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ABSTRACT 
 

Doxorubicin (Dox) is a successful chemotherapy to treat various cancers, including 
bladder and oral cancers. Many patients initially respond to Dox-based regimens, however often 
cancers become resistant. A novel derivatives of Dox, e.g. N-benzyladriamycin-14-valerate 
(AD198), have been developed to overcome Dox-induced drug resistance and cardiotoxicity. 
The purpose of this thesis was to determine the efficacy of AD198 and Dox in bladder and oral 
cancers in vitro. 

Part-I of this dissertation focuses on the bladder cancer, including discussing risk 
factors, diagnosis, staging, and current treatment options, following by a description of altered 
molecular mechanisms responsible cancer progression. This section also focuses on alternative 
experimental drugs and current clinical trials designed to target specific molecular markers of 
bladder cancer.  

Part-II of this dissertation compares the efficacy of AD198 and Dox and its molecular 
mechanisms of action in human T24 and UMUC3 bladder cells in vitro. AD198 was more 
effective than Dox in inhibition of cell viability of T24 and UMUC3 cells. Both Dox and AD198 
significantly induced apoptosis in caspase-dependent and -independent manners. Dox and 
AD198 activated the pro-apoptotic p38 MAPK pathway; however, they also increased 
phosphorylation of AKT, a pro-survival signaling pathway, in T24 and UMUC3 cells. Combined 
treatment of PI3K inhibitor (LY294002) with Dox or AD198 inhibited cell viability of T24 and 
UMUC3 cells more effectively than any drug treatment alone.  

Part-III of this dissertation discusses oral cancer, with special focus on causes, 
diagnosis, treatment, molecular pathogenesis, and potential molecular targets for treatments. 
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Part IV of this dissertation focuses on evaluation of the efficacy of Dox and its novel 
derivative AD198 in human (SCC25 and 1483), canine K9OSCC-Abby, and feline (FeOSCC-
Sidney) oral squamous cell carcinoma cells in vitro. Dox and AD198 had a better anti-
proliferative effect than Dox in human and canine OSCC. Our results suggest that the combined 
therapy of an anthracycline compound with inhibitor of PI3K/AKT pathway is a more effective 
treatment. 

Part V of this dissertation discusses the implications of these studies and examines 
current literature on the potential of targeting PI3K/AKT to increase the efficacy of anthracycline 
treatments in bladder and oral cancers.  
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CHAPTER I 

MOLECULAR TARGETS IN UROTHELIAL CANCER: 
DETECTION, TREATMENT, AND MODELS OF BLADDER 

CANCER  
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Abstract 
Bladder transitional cell carcinoma (TCC) remains one of the most expensive cancers to 

treat in the United States due to the length of required treatment and degree of recurrence. In 
order to treat bladder TCC more effectively, targeted therapies are being investigated. In order 
to use targeted therapy in a patient, it is important to provide a genetic/expression background 
of each obtained biopsy sample. Recent advances in genome sequencing, as well as 
transcriptome analysis, have identified major pathway components altered in bladder TCC. The 
purpose of this review is to provide a broad background on bladder TCC, including its causes, 
diagnosis and stages, as well as signaling pathways in bladder TCC and drugs that are 
currently being studied to target specific pathways. The major focus is given to the PI3K/AKT 
pathway, p53/pRb signaling pathways, and the histone modification machinery. Because 
several promising immunological therapies are also emerging in the treatment of bladder 
cancer, focus will also be given on general activation of the immune system for treatment of 
bladder cancer.  
Keywords: bladder cancer, transitional cell carcinoma, molecular targets, and clinical trials 
 

Introduction  
Bladder cancer is the 5th most common cancer in the United States and accounts for 

4.5% of all new cancer cases [1]. In 2016, an estimated 76,960 new patients will be diagnosed 
with bladder cancer, while 16,390 will die from complications of this disease [2].  Bladder cancer 
is the 4th most common cancer diagnosed in males and is three times less common in females 
[3]. The most common type of bladder cancer is transitional cell carcinoma (TCC), also known 
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as urothelial cancer (UC), and accounts for over 90% of all bladder cancer cases in the United 
States [4-6]. Transitional cells are specialized epithelial cells that line the inside of the bladder 
and some other organs; unlike normal epithelial cells, transitional cells can contract or expand. 
Less common types of bladder cancer include squamous cell carcinoma and adenocarcinoma 
[7]. Even rarer are sarcomas, which account for less than 1% of bladder cancers; sarcomas do 
not arise from the urothelial layer, but from the stroma layers of the bladder [8]. Because of the 
rarity of other types of bladder cancers, TCC is the most studied of the bladder cancers and is 
the focus of this review.   

This review summarizes the risk factors for developing bladder TCC, molecular markers 
for diagnosis and personalized targeted therapies of TCC, and summarizes the outcomes of 
current clinical trials and studies using animal models to advance knowledge in managing 
bladder cancer. 

 

Risk Factors for Bladder Cancer 
The non-environmental risk factors for bladder cancer include age, sex, ethnicity, body 

weight, lifestyle, and familial history. With increasing age, the risk of developing bladder cancer 
increases. Currently, the median age of patients diagnosed with TCC is between 65–70 years 
old [9]. For unknown reasons, bladder cancer is three to four times more likely to occur in men 
than in women [6]. While the exact mechanism to account for the difference in risk of developing 
TCC as it relates to sex is unknown, in a study using a nude mice transplant model, it was 
determined that bladders of mice injected with male androgen hormones progress more often to 
carcinogenesis than bladders of mice treated with female estrogenic compounds [9, 10]. While 
race seems to be a contributing factor in the male population, with white males having twice the 
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incidence of Asian, black, or Hispanic males,  the difference in incidence due to race in females 
is far less pronounced [9]. One interesting finding in the difference between black and white 
males who develop bladder cancer is that white males in the United States are more likely to 
develop non-invasive bladder cancer, while black males are more likely to develop invasive 
bladder cancer, leading to a worse survival rate in the black male population [9, 11, 12].  

Lifestyle choices linked to cancer risks have been documented in many studies, and there is 
overwhelming evidence that obesity, poor diet, and physical inactivity are linked to increased 
risk of developing several types of cancers [13]. A strong correlation exists between obesity and 
an increased risk for development of bladder cancer [14]. It was recently shown that the 
combination of smoking and obesity increased not only the risk of developing bladder cancer, 
but also significantly increased the risk of bladder cancer reoccurrence and mortality of patients 
that were already successfully treated for non-invasive bladder cancer [15]. Because many 
toxins are expelled through excretion via the urinary system, those toxins can accumulate in the 
bladder and promote the initiation of bladder cancer. Some of the major environmental factors of 
developing TCC include smoking (tobacco products), occupational carcinogens (e.g. arsenic), 
and prior chemotherapeutic drug exposure. Tobacco use is perhaps the best documented risk 
factor for developing TCC [16]. A recent study has shown that cigarette smoking accounts for 
more than 50% of all bladder cancer diagnoses in the United States [17]. Cessation of smoking 
reduces the risk of recurrence of bladder cancer even if the initial diagnosis occurred while the 
patient was an active smoker [18]. These findings suggest that the continuation of smoking 
increases the risk of bladder cancer recurrence.  

There are many occupational hazards that increase the risk of developing bladder TCC, as 
well. These risk factors include, but are not limited to, exposure to diesel exhaust, polycyclic 
aromatic hydrocarbons (PAHs), and certain pesticides and herbicides [19-21]. It has been 
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reported that patients treated with cyclophosphamide (Cytoxan) can develop renal or bladder 
cancer as one of the possible adverse events of chemotherapy [16, 22]. Therefore, lifestyle 
intervention would greatly benefit prevention and management, as well as decrease recurrence, 
of bladder cancer.  
While familial bladder cancer seems to be rare, it has been determined that the risk of 
developing bladder cancer increases two-fold when another close family member has already 
been diagnosed with bladder cancer [16]. It has been suggested that familial mutations of the 
retinoblastoma protein (pRb) may contribute to the risk of developing bladder cancer [23]. The 
p53/pRb pathway is also often altered in bladder cancer and will be covered in detail in the 
molecular targets of bladder cancer section in this review. In addition, some evidence suggests 
that individuals, especially smokers with genetically overactive cytochrome-P450-1A2 
(CYP1A2), may be at greater risk for developing bladder cancer [24]. Specific mutations in the 
CYP1A2 gene can be activated by carcinogens present in cigarette smoke, including 4-
aminobiphenyl (4-ABP), which can form DNA adducts and cause mutations of other genes [24, 
25].  
 

Diagnosis and Staging of Bladder Cancer 
The most common signs and symptoms of bladder cancer include blood in the urine and 

pain during urination [6]. Several invasive and non-invasive techniques exist to diagnose 
bladder cancer. One of the primary non-invasive techniques is urine cytology evaluation, in 
which cells that are shed can be observed for any abnormalities or malignancies [26]. A urine 
culture may be inoculated in order to differentiate the diagnosis from an infection [26]. While a 
positive result for cancer using urine cytology can be used as a diagnosis for presence of 
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cancer, a negative result does not always indicate absence of cancer.[26] The urine sample is 
used for detection of bladder cancer biomarkers. One of the most common biomarker tests is 
the bladder tumor antigen test; however, the test’s specificity and sensitivity can vary greatly, 
with a high incidence of false positives [27]. Several biomarkers that are used in combination to 
diagnose bladder cancer are reviewed by Tilki et al., 2011 [27].  

Cystoscopy followed by biopsy is the gold standard for diagnosis of bladder cancer [26]. 
Currently, two forms of cystoscopy are available: white light cystoscopy and fluorescence 
cystoscopy. While papillary tumors can almost always be seen using white light cystoscopy, it 
becomes much more difficult to detect carcinoma in situ using white light cystoscopy alone. In a 
study by Fradet et al.,[28] only 62% of tumors were detected during white light cystoscopy; 
however, 92% of carcinoma-in-situ were detected when fluorescent cystoscopy was applied. 
The ability to differentiate tumor tissue from surrounding normal tissue using targeted 
fluorescence imaging will help to improve diagnosis, as well as outcome of image-guided 
surgeries in patients diagnosed with bladder cancer. Non-targeted fluorescent imaging agents, 
such as hexaminolevulinate or 5-amino levulinic acid, accumulate in cancer tissue, providing an 
increased signal when compared to normal epithelium. Additionally, porphyrins emit red light 
when excited with blue light for detection [29]. Fluorescence cystoscopy detects up to 15% more 
tumors than white light cystoscopy. Patients diagnosed who test positive via urine cytology tests 
but negative via white light cystoscopy are excellent candidates for fluorescence cystoscopy 
[29-31]. Targeting specific markers that are overexpressed in tumors by imaging agents is a key 
strategy for detection of tumor versus normal tissue. Development and synthesis of new 
imaging agents that specifically target tumor tissue is currently under intensive investigation 
(reviewed in Kim et al., 2015[32] and deBoer et al., 2015[33]). One example of such an agent is 
fluorocoxib A, a novel derivative of indomethacin that specifically binds to cyclooxygenase-2 



8 
 

(COX-2)-expressing bladder cancers [34-36]. Fluorocoxib A has shown promise in detection of 
bladder TCC using mouse and canine bladder cancer models [35]. 

Other imaging modalities used for the diagnosis of bladder cancers are computed 
tomography (CT), magnetic resonance imaging (MRI), and ultrasound [37]. CT has been 
successful in imaging of bladder cancer and has advantages of being less invasive than 
cystoscopy. While sensitivity of CT was found to be as high as 95–99%, it fell short in specificity 
(~83%), with false positive results in detection of bladder cancer [38]. A combination of CT with 
cystoscopy improves diagnosis of bladder cancer to 100% with 94% specificity [38].  MRI, while 
not often used for diagnosis of bladder cancer, is an excellent imaging method to stage bladder 
cancer.[39] Staging accuracy for differentiation between invasive versus superficial bladder 
cancers was improved to 85% [40]. Sensitivity of ultrasound is around 72%, and that can be 
further improved by contrast-enhanced ultrasound with sensitivity of 88%; however, detection of 
tumors less than 5 mm diameter is only 20% [41].  

After cystoscopy, the obtained biopsy sample is histologically evaluated for confirmation, 
grading, and staging of bladder cancer (reviewed in by Sul et al.) [42]. The classic 
tumor/node/metastasis (TNM) staging method (Table 1.1)[9, 43] involves evaluating the 
condition of the tumor and if it has invaded surrounding tissue (T), lymph node involvement (N), 
and metastasis (M) [43]. When the tumor is present on the epithelial layer and has not breached 
the basement membrane into the surrounding muscle tissue, it is referred to as a non-invasive 
superficial tumor, or carcinoma-in-situ [6, 44]. When tumor cells breach the basement 
membrane and invade the muscle tissue surrounding the bladder and other organs, it is referred 
to as invasive TCC[6, 45] and is associated with a poor prognosis [6]. While the five-year 
survival rate of patients diagnosed with the early stages of bladder cancer is 69.2%, the survival 
rate drops drastically to only 5.5% for patients diagnosed with metastatic bladder cancer [46].   
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Current Treatment Options for Bladder Cancer 
Treatment of bladder cancer depends on the level of invasion and metastasis of the 

tumor and is divided into two distinct categories: superficial bladder cancer and invasive bladder 
cancer.  

Superficial bladder cancer is well managed by transurethral resection (TUR), followed by 
intravenous or intravesical (directly into the bladder) administration of chemotherapeutic 
treatment, such as mitomycin, epirubicin, or doxorubicin [47-49]. This combination therapy is 
extremely important due to the high rates of bladder cancer recurrence [6]. The intravesical 
injection of bacillus Calmette-Guérin (BCG), as adjuvant immunotherapy, activates the immune 
system in the patient and greatly increases progression-free survival rates [49, 50]. 
Management and treatment for patients with muscle invasive bladder cancer is usually a radical 
cystectomy (removal of whole bladder) and possibly removal of surrounding organs, like lymph 
nodes; prostate and seminal vesicles in men; and the uterus, ovaries, and part of the vagina in 
women.[6] Radical cystectomy is usually followed by adjuvant therapy, such as chemotherapy 
and radiation therapy. Chemotherapy protocols without radiation include several options, such 
as cisplatin alone, cisplatin with 5-flourouracil, or mitomycin with 5-flourouracil [51]. 
Chemotherapy protocols in conjunction with radiation include gemcitabine with cisplatin; the 
MVAC protocol, which includes methotrexate, vinblastine, doxorubicin (Adriamycin), and 
cisplatin; or a combination of carboplatin with either paclitaxel or docetaxel [51]. Recently, 
Kanatani and colleagues have shown that cisplatin-based adjuvant therapy, including MVAC, 
greatly increases median survival time (MST) in patients with node-positive bladder cancer, 
while increasing body mass index (BMI), a marker of health. On the other hand, it was noted 
that cisplatin-based therapy had poor tolerance, and the dose must be lowered for many 
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patients who experienced side effects [52]. Because side effects of therapy can be intolerable 
for some patients, research and development into targeted therapies that have fewer side 
effects and will increase survival is warranted. More information on treatment options of bladder 
cancer can be found in a review by Carballidoet al., 2014 [53]. 

Molecular Targets of Bladder Cancer 
In order to develop proper targeted therapy for any cancer, the molecular targets that 

drive the cancers need be well understood.  Like other types of cancers, bladder cancer 
development is a multistage process beginning with initiation, promotion, and progression [54, 
55]. In colorectal cancer progression, the loss of tumor suppressor APC is common in the early 
stages of cancer (initiation/promotion), while the loss of tumor suppressor BRCA1 or BRCA2 is 
common in ovarian and breast cancers [56, 57]. The multistage process of carcinogenesis is no 
different in bladder TCC, but TCC has its own unique pathways/genes that are commonly 
altered [58-60]. In 2014, the Genome Atlas Research Network (TCGA) published a study that 
not only outlined genome, transcriptome, and mutational data, but also correlated many 
molecular events to specific stages and prognosis of patients in 131 urothelial carcinomas [59].  

  

p53 and pRb Pathways in Regulation of Cell Cycle of Bladder Cancer  
As the cell undergoes stress with induction of DNA damage, the p53 protein is activated 

and localizes to the nucleus, where it functions as a transcription factor. The p53 protein 
controls cell cycle arrest genes, such as p21 and p16, as well as pro-apoptotic proteins, such as 
Bax.[61]  The p21 and p16 proteins are cyclin-dependent kinase (CDK) inhibitors that prevent 
the downstream phosphorylation of retinoblastoma protein (pRb). The un-phosphorylated pRb 
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inhibits progression from the G1 to S phase of the cell cycle [62]. The p53 protein is a tumor 
suppressor, and the gene coding for p53 is mutated in over 50% of all cancers [63]. The p53 
pathway is disrupted in invasive bladder cancer and has been correlated to poor clinical 
outcome, progression to invasive from non-invasive bladder cancer, and resistance to radiation 
therapy [64-67]. The TCGA network found that the p53/pRb pathway is altered in 93% of 
patients whose genome was sequenced [59]. In many aggressive bladder cancers, the p53 
gene is mutated, overexpressed, and highly localized to the nucleus, where it is rapidly 
degraded [64]. Further progression indicates loss of function of pRb as well as loss of 
expression of tumor suppressor genes p21 and p16 [67, 68]. While p16 and p21 are within the 
p53 pathway, their expression can be dependent or independent on p53 [67, 69]. The most 
interesting feature of this pathway in bladder cancer is that loss of function of expression of p53, 
p21, pRb, and p16 proteins appear to have an additive negative prognostic effect, suggesting 
that more than one linear pathway is responsible [67].  Other pathway genes that underwent 
alterations include ATM (activator of p53), MDM2 (inhibitor of p53), EF2A (target of pRb), and 
FBXW7 (ubiquitin kinase of cyclin E) [59].  

While the alterations in the p53/pRb pathway have been clearly characterized, new 
sequencing data reveal other possible drug targets. For example, in one study, the p16 coding 
gene had an altered copy number in 46% of tested tumor samples [59]. Many possible drug 
targets have been identified within the pRb pathway, but because multiple alterations have an 
additive effect in one pathway, it is vital to study and develop drugs that act independent of the 
p53 pathway. This approach, if successful, will allow better treatment of patients with more 
invasive bladder cancer and perhaps circumvent it altogether. It is also important to study the in 
vitro effects of drugs on UC cell lines that have mutated p53 and altered expression of p21, p16, 
and pRb. Both T24 cell lines and UMUC3 cell lines contain mutated p53 genes [65]. T24 cells 
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have an in-frame deletion of Y126, while UMUC3 cells have two mutations consisting of R72P 
and F113C [65, 70]. It is important to note that the T24 and UMUC3 cell lines each have a 
mutation that is within the DNA binding domain of p53 protein, which has been shown to be a 
mutational hot spot in many cancers [71]. The 126 and 113 residues of p53 are both close to the 
K120 residue, which has been shown to be a contact site interacting with the major groove of 
specific DNA sequences [72]. suggesting that the mutant p53 protein of T24 and UMUC3 cell 
lines have a similar level of dysfunction. Furthermore, the UMUC3 cell line has an additional 
mutation that is within the proline-rich domain, which lies between the transactivation domain 
and the DNA binding domain [73]. At the same time, both T24 and UMUC3 cell lines have been 
shown to be more resistant to radiation therapy when compared to cell lines containing a wild 
type version of the p53 gene [70]. Recently, Zhu and colleagues have shown that silencing of 
mutant p53 in T24 cell lines inhibited cell growth, induced apoptosis through caspase activation, 
and lowered the expression of cyclins A and B1. Lowering the expression of mutant p53 also 
sensitized bladder cancer cells to chemotherapeutic drugs [66]. Another study showed that a 
mutant p53 protein can activate oncogenic proteins such as GEF-H1 at the transcription level in 
osteosarcoma cell lines and increase cell proliferation [74]. On the other hand, mutant p53 
proteins have been shown to be activated by small molecule drugs such as PRIMA-1 and are 
able to induce apoptosis in bladder cancer cells including T24 similar to the wild type protein 
[75].  

While circumventing the p53 pathway has proven difficult, drugs like doxorubicin have 
been shown to function in both a p53-dependent and -independent manner, which warrants 
further study on the efficacy of Dox and p53 pathway status [76]. Because p53 is often 
accumulated inside neoplastic cells, it undergoes proteolysis and is processed to be expressed 
on the cell surface with human major histocompatibility complex HLA-A2.[77] ALT-801, a drug 
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currently in clinical studies, targets this unique surface representation of p53 peptide 264-272 
with the HLA-A2 complex by an antibody linked to interleukin-2, which is capable of recruiting 
cytotoxic T-lymphocytes selectively to tumors[78] (Table 1.2). Another method of targeting cell 
cycle abnormalities in bladder cancer is to use a nonspecific, anti-mitotic or anti DNA-synthesis 
chemotherapeutic agent. Cisplatin-based therapies, including MVAC, have been extremely 
successful in the past [79]. Several anti-cell cycle drugs, such as amrubicin–a derivative of the 
popular drug doxorubicin, are being researched to treat bladder cancer (Table 1.2).  
 

Receptor Tyrosine Kinase Signaling Pathways in Bladder Cancer 
Receptor tyrosine kinase (RTK) pathways are commonly activated in earlier stage 

bladder cancer. RTKs are often deregulated in various types of cancers, and one major 
hallmark of malignancy is RTK independence from growth factors by amplification or an 
activating mutation [80]. In bladder cancer, the altered RTKs include, but are not limited to, 
EGFR, ERbB2, ERbB3 and FGFR3 [59]. The downstream activators of RTKs are MAPKs and 
PI3K/AKT, which lead to the activation of many downstream products that induce cell 
proliferation.  

In non-invasive bladder cancer, it is common to find a mutation of the fibroblast growth 
factor receptor 3 (FGFR3) gene, or less commonly, a direct mutation of RAS itself [69, 81, 82]. 
While mutation of the p53 tumor suppressor gene is very common in invasive bladder cancer, 
mutated FGFR3 and p53 are rarely found together [69, 81]. This may indicate two different 
models of initiation of bladder cancer, one leading to a far less aggressive cancer than the 
other. In another scenario, mTOR, a downstream target of AKT, has been linked to poor 
prognosis in bladder cancer patients with increased mortality [83]. One major obstacle is to 
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determine which gene alterations in the tyrosine kinase pathway are associated with transition 
to a more invasive bladder cancer and select better drug targets for patients with recurrent or 
invasive bladder cancer. Another important consideration is the ability to select good candidate 
patients for therapies targeting various parts of the RTK pathways. As FGFR3 alterations are 
often associated with non-invasive and non-recurrent bladder cancer, HER2 and EGFR 
alterations are associated with poor prognosis and more invasive bladder cancers [84-86]. 
While these findings suggest that certain tyrosine kinase receptors may prove to be a valuable 
target for cancer therapy, each of them are over-expressed in a small subset of cancers. For 
example, a meta-analysis of 2,242 patients in nine separate studies showed that the incidence 
of ERbB2-positive (over-expressing) cancers ranged from 27.8 to 85.2%, with the pooled 
average of ERbB2-positive cancers at 41.2% [86]. 

Another important RTK family protein is VEGFR and its ligands, which play an important 
role in angiogenesis, as well as cell survival and proliferation. Both VEGFR1 and VEGFR2 are 
over-expressed in bladder cancers, and bladder cancers express the VEGF ligand for new 
blood vessel formation [87]. Currently, there are a number of ongoing studies sponsored by the 
National Cancer Institute (NCI) targeting TKRs in bladder cancer (Table 1.2). Receptor tyrosine 
kinase inhibitors function by inhibiting the receptor, as in the case of afatinib, which targets both 
EGFR and ERbB2 and has shown much promise by sensitizing murine bladder cancers to 
radiation [88]. Bevacizumab, an antibody that binds to VEGF-A and inhibits its interaction with 
VEGFR, is currently under investigation as novel therapy for bladder cancer and renal cancers 
[89]. 

Downstream of RTKs are cascades of signaling pathways, including the PI3K/AKT 
pathway. The PI3K/AKT pathway has been greatly implicated in the progression of bladder 
cancer. The ligand binds to RTK protein and is followed by self-phosphorylation of RTK and 
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downstream activation of PI3K through the phosphorylation of the p85 subunit. The PI3K 
complex is responsible for the conversion of phosphatidylinositol 4,5 bisphosphate (PIP2) to 
phosphatidylinositol 3,4,5 trisphosphate (PIP3). PIP3 induces AKT activation by phosphorylation 
at the Tyr308 residue and in turn, AKT phosphorylates AMPK as well as several other target 
proteins. Downstream of MAPK, through the inhibition of TSC1/2 by AKT, mTOR is activated 
and induces cell growth, survival, and further resistance to apoptosis [90]. A negative regulator 
of the PI3K/AKT pathway is the tumor suppressor gene PTEN, which is responsible for reverting 
PIP3 to PIP2 [91]. The inactivation of PTEN carries a poor prognosis in bladder cancer patients 
and this poor prognosis is further increased with the loss of p53, this linking the p53, linking the 
p53 cell cycle pathway to the PI3K/AKT/mTOR pathway and suggesting the two pathways may 
work in combination to progress clinical bladder cancer [91, 92]. One interesting feature about 
the PI3K/AKT/mTOR pathway is that while it has been found to be altered in 72% of cancers, 
the alternations tend to be mutually exclusive, suggesting that altering only one gene in the 
pathway is enough to activate the downstream signaling cascade needed for enhanced 
tumorigenesis [59]. For example, mutations in PI3K subunit PI3KCA, AKT3, and TSC1 were 
almost never found in the same tumor sample [59]. Due to the variance and mutual exclusivity 
of these alterations, it will be extremely important to screen patients using genetic tests, as well 
as expression profiles, in order to better predict which patients are good candidates for the 
therapy targeting the specific proteins of the PI3K pathway. This makes the downstream target, 
mTOR, a valuable drug target for bladder cancer treatment. Drugs currently being researched 
by NCI-sponsored trials include rapamycin, albumin-bound rapamycin, and everolimus. One 
setback with using mTOR inhibitors such as rapamycin is that only the mTORC1 complex is 
sensitive to the drug, while the assembly of mTORC2 appears to be resistant. mTORC2 can 
phosphorylate AKT at the Ser473 residue and thus induce the AKT signaling cascade and still 
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increase mTOR activation; through this feedback loop, cancer cells can develop resistance to 
mTOR-targeting therapies [93]. New drugs like everolimus inhibit the assembly of both 
mTORC1 and mTORC2, thus providing a new tool to inhibit the PI3K/AKT/mTOR pathway [94]. 

As bladder cancer progresses, more pathways are activated in order to facilitate 
survival, invasion, and metastasis. In bladder cancer, angiogenesis, measured by micro vessel 
density (MVD), has proven to be an independent prognostic indicator when it comes to survival 
and, in some cases, staging [60, 95]. One of the main pathways activated in angiogenesis is the 
vascular endothelial growth factor (VEGF) pathway which is directly regulated by hypoxia [60, 
95, 96]. When cells are depleted of oxygen, hypoxia-induced factor 1 and 2 (HIF-1 and HIF-2) 
are stabilized on the protein level [96]. HIF-1 and HIF-2 are transcription factors that directly 
upregulate VEGF expression [96]. Another way to increase VEGF expression is activation of the 
epidermal growth factor receptor (EGFR) [97]. Basic fibroblast growth factor (bFGF) is another 
angiogenic protein and has been shown to be an important prognostic marker in bladder cancer 
[98]. The regulation of bFGF expression is increased upon the activation of the protein kinase C 
(PKC) pathway, which is activated in most cancers by increasing cAMP concentration due to 
hypoxia and low energy levels [99]. Inflammation in the cancer site and release of inflammatory 
signals such as interleukin-8 (IL-8) work as chemo-attractants and also recruit blood vessel 
growth at the site inflammation [100, 101]. The p53 tumor suppressor, which is altered in many 
bladder cancers, has also been linked to angiogenesis [60]. 

 

Role of the Immune System in Bladder Cancer 
Treatment of bladder cancer has had a long history with immunotherapy in order to 

activate the immune system to target cancer cells. The use of BCG, injected directly into the 
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bladder as an adjuvant to chemotherapeutic agents, has been used for over three decades 
[102]. Evasion of the immune system is a well-established hallmark of malignancy and thus, 
increasing the efficacy of the immune system in bladder cancer has been an active area of 
research [80]. There are two major approaches in targeting the immune system as an anti-
cancer therapy. The first approach is to activate the immune system against the tumor by 
blocking or inhibiting negative regulators. The second approach is to increase the immune 
response by using agonist cytokines. Programmed death ligand 1 (PDL1), along with its 
receptor programmed death 1 (PD1), have been implicated as one of the mechanisms cancer 
cells use to suppress immune response. PD1 is expressed on T-cells and is a negative 
regulator of T-cell response, while PDL-1 is overexpressed by various types of cancer in order 
to suppress the immune response in the tumor environment. Tumor-infiltrating T-cells express 
high levels of PD1 and therefore are very sensitive to negative regulation by PDL-1 [103]. 
Several drugs target the PD1/PDL1 interaction, including MPDL3280A, pembrolizumab, and 
MEDI4736 (Table 1.2). For example, MK-3745, also known as pembrolizumab, is an antibody 
raised against the PD-1 receptor and blocks the PD1 to PDL1 interaction [104]. On the other 
hand, MEDI4736 and MPDL3280A are antibodies against the actual PDL1 ligand antibody 
which block the interaction between PD-1 and PDL1 [105, 106].  

Another negative regulator of the immune system is the CTLA-4 antigen, which is highly 
expressed on regulatory T-cells and serves to disrupt the cytotoxic T-cell response [107]. 
Blocking antibodies of CTLA-4, including tremelimumab and ipilimumab, are currently under 
investigation to treat bladder cancer (Table 1.2). While studies using anti-CTLA-4 antibodies for 
bladder cancer are relatively new, both tremelimumab and ipilimumab have been effective in the 
treatment of lymphoma patients. Tremelimumab increases memory T-cell proliferation in 
lymphoma patients, thus potentiating a better immune response against cancer [108]. 
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Ipilimumab in combination with GP100 has increased the mean survival time of melanoma 
patients from an average of 6.4 months to an average of 10 months (p value <0.001) [109, 110]. 
In renal cell convergence carcinoma, ipilimumab increased regression of the tumor in patients 
who previously did not respond to IL-2 immunotherapy; however, 14% of patients experienced 
very high toxicity [111]. 

Activation of the immune response against cancer in the form of immunization has been 
intensively studied. In animal models, such as dogs, cancer-specific antigens were targeted with 
promising results. An Ad/HER2/Neu dendritic vaccine, which targets ERbB2, is currently being 
studied for treatment of bladder cancer (Table 1.2.)  It is vital to test for positive expression of 
ERbB2 prior to treatment because it has been shown that ERbB2 is altered in 12% of bladder 
cancer patients either by mutation or copy number amplification, making it a target for a very 
small subset of patients [59]. Another approach in activating the immune system against cancer 
is to use drugs such as ALT801, an IL-2-based immunotherapy, or ALT803, an IL-15-based 
immunotherapy (Table 1.2). These cytokines are agonists to immune response. IL-2 and IL-15 
work by recruiting more cytotoxic T-lymphocytes to the tumor and helping convert naïve T-cells 
to effector cytotoxic T-lymphocytes [112, 113]. As mentioned earlier, ALT801 targets the p53-
HLA-A2 complex, thus both targeting a defective p53 pathway while activating the immune 
response to the tumor [78]. 

Role of the Other Molecular Targets and Signaling Pathways  
Heat shock proteins (HSP) have been shown to affect cancer by stabilizing oncogenic 

proteins as well as eliciting self-recognition (negative regulatory immune response) and have 
been observed to be overexpressed in various cancers [114, 115]. For example, HSP90 has 
been shown to stabilize RAF-mutated protein, which is downstream of RAS, activates the RAS-
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ERK pathway in cancer cells, and can also activate the PI3K pathway mentioned earlier [116]. 
HSP27 has been shown to modulate p53 signaling by inhibiting the induction of p21, causing 
resistance to doxorubicin therapy in human breast cancer cells [117]. Ganetespib and OGX-427 
are being researched to better treat bladder cancer. Ganetespib, an HSP90 inhibitor, has shown 
much promise in previous studies in lung cancer and has increased efficacy of other therapies 
while being well tolerated and showing low toxicity in cancer patients [118, 119]. OGX-427, an 
antisense oligonucleotide-based therapy against HSP27, has been shown to be effective 
against the bladder cancer cell line UMUC-3 by increasing activation of the caspase cascade, 
increasing efficacy of paclitaxel, and slowing tumor growth in a xenograft model [120]. 

Epigenetics have been known to play an important role in cancer for the past two 
decades. Hypermethylation of the promoter regions coding tumor suppressor genes, such as 
p14, p16, and APC, are often detected in bladder cancers [121]. Genetic profiling recently 
revealed that 89% of bladder cancers contain altered histone modification pathways and 64% of 
cancers contain alterations in the SWI/SNF complex, which is responsible for chromatin 
remodeling in order to turn on or turn off transcription [59]. Romidepsin, a histone deacetylase 
inhibitor, as well as 5-fluoro-2-deoxycytidine in combination with tetrahydrouridine, are being 
studied for bladder cancer to inhibit DNA methylation and deamination [122, 123]. Recently, the 
histone deacetylase inhibitor AR-42 has shown promise in combination with cisplatin in treating 
bladder cancer in the mouse model. It was also shown that AR-42, when combined with 
cisplatin, can be an effective treatment on stem cell populations in vitro [124]. 

Epithelial to mesenchymal transition (EMT) has been shown to play an important role in 
invasion and metastasis. In order for cells to migrate from the primary site to a secondary site, 
they must exhibit plasticity to adapt to new environments, excrete more extra-cellular matrix, 
and acquire further drug resistance [125]. Altered integrin expression can facilitate EMT by 
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increasing the expression of mesenchymal genes, while decreasing the expression of epithelial 
genes [126]. Integrin proteins not only change how cells interact with the ECM, but integrins can 
also trigger signal transduction pathways such as the AKT signaling pathway [127]. It has been 
shown that the αV group of integrins are expressed in metastatic bladder cancer in a 
stage/grade-dependent manner [128]. Several approaches to target integrins are under 
development in treatments for bladder cancer. Because integrins interact with specific ECM 
components with different affinity, an Arg-Gly-Asp peptide was synthesized to bind αVB3 and 
αVB5 integrins and was inserted into the fiber protein to facilitate adenovirus infection. The Arg-
Gly-Asp motif increased transfection efficiency of bladder cancer cells with the adenovirus and 
will perhaps lead to further advances in oncolytic viral research for bladder cancer [129]. 
GLPG0187, a small molecule integrin agonist, has been shown to decrease migration and 
invasion in bladder cancer cells and has also been shown to decrease tumor burden in the 
mouse xenograft model using UMUC3 bladder cancer cells [130]. Change in integrin structure 
may also play a role in EMT. Integrin α3β1 has been shown to be abnormally glycosylated in 
bladder cancer cells, thus increasing its interaction with CD9 [131].  A recently developed 
antibody against integrin α3β1, BCMab1, has been shown to play a prognostic role in 
immunohistochemistry of bladder cancer patients: patients with weaker staining by BCMab1 
exhibited longer survival than the patients with stronger staining. At the same time, BCMab1 has 
shown anti-tumor activity through natural killer T-cell and macrophage recruitment in vitro and 
reduced tumor burden in a mouse xenograft model in vivo [132]. 

In recent years, inflammation has become a popular target in the treatment of bladder 
cancer, as have anti-inflammatory drugs such as piroxicam to increase the efficacy of 
chemotherapy [101]. COX-2 has been shown to be overexpressed in many cancers, including 
TCC [133]. In a dog model, the inflammatory protein COX-2 is being actively studied to detect 
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bladder tumors in vivo during cystoscopy. Inhibition of the COX-2 signaling pathway may 
increase the efficacy of other treatments, including masitinib (AB1010, Paris, France) [35, 101, 
134]. Perinuclear localization of COX-2 has been associated with bladder cancer cells 
expressing stem-cell like markers, including OCT 3/4 and CD44v6. COX-2-driven inflammation 
helps to drive proliferation of cancer stem cells [135]. 

 

Cancer Stem Cells of Bladder Cancer   
Other studies of bladder cancer have suggested a new approach in treatment by 

targeting tumor initiating cells (TIC) or cancer stem cells (CSC).  CSCs are cancer cells with 
unique properties such as self-renewal, tumor regenerating properties, and drug-resistance 
[136]. A subpopulation of CSCs have been isolated from various cancers, including bladder 
cancer tumors [137]. It has been reported that STAT3 activation is required for the acquisition of 
CSC-like properties in breast cancer [138]. It has also been reported that bladder cancer basal 
cells, which exhibit CSC-like properties, closely resemble breast cancer basal cells, which also 
exhibit CSC-like properties [139]. A novel small molecule inhibitor of STAT3, BBI608, is 
currently being studied in human bladder cancer patients in an NCI-sponsored study. 
Chemotherapy can actually cause a selective increase of CSC in some tumors. In a pancreatic 
cancer xenograft model, gemcitabine, while inducing an anti-cancer response initially, attributed 
to an increase in CSCs and induced a larger tumor load in the animal than the control 15 days 
after the drug was discontinued. On the other hand, BBI608 showed a lower tumor load when 
compared to both control and gemcitabine 15 days after drug treatment was discontinued [140]. 
Gemcitabine and cisplatin induce COX-2 expression in bladder cancer cells and increase 
downstream expression of prostaglandin 2 (PGE-2). PGE-2 from apoptotic cells can induce 
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CSC-like characteristics in neighboring cells. Inhibition of COX-2 by celecoxib inhibited 
repopulation of bladder cells after several gemcitabine and cisplatin treatments and reduced 
CSC-like characteristics in neighboring cells [141],[142].   

Animal Models of Bladder Cancer 

Rodent models of bladder cancer 
Numerous experimental rodent models of bladder cancer have been established and 

characterized to study epidemiology and carcinogenesis of bladder cancer [143]. Bladder 
cancer models in rodents can be chemically-induced, genetically engineered, or transplantable 
[143]. 

The most commonly used carcinogens to induce bladder cancer in mice are N-butyl-N-
(4-hydroxybutyl) nitrosamine (BBN), N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide (FANFT), and 
N-methyl-N-nitosurea (MNU).[144] BBN via drinking water, diet, or gastric intubation induces 
bladder tumors in mice [145, 146]. Mice exposed to BNN develop nodular invasive carcinoma 
preceded by carcinoma-in-situ, and rats develop polypoid exophytic cancers with late muscle 
invasion [146].  Rodent bladder tumors induced by BBN mirror their human counterparts 
histologically and genetically [147]. In a study comparing mRNA and protein levels of the rodent 
bladder cancer model with human bladder cancer, there were concordant changes in several 
genes/proteins, demonstrating that the bladder cancer model induced by BBN is a powerfully 
reliable study tool [148]. These rodent models provide useful information concerning the risk of 
chemical exposure and bladder cancer; however, they have limitations due to low-grade tumors 
and low rates of metastasis [149]. Also, tumor induction and progression takes time and is 
dependent on carcinogen and dosage. 
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Transgenic mice or genetically engineered mice (GEM) are generated by cloning 
oncogenes or by deletion of tumor-suppressing genes, individually or in combination [143]. GEM 
models have provided increasing insight on the role of numerous genes like HRAS,[150] 
p53,[92] pRB,[151] and PTEN,[92] and receptors such as FGFR[82] and epidermal growth 
factor receptor[152] in the development of bladder cancer. With target genes switched on or off, 
GEM are ideal for studying single or multiple gene functions, but this model may not fully reflect 
the genetic alterations in natural human tumorigenesis as it involves the deregulation of multiple 
signaling pathways [143]. Cancer cells in these models are less heterogeneous than human 
bladder cancer,[153] and GEM are usually not used to test the efficacy of novel therapeutic or 
preventive agents [143].  

Xenogeneic models involve the implantation of human bladder cancer cells into an 
immune-deficient mouse. Various commercially available TCC cell line, like KU7, KU-19–19, 
T24, UM-UC1, UM-UC3 and UM-UC13, have been used to developed tumors in 
immunodeficient mice [153]. A major disadvantage of this technique is that the immune 
response, which is an important factor regulating tumor growth, cannot be assessed because of 
the immunodeficient nature of the host [144]. Syngeneic models, in contrast to xenogeneic 
models, are established by inoculating rodent bladder cancer to syngeneic, immunocompetent 
animals [143]. The commonly used rodent bladder cancer cell lines for syngeneic modeling are 
AY-27, MBT-2, and MB49 [143]. Tumors induced by this model are of rodent and not human 
origin, and therefore various characteristics, including tumor growth, latency, growth rate, 
invasion, and metastasis, may be different from their human counterparts [154] [155].  

Based on whether the inoculation site is in the target organ, xenogeneic and syngeneic 
models could be further divided into orthotopic and heterotopic models. In orthotopic models, 
inoculation is done at the primary site from which the tumor lines were derived [156]. These 



24 
 

tumors mimic human bladder cancer behavior more closely, since the microenvironment is 
closer to natural conditions [143]. The disadvantages of the orthotopic human tumor xenograft 
model are that the surgeries are often complex, leading to the use of low numbers of mice per 
study [153]. 

In heterotopic models, the graft is not transplanted at the original site, but is usually 
subcutaneously placed in the flank or hind leg of the animal. This process is technically simple, 
and the tumor can be easily and non-invasively detected; subcutaneous bladder tumor models 
have been widely used in assessing the efficacy of novel therapeutic agents [156]. However, as 
the inoculation site is different from the original tumor site, the alteration of the tumor 
microenvironment may significantly affect the biological behavior of tumor growth and 
metastasis, genetic expression, or the efficacy of anti-proliferative agents [157]. 

A mouse model has several advantages, including small size, short gestation, 
inexpensive maintenance, and easy manipulation of gene expression [158]. However, the 
average rate of successful translation from mouse model to clinical cancer trials is less than 8% 
[159]. Also, a mouse model can tolerate higher drug concentrations than human patients. 
Considering the vast species differences between mice and humans, it is important to use other 
animal models, such as companion dogs with naturally occurring bladder cancer, to study 
human disease [158]. 

 

Canine Models of Bladder cancer 
Urinary bladder cancer is an uncommon type of cancer in dogs (less than 2% of all 

canine malignancies);[160] however, 97% of diagnosed bladder tumors in dogs are malignant 
[35]. Bladder canine TCC is the most common neoplasm affecting the urinary tract of dogs 
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[161]. Risk factors that have been identified include exposure to insecticides,[162] and 
cyclophosphamides [163]. The male-to-female ratio of dogs with TCC has been reported to 
range from 1.71:1 to 1.95:1, with increased risk after spaying and neutering [164, 165]. Scottish 
terriers have a strong breed-associated risk factor for the disease [166]. In addition to 
spontaneous TCC, bladder tumors can be experimentally induced in dogs in a laboratory setting 
with chemical carcinogens such as N-butyl-n-(4-hydroxybutyl)-nitrosamine [167]. 

TCC typically occurs in older dogs ranging from 9 to 11 years of age [168]. Clinical 
staging of canine bladder cancer is performed with complete physical examination, radiography 
of the thorax and abdomen, and imaging of the bladder using contrast cystography, 
ultrasonography, or computed tomography [161]. The TNM classification scheme for canine 
urinary bladder cancer has been defined by the World Health Organization and is much like the 
staging system used for human cancers [169]. Each TNM stage in further divided into 
substages, as shown in Table 1.1 [169]. 

Treatment options on TCC in dogs include surgery, radiation therapy, chemotherapy and 
other drugs, and combinations of these treatments. The surgical complete cystectomy, although 
it may be routine in human bladder cancer patients, has not been attempted to any extent in the 
dog. Canine TCC is difficult to remove surgically because of the trigonal location of the tumor, 
frequency of urethral involvement, and metastases in 20% or more of dogs at the time of 
diagnosis [161, 168]. Radiation therapy is not routinely used to treat canine TCC due to various 
side effects, including pollakiuria, urinary incontinence, cystitis, stranguria, and hydronephrosis 
[170]. Chemotherapy drugs used in canine TCC include cisplatin, carboplatin, mitoxantrone, 
adriamycin, and actinomycin D as single agents.[166] Various combination therapies have also 
been used. Other treatment options include non-steroidal anti-inflammatory drugs (NSAIDs) like 
piroxicam as a single agent [171] or in combination with chemotherapy drugs [172, 173]. 
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Naturally occurring bladder cancer in dogs very closely mimics human invasive bladder 
cancer, specifically high-grade invasive TCC, in cellular and molecular features; biological 
behavior, including sites and frequency of metastasis; and response to therapy. Incidence of 
TCC in both humans and dogs is 2% of all cancers [174]. TCC occurs in older dogs at average 
age of 11 years, which is equivalent to 60 years in humans [175]. Both human and canine TCCs 
have similar risk factors, including exposure to various chemicals, such as insecticides and 
aromatic hydrocarbons [162, 176]. 

Histopathology of canine TCC is similar to human bladder cancer, with invasive TCC of 
intermediate to high grade existing in both species [161, 176]. Distant metastasis have been 
reported in 15–20% of dogs diagnosed with TCC,[165] which is similar to humans, in which 
metastasis occurs in 5–20% of patients [176]. The sites involved in metastasis are also similar 
between dogs and humans and include lymph nodes, lungs, bones, liver, and kidneys [168]. 
Various similarities in cellular and molecular levels in canine and human TCC have been 
studied so far, including similar lipidomic profiling in both species [177]. Both human and canine 
TCC have shown over-expression of COX-2 in tumor tissue [178, 179]. Platinum-based 
chemotherapies are considered the most active agent in treatment of TCC in both species [165, 
176]. The main difference between TCC in dogs and humans is sex predilection: in humans, 
TCC is twice as common in males than in females,[180] whereas in dogs, it is less common in 
males, with a 2:1 ratio in favor of female dogs [164]. The location distribution of TCC in humans 
is more balanced across areas of the bladder,[181] but dogs have trigonal disease with 
extension down the urethra [165].  

Dogs diagnosed with spontaneous tumors offer a unique model to study bladder cancer 
development and detection, as well as evaluation of new therapies [158]. Dogs offer an 
exceptional opportunity to study potential genetic and environmental risk factors for TCC and 
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develop early detection and intervention strategies. Development of new treatment options and 
their study in the dog model can provide translational value to ultimately help develop better 
drugs for people with TCC. Single agent NSAIDs like piroxicam, deracoxib, and firocoxib have 
shown positive results in treating dog TCC;[165] further translation of this treatment option to 
humans is an obvious next step. A pilot study has shown positive results in treatment of human 
TCC using the NSAID celecoxib [182]. Folate-targeted therapy has been used for treatment of 
several forms of human cancers, including ovarian and lung cancer [183]. Recently, a dog study 
was conducted to determine the potential role of folate-targeted therapy in treatment of canine 
TCC [184]. Further epigenetic-based therapy using 5-azacitidine has been tested to treat canine 
TCC [185]. Metronomic chemotherapy, based on frequent and repetitive treatment with low-
dose chemotherapeutic drugs to delay the progression of cancer,[186] has been recently used 
to treat canine TCC [187]. The positive outcome of this trial can help inform future investigations 
into new treatment options for human TCCs. Dogs have also been recently used in molecular 
imaging of TCC. Fluorocoxib A, a COX-2-specific inhibitor conjugated with rhodamine,[188] has 
shown to specifically detect COX-2-expressing TCC cells in vitro and in dogs during cystoscopy 
in vivo, but was not detected in normal urothelium [35, 189]. 

Spontaneously occurring TCC in dogs share molecular and clinical characteristics with 
human cancers [158]. Use of canine models can lead to better understanding and new 
therapeutic development for treatment of human TCC. Primary K9TCC cell lines are currently 
available and can also help in the study of various drugs in vitro before clinical trials. Currently, 
only limited canine TCC cell lines are available for research use [190, 191]. Therefore, utilizing 
the dog model in TCC research can benefit animal and human disease. 
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Conclusions 
With increasing knowledge of specific pathways activated or altered in bladder cancer, 

an increasing number of new, promising therapies are on the horizon. In the future, it will be 
extremely important to test patients for personalized therapies because these therapies target 
only a small subset of patients. This pathway knowledge will also increase the knowledge base 
of potential drug targets for new and exciting drug development.  
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PTEN: Phosphatase and tensin homolog; RAF: rapidly accelerated fibrosarcoma (a family of 
serine/threonine kinases); RAS: rat sarcoma viral oncogene homolog (a family GTPase 
proteins); TCC: transitional cell carcinoma; TCGA: the cancer genome atlas; TKR: tyrosine 
kinase receptor; TNM: a method of tumor staging (Tumor, Node and Metastasis); TSC1/2: 
tuberous sclerosis 1/2 tumor suppressor proteins; TUR: transurothelial resection; UC: urothelial 
cancer; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial growth factor 
receptor. 
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Appendix 
Table 1.1 Clinical Staging of TCC 
 

Stage Tumor (T) 
Lymph Node Involvment 
(N) 

Metastisis 
(M) 

Stage 
0a 

Ta - Non-invasive 
papillary carcinoma 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

Stage 
0is Tis- carcinoma in situ 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

Stage I T1 - Tumor has grown 
into connective tissue 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

Stage 
II 

T2a- Tumor has grown 
into inner half of muscle 
layer 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

  
T2b- Has has grown into 
outer half of muscle layer 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 
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Table 1.1 Continued 
Stage Tumor (T) Lymph Node Involvment (N) Metastisis 

(M) 
 

Stage 
III 

T3a - Microscopic 
invasion of surrounding 
fatty tissue 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

  
T3b - Macroscopically 
detectable invasion of 
surrounding fatty tissue  

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

  
T4a- Tumor spread into 
prostate (men) and 
uterus (women) 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

Stage 
IV 

T4b - Tumor has grown 
into pelvic or abdominal 
wall 

N0 - No lymph node 
involvement 

M0 - No 
signs of 
metastasis 

  Any T 
N1-3 -  Lymph node 
involvement in proximal or 
distal lymph nodes 

M0 - No 
signs of 
metastasis 

  Any T 
Any N- Any lymph node 
involvement 

M1 - 
Metastasis 
is present 

Notes: According to AJCC 
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Table 1.2: Overview of clinical trials for bladder TCC. 

Target Pathway Drug Mechanism/Target 
Trial 

Phase Reference 
     

Tyrosine Kinase Bevacizumab 
VEGF-A 
binding/inhibition III  [1] 

 Ziv-Aflibercept [2] 
VEGF binding/inhibiting 
agent I  [2] 

 Cabozantinib  VEGFR-2 Inhibitor II  [3] 

 Pazopanib 
Inhibitor of several 
tyrosine kinases II  [4] 

 Tamoxifen 
Anatagonist of Estrogen 
Receptors II  [5] 

 Buparlisib PI3K inhibitor II  [6] 

 Dovitinib 
FGFR and VEGFR  
Inhibitor II  [7] 

 MEK162 MEK Inhibitor II  [8] 

 MGAH22  

HER-2 Targetting 
antibody I  [9] 
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Table 1.2 Continued 

Target Pathway Drug Mechanism/Target 
Trial 
Phase Reference 

 

 Afatinib 

EGFR and HER2 
inhibitor II  [10] 

 AZD5312 
Angrogen receptor anti-
sense inhibitor I  [11] 

     

PI3K/AKT/mTOR  Everolimus 

m-TOR inhibitor 
(MTORC1 and 
MTORC2) I, II  [12] 

 Rapamycin  mTOR inhibitor I, II  [13] 

 
ABI-009 (Albumin 
Bound Rapamycin) mTOR  inhibitor I, II  [14] 

     

Immunotherapy ALT-801 
p53/HLA-A2 expressing 
tumor cells  I, II  [15] 

 HS-410 
Immune Activator along 
with BCG I, II  [16] 

 ALT-803 
Immune activator 
through IL-15  I, II  [17] 
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Table 1.2 Continued 

Target Pathway Drug Mechanism/Target 
Trial 
Phase Reference 

 
Immunotherapy 

(continued) Ipilimumab CTLA-4 antibody II  [18] 

 MEDI4736  
PDL1 antibody 
antagonist I  [19] 

 Tremelimumab 

CTLA-4 antibody 
Downregulation of T-reg 
cells I  [20] 

 AGS15E 
Slitrk6 targeting 
immunotherapy I  [21] 

 
MK-3745 
(Pembrolizumab) 

programmed death 
ligand 1  (PDL1) I, II  [22] 

 
Ad/HER2/Neu 
Vaccine 

Vaccination/Immune 
Activation I  [23] 

 SAR566658 
anti-CA6-DM4 
immunotherapy I  [24] 

 Lenalidomide immonumodulation I  [25] 

 MPDL3280A  

Anti-PDL1 
immunotherapy II  [26] 
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Table 1.2 Continued  

Target Pathway Drug Mechanism/Target 
Trial 
Phase Reference 

 
Mitosis/Cell 
Cycle Eribulin Mesylate 

Microtubule Formation/ 
Mitosis I, II  [27] 

 Abraxane 
Protein bound 
Paclitaxel- Mitosis I,II  [28] 

 Tesetaxel 
Tubulin stabilaztion - 
anti- mitotic II  [29] 

 ASG-22CE 

Inhibition of tubulin 
formation in cancer cells 
by targeting cells 
expressing adhesion 
molecule nectin-4 with  
monomethyl auristatin E I  [30] 

 Amrubicin 
Anthracycline targeting 
Topoisomerase-II II  [31] 

 Gemcitabine 
Nucleoside analog 
targetting S phase III  [32] 
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Table 1.2 Continued 

Target Pathway Drug Mechanism/Target 
Trial 
Phase Reference 

     

Epigenetic 
Changes 

5-Fluoro-2-
Deoxycytidine With 
Tetrahydrouridine 

Inhibition of DNA 
Methylation/ Cytodine 
deamination II  [33] 

 Romidepsin HDAC inhibitor I  [34] 
     
Other possible 
targets BBI608  Cancer Cell Stemness  I, II  [35] 
 Ganetespib Inhibition of HSP90 I  [36] 
 OGX-427 HSP27 inhibitor II  [37] 
 Veliparib PARP inhibitor I  [38] 

 
Notes: In several studies, mentioned drugs are used in combination with other drugs as part of 
the traditional protocols for treatment of bladder TCC. This table does not represent all clinical 
trials sponsored by NCI, but a selected subset of trials with relevance to this review article. 
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CHAPTER II 
PHOSPHATIDYLINOSITOL 3-KINASE INHIBITOR INDUCES 

CHEMOSENSITIVITY TO A NOVEL DERIVATIVE OF 
DOXORUBICIN, AD198 CHEMOTHERAPY IN HUMAN 

BLADDER CANCER CELLS IN VITRO 
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Abstract  
Background: Doxorubicin (Dox) is widely used to treat progressed bladder cancer after 
transurethral resection. The Dox chemotherapy has been limited due to induced drug resistance 
and cumulative cardio-toxic effects. N-benzyladriamycin-14-valerate (AD198), a novel derivative 
of Dox, has a potential to become a more effective treatment than Dox by overcoming drug 
resistance and cardio-toxicity as shown in the rodent model of lymphoma. The purpose of this 
study was to compare the efficacy of Dox and AD198 on human bladder cancer and explore 
their mechanisms in inhibition of the human bladder cancer cells in vitro. 
Methods: In vitro experiments were performed using human transitional cell carcinoma (TCC) 
cell lines, T24 and UMUC3. The effects of Dox and AD198 on cell viability of T24 and UMUC3 
were analyzed by MTS assay. The effects of Dox and AD198 on cell apoptosis were determined 
by caspase 3/7 assay, generation of reactive oxygen species (ROS), and Western Blotting (WB) 
analysis.  
Results: We found that AD198 was more effective than Dox in inhibition of cell viability of T24 
and UMUC3 cells in dose-dependent manner. Both Dox and AD198 significantly increased the 
generation of ROS and induced apoptosis through caspase 3/7 activities in tested human TCC 
cells. AD 198 induced significantly higher production of ROS in dose-dependent manner as 
compared to Dox at same concentrations in human TCC cells. Dox and AD198 activated the 
pro-apoptotic p38 MAPK pathway; however, also increased phosphorylation of AKT, an anti-
apoptotic signaling pathway in T24 and UMUC3 cells. Combined treatment of PI3K inhibitor, 
LY294002, with Dox or AD198 inhibited cell viability more effectively than any of drug 
treatments alone.  
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Conclusions: These data suggest that AD198 as novel derivative of Dox may be a valuable 
treatment option for human bladder cancer. Dox- and AD198-induced AKT phosphorylation that 
is an indicator of pro-survival and drug resistance mechanisms of chemotherapies in bladder 
cancer. Combined therapy of Dox or AD198 with inhibitors of PI3K/AKT pathway might lead to 
more effective treatment outcome for patients diagnosed with bladder cancer.  
 
 
 
Key words: doxorubicin, AD198, bladder cancer, pro-survival signaling pathways  

Background 

Bladder cancer is the 6th most common cancer in the United States, with high rates of 
recurrence [39, 40]. While the exact reasons are unknown, bladder cancer presents itself four 
times more in males than females [39, 41]. Urothelial cancer, also known as transitional cell 
carcinoma (TCC), is the most common type of bladder cancer in the western world and 
accounts for over 90 % of all bladder cancer cases [40, 42]. The 5-year survival rates for 
patients diagnosed with the earlier stages of the bladder cancer are 69.2 %. However; the 5-
year survival rates for patients diagnosed with invasive bladder cancer at stage IV are only 5.5 
% [40]. The biggest challenges in treatment of bladder cancer are the high rates of reoccurrence 
and progression from non-invasive to invasive stages of bladder cancer. The invasion of bladder 
cancer into the muscle layer of the bladder serves as major prognostic marker for the 
development of the treatment plan [41]. Tobacco products have been determined to be the 
highest environmental risk factor for developing bladder cancer [40]. Other environmental risk 
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factors for bladder cancer include occupational exposure and chemotherapy drugs, while non-
environmental risk factors include age, gender, race, obesity and family history [39, 40, 43]. 

Superficial bladder cancer is well managed by transurethral resection (TUR), followed by 
an intravenous or intravesical (directly into the bladder) administrations of chemotherapeutic 
treatment, such as mitomycin, epirubicin or doxorubicin (Dox) [44-46]. The intravesical injection 
of bacillus Calmette-Guérin (BCG), as adjuvant immunotherapy, activates immune system in the 
patient and greatly increases progression free survival rates [46, 47]. The management 
treatment for patients with muscle invasive bladder cancer is usually a radical cystectomy 
(removal of whole bladder) mostly followed by adjuvant therapy, such as chemotherapy and 
radiation therapy [41]. Chemotherapy protocols without radiation include: cisplatin alone, or 
cisplatin with 5-flourouracil or mitomycin with 5-flourouracil [48]. Chemotherapy protocols in 
conjunction with radiation include: gemcitabine with cisplatin, the MVAC protocol - methotrexate, 
vinblastine, Dox (Adriamycin), cisplatin or combination of carboplatin with either paclitaxel or 
docetaxel [48]. 

Dox is an anthracycline antibiotics and is one of the most widely used anti-cancer drugs 
[47, 49]. Dox interacts with topoisomerase II (TOPOII) [50-52] and induces apoptosis through 
production of reactive oxygen species (ROS) and by inducing DNA damage in bladder cells 
[53]. Dox induces ROS production through p53-dependent and p53-independent mechanisms 
[54, 55]. However, other mechanisms of Dox action remain unclear. While Dox has been 
successful in treating patients diagnosed with different cancers, long term use of Dox has two 
major setbacks. Firstly, Dox induces drug resistance through the upregulation of the multi-drug 
resistance 1 (MDR1) gene, also known as p-glycoprotein in the cell [56, 57]. Secondly, long 
term use of Dox has been linked to acute cardiotoxicity [58]. 
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N-benzyladriamycin-14-valerate (AD198), one of the derivatives of Dox, which shows 
improvement in cardiotoxicity as compared to Dox [59]. The addition of an N-benzyl ring 
improves the lipophilic properties of AD198 and allowing rapid localization of AD198 in the 
cytoplasm of cells [59]. The structural similarity of a moiety of the AD198 molecule to 
diacylglycerol (DAG) allows AD198 to interact with the regulatory subunit of PKC-δ by releasing 
the catalytic subunit [60]. The released PKC-δ catalytic subunit attributes to its cytotoxic effects 
by inducing mitochondrial membrane depolarization and inducing ROS production [60]. In 
cardiomyocytes, AD198 activates PKC-ε, which attributes to cardio-protective effects by Dox-
induced ROS production [61]. AD198 has been shown to be effective in inhibition of cell growth 
of mouse lymphoma and multiple-myeloma models [62]. In addition, AD198 is more effective in 
inhibition of cell proliferation and inducing apoptosis in canine TCC and osteosarcoma primary 
cell lines than Dox through the p38 MAPK signaling pathway [63]. Cardio-toxicity, which is a 
major concern for patients receiving Dox treatment, has not been detected when rats were 
treated with AD198 [64]. In rats, low dose administration of AD198 after Dox-induced 
cardiotoxicity, attenuated markers of cardiotoxicity, when compared to Dox alone [65]. This 
cardio-protective property of AD198 has been attributed to activation of PKC-ε, while PKC-ε 
knockout mice did not benefit from cardio protective effects of AD198 [61]. 

AD198 has not been evaluated for its potential use in bladder cancer treatment. So in 
this study, we evaluated the efficacy and mechanisms of Dox and its derivative, AD198 on cell 
proliferation and apoptosis in human UMUC3 and T24 TCC cell lines in vitro. 

Methods 
Reagents and Antibodies - Unless otherwise stated, all reagents and media were purchased 
from Fisher Scientific (Pittsburgh, PA.) Dox and LY294002 were purchased from Sigma-Aldrich, 
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St. Louis, MO. N-benzyladriamycin-14-valerate (AD198) was a kind gift from Dr. Leonard 
Lothstein [59]. The following antibodies were purchased from Santa Cruz Biotechechnology, 
(Santa Cruz, CA): Actin-HRP, p-ERK1/2, ERK 1/2, AKT, p38. The following antibodies were 
purchased from Cell Signaling (Boston, MA): PARP, p-AKT (serine 473 and threonine 308), p-
GSK3β, p-p38.  
 
Cell Culture – Human transitional cell carcinoma (T24 and UMUC3) cell lines were purchased 
from ATCC (Manassas, VA). The cells were grown in the following media: T24 in McCoy’s 
media, UMUC3 in MEM media containing 10% FBS and penicillin/streptomycin mixture (Fisher 
Scientific, Pittsburgh, PA) in 37oC and 5% CO2. 
 
Proliferation Assay - Cells were plated in 96-well plates at 5 x 103 cells per well and allowed to 
attach for 24 hrs. After seeding, cells were treated with AD198 or Dox in dose-dependent 
manner in complete media for additional 48h. DMSO was used as control. For treatment with 
PI3K inhibitor, LY294002, the cells were pretreated with 20µM LY294002 for 30 min prior to 
stated drug treatment and 20µM LY294002 was maintained for the rest of the 48 hour 
treatment. After treatment, the proliferation of cells was measured using CellTiter 96® Aqueous 
One Solution Cell Proliferation Assay (Promega, Madison, WI) according to manufacturer’s 
protocol. Briefly, 20 μL of the MTS reagent was added to each well and allowed to incubate at 
37˚C for 1 h. Absorbance was measured at 490nM using a plate reader (Bio-Tek instruments, 
Winooski, VT). The treatment data were normalized to the DMSO control.  
 
Reactive Oxygen Species (ROS) Assay by Flow Cytometry - For reactive oxygen species 
assay: The cells were incubated with 5 μM dihydrogen-dichlorodihydro-fluorescein-diacetate 
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(H2DCF-DA) (Life Technologies, Grand Island, NY) for 1 hr. The cells were then washed with 
twice PBS and trypsinized. The trypsin was neutralized and the collected cells were centrifuged 
at 5,000 rpm for 5 min. The cell pellet was resuspended in 1 mL of PBS and the fluorescence 
was measured at 485 nM excitation and 530 nM emission using flow cytometer (BD Accuri® BD 
Sciences, San Jose, CA). The treatment results were normalized to the DMSO control.  
 
Caspase-3/7 Assay - Cells were plated in 6-well plates at 5 x 105 cells per well. After 24 h, cells 
were treated with AD198 or Dox for 24 h. After treatment, cells were washed twice with PBS, 
and cell lysates were harvested using RIPA buffer. Protein concentration was measured using 
Bradford BCA assay. Forty micrograms of proteins were used for detection of caspases 3/7 
following the Caspase Glo® 3/7 Substrate protocol (Promega). After 1 h incubation with 
reagents, the luminescence was measured using FLx800 plate reader (Bio-Tek instruments, 
Winooski, VT). The treatment data was normalized to the DMSO control. 
 
Western Blot - Cells were plated at 1.5 X 106 cells per 10-cm plate. Twenty four hours after 
plating, the cells were treated with drugs for 24 hrs in dose-depend manner. For treatment with 
PI3K inhibitor, LY294002, the cells were pretreated with 20 µM LY294002 for 30 min prior to 
stated drug treatment and 20 µM LY294002 was maintained for the rest of the 24 hrs treatment. 
After treatment (unless otherwise stated), the cells were washed twice with PBS and lysed using 
cold RIPA buffer containing protease/phosphatase inhibitors. The cell lysates were kept at -80oC 
until further analysis. Protein concentration was measured using the BCA protein assay. Equal 
amount of proteins (60 µg) were loaded onto SDS-PAGE gels and transferred to a nitrocellulose 
membrane. Primary antibodies were hybridized according to the manufacturer’s instructions 
overnight at 4oC. The secondary antibodies were hybridized for 1 hr at room temperature and 
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the immunoreactive bands were visualized using enhanced chemiluminescence system (Fisher) 
and acquired on  ImageQuant LAS4000 (GE life sciences, Pittsburgh, PA.) The densitometry 
analysis were performed using ImageJ (NIH).  
 
Statistical analysis - Statistics were analyzed using paired Student t test to established 
significance. Results were considered statistically significant at *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 
0.001 when compared treatments to control group and #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001 when 
compared Dox to AD198 at same doses, or when compared Dox to LY+Dox or AD198 to 
LY+AD198.  
 

Results 

DOX and AD198 inhibited cell viability of human TCC cells   
Human TCC cell lines, T24 and UMUC3 were treated with 0.1, 0.5, 1, and 5 µM of Dox 

and AD198 for 48 hrs, as shown in Figure 2.1. Both, Dox and AD198, significantly reduced the 
proliferation of T24 (Figure 2.1a) and UMUC3 (Figure 2.1b) cells in dose-dependent manner. 
AD198 was significantly more effective in inhibition of cell viability of both T24 and UMUC3 cells 
as compared to Dox at the dose of 0.1 and 5 µM.  

Dox and AD198 induced ROS production in human TCC cells  
The effects of Dox and AD198 on generation of cellular ROS was evaluated using DCF 

assay. Dox and AD198 both significantly increased ROS in T24 and UMUC3 cells after 24 hrs 
treatment; and in addition, AD198 showed significantly higher activation of ROS production as 
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compared to DOX with 3-fold vs 2-fold increase in T24 cells and 6-fold vs 3-fold increase in 
UMUC3; respectively (*p ≤ 0.05 in T24 and **p ≤ 0.01 in UMUC3) as shown in Figure 2.2. 

Dox and AD198 induced apoptosis in human TCC cells through activation of caspase 
cascade  

The effects of Dox and AD198 on cell apoptosis were evaluated using the caspase-3/7 
activities assay. Dox and AD198 both increased apoptosis in T24 and UMUC3 cells; however, 
Dox showed significantly higher caspase activation than AD198 in both TCC cell lines (##p ≤ 
0.01 in T24 and ###p ≤ 0.001 in UMUC3) as shown in Figure 2.3a.  
Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in genomic stability and 
are downstream targets, which are cleaved by caspases to produce 89 and 24 kD fragments 
[66, 67]. The presence of degraded PARP is generally considered as a marker of apoptosis 
[66]. Dox and AD198 (1 µM) treatments increased a cleavage of PARP in both tested cells as 
confirmed by WB analysis (Figure 2.3b). Densitometry values of cleaved PARP protein after 
DOX and AD198 treatments were normalized to actin and then to control group as shown in 
Figure 2.3c. A statistically significant increase in PARP cleavage (***p ≤ 0.001) by 15- and 12-
fold was observed in Dox as compared to control treatment. Also Dox significantly increased 
PARP cleavage by 3- and 4-fold (#p ≤ 0.05) as compared to AD198 treatment in T24 and 
UMUC3 cells, respectively (Figure 2.3c). 
 

Dox and AD198 activated AKT signaling pathway in human TCC cells  
To better understand the mechanisms of AD198 and Dox-induced cell growth inhibition 

in T24 and UMUC3 cells, we investigated role of MAPK signaling pathways. Dox increased the 
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phosphorylation of AKT protein at both Ser473 and Thr308 sites in T24 and UMUC3 cells in 
time- and dose-dependent manner (Figure 2.4). GSK-3β is a critical downstream element of the 
PI3K/AKT cell survival pathway, and when phosphorylated, its pro-apoptotic function is 
attenuated by  AKT [68]. Dox increased phosphorylation of GSK-3β in dose-dependent manner 
as shown in Figure 2.4a. There was no significant increase in the phosphorylation of ERK in 
neither TCC cells when treated with Dox or AD198 (Figure 2.4a). MAPK p38 has been shown to 
be activated by ROS and plays a vital role in apoptosis [69, 70].  Both Dox and AD198 
increased phosphorylation of MAPK p38 in a time-dependent manner with increased activation 
at 1-3 hrs after treatment in T24 cells (Figure 2.4b). In UMUC3 cells, the activation of p38 is was 
seen to be higher with AD198 than with Dox treatment, confirming previous results of higher 
ROS production by AD198 (Figure 2.4b). 
 

Inhibition of PI3K/AKT signaling pathway sensitizing the cytotoxic effects of Dox and 
AD198 in human TCC cells  

Dox and AD198 activated AKT pro-survival signaling pathway that is an indicator of 
resistance of cells to chemotherapy. To confirm our hypothesis, we tested the effects of PI3K 
inhibitor, LY294002, in combination with Dox or AD198 on cell growth of TCC cells. Co-
treatment with LY294002, increased the anti-proliferative effects of both Dox and AD198 in T24 
and UMUC3 cells. The combination of Dox and LY294002 suppressed most effectively cell 
viability of both cell lines (Figure 2.5a). In order to further investigate the PI3K/AKT inhibitor’s 
chemosensitizing effect to Dox and AD198 chemotherapy, we measured caspase-3/7 activities 
and PARP cleavage. Indeed, co-treatment of Dox and AD198 with PI3K inhibitor, LY294002, 
increased caspase-3/7 activation and PARP cleavage in both T24 and UMUC3 cells as shown 
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in Figure 2.5b and Figure 2.5c. LY294002 inhibited the AD198- and Dox-induced 
phosphorylation of AKT at Thr308 and Ser473 sites as shown in Figure 2.5d. In addition, higher 
levels of active (unphosphorylated) GSK3β were present when T24 and UMUC3 cells were co-
treated with Dox or AD198 and LY294002.  

Discussion  

Dox has been used to treat human bladder cancer for over three decades and continues 
to be one of the most common chemotherapeutic agent [71]. Dox is not as effective alone as it 
is in combination with other drugs; however, Dox increases side effects and decreases 
completion of regimen due to intolerances by the patients [72]. Another setback of Dox in the 
treatment of bladder cancer is the development of drug resistance by up-regulation of p-
glycoprotein efflux transporter protein expressions. The established Dox-resistant bladder 
cancer cell lines, KK47/ADM, shows that complete reversal of resistance was not possible even 
when Dox was used in combination with a sensitizing agent, verapamil [73]. The development of 
novel derivatives of Dox may overcome those Dox adverse events, and even exceed its anti-
cancer effects [74]. 

A novel derivative of Dox, AD198 has been developed by Dr. Lothstein’s group [59]. 
AD198 is a highly lipophilic drug, which rapidly localizes to the cellular cytoplasm and it has 
been shown to circumvent efflux transport by p-glycoprotein in Dox-resistant macrophage cells 
[59, 75]. AD198 has been shown to overcome Bcr-Abl pro-survival signaling pathway in human 
leukemia cells through the activation of ERK1/2 and STAT-5 followed by cytochrome C release 
and apoptosis [76]. Breast and ovarian cancer cell lines, which are resistant to Dox due to p-
glycoprotein expression, have been shown to rapidly accumulate AD198 in the cytoplasm. The 
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efficacy of AD198 to inhibit cell growth is comparable to Dox treatment in non-resistant cells 
[77]. Our results are in agreement with this study and confirmed that AD198 anti-proliferative 
effect was similar and compared to Dox in T24 and UMUC3 cells. This might be relevant for the 
intravesicular treatment of bladder cancer, where a high dose of the Dox is used (~200 mM) 
[46]. 
It has been shown that AD198 and Dox have a similar effect in generating ROS in murine 
cardiomyocytes [61]. However; ROS production was induced by AD198 more than by Dox in 
both tested human bladder cell lines (Fig. 2.2). In addition to ROS production in the cytoplasm, 
Dox induces DNA damage via Topoisomerase II, while AD198 mainly functions in the cytoplasm 
by increasing ROS and activating PKC-δ [59]. In mouse myeloid cells, AD198 induces apoptosis 
through activation of PKC-δ and is not effected by the expression of Bcl-2 [60]. AD198 acts 
through PKC-δ-independent manner in TRAF-3 deficient mouse B-lymphoma cells through the 
suppression of oncogenic protein c-Myc [62]. AD198 might be beneficial for treatment of c-Myc 
overexpressing cancer cells. While AD198 had an equal or greater anti-proliferative and ROS 
generating effects than Dox in TCC, it showed significantly less caspase activation and PARP 
cleavage in both T24 and UMUC3 (Fig. 2.3a-c). It has been previously shown that AD198 
induces cytochrome-C release and initiate mitochondrial-activated apoptosis, even when 
caspase activation is blocked by a pan-caspase inhibitor, Z-VAD-FMK [60]. In contrast, Dox has 
been shown to function in a caspase-dependent manner in T-leukemia cells and apoptosis was 
inhibited when Jurkat cells were treated with Z-VAD-FMK [78]. Dox has been shown to induce 
apoptosis in ROS-independent manner in cardiomyocytes [79]. Our data provides evidence that 
AD198 induced apoptosis in caspase-dependent and -independent pathways. Dox, on the other 
hand, induce apoptosis primarily through caspase-dependent pathway. 
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To further investigate the differences in mechanisms between Dox and AD198 action in 
TCC cells, we investigated PI3K/AKT and MAPK signaling pathways. AKT has been shown to 
increase drug resistance in other cancers and PI3K itself can contribute to expression of 
multidrug resistance protein 1 (MDR1) to induce drug resistance [68,80,81]. Dox activates the 
PI3K/AKT pathway in several cancers including ovarian, hepatic and breast cancer cells [82-84]. 
Activation of AKT by Dox has been linked to the presence of human epidermal growth factor 
receptor 3 (HER3, ERBB3 ) in ovarian cancer and was attenuated by the addition of tyrosine 
kinase inhibitors lapatinib and/or erlotinib [82]. In our study, Dox more efficiently phosphorylated 
AKT (Ser473 and Thr308) and its downstream target GSK3β than AD198 in dose- and time- 
dependent manner (Fig. 2.4a and 2.4b). PI3K/AKT pathway has been greatly implicated in the 
progression and prognosis in bladder cancer patients [85]. The growth factor receptors including 
ERBB2, ERBB3 and EGFR have been found to be altered or amplified in bladder cancer and 
have the potential to activate PI3K/AKT signaling pathway [86]. PI3K mutation is inversely 
associated with later stages, indicating that mutation of PI3K is not crucial to bladder cancer 
progression [87, 88]. AKT after activation by PIP3, has a wide range of downstream targets 
including activation of anti-apoptotic targets such MDM2 and mTOR as well as deactivation of 
apoptotic targets such as BAD, GSK3β and TSC1 [89, 90]. It has been shown that inhibition of 
PI3K sensitizes TCC cells to Dox chemotherapy and lowers the IC50 of Dox when used in 
combination with LY294002 [91]. We confirmed that co-treatment of PI3K/AKT inhibitor with Dox 
or AD198 reduced cell proliferation more efficiently than Dox or AD198 treatments alone in 
tested human bladder cells (Fig.2.5a). Furthermore, co-treatment of LY294002 with either Dox 
or AD198 induced an activation of caspase-3/7 activity and cleavage of PARP than AD198 or 
Dox treatments alone (Fig. 2.5b and 2.5c). In T24 and UMUC3 cells, phosphorylation of GSK3β 
was decreased by co-treatments, indicating that its pro-apoptotic function was restored (Fig. 
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2.5d), while either Dox or AD198 alone increase phosphorylation of GSK3β indicating an anti-
apoptotic resistance activated by AKT signaling. The tumor suppressor PTEN (phosphatase and 
tensin homolog deleted on chromosome 10) antagonizes the PI3K/AKT signaling pathway and 
mutation or decrease of PTEN expression has been shown to be as a poor prognostic marker in 
breast cancer patients [92]. The Pten gene therapy in mice increases tumor sensitivity to Dox 
therapy in vivo [93]. T24 cells have mutation in PTEN gene, but cells express PTEN protein, 
while intragenic deletion of PTEN gene in exons1-8 in UMUC3 cells results in no PTEN protein 
expression [94]. We have observed that phosphorylation of AKT levels were much higher in 
UMUC3 cells than T24 probably due to absence of PTEN (data not shown). 

   

Conclusion 

In conclusion, we have shown that AD198 has comparable anti-proliferative efficacy as 
Dox in tested human TCC cell lines in vitro. AD198 was more effective in induction of ROS 
production. AD198 induced apoptosis in caspase-dependent and -independent pathways. Dox, 
on the other hand, induced apoptosis primarily through caspase-dependent pathway. Both 
drugs activated PI3K/AKT signaling pathway, which may explain a common mechanisms of 
bladder cancer to acquire a drug resistance. The inhibition of the PI3K/AKT pathway plays an 
important role in increasing the effectiveness of Dox and AD198 treatments in human bladder 
cancer cells in vitro. AD198 a novel derivative of Dox, with no cardio-toxic effects as has been 
shown in mice in vivo model, may be a new candidate for the replacement of Dox treatment in 
bladder cancer. Further investigations using rodent animal model of bladder cancer in vivo are 
required to support these in vitro findings. 
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MDR1: multidrug resistance protein 1;  MVAC: Methotrexate, vinblastine, Dox and cisplatin 
chemotherapy protocol; PARP: Poly (ADP-ribose) polymerase; PI3K: phosphatidylinositol-3-
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Transitional cell carcinoma; TOPOII: Topoisomerase II; TUR: Trans-urothelial resection. 
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Appendix 
 

 
Figure 2.1 DOX and AD198 inhibited cell viability of human TCC cells. 
(a) Human urinary bladder transitional cell carcinoma (TCC) cells T24 and (b) UMUC3 cells 
were treated with Dox (black bars) and AD198 (white bars) at 0.1, 0.5, 1 and 5 μM for 48 h and 
compared to control groups. Cell proliferation was determined by MTS assay and relative cell 
growth rate was normalized to control counterpart. Values represent mean ± S.E. of four 
replicates from three independent experiments. Paired Student t-tests were used to compare 
Dox and AD198 treatment to control; * p ≤ 0.05 and *** p ≤ 0.001. Paired Student t-tests were 
used to compare among Dox and AD198 group at the same dose treatment; ## p ≤ 0.01 and ### 
p ≤ 0.001≤ 0.001 comparing Dox and AD198 treatment to control. Paired Student t test ##p ≤ 
0.01, ###p ≤ 0.001 comparing among Dox and AD198 group at the same dose treatment. 
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Figure 2.2: Dox and AD198 induced ROS in human TCC cells. 

 (a) T24 and (b) UMUC3 cells were treated with 1μM Dox and AD198 for 24 h and ROS levels 
were measured with dihydrogen-dichlorodihydro-fluoresceindiacetate assay; percent of ROS 
positive cells were measured and normalized to the control. Values represent mean ± S.E. of 
three independent experiments. Paired Student t- tests were used to compare Doxand AD198 
treatments to controls, *p ≤ 0.05, and **p ≤ 0.01. Paired Student t-tests were used to compare 
among Dox and AD198 group at the same dose treatment; #p ≤ 0.05. 
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Figure 2.3: Dox and AD198 induced apoptosis in human TCC cells. 

Dox and AD198 induced apoptosis in human TCC cells. (a) T24 and UMUC3 cells were treated 
with 1 μM Dox and AD198 for 24 h and caspase-3/7 activities were measured using the 
Caspase-Glo 3/7 luminescence assay. Relative caspase-3/7 activities were normalized to 
control. Values represent mean ± SE of three independent experiments. Paired Student t-test 
were used to compare treatment to control **p ≤ 0.01, ***p ≤ 0.001. Student t-tests were used to 
compare among Dox and AD198 treatments ## p ≤ 0.01, ### p ≤ 0.001. (b) T24 and UMUC3 cells 
were treated with 1 μM Dox and AD198 for 24 h. The expression of PARP (cleaved fragment) 
was evaluated by WB analysis. Actin was used as a loading control. (c) Densitometry evaluation 
of cleaved PARP protein bands from WB analysis was done using ImageJ software. Values 
represent mean ± S.E. of measured densitometry of each band from three independent 
experiments. Paired Student t-tests were used to compare controls to Dox and AD198 
treatments, *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. Paired Student t- tests were used to compare 
Dox to AD198 treatment, #p ≤ 0.05 
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Figure 2.3 Continued  
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Figure 2.4: Dox activated AKT signaling pathway in human TCC cells in dose- and time-
dependent manner. 

(a) T24 and UMUC3 cells were treated with 0.1, 0.5 and 1 μM Dox and AD198 for 24 h. Protein 
levels of p-AKT (T308), p-AKT (S473), AKT, p-GSK-3β, p-ERK1/2 and ERK1/2 were detected 
by WB. Actin was used as a loading control. (b) T24 and UMUC3 cells were treated with 1 μM 
Dox and AD198 for 0, 0.5, 1, 3, 6 and 24 h. Protein levels of p-AKT (T308), p-AKT (S473), AKT, 
p-p38, p38, p-ERK1/2 and ERK1/2 were detected by WB. Actin was used as a loading control 
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Figure 2.4 Continued 
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Figure 2.5: Inhibition of AKT signaling pathway sensitizing the cytotoxic effects of Dox 
and AD198 in human TCC cells. 
(a) T24 and UMUC3 cells were treated with Dox and AD198 (1 μM) with and without LY294002 
(LY, 20 μM) for 48 h and compared to control groups. Cell proliferation was determined by MTS 
assay and relative cell growth rate was normalized to control counterpart. Values represent 
mean ± SE of four replicates from three independent experiments. Paired Student t-tests were 
used to compare DOX and AD198 treatments to control; ***p ≤ 0.001. Paired Student t-tests 
were used to compare Dox to Dox + Ly and AD198 to AD198 + LY treatment, ### p ≤ 0.001. (b) 
T24 and UMUC3 cells were treated with DOX and AD198 (1 μM) with and without LY294002 
(20 μM) for 24 h and caspase activities were measured using the Caspase-Glo 3/7 
luminescence assay. Relative caspase activities were normalized to control. Values represent 
mean ± SE of three independent experiments. Paired Student t-tests were used to compare 
treatment to control **p ≤ 0.01, ***p ≤ 0.001. Paired Student t-tests were used to compare Dox to 
Dox + Ly and AD198 to AD198 + LY treatments, ### p ≤ 0.001. (c) T24 and UMUC3 cells were 
treated with Dox and AD198 (1 μM) with and without LY294002 (20 μM) for 24 h. The 
expression of PARP (cleaved fragment) were evaluated by WB analysis. Actin was used as a 
loading control. Densitometry evaluation of PARP protein bands from WB analysis was done 
using ImageJ software. Values represent mean ± S.E. of measured densitometry of each 
protein’s band from three independent experiments. Paired Student t-tests were used to 
compare controls to Dox and AD198 treatments, *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. Paired 
Student t-tests were used to compare Dox to AD198 treatment, # p ≤ 0.05, ## p ≤ 0.05, and ### 
p ≤ 0.001 (d) T24 and UMUC3 cells were treated with Dox and AD198 (1 μM) with and without 
LY294002 (20 μM) for 24 h. The expression of p-AKT (T308), p-AKT (S473), AKT and p-GSK-
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3β proteins were evaluated by WB analysis. Actin was used as a loading control. Densitometry 
evaluation of p-AKT (T308), p-AKT (S473) protein bands from WB analysis was done using 
ImageJ software. Values represent mean ± S.E. of measured densitometry of each band from 
three independent experiments. Paired Student t-tests were used to compare controls to Dox 
and AD198 treatments, *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. Paired Student t-tests were used 
to compare Dox to Dox + LY or AD198 to AD198 + LY treatments, # p ≤ 0.05, ## p ≤ 0.01 
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Figure 2.5 Continued 
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Figure 2.5 Continued 
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CHAPTER III 
INTRODUCTION TO ORAL CANCER TARGETED THERAPY 
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Background  
In 2015, an estimated 39,500 people were diagnosed with oral cancers resulting in an 

estimated 7,500 deaths [1, 2]. About 1.1% of men and women in the US will be diagnosed with 
oral and/or pharyngeal cancer within their lifetime [3]. When compared to other cancers, 
cancers of the oral cavity and pharynx have a relatively low five-year survival rate of 63.2% 
across all stages [3]. The five-year survival rate in the later stages can be as low as 20% for oral 
cancers [4]. Approximately 31% of oral cancers are diagnosed in the earlier stages prior to 
lymph node metastasis, while 69% are diagnosed after lymph node metastasis [3]. While some 
progress in the treatment of oral cancer has been made –  shown by the increase of the five-
year survival rate from 52.7% in 1975 to currently 66.3% – there is vast room for improvement 
[3]. 

Oral squamous cell carcinoma (OSCC) comprises 90% of oral malignancies and arises 
from the epithelial layer of cells lining the oral cavity. Other cancers found in the oral cavity 
include: salivary gland cancer, lymphoma, and melanoma  [5]. Because OSCC comprises 90% 
of all oral malignancies, this review will focus primarily on OSCC as well as head and neck 
squamous cell carcinoma (HNSCC), a subset of OSCC. Firstly, this review will cover the risk 
factors, diagnosis, staging, and conventional treatment options for OSCC. Secondly, this review 
will look at the molecular mechanisms behind OSCC and the potential drug targets these 
mechanisms present along with current drugs being researched for targeted OSCC therapy. 

Risk Factors 
Risk factors for developing OSCC include, but are not limited to: tobacco use, 

consumption of alcohol, exposure to oral human papillomavirus (HPV), age, and genetic 
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disorders including Fanconi anemia and Dyskeratosis congenital [6]. In the United States the 
primary cause of OSCC is tobacco use followed by exposure to HPV.  

Consumption of any tobacco products, which include smoking, chewing and snuff, has 
been shown to increase the incidence of oral cancer by 85% (in current tobacco users) when 
compared to people who have never smoked [7]. The risk of developing oral cancer increases 
with the length of tobacco use in years and total consumption of tobacco over a lifetime. People 
who have consumed tobacco products for over 45 years have a 93% chance increase to 
develop oral cancer compared to non-smokers [7]. On the other hand, people who have used 
tobacco for less than 30 years only have a 13% chance increase of developing oral cancer [7]. 
The consumption of alcohol, when used with tobacco, greatly increases the risk of developing 
oral cancer. One meta-analysis study found that people who consumed 1-2 drinks per day and 
smoked had an increased incidence of oral cancer 184% compared to non-smokers/non-
drinkers, while smokers who did not drink increased incidence of oral cancer 52% when 
compared to non-smokers/non-drinkers [8]. Consumption of 1-2 drinks a day did increase the 
incidence of oral cancer 44% compared to non-smokers/non-drinkers [8]. HPV increased the 
risk of developing oral cancer in the younger population [9]. The molecular mechanisms of 
carcinogenesis associated with oral cancer caused by tobacco and HPV have distinct 
differences and will be covered in greater detail later in this review.  

There are observed gender differences in the incidence of oral cancer and a contributing 
factor may be that more males use tobacco products than females, putting males at higher risk 
of getting oral cancers [10].  

Excessive exposure to UV radiation is associated with increased incidence of skin 
cancer in the lip region. Specifically, prolonged occupational exposure to UV light has been 
shown to increase the incidence of lip cancer in outside workers [11, 12].  
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Fanconi anemia is a rare genetic autosomal recessive disorder where one or more 
genes in the Fanconi anemia/BRCA (FA/BRCA) pathway are mutated. This renders DNA to be 
extremely sensitive to crosslinking agents and leads to genomic instability [13]. Previous studies 
have shown that individuals who have Fanconi anemia are 500% more likely to develop head 
and neck cancer than the general population. Unfortunately, for these patients, chemotherapy 
and radiation are not viable options due to a high risk of death [14, 15]. For patients with genetic 
disorders who do not tolerate chemotherapy or radiation well, targeted therapy may become a 
more reasonable option in the future. Another genetic disorder associated with increased oral 
cancer incidence is Dyskeratosis congenita, which is characterized by a mutation in one of the 
genes maintaining telomere maintenance and function. The disorder is associated with bone 
marrow failure and increased incidence of a wide variety of cancers, including oral cancer [16, 
17].  

Diagnosis 
The proper diagnosis for oral cancer begins with a consultation with a health care 

professional who will review family history, risk factors, and conduct a visual examination for the 
detection of oral cancer. If oral cancer is detected in the visual examination, the exam is 
followed with further testing as confirmation. The highest standard for a definitive diagnosis of 
oral cancer is a biopsy followed by histological evaluation of the tissue by a pathologist [18]; 
however, the ability to detect earlier stages of cancer or pre-cancerous lesions are limited by 
this approach [19, 20].  

Scalpel biopsy is the gold standard for diagnosis of oral cancer and must be performed 
prior to planning treatment. An incisional biopsy is performed in the center of the lesion with high 
sensitivity and specificity. The biopsy is performed with the proper dimensions and depth so as 
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to prevent seeding of the cancer into surrounding tissues or the blood. If proper dimensions are 
not achieved cancer cells are disseminated into the peripheral blood in about 16-20% of the 
patients, which may lead to distal seeding of cancer cells and metastasis [21, 22]. Following 
biopsy, immunohistochemistry (IHC) can be performed to further evaluate the cancer. For 
example, HPV positive cancers overexpress p16 protein [23]. Performing IHC for the p21 
protein following biopsy is a useful tool in differentiating HPV positive from HPV negative oral 
cancers [24].  

An alternative method to biopsy and histological examination of tumors is exfoliative 
cytology. In exfoliative cytology, suspected cancer cells are scraped off and evaluated for the 
presence of malignant cells [19]. Studies have reported the sensitivity and specificity of 
exfoliative biopsy to be 100% and 92.6% respectively; however, other studies have reported the 
sensitivity and specificity to be as low as 71% and 32% respectively [19]. Due to conflicting 
results and a lack of strong supporting evidence, exfoliative cytology tests would not be 
warranted to replace biopsies at this time.  

In order to visually screen for cancer and to better visualize a tumor for biopsy, methods 
beyond conventional oral examinations have been used. Toluidine blue staining was used in a 
clinical settings to screen for potential cancer within the oral cavity by staining the tumor to 
create better margins for biopsies [20]. Toluidine blue is sensitive to cancers and a recent study 
found the sensitivity to be as high as 94%. On the other hand, toluidine blue is prone false 
positive results. The same study reported specificity at only 39% [25]. Due to these findings, 
toluidine blue is not widely used anymore.  

Another visual detection method uses the reflective property of cancer cells stained with 
acetic acid. Bright light is then focused on the oral cavity, where normal mucosa appear blueish 
in color and cancer cells appear more white [19]. These devices have reported very high 
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sensitivity, as high as 100% in two recent studies using light reflective devices from two different 
companies [26, 27]. Similar to toluidine blue staining, these methods suffer from a high false-
positive rate of 34.2-37.5% when compared to biopsies [26, 27].  

Tissue fluorescence may be another viable detection method for the screening and 
detection of oral cancer. One attempt was made to use tissue fluorescence by Visually 
Enhanced Lesion Scope (VELScope), which used a wavelength of 400-460 to excite 
endogenous fluorophores in oral mucosa. Cancer cells have been reported to lose the 
fluorescent ability of normal cells and do not emit a green color upon excitation [28]. A recent 
study found VELScope to be 30% sensitive and 63% specific in detecting oral cancer lesions 
[28]. These recent findings suggest this technology may not be a useful tool in screening and 
detecting oral cancer due to the very high rate of false negative results, which would be 
detrimental in patients with early cancers. For this reason, VELScope was never employed in a 
clinical setting. 

Another attractive detection method is the use of biomarkers found in saliva to detect 
signatures of cancer presence. Two emerging biomarkers for the detection of oral cancer in the 
saliva are interleukin-8 (IL-8) and subcutaneous adipose tissue (SAT). A recent analysis of 395 
subjects found high levels of IL-8 and SAT across many biomarkers and had a combined 
predictive value ranging from 74% to 85% [29]. While these results are promising, more studies 
need to be conducted in order to better evaluate the efficacy of using IL-8 and SAT in detection 
of early versus late OSCC and further validation is warranted.  
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Staging 
Staging of oral cancer is done by conventional TNM staging in order to determine the 

clinical stage 0-IVC (Table 3.1) which was proposed by the American Joint Committee on 
Cancer Staging (AJCC) [30]. In summary, the tumor is evaluated and assigned a T stage, N 
indicates lymphatic, and metastasis is indicated by M0 or M1 [30]. Complete definitions of the T, 
N, and M stages can be found in Table 3.2 [30]. Early stage cancers are classified as stage I 
and II (T1N0, T2N0). Locally advanced cancers are classified as stage IVA and IVB (T3N0 and 
T4N0). Locally and regionally advanced cancers are classified as stages IVA to IVC (T3N1, 
T3N2, T4N1, and T4N2). The survival rate of oral cancer is highly dependent on the location, 
the stage, and the cability to surgically remove the tumor. Five-year survival of oral cancer 
patients diagnosed in the earlier stages (I-III) ranges from 73% to 93%, but depending on 
location, five-year survival in the last stage of IVC ranges from 20% to 52% (see Table 3.3) [4] .  

Current Treatments 
Treatment of OSCC is highly dependent on the stage of the cancer, location of the tumor 

and the patient’s comorbidity. Surgery is always performed when possible. Early stage cancers 
can be treated with surgery alone, but later stages require a combination of chemotherapy or 
radiation as well as surgery. Complete removal of cancer tissue can include radical neck 
dissection, where a large portion of neck tissue is removed in order to remove 
involved/suspected lymph nodes [31]. If surgery cannot be performed, a combination of 
radiation and chemotherapy treatments is typically carried out [32]. In the case of metastasis, 
chemotherapy is used to treat systematic disease [32]. For more information on surgery for 
head and neck cancers see the review by Carlson and Oreadi 2012 [33]. 



112 
 

The most common first line chemotherapy option for OSCC in stages III-IVC is a 
platinum based chemotherapeutic agent (carboplatin or cisplatin) in combination with 5-
flourouracil or a taxane (typically paclitaxel or docetaxel) [34]. Cetuximab, an antibody against 
epidermal growth factor receptor (EGFR), has recently been approved by the Food and Drug 
Administration (FDA) and has shown an improved median survival of patients diagnosed with 
OSCC from 7.4 to 10.1 months when combined with platinum-based chemotherapy versus 
platinum-based chemotherapy alone [35]. In another recent study, cetuximab conferred an 
advantage in progression free survival to patients overexpressing p16 but not EGFR, when 
combined with radiation and chemotherapy [36]. Overexpression of p16 is associated with HPV-
positive (HPV+) OSCC and recent findings would indicate that HPV+ OSCC patients may be 
good candidates for cetuximab targeted therapy [23].  

Targeted Therapy 
In order to better understand and devise better targeted therapy for OSCC, there have 

been many developments in discovering the aberrant molecular mechanisms in OSCC. The 
following sections discuss the molecular targets activated in OSCC and drugs in current clinical 
trials, which target the aberrant mechanisms within OSCC. Most of the molecular drug targets 
currently being researched in NCI supported clinical trials covered in this review fall into three 
major categories: receptor tyrosine kinases (RTKs), PI3K/AKT/mTOR pathway, and 
immunotherapy targets (Table 3.4).  

Receptor tyrosine kinases (RTKs) 
Epidermal growth factor receptor (EGFR) has been a molecular target of interest in the 

case of OSCC, and is currently approved for use in targeted therapy for OSCC by the FDA [36, 
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37].  Expression of EGFR has been found to be altered in 15% of HPV-negative (HPV-) and in 
6% of HPV+ OSCCs [38]. Another study showed EGFR is amplified in 16% of OSCC patients 
[39]. These findings indicate only a small subset of patients may benefit from EGFR inhibitors. 
Other RTKs may also be a beneficial drug target either in combination with chemotherapy or in 
combination with other RTK inhibitors. The hepatocyte growth factor (HGF) and its receptor, the 
transmembrane tyrosine kinase (cMET), have been shown to play a vital role in proliferation, 
invasion, and metastasis [40]. In OSCC cells in vitro, HGF increased invasion, but invasion was 
reduced by the inhibition of Phosphoinositide 3-kinase (PI3K), linking the two pathways together 
[41]. Ficlatuzumab, a monoclonal antibody targeted against HGF being studied in OSCC 
patients, has already shown some efficacy in lung adenocarcinoma and multiple myeloma in 
human trials [42-44]. The receptor of HGF, cMET, can be targeted with INC280, which is a small 
molecule inhibitor of cMET [45]. GSK2849330, an antibody targeting HER3, is also being 
studied in OSCC patients [46]. It has been shown HER3 plays an important role in drug 
resistance to anti-EGFR therapy, making HER3 an attractive drug target that can be targeted in 
combination with EGFR [47]. Afatinib is an inhibitor of both EGFR and HER2 [48]. A recent 
phase II trial in human head and neck squamous cell carcinoma patients showed that afatinib 
had an objective response rate of 16.1% while cetuxamib had an objective response rate of 
6.5% (p < 0.09) [49]. 

PI3K/AKT/mTOR pathway 
PI3K/AKT/mTOR pathway is one of the major pathways activated in a variety of cancers 

[50]. A simplified scheme version of the PI3K pathway action on cell survival is shown in Figure 
3.1. PI3K can be activated by tyrosine kinase receptor signaling, RAS signaling, and through 
internal stress responses [50, 51]. PI3K is a kinase, which phosphorylates phosphatidylinositol 
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4,5-bisphosphate (PIP2) to form phosphatidylinositol (3,4,5)-trisphosphate. The protein PTEN 
that dephosphorylates PIP3 to form PIP2 antagonizes this action. AKT, also known as protein 
kinase B, is activated by PIP3 through PDK1 [50]. AKT is one of the central hubs of pro-survival 
signaling within cancer cells [52]. Some of the major targets of AKT include but are not limited 
to: mTOR, BAD, GLUT4, GSK3β and IKKα [50]. When AKT is activated, mTOR increases 
proteins and RNA synthesis, which in turn increases cell survival and proliferation [53, 54]. BAD 
is a pro-apoptotic member of the Bcl-2 family of proteins. Through phosphorylation by AKT, the 
function of BAD is inhibited allowing cancer cells to avoid apoptosis [55, 56]. GLUT4 is a 
glucose transporter that increases glucose uptake and has been shown to be upregulated in 
human cancers [57]. AKT induces the translocation of GLUT4 to the cell surface where it 
functions to increase glucose uptake and in turn increase cell proliferation through an increase 
in cellular metabolism and nutrient uptake [58]. GSK3β is a pro-apoptotic protein, which plays a 
major role in intrinsic apoptosis through downstream activation of caspase-2 and caspase-8 
proteins [59, 60]. AKT has been shown to inhibit GSK3β through phosphorylation [59]. AKT 
phosphorylates IKKα, which in turn phosphorylates IκB and targets it to be degraded through 
ubiquitination. This allows nuclear factor kappa B to translocate to the nucleus and activate 
transcription of pro-survival and pro-inflammatory genes [61].  

In OSCC, PI3K/AKT/mTOR signaling has been shown to be dysregulated. In OSCC, on 
the gene level, PI3K has been shown to be activated in 34% of HPV- patients and in 56% HPV+ 
patients either through amplification or mutation, while its antagonist PTEN has been shown to 
be dysregulated in 12% of HPV- patients and 6% of HPV+ patients either through mutation or 
deletion [38]. Reduced PTEN function has been shown to increase the incidence of head and 
neck cancer in the mouse model [62]. In human OSCC, PTEN was under expressed in 61% of 
tissue samples which correlated with the activation of AKT in 68.5% of tissue samples [63]. 
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Aberrant PTEN expression was not correlated to gender, age, or race; however, low PTEN 
expression was well-correlated with the more advanced stages of OSCC (stages I,II vs stages 
II,IV; p= 0.002) and increased pAKT expression was correlated the later stages (p= 0.006) [63]. 
Inhibition of PTEN in OSCC cell lines decreased the expression of E-Cadherin, decreased cell 
adhesion and increased the epithelial to mesenchymal phenotype of the cells indicating the loss 
of PTEN may lead to a more invasive cancer [64]. Downstream of PI3K/AKT, the 
overexpression of mTOR increased the recurrence risk ratio of head and neck cancer in 
patients treated with surgery and radiation by 3.25 and decreased patient survival (p = 0.013 
and p= 0.029 respectively) [65]. 

Due to the fact PI3K/AKT/mTOR pathway is highly activated in many OSCC patients it 
presents a potentially effective drug target. Buparlisib is an inhibitor of PI3K and is being studied 
for several cancers including OSCC, non-small cell lung carcinoma, advanced breast cancer, 
and glioblastomas [66-69]. Everolimus, currently studied for advanced OSCC, is an analogue of 
rapamycin and inhibits the formation of function mTOR complex 1 (mTORC1) and has already 
received FDA approval to treat pancreatic, renal and breast cancers [70, 71]. Another potent 
inhibitor of the PI3K/AKT/mTOR pathway is PF-05212384. PF-05212384 is a small molecule 
inhibitor against both PI3K and mTOR. In a recent clinical I phase study, PF-05212384 was 
shown to be well-tolerated by patients at 8mg daily dose and inhibited the activity of AKT, but in 
the same study PF-05212384 has not shown to provide a measurable antitumor response in 
any of the 23 patients [72]. Another clinical study showed treatment with PF-05212384 achieved 
stable disease survival in 12 of 47 patients [73]. 
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Immunotherapy targets 
In 2011, Robert Weinberg proposed cancer’s avoidance of the immune system is a 

major emerging hallmark in the characteristics of cancer [74]. Immunologists have hypothesized 
there are three distinct stages of carcinogenesis and its escape from immune-surveillance. The 
first stage is elimination, where cancer cells are actively destroyed by the immune system 
through various mechanisms to be discussed later in this section. The second stage is 
equilibrium. In equilibrium the cancer is held at bay by the immune system but is not fully 
eliminated. It is during equilibrium where most immune-editing occurs and the tumor mass 
acquires new mechanisms to further evade the immune system. The third and final stage is 
immune-evasion, where the tumor cells acquire enough advantages to overcome the immune 
system, and in many cases use the immune system to promote a pro-carcinogenic environment 
[75, 76].  

The immune system employs three major mechanisms to eliminate cancer cells from the 
body and protect it from clinical cancer: 

1) The immune system is capable of detecting viral components and proteins, which 
result in eliminating virus-induced cancers before they start [75].  
2) The immune system can resolve infections and eliminate pathogens before a pro-
tumorigenic environment can form [75].  
3) The immune system can detect and eliminate cancer cells through the recognition of 
new tumor associated antigens and through sensing cellular distress within the tumor 
environment [75]. 
A major strategy to inhibit cancer cells’ immune response is to express inhibitory ligands 

on the surface of cancer cells and tumor associated cells, such as dendritic cells. Effector T-
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cells function through a combination of inhibitory and activating signals. This checkpoint system 
is important to prevent autoimmune disease in peripheral tissues. Cancer cells take advantage 
of this check and balance system by expressing inhibitory ligands on their cellular surface, or 
through cytokines such as IL-10 and TGFβ. This can force other cells – such as dendritic cells – 
to express inhibitory ligands and limit T-Cell activation [77]. Two major checkpoint interactions 
have been the primary focus of immunologists and have provided viable drug targets, which are 
being validated in multiple clinical trials.  

First, the CTLA4 ligand binds to CD80 or CD86 receptors. CD80 or CD86 are normally 
present on effector T-cells and interact with CD28 on antigen presenting cells. This interaction 
activates T-cells by providing signal 2 activation. CTLA4 binds to the same CD80 or CD86 
receptors; instead of activating, the T-cell inhibits the activation through a signaling cascade. At 
the same time, CTLA4 has a higher affinity for CD80 or CD86 than CD28 and can easily 
displace CD28, inhibiting the activating signal. The tumor microenvironment, through cytokines 
on tumors, and actions of MDSCs can induce dendritic cells to express CTLA4, travel to the 
lymphoid organ, and inhibit T-cell activation [77-79].  

Another ligand family, which has received a lot of attention in research as of late, is the 
programmed death ligand (PDL), including PDL1 and PDL2. Unlike CTLA4 which acts within the 
lymphoid organ, PDL1/2 are inhibitory ligands expressed directly on tumor cells, and inhibit T-
cell function as well as T-cell proliferation within the tumor environment [80]. Unlike CTLA4, 
PDL1/2 are actually expressed on tumor cells, while programmed death receptor (PD1), is 
highly expressed on effector T-cells and NK cells [80]. Even more detrimental to tumor 
elimination, when Th1 CD4 helper cells interact with tumor cells through PDL1 to PD1 
interaction, the Th1 cells convert to T-regs cells, further suppressing immune elimination within 
the tumor environment [81].  
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Perhaps the most successful immunotherapy class that has been developed to date is 
checkpoint inhibitors. While many checkpoint inhibitors are under development, CTLA4 
inhibitors ipilimumab and tremelimumab have already been approved by the FDA for several 
cancers and are expected to become the favored therapy in the near future; meanwhile, PD1 
inhibitor pembrolizumab has received FDA approval to treat melanoma and is expected to 
receive approval for several other cancers [77, 82, 83]. In a phase III trial, the CTLA4 antibody 
tremelimumab induced slightly longer overall survival, and had longer response duration than 
the standard chemotherapy regimen for high grade metastatic melanoma [84]. Autoimmunity is 
a major setback with CTLA4 inhibition. While autoimmunity can be managed with corticosteroids 
and the discontinuation of anti-body treatment, side effects can be severe and include endocrine 
damage, even death [85-87]. The reason CTLA4 inhibitors induce severe side effects is due to 
the function of these antibodies in the lymphoid organs. Because PD1 to PDL1/2 interaction 
happens in the peripheral tissue, PD1 inhibition does not cause severe side effects like CTLA4 
inhibition. In a phase II trial, pembrolizumab was matched against chemotherapy (chosen by the 
provider) in refractory melanoma. Remarkably, the average 6-month survival rate of 
chemotherapy group was 16% and the average 6-month survival of the pembrolizumab group 
32% and 36% (two different doses were used). At the same time, adverse effects were noticed 
in 11% and 14% of the pembrolizumab group while adverse effects in the chemotherapy group 
was much higher at 26% [88]. In advanced melanoma, pembrolizumab provides a longer 
relapse, exceeding 14 months for patients who responded to the therapy [89]. While these 
checkpoint inhibitors have shown tremendous results in other cancers, the results of clinical 
trials in OSCC remain to be seen. Avelumab is another PD-1 antibody under clinical 
investigation in OSCC [90].  
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Another potent strategy in targeting the immune response toward cancer is activation of 
the immune system. CD27 is a costimulatory receptor found on the surface of lymphocytes. 
When CD27 on the surface of T-cells binds to CD70 on the surface of antigen presenting cells it 
activates T-cell expansion, effector (and survival), and memory T-cells [91]. Varlilumab, an 
agonist antibody for the CD27 receptor, helps activate T-cells within the tumor 
microenvironment [92]. While most clinical studies have yet to be completed, in a recent study, 
varlilumab showed encouraging results by increasing the ratio of effector T-cells to T-regs within 
the tumor microenvironment when used in combination with a PDL1 antibody [93].   

A third strategy for targeting cancer cells by immunotherapy is to present new antigens 
to immune cells that are only present on cancer cells. Adoptive T-cell transfer allows an injection 
of activated T-cells with engineered T-cell receptors (TCR) directly into a patient. Adoptive 
transfer of T-cells would be a very viable option if very specific tumor antigens are being 
targeted by these T-cells. In engineered TCRs, a gene coding for the TCR can be isolated from 
a patient, which has extremely high anti-tumor response or can be isolated in vitro after a 
specific tumor antigen screen screens for many potential T-cells [94, 95]. In the case of HPV+ 
cancers, the E6 viral protein expressed by HPV+ cells targets the tumor suppressor p53 protein 
[96]. E6 overexpression and p53 suppression has been found to be very common in OSCC cells 
[97]. Recently, a gene coding for the TCR against HLA-A*02:01-restricted epitope of HPV16 E6 
was isolated from a stable disease undergoing patient and is currently being studied in adoptive 
T-cell transfer in other patients using their own T-cells [98].  

 Conclusion  
While the five-year survival rates of OSCC remain relatively low, new targeted therapy is 

being developed for more hopeful outcomes. The potential success of targeted therapy in 
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treating OSCC has already been validated in the case of EGFR targeting cetuximab by 
providing increased survival to patients already receiving traditional platinum based regimens 
[99, 100]. The potential of new drugs and drug targets still remain to be seen. In the future, it will 
be important to move toward personalized targeted therapy. In the case of EGFR, only a small 
subset of patients (~16%) have altered EGFR levels [38]. While studies still need to determine if 
this small subset of cancer patients would benefit more from anti-EGFR therapy than others, it is 
important to conduct this research as soon as possible. As Schmitz et al. have noted, cancers 
are quick to develop resistance to primary therapies, and in the case of targeted therapies, a 
combination of targeted therapy may be more beneficial to the patient than single agent 
targeted therapy [99]. With many new drugs and therapies undergoing clinical trials, the future 
of OSCC patients is finally beginning to look brighter and more significant improvements in five-
year survival may be developed within the next few years. 
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Appendix 
 
Table 3.1 Clinical Staging of Oral Cancer 

Clinical Stage Tumor Stage Lymph Node Involvement Metastasis 
0 Tis N0 M0 
I T1 N0 M0 
II T2 N0 M0 
III T3 N0 M0 
 T1 N1 M0 
 T2 N1 M0 
 T3 N1 M0 

IVA T4a N0 M0 
  T4a N1 M0 
  T1 N2 M0 
  T2 N2 M0 
  T3 N2 M0 
  T4a N2 M0 

IVB T4b ANY M0 
 ANY N3 M0 
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Table 3.1 Continued 

Clinical 
Stage Tumor Stage 

Lymph Node 
Involvement Metastasis 

IVC Any Any M1 
 
Table adapted from AJCC Cancer Staging Manual, Sixth Edition (2002) [1]. 
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Table 3.2 Oral Cancer Staging Definitions 
 Tumor  
Tis Carcinoma in situ 
T1 Tumor is 2cm or less in greatest dimension 
T2 Tumor is greater than 2cm but less than 4cm in greatest dimension 
T3 Tumor is more than 4cm and/or with extraparenchymal extension (salivary gland) 

T4a Salivary Gland: Tumor invaded skin, mandible, ear canal, and/or facial nerve 
Lip: Tumor invaded cortical bone, inferior alveolar nerve, floor on mouth, or skin of face 
Oral Cavity: Tumor invaded cortical bone, into deep muscle tissue of tongue, maxillary 
sinus, or skin of the face 

T4b Tumor has invaded skull base and/or pterygoid plates and/or encases carotid artery 
Nodal Involvement 

N0 No regional lymph node metastasis present 
N1 Metastasis is present in a single ipsilateral lymph node, 3cm or less in greatest 

dimension 
N2a Metastasis is present in a single ipsilateral lymph node, more than 3cm but less than 

6cm in greatest dimension 
N2b Metastasis is present in multiple ipsilateral lymph nodes, more than 3cm by less than 

6cm in greatest dimension 
N2c Metastasis is present in bilateral or contralateral lymph nodes, no more than 6cm in 

greatest dimension 
N3 Metastasis is present in bilateral or contralateral lymph nodes, more than 6cm in the 

greatest dimension 
Metastasis 

M0 No distant metastasis present 
M1 Distant metastasis is present 

 
Table adapted from AJCC Cancer Staging Manual, Sixth Edition (2002) [1]. 
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Table 3.3 Oral Cancer Five Year Survival Rates by Stage and Location 
 

 5 year Survival Rate by location 

Stage Lip Tongue 

Floor 
of 

Mouth 
0-III 93% 73% 75% 

IVA-IVB 43% 63% 38% 
IVC 52% 36% 20% 

 
Table compiled based on information provided by American cancer society [2] 
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Table 3.4 Selected NCI sponsored trials in oropharyngeal cancer 
 

Pathway 
Targeted Drug Target Mechanism Trial Phase Source(s) 

Tyrosine Kinase  
Receptors 

Ficlatuzumab anti-hepatocyte growth factor 
antibody 

I [3, 4] 

  GSK2849330 anti-HER3 antibody I [5] 
  Afatinib EGFR and HER2 inhibitor III [6] 
  Cetuximab EGFR inhibitor III, II [7] 

  INC280 c-met inhibitor II, I [8] 
PI3K/mTOR PF-05212384 PI3K and mTOR inhibitor I  

  Buparlisib PI3K/AKT pathway II, I [9, 10] 
  Everolimus mTOR inhibitor I [11, 12] 

Immunotherapy Nivolumab Anti PD-1 antibody III [13] 
  Pembrolizumab Anti PD-1 antibody III [14] 
  Tremelimumab CTLA-4 antibody III [15] 
  Avelumab Anti PD-1 antibody I [16] 
  Varlilumab CD-27 Antibody II, I [17] 

  TCR engineered T-
Cells E6 protein of HPV II, I [18] 

Note: Source(s) in the table are for the mechanistic discussion of the drugs. Source of trials: 
National cancer institute (NCI) 
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Figure 3.1: PI3K/AKT/mTOR signaling 
Schematic representation of the PI3K/AKT signaling pathway GF= Growth Factor; TRK = 
Tyrosine Kinase Receptor; PIP2= Phosphatidylinositol 4,5-bisphosphate; PIP3= 
phosphatidylinositol 3,4,5 trisphosphate; PI3K= Phosphatidylinositol 3 Kinase; PTEN= 
Phosphatase and tensin homolog; AKT= Protein Kinase B; mTOR= Mechanistic Target of 
Rapamycin; BAD= Bcl-2-Associated Death Promoter; GLUT4= Glucose Transporter Type 4; 
GSK3β= Glycogen Synthase Kinase 3 Beta; IKKα= IκB kinase Subunit Alpha 
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CHAPTER IV 
INHIBITION OF THE PI3K/AKT PATHWAY SENSITIZES OSCC 
CELLS TO ANTHRACYCLINE DRUGS, DOXORUBICIN AND 

AD198 
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Research article described in this chapter a is slightly modified version of an article that was 
prepared for submission to the American Physiological Society Journal of Cell Physiology by 
Dmitriy Smolensky, Kusum Rathore and Maria Cekanova in February 2016.  
 
Inhibition of the PI3K/AKT pathway sensitizes OSCC cells to anthracycline drugs doxorubicin 
and AD198 in vitro 
Dmitriy Smolensky, Kusum Rathore, and Maria Cekanova.  
American Physiological Society Journal of Cell Physiology. (Manuscript in Progress) 
 
In this paper, “our” or “we” refers to me and my co-authors. My contribution to the manuscript 
includes: 1) Compiling and interpretation of literature 2) Providing comprehensive structure to 
the paper 3) Preparation of graphs and figures 4) Writing and editing 5) Performing the 
experiments 6) Interpretation of results 
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Abstract  
Background Patients with oropharyngeal cancer have a low survival rate of 57%; new 
chemotherapy and targeted drug therapy approaches are needed in order to improve patient 
outcome. Anthracycline-based chemotherapy, such as doxorubicin (Dox), while effective against 
many solid tumors, is not widely used for oral cavity cancers. In this study, we evaluated the 
efficacy of Dox and its novel derivative AD198 against human, canine, and feline head and neck 
cancer cell lines. In order to increase the efficacy of anthracycline-based chemotherapy in oral 
cancers, we evaluated the effects of Dox or AD198 combined with PI3K/AKT inhibitor - 
LY294002. Results Dox and AD198 had an anti-proliferative effect on human, canine, and feline 
head and neck cancer cell lines. AD198 had a better anti-proliferative effect than Dox in human 
and canine head and neck. In the human oral squamous cell carcinoma cell line SCC25, Dox 
and AD198 increased the production of reactive oxygen species and subsequently increased 
apoptosis through activation of caspases. It was observed that both Dox and AD198 increased 
activation of AKT, ERK 1/2, and p38 MAPK signaling pathways. Our results showed that the 
efficacy of Dox and AD198 is increased when PI3K/AKT is inhibited with LY294002. Conclusion 
AD198 may be more effective that Dox in treating oropharyngeal cancers. Our results suggest 
that an anthracycline therapy, such as Dox or AD198, can be made more effective when 
combined with inhibitors of the PI3K/AKT pathway.  
Keywords  
Oral cancer, PI3K/AKT signaling pathway, doxorubicin, and AD198 
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Introduction 
Oral squamous cell carcinoma (OSCC) is a major subset of head and neck cancers 

(HNC), which contribute to ~46,000 new cases a year in the United States, with a relatively low 
5-year survival rate of only 57% [19, 20]. The broad definition of oral cancer encompasses 
cancers both in the mouth and in the throat or pharynx (oropharyngeal cancer). OSCC arises 
from squamous epithelial cells.  It occurs most commonly in older individuals with the average 
age of diagnosis being 62 years old [21]. The most common risk factors of oral cancer are 
exposure to carcinogens (mainly tobacco use), alcohol consumption, and human papilloma 
virus (HPV), which is found in 40–60% of oral cancer patients [19, 21, 22]. Studies indicate that 
HPV-positive OSCC is more responsive to treatments and carries a better prognosis than HPV-
negative OSCC [23, 24] [25-27]. Importantly, while survival for patients with HPV-positive 
cancer has increased, the survival for patients with HPV-negative cancers has not changed [28]. 
HPV-negative cancers are usually associated with p53 mutations and dysregulation of the 
p53/pRb cell cycle arrest pathway [24]. Other pathways that have been observed to be altered 
in HNC are the p63/NOTCH, TGFβ, and PI3K/AKT signaling pathways [23].  

While the standard of care for patients with oral cancer is surgery, followed by radiation 
and chemotherapy, patients diagnosed with late stages very often cannot have a surgery due to 
the cancer’s intensive spread [22]. Because chemotherapy for patients with unresectable 
tumors may prolong survival by 10 to 22%, there exists a great need for more effective protocols 
and new drugs to treat oral cancers [22]. Most commonly chemotherapy agents used for 
treatment of oral cancers include cisplatin, carboplatin, cetuximab, 5-flourouracil, docetaxel, 
paclitaxel, bleomycin, vinblastine, vincristine, and methotrexate [22, 29].  
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Doxorubicin (Dox) has been used over the past three decades to treat solid metastatic 
tumors and is one of the most successful chemotherapeutic agents [30]. Dox inhibits growth of 
cancerous cells by inducing DNA damage through type II topoisomerases and other 
mechanisms, including generation of reactive oxygen species within the cytoplasm [31, 32]. 
Although cisplatin and 5-fluorouracil-based chemotherapy is usually the first line of treatment for 
HNC, new formulations of Dox are being researched in order to target HNC [33-35]. While Dox 
has been shown to be effective against a wide range of cancers, its long-term use comes with 
the drawbacks of drug resistance and cumulative cardio-toxicity [36, 37]. A novel derivative of 
Dox, N-benzyladriamycin-14-valerate (AD198), has been specifically designed to address drug-
resistance and cardio-toxicity in anthracycline-based therapies [38]. AD198 readily diffuses into 
the cytoplasm of the cell and is less susceptible to efflux transport due to its lipophilic structure 
[39]. Unlike Dox, which is cardio-toxic, AD198 has not only been shown to have no detectable 
cardio-toxicity in the mouse and rat models, but AD198 has also been shown to have a cardio-
protective effect through the activation of PKC-ε [40].  

In order to better evaluate experimental treatments for OSCC, well characterized animal 
models are needed. Dogs and cats are both more closely related to humans genetically than 
mice, and both cats and dogs develop spontaneous cancers, which make them a valuable 
model of human spontaneous carcinogenesis [41]. In addition, both canine and feline 
populations are affected by OSCC. Specifically, HNC cancer accounts for 6% of all canine 
cancers and 10% of feline cancers [41]. Tobacco exposure has been linked to increased 
incidence of HNC in both human and pet populations, with cats having an increased incidence 
of OSCC and dogs having an increased incidence of nasal cancers [42-44]. As with humans, 
both canine and feline OSCC is locally invasive, and the same difficulties in complete resection 
are encountered [41]. In order to better understand how Dox and AD198 effect feline and canine 
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cancers, we evaluated the anti-proliferative effect of both drugs on primary canine and feline 
OSCC cell lines that were isolated and established in our laboratory [45]. 

The efficacy of AD198 in inhibiting growth of OSCC cells has not yet been studied. 
Additionally, because Dox is not the first line of treatment in HNC cancers, strategies on how to 
increase its efficacy in these cancers are not well understood. Our study aimed to evaluate the 
efficacy of AD198 as compared to Dox in multiple HNC cell lines and to elucidate a possible 
combination therapy approach that would make anthracycline therapy more effective in HNC.  
 

Methods 
Reagents and antibodies  

Unless otherwise stated, all reagents and media were purchased from Fisher Scientific 
(Pittsburgh, PA, USA) Dox and LY294002 (LY) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). N-benzyladriamycin-14-valerate (AD198) was a kind gift from Dr. Leonard Lothstein, 
University of Tennessee Health Science Center in Memphis, TN, USA [38]. The following 
antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA): Actin-HRP, 
p-ERK1/2, ERK 1/2, AKT1, and p38. The following antibodies were purchased from Cell 
Signaling (Boston, MA, USA): PARP, p-AKT1 (Ser473 and Thr308), p-GSK3β, and p-p38.  
 
Cell culture  

Human oral squamous cell carcinoma (SCC25) cells were purchased from ATCC 
(Manassas, VA). The 1483 cell line was a kind gift from Dr. Lawrence Marnett at Vanderbilt 
University, Nashville, TN, USA, and was developed by the Parsons lab [46, 47]. Canine and 
feline oral squamous cell carcinoma cell lines (K9OSCC-Abby and FeOSCC-Sidney; 
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respectively) were established and characterized previously in our laboratory [45]. The SCC25 
and 1483 cells were grown in the following media: DMEMF12 containing 10% FBS 
penicillin/streptomycin mixture at 37°C and 5% CO2; feline and canine OSCC cells were grown 
in RPMI media containing 10% FBS and penicillin/streptomycin mixture (Fisher Scientific) at 
37°C and 5% CO2. 
 
Proliferation assay 

Cells were plated in 96-well plates at 5 × 103 cells/well and allowed to attach for 24 h. 
After seeding, cells were treated with AD198 or Dox in a dose-dependent manner in complete 
media for an additional 48 h. DMSO was used as a control. For treatment with PI3K inhibitor 
(LY), cells were pretreated with 20 µM LY for 30 min prior to stated drug treatment, and 20 µM 
LY was maintained for the rest of the 48 h treatment. After treatment, cell proliferation was 
measured using CellTiter96® Aqueous One Solution Cell Proliferation Assay (Promega, 
Madison, WI) according to the manufacturer’s protocol. Briefly, 20 μL MTS reagent was added 
to each well and allowed to incubate at 37°C for 1 h. Absorbance was measured at 490 nM 
using a plate reader (Bio-Tek instruments, Winooski, VT). The treatment data were normalized 
to the DMSO control.  
 
Reactive oxygen species (ROS) assay by flow cytometry  

For the ROS assay, the cells were incubated with 5 μM dihydrogen-dichlorodihydro-
fluorescein-diacetate (H2DCF-DA) (Life Technologies, Grand Island, NY) for 1 h. Cells were 
then washed with twice PBS and trypsinized. The trypsin was neutralized and the collected cells 
were centrifuged at 5,000 rpm for 5 min. The cell pellet was resuspended in 1 ml PBS and 
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fluorescence measured at 485 nM excitation and 530 nM emission using a flow cytometer (BD 
Accuri BD Sciences, San Jose, CA). Treatment results were normalized to the DMSO control.  
 
Caspase-3/7 assay  

Cells were plated in 6-well plates at 5 × 105 cells per well. After 24 h, cells were treated 
with AD198 or Dox for 24 h. After treatment, cells were washed twice with PBS, and cell lysates 
were harvested using RIPA buffer. Protein concentration was measured using a Bradford BCA 
assay. For detection of caspases 3/7, 40 µg proteins were used following the Caspase Glo-3/7 
Substrate protocol (Promega). After 1 h incubation with reagents, luminescence was measured 
using an FLx800 plate reader (Bio-Tek instruments, Winooski, VT). The treatment data was 
normalized to the DMSO control. 
 
Western Blot  

Cells were plated at 1.5 × 106 cells per 10-cm plate. Twenty four hours after plating, cells 
were treated with different doses of drugs for 24 h. For treatment with the PI3K inhibitor 
LY294002, the cells were pretreated with 20 µM LY294002 for 30 min prior to stated drug 
treatment, and 20 µM LY294002 was maintained for the rest of the 24 h treatment. After 
treatment (unless otherwise stated), the cells were washed twice with PBS and lysed using cold 
RIPA buffer containing protease/phosphatase inhibitors. The cell lysates were kept at –80°C 
until further analysis. Protein concentration was measured using the BCA protein assay. Equal 
amount of proteins (60 µg) were loaded onto SDS-PAGE gels and transferred to a nitrocellulose 
membrane. Primary antibodies were hybridized overnight at 4°C according to the 
manufacturer’s instructions. The secondary antibodies were hybridized for 1 h at room 
temperature and the immunoreactive bands were visualized using enhanced 
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chemiluminescence system (Fisher) and acquired on ImageQuant LAS4000 (GE Life Sciences, 
Pittsburgh, PA.) The densitometry analysis were performed using ImageJ (NIH, Bethesda, 
Maryland).  
 
Statistical analysis  

Statistics were performed using a paired Student t test to established significance. 
Results were considered statistically significant at *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 when 
treatments were compared to the control group and #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001 when 
comparing Dox to AD198, Dox to Dox + LY294002, or AD198 to AD198 + LY294002 at the 
same doses.  

 

Results 

DOX and AD198 inhibited cell viability of human, canine and feline OSCC cells  
The human OSCC cell lines, SCC25 and 1483, as well as FeOSCC-Sidney and 

K9OSCC-Abby cell lines, were treated with 0.1, 0.5, and 1 µM Dox and AD198 for 48 h, as 
shown in Fig. 4.1. Both Dox and AD198 significantly reduced the proliferation of SCC25 (Fig. 
4.1a) and 1483 (Fig. 1b) cells in a dose-dependent manner. AD198 was more effective at 
reducing cell viability at all doses when compared to Dox in human OSCC cells. Both Dox and 
AD198 inhibited viability of FeOSCC-Sidney (Fig. 4.1c) and K9OSCC-Abby (Fig. 1d) cells in a 
dose-dependent manner. AD198 was significantly more effective in inhibition of cell viability 
compared to Dox in FeOSCC-Sidney at 0.1 µM and significantly more effective than Dox in 
inhibition of cell viability in K9OSCC-Abby at 0.5 and 1 µM.  
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Dox and AD198 induced ROS production and induced apoptosis through caspase 
activation in human OSCC cells 

To evaluate the mechanisms of the anti-proliferative effects of Dox and AD198 in OSCC 
cells, we have used representative human SCC25 cell line for further experiments in this study.  

Both Dox and AD198 significantly increased ROS production in SCC25 cells after 24 h 
treatment with a 2.8-fold and 1.6-fold increase in SCC25 cells, respectively (***p ≤ 0.001), 
compared to control (Fig. 4.2a). In addition, AD198 showed significantly higher activation of 
ROS production as compared to Dox in SCC25 cells (##p ≤ 0.01).  

The effects of Dox and AD198 on induced apoptosis were evaluated using the caspase-
3/7 activity assay. Both Dox and AD198 increased caspase activity in SCC25 cells. Dox 
increased caspase 3/7 activity by a 2.4-fold, and AD198 increased caspase activity by a 2.8-fold 
when compared to control (***p ≤ 0.001), but there was no significant difference between Dox 
and AD198 treatments (Fig. 4.2b). Poly (ADP-ribose) polymerase (PARP) is a downstream 
target of caspases cascade. PARP protein is cleaved by caspases and the presence of cleaved 
fragments indicates apoptosis [48]. Dox and AD198 (1 µM) treatments increased the cleavage 
of PARP in SCC25 cells as confirmed by WB analysis (Fig. 4.2c). Densitometry values of 
cleaved PARP proteins after Dox and AD198 treatments were normalized to actin and then to 
the control groups, as shown in Fig. 2c. According to densitometry analysis of three 
independent experiments, a statistically significant increase in PARP cleavage by 6-fold 
(*p≤0.05) and by 5-fold (**p≤0.01) was observed in Dox and AD198, respectively, as compared 
to control treatment. There was no significant difference in cleaved PARP between Dox 
and AD198 treatments.  
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Dox and AD198 activated AKT1 signaling pathway in human OSCC cells  
To better understand the mechanisms of AD198 and Dox action on cell proliferation and 

apoptosis in OSCC, we investigated the role of PI3K/AKT and MAPKs signaling pathways. The 
p38 and ERK1/2 MAPKs have been shown to be activated by ROS to play vital role in apoptosis 
[49, 50]. Both Dox and AD198 increased the phosphorylation of p38 and ERK1/2 MAPKs in a 
dose-dependent manner (Fig. 4.3a). Both Dox and AD198 increased phosphorylation of p38 
MAPK in a time-dependent manner with the highest activation at 24 h after treatment (Fig. 
4.3b). On the other hand, Dox and AD198 increased the pro-survival PI3K/AKT signaling 
pathway in SCC25 cells in dose- and time-dependent manners (Fig. 3a and 3b). Dox had the 
greatest effect of increasing phosphorylation of AKT protein at both Ser473 and Thr308 at the 1 
µM dose, while AD198 had the greatest effect on the phosphorylation of AKT protein at 0.5 µM 
dose. 
 

Inhibition of PI3K/AKT signaling pathway sensitizing the cytotoxic effects of Dox and 
AD198 in human OSCC cells 

Dox and AD198 activated the pro-survival PI3K/AKT signaling pathway, which is one of 
the indicators of resistance of cells to chemotherapy. To confirm our hypothesis, we tested the 
effects of the PI3K inhibitor (LY294002) in combination with Dox or AD198 on growth of SCC25 
cells. Co-treatment with LY294002 increased the anti-proliferative effects of both Dox and 
AD198 in SCC25 cells. Cell morphology changes were detected, when cells were pre-treated 
with LY294002 and followed by Dox and AD198 treatments as compared to either Dox or 
AD198 treatments alone. Co-treatment of Dox with LY294002 caused cells to shrink and detach 
from plate surface resulting in cellular death of SCC25 cells (Fig. 4a.) The combination of Dox or 
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AD198 and LY294002 more effectively suppressed cell viability of SCC25 cells as compared to 
either treatment alone (Fig. 4b).  

In order to further investigate the PI3K/AKT inhibitor’s chemosensitizing effect to Dox 
and AD198 chemotherapy, we measured caspase-3/7 activities and PARP cleavage. Co-
treatment of Dox and AD198 with LY294002 increased caspase-3/7 activation and PARP 
cleavage in SCC25 cells, as shown in Fig. 4c and Fig. 4d. LY294002 inhibited the AD198- and 
Dox-induced phosphorylation of AKT at Thr308 and Ser473, as shown in Fig. 4e. In addition, 
higher levels of active (unphosphorylated) GSK-3β were present when SCC25 cells were co-
treated with Dox or AD198 with LY294002. Inhibition of PI3K/AKT further increased the Dox- 
and AD198-induced phosphorylation of p38 MAPK, but decreased the Dox- and AD198-induced 
phosphorylation of ERK1/2.  
 

Discussion 
As published previously, AD198 is effective as novel derivative of Dox even for treatment 

of Dox-resistance leukemia and melanoma tumors in the mouse model [51]. The objectives of 
our study was to evaluate the efficacy of AD198 in human, canine, and feline OSCC cell lines in 
vitro. Our data showed that AD198 had a better inhibitory effects on cell proliferation than Dox in 
all tested human, canine and feline OSCC cell lines (Fig. 1). This data correlates with our 
previously obtained results that show that AD198 is more effective than Dox in primary canine 
transitional cell carcinoma and osteosarcoma cell lines [52]. We and others have shown that 
feline and canine OSCC models might be helpful for testing of novel therapeutics, including Dox 
and its derivatives, receptor tyrosine kinase inhibitors, and non-steroidal anti-inflammatory drugs 
[43, 45]. 
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In order to elucidate mechanistic differences and potential ways to increase efficacy of 
Dox and AD198 chemotherapies, we studied the Dox and AD198-induced apoptosis in OSCC in 
vitro. While both Dox and AD198 increased ROS production when compared to control, AD198 
increased ROS production by a 2.8-fold, Dox increased ROS production by only 1.6-fold (##p ≤ 
0.01 between Dox and AD198, Fig. 2a). AD198 has been shown to have comparable ROS 
production with that of Dox in cardiomyocytes [53]. We have shown that AD198 induces 
production of ROS more than Dox in human UMUC3 and T24 bladder cancer cells in vitro [54]. 
Caspase cascade and its downstream target PARP cleavage are common methods to detect 
apoptosis in cells [48, 55]. Both Dox and AD198 had similar effects in increasing caspase 3/7 
activities and inducing downstream PARP cleavage (Fig. 2b and 2c). There was no significant 
difference in caspase 3/7 activities with regard to the amount of cleaved PARP between Dox 
and AD198. These data suggest that while AD198 has a greater ROS-generating effect, this 
effect may not contribute to an increase in caspase-dependent apoptosis, but instead 
contributed to caspase-independent pathways. Dox-induced apoptosis was caspase-dependent, 
and the effects of Dox diminish when caspases are inhibited in leukemia cell lines [56]. Another 
explanation for the greater efficacy of AD198 when compared to Dox, even though both drugs 
show similar caspase induction and PARP cleavage, is that ROS-induced apoptosis can 
function through caspase-independent pathways, as shown previously in cardiomyocytes [57]. 
This suggests that the greater increase in ROS production may still lead to greater apoptosis 
without triggering a great increase in caspase activity.  

To further investigate the mechanism behind Dox and AD198 anti-tumor effects, we 
evaluated the involvement of signal transduction pathways in OSCC cells in vitro. Both Dox and 
AD198 increased phosphorylation of ERK1/2, and p38 MAPK, as well as AKT in time- and 
dose-dependent manner (Fig. 3a and 3b). The ERK1/2 signaling pathway plays an important 
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role in regulation of cell’s survival and apoptosis [58, 59]. Activation of ERK1/2 generally 
promotes cell survival; but can also have pro-apoptotic functions [60, 61]. The inhibition of ERK2 
activity has been reported to sensitize ovarian carcinoma cells to cisplatin-induced apoptosis 
[62, 63], but it has been also reported to induced drug resistance of various carcinomas to 
chemotherapy drugs [64, 65]. The p38 MAPK signaling pathway is also associated with 
apoptosis and is an important pathway that is activated with various chemotherapy drugs [66]. 
We have shown that Dox- and AD198-induced apoptosis is a p38 MAPK-dependent in canine 
transitional cell carcinoma and osteosarcoma cell lines [52]. On the other hand, the PI3K/AKT 
pathway has been shown to be dysregulated in many cancers, and its activation is responsible 
for increased cell survival, decreased apoptosis, and increased drug resistance [67-69]. In 
breast cancer, activation of AKT leads to multi drug resistance and increased expression of p-
glycoprotein [70]. In contrast, inhibition of PI3K/AKT reduces drug resistance by decreasing 
transport activity of p-glycoprotein [71]. When the PI3K/AKT pathway was inhibited, 
chemosensitivity to Dox was increased in various cancers, including breast, bladder, and 
ovarian [72-74]. It has also been shown that Dox increases phosphorylation of AKT in various 
breast cancer cell lines [75], which correlates with our observations in SCC25 cells.  
 In order to better understand how PI3K/AKT pathway activation plays a role in 
antagonizing Dox and AD198-induced apoptosis in OSCC cells, we studied the effects of Dox 
and AD198 in combination with the PI3K inhibitor LY294002. Cell viability of tested OSCC was 
greatly reduced when Dox or AD198 was combined with LY294002 treatment when compared 
to either Dox or AD198 treatment alone (Fig. 4a and 4b). Apoptotic markers, including caspase 
3/7 activity and PARP cleavage, increased significantly with the combination of Dox + 
LY294002 or AD198 + LY294002, as compared to either Dox or AD198 alone (Fig. 4c and 4d). 
These results confirmed by previous studies in other cancers, showing that inhibition of 
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PI3K/AKT increased chemosensitivity towards Dox. Our results also show that chemosensitivity 
to AD198 can also be increased through the inhibition of the PI3K/AKT pathway.  

Inhibition of the PI3K/AKT signaling pathway decreased Dox and AD198-induced 
activation of p38 MAPK and reduced activation of the ERK1/2 signaling pathways (Fig. 4e). In 
cardiomyocytes, activation of AKT is correlated with deactivation of p38 MAPK [76]. AKT/PI3K 
signaling pathway has also been shown to downregulate p38 MAPK signaling in endothelial 
cells [77]. While the interplay between PI3K/AKT and ERK signaling pathways is poorly 
understood, it has been previously observed that inhibition of the ERK signaling pathway 
increases activity of the p38 MAPK pathway [78]. Our results indicate that LY294002 co-
treatment with Dox or AD198 increased chemosensitivity through the inhibition of ERK and 
increased activation of p38 MAPK. In conclusions, our data show that the inhibition of the PI3K 
pathway may be an important for increasing the efficacy of anthracycline-based chemotherapy 
in HNC with agents such as Dox and AD198.  
 

Conclusion 
In this study, we have shown that AD198 is more effective at inhibiting cell proliferation 

than Dox in all tested OSCC cell lines. Both Dox and AD198 increased ROS production and 
activated the caspase-dependent apoptosis cascade. Phosphorylation of AKT, p38 MAPK, and 
ERK1/2 was increased by both Dox and AD198 treatments. Because AKT was shown to have 
an anti-apoptotic effect in previous studies, we evaluated the combination therapy of inhibiting 
PI3K/AKT along with Dox and AD198. Inhibition of PI3K/AKT further decreased cell proliferation 
and increased apoptosis in human OSCC cells that were treated with Dox or AD198. 
Furthermore, inhibition of PI3K/AKT increased the activation of p38 MAPK by Dox and AD198 
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while decreasing the activation of ERK 1/2. Results collected from this study show that AD198 
may be an effective anthracycline treatment for HNC cancers, and the inhibition of PI3K/AKT 
can further increase the efficacy of Dox or AD198-based chemotherapy in HNC cancers in vitro.  
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Appendix 

  
 
Figure 4.1: DOX and AD198 inhibit cell viability of human and animal OSCC cells. 
(a) Human oral squamous cell carcinoma SCC25 cells, (b) 1483 cells, and (c) FeOSCC-Sidney 
and (d) K9OSCC-Abby cells were treated with Dox (black bars) and AD198 (white bars) at 0, 
0.1, 0.5, and 1 µM for 48 h and compared to control groups. Cell proliferation was determined 
by MTS assay and relative cell growth rate was normalized to control, DMSO treated groups. 
The values are mean ± S.E. of four replicates from three independent experiments. Paired 
Student t-tests were used to compare Dox and AD198 treatment to control; *p ≤ 0.05, **p ≤ 0.01, 
and ***p ≤ 0.001. Paired Student t-tests were used to compare among Dox and AD198 group at 
the same dose treatment; #p ≤ 0.05, ##p ≤ 0.01, and ###p ≤ 0.001. 
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Figure 4.2 Dox and AD198 induced ROS in human OSCC cells and activate apoptotic 
caspase cascade in OSCC cells. 
(a) SCC25 cells were treated with 1 µM Dox and 1 µM AD198 for 24 h, and ROS levels were 
measured with dihydrogen-dichlorodihydro-fluorescein-diacetate labeling flow cytometry; 
median fluorescence was measured and normalized to the control. These values are mean ± 
S.E. of four replicates performed in three independent experiments. Paired Student t test 
comparing Dox and AD198 treatment to control; *p ≤ 0.05, ***p ≤ 0.001, and Dox and AD198 
treatments; ## p ≤ 0.01, respectively. (b) SCC25 cells were treated with 1 µM Dox and 1 µM 
AD198 for 24 h, and caspase activity was measured using the Caspase-Glo 3/7 luminescence 
assay. Relative caspase activities were normalized to control. The values are mean ± S.E. of 
three independent experiments in two replicates. Paired Student t test compared treatment to 
control groups; ***p ≤ 0.001. There was no significant difference in caspase activity between 
Dox and AD198. (c) SCC25 cells were treated with 1 µM Dox and AD198 for 24 h. The 
expression of PARP (cleaved fragment) was evaluated by WB analysis. Actin was used as 
loading control. The right panel represents densitometry evaluation of three independent 
experiments. Cleaved PARP fragment was normalized to actin and these values were 
normalized to control. Values represent mean ± S.E. of three independent experiments. Paired 
Student t test comparing Dox and AD198 treatment to control groups; *p ≤ 0.05 and **p ≤ 0.01. 
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Figure 4.2 Continued 
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Figure 4.3: Dox activated AKT, p38 MAPK and ERK 1/2 signaling pathway in human 
OSCC cells in dose and time dependent manner. 
(a) SCC25 cells were treated with 0, 0.1, 0.5, and 1 µM Dox and AD198 for 24 h. (b) SCC25 
cells were treated with 1 µM Dox and AD198 for 0, 0.5, 1, 3, 6, and 24 h. The expression of p-
AKT (Thr308), p-AKT (Ser473), AKT, p-ERK, ERK, p-p38, and p38 proteins was detected by 
WB. Actin was used as loading control.  
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Figure 4.4: Inhibition of AKT signaling pathway potentiates the cytotoxic effects of Dox in 
human SCC25 cells.  
Figure 4.4: (a) SCC25 cells were treated with Dox and AD198 (1 µM) with and without 
LY294002 (LY, 20 µM) for 24 h. Pictures were taken at 100× magnification in order to observe 
cell morphology and amount of cells. Scale bar represents 50 µm. (b) SCC25 cells were treated 
with Dox and AD198 (1 µM) with and without LY294002 (20 µM) for 48 h, and cell viability was 
measured using an MTS assay. Relative cell viability was normalized to untreated counterpart.  
The values represent mean ± SE of three independent experiments performed in four replicates. 
Paired Student t tests compared DOX, AD198, Dox + LY294002 and AD198 + LY294002 
treatments to control; *** p ≤ 0.001. Paired Student t tests were used to compare Dox to Dox + 
LY294002 and AD198 to AD198 + LY294002 treatments, ### p ≤ 0.001. (c) SCC25 cells were 
treated with DOX and AD198 (1 µM) with and without LY294002 (20 µM) for 24 h, and caspase 
activities were measured using the Caspase-Glo 3/7 luminescence assay. Relative caspase 
activities were normalized to control. The values represent mean ± S.E. of three independent 
experiments performed in duplicates. A paired Student t test compared treatment to control; ***p 
≤ 0.001, as well as Dox to Dox + LY294002 and AD198 to AD198 + LY294002 treatments; ### p 
≤ 0.001. (d) SCC25 cells were treated with Dox and AD198 (1 µM) with and without LY294002 
(20 µM) for 24 h. The expression of PARP (cleaved fragment) was evaluated by WB analysis. 
Actin was used as loading control. Densitometry evaluation of cleaved PARP/actin protein 
bands from WB analysis was done using ImageJ software. Values are mean ± S.E. of 
measured densitometry of each protein’s band from three independent experiments. Paired 
Student t tests were used to compare controls to Dox and AD198 treatments, *p ≤ 0.05, **p ≤ 
0.01, and ***p ≤ 0.001, as well as Dox to Dox + LY294002 and AD198 to AD198 + LY294002 
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treatments; ###p ≤ 0.001. (e) SCC25 cells were treated with Dox and AD198 (1 µM) with and 
without LY294002 (20 µM) for 24 h. The expression of p-AKT (T308), p-AKT (S473), AKT, p-
p38, p38, p-ERK, ERK, and p-GSK-3β proteins was evaluated by WB analysis. Actin was used 
as loading control. 
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Figure 4.4 Continued 
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Figure 4.4 Continued 
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CHAPTER V 
DISCUSSION 
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General Discussion 
The studies presented in this dissertation were designed to 1) evaluate the anti-

proliferative efficacy of AD198 compared to doxorubicin (Dox) in human transitional cell 
carcinoma (TCC) and human, canine, and feline oral squamous cell carcinoma (OSCC) cell 
lines in vitro and 2) study the mechanisms of Dox and AD198 proliferation inhibition and 
increase the efficacy of both Dox and AD198 through combination targeted therapy in vitro.  

Summary of Results 

Bladder cancer 
The bladder cancer study shows the novel derivative of Dox, AD198, was effective in 

inhibiting proliferation of TCC cell lines in vitro in a dose dependent manner using the MTS 
assay (Figure 2.1). When compared to Dox, AD198 was more effective at 0.1µM and 5.0µM 
doses in both T24 and UMUC3 cell lines (Figures 2.1a and 2.1b).  

To identify the mechanisms involved in the inhibitory effect of AD198 in TCC cell lines, 
we evaluated reactive oxygen species (ROS) generation by measuring DCF fluorescence using 
flow cytometry. We found AD198 increased ROS production more than Dox in both T24 and 
UMUC3 cell lines (Figure 2.2).  

We next studied the ability of Dox and AD198 to induce apoptosis in human TCC cells 
through caspase-3/7 activity and the downstream cleavage of Poly ADP ribose polymerase 
(PARP) protein (Figure 2.3). Results showed that Dox was more effective than AD198 at 
increasing caspase-3/7 activity and inducing PARP cleavage in both T24 and UMUC3 cells. 
These findings indicated Dox and AD198 may inhibit cell proliferation through different 



179 
 

mechanisms with Dox relying more on caspase activity, and AD198 relying more on ROS 
generation.  

In studying the effects of Dox and AD198 on signal transduction pathways, we observed 
that both Dox and AD198 increased the activation of the Phosphatidylinositol-3 kinase/anti-
apoptotic receptor tyrosine kinase (PI3K/AKT) signaling pathway through phosphorylation of 
AKT at the T308 and S473 residues, in both time and dose dependent manners (Figure 2.4). 
Because PI3K/AKT is recognized as a pro-survival and pro-proliferation pathway, we 
hypothesized that the anti-cancer effects of Dox and AD198 can be increased through 
combined treatment with agents that inhibit the PI3K/AKT pathway [1].  Co-treatment with the 
PI3K inhibitor LY294002 (LY) increased the anti-proliferative efficacy of both Dox and AD198 
(Figure 2.5) in T24 and UMUC3 cells.  Co-treatment with LY and Dox or AD198 had a greater 
effect on increasing caspase-3/7 activity than either Dox or AD198 alone in both T24 and 
UMUC3 cells. To verify the increase in caspase-3/7 activity, we evaluated the cleavage of 
PARP in cells treated with LY and Dox or AD198. In both T24 and UMUC3 cells, the co-
treatment of LY with either Dox or AD198 resulted in a greater increase in PARP cleavage 
compared to Dox or AD198 alone. To confirm the efficacy of the PI3K inhibition by the LY 
compound, we have shown the LY compound inhibits Dox- or AD198-induced phosphorylation 
of the AKT protein at the T308 and S473 residues.  
 
Oral Cancer 

AD198 was more effective at inhibiting cell proliferation than Dox at all the doses tested 
(at 0.1µM, 0.5µM and 1.0µM) in human OSCC cell lines, SCC25 and 1483. In the primary feline 
head and neck squamous cell carcinoma cell line (Sidney) both AD198 and Dox inhibited cell 
proliferation in a dose dependent manner. In the primary canine OSCC cell line (Abby) AD198 
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was more effective at inhibiting cell proliferation than Dox at 0.5µM, and 1.0µM doses. These 
results suggested AD198 may be a viable option to replace Dox for treatment of OSCC (Figure 
4.1).  

In order to study the mechanism of action of Dox and AD198, we compared the 
effectiveness of the two drugs in generating ROS and activating the caspase apoptotic pathway. 
Similar to previous results obtained in TCC cell lines, AD198 generated more ROS than Dox in 
SCC25 cells. However, unlike results obtained in TCC cell lines, both Dox and AD198 increased 
caspase-3/7 activity to similar levels in SCC25 cells (Figure 4.2).  

Similarly to TCC cell lines, both Dox and AD198 increased activation of the PI3K/AKT 
pathway, as was observed by phosphorylation of AKT at T308 and S473 residues in both dose 
and time dependent manners in SCC25 cells. We also observed that both Dox and AD198 
increased phosphorylation of Erk1/2 and p38 MAPK proteins in both time and dose dependent 
manners (Figure 4.3).  Both PI3K/AKT and ERK pathways are recognized as pro-survival 
pathways, while p38 MAPK is generally recognized as a pro-apoptotic pathway [1-4]. We 
observed inhibition of PI3K by LY increased the ability of both Dox and AD198 to inhibit cell 
proliferation in SCC25 cells. These results were confirmed by increased caspase-3/7 activation 
and PARP cleavage induced by Dox + LY or AD198 + LY as compared to Dox or AD198 alone. 
On the protein level, inhibition of PI3K inhibited activation of the AKT and ERK pathways by Dox 
and AD198. Conversely, inhibition of PI3K further increased Dox- and AD198-induced activation 
of p38 MAPK. Previous studies in the laboratory showed that Dox- and AD198-induced p38 play 
important pro-apoptotic roles in canine TCC and osteosarcoma cell lines [5].  
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PI3K/AKT and its role in human cancers 
PI3Ks are a downstream target of many pro-survival, pro-growth and RTKs including: 

EGFR, HER2, PDGFR, c-Kit, and Ras. PI3K phosphorylates phosphatidylinositol 4,5-
bisphosphate (PIP2) to form phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [6]. Downstream 
of PIP3 is the protein AKT, which initiates major pro-survival signaling pathways [6]. AKT can 
activate mechanistic target of rapamycin (mTOR) through the phosphorylation and inhibition of 
its negative regulator TSC2 [7, 8]. In turn, mTOR increases protein synthesis, glucose uptake, 
and proliferation in several cancers including oral and bladder cancers [9, 10]. To prevent 
apoptosis, AKT phosphorylates MDM2 causing it to translocate to the nucleus and induce 
degradation of tumor suppressor p53. AKT also phosphorylates BAD, modulating its pro-
apoptotic functions [11-13]. Another downstream target of PI3K is the RAF/MEK/ERK pro-
survival signaling pathway [14, 15]. These and other findings indicate that the PI3K/AKT 
pathway is a central convergence point for many signals that may increase cell proliferation and 
decrease susceptibility to anti-cancer therapy [16].  

According to the cancer genome network, at least part of the RTK/PI3K/AKT pathway is 
altered in 72% bladder cancer patients and in 61-62% head and neck squamous cell carcinoma 
patients [17, 18]. Because PI3K/AKT is central to many signaling pathways, it can play a major 
role in resistance and susceptibility to targeted therapy [19]. PTEN serves as one of the major 
negative regulators of PI3K by dephosphorylating PIP3 back to PIP2 [20]. PTEN protein 
deficiencies and mutations have been identified in both bladder and oral cancers [21-24]. In 
bladder cancer, PTEN protein deficiency induces resistance to mTOR inhibition therapy and is 
also correlated with reduced survival [25, 26]. In oral cancer, PTEN protein deficiency leads to 
further progression of disease and is associated with reduced survival [27, 28].  
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Targeting the PI3K/AKT pathway to increase efficacy of Dox has been suggested in 
other cancers. Inhibition of PI3K by LY blocks the export of Dox in drug-resistant colon cancer 
cells which restores sensitivity to Dox therapy [29]. In ovarian cancer, Dox has been shown to 
activate PI3K/AKT through activation of the HER3 receptor and inhibition of the HER3/PI3K/AKT 
pathway increased Dox-induced apoptosis [30]. Another recent report showed that Dox 
activates the PI3K/AKT pathway and inhibition of this pathway by  LY increased sensitivity to 
Dox in human bladder cancer cells [31].  

The data obtained in these studies has shown that both Dox and AD198 activate the 
PI3K/AKT pathway in bladder and oral cancer cell lines. The fact that many patients already 
have an over-active PI3K/AKT pathway in oral and bladder cancer cell lines suggests the 
PI3K/AKT pathway is a valid target for co-treatments with anthracycline based chemotherapy.  
 

Prospects and future directions 
The results of our studies have demonstrated that: 1) AD198 is a viable treatment when 

compared to Dox in both TCC and OSCC cell lines in vitro, and 2) Both Dox and AD198 
increase the activity of the PI3K pathway and show increased efficacy upon inhibition of PI3K in 
vitro. 
 In order to move forward, the efficacy of AD198 must be validated using in vivo models 
for both TCC bladder cancers and OSCC oral cancers. Previous studies have suggested AD198 
may have certain advantages over Dox. AD198 has no known cardio-toxic effects and has been 
shown to have cardio-protective qualities in rat models [32, 33]. A xenograft model of human 
TCC or OSCC would be necessary to test the efficacy AD198 compared to Dox. Another viable 
option could use chemically induced tumors. Mice exposed to N-butyl-N-(4-hydroxybutyl) 
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nitrosamine (BBN) in drinking water will develop bladder cancer and can be used to study the 
effects of AD198 and Dox after the primary tumor is established [34]. To accomplish the same 
experiment for OSCC, 4-nitroquinoline-1-oxide (4NQO) could be used to induce OSCC in CBA 
mice when repeatedly applied to the palate [35]. Following success of mouse models, AD198 
should be studied in the canine and feline models of TCC and OSCC. 
 The combination of a PI3K inhibitor with Dox or AD198 should be validated with a 
clinically relevant inhibitor of the PI3K/AKT pathway in vitro. There are currently several 
PI3K/AKT pathway-targeting drugs in the pipeline for both TCC and OSCC cancers [36, 37].  
Buparlisib is a PI3K inhibitor currently being researched for treatment of several cancers in 
clinical trials [38-41] and has been shown to exhibit efficacy against OSCC cells in vitro [42]. In 
order to validate the results obtained in our studies, in vitro experiments using buparlisib 
combined with AD198 or Dox should be performed. Following positive in vitro results, combined 
treatment using buparlisib along with Dox or AD198 needs to be studied in vivo of TCC and 
OSCC and compared to Dox or AD198 alone.  
   

Conclusion 
 These studies indicate that in both TCC and OSCC cancers, Dox and AD198 activate 
the pro-survival PI3K/AKT pathway while having anti-proliferative effects. Targeting the 
PI3K/AKT pathway along with Dox or AD198 treatment increases the efficacy of anthracycline 
therapy in vitro (Figure 5.1). These results can be used to study overcoming Dox-induced 
cardio-toxicity by replacing Dox with AD198, overcoming drug resistance in cancers with active 
PI3K/AKT pathways, and making the established use of Dox more effective in treating bladder 
and oral cancers.     
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Appendix  

 
Figure 5.1: Representation of increasing sensitivity to Dox and AD198 by targeting the 
PI3K/AKT pathway 
(a) Both Dox and AD198 decreased cell proliferation through activation of p38, production of 
reactive oxygen species and activation of caspases. The activation of PI3K/AKT induced by Dox 
and AD198 inhibited apoptosis through these mechanisms. (b) Upon inhibition of the PI3K/AKT 
pathway by LY294002, the apoptotic effects of Dox and AD198 are further increased through 
increased activation of p38 and caspases.  
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