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ABSTRACT 

 

This dissertation addresses the geography of healthcare access and disparity issues in the 

United States using geospatial methods. Disparities in access to quality healthcare services are of 

great concern in the field of both public health and geography. Access is a key element within the 

healthcare delivery system, influenced by both spatial factors and non-spatial factors. Focusing on 

the spatial dimensions of access, an innovative contribution of this dissertation is the integration 

of spatial modeling, geo-statistics and location problems in a Geographic Information System 

(GIS) environment to investigate healthcare access.  

Improving health access begins with developing reliable methods to measure accessibility. 

In health geography and social sciences literature, the term spatial accessibility is used to refer to 

the fusion of both availability and accessibility of health demand and supply. Thus, a major focus 

of this dissertation is to present an alternative set of healthcare accessibility measures – a network-

based health accessibility index method (NHAIM) to measure accessibility and identify 

underserved areas. Another focus of this dissertation is to understand neighborhood factors that 

contribute to healthcare access – both potential and revealed access through statistical analysis. 

Studies have shown that social and physical environments affect individual’s health status, yet less 

has been done on whether neighborhood factor influence health access. A final focus of this 

dissertation is to propose a planning method - a Network-based Covering Location Problem (Net-

CLP) to locate healthcare facilities so as to maximize service coverage while reducing spatial 

disparity between healthcare supply and demand in a sustainable manner. As mentioned above, 

spatial accessibility relies on the geographical interactions between healthcare facilities and 

population in need, therefore the facility location is essential in ensuring access. 

In summary, this dissertation aims to achieve following three goals: 1) develop a reliable 

method to measure health care accessibility and capture underserved areas; 2) investigate 

neighborhood factors and health care access; 3) propose a feasible planning method to locate health 

care facilities and improve overall access.  
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1.1 Introduction 

Although how to pay for health care is a major dominant debate topic on the reform of health care 

delivery system, disparities in the spatial distribution of services have also been highlighted 

(Nuwer 2008a, Nuwer 2008b). Spatial analysis using Geographic Information System (GIS) can 

contribute greatly to understanding the geography of health care access, which is what I intend to 

address in my dissertation.  

Maintaining health and well-being is a basic human need, which can only be achieved 

through quality health care. There are two major forms of health care: informal and formal health 

care. Informal health care lies outside the market economy. It is care provided by families and 

communities in a domestic or neighborhood setting (Arno, Levine and Memmott 1999). A great 

majority of the health care is provided informally. For example, most of the needs of elders at a 

later stage of life are fulfilled by informal helpers – family, friends, and neighbors (Coward and 

Cutler 1989). On the contrary, formal health care is provided by public, private and voluntary 

organizations such as hospitals and physicians, which is the main focus of this dissertation. Despite 

spending more per capital on medical care than other nations, the health care performance in 

United States is far from satisfactory (World Health Organization 2000). In the United States, 

access to health care is increasingly constrained by the geography of health care services and 

providers. A lack of access leads to widening of health disparities – defined as the differences in 

health status among social groups. For example, middle and high income individuals are more 

likely to maintain higher health status due to having better access to family physicians (Rosenberg 

and Hanlon 1996). Ethnic minorities are more likely to receive late-stage breast cancer diagnosis 

and suffer from higher mortality rates as a result of the negative influence of socioeconomic 

disadvantages such as low educational attainment and linguistic barriers (Meliker et al. 2009a, 

Meliker et al. 2009b). 

The health care delivery system is undergoing tremendous transformations. Fiscal and 

administrative pressures, technology changes, lack of health insurance and increasing population 

diversity all contribute to reshaping how health care is delivered and received. Health care facilities 

might be closing, relocating or expanding, as well as providing different types of practices in 

different settings. Under this dynamic context, the geography of health care delivery became an 

essential issue in public health. A service delivery system is defined as “a cluster of diverse 

agencies within an organizational network that provides services to a common client population” 

(Alter 1988). The components of a health care delivery system include the patients or population 

in need, the health care facilities or providers, and the relationships between them. The 

geographical distribution of health services and geographical factors that affect health care service 

functions and utilizations contributes greatly to our understanding of health problems (Shannon 

1980).  

A powerful tool in the geography field – Geographic Information System (GIS) plays an 

increasingly significant role in implementing analytic methods to understand and analyze health 

care problems by incorporating geographical physical barriers, network-based travel time, and 

transportation costs required for access to health care services. (Lo and Wang 2005, Wang 2006, 

Yang et al. 2006, Maheswaran and Haining 2004). In particular, the capability of GIS necessarily 

highlights the spatial dimension of health care access, which will be discussed in further details in 

the nest section.  
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1.2 The concept of health care access 

The geography of health care access is essential to understanding health disparities. Access is a 

key element within the health care delivery system. It describes people’s ability to use health care 

services when and where they are needed (Aday and Anderson 1981). According to Penchansky 

and Thomas (1981), access can be defined as having five dimensions: availability, accessibility, 

accommodation, affordability and acceptability. Availability defines the supply of services in 

relation to needs – whether there are adequate services to meet the healthcare needs. Accessibility 

refers to the geographical barriers to healthcare such as travel distance, time and cost. It 

incorporates the spatial interaction between the geographical locations of healthcare services and 

population in need. Affordability describes the price of services regarding people’s ability to pay, 

which is associated with one’s social economic status and insurance coverage. Accommodation 

captures the extent to which services meet patients’ needs, including waiting time and hours of 

operation. Finally, acceptability describes people’s sense of comfort and satisfaction when using 

healthcare services. It is affected by one’s gender, culture, ethnicity and sexual orientation. When 

conceptualizing health care access, it is also important to distinguish the difference between two 

broad categories: revealed accessibility and potential accessibility (Joseph and Phillips 1984). 

Revealed accessibility focuses on the actual use of health care services, while potential 

accessibility emphasizes the overall supply of medical care resources available within the region.  

Both spatial factors (e.g., the geographical location of primary care physicians and patients, 

transportation system, and travel distance) and non-spatial factors (e.g., social-economic status, 

age, gender, ethnicity, and health insurance status) are incorporated as critical determinants for 

health care access (Guagliardo 2004). Ideally, all should have equal access to health care. Such 

equal access has come to be recognized as essential in ensuring overall population health. 

However, the goal to reduce the inequality in health care delivery is far from being achieved. Since 

much of the health care delivery system is privately funded and organized, it is clear that health 

care resources are not evenly distributed over geographic space. In the United States, the shortage 

of health care resources is especially severe in rural areas and impoverished urban communities 

(Ye and Kim 2014, Ye and Kim 2015). Socio-economically disadvantaged neighborhoods tend to 

have relatively poor access to resources that promote health, such as access to health care, a healthy 

diet, or recreational opportunities (Macintyre 2007).  

Geographers and public health researchers recognize the significance of measuring access 

and applied a broad spectrum of techniques to address the issue of health care access (Joseph and 

Bantock 1982, Higgs 2005, Gu et al. 2010, Busingye et al. 2011, Lewis and Longley 2012, 

Hawthorne and Kwan 2013).  Within this body of literature, the application of GIS has gained 

great popularity. GIS necessarily highlights the geographical dimension of access, the spatial 

accessibility, which is a main scope of this dissertation. In health geography and social sciences 

literature, the term spatial accessibility is used to refer to the combination of both availability and 

accessibility of health demand and supply. In this dissertation, the concept of spatial accessibility 

is also applied when it is convenient or necessary.  

 

1.3 Research goals 

In order to understand the geography of health care access, the first goal of my dissertation is to 

develop an alternative measurement of spatial accessibility in a GIS environment to health care 

services. The spatial interaction between supply (e.g., health care facilities or providers) and 
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demand (e.g., population in need) lies within the center of most accessibility measures, which 

follows a fundamental function of distance decay. The possibility of a patient to seek health care 

deceases with increasing travel distance, time and cost. Existing measurements include the 

provider-population ration, gravity models, and two-step floating catchment area method 

(2SFCA). Each method has its own limitations. For example, the provider-population ration fails 

to represent the geographical or spatial dimension of access; the gravity model doesn’t take the 

supply side into consideration; and the 2SFCA can result in over- or under-estimation and doesn’t 

capture the spatial mismatch between health care demand and supply. The accessibility measure 

developed in this dissertation aims to overcome limitations of previous methods and complement 

existing literature. By applying this new method, we are able to identify underserved areas and 

provide reference concerning where additional health care facilities and providers should be 

located. 

My second research goal is to include a range of neighborhood characteristics in addressing 

health disparities, incorporating the application of GIS and statistical models. Investigating the 

spatial patterns of neighborhood/community characteristics is another important step in studying 

the geography of health care access. Health problems can be studied at both lower level and higher 

level units. Here it is necessary to understand the concepts of the contextual effects and 

compositional effects. Contextual effects refer to higher level variables contributing to differences 

observed at a lower level. For example, individual health status can be affected by overall 

neighborhood environment. Compositional effects are differences in an outcome can be attributed 

to the characteristics of individuals comprising the group rather than the nature of the setting 

(Duncan, Jones and Moon 1998). For geographers, higher levels such as neighborhoods and 

regional groups have spatial dimensions, and an increasing amount of research has been devoted 

to the relationship between people and where they live, rather than rigidly distinguishing between 

contextual and compositional effects (Kawachi and Kennedy 1999, Patel et al. 2004, Li et al. 

2005). Previous research has confirmed that where we live affects our health status (Basta et al. 

2008, McLafferty and Wang 2009). Nevertheless, less has been done on revealing how place 

contributes to the spatial distribution of health care supply – the availability dimension of potential 

access, as well as health care utilization – an indication of the revealed access.  

The third goal of my dissertation is to consider the basic components and dimensions of 

the health care delivery systems, as well as to develop location models for selecting optimal 

solutions for siting health care facilities. As discussed above, the location of health services is a 

key factor that affects accessibility to health care. The supply-demand relationship is essential to 

health care delivery system. If we view health care facilities and professionals as the supply side, 

then patients and population in need would be the demand side. Needless to say, facilities should 

be located according to the potential demand to ensure maximum coverage as well as accessibility 

equity. Thus a feasible method to locate health care facilities is necessary in order to maximize 

service coverage while reducing spatial disparity between health care supply and demand. 

In conclusion, my dissertation measures and analyzes the geography of health care access 

from three major perspectives: 1) developing a reliable measurement of geographical/spatial 

accessibility to health care services; 2) analyzing changing service distribution patterns and 

understanding neighborhood factors that contribute to both potential and revealed access; 3) 

developing a feasible planning method for locating health care services. Following section will 

discuss how to break down my research objectives into specific tasks. 
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1.4 Research tasks 

As mentioned above, this dissertation addresses the health disparity issue through measurement of 

spatial accessibility, analysis of neighborhood characteristics and location planning. Specifically, 

those research goals are achieved through following tasks. 

1.4.1 Developing an alternative measure of health care accessibility – a network-based 

health accessibility index method (NHAIM) 

Improving health care access begins with developing reliable measures. To achieve this task, 

Chapter 2 presents an alternative set of health accessibility measures – a network-based health 

accessibility index method (NHAIM) in a GIS environment, which comprehensively evaluate both 

spatial dimensions of health accessibility and availability. Based on the data downloaded from the 

Florida Geographic Data Library Documentation and US Census Bureau, Chapter 2 applies the 

NHAIM to measure spatial disparity in the case of Hillsborough County, Florida. Both health 

accessibility and availability are measured and presented as indexes to reveal the spatial patterns 

of health accessibility and availability, as well as to capture the health underserved areas in a 

geographical context. The NHAIM is able to capture the spatial mismatch between health care 

supply and demand, which is the greatest contribution of this method to the current literature.  

1.4.2 Understanding neighborhood factors and health care access 

Chapter 3 and Chapter 4 investigate neighborhood characteristics that contribute to both potential 

and revealed access, respectively. In Chapter 3, the supply of primary care physicians (hereafter 

PCPs) is used as an indicator of potential access; while in Chapter 4, the length of inpatient stay is 

applied as an indicator of health care utilization to address revealed access.  

Chapter 3 aims to evaluate the geographical distribution of the number of PCPs by location 

and investigate the relationship between neighborhood factors and the observed spatial pattern, 

with an empirical study in Hillsborough County, Florida. Literature highlighted that local supply 

of primary care physicians affects preventive healthcare service utilization directly (Continelli et 

al. 2010). Since the supply of PCPs reflects the dimension of availability in health care access, it 

can be applied as an indicator of an effective health care delivery system and whether the health 

care needs are being adequately served. Therefore Chapter 3 provides a set of spatial statistical 

models to assess neighborhood factors and the supply of PCPs.  

In Chapter 4, revealed access is addressed through the study of length of inpatient stay – 

an indicator of facility utilization. Using a nationally representative U.S. sample, Chapter 4 

examines the extent to which neighborhood characteristics affected length of inpatient stay in the 

United States. A total of 3148 U.S. counties are included in the study. Regression models are 

employed to examine the extent to which neighborhood characteristics affect length of inpatient 

stay and its spatial variation. Exploratory spatial data analysis is also conducted to explore the 

geographic pattern of length of inpatient stay. 

 

1.4.3 Developing feasible planning methods – location problems in healthcare facility 

siting 

Chapter 5 proposes a facility planning method – a Network-based Covering Location Problem 

(Net-CLP) to achieve maximum service coverage and ensure spatial equity. The Net-CLP 
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incorporates two models: a Network-based Maximal Covering Location Problem (Net-MCLP), 

and a Network-based Location Set Covering Problem (Net-LSCP). The Net-MCLP focuses on the 

supply side and its objective is to maximize covered demands with a fixed number of facilities, 

given spatial restrictions and the level of heath care service emergency. The Net-LSCP accounts 

for the demand side and minimizes the total number or cost of facilities needed to cover all 

healthcare service demands within the network-based service range. The extensions of Net-CLP 

proposed consider the service capacities of healthcare facilities. By applying both models, a more 

comprehensive evaluation of the candidate sites can be conducted. Moreover, Chapter 5 

contributes to the exiting literature by demonstrating the geo-processing steps in the application of 

location problems with the integration of GIS. 

1.5 Organization 

This dissertation is organized as follows: Chapter 1 introduces research background and 

motivation; an alternative set of accessibility measurement is presented in Chapter 2; Chapter 3 

investigates the relationship between neighborhood characteristics and the supply of PCPs, 

followed by the examination of the contribution of neighborhood factors to length of inpatient stay 

in Chapter 4; Chapter 5 proposes a facility planning method and demonstrates its application with 

the integration of GIS; Chapter 6 summarizes major contributions of the dissertation and discusses 

future research directions.  
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CHAPTER 2 

MEASURING SPATIAL ACCESSIBLITY  

USING A NETWORK-BASED METHOD  

IN A GIS ENVIRONMENT 
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A version of this chapter is published in International Journal of Geospatial and Environmental Research, 

Volume1, Issue 1, Article 2, 2014. The use of “we” in this chapter refers to co-author Dr. Hyun Kim and 

myself. As the first author, I processed the data, performed the analysis and wrote the manuscript.  

 

Abstract 

In recent decades, the health care delivery system in the United States has been greatly transformed 

and more widely examined. Even with one of the most developed health care systems in the world, 

the United States still experiences great spatial disparity in health care access. Increasing diversity 

of class, culture, and ethnicity also has a significant impact on health disparity. The goal of this 

chapter is to address the spatial disparity of health care access using a network-based health 

accessibility index method (NHAIM) in a Geographic Information System (GIS) environment. 

Ensuring a desired level of accessibility for patients is the goal of the health care delivery system, 

through which health care service providers are supplied to populations in need. GIS is able to 

incorporate geographical physical barriers, network-based travel time, and transportation costs 

required for measuring access to health care services. In this study, we develop a NHAIM to 

examine the spatial disparity in health care access in Hillsborough County, Florida, determining 

the locations of registered medical doctors and facilities using data from Florida Geographic Data 

Library Documentation and the U.S. Census. This research reveals the spatial disparity of health 

care accessibility and availability in this region and provides an effective method for capturing 

health care accessibility surplus and shortage areas for future health care service planning.  

 

Key words: health disparity, accessibility, GIS, Network-based Health Accessibility Index Method 

(NHAIM) 

 

2.1 Introduction 

Accessibility is the key element within the health care delivery system. Ideally, all should have 

equal access to quality health care. Such equal access has come to be recognized as being as 

essential to public health as individual health status (Aday and Andersen 1974, Culyer and 

Wagstaff 1993, Oliver and Mossialos 2004). Penchansky and Thomas (1981) described five 

dimensions of health access: availability, accessibility, affordability, acceptability, and 

accommodation. The first two are related to geographical locations and thus inherently spatial. 

Among them, accessibility reflects the travel impedance between population in demand and health 

facilities, and is usually measured in travel distance or time. Availability refers to the amount of 

health facilities available for population in demand to choose from. In health geography literature, 

the term “spatial accessibility” is used to refer to the combination of these two dimensions 

(Guagliardo et al. 2004, Luo and Wang 2003a, Luo 2004).  

Generally speaking, the spatial distributions of health facilities and population in need are 

not matched perfectly over geographical space (Guagliardo 2004, Luo and Wang 2003b, Parker 

and Campbell 1998). Therefore, the goal to substantially reduce the inequality in accessing health 

care services is far from being achieved in the United States. According to Rosenberg and Hanlon 

(1996), middle and high income individuals are more likely to benefit from better access to family 

physicians, maintaining a higher health status and practicing preventive health care. Some other 

studies demonstrate that blacks are more likely to receive late-stage breast cancer diagnosis 

compared to whites and therefore have higher mortality rates. Additionally, African-Americans 

are more likely to experience the negative influence of socioeconomic disadvantages, such as low 
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educational attainment and linguistic barriers over late diagnosis (McLafferty and Wang 2009; 

Meliker et al. 2009a, b; Wang et al. 2008). Since socioeconomic and neighborhood inequalities 

are significantly correlated with health care accessibility, it is not surprising that the shortage of 

health care supply is especially severe in rural areas and impoverished urban communities 

(COGME 1998, 2000, Rosenblatt and Lishner 1991, Rosenthal et al. 2005, Shen 1998). 

Thus, it is of great importance in understanding this dynamic context and exploring 

accessibility as a multidimensional concept contingent upon the interaction between a variety of 

spatial factors (e.g., geographical location, travel distance) and aspatial factors (e.g., socio-

economic status, age, gender, and ethnicity) (Joseph and Bantock 1984, Meade and Earickson 

2000, Penchansky and Thomas 1981). Theoretically, health facilities should be located according 

to potential demand such as in areas with high population density to ensure maximum coverage. 

However, population in demand might not necessarily be covered by the service range of health 

facilities in reality. Shi et al. (2012) identified “islands” with no coverage of major cancer care 

facilities at a national scale. For example, the most visible high-demand area for cancer care 

services is located at the contact of Kansas, Missouri, Arkansas and Oklahoma, which happens to 

be the biggest uncovered “island” in the Midwest. This spatial mismatch between the geographical 

locations of health facilities and population in demand raises the following question: how do we 

define, measure and evaluate the accessibility to health care services?  

Geographers and public health researchers recognize the significance of measuring 

accessibility and apply a broad spectrum of techniques to solve this issue. While some focus on 

mathematical modeling or statistical analysis (Field 2000, Gu et al. 2010, Higgs 2005, Joseph and 

Bantock 1982), others apply a more qualitative approach (Hanlon and Halseth 2005, Hawthorne 

and Kwan 2013, Kiwanuka et al. 2008). Within this body of literature, Geographic Information 

System (GIS) plays an increasingly significant role in understanding and analyzing accessibility 

to health care. In particular, the capability of GIS highlights the spatial dimensions of accessibility. 

For example, Langford and Higgs (2006) estimated ‘demand-side’ population, or potential health 

care client locations, by applying various spatial interpolation techniques. Yang et al. (2006) 

evaluated access to dialysis health care by using specialized gravity models. Luo and Wang 

(2003a) measured spatial accessibility to health care and identified health shortage areas in 

Chicago region. In conclusion, GIS enables researchers to store and manage sensitive yet 

complicated information for both patients and health service locations (Bullen et al. 1996, Gu et 

al. 2010, Verter and Lapierre 2002, Zhang et al. 2009), measure access to health services for 

populations in need (Curtis et al. 2006, Lo and Wang 2005, Wan 2006, Wang 2012), and analyze 

the evolving spatial distribution patterns of health facilities (Gesler and Albert 2000, Higgs 2005, 

Kurland and Gorr 2012, Pedigo and Odoi 2010, Ross et al. 1994). 

In this chapter, we present an alternative set of health accessibility measures, which 

comprehensively evaluate both spatial dimensions of health accessibility and availability in order 

to address spatial disparity problems. The goal of this chapter is to measure and evaluate spatial 

accessibility to health care by using a network-based health accessibility index method (NHAIM) 

in a GIS environment. Based on data downloaded from the Florida Geographic Data Library 

Documentation and US Census Bureau, this chapter demonstrates the application of NHAIM in 

measuring spatial accessibility to health facilities in Hillsborough County, Florida. Both 

dimensions of accessibility and availability are measured and presented as indexes to reveal 

patterns of health disparity, as well as to capture underserved areas. 

This chapter is organized as follows. In the next section, we provide a brief review of 

existing spatial accessibility measures. In the third section, we demonstrate the application of an 
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alternative method – the network-based health accessibility index method (NHAIM), using 

Hillsborough County, Florida as a case study. The NHAIM consists of two sub-indexes to measure 

accessibility and availability respectively and a comprehensive index to evaluate the overall level 

of health disparity. The fourth section provides the analysis results of the case study, followed by 

conclusions in the fifth section. 
 

2.2 Spatial accessibility and disparity in health care systems. 

Spatial accessibility to health service locations is usually measured through addressing the 

geographical barriers like travel distance or time (Cromley and McLafferty 2012; Guagliardo 

2004). The interaction between population in need and health care providers decrease with 

increasing travel distance, following a function of distance decay. Shorter geographical distance 

can lead to more frequent visits to health facilities, and eventually better health for individuals. For 

example, Buchmueller et al. (2006) found that increasing distances from hospitals result in higher 

death rates from heart attacks and unintentional injuries. Another study by Arcury et al. (2005) 

shows that a shorter distance between patients and physicians can increase the frequency of regular 

family physical exams. Other studies also confirm that early detection of disease and treatment is 

negatively associated with the spatial separation between medical services and patients (Campbell 

et al. 2000; Meyer 2012; Monnet et al. 2006; Onega et al. 2008). Distance decay is a fundamental 

aspect to measure spatial accessibility, and it varies for different types of medical practice and 

health care needs. For example, cardiovascular emergencies requires patients be delivered to an 

emergency center within a critical time window (Busingye et al. 2011; Hare and Barcus 2007). 

For routine health check-ups, there are much less restrictions over travel time or distance (Lovett 

et al. 2004).  

Most existing measures of spatial accessibility are based on the potential interaction 

between health care providers (e.g., primary care physicians, cancer treatment centers, hospitals, 

etc.) and population in need, or supply and demand (Guagliardo 2004; Higgs 2005; Wang 2012). 

One commonly used measure is the supply-demand ratios, or provider-population ratios, which 

are computed within bordered areas. The ratios are effective for gross comparisons of supply 

between geographical units, and are widely applied to set minimal standards for local supply and 

identify underserved areas (Cervigni et al. 2008; Khan 1992; Perry and Gesler 2000; Radke and 

Mu 2000). For example, the U.S. Department of Health and Human Services (DHHS) uses a 

minimum population-physician ratio to identify Health Professional Shortage Areas (HPSA). 

However, this basic measurement has difficulty capturing the border crossing of patients among 

neighborhood spatial units. Detailed variations in accessibility across space and the distance 

dimension of access are ignored (Guagliardo et al. 2004; Wang 2012). Another basic method is to 

measure average travel distance to nearest providers (Fryer Jr et al. 1999; Goodman et al. 1992). 

This method applies the straight line distance between the population point and the location of the 

health provider. However, travel routes are rarely straight lines in reality. It also cannot fully 

represent clusters of health providers in an urban setting and ignores the availability dimension of access.  
Gravity models, initially developed for land use planning, are also utilized to account for 

the spatial interaction between heath care supply and demand (Hansen 1959, Joseph and Bantock 

1982, Shen 1998). The simplest formula for gravity–based accessibility Ai can be written as 

follows: 

 

𝐴𝑖 = ∑
𝑆𝑗

𝑑
𝑖𝑗
𝛽

𝑛
𝑗            (1) 
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Ai is the index of spatial accessibility from population point i, such as a personal residence 

or population centroid of certain spatial unit. Sj is the service capacity of health facilities (e.g., the 

number of hospital beds or doctors) at location j. dij is the distance or travel time between i and j, 

and β is the travel friction coefficient. n is the number of health facilities. Spatial accessibility 

improves if the number of health facilities increases, the service capacity increases, or the travel 

distance decreases. The improved gravity–based accessibility model proposed by Joseph and 

Bantock (1982) adds a population adjustment factor to the denominator. The formula can be 

written as:  

𝐴𝑖 = ∑
𝑆𝑗𝑑𝑖𝑗

−𝛽

∑ 𝑃𝑘𝑑
𝑘𝑗
−𝛽𝑚

𝑘=1

𝑛
𝑗=1           (2) 

Pk is the population at location k, dkj is the distance or travel time between j and k, and the 

indexes n and m represent the total number of facility locations and population locations, 

respectively. The gravity-based accessibility model is essentially the ratio of supply to demand 

(Huff 1963, 2000, Luo and Qi 2009, Wang 2012). Despite its elegance in revealing geographic 

variation in accessibility, gravity models are not easy for public health professionals to interpret 

or implement. A large amount of geo-coded data for the locations of both population and health 

facilities are required to estimate the travel friction coefficient β. Sometimes the models also 

involve great effort of computation and programming (Luo and Whippo 2012, Taaffe et al. 1996).  

Another development in spatial accessibility modeling is the two–step floating catchment 

area method (2SFCA) proposed by Luo and Wang (2003a, b). The fundamental assumption of 

2SFCA is that availability and accessibility are not mutually exclusive and they can compensate 

each other. A health provider is defined as accessible if located inside the catchment, and 

inaccessible if located outside of the catchment. The catchment of a provider location is defined 

as a buffer area within a threshold travel distance or time from the provider. The 2SFCA can be 

implemented in a GIS environment using two steps. First for each physician location j, search all 

population locations k that are within the catchment area and compute the provider – population 

ratio Rj. Then for each population location i, search all provider locations j that are within the 

threshold distance from location i, and sum up Rj derived from the first step at these locations. 

Eventually the accessibility index Ai can be written as follows (Luo and Wang 2003a): 

 

𝐴𝑖 = ∑ 𝑅𝑗𝑗∈{𝑑𝑖𝑗≤𝑑0} = ∑
𝑆𝑗

∑ 𝑃𝑘𝑘∈{𝑑𝑘𝑗≤𝑑0}
𝑗∈{𝑑𝑖𝑗≤𝑑0}        (3) 

Rj is the measurement of potential service intensity of facility j, the provider-population 

ratio. Sj is the service capacity of facility location j, Pk is the population in need at location k, dkj 

is the travel distance or time between k and j, and d0 is the threshold.  
The 2SFCA has been popular and used in a number of studies (Cheng et al. 2012, Dai 2010, 

McGrail and Humphreys 2009, Ngui and Apparicio 2011, Shi et al. 2012, Wan et al. 2013, Yang et al. 

2006). However, Luo and Wang demonstrate that their model is not fundamentally different from 

the gravity-based accessibility model (Luo and Wang 2003a, b). The 2SFCA overcomes the 

restriction of using pre-defined geographical boundaries. However, the limitation of 2SFCA is 

mainly found in assuming a health provider inside a catchment area is accessible and one outside 

the catchment area is inaccessible, which tends to be arbitrary, ignoring the possibility of 

overlapping areas in coverage. In addition, potential improvements may be made to account for 

different transportation options, as well as variable catchment sizes for different populations and 
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health services. While the above methods make significant contributions in revealing health 

disparity, we seek to complement such spatial accessibility literature by providing an alternative 

measure. Recognizing that spatial accessibility is a complex concept including both accessibility 

and availability, we seek to develop a method that can reveal and represent both dimensions 

respectively.  

 

2.3 Analytical frameworks and study area 

2.3.1 Network-Based Health Accessibility Index Method (NHAIM) 

The concept of spatial accessibility to health care includes both dimensions of accessibility and 

availability. In general, accessibility refers to the ease to reach health services from the demand 

side while availability emphasizes choices of local service locations from the supply side. Spatial 

accessibility to health services is primarily dependent on the geographical locations of health care 

providers and population in need, as well as the travel distance/time between them (Wan et al. 

2013). Since distance decay is a fundamental aspect in understanding spatial accessibility, the 

following questions were raised when developing our methodology: [1] how to define travel 

distance and reflect distance decay, [2] how to represent both health care demand and supply, and 

[3] how to apply the most reasonable measure for travel distance to health care services. Network 

distance has gained certain popularity in recent literature as a replacement for Euclidean distance 

and Manhattan distance. It is considered to be a more accurate measurement for real travel distance 

and time (Brabyn and Beere 2006, Cheng et al. 2012, Dai 2010, Delmelle et al. 2013, Pearce et al. 

2006, Shi et al. 2012, Wan et al. 2013). However, Apparicio et al. (2008) found that Euclidean and 

Manhattan distances are strongly correlated with network distances. However, local variations are 

still observed, notably in suburban areas. Thus in those areas, network-based distance may provide 

more accurate results. In our study, we applied network-based distance rather than Euclidean 

distance and Manhattan distance, since the study site includes both urban and suburban areas.  

In NHAIM, the population centroid within each spatial unit is used to represent aggregated 

health care demand location. When health care demand is aggregated, the true distance to health 

care services from each individual or household is replaced by the distance from the aggregation 

point (Current and Schilling 1990). The aggregation method can reduce the complexity of location 

and routing problems as well as protect the privacy of the individual or household by masking their 

individual locations, especially in sensitive research. The population centroid for each health care 

demand area can be obtained in a GIS environment through preprocessing.  

The fundamental issue in spatial accessibility literature is addressing the potential 

interaction between health care providers and population in need. However, it is difficult to predict 

people’s choices and behaviors, especially with border crossing problems. The term “edge effect” 

is coined to describe the possibility of accessing health providers across borders (Cromley and 

McLafferty 2012, Guagliardo 2004, Higgs 2005, Wang 2012). The NHAIM tries to mitigate edge 

effect by evaluating and integrating both dimensions of health care accessibility and availability. 

As summarized in Table 1, the NHAIM consists of three sub-indexes. The first sub-index, the 

Network-Based Health Accessibility Supply Index (NHA-SI), is developed from the supply side 

and reveals the availability of health care providers in each spatial unit. The second one, the 

Network-Based Health Accessibility Demand Index (NHA-DI), is developed from the demand side 

and evaluates health care accessibility for the population in demand residing within each spatial 

unit. The third sub-index, the Network-Based Health Access Disparity Index (NHA-DP), is a global 
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index summarizing both dimensions. Ultimately, the NHAIM is designed to evaluate the 

interaction between health demand and supply, and present both sides of the interaction.  

Table 1. The indexes of NHAIM 

NHAIM NHA-SI Network-Based Health Accessibility Supply Index:  

• Reflects health care access from the supply side 

• Measures service availability in terms of health facilities 

NHA-DI Network-Based Health Accessibility Demand Index: 

• Reflects health care access from the demand side 

• Measures overall health care accessibility for the 

population in demand 

NHA-DP Network-Based Health Access Disparity Index: 

• Combines both the NHA-SI and NHA-DI 

• Measures both health care accessibility and availability 

 

1) Network-Based Health Accessibility Supply Index (NHA-SI) 

The Network Health Accessibility Supply Index (NHA-SI) addresses health care access problems 

from the supply side. The NHA-SI is an indicator quantifying the availability of health care supply 

within the measured spatial unit.  

As illustrated in Figure 1, the NHA-SI can be achieved through the following four steps in 

a GIS environment. The first step (Step 1 in Fig. 1) is to represent health care demand locations 

using population centroids. As suggested by Current and Schilling (1990), the population centroid 

within each spatial unit can be used to represent the aggregated health care demand location. The 

demand aggregation method reduces the complexity of location problems and protects the privacy 

of individuals or households, especially in sensitive researches. Demand aggregation can result in 

over- or underestimation of true distance and health care supply coverage (Cromley and 

McLafferty 2012, Openshaw 1983). According to Hewko et al. (2002), aggregation error is a result 

of spatial separation between the distribution of individuals and the centroid of spatial unit. Thus 

accessibility measured for smaller units tends to be more reliable than that measured for larger 

spatial units. The second step (Step 2 in Fig. 1) involves calculating the network demand area of 

health care for each population centroid. A health care demand area is defined as a network-

distance travel zone from the population centroid. Coverage is measured based on travel distances 

calculated using road networks. The sizes of demand areas vary according to different types of 

health services. For example, cancer treatment centers generally cover larger demand areas than 

primary care providers. Luo and Qi (2009) defined the threshold travel distance to Primary Care 

Physicians as 30 minute network travel distance. Wan et al. (2013) extended the travel time to 60 

minute focusing on access to cancer screening and treatment facilities. Thus the thresholds for 

travel distances are flexibly set to reflect different types of health services. The size of a demand 

area expands as the threshold travel distance increases. In the third step (Step 3 in Fig. 1), we 

calculate the population within each demand area i generated in the previous step. The calculated 

population is denoted by pi. Next we search every demand area that covers health care facility j. 

This can be interpreted as the health care facility j serving n demand areas (n ≥ 0; n = the number 

of demand areas covering facility j). In the end, we calculate Pj, the total population residing within 

n demand areas that facility j is serving, which is expressed by 
n

i ipP
j

. Note that the population 

residing within the overlapping areas (i.e., intersections in Step 3 in Fig. 1) is only counted once 
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to get the most accurate result. The final step (Step 4 in Fig. 1) calculates sj, the health care 

accessibility for each facility j using following formula: 

 

js
P

C
ks j

j

j

j
 ,10,     (3) 

where  

Cj: the capacity of facility j (e.g., the number of beds/rooms as a proxy for supply capacity), 

Pj: the total population residing within n demand areas that facility j is serving  

k : is the scalar to adjust the ratio. 

 

 

Figure 1. The procedure for calculating the Network-Based Health Accessibility Supply Index 

(NHA-SI) 

 

Now, as each spatial unit i will contain n (n ≥ 0) health facilities j with attribute sj, the Si, 

the NHA-SI for spatial unit i is calculated as follows: 

RjsS
n

j

ji 


,
1

                (4) 

where 

R: the set of facilities j located within spatial unit i. 

When the facility capacity is fixed, the NHA-SI index will be smaller if a greater health 

care demand is identified. Both higher facility capacity and smaller population in need will result 

in a larger NHA-SI value, which reflects less constraints over the facilities and represents a higher 

level of availability in the measured spatial unit. 
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2) Network-Based Health Accessibility Demand Index (NHA-DI) 

The Network Health Accessibility Demand Index (NHA-DI) evaluates the overall accessibility 

from the demand side by calculating the percentage of population residing within the service 

ranges of health care facilities in each spatial unit, as well as taking the capacities of those 

facilities into consideration. It reveals the general level of health care accessibility in the 

measured spatial unit. As illustrated in Figure 2, the NHA-DI index is achieved in the following 

four steps.  

 

 

Figure 2. The procedure for calculating the Network-Based Health Accessibility Demand Index  

(NHA-DI) 

 

In the first step (Step 1 in Fig. 2), we identify the locations of health care facilities within 

each spatial unit. Next, we calculate the network service area for each facility j (Step 2 in Fig. 2). 

The service area is defined as the network distance travel zone from facility j. Similar to the 

demand areas generated from population centroids when calculating NHA-SI, the sizes of 

service areas also vary for different types of health services according to different travel time 

thresholds (Luo and Qi 2009, Wan et al. 2013). In the third step (Step 3 in Fig. 2), we calculate 

the population ratio covered by the network service area of facility j in spatial unit i: 𝑝𝑖
𝑗
/𝑝𝑖 (𝑝𝑖

𝑗
≤

𝑝𝑖). 𝑝𝑖
𝑗
 is the population in spatial unit i that falls within the network service area of health 

facility j, while pi is the overall population residing in spatial unit i. The final step (Step 4 in Fig. 

2) involves calculating Di, the NHA-DI index for each spatial unit using the following formula: 
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i  


,10,
1

   (5) 

where 

𝑝𝑖
𝑗
/𝑝𝑖: the ratio of population covered by the network service area of health facility j to 

the total population in spatial unit i. According to the formula, either a higher percentage of 

population covered by the network health service areas (𝑝𝑖
𝑗
) or higher facility capacities results in 

a higher NHA-DI index. A higher NHA-DI index indicates that more people have access to 

higher capacity facilities, which is considered as having better health accessibility.  

 

3) Network-Based Health Access Disparity Index (NHA-DP) 

The Network Health Access Disparity Index (NHA-DP) is a comprehensive index that examines 

the balance between health care accessibility and availability at each spatial unit by evaluating 

both indexes: the NHA-SI and NHA-DI. Each spatial unit will contain two attributes: a population 

centroid in spatial unit i with attribute Di and n health facilities with summed up attribute Sj. The 

level of spatial disparity Ai for each spatial unit i is represented as: 

 

Ai = [NHA-SI, NHA-DI] = [Di, Si],     i   (6) 

 

Accordingly, a spatial unit can be categorized into one of four quadrants based on indexes 

Ai as illustrated in Figure 3. In detail, the first quadrant (1Q) is the area of High Accessibility and 

High Availability (HAc and HAv), indicating that the population in demand has high access to 

health care facilities and that the health care services are highly available and sufficient. This shall 

be the most ideal situation in the health care delivery system. The second quadrant (2Q) is for the 

area with Low Accessibility and High Availability (LAc and HAv). If a spatial unit falls into this 

category, then the area has a relatively sufficient health supply within the spatial unit but the 

population in demand is not well supported by access to health care facilities. This is the case of a 

spatial mismatch between health care demand and supply where an area has sufficient medical 

facilities but they are clustered in such a way that their service range does not cover well the 

demand within the area. The third quadrant (3Q) represents the area with Low Accessibility and 

Low Availability (LAc and LAv), where the population in demand has very little health 

accessibility, with highly constrained availability of the health care supply within the area. 

Moreover, such populations do not have health facilities in neighboring units. As an extreme case, 

this category includes areas with an extremely high demand for health care services but little to no 

availability, representing a significant spatial disparity in health care provision. The fourth 

quadrant (4Q) describes the area with High Accessibility and Low Availability (HAc and LAv) in 

which health care resources within the spatial unit are highly constrained to serve a large 

population, or there are no health care facilities located within the spatial unit. However, the 

population in demand is able to access health care facilities located in nearby spatial units and the 

accessibility index is relatively high. The shortage of health care supply within the spatial unit does 

not affect the health care accessibility of the population in demand due to the wide coverage of 

health care service by facilities. Given this categorization, the results based on the NHA-DP are 

straightforward to interpret and easy to apply for any geographic scale.  
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Figure 3. The classification of spatial units using the NHA-DP (Note: H=High, L=Low, 

Av=Availability, Ac=Accessibility) 

 

2.2.2 Study Area and Data 

To test the NHAIM, we selected Hillsborough County in Florida as the study area. Hillsborough 

County is located on the west coast of Florida in the Tampa-St. Petersburg metropolitan area. It is 

the largest county by metropolitan area and the fourth largest county in the state. Hillsborough 

County has a relatively even and flat landscape, which decreases the effect of geographic barriers. 

As shown in Figure 4, this county comprises several major cities, including Tampa, Temple 

Terrace, Lutz, Plant City, Brandon, Apollo Beach, Ruskin, and Sun City Center. Noticeably, many 

hospitals are clustered in those cities along major highways. The population data was extracted 

from the 2010 Census Summary File (US Bureau of Census 2010). In this case study, we used ZIP 

code areas as the basic spatial unit to apply the NHAIM. Population–weighted centroid was used 

to represent aggregated demand location, which is considered to be a more accurate representation 

than simple geographic centroid (Hwang and Rollow 2000). The population centroids for ZIP code 

areas were generated based on Census Tract level population data in a GIS environment. ZIP code 

areas are aggregated to develop Primary Care Service Areas (PCSAs) by the U.S. Department of 

Health and Human Services (DHHS), which are the basic spatial units used to identify Medically 

Underserved Areas/Populations (MUA/Ps) and Health Professional Shortage Areas (HPSAs). 

Fifty-five ZIP code areas were identified in the study area with a total population of 1,229,226 (as 

of 2010). The network distance between any pair of population centroids and health facility 

locations was measured based on the road networks for travel–time distance estimation using the 

2010 Census TIGER/Line files. 

The hospital data for Hillsborough County was downloaded and extracted from the Florida 

Geographic Data Library Documentation. The original dataset includes the addresses and capacity 

information of hospitals in Florida in 2010. The hospital locations were geo-coded using ArcGIS 

10.1. To apply the NHAIM, we needed to define two key parameters – the travel time threshold 

and health care facility capacity. In the previous literature, a 30 minute travel time threshold for 

primary road conditions is suggested (Lee 1991). The 30 minute threshold is also used for defining 

rational service area and capturing HPSAs by DHHS (Wang and Luo 2005). In this case, we used 

both 30 minute and 10 minute travel zones for comparison. By applying different thresholds, we 

were able to evaluate how travel distances influence spatial accessibility. Since the information on 
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number of physicians is lacking, we used the number of hospital beds as a measurement for facility 

capacity.  

 

 

Figure 4. The study area: distribution of hospitals in Hillsborough County, FL. 

 

2.4 Results 

Figure 5 shows the NHA-SI indexes for both 10 minute and 30 minute thresholds. 75% of the ZIP 

code areas are identified with zero number of hospitals (Si=0), and most of them are rural areas. In 

contrast, the NHA-SI obtains highest values within and around Tampa, followed by Brandon and 

Temple Terrace, which are urban areas with high population densities. The NHA-SI decreases as 

the threshold increases from 10 minute to 30 minute. As the travel time increases, the service range 

of a hospital increases. The hospital becomes less ‘available’ for it is serving a larger population 

while the capacity is fixed. The NHA-SI becomes smaller as the denominator – the number of 

population gets larger.  

Compared to Figure 5, Figure 6 highlights the spatial heterogeneity of the NHA-DI. First, 

the highest values are observed in Tampa (West and South, in particular) and Temple Terrace, 

while most rural areas obtain much lower values. The high values of NHA-DI indicate the 

satisfaction for the demand-side. The population residing in urban areas with high NHA-DI values 

benefit from accessibility to local hospitals with large capacities. Second, NHA-DI is highly 

dependent on the threshold. As the threshold increases from 10 (Fig. 6-a) to 30 minutes (Fig. 6-b), 

more spatial units obtain higher NHA-DI values. Hospitals further away from the population 

centroid will become accessible when the threshold increases, which improves the overall level of 

accessibility. 

The NHA-DP evaluates the interaction between both dimensions of accessibility and 

availability. Figure 7 shows that ZIP code areas are categorized into groups based on NHA-DP. 

We calculate the Means – the average values for both NHA-SI and NHA-DI, respectively to 

determine area’s positionality among quadrants. The availability level of a ZIP code area is High 
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Availability (HAv) if the NHA-SI value is above the Mean and Low Availability (LAv) if it’s below 

the Mean. Similarly, the accessibility level of a ZIP code area is classified as High Accessibility 

(HAc) if the NHA-DI is above the Mean and as Low Accessibility (LAc) if the index value is below 

the Mean. According to the results, four quadrants of NHA-DP are identified.  

 

 

Figure 5. Spatial pattern by the NHA-SI, 10 (5-a) and 30 minutes time zone buffer (5-b). 

 

 

Figure 6. Spatial pattern by the NHA-DI, 10 (6-a) and 30 minutes time zone buffer (6-b). 

 

The NHA-DP evaluates the interaction between both dimensions of accessibility and 

availability. Figure 7 shows that ZIP code areas are categorized into groups based on NHA-DP. 

We calculate the Means – the average values for both NHA-SI and NHA-DI, respectively to 

determine area’s positionality among quadrants. The availability level of a ZIP code area is High 

Availability (HAv) if the NHA-SI value is above the Mean and Low Availability (LAv) if it’s below 

the Mean. Similarly, the accessibility level of a ZIP code area is classified as High Accessibility 

(HAc) if the NHA-DI is above the Mean and as Low Accessibility (LAc) if the index value is below 

the Mean. According to the results, four quadrants of NHA-DP are identified.  
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 1Q: the west and north areas of Tampa benefits from both HAv & HAc, which is considered as 

being ideal in terms of balance between health care demand and supply. There are two possible 

reasons behind this pattern. First, areas identified with HAv & HAc are recognized as being the 

core of the Tampa metropolitan area. It consists of a fast-growing population area called New 

Tampa, and the Tampa downtown area, where most hospitals are located. Second, the Tampa 

downtown area is the center of Hillsborough and the well-developed transportation network 

ensures great accessibility. 

 2Q: Several pockets with HAc & LAv are captured around Tampa and Temple Terrace. These 

ZIP code areas contain either none or very few hospitals, but the local population is able to access 

other facilities in neighboring areas. Since the level of accessibility is high, this case is considered 

as being acceptable.  

 3Q: The spatial mismatch between health supply and demand is captured in areas identified with 

LAc & HAv, such as Plant City, Brandon, and Sun City Center. Although the hospitals are 

considered as being ‘available’ with satisfactory capacities, the local population somehow do 

not obtain a high level of accessibility. This could be the result of either a low percentage of 

population covered by service areas or poor transportation networks. The LAc & HAv areas can 

potentially evolve into an ideal level, HAc & HAv. For example, when the threshold increases 

from 10 minute to 30 minute, Brandon is re-classified as a HAc & HAv area. Further research is 

needed to explore the cause of this spatial mismatch and improve the accessibility level from a 

health planning perspective.  

 4Q: Most rural areas in Hillsborough County are identified as having both LAc & LAv. Those 

areas are considered as health service shortage areas. As the threshold increases, the level of 

spatial accessibility in some areas improve from LAc & LAv to HAc & LAv, since population 

become able to access hospitals further away. Still, LAc & LAv areas require extra attentions 

when allocating health resources in the future. 

 

 

Figure 7. Spatial disparity by the NHA-DP, 10 (7-a) and 30 minutes time zone buffer (7-b). 
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2.5 Conclusion Remarks 

This chapter aims to propose an alternative set of methodology – the NHAIM to measure spatial 

disparity in the health care delivery system. We demonstrate the application of the NHAIM in a 

case study of Hillsborough County, Florida. The NHAIM applies network distance rather than 

Euclidean distance, which improves accuracy in capturing distance decay. The greatest strength of 

the NHAIM is in measuring and representing both dimensions of accessibility and availability, 

respectively. Instead of using one single index to represent the overall level of spatial accessibility, 

the NHAIM evaluates the interaction between both dimensions of accessibility and availability, 

and examines the potential access to health care facilities located in neighboring spatial units. In 

the end, spatial units are categorized in four groups. Areas with HAc & HAv or HAc & LAv are 

considered as being acceptable, while areas with LAc & HAv and LAc & LAv need further 

investigation and improvement. The results are straightforward for health professionals and policy 

makers to interpret. Since applying network distances and generating population centroids can be 

easily achieved in GIS, the application of the NHAIM should not be intimidating for most 

professionals. 

This research has several limitations that need to be further explored in the future. First, 

we only applied hospital data as a general estimate of health care resources for our analysis. The 

NHAIM is supposed to be applicable for different levels of health services in theory. Since the 

major focus of this chapter is methodology, we didn’t demonstrate how NHAIM can also be 

applied to other levels of health care such as primary care services. We would like to expand the 

application of NHAIM to other levels of health care in future studies. Second, there are smaller 

spatial units than ZIP code areas that can be applied in the future research. Using smaller spatial 

units can reduce aggregation errors when applying accessibility measures. Third, we didn’t include 

aspatial factors in this study. People with low socioeconomic status might still have no desirable 

access to health care despite that they are residing in areas identified with high levels of spatial 

accessibility. Thus, the results of the NHAIM can be complemented by qualitative analysis. Fourth, 

further improvement of the NHAIM can be made by applying different thresholds for urban and 

rural areas, as well as taking into account of multiple transportation modes. For example, network 

travel distances might be smaller in urban areas when the travel time is fixed considering traffic 

congestion. 

In summary, this chapter demonstrates the application of the proposed method – the 

NHAIM by measuring spatial accessibility to hospitals in Hillsborough County, Florida. Some 

areas are identified as having a spatial mismatch between health care demand and supply, or simply 

being short of supply. The results provide a direct and straightforward reference for future health 

planning in the study area.  
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CHAPTER 3  

NEIGHBORHOOD CHARACTERISTICS  

AND  

PRIMARY CARE PHYSICIAN SUPPLY 
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processed the data, performed the analysis and wrote the manuscript. 

 

Abstract 

Primary care is the key element within the health care delivery system in the United States. Primary 

care provides initial treatments for patients and refers them to specialists if the patients need 

advanced cares. However, there is an overall shortage of primary care physicians (PCPs) across 

the country and its spatial disparity at different geographic scales is prominent, highlighting a 

major challenge for public health. Thus, it is important to examine the factors that affect PCPs 

distribution and understand the dynamic spatial patterns of PCPs. 

Two factors linked to health disparity – poverty and racial composition, have been greatly 

explored in health literature, concerning their significant correlations to individual health status. 

However, less has been done on exploring their contribution to the supply side of health care, such 

as the spatial distribution of PCPs at a local geographical scale. Theoretically, PCPs should be 

evenly distributed across space according to the demand of patients. However, some socio-

economic factors may affect the spatial pattern of PCPs locations resulting in spatial disparity 

between demand and supply. In this chapter, we provide a set of spatial statistical models to assess 

the disparity and identify crucial factors such as poverty, racial composition, insurance rate and 

others with the case study of Hillsborough County, Florida.  

Hillsborough County, Florida is known for being one of the largest counties in the United 

States. It has a racially diverse population and over 3,000 registered PCPs. In this study, the 

geographical locations of PCPs were geocoded using active PCPs’ practice addresses data in 

2010.The analysis consists of three steps. First, the spatial patterns of PCPs distributions were 

examined to detect possible cluters. Second, to assess crucial factors that might influence PCPs 

distribution at a local level, both spatial lag and spatial error regression models were applied, since 

there was spatial dependency in both PCPs locations and regression residuals. Other than blacks 

and whites, two ethnic groups that were generally ignored in previous studies– Hispanics and 

Asians, were also included in the analysis.  

 

Key words: health disparity, primary care physician (PCP) 

 

3.1 Introduction 

Disparities in access to quality health care services are of great concern in the field of public health 

(Brown et al. 2000). Penchansky and Thomas (1981) defined five dimensions of health care 

access: affordability, acceptability, accommodation, availability, and accessibility. Availability 

refers to the adequacy of the health care providers, which is considered as a spatial dimension of 

access. The supply of primary care physicians (PCPs) reflects the dimension of availability in 

health care access. It is essential to the health care delivery system and whether the heath care 

needs are being adequately served (Aday and Andersen 1974, Guagliardo 2004). Both local and 

state level studies have firmly concluded that an adequate supply of PCPs could lead to frequent 

health checkups for the population in need, therefore improving the health status of individuals. A 

county-level study in Florida supported the conclusion that a greater supply of PCPs reduces the 

incidence rate and mortality rate of colorectal cancer (Roetzheim et al. 2001). Another study 

conducted in Florida found that the PCPs supply is positively correlated with early detection of 



24 

 

breast cancer (Ferrante et al. 2000). In other words, poor geographic access to primary care and 

screening services is linked to higher risks of late-stage cancer diagnosis (Tarlov et al. 2008; Wang 

et al. 2008). Other state-level studies also firmly concluded that a greater supply of PCPs leads to 

better population health outcomes (Shi 1992, 1994, Shi and Starfield 1999, Shi et al. 2002).  

However, the United States is facing an overall shortage of primary care physicians (PCPs) 

across the country. According to AAMC (2012), without the Affordability Care Act (ACA), the 

U.S. would have been short of approximately 64,000 physicians by 2020 but with the 

implementation of the ACA, it will be 91,000 physicians short. This shortage of PCPs poses a 

major challenge for public health since primary care plays a fundamental role in the complex health 

care delivery system in the U.S. (Continelli et al. 2010, Cromley and McLafferty 2011). Primary 

care physicians are the first stop for people to seek health care, who see patients initially and 

provide referrals to specialists. Primary care involves the widest varieties of health care, for all 

different age, socio-economic status, and ethnic groups (Starfield 1994). Under this context, it is 

of utmost importance to evaluate the geographical distribution of PCPs and identify factors that 

contribute to this spatial pattern. Since much of the health care delivery system is privately funded 

and organized, PCPs are not evenly distributed over geographic space. While most research has 

focused on individual-level factors such as race, income, education, insurance status and disability 

(Brown et al. 2000, Dai 2010), there is a growing number of literature studying neighborhood-

level characteristics that contribute to health care access (Kirby and Kaneda 2006, Bissonnette et 

al. 2012). Research suggested that key neighborhood social attributes such as socioeconomic 

status, perceptions of crime and safety, and social ties and networks play key roles in impacting 

individual health (Kawachi 2000, Kawachi and Glass 2000, Patel et al. 2004). Physical 

characteristics are also proved to have direct impact over the health status and health behavior of 

local residents (Witten et al. 2003, Li et al. 2005, Gauvin et al. 2008, Sallis et al. 2009). Within 

this body of literature, although more has been done to analyze how social and physical 

characteristics of neighborhoods contribute to the individual level of health status, there is a 

general gap in studing the relationship between aggregated neighborhood characteristics and the 

availability dimension of health care access – the supply of health care services (Kawachi and 

Kennedy 1999, Buka et al. 2003, Patel et al. 2003, Wen et al. 2006).  

This chapter contributes to the body of literature by investigating associated factors to 

explain geographical distribution of PCPs in the selected study area – Hillsborough County, 

Florida. Spatial analyses were applied based on census tract level data. Our objectives are twofold. 

First, the geographical distribution of PCPs was explored to detect possible clusters. Next the 

contribution of aggregated neighborhood-level factors to the spatial heterogeneity of PCPs supply 

was examined using spatial regressions.  

 

3.2 Literature Review 

The availability of health care providers, in particular, PCPs, is a key dimension in health care 

access. Here the concept of ‘health care access’ is inherently multi-dimensional since both spatial 

factors (e.g., the geographical location of PCPs and patients, transportation system, travel distance) 

and non-spatial factors (e.g., social-economic status, age, gender, ethnicity, health insurance 

status) are incorporated as critical determinants (Penchansky and Thomas 1981, Joseph and 

Phillips 1984, Meade and Earickson 2000). A great number of literature on access to health care 

focused on the contribution of non-spatial factors to individual health outcomes (Kawachi 2000, 

Kawachi and Glass 2000, Patel et al. 2004, Kawachi et al. 1999, Buka et al. 2003). For example, 
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multiple studies firmly concluded that area deprivation and poverty has significant negative impact 

on heath outcome at different geographical scales (Basta et al. 2008; Jones et al. 2004; Shouls et 

al. 1996; McLafferty and Wang 2009). Previous research also confirmed the significant role of 

race in health care access and disparity. Studies suggested that blacks are more likely to receive 

late diagnosis and experience higher mortality rate than whites (McLafferty and Wang 2009; 

Meliker et al. 2009a, b; Gebreab and Roux 2012). For example, the coronary heart disease (CHD) 

mortality in blacks remains significantly higher than in whites (Lloyd-Jones et al. 2010). CHD 

death rates per 100,000 populations were 161.6 for blacks and 134.2 for whites in the US (Keenan 

and Shaw 2011).  

More specifically, aggregated neighborhood characteristics has drawn increasing 

attentions in public health and epidemiology. Studies have shown a strong correlation between 

neighborhood of residence and health outcomes, including self-rated health, chronic conditions, 

mental health, etc. (Kawachi 2000, Kawachi and Glass 2000, Patel et al. 2004, Witten et al. 2003, 

Li et al. 2005).  Duncan et al. (1999) found that neighborhood socio-economic status affects health 

related behaviors, such as walking and smoking. Black and Macinko (2008) demonstrated that 

indicators of neighborhood socio-economic composition have a significant impact on the obesity 

risk. Dai (2010) identified a positive correlation between the rates of late-stage breast cancer 

diagnosis and neighborhood social-economic/racial composition. The results revealed that living 

in areas with greater black segregation significantly increases the risk of late-stage diagnosis. 

Kwag et al. (2011) suggested that neighborhood characteristics significantly influence the physical 

and mental health of Korean American older adults. Generally speaking, socio-economically 

disadvantaged neighborhoods tend to have relatively poor access to resources that promote health, 

such as access to health care, healthy diet, or recreational opportunities (Macintyre 2007). Because 

of the residential segregation in the United States, lack of access to health-promoting resources is 

associated with racial and ethnic inequity in health outcomes (Mennis et al. 2012).  

When studying aggregated neighborhood characteristics, spatial statistics have been widely 

applied to account for geographical variations. For instance, Tassone et al. (2009) applied 

Bayesian spatial hierarchical modeling to evaluate the spatial heterogeneity in the relationship 

between racial disparity and stroke mortality in the southeastern U.S. Gebreab and Roux (2012) 

examined the spatial heterogeneity in black-white differences in CHD mortality across the country, 

as well as assessed the contribution of poverty and segregation using a geographically weighted 

regression approach. Chen and Truong (2012) identified areal specific correlations between 

neighborhood disadvantages and elevated obesity risk in Taiwan, using both multilevel modeling 

and geographically weighted regression. 

Disparities in access to primary health care services could be in part due to differences in 

the supply of health care providers among neighborhoods. The accessibility to and the availability 

of primary health care can directly impact individual health (Kirby and Kaneda 2006). Research 

has demonstrated that increased travel distance from population in need to health care services 

results in decreased utilization of those services and therefore increased inequality in health. 

Arcury et al. (2005) found that a shorter distance between patients and physicians can increase the 

frequency of regular family physical exams. Buchmueller et al. (2006) suggested that increasing 

distances from hospitals result in higher death rates from heart attacks and unintentional injuries. 

Mennis et al. (2012) concluded that longer travel time to community-based psychiatric treatment 

suppress treatment continuity for drug-dependent patients. Other studies also confirm that early 

detection of disease and treatment is negatively associated with the spatial separation between 

medical services and patients (Campbell et al. 2000, Monnet et al. 2006, Onega et al. 2008, Meyer 
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2012).  Studies also confirm that the supply of health care service may influence access and use. 

A better supply of primary care in a neighborhood guarantees reduced travel distances, which 

encourages more frequent visits and helps patients maintaining better health. For example, 

Andersen et al. (2002) found a positive correlation between the number of federally qualified 

health centers available and the likelihood of having a usual source of care. Thus the disparity in 

the geographic distribution of health care services is of great concern. 

Despite the abundance of literature on neighborhood effect and health care access, studies 

on the relationship between neighborhood factors and the supply of health care services are 

generally lacking. This chapter aims to compensate this gap by examining the supply of PCPs and 

associated neighborhood factors with a case study of Hillsborough County, Florida. We 

hypothesize that aggregated neighborhood characteristics (i.e., proportions of individuals living 

below the poverty level, proportion of individuals 40 years of age and older, and proportions of 

racial/ethnic groups) may be correlated with the geographical locations of PCPs, which affects the 

ability of local residents to seek health care.  

 

3.3 Data and method 

3.3.1 Study area 

Hillsborough County, Florida was selected as our study area because it has a large racially and 

ethnically diverse population, which is ideal for analyzing socioeconomic, ethnic and geographic 

disparities in access to PCPs. Hillsborough County is located on the west coast of Florida in the 

Tampa-St. Petersburg metropolitan area. It is the largest county in metropolitan area and fourth 

largest county in the state. Note that most literature on racial disparity in health focuses on white-

black inequality, and generally ignores other racial groups such as Asians and Hispanics (Wang et 

al., 2008; Zhang and Ta, 2009; Kwag et al., 2011; Kirby and Kaneda, 2013). Since Florida has the 

third largest Hispanic population in the States, and Asian is a major minority ethnic group in 

Hillsborough County, we incorporate these two racial groups as well as whites and blacks in our 

study. Despite the abundant research on the impact of racial disparity in individual health outcome, 

little work has linked the contribution of racial composition to differential distribution of health 

resources, such as PCPs. Identifying the contribution of racial composition to geographic 

heterogeneity of health resources can provide important clues for improving health equality in the 

future, which is also one of the contributions of this study.  

According to U.S. Census Bureau in 2012, of residents who reported being of one race, 

73.3% were White and 16.7% were Black or African American. Asian is a major minority group, 

and accounted for 3.4% of the population. American Indian and Alaska Native, Native Hawaiian 

and other Pacific Islander accounted for 0.6% in total. Nearly one fourth of the population are 

reported as being Hispanic or Latino origin. According to the Behavioral Risk Factor Surveillance 

Survey (BRFSS) report, 12% of Whites, 25% of Blacks and 36% of Hispanics perceived their 

health status as fair or poor in Hillsborough County, Florida in 2009.  

Considering the dynamics of physical geography and our concern being habitable areas, 

we exclude areas where no people actually resides, such as swamp and forest, to represent health 

supply and demand areas as accurately as possible, using the land use data downloaded from 

Florida Natural Areas Inventory. 
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3.2.2 Primary care physician data 

This chapter focuses on primary care physicians given their gate keeper roles in the health care 

delivery system. Primary care generally focuses on illness prevention, health promotion and 

referrals to specialists for further diagnosis and treatment. It is the first stop for the population in 

need to seek health care, and access to secondary and tertiary care is usually mediated through 

primary providers. Above all, primary care relies on an ongoing physician/patient relationship, 

forming an important part of the local neighborhood landscape (Bissonnett et al. 1996). When 

conceptualizing health care access, it is also important to distinguish the difference between 

potential and realized access (Joseph and Phillips 1984). Realized access reflects the actual use of 

health services, while potential access refers to the supply of health care resources (Andersen et 

al. 2001). Thus the spatial distribution of PCPs in a given area is a barometer to measure potential 

access (see Figure 8). Considering its role as the gateway to specialists and tertiary health care, a 

lack of PCPs will also affect access to higher level of health care.  

 

 

Figure 8. Physician location map (Note: uninhabitable areas such as swamp and forest are 

excluded from the map. Land use data obtained from Florida Natural Areas Inventory.) 

 

The number of PCPs are aggregated in each census tract as our dependence variable for a 

series of regression analyses. To overcome the general lacking of the information on the supply of 

PCPs at the census tract or block group level, we used the physician data obtained from the 

Licensure Data Download of the Medical Quality Assurance Services, which consisted of a total 

of 3065 registered active primary care physicians in Hillsborough County in 2012. The Licensure 

Data Download provides the license status, mailing address, practice location address, and e-mail 

address for health care practitioners and establishments licensed in Florida. As preprocessing, data 

exploration, preparation and formatting for geocoding were performed using GIS. PCPs locations 

were geocoded based on their practice location addresses. After geocoding all the practice 

addresses of PCPs (since we did it manually, all the addresses were successfully geocoded), the 

numbers of PCPs are aggregated at census tract level. The number of PCPs in each census tract is 

considered as an indicator for the supply of primary care. Literature has confirmed that local supply 
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of primary care physicians affects the probability of having a primary care physician, which in 

turn affects preventive healthcare service utilization (Continelli et al. 2010). It is reasonable to 

assume a larger number of primary care physicians located within a census tract provides a better 

supply of primary care, which is advantageous for the health status of local residents.  

 

3.2.3 Neighborhood characteristics 

When studying aggregated neighborhood characteristics, the choice of spatial unit for analysis is 

of great importance. Despite continuous debates around the spatial or social definitions to 

determine the boundary and sizes of neighborhood units, a number of conceptualizations are 

widely accepted (De Marco and De Marco 2010). Administrative units, such as United States 

census tracts or block groups, are most commonly used (Wang and Luo, 2005; Wang, 2012; Pearce 

et al. 2006, Guagliardo et al. 2004). In this chapter, we also use census tracts as the basic unit of 

analysis.  

For the analysis of neighborhood factors, we focus on neighborhood socio-economic and 

racial composition. We selected following aggregated neighborhood characteristics as explanatory 

variables for our analysis (see Table 2). Note that poverty rates were adopted rather than incomes 

as indicators for neighborhood socio-economic status, since it has been proved to be a stable 

variable in analyzing socioeconomic disparities (Krieger et al., 2002).Data was obtained from 

Census 2010 data sets (U.S. Census Bureau). 

 

Table 2. Selected census tract level aggregated neighborhood variables 

Classification Variables (variable name) Mean Range 

Socio-economic 

status 

Poverty (%) 

Unemployment (%) 

17.05 

36.10 

0-75 

10.9-100 

Racial/ethnic 

composition 

Non-Hispanic whites (%) 

Non-Hispanic blacks (%) 

Asians (%) 

Hispanics (%) 

54.11 

15.65 

3.01 

22.79 

0-100 

0-97.9 

0-22.2 

0-80.8 

Risk age Age 40 and up (%) 44.75 0-99.65 

Urban-rural structure Rural population (%) 1.71 0-36.04 

Insurance status  Insured population (%) 78.85 0-100 

 

3.3 Detection of Clusters of PCPs 

Before analyzing the spatial patterns of clusters, the heterogeneity of the relative rates of PCPs 

was assessed. The concept of relative rates of PCPs is similar to that of the relative risks in 

epidemiology. The goal is to confirm whether there are actual differences among the different 

relative rates. Thus, both a Chi-square test and Potthoff-Whittinghill’s test of overdispersion were 

conducted. The results confirmed the significant heterogeneity of relative rates of PCPs (See 

Appendix 1). 

To detect possible spatial autocorrelation, the global Moran’s I statistic was used to assess 

the similarity of PCP quantity among neighboring units. The question addressed here is: Do census 

tracts containing similar numbers of PCPs tend to be located close together, or are they randomly 

distributed across the study area? To assess that whether spatial autocorrelation is due to the spatial 

distribution of the underlying population, a Poisson constant risk parametric bootstrap assessment 
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(Waller and Gotway 2004) of the significant of autocorrelation of PCP counts was applied. The 

results confirmed the existence of significant PCP clusters, accounting for the population 

distribution (See Appendix 2 and 3). 

The global Moran’s I statistic simply answers the question that whether or not there is 

spatial autocorrelation in PCP quantity within the study area. To detect the location of a cluster, 

Besag and Newell’s Statistic (1991) and Kulldorf and Nagawalla’s statistic (1995) were applied 

as preliminary analysis to scan local PCP rates. The Besag and Newell’s statistic looks for clusters 

of size k (i.e., where the number of observed PCPs is k. In this case, k = 100). Then the number of 

neighboring regions needed to reach k cases is calculated. If the number is small, then it is marked 

as a cluster, since many PCPs are located in just a few regions with low expected PCP counts. On 

the other hand, Kulldorf’s statistic identify regions within a given window, and compare the overall 

relative risk in the regions inside the window and that of the regions outside the window. The most 

likely cluster can be detected as the window with the highest value of the likelihood ratio. The 

preliminary scanning results can be seen in Appendix 4 and 5, both confirmed similar patterns of 

significant PCP clusters.  

Moreover, the extent of spatial autocorrelation was determined using the local Moran’s I 

statistic, also known as the local indicator of spatial autocorrelation (LISA) (Anselin 1995). By 

comparing similarities and dissimilarities among neighborhoods, LISA generates four categories 

of spatial clusters: high-high, low-low, low-high and high-low. A high-high PCPs cluster is one in 

which neighborhoods and their surrounding neighborhoods all contain high numbers of PCPs, 

suggesting an abundant supply of primary care providers. Conversely, a low-low cluster is one in 

which neighborhoods and their surrounding neighborhoods all contain low numbers of PCPs, 

indicating a shortage of primary care professionals. A low-high cluster is one in which 

neighborhoods with low numbers of PCPs are surrounded by neighborhoods with high numbers 

of PCPs, while a high-low cluster is one in which neighborhoods with high numbers of PCPs are 

surrounded by neighborhoods with low numbers of PCPs. In addition, the statistical significance 

of the clusters was evaluated using a Monte Carlo test, which estimates the likelihood of the 

clusters arising out of randomness. As a way to identify neighborhoods, we applied a queen’s case 

spatial weight in conducting the local Moran’s I test. The spatial weight counts spatial units sharing 

the same edges and nodes as neighbors. To make all analyses consistent, queen’s case spatial 

weights were also applied to construct the spatial lag regression models. 

 

3.4 Statistical methods 

To determine which neighborhood factors affect the supply of PCPs, and evaluate their 

significance, spatial lag regression models were employed. The spatial autocorrelation in the 

dependence variable – the number of PCPs in each census tract – is accounted for using spatial lag 

regression models. The spatial lag regression model is commonly known as a diffusion model, 

where the value of dependence variable y is related to the values of y in neighboring locations 

through 𝜌, the spatial autoregressive parameter. For better performance of regression models, we 

did a log transformation on the dependent variable, i.e., the number of PCPs in spatial unit i 

(𝑃𝐶𝑃𝑠𝑖) 

 𝑦𝑖 = log (𝑃𝐶𝑃𝑠𝑖 + 0.001)        (1) 

The spatial autoregressive structure is incorporated in the spatial lag model: 



30 

 

 𝑦 =  𝜌𝑊𝑦 + 𝑋𝛽 +  𝜀         (2) 

where 𝜌 is the spatial autoregressive parameter. W is a spatial weights matrix. X is the 

matrix of exogenous explanatory variables with an associated vector of regression coefficients 𝛽. 

𝜀 is the vector of random error terms. By using spatial lag regression models, we were able to 

quantify the relationship between the explanatory variables and the number of PCPs in each census 

tract, while accounting for the spatial autocorrelation in the dependent variable.   

3.5 Results and discussions 

The value of Global Moran’s I is 0.2192, with a corresponding z-score of 7.4669 (p < 

0.001), indicating that there is significant positive spatial autocorrelation in the census tract level 

PCP distribution. The clustering pattern remains significant even when controlling for the 

heterogeneity of population distribution (p = 0.002). Following LISA cluster map (Figure 9) 

identified four categories of spatial clusters: high-high, low-low, low-high and high-low. 

 

Figure 9. LISA Cluster Map 

 

According to the selected results of spatial lag regressions listed in Table 3, the percentage 

of Asians has the most significant positive effect over the number of PCPs in each census tract, 

even when other socioeconomic variables are controlled. For example, in Model1, when the 

percentage of Asians increases by 10%, the number of PCPs increases by approximately 100 

(b=0.2274, p<0.001). Compared to Asians, the percentage of whites in each census tract has a 

weaker effect over the number of PCPs. In Model1, when the percentage of whites increases by 

10%, the number of PCPs increases by approximately 3.16 (b=0.0544, p<0.001). Surprisingly, 

both blacks and Hispanics have no significant impact over the numbers of PCPs, despite the 

relatively large population of Hispanics in the study area.  

In summary, the racial composition of both Asians and whites is a main factor that 

influences the distribution of PCPs at neighborhood level. In other words, when a census tract 

includes more Asians or whites, there is a higher quantity of PCPs. The impact of Asians is 
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approximately four times more than whites while blacks and Hispanics do not seem to affect the 

supply of PCPs. It is no surprising that indicators of neighborhood socio-economic disadvantage 

such as poverty rate and unemployed rate, all have significant negative impacts over the number 

of PCPs, while the rate of insurance coverage has a significant positive impact over the number of 

PCPs. Moreover, the percentage of the age group at risk (> 40 years old) has a significant positive 

influence over the quantity of PCPs. However, the percentage of rural population doesn’t seem to 

have statistically significant impact over the quantity of PCPs. 

 

Table 3. Coefficients for spatial lag regression models 

 Model1 Model2 Model3 Model4 Model5 

%White 0.0544*** 0.0309***  0.0272**  

%Black 0.0142     

%Asian 0.2274*** 0.1986*** 0.1693*** 0.1515** 0.2551*** 

%Hispanic 0.0148     

Poverty Rate  -0.0405* -0.0539** -0.043**  

Insurance Rate    0.0664***   

Unemployment Rate    -0.0350**  

%Rural Population     -0.0478 

%Age 40+      0.0378** 

r2 0.29 0.30 0.35 0.32 0.25 

AIC 1689 1682 1661 1676 1727 

Note: * 𝑝 < 0.05, **  𝑝 < 0.01, *** 𝑝 < 0.001 

 

Table 4. Correlation matrix of explanatory variables 

%White   %Black     %Asian   %Hispanic    %Poverty   %Insurance  %Rural     %Unemployed      %Age40+ 

%White    -0.64***      0.07         -0.48***        -0.54***     0.58***        0.17***       -0.17**               0.58*** 

%Black         -0.17**     -0.04               0.61***    -0.06             -0.14*            0.04                  -0.24*** 

%Asian                                        -0.05             -0.20***     0.12*    -0.02             -0.34***            -0.16** 

%Hispanic                                                                           0.34**      -0.18**         -0.05             -0.23***            -0.16** 

% Poverty                                                                                             -0.23***       -0.06              0.12*                -0.20*** 

%Insurance                                                                                                                 0.05              -0.42***             0.53*** 

%Rural                                                                                                                                             -0.05                   0.07 

%Unemployment                                                                                                                                                        0.12* 

%Age40+ 

Note: * 𝑝 < 0.05, **𝑝 < 0.01, *** 𝑝 < 0.001  

Table 4 provides a correlation matrix of the explanatory variables. Census tracts with a 

higher percentage of white or Asian population are found to have lower poverty rate, higher 

insurance rate, and lower unemployment rate, which supports the conclusion that the composition 

of Asians or whites has a positive impact over the quantity of PCPs. Census tracts with a higher 

percentage of white population are more likely to be rural areas, while census tracts with a higher 

proportion of Asians tend to be urban areas. This result is also consistent with the conclusion that 

the positive impact of Asians on the quantity of PCPs is much more significant than whites, since 

urban areas tend to have more hospitals and physicians in Hillsborough County, Florida (Ye and 

Kim 2014). Note that census tracts with a higher proportion of whites also have more 40 years and 

older population; while census tracts with a higher proportion of minorities have a younger 
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population. Poverty rate, unemployment rate, and insured population percentage are all correlated 

in the expected direction. It is clear that 40 years and older population turn out to have higher 

socioeconomic status in general, and they are most likely to be white. This result supports the 

assumption that the percentage of the age group at risk (> 40 years old) has a significant positive 

influence over the quantity of PCPs. 

 

3.6 Conclusions 

Despite the abundant research that focused on individual-level or neighborhood-level factors that 

contribute to individual health status (Kawachi, 2000, Kawachi and Glass 2000, Patel et al.  2004, 

Kawachi et al. 1999; Buka et al. 2003), very little has been done to study the relationship between 

neighborhood factors and the supply of health care services (Lo and Wang 2005; Curtis and Leitner 

2006; Wang 2006; Wang 2012).  

This chapter examines the possible correlation between neighborhood factors and the 

supply of PCPs with a case study of Hillsborough County, Florida. Spatial statistical techniques 

are applied to estimate the effect of neighborhood socio-economic/racial composition on the PCPs 

supply, which reflects the dimension of availability in health care access. First, the spatial patterns 

of PCPs distributions were examined and PCP clusters were detected. Second, spatial lag models 

were applied to assess significant neighborhood factors that might influence PCPs distribution. 

The spatial lag models were used to account for the spatial dependency in PCPs locations. In our 

study, other than blacks and whites, two ethnic groups that were generally ignored in previous 

studies– Hispanics and Asians, were included in the analysis.  

The global Moran’s I confirms the spatial autocorrelation between PCPs distribution; while 

local Moran’s I identifies both hot and cold spots. Metropolitan areas such as Tampa and Temple 

Terrace are considered as hot spots – clusters of high numbers of PCPs; while certain suburban 

and rural areas are identified as cold spots. The results reveal the potential PCPs shortage in rural 

areas in Hillsborough County, Florida.  

Important findings also emerged from the regression analysis. Asians are found to have a 

most significant positive effect on the supply of PCPs in Hillsborough County. Although one might 

suspect Hispanics might influence the supply of PCPs since there is a large population of Hispanics 

in the study area, the results of the regression analysis proved otherwise. The percentage of whites 

also has a positive effect on the number of PCPs, while the percentage of blacks has no correlation 

with the PCPs supply. It is no surprising that PCPs supply is negatively correlated with indicators 

of neighborhood socio-economic disadvantage. Moreover, insurance rate definitely has a great 

positive impact over the supply of PCPs. 

This study has certain limitations. First, the results might be different if we use different 

sizes of neighborhoods due to modified areal unit problem (MAUP) (Openshaw, 1983). The 

MAUP describes the differences in empirical results that may occur when we use different spatial 

units for analysis. Although we have significant findings for the census tract level analysis, the 

result might be different for other geographical scales. Second, although the supply of PCPs 

reflects the availability of health care services in the study are, it does not guarantee the 

accessibility from the patients’ side. Thus a higher supply of PCPs might not be necessarily equal 

to good health access.  

Despite the limitations discussed above, this research contributes to knowledge on the 

supply of health care services in the study area by identifying significant neighborhood factors. 

Our findings suggest that neighborhood racial/socio-economic composition affects the supply of 
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PCPs. Neighborhoods that are more Asian or whites tend to have more PCPs, while neighborhood 

socio-economic disadvantages impede the supply of PCPs. Given that the United States is highly 

segregated by both race and socio-economic characteristics, this research contributes to the health 

care access literature by addressing the neighborhood-level characteristics and the availability of 

health care services.  
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Abstract 

Using a nationally representative U.S. sample, this study examined the extent to which 

neighborhood characteristics affected length of inpatient stay (LOS) in the United States. Data 

were obtained from the 2012 Area Health Resource Files. A total of 3,148 U.S. counties were 

included in the study. Generalized linear models and the geographically weighted regression model 

were employed to examine the extent to which neighborhood characteristics affected length of 

inpatient stay and its spatial variation. Exploratory spatial data analysis was also conducted to 

examine the geographic patterns in LOS. Hospital bed capacity was found to be the strongest 

predictor of LOS. Counties with a lower poverty rate, a lower uninsured rate, a higher proportion 

of female residents, a higher proportion of residents living in urban areas, and more diverse racial 

groups had a longer LOS. Significant spatial clustering pattern of LOS was also found. Findings 

suggest that social work professionals should be aware of spatial disparity in health care resources 

and develop ways of providing equitable health care for vulnerable populations in 

socioeconomically disadvantaged neighborhoods.  

 

Key words: health care use; health care resources; length of inpatient stay; neighborhood 

characteristics; spatial disparity 

 

4.1 Introduction  

According to the U.S. national data, the average length of inpatient stay (LOS) declined from 5.7 

to 4.6 days between 1993 and 2005 (HCUP 2005). Shortening length of hospital stay is one of the 

main strategies applied by managers and hospital administrators to cope with the increasing 

financial pressures, since hospitalization is the most expensive form of healthcare (Gandsas et al. 

2007). The United States is facing an increasing healthcare demand and a great shortage of 

physician labor force (AAMC 2012). In this context, despite the ongoing debate on the relationship 

between LOS and healthcare expenditures, many healthcare professionals believe that reducing 

LOS frees up capacity to increase admissions, increase revenue, and improve healthcare quality 

(Herrle 2006).  

Previous studies on LOS have mainly focused on individual and hospital characteristics. 

Martin and Smith (1996) identified several important determinants of variations in LOS, such as 

access to hospitals, waiting time for elective surgery, poverty status, and availability of informal 

care. Epstein et al. (1988) found that patients with lower socioeconomic status had longer hospital 

stays when the variables of age, sex, and the severity of illness were adjusted. However, another 

study by Ellison and Bauchner (2007) argued that socioeconomic status had no effect on LOS 

among children with vaso-occlusive crises in sickle cell disease. Remarkably, Gifford and Foster 

(2008) postulated that the length of stay is better explained by hospital characteristics than 

individual characteristic, and several studies also supported that hospital type is greatly associated 

with variations in LOS (Lee, Rothbard and Noll 2012b, Cohen and Casimir 1989, Burns and 

Wholey 1991).  

Considering disparities in hospitalization from a geographic perspective, Ashton and 

colleagues (1999) confirmed that significant geographic variation existed in LOS among veterans. 
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Nguyen-Huynh and Johnston (2005) also found regional variation in LOS among Asians and 

Pacific Islanders with stroke. However, notice that these studies are limited by the use of a specific 

health condition (e.g., stroke) and a specific hospital type (e.g., VA hospital), resulting in a lack of 

evidence to draw a general conclusion. Thus, using a nationally representative U.S. sample, our 

study investigates the relationship between neighborhood characteristics and LOS. By adopting 

geographical perspective, our study particularly contributes to the literature on hospital utilization 

with an emphasis on the development and allocation of healthcare resources within different 

neighborhoods.  

 

4.2 Theoretical framework 

In light of ecological perspective, our study specifically focused on the effects of neighborhood 

characteristics on LOS. The core assumption of the perspective is that humans are dependent on 

their environments. To reveal the dependency, the ecological theory emphasizes on the interaction 

between individuals and their environments, such as family, work, and community as well as 

cultural and political environments at large (Chung 2012).  

Previous research has shown the importance of ecological perspective in understanding the 

effect of environment on health. For example, a recent study by Chung (2012) highlighted the 

reciprocal interactions of biological, psychological, social and cultural variables on suicide 

attempts among Chinese immigrants in New York City. By applying the ecological system 

approach, Sanders et al. (2008) also identified barriers to mental health services for older adults in 

rural areas where resource is relatively limited (e.g., lack of knowledgeable healthcare providers, 

funding cutbacks, and limited access to services).  

The ecological perspective considers factors in both physical and social environment 

(Kwag et al. 2011). In particular, physical environment factors, recognized as geographic 

characteristics, such as the availability and proximity of health facilities, have drawn increasing 

attention. For example, Andersen et al. (2002) found a positive correlation between the number of 

federally qualified health centers available and the likelihood of having a usual source of care. 

Arcury et al. (2005) also found that a shorter distance between patients and physicians increased 

the frequency of regular family physical exams. Buchmueller et al. (2006) suggested that 

increasing distances from hospitals resulted in higher death rates from heart attacks and 

unintentional injuries.  

Social characteristics of neighborhoods (e.g., socioeconomic status, proportion of 

racial/ethnic groups) have also been proven to be significant predictors of an individual’s health 

status. For example, Black and Macinko (2008) demonstrated that indicators of neighborhood 

socio-economic composition have a significant impact on the risk of obesity. Another study by 

Dai (2010) found that a higher risk of late-stage diagnosis of breast cancer was greatly associated 

with living in areas with greater black segregation. It has been documented that socio-

economically disadvantaged neighborhoods tend to have relatively poor access to healthcare 

resources (Cummins et al. 2007). A recent study by Kwag et al. (2011) found that neighborhood 

characteristics, such as proportion of individuals living below poverty, proportion of individuals 

65 years of age and older, and proportion of racial/ethnic minorities in the neighborhood, 

significantly affected physical and mental health of Korean American older adults. Due to the 

residential segregation in the U.S., lack of access to health-promoting resources is also associated 

with racial disparity in health outcomes (Mennis, Stahler and Baron 2012).  
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Despite the abundance of research on the influence of neighborhood characteristics on the 

individual’s health or access to healthcare, little is known about how neighborhood characteristics 

affect LOS in the U.S. Thus, our study addresses the following research question: To what extent 

do neighborhood characteristics influence LOS in the U.S.? To answer this question, we explored 

(1) the geographic pattern of LOS using global Moran’s I and LISA statistics; (2) significant 

neighborhood characteristics associated with LOS using generalized linear models (GLMs); and 

(3) possible spatial variations at county level using a geographically weighted regression model 

(GWR).  

4.3 Methods 

4.3.1 Data source and sample 

Data were obtained from the 2012 Area Health Resource Files (AHRF), which comprise of data 

collected from more than 50 sources, including the American Hospital Association (AHA) annual 

survey of hospitals. The data set contains more than 6,000 variables associated with healthcare 

access and utilization at the county level (U.S. Department of Health and Human Services 2014). 

The sample for the current study consisted of 3148 counties across the U.S. Given that the AHRF 

provides county-level data only, no individual-level data were used in the current study. Based on 

the use of aggregated secondary data, which were also obtained from publicly available source, 

the University IRB has exempted the study from review. 

4.3.2 Study variables 

Dependent variable 

All hospital utilization data in the AHRF were extracted from the AHA annual survey of hospitals. 

Since the county is the unit of analysis in the current study, an aggregated LOS per county was 

used as the dependent variable in the study. According to the AHA survey instructions (AHA 

2015), LOS refers to the number of adult and pediatric days of care rendered during the entire 

reporting period. Those days included both medical and psychiatric short-term and long-term 

inpatient hospitalization regardless of the type of hospital (e.g., general, non-general, community, 

veteran’s hospital), with an exception of newborns.        

Explanatory variables 

Explanatory variables were based on the Andersen’s behavioral model of health services use 

(Andersen 1968, Aday and Andersen 1974, Andersen 1995), which has been broadly used in 

previous studies on healthcare use (Babitsch, Gohl and von Lengerke 2012). The Andersen model 

specifies the role of predisposing (e.g., age, gender, race), enabling (e.g., income, poverty, 

employment, insurance status), and need factors (e.g., perceived health status, medical diagnosis) 

in examining access and use of healthcare services. Although these variables have been used 

extensively to explain healthcare use, neighborhood characteristics (e.g., population factors, 

healthcare resources in the community) may also play an important role in determining how long 

an individual stays in an inpatient setting (Lee, Rothbard and Noll 2012a).  

Thus, two sets of explanatory variables were constructed to represent neighborhood 

characteristics under two categories: aggregated socio-demographic characteristics and healthcare 

resources. Aggregated socio-demographic characteristics included a set of eight variables: the 

proportion of residents 65 years of age and older, the proportion of female, the proportion of white, 
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the proportion of residents living in urban areas, the proportion of residents living below the 

poverty level, the proportion of residents who were unemployed, the proportion of residents who 

had no insurance, and the total number of population. In the AHRF data, urban was defined as 

where all territory, population, and housing units located within urbanized areas, which consist of 

densely developed territory that contains 50,000 or more people, and urban clusters, which consist 

of densely settled territory that has at least 2,500 people but fewer than 50,000 people (U.S. 

Department of Health and Human Services 2013). Healthcare resource variables included the 

number of hospitals and inpatient service unit beds. In the AHRF data, facilities with six or more 

inpatient beds, cribs or pediatric bassinets were considered as hospitals.  

 

4.3.3 Data analysis 

Exploratory spatial data analysis 

Global Moran’s I and LISA statistics were applied to explore the geographic pattern of LOS by 

assessing the similarity of LOS among neighboring counties. Specifically, the global Moran’s I 

statistics were employed to examine whether or not there is spatial autocorrelation in LOS within 

the study area, while the extent of spatial autocorrelation was determined using the local Moran’s 

I statistic, which is known as the local indicator of spatial autocorrelation  (LISA, Anselin 1995). 

By comparing similarities and differences among counties, LISA generates four categories of 

spatial clusters: high-high, low-low, low-high, and high-low. In the context of our study, a high-

high LOS cluster is one in which counties and their surrounding counties all have high values of 

LOS. Conversely, a low-low cluster is one in which counties and their surrounding counties all 

contain low values of LOS. A low-high cluster is one in which counties with low values of LOS 

are surrounded by counties with high values of LOS, while a high-low cluster is one in which 

counties with high values of LOS are surrounded by counties with low values of LOS. Statistical 

significance of the clusters was evaluated by a Monte Carlo test, which estimates the likelihood of 

the clusters arising out of randomness (Anselin 1995, Hope 1968). To identify neighborhoods, we 

applied a Queen’s case spatial weight (Getis and Aldstadt 2004, Stetzer 1982). The spatial weight 

counts spatial units sharing the same edges and nodes as neighbors.  

Statistical analysis 

To examine the extent to which neighborhood characteristics affected LOS, we conducted 

generalized linear models (GLMs) with a log link, which account for positive skewness in LOS 

(Manninga and Mullahy 2001). GLMs generate global coefficients and assume that the 

relationships are constant across the study area. To capture the possible spatial variation in the 

relationship between LOS and covariates among counties, we also applied a geographical weighted 

regression (GWR). GWR represents detailed local variations, as the fitted coefficient values of a 

global model (e.g., GLM) fail to do so (Fotheringham, Brunsdon and Charlton 2003, Brunsdon, 

Fotheringham and Charlton 1996), 

The formula for GWR can be written as: 

𝑦𝑖 = 𝛽𝑖0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑖𝑘(

𝑝

𝑘=1

𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖 ,   ∀𝑖 
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where 𝛽𝑖0(𝑢𝑖, 𝑣𝑖) is the intercept parameter at spatial unit (i.e. county) i, 𝛽𝑖𝑘(𝑢𝑖, 𝑣𝑖) is the 

local regression coefficient for the kth independent variable at i, and (𝑢𝑖 , 𝑣𝑖) is the coordinate of 

the ith point in the study area (Fotheringham et al. 2003).  

4.4 Results 

Table5 shows the aggregated neighborhood characteristics of 3,148 counties in the U.S. The 

average LOS was 75185.4 days, however, the standard deviation was 6078.9, indicating the large 

variation in LOS among counties. The mean proportion of residents who lived below the poverty 

level was 17.2%, while the mean proportion of white was approximately 82.9%. The mean 

proportion of older people (65 and older) was 16.2% and the mean proportion of the uninsured 

was 18.5%. The average number of hospital was 1.91 (SD=4.14) and the mean number of hospital 

bed was 285.4 (SD= 1,002.73).  

Table 5. Aggregated neighborhood characteristics 

 Variables   % Mean SD Range 

Dependence 

variable 

Length of inpatient 

stay (day) 

  75185.4 206078.9 0-6502662 

 

 

Socio-

demographic 

characteristics 

 

      

Total population 

(#) 

  92610 

 

316349 90- 3880244 

 

Population density 

per square miles 

  234.2 1724 0-35369.2 

White (%)  82.89   2.70-99.20 

Female (%)  50.01   28.73-56.84 

Age 65 and older 

(%) 

 16.16   3.72-45.54 

Urban (%)  41.28   0.00-100.00 

Uninsured (%)  18.54   3.60-41.40 

Poverty (%)  17.24   2.90-49.90 

Healthcare 

resources 

variables 

Total hospitals (#)   1.91 4.14 0-48.00 

Hospital beds (#)   285.4 1002.735 0-9804.0 

 

Figure 10 shows the geographic variation in LOS in the U.S. For clear comparison, our 

study used nine regions according to the U.S. Census Regions. The LOS was the highest among 

the West Pacific, South Atlantic, and Northeast coastal regions, especially within or around 

California, New York, and Florida (e.g., Los Angeles, Cook, New York, Harris, and Maricopa 

County).  
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Figure 10. Length of inpatient stay map in the United States 

 

The value of Global Moran’s I was 0.1685 with a corresponding z-score of 16.6931 

(p<.001), indicating that there is a positive spatial autocorrelation in the LOS at county level. In 

Figure 11, a LISA cluster map shows four categories of spatial clusters: high-high, low-low, low-

high and high-low. No significant low-low clusters were identified at county level. High-high 

clusters were mainly located in the West Pacific, Northeastern, and South Atlantic regions. Very 

few high-high clusters were scattered in the West Mountain, West South Central, and East North 

Central, and East South Central regions. No high-high clusters were identified in the West North 

Central region. Noticeably, high-low clusters were mainly scattered in the Midwest and South, 

while very few low-high clusters were identified near the high-high clusters. 

 To further examine the factors that contribute to this spatial pattern of LOS, two GLMs 

were constructed (Table 6). First, to examine the gross effect of bed capacity – an indicator of 

neighborhood healthcare resources on the LOS, Model 1 included only the number of beds without 

controlling for covariates. The result indicates that a greater number of bed capacity increased LOS 

(b=0.002, p<.001). Second, Model 2 included both the bed capacity and other neighborhood socio-

economic characteristics. After controlling for covariates, the variable of bed capacity was 

remained as a significant predictor of LOS (b=0.001, p<.001), implying that hospital capacity is a 

significant determinant for LOS. All other covariates were found to be associated with LOS. For 

example, LOS was longer in counties with a lower poverty rate, a lower uninsured rate, and a 

higher proportion of female. LOS was also longer in counties with a higher proportion of residents 

living in urban areas. Moreover, counties with more diverse racial groups and a younger population 

had a longer LOS.   
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Figure 11. LISA cluster map 

 

Table 6. Predictors of the length of inpatient stay: Results of GLMs 

Variable Model 1 Model 2 

 b b 

Hospital beds  0.002*** 0.001*** 

Poverty (%)  0.016** 

Total population  -0.002** 

Population density per 

square miles 

 -5.970E-

7** 

White (%)  -0.003* 

Female (%)  5.969*** 

Age 65 and up (%)  -1.731** 

Urban (%)  0.020*** 

Uninsured (%)  -0.061*** 

AIC 57574.860 56777.399 

Note. A variable of number of hospital was excluded from Model 2 due to its high correlation with hospital bed 

capacity (b=0.95, p<.001). *** p<.001.  
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Since the bed capacity is proven to be the major determinant of LOS, we constructed a 

GWR model using LOS as dependent variable, and number of hospitals beds as explanatory 

variable. The GWR model has an adjusted r2 of 0.99, suggesting that the model is a good fit to 

capture the spatial variation of LOS. The mean of hospital beds coefficients was 249.925 with a 

standard deviation of 9.020 (ranged from 240.200 to 274.410). In GWR model, we confirmed 

significant spatial variation in the relationship between LOS and hospital bed capacity by 

establishing more accurate local coefficients.  

Figure 12 represents the visualization of the spatial variation in the relationship between 

LOS and hospital bed capacity. The Northeast region has the strongest positive correlation between 

the LOS and bed capacity (262.6<b<274.4); while the Midwest and South regions have the 

smallest positive correlation (240.2<b<243.5). In other words, the effect of bed capacity on LOS 

was greater in the Northeast region than that in the Midwest and South regions. One possible 

explanation behind the variation in the bed coefficients could be the different utilization patterns 

among populations. The population density of the northeastern states is much higher than that of 

the central states. The higher socio-economic status of the population as well as the more 

developed transportation networks contribute to better access to hospitals. Thus, the utilization rate 

of the healthcare facilities in the northeastern states is much higher, and the hospital beds are 

constantly occupied. The turnover rate is also higher. On the other hand, there might be more 

empty hospital beds during certain periods. As a result, when increasing the number of beds in the 

northeastern states, there is a greater increase of the overall length of inpatient stay. 

 

 

Figure 12. GWR coefficient map 

 

4.5 Discussion 

Our study confirmed the spatial clustering pattern of LOS and identified its associated 

neighborhood factors. Hospital bed capacity as an indicator of health care resources was found to 

be the major predictor of LOS. Particularly, our findings suggest that people living in urban areas 

tend to have better access to health care resources than their counterparts living in rural areas. 

Consistent with the findings of previous studies (Kwag et al. 2011; Martin and Smith 1996), our 

study also highlights the importance of neighborhood’s economic status (that is, the relationship 
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between poverty and LOS), implying that residents in socioeconomically disadvantaged 

neighborhoods are likely to experience lack of health care resources, which in turn limits health 

care access (Macintyre, Ellaway and Cummins 2002). The spatial distributions of health care 

resources and population in need do not match in a desirable level across the country (Guagliardo 

2004, Ye and Kim 2014), and the shortage of health care supply is especially severe in rural areas 

and impoverished urban communities (Campbell et al. 2000; Monnet et al. 2008; Ye and Kim 

2014). Consequently, living in disadvantaged neighborhoods reduces the possibility of having a 

usual source of care and receiving recommended preventive services (Kirby and Kaneda 2005). 

Noticeably, our data show that 615 counties out of 3,184 do not have any facilities with six or 

more inpatient beds. Considering the importance of developing community health care resources 

for both inpatients and outpatients, health care policymakers should be aware of this spatial 

disparity and develop ways of providing equitable health care for vulnerable populations in 

socioeconomically disadvantaged neighborhoods. 

Furthermore, given that many health care providers tend to refuse Medicaid patients due 

to its lower reimbursement rate than that of private insurance (Dayaratna 2012), health care 

policymakers should consider reforming Medicaid so that the poor have equal access to needed 

and quality health services. Likewise, those without insurance may be limited to have shorter 

length of hospital stay due to their financial burden from out-of-pocket health expenditures. Thus, 

the provision of affordable health insurance would be helpful for those who need to stay longer at 

the hospital for the necessary health services. The passage of the Patient Protection and Affordable 

Care Act (ACA) of 2010 (P.L. 111-148) in the United States has increased health care access for 

vulnerable populations, such as individuals with mental illness and substance use disorders 

(Donohue, Garfield and Lave, 2010), women (Johnson 2010), and low-income families (Decker 

et al. 2013). However, the ACA still does not address lack of insurance for recently arrived 

documented immigrants (less than five years of residence in the United States) and undocumented 

immigrants (González Block et al. 2014). Considering that delayed treatment may require costly 

care later in the disease process, policymakers should consider providing limited and selected 

health care services, instead of excluding all benefits of the ACA coverage, for this vulnerable 

population. Alternatively, developing community resources, which can be substituted for 

hospitalization, would help this vulnerable population. For example, medical homes would be a 

good option, especially for the neighborhoods where there is a great shortage of health care 

resources, such as primary physicians. The Commonwealth Fund 2006 Health Care Quality Survey 

indicated that when people have a medical home, their access to needed care, receipt of routine 

preventive screening, and management of chronic conditions improves greatly (Beal and Fund 

2007). Thus, expanding medical homes for patients, particularly those who are living in the 

neighborhoods with a lack of primary health care resources, may improve overall health care 

accessibility. Considering that community health centers and other public clinics are less likely to 

provide medical homes for the uninsured (ibid.), policymakers should consider expanding medical 

homes for this vulnerable populations.  

The proportion of white population turned out to have a negative effect on LOS. In other 

words, racial minority populations tend to have longer stays than their white counterparts. A study 

by Thompson, Neighbors, Munday, and Trierweiler (2003) found that white patients are more 

likely to receive a referral to aftercare, which decreases the risk of readmission. Other studies also 

indicated that racial minority groups are more likely to have less access to quality aftercare, suffer 

from long-term functional outcomes after traumatic injury, and have a higher chance of 

readmission and longer inpatient stays (Ball and Elixhauser 1996, Bolden and Wicks 2005, Kwag 
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et al. 2011; Shafi et al. 2007; Thompson et al. 2003). Considering the potential risks of longer 

stays without proper referrals among racial or ethnic minority groups, health care professionals 

should develop a comprehensive and systematic referral system in the context of culturally 

competent health care to reduce racial disparity in health care access and service utilization.  

Several limitations should be noted. First, individual characteristics, such as severity of 

health condition, were not considered in the study, because the literature supports little effect of 

individual characteristics on LOS (Gifford and Foster 2008). Further studies are recommended to 

employ a hierarchical methodology, which accounts for individual, facility, and neighborhood 

characteristics. Second, the current study used the county as the unit of analysis in the examination 

of the relationship between neighborhood characteristic and length of stay. Since different 

boundaries or sizes of neighborhoods create modified areal unit problem (Openshaw 1983), the 

study is limited in its generalizability. Third, this study is a cross-sectional study. Thus, it is limited 

to known temporal order of study variables. For instance, we can’t know whether the greater bed 

capacity allows patients stay longer or whether longer lengths of stay need a greater bed capacity. 

Therefore, to investigate this causality, further studies are recommended to replicate this study 

with a longitudinal design. Finally, our study findings are limited in terms of the lack of additional 

explanatory variables. Particularly, due to data unavailability, our current study could not control 

for specific diseases or illnesses (need factors proposed by the Andersen model) as covariates. To 

better understand comprehensive factors associated with LOS, further studies should also examine 

the role of need factors in health care utilization.   

Nevertheless, as the first empirical study to examine the effects of neighborhood 

characteristics on length of stay using a nationally representative U.S. sample, our findings 

contribute to the literature by exploring spatial clustering pattern of LOS, identifying significant 

neighborhood characteristics associated with LOS, and providing implications for health care 

policy and practice. Social work professionals should be aware of spatial disparity in health care 

resources and understand the effects of neighborhood characteristics on LOS to provide continued 

quality health care in collaboration with community partners.  
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CHAPTER 5  

LOCATING HEALTHCARE FACILITIES:  

A NETWORK-BASED OPTIMIZATION APPROACH 
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Abstract 

Where should new service facilities be located is a key question in ensuring healthcare 

accessibility. In previous healthcare literature, most researchers applied either Maximal Covering 

Location Problem (MCLP) or Location Set Covering Problem (LSCP) to address the location 

selection problems. The MCLP tries to maximize population with access with a limited number of 

facilities; while the LSCP ensures full coverage with a minimum number of facilities. However, 

researchers rarely applied both models and compare their results. Moreover, most literature applied 

Euclidean distance to generate service coverages and failed to demonstrate the geo-processing 

steps in the application of location problems with the integration of Geographic Information 

System (GIS). To complement existing literature, this chapter proposes a Network-based Covering 

Location Problem (Net-CLP) building on traditional location problems. The Net-CLP incorporates 

two sub-models: a Network-based Maximal Covering Location Problem (Net-MCLP) and a 

Network-based Location Set Covering Problem (Net-LSCP). The goal of Net-CLP in this chapter 

is threefold: 1) the network-based coverage is based on real world transportation networks 

depending on different travel thresholds; 2) addressing the location problem applying both Net-

MCLP and Net-LSCP to fully evaluate candidate facility sites, considering service capabilities; 3) 

demonstrating the integration of GIS in location problems, with a case study of Hillsborough 

County, Florida. 

 

Key words: location problems, service capability, transportation network, GIS integration, geo-

processing 

 

5.1 Introduction 

The geographical proximity of healthcare facilities is crucial in ensuring spatial accessibility for 

population, as well as individual health outcomes (Arcury et al. 2005, Buchmueller, Jacobson and 

Wold 2006, Ferrante et al. 2000, Hare and Barcus 2007). Accessibility is defined as the potential 

interaction between the population in need and healthcare services, impeded by geographical 

barriers such as travel distance and cost (Guagliardo 2004). Generally speaking, the probability of 

visiting healthcare facilities decreases with increased travel distance, which is referred to as 

distance decay (Cromley and McLafferty 2012). It impedes individuals from more frequent visits 

to healthcare facilities for regular health checkups and timely treatments in case of emergencies. 

To ensure accessibility, healthcare planning should consider both the quantity of the facilities 

allocated and their geographical locations, when assessing service coverage in a region. If too 

many facilities are allocated, the operation and maintenance cost becomes excessive; if not enough 

facilities are allocated, service quality might not meet a satisfactory standard. Moreover, if the 

facilities are allocated too far away from the population in need, the increased travel distance 

impedes access to healthcare. Both low quantity and undesirable locations of facilities result in the 

underuse of the healthcare services, leading to increases in mortality and morbidity rates 

(Buchmueller et al. 2006, Burns and Wholey 1991, Daskin and Dean 2004). In summary, assessing 

the potential mismatch between facilities and population, as well as finding an optimal solution 
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when locating healthcare facilities play a significant role of ensuring access to healthcare and 

individual health needs. 

Since the locations of healthcare facilities are essential for healthcare delivery, this research 

addresses the question of where to locate new healthcare facilities in relation to existing ones under 

following scenarios:  

 

1. Minimizing the total number of new facilities to reduce cost while ensuring all the demands 

are covered;  

2. Maximizing service coverage when locating a fixed number of new healthcare facilities;  

3. Exploring potential locations satisfying both perspectives described in 1 and 2;  

4. Considering service capability of facilities. 

 

To address this question, this chapter employs a spatial optimization approach with an 

integration of Geographic Information System (GIS) to assess healthcare accessibility and support 

location decisions. Here we propose a Network-based Covering Location Problem (Net-CLP). In 

order to formulate a more comprehensive evaluation of location decisions, the Net-CLP contains 

two sub-models building on traditional coverage location problems – a Network-based Maximal 

Covering Location Problem (Net-MCLP) and a Network-based Location Set Covering Problem 

(Net-LSCP). Since the concepts of both spatial representation and coverage are essential to 

identifying facility locations in the models, the work flow of this study is summarized as: 1) design 

a spatial representation of the study area to reduce aggregation errors; 2) define service coverage 

based on a transportation network in a GIS environment; and 3) demonstrate the application of a 

feasible planning method – a Net-CLP that enables public health professionals to evaluate location 

decisions. The chapter is organized as follows: a review on healthcare facility location problems 

and related issues is presented in section 2, followed by a detailed description of the formulation 

for Net-CLP with two sub-models – Net-MCLP and Net-LSCP, in section 3. Section 4 presents 

the spatial representation that we developed for the model application in the case study area – 

Hillsborough County, Florida. Results of the analysis are presented and discussed in section 5, 

followed by conclusive remarks.  

 

5.2 Background 

The location problems are formulated and solved through mathematical programming consisting 

of objective functions and a set of constraints that are structured based on identified spatial 

characteristics. Other than being widely applied in the efficient siting of service-oriented facilities, 

location problems have gained increasing popularity in healthcare literature (Rahman and Smith 

2000, Syam and Côté 2010, Shariff, Moin and Omar 2012). One of the most popular location 

models is the Maximal Covering Location Problem (MCLP). Introduced by Church and ReVelle 

(1974), the MCLP was originally employed to support  location decisions for emergency service 

facilities, such as ambulance, police and fire stations (Daskin and Dean 2004). The objective of 

the MCLP is to maximize the number of covered demands served by a limited number of facilities. 

Limiting the number of facilities to be located is a constraint to be imposed on the supply side. In 

the context of healthcare accessibility, this objective can be interpreted as the maximization of 

overall accessibility for the population in need when locating services. Moreover, it has been 

extended and applied in more diverse contexts over the years. For example, Verter and Lapierre 

(2002) applied an adapted version of MCLP to locate preventive health care facilities, ensuring 
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both total coverage and the limited capacity of each facility; Moore and Revelle (1982) modified 

and extended the model of MCLP to consider hierarchies in service system. Another commonly 

applied covering model is the location set covering problem (LSCP) proposed by Toregas et al. 

(1971), which attempts to provide complete coverage to all areas while utilizing the fewest number 

of service facilities. Full coverage of all the demand locations is a constraint to be imposed on the 

demand side. In many circumstances, LSCP might identify a large number of facilities to ensure 

full coverage. As far as we know, no previous literature has applied both models to the same 

location selection problem and compared their results. Thus in this chapter we adopted both 

approaches to provide a more comprehensive evaluation of the problem at hand. 

In coverage-based location models, the solution is highly sensitive to geographic 

representation such as the size or shape of basic spatial units (Murray and O’Kelly 2002, Murray, 

O’Kelly and Church 2008). The term Modifiable Areal Unit Problem (MAUP) was coined to 

describe both scale and aggregation effects (Openshaw 1983). In particular, major analytical 

differences can be found depending on the size of units used as well as the ways in which the study 

area is divided up. The appropriate size and shape of spatial units need to be defined to reduce 

uncertainties (Daskin 2011, Daskin and Dean 2004, Openshaw 1983). The general assumption for 

the use of location problems in health research is that the region of interest can be represented as 

a set of discrete spatial objects, such as points (e.g., population centroids) and polygons (e.g., areal 

units). Since a continuous space is discretized with a set of spatial objects, aggregation errors are 

unavoidable.  In a study conducted by Murray and O’Kelly (2002), the use of alternative 

realizations of space was explored in the application of LSCP. Both irregularly spaced points – 

block centroids and regularly spaced points – three grid patterns were evaluated. The results 

confirmed that the region misrepresentation coverage error is low in most cases, thus the use of 

point-based representations is appropriate with supporting analysis. In this chapter we introduced 

a hexagon tessellation to represent the study area and use their centroids as candidate facility sites, 

in order to ensure a more equal distribution of new facilities in space. Hexagon tessellations 

weren’t as widely applied in previous location problem literature. With areal interpolation 

techniques, we were able to generate a population density surface and re-aggregate population 

information to designated hexagons.  

Another issue, the concept of coverage, is essential for coverage-based location problems. 

The service coverage is defined by applying a threshold distance depending on different types of 

medical practice. A service facility is considered accessible if the travel distance between the 

population in need and facility location is less than or equal to the threshold distance, and 

inaccessible if otherwise. The most commonly used method is to generate a circular coverage using 

Euclidean distance. However, with the advent of the geographic information system (GIS) and 

transportation network data, a better coverage method can be employed using time-distance-based 

coverage. In the context of healthcare coverage, the network distance is a better measurement due 

to several reasons in practice: 1) people travel along the transportation network to access health 

services; 2) it is easier for people to relate to, and interpret travel distance along the transportation 

network; 3) there is the potential of accounting for transportation modes and traffic conditions for 

further analyses. It should be noted that network-based service coverage is very sensitive to the 

threshold travel distance depending on the level of medical practice. For example, the ideal 

network coverage of a cardiac or stroke center would differ from that of a primary care physician. 

The recommended treatment windows for myocardial infarction (MI) and stroke are 90min and 

180min respectively, while there are no time window limits for regular health check-ups 

(Busingye, Pedigo and Odoi 2011). Since the threshold travel distance between a patient and a 
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facility should be defined based on the facility type, the impact of coverage is explored with a 

range of travel thresholds in this chapter. 

 

5.3 Motivation for the Net-CLP 

The Net-CLP was employed to balance between the service efficiency of facilities and the number 

of covered demands. Like the name indicates, the Net-CLP is network-based and applied in a GIS 

environment. The structure of the Net-CLP can be summarized in Table 7. The Net-CLP contains 

two models – the Net-LSCP and the Net-MCLP, and tackles the facility siting problem from two 

different perspectives. Considering full coverage of the study area, the Net- LSCP attempts to 

minimize the cost or number of the facilities to cover all the demands. The objective is to ensure 

the total number of covered demands rather than to distinguish the sizes of demand nodes. In 

contrast, the objective of the Net-MCLP is to maximize covered demand when the number of 

facilities to be added in the area is known. The model considers the size of the demand (e.g., the 

total population of a population centroid) and seeks to cover larger demands. 

 

Table 7. Characteristics of the Net-CLP 

Net-CLP Net-SCLP Network-based set covering location problem 

 Minimize the number of facilities in order to cover all the demand 

nodes regarding spatial efficiency of equity 

 Impose constraints on the demand side 

 Existing facility location and its covered demands are considered 

 Facility coverage is defined based on transportation network 

Net-MCLP Network-based maximal covering location problem 

 Maximize covered demand given limited number of potential 

facilities 

 Impose constraints on the supply side 

 Existing facility location and its covered demands are considered 

 Facility coverage is defined base on transportation network 

 

As mentioned above, the notion of network coverage is essential to the Net-CLP. In the 

Net-CLP, coverage is delineated by applying threshold travel distance based on a transportation 

network. The location of the population is covered if the network travel distance to healthcare 

facilities within proximity is less than or equal to the threshold travel distance, and not covered if 

otherwise. As GIS measures coverage areas based on real world transportation networks, a 

population location in the street network is identified as the anchor point and the network-based 

demand areas are calculated according to the threshold travel distance. Accordingly, the shape of 

the network coverage area is usually irregular and smaller than the circular buffer area calculated 

using Euclidean distance. Although the Euclidean and Manhattan distances are correlated with 

network distances, network distances are proven to be much more accurate in defining service 

coverage, especially in areas where suburban areas are sparsely connected with road networks 

(Apparicio et al. 2008).  
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Figure 13. Geo-processing to identify the covered/uncovered relationship between healthcare 

demand and facility location 

 

Other than defining the network-based coverage, it is crucial to identify the covered and 

uncovered relationship between healthcare demand and facilities. Most traditional location 

problem literature didn’t incorporate the application of GIS in this process. The Net-CLP identifies 

the relationship between demand node and facility location (i.e., covered or not covered) with a 

set of geo-processing steps in a GIS environment (Figure 13). Step 1 defines the basic spatial unit 

of analysis (e.g., census tract) and generates the aggregated population center, such as the 

population centroid. Each center contains the information on the overall population within the 

spatial unit. Step 2 generates the network-based demand area from each population centroid within 

a certain travel time threshold. The network demand area defines the boundary that people can 

travel to within a certain time threshold. Step 3 identifies the facilities (e.g., the location of 

hospitals, clinics, primary care physicians, etc.) that are located within each demand area. If a 

facility is found to be within a demand area, the population has access to the facilities and is 

considered covered. For the formulation of the Net-CLP, a binary variable 𝑎𝑖𝑗 is used to describe 

the relationship between demand node i and facility location j: aij=1 if demand node i is covered 

by healthcare facility j; aij=0 if otherwise. In other words, if the shortest network travel distance 

between the demand node i (C1, C2, C3 and C4 in Step 1) and the facility location j (X1, X2, X3 and 

X4 in Step 3) is smaller than the threshold time distance, the demand node is covered by the facility 

service area. For example, facilities X1 and X6 are within the travel threshold distance from the 

population demand node C1; thus we consider C1 covered by the service range of X1 and X6. Notice 

that one facility might be accessible by several demand nodes. For example, facility X6 is located 

within the demand areas of both C1 and C3; thus C1 and C3 can both access X6.  
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5.3.1 Formulation of Net-SCLP 

It should be noted that the traditional LSCP doesn’t ensure spatial dispersion of facilities to cover 

as many population as possible, resulting in considerably large overlapping areas of facility service 

coverage. For example, the traditional LSCP might generate a solution that facilities are placed 

near existing facilities. This phenomenon raises the potential problem of “spatial inefficiency of 

service” in locating healthcare facilities. If we assume all demands are covered by a fixed number 

of facilities, then we expect that those facilities are dispersed over sufficient space to avoid 

unnecessary competition. To make sure the most optimal solution is selected, a spatial weight wj 

is included in the objective function to ensure “spatial efficiency”. The formula for Net-LSCP can 

be written as follows: 

 

Minimize: ∑ 𝑤𝑗𝑋𝑗𝑗∈𝐽             (1) 

Subject to: ∑ 𝑎𝑖𝑗𝑋𝑗 ≥ 1    𝑗∈𝐽  i       (2) 

  ∑ 𝑋𝑗𝑗∈𝑁𝑒
= 𝑛           (3) 

  𝑋𝑗 = {0, 1}      j        (4) 

 

T: total sum of healthcare demand areas, which equals to the total study area 

pj: total sum of population located within the service range of facility j 

wj = service efficiency weight, the ratio between T and Pj (wj = k * T/pj); k is a scalar (k = 10,000 

in this application) 

I = set of demand nodes i 

J = set of potential healthcare facility locations j; both demand nodes and existing healthcare 

facilities are considered as potential sites 

𝑁𝑒 = set of existing healthcare facility locations; Ne J, Ne = {j | dij ≤ R};  

n = number of existing facilities (i.e. n=|Ne|) 

aij = 1 if demand at location i covered by potential healthcare facility j; 0 otherwise 

dij = travel distance from location i to potential healthcare facility j   

R = effective coverage distance of a healthcare facility 

𝑋𝑗 = {
1   if potential site j is selected

0   Otherwise
 

 

The objective function (1) minimizes the total number of facilities that are selected to cover 

all demands. Notice that the objective function includes the weight wj to facility location Xj, which 

is an adjusted ration between total study area and population covered by facility j. Since the total 

area and population located within the service range of facility j are constant, the weight wj would 

be constant for each facility j. This treatment is important as a model specification when the best 

configuration of facilities should be explicitly identified, because multi-feasible optimal solutions 

may exist in the traditional Covering Location Problems (Wei 2015, Niblett and Church 2015). 

Constraints (2) state that each demand node i must be covered by at least one healthcare facility. 

The left-hand side gives the number of located facilities that can cover demand node i. Constraint 

(3) considers the situation in which there are n existing facilities. Constraints (4) are the integrality 

restriction. The decision variable for facility location Xj is defined as Xj = 1 if facility location j is 

selected; Xj = 0 if otherwise. 
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5.3.2 Formulation of Net-MCLP 

The decision variable for the Net-MCLP needs to be defined: 𝑍𝑖 = 1 if demand node i is covered 

by at least one of the facilities; 𝑍𝑖 = 0 if otherwise. With this notation, the Net-MCLP can be 

formulated as follows: 

 

Maximize:  ∑ ℎ𝑖𝑍𝑖𝑖             (5)                                                                                                                                       

Subject to:  𝑍𝑖 ≤ ∑ 𝑎𝑖𝑗𝑋𝑗𝑗      ∀𝑖           (6) 

  ∑ 𝑋𝑗𝑗 = 𝑝         (7) 

∑ 𝑋𝑗𝑗∈𝑁𝑒
= 𝑛         (8) 

𝑋𝑗 = {0, 1}      ∀𝑗         (9) 

𝑍𝑖 = {0, 1}      ∀𝑖        (10) 

 

I = set of demand nodes i 

J = set of new healthcare facility locations j, including both new and existing healthcare facilities 

𝑁𝑒 = set of existing healthcare facility locations; 𝑁𝑒 ∈ 𝐽 

n = number of existing facilities (i.e., n=|Ne|) 

ℎ𝑖 = the size of demand at node i  

aij = {
1   if demand node i can be covered by a facility at candidate site j

0   if not
 

Z𝑖 = {
1   if demand node i is covered

0   if not
 

p = total number of facilities  

 

The objective function (5) maximizes overall covered demand – the total population 

covered by the service range of healthcare facilities. Note that the objective considers the overall 

covered demand rather than simply the number of covered demand nodes. Notice that since the 

main concern of the Net-MCLP is to maximized covered demand, efficiency weight wj is replaced 

with hi. Constraints (6) state that demand node i is counted as covered when it is within the service 

range of at least one facility. Constraints (7) state that a total number of p facilities are to be located. 

Note that the value of p includes both existing and new facilities that are to be located. Constraint 

(8) considers the situation that are n existing facilities. Constraints (9) and (10) are integrality 

restrictions.  

 

5.3.3 Extension: Medical Service Capacity  

Other than the number of facilities and their locations, the performance of health service also 

depends on the capability of those facilities. Thus, consideration of the medical service capacity 

(MAC) in the model is crucial for a more effective healthcare delivery system. A facility should 

have enough capacity to accommodate patients as well as to ensure that the minimum capacity 

requirements are met. On the one hand, if the patients visiting the facility exceed the threshold 

limit of the medical service capacity, there would be adverse effects such as reduced consultation 

hours, delay of service, late transferring in case of emergency, and so forth. On the other hand, the 

operation of the healthcare service depends on having a sufficient number of patients. Having not 

enough patients may cause discontinuation or relocation of the services. In general, MAC can be 

measured by indicators such as the number of beds, number of medical personnel, or other similar 

indexes. For example, the concept of carry capacity for emergency service was introduced by 
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Narasimhan et al. (1992). They consider multi-service levels of facilities to determine their 

location. Using a different set of capacity for each service level, the model maximizes the amount 

of covered demand while considering the total demand assigned to each facility. Although the 

model takes the form of the p-median problem, it is adapted from the covering models with 

capacity constraints, ensuring that the population visiting a facility does not exceed its capacity.  

In this chapter, we define MAC using the ratio between population in need and the number 

of beds to indicate the service level. The computation of MAC is as follows: 

 

MAC = 𝑘 (
the total amount of population of region 

the total number of beds in the region
) 

 

Here k is a scalar, which is used to adjust the ratio when it is used as a constraint MACU or 

MACL (see constraints 11 and 12 below). A lower MAC indicates less burden on the supply side 

since the facilities are able to accommodate more people, while there is less population in need in 

the regions; a higher MAC indicates otherwise. According to the Global Health Facts (2013), the 

average MAC in the Unites States is 333, and the MAC in Hillsborough County is 170. We applied 

these two values (MAC = 170 and 333) for analyses for comparison. For the Net-LSCP-MAC and 

Net-MCLP-MAC, the following constraints (11) and (12) are prescribed:  

 

Subject to: ∑ 𝑔𝑗𝑋𝑗 ≤ 𝑀𝐴𝐶𝑈     𝑗∈𝐽 j     (11) 

∑ 𝑔𝑗𝑋𝑗 ≥ 𝑀𝐴𝐶𝐿     𝑗∈𝐽 j     (12) 

 

gj= the availability of medical service at facility j (i.e. gj = 𝑘(
total population covered by facility 𝑗

the number of beds in facility 𝑗
) ) 

MACU = the maximum medical service capacity for a facility 

MACL = the minimum medical service capacity for a facility 

 

Net-CLP can incorporate constraints (11) or (12), or both if necessary. In the following 

case study, we only apply MACU, the constraints (11). Since the study area has a large and diverse 

population, our main concern is to prevent facilities from exceeding their service capacities.  

 

5.4 Case study 

To demonstrate the application of the Net-CLP in making healthcare facility location decisions, 

we selected Hillsborough County, Florida as the study area. Hillsborough County is located on the 

west coast of Florida in the Tampa-St. Petersburg metropolitan area. It is ideal as the study site for 

exploring the spatial interaction between healthcare supply and demand for the following three 

reasons: 1) the area has a large and diverse population distributed across enough space to fully 

represent the healthcare demand; 2) the landscape is flat and mostly urban, thus the developed road 

network can generate larger network-based coverage; 3) the information from the set of existing 

hospitals helps to demonstrate the application of the Net-CLP, which takes the existing facilities 

into account. Three data sets were applied in the analysis: 1) population distribution data extracted 

from the 2012 Census Summary File (US Census Bureau 2012); 2) existing healthcare facilities 

data including location and capacity information collected from the Florida Geographic Data 

Library Documentation (FGDL 2010); 3) the land use data downloaded from Hillsborough 

Community Atlas. In order to reduce aggregation, Low-density and isolated residential areas as 
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well as non-residential areas were excluded from the analysis to better represent health care 

demand areas.  

 

5.4.1 Spatial representation of study area 

In covering location problems, the solution is highly sensitive to how the study area is represented 

(Murray 2005). Thus, selecting an appropriate spatial unit for analysis is critical for minimizing 

aggregation errors (Apparicio et al. 2008). For example, the people requiring services are usually 

grouped together by residential locations, and distances to the healthcare providers are calculated 

from the aggregated centroids to the service locations, instead of from the individual residential 

locations (Cromley and McLafferty 2012). In some cases, the true distance exceeds the modeled 

distance; in other cases, the true distance is shorter than the modeled distance. This will result in 

under- or overestimation of distance or coverage. In most healthcare research, disaggregated 

location data on patients is not available, which has brought forth the alternative use of centroids 

for a given spatial unit. Thus aggregation errors arise from the distribution of population points 

around the population centroids (Hewko, Smoyer-Tomic and Hodgson 2002).  

Figure 14-a presents the pattern of residential areas in the county. In this case study, if we 

use census units such as block groups as basic units of analysis, the irregular shapes of those units 

will result in great variability in aggregation errors. For example, aggregation errors will be 

especially large for census units that contain very little population and cover larger geographical 

areas. To ensure a more equal spatial representation of the study area, we used a regular tessellation 

of hexagons. Applying regular tessellation provides an alternative way of spatial representation. 

Conventional wisdom suggests that representation errors reduce when the smaller grid cells are 

applied. However, a study by Murray and O’Kelly (2002) showed that a smaller grid pattern 

doesn’t necessarily enhance representation accuracy.  Nevertheless, to emphasize on a more equal 

spatial distribution of facilities and reduce computational efforts, the potential healthcare demand 

areas are represented by the regular size of hexagon units (1 mile in height and length), as 

illustrated in Figure 14-b. Note that the distances from all the edges to the hexagon centroid are 

equal, thus the aggregation errors will be more consistent.  

Since the original census units contain population information while the hexagon units do 

not, we applied spatial interpolation techniques to generate a population density surface from the 

census data and reassign the population information to the hexagon units (Figure 14-c). Areal 

interpolation is a kriging-based interpolation method applied to process polygons with various 

shapes. Predictions and standard errors can be generated for all points between and within 

polygons. In this case, the population for a continuous surface of points was estimated. Then the 

population predictions are re-aggregated back to a new set of polygons. With this geo-processing 

step, the population predictions generated from18366 block group units within the residential area 

are re-aggregated to 804 hexagon units (Figure 14-d). These homogeneous hexagons helped to 

ensure the quality of solutions by reducing model complexity when mixed linear programming 

was applied. 
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Figure 14. Potential demand sites representation with areal interpolation 

 

Note that in the application of the Net-CLP, the centroids of the hexagons serve as both the 

demand nodes and the potential locations for new facilities, since in theory the facilities should be 

located as close to the population locations as possible. As displayed in Figure 15, the population 

is clustered around urban centers, especially those within and around the Tampa metropolitan area. 

There are also greater population residing around the Westchase, Brandon, Plant City, Apollo 

Beach and Sun City centers, where major highway networks are well developed. When trying to 

locate a new healthcare facility, it is reasonable to assume that it should be located within or near 

one of these population clusters. The health facilities addressed in this case are hospitals, which 

offer tertiary care – the highest level of healthcare, and their location should be strategically 

decided. In Hillsborough County, the distribution of hospitals matches the distribution of the 

population in general (Figure 15). However,  previous literature has identified an overall shortage 

of healthcare resources in this area, raising the critical question of where new hospitals should be 

located to improve healthcare access (Ye and Kim 2014).  
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Figure 15. Distribution of 19 existing hospitals and 804 hexagon centroids 

 

5.4.2 Key parameters 

To apply the Net-CLP, two key parameters need to be defined: the travel time threshold and spatial 

weight wj. In previous literature, a 30-minute travel time threshold for the primary road conditions 

was suggested for tertiary care (Lee 1991). The 30-minute threshold was also used for defining 

rational service areas and capturing Health Professional Shortage Areas (HPSAs) by the Health 

Resources and Service Administration (HRSA) (Luo and Wang 2003). Moreover, we set up 10- 

and 20-minute travel thresholds and compared the results to that of the 30-minute travel threshold. 

To define the wj, total sum of healthcare demand areas to be covered was measured as the 

numerator (T = 617 mile2) and the total population covered by facility j was calculated as the 

denominator.  

The goal of the Net-CLP was to improve overall healthcare access for the population in 

need. In this specific case, two scenarios were of primary concern: 1) what is the minimum number 

of new hospitals needed to cover all the re-delineated population centroids (i.e., hexagon centroids) 

and where should they be located, when the travel time thresholds are 10-minute, 20-minute and 

30-minute respectively? 2) Where should we locate a certain number of new hospitals so as to 

maximize the overall covered population, considering the population size at each centroid, for 10-

minute, 20-minute and 30-minute travel time thresholds respectively?  

 

5.4.3 Results and discussion 

The application results of the standard Net-LSCP and Net-MCLP are reported in Table 8. All 

instances were conducted with an Intel i-3 core (2.13 GHz) on Window 7 with 8 GB memory. 
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They were solved to achieve optimality within a few seconds using CPLEX 12.1. The results were 

imported into ArcGIS for visualization and analyses. First, Table 8 summarizes the solutions of 

the standard Net-LSCP for the three thresholds of travel distance (T =10, 20 and 30-minute). Here, 

pnew is the number of new facilities needed to achieve 100% coverage. The overlapped coverage 

means the percentage of the total area that is covered by both the new facilities and existing 

facilities. Not surprisingly, the number of facilities needed for 100% coverage is reduced with 

increased T as these facilities can serve a larger area. For example, the number of needed facilities 

to ensure 100% coverage is 18 for 10-minute travel threshold and 2 for 30-minute travel threshold. 

The objective function representing service efficiency is also considerably decreased. This implies 

a tradeoff between improving the service coverage of a medical facility and increasing the number 

of facilities with smaller service coverage. It is reasonable to assume that a more developed and 

accessible transportation system would help increasing service coverage and enhancing the service 

efficiency for the study area.  

The total overlapped coverage generally increases with increasing travel thresholds. 

Medical facilities face more competitions when more of their service areas overlap with one 

another, while the population residing within the overlapped service areas has more choices and 

opportunities to access healthcare services. Figure 16 shows the service areas of existing and new 

facilities when the standard Net-LSCP is applied. As the travel time threshold increases, the service 

range of a new healthcare facility is increased to cover more demands. Note that the most efficient 

solution is ensured with the application of the spatial weight wj. With the integration of GIS, we 

were also able to visualize the most optimal solution. Most selected new facility locations are close 

to the highways. For T=10 (Figure 16-a), the previous shortage areas in the Northwest and 

Southeast are covered by the new facilities. For T=20 (Figure 16-b), the shortage areas around 

Westchase and Sun City center with high population density are now within the service rage of 

new facilities. For T=30 (Figure 16-c), two new facilities are sited in the upper-north and southeast 

area to cover previous shortage areas.  

The results from the standard Net-MCLP are presented in Table 9. In general, the total 

covered area increases with a larger number of new facilities (pnew). For T=10, 18 facilities are 

required to ensure 100% coverage, but only 6 facilities are needed for T=20 and 2 for T=30. 

However, the percentage of total covered area does not increase linearly with increasing pnew. With 

the same number of new facilities, the results can vary depending on the travel threshold when 

applying Net-MCLP. Also, applying Net-MCLP and applying Net-LSCP generate different results 

when ensuring 100% coverage, since they have different objective functions. Net-LSCP seeks to 

cover more demand locations and minimize cost with the efficiency weight wj, while the Net-

MCLP seeks to cover higher demand locations and maximize economic return. As shown in Figure 

5, the spatial pattern of new facilities for T=20, pnew=6 (Figure 17-a) and T=30, pnew=2 (Figure 17-

b) generated by Net-MCLP are different from those in Figure 16-b and 16-c respectively.   



58 

 

Table 8. Model behaviors of the Net-LSCP and the Net-MCLP 

Threshold pnew Objective Solution (facility location ID) Overlapped 

coverage 

10 min 18 70831.6 25, 151, 158, 230, 271, 300, 320, 331, 459, 

527, 546, 596, 611, 634, 683, 687, 702, 724 

29.1% 

20min 6 4010.5 38, 194, 298, 327, 623, 757  59.9% 

30min 2 37.0 71, 326 45.0% 

 

 

 

Figure 16. Standard Net-LSCP selected locations for 10, 20, and 30min travel time threshold 
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Table 9. Model behaviors of the Net-MCLP 

Threshold pnew Objective Solution (facility location ID) Covered 

areas 

10min 1 746,939 298 69.4% 

2 809,716 25, 298 75.2% 

3 863,635 25, 298, 641 80.3% 

4 906,939 25, 298, 641, 320  84.3% 

5 932,376 25, 298, 641, 320, 700 86.6% 

6 956,738 25, 298, 641, 320, 700, 724 88.9% 

7 979,902 25, 224, 298, 641, 320, 700, 724 91.1% 

8 999,297 25, 271, 320, 300, 331, 700, 724, 641 92.9% 

9 1,016,784 271, 300, 335,  459, 519, 320, 641, 724, 700 94.6% 

10 1,030,805 151, 271, 300, 320, 332, 459, 515, 641, 700, 724 95.8% 

11 1,042,921 151, 271, 300, 320, 332, 459, 515, 641, 700, 724, 

783 

96.9% 

12 1,051,933 151, 271, 300, 320, 332, 459, 481, 515, 641, 683, 

700, 724 

97.7% 

13 1,057,934 151, 234, 271, 300, 320, 332, 459, 481, 519, 641, 

700, 724, 751 

98.3% 

14 1,063,560 151, 234, 271, 300, 320, 332, 459, 481, 519, 611, 

641, 700, 724, 783 

98.8% 

15 1,068,515 151, 234, 271, 300, 320, 332, 459, 481, 515, 611, 

646, 669, 700, 724, 751 

99.3% 

16 1,072,110  99.6% 

17 1,074,278 25, 151, 158, 224, 271, 300,320, 331, 459, 527, 

546, 596, 611,683, 687, 702, 724 

99.8% 

18 1,076,124 69, 71, 120, 151, 158, 234, 253, 271, 298, 335, 

459, 481, 515, 611, 646,700, 724, 783 

100.0% 

20min 1 988,075 298 91.8% 

2 1,016,750 298, 764 94.5% 

3 1,036,735 298, 729, 764 96.3% 

4     1,051,691 298, 515, 646, 764 97.7% 

5 1,066,331 224, 254, 360, 653, 702  99.1% 

6 1,076,124 134, 194, 253, 515, 647, 702 100.0% 

30min 1 1,075,594 263 99.9% 

2 1,076,124 13, 757 100.0% 
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Figure 17. The Net-MCLP solution for pnew =6, T=20 (a) and pnew=2, T=30 (b) 
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Table 10 summarizes the model behaviors of the Net-LSCP-MAC and the Net-MCLP-

MAC. To compare the results and examine the model behaviors, we used two sets of MACs (i.e., 

MACU = 170 and 333) for the Net-LSCP-MAC, which represent the current MAC for Hillsborough 

County and the average of the United States, respectively. For the Net-MCLP-MAC, we added 

another small MAC value = 50 to examine the model’s response. Overall, the behavior of the Net-

LSCP-MAC is more sensitive to the change of the medical service capacity than that of the Net-

MCLP-MAC. For example, for the solutions when T=10, different facility locations are selected 

for MACs = 170 and 333. On the contrary, the solutions of the Net-MCLP-MAC are more 

consistent despite the change of MACs.  In Table 10-a, smaller service capacity in general 

increases the objective function. For example, when T=10 and MACU = 170, more facilities are 

needed to achieve full coverage due to limited service capacities. In Table 10-b, the objective 

function increases with increasing MACU before achieving full coverage. However, it should be 

noted that the solutions by the Net-MCLP-MAC can help to identify locations that are selected 

regardless of service capacity level. For example, location 298 is included in most instances, and 

263, 699 and 764 are also frequently selected in many instances, indicating that these locations are 

more desirable than others. 

Figure 18 presents the coverage percentage change in population associated with solving 

the Net-MCLP for T=10, 20 and 30. As displayed in Figure 18, the covered population percentage 

for T=10 is increasing rapidly until pnew= 7 (91%), but increasing slows down afterwards until 

reaching 100% coverage with pnew=18. Based upon the increasing pattern, it is indicated that 

pnew=7 could be the critical transitional point. Thus, serving the area with 7 new facilities is an 

effective strategy for the 10-minute threshold. For T=20, the increasing of coverage percentage 

starts to slow down at pnew=4 where the coverage percentage is nearly 98%, implying that adding 

4 healthcare facilities would be effective enough to cover demands. In addition, for the T=30, 

adding 1 facility would be sufficient since most of the demand area (99%) can be covered. 

In summary, the main advantage of running the Net-CLP with two sub-models is balancing 

spatial equity and economic efficiency when assessing potential facility locations. For example, 

when we evaluate candidate facility locations applying Net-CLP, those locations are categorized 

into 4 categories: 1) locations selected by both the Net-LSCP and the Net-MCLP (for example, the 

locations at 25 and 298) are regarded as the most critical locations since they satisfy both spatial 

equity and economic efficiency; 2) locations selected only by Net-LSCP are able to cover larger 

areas to ensure 100% spatial coverage; 3) the locations selected only by the Net-MCLP can cover 

larger population given limited resources; 4) locations selected by neither the Net-LSCP nor Net-

MCLP are not optimal choices for healthcare planning. 

 

5.5 Conclusions  

The main focus of this research is to propose a Net-CLP when locating healthcare facilities. The 

application of this method was demonstrated with a case study of Hillsborough County, Florida. 

The Net-CLP applies a network-based distance with an integration of GIS, which greatly improves 

accuracy in representing actual travel distance in order to capture distance decay and generate 

service coverage.  

To address the balance between healthcare demand and supply, the model consists of two 

sub-models – the Net-LSCP and Net-MCLP. It considers the situations in which all the demand 

nodes should be covered, as well as the situations in which there are only a limited number of new 

facilities. Thus Net-CLP can identify the locations that satisfy both spatial equity and efficiency,   
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Table 10. Model behaviors of the Net-LSCP-MAC and the Net-MCLP-MAC. 

(a) Solutions of Net-LSCP-MAC 

Threshold  T MACU
 pnew Objective Solution (facility location ID) Coverage 

10 min 170 19 77618.6 69, 133, 151, 158, 224, 230, 253, 

295, 320, 404, 459, 546, 572, 596, 

611, 687, 700, 724, 751 

100% 

333 18 71880.5 151, 158, 224, 230, 243,298, 300, 

320, 404, 459, 524, 546, 596, 611, 

683, 687, 702, 724 

100% 

20min 170 6 4195.6 38, 194, 298, 305, 515, 757 100% 

333 6 4010.5 38, 194, 298, 327, 623, 757 100% 

30min 170 2 37.02 71, 327 100% 

333 2 37.02 71, 326 100% 

 
(b) Solutions of Net-MCLP-MAC 

Threshold T MACU
  pnew Objective Solution (facility location ID) Coverage 

10min 50 1 720,326 263 66.9% 

2 754,953 263, 313 70.1% 

3 776,355 263,313,549 72.1% 

170 1 746,939 298 69.4% 

2 809,716 25, 298 75.2% 

3 863,635 25, 298, 641 80.3% 

333 1 746,939 298 69.4% 

2 809,716 25, 298 75.2% 

3 863,635 25, 298, 641 80.3% 

20min 50 1 968,089 263 90.0% 

2 986,490 263, 549 91.6% 

3 995,816 263, 412, 549 92.5% 

170 1 988,075 298 91.8% 

2 1,016,750 298, 764 94.5% 

3 1,036,735 298, 729, 764 96.3% 

333 1 988,075 298 91.8% 

2 1,016,750 298, 764 94.5% 

3 1,036,735 298, 729, 764 96.3% 

30min 50 1 1,075,594 263 99.9% 

2 1,076,124 263, 699 100% 

170 1 1,075,594 133 99.9% 

2 1,076,124 13, 699 100.0% 

333 1 1,075,594 133 99.9% 

2 1,076,124 13, 699 100.0% 
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Figure 18. Covered population percentage with pnew for three threshold (T=10, 20, and 30). 

 

by comparing the results of the Net-LSCP and Net-MCLP. Moreover, Net-CLP can be extended 

with constraints on the service capacities, ensuing that there is enough capacity to accommodate 

patients while minimum capacity requirements is met to sustain operation cost. Using the set of 

results given by the Net-CLP, we were able to evaluate potential facility locations with a relatively 

small amount of computation and programming. In many cases, the equity of service for the 

healthcare demand conflicted with the economic efficiency of the healthcare facility supply. Thus, 

taking these two perspectives into consideration is necessary when making location decisions.  

The Net-CLP is easy to implement and straightforward to interpret. It can be applied for 

different kinds of medical practices by considering different travel time thresholds and service 

capacities. The location decisions made can be used for better healthcare planning and 

improvement of accessibility in underserved areas. However, the Net-CLP needs to be expanded 

in future studies. One major issue of current application is that the model does not account for non-

spatial factors when identifying facility locations. For example, in a low socio-economic 

neighborhood, people might not be able to afford healthcare despite a new hospital having been 

assigned to the community. In a more practical sense, the location selected might not be feasible 

if the geographical features are not suitable for the establishment of a new hospital or if the cost is 

too high due to factors such as land rent. Since the model can be easily extended by changing the 

objective function and adding constraints sets, there is great potential to incorporate more socio-

economic factors in the formulation. Moreover, travel distance estimations as well as 

transportation modes might differ for urban and rural areas. For example, network travel distance 

might be shorter in urban areas than in rural ones or vice versa, especially when considering traffic 

conditions and commuting times.   
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CHAPTER 6  

CONCLUSIONS 
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6.1 Summary of dissertation research 

This dissertation addresses the geography of healthcare access and disparity issues in the United 

States using geospatial methods. Disparities in access to quality healthcare services are of great 

concern in the field of both public health and geography. Influencing by both spatial factors (e.g., 

the geographical location of primary care physicians and patients, transportation system, and travel 

distance) and non-spatial factors (e.g., social-economic status, age, gender, ethnicity, and health 

insurance status) (Guagliardo 2004), the essence of access is widely recognized. Thus, an 

innovative contribution of my work is the integration of spatial modeling, geo-statistics and 

location problems in a Geographic Information System (GIS) environment to investigate 

healthcare access. Specifically, my dissertation is comprised of three major themes.  

 

Theme 1: Developing an alternative measure of healthcare accessibility  

Improving health access begins with developing reliable methods to measure accessibility. I 

adopted the concept of spatial accessibility in this dissertation, which refers to the fusion of both 

availability and accessibility of health demand and supply. Spatial accessibility to healthcare is 

usually measured through addressing the geographical relationship between population in need 

and health services. Building on previous theoretical frameworks, my dissertation presents an 

alternative set of healthcare accessibility measures – a network-based health accessibility index 

method (NHAIM) to complement the existing literature. The NHAIM comprehensively evaluates 

both spatial dimensions of health accessibility and availability, in order to address the spatial 

disparity of healthcare access in a GIS environment. Both health accessibility and availability are 

measured and presented as indexes to reveal the spatial patterns of health accessibility and 

availability, as well as to capture underserved areas in a geographical context. Based on the data 

downloaded from the Florida Geographic Data Library and the US Census Bureau, I demonstrated 

the application of the NHAIM to measure spatial disparity and capture spatial mismatch between 

healthcare supply and demand in the case of Hillsborough County, Florida. The results confirmed 

the lack of access in certain areas. The result index maps shall provide reference for locating new 

health care services in the future. 

 

Theme 2: Neighborhood factors and healthcare access 

Another focus of my dissertation is to understand neighborhood factors that contribute to 

healthcare access – both potential and revealed access. For statistical analysis, the supply of 

primary care physicians (PCPs) is used as an indicator of potential access, and the length of 

inpatient stay is applied as an indicator of revealed access. The supply of PCPs reflects the 

dimension of availability in healthcare access. It is essential to an effective healthcare delivery 

system and whether the healthcare needs are being adequately served. Literature highlighted that 

local supply of primary care physicians affects preventive healthcare service utilization directly 

(Continelli et al., 2010). It is reasonable to assume a larger number of primary care physicians 

located within a census tract provides a better supply of primary care, which is advantageous for 

the health status of local residents. Thus my dissertation aims to evaluate the geographical 

distribution of the number of PCPs by location and investigate the relationship between 

neighborhood factors and the observed spatial pattern. To address this research goal, I conducted 

an empirical study in the case of Hillsborough County, Florida. The geographical distribution of 

quantities of PCPs was explored. The contribution of aggregated neighborhood-level factors (i.e., 
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proportions of individuals living below the poverty level, proportion of individuals 40 years of age 

and older, and proportions of racial/ethnic groups) to the spatial heterogeneity of PCPs supply was 

examined using spatial regressions. The results indicate a strong correlation between percentage 

of Asians in a neighborhood and PCP supply.  

On the other hand, revealed access can be addressed through the study of length of inpatient 

stay – an indicator of healthcare service utilization. I conducted another research which examines 

the extent to which neighborhood characteristics affected length of inpatient stay in a national 

scale, which includes a total of 3148 U.S. counties. Generalized linear models and geographically 

weighted regression models were employed to examine the extent to which neighborhood 

characteristics affected length of inpatient stay and its spatial variation. The geographic pattern of 

length of inpatient stay was also examined. The results show that the number of hospital beds is 

the strongest indicator of length of inpatient stay across the county.  

 

Theme 3: Location problems in healthcare facility siting 

A final focus of my dissertation is to locate healthcare facilities so as to maximize service coverage 

as well as to reduce spatial disparity between healthcare supply and demand. Facility location is 

essential in ensuring health accessibility. Facilities should be located according to the potential 

demand to ensure maximum coverage as well as accessibility equity. To address this problem, a 

Network-based Covering Location Problem (Net-CLP) is proposed. The objectives of Net-CLP 

are: 1) to maximize covered demands with a fixed number of facilities given spatial restrictions 

and the level of heath care service emergency and 2) to account for the demand side and minimizes 

the total number or cost of facilities needed to cover all healthcare service demands within the 

network-based service range. It allows for overlapped coverage measured based on threshold 

network distance. A demand is considered covered if it falls within the threshold network distance 

from a facility, and uncovered if otherwise. Population centroids are aggregated to represent 

potential healthcare demand at spatial units. To better demonstrate the potential of using Net-CLP 

in siting healthcare facilities, Hillsborough County, Florida was selected for a case study. The 

objective of Net-CLP in this specific case is to identify the optimal locations for new healthcare 

facilities considering existing ones. A design of optimal locations is proposed and used for 

comparison and evaluation of existing healthcare facility locations in the study area, as well as 

providing reference to future healthcare planning.  

 

6.2 Future research directions 

The completion of my dissertation is just a beginning. Building on my dissertation, I will continue 

my research on health care access and disparity issues from four major perspectives.  

 First, I plan to apply my proposed models to address a specific subgroup of the population 

to a specific medical practice in regional studies. For example, the NHAIM proposed in Chapter2 

can be applied to measure the spatial accessibility to hospitals and clinics that provide Spanish 

language services for Hispanic population.  The Net-CLP proposed in Chapter5 can be used to 

locate a specific type of facility (e.g., cancer treatment center) in a specific underserved area such 

as a Black neighborhood.  

Second, I will continue to focus on ensuring equity in service distribution by applying 

location problems. To ensure equal spatial accessibility, sufficient service area and healthcare 

demand, clustering of public facilities should be avoided. Disbursing public resources in a way 

that they can be equitably distributed has attracted increasing attention (Batta, Lejeune and Prasad 
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2014). Despite the fact that the dispersion models have been widely applied in siting obnoxious 

facilities and business franchises, little has been done in the application of dispersion models in 

public facility siting such as healthcare facilities. To fill in this gap, I intend to incorporate another 

perspective in my future research – ensuring equity in the spatial distribution of healthcare 

resources through application of dispersion models in a GIS environment. Since service areas vary 

depending on the type of healthcare, a multi-level dispersion problem will be considered.  

Third, I intend to incorporate the usage of social media data such as Twitter in the study of 

healthcare access from a geographical perspective. User messages in social media provide a 

tremendous amount of information. Researchers have been analyzing social media data such as 

Twitter messages to address population characteristics, including public health issues. For 

example, Twitter messages can be used for tracking diseases, revealing sentiment and emotions, 

and spreading health information and news (Paul and Dredze 2011). Twitter should have more 

impact on revealing spatial patterns of health access and behavior rather than just disease tracking. 

Thus my research goal is to extract information on healthcare access and behavior from Twitter, 

and investigate how social media can promote provider-patient interaction.  

Last, I plan to investigate the role of transportation in the study of health behavior and 

outcomes. Transportation is essential in promoting opportunities in health care access, especially 

for the vulnerable segments of the population such as low income social groups and the aging 

population. Thus it is important to evaluate public transport investment and improve accessibility 

in disadvantageous areas. Moreover, the choice of transportation mode also impacts individuals’ 

health status. For example, walking and bicycling are ways of transportation which are 

environmental and promote individual health.  Thus it is necessary to investigate how to promote 

healthy modes of transportation through policy and urban planning.  
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Appendix1. Test results of heterogeneity of the relative PCP rate 

 

 Type of boots Model Simulations p-value 

Chi-square test Parametric Poisson 999 0.001 

Potthoff-Whittinghill’s test Parametric Poisson 999 0.001 

 
 

Appendix2. The results of Global Moran’s I 

 

 Moran’s I statistic Simulations p-value 

Permutation bootstrap 0.219 999 < 0.001 

Parametric bootstrap  999 0.002 

 

Appendix3. Histograms of simulated values of Moran’ I under random permutations of the data 

and parametric samples from the expected constant PCP rate. The observed values of Moran’s I 

are marked by vertical lines. (Note that the distribution of Moran’s I shifts rightwards with the 

parametric simulations, since the impact of population distribution is taken into consideration.) 
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Appendix4. Results of Besag and Newell’s statistic (k = 100). The dots represent the center of 

the clusters.  

 

  



82 

 

Appendix5. Results of Kulldorff’s statistic. The dots represent the center of the clusters. The 

blue dots show the most likely clusters.  
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