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Abstract

The development of a secure and sustainable energy economy is likely to require

the production of fuels and commodity chemicals in a renewable manner. There

has been renewed interest in biological commodity chemical production recently, in

particular focusing on non-edible feedstocks. The fields of metabolic engineering

and synthetic biology have arisen in the past 20 years to address the challenge of

chemical production from biological feedstocks. Metabolic modeling is a powerful tool

for studying the metabolism of an organism and predicting the effects of metabolic

engineering strategies. Various techniques have been developed for modeling cellular

metabolism, with the underlying principle of mass balance driving the analysis. In

this dissertation, two industrially relevant organisms were examined for their potential

to produce biofuels.

First, Saccharomyces cerevisiae was used to create biodiesel in the form of fatty

acid ethyl esters (FAEEs) through expression of a heterologous acyl-transferase

enzyme. Several genetic manipulations of lipid metabolic and / or degradation

pathways were rationally chosen to enhance FAEE production, and then culture

conditions were modified to enhance FAEE production further. The results were

used to identify the rate-limiting step in FAEE production, and provide insight to

further optimization of FAEE production.

Next, Clostridium thermocellum, a cellulolytic thermophile with great potential

for consolidated bioprocessing but a weakly understood metabolism, was investigated

for enhanced ethanol production. To accomplish the analysis, two models were
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created for C. thermocellum metabolism. The core metabolic model was used

with extensive fermentation data to elucidate kinetic bottlenecks hindering ethanol

production. The genome scale metabolic model was constructed and tuned using

extensive fermentation data as well, and the refined model was used to investigate

complex cellular phenotypes with Flux Balance Analysis.

The work presented within provide a platform for continued study of S. cerevisiae

and C. thermocellum for the production of valuable biofuels and biochemicals.
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Chapter 1

Introduction

Summary

This chapter is a review of many different aspects of biotechnology for the production

of commodity chemicals, such as fuels. The chapter acts a funnel of information

to steer the reader through relevant background information, steadily focusing in

on the work presented throughout the dissertation. Herein, I present the current

schools of thought for utilizing microbial species as cell factories, the reasoning

behind the study of Saccharomyces cerevisiae and Clostridium thermocellum, and the

powerful capabilities of computational modeling as a tool for studying metabolism

and designing production strains.

1.1 Biotechnology for Fuels and Chemicals

Human societies have long utilized the microorganisms around them for the produc-

tion of foods and beverages, such as bread, beer, yogurt, or kimchee, with evidence

found as early as 7,000 BC (McGovern et al., 2004). Microbial fermentation produces

the chemicals key to flavoring these foods and beverages, such as alcohols, organic

acids, esters or lactones (Layton and Trinh, 2014). In the modern age, the traditional

uses of microorganisms continue at large scale to feed an increasing population, and
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as knowledge of chemistry and cellular metabolism increases, our use of these entities

has increased as well. In fact, many of the products of microbial fermentation are

of interest to many chemical industries (Rogers et al., 2013). One of the earliest

non-food related industrial process utilizing microorganisms was the production

of acetone during World War I, after shortages led to the search for alternative

means of production. Clostridium acetobutylicum produces acetone, butanol, and

ethanol from various sugars, and this ABE process was widely used until the 1950s

when petroleum sources were economically favorable again (Gabriel, 1928; Jones and

Woods, 1986; Ross, 1961; Taillefer and Sparling, 2016). Part of the reason for the

return to petroleum is the branched nature of the ABE process limits the amount

of each product, which hinders industrial potential. Currently, many industrial

processes for synthesizing these chemicals rely on petroleum-based precursors. There

is significant concern about the sustainability of petroleum feedstocks, however, such

as uncertainty in supply due to political instability or the impact on the environment

by increasing greenhouse gas concentrations in the atmosphere and contamination

from spills (Demain et al., 2005). One way to address both concerns is to develop

biotechnology to utilize renewable resources for producing the chemicals currently

derived from petroleum (Demain, 2009).

The renewal of interest in biological alternatives to petroleum is facilitated by our

understanding of biology, such as the development of high-throughput techniques for

characterization and genetic manipulation (Olson et al., 2015). Naturally, this has led

to a large industry dedicated to prospecting for useful biological entities, or genetic

resources (Bull, 2004; Lanen and Shen, 2006). Regardless, for a biotechnological

process to be considered as a proper petroleum replacement in energy or industrial

applications, it should provide a net energy gain, have environmental benefits, be

economically competitive, and be producible at large scale without reducing food

supplies (Hill et al., 2006). To address the final point, the use of cellulosic biomass

instead of starch or simple sugar-rich feedstocks is critical.
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1.1.1 Cellulosic Feedstocks

Cellulose is the most abundant polymer in the biosphere, and from an economic

standpoint, cellulosic biomass is less expensive than most energy sources at about

$3 per gigajoule (GJ) (Lynd et al., 2008). Additionally, it is recognized that

production of cellulosic crops, such as grasses or short rotation trees, could have

more positive environmental attributes than production of corn, soy, or other

annual row crops (Farrell et al., 2006; Greene et al., 2004; Hammerschlag, 2006).

Given this information, future scenarios in which biological resources are converted

to energy or commodity chemicals at sufficient scale primarily utilize cellulosic

feedstocks (Somerville et al., 2010). One major challenge, however, is overcoming

the recalcitrance barrier. Plants have been evolving for millions of years to resist

degradation by outside microorganisms, and this resistance is largely responsible

for the high costs of cellulose conversion (Himmel et al., 2007; Stephanopoulos,

2007). There are two main strategies for converting cellulosic biomass into desired

chemicals: Simultaneous Saccharification and Fermentation (SSF) and Consolidated

Bioprocessing (CBP).

Simultaneous Saccharification and Fermentation

In order to utilize cellulosic materials, many organisms need assistance in degrading

the cellulose. The process called Simultaneous Saccharification and Fermentation

(SSF) uses organisms which are efficient at producing chemicals of interest incubated

with cellulolytic enzymes. First, the cellulosic biomass is pretreated to separate

cellulose from other biopolymers such as lignin and, depending on the organism’s

capabilities, hemicellulose. Following pretreatment, the cellulose stream is added

to a reactor containing fermentative organisms and cellulolytic enzymes, which

are produced separately. This process has several problems, however, such as

discrepancies between temperatures of optimal enzyme activity and microbial growth.

Also prohibitive is the large cost of producing the cellulolytic enzymes.
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Despite these shortcomings, SSF has been used for ethanol production using

a wide variety of microorganisms, such as Bacillus coagulans (Ou et al., 2010),

Kluyveromyces marxianus (Ballesteros et al., 2004; Kadar et al., 2004), Kluyveromyces

fragilis (Hari Krishna et al., 2001), Mucor indicus (Karimi et al., 2006), Rhizopus

oryzae (Karimi et al., 2006), various white rot fungi (Itoh et al., 2003), and

Saccharomyces cerevisiae (Stenberg et al., 2000; Ohgren et al., 2007; Varga et al.,

2004; Wyman et al., 1992). Lactic acid and butanol have also been produced via

SSF (Anuradha et al., 1999; Qureshi et al., 2008).

Consolidated Bioprocessing

To alleviate the high cost of enzyme production, the CBP strategy has been

developed, and is characterized by having enzymes be produced by the fermenting

organism (Lynd et al., 2002). However, since an organism which can efficiently utilize

cellulose and produce high product levels has not yet been discovered, there are two

main strategies for developing a CBP microorganism. The first focuses on taking

highly productive organisms and enabling them to grow on cellulose. The second

focuses on taking organisms which can efficiently degrade cellulose and engineering

them to produce higher yield and titers of product (Lynd et al., 2005; Olson et al.,

2012).

Following the first strategy, several organisms have been used in CBP processes,

such as lactate production in Bacillus subtilis (Zhang et al., 2011) or Lactobacil-

lus plantarum (Okano et al., 2009), glutamate production in Corynebacterium

glutanicum (Hyeon et al., 2011; Tsuchidate et al., 2011), three different biofuels

from Escherichia coli (Bokinsky et al., 2011), ethanol production in Saccharomyces

cerevisiae (van Zyl et al., 2007), and others (Hasunuma et al., 2013).

Following the second strategy, several organisms have been used for CBP, such

as Caldicellulosiruptor bescii (Chung et al., 2014), Cellvibrio japonicas (Gardner and

Keating, 2010), Clostridium cellulolyticum (Guedon et al., 2002; Li et al., 2012),
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Clostridium thermocellum (Akinosho et al., 2014), and others (Hasunuma et al., 2013;

Lynd et al., 2005; Olson et al., 2012).

One key difference in the application of these strategies is the difference in how

cellulolytic organisms degrade cellulose, i.e. by using free enzymes or by using a

cell-linked enzyme complex known as the cellulosome (Blumer-Schuette et al., 2014).

1.1.2 Saccharomyces cerevisiae as a platform species

Saccharomyces cerevisiae, or brewer’s yeast, has long been used for conversion of

grains to beer or bread, and because of its ubiquity has been used as a model

organism to study eukaryotic genetics and metabolism. Thus, as many genetic tools

are available and the knowledge of its physiology is significant, S. cerevisiae has been

used for the synthesis of a large number of products across volume scales (Hong and

Nielsen, 2012), e.g.

Biofuels such as ethanol (Guadalupe Medina et al., 2010), isobutanol (Chen

et al., 2011a), and biodiesel in the form of FAEEs (Yu et al., 2012) or

bisabolene (Peralta-Yahya et al., 2011)

Bulk Chemicals such as 1,2-propanediol (Lee and DaSilva, 2006), lactate (Skory,

2003), pyruvate (van Maris et al., 2004), glycerol (Hecker et al., 1990) and

succinate (Raab et al., 2010)

Fine Chemicals such as β-carotene (Verwaal et al., 2007), amorphadiene (Farhi

et al., 2011; Westfall et al., 2012), eicosapentaenoic acid (Tavares et al., 2011),

resveratrol (Becker et al., 2003), vanillin (Brochado et al., 2010), and ascorbic

acid (Sauer et al., 2004)

In this work, we focus on using simple sugars as a feedstock for S. cerevisiae, but

the use of complex biomass as a substrate in a CBP process is currently the focus of

many efforts (van Zyl et al., 2007).
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1.1.3 Clostridium thermocellum as a platform species

One other microorganism of particular interest for CBP is Clostridium thermocellum.

First isolated in 1926 (Viljoen et al., 1926) and recently re-evaluated phylogenetically

as Ruminiclostridium thermocellum (Yutin and Galperin, 2013), this thermophilic,

gram-positive fermicute grows on crystalline cellulose at one of the fastest observed

rates (Lynd et al., 2002) at an optimal temperature of 60oC.

Clostridium thermocellum degrades lignocellulosic biomass using a large, cell-

linked cellulosome (Shoham et al., 1999) through an atypical glycolytic pathway

ending in a branched fermentation profile capable of producing ethanol, acetate,

hydrogen, formate, lactate, CO2, and amino acids (McBee, 1954). Details of C.

thermocellum catabolism and the complex system of redox balancing enzymes are

outlined in the following chapters. To date, the lack of reliable genetic tools and

the complexity of C. thermocellum metabolism has hindered metabolic engineering

strategies towards producing a single or limited range of products.

Given the challenge of restructuring a branched metabolism with time-consuming

genetic tools, it would be desirable to investigate the feasibility of engineering

strategies systematically before attempting to construct modified strains. A way

to satisfy that desire is to use metabolic modeling techniques on an accurate

reconstruction of C. thermocellum metabolism.

1.2 Computational Modeling as a Tool for Metabolic

Engineering

Modern advancements in DNA sequencing technology have led to the genome

sequencing of many different organisms across all kingdoms of life. These sequences

have been compiled into large databases (Pagani et al. (2012); Scheer et al. (2011);

Schellenberger et al. (2010), http://www.ncbi.nlm.nih.gov/, http://jgi.doe.

gov/, https://www.ebi.ac.uk/), and this wealth of data requires systematic means
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of analysis. For instance, comparative genomics can be used to automatically

construct draft metabolic networks in a high-throughput manner (Henry et al., 2010),

and a standard protocol has been established to improve the accuracy of these draft

metabolic networks (Thiele and Palsson, 2010). A reconstructed metabolic network

provides a rational link between a genome sequence, the proteins encoded in the

genome, and the reactions catalyzed by the proteins (Durot et al., 2009). This

link allows one to directly study the relationships between cellular genotype and

phenotype. Guided by mass conservation, many metabolic network analysis tools

have been developed to understand how biochemical compounds, or metabolites, are

produced, consumed, or transformed during the course of cellular metabolism (Lewis

et al., 2012). More importantly, metabolic network analysis can be used to predict

how cellular metabolism can change under genetic or environmental disturbances.

Metabolic network analysis can be categorized into dynamic or structural

approaches. Dynamic metabolic network models can be useful in describing temporal

behavior under different perturbations, and a general protocol has been developed for

building and validating a dynamic genome scale model (Jamshidi and Palsson, 2008).

Unfortunately, the implementation of dynamic modeling methods is hindered by the

unavailability of kinetic parameters for the majority of enzymes within a metabolic

network, despite attempts to estimate kinetic parameters under uncertainty (Flowers

et al., 2013; Machado et al., 2012; Ramkrishna and Song, 2012; Song and Ramkrishna,

2012; Tan et al., 2011; Wang et al., 2004; Young et al., 2008).

Due to the lack of kinetic parameters, structural metabolic modeling has been

widely used for analyzing cellular metabolism at a steady-state. In this work,

given the context of interest in C. thermocellum and the level of uncertainty in

its metabolism, the focus will be on structural modeling. Depending on the

availability of experimental data and the scientific objective, different structural

modeling techniques have been developed including metabolic flux analysis (MFA),

flux balance analysis (FBA), and metabolic pathway analysis (MPA) (Lewis et al.,

2012; Stephanopoulos et al., 1998; Trinh et al., 2009). Structural metabolic modeling
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techniques share their underlying principles, yet differ in their efficacy in solving

different metabolic engineering problems.

1.2.1 Underlying Principles

The primary assumption behind the analysis of metabolic networks is built upon

the first principle of mass conservation of internal metabolites within a biological

system (Reder, 1988; Schuster and Schuster, 1993; Stephanopoulos et al., 1998).

A metabolic network can be defined by a single cell, a cell compartment, or

network of cells in which material enters and leaves the system. The material is

transformed through an intricate map of enzyme-catalyzed reactions. The reactions

which transform metabolites are defined as internal, whereas reactions involving the

transport of metabolites in and out are considered exchange reactions (Schilling et al.,

2000a,b; Schuster and Hilgetag, 1994). The general equation to describe the mass

conservation of metabolites within a system of defined volume is

dc

dt
= S · r− µ · c, (1.1)

where c is an m x 1 column vector of internal metabolite concentrations (mmol/L), S

is the m x n stoichiometric matrix of the network whose rows and columns represent

metabolites and reactions, respectively, r is the n x 1 flux vector (mmol/L/hr),

and µ is the dilution effect (1/hr), i.e., volume expansion during cell growth.

Within a single cell, the contribution of volume change to the change in metabolite

concentrations can be ignored since the dilution rate is much slower than reaction

rates of enzymes (Stephanopoulos et al., 1998). During exponential growth, or

during a stable continuous culture, the concentrations of internal metabolites can be

assumed to not accumulate in the system (Fell, 1992; Stephanopoulos et al., 1998),

and Equation 1.1 can be simplified to

S · r = 0. (1.2)
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Enzymes, like everything, are governed by the laws of thermodynamics. Therefore,

if a reaction i is irreversible (or far from equilibrium), it should be constrained to a

positive flux by the inequality

ri ≥ 0. (1.3)

These two constraint make up the framework for the aptly name Constraints Based

Reconstruction and Analysis of metabolic networks.

1.2.2 Metabolic Network Analysis

Figure 1.1 shows how the problem can be formulated for an example toy network. This

network consists of eleven reactions, two of which are reversible, and contains eleven

metabolites, six of which are internal. Usually, Equation 1.2 is an underdetermined

system where the number of metabolites is less than the number of reactions. Given

the network structure and the availability of experimentally measured fluxes to

constrain the system, three main techniques have been developed to solve the system

of linear equations for the metabolic flux vector r: metabolic flux analysis (MFA),

flux balance analysis (FBA), and metabolic pathway analysis (MPA). These methods

are distinct but can complement each other, and as the development of metabolic

modeling techniques for rational strain design expands, they display a co-evolutionary

trend (Machado and Herrgard, 2015). These methods are described below.

Metabolic Flux Analysis

The underdetermined nature of most metabolic networks dictates that m < n, and so

there are n-m degrees of freedom if m = rank(S). MFA can calculate r by measuring

n − m fluxes, decomposing r and S into measured and unmeasured components as

follows:

ru = −S−1u · Sm · rm (1.4)
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Stoichiometric reactions 

r1: Aext → A 

r2: A → C 

r3: C → P + D 

r4: P → Pext 

r9: D → Dext 

r10: C → E 

r11: E → Eext 

r5: A → B 

r6r: B  C 

r7: B → 2P 

r8r: B  Bext 

Stoichiometric matrix 

r1 r2 r3 r4 r5 r6r r7 r8r r9 r10 r11 

A 1 -1 0 0 -1 0 0 0 0 0 0 

B 0 0 0 0 1 -1 -1 -1 0 0 0 

C 0 1 -1 0 0 1 0 0 0 -1 0 

D 0 0 1 0 0 0 0 0 -1 0 0 

E 0 0 0 0 0 0 0 0 0 1 -1 

P 0 0 1 -1 0 0 2 0 0 0 0 

r = [r1 r2 r3 r4 r5 r6r r7 r8r r9 r10 r11]
T  

S

A 

B 

C P Aext Pext 

Bext 

r1 r2 r3 

r5 r6r 

r7 

r4 

r8r 

D Dext 

r9 

E 

r10 

Eext 

r11 

Network 

Figure 1.1: The toy network pictured on the left contains five internal metabolites
(A, B, C, D, E, and P) linked through the internal reactions and transported into
and out of the cell via exchange reactions. The stoichiometric matrix is constructed
from the stoichiometric coefficients of each reaction. The rows correspond to internal
metabolites and the columns to reactions.

MFA is set up to quantify the metabolic flux vector r corresponding to a phenotypical

state of the cell under a given condition. It can be seen in Equation 1.4 that a large

set of experimental data is required to solve for ru, especially for a large metabolic

network, which can become experimentally infeasible. MFA usually handles small or

simplified metabolic networks (Martnez et al., 2010), which may be lacking critical

components.

Recently, 13C-based MFA has been developed to calculate r using the 13C labeling

pattern of the protein-bound amino acids determined by either gas chromatog-

raphy coupled mass spectroscopy (GC/MS) and / or nuclear magnetic resonance

(NMR) (Christensen et al., 2002; Sauer, 2006; Wiechert et al., 2001; Zamboni et al.,

2005, 2009). A more sophisticated technique, known as kinetic flux profiling, has

recently been developed to calculate r by measuring the dynamic incorporation

of labeled substrates, such as 13C or 15N, into intracellular metabolites. This
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measurement can be subsequently used to calculate metabolic fluxes directly without

relying on a simplified network (Yuan et al., 2006, 2008, 2010).

Flux Balance Analysis

Similar to MFA, FBA determines a metabolic flux vector r which represents a

phenotypic state of a cell. A benefit of this method is that it can be applied to a

genome-scale metabolic network where m� n (Schilling et al., 1999). FBA is based

on convex analysis, in particular the application of convex minimization in the context

of the optimization theory branch of mathematics. The FBA method is characterized

by the objective function(s), e.g. the maximization of cell growth, minimization

of ATP usage, or the maximization of growth-coupled product synthesis (Feist and

Palsson, 2010; Schuetz et al., 2007). Some reactions in r are constrained with

experimentally measured or hypothetical rates, such as substrate uptake, product

synthesis, nutrient availability (Feist and Palsson, 2008; Kauffman et al., 2003;

Lewis et al., 2012; Price et al., 2004; Varma and Palsson, 1994). Additionally,

thermodynamic constraints, regulatory constraints, or protein expression level (via

transcriptomic and/or proteomic datasets) can also be applied to constrain the

objective function (Chandrasekaran and Price, 2010; Jensen et al., 2011; Park et al.,

2007). The general framework is

max cᵀr

s.t. S · r = 0

ri,lb ≤ ri ≤ ri,ub ∀ri ∈ r,

(1.5)

where c is the objective function vector, in which reactions involved in the objective

are given a positive value and all other values are zero, r is the flux vector, and S

is the stoichiometric matrix. The lower and upper boundaries for reaction ri are ri,lb

and ri,ub, respectively.
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Some challenges still apply when using FBA, e.g. i) to justify the assumption of

objective functions used to predict the physiological state of the cell under a given

condition (Schuster et al., 2008), and ii) account for all alternative solutions that

may represent actual physiological state of the cell (Lee et al., 2000; Mahadevan

and Schilling, 2003; Reed and Palsson, 2004). However, many techniques have

been developed to assess these challenges. For instance, FBA has been altered

to include genetic regulatory elements through methods such as regulatory FBA

(rFBA) (Covert et al., 2001; Covert and Palsson, 2002, 2003), Gene Inactivity

Moderated by Metabolism and Expression (GIMME) (Becker and Palsson, 2005),

Steady-state regulatory FBA (SR-FBA) (Shlomi et al., 2007), and Probabilistic

Regulation of Metabolism (PROM) (Chandrasekaran and Price, 2010).

An optimal solution from FBA is not necessarily, and almost never, unique.

The variability in a flux distribution can be assessed by Flux Variability Analysis,

where an objective is held constant (or within a minimal percentage of its optimal

value) while the minimum and maximum feasible flux is calculated for all internal

reactions (Mahadevan and Schilling, 2003). To look beyond the extreme flux limits

at a certain objective, sampling methods can be employed to produce a set of flux

distributions spanning the entire solution space. Methods for sampling include Monte

Carlo-based “hit-and-run” algoritms (Smith, 1984; Wiback et al., 2004a; Lovasz,

1999), artificial centering “hit-and-run” (Kaufman and Smith, 1998; Megchelenbrink

et al., 2014), and poling-based FBA (Binns et al., 2015).

FBA has also been built upon by assuming cells will minimize their adjustment

of metabolism in response to experimental conditions (Ibarra et al., 2002) or gene

knockouts (Segre and Vitkup, 2002; Shlomi et al., 2005). This paradigm has led the

way for many algorithms implementing bilevel programming with the goal of rational

strain design such as OptKnock (Burgard et al., 2003), RobustKnock (Pharkya

et al., 2003), OptStrain (Pharkya et al., 2004), SimOptStrain (Kim et al., 2011),

OptReg (Pharkya and Maranas, 2006), Genetic Design based on Local Search

(GDLS) (Lun et al., 2009), Flux Scanning based on Enforced Objective Flux
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(FSEOF) (Choi et al., 2010), OptOrf (Kim and Reed, 2010), OptForce (Ranganathan

et al., 2010), BiMOMA (Kim et al., 2011), and MOMAKnock (Ren et al., 2013).

FBA has also been coupled to genetic algorithms to ease the computational

burden of searching the complex solution spaces of large networks in the methods

OptGene (Patil et al., 2005) and Set-Based Evolutionary Algorithm and Simulated

Annealing (SEA-SA) (Rocha et al., 2008).

Metabolic Pathway Analysis

Considering Equation 1.2 and Inequality 1.3 without an objective function leads to the

realm of Metabolic Pathway Analysis (MPA). This formalism is capable of identifying

all admissible metabolic flux vectors in a metabolic network, or the entire solution

space. From convex analysis theory, solutions to the system belong to the convex

polyhedral flux cone and are infinite (Rockafellar, 1970). To obtain a finite number

of solutions which span the convex polyhedral cone, additional constraints can be

applied.

Elementary Mode Analysis (EMA) uses a non-decomposability or genetic indepen-

dence constraint to reduce the solutions of Equation 1.2 and Inequality 1.3 to a finite

set of admissible flux vectors. An admissible flux vector ra is called an elementary

mode (EM) if there is no other admissible vector rb, when ra 6= rb and rb 6= 0 such that

the set of non-zero elements in rb is a subset of the non-zero elements in ra (Schuster

and Hilgetag, 1994; Trinh et al., 2009). This constraint makes r contain a minimal

set of enzymatic reactions which will be unique up to a scalar multiple, which implies

that deletion of any reaction belonging to an EM will disrupt the entire network to

no longer satisfy Equation 1.2 and Inequality 1.3.

Extreme Pathway Analysis (EPA) uses the same constraints as EMA but includes

a requirement for systematic independence, which specifies that any extreme pathway

(EP) cannot be expressed as a non-linear combination of two other EPs (Schilling

et al., 2000a,b). The set of EPs for a network constitute the generating set of vectors

which span the entire polyhedral convex cone. Additionally, all EPs form a subset
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of the EMs (Klamt and Stelling, 2003; Papin et al., 2004). Taken together, EMA

and EPA serve as a powerful tool for studying cellular metabolism by examining

the entire solution space. However, the solution space will become compoundingly

complex with the addition of dimensionality to the network, and the computational

burden can be a limiting factor on the size of the network. Recently, significant effort

has been given to compute EMs on large-scale networks (Centler et al., 2010; Hunt

et al., 2014; Jevremovic et al., 2011; Kaleta et al., 2009).

The computational complexity does not hinder the applicability of MPA, as the

ability to identify all feasible unique EMs inherent to a metabolic network is very

useful. It has been used to systematically examine the metabolic capabilities of

red blood cells (Wiback and Palsson, 2002), photosynthetic chloroplasts (Poolman

et al., 2003), Haemophilus influenzae (Papin et al., 2002a), Helicobacter pylori (Price

et al., 2002b), Lactobacillus rhamnosus (Poolman et al., 2004), Cornynebacterium

glutamicum (Rajvanshi and Venkatesh, 2011), Shewanella oneidensis (Flynn et al.,

2012), Saccharomyces cerevisiae (Schwartz and Kanehisa, 2006), and Escherichia

coli (Carlson and Srienc, 2004b,a; Wiback et al., 2004b; Wlaschin et al., 2006).

Additionally, with the knowledge of the solution space of a network, one can

explore metabolic network properties such as underlying structure (Ay and Kahveci,

2010; Papin et al., 2002b; Peres et al., 2011; Poolman et al., 2007; Price et al., 2003),

network robustness (Larhlimi et al., 2011; Min et al., 2011; Stelling et al., 2002,

2004), network fragility (Behre et al., 2008; Wilhelm et al., 2004), potential phenotype

discovery (Kaleta et al., 2011; Kenanov et al., 2010; Schauble et al., 2011), potential

regulatory mechanisms (Cakir et al., 2004, 2007; Stelling et al., 2002; Wessely et al.,

2011), and potential targets for therapeutic or pharmaceutical applications (Beuster

et al., 2011).

Metabolic Pathway Analysis for Rational Strain Design

Most pertinent for this work, MPA techniques have also been used for rational strain

design. Conceptually speaking, from an entire set of EMs for a given metabolic
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network, one can select a subset of EMs which provide the highest product yields. To

enforce the operation of only the high-yielding EMs, a brute-force approach would be

to delete all reactions whose fluxes are zero in the defined EM subsets. However, the

number of knockout candidates can be significantly large given the fact that i) some

reaction fluxes are inactive under a given growth condition considered in the analysis,

e.g. anaerobic growth will not utilize oxygen-dependent respiration reactions, and ii)

reactions belonging to a linear pathway will have zero flux if any reaction in the linear

pathway is deleted. Thus, it is beneficial to find a minimum set of deleted reactions

to reduce the entire set of EMs to a constrained, desirable phenotypic subset of EMs.

Minimal Metabolic Functionality (MMF) is an effective method for finding the

constrained subset of EMs. The method is driven by the goal of finding a minimum

set of deleted reactions which leads to overproduction of a target molecule coupled

with cell growth (Trinh et al., 2009). First, EMA identifies all feasible pathways in a

metabolic network. Next, reactions are chosen for deletion via manual inspection of

the EM space following three guidelines: i) eliminate as many undesirable pathways

as possible to reduce the entire set of EMs to a high-yield subset, ii) if EMs in the

desirable subset allow cell growth, they must couple growth with high product yield,

and iii) if an EM is in the desired subset but cell growth is not part of the EM, then

the target product must be synthesized at theoretical maximum yield. This method

proceeds in an iterative manner to constrain the phenotypic space of the network

and has been used effectively to design and experimentally validate optimal E. coli

strains to produce ethanol from hexoses and pentoses (Trinh et al., 2008), ethanol

from glycerol (Trinh and Srienc, 2009), and higher alcohols from glucose (Trinh et al.,

2011; Trinh, 2012).

Other algorithms have also been developed for rational design of strains which

produce a chemical of interest in a more general manner than MMF. For instance,

a Minimal Cut Set (MCS) is defined as a subset of reactions within the metabolic

network that, once removed, force the flux of target reactions to zero (Klamt and

Gilles, 2004). Generally speaking, this process can be accomplished by defining the

15



deletion task as the set of EMs to be deleted (Klamt, 2006) The MCS framework

was improved to calculate constrained Minimal Cut Sets (cMCSs), which identify

which MCSs are required to eliminate undesirable pathways (EMs) but also preserving

high-yield pathways (Hädicke and Klamt, 2011). Each cMCS contains a unique and

minimum set of deleted reactions that constrain the system with the predefined goal of

product synthesis and/or side-product elimination. Alternatively, the Computational

Approach for Strain Optimization Aiming at high Productivity (CASOP) method

was developed with similar goals of designing optimal strains for high target chemical

production (Hädicke and Klamt, 2010). CASOP is a systematic approach to score

reactions which can be deleted, up-regulated, or down-regulated by finding a balance

between high-yield EMs and high network robustness. Using two parameters, CASOP

varies the distribution between growth and product synthesis while adjusting a

weighting factor for each high-yielding EM.

Recently, the Systematic Multiple Enzyme Targeting (SMET) method was

developed to couple dynamic modeling with EMA and cMCS to find kinetic

bottlenecks in metabolic pathways (Flowers et al., 2013). First, a large ensemble

of models with random kinetic parameters is generated and constrained to wild-type

flux distribution. Next, cMCSs are calculated for a target chemical overproduction

and a cMCS is applied to the ensemble of kinetic models. By studying the effect of

genetic perturbations (e.g. knockout, down-regulation, up-regulation) on the system

as a whole, kinetic bottlenecks hindering target chemical production can be inferred.

Finally, EMA has been combined with optimization methods in the MODCELL

method (Trinh et al., 2015). MODCELL seeks to find a genetic background which

is the best chassis for the production of a wide-range of target chemicals, so that a

single modular chassis genotype can be used in a plug-and-play manner with multiple

production modules with minimal cell adaptation.

The EMA-based methods mentioned above have been used for designing genetic

modification strategies for chemical synthesis in Aspergillus niger (Driouch et al.,

2012), Corynebacterium glutanicum (Bartek et al., 2010; Chen et al., 2009; Kind
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and Wittmann, 2011; Kromer et al., 2006; Neuner and Heinzle, 2011), Eschericia

coli (Chen et al., 2010; Trinh et al., 2008; Trinh and Srienc, 2009; Liao et al.,

1996; Unrean et al., 2010), Klebsiellia pneumoniae (Zhang and Xiu, 2009; Chen

et al., 2011b), Pseudomonas putida and Ralstonia eutropha (Diniz et al., 2006),

Saccharomyces cerevisiae (Carlson et al., 2002; Matsuda et al., 2011), and Ther-

moanaerobacter saccharolyticum (Unrean and Srienc, 2011, 2012).

1.3 Outline of Dissertation

Presented in this work is my efforts to synthesize FAEEs in Saccharomyces cerevisiae

and to create a platform for the systematic study of Clostridium thermocellum DSM

1313 metabolism. This platform consists of two distinct yet intimately related

metabolic models. In addition to constructing metabolic networks from the genome

sequence (Feinberg et al., 2011), there are significant validation and refinement steps

included. This platform is then used to examine experimentally observed phenotypes

with a variety of techniques reviewed above. While the species and products differ,

both directions utilize metabolic engineering techniques to elucidate bottlenecks in

the production pathways.

This dissertation proceeds in the following manner:

Chapter 2 This chapter is a compilation of the methods used throughout the work.

It includes descriptions of model creation and modeling methods, as well as

details regarding experimental data acquisition and calculation of fermentation

parameters.

Chapter 3 This chapter describes an effort to enhance fatty-acid ethyl esters in

Saccharomyces cerevisiae using a combination of metabolic engineering and

growth-condition optimization.

Chapter 4 This chapter describes the construction and validation of the core

metabolic model. Using experimental data and metabolic flux analysis, we
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are able to represent the phenotypes of multiple genotypes designed to perturb

electron and carbon metabolism. Using predictions from the core model, we

are then able to elucidate the steps in redox metabolism that hinder ethanol

production.

Chapter 5 This chapter describes the construction and validation of the genome

scale model. The meticulously refined GEM was tuned to accurately simulate

growth on cellobiose and cellulose, accounting for the difference in cellulosome

synthesis. Using this model, we examine several observed phenotypes presented

throughout the literature and infer a large regulatory network which arises from

growth on cellobiose.
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Chapter 2

Materials and Methods

Summary

This chapter provides a compilation of methods used when performing the work

presented throughout the dissertation. This includes both “wet-lab” experimental

methods as well as in silico experimental methods.

2.1 Experimental Methods

2.1.1 S. cerevisiae Strain Development

The complete list of S. cerevisiae strains constructed for this work are listed in Ta-

ble 2.1. Wild-type S. cerevisiae strain BY4741 and single gene knockouts were kindly

provided by Prof. Jeff Becker (The University of Tennessee, Knoxville). To construct

multiple gene knockout strains, the well-established loxP -cre recombinase system was

employed. Gene deletion cassettes were amplified from plasmid pXP418 (Fang et al.,

2011) using 40-50 base pair homology immediately upstream of the gene of interest.

After transformation of linear PCR products by electroporation (Manivasakam and

Schiestl, 1993), gene replacements were confirmed via colony PCR. Uracil (URA3)

marker removal was accomplished by transforming the knockout strain with pBF3038
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(Addgene) then growing in SC-Leu with 2% galactose as a carbon source to induce

cre recombinase activity (Fang et al., 2011). URA3 marker removal was confirmed

by selection on YPD+FOA plates (Boeke et al., 1984) and subsequent colony PCR.

This gene disruption/marker removal process was repeated as needed (Hegemann

and Heick, 2011). Final, confirmed S. cerevisiae strains were transformed with their

respective plasmids via electroporation and selected on SC-URA plates. Colony PCR

was used to confirm presence of heterologous genes before characterization.

2.1.2 S. cerevisiae Plasmid Construction

Table 2.1 shows a list of plasmids used in this study. The plasmid pRS426TEF (Mum-

berg et al., 1995) was used as a backbone for construction of the ethyl ester production

plasmids. The acyltransferase gene atfA was amplified from Acinetobacter sp.

ADP1 genomic DNA (Addgene) for constitutive expression using the TEF promoter.

Sequences of Acinetobacter sp. ADP1 atfA and Marinobacter hydrocarbonoclasticus

DSM 8798 MhATF1 codon-optimized for expression in S. cerevisiae were previously

described (Shi et al., 2012) and synthesized as gBlock fragments (IDT Inc.).

Expression plasmids were constructed using Gibson Assembly (Gibson et al., 2009;

Gibson, 2011). All PCR products were generated using Phusion Hot Start II DNA

polymerase (Thermo Inc.). The Gibson Assembly plasmid product was directly

transformed into chemically-competent TOP10 cells (Invitrogen Inc.), selected with

ampicillin, and extracted with a standard plasmid extraction kit (Zymo Research

Inc.). The constructs were validated by colony PCR, digested fragment lengths, and

sequencing (University of Tennessee, Knoxville Molecular Biology Resource Facility).

All primers used for piece amplification and confirmation of gene deletions were

synthesized by IDT Inc.
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Table 2.1: Saccharomyces cerevisiae Strains and Plasmids

Strain Name Genotype / Description Source

BY4741 S. cerevisiae MATa, ATCC
ura3d0, his3-d200, leu2-d0, met15-d0

ScAT1001 BY4741 ∆faa2::kanMX ATCC
ScAT1005 BY4741 ∆pxa2::kanMX ATCC
ScAT1025 BY4741 ∆acb1::kanMX ATCC
ScAT1031 BY4741 ∆faa2::kanMX This study

∆pxa2::loxP ∆acb1::loxP
ScAT1033 BY4741 ∆faa2::kanMX ∆pxa2::loxP This study
ScAT2000 BY4741 + pRS426TEF This study
ScAT2200 BY4741+pAT01y This study
ScAT2203 ScAT1001 + pAT01y This study
ScAT2204 ScAT1005 + pAT01y This study
ScAT2205 ScAT1025 + pAT01y This study
ScAT2208 ScAT1033 + pAT01y This study
ScAT2209 ScAT1031 + pAT01y This study
ScAT2018 BY4741 + pAT07y This study
ScAT2022 ScAT1031 + pAT07y This study
ScAT2211 BY4741 + pAT27y This study
ScAT2212 BY4741 + pAT28y This study
ScAT2215 ScAT1031 + pAT27y This study
ScAT2216 ScAT1031 + pAT28y This study

Plasmid Name Genotype / Description Source

pAT01y TEFp:atfA:CYCt, URA3 This study
pAT07y GAL1p:atfA:CYCt, URA3 This study
pAT27y TEFp:atfA* :CYCt, URA3 This study
pAT28y TEFp:MhATF1* :CYCt, URA3 This study

pRS426TEF TEFp::CYCt, URA3 Mumberg et al. (1995)
pXP418 loxP:URA3:loxP, TEFp::CYCt Fang et al. (2011)

pBF3038 GAL1p:cre, LEU2 Fang et al. (2011)
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2.1.3 S. cerevisiae Growth Conditions

Media

Laura Bertani complex medium (10 g/L tryptone, 5 g/L yeast extract, and 5 g/L

NaCl) plus 100 mg/L ampicillin (if applicable) was used for DNA manipulation in

E. coli TOP10. For S. cerevisiae, YPD complex medium containing 10 g/L yeast

extract, 20 g/L peptone, and 20 g/L glucose was used to prepare competent cells

before plasmid selection. Solid media was prepared as above with 20 g/L agar.

Counter-selection for uracil marker removal in S. cerevisiae was conducted on plates

containing 1 g/L 5-fluoro-orotic acid (FOA). For strain characterization, the defined

SC-URA medium containing 6.7 g/L yeast nitrogen base (containing 5 g/L ammonium

chloride), 2 g/L synthetic dropout mix without uracil, and 20 g/L glucose was used.

All chemicals were purchased from Sigma.

Strain characterization

For the batch cultures, S. cerevisiae was characterized in 250 mL beveled flasks with

50 mL working volumes, shaking at 190 rpm at 30oC. Nitrogen limitation studies

were conducted in 50 mL working volumes with a starting C:N ratio of 50:1 (57

g/L glucose) in modified SC-URA containing only 1 g/L ammonium chloride, and

a 10% dodecane overlay for FAEE capture was included. Fatty acid doping under

nitrogen limitation studies followed the 50:1 C:N recipe above with the addition of

0.1% pentadecanoic acid and a dodecane overlay.

2.1.4 C. thermocellum Strain Development

C. thermocellum strains employed in this study were derived from the genetically

tractable strain DSM 1313 with a ∆hpt background, allowing for a two-stage

selection counter-selection method using 8-azahypoxanthine (Argyros et al., 2011).

C. thermocellum ∆hydG and ∆hydG ∆ech strains were previously described (Biswas
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et al., 2015). The mutant ∆hydG ∆pta-ack was constructed from the ∆hydG strain

using the plasmid pAMG498, similar to previous reports (Argyros et al. (2011);

van der Veen et al. (2013)), but also deleting acetate kinase. Gene loci of hpt,

hydG, ech, and pta-ack are Clo1313 2927, Clo1313 1571, Clo1313 0564-0575, and

Clo1313 1185-1186, respectively. Strains were kindly provided by Adam M. Guss

(Oak Ridge National Laboratory).

To eliminate pyruvate-formate lyase (PFL) activity and create an effective ∆pfl

strain, the parent strain or ∆hydG ∆ech strain was cultured with 6 mM sodium

hypophosphite (HPP), an analogue of formate and known PFL inhibitor (Rydzak

et al. (2014); Unkrig et al. (1989)).

2.1.5 C. thermocellum Growth Conditions

C. thermocellum strains were cultured in a defined MTC medium containing (per

liter): 5 g cellobiose, 2 g urea, 1.5 g ammonium chloride, 2 g sodium citrate tribasic

dihydrate, 1.5 g citric acid monohydrate, 1 g sodium sulfate, 1 g potassium phosphate

monobasic, 2.5 g sodium bicarbonate, 1 g magnesium chloride hexahydrate, 0.2

g calcium chloride dihydrate, 0.1 g iron (II) chloride tetrahydrate, 1 g L-cysteine

HCl, 20 mg pyridoxamine dihydrochloride, 4 mg p-aminobenzoic acid, 2 mg biotin,

2 mg vitamin B12, 1.25 mg manganese chloride tetrahydrate, 0.5 mg cobalt chloride

hexahydrate, 0.125 mg zinc chloride, 0.125 mg copper chloride dihydrate, 0.125 mg

boric acid, 0.125 mg sodium molybdate dihydrate, and 0.125 mg nickel chloride

hexahydrate (Ozkan et al. (2001); Zhang and Lynd (2003); Kridelbaugh et al. (2013)).

Balch tube studies were conducted with 10 mL MTC plus the appropriate additional

chemicals where noted. For bottle studies and inoculum preparation, 120 mL serum

bottles were prepared with 90 mL MTC. Balch tube and serum bottle cultures also

contained 5 g L−1 MOPS for buffering, starting at a pH adjusted to 7.4 with 5M

KOH. Bottles and tubes were sealed with butyl rubber stoppers and aluminum seals,
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while the head space contained a N2:CO2 (90:10) mixture. Cells were maintained at

-80oC prior to initial inoculation. Inocula were incubated in water baths set at 55oC.

Bioreactor studies were conducted with a Biostat B+ (Sartorius Stedim US,

Bohemia, NY) dual 1.5 L fermentation system at a working volume of 1 L MTC media

with MOPS omitted. Prior to inoculation, freshly prepared media were autoclaved

and sparged overnight with a N2:CO2 (90:10) gas mixture at 500 mL/min at 55oC.

Inoculation used 10% v/v mid-log phase cell culture to give a starting optical density

of 0.05 in bioreactors. At inoculation, the gas flow was slowed to 150 mL/min, and

the gas input was altered to flush the headspace only. The culture was maintained

at pH 7.0 with 5 M KOH and 40% H3PO4, an agitation rate of 200 rpm, and a

temperature of 55oC. Batch bioreactor studies were performed at least in duplicate.

For each run, triplicate samples were collected and analyzed at each time point. The

fluxes, titers, and yields were reported as means ± standard deviation for all samples.

Optical density (OD) was measured via a spectrophotometer at 600 nm (Spec-

tronic 200+, Thermo Fisher Scientific, Inc.) To establish a calibration curve between

dry cell weight (DCW) and OD (i.e., 0.502 g DCW = 1 OD600, R2 ¿ 0.95), 80 mL

culture samples at known optical densities were centrifuged and washed twice with

0.9% (w/v) NaCl in water. Washed cell pellets were then oven dried at 70oC for

at least three days, until DCW was stable. The calibration curve was constructed

from at least two different cell samples for several different OD measurements. An

elemental DCW composition of C4H7O2N (101 g mol−1) was used to calculate DCW

in moles (Rydzak et al., 2009).

2.1.6 Analytical Methods

Saccharomyces cerevisiae

Yeast growth was monitored by measuring optical density at 600 nm over time.

Substrate and product concentrations were monitored by using the Shidmazu high

performance liquid chromatorgraphy (HPLC) system. One mL aliquots of culture
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were centrifuged, filtered at 0.2 micron, and ran on an Aminex 87H (Biorad Inc.)

column using a refraction index detector to monitor glucose consumption with

glycerol, acetate, and ethanol production (Trinh et al., 2008).

FAEE production in shake flask cultures was quantified via gas chromatography

coupled with mass spectroscopy (GC/MS). A 100 L aliquot of the overlaying

dodecane was removed from the culture and diluted 10-fold in ethyl acetate with

ethyl pentadecanoate as an internal standard. Samples were run on an HP 6890

gas chromatograph equipped with a DB-5MS column (Agilent) using an HP 5973

mass spectrometer for detection. The GC method was ramped in all samples as

follows: an initial temperature of 120oC was maintained for 2 minutes, followed

by a 30oC min−1 increase to a final temperature of 250oC, which was held for an

additional 3 minutes. The solvent delay was 4.5 minutes to allow passage of dodecane.

Product detection was accomplished using selected ion monitoring. The ions detected

were 88.1 for all samples, as well as the principal ion for each compound being

monitored (C10EE:200.3, C12EE: 228.2, C14EE: 256.3, C15EE: 270.3, C16:0EE:

284.3, C18:0EE: 312.3). The principal ion detection was altered as a function of time

within the method to focus on the specific target compound at its specific retention

time.

Clostridium thermocellum

Substrate and product concentrations were quantified by using a Shimadzu high

pressure liquid chromatography (HPLC) system. One mL aliquots of culture were

centrifuged, then the supernatants filtered at 0.2 micron and run on an Aminex 87H

(Biorad Inc.) column using a refractive index detector (RID) to monitor cellobiose

consumption with lactate, formate, acetate, pyruvate, and ethanol production by an

established method (Trinh et al., 2008).

Gas chromatography coupled with mass spectrometry (GC/MS) was also used to

quantify extracellular amino acids. At each measured time point during fermentation,

100 L aliquots of cell culture were centrifuged at 25,200 rcf for 5 minutes and
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cell supernatants collected for secreted amino acid analysis. Amino acids were

then derivatized using the EZ-faastTM Free/Physiological Amino Acid GC/MS kit

(Model # KG0-7166, Phenomenex Inc., Torrence, CA, USA). The manufacturer’s

protocols for derivatization and GC/MS separation/analysis were followed, and the

concentrations of secreted amino acids were calculated from calibration curves with

standard mixtures provided by the kit as well as control mixtures made in-house.

2.1.7 Bioreactor-linked Real-time Gas Measurement

H2 monitoring was accomplished in real-time using a universal gas analyzer (UGA-

300) equipped with an RGA probe (SRS Inc., Sunnyvale, CA, USA) connected to

the gas effluent stream from the bioreactor system. The UGA-300 was equipped

with a multiple inlet valve for the concurrent sampling from both bioreactor vessels.

Exhaust gases (mainly N2, H2, and CO2) from the bioreactor vessels were monitored

by in-line mass flow meters (Cole Palmer, Vernon Hills, IL) calibrated for a N2:CO2

mixture to allow for accurate calculation of H2 concentration. The pressure within

the reactor was maintained at 1.5 atm with a ball-type pressure relief valve in series

with the effluent stream, downstream of the mass flow meter and before reaching the

UGA-300. Accumulative H2 (nH2 in mole) were determined by the following formula:

nH2 =

∫ t

0

P · v
R · T

·XH2 · dt (2.1)

where t is the fermentation time (hr), P is the pressure of the reactor (Pa), v is

the volumetric flow rate (m3 hr−1), R is the ideal gas constant (J mol−1 K−1), T is

temperature (K), and XH2 is the molar fraction of H2.

Carbon dioxide production was not measured directly due to the presence of CO2

in the influent gas causing fluctuations in the CO2 signal from the UGA-300. The

fluctuations were sufficient to disrupt an accurate measurement of CO2 concentration.

In these experiments, the CO2 production was estimated from the concentrations of

ethanol, acetate, formate, and cell mass at specific time points during the fermentation
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by the formula:

[CO2] , [ethanol] + [acetate] + 0.546[DCW ]− [formate] (2.2)

where square brackets represent concentrations of respective species. The scalar

operator for cell mass represents the sum of the requirement of acetyl-CoA and α-

ketoglutarate minus the requirement of oxaloacetate for cell mass synthesis (Deng

et al., 2013). It should be noted that DCW and cell mass are used interchangeably.

2.1.8 Determination of Experimental Fluxes

Concentration profiles of 11 potentially prominent components of the fermentation

broth (i.e., cellobiose, glucose, succinate, lactate, pyruvate, acetate, ethanol, formate,

CO2, H2, and cell mass) were determined at each time point. Concentrations of all

20 major amino acids were measured during exponential growth and at the final time

point, and the prominent species were included in flux analysis and carbon balance.

Their fluxes were determined as follows:

rp = µ · YP/X = µ · d[P ]/dt

d[X]/dt
(2.3)

where rp is the specific consumption/production rate (flux) of metabolite P (mmol

g−1 hr−1), µ is the specific growth rate (hr−1), YX/P is the yield of metabolite P per

unit cell mass X, and brackets represent concentrations in mmol L−1. Similarly, for

chemostat cultures, the fluxes were calculated as follows:

rp = D · YP/X = D · [P ]out − [P ]in
[X]out − [X]in

(2.4)

where D is the dilution rate (hr−1). Where [·]in and [·]out represent the concentration

of a given species for the feed and effluent, respectively.
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2.2 C. thermocellum Metabolic Model Construc-

tion

2.2.1 Construction of Core Metabolic Model

A metabolic network was constructed for C. thermocellum which utilized cellobiose, a

representative substrate for cellulosic biomass, as the sole carbon source. The network

reconstruction was based on the publicly available curation of the DSM 1313 genome

sequence (Feinberg et al., 2011) as well as an extensive literature review. The model

accounts for the strict anaerobic metabolism of C. thermocellum which does not use

the canonical forms of Embden-Meyerhof glycolysis (Zhou et al., 2013), the pentose

phosphate pathway (Rydzak et al., 2012), or the Krebs (tricarboxylic acid, TCA)

cycle (Roberts et al., 2010).

In addition, the export of major fermentative products (i.e., ethanol, acetate,

lactate, formate, and H2), CO2, valine, and DCW were included in the model. The

biomass term was constructed following a composition described previously (Gowen

and Fong (2010); Roberts et al. (2010)), adjusting amino acid and G+C content for

C. thermocellum DSM 1313. All cellular components are derived from 12 precursor

metabolites (Neidhardt et al., 1990). Total ATP requirement for DCW synthesis

(i.e., Y max
ATP = 42.7 mmol ATP g−1 DCW) was estimated following the well-established

protocol (Stouthamer, 1973). The maintenance energy requirement was modeled as

a separate stoichiometric reaction.

Briefly, our model proceeds from cellobiose uptake via an ATP-binding cassette

transporter and cleavage via cellobiose phosphorylase (Ng and Zeikus (1982); Nochur

et al. (1992)). Glucose subunits are then processed through glycolysis until

the phosphoenolpyruvate (PEP) step, where PEP can be converted to pyruvate

through two branches: i) inter-conversion to oxaloacetate and malate through the

“malate shunt,” effectively transferring electrons from NADH to NADPH in a

transhydrogenase type of mechanism, ii) decarboxylation of oxaloacetate to pyruvate
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Figure 2.1: The central metabolic network of C. thermocellum. Genetic
modifications investigated in this study are marked with a red X. Reactions which
contribute to metabolite nodes of interest are highlighted. Pyruvate phosphate
dikinase (PPDK), oxaloacetate decarboxylase (ODC), and malic enzyme (MAE)
contribute to →PYR (green box). Pyruvate formate lyase (PFL), pyruvate
ferredoxin oxidoreductase (PFOR), and lactate dehydrogenase (LDH) contribute to
PYR→ (purple box). ACoA→ (brown box) consists of alcohol dehydrogenase
(AdhE), phosphotransacetylase (PTA), and citrate synthase (TCA1). The redox
pathway is highlighted in the blue box. Fdrd → consists of the Ni-Fe energy
conserving hydrogenase (ECH), the Rnf-type NADH:Fd oxidoreductase (RNF),
the NADH-Fdrd:NADP+ oxidoreductase (NFN), and the NADH-Fdrd bifurcating
hydrogenase (BIF). The→ H2 node includes ECH, BIF, as well as the Fe-Fe NADPH-
depenent hydrogenase (Fe-H2)
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via oxaloacetate decarboxylase (ODC), and iii) direct conversion to pyruvate coupled

with ATP production via pyruvate phosphate dikinase (PPDK). Enzymes in these

pathways are transcribed (Riederer et al., 2011) and translated (Rydzak et al., 2012)

according to recent reports, despite PPDK enzymatic activity not being confirmed in

cell-free extracts (Zhou et al., 2013).

Redox metabolism of C. thermocellum is complex, with multiple potential

pathways available for redox cofactor recycling (Carere et al., 2012). Our model

incorporated detailed electron shuttling reactions, consistent with the most re-

cent understanding (Rydzak et al., 2014). Most prominently represented in C.

thermocellum is a complicated system which shuttles electrons between reduced

ferredoxin, NADH, and NADPH using several different enzyme complexes including

reduced ferredoxin:NAD(P) oxidoreductases such as RNF or NFN, an Fe-Ni energy

conservation hydrogenase (ECH), and several Fe-Fe hydrogenases which are activated

by HydG (Biswas et al., 2015). A visual representation of the core metabolic model

can be seen in Figure 2.1 and a full list of reactions with stoichiometry is included in

Appendix .

2.2.2 Construction of Genome Scale Metabolic Model

Construction of Draft Metabolic Network

The first draft of the metabolic network of Clostridium thermocellum DSM 1313 was

constructed using the automatic reconstruction function getKEGGModelForOrgan-

ism() of the RAVEN Toolbox (Agren et al., 2013). This function compiled reactions

from the KEGG database organism entry for C. thermocellum DSM1313 (T01933,ctx )

with the complete set of coding sequences from the genome assembly (GenBank:

CP002416.1) so that each reaction is linked to a specific protein encoded by the

genome (Feinberg et al., 2011). This draft reconstruction contained gene-protein

relationships (GPR), pathway information, and reaction stoichiometry.
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Transport reactions were linked to genes by compiling a list of putative trans-

porters and then curating reactions via manual inspection. The list was compiled by

three methods: i) Using InterProScan 5 to find 169 putative transporters within the

C. thermocellum DSM 1313 protein sequences, ii) Extracting annotated transporters

from alternative Clostrial GEMs (Milne et al., 2011; Roberts et al., 2010; Salimi et al.,

2010) and subjecting them to reciprocal blast hit (RBH) and hmmscan to determine

similar genes in C. thermocellum DSM 1313. For RBH, we used 1e−50 and blast

length of fifty amino acids as cut-offs. For hmmscan, our cutoff was also 1e−50, and

iii) We used the Transporter Substrate Database (Zhao et al., 2011) to extract protein

sequences for each substrate exchange reaction within the model and compared them

to the genome sequence of DSM 1313 with a cutoff of 1 for hmmscan and 1e−50 for

RBH.

Further, as it is known that C. thermocellum cofactor specificity in glycolysis

is atypical (Zhou et al., 2013), we investigated reaction sets from the automatic

reconstruction which only differed by cofactor choice, e.g. NADH versus NADPH or

ATP versus GTP. Enzymes with available in vitro data were adjusted accordingly. For

enzymes which the automatic reconstructed predicted multiple equivalent reactions

with differing cofactors, the proteins linked to these reactions were analyzed for

cofactor specificity using Cofactory (Geertz-Hansen et al., 2014). This software

determines the specificity towards NAD, NADP, or FAD of proteins by predicting

Rossman folds from primary sequence.

Refinement of Genome Scale Metabolic Model

The KEGG draft network contained many gaps in the central metabolism and was

plagued by unrealistic predictions because it assumed that many reactions were

reversible, which lead to thermodynamically infeasible pathways. To build a working

GEM, the KEGG draft network was expanded and refined in the following manner:
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i The central metabolic network recently reported (Thompson et al. (2015),

Section 2.2.1) was manually built into the GEM structure, filling in gaps in

glycolysis and redox metabolism which were not automatically included,

ii The dry cell weight composition presented for strain ATCC 27405 (Roberts

et al., 2010) was adapted to reflect the differences in genomic content between

strains as well as a stringent calculation of ATP requirements for biomass

synthesis (Neidhardt et al., 1990; Stouthamer, 1973), then included the cell

composition reaction into the network. The ATP required for DCW synthesis

by cell component is given in Table 2.2,

iii Several artificial reactions to convert identical yet alternately described metabo-

lites (e.g. β-D-Fructose 6-phosphate → D-Fructose 6-phosphate) were added

within the network to close gaps between discrepancies,

iv The automatic gap filling function of the RAVEN Toolbox was used with the

previously constructed C. thermocellum GEM iSR432 (Roberts et al., 2010) as a

template to increase network connectivity,

v Reactions were added to fill gaps in sulfate utilization pathway, which is known to

be utilized as a sole sulfur source (Kridelbaugh et al., 2013) as well as shikimate

kinase, homoserine kinase, and spontaneous glutamate semialdehyde cyclization

reactions to allow synthesis of all essential amino acids on minimal media, and

vi Each reaction in the network was manually inspected for appropriate reversibility,

adjusting reactions outside of glycolysis and fermentation-based substrate-level

phosphorylation to only consume ATP. This convention is commonplace (Thiele

and Palsson, 2010) and it removed the cycles in the model which were in-

correctly generating energy. During the manual curation process, extensive

metadata was included for reactions and metabolites to allow for cross-linking

between KEGG (Kanehisa and Goto, 2000), MetaCyc (Caspi et al., 2012),
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Figure 2.2: (A) Flowchart of model construction. (B) Distribution of iAT601
reactions belonging to KEGG pathways

MetaNetX (Ganter et al., 2013; Bernard et al., 2014), SEED (Overbeek et al.,

2005), BRENDA (Scheer et al., 2011), and other databases.

The refined model has been deposited in the DOE KBase (https://narrative.

kbase.us/narrative/ws.13674.obj.2). A workflow of the model construction

process is given in Figure 2.2.

Implementation of the cellulosome into the Genome Scale Model

The cellulosome is the cellulose-degrading protein complex covalently bound to the

surface of certain cellulolytic bacteria, such as C. thermocellum. The previous

GEM of C. thermocellum, iSR432 (Gowen and Fong, 2010; Roberts et al., 2010),

roughly included the cellulosome on top of the dry cell weight (DCW) reaction in a

condition independent manner. However, it is well documented that the cellulosome

fraction of total DCW changes from 2% to 20% when growing on cellobiose versus

cellulose, respectively (Zhang and Lynd, 2005b), and the protein composition of the
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Table 2.2: Comparison of ATP requirements for C. thermocellum and model
organisms during anaerobic growth

ATP requirement (mmol ATP/g DCW)

C. thermocellum E. coli S. cerevisiae
Stouthamer

(1973)
Verduyn et al.

(1990)
Polysaccharides / Cell

wall
7.16 2.05 4.63

Protein
Amino acid synthesis 5.65 1.36 1.81

Polymerization 17.49 19.14 17.76
Lipid 0.52 0.14 0
RNA

Nucleoside
monophosphate

formation
1.2 3.45 1.35

Polymerization 0.27 0.92
mRNA turnover 0.3 1.39 0.71

DNA
Deoxynucleoside
monophosphate

formation
0.48 0.86

Polymerization 0.18 0.19
Subtotal 33.23 29.5 26.26

Transport:
Ammonium 8.43 4.24 6.29

Potassium 0.2 0.19 2.4
Phosphate 0.8 0.77

Total ATP Required 42.66 34.71 34.95
Y Max
ATP (g DCW / mol

ATP)
23.44 28.81 28.61
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cellulosome itself changes when growing on alternative substrates (Gold and Martin,

2007; Raman et al., 2009; Riederer et al., 2011; Wei et al., 2014; Wilson et al.,

2013). Therefore, our cellulosome reaction was set up to allow for dynamic switching

between modeling cellobiose versus cellulose-consuming growth conditions. This is

an important distinction due to the increased ATP requirement for exporting more

protein from the cell.

The fractional composition for cell dry weight was 0.5285 g Protein + 0.026 g

DNA + 0.0655 g RNA + 0.076 g Lipid + 0.2242 g Cell Wall + 0.00494 g Solute Pool

+ 0.0304 g Total LTA→ g Cell Dry Weight (CDW). The whole cell biomass term was

adjusted depending on carbon source, specifically: 1 g CDW + 0.02 g Cellulosome

term → Biomass for cellobiose cultures and 1 g CDW + 0.2 g Cellulosome term →

Biomass for cellulose cultures (Roberts et al., 2010).

The composition of the cellulosome was initially set equivalent to the protein

term. Using experimentally observed cellulosomal protein abundances, we altered the

cellulosome composition systematically. First, a matrix A was created by counting the

amino acids required to synthesize cellulosomal proteins. The entry Ai,j corresponds

to the number of amino acid i encoded by the sequence of protein j. Second,

the abundances of each protein were condensed into a condition specific vector c

normalized to CipA (Raman et al., 2009). The total amino acid count across all

cellulosomal proteins for any condition can be calculated by A · c. Finally, the

condition specific amino acid count is converted to mmol/g cellulosome similar to

the calculation of protein or DNA terms (Neidhardt et al., 1990).

To complement the adjustable cellulosome reaction, transport reactions were

added for cellodextrin oligomers of length 3 to 6 glucose subunits, i.e. cellotriose

(G3) to cellohexaose (G6). Glucose and cellobiose transport were included in the

automatic reconstruction. It has been shown that C. thermocellum cellodextrin

transporters prefer longer chain oligomers (Nataf et al., 2010). Further, there is

a complex set of regulatory interactions where excess cellobiose represses cellulase

activity (Zhang and Lynd, 2005b) and conversely, cellobiose uptake is inhibited by
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the presence of G3 to G5 oligomers (Strobel et al., 1995). Upon entering the cell,

cellodextrins are cleaved in a phosphorolytic manner (Zhang and Lynd, 2004) and

so reactions were included to utilize G6 to G2 oligomers by a sequential chain-

shortening pathway generating glucose-1-phosphate and a cellodextrin of length G(N-

1). The final glucose residue in this depolymerization pathway is phosphorylated

with ATP. This mechanism of transport and phosphorolytic cleavage costs 2 ATP per

cellodextrin imported, regardless of length, and as such the ATP yield per glucose

equivalent is higher when assimilating longer oligomers (Zhang and Lynd, 2005a), as

demonstrated in Section 5.2.5.

It is difficult to obtain information regarding individual oligomer uptake rates in

vivo so most studies report data in the units of mmol glucose equivalents / g dry

cell weight (DCW)/ hr. In order to utilize this information as a constraint in the

GEM, we implemented a flux ratio constraint (McAnulty et al., 2012) between the

individual cellodextrin uptake reactions and the uptake rate of glucose equivalents as

such

6rG6 + 5rG5 + 4rG4 + 3rG3 + 2rG2 + 1rG1 = rGluEq (2.5)

where rG(N) is the specific uptake rate of the cellodextrin of length N. This constraint

maintains stoichiometric balance when using commonly reported experimental data

to test the model.

2.3 Metabolic Modeling Techniques

2.3.1 Elementary Mode Analysis

From the construction of a C. thermocellum metabolic network, the mass balance

for intracellular metabolites can be written as described in Section 1.2.2 under the

steady-state assumption as:

S · r = 0, (2.6)
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where S is the stoichiometric matrix whose rows and columns correspond to

metabolites and reactions, respectively, and r is the intracellular flux vector.

Irreversible reactions are subject to the constraint

ri ≥ 0. (2.7)

Elementary mode analysis (EMA) was applied to calculate all possible solutions r,

called elementary modes (EMs) that satisfy equation 2.6, inequality 2.7, and an

additional non-decomposability constraint. The constraint states that for any EM1

and EM2, S(EM1) cannot be a subset of S(EM2) and vice versa where S(EM1) and

S(EM2) are indices of non-zero fluxes of EM1 and EM2, respectively (Trinh et al.,

2009). EMs were calculated for the metabolic network of C. thermocellum DSM 1313

using METATOOL (Pfeiffer et al. (1999); Kamp and Schuster (2006)).

To calculate cMCS for the GEM iAT601, we required cell growth be greater than

0.01 and specified a minimum product yield of 75% theoretical maximum using a

recently develop regulatory cut set method (Mahadevan et al., 2015). All calculations

were performed in MATLAB in the CellNetAnalyzer Toolbox (Klamt et al., 2007;

Klamt and von Kamp, 2011).

2.3.2 Metabolic Flux Analysis

We calculated the metabolic flux distribution for C. thermocellum based on the

measured fluxes of extracellular metabolites under a given condition. The flux

distribution was determined by a non-negative, linear combination of EMs using

Poolman et al.’s algorithm (Poolman et al., 2004), and briefly described below:

r = EM ·w (2.8)

where r is an nx1 flux distribution vector, EM is an nxk elementary mode matrix,

and w (∈ R+) in a kx1 weighting factor vector. By using the measured flux vector
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rm (rm ⊆ r), w can be calculated as follows:

rm = EMm ·w (2.9)

w = pinv(EMm) · rm (2.10)

where pinv(EMm) is the mxk Moore-Penrose pseudo inverse matrix of EMm. The

flux calculation errors were determined as follows:

error =
‖r− rm‖
‖r‖

(2.11)

One-at-a-time sensitivity (OATS) analysis was performed by systematically removing

an individual reaction from the EM space for a given genotype, calculating the flux

distribution with the resulting EM space, and comparing the new calculated error to

the error of the original flux distribution vector.

2.3.3 Metabolic Flux Ratio Analysis

To quantitatively differentiate flux distributions at key metabolite nodes in the

central metabolic network upon perturbations, we employed the metabolic flux ratio

(METAFoR) analysis (Sauer et al. (1999); Szyperski et al. (1999)). The metabolic

flux ratio for an incoming flux(es) at node i (MFRi←) is defined as:

MFRi← =
rj,i←∑
k rk,i←

(2.12)

where rj,i← is the incoming flux(es) of node i through reaction j. MFRi→ can be

defined similarly where the outgoing flux(es) of node i(rj,i→) is represented with the

opposite arrow. Given the significant overflow metabolism in C. thermocellum, we

are interested in carbon and electron fluxes directly to ethanol as well as upstream

of ethanol synthesis. The key branch points in focus here are i) conversion of

PEP to pyruvate (→PYR) via pyruvate phosphate dikinase (PPDK), oxaloacetate
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decarboxylase (ODC), and malic enzyme (MAE), with ODC and MAE jointly

considered, ii) recycling reduced ferredoxin (Fdrd →) through the Ni-Fe energy

conserving hydrogenase (ECH), the Rnf-type NADH:Fd oxidoreductase (RNF),

the NADH-Fdrd:NADP+ oxidoreductase (NFN), and the NADH-Fdrd bifurcating

hydrogenase (BIF), iii) production of hydrogen (→H2) through ECH and BIF as well

as the Fe-Fe NADPH-dependent hydrogenase (Fe-H2), iv) consumption of pyruvate

(PYR→) through pyruvate-formate lyase (PFL), pyruvate:ferredoxin oxidoreductase

(PFOR), and lactate dehydrogenase (LDH), and v) acetyl-CoA flux (ACoA→) to

alcohol dehydrogenase (AdhE), phosphotransacetylase (PTA), and citrate synthase

(TCA1) for ethanol, acetate, and cell mass production, respectively.

2.3.4 Flux Balance Analysis

Flux Balance Analysis is a commonly used computational tool using stoichiometric

and thermodynamic constraints to optimize a cellular objective, such as maximum

cell growth (Varma and Palsson, 1994). FBA was calculated for iAT601 using the

COBRA (Schellenberger et al., 2011) and RAVEN (Agren et al., 2013) toolboxes

within the MATLAB environment (MathWorks, Natick, MA). The algorithm param-

eters were set to remove any Type III (internal) loops (Price et al., 2002a) within

the solution to Equation 1.5. Changes in media recipe were implemented as bounds

on nitrogen and sulfur sources. For MTC media (Holwerda et al., 2012), urea and

ammonia were available as nitrogen source, while sulfate and cysteine were available

as sulfur source. Cysteine uptake was bound at 0.5 mmol/gDCW/hr while all other

species were unbound. For Low-carbon (LC) media (Holwerda et al., 2012), cysteine

was the sole sulfur source while ammonia was the sole nitrogen source.
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2.3.5 Flux Sum Analysis

Cofactor turnover was calculated using Flux-Sum Analysis (FSA) [90]. For any FBA

solution, the flux-sum i, or turnover rate, of metabolite i can be represented by

Φi = 0.5
∑
j

|si,j · vj| (2.13)

for reactions j in which the metabolite participates.

2.3.6 Calculation of ATP Costs

To tune the ATP growth-associated maintenance requirement we performed a

series of optimizations to fit experimental data from cellobiose-grown batch cul-

tures. Initially, non-growth associated maintenance (NGAM) was set at 3.27 mmol

ATP/gDCW/hr (Zhang and Lynd, 2005a), growth associated maintenance (GAM)

was varied between 1 and 50 mmol ATP/gDCW/hr (Milne et al., 2011), and the

cellulosome ATP requirement for synthesis was identical to the protein term of the

biomass reaction (43.28 mmol ATP/g Protein/hr, Thompson et al. (2015)).

To tune the ATP cost of cellulosome synthesis, the coefficient for ATP in the

cellulosome synthesis reaction was varied from 40 mmol ATP / g cellulosome /

hr (equivalent to the lumped protein synthesis reaction) to 100 mmol ATP / g

cellulosome / hr while optimizing for maximal growth and maintaining experimental

constraints, similar to above. Tuning these additional ATP requirements allowed

finding the best fit to experimentally observed growth rate. All subsequent

simulations used these parameters (See Chapter 5).

2.3.7 Sampling of Flux Distributions

Investigation of the difference in ethanol production between culture conditions was

performed by constraining ethanol and acetate production as a function of cell growth.

In order to implement these constraints, we used a series of flux ratios. First, to
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constrain the sum of ethanol and acetate yields, we calculated the following flux ratio

YE/G + YA/G = −2.9µ+ 1.9 (2.14)

rE + rA = (−2.9µ+ 1.9) ∗ rGluEq (2.15)

where the slope and intercept were obtained from the linear relationship in Fig-

ure 5.5A. Second, to constrain the ethanol to acetate (E:A) ratio, we similarly

calculated the following flux ratio

rE/rA = m ∗ µ + b (2.16)

where the slopes and intercepts for cellobiose and cellulose were obtained from the

relationships in Figure 5.5B. Since the experimental data displayed some variance in

this parameter, we wanted to ensure a complete representation of cell phenotypes.

To accomplish this, we introduced approximately 20% noise into our constraint by

randomly varying the slope and intercept.

Given the variability in reported E:A ratios, we chose to sample the phenotypic

space of cellobiose and cellulose cultures given the constraints above in order to

minimize bias between flux distributions. To perform the sampling, we first randomly

generated 100 normally distributed values of between 0 and 0.3 (hr−1) as well as 100

values for the glucose uptake rate between 5.5 and 7.5 mmol Glu Eq / g DCW / hr, the

range seen across multiple datasets (See Chapter 5. For each growth rate and glucose

uptake rate, the sum of ethanol and acetate yields and E:A ratio were calculated

using Equations 2.14 and 2.16. All other fermentation products were unconstrained.

The uniform sampling was performed using optGpSampler (Megchelenbrink et al.,

2014) with a step size of 1000 for each randomly set growth rate. Retaining 1000

flux distributions at each growth rate gave a set of 100,000 flux distributions for

comparison between cellobiose and cellulose simulations. Increasing the sample size

to 500,000 did not significantly effect the results.
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Chapter 3

Enhancing Fatty Acid Ethyl Ester

Production in Saccharomyces

cerevisiae through Metabolic

Engineering and Medium

Optimization

Summary

This chapter investigates the production of fatty-acid ethyl esters (FAEEs) in S.

cerevisiae from glucose. The work combines rational metabolic engineering with

culture optimization to enhance the production of FAEEs. Using exogenous fatty-acid

feeding, the bottleneck in FAEE production was highlighted as a shortcoming in fatty

acid synthesis which was assessed in a fed-batch manner to increase FAEE production.

This work was published in Biotechnology and Bioengineering (Thompson and Trinh,

2014).

42



3.1 Introduction

Sustainable energy independence is a defining challenge of our time, and the

production of transportation fuels from renewable resources is a promising con-

tribution towards a solution. Biodiesels are an attractive target class of drop-in

liquid transportation biofuels due to their physiochemical properties being similar to

petrodiesels and their compatibility with existing infrastructure. Current commercial

strategies for biodiesel production use plant-based oils which are converted to fatty

acid methyl esters (FAMEs) via chemical trans-esterification (Fukuda et al., 2001),

although the raw materials needed for this process are not suited for the current scale

of our energy usage. An alternative promising strategy has been explored to produce

fatty acid ethyl esters (FAEEs) within engineered microorganisms (Kalscheuer et al.,

2007). Even though FAMEs and FAEEs are similar in their chemical and physical

properties (Röttig et al., 2010), ethanol is more readily produced than methanol from

low-cost lignocellulosic biomass feedstocks in a variety of industrial microorganisms,

including Saccharomyces cerevisiae (Tsai et al., 2009). Thus, FAEEs are seen as an

ideal biofuel target for synthesis directly from lignocellulosic, biomass-derived sugars

(Figure 3.1).

It has been shown that expression of a bacterial acyl-transferase in E. coli (Kalscheuer

et al., 2006; Steen et al., 2010) and S. cerevisiae (Kalscheuer et al., 2004; Yu et al.,

2012) can lead to FAEEs production from the condensation of fatty acyl-CoAs and

ethanol (Step 11, Figure 3.1). FAEE biosynthesis in S. cerevisiae takes place in the

cytosol. The endogenous ethanol production pathway in S. cerevisiae is highly active,

easily providing the high level of cytosolic ethanol needed for FAEEs biosynthesis,

which has been reported as optimal at an ethanol concentration of 3% (Fan et al.,

2013). To synthesize cytosolic acyl-CoAs, fatty acids are first synthesized de novo

in the cytosol of S. cerevisiae from acetyl-CoA subunits by acetyl-CoA carboxylase

(acc1 ) and the fatty acid synthesis (FAS) complex consisting of fas1 /fas2 (Step 8,

Figure 3.1). Endogenously synthesized fatty acids are released as acyl-CoAs, the
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Figure 3.1: Overview of S. cerevisiae pathways towards FAEE production from
sugars. The pathway of interest is outlined in green with competing pathways
shown in black. Enzyme targets for metabolic engineering are accentuated with
appropriate symbols. Enzyme and pathway names: (1) glycolysis/pentose phosphate
pathway, (2) mitochondrial pyruvate carrier, (3) pyruvate dehydrogenase, (4)
pyruvate decarboxylase, (5) alcohol dehydrogenase, (6) aldehyde dehydrogenase/
acetyl-CoA synthase, (7) fatty acid synthesis (FAS) complex, (8) peroxisomal acyl-
CoA transporter, (9) lipid synthesis pathways, (10) protein acylation pathways, and
(11) alcohol acyltransferase.

precursors for FAEEs biosynthesis (Tehlivets et al., 2007). Since the total lipid

content of S. cerevisiae is mostly comprised of C16 and C18 fatty acids under normal

growth conditions (Trotter, 2001), these fatty acyl-CoAs are suitable for biodiesel

production (Westfall and Gardner, 2011). Thus, S. cerevisiae is a promising candidate

for metabolic engineering to enhance FAEEs production from lignocellulosic biomass-

derived fermentable sugars.

Recently, several strategies have been reported for metabolically engineering S.

cerevisiae for enhanced FAEE production. One strategy was to manipulate the fatty

acid biosynthesis pathway by overexpressing or otherwise altering the regulation of

acc1 and FAS proteins (Runguphan and Keasling, 2014; Shi et al., 2012). With this

strategy, the highest titer of FAEEs produced directly from glucose were reported to
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be about 5.4 mg/L. The other strategy aimed at eliminating the competing fatty

acid pathways such as degradation through -oxidation or storage in the form of

triacylglycerides (TAGs) or sterol esters (SEs) (Runguphan and Keasling, 2014; Valle-

Rodrguez et al., 2014), with the highest titer reaching about 17 mg/L.

In this study, combined strategies were used to increase cytosolic acyl-CoA pools

available for FAEEs biosynthesis by disrupting the acyl-CoA transport to the β-

oxidation pathway and TAG biosynthesis. Next, nitrogen limited culture conditions

were employed to push carbon towards fatty acyl-CoAs production. Codon optimized

acyltransferase genes were also designed to pull the acyl-CoAs towards FAEEs

biosynthesis. Taken altogether, the rate liming step that can be overcome to enhance

FAEEs production in S. cerevisiae has been clarified.

3.2 Results and Discussion

3.2.1 Metabolic engineering of S. cerevisiae to increase

cytosolic acyl-CoA concentration

The inherent nature of S. cerevisiae to produce large quantities of ethanol directed

our metabolic engineering strategy towards increasing the availability of the other

substrate in FAEEs synthesis, acyl-CoAs, in the cytosol by eliminating competing

acyl-CoA utilization pathways. This is in contrast to other reports which aim

to increase acyl-CoA concentration by overexpressing genes involved in fatty acid

synthesis (Runguphan and Keasling, 2014; Shi et al., 2012). Our strategies include

i Disrupting the transportation of acyl-CoAs into the peroxisome to eliminate β-

oxidation (Step 8, Figure 3.1), and

ii Deleting the acyl-CoA binding protein that shuttles acyl-CoAs for TAG or

lipoprotein biosynthesis (Steps 9 and 10, Figure 3.1).
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Effect of disrupting acyl-CoAs transportation into the peroxisome on

FAEEs production

Abundantly available cytosolic acyl-CoAs are transported into the peroxisome for

degradation. The import is accomplished by a heterodimer encoded by the genes pxa1

and pxa2 with the help of an acyl-CoA synthase encoded by faa2, and β-oxidation

can be essentially halted in strains with mutations in faa2 and either of the pxa

genes (van Roermund et al., 2012). Therefore, to enhance the cytosolic acyl-CoAs,

faa2 and pxa2 were sequentially deleted.

We characterized the wildtype (ScAT2200), faa2 mutant (ScAT2203), pxa2

mutant (ScAT2204), and faa2 /pxa2 double mutant (ScAT2208) carrying pAT01y

in batch shake flasks for FAEE production (Figure ??). After 48 hours, the wildtype

ScAT2200 produced 1.4±0.2 mg/L FAEEs while the single mutants ScAT2203

and ScAT2204 produced 1.8±0.1 mg/L FAEEs (33% improvement) and 1.9±0.1

mg/L FAEEs (35% improvement), respectively. Double mutant ScAT2208 slightly

outperformed the single mutants with 51% improvement compared to the wildtype.

Our strategy to disrupt acyl-CoA transportation into the peroxisome and hence

the β-oxidation is successful in enhancing the FAEEs production. This strategy is

different from the previous reports which remove β-oxidation activity from the cells

by deleting the peroxisomally located acyl-CoA oxidase gene pox1 (Hiltunen et al.,

2003; Runguphan and Keasling, 2014; Valle-Rodrguez et al., 2014).

Effect of disrupting acyl-CoA binding protein on FAEE production

Within all studied eukaryotes there is an acyl-CoA binding protein located in the

cytosol which shuttles newly synthesized or exogenously sourced acyl-CoA molecules

to downstream processes such as triacylglyceride synthesis or β-oxidation (Black

and DiRusso, 2007). To enhance the cytosolic acyl-CoAs, we deleted the gene acb1

encoding for the acyl-CoA binding protein in the single mutant ScAT2205. Strain

characterization in batch shake flasks shows that ScAT2205 produced 2.1±0.1 mg/L
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Figure 3.2: FAEE titer after 48 hours for strains ScAT2200, ScAT2203, ScAT2204,
ScAT2205, ScAT2208, and ScAT2209 (from left to right). All strains contain pAT01y
which constitutively expresses the acyl-transferase atfA from Acinetobacter sp. ADP1
and were grown under normal (non-nitrogen limiting) conditions.

FAEEs, about 48% improvement in comparison with the wildtype (Figure 3.2). This

strain had similar performance as the double mutant ScAT2208.

Our strategy to delete acb1 for enhanced FAEEs production is consistent with

the observed phenotype of acb1 mutant reported in the literature. Deleting

acb1 increased transcription levels of genes related to the fatty acid biosynthesis,

such as acc1, fas1, and fas2, by roughly two folds, causing the accumulation of

vesicles (Feddersen et al., 2007). In addition, with deletion of acb1, cytosolic levels of

free acyl-CoA molecules increase up to 2.5 folds (Schjerling et al., 1996).

Synergistic effect of metabolic engineering strategies for FAEE production

The above two strategies were combined to further increase acyl-CoAs and hence

FAEEs production by constructing the triple faa2 /pxa2 /acb1 mutant ScAT2209.
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This triple mutant produced 2.9±0.1 mg/L, accounting for 2.1 folds improvement

over the wildtype under similar characterization conditions.

The increase in titers with an increase in genetic modifications is a clear indicator

of cooperative enhancement between these strategies, and that removing competitive

acyl-CoA consumption pathways is beneficial for enhanced FAEEs production. This

level of endogenous FAEEs production, although comparable to other reports, is still

lower than necessary for large scale, economically sustainable petroleum replacement.

This fact prompted us to look for alternative approaches in culture conditions.

3.2.2 Manipulating Nitrogen Limiting Conditions for En-

hanced FAEE Production

Changing the elemental balance of the culture media alone has been shown to

significantly enhance lipid accumulation in S. cerevisiae (Kamisaka et al., 2007).

Thus, we cultured our strains harboring atfA under nitrogen limiting conditions

in an attempt to drive FAEE production. There was an immediate observable

increase in the amount of FAEEs produced compared to previous culture conditions,

corresponding to an over 3.5 fold increase in each strain investigated. Further, there

was a dramatic improvement of roughly 3-fold in production in ScAT2209 over each

of the other strains tested to a final titer of 11.7±0.7 mg/L (Figure 3.3A).

Most interesting was the fact that the wild-type strain carrying a blank plasmid,

ScAT2000, was capable of producing statistically similar amounts of FAEEs to the

atfA expressing strains without all of the faa2, pxa2, and acb1 gene disruptions. This

implies there is a synergistic effect of the two strategies we implemented for FAEE

production under nitrogen limiting growth conditions. These results also indicate

the presence of an endogenous method for producing FAEEs under nitrogen limiting

conditions, which is not seen in previous reports that did not grow the yeast under

nitrogen limitation.
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Figure 3.3: (A) Characterization of strains ScAT2000, ScAT2200, ScAT2205,
ScAT2208, and ScAT2209 (from left to right) harboring a blank control plasmid
or pAT01y cultured under nitrogen limiting conditions for FAEEs production after
48 hours. (B) Comparison of FAEE titers between strains expressing atfA or codon
optimized genes atfA* or MhATF1 * for both the wild-type background (BY4741)
and the triple mutant background (ScAT1031) under nitrogen limiting conditions.

One possible explanation for this phenotype is the activity of the esterases encoded

by eeb1 and eht1, which have been known to synthesize medium chain length (C6-

C10) FAEEs (Saerens et al., 2006). It is possible that the expression of these enzymes

is enhanced during nitrogen limiting growth conditions, and this hypothesis is further

strengthened when examining the chain length distribution of the products under

the different growth conditions. The major products observed above and in previous

studies were C16 and C18 FAEE, while these conditions led to a majority of FAEE

products to be of length C10 and C12 (Figure 3.4 A). These results prompted two

hypotheses that are explored below. First, atfA was the limiting step in FAEE

biosynthesis, as it prefers longer chain alcohol and fatty acyl-CoA molecules as

substrates (Barney et al., 2012). Second, acyl-CoAs were still limiting for FAEEs

biosynthesis despite the efforts described so far.
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3.2.3 Deploying Codon Optimized Acyl-Transferase Genes

for Enhanced FAEE Production

To investigate if atfA activity was the limiting step in FAEEs biosynthesis, S.

cerevisiae codon-optimized sequences of atfA* and MhATF1 * from Marinobacter

hydrocarbonoclasticus DSM 8798 were synthesized and incorporated into constitutive

expression plasmids controlled by the TEF promoter to create plasmids pAT27y and

pAT28y, respectively (Table 2.1). When cultured under nitrogen limiting conditions

and with a 10% dodecane overlay, the wildtype strains ScAT2211 carrying atfA*

and ScAT2212 carrying MhATF1 * produced 4.0±0.6 and 6.0±0.8 mg/L FAEEs,

respectively, after 96 hours (Figure 3.3B). Recalling a final titer of 3.8±0.3 mg/L

for ScAT2200, this leads to a slight increase from ScAT2211, harboring the codon

optimized atfA*, and a 49% increase from ScAT2212, expressing MhATF1 *. These

results are consistent with previous reports which used codon-optimized wax synthase

genes and extensive genetic disruptions without nitrogen limitation (Runguphan and

Keasling, 2014; Shi et al., 2012). They also show that the dramatic effect of culture

conditions alone on FAEE production is comparable to other metabolic engineering

strategies.

Furthermore, we combined codon-optimized genes, culture conditions, and our ge-

netic disruption strategies. The non codon-optimized triple mutant strain ScAT2209

produced a final FAEE titer of 11.7±0.7 mg/L, where ScAT2215 and ScAT2216

produced 12.4±1.0 and 13.9±0.5 mg/L, respectively (Figure 3.3B). This shows

expression of MhATF1 * in ScAT2216 gives an 18% increase in the top producing

strain compared to ScAT2209, and a 2.4-fold improvement over the top producing

strain with a wild-type background, ScAT2212. Taken all together, acyltransferases

were limiting and FAEEs production can be significantly improved when codon-

optimized genes atfA* and MhATF1 * were implemented together with genetic

disruption strategies and optimized culture conditions.
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3.2.4 Identification of the Rate Limiting Step to Enhancing

Acyl-CoA Pools

To investigate further if fatty acyl-CoA molecules are the limiting factor in FAEEs

production, odd chain fatty acid (pentadecanoic acid) was added to the culture as

a traceable marker for FAEEs (ethyl pentadecanoate) biosynthesis. The free fatty

acid should be taken up in conjunction with glucose and converted to acyl-CoA

upon entering the intracellular environment (Black and DiRusso, 2007). This should

provide a steady stream of substrate for FAEEs production. In fact, we observe a

steady increase in C15-FAEE over time in ScAT2216 (Figure 3.4A) with a maximum

titer of 3.6±0.6 mg/L of C15 FAEE in ScAT2216. This corresponds to about 22%

of total FAEE produced by ScAT2216. Interestingly, the percent composition of the

various FAEE species changes compared to the studies without fatty acid addition

(Figure 3.4B).

There is a clear decrease in medium chain length FAEEs, which can be explained

by down-regulation of fatty acid synthesis complex proteins due to the addition

of exogenous fatty acids (Chirala, 1992). However, the increase in C16- and

C18-FAEEs compared to nitrogen limiting conditions without exogenous fatty acid

supplementation cannot be fully explained in this manner. The addition of fatty acids

into the media may be causing regulatory action by the cells so they increase the

turnover of TAG lipid storage. The production of C15-FAEE under these conditions

does not halt over time and gives further evidence to the hypothesis that acyl-CoA

molecules are limiting in FAEEs biosynthesis. It is also worth noting that C15-

FAEE is the only odd chain molecule we observe, giving additional confidence in our

genotypes inability to degrade fatty acids via β-oxidation. This result indicates not

only acyl transferase was limiting but also acyl-CoAs, hindering FAEE production.
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Figure 3.4: (A) Characterization of the strain ScAT2216 constitutively expressing
MhATF1 * for FAEEs production in nitrogen limiting cultures with the addition
of 0.1% pentadecanoic acid. (B) FAEE titers from fed-batch cultures of strain
ScAT2216, constitutively expressing MhATF1 *. Additional glucose and salts were
added after 24 hours, indicated by an arrow, as described in Section 2.1.3. FAEE
composition is indicated by the legend.

3.2.5 Increasing FAEE Production Under Fed-Batch Condi-

tions

FAEE production in each of the studies above sharply increased in the first 48 hours

of culture, but only slightly climbed for the remainder of culture time. Time-course

data of cell growth shows that all glucose was consumed by the cells after 24 hours

(Figure 3.5). These data indicate that acyl-CoAs are being generated directly from

glucose as opposed to fatty acid recycling pathways. Therefore, to further increase

FAEE production, we employed a fed batch culture strategy. For our study we

replenished glucose and minimal ammonium after 24 hours to reach a total C:N

ratio of 100:1 (see Section 2.1.3). In ScAT2216, the titer was increased more than

twice to a maximum titer of 25.4±0.4 mg/L FAEEs (Figure 3.4B). These results

culminate an increase of over 17 fold in endogenous FAEE production from our initial
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Figure 3.5: Glucose consumption (X), ethanol production (diamonds), and cell
growth (+) for the wild-type ScAT2200 (black) and the triple mutant ScAT2209
(yellow) cultured in Nitrogen limited conditions.

characterizations, as well as a roughly 40% increase in titer compared to the highest

previously reported results (Valle-Rodrguez et al., 2014).

3.3 Conclusion

In this chapter, it is shown that a genetic disruption strategy aimed at diminishing

various acyl-CoA consumption pathways is sufficient to increase FAEEs production

compared to the wild-type in S. cerevisiae expressing a bacterial acyl-transferase.

Further, we have demonstrated that our metabolic engineering strategies can be

enhanced dramatically by altering culture conditions, reaching a maximum titer

of over 25 mg/L FAEEs, a 40% improvement over previous reports, and a 17 fold

improvement over our initial strain characterization. Very recently, it was reported

that elimination of oxidation and TAG synthesis can lead to an increase in FAEEs

production to comparable levels of about 17 mg/L (Valle-Rodrguez et al., 2014). This
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strategy, if combined with our strategy of acb1 elimination, should further increase

FAEEs production.

Looking forward, we can immediately see ways to further improve FAEEs titer. In

all of our studies, ethanol is produced at a high yield ( 0.49±0.02 g/g glucose). This

carbon flux away from fatty acid production is clearly detrimental to FAEE yield, and

so a balance must be reached between ethanol and acyl-CoA flux to optimize FAEE

production. This level of metabolic engineering in S. cerevisiae will not be trivial but

it is arguably necessary to reach levels seen in other production systems (Zhang et al.,

2012). We expect that altering transcription of acyltransferase genes by manipulating

promoter strength (Blazeck et al., 2012) can be instrumental in this effort.

It is also known that atfA can catalyze the synthesis of triacylglycerides (TAGs)

from a diacylglyceride and an acyl-CoA molecule (Stoveken et al., 2005) and

recently has been shown to lead to an overproduction of TAGs in E. coli (Janßen

and Steinbüchel, 2014). This adds additional complications for optimizing FAEEs

production and implies that yield of FAEEs can be diminished by side reactions of

the acyltransferase. These reports lead to questions regarding the applicability of

protein engineering in this case to facilitate higher production of the desired target.

Significant efforts are being made to understand the critical domains (Villa et al.,

2013) and residues (Barney et al., 2013) for this class of enzyme, and so engineered

acyltransferases are to be implemented soon.
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Chapter 4

Elucidating Central Metabolic

Redox Obstacles Hindering

Ethanol Production in Clostridium

thermocellum

Summary

In this chapter, a predictive stoichiometric metabolic model for C. thermocellum

is presented which incorporates the current state of understanding. Particular

attention is paid to cofactor specificity in the atypical glycolytic enzymes and the

complex energy, redox, and fermentative pathways with the goal of aiding metabolic

engineering efforts. We validated the model’s capability to encompass experimentally

observed phenotypes for the parent strain and derived mutants designed for significant

perturbation of redox and energy pathways. Metabolic flux distributions revealed

significant alterations in key metabolic branch points (e.g., phosphoenolpyruvate,

pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling

electron and carbon fluxes for enhanced ethanol synthesis, with the best performing
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strain doubling ethanol yield and titer compared to the parent strain. In silico

predictions of a redox-imbalanced genotype incapable of growth were confirmed in

vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the

central metabolism that hinder efficient ethanol production. The results highlight

the robustness of the redox metabolism of C. thermocellum and the necessity of

streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol

production. The model was further used to design a metabolic engineering strategy

to phenotypically constrain C. thermocellum to achieve high ethanol yields while

requiring minimal genetic manipulations. The model can be applied to design

C. thermocellum as a platform microbe for consolidated bioprocessing to produce

ethanol and other reduced metabolites. This work was published in Metabolic

Engineering (Thompson et al., 2015)

4.1 Introduction

Sustainable energy production is a defining challenge for modern society, and

achieving this goal will depend on the ability to produce fuels and chemicals from

renewable sources. Consolidated bioprocessing (CBP) (Demain, 2009) has the appeal

of combining the steps of hydrolytic enzyme production, feedstock solubilization, and

fermentation of multiple sugars into a single step (van Zyl et al., 2007), with the goal

of maximizing cost-efficiency of lignocellulose conversion (Lynd et al., 2008).

C. thermocellum is an anaerobic, thermophilic, gram-positive bacterium which

has been considered for CBP due to its strong capability to ferment lignocellulosic

feedstocks quickly while producing ethanol and hydrogen (Lynd et al. (2005);

Ragauskas et al. (2014)). However, wild-type C. thermocellum produces a wide range

of fermentative products (e.g. acetate, formate, lactate) as well as amino acids, which

limits the yield of ethanol (Ellis et al., 2012). Also, the wild-type cannot grow at

the high concentrations of ethanol that are industrially necessary without extensive

directed evolution (Herrero and Gomez (1980); Brown et al. (2011); Shao et al.
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(2011)). Progress in engineering C. thermocellum for increased ethanol production

has been made in several ways: isolating a high ethanol-tolerant mutant via adaptive

evolution (Williams et al., 2007), elimination of competing carbon fermentative

pathways (e.g., acetate (Tripathi et al., 2010), lactate (Biswas et al., 2014), and both

lactate and acetate (van der Veen et al., 2013) with directed evolution), expressing

an exogenous pyruvate kinase from Thermoanaerobater saccharolyticum and deleting

malic enzyme (Deng et al., 2013), as well as eliminating a major competitor for

electrons, H2 production (Biswas et al., 2015). None of these strategies, however,

has been successful in reaching the goal of 90% conversion of fermentable sugars

to ethanol as seen in non-cellulolytic mesophilic organisms such as Saccharomyces

cerevisiae (Kuyper et al., 2005) and Escherichia coli (Trinh et al. (2008); Yomano

et al. (1998)).

An important obstacle to metabolic engineering of C. thermocellum for enhanced

biofuel production is an incomplete knowledge of its metabolism. Recent studies

suggest that C. thermocellum possesses an atypical central metabolism. For instance,

the glycolysis does not have an annotated pyruvate kinase (Deng et al., 2013).

Fructose-6-phosphate kinase uses pyrophosphate (PPi) instead of ATP, and GTP

can substitute for ATP in several reactions which might have important implications

for metabolism (Zhou et al., 2013). The pentose phosphate pathway lacks several

enzymes in the oxidative branch which implies the need for alternative pathways for

NADPH synthesis (Rydzak et al., 2012). The Krebs cycle is also incomplete with the

lack of succinate dehydrogenase (Roberts et al., 2010). In addition, C. thermocellum

has many transhydrogenase reactions involving ferredoxin, NADH, and / or NADPH.

In this work, the current understanding of C. thermocellum metabolism was

consolidated into a predictive metabolic network model used for metabolic flux

quantification and rational strain design. We characterized engineered C. thermo-

cellum strains designed and constructed with significant perturbations of energy and

redox pathways to validate the model. Redox perturbation involved partial and full

disruption of H2 production while energy perturbation disrupted acetate production.
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Their unique phenotypes were analyzed by quantitative metabolic flux distributions.

Next, we used the model to elucidate the key bottleneck in the redox metabolism of C.

thermocellum hindering high-yield ethanol production. Finally, the validated model

was used as an input for elementary mode analysis (Trinh et al., 2009) to design an

optimal genotype for efficient ethanol production in C. thermocellum.

4.2 Results

4.2.1 Quantitative analysis of cellular phenotypic states

First characterized was the C. thermocellum strain DSM 1313 ∆hpt (henceforth

denoted “parent strain). Similar to literature reports, the parent strain produced a

mixture of fermentative products and amino acids (with valine as the most dominant)

(Figure 4.1A) with a good carbon recovery (Figure 4.1B, Table 4.1). Due to the

mixed fermentation, the ethanol yield (0.16± 0.01 g ethanol g−1 cellobiose) was low,

as expected.

From the time-dependent concentration data, we extracted experimental fluxes

for measured metabolites (Table 4.1), and calculated the metabolic flux distribution

of the parent strain. Linear regression between the experimental and calculated

fluxes gave an excellent fit (R2 = 0.96, Figure 4.2), indicating that the calculated

flux distribution vector is a reasonable assessment of the central metabolism of

C. thermocellum. In the subsequent sections, flux distributions of various C.

thermocellum strains were calculated for quantitative analysis of their cellular

physiological states, and were used to identify reaction bottlenecks hindering efficient

ethanol production. For an in depth summary of the construction of the core

metabolic model, see Section 2.2.1.

We used METAFoR analysis to examine the resulting flux distribution at key

nodes more closely. Flux from pyruvate is determined directly by monitoring

formate and lactate production. Additionally, the fate of acetyl-CoA in our model is
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Figure 4.1: (A) A concentration profile for the major metabolic end-products of the
parent strain in a representative batch fermentation. (B) A representative carbon-
balance applied throughout a parent strain batch fermentation. “Removed” indicates
carbon removed during sampling while “other” consists of trace amino acids, mostly
alanine and isoleucine. Abbreviations: CDW, cell dried weight; CB, cellobiose; LAC,
lactate; FOR, formate; ACE, acetate; ETOH, ethanol; CO2, carbon dioxide; H2,
hydrogen; and VAL, valine

determined by fermentation products and cell mass. However, the flux to pyruvate

from PEP and flux through the redox pathways are only constrained by H2 production

which might not be effectively constrained and require additional experimental

evidence (e.g., enzyme activities and proteomics). The best fit of experimental fluxes

onto the EM space predicts that over 99% of flux to pyruvate proceeds through

ODC and MAE combined, with the small remainder proceeding through PPDK

(Figure 4.3B). One-at-a-time sensitivity (OATS) analysis shows no effect when the

malate shunt is deleted (Table 4.2), but this calculated flux distribution is consistent

with high enzymatic activity in crude cell extracts (Zhou et al., 2013).

For H2 flux, the best fit predicts over 90% proceeds through the ECH hydrogenase.

This observation makes sense because, under high gas flow rate that was used in
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Figure 4.2: Comparison between the experimental and calculated fluxes for the
parent strain (A), ∆hydG strain (B), ∆hydG∆ech strain (C), and ∆hydG∆pta
strain (D).

the experiments, the soluble H2 was low and hence ECH was probably the major

hydrogenase used in a thermodynamically favorable reaction. Since the network has

many local redundancies around H2 to allow for meaningful stoichiometric analysis

for the parent strain, we also performed the OATS analysis to investigate the network

structure’s ability to give equivalent solutions. The results show that individual

deletions of ECH, RNF, NFN, Fe-H2, or BIF have no effect on the error of the

experimental data fitting (Table 4.2). This suggests that for the wildtype the
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Figure 4.3: (A) Experimental yields of major fermentative products on cellobiose for
different genotypes. (B) Fraction of contribution of fluxes through specific metabolic
nodes via METAFoR analysis for different genotypes. The groups are based on
the metabolic nodes to which they contribute (Methods). Abbreviations: M+O,
malic enzyme and oxaloacetate decarboxylase are collectively considered; PPDK,
pyruvate phosphate dikinase; ECH, Ni-Fe Ech-type hydrogenase; RNF, NADH:Fd
oxidoreductase; NFN, NADH-Fdrd:NADP+ oxidoreductase. BIF, bifurcating
hydrogenase; Fe-H2, NADPH dependent Fe-Fe hydrogenase; PFL, pyruvate formate
lyase; PFOR, Pyruvate:Fd oxidoreductase; LDH, lactate dehydrogenase; TCA, citrate
synthase (towards cell mass); PTA, acetate synthesis; and ADHE, ethanol synthesis.
In both panels, student t-test significance compared to the parent strain is reported
by asterisks, i.e., * for p-value < 0.01, and ** for p-value < 0.05
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Table 4.1: Experimentally determined growth rates, metabolic fluxes, and yields per
cellobiose for selected fermentative products for the parent, ∆hydG, ∆hydG ∆ech, and
∆hydG ∆pta-ack strains. Experimental data were obtained through pH controlled
bioreactors. n.d. − Not detected

Fermentation parameters Parent ∆hydG ∆hydG ∆ech ∆hydG ∆pta

µ (hr−1) 0.33±0.01 0.24±0.02 0.22±0.02 0.16±0.02
Ethanol yield (g g−1) 0.16±0.01 0.19±0.01 0.32±0.04 0.25±0.01
Ethanol titer (g L−1) 0.63±0.03 0.79±0.01 1.27±0.05 1.01±0.07
% Carbon Recovery 90.5±1.6 79.3±1.6 89.9±9.2 83.5±4.1

Experimental flux (mmol g−1 DCW hr−1)
rCBup 3.58±0.16 3.43±0.25 3.33±0.62 2.42±0.05
rETH 4.19±0.10 4.96±0.24 7.95±1.37 4.65±0.25
rACE 2.63±0.86 2.24±0.57 0.67±0.17 0.53±0.21
rCO2 6.82±0.01 7.25±0.11 6.80±1.01 5.29±0.50
rFOR 1.77±0.01 1.22±0.60 3.01±0.56 0.74±0.06

rH2 7.86±0.38 9.11±0.84 0.58±0.06 3.17±0.84
rV AL 0.78±0.12 0.35±0.01 0.31±0.01 0.55±0.07
rLAC 0.18±0.01 n.d. 0.05±0.01 0.03±0.01

redundancies in the redox pathway can compensate for individual gene deletions,

and that genetically perturbing the system is necessary to obtain additional insights.

4.2.2 Metabolic model illustrates robust redox metabolism

Effect of partial hydrogen deletion

We characterized previously constructed strains with disrupted H2 production in

order to elucidate the effect of redox perturbation on C. thermocellum metabolism

and ethanol production (Biswas et al., 2015). The first characterized mutant was

the ∆hydG strain containing a disruption of the maturase enzyme complex, which

inactivates the three Fe-Fe hydrogenases in C. thermocellum (Feinberg et al. (2011);

Mulder et al. (2011)) (Figure 2.1). This strain also acquired a spontaneous mutation

in the bifunctional alcohol/aldehyde dehydrogenase adhE, which allowed it to not

only utilize NADH as an electron donor for acetaldehyde reduction to ethanol, but

also NADPH (Biswas et al., 2015). Deletion of hydG caused a 40% drop in the
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Table 4.2: One-at-a-time sensitivity (OATS) analysis for select reactions. “n/a”
designates reactions which were removed prior to sensitivity analysis due to genotype.

% Change in fitting error upon reaction removal

Nodes of interest Reactions Parent ∆hydG ∆hydG ∆ech ∆hydG ∆pta

→PYR MAE+ODC 0 0 0 0
PPDK 0 0 0 0

PYR→ PFOR 228 163 583 288
PFL 28 4 245 10

Electrons→

ECH 0 170 n/a 113
Fe-H2 0 n/a n/a n/a

BIF 0 n/a n/a n/a
RNF 0 0 32 0
NFN 0 0 0 0

Products→

Cell Growth 16 11 31 13
ETOHout 114 71 764 246

ACEout 286 176 226 123
CO2out 309 221 717 374
FORout 28 4 245 10

H2out 267 170 n/a 113

specific growth rate compared to the parent strain, and a lower yield of cell mass on

cellobiose (Table 4.1). While the cellobiose uptake flux was minimally affected, the

ethanol flux and yield on cellobiose increased 18% and 24%, respectively, and this

slight increase in ethanol production was accompanied by a corresponding drop in

acetate production (Figure 4.3), presumably due to greater electron availability for

ethanol synthesis while lowering the acetyl-CoA pool used for acetate production.

Most interestingly, H2 yield increased ∼17% compared to the parent strain

(Figure 4.3A), which resulted in a very limited increase in ethanol production. This

phenotype was unexpected and conflicts with previous reports of serum bottle cultures

of the ∆hydG strain having a significant drop in H2 yield (Biswas et al., 2015).

This discrepancy can be explained by culture conditions, as we used a venting
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mechanism to measure gas concentrations in real-time and controlled pH, which

prevents accumulation of H2 and likely increases flux through the ECH hydrogenase.

To gain insights into the redox metabolism of C. thermocellum, we examined the

flux distributions of the ∆hydG strain, which matched well with the experimental

data (R2 = 0.99, Figure 4.4). A parametric plot of normalized flux distributions with

respect to the cellobiose uptake fluxes shows no significant difference between the

parent and ∆hydG strains (R2 = 0.98, Figure 4.4A). Outliers of this plot demonstrate

the discrepancies of fluxes between the parent strain and the mutants. The only

significant outlier was the NADPH-dependent AdhE* reaction, which is known not

to be active in the parent strain (Lamed and Zeikus, 1980). Additionally, METAFoR

analysis suggests that the malate shunt was still the major pathway to channel

the carbon flux from PEP to pyruvate, and the fate of acetyl-CoA was minimally

affected by the deletion of hydG (Figure 4.3B). METAFoR analysis also shows that H2

production can be compensated by the major ECH hydrogenase activity for effective

electron shuttling in the absence of HydG-related enzyme activity. OATS analysis

shows that removal of ECH from the ∆hydG network leads to a dramatic 170% change

in error (Table 4.2).

Effect of complete deletion of hydrogen production

To characterize a dramatic push of electron flux towards enhanced ethanol production,

we investigated the dual deletion ∆hydG ∆ech strain. The results show this mutant

produced little H2 and enhanced ethanol yield by 2.1 fold, while having similar growth

characteristics as the ∆hydG strain (Table 4.1). Similar to the phenotype of the

∆hydG strain, the increase in ethanol production of the ∆hydG ∆ech strain was

accompanied by decreased acetate production. However, one striking phenotype was

that the formate yield, not the lactate yield, increased two-fold (Figure 4.3A).

To elucidate how the ∆hydG ∆ech strain changed its metabolism to balance redox

reactions, we calculated and analyzed the metabolic flux distribution (Supplementary

Table S2). The distribution matched well with the experimental data (R2 = 0.99).
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Figure 4.4: Parametric plots of flux distributions between (A) the parent and
∆hydG strains, (B) the parent and ∆hydG ∆ech strains, and (C) the parent and
∆hydG ∆pta strains. Reaction outliers are labeled as (1) NAPDH-dependent adhE*
activity, (2) RNF, (3) ethanol export, (4) PFL, (5) acetate export, (6) ECH, (7)
hydrogen export, and (8) NFN

Figure 4.4B shows the significant discrepancies between the parent and the ∆hydG

∆ech strain (R2 = 0.82). The outliers in this plot can be classified into two distinct

groups, one associated with both carbon and electron fluxes (i.e., NADPH-dependent

AdhE*, total ethanol production, PTA, and PFL) and the other associated with only

electron fluxes (i.e., RNF, NFN, ECH, and total H2 production). METAFoR analysis

on the flux distribution of the ∆hydG ∆ech strain further revealed the dramatic

restructuring of redox metabolism. The calculated share of Fdrd through the RNF

reaction increased four-fold compared to the parent strain, whereas the flux through

the NFN reaction, which was practically inactive in the parent strain, increased to

account for 20% of the Fdrd recycling (Figure 4.3B). This increase in NAD(P)H

availability allowed for ethanol production to increase to 80% of the total flux through

acetyl-CoA, and was matched by a drop in acetate production. Interestingly, ethanol

yield only reached 59% of the theoretical limit when hydrogenase activities were

diminished.

In summary, the complete disruption of H2 production provided an effective means

to increase flux of reducing equivalents to ethanol. This significant perturbation might
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have caused accumulation of reducing equivalents and hence triggered a regulatory

mechanism for redox balancing where cells diverted pyruvate to acetyl-CoA through

the redox neutral PFL reaction instead of the reduced ferredoxin-generating PFOR

reaction. This undesirable loss of reducing equivalents lessened the potential ethanol

yield. The effect of this bifurcation at the pyruvate node on redox balance and ethanol

production is further investigated in Section 4.2.4.

4.2.3 Metabolic model encompasses several phenotypes

As an additional assessment of our models predictive capability, we constructed and

characterized the ∆hydG ∆pta strain which has perturbations designed to route

carbon and electrons toward ethanol production with reduced production of H2 and

acetate. The results show that the ∆hydG ∆pta strain achieved a 61% increase

in the ethanol yield (Figure 4.3A) while its growth rate decreased compared to the

parent strain and the aforementioned ∆hydG strain by 50% and 30%, respectively

(Table 4.1). This decreasing trend carried over to the cellobiose uptake rate, acetate

production rate, and H2 production rate (Table 4.1). The decreased growth rate

and cell mass yield, with respect to the parent strain, could be attributed to

the lack of ATP synthesis via substrate level phosphorylation through the pta-ack

reaction pathway. In the ∆hydG ∆pta strain, the lack of acetate production helped

increase carbon flux from the acetyl-CoA node towards ethanol production, while also

increasing flux of reducing equivalents (Figure 4.3A). The need to balance carbon and

electron fluxes to ethanol also translated to a 72% decrease in formate production,

compared to the parent strain.

Like the aforementioned mutants, the calculated flux distribution matched

experimental data well (R2 = 0.96), and when parametrically compared to the parent

strain, one can quickly see a similar pattern of outlier reactions as seen in the ∆hydG

∆ech strain (Figure 4.4C). The most prominent outliers focused again on carbon

fluxes (i.e., NADPH-dependent AdhE*, total ethanol production, and PTA) and the
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electron fluxes (e.g., RNF, NFN, ECH, and total H2 production). To elaborate on this

point, METAFoR analysis (Figure 4.3B) shows how the ∆hydG ∆pta strain recycled

Fdrd equivalently through the ECH and RNF reactions, as opposed to the parent

strain predominately utilizing ECH. Furthermore, the NFN flux increased to about

14% of the total reduced ferredoxin recycling in the ∆hydG ∆pta strain. The increase

in RNF and NFN fluxes provided the NAD(P)H necessary for ethanol production,

and as expected the share of acetyl-CoA going to ethanol production increased over

60% compared to the parent strain (Figure 4.3B).

Taken all together, the model elucidates how C. thermocellum adjusts electron and

carbon fluxes when its redox metabolism is perturbed towards ethanol production.

These results give confidence in the model structure and any further phenotypic

predictions.

4.2.4 Elucidating redox bottlenecks hindering ethanol pro-

duction

While the energy and redox perturbations enhanced ethanol flux, the ethanol yield

was still low, only reaching 60% of the theoretical limit. This result indicates that

the capacity for ethanol flux might still be limiting ethanol production. Since C.

thermocellum employs multiple metabolic control valves, such as flux bifurcation at

the pyruvate node via PFL and PFOR and/or distribution of electron fluxes via

NFN, RNF, BIF, and the Fe-H2 reactions, we used EMA to simulate additional

redox-disrupted genotypes to identify key bottlenecks hindering high-yielding ethanol

production.

PFL is vital for redox balancing when hydrogenases are inactive

Relative to the parent strain, a 70% increase in the flux to formate in the ∆hydG

∆ech mutant suggests that accumulation of Fdrd results in a decrease in PFOR flux

and increase in PFL flux. The importance of formate production is also apparent in
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Figure 4.5: The 2-D phenotypic spaces of ethanol versus cell mass yields on
cellobiose for ∆hydG ∆ech ∆pfl strains without (A) and with addition of different
external electron acceptors including fumarate (B), keto-isovalerate (KIV) (C), and
sulfate (D).

the OATS analysis for the ∆hydG ∆ech network (Table 4.2). To further examine this

observation, an additional deletion of pfl in the ∆hydG ∆ech mutant would have an

effect on potential phenotypes.

In silico results, via EMA, show that the ∆hydG ∆ech ∆pfl strain had zero

EMs that supported cell growth (Figure 4.5A). To date, this strain has not been

constructed. However, hypophosphite (HPP) is a known PFL inhibitor (Rydzak

et al., 2014) and can be used to experimentally eliminate PFL activity. Therefore,

we tested this genotype experimentally by growing the ∆hydG ∆ech strain in the

presence of 6 mM HPP. While HPP had no effect on the growth of the parent strain,

we were able to confirm the models prediction of growth inhibition when HydG, ECH,
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Figure 4.6: Growth characteristics of parent strain (triangles) and ∆hydG
∆ech (circles) in MTC media (filled symbols) or MTC with the PFL inhibitor
hypophosphite (open symbols). To investigate redox bottlenecks, no additional
electron sink (A), 20 mM fumarate (B), 20 mM 2-ketoisovalerate (C), or 2 g/L
total sulfate (D) were included in the medium to probe NADH, NAD(P)H, and
Fdrd, respectively.

and PFL were inactivated (Figure 4.6A). These results suggest that without the redox

neutral relief valve of PFL, the lack of H2 production causes a redox imbalance within

the metabolism of C. thermocellum that eliminates cell growth.

Probing redox bottlenecks with external electron acceptors

To investigate if growth could be recovered when PFL is inhibited in the ∆hydG ∆ech

strain, we simulated the addition of alternative electron consumption pathways into

the model. The electron sinks were chosen to test the accumulation of the major
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electron carrying species: 1) fumarate was tested for NADH recycling due to the

presence of a fumarate reductase domain (Clo1313 3018) and a hypothetical protein

with similarity to succinate dehydrogenase (Clo1313 2640); 2) 2-keto-isovalerate

(KIV) was tested for NAD(P)H recycling due to experimental evidence of isobutanol

production in C. thermocellum (Holwerda et al., 2014); and 3) sulfate was tested

for ferredoxin recycling as at least one of the steps to sulfate reduction is ferredoxin

dependent (Feinberg et al., 2011). In silico results demonstrate that addition of any

single electron sink pathway into the ∆hydG ∆ech ∆pfl metabolic network restored

the phenotypic space to the same area and yield ranges as the parent or ∆hydG strain

(Figure 4.5). To test these phenotypes experimentally, we investigated the growth

behavior of the parent versus ∆hydG ∆ech strains in the presence of various electron

sinks, with and without inhibition of PFL by HPP.

First, the parent strain (used here as a positive control) could grow with or without

the HPP inhibition regardless of supply of external electron acceptors (Figure 4.6A),

as expected. For the ∆hydG ∆ech strain, exogenous addition of 40 mM fumarate

was unable to restore growth with PFL inhibition (Figure 4.6B). This result indicates

that i) there is not an accumulation of NADH and/or ii) the annotated fumarate

reductase was not active. It should be noted that the level of fumarate addition

was non-toxic because the parent strain and hydG ech strains grew under conditions

without HPP. Furthermore, addition of 40 mM KIV led to slight growth (Figure 4.6C)

and isobutanol production after two days. This result indicates that accumulation of

NAD(P)H could be occurring.

Interestingly, the normal levels of sulfate in MTC media (1 g L−1 Na2SO4) were not

sufficient to allow growth of ∆hydG ∆ech ∆pfl. However, addition of extra sulfate

(2 g L−1 Na2SO4 total) into the culture medium was able to bring the maximum

OD600 to levels comparable to the control (Figure 4.6D) after a lag phase. This result

suggests that reduced ferredoxin is the species most likely accumulating, causing the

lethal electron imbalance.
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Figure 4.7: The 2-D phenotypic spaces of ethanol versus cell mass yields on
cellobiose for various genotypes. The phenotypic spaces (or convex hull) are
encompassed by the areas abcd for the parent and ∆hydG strains, abefd for ∆hydG
∆ech strain, and abgd for ∆hydG ∆pta strain. Symbols within these areas are
experimental yields.

4.2.5 Design of optimal genotype for high-yielding ethanol

production

With the trained metabolic model, EMA was applied to analyze the network structure

and give insights for rational strain design (Trinh et al., 2009).

Additional modifications are necessary to constrain phenotype

To explain why the above metabolic engineering strategies were not sufficient to

achieve high-ethanol yields, we used EMA to qualitatively assess phenotypic spaces

of the parent, ∆hydG, ∆hydG ∆ech, and ∆hydG ∆pta, solely based on the metabolic

network structure. Table 4.3 summarizes the EM properties of each genotype while

Figure 4.7 compares the phenotypic spaces of the parent strain with the three mutant

strains, focusing on the 2-D projection of the ethanol versus cell mass yields on

cellobiose. This representation is commonly used to qualitatively compare which
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Table 4.3: Elementary mode analysis for various C.thermocellum strains.

Network characteristics Parent ∆hydG ∆hydG ∆ech ∆hydG ∆pta

Total EMs 5202 2258 1148 816
ETH EMs 1982 1357 807 499
BIO EMs 3858 1478 718 558

Both EMs 1143 842 470 334
Range ETH (Cmol/Cmol) 0.00-0.67 0.00-0.67 0.00-0.67 0.00-0.67
Range BIO (Cmol/Cmol) 0.00-0.39 0.00-0.39 0.00-0.33 0.00-0.25

phenotypes a metabolic network can feasibly attain given its stoichiometric structure.

By definition, the experimental phenotypes of the parent or any knock-out mutant

must fall within the phenotypic space predicted by the model unless new reactions

are added to the network; otherwise, there is at least one error present in the model

structure.

When examining the presented strains, an immediately noticeable result is the

similarity of the phenotypic spaces. The ∆hydG strain had the same space boundaries

as the parent strain (the area abcd, Figure 4.7), while the ∆hydG ∆ech strain shows

a slightly contracted space (the area abefd) with regards to the cell mass yield. Since

cellobiose and dry cell weight have equivalent oxidation states, the contracted space

can be attributed to the lack of carbon-free electron disposal in the form of hydrogen

production requiring the synthesis of reduced carbon compounds such as ethanol and

lactate to balance redox. This flux of carbon to other reduced products at low ethanol

yield limits the yield of dry cell weight. The ∆hydG ∆pta strain exhibits a truncated

boundary on the cell mass yield axis (the area abgd) which can be attributed to a lower

ATP availability for cell synthesis due to a lack of substrate-level phosphorylation by

pta-ack.

Most importantly, for each genotype, the admissible range of ethanol still stretched

from 0.00 to 0.67 (Cmol/Cmol). This indicates that there are accessible phenotypic

states for these strains that do not produce any ethanol; the existence of the undesired

EMs in these strains helps explain why they did not reach high ethanol yields
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experimentally (Table 4.3). It should be noted that each phenotypic space represents

the metabolic capabilities of each genotype at quasi steady state. Under a given

operating condition, each genotype will occupy a point within its own space, i.e.,

symbols in Figure 4.7 designate the phenotypic states of the parent strain and its

mutants under our characterized conditions.

Metabolic model predicts feasibility of high-ethanol yielding phenotype

We investigated the ability of the central metabolic model to describe a high

ethanol yielding (> 75% theoretical maximum) phenotype by performing the Minimal

Metabolic Functionality (MMF) algorithm (Trinh et al., 2008). The MMF method

constrains the phenotypic space by iteratively performing gene deletions in silico,

aiming to reduce the total number of elementary modes and the accessible range of

the desired product. When running the MMF algorithm, we opted to start with

the ∆hydG ∆ech genotype, since an increase in ethanol yield was observed in that

strain, the dual NADH/NADPH activity has been shown for ethanol synthesis, and

genetic manipulation in C. thermocellum is a bottleneck in strain design (Tripathi

et al. (2010); Mohr et al. (2013)).

Figure 4.8 presents the stepwise progress of the MMF algorithm on the number

of EMs describing the genotype, as well as the range of ethanol yields. While

simulating a ∆hydG ∆ech ∆pta-ack strain reduced the total number of elementary

modes by about half, and simulating ∆hydG ∆ech ∆pta-ack ∆ldh reduced the total

EMs by another 40%, the range of ethanol yield was not constrained (Figure 4.8).

However, simulating ∆hydG ∆ech ∆pta-ack ∆ldh ∆val out brought the ethanol yield

range to 0.50-0.67 (Cmol ETOH/Cmol CB) for non-growth associated production

and 0.50-0.62 (Cmol ETOH/Cmol CB) for growth-associated ethanol production,

while reducing the total number of EMs again by over half. This result invites the

hypothesis that central metabolism can be constrained to a high-yielding phenotypic

space with only three additional modifications. The ability to delete or overexpress

genes in C. thermocellum is a significant challenge in its own right (Guss et al. (2012);
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Figure 4.8: Application of MMF algorithm to identify the optimal genotype of
C. thermocellum for high-yield ethanol production. A) Effect of reaction deletions
on the total EMs, ethanol-producing EMs, cell mass-producing EMs, and coupled
ethanol- and cell mass-producing EMs. B) Effect of reaction deletions on minimum
and maximum yields of ethanol and cell mass on cellobiose.

Mohr et al. (2013)), and as such the construction of the optimal strain predicted here

is beyond the scope of this work.

4.3 Discussion

This chapter presented the development and validation of a predictive, stoichiometric,

central metabolic model of C. thermocellum for flux quantification to elucidate cellular

phenotypes and for rational strain design based on EMA. The model was able to

illuminate how C. thermocellum dramatically shifts its cofactor recycling processes

when exposed to significant energy and redox perturbations. In each of the mutants
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presented, a change from the parent strain central metabolism led to an increase in

ethanol production. The proposed mechanism is an increase in conversion of reduced

ferredoxin to NAD(P)H through NFN and RNF.

This study reveals the major driving force in ethanol production is a need to

balance redox metabolism, as opposed to the push of carbon flux. At the same

time, the diverse routes for regeneration of oxidized electron carriers offer many

different avenues for producing reduced products other than ethanol. For instance, in

the ∆hydG strain, the results suggest that the reduced ferredoxin positively affects

ECH flux since specific H2 production increased without a significant change in the

production of ethanol. Additionally, the ∆hydG ∆ech and ∆hydG ∆pta strains had

similar acetate yields, but the ∆hydG ∆ech strain had a 28% increase in ethanol

yield compared to the ∆hydG ∆pta strain (Figure 4.3A).

The need to balance redox metabolism as a driving force is also intuitive when

considering acetyl-CoA is made available by both PFOR and PFL reactions as well

as the fact that the sum of PFOR and PFL fluxes is not significantly altered by

genotype. This suggests AdhE* activity is not acetyl-CoA limited. The experimental

data suggests that regenerating reduced ferredoxin solely through PFOR is not

sufficient to match the rate of cellobiose uptake and glycolysis. To compensate,

pyruvate consumption is diverted from the stalling PFOR reaction towards the redox

neutral PFL reaction (Figure 4.3B), which is consistent with literature reports of

conditions with disrupted H2 synthesis (Rydzak et al. (2014); Biswas et al. (2015)).

The decrease in flux through PFOR can be attributed to rate-limitation at either i)

reduced ferredoxin recycling via NFN or RNF, or ii) the push of NAD(P)H to ethanol

synthesis (i.e. AdhE* activity).

It is worth noting the difference in H2 production in the ∆hydG strain in serum

bottles (Biswas et al., 2015) and the bioreactor studies presented here could be linked

to inhibition of ECH activity and an increase in the activities of NFN and RNF. The

calculated flux distribution for the ∆hydG ∆ech strain shows that NFN and RNF

become highly active to compensate for diminished hydrogenase activity. Therefore,
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it is feasible to propose that the higher partial pressure of H2 in serum bottle cultures

increases the availability of NAD(P)H in the ∆hydG strain. Indeed, it has been

shown that artificially increasing H2 in the culture atmosphere leads to increased

ethanol production (Rydzak et al., 2011). The hypothesis that H2 inhibition is lower

for ECH than the bifurcating hydrogenase or Fe-Fe hydrogenases could explain the

higher H2 yield in the parent strain serum bottle studies, since all hydrogenases should

be actively present. In contrast, the only way that the ∆hydG ∆ech strain can recycle

reduced ferredoxin is to produce NAD(P)H via RNF or NFN.

To further highlight the importance of redox balance, inhibiting PFL activity in

the ∆hydG ∆ech strain causes growth to cease. This phenotype was predicted by

our model and then confirmed in batch cultures. This effective genotype serves as a

promising experimental condition to probe bottlenecks in redox cofactor recycling by

use of exogenous electron sinks. We anticipated that the addition of fumarate would

serve as a NADH probe and restore redox balance through succinate production.

However, the fumarate study was inconclusive as the inability to restore growth could

be due to a lack of fumarate reductase expression, lack of a fumarate transport protein,

or an incorrect annotation of the fumarate reductase protein.

The inconclusive results from the fumarate study led to the use of KIV as a

NAD(P)H probe. This gave more promising results, as growth was slowly able to

recover, cellobiose was consumed in the process, and isobutanol was detected. The

slow growth recovery clearly shows additional reducing equivalents can be recycled

via KIV conversion to isobutanol. The slow rate of growth likely reflects a kinetic

bottleneck in the conversion of reduced ferredoxin to NAD(P)H and/or low activity

of KIV reductase, although isobutylaldehyde reduction kinetics or toxicity cannot be

ruled out.

The final electron sink, sulfate, was designed to probe the accumulation of reduced

ferredoxin. After a lag phase, growth was recovered to a rate comparable to controls

without HPP. The lag phase could be due to an adjustment in gene expression

levels for greater sulfate reduction. These results allude to reduced ferredoxin
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being the main accumulating redox cofactor, which implies that re-oxidation of

ferredoxin is a rate limiting step in the electron recycling pathway of C. thermocellum.

Future experiments overexpressing these potential bottleneck enzymes should enhance

ethanol production.

The application of the MMF method to C. thermocellum revealed that elimination

of H2 production coupled with the removal of acetate and lactate synthesis as well as

valine secretion effectively constrains the network to a high yielding ethanol phenotype

(Figure 4.8). It is worthwhile again to note that PFL is not included in this set of

reaction deletions, as the model predicts that removing H2 and formate production

does not allow cell growth. While the MMF method seeks to find all reaction

deletion sets that have the minimum size (i.e., cardinality) and exclude reactions

downstream of a linear pathway (Trinh et al., 2009), it is possible to identify other

unique sets with larger sizes by using the cMCS tool to achieve the same high yielding

ethanol phenotype (Hädicke and Klamt, 2011). Due to many possible candidate

design strains generated by the cMCS method (>5000 for our network), great care

must be taken to screen out those that are not biologically relevant. Given the

redox bottlenecks in reduced ferredoxin recycling, as previously discussed, simply

deleting the abovementioned genes will probably not immediately facilitate high

ethanol productivity. Presumably, a directed evolutionary approach to select for

faster growth or, more proactively, the intentional overexpression of NFN, RNF, and

AdhE*, will be necessary for the designed strain to overcome metabolic obstacles and

reach the desired, high ethanol yielding phenotype.

In summary, this study accents the hypothesis that constricting electron flux

contributes more than carbon redirection to ethanol production in C. thermocellum,

and identifies bottlenecks in the redox metabolism hindering high ethanol yields.

Rational strain design based on the MMF method and in vivo characterizations

predict increasing flux through NFN, RNF, and/or AdhE* while eliminating acetate,

lactate, H2, and valine production is the most promising strategy for optimizing the
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production of ethanol. We envision that our trained metabolic model will be used to

engineer C. thermocellum as a CBP platform to produce other reduced metabolites.
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Chapter 5

Examining Complex Phenotypes

With A Genome Scale Metabolic

Model of Clostridium

thermocellum DSM 1313

Implementing an Adjustable

Cellulosome

Summary

This chapter describes the construction and refinement of a genome scale model for

Clostridium thermocellum. The meticulously refined GEM was tuned to accurately

simulate growth on cellobiose and cellulose in non-carbon limited conditions, ac-

counting for the difference in cellulosome synthesis. Using this model, I examine

several observed phenotypes presented throughout the literature and infer a large

regulatory network which arises from growth on cellobiose. Finally, the model is
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used with a third-party algorithm to predict optimal genotypes for the production of

ethanol, hydrogen, and isobutanol. This work has been submitted to Biotechnology

for Biofuels.

5.1 Introduction

For a sustainable energy economy, the necessity of producing fuels and chemicals

from renewable feedstocks is well-acknowledged, and the use of bio-based resources is a

promising route for significantly lowering the carbon footprint of liquid transportation

fuels (Demain, 2009). To produce economically favorable biofuels, consolidated

bioprocessing (CBP) is attractive as it uses specialized micro-organisms for direct

conversion of lignocellulosic biomass into target chemicals in a single step (Lynd

et al., 2005, 2008; van Zyl et al., 2007).

Of particular interest for CBP is the gram-positive thermophile Clostridium

thermocellum, which exhibits a high growth rate on cellulose (Demain et al., 2005;

Lynd et al., 2002) and can endogenously produce the biofuels ethanol (Lamed and

Zeikus, 1980), hydrogen (Levin et al., 2006), and isobutanol (Holwerda et al., 2014).

These desirable phenotypes are feasible because C. thermocellum possesses a large,

organized, extracellular cellulosome (Bayer et al., 1983; Lamed et al., 1983) which

is highly efficient at degrading lignocellulosic materials (Shoham et al., 1999) as

well as an intricate, robust system of branched catabolic pathways that recycle

reduced ferredoxin and NAD(P)H in order to facilitate a fast glycolytic rate and

energy generation (Rydzak et al., 2009). This branched metabolism, however, makes

production of a single product such as ethanol in C. thermocellum quite challenging.

Recently, there has been extensive work towards engineering C. thermocellum for

increased ethanol production, e.g.

i Elimination of acetate production (Tripathi et al., 2010)

ii Elimination of lactate production (Biswas et al., 2014)
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iii Elimination of both acetate and lactate production (van der Veen et al., 2013)

iv Elimination of hydrogen production (Biswas et al., 2015)

v Elimination of formate production (Rydzak et al., 2015)

vi Elimination of most traditional fermentation products (Papanek et al., 2015)

vii Elimination of malic enzyme activity while expressing an endogenous pyruvate

kinase (Deng et al., 2013)

Despite these efforts, ethanol yield is still below industrially relevant levels. In the best

performing strain a yield above 70% theoretical maximum has only been demonstrated

at low substrate loadings (Papanek et al., 2015), and ethanol yield drops when

substrate concentrations are increased (Brener and Johnson, 1984; Holwerda et al.,

2014). These reports open many questions into the robustness of C. thermocellum

redox metabolism and how regulatory mechanisms lead to the observed phenotypes

in both cellobiose and cellulose grown cultures.

Constraint-based genome-scale metabolic modeling is rapidly becoming a standard

tool for investigating cellular metabolism. The information contained in a genome se-

quence is redefined as a series of mass and charge balanced reactions in a genome-scale

metabolic model (GEM). When coupled with thermodynamic constraints, metabolic

constraints (e.g., substrate uptake rates and/or product consumption rates), and

a cellular objective, GEM analysis can determine metabolic flux distributions, i.e.

cellular phenotypes, under specified growth conditions. A repertoire of metabolic

pathway analysis tools based on flux balance analysis and elementary mode analysis

have recently been developed to analyze these GEMs and extensively reviewed (Feist

and Palsson, 2008; Lewis et al., 2012; Senger et al., 2014; Simeonidis and Price,

2015). A C. thermocellum GEM iSR432 has been constructed previously (Roberts

et al., 2010) and used as a scaffold for transcriptomic constraints (Gowen and Fong,

2010). While useful, several recent results highlight several limitations of iSR432 but

this model has several shortcomings, e.g.
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i There have been many advancements in the knowledge of C. thermocellum

atypical glycolysis (Zhou et al., 2013), pentose phosphate pathway (Rydzak et al.,

2012), and redox metabolism redundancies (Carere et al., 2014; Rydzak et al.,

2014) which were not included in the original model

ii The model was constructed for the strain ATCC 27405, but DSM 1313 (Feinberg

et al., 2011) is the genetically tractable parent strain used in metabolic engineering

strategies (Olson and Lynd, 2012)

iii The model includes a generic cellulosome term but it is not variable with respect

to carbon source, which has been shown to vary substantially (Zhang and Lynd,

2005b)

iv The model does not accurately predict certain cellular phenotypes like ethanol

production (Roberts et al., 2010)

In this work, we constructed a new GEM for DSM 1313 from the KEGG

database and manually curated the model with the most current knowledge of C.

thermocellum metabolism (Thompson et al., 2015). We next refined the GEM

using several sets of high-quality batch fermentation data for cell growth on various

carbon sources, i.e., cellobiose and cellulose. This is accomplished by first tuning

the energetic requirements for growth on cellobiose, then finding the additional

ATP cost of producing the cellulosome for growth on cellulose. With this validated

model, we investigated a series of interesting observations presented in the literature.

First, we reproduced the difference in cell yield with respect to cellodextrin length,

a direct consequence of the phosphorolytic sugar assimilation mechanism of C.

thermocellum (Zhang and Lynd, 2004, 2005a). Next, we elucidated a regulatory

mechanism to explain why cultures growing on cellulose do not reach the ethanol

yields of cultures growing on cellobiose. We further demonstrated the robust energy

and redox metabolism of C. thermocellum that enables it to dramatically adjust to

environmental growth perturbations. Finally, we used the model to predict metabolic
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engineering strategies to enhance the production of the desirable biofuels ethanol,

hydrogen, and isobutanol for future experimental study.

5.2 Results

5.2.1 Model construction and comparison

Following the construction process outlined in the METHODS section, we obtained

the C. thermocellum DSM1313 GEM, named iAT601 following convention (Reed

et al., 2003; Roberts et al., 2010). This new model presents a significant improvement

from the existing C. thermocellum ATCC 27405 GEM (Roberts et al., 2010) by

incorporating very recently expanded knowledge of C. thermocellum metabolism. In

particular, we updated the cofactor specificity of glycolytic enzymes (Zhou et al.,

2013) based on in vitro protein characterization as well as performed Cofactory

analysis (Geertz-Hansen et al., 2014) to resolve cofactor specificity when in vitro

data was unavailable (see METHODS). We manually curated the intricate carbon

overflow and redox metabolisms with recently acquired knowledge (Holwerda et al.,

2014; Thompson et al., 2015).

Importantly, we also built the GEM iAT601 to account for the composition and

synthesis cost of the cellulosome because C. thermocellum is known to alter cellulase

expression when cultured on different carbon sources (e.g., cellobiose, cellulose,

switchgrass, etc.) (Raman et al., 2009; Zhang and Lynd, 2005b). To construct

the cellulosome term for the GEM iAT601, we compiled both the protein and

amino acid distributions for the cellulosomes experimentally measured for growth

on different carbon substrates (Raman et al., 2009). While protein compositions of

the cellulosomes (e.g., hydrolyases, scaffodins, dockerins, etc.) significantly changed

for growth on different substrates, amino acid compositions of these cellulosomes

remained relatively similar 5.1. FBA simulations using amino acid compositions of

various cellulosomes and maximum growth objective gave similar values of predicted
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Figure 5.1: Distribution of amino acids per unit cellulosome under different
conditions. PR, generic protein term from Dry Cell Weight approximation. Cb,
cellobiose. C, crystalline cellulose (avicel). CX, cellulose + xylan. CP, cellulose
+ pectin. CPX, cellulose + pectin + xylan. SWG, pretreated switchgrass. ZT,
amorphous cellulose (Z-Trim). Cell, median values across all other amino acid
distributions and the values used in our cellulosome term. Data adapted from (Raman
et al., 2009)

optimal growth within a range of approximately 0.2% (st. dev. = 0.34e-4) of

each other. Thus, we used the median amino acid requirement across the different

culture conditions for the cellulosome term in the GEM iAT601. It is interesting

to observe that C. thermocellum could dynamically modulate protein components

of cellulosomes to control its biomass degradation machinery under environmental

perturbations (e.g., different growth rates (Dror et al., 2003) or various types of

cellulosic substrates (Nataf et al., 2010; Zhang and Lynd, 2005b)), amino acid

distributions of cellulosomes remained relatively constant, suggesting an evolutionary

influence on the dynamic degradation machinery. Fundamental knowledge of the

regulatory mechanisms controlling the finer dynamics of the machinery is lacking and

waiting to be explored.
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Table 5.1: Comparison of the GEM attributes among various Clostridial
species. Abbreviations: C. acetob, Clostridium acetobutylicum; C. beij, Clostridium
beijerinckii; C. cellulolyt, Clostridium cellulolyticum; and C. therm, Clostridium
thermocellum.

iCAC490 iCM926 iSF431 iSR432 iAT601

C. acet. C. beij. C. cell. C. therm. C. therm.
Strain DSM 824 NCIMB 8052 H10 ATCC 27405 DSM 1313
ORFs 4017 5100 3575 3238 3033

Reactions 794 938 621 577 869
Transport 120 68 45 73 110

Included Genes 490 925 431 432 552
Metabolites 707 821 603 525 903
Updated in 2012 2012 2010 2010 2015

Reference McAnulty Milne Salimi Roberts This work
et al. 2012 et al. 2011 et al. 2010 et al. 2010

Overall, the GEM iAT601 contains 872 reactions, 904 metabolites, and 601

genes. Included in the model are 114 transport and exchange reactions for the 57

extracellular metabolites. This represents a 51%, 72%, and 39% increase in reactions,

metabolites, and genes, respectively, over the existing GEM of C. thermocellum ATCC

27405 (Roberts et al., 2010). For additional comparison, iAT601 covers 19% of the

annotated ORFs in the DSM 1313 genome, which is higher coverage than the average

13% for other Clostridial GEMs (Table 5.1). The GEM iAT601 encompasses all

major metabolic pathways of C. thermocellum, and the numbers of reactions within

different KEGG pathways are summarized in Figure 2.2.

5.2.2 ATP Requirement for Growth on Cellobiose

After construction, we proceeded to train the model using pH-controlled batch

fermentation data collected for the wild-type DSM1313 grown on MTC medium with

either cellulose or cellobiose as a carbon source (Holwerda et al., 2012; Thompson

et al., 2015). Table 5.2 presents the experimental fluxes used to constrain the model,

and for all simulations, a non-growth associated maintenance (NGAM) cost of 3.27
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Table 5.2: Experimental fluxes used for metabolic model constraints

Experimental flux
(mmol species/gDCW/hr) Cellobiose Cellulose

rGluEqup 7.16±0.16 6.39±0.08
rETH 4.19±0.10 2.63±0.03
rACE 2.63±0.86 3.40±0.15
rCO2 5.82±0.02 n.d.
rFOR 1.77±0.01 1.38±0.01
rH2 7.86±0.38 n.d.
rV AL 0.78±0.12 n.d.
rLAC 0.18±0.01 0.00±0.0

µ (hr−1) 0.33±0.01 0.31±0.01

mmol ATP/gDCW/hr was used (Zhang and Lynd, 2005a). We first investigated the

models growth predictions with the cellodextrin uptake rate as a sole flux constraint.

For cellobiose-grown simulations, the model did not predict any ethanol production

under maximum growth conditions. Figure 5.2 shows the predicted phenotype

for all major fermentation products under this initial condition, and immediately

noticeable is that maximizing cell growth correlated with an overestimation of

acetate production, presumably due to the additional ATP produced via substrate

level phosphorylation via the phophotransacetylase acetate kinase pathway. While

the acetate overestimation was expectedly coupled with the over-predicted formate

production to balance the redox state of the cell in silico, these simulated results were

clearly not consistent with the experimentally observed phenotype. Since the model

predicted faster growth than observed experimentally, it is clear that the growth-

associated maintenance (GAM) cost must be refined.

While it is straightforward to calculate the ATP required to synthesize 1 g of

dry cell weight (Neidhardt et al., 1990; Stouthamer, 1973), the extra requirement

for GAM (i.e., for regulation of cellular osmotic level, protein secretion, and

flagellar motion) is less straightforward and is normally calculated with substrate-

limited chemostat experiments (Pirt, 1965). Since the GAM is typically condition

dependent (Tempest and Neijssel, 1984) and industrially relevant conditions are not
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Figure 5.2: (A) Comparison of experimental and simulated metabolic fluxes for
optimal growth of C. thermocellum on cellobiose without tuned growth-associated
maintenance (GAM) ATP requirement. FBA simulation used only experimentally
determined cellobiose uptake as a constraint. (B) Identification of best-fit GAM ATP
requirement. The model energy balance is tuned by altering GAM ATP requirement
and optimizing growth rate with specified fermentation constraints. Dotted lines
frame the experimentally observed growth rate range, while solid lines illustrate
the average observed growth rate and the best-fit GAM ATP requirement. (C)
Comparison of experimental and simulated metabolic fluxes for optimal growth of
C. thermocellum on cellobiose with tuned GAM ATP requirement.
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carbon-limited (Humbird et al., 2010), we used the model to estimate an appropriate

GAM coefficient. To find the GAM, we set experimentally measured fluxes as

constraints (Table 5.2) and varied an ATP requirement in addition to DCW synthesis

while optimizing cell growth. A value of 13.5 mmol ATP/gDCW/hr was found to

best fit growth on cellobiose in batch conditions (Figure 5.2B). When we applied

all experimentally obtained flux constraints and this tuned GAM coefficient then

maximized growth, the models predictions accounting for the GAM requirement

matched well with the experimental fermentation profile (Figure 5.2C).

5.2.3 Additional ATP Requirement for Cellulosome Synthe-

sis

We next performed in silico analysis of C. thermocellum growth on cellulose. It

has been shown experimentally that the cellulosome is no longer suppressed as

when C. thermocellum grows on cellobiose (Zhang and Lynd, 2005b), and so we

increased the percent of dry cell weight attributed to the cellulosome and applied

experimentally measured flux constraints for simulation (Table 5.2). Using the

previously calculated GAM value for growth on cellulose, however, still returned poor

cell growth predictions when specific fermentation rates were included as a constraint

(Figure 5.3A). Since the cellulosome is a large, extracellular enzyme complex, the

discrepancy between the models prediction and experimental observation was likely

due to not accounting for an increased ATP demand for cellulosome synthesis and

secretion.

To further train the GEM iAT601, we set the GAM and NGAM as described

above while similarly increasing the ATP requirement for cellulosome synthesis and

secretion to simulate maximum growth rates. We found that an ATP cost of 57 mmol

ATP/g cellulosome/hr was the best fit to wild-type growth on cellulose (Figure 5.3B).

This corresponds to 14 mmol ATP/g cellulosome/hr greater than what is required for

the cell protein synthesis. Given that the cellulosome represents a greater proportion
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Figure 5.3: (A) Comparison of experimental and simulated metabolic fluxes
for optimal growth of C. thermocellum on cellulose without ATP requirement for
cellulosome synthesis. FBA simulation used experimentally measured fermentation
product fluxes and the calculated GAM ATP requirement as constraints. (B)
Identification of best-fit ATP requirement for cellulosome biosynthesis. (C)
Comparison of experimental and simulated metabolic fluxes for optimal growth of
C. thermocellum on cellulose without ATP requirement for cellulosome synthesis.
FBA simulation used all experimental flux values as well as the best fit for GAM and
cellulosome synthesis ATP requirements as constraints.
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of the dry cell weight for growth on cellulose than cellobiose (Zhang and Lynd, 2005b),

this ATP cost is an equivalent overall increase of 1.14 and 11.4 mmol ATP/g DCW/hr

for cellobiose and cellulose simulations, respectively. By applying the ATP cost and

fermentation rates as constraints, simulations of cell growth on cellulose matched

very well with experimental data (Figure 5.3C). Reapplying the cellulosome ATP

cost to the previous cellobiose simulations did not alter the results outside of the

experimentally observed flux ranges, and so for all further studies the GAM and

cellulosome ATP coefficients are fixed at these values.

5.2.4 Application of GEM for Rational Strain Design

One important application of the tuned GEM iAT601 is to guide strain engineering for

enhanced production of chemicals of interest. For instance, the constrained minimal

cut set (cMCS) method (Hädicke and Klamt, 2011) can be used identify all feasible

genotype variants with minimum metabolic functionalities tailored for production of

specific chemicals (Trinh et al., 2008). While ethanol is a valuable product, there is

also interest in using C. thermocellum to produce isobutanol (Holwerda et al., 2014;

Lin et al., 2015) or hydrogen (Islam et al., 2006; Levin et al., 2006). Using the cMCS

method altered for genome scale models (von Kamp and Klamt, 2014), we investigated

the feasibility of strain design for the production of ethanol, hydrogen, and isobutanol

(Table 5.3). Based on the tuned GEM iAT601, we founded 67 unique cut sets of

size 6 and 185 cut sets of 7 that could produce high ethanol yields while tightly

coupling with cell growth. As anticipated, many of the highly represented reactions

are associated with central metabolism, redox metabolism in particular. These results

are indicative of the level of redundancy within C. thermocellum redox metabolism

and provide perspective on some of the shortcomings of previously reported metabolic

engineering strategies. Further mining of these strategies is needed to design an

informed metabolic engineering effort.
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Table 5.3: Model-guided MCS strain designs for production of hydrogen, ethanol,
and isobutanol.

Product # Modifications # Strain Designs

Ethanol 6 67
7 185

Hydrogen 4 12
5 221
6 1105
7 4816

Isobutanol 7 28

For hydrogen production, we found many solutions, including 12 intervention

strategies of size 4 and 4,816 strategies of size 7. The presence of strategies of size

4 implies fewer modifications are needed for high hydrogen production compared to

ethanol, which requires a minimum of 6 modifications. Finally, for isobutanol we

only found 28 strategies of size 7, hinting that high isobutanol production in C.

thermocellum will be a challenge due to greater modifications required. Many of

these metabolic engineering strategies are not trivial, and are expected to be useful

in guiding experimental implementations.

5.2.5 Effect of Cellodextrin Length on Growth

We next employed the GEM iAT601 to validate interesting cellular phenotypes of

C. thermocellum. It has been experimentally shown that C. thermocellum could

uptake up to cellohexaose (G6) and preferentially assimilate longer cellodextrins with

an average carbon length of 4̃.2, where the DCW yield increased with the increasing

length of cellodextrins supplied as a carbon source (Strobel, 1995; Strobel et al., 1995;

Zhang and Lynd, 2005a).

To investigate the effect of assimilating various (G2-G6) cellodextrins and glucose

(G1) on cell yields, we set the glucose-equivalents uptake flux at a constant 6.5

mmol/g DCW/hr while altering the sole carbohydrate species available. To allow

for direct comparison with experimental results (Strobel, 1995; Strobel et al., 1995),

91



0.00

0.05

0.10

0.15

0.20

G6 G5 G4 G3 G2 G1
Y

P
ro

te
in

/G
lu

 E
q
 (

g
/g

) 

Simulation Experiment

Figure 5.4: Comparison of effect of cellodextrin lengths on yield of cell protein per
glucose equivalent (g/g) during simulation with iAT601 and values reported in the
literature (Strobel, 1995). For culture simulations, a fixed glucose equivalent uptake
rate of 6.5 mmol/gDCW/h was used. Cellodextrins of length N are shown as GN.

the simulation results are presented as yield of protein per glucose (g/g), where protein

yield was calculated as the sum of fluxes to cellulosome and cell protein production

(g proteinaceous component/g DCW/hr) divided by the glucose-equivalents uptake

flux (g glucose equivalents/g DCW/hr). Our simulation shows that the maximum

protein yield obtainable with G4 was 95% of that obtainable on G6 while yields

on G3, G2, and G1 dropped to around 92%, 83%, and 58%, respectively, of the

maximum under experimental conditions tested (Figure 5.4). This drop in maximum

protein yields with respect to shorter cellodextrins matched well with the experimental

data (Figure 5.4)(Strobel, 1995; Strobel et al., 1995); the trend clearly explained

the calculated bioenergetic benefit to assimilation of longer cellodextrins (Zhang and

Lynd, 2005a). This result establishes confidence in the overall bioenergetic constraints

within the model for downstream analysis.
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5.2.6 Effect of substrate and cell growth rate on bioenerget-

ics of C. thermocellum

Extensive compilation of fermentation data for cell growth in comparable conditions

(i.e. equivalent media recipes and available substrate) on cellobiose and cellulose

(Avicel) in both batch and continuous cultures under different growth (or dilution)

rates revealed several unique and interesting phenotypes regarding bioenergetics of

C. thermocellum (Holwerda et al., 2012, 2014; Thompson et al., 2015; Zhang and

Lynd, 2005b,a). For instance, the ethanol to acetate (E:A) ratio is a commonly used

indicator of bioenergetic balance in a given metabolic state of an anaerobic cell culture,

where ethanol production is primarily tied to redox balance and acetate production

is coupled with ATP synthesis. The experimentally observed E:A ratio differs

substantially when wild-type C. thermocellum grew on various cellulosic substates

(cellobiose versus cellulose) under various growth rates (Figure 5.5). Specifically, C.

thermocellum could reach an E:A ratio upwards of 2 for growth on cellobiose, while

the ratio never crested 1 for growth on cellulose. While the E:A ratios highly depend

on types of cellulosic substrates used, the sum of ethanol and acetate yields inversely

correlates with the growth (or dilution) rates (Figure 5.5A) regardless of cellulosic

substrates used. This correlation makes biological sense as a higher growth rate

will require higher amounts of acetyl-CoA for DCW precursor synthesis and less will

be available for ethanol or acetate synthesis. This also means that the correlation

can serve as an ideal global constraint on bioenergetics of C. thermocellum and is

employed for simulation in this study.

To better understand the bioenergetics of C. thermocellum when growing on

different substrates under various growth rates, we sampled flux distributions based

on experimental constraints followed by detailed analysis of the key cellular processes

resulting in the observed trends of E:A ratios and sum of ethanol and acetate yields.

Sampling is a common technique for examining a network structure to compare
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Figure 5.5: (A) Experimental data compilation of sum of ethanol and acetate
yields from literature. (B) Experimental data compilation of E:A ratios for cellulose
(triangles) or cellobiose (diamonds). (C) In silico implementation of the sum of
ethanol and acetate yields. (D) In silico implementation of E:A ratios. The shaded
regions outline the points within the low growth, medium growth, and high growth
sets. Symbols: cellulose (triangles) or cellobiose (diamonds).
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differences in conditions (Almaas et al., 2004; Schellenberger and Palsson, 2009)

and/or infer regulatory elements (Bordel et al., 2010).

We set a tight constraint on the sum of ethanol and acetate yields with respect

to growth rates (Figure 5.5C). We also introduced a noise level of 20% to the E:A

ratio at a given growth rate to account for variability among the E:A ratio parameters

(Figure 5.5D). The sum of yields and E:A ratios are considered jointly as the observed

constraints below. For all sampling runs, the glucose equivalent uptake rates were

randomly varied between the experimentally observed range of 5.0 7.5 mmol glucose

equivalents/g DCW/hr, but set equal for both cellobiose and cellulose cultures. This

setup allowed us to obtain 100,000 individual yet comparable flux distributions across

a range of growth rates that sufficiently covered the observed variance for both

cellobiose and cellulose simulations. The distributions in fermentation products were

distinct for each carbon source at different growth rates. Increasing the number of

sampling points to 500,000 did not have a significant effect on the flux trends, and

so we are confident that these distributions are representative of cellular metabolism.

The sampled flux distributions were analyzed to understand the metabolic differences

which lead to the observed phenotypic differences between carbon sources.

Global Redox and Energy Cofactor Turnover

From the calculated flux distributions, we analyzed the turnover rates of the key

metabolites ATP, GTP, pyrophosphate (PPi), reduced ferredoxin (Fdrd), NADH,

and NADPH across our sample sets to elucidate how redox and energy metabolism is

modulated to exhibit the observed trends of E:A ratios and the sum of ethanol and

acetate yields across various environmental perturbations (e.g., cellulosic substrates

and growth rates). It should be noted that a turnover rate of a metabolite determines

how frequent that metabolite is biologically transformed and recycled at a given

steady state and does not inherently give insight into the metabolite concentration

within the cell. The result shows that the turnover rates of ATP, GTP, PPi,

and NADPH increased steadily with an increase in growth rates (Figure 5.6) as
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Figure 5.6: Average cofactor turnover with respect to growth rate for simulations
using cellobiose (A) and cellulose (B).

expected because the synthesis of biomass requires these cofactors. The ATP turnover

rate increased more sharply for cellulose cultures which could be attributed to

the additional burden of cellulosome synthesis as well as requirement of acetate

biosynthesis. The ATP trend matched well with previously reported experimental

evidence (Zhang and Lynd, 2005a).

We further analyzed the turnover rates of NADH and Fdrd to illuminate the

experimentally observed phenotypes. For growth on cellobiose, NADH turnover

rates slightly increased as specific growth rates increased (Figure 5.6A), which well

correlated with the enhanced ethanol fluxes leading to higher E:A ratios observed

experimentally. In contrast, the decrease in Fdrd turnover manifested with a general

decrease in hydrogen production, providing more electrons available for ethanol

biosynthesis. For growth on cellulose, the levels of NADH and Fdrd turnover rates

were fairly level across growth rates, clearly explaining lower ethanol production and

hence lower E:A ratios as observed experimentally.
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Central Carbon Metabolism

We next examined the effect of the observed constraints on several key reactions of

central carbon metabolism from phosphoenolpyruvate (PEP) to pyruvate to acetyl-

CoA. For the conversion of PEP to pyruvate, simulations of both carbon sources

predicted substantial flux through phosphoenolpyruvate carboxykinase (PEPCK),

which is the first step in the malate shunt. The PEPCK activity increased with

the increasing growth rates for both carbon sources even though the cellobiose

simulations had a much tighter distribution (Figure 5.7A,B). Direct conversion

to pyruvate through pyruvate:pyrophosphate dikinase (PPDK), however, remained

fairly constant for cellulose simulations but increased for cellobiose simulations with

increasing growth rates (Figure 5.7C,D). Regardless of cellulosic substrates and

growth rates, PPDK fluxes were much lower than PEPCK fluxes. This simulation

result clearly highlights the significant role of the PEPCK-dependent malate shunt on

bioenergetics of C. thermocellum by generating energy in terms of GTP and producing

NADPH from NADH, both of which are required for biomass synthesis and affect the

experimentally observed ethanol production.

For the conversion of pyruvate to acetyl-CoA, the simulations for both carbon

sources predicted fluxes through pyruvate:ferredoxin oxidoreductase (PFOR) were

relatively constant under different growth rates, although the distribution was much

wider for cellulose simulations (Figure 5.8A,B). This might hint at less metabolic

flexibility in the PFOR reaction when growing on cellobiose. Fluxes through

pyruvate:formate lyase (PFL) were lower than PFOR fluxes in both conditions across

growth rates (Figure 5.8C,D), but the cellobiose cultures were predicted to have higher

PFL fluxes than cellulose cultures. The latter implies that ethanol production might

be limiting in cellobiose cultures because PFL is known to function as a metabolic

valve to relieve redox imbalance (Thompson et al., 2015).
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Figure 5.7: Average flux through key reactions involved in converting PEP to
pyruvate as well as the membrane bound pyrophosphatase. Upper panels in green
diamonds are cellobiose simulations, lower panels in blue triangles are cellulose
simulations.

Redox Metabolism

We further examined the effect of the observed constraints on individual redox

reactions. Regardless of cellulosic substrates, hydrogen production through the [NiFe]

energy-conserving hydrogenase (ECH) increased almost exponentially as the growth

rate increased, especially for E:A > 1 (or µ > 0.18 hr−1) (Figure 5.9A,B). In contrast,

hydrogen production through the bifurcating hydrogenase (BIF) dropped significantly

for cellobiose with an increase in growth rates, yet it remained fairly consistent

across growth rates for cellulose (Figure 5.9C,D). This translates to a decrease

in hydrogen production in cellobiose cultures while hydrogen production remains

fairly constant in cellulose cultures. The conversion of reduced ferredoxin to NADH
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Figure 5.8: Average flux through reactions involved in synthesizing acetyl-CoA from
pyruvate. Upper panels in green diamonds are cellobiose simulations, lower panels in
blue triangles are cellulose simulations.

through reduced ferredoxin:NADH oxidoreductase (RNF) was significantly greater

for cellobiose simulations (Figure 5.9E,F), particularly at high growth rates where

cellulose simulations did not use RNF at all. Interestingly, the flux through RNF

was parabolic in shape on cellobiose with increasing growth rate with an inflection

point occurring with E:A 1̃. Additionally, the flux through NADH dependent

reduced ferredoxin:NADP+ oxidoreductase (NFN) steadily increased with growth

rate, because NADPH preferred for synthesis of cell precursors (Alberts et al., 2002),

(Figure 5.9G,H).

The observed constraints are anticipated to increase the requirement for NADH

in cellobiose cultures and the simulations corroborate this expectation, in particular

by increasing the RNF flux and decreasing the BIF flux on cellobiose. Taken
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Figure 5.9: Average flux through important redox related reactions. Upper panels in
green diamonds are cellobiose simulations, lower panels in blue triangles are cellulose
simulations.

altogether, these results illustrate how C. thermocellum restructures its metabolism

during growth on different carbon sources.

5.3 Discussion

In this work, we have constructed the novel genome-scale model (GEM) of C. ther-

mocellum DSM1313 iAT601. After extensive refinement with literature reports, we

calculated the ATP requirements for growth-associated maintenance and cellulosome

synthesis by fitting experimental data. With this model, we explored complex

cellular phenotypes and model-guided strain design strategies for producing valuable

chemicals. It is important to consider cellular phenotypes under different conditions

in order to broadly understand and predict cellular behavior.

In particular, the cascade of carbon from PEP to pyruvate to acetyl-CoA

provides key precursors for DCW synthesis, and when coupled to the complex redox
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metabolism of C. thermocellum, consists of alternative means of generating energy

and shuttling electrons (Thompson et al., 2015). Examining these reactions at various

growth rates and on different substrates is an effective way to explore the bioenergetics

of C. thermocellum. Generally, the flux distributions from cellobiose simulations

were not as broadly distributed as flux distributions from cellulose simulations. This

tightening of flux distributions implies

i tighter regulatory mechanisms are imposed during growth on cellobiose than on

cellulose at these key metabolic nodes, and/ or

ii that bioenergetic constraints on carbon and electron flow limit the metabolic

flexibility during growth on cellobiose

5.3.1 Proposed Bioenergetic Regulatory Mechanism of C.

thermocellum Fermentation

Taken altogether, we can use the simulation results presented along with literature

reports to propose a mechanism which explains the metabolic differences between

cellobiose and cellulose cultures of C. thermocellum. Four key, interrelated motifs

can help to shed light on this mechanism: Motif 1 energy modulation via acetate

production, Motif 2 redox metabolism, Motif 3 regulation of PEP to pyruvate

conversion, and Motif 4 PFL-dependent redox relief valve.

Motif 1

Energy modulation via acetate production is one of the critical motifs regulating

bioenergetics of C. thermocellum. Acetate production during growth on cellobiose

drops because less PTA-ACK activity would be necessary to generate the required

ATP for cellulosome synthesis, which has been shown experimentally (Zhang and

Lynd, 2005a). This is highlighted by the cofactor turnover in our simulations, where

ATP turnover is higher for cellulose than cellobiose simulations (Figure 5.6). It has
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Figure 5.10: Proposed mechanism of bioenergetics influencing C. thermocellum
during growth on cellulosic substrates. Motif 1: Cellobiose inhibits cellulosome
production, and the lower ATP requirement reduces the need for PTA-ACK. Motif
2: RNF activity is upregulated and/or BIF activity is downregulated to convert
more reduced ferredoxin to NADH. Motif 3: Increased RNF activity can be used to
synthesize PPi, which alters the conversion of PEP to pyruvate. Motif 4: PFL acts
as a redox relief valve and is likely activated by a redox imbalance.

been experimentally observed that cellobiose inhibits synthesis of the cellulosome at

both enzymatic (Zhang and Lynd, 2005b) and transcriptomic levels (?) (Figure 5.10),

however real-time PCR has shown little difference in PTA-ACK expression between

cellulose and cellobiose cultures (Stevenson and Weimer, 2005) which suggests

cellobiose is not a direct regulator of acetate synthesis. Alternatively, elimination

of hydrogen production leads to diminished acetate production in C. thermocellum,

and it has been proposed that electron perturbations are more influential than PTA-

ACK perturbations on ethanol production (Thompson et al., 2015).
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Motif 2

Redox metabolism of C. thermocellum is very robust and a critical motif in

controlling cellular bioenergetics. To account for high E:A ratios for growth on

cellobiose, the cell must have an ample supply of NADH. This is facilitated by

an increase in RNF and decrease in BIF activities on cellobiose as observed in

the simulations (Figures 5.9, 5.10). An increase in RNF flux will also limit the

NADH available for hydrogen synthesis by BIF. RNF is expressed during batch

growth on cellulose (Raman et al., 2011), and in chemostats expression is significantly

higher for cellobiose cultures than for cellulose cultures across growth rates (Riederer

et al., 2011). Thus, it is feasible that cellobiose can activate RNF expression, in an

opposite phenotype to cellulosome synthesis. Further, the low flux through RNF in

all simulations suggests that RNF may be limiting ethanol production by throttling

NADH generation.

Motif 3

The motif of PEP to pyruvate conversion in C. thermocellum enables it to efficiently

regulate cellular bioenergetics and carbon flux. Our simulations provide evidence to

a link between RNF and PPi by ways of the conversion of PEP to pyruvate. The

RNF protein complex is embedded in the membrane and couples proton export to

ferredoxin oxidation to form NADH. The generated proton motive force can be used

to drive ATP and/or PPi synthesis (Raman et al., 2011; Zhou et al., 2013), which is

consistent with the higher PPase flux in cellobiose culture simulations (Figure 5.7E,F).

Experimentally, it has been shown with in vitro purified enzyme assays that a high

concentration of PPi can enhance PPDK activity and inhibit MAE activity (Taillefer

et al., 2015). It is interesting that the allosteric control of PPi on PPDK and MAE

was not included in the model, yet the constraints on ethanol and acetate manifest

into an observed increase in PPDK activity in cellobiose simulations (Figure 5.10).

An additional consequence of more PPDK flux means less NADH is converted to
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NADPH through the malate shunt, and the additional NADH can then go towards

ethanol production.

Motif 4

PFL has been described as a redox relief valve in C. thermocellum (Thompson et al.,

2015). For context, as described above, RNF produces NADH and oxidizes ferredoxin.

It has been suggested previously that RNF is the major bottleneck in ethanol

production, and the limiting capacity of RNF causes an accumulation of reduced

ferredoxin which then leads to an increase in PFL flux (Thompson et al., 2015).

This idea comes from experimental evidence where suppressing hydrogen production

via chemical inhibitors or genetic manipulations leads to an increase in formate

production on cellobiose, and the PFL reaction has been described as an overflow

reaction used to generate acetyl-CoA from pyruvate without generating reduced

cofactors (Rydzak et al., 2011, 2014). Interestingly, PFL and its activating enzyme are

highly expressed across multiple conditions (Rydzak et al., 2012; Raman et al., 2011;

Wei et al., 2014), even when no formate production is observed. Expression of PFL

without formate production implies a redox related, possibly allosteric, regulatory

mechanism (Figure 5.10). While formate production was not reported in most of

the training data, in our simulations the cellobiose set has a consistently higher

PFL flux (Figure 5.8C,D). The importance of PFL in the production of acetyl-CoA

from pyruvate can also be seen when eliminating PFL activity through chemical

inhibition or genetic manipulation, which is shown to increase lactate production

more than ethanol production (Rydzak et al., 2014, 2015). Under conditions of redox

stress, it would be more beneficial to produce ethanol and consume 2 NADH than

to produce lactate and consume 1, particularly if PFL is used to generate acetyl-

CoA without producing reduced cofactors. However, if PFL activity is not possible,

C. thermocellum cannot completely balance carbon and redox cofactors to produce

ethanol and cell growth, which stalls the conversion of pyruvate to acetyl-CoA and

leads to lactate production.
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Relationship between Ethanol Production and Cellulose Degradation

Similar to PFL, alcohol dehydrogenases (ADHs) responsible for ethanol production

are also seen to be highly expressed under multiple conditions, although ethanol

production varies (Rydzak et al., 2012; Raman et al., 2011). The availability

of reduced ferredoxin or NADH could then feasibly activate ethanol and formate

production as an overflow to relieve redox stress. The availability of NADH as the

main activator of ethanol synthesis also makes sense when considering that addition

of methyl viologen to cellobiose chemostats led to an increase in ethanol production

without significant increase in transcription of ethanol synthesis genes (Sander et al.,

2015). More evidence to the overflow behavior of ethanol and formate production

can be seen when growing cells in continuous cultures with a lower cellodextrin feed

concentration. Under low substrate conditions in rich media, ethanol and formate

production are very low, and acetate is the major fermentation product, regardless

of using cellobiose or cellulose as a carbon source (Stevenson and Weimer, 2005).

The results presented above offer some interesting suggestions, and to properly

understand why cellobiose cultures produce so much more ethanol, it is useful to

think of C. thermocellum in its native environment, i.e. degrading complex biomass

in a co-culture in soil (Viljoen et al., 1926; Akinosho et al., 2014), where there is not

likely to be a substantial cellobiose concentration. In fact, in designed co-cultures, C.

thermocellum prefers to make acetate and hydrogen if these products can be consumed

by its cohabitant (Weimer and Zeikus, 1977). Isolated growth on cellobiose, however,

can be considered a perturbation away from the native environment since high

concentrations of cellobiose have been shown to repress cellulosome synthesis (Zhang

and Lynd, 2005b). This repression is key to the increased ethanol production on

cellobiose, because by lowering the cellulosome burden by 10 fold (i.e. from 20%

DCW to 2% DCW), our calculations above estimate that the cell needs to produce

about 11 mmol ATP / g DCW less on cellobiose.

105



Without the ATP burden of cellulosome synthesis, less flux through PTA-ACK

is needed, and this triggers a dramatic restructuring of carbon and electron fluxes

to maintain the rates of glycolysis examined here. As a result, there is an increase

in RNF flux, which leads to more PPDK flux. Both of these reactions can enhance

the supply of NADH and lead to the observed overflow of ethanol production on

cellobiose. As RNF reaches its maximum capacity, PFL flux increases to balance the

need for acetyl-CoA and the redox state of the cell.

Generally, these results indicate that for growth on cellulose, a high glycolytic

flux and sufficient conversion of reduced ferredoxin to NADH (e.g., by eliminating

hydrogen production or overexpressing RNF) will be critical for high ethanol

production. A significant level of control is necessary to accomplish this goal, although

it is still unclear at this point how exactly the proposed motifs are controlled with

respect to each other, or what additional regulatory elements might be active with, or

instead of, the proposed mechanism above. There are still many questions regarding

the bioenergetic control mechanisms which balance carbon and electron fluxes in

C. thermocellum. However, these questions can be addressed as more OMICs and

fermentation datasets become available and are integrated.
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