activities of the enzymes of 
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the trans-sul furation pathway in rat tissues. He suggested that 

isozymes may be responsibl e  for this observation but noted the l ack of 

support for his idea in the l iterature. 

The presence of significant interaction effects between 

treatments suggests that the effect of dietary inorganic sul fate on 

GSH S-T activity in rat l ung and l iver cannot be total l y  separated 

from the presence and type of organic sul fur suppl ementation. As the 

l evel of dietary inorganic sul fate increased, enzyme activity was 

al tered in both l ung and l iver tissues of rats fed diets either 

l acking organic sul fur or suppl emented with cysteine. Since the 

nature of the effect differed in these two tissues, it can be 

concl uded that rat l ung and l iver differ in their metabol ic response 

to inorganic sul fate under these conditions. It may be that the 

capacity of inorganic sul fate to spare cysteine is greater in l ung 

tissue than in l iver tissue of rats. 

With methionine suppl ementation ; enzyme activity was essential l y  

unal tered as the l evel of dietary inorganic sul fate increased. This 

suggests that the mechanism(s) of control of enzyme activity may 

differ when diets are suppl emented with methionine versus cysteine. 



CHAPTER VI 

SUMMARY 

The purpose of this study was to determine the effect of dietary 

sulfur on glutathione S-transferase (GSH S-T) activity in rat lung and 

liver. In this investigation, no effect of dietary inorganic sulfate 

on GSH S-T activity was apparent in either tissue when the data (group 

means) were analyzed by the method of planned comparisons. However, 

there were significant interaction effects between treatments, 

suggesting that the effect of dietary inorganic sulfate on enzyme 

activity cannot be totally separated from the effect of organic sulfur 

supplementation. Indeed, GSH S-T activity varied with increasing 

levels of dietary inorganic sulfate when the diets were either 

deficient in organic sulfur or supplemented with cysteine. This was 

true in both tissues, although the nature of the effect differed. 

With methionine supplementation, GSH S-T activity remained unchanged 

as the level of inorganic sulfate in the diet increased. The data 

suggest that inorganic sulfate may function as a regulator of GSH S-T 

activity when organic sulfur is either limiting or available as 

cysteine. 

Supplementation of diets with organic sulfur (cysteine + 

methionine) reduced GSH S-T activity in both lung and liver tissue. 

The increase in GSH S-T activity in rats fed diets deficient in 

organic sulfur may represent a compensatory response to the metabolic 

stress of an organic sulfur deficiency. 

42 



43 

This study provides additional evidence that methionine and 

cysteine are not metabolically equivalent in the rat. I� lung tissue, 

GSH S-T activity was increased in rats fed diets supplemented with 

cysteine ; in liver tissue, GSH S-T activity was increased in rats fed 

diets supplemented with methionine. The data indicate that the two 

tissues differ in their response to the type of dietary organic sulfur 

supplementation. 

The significance of this study is that it provides evidence that 

glutathione S-transferase activity is affected by dietary sulfur 

manipulations. The data presented here suggest that the ability of 

these Phase II enzymes to conjugate and thereby detoxify xenobiotic 

compounds may be affected by the sulfur status of the animal. 



PART I I : THE EFFECT OF DI ETARY SULFUR ON THE HEPATIC METABOL I SM 

AND URI NARY EXCRETION  OF ACETAMI NOPHEN 

I N  ADULT �ALE RATS 



CHAPTER I 

INTRODUCTION 

Acetaminophen is a widely used analgesic and is an ingredient of 

many commercial preparations (59). When administered theraputically, 

acetaminophen is generally recognized as safe (70). However, 

excessive injestion of acetaminophen can produce hepatotoxicity in 

both humans and animals (69, 70, 71). 

Currently, there is considerable interest in the mechanism of 

hepatic necrosis following acetaminophen overdose (69). Compounds 

that may provide protection against acetaminophen-induced 

hepatotoxicity have been identified and studied. Among the compounds 

considered for use as adjuvant agents in the treatnent of 

acetaminophen toxicity are N-acetylcysteine (69, 72), methionine (73, 

74), cysteine (73), and sulfate (73, 75). 

The issue remains, however, of whether and/or how acetaminophen 

metabolism is altered as a function of the sulfur status of the 

animal. Conceivably, the availability of cysteine for glutathione 

biosynthesis and inorganic sulfate for xenobiotic conj ugation may 

affect acetaminophen metabolism and excretion. It has been 

demonstrated, for example, that hepatic glutathione levels can be 

altered by varying dietary inorganic sulfate levels (1 1). This 

suggests that the sulfur status of the animal may alter glutathione 

availability for acetaminophen mercapturic acid formation. 

Glucuronidation of acetaminophen may also be sensitive to dietary 

sul fur manipulations, since it has been shown that the ratio of 
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glucuronide-salicylamide to sulfate-salicylamide excreted in rat urine 

is reduced wi th an increase in the dietary inorganic sulfate level 

from 0 .0002% to 0.02% (11). In addition , the resul ts of several 

studies have indicated that alterations in the inorganic sulfate 

status of the animal affect acetaminophen sulfate formation (73, 75 , 

76). 

In consideration of these issues , this study examined the effect 

of dietary sulfur on the hepatic metabolism and urinary excretion of 

acetaminophen in adult male rats. The activities of 

UDP-glucuronyltransferase , sulfotransferase , and the glutathione 

S-transferases following acetaminophen administration were measured in 

rat liver. Hepatic glutathione concentration was also determined . In 

urine samples , acetaminophen gl ucuronide ,  sulfate , mercapturic acid , 

and free acetaminophen were quantitated by high-performance liquid 

chromatography. 



CHAPTER II  

REV IE� OF LITERATURE 

Acetaminophen Metabolism 

Acetaminophen [4-hydroxyacetanilid, paracetamol (76), 

N-acetyl-p-aminophenol (77)] is a metabolic product of phenacetin and 

acetanilid and possesses both analgesic and antipyretic properties. 

Acetaminophen is classified as a mild analgesic equivalent in efficacy 

to aspirin (78) . 

The glucuronide and sulfate conjugates of acetaminophen are the 

major excretion products in man (79) and the rat (80). The 

mercapturic acid conjugate constitutes approximately 3 - 4% of the 

total dose excreted in rats (81) . The formation of these conjugates 

occurs primarily in  the liver in reactions catalyzed by the Phase II 

enzymes of xenobiotic metabolism. The glucuronidation of 

acetaminophen is catalyzed by the microsomal enzyme 

UDP-glucuronyltransferase (E. C. 2. 4.1. 17). The conjugating compound 

(glucuronic acid) required in this reaction is obtained from uridine 

diphosphate g1 ucuronic acid (UDP-GA). The reaction is shown in Figure 

4. Su1 fation of acetaminophen is catalyzed by the cytoplasmic enzyme 

su1 fotransferase (E. C. 2.8. 2. 1). As shown in Figure 5, this 

reaction requires PAPS (3 ' -phosphoadenosine-5 ' -phosphosulfate) and ATP 

(2). Formation of the mercapturic acid conjugate of acetaminophen is 

catalyzed by the glutathione S-transferases (E. C. 2.5.1.18) as shown 

in Figure 6. The reaction requires reduced g1 utathione (2, 39) and is 
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Figure 4 .  Conversion of acetaminophen to acetaminophen g l ucuronide by 
UDP -gl ucurony l trans ferase , incl uding fo rmation of UD P-glucuronic acid 
( 77 , 93 ) .  
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Figure 5 .  Conversion o f  acetaminophen to acetaminophen sulfate by  sulfo
transferase, including the formati on of APS (adenosine-5 1 -phosphosulfate) 
and PAPS (3 ' -phosphoadenosine-5 1 -phosphosulfate) (77, 93 ). 
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acetami nophen metabolite N-acety l -p-benzoquinone ( 70 ,  7 1 ,  103 ) .  
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thought to be the primary conjugation pathway for detoxifying the 

reactive species of the drug (69) . 

The exact mechanism for acetaminophen-induced hepatic necrosis is 

unclear, but biotransfonnation of the drug to a toxic, reactive 

metabolite has been documented (76) . Potter et al . (82) reported 

that in hamsters acetaminophen may undergo N-hydroxylation by the 

cytochrome P-450 dependent mixed function oxidase system . It has been 

suggested that this N-hydroxy derivative of acetaminophen undergoes 

dehydration �pontaneously to form acetamidoquinone 

(N-acetyl-p-benzoquinoneiinine), the metabolite implicated in the 

development of hepatic necrosis (83). The mechanism proposed by 

Corcoran et al . (84) and presented in Figure 7 demonstrates the 

formation of the reactive metabolite N-acetyl-p-benzoquinoneimine. 

This reactive compound binds covalently with cellular macromolecules, 

producing cell necrosis (76, 85) . Detoxifying the reactive metabolite 

by glutathione conjugation is believed to prevent cell injury (69) . 

Even though the exact reactive metabolite of acetaminophen has 

not been identified, the histological changes occurring in 

acetaminophen-induced liver necrosis have been examined (71) . Walker 

et al . (70) studied electronmicrographs of the centrilobular regions 

of the livers of male white mice in order to assess acetaminophen 

damage . Within two hours, changes were apparent in the centrilobular 

regions in all animals treated with acetaminophen (500 mg/kg by 

gavage) . Within three hours, there were gross changes in subcellular 

structures, with both rough and smooth endoplasmic reticuli becoming 

foamy in appearance and mitochondria appearing swollen . Congestion of 

the centrilobular regions of the livers was apparent. 
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Treatment of Acetaminophen Overdose 

As stated previously, the mechanism of cell damage in 

acetaminophen overdose is believed to i�volve the formation of a 

reactive metabolite (84) . It is thought that this reactive species is 

primarily conjugated with reduced glutathione (GSH) and thereby 

detoxified. Depletion of GSH results in the covalent binding of the 

reactive compound to cell macromolecules, thus injuring the cell (Bl, 

82). Depletion of hepatic glutathione following acetaminophen 

administration has been widely documented (70, 74, 82) and is 

dose-dependent (71, 86). 

Since the discovery of the correlation between GSH availability 

and the extent of acetaminophen-induced hepatic necrosis, efforts have 

been made to identify agents that prevent or retard GSH depletion by 

acetaminophen. Vina et al. (74) reported that in rats the injection 

of methionine (0. 1  g/kg) up to four hours after acetaminophen 

administration maintained hepatic GSH near physiological levels (73 -

83% of normal). McLean and Day (87) reported that the oral 

administration of methionine with paracetamol completely prevented 

hepatic injury in male Wistar rats. There is evidence that methionine 

acts only indirectly in protecting against hepatic cell damage in mice 

by serving as a substrate for GSH biosynthesis and sulfate formation. 

Buckpitt et al. (88) showed that methionine neither reduced covalent 

binding of the reactive metabolite nor formed acetaminophen adducts . 

The effects of cysteine, N-acetylcystei�e, and cysteamine on GSH 

availability and acetaminophen metabolism have also been studied . 

Mitchell et al. (71) showed that the rate of depletion of liver GSH 
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by acetaminophen could be significantly reduced by pretreatment of 

�ice with cysteine. All three agents have been shown to reduce the 

covalent binding of the reactive acetaminophen metabolite in mouse 

liver (88). 

Reports on the mechanism of action of N-acetylcysteine are 

conflicting . Vina et al . (74) showed that the administration of 

N-acetylcysteine (1.0 g/kg) to rats did not prevent 

acetaminophen-induced depletion of hepatic glutathione. The 

explanation offered for this is that N-acetylcysteine is deacetylated 

in the liver with the resulting cysteine moiety being oxidized to 

cystine, a compound not readily used for glutathione biosynthesis 

according to Thor et al. (89). It has been suggested that 

N-acetylcysteine does not enhance the recovery of GSH in the livers of 

rats intoxicated with acetaminophen (74). Galinsky and Levy (72) 

showed that the oral administration of N-acetylcysteine to adult male 

rats significantly increased the urinary excretion of acetaminophen 

sulfate and decreased the excretion of free acetaminophen and the 

glucuronide conjugate. These researchers concluded that 

N-acetyl cysteine enhanced acetaminophen sul fate formation, thus 

providing protection against acetaminophen intoxication. It has been 

suggested that N-acetylcysteine and glutathione both function in 

preventing hepatic necrosis in acetaminophen overdose by decreasing 

the covalent binding of the reactive metabolite (88). In spite of the 

conflict over the mechanism of action of N-acetylcysteine, this agent 

is considered very efficacious in the treatment of acetaminophen 

overdose (90). 
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S-adenosyl-methi oni,e ( SAM ) has also been i nvesti gated as an 

adjuvant agent i n  the treatment of acetaminophen toxici ty. 

Stramentinoli et al. ( 91) reported that the administration of SAM to 

mice i njected with acetami nophen ( 710 mg/kg) signi ficantly reduced the 

mortali ty rate and protected agai nst hepatotoxicity. The mechanism of 

action for this compound is unknown. 

The role of inorgani c sulfate i n  reducing acetaminophen induced 

hepatotoxicity was studied by Slatterly and Levy ( 75). These 

researchers showed that the i ntraperitoneal injection of sodi um 

sulfate ( 300 - 800 mg/kg) significantly reduced the incidence of 

acetaminophen toxicity in male Swiss mice. Moldeus et al. ( 73) 

examined acetaminophen conjugation in isolated rat hepatocytes. Their 

data indicated that the rate of sulfate conjugation was directly 

correlated with the concentration of sulfate ( as magnesium sulfate) in 

the incubation medium. Addition of either cystei ne ( 1  and 5 mM) or 

methionine ( 1  and 5 mM) to the incubation medium did not increase the 

rate of sulfation. The researchers concluded that inorganic sulfate 

is required for PAPS formation and hence for acetaminophen sulfate 

conjugation. These results are in agreement with those reported by 

Galinsky et al. (92) who studied acetaminophen metabolism in male 

Sprague-Dawley rats. These researchers reported that the intravenous 

administration of sodium sulfate to rats enhanced the fonnation of 

acetaminophen sulfate and reduced the incidence of acetaminophen 

toxicity. 



General Plan 

CHAPTER I I I  

EXPERIMENTAL PROCEDURE 

The purpose of this study was to examine the effect of dietary 

sulfur on the metabolism and urinary excretion of acetaminophen in 

adult male rats. The basic experimental plan employed a balanced 

design as discussed previously (see Part I, pages 13-15 and Figure 2, 

page 14). However, an additional experimental group (Diet 10) was 

included in this study: one group of rats was fed the 0.027% 

inorganic sulfate diet with cysteine supplementation (Diet 5) but did 

not receive an injection of acetaminophen. The inclusion of this 

group in the experimental plan allowed the researcher to determine 

whether the vehicle (saline) used in administering the drug produced 

an effect on the variables being measured . 

Male Sprague-Dawley rats (280 - 430 grams) were randomly selected 

from the rat colony of The University of Tennessee Depart�ent of 

Nutrition and Food Sciences. Rats were randomly assigned to a dietary , 

group and were housed individually in stainless steel cages with 

wire-mesh bottoms. Distilled water was offered freely . Diets were 

fed ad libitum for a period of at least 21 days .  

Twenty-four hours prior to sacrifice, rats fed Diets 1 - 9 

received an intraperi toneal (i.p.) injection of acetaminophen (300 

mg/kg) in saline solution in a volume equal to 3% of body weight. 

This subhepatotoxic dose was the same as that employed by Bolanowska 

and Gessner (93). Rats fed Diet 10 received an i. p. injection of 

56 
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saline in a volume equal to 3% of body weight. Following the 

injection, rats were placed in individual metabolic cages and given 

free access to the appropriate diet and distilled water. 

During the 24-hour period in which rats were housed in the 

metabolic cages, urine was collected in vials containiig 1 ml of 0.1 N 

HCl as a preservative (94). On the day of sacrifice, urine samples 

were frozen and stored at -200 until analysis. A modification of the 

method of Green and Fischer (95) was used to quantitate the primary 

acetaminophen conjugates in urine by high-performance liquid 

chromatography (HPLC) . Twenty-four hours after injection, rats were 

killed by decapitation. The livers were removed and divided into two 

parts : a small section representing the left lobe of the liver (about 

2-4 grams) was removed, homogenized in 2% sulfosalicylic acid, and 

stored in a refrigerator at 40 until the analysis of tissue 

glutathione concentration could be made; the 'remaining section was 

removed, homogenized in 10 mM TRIS buffer, pH 8.0, and centrifuged at 

10,000 x g for l hour to prepare the supernatant fraction. One ml of 

the supernatant was used for determining glutathione S-transferase 

activity according to the method of Habig et al. (50). The remaining 

supernatant was centrifuged at 105,000 x g for l hour. Following this 

centrifugation, the resulting supernatant was retained for the 

sulfotransferase assay as outlined by Bolanowska and Gessner (93). 

The microsomes obtained from this centrifugation were washed in 0.154 

M KCl and re-centrifuged at 105,000 x g for l hour. The resulting 

microsomal fraction was suspended in 0.154 M KCl. A sample of this 

microsomal preparation was used in determining 
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UDP-glucuronyltransferase activity as described by Bolanowska and 

Gessner (77). 

Description of � 

The semi-purified diets provided inorganic sulfate at the levels 

of 0 . 0072%, 0 . 027%, and 0. 427%. At each level of inorganic sulfate, 

there was either no organic sulfur supplementation or supplementation 

with either cysteine or methionine . 

The composition of the diets is listed in Tables 1 and 2, pages 

17 and 18. Rats were fed the basal diet shown in Table 1 plus one of 

the diet formulations listed in Table 2. Diets were fed ad libitum 

for a period of at least 21 days. 

Measurement of Glutathione S-Transferase Activity 

Twenty-four hours after the injection of either acetaminophen or 

saline, rats were stunned by a blow to the head and quickly 

decapitated. The livers were removed and divided into two sections. 

The small left lobe of the liver (2-4 grams) was removed and retained 

for the determination of tissue glutathione concentration (see pages 

61-65) . The remaining large section of the liver was placed in a 

tared beaker chilled on ice containing about SO ml of 10 mM TRI S  

buffer, pH 8.0, and weighed. This liver sample was homogenized with a 

motor-driven Teflon pestle, diluted with the TRI S  buffer to make a 10% 

homogenate, and centrifuged (Model A, Lourdes Instrument Corp., 

Brooklyn, NY) at 40 for l hour at 10,000 x g. 

Following centrifugation, floating lipid was removed and the 

supernatant decanted into chilled beakers. One ml of the supernatant 
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was removed for use in the glutathione S-transferase (GSH S-T) assay. 

The remaining supernatant was retained for use in the 

UDP-glucuronyltransferase and sulfotransferase assays described below. 

The method of Habig et al. (50) 11'as used in determining GSH S-T 

activity in rat liver. The method was described in detail in Part I, 

pages 19-20. 

Measurement of Sul fotransferase Activity 

The supernatant obtained from the initial centrifugation was 

centrifuged (Model LS-50, Beckman Instruments, Inc., Palo Alto, CA 

94304) at 105,000 x g for 1 hour at 40. The microsomal fraction 

obtained from this centrifugation was washed in 0. 154 M KCl and 

re-centrifuged in order to prepare the microsomes for use in 

determining UDP-glucuronyltransferase activity (described below).  The 

supernatant obtaiied from this centrifugation was removed to chilled 

beak�rs and retained for the sul fotransferase assay. 

A modification of the method of aolanowska and Gessner (77, 93) 

was used to determi ne sulfotransferase activity in rat liver. 

One-tenth ml of the supernatant was incubated with 0. 9 ml of a 

reaction mixture containing 2 mM 3tt-acetaminophen (2.0  ,..U.Ci/ml 

incubation), 0. 25 mM PAPS, 5 m� MgCl2 · H20, 30 mM nicotinamide, and 5 

mM ATP in a 0. 08 M potassium phosphate buffer, pH 7. 4. The 

incubations were carried out in a shaker water bath set at 370 for 30 

minutes. At the end of this time period, samples were removed from 

the water bath and placed in an acetone-dry ice bath to stop the 

reaction by flash freezing. The samples were stored in the freezer at 

-200 until the analysis could be compl!ted. 
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To compl ete the anal ysis, sampl es were removed from the freezer, 

thawed, and saturated with NaCl . Sampl es were extracted once with 10 

ml and twice with 5 ml diethyl ether. With each extraction, the 

aqueous hyer was retained. Fol l owing the extraction process, the 

sampl es were shaken for L O  minutes. A 0.5 ml sampl e of the aqueous 

l ayer was transferred to a scintil lation vial , mixed with a 

scintil lation cocktail containing 6 ml methyl cel lusol (ethylene gl ycol, 

monoethyl ether) and 10 ml PPO (2,5-diphenyl oxazol e) in tol uene (12 g 

PP0/1 tol uene), and counted in a l iquid-scintil l ation counter (Model 

LS lOOC, Beckman Instruments, Inc., Ful l erton, CA 92634). The 

channel s-ratio method was used to correct for quenching (96). 

Measurement of lJDP-Gl ucuronyl transferase Activity 

The microsomal fraction obtained from the first 

ul tra-centrifugation was washed in 0.154 M KCl and re-centrifuged for 

1 hour at 105,000 x g at 40 . The microsomes obtained from this final 

centri fugation were suspended in 0.154 M KCl in a volume equival ent to 

that of the original homogenate. The preparation of this microsomal 

fraction was described by Gessner (97 ) .  

To prepare the incubation medium as described by Bolanowska and 

Gessner (77) ,  0.1 ml of the final microsomal preparation was incubated 

with 0.9 �l of a reaction mixture containing 10 mM 3H-acetaminophen 

(2.0 ...l,(,Ci/ml incubation), 6 mM UOP-glucuronic acid, and 2 mM 

UOP-N-acetyl gl ucosamine in a 0.15 M potassium phosphate buffer, pH 

7.4. The incubations were carried out in a shaker water bath set at 

370 for 1 5  minutes. At the end of this time period, sampl es were 
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removed from the water bath and placed in an acetone-dry ice bath to 

stop the reaction by flash freezing . The samples were stored in the 

freezer at -200 until further analysis. Completion of the analysis 

was the same as that described previously for the sulfotransferase 

assay. 

Determination of Tissue Glutathione Concentration 

Tissue glutathione concentration was determined by a modification 

(98) of the method of Patterson and Lazarow (99). This method is 

based on the principle tha t the glyoxalase enzyme, which converts 

methyl glyoxal to lactic acid, requires reduced glutathione (GSH) as a 

cofactor. The lactic acid produced in this reaction releases CO2 from 

added sodium bicarbonate. Liberated CO2 is measured manometrically by 

a Warburg respirometer and is related to GSH concentration (100). 

Construction of a glutathione standard curve allows the determination 

of tissue GSH concentration. The reaction catalyzed by the glyoxalase 

enzyme is shown in Figure 8. 

The method of Patterson and Lazarow (99) was followed in 

preparing the glyoxalase enzyme from baker ' s  yeast. Twelve cakes 

(about 200 grams) of fresh pressed baker ' s  yeast were crumbl ed, 

weighed, and stirred for l O  minutes in 720 ml of cold (40) acetone . 

The acetone was removed by suction filtration and the procedure 

repeated by extracting the residue with 240 ml of cold (40) acetone. 

The residue obtai�ed from this extraction was suspended in 288 ml of 

cold (40) distilled water and stirred for 10 minutes with a 

motor-driven stirrer. This process removed glutathione from the 
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glyoxalase-containi ig yeast preparation. The suspension was 

centrifuged at 40 for 15 minutes at 4, 100 x g. Followi ng 

centrifugation, the water was decanted .and the process to remove 

glutathi one from the yeast preparation was repeated 5 times. 

After the final centrifugation and removal of ·,,Jater, the residue 

was suspended in 240 ml of cold ( 40) acetone. It was then mixed in a 

blender on a low setting for 1 5  seconds. The acetone was removed by 

suction filtration and tne process repeated twice. Following the 

final removal of acetone by suction filtration, the residue was washed 

i inned i ate 1 y with co 1 d ( 40) ether ( 144 ml) . The ether was app 1 i ed by 

pouring it over the residue remaining in the suction filter. Finally, 

the ether-washed residue was placed on bond paper and worked rapidly 

by hand until dry. The glyox3lase preparation was then quickly 

weighed , placed in a tinted bottle, and stored at -200. 

In order to determine the tissue concentration of GSH by the 

glyoxalase method, the Warburg apparat�s (American Instrument Co., 

Inc., Silver Springs, MO) was used. While the water bath of the 

Warburg apparatus was heating to 250, one-side-ar� flasks without 

center wells were chilled in an ice bath. A 0. 5 ml sample of the 

glutathione standard or tissue homogenate was pipetted into the side 

arm. A 1. 5 ml sample of the glyoxalase reaction mixture was pipetted 

into the flask ' s  main compartment. The glyoxalase reaction mixture 

contained 4.0 g yeast glyoxalase, 11.9 ml 0. 2 M NaHC03, 0. 6 ml 40% 

methylglyoxal, 0. 2 ml 2-mercaptoethanol, and 15.0 ml distilled H20 ,  

One flask containing 2.0 ml distilled water served as the 

thermobarometer. Duplicates of all samples and standards were run. 
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When the 1-1ater bath of the Warburg apparatus reached 250, the 

flasks were connected to the manometars and placed in the water bath . 

While the flasks were allowed to equilibrate for 1 0  minutes with the 

system open, the Brodie ' s  solution in the manometers was adjusted to 

read 1 50 mm on the right hand scale. The left hand scale served as 

the zaro reading. The contents of the flasks were mixed and allowed 

to react for 4 minutes at which time the system was closed. Readings 

from the manometers were taken every 5 minutes for l 5 minutes. 

The values for tissue glutathione concentration were expressed as 

)"'9 GSH/sample and mg GSH/ g liver tissue (wet weight). The 

concentration c� .. g) of GSH in each sample was calculated by firs t 

determining the .,u.-1 CO2 produced according to the following equation: 

(Kflask + Kmanometer) x C = �l CO2 produced 

where Kflask = a constant for an unwelled flask at 250 C and 

containing 2 ml fluid; Kmanometer = a constant for the indi�idual 

manometer ;  and C = average change in the reading taken from the 

manometer. The constants for the manometers and flasks had been 

previously deten11ined by the method of Unbreit et al. ( 10 1 ) . To the 

value obtained for the .,u,l CO2 produced/sample, the value representing 

the change in the thermobarometer was either added or subtracted 

depending on the pressure change occurring on the day the sample 

readings were made. The concentration (,.u.g) of GSH/ sample was then 

determined by dividing the adjusted value for ,,.u.-1 CO2 produced by the 

reaction time ( 15 min. ) to give .,LL-1 CO2 produced/minute . This value 

was then divided by the ,.t.t-1 CO2 produced/mg GSH/ min . for the GSH 
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standard (50 mg GSH/0. 5 ml reac tion vol<Jme) to give ,tt.g GSH/ sample. 

The concentration of GSH expressed as mg GSH/ g liver tissue (wet 

. ..,eight ) was then detennined by relating the ).PJ GSH/ sample (0. 5 ml ) to 

the original homogenate vol<Jme. 

Determination of Tissue Protein 

The method of Lowry et al. (55 )  was used to determi1e tissue 

protein concentration using bovine serum al�umin as a standard (200 

�g/ml 0. 5 N NaOH) .  The method was described in detail in Part I, 

pages 19-20. 

Measurement of Urinary Acetaminophen Metabolites 

A modification of the method of Green and Fischer (95 ) was used 

to quanti tate the primary acetaminophen conjugates and free 

acetaminophen in rat urine by high-performance liquid chromatography 

(HPLc, . Frozen urine samples wera thawed and diluted 10-fold with 

HPLC-grade H20. One hundred ,u-1 of each diluted urine sample was 

added to a test tube containing 300 �1 HPLC-grade H20 and 100 ,l,L-1 of 

the internal standard (0.08 M o-toluic acid). As shown in Table 11, 

several compounds were tested as possibl e  internal standards. 

0-toluic acid was selected because it was readil y  soluble in methanol, 

displayed a relatively good retention time, and produced a peak of 

acceptable symmetry. 

To a final sample vol ume of 500 µ1, 1 ml of absolute ethanol was 

added. The solution was mixed with a Vortex-Genie for 2 minutes and 

centrifuged at 1800 RPM for 20 minut�s. Following centri fugation, the 

ethanol was decanted and evaporated to dryness . The resulting residue 



TABLE 11 

Compounds Tested for Use as an Internal Standard 

Compounds Testedl Retention Time 

o-methoxy-benzoic acid >50 min. 

m-methoxy-benzoic acid >50 min. 

o-toluic acid 30 min. 

m-tol ui c acid >50 min. 

p-toluic acid >40 min. 

o-chloro-benzoic acid > SO min. 

p-chloro-benzoic acid >50 min. 

p-hydroxy-benzoic acid 12 min. 

benzoic acid 35 min. 

p-nitro-benzoic acid 35 min. 

p-amino-benzoic acid 12 min. 

lrest conditions were as foll ows : 
Sensitivity = .16 
Flow Rate = 1 ml /min. 

Comments 

Elutes too 1 ate. 

Elutes too 1 ate. 

Possible I. S. 

El utes too 1 ate. 

Elutes too 1 ate. 

Elutes too 1 ate. 

Elutes too 1 ate. 

El utes too soon. 

Interferes with 
APAP-MA2 peak. 

Interferes with 
APAP-MA peak. 

Elutes too soon. 

Solvent = 1% methanol in a buffer of 0.01 M sodium nitrate 
containing 0.5% acetic acid, pH 2.9. 

Chart Speed = lll111/min. 

2APAP-MA = Acetaminophen mercapturic acid. 
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was dissol�ed in lQO )'.-1 HPLC-grade met�anol and stored in the freezer 

(-200 ) until the analysis by HP LC. 

P rior to sampla injection, the mobile phase solvents were 

degassed for t o  minutes. Two solvent systems were used in the 

analysis : solvent A (a buffer of 0. 5% acetic acid in 0.01 M sodium 

nitrate, pH 2. 9, containing 11 methanol) and sol�ent B (100% 

methanol). A gradient approach was employed because it produced good 

resolution of the compounds of interest while simultaneously promoting 

the elution of the internal standard within a reasonabl e time period. 

The gradient was constructed so that solvent A was pumped through the 

column at a flow rate of 0.8 ml/min. for l S  minutes following sample 

injection. After l S  minut�s, the flow rate was reduced to 0.6 ml/min. 

and the level of solvent B was programmed to reach 15% in 15 minutes. 

When the internal standard had eluted from the column, the flow rate 

was increased to 0.8 ml/min., the level of solvent B was reduced to 

0%, and the system was allowed to equilibrate for 20 minutes prior to 

the next injection. 

A sample volume of 8 �l was injected onto a reverse phase phenyl 

column (Alltech Associates) with the following specifications : 

Guard Colu�n 

Size : 5 cm x 4.6 m.� I . D. 

Packing : Nucleosil Phenyl 

?article Size : 7 

Connector 

Size : 1/16 " 
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Column 

Size : 30 cm x 4. 6 mm I. O. 

Packing : Nucleosil Phenyl 

Particle Size : 7 

A Beckman Gradient-Liquid Chromatograph (Model 334) with a system 

controller (�odel 421) was employed. The UV spectrophotometer (Model 

153) was equipped with a 254 nm filter. The amount of each metabolite 

in the urine samples was determined by constructing standard curves 

using known concentrations of each conjugate and free acetaminophen. 1 

The standard curves were made by calculating the ratio of the area of 

the compound of interest peak to the area of the internal standard 

peak from the chromatJgrams. After these values were plotted, the 

method of least squares was used to fit a line to these points. The 

SAS program outlined in Appendix D was used to generate equations that 

described these lines . Gi1en the ratio of compound of interest to 

internal standard, the concentration of compound of interest was 

determined by using the appropriate equation. A typical chromatogram 

is shown in Figure 9. 

Statistical Analyses 

The effect of acetaminophen on Variable X was evaluated by 

Student ' s  t-test (56). (Variable X represents any of several 

variables being measured--e.g., glutathione S-transferase activity, 

sulfotransferase activity, tissue concentration of reduced 

lThe acetaminophen sulfate and glucuronide conjugates were a gift 
from McNeil Consumer Products Company, Fort Washington, PA. The 
acetaminophen mercapturic acid conjugate was a gift from Winthrop 
Laboratories, Fawdon, Newcastle Upon Tyne. 
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gl utathione , etc.) The effect of dietary sulfur on V,1riabh X in rats 

receiving acetaminophen was assessed by the method of planned 

comparisons (56) as outlined in Part I, pages 20-23. The General 

Linear Models (GLM) Procedure of the Statistical Analysis System (SAS) 

package was used to evaluate the data (57). 

As in Part I ,  four central questions were asked of the data. 

These questions were fonnulated into contrast statements. The 

questions followed by the contrast statements are as follows : 

1. Does Variable X differ in rats fed diets containing 0. 0072% 

versus 0. 027% inorganic sulfate and injected with 

acetaminophen (Contrast ' .0072 vs .027 ' )? 

2. Does Variable X differ in rats fed diets containing 

0. 027% versus 0 .427% inorganic sulfate and injected with 

acetaminophen ( Contrast ' .027 vs .427 ' )? 

3. In rats receiving acetaminophen, does supplementation 

with organic sulfur affect Variable X (Contrast ' Supple 

vs No Supple ' )? . 

4. In rats receiving acetaminophen , does the nature of the 

supplementation (cysteine versus methionine) affect Variable 

X (Contrast ' Cys vs Meth ' )? 

Independence among sample observations was obtained by 

randomizing both the order in which rats were assigned t� dietary 

groups and the order in which rats were selected for sacrifice on a 

given day. An alpha level of 0. 05 was chosen in establishing 

statistical significance. 



CHAPTER IV 

RESULTS 

The purpose of this investigation was to determi�e the effect of 

dietary sulfur on the hepatic metabolism and urinary excretion of 

1cetami nophen in adult male rats. Rats were fed diets contai ning 

0.0072%, 0.0271, or 0.4271 inorganic sulfate w i th either no organic 

sulfur suppl�mentation or supplamentation with cysteine or methionine. 

Rats fed Diets 1 - 9 receh 1ed an intraperitoneal (i.p.) injection of 

acetaminophen in saline; rats fed Diet 10 recei ved an i . p. injection 

of saline alJne. 

In the liver, the activities of the glutathi one S-transferases 

(GSH S-T), sulfotransferase (ST), and UDP-glucuronyltransferase 

( UDP-GT) were determined. The hepatic concentration of reduced 

glutathione (GSH) was also m�asured. In the urine, free 

acetaminophen , acetaminophen glucuronide, acetami nophen sulfate, and 

acetaminophen mercapturic acid wera quantitated by high-performance 

liquid chromatography (HPLC). 

The study was designed to answer the followi ng questions where 

Vari able X = any variable being measured : 

1. Does Variable X differ in rats fed diets conta i n i ng 0. 0072% 

versus 0. 0271 inorganic sulfate and i njected wi th 

acetaminophen ( Contrast 1 .0072 vs .027 1 ) ?  

2. Does Variable X differ in rats fed diets containing 

0.0271 versus 0. 4271 inorganic sulfate and i njected with 

acetaminophen (Contrast 1 .027 vs .427 ' )? 

7 1  



3. In rats receiving acetaminophen, does supplementation 

with organic sulfur affect Variable X (Contrast ' Supple 

vs No Supple ' )? 

72 

4. In rats receiving acetaminophen, does the nature of the 

supplementation (cysteine versus methionine) affect Variable 

X (Contrast ' Cys vs Meth ' ) ?  

Effect of Acetaminophen Administration � Hepatic GSH Content and 
Enzyme �tiv,ti es 

As shown in Table 12, the i. p .  administration of acetaminophen 

to adult male rats significantly increased hepatic GSH concentration 

when the data were analyzed by Student ' s  t-test. This was true 

whether the data were expressed as ).Lg GSH/ sample or mg GSH/ g liver 

tissue (wet weight). 

Tables 13, 14, and 15 show that the i. p. �dministration of 

acetaminophen to adult male rats did not affect the hepatic activities 

of GSH S-T, ST, and UDP-GT respectively. Student ' s  t-test was used to 

compare means (56). 

Effect of Dietary Sulfur on Hepatic Gl utathf one S-Transferase Acti 'Ii ty 
� Rats 'lfecehi ng Acetaminophen 

The data for hepatic GSH S-T activity in rats receiving 

acetaminophen are shown in Table 16. Table 17 presents the analysis 

of -1ariance sununary for these data • 

. f\s seen in Table 17, dietary i norganic sulfate appeared to have 

no effect on GSH S-T activity when the data were analyzed by the 

method of planned comparisons. However, supplementation of diets with 

organic sulfur significantly reduced GSH S-T activity in the livers of 



TABLE 12 

The Effect o f  Acetami nophen Admi n i strati on on the Hepa ti c Concentrati on 
of Reduced Gl utathi one ( GSH ) i n  Rats 

-------- ---- ---------------------- --------------------------------·- ----- ------ ------------
Diet GSH Concentrati on Degrees of Freedom T-Val uel P-Val ue 
--------------------------------------------------------------------------·-------·----

. 5  ( wi th APAP2 ) 

10 (wi thout APAP) 

_.u.g GSH/ sampl e 

14 7 + s3 ( 6 )4 

95 + 13 ( 5 )  

5 ( wi th APAP ) 

mg GSH/g l i ver (wet wei ght) 

2. 93 + . 1 5 ( 6 )  

10 ( wi thout APAP) 1 .  94 + • 26 ( 5 )  

lMeans were c�npared usi ng Student ' s t-test ( 56 ) . 

2APAP = Acetami nophen .  

3val ues represent mean ! SEM .  

9 .0 

9 . 0  

4Number i n  parentheses i ndi cat�s the number o f  experi mental animal s used . 

3 . 6160 0 . 0056 

3 . 4581 0 . 0072 

....... w 



TABLE 1 3  

The Effect o f  Acetami nophen Admi ni strati on o n  Gl utathi one S-Transferase Acti vi ty i n  Rat Li ver 

------------------------------------------------------------------------

Diet GSH S-T Acti vi tyl Degrees of Freedom T-Val ue2 

5 { Wi th APAP3 ) .323 + .094 ( 6 ) 5 

9 . 0  0 . 5068 

10 { Wi thout APAP ) • 266 + • 06 { 5 )  

------------------------------

lGsH S-T Acti vi ty = .,u.mol es 1-chl oro-2 ,4-di ni trobenzene conj ugated/mg pro tei n/mi nute . 

2Means were compared usi ng Student ' s t-test ( 56 ) . 

3APAP = Acetami nophen . 

4val ues represent mean ::_ SEM . 

5Number i n  parentheses i ndi cates the number of experi mental animal s used . 

P-Val ue 

0 . 6245 

--.a """ 



TABLE 14 

The Effect of Acetami nophen Admi ni strati on on Sul fotransferase Acti vi  t.Y i n  Rat Li ver 

------ L-- ---·- ----------- --------- --------------- -·---- --------------- ---------- --------------

Diet S-T Acti v i t_yl Degrees of Freedom T-Val ue2 

5 ( Wi th APAP3 )  0 .029 + 0 .0054 ( 5 ) 5 

9 . 0  -0 . 3230 

10 ( Wi thout APAP ) 0 .032 + 0 .007 ( 5 ) 

l s-T Acti v i ty = nmoles acetami nophen sul fate fonned/mg protei n/mi nute .  

2Means were compared usi ng Student ' s  t-test ( 56 ) . 

3APAP = Acetami nophen . 

4val ues represent mean :!:_ SEM . 

5Number i n  parentheses i ndi cates the number o f  experimental animal s used . 

P-Val ue 

0 .  7541 

_, 
u, 



TABLE 15  

The Effect of Acetami nophen Admi ni strati on on UDP-Gl ucuronyl transferase Acti v i ty 
i n  Rat Li ver 

--------------- ---------------- --------------------------------------------------------

Di et UDP-GT Acti v i ty l  Degrees o f  Freedom T-Val ue2 P-Val ue 
---·--------------------------------------------------·-----------------·------- --------

5 ( W i th APAP3 ) 54 + 124 ( 6 ) 5 

9 . 0 0 . 4543 0 . 6604 

10 ( W i thout APAP ) 49 + 6 ( 5 )  

-·----- ------------------------- -----------------------------------------·----- -------

luDP G-T Acti v i ty = nmo l es acetami nophen gl ucuron i de formed/mg protei n/mi nute .  

2Means were anal yzed by Student' s t-test ( 56 ) . 

3APAP = Acetami nophen . 

4val ues represent mean :!:_ SEM . 

5Number i n  parentheses i ndi cates the number of experi mental animal s used . 

-.....i °' 



TABLE 16 

The Effect of Di etary Sul fur on Hepati c Gl utathi one S-Transferase Acti v ity Expressed as pvmol es CDNBl 
Conj ugated/mg Prote i n/Mi nute i n  Rats Recei v i ng Acetami nophen 

- ---- --------------------------------------------------------------·--------------------------

Level of Di etary I norgan ic  Sul fate 

Organ ic  Sul fur 0 . 0072't 0 .027't 0 . 427't Group Means 
-------------------------------------------------------------------·-- -- ·---------- ---------

mol es CDNB conj ugated/mg protei n/mi nute 

Hone .467 + . 012 ( 5 ) 3 . 393 + . 06 ( 6 )  . 325 + . 07 ( 5 )  . 395 + . 04 ( 16 )  

Cystei ne . 232 + . 07 ( 5 )  . 323 + . 06 ( 6 )  . 235 + . 06 ( 6 )  . 263 + . 04 ( 17 ) 
( 0 . 5  g/ 100 g di et) 

Meth i on i ne . 357 + . 08 ( 4 )  . 345 + . 06 ( 6 )  . 357 + . 06 ( 6 )  . 353 + . 04 ( 16 )  
( 0 . 6  g/ 100 g di et) 

Group Means . 352 + . 04 ( 14 )  . 354 + . 04 ( 18 )  . 305 + . 04 ( 17 )  

-------------------------------- --------------------------------------------- ------·-

lcoNB = l -Chl oro-2 ,4-di nitrobenzene . 

2val ues represent mean .: SEM .  

3Number i n  parentheses i ndi cates the number o f  experi mental animal s used . 
....... ....... 



TABLE 17 

Anal ys i s  of Vari ance Su11111ary for Hepati c Gl utathi one S-Transferase Acti vity Expressed as )L-mol es CDNBl 

· Conj ugated/mg Protei n/Mi nute i n  Rats Recei v i ng Acetami nophen 

-------------------------------------------------·----------------------------- ---------

Source  Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
---------------------------------------------------------·------------·--------

Sul fate Level 2 0 .0252 0 . 5 1  0 . 6026 

Suppl ementation 2 0 . 1486 3 . Q3 0 . 0596 

I nteracti on 4 0 .0586 0 . 60 0 . 6666 

Contrasts Between Group Means 

I .0072 V S  .027 1 

1 0 . 00003 0 . 00 0 . 9703 

I .027 VS . 427 1 1 0 . 02060 0 . 84 0 . 3648 

• suppl e v s  No Suppl e '  1 0 . 09985 4 . 26 0 . 0487 
1 Cys vs Meth ' 1 0 .0649 1 2 . 65  0 . 1 1 16 

-------------------------------------------------------------- ------------------------------

l coNB = l-Chl oro-2 ,4-di nitrobenzene . 

-.a 
CX) 
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rats receiving acetaminophen. Furthermore, supplementation of diets 

with cysteine produced a greater reduction in GSH S-T activity than 

did �ethionine supplementation. This observed effect in the 

difference between the effect  of cysteine and methionine 

supplementation on enzyme activity is in keeping with that seen in the 

Part I data (see Table 7, page 32). 

Effect of Dietary Sulfur on Hepatic GSH Content in Rats Receh 1i ng 
Acetami nophen � 

The data for hepatic GSH content expressed as .,u-g GSH/sample are 

given in Table 18 ; Table 19 p resents the analysis of variance summary 

for these data. T�e data for GSH concentration expressed as mg GSH/ g 

liver tissue (wet weight) are shown in Table 20 ; the analysis of 

variance sum.nary for these data is gh 1en in Table 21. 

An examination of Tables 19 and 21  "eveals that dietary inorganic 

sulfate appeared to have no effect on hepatic GSH levels when the data 

were analyzed by the method of planned comparisons. However, GSH 

levels were significantly greater in the livers of rats fed diets 

supplemented with organic sulfur than in rats fed diets deficient in 

organic sulfur. There appeared to be no difference in the effect of 

cysteine and methionine supplementation on hepatic GSH levels. 

In addition, an examination of the data shown in Tables 18 and 20 

reveals that in the livers of rats fed diets supplemented with 

cysteine, GSH levels were highest at the 0.027% level of dietary 

inorganic sulfate. When diets were supplemented with methionine, 

hepatic GSH levels were lowest at the 0.027% inorganic sulfate level. 



TABLE 18 

The Effect of Di etary Sul fur on Hepati c Gl utathi one ( GSH) Concentrati on Expressed as 
,LLJJ GSH/Sampl e i n  Rats Recei v i ng Acetami nophen 

Organic Sul fur 0 .0072'.t 
-- ----------------------------

None 82 + 101 ( 5 ) 2 

Cystei ne 115 + 10 ( 5 )  
( 0 . 5  g/ 100 g di et) 

Methi oni ne 106 + 11 ( 4 )  
( 0 . 6  g/ 100 g di et) 

Group Means 101 + 6 ( 14 )  

lval ues represent mean :!:. SEM . 

Level of Di etary I norgani c Sul fate 

0 .027'1, 0 . 427'1, Group Means 
-------------------------------------------------- ------

µ..g GSH/ samp 1 e 

94 + 9 ( 6 )  

147 + 9 ( 6 )  

84 + 9 ( 6 )  

108 + 5 ( 18 )  

9 7  + 1 0  ( 5 )  9 1  + 6 ( 16 )  

7 4  + 9 ( 6 )  1 1 2  + 5 ( 17 )  

133 + 9 ( 5 ) 108 + 6 ( 16 )  

102 + 5 ( 17 )  

2 Number i n  parentheses i ndi cates the number o f  experimental animal s used . 
CX) 
0 



TABLE 19 

Anal ysi s of Vari ance Sunmary for Hepati c Gl utathi one Concentrati on Expressed as ,.t,t.g GSH/ Sampl e 
i n  Rats Recei vi ng Acetami nophen 

---------------------------------------------------------------·------

Sourc e  Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
----------------�-------------------

Sul fa te Level 

Supplementati on 

I nterac ti on 

Contrasts Between Group Means 

I . 0072 VS . 027 I 

' . 027 · V S  .427 1 

' Supp le  vs  No Suppl e '  
1 Cys v s  Meth ' 

- ---------------------

2 

2 

4 

1 

1 

1 

1 

---------------------------------------- -------

499 . 2864 

4 1 17 . 739 1  

23498 . 3418 

369 . 0087 

359 . 2301  

3904 . 3363 

168 . 8995 

00 . 5 1 

04 . 19 

1 1 .96 

00 . 75  

00 . 73  

07 . 95 

00 . 34 

0 .6055 

0 . 0223 

0 .000 1 

0 . 39 13  

0 . 3976 

0 .007 5 

0 . 5610 

CD ..... 



TABLE 20 

The Effect of  Dietary Sul fur on Hepat ic  Gl utathi one ( GSH)  Concentrati on Expressed as 
mg GSH/g L i ver Ti ssue ( Wet Wei ght)  i n  Rats Rece i v i ng Acetami nophen 

-----------------------------------·----- -----------------------------------------------

Level of D i etary I norgan i c  Sul fate 

Organ i c  Sul fur 0 .00721. 0 .027'1, 0 . 4271, Group Means 
----------------------- -------------- ------------------------------------

mg GSH/g l i ver ( wet wei ght)  

None 1 . 62 + 0 .201 ( 5 ) 2 1 .  90 + 0 . 19 ( 6 ) 1 .  90 + 0 . 20 ( 5 )  1 . 81 + 0 . 1 1 ( 16 )  

Cystei ne 2 . 30 + 0 .20 ( 5 )  2 . 93 + 0 . 19 ( 6 )  1 .47 + 0 . 19 ( 6 )  2 .  2 3  + 0 . 1 1  ( 17 ) 
( 0 . 5  g/ 100 g di et) 

Meth i oni ne 2 . 15 + 0 . 23 ( 4 )  1 . 70 + 0 . 19 ( 6 )  2 . 65 + 0 . 19 ( 6 )  2 . 17 + 0 . 12 ( 16 )  
( 0 . 6  g/ 100 g di et) 

Group Means 2 .02 + 0 . 12  ( 14 )  2 . 18 + 0 . 1 1  ( 18 )  2 . 01 + 0 . 1 1 ( 17 )  

----------------------------------------------------------

lval ues represent mean :!:_ SEM . 

2Number i n  parentheses i ndicates the number of experimental an imal s used . 
a:, 
N 



TABLE 21 

Anal ysi s of Vari ance Sunmary for Hepati c Gl utathi one Concentration Expressed as mg GSH/g Li ver Ti ssue 
( Wet Wei ght )  i n  Rats Recei vi ng Acetami nophen 

Source Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
------------ ----------------------------------------------------------------------

Sul fate Leve 1 

Suppl ementati on 

I nteracti on 

Contrasts Between Group Means 

' .007 2 VS .027 ' 

I .027 V S  .427 I 

' Supp le  vs  No Suppl e '  

' Cys v s  Meth ' 

2 

2 

4 

1 

1 

1 

1 

0 . 3085 

1 .6956 

9 . 1334 

0 . 1867 

0 . 2583 

1 . 6462 

0 . 0358 

0 . 75  

4 . 10 

1 1 . 03 

0 . 90 

1 . 25 

7 . 95 

0 . 17 

0 . 4812 

0 . 024 1 

0 . 000 1 

0 . 3480 

0 . 2706 

0 .0074 

0 . 6796 

():) w 
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Effect of Oi�tary Sulfur � Hepatic Sulfotransferase Activity _:!.!!. Rats 
Rece, vi iig  Acetaminophen 

The data showing the effect of dietary sulfur on hepatic 

sulfotransferase activity in rats receiving acetaminophen are 

presented in Table 22 . The analysis of variance summary for these 

data is given in Table 23 and shows that when the data were analyzed 

by the method of planned com?arisons, sulfotransferase act ; vity did 

not appear to be affected by either the level of dietary inorganic 

sulfate or supplementation with organic sulfur. 

Effect of Dietary Sulfur on Hepatic UDP-Glucuronyltransferase Activity 
in Rats"lrece1 v 1 nq Acetaminophen 

The data showing the effect of dietary sulfur on hepatic UDP-GT 

activity in rats receiving acetaminophen are presented in Table 2�. 

The analysis of variance su!l1Tlary for these data is given in Table 25 

and shows that when the data were analyzed by the method of planned 

comparisons, UDP-GT �ctivity did not appear to be affected by either 

the level of dietary ; norgani� sulfate or supplementation with organic 

sulfur. 

Effect of �ietary Sulfur on the Urinary Excreti on of Acetaminophen by 
Adult Ma.Te Rats - -- - -
-- -- --

Table 26 shows the effect of dietary sulfur on the urinary 

excretion of acetaminophen sulfate by adult male rats. The analysis 

of variance summary for these data is given in Table 27. When the 

data were analyzed by the method of planned comparisons as shown in 

Table 27, the urinary excretion of acetaminophen sulfate did not 

appear to be affected by e ; ther the level of dietary inorganic sulfate 

or supple�entation with organic sulfur. 



TABLE 22 

The Effect of Di etary Sul fur on Hepatic Sul fotrans ferase Acti vi ty i n  Rats 
Recei v i ng Acetami nophen 

----------------- --------------------------·----------------------- -·-- ---------

Level of Di etary I norgani c Sul fate 

Organi c Sul fur 0 .0072'1, 0 .027$ 0 . 427'1, Group Means 
--------------------------- -------·--------- ------------------------

nmoles  APAP l conjugated/mg protei n/mi nute 

None .035 + .0012 ( 5 ) 3 .033 + .007 ( 6 )  . 037 + . 009 ( 5 )  .035 + .005 ( 16 )  

Cystei ne .036 + .008 ( 5 ) . 029 + .007 ( 6 )  . 037 + . 007 ( 6 )  .034 + .004 ( 17 )  
( 0 . 5  g/ 100 g di et) 

Methi oni ne .032 + . 009 ( 4 )  .041 + . 007 ( 6 )  .037 + . 007 ( 6 )  .037 + . 005 ( 1 6 )  
( 0 . 6 g/ 100 g di et) 

Group Mea ns .034 + .005 ( 14 )  .034 + .004 ( 18)  . 037 + . 005 ( 1 7 )  

---·----------------------- ----·---------------------·---------------·----------------

l APAP = Acetami nophen . 

2val ues represent mean : SEM . 

3Number i n  parentheses i ndi cates the number of experimental animal s used . 
a:> 
U'I 



TABLE 23 

Anal ysi s o f  Vari ance Su!llllary for Sul fotransferase Data 

·--------------

Source Degrees o f  Freedom Sums of Squares F-Val ue P-Val ue 
---------------------------------------------- ---------------

Sul fate Level 

Suppl ementatf on 

Interac tion 

Contrasts Between Group Means 
1 .0072 V S  . 027 1 

I . 027 VS  .427 1 

' Suppl e  vs No Suppl e '  

' Cys v s  Meth ' 

2 

2 

4 

1 

1 

1 

1 

0 .00007 

0 . 00006 

0 . 00038 

0 . 00005 

0 .00000 

0 . 00000 

0 .00006 

0 . 1 1  

0 . 09 

0 . 29 

0 . 17 

0 . 01  

0 . 00 

0 . 17 

-----------------------------------------------------------·---------------

0 . 897 1 

0 . 9153 

0 . 8801 

0 .6858 

0 . 9073 

0 . 9965 

0 . 6813  

CX) °' 



TABLE 24 

The Effect of Dietary Sul fur on Hepati c UDP-Gl ucuronyl trans ferase Ac ti vi ty 
i n  Rats Recei v i ng Acetami nophen 

----------------------� 

Level of Di etary I norga ni c Sul fate 

Organic Sul fur 0 . 0072'.t 0 . 027% 0 .  427'.t Group Means 
---------------------------·----------------

nmol es APAP l conjugated/mg protei n/mi nute 

None 56 + 102 ( 5) 3 

Cystei ne 38 + 10 ( 5 )  
( 0 . 5  g/ 100 g di etO 

Methi oni ne 48 + 11  ( 4 )  
( 0 . 6  g/100 g di et) 

Group Means 48 + 6 ( 14 )  

lAPAP = Acetami nophen . 

2val ues represent mean ! SEM . 

47 + 9 ( 6 )  50 + 10 ( 5 )  

55 + 9 ( 6 )  50 + 9 ( 6 )  

60 + 9 ( 6 )  52 + 9 ( 6 )  

54 + 5 ( 18 )  50 + 5 ( 17 ) 

3Number i n  parentheses i ndi cates the number of experimental animal s used . 

51 + 6 ( 16 )  

48 + 5 ( 17 ) 

53 + 6 ( 16 )  

CX> 
-i 



TABLE 25 

Anal ysi s of Var iance Sunmary for UDP-Gl ucuronyl transferase Data 

-------------------------- ------------------------------------- ------------------

Sourc e Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
--------------------------------------------·- ------------------------------

Sul fate Level 

Suppl ementati on 

I nteracti on 

Contrasts Between Group Means 

' .0072 VS .027 ' 

I .027 V S  ,427 I 

' Suppl e vs  No Suppl e '  

' Cys v s  Meth ' 

-----------------

2 

2 

4 

1 

1 

1 

1 

298 . 1475 

248 .9279 

1026 . 5825 

292 .8022 

98 .0688 

3 . 0582 

244 . 2988 

0 . 30 

0 . 25 

0 . 51 

0 . 58 

0 . 19 

0 .01  

0 . 48 

0 . 7461 

0 .7828 

0 . 7301  

0 .4510 

0 . 6619 

0 .9384 

0 .4909 

co 
CX) 



TABLE 26 

The Effec t of Di etary Sul fur on the Uri nary Excreti on of Acetami nophen Sul fate 
by Adul t Mal e Rats 

-------------------------------------------------------------------------------------

Level of Di etary I norgani c Sul fate 

Organic  Sul fur 0 .0072'1, 0 . 027% 0 .427% Group Means 
·-------------------- -------------�-------------------------------------

None 5 . 7 + 1 . 32 ( 5 ) 3 

Cystei ne 8 . 1  + 1 . 3  ( 5 ) 
( 0 . 5  g/ 100 g di et) 

Methi oni ne 5 . 8 + 1 . 4 ( 4 ) 
( 0 . 6  g/ 100 g di et) 

Group Means 6 . 5  + 0 . 8  ( 14 )  

lAPAP-S04 = Acetami nophen sul fate . 

2val ue s represent mean � SEM . 

mg APAP-S04l exc reted/24 hours 

5 . 1  + 1 .2 ( 6 )  5 . 6 + 1 . 3  ( 5 ) 

5 . 3  + 1 . 2 ( 6 )  5 . 5  + 1 . 2 ( 6 )  
- -

5 .4 + 1 . 2 ( 6 )  6 . 9 + 1 . 2  ( 6 )  

5 . 2  + 0 .7 ( 18 )  6 . 0 + 0 . 7 ( 17 )  

3Number i n  parentheses i ndi cates the number of experimental animal s used . 

5 . 5  + 0 . 7 ( 16 )  

6 . 3 + 0 . 7 ( 17 )  

6 . 0 + 0 . 7  ( 16 )  

CX> 
\0 



TABLE 27 

Anal ys; s of Var; ance Su11111ary for the Uri nary Exc reti on of Acetami nophen Sul fate by Adul t Mal e  Rats 

�----------------------- -------------------------------------------- ----------------

Source  Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
�------------------ -------------------------------�-----------------------------

Sul fa te Level 

Suppl ementati on 

I nteracti on 

Contrasts Betwee n Group Means 

' .0072 vs  .027 ' 

' . 027 v s  .427 ' 

' Supp l e  vs  No Suppl e '  

' Cys v s  Meth ' 

2 

2 

4 

1 

1 

1 

1 

13 . 6276 

5 . 4093 

19 . 9616  

13 . 1 351 

5 . 2238 

4 . 8960 

0 . 4346 

0 . 85 

0 . 34 

0 . 62 

1 . 63 

0 . 65  

0 . 61 

0 . 05 

0 . 4368 

o .  7 168 

0 . 65 13  

0 . 2090 

0 . 4255 

0 . 4403 

0 .8175  

------------------- -----------------------------------------------------------------

� 
0 
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The data showing the effect of dietary sulfur on the urinary 

excretion of acetaminophen gl ucuroni de by adult male rats are given in 

T3ble 28. An examination of the analysis of variance summary for 

these data ( Table 29) reveals an effect of ,oth dietary inorganic 

sulfate and organic sulfur supplementation on the urinary excretion of 

acetaminophen glucuronide. Excretion of the glucuronide conjugate was 

significantly increased in rats fed diets cont3ining 0.0072% inorganic 

sulfate ( Contrast 1 .0072 vs .027 1

) .  In addition, rats fed diets 

deficient in organic sulfur excreted significantly �ore acetaminophen 

glucuronide than rats fed diets supplemented with cysteine and 

methionine. Also, the type of organic sulfur supplementation had a 

significant effect on acetaminophen glucuronide excretion. Rats fed 

diets supplemented with cysteine excreted significantly more of the 

glucuronide conjugate than did rats fed diets supplemented with 

methionine. 

The data showing the effect of dietary sulfur on the urinary 

excretion of free acetaminophen are presented in Table 30. The 

analysis of variance summary for these data is given in Table 31 and 

shows that the excretion of free acetaminophen was significantly 

reduced in rats fed diets cont!ining inorganic sulfate at the level of 

0.427%. Supplementation of diets with organic sulfur did not appear 

to affect the urinary excretion of free acetaminophen when the data 

were analyzed by the method of planned comparisons. 

Table 32 shows the effect of dietary sulfur on the urinary 

excretion of acetaminophen mercapturic acid by adult male rats. The 

analysis of variance summary for these dat3 are presented in Table 33. 



TABLE 28 

The Effect of Di etary Sul fur on the Uri nary Excreti on of Acetami nophen Gl �curoni de 
by Adul t Mal e Rats 

Level of Di etary I norgani c Sul fate 

Organi c Sul fur 0 . 0072'1, 0 .027'1, 0 . 427'1, Group Means 
--------------------------------------- ---------------------�---------------- ---------------

mg APAP-GU l excreted/24 hours 

None 6 . 7  + 0 . 12 ( 5 ) 3 

Cystei ne 5 . 5  + 0 . 7  ( 5 ) 
( 0 . 5  g/ 100 g di et) 

Methi on i ne 3 . 2  + 0 .8 ( 4 )  
( 0 . 6 g/ 100 g di et) 

Group Means  5 . 1  + 0 .4 ( 14 )  

lAPAP-GU = Acetami nophen gl ucuroni de . 

2val ues represent mean ::!:. SEM . 

4 . 5  + 0 . 7 ( 6 )  3 . 9  + 0 . 7  ( 5 ) 

4 . 5  + 0 . 7  ( 6 )  4 .0 + 0 . 7  ( 6 )  

2 • 5 + 0 • 7 ( 6,) 3 . 5  + 0 . 7  ( 6 )  

3 . 8  + 0 . 4  ( 18 )  3 . 8 + 0 . 4  ( 17 )  

3Number i n  parentheses i ndi cates the number of experimental animal s used . 

5 . 0  + 0 . 4  ( 16 )  

4 . 7  + 0 .4 ( 1 7 )  

3 . 1  + 0 .4 ( 16 )  

'° 
N 



TABLE 29 

Anal ysi s of Vari ance Su11111ary for the Uri nary Excreti on of Acetami nophen Gl ucuron i de by Adul t Mal e Rats 

Source 
·-----------------

Sul fa te Level 

Suppl ementati on 

I nteraction 

Contrasts Between Group Means 

I .0072 VS .027 ' 

I .027 V S  .427 I 

' Suppl e vs No Suppl e '  
1 Cys vs  Meth ' 

Degrees of Freedom 

2 

2 

4 

1 

1 

1 

1 

Sums of Squares 

16 . 8754 

33 .8710 

12 . 4482 

13 . 2148 

0 . 0010 

14 . 3382 

20 . 3899 

F-Val ue 

3 .04 

6 . 10 

1 . 12 

4 . 76 

0 . 00 

5 . 16 

7 . 34 

P-Val ue 

0 . 059 1 

0 . 0049 

0 . 3605 

0 . 035 1 

0 . 9844 

0 .0285 

0 . 0099 

---------------------------------------------

l,O 
w 



TABLE 30 

The Effect of Di etary Sul fur on the Uri nary Excreti on of  Free Acetami nophen 
by Adul t Mal e Rats 

Level of Di etary I norgan ic  Sul fate 

Organi c Sul fur 0 .0072% 0 . 027% 0 . 427% Group Means 
-----------------------·------ ------------------ ---·---··-----------

mg free APAP l excreted/24 hours 

None 3 . 6  + 0 . 42 ( 5 ) 3 

Cystei ne 3 . 1  + 0 .4 ( 5 ) 
( 0 . 5  g/ 100 g d i et)  

Methi oni ne 2 . 6  + 0 .4 ( 4 )  
( 0 . 6 g/ 100 g di et) 

Group Means 3 . 1  + 0 . 2  ( 14 )  

lAPAP = Acetami nophen . 

2val ues represent mean :_ SEM . 

2 .8 + 0 .4 ( 6 )  1 . 6 + 0 . 4  ( 5 )  

3 . 1  + 0 .4 ( 6 )  2 . 2  + 0 .4 ( 6 )  

2 .8 + 0 .4 ( 6 )  2 . 2  + 0 . 4  ( 6 )  

2 .  9 + 0 . 2 ( 18 )  2 . 0 + 0 . 2  ( 17 )  

3Number i n  parentheses i ndi cates the number of experimental animal s used . 

2 . 6 + 0 . 2  ( 16 )  

2 . 8 + 0 . 2  ( 17 )  

2 . 6  + 0 . 2  ( 16 )  

\0 � 



TABLE 31 

Anal ysi s of  Vari ance Sunmary for the Uri nary Excreti on of Free Acetami nophen by Adult Mal e  Rats 

------------------------------------------------------------ -----------------------------

Source 

Sul fate Level 

Supplementation 

I nteracti on 

Contrasts Between Group Means 

I .0072 VS .027 ' 

I . 027 V S  . 427 ' 

' Suppl e v s  No Suppl e '  
1 Cys v s  Meth ' 

Degrees of Freedom Sums of Squares F-Val ue P-Val ue 
-----------------------------------------------------------

2 

2 

4 

1 

1 

1 

1 

11 . 2095 

0 . 6098 

3 . 4013  

0 . 2792 

7 . 2654 

0 .0210 

0 . 5827 

7 . 13 

0 . 39 

1 . 08 

0 . 36 

9 . 24 

0 .03 

0 . 74 

0 . 0022 

0 . 6810 

0 . 3785 

0 . 5546 

0 .0042 

0 . 8709 

0 . 3944 

·--------------------------------------------------- ----------- ---·---------------

I.Cl 
U'1 



TABLE 32 

The Effect of Di etary Sul fur on the Uri nary Excreti on of Acetami nophen Mercapturic  Ac i d  
by Adul t Mal e Ra ts 

----------------------- --------------------------------- ------------------- -
Level of Dietary I norgani c Sul fate 

Organ i c  Sul fur o .ooni 0 .027'.t 0 . 427'.t Group Means 
------------------------------------ ----------------------- ·------------

mg APAP-MAl exc reted/24 hours 

None 1 . 7  + 0 . 12 ( 5 ) 3 1 . 4 + 0 . 1  ( 6 )  1 . 0 + 0 . 1  ( 5 ) 1 . 4 + 0 . 1  ( 16 )  

Cystei ne 1 . 1  + 0 . 1  ( 5 )  1 . 0 + 0 . 1  ( 6 )  0 . 7  + 0 . 1  ( 6 )  0 . 9 + 0 . 1  ( 1 7 )  
( 0 . 5  g/ 100 g di et) 

Methi on i ne 0 .8  + 0 . 1  ( 4 ) 1 . 0 + 0 . 1  ( 6 )  1 . 1  + 0 . 1  ( 6 )  0 . 9  + 0 . 1  ( 16 )  
( 0 . 6  g/ 100 g di et) 

Group Means 1 . 2  + 0 . 1  ( 14 )  1 . 1  + 0 . 1  ( 18 )  0 . 9 + 0 . 1  ( 17 )  

--·--- ------ -------------------�-------------------------------------

lAPAP-MA = Acetami nophen mercaptur ic  aci d .  

2val ues represent mean :!_ SEM. 

3Number i n  parentheses i ndi cates the number of experimental ani mal s used . 
I.O 
O'I 



TABLE 33 

Analysi s of Variance Sunmary for the Uri nary Excreti on of Acetami nophen Mercapturic  Ac i d  
by Adul t Mal e  Rats 

----------------------------------------------------------------------

Sourc e Degrees of Freedom Sums of Squares F-Val ue 
-----------------------------------------------------------------------· 

Su l fa te Level 

Suppl ementati on 

I nteracti on 

Contrasts Between Group Means 

' .0072 V S  .027 ' 

I . 027 V S  . 427 I 

' Supp l e  vs  No Suppl e '  

' Cys v s  Meth ' 

2 

2 

4 

1 

1 

1 

1 

0 . 5690 

1 . 8028 

1 . 3146 

0 . 0937 

0 . 2229 

1 .  7765 

0 .0163 

3 . 22 

10 . 2 1  

3 .  72 

1 . 06 

2 . 52 

20 . 12 

0 . 18 

P-Val ue 

0 .0504 

0 . 0003 

O .Ol l 5  

0 . 3090 

0 . 1 199 

0 . 000 1 

0 . 6696 

------- ---·--------------------------------------------------- --------------·--------------

ID 
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When the data were analyzed by the method of planned comparisons, 

dietary inorganic sulfate appeared to have no effect on the excretion 

of the mercapturic acid conjugate . Supplementation of diets with 

organic sulfur (cysteine + methionine) significantly reduced the 

excretion of this metabolite. 

As shown in Table 34, the major urinary metabolite of 

acetaminophen was acetami nophen sulfate (32 - 50% of the total dose 

excreted) . Acetaminophen glucuronide was the next largest drug 

component (20 - 38% of the total dose excreted), followed by free 

acetaminophen (13 - 27%) and acetaminophen mercapturic acid (6 - 10%). 

The ratio of acetaminophen glucuronide to acetaminophen sul fate 

(AG : AS) excreted varied among the diets . The ratio was greatest in 

rats fed Diet l (0.0072% S04
= without organic sulfur supplementation) 

and lowest in rats fed Diet 6 (0 .027% S04
= + methionine). 



Diet 

1 

2 

3 

4 

5 

6 

7 

8 

9 

TABLE 34 

Percent of Total Dose Excreted as Each Aceta•i nophen Metabol i te 

Level of Di etary 
Sul fate DL-Methi oni ne Cystei ne APAP-S04l APAP-GU2 APAP-Free3 APAP-MA4 

'f, - - - - g/ 100 g d iet  - - - - - - - - - - - - - 'f. Excreted - - - - - - - - - -

0 .0072 0.0 

0 .0072 0.0 

0 .0072 0.65 

0 .027 0.0 

0 . 027 0 .0 

0 .027 0.62 

0 .427 0.0 

0 .427 0.0 

0 . 427 0.62 

1APAP-S04 = Acetami nophen sul fate . 

2APAP-GU = Acetaminophen gl ucuronide.  

3APAP-Free = Free acetami nophen. 

4APAP-MA = Acetar.1inophen 11ercapturi c  ac i d .  

0 .0  

0 . 53 

0 . 0  

0 . 0  

0 . 50 

0 . 0  

0 .0  

0 . 50 

0 .0  

32 + 96 38 + 7 

47 + 10 29 + 7 

45 + 10 26 + 2 

37 + 2 33 + 4 

36 + 1 3 33 + 9 

44 + 9 20 + 5 

47 + 1 1  32 + 7 

41 + 1 1  35 + 1 0  

50 + 5 24 + 5 

5Ar, :AS Rati o = Rati o of acetami nophen gl ucuronide to acetami nophen sul fate excreted . 

6val ues represent ,nean .!_ S. D .  

20 + 1 10 + . 5 

17 + 4 6 + 1 

22 + 9 7 + 1 

20 + 3 10 + 2 

24 + 9 7 + 2 

27 + 9 9 + 4 

13 + 3 8 + 2 

18 + 6 6 + 1 

17 + 4 9 + 2 

N'J : AS 
Rati o5 

1 . 35 

0 . 24 

0 . 23 

0 . 12 

1 .03 

0 .09 

0 . 34 

0 .4 1  

0 . 12 

ID 
ID 



CHAPTER V 

DISCUSSION 

Acetaminophen is widely accepted as an analgesic and anti-pyretic 

agent and exhibits few side effects when taken theraputically (85). 

Normally, acetaminophen is rapidly absorbed and metabolized by the 

liver; the metabolic end-products are excreted by the kidney (102). 

In most species, acetaminophen sulfate and acetaminophen glucuronide 

account for about 75-80% of the total dose excreted. Acetaminophen 

mercapturic acid usually constitutes 3-4% of the total dose excreted 

by rats ( 81) . 

In large doses, acetaminophen damages the liver in both man and 

experi mental animals ( 69, 70, 71). The exact mechanism by which the 

centrilobular regions of the liver are damaged by excessive 

acetaminophen i�gestion remains unclear (85). However, there is 

evidence that a cytochrome P-450-activated metabolite of acetaminophen 

bi�ds to cell macromolecules, resulting in cell death (103). The 

tripeptide glutathione appears to offer some protection against 

acetaminophen-induced hepatic necrosis (82). 

A number of agents have been used in the treatnent of 

acetaminophen toxicity. These include N-acetylcysteine (69), 

methionine (73), cysteine (73), S-adenosylmethionine (91), and sulfate 

(73, 75). It has been demonstrated, for example, that the oral 

administration of N-acetylcysteine (72) and the intraperitoneal 

injection of sodium sulfate (73) alter the excretion pattern of 
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acetam i nophen conj ugates i n  l aboratory animal s .  �i th the observation 

that cytochrome P -450 l evel s ( 4 )  and the gl ucuron i dati on of 

sal i cylamide v ary as a functi on of the l evel of d ietary i norgan ic  

su l fate ( 1 1 ) , the researcher posed the fol l owing questi on : Does 

di etary sul fur al ter the hepati c metabol i sm and uri nary excreti on of 

acetami nophe n in  adul t mal e  rats? In  an effort to answer thi s 

question , the present study was undertaken . 

I n  thi s i nvesti gati on , di etary i norganic sul fate appeared to have 

no effect on the hepatic acti v i ti es of the gl utathi one S-transferases 

( GSH S-T) , sul fotransferase ( ST ) , and UDP-gl ucuronyl transferase 

( UDP-GT) in rats recei v i ng a sub-hepatotoxi c dose of acetami nophen . 

I n  addi ti on , the hepatic l eve l  of reduced gl utathi one ( GSH ) was al so 

unaffected by the l evel of di etary inorgani c sul fate . One possi bl � 

ex pl an ati on f�r these resul ts i s  that the samp l e  si ze was too smal l to 

detect mean i igful di fferences i n  vari abl e  response gi ven the l evel of 

wi thi n-group var iabi l i ty and the conservati ve nature of the 

stati sti cal test . Al so , regardi ng GSH concentrati on , there was a 

si gni f icant i nteracti on effect, ( Tabl e  19 , page 81 , and Tab l e 21 , page 

83 ) , suggesti ng that the effects of di etary i norgani c sul fate and 

d i etary organi c  sul fur on hepati c GSH l evel s cannot be total ly  

separated . 

I n  the ur i ne ,  di etary i norgani c sul fat� appeared to have no 

effect on the excreti on of acetami nophen sul fate ( Tabl e 27 , page 90 ) .  

Howev er , the urinary l avel s of acetami nophen gl ucuroni de ,  free 

acetami nophen , an d acetami nophen mercapturi c  ac i d  were affected by the 

l evel of di etary i norgani c sul fate when the data were anal yzed by the 
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m�thod of planned comparisons. In general , the excretion of  

acetami�ophen glucuronide (Tabl� 28, 9age 92) , free acetaminophen 

( Table 30 , page 94) , and the mercapturic acid conjugate ( Table 32 , 

page 96) was greatest in rats fed diets containing inorganic sulfate 

at the level of 0.0072% . Also , the urinary excretion of free 

acetaminophen and the mercapturic acid conjugate decreased as the 

level of dietary inorganic sulfate increased from 0. 0072% to 0. 427%. 

These results are , in part, fairly predictable. With the 

observation that the rate of sulfation in isolated rat hepatocytes is 

dependent on the availability o f  inorganic sulfate for PAPS fonnation 

(73), it is not surprising that the excre tion of free acetaminophen, 

and the gl;Jcuronide and mercapturic acid conjugates is increased at 

the lowest (0. 0072%) level of dietary inorganic sulfate. This most 

likely represents a compensatory response to the reduced availability 

of inorganic sulfate for acetaminophen sulfate formation . However , 

the observation that the level of dietary inorganic sulfate had no 

apparent effect on the urinary excretion of acetaminophen sulfate is 

somewhat unexpected. With the exception of Diet 2 ( 0.0072% so4= + 

cysteine) and Diet 9 ( 0. 427% S04
= + methionine) , the values for 

acetaminophen sulfate excretion were fairly consistent across all 

diets ( Table 26 , page 89). The data indicate that the sul fation 

pathway is operating at full capacity given the dosage level of 

acetaminophen. Other researchers have reported that in rats the 

acetaminophen sulfate conjugating pathway is saturated at drug doses 

of 300 - 600 mg/kg (80 , Bl, 93, 97). 

In this study , the supplementation of diets with organic sulfur 

altered the hepatic met ibolism and urinary ex::retion of acetaminophen 
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in rats . tn the liver, GSH S-T activity was significantly reduced in 

rats fed diets sufficient in organic sulfur (Table 17, page 78). For 

the most part, this result is in keeping with that reported in Part I 

(Table 10, page 35). The data indicate that there is a compensatory 

increase in GSH S-T activity in the livers of rats fed diets deficient 

in organic sulfur. This increase in the in vitro rate of the 

enzyme-catalyzed reaction may reflect an in vivo acceleration of 

protein synthesis, retardation of protein degradation, or enhancemant 

of enzyme activation (62). 

In addition, the availability of substrate(s) affects enzyme 

activity in vivo (62). Since GSH S-T activity had been shown to vary 

as a function of dietary sulfur (see Part I), it was of interest to 

measure the availability of the substrate GSH. In this study, liver 

GSH levels were significantly reduced in rats fed diets deficient in 

organic sulfur and receiving iCetaminophen (Table 21, page 83). The 

absolute val�es seen for this group (Table 20, page 82) were only 

slightly lower than the value reported for rats receiving an injection 

of saline alone (Diet 10, Table 12, page 73). In addition, the 

hepatic levels of GSH seen in rats fed diets deficient in organic 

sulfur are in agreement with GSH values of 1. 39 mg/g liver - 2.65 mg/g 

liver reported previously in the literature (74, 104, 105, 106, 107, 

108). The data indicate that GSH biosynthesis is increased in the 

li vers of rats fed diets supplemented with organic sulfur and injected 

with acetaminophen. On first inspection, this observation does not 

appear to agree with published reports that hepatic GSH depletion by 
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acetami nophen i s  dose- and time-dependent ( 70 ,  7 1 , 82 , 86 ) .  However ,  

the resul ts o f  1 study by V i na et al . ( 74 )  i ndi cate that whi l e  

acetami nophen depl eti on of GSH i n  rat l i ver i s  maxi mal at 2 - 10 

hours , hepati c GSH val ues return to normal wi th i n 24 hours . Potter et 

al . ( 82 )  have reported that GSH l evel s are 16 1% of normal at 24 hours 

i n  hamsters fol l �wi ng acetami nophen admi n i strati on ( 300 mg/kg, i . p . ) .  

Thus , the val ues for GSH concentration presented i n  th i s study �ay 

reflect an enhanced bi osynthes i s  of  GSH i n  rat l i ver dur i ng a recovery 

phase fol l owi ng acetami nophen admi n i strati on . 

I n  the uri ne , the excreti on of acetami nophen gl ucuron i de and 

acetami nophen mer:apturi c ac i d  was i ncreased i n  rats fed di ets 

defi c i ent i n  organi c sul fur . I f ,  as was postul ated prev i ousl y ,  

hepati c  GSH S-T ac ti v i ty was i ncreased i n  rats fed di ?ts· defi c i ent i n  

organi c sul fur and refl ected i ncreased a cetaminophen bi ndi ng to the 

enzyme i n  the absence of a phys iol ogi cal l evel of GSH , the i ncreased 

uri nary excreti on of the mercaptur i c  ac i d  conj ugate i n  rats fed these 

di ets may represent enhanced fonnati on of the gl utathi one conj ugate 

fol l owi ng the recovery of hepati c GSH l evel s after 2 4  hours . The 

i ncreased uri nary excreti on of acetami nophen gl ucuron i de i n  rats fed 

di ets defi c ien t  i n  organ ic  sul fur i s  mo re di ffi cul t to expl ai n .  

Mol deus et al . ( 7 3 )  reported that i n  i sol ated hepat�cytes , the rate 

of gl ucuron i dati on of acetami nophen was dependent on the avai l abi l i ty 

of UDP-gl ucuron i c  ac i d  ( UDP -GA) . I n  thi s study , the i ncrease seen i n  

the uri nary excreti on of acetami nophen gl ucuron i de i n  rats fed di ets 

defi c i ent i n  organ i c sul fur may refl ect enhanced synthesi s of the 

substrate UDP -GA. 
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Since methioni1e (73, 74) and cysteine (73, 87) nave both been 

used in the treatment of acetami ,ophen taxi city, it was of interest to 

assess the effect of the type of dietary organic sulfur 

supplementation on the metabolism and excretion of this drug. Oata 

collected previously in this laboratory (11) and the data presented in 

Part I indicate that dietary cysteine and methioni�e do not exsrt 

equivalent metabolic effects in the rat. The present study provides 

additional evidence in support of this observation. Specifically, the 

urinary excretion of acetaminophen glucuronide (Table 28, page 92) was 

significantly greater in rats fed diets suppl�mented with cysteine 

than in rat fed diets supplemented with methionine. Although hepatic 

UDP-GT activity did not exhibit a similar response to the type of 

dietary organic sulfur supplementation (Table 25, page 88) in this 

study, other work in this laboratory has shown an increase in UDP-GT 

activity in rats fed diets supplemented with cysteine (1 1). 

In ge�eral, the excretion pattern of drug metabolites seen in 

this study is in agreement with values reported in the literature. 

Jollow et al. (81) reported that in rats receiving an i.p .  injection 

of acetaminophen (50 mg), acetaminophen sulfate accounted for about 

48% of the total dose excreted. Acetaminophen glucuronide accounted 

for 35% of the total dose excreted, followed by free acetaminophen 

(12%) and the mercapturic acid conjugate ( 4% ) . In this investigation ,  

the excretion of free acetaminophen and acetaminophen mercapturic acid 

were slightly elevated when compared to the results reported by Jollow 

et al. {81). This may be a function of the greater dose (300 mg/kg, 

i .p.)  administered to rats i n  this study. 



CHAPTER V I  

SUMMARY 

The pu rpose of this study was to examine the effect of dietary 

sulfur on the hepatic metabolism and urinary excretion of 

acetaminophen in adult male rats . In this investigation , dietary 

inorganic sulfate did not appear to affec t the hepatic activities of 

the glutathione S-transferases ,  sulfotransferase , and 

UDP-glucuronyltransferase or the concentration of reduced gl utathione . 

In addition , the urinary excretion of acetaminophen sulfate was 

unaffected by the lavel of dietary inorganic sulfate , suggesting that 

the sulfation pathway was operating at full capacity given the drug 

dose used ( 300 mg/kg , i . p . ) . In an effort to compensate for the 

steady- state production of acetaminophen sulfate ,  the urinary 

exc retion of free acetaminophen ,  acetaminophen glucuronide , and the 

mercapturic acid conj ugate was increased at the lowest level of 

dietary inorganic sulfate ( 0 . 0072% ) . 

In rats receiving acetaminophen , supplementation of diets with 

organic sulfur ( cystei�e + methionine)  reduced hepatic glutathione 

S-transferase activity , increased hepatic gl utathione level s ,  and 

decreased the urinary excretion of the glucuronide conj ugate . Only 

the urinary excretion of the glucuronide conj ugate of acetaminophen 

appeared to be sensitive to the type of di?tary organic sulfur 

supplementation: the urinary excretion of acetaminophen glucuro,,He 

was greater in rats fed diets supplemented with cysteine than in rats 

fed diets supplemented with methionine . 

106 



107 

Acetaminophen sulfate comprised most of the total dose excre ted 

(32 - 50%) , followed by acetaminophen glucuronide (20 - 38%) , free 

acetaminophen (13 - 27%) , and acetaminophen mercapturic acid (6 -

10%). In general , these values are in agreement with Hl 1Jes reported 

in the literature . 

The significance of this study is that it provides evidence that 

the hepatic metabolism and urinary excretion of acetaminophen is 

affected by sulfur status in the rat. The metabolism 3nd excretion of 

acetaminophen by the rat appears to be more sensitive to the presence 

and type of organic sulfur in the diet than to the level of dietary 

inorganic sulfate. 
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APPENDIX A 

SAS PROGRAM USED TO GENERATE THE CONTRAST STATEMENTS IN THE 

ANALYSIS OF PART I DATA 

DATA GSHT; 
INPUT DIET 1-2 RAT 4 S04LEV 6 SUPPLE 8 SPACLUN 10-14 WWTLUN 16-18 

SPACLIV 20-23 WWTLIV 25-28; 
SPACLUN = SPACLUN + 0.9897; 
WWTLUN = WWTLUN + 1.7452; 
SPACLIV = SPACLIV + 1. 9889; 
WWTLIV = WWTLIV + 2.5057; 
GRP = 2; 
CARDS; 
DATA ONE; 
INPUT DIET 1-2 RAT 4 S04LEV 6 SUPPLE 8 SPACLUN 10-14 WWTLUN 16-20 

SPACLIV 22-25 WWTL IV 27-30; 
GRP = l; 
CARDS; 
PROC SORT; 

BY DIET; 
PROC PRINT; 
PROC GLM; 

CLASSES S04LEV SUPPLE; 
MODEL SPACLUN=S04LEV SUPPLE S04LEV*SUPPLE; 
LSMEANS S04LEV SUPPLE S04LEV*SUPPLE/ STDERR; 
CONTRAST 1 . 0072 VS .027 1 

S04LEV 1 -1 O; 
CONTRAST 1 .027 vs . 427 1 

S04LEV O 1 -1; 
CONTRAST ' SUPPLE VS NO SUPPLE '  
SUPPLE 1 -.5 -.5; 
CONTRAST 1 CYS VS METH ' 
SUPPLE O 1 -1; 

PROC GLM; 
CLASSES S04LEV SUPPLE; 
MODEL WWTLUN=S04LEV SUPPLE S04LEV*SUPPLE; 
LSMEANS S04LEV SUPPLE S04LEV*SUPPLE/STDERR; 
CONTRAST 1 .0072 vs . 027 ' 
S04LEV 1 -1 O; 
CONTRAST 1 . 027 vs . 427 ' 
S04LEV O 1 -1; 
CONTRAST ' SUPPLE VS NO SUPPLE ' 
SUPPLE 1 -.5 -.5; 
CONTRAST ' CYS VS METH 1 

SUPPLE O 1 -1; 

1 19 



PROC GLM;  
CLASSES S04 LEV SUPPLE ; 
MODEL SP ACL IV=S04LEV SUPPLE S04 LEV*SUPPLE ; 
LSMEANS S04 LEV SUPPLE S04 LEV*SUPPLE/STDERR ; 
CONTRAST 1 . 0072 vs . 027 1 

S04LEV 1 -1  O ;  
CO NTRAST 1 . 027 V S  . 427 1 

S04LEV O 1 - 1 ;  
CO NTRAST ' SUPPLE V S  NO SUPPLE '  
SU PPLE 1 - . 5 - . 5 ;  
CO NTRAST ' CYS VS METH' 
SUPPLE O 1 - 1 ;  

PROC GLM ;  
CLASSES S04 LEV SUPPLE ; 
MODEL WWTL IV=S04 LEV SUPPLE S04 LEV* SUPPLE; 
LSMEANS S04LEV SUPPLE S04LEV*SUPPLE/STDERR ; 
CONTRAST 1 . 0072 vs . 027 ' 
S04LEV 1 -1  O ;  
CONTRAST 1 . 027 v s  . 427 1 

S04LEV O 1 - 1 ;  
CONTRAST ' SUPPLE VS NO SUPPLE ' 
SUPPLE 1 - . 5 - . 5 ;  
CONTRAST ' CYS V S  METH ' 
SUPPLE O 1 - 1 ;  
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APPENDIX B 

SAS ANALYS IS OF COVAR I.A.NCE PROGRAM 

DATA GSHST; 
INPUT DIET 1-2 RAT 4 S04LEV 6 SUPPLE 8 SPACLIJN 10-14 WWTLUN 16-18 

SPACLIV 20-23 WWTLIV 25-28; 
CARDS; 
P ROC SORT; 

BY D IET RAT; 
PROC PRINT; 

TITLE RAW PHASEl DATA; 
PROC GLM; 

CLASSES DIET; 
MODEL SPACLUN WWTLUN SPACLIV WWTLIV=DIET RAT Dl �T*RAT/SOLUTION; 
LSMEANS D IET/ STOERR; 
ESTIMATc ' DIET 4 MEAN AT RAT 1 1 

INTERCEPT 1 DIET 1 0 0 0 0 0 
RAT l; 
ESTIMATE ' DIET 5 MEAN AT RAT l '  
INTERCEPT 1 DIET O 1 0 0 0 0 
RAT l ;  
ESTIMATE ' D IET 6 MEAN AT RAT l '  
INTERCEPT 1 DIET O O 1 0 0 0 
RAT l ;  
ESTIMATE ' DIET 7 MEAN AT RAT 1 1 

INTERCEPT 1 DIET O O O 1 0 0 
RAT l; 
ESTIMATE ' DIET 8 MEAN AT RAT l 1 
INTERCEPT 1 DIET O O O O 1 0 
RAT l ;  
ESTIMATE ' DIET 9 MEAN AT RAT l '  
INTERCEPT 1 DIET O O O O O 1 
RAT l; 
TITLE ANCOVA ON PHASEl DATA; 
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APPEND IX C 

ANALY S I S  OF COVAR IANCE SUMMARY FOR PHASE 1 DATA ( WI TH INTERACTION )  

----------------·----------------------------------------------------------------

Depe ndent 
Variabl e Source Degrees of Freedom Sums of Squares F- Val ue P-Val ue 
----------- -------------------------------------------------

SPACLUN Diet 6 4 .9938 1 . 06 0 .4197 
Rat 1 13 .8444 17 . 58 0 . 0004 
Diet*Rat 6 4 . 7919  1 . 01 0 . 4440 

WWTLUN Diet 6 4 . 6783 0 . 54 0 .  7723 
Rat 1 4 1 . 7605 28 .87 0 . 0001 
Diet*Rat 6 4 . 0582 0 . 47 0 . 8241 

SPACLIV Diet 6 4 . 7 196 1 . 34 0 . 2842 
Rat 1 69 . 222 1  1 1 7  .84 0 . 0001 
Diet*Rat 6 2 . 26 1 5  0 . 64 0 . 6960 

WWTL IV Diet 6 28 . 5512 2 .92 0 .0314 
Rat 1 109 .8755 67 . 38 0 . 000 1 
Oiet*Rat 6 14 . 3474 1 . 47 0 . 2375 

- ------------------------------------------------------------------------------------------

-
N 
N 



APPENDIX D 

SAS PROGRAM USED TO F IT A L INE TO EACH STANDARD CURVE IN THE ANALYSIS 

OF URINE SAMPLES BY HPLC 

DATA CURVE ; 
INPUT STDCUR 1 CONC 3-5 RATIO 7-9; 
CARDS ; 
PROC SORT; 

BY STDCUR; 
· P ROC GLM ; 

MODEL CONC=RATIO; 
BY STDCUR; 
OUTPUT OUT=NEW PRED ICTED=YHAT RESIDUAL=RESID ; 

P ROC PLOT DATA=NEW; 
PLOT YHAT*RESID ; 
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