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ABSTRACT 
 
 

The work in this dissertation focuses on the detection and analysis of trace 
chemicals in biological and environmental samples. Methods for the 
electrochemical detection of heavy metals Cd(II) [cadmium] and Pb(II) [lead], and 
the catalytic metal Pd(II) [palladium] in pharmaceutical ingredients have been 
optimized without the necessity of sample pretreatment. The metals can be 
analyzed simultaneously as well as individually, and the study includes the first 
known instance of the use of anodic stripping voltammetry (ASV) to detect metals 
in dimethyl sulfoxide (DMSO) solutions. Another method, based on ASV, has 
been optimized and evaluated for the purpose of mercury(II) analysis in a 
representative active pharmaceutical ingredient (API) and excipient. A pyridine-
functionalized thin film has been fabricated to selectively preconcentrate 
hexavalent chromium [Cr(VI)] anions for electrochemical detection. Glassy 
carbon electrodes were modified through physical deposition of single-walled 
carbon nanotubes (SWNTs) on the electrode surface, followed by 
electrochemical deposition of a sol-gel containing a 2-pyridine functional group. 
The use of SWNTs has increased sensitivity for Cr(VI) detection in aqueous 
solutions, providing a detection limit of 0.3 µg L-1 (micrograms per liter). Two new 
processes to pretreat blood samples have been developed. The treatments are 
based on a Fenton-like advanced oxidation process (AOP). The first method is 
performed with a simple convection oven over a period of five hours, while the 
second uses microwave irradiation for six minutes. These novel methods allow 
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for either cost-effective pretreatment through the use of the common lab oven, or 
time savings through the use of the synthesis microwave. The pretreated 
biological samples were further analyzed via anodic stripping for quantification of 
copper in the whole blood. A novel, disposable, Bi (bismuth)-based colorimetric 
sensor was developed for the detection of toxic hydrogen sulfide (H2S) gas. 
Using a simple laboratory setup to generate the H2S in a total volume of 1.35 L 
(liters), the sensor was able to qualitatively detect the analyte down to 30 ppb 
(parts per billion), indicating its ability to be used in industrial settings and 
manufactured into an inexpensive product for the determination of bad breath.  
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Introduction and background 
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1.1. Foreword 
 In 2008, a waste containment area in Kingston, TN failed, releasing 1.1 
billion gallons of coal ash slurry into the Emory and Clinch rivers. Coal ash 
contains a mix of many elements that do not combust with the coal, many of 
which (arsenic, cadmium, lead, mercury, copper, chromium, etc.) have negative 
effects on the environment and human health.1 Despite changes in coal ash 
containment pond regulations, another spill occurred six years later in North 
Carolina, releasing 39,000 tons of ash and 27 million gallons of contaminated 
water into the Dan River. Similar catastrophes have occurred more recently, such 
as the high concentration of lead found in the water supply of Flint, MI and the 
massive southern California natural gas leak that released large amounts of 
mercaptan odorants into the surrounding community. 
 These same trace chemicals are found not only in large-scale 
environmental disasters, but also in foods, pharmaceuticals, human blood, and 
even human breath. Their analysis, requiring trace detection and regular 
sampling, can be applied to many areas from public health to industry. The 
development of new sensors and methods, potentially portable, simple to use, 
inexpensive, and remotely operated, is critical to the efforts.  

This dissertation discusses the work of trace chemical detection using 
electrochemical and optical sensors that can have direct environmental 
applications. A method for the electrochemical detection of the heavy metals 
cadmium and lead, as well as the catalytic metal palladium in pharmaceutical 
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ingredients has been optimized without the necessity of sample pretreatment. 
The metals can be analyzed simultaneously as well as individually, and the study 
includes the first known instance of the use of anodic stripping voltammetry 
(ASV) to detect metals in a dimethyl sulfoxide (DMSO) solution. A novel, 
disposable, Bi (bismuth)-based colorimetric sensor was developed for the 
detection of toxic hydrogen sulfide (H2S) gas. Using a simple laboratory setup to 
generate the H2S in a total volume of 1.35 L (liters), the sensor was able to 
qualitatively detect the analyte down to 30 ppb (parts per billion), indicating its 
ability to be used in industrial and laboratory settings. 
 

1.2. Analysis techniques used in the research  
1.2.1. Electrochemical techniques  

Voltammetry is a form of electrochemical measurement that utilizes a 
potential ramp or a potential shift to transfer electrons to or from the electrode 
and solution while the resulting current is recorded. The current response can 
then be utilized to extract useful chemical information including reaction kinetics, 
quantitative data, and qualitative data. Most voltammetry is performed with a 
three-electrode system. The first electrode is the working electrode, where the 
observed reaction takes place. Depending on the reaction, it can be either 
cathodic or anodic. The counter electrode, paired with the working electrode, 
provides current to maintain a set potential difference between the third electrode 
(the reference electrode) and the working electrode. The reference electrode 
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(typically Ag/AgCl, 3 M KCl) has no current flowing through it, and maintains a 
constant potential for use as a reference point.2,3 The instrument used for such 
three-electrode electroanalytical experiments is the potentiostat which controls 
the voltage across the working electrode and the counter electrode. Based on 
programming, the potentiostat works to maintain a pre-determined potential 
difference between the working and reference electrode.2,3   

The voltammetric technique used in the research herein was square wave 
voltammetry (SWV). SWV is a pulsed technique, which refers to a method in 
which the potential is pulsed, as opposed to linearly swept. Potential pulse 
techniques are commonly favored over potential sweep techniques because they 
are often more sensitive. This is due to the current sampling (the recording of the 
current) taking place at a time long enough after the potential change that the 
otherwise interfering charging current is negligible.4 SWV can be described as a 
combination of a voltammetric square wave modulation (essentially quantized 
pulses in the potential) and a staircase potential waveform. When graphing the 
resulting potential versus time there is an obvious staircase waveform, each 
cycle of which contains two symmetrical pulses in opposite directions. Two 
current samples are taken during each cycle (one at the end of each half cycle), 
relating to the two respective pulses.2,3,5   

As seen in Figure 1.1., a sample is taken at the end of the first pulse in the 
cycle. This pulse is referred to as the forward pulse because it is in the direction 
of the staircase scan. The reverse current sample is taken at the end of each 
reverse pulse, referring to the second pulse per cycle which is in the opposite 
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direction of the forward pulse. Thus, for each cycle, the forward current sample, 
and the reverse current sample are given. The difference in these two currents, 
the net current, is plotted to give a Gaussian peak rather than the usual 
voltammetric wave.3  Additionally, since SWV applies pulses of equal amplitude, 
the net current cancels out all currents not related to the reactions of interest, 
further increasing sensitivity.6 

 
 
 

 
Figure 1.1. Waveform of square wave voltammetry. Also depicted here is the pulse width tp, 
pulse height ∆Ep, and the staircase potential shift ∆Es.3 
 
 
 Anodic stripping voltammetry (ASV) is a voltammetric method wherein the 
potential at the working electrode is held at a sufficiently negative potential to 
reduce the analyte (typically a metal) so that it deposits directly onto the 
electrode surface. Following the deposition step, the potential is swept in the 
anodic (positive) direction, oxidizing the analyte which strips it from the electrode 
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surface back into solution. This oxidation sweep, known as the stripping step, 
produces a Faradaic current that is directly proportional to the analyte 
concentration. ASV is a very sensitive method, due to the preconcentration of the 
analyte(s) during the deposition step. Throughout the work herein this method is 
paired with SWV, which further enhances sensitivity, and is able to detect metals 
at trace concentrations.  
 
 
1.2.2. Advanced oxidation process 
 Advanced oxidation processes (AOPs) are a type of treatment method to 
destroy organics through the formation of highly reactive hydroxyl radicals 
(•OH).7-10  AOP methods are commonly used to pretreat wastewater because 
they are environmentally friendly alternatives to the use of strong chemical 
oxidizers.7-9  The most common reactants used for AOPs are ozone (O3) and 
hydrogen peroxide (H2O2).  
 

1.2.2.1. Fenton process  
The Fenton process uses a ferrous ion (Fe2+) alongside H2O2 to form 

hydroxyl and hydroperoxyl radicals, which become the oxidants in the 
decomposition of organic compounds. The radical forming reactions involved in 
the Fenton process are given below.  

 
Fe2+ + H2O2 → Fe3+ + •OH + OH−  Eq. 1.1 
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Fe3+ + H2O2 → Fe2+ + HO2• + H+  Eq. 1.2  
 

As shown in Eqs. 1.1-1.2, Fe2+ acts as a catalyst, cycling between the 2+ 
and 3+ oxidation states.11,12   

 

1.2.2.2. Photo-Fenton process  
The Fenton process does not require irradiation. However, if irradiation is 

introduced, the formation of radicals is greatly increased. This is known as the 
Photo-Fenton Process and the increase in radicals is due to the direct hemolytic 
bond cleavage of the oxygen atoms in H2O2 as well as the regeneration of Fe2+ 
ions through the reduction of Fe3+ ions by light-induced electron transfer.7-9,13  

 
H2O2 + hν → 2 •OH     Eq. 1.3 
Fe3+ + H2O + hν → Fe2+ + •OH + H+  Eq. 1.4 
 

As the hydroxyl and hydroperoxyl radicals attack any organic compounds 
in solution, more radicals are generated that continue to further decompose the 
organics. 
 

1.2.3. Inductively coupled plasma-optical emission spectroscopy 
 Inductively coupled plasma-optical emission spectroscopy (ICP-OES) is a 
powerful analytical technique for the detection of trace levels of metals in a 
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sample. In ICP, the sample is nebulized into a fine mist and introduced to the 
plasma cone via transport by argon gas. The plasma gas, usually argon, is 
ionized by a Tesla coil, and becomes a plasma by use of an induction coil that 
surrounds the torch. The plasma reaches temperatures in the 8,000-10,000 K 
range. Once in the plasma, the sample is mineralized and becomes high-energy 
atoms. As the atoms relax, their electrons move to a lower energy state, emitting 
photons at wavelengths that are specific to each element. Thus, ICP-OES is 
useful as a quantitative method (capable of detecting down to the parts per trillion 
range) as well as a qualitative method that can distinguish between elements.  
 

1.2.4. Overview of sol-gel processes and their applications 
 

Sol-gel processes refer to a number of reactions involving the use of 
alkoxide precursors in solution (sol) to prepare gel-like glass and ceramic oxide 
materials.14 The process generally involves the hydrolysis of an alkoxide 
precursor such as Si(OR)4 or RSi(OR)3 (R = alkyl), followed by a condensation 
reaction, to produce a silica-based cross-linked polymer with a three dimensional 
porous structure. The sol-gel reactions (Scheme 1.1) can be adjusted to tailor the 
physical properties of the resulting gel by changing parameters such as pH, 
solvents, temperature and ligands.14-22   

Sol-gels are easily paired with sensing techniques, such as optical and 
electrochemical sensing, due to their chemical inertness, robustness, and easy 
functionalization for selective analysis. 
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Scheme 1.1. The reactions in the sol-gel process. 

 

1.2.5. Ultraviolet and visible spectroscopy 
 Molecules with π bonding electrons or non-bonding electrons can absorb 
ultraviolet (UV) or visible light, exciting electrons from their ground states to 
excited states. Depending on the molecule, the energy absorbed can transfer to 
a nearby molecule or is expended through vibrational relaxation. As long as the 
molar absorptivity (ε) is known, the concentration of the absorbing species can 
be directly calculated using the Beer-Lambert Law (Eq. 1.5)23 
 

A = ε b C    Eq. 1.5 
 
Where A is absorbance, b is the pathlength, and C is the molar concentration of 
the species.  

1.3. Summary of dissertation parts 
1.3.1. Part 2 

Part 2 of this dissertation describes the use of ASV for the determination 
of the toxic heavy metals Pb(II) and Cd(II) in active pharmaceutical ingredients 
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(API) and excipients. The metals can be detected simultaneously or individually 
and are performed directly in aqueous or DMSO solutions without pretreatment. 
The analysis requires the use of Bi(III) ions to co-deposit, forming an in-situ 
bismuth film and increasing the sensitivity. The method is simple, highly 
reproducible with the detection limits in the low ppb (parts per billion), indicating 
that voltammetry is a promising alternative to ICP-based approaches. This study 
also contains the first known use of ASV in DMSO solutions. 
 

1.3.2. Part 3 
 The third part of this dissertation involves the use of ASV to detect Pd(II), 
a catalytic metal, in API and excipients dissolved directly in aqueous or DMSO 
solutions using a simple glassy carbon electrode. The analysis does not require a 
Bi(III) co-deposition, but Bi(III) does not interfere with the Pd(II) detection. Thus it 
was determined that Pd(II), Pb(II), and Cd(II) can be analyzed simultaneously. 
This method was the first known detection of Pd in pharmaceutical ingredients 
using ASV, and had detection limits in the low ppb range. 
 

1.3.3. Part 4 
 Part 4 of this work reports the use of ASV to analyze Hg(II) in 
pharmaceutical matrices. The method uses a simple un-modified glassy carbon 
electrode and does not require pretreatment of the sample prior to the analysis. 
The method has limits of detection in the high ppt (parts per trillion) range in the 
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presence of a representative pharmaceutical and excipient. The performance has 
been evaluated in the presence of coexisting anions or cations. The good 
reproducibility and stability of the analytical platform and obviation of sample 
pretreatment show the promise of utilizing ASV as a sensitive, robust, and 
inexpensive alternative to inductively-coupled-plasma (ICP)-based approaches 
for the analysis of Hg in pharmaceutical matrices. 
 

1.3.4. Part 5  
 The detection of carcinogenic Cr(VI) (hexavalent chromium) was studied 
using a sol-gel modified glassy carbon electrode doped with a pyridinium 
species. Through the use of single-walled carbon nanotubes (SWNTs) which 
increase conductivity, surface area, and the analyte preconcentration at the 
pyridinium sites, an LOD in the ppt range was reached. The analysis was applied 
to the determination of Cr concentrations in a dry-ashed swine blood sample.  
 

1.3.5. Part 6 
 New pretreatment methods were optimized and are reported in Part 6 of 
this dissertation. The treatments are based on a Fenton-like advanced oxidation 
processes (AOPs). The first method is performed with a simple convection oven 
over a period of 5 h, while the second uses microwave irradiation for 6 min. 
These new methods allow for either cost effective pretreatment through the use 
of the common lab oven, or time savings through the use of a synthesis 
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microwave. The pretreated biological samples were further analyzed via anodic 
stripping for quantification of copper in the whole blood and validated by 
comparison with ICP-OES.  
 

1.3.6. Part 7 
 A novel optical sensor for the detection of hydrogen sulfide gas, the main 
contributor to bad breath and a toxic gas encountered in many mining and 
industrial occupations. The disposable sensor uses an alkaline bismuth species 
to react with the weakly acidic analyte, producing the solid Bi2S3 and 
consequently a yellow-brown color on the otherwise white substrate. A laboratory 
setup for the generations of low-concentration H2S gas at a set volume of 1.35 L 
is also described in this chapter. This volume was chosen to mimic the average 
volume of a human breath as a proof of concept that the sensor could be 
produced as a simple bad breath analyzer. The sensor was able to detect the 
analyte down to 30 ppb using the naked eye.  
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 Additional materials for Part 2 are provided in Appendix A. 
 
 

Abstract  
  

A new electrochemical method has been developed to detect and quantify 
the elemental impurities, cadmium(II) [Cd(II)] and lead(II) [Pb(II)], either 
simultaneously or individually in pharmaceutical ingredients and an excipient. 
The electro-analytical approach, involving the use of anodic stripping 
voltammetry (ASV) on an unmodified glassy carbon electrode, was performed in 
both aqueous and in a 95/5 dimethyl sulfoxide (DMSO)/water solutions, without 
acid digestion or dry ashing to remove organic matrices. Limits of detection 
(LODs) in the µg L-1 [or parts per billion (ppb), mass/volume] range were 
obtained for both heavy metals - in the presence and absence of representative 
pharmaceutical components. To the best of our knowledge, the work 
demonstrates the first analysis of heavy metals in DMSO/water solutions through 
ASV. The strong reproducibility and stability of the sensing platform, as well as 
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obviation of sample pretreatment show the promise of utilizing ASV as a 
sensitive, robust, and inexpensive alternative to inductively-coupled-plasma 
(ICP)-based approaches for the analysis of elemental impurities in, e.g., 
pharmaceutical-related matrices. 

 

2.1. Introduction 
 

Toxic heavy metals such as cadmium and lead often exist in both 
inorganic and organic matrices. Electrochemical methods to analyze trace 
cadmium and lead have been mostly focused on their presence in aqueous 
systems,1-8 such as drinking water, containing trace levels of organic matter 
without the need to consider the presence of dissolved organics. Electrochemical 
analyses of cadmium and lead in the presence of organic substrates have 
received less attention.1-8 Determination of metal content in fish, honey and other 
organic/biological matrices often requires sample mineralization such as dry 
ashing or wet acid digestion.2,3,5,9,10 There is a strong need to directly analyze the 
toxic metals in organic matrices without the mineralization.  

Due to newly revised regulatory guidelines, the detection and 
quantification of elemental impurities within drug products and their ingoing 
components, including active pharmaceutical ingredients (API) and excipients, 
are being actively studied. The United States Pharmacopoeia (USP) is in the 
process of issuing updated guidelines for the control of elemental impurities in 
pharmaceutical products which are mainly organic in nature.11-13 The 
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International Conference on Harmonisation (ICH) recently published new 
guidance (ICH Q3D) for the control of elemental impurities.14 The proposed 
changes by USP provides for the replacement of USP <231> (Heavy Metals), the 
non-selective, wet-heavy metal test, which has been used by pharmaceutical 
manufacturers for well over 100 years, with two new chapters, USP <232> 
(Elemental Impurities-Limits) and USP <233> (Elemental Impurities-
Procedures).12 Of the elements listed in the new guidelines, we have focused on 
the analysis of cadmium and lead, two most toxic elemental impurities, each with 
oral Permissible Daily Exposure (PDE) values of 5 µg/day. USP <233> 
(Elemental Impurities-Procedures)12 provides guidance on appropriate 
instrumentation and validation requirements, with a focus on inductively coupled 
plasma (ICP)-based approaches. While ICP-based techniques are known to 
detect to the parts per trillion (ppt, ng L-1) level for most metals, and therefore 
capable of addressing the requirements of the proposed new regulatory 
guidances,12,13 they depend, however, on expensive instrumentation in a 
centralized, non-portable laboratory. ICP-based methods, like most trace-level, 
heavy metal analyses, often require time-consuming sample preparation, 
including acid digestion to remove organic matrices prior to analysis. It is highly 
desirable to develop lower cost, portable field methods to accurately detect and 
quantitate elemental impurities in APIs and excipients before they are fully 
processed into tablets or capsules. Methods that can accurately detect and 
quantify elemental impurities with minimal sample preparation would be ideal. 
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Electrochemical methods, specifically electrochemical techniques such as 
anodic stripping voltammetry (ASV), are attractive alternatives to ICP-based 
approaches. In addition to possessing multi-element detection capabilities, 
electroanalytical approaches require instrumentation of relatively low-cost 
maintenance and operation. Additionally, electrochemical techniques are 
extremely fast and sensitive, with limits of detection in the ppb (µg L-1) range. 
ASV is a common electroanalytical technique that utilizes the reduction of metal 
ions onto an electrode surface followed by rapid oxidation of the metals back into 
solution to produce the currents in the anodic peaks.15,16-19 Square Wave 
Voltammetry (SWV) is one of the most sensitive voltammetric methods, making it 
especially useful when paired with ASV for trace analysis.17-19   

Since the use of a Bi film electrode by Wang and coworkers,20 Bi has 
found frequent applications in stripping voltammetry.21-46 Bi shares many 
important electrochemical properties with Hg, including high hydrogen 
overpotentials and the ability to form alloys with other metals. But unlike Hg, Bi is 
non-toxic and more environmentally friendly.46 Bi-assisted23-26,33,34 and Bi-free47-53 
ASV analysis of Cd(II) and Pb(II), all in aqueous solutions, have been conducted 
by a variety of electrodes.  

Electroanalysis of elemental impurities in organic matrices typically also 
requires sample preparation to remove the organic matrices prior to analysis,35,54-

63 as in the aforementioned ICP analyses of pharmaceuticals. Both wet- and dry-
ashing require slow and careful work to reduce errors. Additionally, the elevated 
temperatures in the two approaches can result in low and inaccurate 



20 
 

measurement of more volatile metals such as mercury. Incomplete mineralization 
is also common.64,65 For post wet-ashing samples, high acidity in the digested 
solutions may cause damage to electrodes and decrease the allowed potential 
window due to an enlarged hydrogen overpotential peak. 

This work describes the use of square wave anodic stripping voltammetry 
(SWASV) to detect and quantitate Cd(II) and Pb(II) in representative 
pharmaceutical matrices. No sample pretreatment, either wet- or dry-ashing, was 
needed prior to the electrochemical analyses of the metals. The electrochemical 
analyses were conducted in both aqueous and 95%/5% DMSO/H2O (v/v) 
(hereinafter referred to as 95/5 DMSO/H2O) solutions with and without 
representative pharmaceutical substrates. The process uses a simple, un-
modified glassy carbon electrode (GCE) to detect Cd(II) and Pb(II) in the low ppb 
(µg L-1) range while taking advantage of increased sensitivity through the use of 
in-situ bismuth co-deposition for each analysis. The co-deposition here is 
different from those using a Bi bulk or a pre-plated Bi film electrode. The 
importance of this method lies in its ability to be used in both aqueous and 
primarily non-aqueous (95/5 DMSO/water) solutions. Using either solvent 
system, representative APIs, excipients, and dietary supplements were easily 
dissolved with little to no prior sample pretreatment/digestion. We have chosen 
DMSO-based non-aqueous solutions for these studies because DMSO is known 
to be an excellent solvent for APIs.66 DMSO also has fewer hydrogen bonding 
networks than water, allowing the formation of solvent cavities.66 Prior work has 
indicated that it is important for pharmaceuticals to be soluble in DMSO because 



21 
 

biological testing is commonly performed with DMSO solutions.66 Employment of 
the direct method herein allows for inexpensive, fast, and potentially portable 
analysis of Cd(II) and Pb(II) in low quantities of sample. The current work, to our 
knowledge, is the first work to analyze cadmium and lead in pharmaceutical 
matrices, demonstrating its potential. It also creates the opportunity to pre-screen 
many different organic products for heavy metal impurities throughout batch 
production. Results of our studies are discussed below.  
 

2.2. Materials and methods 
2.2.1. Chemicals and instruments 

The following chemicals were used as received, and all but lactose 
monohydrate, were analytical grade: lactose monohydrate (Lab Grade, Thermo 
Fisher Scientific, Waltham, MA), caffeine (Thermo Fisher Scientific), ketoprofen 
(Sigma Aldrich Co., St. Louis, MO), tetra-n-butylammonium bromide (Bu4NBr, 
Thermo Fisher Scientific), NaNO3 (Thermo Fisher Scientific), sodium acetate 
(NaOAc, Thermo Fisher Scientific), NaCl (Thermo Fisher Scientific), 
tetraethylammonium tetrafluoroborate (Et4NBF4, Sigma Aldrich), DMSO (Thermo 
Fisher Scientific), ethanol (95%, Decon Laboratories, Inc., King of Prussia, PA). 
Standard solutions of Bi(III), Cd(II), and Pb(II) with concentrations of 1000 mg L-1 
in 10% HNO3 (Ricca Chemical Co., Arlington, TX) were diluted in supporting 
electrolytes to form stock solutions. Ultrapure water from a Millipore water 
purified system (≥18 MΩ•cm, Barnstead/Thermo Fisher Scientific) was used in all 
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assays. 95/5 DMSO/H2O solution was made by adding 1.0 mL ultrapure water to 
19.0 mL of DMSO in the electrochemical cell prior to analysis. 

Prior to use, GCEs were polished to a mirror-like surface on a standard 
electrode polishing kit (CH Instruments, Inc., Austin, TX) including a 1200 grit 
CarbiMet™ disk, 1.0 and 0.3 µm alumina slurry on a nylon cloth, and 0.05 µm 
alumina slurry on a microcloth polishing pad. After polishing, GCEs were 
successively sonicated with deionized (DI) water, ethanol, and DI water again for 
5 min each. Electrochemical measurements were carried out on a CHI 440a 
Electrochemical Workstation (CH Instruments). A three-electrode configuration 
consisted of a bare, unmodified GCE (3 mm in diameter, BAS Inc., West 
Lafayette, IN), Ag/AgCl (saturated KCl solution, CH Instruments) and a platinum 
wire (CH Instruments) as working, reference, and counter electrodes, 
respectively. 

 

2.2.2. Sample preparation and SWASV analysis of Cd(II) and Pb(II) 

 All experiments were conducted at room temperature without deaeration. 
The unmodified GCE, Ag/AgCl, and Pt wire electrodes were placed in an 
electrochemical cell containing 20 mL of 0.05 M Et4NBF4 in ultrapure DI water or 
0.05 M Et4NBF4 in 95/5 DMSO/H2O. Prior to analysis, 50.0 µL of 1000 mg L-1 
Bi(III) standard solution was added to give 2.5 mg L-1 of total Bi(III) in the 
aqueous samples, while 200.0 µL of 1000 mg L-1 Bi(III) standard solution was 
added to give 9.9 mg L-1 of total Bi(III) in the 95/5 DMSO/H2O solutions. For 
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detection in the aqueous system, co-deposition of Cd(II), Pb(II), and Bi(III) 
occurred by holding the potential at -1.0 V for 250 s and was then stripped back 
into solution by sweeping the potential from -1.0 to 0.6 V using a frequency of 15 
Hz, a step potential of 4 mV, and amplitude of 25 mV. In 95/5 DMSO/H2O 
solutions, co-deposition took place at -1.4 V for 300 s followed by sweeping the 
potential from -1.4 to 0.6 V using a frequency of 25 Hz, a step potential of 4 mV, 
and amplitude of 25 mV. For all analyses stirring of the solution at 1200 rpm was 
required for the accumulation step, but was turned off prior to the stripping step. 
The electrode surface was regenerated between measurements by holding the 
potential at 0.6 V for 300 s for aqueous samples, and 0.6 V for 200 s in 95/5 
DMSO/H2O  solutions while stirring at high speed. In samples containing a 
dissolved organic compound, the solutions were stirred for one minute after 
spiking with the analyte of interest and before the first analysis. This was done to 
allow the metals to reach equilibrium throughout the matrix and to interact with 
the organics in solution. It should be noted that allowing spiked samples to sit for 
several days had no effect, either positive or negative, on the sensitivity of the 
detection as compared to allowing the sample to stir for one minute after spiking. 
 

2.3. Results and discussion 
Few studies have been performed using voltammetry to investigate or 

analyze metal ions in organic media. Research performed by Wang,67 
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Daniele,68,69 and Rodríguez-López70 are examples of previous work in this 
currently small field of research.  

APIs and organic excipients often have -OH, -SH, -COOH, -NHR groups 
that can potentially bind/complex to Pb(II), Cd(II) and other ions, forming organic 
metal alkoxides, carboxylates, amine adducts and amides in the pharmaceutical 
matrices. Alkoxides of Pb(II) and Cd(II) have been reported to be easily 
hydrolyzed, forming inorganic metal oxides.71-73 Carboxylates of the metals likely 
dissociate significantly at trace levels in water, as demonstrated by the acetates 
of lead and cadmium.74-76 Few amide or amine adduct complexes exist with 
Cd(II) or Pb(II), none of which form spontaneously. Thus, for API or excipients 
soluble in aqueous or 95/5 DMSO/H2O, it is expected that the organic 
lead/cadmium complexes will dissociate in the solutions. However, if trace Pb-
O/Cd-O or Pb-N/Cd-N species are left in aqueous or 95/5 DMSO/H2O solutions, 
the negative deposition potential (-1.2 and -1.4 V, respectively) would overcome 
the binding energies of ligands to metals, allowing for metal deposition on the 
electrode. 

 

2.3.1. Optimization of experimental conditions 
2.3.1.1. Effect of supporting electrolyte 

Voltammetric behaviors of Cd(II) and Pb(II) were investigated in several 
supporting electrolytes in both aqueous and organic (95/5 DMSO/H2O) solutions. 
For aqueous solution, NaOAc, NaNO3, NaCl, Bu4NBr, and Et4NBF4 were 
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compared. Of these, only NaOAc, NaNO3, and Et4NBF4 gave consistently good 
results. Figure 2.1A shows that NaOAc gave the strongest response for Pb(II), 
but a weaker response for Cd(II). Et4NBF4 was chosen as the appropriate 
electrolyte because of its strong response to both Cd(II) and Pb(II). For the 95/5 
DMSO/H2O organic solution, NaOAc, NaNO3, Bu4NBr, and Et4NBF4 were tested, 
but only NaNO3 and Et4NBF4 produced consistent results. In the presence of an 
organic API/excipient, Et4NBF4 showed the strongest response in peak area for 
both Cd(II) and Pb(II) (Figure 2.1B). The voltammograms for these optimization 
experiments are given in Figs. A1-A2. 

 

 
Figure 2.1. Effect of supporting electrolytes on the voltammetric behaviors of Cd(II) and Pb(II). 
[The best electrolyte was chosen through the comparison of Cd(II) (solid) and Pb(II) (hatched) 
peak areas (both at 50 µg L-1)]. In aqueous solutions (A), Et4NBF4 was chosen due to the higher 
sensitivity of Cd(II). In 95/5 DMSO/H2O (B), both Pb(II) and Cd(II) showed better responses when 
using Et4NBF4. 
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2.3.1.2. Effect of Bi(III) concentration 
In aqueous solutions without organic substrates, 1.0 mg L-1 Bi(III) provided 

for the largest peak areas of Cd(II) and Pb(II). However, when representative 
pharmaceutical substrates were added, the peak areas for both analytes were 
reduced. Increasing [Bi(III)], however, allowed for improved signals of the 
analytes. This is shown nicely in Figure 2.2A, where, in the presence of 1,000 mg 
L-1 lactose, [Bi(III)] had to be increased to 2.5 mg L-1 to optimize the signals for 
both Cd(II) and Pb(II). 

 

 
Figure 2.2. Effect of different Bi(III) concentrations in water (A) and 95/5 DMSO/H2O (B) by 
comparing Pb(II) (dotted line) and Cd(II) (solid line) peak areas. Both metals were held at 50 µg  
L-1. Tests in aqueous solutions were performed in the presence of 1,000 mg L-1 lactose and 2.5 
mg L-1 Bi(III). In 95/5 DMSO/H2O, 10.0 mg L-1 Bi(III) was chosen through optimization in the 
absence of a dissolved organic compound. 
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In 95/5 DMSO/H2O (Figure 2.2B), Cd(II) peaks were unobservable with 
[Bi(III)] below 7.0 mg L-1. Both Pb(II) and Cd(II) peaks increase with increasing 
[Bi(III)] until 10.0 mg L-1 when both begin to drop. Once again, this reveals the 
importance of Bi(III) ions. Without Bi(III) codeposition, we would not be able to 
detect either analyte, especially when substrates are present. 
 

2.3.1.3. Effect of preconcentration potential 
Due to the fairly negative potential of the Cd oxidation peak, the hindrance 

from a possible hydrogen generation peak meant we needed to identify an 
optimized preconcentration potential. Though both Cd(II) and Pb(II) responded 
well to negatively increasing preconcentration potentials, -1.0 V was chosen for 
the aqueous solutions, allowing lower pH levels. Thus the system may allow for 
analysis in more acidic environments or if partial acid digestion were to be 
employed. On the other hand, because of the low water concentration in 95/5 
DMSO/H2O, a preconcentration potential of -1.4 V was found to be the most 
effective. 

 

2.3.1.4. Effect of preconcentration time 
Figure 2.3A shows the electrochemical results for 50 µg L-1 Cd(II) and 

Pb(II) in aqueous solutions. The peak area increased for both metals with 
increasing deposition time between 100 and 250 s. At deposition times greater 
than 250 s, Cd(II) experienced a decrease in signal intensity, likely due to 
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competition for active sites with Pb(II), whose peak continued to increase until 
275 s after which it plateaued. 

 

 
Figure 2.3. Studies on accumulation times forCd(II) (solid line) and Pb(II) (dotted line) in (A) 
aqueous [0.05 M Et4NBF4, 2.5 mg L-1 Bi(III)] and (B) 95/5 DMSO/H2O [0.05 M Et4NBF4, 10 mg L-1 
Bi(III)] solutions. 
 

Figure 2.3B shows the results of preconcentration time on 100 µg L-1 
Cd(II) and Pb(II) in 95/5 DMSO/H2O. For both metals, the peak areas increased 
until 300 s, after which they began to level off. It is worth noting that the Cd(II) 
trend is non-linear, similar to the trend we have observed throughout 
concentration changes in the presence of DMSO/water. Our studies of the effect 
of wave frequency show that, in the 95/5 DMSO/H2O solution, a faster square 
wave stripping frequency produced sharper peaks observable at lower 
concentrations. Frequency larger than 25 Hz proved to be too high for our 
desktop computer. In comparison, changing the frequency above 15 Hz in the 
aqueous media did not increase the sensitivity. 
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2.3.2. Analytical results  
Standard addition was used for all calibration curves. Thus it is important 

to note that all results are given without background subtraction. This approach 
was taken due to the importance of treating the analysis as if actually analyzing 
an unknown sample. Standard addition allows for the determination of an original 
concentration while keeping the matrix the same, which is necessary for analysis 
of un-ashed API. Results of the investigations, including the regression function, 
square of the correlation coefficient R2, RSD (relative standard deviation) at 50 
µg L-1, and LOD for each of the following studies (S/N = 3), are listed in Table 2.1. 

 

2.3.2.1. Detection of Pb(II) and Cd(II) in aqueous media 
Using the optimized parameters above, Cd(II) and Pb(II) were analyzed 

individually and simultaneously in the absence of representative pharmaceutical 
ingredients in aqueous solutions. When analyzed separately, the Cd(II) and Pb(II) 
peaks were observed at -0.73 and -0.49 V, respectively (Figure 2.4). Calculated 
LODs were 0.76 µg L-1 for Cd(II) and 1.9 µg L-1 for Pb(II) (Table 2.1). 
 When analyzed simultaneously (Figure 2.5), the Cd(II) and Pb(II) peaks 
were observed at -0.73 and -0.46 V, respectively. Calculated LODs were 3.2 and 
1.9 µg L-1 for Cd(II) and Pb(II), respectively (Table 2.1). The LOD for Pb(II) is 
identical to that when it was analyzed alone, indicating that its analysis is 
perhaps not affected by the presence of Cd(II).  
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Figure 2.4. Increasing concentrations of: (A) Cd(II) (5–150 µg L-1) in the absence of Pb(II) or an 
organic compound; (B) Pb(II) (5–150 µg L-1) in the absence of Cd(II) or an organic compound 
[0.05 M Et4NBF4, 2.5 mg L-1 Bi(III)].  
 
 
 

 
Figure 2.5. Simultaneous detection of Cd(II) and Pb(II) by ASV [5–200 µg L-1 for each metal; -
0.05 M Et4NBF4, 2.5 mg L-1 Bi(III)] in the absence of organic compounds.  
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The LOD of 3.2 µg L-1 for Cd(II) is higher than 0.76 µg L-1 observed when 
analyzed alone. During the stripping process, Cd(II) was removed first. It is not 
clear if the presence of Pb inside the Bi layer made it slightly more difficult to strip 
Cd, thus reducing the sensitivity of Cd analysis. 
 

2.3.2.2. Detection of Pb(II) and Cd(II) in 95/5 DMSO/H2O solutions 
As indicated earlier, few studies have been performed to analyze these 

metals by ASV in organic solutions. Thus this is an especially significant part of 
the current work. Using the optimized parameters determined above, Cd(II) and 
Pb(II) were analyzed individually and simultaneously in the absence of 
representative pharmaceutical ingredients in 95/5 DMSO/H2O [0.05 M Et4NBF4, 
10.0 mg L-1 Bi(III)]. When analyzed separately, the Cd(II) and Pb(II) peaks were 
observed at -0.80 (Figure 2.6) and -0.58 V (Figure 2.7), respectively. The 
concentration range analyzed for Cd(II) was 50–250 µg L-1 with a calculated LOD 
of 18 µg L-1. Interestingly, a non-linear relationship was observed between the 
Cd(II) concentration and its peak area. However, the data consistently fit a three 
parameter power function. This function, which could be converted to a linear 
form (Eqs. A1-A3, Appendix) was successfully used to determine Cd(II) levels in 
the presence of Pb(II) and representative pharmaceutical organic substrates 
such as ketoprofen. A possible explanation for this is the non-uniform deposition 
of Cd. Past studies have shown that in the presence of sulfides, Cd does not 
deposit in flat multilayer sheets, but deposits in nodes after the film thickness 
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reaches 600–700 Å.77,78 These small nodular deposits increase the surface area, 
allowing for better Cd uptake and giving rise to the exponential increase in peak 
area. Trace sulfide from DMSO may have caused the uneven Cd deposition. The 
equation fit to the detection of solitary Cd(II) in 95/5 DMSO/H2O was y = 2.8e-5x2.0 
– 0.08, R2 = 0.997 with a calculated LOD of 18 µg L-1. Unlike Cd(II), Pb(II) gives a 
linear response within a concentration range of 5–200 µg L-1 with a calculated 
LOD of 0.80 µg L-1 (Table 2.1). 

 
 

 
Figure 2.6. Voltammogram with increasing Cd(II) concentrations (50–250 µg L-1) through 
standard addition in 95/5 DMSO/H2O [0.05 M Et4NBF4, 10.0 mg L-1 Bi(III)] in the absence of Pb(II) 
and representative pharmaceutical substrates. 
 

When detected simultaneously in 95/5 DMSO/H2O, the Cd(II) and Pb(II) 
peaks were observed at -0.80 and -0.58 V (Figure 2.8), respectively. The 
concentration range was 20–150 µg L-1 with a calculated LOD of 2.9 and 25 µg  
L-1 for Pb(II) and Cd(II), respectively. 
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Figure 2.7. Increasing Pb(II) concentrations (5–200 µg L-1) through standard addition in 95/5 
DMSO/H2O [0.05 M Et4NBF4, 10.0 mg L-1 Bi(III)] in the absence of Cd(II) or representative 
pharmaceutical substrate. 

 
 

 
Figure 2.8. Detection of Cd(II) and Pb(II) through simultaneous standard additions (20–150 µg  
L-1) in 95/5 DMSO/H2O [0.05 M Et4NBF4, 10.0 mg L-1 Bi(III)] in the absence of representative 
pharmaceutical substrates. 
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Analysis of low-ppb Cd(II) in DMSO is the least sensitive of the detections 
(i.e., analyses of Cd(II) and Pb(II) in aqueous and DMSO, respectively) in the 
current work, and it is especially inhibited in the presence of Pb(II). However, due 
to the exponential nature of the Cd(II) regressions in DMSO, higher 
concentrations show stronger peaks than in the aqueous media. It is also 
interesting that the Pb(II) regression continues to stay linear even as the Cd(II) 
regression is not. 

 

2.3.2.3. Organic matrix effect  
The impact of organic substrates on the accuracy and sensitivity of the 

electroanalytical approach was investigated in aqueous solutions, using 
representative pharmaceutical organic components such as caffeine and lactose. 
Lactose and caffeine, both soluble in the aqueous solution, were evaluated 
separately, and added to the 0.05 M Et4NBF4 solution at a concentration of 1000 
mg L-1. These solutions were stirred until all organic compounds had fully 
dissolved. The solution also contained 2.5 mg L-1 Bi(III) as well as the analytes of 
interest [Pb(II) and Cd(II)]. 

In the presence of lactose, the LODs of Cd(II) and Pb(II) were 2.7 and 3.3 
µg L-1, respectively (Table 2.1). As indicated in Table 2.1, similar LODs were 
observed in the presence of 1000 mg L-1 caffeine ([Cd(II)] = 4.4 µg L-1; [Pb(II)] =  
3.0 µg L-1). 

For the 95/5 DMSO/H2O solutions, ketoprofen was chosen as an 
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appropriate model API due to its low solubility in water. It was used at a 
concentration of 1000 mg L-1 in 0.05 M Et4NBF4 with 10.0 mg L-1 Bi(III) solution 
while Cd(II) or Pb(II) was detected. LODs of Cd(II) (20–150 µg L-1) and Pb(II) (5–
160 µg L-1) are 22 and 1.9 µg L-1, respectively (Table 2.1). 

Addition of representative pharmaceutical ingredients to the electrolytic 
solutions resulted in weaker analyte detection with lower slopes and 
consequently higher LODs for both Cd and Pb. However, since the tests were 
conducted with high concentrations of the representative pharmaceutical 
ingredients, achieving the Cd(II) and Pb(II) detection in the low µg L-1 range is 
remarkable, demonstrating the strength and potential of this method. In addition, 
two features of the method are particularly attractive. The first is that it is simple, 
using a bare, unmodified GCE. Thus there is little on the electrode for the organic 
compounds to interact with. For many modified electrodes, interactions between 
organic compounds and the electrode surface may limit the type of organic 
compounds to be analyzed. The second feature is the use of Bi(III) co-deposition, 
increasing detection sensitivity over pre-deposited Bi thin film electrodes.21,22 In 
95/5 DMSO/H2O, Bi(III) was required to see Pb(II) and Cd(II) in the low µg L-1 
range. In the aqueous solutions with an organic compound present, Bi(III) greatly 
increased the analyte peak areas (Figure 2.2A).  

The effect of the organic substrates on the detection sensitivity is slight, 
but evident through comparisons of regression slopes and LODs. One example 
is the slight change in slope for Cd(II) detection in aqueous solutions, without and 
with lactose present: 0.0107 to 0.0042, respectively. Most likely, this decreased 
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response is due to the organic compounds hindering the mass transport of the 
metals to the surface during the deposition step, although the Bi(III) co-deposition 
helps to counteract this. In some instances, however, the addition of the organic 
compound causes little change in slope (such as detection of Cd(II) with caffeine 
in aqueous solution) or actually increases the detection response (Pb(II) with 
caffeine in aqueous solution), as shown in Table 2.1. Much of this variation, 
caused by the organic interference, can be combatted with standard addition as 
well as an increased deposition time. In all cases, the LODs are lower for the 
metals in the absence of representative pharmaceutical ingredients than in their 
presence. However the LODs are still comparable between these solutions. This 
comparison shows the selectivity and sensitivity of the analytical method, even in 
solutions with high concentrations of organic material, and portrays a sensing 
platform that can be pushed to even further limits. It also opens doors for future 
investigations of voltammetric methods that may be optimized around specific 
organic interferers in different media. Overall, these results certainly highlight the 
ability to analyze metals in pharmaceutical matrices through ASV without the use 
of pretreatment methods. 
 

2.3.2.4. Reproducibility and precision 
Tests of the current technique in both aqueous and 95/5 DMSO/H2O 

solutions show high reproducibility and consistency (Table 2.1). This is perhaps 
due, in part, to its simplicity and the optimized cleaning steps which allowed for a



37 
 

Table 2.1. A Comparison of Cd and Pb analyses and figures of merit. 

Analyte Interference Media Regression R2 RSD at 50 µg L-1  
(n = 3) 

LOD  (µg L-1)  
(n = 3) 

LOD in solid 
organic  
(µg g-1) 

Cd(II) - Water y = 0.0107x + 0.1173 0.996      1.6%       0.76         - 
Pb(II) - Water y = 0.014x – 0.1066 0.989 1.3% 1.9 - 
Cd(II) Pb(II) Water y = 0.0113x + 0.1449 0.990 8.6% 3.2 - 
Pb(II) Cd(II) Water y = 0.0216x + 0.077 0.999       0.97% 1.9 - 
Cd(II) Lactose Water y = 0.0042x + 0.0401 0.994 4.7% 2.7 2.7 
Pb(II) Lactose Water  y = 0.0104x + 0.0276 0.985 3.1% 3.3 3.3 
Cd(II) Caffeine Water y = 0.0097x + 0.0093 0.992 3.2% 4.4 4.4 
Pb(II) Caffeine Water y = 0.0234x – 0.0767 0.987 1.2% 3.0 3.0 
Cd(II) - DMSO   y = 2.8e-5x2 – 0.08 0.997 11% 18 - 
Pb(II) - DMSO y = 0.0041x – 0.0608 0.999       0.46%       0.80 - 
Cd(II) Pb(II) DMSO  y = 2.1e-7x2.7 – 2.7e-3 0.996 2.7% 25 - 
Pb(II) Cd(II) DMSO  y = 0.0041x – 0.0608 0.996 2.7% 3.0 - 
Cd(II) ketoprofen DMSO  y = 3.7e-7x2.7 – 3.9e-3 0.999 1.9% 22 22 
Pb(II) ketoprofen DMSO   y = 0.0022x – 0.007 0.999 5.7% 1.9 1.9 
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fresh GCE surface each time. RSD was calculated through triplicate stripping 
analysis in a sample containing 50 µg L-1 of the analyte, with cleaning between 
measurements. All but one RSD are below 9.0%. The table also shows that 
Cd(II) is much less responsive at low concentrations in DMSO than in water, but 
the exponential curve greatly increases the signal as the concentration 
increases. 

The CHI software was used to determine the peak areas, which is 
calculated using a linear baseline between the two peak edges. Upon review of 
the regression equations in Table 2.1 which indicate the relationship between 
analyte concentration (x) and the analyte peak area (y), it was clear that 
statistical bias is present in many of them, as indicated by the large absolute 
values of the intercepts. It is the belief of the author that this error spawns from 
inadequate integration methods that do not take into account the often non-linear 
nature of the voltammogram baseline. For future studies, a more accurate 
method will be determined and employed.  

 

2.3.3. Apparent recoveries79 
In an aqueous solution containing 1000 mg L-1 caffeine, 10.0 µg L-1 Pb(II) 

and 15.0 µg L-1 Cd(II) had apparent recoveries of 114% and 108%, respectively. 
In 95/5 DMSO/H2O solutions containing 1000 mg L-1 ketoprofen, 5.0 µg L-1 Pb(II) 
and 40.0 µg L-1 Cd(II) were recovered at 97.1% and 99.5%, respectively. These 
tests indicate that the method and platform used herein are sufficiently accurate 
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and can be used for the direct detection of both Cd(II) and Pb(II) as a quantitative 
or qualitative pre-screening method. 

The response of Cd(II) in the presence of sulfide impurities in DMSO is 
non-linear. We have developed a method to derive the Cd(II) concentration by 
standard addition. The non-linear method was successfully used to determine the 
unknown [Cd(II)] in a solution. The method and experimental procedures for 
apparent recovery experiments are provided in Appendix A.  

 

2.4. Conclusion 
This work demonstrated the use of the classical electroanalytical method, 

ASV, by using an off-the-shelf, unmodified GCE, for the analysis of two of the 
most toxic elemental impurities, Cd(II) and Pb(II), at trace levels in representative 
pharmaceutical matrices. The analyses were successfully performed in both 
aqueous and DMSO/water solutions, allowing for the fast and simple dissolution 
of an active pharmaceutical ingredient, rendering ashing pretreatment techniques 
unnecessary. To the best of our knowledge, this is the first detection of heavy 
metals in DMSO-based solutions through ASV (with or without organic 
substrates). Detecting these heavy metals in pharmaceuticals is an important 
application of electrochemical analysis to an area of current interest. 

While the detection limits are generally higher than the USP limits of 
cadmium and lead in pharmaceuticals, comparable LODs without and with the 
organic matrices indicate that detection of these impurities in the presence of an 
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API/excipient at even higher concentrations can still be maintained at trace 
levels. It can also be taken into account that acidifying the sample would allow for 
the analysis of a larger sample and lower organic interference, as well as 
increase the solubility of analytes in the form of metal oxides. Again, it is 
important to note that no data in the current studies were background-subtracted 
so as to replicate the determination of an unknown metal concentration in a real 
sample. Additional research and developments are needed to make this method 
meet the requirements of USP <233>. Future studies may be directed to 
increase sensitivity, include more analytes, and detect elements at higher 
API/excipient concentrations. 
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A version of this chapter was originally published by Samuel M. Rosolina, 
James Q. Chambers, and Zi-Ling Xue. Only minor revisions were made. 

Samuel M. Rosolina, James Q. Chambers, and Zi-Ling Xue. “Direct 
analysis of palladium in active pharmaceutical ingredients by anodic stripping 
voltammetry.” Anal. Chim. Acta 2016, 914, 47–52. 

Additonal materials for Part 3 are provided in Appendix B. 
 

Abstract 
Anodic stripping voltammetry, a classical electroanalytical method has 

been optimized to analyze trace Pd(II) in active pharmaceutical ingredient 
matrices. The electroanalytical approach with an unmodified glassy carbon 
electrode was performed in both aqueous and 95% DMSO/5% water (95/5 
DMSO/ H2O) solutions, without pretreatment such as acid digestion or dry ashing 
to remove the organics. Limits of detection (LODs) in the presence of caffeine 
and ketoprofen were determined to be 11 and 9.6 µg g-1, with a relative standard 
deviation (RSD) of 5.7% and 2.3%, respectively. This method is simple, highly 
reproducible, sensitive, and robust. The instrumentation has the potential to be 
portable and the obviation of sample pretreatment makes it an ideal approach for 
determining lost catalytic metals in pharmaceutical-related industries. 
Furthermore, the simultaneous detection of Pd(II) with Cd(II) and Pb(II) in the low 
µg L-1 range indicates that this system is capable of simultaneous multi-analyte 
analysis in a variety of matrices. 
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3.1. Introduction 
Platinum group metals are heavily used in catalysis pharmaceutical 

synthesis. Palladium-based catalysts are particularly useful for large scale 
synthesis of active pharmaceutical ingredients (APIs) mainly because many 
important organic reactions, including carbon-carbon cross-coupling, 
hydrogenations and cyclization reactions, rely on the catalysts.1 Furthermore, 
palladium catalysts have been shown to be successful in the coupling of 
substrates with low reactivity, allow reactions to take place at lower 
temperatures, and often have the best turnover numbers in comparison to other 
catalysts.2 Analysis of trace, residual palladium in pharmaceutical matrices is 
significant for several reasons. First, residual palladium may lead to unwanted 
side reactions during subsequent steps in synthesis, lowering the yields of final 
products. Second, palladium left in APIs has adverse effects on health of 
patients. Although it has a low acute oral toxicity, palladium is known to be a 
potent sensitizer, second only behind nickel.3 Third, a consistent loss of 
palladium throughout the multi-step synthesis of APIs could quickly become 
costly. A quick and inexpensive analysis of the lost metal in API would help to 
determine inefficiencies in the system.  

Detection and quantification of elemental impurities in pharmaceutical 
drug products (DPs) and their in-going components (APIs and excipients) to 
meet more stringent regulatory guidelines remain a major challenge. The 
International Conference on Harmonisation (ICH), which works to achieve 
greater harmonization of regulatory procedures in the world, recently published 
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new guidance (ICH Q3D) for the control of elemental impurities in 
pharmaceuticals products.4 This new guideline has identified 24 elemental 
impurities, including previously unmonitored catalytic metals that must be 
controlled to the established Permissible Daily Exposure values (PDEs). 
Palladium, with an Elemental Impurity Classification of 2B, has a PDE of 100 
µg/day, based on the oral route of administration. At the total oral daily intake of 
10 g/day, palladium must be controlled down to 10 µg/g (ppm) in finished drug 
products. 

ICP-based techniques, known to detect to the parts per trillion (ppt, ng L-1) 
level for most metals, are capable of addressing the requirements of the new 
proposed limits.5,6 These techniques depend, however, on expensive 
instrumentation in a central laboratory, and are thus not portable. Many methods 
also require time-consuming sample pretreatment, including acid or microwave 
mineralization of the samples prior to analysis, in order to minimize interferences. 
Any extra sample handling increases the total error of the analysis and the time 
needed for sample shipment and pretreatment. It is highly desirable to develop 
lower cost, portable field methods to accurately detect and quantitate elemental 
impurities in APIs without pretreatment. 

Electrochemical methods are attractive alternatives to ICP-based 
approaches. In addition to possessing high resolution, multi-element detection 
capabilities, electroanalytical approaches require instrumentation of relatively 
low-cost maintenance and operation. Several stripping voltammetric methods are 
in existence for the analysis of Pd(II) in aqueous solutions, most of which utilize 
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adsorptive stripping voltammetry (AdSV) on a hanging mercury drop  
electrode.7-11 The method, relying on toxic mercury, raises safety and 
environmental concerns. An inexpensive, commercial, non-toxic electrode, 
requiring no modification, is an ideal probe for palladium analysis in APIs. A 
previous study used a bare glassy carbon electrode for the detection of Pd(II) in 
superficial nuclear wastes using anodic stripping voltammetry (ASV).12 

ASV is a common electroanalytical technique first developed by Kemula in 
conjunction with his newly invented mercury-drop electrode.13,14 Known for its 
speed and sensitivity, ASV utilizes the reduction of metal ions onto an electrode 
surface followed by rapid oxidation (stripping) of the metals off of the electrode 
back into solution, producing the currents in the anodic peaks.15-17 Square wave 
voltammetry (SWV) is one of the most sensitive voltammetric methods, making it 
especially useful when paired with ASV for trace analysis.15-17  

Electroanalysis of elemental impurities in organic matrices typically 
requires sample pretreatment to remove the organic matrices from the sample 
prior to analysis. Removal of the organic matrix is often conducted by acid 
digestions at elevated temperatures, using concentrated acids such as nitric acid, 
hydrochloric acid, sulfuric acid, and mixtures thereof.18-28 Digestions are often 
performed in microwaves, in open and closed vessels. Removal of the organic 
matrix may also be conducted via dry-ashing, where the organic matrix is 
combusted at elevated temperatures, leaving the metal analytes behind.29,30 Both 
pretreatments require slow and careful work to reduce errors during the process 
or sample transfer. Incomplete mineralization is also a common occurrence.29,30  
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For post wet-ashing samples, the low pH in the digest is not desirable in the 
subsequent electrochemical analysis. Aside from the potential to damage the 
electrode directly, the increased acidity may decrease the allowed potential 
window for detection due to the production of H2 gas during the metal deposition.  

This work describes the use of square wave anodic stripping voltammetry 
(SWASV) to detect and quantitate Pd(II) in pharmaceutical-like matrices. No 
sample pretreatment, either wet- or dry-ashing, is needed prior to the 
electrochemical analyses. The analyses conducted in both aqueous and 95/5 
DMSO/ H2O solutions with and without pharmaceutical substrates. The process 
uses a simple, un-modified glassy carbon electrode (GCE) to analyze Pd(II) in 
the low ppb (µg L-1) range. An in-situ bismuth codeposition allows for the 
detection of Pd(II) in the 95/5 DMSO/ H2O solution, which is otherwise 
unobservable. No prefabrication of the off-the-shelf, commercial GCE is needed. 

The stripping step, followed by a cleaning step, oxidizes and removes the 
metal analyte from the electrode, forming a fresh surface each time, allowing for 
more consistent results within the technique. The importance of this method lies 
in its ability to be used in both aqueous and DMSO-based media. Using either 
water or the DMSO solutions, representative APIs, excipients, and dietary 
supplements are easily dissolved with little to no prior workup, reducing the need 
for wet or dry-ashing of the sample.31 We have chosen DMSO as our non-
aqueous solvent, as DMSO, with fewer hydrogen bonding networks than water, 
is commonly used to dissolve many drug components.31  The method reported 
here allows for inexpensive, fast, and portable analysis of Pd(II), thus creating 
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the opportunity to pre-screen many organic products for palladium impurities as 
well as pin-pointing stages where catalysts are deactivated throughout the API’s 
synthesis. It also has the capability for simultaneous coanalysis of Cd(II) and 
Pb(II) along with Pd(II) in the same solutions. The work herein is, to our 
knowledge, the first work to detect palladium in pharmaceutical matrices using 
electroanalysis, as well as the first detection of palladium in DMSO solutions. 
 

3.2. Materials and methods 
3.2.1. Chemicals and instruments 

The following chemicals were used as received and of analytical grade: 
caffeine (Thermo Fisher Scientific, Waltham, MA), ketoprofen (Sigma Aldrich Co., 
St. Louis, MO), tetraethylammonium tetrafluoroborate (Et4NBF4, Sigma Aldrich 
Co.), DMSO (Thermo Fisher Scientific), ethanol (95%, Decon Laboratories, Inc., 
King of Prussia, PA). Standard solutions of Pd(II), Bi(III), Cd(II), and Pb(II) with 
concentrations of 1000 mg L-1 in 10% HNO3 (Ricca Chemical Co., Arlington, TX) 
were diluted in supporting electrolytes to form stock solutions. Ultrapure water 
from a Millipore water purified system (≥18 MΩ•cm, Barnstead Thermolyne, 
Thermo Fisher Scientific) was used in all assays. 95/5 DMSO/H2O was made by 
adding 1.0 mL ultrapure water to 19.0 mL of DMSO in the electrochemical cell 
prior to analysis. 

Prior to use, GCEs were polished to a mirror-like surface on a standard 
electrode polishing kit (CH Instruments Inc., Austin, TX) including a 1200 grit 
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CarbiMet™ disk, 1.0 and 0.3 µm alumina slurry on a nylon cloth, and 0.05 µm 
alumina slurry on a microcloth polishing pad. After polishing, GCEs were 
successively sonicated with deionized (DI) water, ethanol, and DI water again for 
5 min each. Electrochemical measurements were carried out on a CHI 440a 
Electrochemical Workstation (CH Instruments). A three-electrode configuration 
consisted of a bare, unmodified GCE (3 mm in diameter, BAS Inc., West 
Lafayette, IN), Ag/AgCl (saturated KCl solution, CH Instruments) and a platinum 
wire (CH Instruments) as working, reference, and counter electrodes, 
respectively. 

 

3.2.2. Sample preparation and SWASV analysis of Pd(II)  
All experiments were conducted at room temperature without deaeration. 

The unmodified GCE, Ag/AgCl, and Pt wire electrodes were placed in an 
electrochemical cell containing 20 mL of 0.05 M Et4NBF4 in ultrapure DI water or 
0.05 M Et4NBF4 in 95/5 DMSO/H2O. In aqueous samples containing Bi(III), 50.0 
µL of 1000 mg L-1 Bi(III) standard solution was added to give 2.5 mg L-1 of total 
Bi(III), prior to analysis. For all 95/5 DMSO/H2O samples, 200.00 µL of 1000 mg 
L-1 Bi(III) standard solution was added to give 9.9 mg L-1 of total Bi(III) prior to 
analysis. 

For analysis in aqueous solutions, the potential was held at -1.1 V for 250 
s to pre-concentrate Pd onto the electrode surface via electrodeposition. This 
was followed by sweeping the potential from -1.1 to 0.9 V using a frequency of 15 
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Hz, a step potential of 4 mV, and amplitude of 25 mV for the stripping step. The 
solution was stirred at high speed during the accumulation, but the stirrer was 
turned off prior to the stripping step. The electrode surface was regenerated 
between measurements by holding the potential at 0.9 V for 200 s in the sample 
solution while stirring at high speed.  

For analysis in 95/5 DMSO/H2O solutions, Pd (II) and Bi(III) were 
codeposited by holding the potential at -1.4 V for 300 s. For the stripping step, 
the potential was swept from -1.4 to 0.6 V using a frequency of 25 Hz, a step 
potential of 4 mV, and amplitude of 25 mV. Stirring of the solution at high speed 
was required for the accumulation step, but was turned off in time for the 
stripping step. In 95/5 DMSO/H2O, the electrode surface was regenerated 
between measurements by holding the potential at 0.8 V for 200 s while stirring 
the solution at high speed. All solutions were stirred at 1200 rpm during the 
accumulation step, but stirring was stopped 10 s prior to the stripping step. 

Samples containing API were made by directly dissolving 20 mg of the 
organic compound (either caffeine or ketoprofen) in 20 mL of the media (water or 
95/5 DMSO/H2O). During analysis of these samples, the solutions were allowed 
to stir for 1 min after spiking with Pd(II) in order to allow the metal to reach an 
equilibrium throughout the matrix, and to allow it to interact with the organics. 
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3.3. Results and discussion 
3.3.1. Analytical results 

Standard addition was the chosen method for all calibration curves in this 
study. Thus it is important to note that all results are given without background 
subtraction. This approach was taken due to the importance of treating the 
analysis as if actually analyzing an unknown sample. Standard addition allows for 
the determination of an original concentration while keeping the matrix the same, 
which is necessary for analysis of an un-ashed API. 

As a proof of concept for simultaneous multi-analyte detection, Pd(II) was 
analyzed in the presence of Bi(III), Cd(II), and Pb(II) which we have previously 
analyzed in pharmaceutical matrices.32 Simultaneous analysis of all four metals 
was shown to be possible in both aqueous solutions as well as 95/5 DMSO/H2O 
solutions. Results, including the regression functions, square of the correlation 
coefficient R2, RSD (relative standard deviation) at 80 µg L-1, and LOD for each 
of the following studies, are listed in Table 3.1. The classic equation for LOD was 
used:  

 
ܦܱܮ ≡ ଷ௦

௠                                                                Eq. 3.1 
 

where s is the standard deviation of the peak area from the lowest observable 
concentration (n = 3), and m is the slope of the linear regression. 

In API solutions, API (20 mg) was dissolved in 20 mL solution, resulting in 
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API concentrations of 1000 mg L-1. Thus, when calculating the LOD of 
Pd(II) as compared to the API sample, µg L-1 (mass analyte/volume solution) is 
directly converted to µg g-1 (mass analyte/mass API). 

 

3.3.2. Detection of Pd(II) 
Using the optimized parameters listed above, Pd(II) was analyzed in 

aqueous solutions containing 0.05 M Et4NBF4 as the supporting electrolyte. It 
was determined that addition of Bi(II) did not affect the sensitivity or selectivity of 
Pd(II), and was thus not necessary for analysis (Figure 3.1). 

Analysis of Pd(II) was also performed  in the presence of Bi(III) (2.5 mg  
L-1), Cd(II) (80 µg L-1), and Pb(II) (80 µg L-1) (Figure 3.2), and in the presence of 
1000 mg L-1 caffeine. Results are shown in Table 3.1. 

Similarly, Pd(II) was analyzed in 95/5 DMSO/ H2O containing 0.05 M 
Et4NBF4 as the supporting electrolyte. It was determined that a Bi codeposition 
using a Bi(III) concentration of at least 8.0 mg L-1 is required for the detection of 
Pd(II) in 95/5 DMSO/ H2O, otherwise no Pd(II) peak is observed at all. It is 
interesting to note that the addition of Bi leads to a new peak at -0.2 V as a 
shoulder of the larger Bi stripping peak. Areas of the new peak show a linear 
correlation with Pd(II) concentrations in the solutions. 
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Table 3.1. Comparison of analyses performed and figures of merit 

Media Interference Regression R2 
RSD at 50 µg L-1 

(n = 3) 
LOD  

(µg L-1) 
LOD  

(µg g-1) 
aqueous - y = 0.0103x – 0.2110 0.995 8.7% 5.8 - 
aqueous Cd(II), Pb(II), Bi(III) y = 0.0068x – 0.1579 0.997 2.0% 4.7 - 
aqueous caffeine y = 0.0039x – 0.1034 0.998 5.7% 11 11 
DMSO - y = 0.0046x + 0.1142 0.992 4.6% 9.9 - 
DMSO Cd(II), Pb(II), Bi(III) y = 0.0047x – 0.0061 0.997 4.2% 7.0 - 
DMSO ketoprofen y = 0.0044x – 0.0048 0.996 2.3% 9.6 9.6 
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Figure 3.1. Analysis of Pd(II) (0–100 µg L-1) alone in aqueous solution. 
 
 

 
Figure 3.2. Analysis of Pd(II) (0–70 µg L-1) in aqueous solutions in the presence of Bi(III) (2.5 mg 
L-1), Cd(II) (80 µg L-1), and Pb(II) (80 µg L-1). 
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The nature of this peak shift is not clear. It is suspected that DMSO, a 
known stabilizer for nanoparticle formation,33,34 may enable the reduction of 
Pd(II) onto the electrode surface as Pd-Bi alloy nanoparticles. Perhaps the 
bismuth in the Pd-Bi nanoparticles is more electropositive than the rest of 
bismuth in the bulk. Thus the bismuth in the Pd-Bi nanoparticles is oxidized into 
Bi(III) before bismuth in the bulk, forming the peak at -0.2 V. In other words, the 
oxidation of bismuth in the Pd-Bi nanoparticles may dislodge the Pd(0) 
nanoparticles from the electrode surface in the process. Thus no Pd(0) 
oxidation/stripping was subsequently observed at ca. +0.6 V. The higher the 
concentration of Pd(II) is, the more Pd-Bi nanoparticles form, leading to a larger 
area of the peak at -0.2 V. It has been reported that the electrooxidation of pure 
metal nanoparticles is shifted negatively in comparison to the electrooxidation of 
a bulk metal film.35 Regardless of the nature of the peak, we have shown that the 
peak area has a direct relationship to the concentration of Pd(II) in solution 
before accumulation. The analysis of Pd(II) in 95/5 DMSO/ H2O was also 
performed in the presence of Cd(II) and Pb(II) (80 µg L-1 each) using 10 mg L-1 
Bi(III) for codeposition (Figure 3.3), the optimized Bi(III) concentration for the 
detection of Cd(II) and Pb(II).32 The analysis of Pd(II) was also performed 
separately, in the presence of ketoprofen, an API that is insoluble in water. All 
results are summarized in Table 3.1, with regression equations describing the 
relationship between Pd(II) concentration (x) and the Pd(II) peak area (y) 

The CHI software was used to determine the peak areas, which is 
calculated using a linear baseline between the two peak edges. Upon review of 
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the regression equations in Table 3.1, it was clear that statistical bias is present 
in many of them, as indicated by the large absolute values of the intercepts. It is 
the belief of the author that this error spawns from inadequate integration 
methods that do not take into account the often non-linear nature of the 
voltammogram baseline. For future studies, a more accurate method will be 
determined and employed. 

 
 

 
Figure 3.3. Detection of Pd(II) (0–100 µg L-1) with the assistance of a Bi(III) (10.0 mg L-1) 
codeposition in 95/5 DMSO/ H2O solutions in the presence of Cd(II) (80 µg L-1) and Pb(II) (80 µg 
L-1). 
 
 

3.3.3. Interference effects 
In aqueous solutions, interferences from the metals Cd(II), Pb(II) and 

Bi(III) as well as the organic caffeine have a negative effect on the sensitivity of 
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the Pd(II) analysis. This can be observed through a comparison of the regression 
model slopes summarized in Table 3.1. Increasing Pd(II) concentrations also 
appear to decrease the peak areas of both Cd(II) and Pb(II) (Figure 3.2). 
Although Cd(II) and Pb(II) were never treated as analytes in this study, it is clear 
that Pd(II) concentration would have an important effect on the analysis and 
consequent figures of merit if all three metals were to be detected 
simultaneously. Even so, it is apparent that all three can be qualitatively analyzed 
simultaneously, and quantitatively analyzed through individual standard 
additions. The effect of caffeine on Pd(II) analysis is strong and results in an LOD 
slightly higher than what will be required in the new ICH Q3D guidelines.4  More 
work is required to decrease the lower limit, but may be as simple as increasing 
the amount of API being analyzed.  

In 95/5 DMSO/ H2O, the dissolved ketoprofen has a much smaller effect 
on the slope of analysis than is seen in the caffeine/water system. Despite this 
slight decrease in sensitivity the LOD has not reached the new ICH guidance of 
10.0 µg g-1; due in part to the high precision of the method. Contrary to the 
results observed in aqueous solutions, the metal interferers Cd(II), Pb(II) and 
Bi(III) had a positive effect on the regression slope, decreasing the LOD, as seen 
in Table 3.1. Furthermore, unlike the aqueous system, increasing Pd(II) 
concentrations do not appear to decrease the peak area of Pb(II) and only 
slightly decreases the peak area of Cd(II) (Figure 3.3).  
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3.3.4. Apparent recoveries  
The accuracy of both the combined sensing platform and method was 

determined by apparent recovery of Pd(II) in the presence of organics after 
standard addition. This test was performed in the presence of 1000 mg L-1 
caffeine in an aqueous solution and also in the presence of 1000 mg L-1 
ketoprofen in 95/5 DMSO/ H2O. The definition for apparent recovery used here is 
based off of IUPAC recommendations which include the following equation:36  

 
ܴ஺ᇱ =  ௫ಲ (೐ೣ೛)

௫ಲ (೟೓೐೚ೝ)                                                   Eq. 3.2 

 
Where xA(exp) is the value experimentally obtained from the standard addition 
method, and xA(theor) is the known concentration value.  

An aqueous solution containing 1000 mg L-1 caffeine, and 0.05 M Et4NBF4 
was spiked to 20.0 µg L-1 Pd(II). The sample was treated as an unknown and 
standard addition was performed by spiking the sample to added concentrations 
of 20.0, 40.0, 50.0, 80.0 and 90.0 µg L-1 Pd(II). Between each of these spikes, 
SWASV was run in triplicate using the procedure previously described. By 
placing the original concentration at [Pd(II)] = 0, a linear regression was produced 
with the equation y = 0.0064x + 0.1202 (R² = 0.987, Figure B.4 in Appendix B). 
Using this equation, the initial “unknown” concentration of Pd(II) was calculated 
to be 18.8 µg L-1, an apparent recovery of 93.9%. 



65 
 

A solution of 95/5 DMSO/ H2O water containing 1000 mg L-1 ketoprofen, 
and 0.05 M Et4NBF4 was spiked to an initial concentration of 20.0 µg L-1 Pd(II). 
The sample was treated as an unknown and standard addition was performed by 
spiking the sample to added concentrations of 20.0, 40.0, 60.0 and 80.0 µg L-1 
Pd(II). After each spike, SWASV was run in triplicate using the procedure 
previously described. By placing the original concentration at [Pd(II)] = 0, a linear 
regression was produced with the equation y = 0.0033x + 0.0599 (R² = 0.986, 
Figure B.5 in Appendix B). The initial “unknown” was calculated to be 18.1 µg L-1, 
an apparent recovery of 90.8%. 
 

3.4. Conclusion 
This study has successfully demonstrated the use of SWASV using a 

simple GCE to detect Pd(II) in organic APIs. This important analysis can be 
performed in aqueous solutions or 95/5 DMSO/H2O solutions that contain 
dissolved APIs without pretreatment. An important finding of this work was the 
discovery that Pd(II) is not easily detectable in 95/5 DMSO/H2O by ASV unless 
co-deposited with Bi. To the best of our knowledge, this has been the first time 
that Pd(II) has been detected in DMSO solutions using voltammetry. 

This work is particularly significant as palladium-based catalysts are 
among the most used in organic and pharmaceutical syntheses. Determination of 
palladium in the presence of directly dissolved organic compounds opens doors 
for industrial use and quality control. All LODs, except one, are well within the 
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limit. The exception, the highest LOD (in the presence of 1000 mg L-1 caffeine) of 
11 µg L-1, i.e., 11 µg g-1 of dissolved caffeine, is just outside of the newly revised 
ICH regulation limits. Comparable LODs in the presence and absence of 
organics indicate that trace level detection may still be maintained if the organic 
concentration is increased, allowing for lower LOD for the organics. The work 
reported here also indicates that Cd(II) and Pb(II) can be detected alongside 
Pd(II) with the aid of a Bi(III) codeposition. This work has the potential to open 
the doors for even more elements added to this multi-analyte simultaneous 
detection method in various industrial and environmental matrices. 
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 Research for this chapter was a collaborative work between visiting 
professor, Jie Guo, and Samuel M. Rosolina. 
 Additional materials for Part 4 are provided in Appendix C. 
 

Abstract 
A simple method, based on anodic stripping voltammetry (ASV), has been 

optimized and evaluated for the purpose of mercury(II) analysis in a 
representative active pharmaceutical ingredient (API) and excipient. The method 
uses a simple un-modified glassy carbon electrode and does not require 
pretreatment of the sample prior to the analysis. The limits of detection (LODs) 
are 8.8 and 9.4 μg L-1 [mass/volume, parts per billion (ppb)], respectively, in 1000 
mg L-1 aqueous caffeine and lactose solutions. In the absence of the organic API, 
LOD for Hg(II) is 4.7 μg L-1. The performance has been evaluated in the 
presence of coexisting anions or cations. The good reproducibility and stability of 
the analytical platform and obviation of sample pretreatment show the promise of 
utilizing ASV as a sensitive, robust, and inexpensive alternative to inductively-
coupled-plasma (ICP)-based approaches for the analysis of mercury(II) in 
pharmaceutical matrices.  
 

4.1. Introduction  
Mercury(II) [Hg(II)] is a highly toxic, accumulative and persistent heavy 

metal ion with adverse health effects on humans.1-3 It is dangerous even at very 
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low concentrations.4,5 For drinking water, 1 mg L-1 (ca. 5 nM) is the guideline 
value by the World Health Organization.6  

For drug products and their ingoing components, including active 
pharmaceutical ingredients (API) and excipients, residual mercury is among the 
most toxic and of top concern.7 The International Conference on Harmonisation 
(ICH) has recently published new guidance (ICH Q3D) for the control of 
elemental impurities including mercury.7,8 United States Pharmacopoeia (USP) 
has also proposed changes to replace non-selective, wet-heavy metal tests in 
the USP <231> (Heavy Metals), which has been used for over 100 years, by the 
new guidelines USP <232> (Elemental Impurities-Limits) and USP <233> 
(Elemental Impurities-Procedures).7,8 We have focused on mercury analysis with 
oral Permissible Daily Exposure (PDE) values of 15 μg/day in the new guidelines. 
The detection and quantification of elemental impurities in pharmaceutical 
matrices, including APIs and excipients, have been actively studied to meet the 
new guidelines. Monitoring trace Hg(II) in pharmaceutical matrices is of critical 
importance and requires in situ, real-time, and highly-sensitive sensors.9 

Mercury determination at low levels is mainly conducted by spectroscopic 
techniques10 such as inductively coupled plasma-mass spectrometry  
(ICP-MS)11-14 with good selectivity and sensitivity.15 These techniques may 
analyze most metals and are thus capable of addressing the requirements of the 
proposed new regulatory guidelines.8,16 They ICP-based methods, however, 
suffer important limitations such as the needs for pretreatment of pharmaceutical 
matrices, expensive instruments, and complex and time-consuming procedures, 
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thus limiting in-situ or on-line analysis. It would be ideal to develop methods that 
can accurately detect and quantify elemental impurities with no or minimal 
sample preparation. It is highly desirable to develop low-cost, portable field 
methods to accurately analyze elemental impurities in pharmaceutical matrices. 

Anodic stripping voltammetry (ASV), a common electroanalytical 
technique,17,18 is an attractive alternative to ICP-based approaches. In addition to 
possessing capabilities of multi-element analysis, the electroanalytical approach 
requires low-cost instrumentation/operation and minimum maintenance. In 
addition, it is fast and highly sensitive with limits of detection in the ppb (μg L-1) 
range. In ASV, the reduction of metal ions onto an electrode surface is followed 
by rapid oxidation of the metal back into solution to produce a characteristic 
current in the anodic peaks.19-21 To date, electrochemical analyses of mercury 
have been mostly focused on their presence in drinking water with, to our 
knowledge, little work in pharmaceutical matrices. In fact, there have been few 
studies using voltammetry to investigate or analyze metal ions in organic 
media.22-25 
 We have recently reported a new electrochemical method, based on ASV 
on an unmodified glassy carbon electrode, to detect and quantify cadmium(II) 
[Cd(II)] and lead(II) [Pb(II)], either simultaneously or individually in 
pharmaceutical ingredients and an excipient. Cd(II) and Pb(II) are two other most 
toxic metals in pharmaceutical matrices.7,8 No pretreatment, such as acid 
digestion or dry ashing to remove organics in solution, is needed prior to the ASV 
analysis. Through co-deposition of bismuth, limits of detection (LODs) in the µg L-
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1 range were obtained for both heavy metals - in the presence and absence of 
representative pharmaceutical components.26 However, mercury(II) analysis 
cannot be combined with our ASV analysis of cadmium(II) and lead(II), in part 
because different matrices are required for the analyses of Hg(II) and 
cadmium(II)/lead(II), as demonstrated below. The results have prompted us to 
develop the current, separate ASV analysis of Hg(II) in pharmaceutical matrices. 

Electrochemical analysis of mercury has been conducted on modified 
electrodes such as copper27 or iridium oxide films18, carbon-based materials,28-32 
and gold-nanoparticle-modified electrodes.33,34 However, fabrications of these 
modified electrodes are time-consuming and costly. In addition, reproducibility of 
the mercury analyses at low concentrations on those modified electrodes is 
challenging, and a complexing ligand is needed for the process, adding to the 
complexity of the detection process.28,29,32,34 It is thus highly desirable to develop 
an electrochemical method on commercial, unmodified glassy carbon electrodes 
which is not only sensitive, selective, and reliable but also simple, practical, and 
economical in its operation.  

This work describes the use of square wave anodic stripping voltammetry 
(SWASV) to detect and quantitate mercury(II) in representative pharmaceutical 
matrices. The electrochemical analysis has been conducted in aqueous solutions 
with and without representative pharmaceutical substrates. No pretreatment of 
the samples is needed prior to ASV analyses. The process uses a simple, 
unmodified glassy carbon electrode (GCE) to detect Hg(II) in the low ppb (μg L-1) 
range. This direct method allows for inexpensive, fast, and potentially portable 
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analysis of Hg(II) in small amounts of the samples. The current work, to our 
knowledge, is the first study to analyze mercury in pharmaceutical matrices. It 
also creates the opportunity to pre-screen organic products for mercury, one of 
the top toxic elements in APIs and excipients. 
 

4.2. Materials and methods 
4.2.1. Chemicals and instruments 

The following chemicals were used as received, and all but lactose 
monohydrate, were analytical grade: lactose monohydrate (Lab Grade, Thermo 
Fisher Scientific, Waltham, MA), caffeine (Thermo Fisher Scientific), sodium 
acetate (NaOAc, Thermo Fisher Scientific), tetra(n-butyl)ammonium perchlorate 
[Bun4N(ClO4), TBAP, for electrochemical analysis, ≥99.0%, Sigma Aldrich], 
Na2SO4 and NaNO3 (Thermo Fisher Scientific), tetraethylammonium 
tetrafluoroborate (Et4NBF4, for electrochemical analysis, ≥99.0%, Sigma Aldrich), 
ethanol (95%, Decon Laboratories, Inc., King of Prussia, PA). Mercury atomic 
absorption standard solution of 1000 mg L-1 in 3% HNO3 (Ricca Chemical Co., 
Arlington, TX) was diluted in supporting electrolytes to form stock solutions. 
Fe(III), Cd(II), and Pb(II) atomic absorption standard solutions of 1000 mg L-1 in 
10% HNO3 (Ricca Chemical Co., Arlington, TX) were diluted in supporting 
electrolytes to form stock solutions of the interference ions. Ultrapure deionized 
(DI) water from a Millipore water purified system (≥18 MΩ•cm, Barnstead/Thermo 
Fisher Scientific) was used in all assays. 
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Prior to use, GCEs were polished to a mirror-like surface on a standard 
electrode polishing kit (CH Instruments, Inc., Austin, TX) including a 1200 grit 
CarbiMetTM disk, 1.0 and 0.3 μm alumina slurry on a nylon cloth, and 0.05 μm 
alumina slurry on a microcloth polishing pad. After polishing, GCEs were 
successively sonicated with DI water, ethanol, and DI water again for 5 min each. 
Electrochemical measurements were carried out on a CHI 440a Electrochemical 
Workstation (CH Instruments). A three-electrode configuration consisted of a 
bare, unmodified GCE (3 mm in diameter, BAS Inc., West Lafayette, IN) as 
working electrode and two platinum wires (CH Instruments) as quasi-reference 
and counter electrodes, respectively. A platinum wire quasi-reference electrode 
was used in place of an Ag/AgCl electrode to avoid the introduction of any Cl- 
into the system, as HgCl2 is insoluble. 

 

4.2.2. Sample preparation and SWASV analysis of mercury(II)  
All experiments were conducted at room temperature without deaeration. 

The unmodified GCE and Pt wire electrodes were placed in an electrochemical 
cell containing 20 mL of 0.01 M TBAP or another electrolyte in ultrapure DI water. 
For detection in the aqueous system, deposition of Hg(II) occurred by holding the 
potential at -1.1 V for 300 s and was then stripped back into solution by sweeping 
the potential from -1.1 to 0.6 V using a frequency of 25 Hz, a step potential of 4 
mV, and amplitude of 25 mV. For all analyses, stirring of the solution at 1200 
revolutions per min (rpm) was required for the accumulation step, but was turned 
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off prior to the stripping step. The electrode surface was regenerated between 
measurements by holding the potential at 1.0 V for 300 s for samples, while 
stirring at high speed. In samples containing an organic compound, the solutions 
were stirred for 1 min after spiking with the analyte of interest and before the first 
analysis. This was done to allow the metals to reach equilibrium throughout the 
matrix and to interact with the organics in solution. It should be noted that 
allowing spiked samples to sit for several days had no effect, either positive or 
negative, on the sensitivity of the detection as compared to allowing the sample 
to stir for 1 min after spiking. 
 

4.3. Results and discussion 
Functional groups such as -COOH, -NHR, -OH, and -SH are often present 

in APIs and organic excipients. These groups may bind/complex to Hg(II), 
forming organic mercury carboxylates, amine adducts, amides, alkoxides, and 
thiolates in the pharmaceutical matrices. Mercury(II) acetate, a carboxylate, for 
example, is highly soluble in water.35 Thus mercury carboxylates likely dissociate 
significantly at trace levels in water. Many mercury(II) amine adducts and amides 
have also been reported to readily react with water, breaking the Hg-N bonds.36 
Thus, for API or excipients soluble in water that contain carboxylates, amine 
adducts and amides, it is expected that the organic mercury complexes will 
dissociate in the solutions. If trace Hg-O or Hg-N species are left in aqueous, the 
negative deposition potential (-1.1 V) would overcome the binding energies of 
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ligands to mercury(II), allowing for mercury deposition on the electrode. Few 
mercury(II) alkoxides/aryloxides have been reported.37 Mercury thiolates  
(RS-Hg-) are likely less soluble in water. If they are present, the negative 
deposition potential (-1.1 V) is expected to overcome the Hg-S binding energies 
to make mercury deposition on the electrode. 
 

4.3.1. Optimization of experimental conditions  
4.3.1.1. Effect of supporting electrolyte 

Voltammetric behaviors of Hg(II) were investigated in several supporting 
electrolytes in water. NaOAc, NaNO3, Et4NBF4, and TBAP were compared. All 
gave consistently good results. Perchloric acid was often used as electrolyte in 
electrochemical analysis of trace mercury.28,38-40 TBAP was chosen as the 
appropriate electrolyte because of its strong response to Hg(II) as shown in 
Figure 4.1. The voltammograms of these optimization experiments are given in 
Figure C.1 in Appendix C. 

 

4.3.1.2. Effect of preconcentration potential  
Using solutions containing 40 μg L-1 Hg(II), the optimum preconcentration 

potential was determined through peak area comparisons. Due to the fairly 
negative potential of the Hg(II) oxidation peak and the possibility of forming 
hydrogen (H2), an optimized preconcentration potential is important. Depositing 
the Hg(II) at -1.1 V proved to produce the largest peak area. Figure 4.2 shows 
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Figure 4.1. Effect of supporting electrolytes on the Hg(II) voltammetric behaviors. The best 
electrolyte was chosen through the comparison of the 100 μg L-1 Hg(II) peak areas. The best 
response was obtained when using TBAP.  
 
 
the results for these tests, and the voltammograms can be found in Figure C.2 in 
the Appendix C. 
 

4.3.1.3. Effect of preconcentration time  
Figure 4.3 shows the electrochemical results for 50 μg L-1 Hg(II) in 

aqueous solutions. The peak area increased for both metals with increasing 
deposition time between 100 and 300 s. For deposition times >300 s, Hg(II) 
began to level off. Thus a deposition time of 300 s was chosen. 
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Figure 4.2. Studies on deposition potential for Hg(II) [0.01 M TBAP, 40 μg L-1 Hg(II), 200 s] 
 

 

 
Figure 4.3. Studies on accumulation times for Hg(II) [0.01 M TBAP, 50 μg L-1 Hg(II), -1.1 V]. 
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4.3.2 Analytical results  
Standard addition was used for all calibration curves. It is important to 

note that the results here are given without background subtraction. The method 
of standard addition allows for the determination of the original concentration 
without interference from the matrix, which is necessary for the analysis of 
unashed pharmaceuticals. Results of the investigations, including the regression 
function, square of the correlation coefficient R2, RSD (relative standard 
deviation) at 50 μg L-1 and LOD for each of the following studies (S/N = 3), are 
listed in Table 4.1. 

 
Table 4.1. Comparison of the Hg(II) analyses performed in the current study 

Interference Regression R2 
RSD 

(n = 3) 
50 μg L-1 

LOD 
(n = 3) 
μg L-1 

LOD in 
solid organic 

(μg g-1) 
- y = 0.0318x - 0.1664 0.998 1.5% 4.74 - 

caffeine y = 0.0306x - 0.0368 0.994 2.2% 8.77 8.77 
lactose y = 0.0273x + 0.2342 0.993 2.3% 9.40 9.40 

 
 

4.3.2.1. Detection of Hg(II) in the absence of organics 
Using the optimized parameters above, Hg(II) was first analyzed in the 

absence of representative pharmaceutical ingredients. The Hg(II) peak was 
observed at -0.25 V (Figure 4.4). Calculated LOD was 4.74 μg L-1 (Table 4.1).  
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   Figure 4.4. Increasing concentrations of Hg(II) (10-150 μg L-1) in the absence of  organics (0.01 
M TBAP) 

 

4.3.2.2. Effect of dissolved organics on analysis  
The impact of organic substrates on the accuracy and sensitivity of the 

electroanalytical approach was investigated in aqueous solutions, using 
representative pharmaceutical organic components such as caffeine and lactose. 
Caffeine and lactose, both soluble in the aqueous solution, were evaluated 
separately, and added to the 0.01 M TBAP solution at a concentration of 1000 
mg L-1. These solutions were stirred until all organic compounds had fully 
dissolved. In the presence of lactose, the LODs of Hg(II) was 9.40 μg L-1 (Table 
4.1). As indicated in Table 4.1, similar LODs were observed in the presence of 
1000 mg L-1 caffeine ([Hg(II)] = 8.77 μg L-1). 

Addition of representative pharmaceutical ingredients to the electrolytic 
solutions resulted in weaker analyte detection with lower slopes and 
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consequently higher LODs for Hg(II). However, since the tests were conducted 
with high concentrations of the pharmaceutical ingredients, achieving the Hg(II) 
detection in the low μg L-1 range is remarkable, demonstrating the strength and 
potential of this method. The effect of the organic substrates on the sensitivity is 
slight, but evident through comparisons of regression slopes and LODs.  
 

4.3.2.3. Reproducibility and precision  
Tests of the current technique show high reproducibility and consistency 

(Table 4.1). This is perhaps due, in part, to its simplicity and the optimized 
cleaning steps, which allowed for a fresh GCE surface each time. RSD was 
calculated through triplicate stripping analysis in a sample containing 50 μg L-1 
Hg(II), with cleaning between measurements. All but one RSD are below 2.5%. 
 

4.3.3. Interference  
 A major challenge for Hg(II) detection in real samples is the elimination of 

interferences. In order to evaluate the performance of GCE toward Hg(II) change 
in the presence of coexisting anions or cations, including SO42-, NO3-, Pb2+, Cd2+, 
and Fe3+, the effect of these ions on the cathodic peak current of Hg(II) change 
was examined (Table 4.2). The voltammetric response of the designed electrode 
toward 100 μgL-1 Hg(II) was first measured, and then 500 μgL-1 excess of the 
coexisting ions was subsequently added into the supporting electrolyte in the 
aqueous solution. Metals cations might form alloys with mercury, thus making the 
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peak area increase. Anion will influence the Hg(II) reduction kinetics, thus 
potentially decreasing the peak area. 
 
 Table 4.2. Comparison of the interference performance in 100 ppb Hg(II) solutions 
Interference/ 

Concentration None 500 ppb 
NO3- 

500 ppb 
SO42- 

500 ppb 
Pb2+ 

500 ppb 
Cd2+ 

500 ppb 
Fe3+ 

% Peak Area 100% 79% 86% 174% 179% 203% 
 

4.4. Conclusions 
 This work demonstrated the use of the classical electroanalytical method, 
ASV, by using an off-the-shelf, unmodified GCE for the analysis of Hg(II), one of 
the most toxic elemental impurities, at trace levels in representative 
pharmaceutical matrices. The analyses were fast with just simple dissolution of 
the pharmaceutical ingredient and no pretreatment. To the best of our 
knowledge, this is the first detection of Hg(II) in aqueous solutions through ASV 
(with organic substrates). Detecting these heavy metals in pharmaceuticals is an 
important application of electrochemical analysis to an area of intensely current 
interest. 

The detection limits are generally lower than the USP limits of mercury in 
pharmaceuticals. Comparable LODs in the absence and presence of organics 
indicate that Hg(II) detection in the presence of an API/excipient at even higher 
concentrations can be achieved at trace levels. Acidifying the API/excipient 
sample would allow for the analysis of a larger sample and lower organic 
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interference, as well as increase the solubility of analytes in the form of mercury 
oxides. Again, it is important to note that no data in the current studies were 
background-subtracted so as to replicate the determination of an unknown metal 
concentration in a real sample. Additional research and developments are 
needed to make this method meet the requirements of USP <233>. 
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Highly sensitive detection of hexavalent chromium 
utilizing a sol-gel/carbon nanotube modified electrode 
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Abstract   
 

A pyridine-functionalized thin film has been fabricated to selectively 
preconcentrate Cr(VI) anions for electrochemical detection in the 5-300 µg L-1 
range. Glassy carbon electrodes were modified through physical deposition of 
single-walled carbon nanotubes (SWNTs) on the electrode surface, followed by 
electrochemical deposition of a sol-gel containing a 2-pyridine functional group. 
The use of SWNTs has increased sensitivity for Cr(VI) detection in aqueous 
solutions, providing a detection limit of 0.3 µg L-1. 
 Additional materials for Part 5 are provided in Appendix D. 

 
5.1. Introduction 

Chromium detection is of intense interest, as Cr(VI) is highly toxic even at 
trace (low mg L-1) levels. Due to the strong oxidizing nature of Cr(VI), exposure 
leads to health problems that include lung cancer, stomach cancer, nasal cancer, 
allergic dermatitis, and mutagenesis.1-5 Despite its known effects on human 
health Cr(VI) species are found in many places including common anti-corrosive 
materials, paints, dyes, tanned leather, coal ash, wood preservatives, welding 
materials, and chrome plating.6-8  

Trivalent chromium, on the other hand, is reported to be an essential trace 
element for mammals (ca. a few mg L-1 in blood samples), and detection of Cr(III) 
has been actively studied.9 Little is known about the specific roles of Cr(III) in the 
biological system, but it has shown to help treat glucose intolerance and certain 
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types of diabetes.10 Often biological samples are pretreated by using e.g. H2O2 
before Cr analysis and the pretreatments convert Cr(III) to Cr(VI). In such cases, 
subsequent Cr quantification in the biological samples becomes the analysis of 
Cr(VI), and electrochemical methods have often been used.11 

Detection of trace Cr(VI) requires sensitive techniques. Currently, these 
include ion chromatography, atomic absorption (AA) spectrophotometry, 
spectrofluorimetry, spectrophotometry, chemiluminescence, inductively coupled 
plasma optical emission spectroscopy (ICP-OES), inductively coupled plasma 
mass spectrometry (ICP-MS), and capillary zone electrophoresis.12-17 
Electrochemical methods are attractive because of their sensitivity, portability, 
and relatively low cost in comparison to other common techniques.18-32 One of 
the largest steps forward in electrochemical analysis has been the marriage of 
sol-gel thin films and electrodes.33-45  

Sol-gel films are formed through the hydrolysis and condensation of metal 
alkoxides. These reactions can be catalyzed by either a base or an acid, each 
producing different porosities.45 For trace analysis purposes, base catalysis tends 
to be favored over acid catalysis because it produces films with higher porosity 
and thus larger surface area.46 This porosity as well as the electrochemical 
stability of the sol-gel films makes them ideal for electroanalytical purposes. 
Additionally, functional groups are easily trapped in the gel by simply adding 
them to the sol before hydrolysis, producing films tailored for specific 
analyses.33,35,37,38,41-44,47-50 A very thin film is commonly desired because of a 
shorter diffusion pathlength of the analyte as well as a quicker response time.  
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Electrolytic sol-gel deposition is a fairly new development in the 
electroanalytical field and has been succesfully employed to fabricate many new 
sensors.39-41,43,44,50 By exposing an electrode to a sol consisting of alkoxysilane 
precursors and holding it at a sufficiently negative potential, hydroxide ions are 
generated at the electrode surface through the oxidation of water and oxygen 
(Eqs. 5.1-5.3). The localized increase in pH catalyzes the hydrolysis of the sol, 
which immediately begins to condense onto the electrode (Scheme 5.1.). 
Because the gelation and the drying do not occur at the same time, as they do in 
physical depositions, the porosity is much larger.51 Electrodeposition has proven 
to produce sol-gel films with more consistent film thicknesses than through past 
deposition techniques such as spin coating and dip coating.52 The original pH of 
the sol, as well as the deposition potential and time, directly affect the thickness 
of the sol-gel film and can thus be used as parameters to control it. 

 
2H2O + 2e- → 2OH− + H2                               Eq. 5.1 
O2 + 2H2O + 4 e- → 4OH−                              Eq. 5.2 
O2 + 2H2O + 2 e- → H2O2 + 2OH−                           Eq. 5.3 

 
 

Previously, our group has developed a sol-gel based electrode containing 
pyridinium groups for Cr(VI) detection.43 A new fabrication method has produced 
a more sensitive, Cr(VI) selective electrode. This new fabrication procedure 
reduces the limit of detection from 4.6 mg L-1 in the earlier work to 0.3 µg L-1 
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Scheme 5.1. Base catalyzed hydrolysis and condensation of sol-gel precursors. 

 
 

through the use of single-walled carbon nanotubes (SWNT), and through better 
control of the sol-gel film thickness. Films are deposited onto the glassy carbon 
electrode (GCE) using an electrodeposition technique and are believed to be 
between 75 and 100 nm thick due to their iridescence. Furthermore, the films are 
shown to remain completely intact and remain stable after many runs. 

 

5.2. Experimental 
5.2.1. Apparatus and materials   

Scanning electronic microscopic (SEM) images were obtained with an 
LEO 1525 field emission scanning electron microscope. Electrochemical 
measurements were carried out on a modulated potentiostat (CHI 440a, CH 
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Instruments, Austin, TX). For the stripping step, a three-electrode configuration 
consisted of a modified glass encased GCE (3 mm in diameter, Cypress 
Systems, San Jose, CA), a fritted Ag/AgCl (saturated KCl solution, CH 
Instruments) and a platinum wire (CH Instruments) as working, reference and 
counter electrodes, respectively. For the analytical step, a Ag/AgCl wire electrode 
was prepared by soaking a silver wire in bleach. This was used in place of the 
fritted Ag/AgCl reference electrode.  

The following chemicals were used as received: chromium standard 
solution (1000 mg L-1, Sigma Aldrich Co., St. Louis, MO), KCl (Certified ACS, 
Mallinckrodt, Dublin, Ireland), Tetramethyl orthosilicate (TMOS) (Sigma Aldrich), 
NaCl (Certified ACS, Thermo Fisher Scientific, Waltham, MA), 2-[2-
(trimethoxysilyl)ethyl]-pyridine (Gelest, Morrisville, PA). Ultrapure water from a 
Millipore water purified system (≥18 MΩ•cm, Barnstead/Thermo Fisher Scientific) 
was used in all solutions. Other reagents were of analytical grade and used as 
received. All glassware was soaked in 1 M nitric acid bath and thoroughly rinsed 
with deionized (DI) water before use. 

 

5.2.2. Carboxylation of SWNTs 
 SWNTs (40 mg) were added to a solution of 30% HNO3 and then refluxed 
for 24 h at 140 ºC to obtain carboxylic group-functionalized SWNTs. The resulting 
suspension was centrifuged, and the sediment was washed with deionized water. 
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Then, the oxidized SWNTs were dispersed in deionized water to a concentration 
of 0.5 mg mL-1. 
 

5.2.3. Preparation of electrode 
Prior to fabrication, a GCE was polished carefully to a mirror-like surface 

on a standard electrode polishing kit (CH Instrument) including a 1200 grit 
Carbimet disk, 1.0 and 0.3 µm alumina slurry on a nylon cloth, and 0.05 µm 
alumina slurry on a microcloth polishing pad. After polishing, GCEs were 
successively sonicated with deionized (DI) water, ethanol and DI water for 5 min 
each. Carboxylated SWNTs were physically deposited by pipetting 4 µL (0.5 mg 
mL-1) of the SWNT suspension directly onto the GCE surface. This was allowed 
to dry under nitrogen gas flow at room temperature for a minimum of 3 h. Any 
water trapped under the SWNTs could cause structural instability of the SWNT 
layer and thus the sol-gel film. The working electrode was then exposed to a sol 
consisting of 8 mL of 0.2 M KCl, 8 mL of EtOH, 1.3 mL of 2-[2-
(trimethoxysilyl)ethyl]-pyridine, and 1.4 mL of TMOS that was acidified with HCl 
to pH 5.0. A potential of -1.1 V was then applied for 1800 s, followed by a rinsing 
of the working electrode with a 1:1 mixture of EtOH and DI water. Finally, the 
GCE was dried in the oven for 24 h at 70 º C. 
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5.2.4. Analysis procedure 
Prior to analysis, the modified GCE was soaked in a 0.1 M HCl solution to 

ensure that all of the pyridinium groups are protonated. The electrode was then 
exposed to solutions containing varying Cr(VI) concentrations in an electrolytic 
buffer of 0.1 M KCl and 0.1 M HCl. Accumulation took place at open 0.6 V for 5 
min while the solution was stirred. The electrode was then moved to a Cr(VI) free 
buffer (3.5% NaCl) solution and determination of the accumulated analyte took 
place by reduction to Cr(III) through cathodic stripping. This was done by 
sweeping from 0.6 V to -0.3 V using SWV with a frequency of 15 Hz, step 
potential of 4 mV and an amplitude of 25 mV (Figure 5.1). No stirring took place 
throughout the stripping step. The electrode was cleaned before every 
accumulation step by holding the potential at -0.2 V for 120 s in a buffer solution 
consisting of 0.1 M KCl and 0.1 M HCl while stirring.  

 

5.3. Results and discussion 
5.3.1. Surface analysis 
 The surface was analyzed using a LEO 1525 field emission scanning 
electron microscope (Figure 5.2). An image taken at the border of the SWNT 
deposit area shows a contrast between the uniformity of the sol-gel coating on 
the bare GC surface versus the zone with SWNTs. This is strong evidence that 
the SWNT layer greatly increases the surface area of the electrodeposited sol-
gel film. 
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Figure 5.1. Schematic of the accumulation of chromate followed by its reduction, resulting in it 
being stripped off and detected through a change in current. 

 
 

 
Figure 5.2. SEM images of the sol-gel coated GCE surface. Image B shows the strong difference 
in surface area that the sol-gel possesses between deposition on the bare GCE (bottom section) 
versus deposition on the SWNT-coated surface (top section). 
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The sol-gel film thickness and stability are controlled by the pH of the sol, 
the ratio of TMOS to 2-[2-(trimethoxysilyl)ethyl]-pyridine, the electrolytic content 
of the sol, the magnitude of the negative potential, and the deposition time. A 
sufficiently acidified sol helps to ensure that the deposited sol-gel film is thin. The 
low pH of the entire solution suppresses and localizes the high pH zone at the 
electrode surface where the OH- ions are generated. Because the hydrolysis and 
condensation of the alkoysilanes are base catalyzed (Eqs. 5.4-5.6), less sol-gel 
is formed with lower amounts of hydroxide ions. This is directly related to the 
deposition potential and deposition time. Therefore, many parameters were 
experimentally determined during optimization. Nanometer-thick films have many 
advantages. As stated previously, shorter path lengths as well as quicker 
reduction response times are obtained through thinner films. The stability of the 
film also depends upon its thickness. If the film is too thick (µm range) it tends to 
crack and flake off while drying, or comes off in solution most likely due to 
physical forces caused by the stirring. Using electrochemical quartz crystal 
microbalance (EQCM) experiments, our group determined that a ratio of TMOS 
to 2-[2-(trimethoxysilyl)ethyl]-pyridine greater than 1 resulted in unstable films 
due to poor gelation at the electrode surface.43  
 One characteristic of a very thin film on a GCE is iridescent coloration. 
This is directly related to the film’s thickness and differences in refractive indices 
between the air, film and GC surface. As the light travels to the electrode, certain 
wavelengths are reflected off of the film while other wavelengths are refracted at 
the air/film boundary and reflect off of the GC surface causing a change in the 
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color. The phase offset of the reflected light causes optical interferences which 
produce iridescence. This only occurs in very thin films, thus its appearance 
within this research is promising.41,53,54  
 Because the iridescent hue depends on thickness,41,53,54 it is used to 
characterize the film. Not only is it a method for film thickness comparison, but it 
also reveals the uniformity of the film and thus aids in the formation of the 
experimental method. While this is unequal to imaging techniques such as SEM, 
it is a useful and cost-effective way to analyze the qualities of the film, as well as 
optimize the fabrication method.  
 Noting the changes in the color homogeneity of a film with respect to 
changes in the electrodeposition method led to the current parameters. A 
uniform, brown-hued iridescence is the most preferred in the films in this 
research. Brown films have shown to be the thinnest, followed by light blue. The 
thickest films that still show iridescence give yellow and red colorations.41,51 
Figure 5.3 displays the differences in film appearances throughout the 
optimization of the deposition process. Note the extreme variation in color and 
thus uniformity in Figure 5.3A as opposed to 5.3B. Also worth noting is the 
transition from generally thicker blue and yellow films (5.3A and 5.3B) to a very 
thin brown film (5.3C).51 The areas of B and C that bare cortex patterns were 
located directly over the center of the stir bar during film deposition, causing less 
sol movement and thicker films in that area. Figure 5.4 shows a final product 
after optimization. Although research has shown that anodic treatment of a  
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Figure 5.3. Sol-gel film appearances throughout the optimization of the deposition process. 
Photographs were taken using a LEICA S8AP0 digital microscope. 
 
 
 
 

 
Figure 5.4. Image of a bare GCE surface (A) compared to sol-gel film on the same electrode 
after the deposition procedure was fully optimized (B). Photographs were taken using a LEICA 
S8AP0 digital microscope. 
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glassy carbon electrode in different silane-free electrolyte systems can lead to 
surface color changes, a KCl electrolytic system alone does not produce a 
color.55 
 

5.3.2 Optimization 
Because of the importance of the electrode surface uniformity and 

reproducibility, optimized parameters were based on the consistency of the 
modified glassy carbon electrode. As previously stated, the sol-gel film formation 
employs a base-catalyzed hydrolysis and condensation. Thus, making the 
solution slightly acidic allows for a more controlled film deposition as the 
hydroxide formed at the electrode surface maintains a short local residence time 
before being neutralized or catalyzing the sol-gel reactions. It was determined 
that performing the electrodeposition at pH 5 allows for a higher degree of control 
over the film, and much better uniformity, as the sol-gel hydrolysis and 
condensation can only take place very near to the electrode itself. After 
optimizing the solution pH, the ideal deposition potential and time were 
determined based on the surface iridescence. Because the electrochemical 
reaction at the surface leads to the formation of one mole of H2 gas to every two 
moles of OH- (eq. 1), it was discovered that too negative of a potential created 
enough bubbles on the electrode surface that it interfered with the film uniformity. 
A potential of -1.1 V was sufficient enough to catalyze the reactions without  
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Figure 5.5. Square-wave voltammograms of various Cr(VI) concentrations collected at a pyridine-
functionalized sol–gel electrode: 5, 50, 100, 150, 180, 200, and 250 µg L-1. Peaks are seen at 
0.26 V. 
 
 

 
Figure 5.6. The detection of Cr(VI) is modeled by an exponential function due to saturation. This 
model can then be linearized as shown on the right where U = axb. 
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5.3.3. Cr(VI) detection 
 The general process of Cr(VI) detection is outlined in Figure 5.1. The 
modified GCE is successfully preconcentrated with Cr(VI) by interactions 
between the positively charged 2-[2-(trimethoxysilyl)ethyl]-pyridinium groups and 
the chromate anions. The reduction of Cr(VI) to Cr(III) consistently produces a  
potential peak at 0.26 V, and a calibration model with a correlation greater than 
99% (Figures 5.5 and 5.6). 
 

5.3.4. Real world sample  
A diluted sample of dissolved swine blood ash was analyzed with the 

modified GCE, producing the potential peak seen in Figure 5.7. The average 
peak current (7.2 x 10-7 A) after three potential sweeps correlates to a Cr 
concentration of 165.1 ± 0.1 µg L-1 through the calibration curve in Figure 5.6.  
The error is calculated using the standard deviation of the sample runs as the 
random error and the systematic error bars of the calibration curve. This value 
corresponds well with the ICP-OES analysis which determined that the same 
blood ash contains 199.5 ± 44.0 µg L-1 Cr. 
 

5.3.5. Reproducibilty and the limit of detection 
 To investigate the reproducibility of the sol-gel/SWNT modified electrode, 
four successive square wave potential sweeps were carried out in separate 200 
µg L-1 Cr(VI) solutions at a freshly modified electrode (Figure 5.7). The scans had 
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Figure 5.7. Cr(VI) peak detected in an ashed swine blood solution. The peak shift from 0.26 V to 
0.38 V was experimentally determined to be caused by a lower pH in the sample. 

 

   
Figure 5.8. Square wave voltammograms of individual 200 µg L-1 Cr(VI) solutions. The average 
standard deviation of the peak currents is calculated to be 1.7 x 10-3 µA 
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a standard deviation of 1.7 x 10-3 µA and the limit of detection (LOD) was 
calculated to be 0.3 µg L-1, according to a signal-to-noise ratio of 3.  

 

5.3.6. Interference studies 
 Interference studies were performed in solutions of 200 µg L-1 Cr(VI) 
spiked with metallic species and ions that are judged most likely to interfere  
(3.0 x 10-6, 1.0 x 10-4, and 2.0 x 10-2 M [interfering ion]) . The Cr(VI) reduction 
peak current in the interference solutions are then compared to the Cr(VI) peak 
current in a non-spiked Cr(VI) solution. The ions chosen for study were Na+, 
CH3COO-, Cr3+, SO42-, Cu2+, Fe3+, and VO43-. The only interferences observed 
were of Cu2+ and Fe3+ at concentrations of 2.0 x 10-2 M. Interestingly, the high 
concentrations of these metallic species increased the Cr(VI) peak current rather 
than decrease. Because both Cu2+ and Fe3+ are cations it is possible that they 
are becoming incorporated in the sol-gel film during the accumulation period, 
thereby attracting more chromate anions and increasing the peak height. More 
work is required to determine the true cause.  
 

5.4. Conclusions 
 A glassy carbon electrode modified with SWNTs and an electrodeposited 
pyridinium-functionalized sol-gel thin film was used to successfully 
preconcentrate Cr(VI). The reduction of Cr(VI) to Cr(III), using square wave  
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Figure 5.9. Graphical representation of interference studies. Note that the only interferences are 
Cu2+ and Fe3+ at levels higher than would be expected in environmental and biological samples. 
 
 
voltammetry, produces a current peak at 0.26 V and does not require a 
complexing ligand. The highly reproducible detection has been successfully 
performed in the low µg L-1 range of Cr(VI) with a calculated LOD of 0.3 µg L-1. 
The analytical procedure here is unaffected by coexisting ions in expected 
biological and environmental concentrations. In comparison to earlier work from 
our group,43 the addition of a SWNT base layer, as well as thinner sol-gel films, 
has allowed for a three orders of magnitude increase in sensitivity. 
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using Fenton-like processes 
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 Research for this chapter was a collaborative work between Kimberly N. 
Johnson and Samuel M. Rosolina. 

Abstract 
 

Two new processes to pretreat blood samples have been developed. The 
treatments are based on a Fenton-like advanced oxidation process (AOP) and 
use acid deactivation of the enzyme catalase in the blood. The first treatment is 
performed with a simple convection oven over a period of 5 h, while the second 
uses microwave irradiation for 6 min. These novel methods allow for either cost 
effective pretreatment through the use of the common lab oven, or time savings 
through the use of the synthesis microwave. The degradation of whole blood has 
been compared with that of pure hemoglobin samples through UV/Vis 
spectroscopy, and the copper concentration in the treated samples were 
analyzed via anodic stripping voltammetry (ASV). 

 

6.1. Introduction 
Metal analysis in biological samples is an important and active area of 

study. As a useful method within many fields, such as biomedical, wastewater 
treatment, environmental, and even veterinary studies, there will always be a call 
for improving the processes involved in metal analysis.1-4 One of the most 
important steps is the pretreatment method, especially when analyzing metals 
such as copper or chromium that form complexes or are bound in 
macromolecules.5,6 Currently, the most common pretreatment methods include 
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dry ashing, chemical oxidation and advanced oxidation. In dry ashing, the sample 
is placed in an open vessel and the organics are destroyed through thermal 
decomposition under very high temperatures. This method can process large 
volumes of sample, but can have increased error due to the required amount of 
sample handled and the loss of volatile compounds such as Hg.7,8 Chemical 
oxidation methods are often used in processes like wastewater treatment, but 
can require large quantities of oxidizing agents such as hypochlorite and 
potassium permanganate which can be costly and environmentally damaging.9  

Advanced oxidation processes (AOPs) are a type of sample treatment 
method meant to destroy organics through the formation of highly reactive 
hydroxyl radicals (•OH).10-13 The Fenton process is a common AOP that uses a 
ferrous ion (Fe2+) alongside H2O2 to form hydroxyl and hydroperoxyl radicals, 
which become the oxidants in the decomposition of organic compounds. The 
radical forming reactions involved in the Fenton process can be seen below.  

 

Fe2+ + H2O2 → Fe3+ + •OH + OH−  Eq. 6.1 

Fe3+ + H2O2 → Fe2+ + HO2• + H+  Eq. 6.2  

 

In Eq. 6.1–6.2, Fe2+ acts as a catalyst, cycling between the 2+ and 3+ 
oxidation states.14,15 
   The Fenton process does not require irradiation. However, if irradiation is 
introduced, the formation of radicals is greatly increased. This is known as the 
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Photo-Fenton process and the increase in radicals is due to the direct hemolytic 
bond cleavage of the oxygen atoms in H2O2 as well as the regeneration of Fe2+ 
ions through the reduction of Fe3+ ions by light-induced electron transfer (Eqs. 
6.3–6.4). 10-12,16  

 

H2O2 + hν → 2 •OH     Eq. 6.3 

Fe3+ + H2O + hν → Fe2+ + •OH + H+  Eq. 6.4 

 

Three different reactions can take place between the hydroxyl ions and 
the organics in solution (Eqs. 6.5–6.6):  

 
1) Hydrogen abstraction10,17 

  HO• + RH → R• + H2O   Eq. 6.5 
2) Electrophilic addition10 

    HO• + RX → HORX•   Eq. 6.6 
3) Electron transfer10 

    HO• + RX → RX•+ + HO−  Eq. 6.7 
 

   As the hydroxyl and hydroperoxyl radicals attack any organic compounds 
in solution, more radicals are generated that continue to further decompose the 
organics. For this reason, photo-Fenton processes require small quantities of 
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reagents, making them environmentally friendly alternatives to other 
methods.10,11 

Past work in our group has successfully employed the photo-Fenton AOP 
method using UV irradiation as the photon source to mineralize swine blood 
samples.14 The study utilized a four-cell reactor that was designed and built in-
house, and was coupled with the electrochemical detection of Cr(III), an essential 
trace element in the body.  

The work herein reports two separate Fenton-based methods using 
different irradiation methods. The first method, employing a common laboratory 
convection oven, is a novel, cost effective form of blood pretreatment. The 
second method, relying on irradiation from a synthesis microwave, requires only 
6 min to perform. The pretreatment methods have been further validated via UV-
Vis spectroscopy, comparing pre- and post-treated sample spectra with those of 
pure hemoglobin. Furthermore, the copper concentration in the treated samples 
were analyzed via anodic stripping voltammetry (ASV) and compared with results 
using inductively coupled plasma-optical emission spectroscopy (ICP-OES).  
 

6.2. Materials and methods 

6.2.2. Chemicals and instruments 
 Sodium hydroxide (NaOH, Certified ACS, Thermo Fisher Scientific, 
Waltham, MA), potassium oxalate (K2C2O4, Certified ACS, Thermo Fisher 
Scientific), ammonium iron(II) sulfate [(NH4)2Fe(SO4)2•6H2O), Acros/Thermo 
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Fisher Scientific], ethanol (95%, Decon Laborataries, Inc., King of Prussia, PA), 
porcine hemoglobin (Sigma Aldrich, St. Louis, MO), whole swine blood 
(Wampler’s Farm, Lenoir City, TN), nitric acid (HNO3, 70%, Trace Metal Grade, 
Thermo Fisher Scientific) were used as received. Cu(II) ICP standard solutions 
(1000 mg L-1, Sigma Aldrich) were diluted prior to use.  

Prior to use, GCEs were polished to a mirror-like surface on a standard 
electrode polishing kit (CH Instruments, Inc., Austin, TX) including a 1200 grit 
CarbiMet™ disk, 1.0 and 0.3 µm alumina slurry on a nylon cloth, and 0.05 µm 
alumina slurry on a microcloth polishing pad. After polishing, GCEs were 
successively sonicated with deionized (DI) water, ethanol, and DI water again for 
5 min each. Electrochemical measurements were carried out on a CHI 440a 
Electrochemical Workstation (CH Instruments). A three-electrode configuration 
consisted of a bare, unmodified GCE (3 mm in diameter, BAS Inc., West 
Lafayette, IN), Ag/AgCl (saturated KCl solution, CH Instruments) and a platinum 
wire (CH Instruments) as working, reference, and counter electrodes, 
respectively. Microwave irradiation was carried out using a Biotage 2.5 synthesis 
microwave in 20 mL microwave reaction vials. The oven used was an Isotemp 
Standard Laboratory Oven (Thermo Fisher Scientific). UV-Visible spectra were 
collected using an Agilent 8453 photodiode array spectrophotometer and a 1.0 
cm quartz cuvette. Blank spectra of deionized water were recorded and 
subtracted from those of the samples. pH measurements were carried out with a 
pH meter (Accumet Basic, Fisher Scientific). 
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6.3. Experimental procedures 
6.3.1. Swine blood sampling  
 Whole swine blood was obtained from Wampler’s Farm (Lenoir City, TN). 
The sample was taken from a single pig that was freshly slaughtered and placed 
in a 1-L Nalgene bottle. Prior to this, the interior of the bottle was coated with 2 g 
of K2C2O4, an anticoagulant. Using ultrapure DI water and trace metal grade 
HNO3, the blood was diluted to 5.00% and acidified to pH 3. This solution was 
used for following studies. 
 

6.3.2. Catalase deactivation 
Catalase is a natural enzyme that decomposes hydrogen peroxide and 

prevents the formation of hydroxyl radicals.14 In order for an AOP to reach its 
highest efficiency, the catalase must be inactive in the AOP. Low pH (≤ 3.0) 
causes a temporary denaturation of catalase, allowing for the oxidation method 
to take place unimpeded.14,15 Once the catalase has been permanently 
destroyed, the pH can be raised without consequence if necessary.  
 

6.3.3. Laboratory-oven pretreatment 
 The optimized oven pretreatment method is carried out in a glass vial with 
a vented cap containing 15.0 mL of 5.00% whole blood (pH 3). Before placing it 
in the oven, 0.5 mg of (NH4)2Fe(SO4)2•6H2O is added to the solution and the vial 
is warmed on a hotplate to ensure that it is fully dissolved. Prior to pretreatment, 
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1.00 mL of 30% H2O2 is added to the vial. The vial is then placed in the 
laboratory oven at 100 °C. After 1 h, 500 µL of 30% H2O2 is added, and the 
solution is left in the oven for another 4 h. The final pretreated sample which is a 
clear, yellow tinted solution is then removed from heat and allowed to cool to 
room temperature (Figure 6.1).  
 
 

 
Figure 6.1. Swine blood solution before and after oven-based AOP. 
 

6.3.4. Microwave pretreatment 
 The optimized microwave pretreatment method is carried out in a 20 mL 
microwave reaction vial containing 15 mL of 5.00% whole blood (pH 3). The 
microwave vial can be sealed with an aluminum cap that can withstand 
pressures up to 30 bar. Before irradiation, 0.2 mg of (NH4)2Fe(SO4)2•6H2O is 
added to the solution and the vial along with 1.00 mL of 30% H2O2. The vial is 
sealed and microwaved for 100 s at 150 W while being cooled with compressed 
N2. The vial is then removed from the microwave and allowed to cool to room 
temperature before adding 500 µL of 30% H2O2. The vial is then re-sealed and 
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microwaved again at 150 W for 160 s while cooling with compressed N2. The 
final pretreated sample which is a clear, yellow tinted solution is then removed 
from heat and allowed to cool to room temperature (Figure 6.2). 
 
 

 
Figure 6.2. Swine blood solution before and after microwave-based AOP. 
 

6.4. Results and discussion 
6.4.1. Sample analysis 
 Using a laser and the Tyndall effect, the solutions were determined to be 
fully mineralized. This was further validated using a centrifuge and gravimetric 
analysis to ensure that no solids were left in the samples post treatment. Prior to 
analysis, pH was increased to 7 by adding 1.0 M NaOH solution dropwise. At this 
pH, the majority of Fe ions crash out as solid FeO(OH) which was separated via 
centrifugation. The sample solutions were then diluted in a 25.0 mL volumetric 
flask using ultrapure DI water. 
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Figure 6.3. Voltammograms of Cu in an oven pretreated blood solution. Oxidation peaks for both 
Cu(I) and Cu(II) are observed. 
 

6.4.1.1. ASV analysis  
 Copper analysis in the pretreated sample (pH 7) was conducted without 
the addition of a supporting electrolyte given that ions left in solution were 
sufficient. Anodic stripping voltammetry (ASV) was paired with standard addition 
to determine the concentration of copper in the original whole swine blood 
sample. The bare glassy carbon working electrode was held at -1.2 V for 300 s 
before sweeping the anodic sweep to 0.9 V using a frequency of 25 Hz, a step 
potential of 4 mV, and amplitude of 25 mV. The standard addition method was 
used to add Cu(II) standard to total concentrations in the range of 0.0–115.2 ppb 
Cu(II)added (Figure 6.3).  
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Figure 6.4. Calibration curves for the Cu(I) oxidation peak (black data points) and the Cu(II) 
oxidation peak (white data points) in pretreated blood. 
 
 

The voltammograms show oxidation peaks for both Cu(I) (-0.16 V) and 
Cu(II) (0.04 V). The calibration curves for both peaks are given in Figure 6.3. 
Using the linear equations for the Cu(I) and Cu(II) peak (Figure 6.4), an original 
Cu concentration of 31.2 ppb and 30.8 ppb can be calculated, respectively, in the 
sample. The %RSDs at the highest concentration (the only concentration run as 
a multiplicate [n = 5]) for the Cu(I) and Cu(II) peak were determined to be 5.2% 
and 3.9%, relatively. The average of these concentrations translates to 1033 ± 
9.4 ppb Cu in the original whole blood. This is calculated based on the known 
dilution factors: 15.0 mL of 5% whole blood was diluted to 25.0 mL and analyzed 
after mineralization. 
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6.4.1.2. ICP-OES analysis   
The calculated original concentration of Cu was further validated using 

ICP-OES. By creating a calibration curve using standards (Figure 6.5) followed 
by analysis of the sample solution, the Cu concentration was determined to be 
32.9 ± 0.135 ppb, corresponding to 1097 ± 4.50 ppb Cu in the original whole 
blood. This concludes that the ASV analysis has a 5.8% error when compared to 
the ICP-OES data. 

 

 
Figure 6.5. ICP-OES standard calibration curve of copper in pretreated blood (λ = 327.393 nm). 
The white data point was collected from the sample solution which was determined to be 32.9 ± 
0.135 ppb. 
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6.4.1.3. Analysis of samples via UV-Vis spectroscopy 
 UV-Vis spectra were taken of diluted whole-blood solution acidified to pH 
3, a solution made from porcine hemoglobin and acidified to pH 3, oven-based 
AOP treated blood, and microwave-based AOP treated blood (Figure 6.6). The 
spectra illustrate the destruction of organics in the blood, as the hemoglobin peak 
at 380 nm no longer appears in the pretreated samples. 
 

 
Figure 6.6. UV-Vis spectra comparing oven- and microwave-based results with a dilute whole 
blood (WB) solution, and porcine hemoglobin solution. 
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6.4.3. Discussion  
 Direct analysis of the pretreated oven sample via ASV illustrates, in 
several ways, the success of this method. Since ASV is a sensitive method, 
organics in solution can easily interfere with the voltammetry, either by interacting 
with the electrode surface, or by inhibiting mass transfer of the analyte. Due to 
the clean, sharp peaks, these interferences are clearly absent. The fact that the 
voltammograms were smooth without the requirement of adding an electrolyte is 
another indication of complete, or near complete, sample mineralization. 

Furthermore, the ability to detect the original Cu concentration by ASV 
with 5.8% error, which was validated by ICP-OES, indicates that the majority of 
Cu was free in the solution.  
 The Cu concentration in healthy pigs is ~1.1 ppm,19,20 which agrees with 
the data we extracted through ASV and ICP-OES. While very low, the 5.8% error 
of the ASV Cu analysis, when compared to the ICP-OES Cu analysis, indicates 
that the mineralization may not have been complete. More studies are required to 
truly determine the validity of these new methods, including analysis of the 
microwave treated sample through ASV and ICP-OES, and reproducibility 
studies.  
 

6.5. Conclusion 
 The work in this part provides two novel methods for the pretreatment of 
whole blood. One utilizes a convection oven allowing for an inexpensive method, 
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and the other is based on microwave irradiation for quick treatment. Analyses of 
the oven-treated sample using UV-Vis spectroscopy, ASV, and ICP-OES all 
indicate that the method was successful. While the microwave-treated sample 
has not yet been analyzed by ASV, the UV-Vis spectra also indicate that the 
organics have been destroyed. Further studies will examine whether the 5.8% 
error between the ASV and ICP-OES data are caused by the AOP or the 
analysis techniques themselves. It is the belief of the author that the two new 
mineralization procedures will open new avenues for research and medical 
laboratories. 
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Bismuth-based, disposable sensor for the detection of 

hydrogen sulfide gas 
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Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.” Anal. 
Chem. 2016, 88, 1553–1558.  

Additional materials for Part 7 are provided in Appendix D. 
 

Abstract 
A new sensor for the detection of hydrogen sulfide (H2S) gas has been 

developed to replace commercial lead(II) acetate-based test papers. The new 
sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline 
derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is 
used due to its non-toxic properties, as Bi(III) has been a reagent in medications 
such as Pepto-Bismol. The reaction between H2S gas and the current sensor 
produces a visible color change from white to yellow/brown, and the sensor 
responds to 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of 
human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and 
its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for 
testing human bad breath, and is at least two orders of magnitude more sensitive 
than a commercial H2S test paper based on Pb(II)(CH3COO)2. The small volume 
of 1.35-L H2S is important, as the commercial Pb(II)(CH3COO)2-based paper 
require large volumes of 5 ppm H2S gas. The new sensor reported here is 
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inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for 
generating small volumes of ppb-ppm H2S gas is also reported. 

 
 
7.1. Introduction 

Hydrogen sulfide gas has a very unpleasant odor even at very low levels 
(low ppb) and is one of the main contributors to halitosis.1-3 Humans with bad 
breath have an average H2S concentration of 80 ppb while a healthy individual 
has an average of 2 ppb in the breath.2 Aside from being flammable, H2S also 
falls under the category of chemical asphyxiant, along with carbon monoxide and 
cyanide gases, making it extremely dangerous in mining and related industries. 
Above 30 ppm, H2S begins to saturate the olfactory, making it difficult to 
recognize the toxic gas, and at 100 ppm is completely undetectable through 
smell alone. Above 50 ppm, the gas begins to cause loss of motor skills, shock, 
convulsion, and even death as it prevents the uptake of oxygen in the blood due 
to strong affinity of the sulfide ion for iron(II/III). Even chronic, low level exposures 
can lead to irreversible health effects. Because H2S is often found in natural 
pockets underground, there are often dangers associated with industrial drilling 
and hydraulic fracturing, and even with the use of natural hot springs.4-7 A simple 
visual method for its detection would be very valuable in oral health, mining, and 
other industries.1-7 

The most common type of H2S sensors is electrochemical, using metal 
oxide semiconductors or conducting polymers.8-15 Adsorption of sulfide to the 
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metal oxide causes an increase in electrical resistivity which can be monitored in 
real time. Unfortunately, such sensors are too expensive for the common 
consumer and they do not perform consistently with respect to changes in 
humidity and temperature.8-11 In addition, many chemicals have affinities for 
metal oxides, leading to interferences and often requiring the addition of inlet 
filtration.8 Electrical devices using metal salts have also been fabricated, 
capitalizing on the affinity of sulfides for metals such as Cu(II).12-15 While the 
detection limits of these sensors may be as low as 100 ppb, the volumes (and 
thus total moles of H2S) are often unspecified.12-15 Furthermore, the reactions of 
acidic H2S with the metal salts yield acids such as CH3COOH or HCl,13 retarding 
the reactions of the salts with H2S [Eq. 7.1 for examples of Cu(II) salts], and 
potentially reducing the sensitivity. An attractive alternative would be a sensor 
with a high surface pH, leading to fast neutralization of acidic H2S gas and 
capturing of the S2- ion. 
 

CuX2 + H2S ⇌ CuS + 2 HX          Eq. 7.113 
(X = CH3COO-, Cl-) 
 
Optical approaches for sulfide analysis have been developed based on 

sulfide-selective, organic- and organometallic-based dyes16-19 or nanoparticle-
based sensors.20-22 While these methods are sensitive and accurate, they have 
been used in liquid media only, making it difficult to detect H2S gas. Sarfraz and 
coworkers have immobilized Cu(CH3COO)2 onto solid substrates initially for 



133 
 

electrochemical H2S analysis. The immobilized Cu(CH3COO)2 may also be used 
for the optical detection of H2S gas at as low as 1 ppm. However, this sensitivity 
required an exposure time of 45 min at an unspecified flow rate.12 
 Another widely used H2S sensor is commercial lead acetate paper for 
colorimetric, qualitative detection. These white paper strips turn gray or black in 
the presence of H2S from the formation of black lead sulfide (PbS). Though these 
commercial lead acetate papers are used worldwide and available for civilian 
application, it has major disadvantages in addition to those discussed above. 
First, its limit of detection (LOD), between 5 and 10 ppm H2S, is high and is not 
suitable for bad breath tests. Even with such a high LOD, lead acetate has been 
recently called “the most sensitive H2S indicator reagent.”23 Second, and possibly 
the most crucial disadvantage, is its use of lead, a known neurotoxin.24 Much 
care is needed when handling the Pb(II)-based sensor. In addition, the disposal 
of the lead acetate papers is an environmental concern. Despite their toxicity, 
lead acetate test papers are still commonly used in research labs to identify the 
presence of hydrogen sulfide,23,25 and are readily available to the general 
public.26 In this work, a novel sensor has been developed using a wet, paper-like 
substrate coated with bismuth hydroxide Bi(OH)3 or its derivatives. Bismuth was 
chosen in place of lead due to its non-harmful properties. In fact bismuth is 
already used in many consumer products, including medications such as Pepto-
Bismol® to treat irritations in the stomach and gastrointestinal tract. 

Stone has studied the solubility of Bi2S3 by converting Bi(OH)3 to BiCl3 
before reacting with H2S.27 Although there have been papers and patents 
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regarding the use of bismuth compounds to detect H2S, none uses alkaline 
bismuth hydroxide or its derivatives. Instead the earlier studies all used a bismuth 
salt to detect H2S.28-37 These bismuth salts include bismuth nitrate Bi(NO3)3, 
bismuth acetate Bi(OAc)3, bismuth chloride/fluoride BiCl3/BiF3, bismuth 
phosphate Bi(PO4), bismuth citrate, and bismuth carbonate.28-37 In reacting any 
of these bismuth(III) salts with H2S, at least one product is an acid (HNO3, 
CH3COOH, HCl/HF, or H3PO4), as demonstrated for copper(II) salts in Eq. 7.1. A 
recommended turbidimetric procedure for H2S detection uses Bi(NO3)35H2O in 
manitol solution.32 It is based on a paper by Field and Oldach that requires 
scrubbing H2S from a gas stream by a caustic solution, followed by addition of 
Bi(NO3)3 in glacial acetic acid and dilution with water.33 Dean adopted a similar 
approach using a NaOH solution to scrub H2S from a gas stream, followed by a 
reaction with a bismuth reagent (1500 ppm of bismuth and 1% gelatin in 4 N 
acetic acid).34 

In contrast, our sensor uses alkaline bismuth hydroxide Bi(OH)3 or its 
derivatives (Eq. 7.2). Because H2S is a weak acid (Eq. 7.3), the use of Bi(OH)3 or 
its derivatives quickly and effectively removes H+ in H2S, forming water and 
shifting the equilibrium in Eq. 7.3 to the product S2. This is critical to the high 
sensitivity of our sensor. 

 
       wet 

Bi(OH)3  +  H2S        Bi2S3  +  H2O    Eq. 7.2 
 

H2S  ⇌  2H+  +  S2 pKa = 6.98     Eq. 7.3 
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Another feature of our sensor is that wet Bi(III) coating is used, facilitating 
the trapping of H2S gas and enhancing sensitivity to 30 ppb limit of detection for 
H2S gas in a total volume of 1.35 L, which is the typical volume of human breath. 
Given that bad breath usually contains H2S at 80 ppb, our sensor is capable of 
revealing halitosis. Both the thermodynamic equilibrium shift by using alkaline 
Bi(III) compounds and enhanced kinetics with the wet sensor surface lead to the 
high sensitivity of our sensor. The H2S sensor reported here has proven to be a 
simple and inexpensive qualitative detector of H2S, even at low ppb 
concentrations. 

 

7.2. Experimental  
7.2.1. Reagents and materials 

The following chemicals were used as received: Bi(NO3)3 (Alfa Aesar, 
Haverhill, MA), Acetone (Histological Grade, Thermo Fisher Scientific, Waltham, 
MA), NaHS·1.25 H2O (iodimetrically determined, Acros Organics, New Jersey), 
NaOH (Certified ACS, Thermo Fisher Scientific), HCl (Trace Metal Grade, 
Thermo Fisher Scientific). Amplitude™ Prozorb® (46% cellulose, 54% polyester) 
by Contec (Osaka, Japan) was cut to 1.5  1.5 cm2 square. Lead acetate test 
paper dispenser was purchased from WhatmanTM and used as directed. A gas 
cylinder of 50 ppm H2S in nitrogen (MESA Specialty Gases and Equipment) was 
used only for verification purposes. Ultrapure water from a Millipore water purified 
system (≥18 MΩ•cm, Barnstead/Thermos Fisher Scientific) was used in all 
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solutions. All glassware was soaked in 1 M nitric acid bath and thoroughly rinsed 
with deionized (DI) water before use. 

 

7.2.2. Sensor preparation 
  

Bi(NO3)3·5H2O (0.10 g) was added to 10.0 mL of acetone. This mixture 
was allowed to stir for 10 min, forming a suspension. The supernatant, now 
saturated with Bi(NO3)3, was filtered and used for sensor preparation. Cut 
Prozorb (1.5  1.5 cm2 square) was coated with 200 µL of the supernatant. This 
was performed by pipetting 100 µL increments directly onto the substrate with 2 
min in between to allow for air drying. Lastly, 80 µL of 0.1 M aqueous NaOH 
solution was added to the cut Prozorb coated with Bi(NO3)3, making the sensor 
alkaline and producing Bi(OH)3 or its derivatives. Measurements showed pH 11 
for the sensor. The sensor was then used immediately or stored under nitrogen 
at room temperature until use. 

 
7.2.3. Laboratory generation of 1.35-L, ppb-ppm H2S gas and its sensing  

Few reports of devices for generating ppb-ppm H2S gas, especially at 
small volumes such as 1.35 L, are in the literature. 

A 1.35-L glass chamber was designed and prepared in the glass-blowing 
shop at the University of Tennessee. This volume was chosen to mimic the 
breath volume of an average human. With a closed top and open bottom, the 
chamber was designed to seal flatly on the surface of a stir plate, as shown in a 
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schematic in Figure 7.1. The chamber has two inlets for nitrogen gas and/or 
deionized water, and one outlet for generated H2S. Additional details of the 
setup, including a photo, and the process to generate H2S gas in nitrogen are 
given in the Appendix D. 
 Prior to the generation of H2S gas, a small open crystallizing dish is filled 
with 70 mL of HCl solution at pH 1, bubbled with nitrogen gas for 10 min, and 
placed on the surface of a stir plate. A small vial containing fresh Na2S solution 
(made by dissolving a known amount of NaHS·1.25 H2O in pH 11 NaOH 
solution), and an upright stir bar is then placed in the crystallizing dish holding the 
HCl solution. The chamber (Figure 7.1A) is placed over top of these containers 
and sealed tightly to the stir plate using household Vaseline grease. This seal is 
strong enough to make the entire vessel water tight.  

To remove all O2 and avoid the oxidation of S2- to S, the chamber is 
flushed with nitrogen gas through the two inlets (Figure 7.1A). Next, all inlets and 
the outlet are closed, and the stir plate is turned on, knocking over the Na2S 
solution into the HCl solution (Figure 7.1B), and generating H2S gas (Eq. 7.4). 

 
NaHS + HCl    H2S  +  NaCl             Eq. 7.4 

 
One inlet is kept sealed, deionized water (previously bubbled with nitrogen 

gas) is introduced into the chamber through the lower inlet, filling the chamber 
and pushing the 1.35 L of H2S/N2 gas through the outlet (Figure 7.1C). A hose 
connected to the outlet directs the gas to the sensor that is pre-moistened with 
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80 µL of 0.1 M NaOH. A plastic micro pipette tip is firmly sealed to the end of the 
outlet hose, and funnels the generated gas to a smaller area (roughly a 3 mm 
diameter) directly onto the surface of the sensor. The generated gas is forced 
through the sensor by using a porous wire mesh as the sensor support, and by 
keeping the pipette tip of the outlet hose directly in contact with the sensor. This 
allows for more interaction between Bi3+ and S2-. The 1.35-L chamber is filled 
with water after a period of roughly 60 s, at which point the water flow is stopped 
and the sensor is removed. 

Several measures were taken to avoid the loss of analyte before it 
reached the sensor. At such low concentrations of S2- ions, its oxidation prior to 
weighing and/or after being placed in solution would have an effect on the overall 
detection. NaHS was always handled under a nitrogen flow to prevent oxidation. 
All solutions that NaHS was added to were bubbled with nitrogen gas. Despite 
these measures, some of the generated H2S may be left in the solution of the 
chamber.38,39 For the tests in this part, it is assumed that the maximum possible 
amount of H2S, based on the total volume of 1.35 L and the amount of NaHS 
used, was generated. 
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Figure 7.1. Schematic of H2S gas generation in a 1.35-L vessel: (A) Initial setup; (B) Flipping of the vial containing Na2S solution to react 
with HCl solution; (C) Use of deaerated, deionized water to push out the 1.35 L of H2S gas out of the chamber to the sensor. 
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7.3. Results and discussion 
 The colorimetric detection here relies on the reaction of sulfide with Bi(III). 
When H2S, a colorless gas, reacts with white Bi(OH)3 powder, it forms the 
yellow/brown compound Bi2S3 (Eq. 2). At high concentrations, the color of Bi2S3 
is dark to black, while at low concentrations it appears yellow. The contrast of the 
yellow/black Bi2S3 spot on the white Bi(OH)3 background is imperative for the 
sensitivity in naked-eye detection. Dampening the sensor prior to exposure of the 
analyte enhances the reaction rates and the formation of color Bi2S3. The ideal 
substrate for this sensor is one that is absorbent and porous enough to allow gas 
to pass through and consistently textured to give a large surface area. After 
numerous trials with different substrates, Prozorb was found to be the best. 

We have also tested several Bi(III) complexes including Bi(III)-EDTA, 
Bi(III)-diethylene triamine pentaacetic acid (DTPA), and Bi(III)-triethanolamine. 
While the Bi complexes show a better solubility than bismuth hydroxide, and thus 
a higher Bi(III) concentration on the sensor, their reactions with H2S were found 
to be slower, probably because S2 ions need to replace the organic ligands in 
the process. Thus sensors made with the Bi complexes gave larger spots but 
lighter in color in tests with NaHS solution (pH 11), and a higher detection limit 
when performing gas-based tests. 

Tests were performed to determine if wetting the sensor using solutions of 
basic NaHCO3 would result in the same sulfide detection range as more basic 
solutions like 0.1 M NaOH. In these tests, which used varying concentrations of 
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NaHCO3, the limits of detection were much higher (above 100 ppb H2S) than 
those using NaOH. This is most likely due to the formation of (BiO)2CO3 which is 
less reactive to H2S than Bi(OH)3.  

After the verification that the basic Bi(OH)3 (and its derivatives) resulted in 
a lower LOD and quicker response times, Bi(III) concentration within the Prozorb 
substrate was then optimized before tests with H2S gas. Volumes of 0, 50, 100, 
200, 300, 500, and 1000 µL of Bi(NO3)3/acetone suspensions were deposited on 
the Prozorb squares using aliquots of 100 µL with 2 min drying time between 
depositions. Liquid solutions of NaHS (pH 11) indicated that 200 µL of the 
Bi(NO3)3/acetone suspension was optimal; less than 200 µL developed a lighter 
spot and more than 200 µL showed no clear improvement (Figure D.2 in 
Appendix D). The Prozorb without the Bi coating remained white when exposed 
to NaHS. The naked-eye limit of detection is closer to 10 ppb (gas equivalency) 
when using a volume of 20 µL of the NaHS solution. Sensors discussed below 
were prepared using the 200 µL of the Bi(NO3)3/acetone suspension. Solution 
tests on a batch of newly optimized sensors showed obvious, increasingly dark 
spots with increasing NaHS concentrations (Figure 7.2). 

Figure 7.3 shows six sensors, each of which was exposed to 1.35 L of 
different H2S gas concentrations from our H2S generator. The current LOD is 30 
ppb (Figure 7.2), based on detection by the naked eye. This is a significant 
improvement upon the 5-10 ppm detection limit of the commercial lead acetate 
papers. 
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Figure 7.2. Sensors after being exposed to 20 µL of pH 11 solutions of varying NaHS 
concentrations. Concentrations shown (0–40 ppb S2-) are in terms of gas equivalency: 
Concentrations of H2S gas in 1.35 L of N2 gas. 
 
 

 
Figure 7.3. Six sensors after being exposed to 0 to 200 ppb H2S gas.  
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Given that humans with bad breath have an average H2S concentration of 
80 ppb,2 and that the average human breath volume is 1.35 L, our sensor has 
the appropriate detection limit for halitosis. This was tested in the laboratory by 
giving a human subject raw onion to eat. After 30 min, the subject blew through a 
plastic straw onto our sensor which developed a light brown spot, indicating the 
presence of sulfides.  

There are two options with the sensor: (1) Pre-made, alkaline (pH 11), wet 
sensor stored under nitrogen that is ready for use; (2) Sensor with dry Bi(NO3)3 
coatings stored in air that, after adding the NaOH solution, is ready for use. The 
Bi(NO3)3 coating on the sensor, before the addition of the basic solution, is stable 
for weeks without losing sensitivity. Furthermore, longevity tests showed that 
keeping the pre-made sensors under nitrogen for over a month did not affect the 
sensitivity in comparison to freshly fabricated sensors. Storing under nitrogen is 
needed with the pre-made sensor to avoid reactions of CO2 in air with the base in 
the sensor, forming CO32- and perhaps (BiO)2CO3, reducing sensor sensitivity. 

It is interesting to note that, because of Prozorb’s high absorption 
capacity, the supernatant is readily soaked up, spreading the Bi(NO3)3 coating 
evenly throughout. This was confirmed by adding 50 µL of 1.0 M NaOH to a dry, 
coated sensor and placing it in an oven at 70 ºC for 10 min. The heating process 
converted Bi(III) ions to the bright yellow Bi2O3. The even yellow coloring (Figure 
7.4) demonstrated the consistent distribution of Bi(III) throughout the substrate. 

It has also been found through several solution tests that, similar to lead 
acetate test strips, our sensor is capable of detecting many other sulfide species 
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Figure 7.4. Test showing that Bi(III) is spread evenly throughout the sensor. 

 
including mercaptans. This increases the usefulness of the sensor in lab and 
health settings. 
 Our Bi(III)-based sensor was also evaluated through side by side 
comparisons with a commercially available lead acetate paper in tests using H2S 
gas, mercaptan solutions, and NaHS solutions. In all tests, our sensor 
outperformed the lead acetate test strips, and in many cases there was no 
observable change in the lead acetate test strips, including in exposure to 1.35 L 
of H2S at concentrations between 30 ppb and 5 ppm. For verification purposes, 
50 ppm H2S was directed from a gas cylinder onto the surface of a damp lead 
acetate test strip and then onto an optimized Bi(OH)3 sensor at a flow rate of 89 
mL min-1. Both sensors immediately developed dark black spots upon exposure, 
indicating that both sensors respond to H2S at high concentrations. 
 

7.4. Conclusion 
In summary, several features of the novel sensor reported herein are 

unique and some are critical to its high sensitivity: (1) Alkaline coatings to trap 
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acidic H2S gas; (2) Wet coatings to facilitate the kinetics of the reaction between 
H2S and Bi(OH)3. In comparison, other reported processes/patents usually use 
either a solution or a dry salt; (3) Benign bismuth to replace toxic lead; (4) A total 
volume of 1.35 L of 30 ppb H2S gas for the naked-eye detection limit, making it 
suitable for the detection of halitosis. In comparison, reported/patented 
processes, including testing using lead acetate test papers, often require a much 
larger volume of ppm-level H2S. At a given concentration, a larger volume of the 
H2S gas delivers more reactant H2S to the sensor, making it easier for less 
sensitive sensors to detect H2S; (4) A large detection range, including 50 ppb–
the current LOD of the US Environmental Protection Agency (EPA) detection 
method,40-41 80 ppb–the average H2S concentration qualified as ‘bad breath’ in a 
typical human breath volume,2 and 10 ppm–the OSHA Permissible Exposure 
Limit.41 Our highly sensitive sensor is thus fast, direct, easy to use, and non-toxic. 
However, its alkalinity (pH 11) requires care in handling and that the sensor be 
stored inside an inert gas to avoid neutralization by acidic CO2 in air. It may be 
developed into safe, disposable commercial test strips for H2S gas which do not 
currently exist on the market. The increasing depth of color with increasing H2S 
concentrations indicates that this detection may be developed into a semi- or fully 
quantitative method. The sensor also has the potential for both human bad 
breath tests and industrial H2S detection in, e.g., mining, petroleum, and natural 
gas industries. 
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While the work described in this dissertation can have many applications, 
the central focus is on the detection of environmental toxins. Parts 2, 3, and 4 of 
this work are based on newly updated regulations concerning the allowed 
concentrations of elemental impurities within active pharmaceutical ingredients 
(API) and excipients. With the new guidelines come new requirements for 
detection methods, which the work herein attempts to address using 
electroanalytical chemistry. These studies will eventually be combined into one 
technique that will detect many of the regulated elements simultaneously. Part 2 
concerns the direct quantification of cadmium and lead, two of the most toxic 
heavy metals, in solutions containing pharmaceutical components using anodic 
square-wave stripping voltammetry. With the assistance of a bismuth 
codeposition, detection of the metals can be performed individually or 
simultaneously, in either water or 95/5 DMSO/water solutions. This work marks 
the first time that heavy metals have been analyzed in DMSO solutions using 
anodic stripping voltammetry (ASV). 

In the next part, ASV was used to detect the catalytic metal palladium in 
pharmaceutical matrices. The novel use of this method is important for several 
reasons. First, palladium is included in the new international regulations 
concerning impurities in pharmaceuticals and excipients and can have adverse 
health effects on patients. Second, residual palladium may lead to unwanted side 
reactions during subsequent steps in synthesis, lowering the yields of final 
products. Third, a consistent loss of palladium throughout the multi-step 
synthesis of APIs could quickly become costly. Similar to the previous study, 
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palladium can be detected in the presence of API and excipients dissolved in 
either water or 95/5 DMSO/water solutions. Unlike the work with cadmium and 
lead, bismuth is not required for the detection of palladium in aqueous 
pharmaceutical matrices. In the DMSO solutions, bismuth codeposition is still 
required. This study also included cadmium and lead in both media showing that 
all three metals, along with bismuth, can be detected simultaneously.  

Part 4 of this dissertation focuses on the detection of mercury in aqueous 
solutions containing dissolved API and excipients. The results of this work 
indicate the potential of ASV as a method that can meet the new pharmaceutical 
regulation requirements. Bismuth is not required for the analysis of mercury in 
the pharmaceutical matrices, making it simple to use. However due to differing 
electrolyte requirements mercury cannot be detected simultaneously with 
cadmium, lead or palladium. To the best of our knowledge, this is the first time 
mercury has been analyzed in solutions containing pharmaceutical ingredients. 

The fifth part of this dissertation concerns the trace analysis of hexavalent 
chromium, a strong oxidizer and known carcinogen, in aqueous solutions. Using 
a glassy carbon electrode modified with single-walled carbon nanotubes coated 
with a pyridinium/sol-gel thin film, the electrochemical sensor yields a detection 
limits of 0.3 ppt (parts per trillion) and exhibits high selectivity and precision. The 
film thickness was optimized based on iridescence observations: both uniformity 
of color as well as the color itself. The electrode surface was further 
characterized via scanning electrode microscopy. 
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Two novel methods for the pretreatment of whole blood were developed 
and optimized based on the Fenton reaction, as reported in Part 6 of this 
dissertation. One method utilizes a synthesis microwave, and is capable of 
mineralizing a sample within 6 min. The second method uses an inexpensive 
laboratory oven over a period of 5 h, allowing for a fast option and an 
inexpensive option. Post-treatment samples were analyzed using ASV, and the 
results were validated through comparison with ICP-OES (inductively coupled 
plasma–optical emission spectroscopy). The analyses indicated that the methods 
were highly effective and capable of being exploited in laboratory and medical 
settings. 

The final part of this collection of work, Part 7, describes the development 
of a simple, disposable, bismuth-based optical sensor for the detection of 
hydrogen sulfide (H2S), a gas that is dangerous at high concentrations and is 
also the main contributor to bad breath, in low concentrations. Alongside the 
sensor, a system for generating low concentrations of H2S gas at a set volume of 
1.35 L (the volume of an average human’s breath) was also created. Through the 
use of alkaline Bi(OH)3, the sensor is able to trap the H2S gas, which is a weak 
acid, and react with it immediately to form the yellow/brown Bi2S3. The lowest 
concentration visible with the naked eye was determined to be 30 ppb, exhibiting 
a detection range that includes the current LOD of the US Environmental 
Protection Agency (EPA) detection method, the average H2S concentration 
qualified as ‘bad breath’ in a typical human breath volume, and the OSHA 
Permissible Exposure Limit.  
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Appendix A 
 
 Appendix A provided additional materials for Part 2. 

 

 
Figure A.1. Voltammograms depicting the supporting electrolyte’s effect on the sensitivity of 
detecting Cd(II) (A) and Pb(II) (B) in aqueous solutions. Electrolytes tested were 0.2 M NaOAc 
(black solid line), 1.8 M NaNO3 (red dotted line), and 0.05 M Et4NBF4 (green dashed line). The 
best electrolyte (0.05 M Et4NBF4) was chosen through the comparison of Cd(II) and Pb(II) peak 
areas, both at concentrations of 50 µg L-1. 
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Figure A.2. Voltammograms depicting the supporting electrolyte’s effect on the sensitivity of 
detecting Cd(II) (A) and Pb(II) (B) in 95/5 DMSO/water solutions. Electrolytes tested were 1.8 M 
NaNO3 (black solid line) and 0.05 M Et4NBF4 (red dotted line). The best electrolyte (0.05 M 
Et4NBF4) was chosen through the comparison of Cd(II) and Pb(II) peak areas, both at 
concentrations of 50 µg L-1. 
 

A.1 Apparent recoveries 
A.1.1. Apparent recoveries of [Pb(II)] and [Cd(II)] in the presence of 1000 mg 
L-1 caffeine (aqueous solution) 

An aqueous solution containing 1000 mg L-1 caffeine [and 0.05 M 
Et4NBF4, 2.5 mg L-1 Bi(III)] was spiked to 10.0 µg L-1 Pb(II) and 15.0 µg L-1 Cd(II). 
The sample was treated as an unknown, and standard addition was performed 
with simultaneous spiking of both metals between each analysis to added 
concentrations of 5.0, 10.0, 20.0, 30.0, 50.0, and finally 80.0 µg L-1. By placing 
the initial concentrations at [M(II)] = 0, the analyses produced the linear 
regression y = 0.0206x + 0.2348 (R2 = 0.999) for Pb(II) and y = 0.0102x + 0.1645 
(R² = 0.998) for Cd(II) (Figure A.3). Calculating the initial “unknown” 
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concentration of the metals gave 11.4 µg L-1 Pb(II) and 16.2 µg L-1 Cd(II) with 
apparent recoveries of 114% and 108%, respectively. 

In another test, Cd(II) was detected in a new aqueous 1000 ppm caffeine 
solution (0.05 M Et4NBF4), using a different electrode, three months after making 
the calibration curve of Cd(II) in the presence of caffeine. The solution was 
spiked to 2.5 µg L-1 Bi(III) and 20 µg L-1 Cd(II) before being analyzed in triplicate. 
The average peak area fell within the error bars, giving a concentration of 22 ± 
0.4 µg L-1 Cd(II), and an apparent recovery of 111%. 

 

A.1.2. Apparent recoveries of [Pb(II)] and [Cd(II)] in 95/5 DMSO/H2O 
solutions  

A 95/5 DMSO/H2O solution containing 1000 mg L-1 ketoprofen [0.05 M 
Et4NBF4, 10.0 mg L-1 Bi(III)] was spiked to 5.0 µg L-1 Pb(II) and 25.0 µg L-1 Cd(II). 
Standard addition was performed with simultaneous spiking of both metals 
between each analysis to added concentrations of 10.0, 20.0, 25.0, 40.0 and 
finally 50.0 µg L-1 (Table A.1). At this point, the [Pb(II)]initial was treated as an 
unknown by placing it at [Pb(II)] = 0. The Pb(II) curve produced a linear 
regression of the equation y = 0.0022x + 0.0101 (R2 = 0.997), and calculating the 
[Pb(II)]initial concentration gave 4.59 µg L-1 and an apparent recovery of 91.8%.  
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Table A.1. Calibration curve for Cd(II) and Pb(II) with 1000 mg L-1 caffeine in 95/5 DMSO/H2O 

[Cd(II)] / 
µg L-1 

Ap (Cd Peak 
Area) / µVA Ap [Pb(II)] /  

µg L-1 
Pb Peak 

Area / µVA 
25.0 0.007677 24.47 5.0 0.01298 
35.0 0.02915 35.72 15.0 0.03001 
45.0 0.05527 44.67 25.0 0.05183 
50.0 0.07464 49.90 30.0 0.06602 
65.0 0.1497 65.05 45.0 0.1006 
75.0 0.2152 74.94 55.0 0.1213 

 
 

Due to the non-linear nature of Cd(II) in the presence of sulfide impurities 
in the DMSO, the initial concentration cannot be calculated through extrapolation, 
as is the case for linear calibrations in standard addition. We have thus 
developed a method to derive the concentration of Cd(II) solution by addition of 
standards. 

In this approach, the logarithmic regression (Eq. A.1) was obtained first 
from a set of standards (Table A.1, Figure A.4). 

 
Ap = 5.006e-6[Cd(II)]2.478 + 6.144e-3                                                         Eq. A.1 
R2 = 0.999; Ap = peak area       
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The lowest Cd(II) concentration here was 25.0 µg L-1, the detection limit. It should 
be noted that the logarithmic regression in Eq. A.1 depends on [Pb(II)]. That is, 
the three parameters in Eq. A.1 are functions of [Pb(II)]. 

Eq. A.2 is then converted into a linear form by using Ap in Eq. A.2, giving 
Eq. A.3. 
 

௣ᇱܣ =  ቀ஺೛ା ଺.ଵସସ௘షయ
ହ.଴଴଺௘షల ቁ

భ
మ.రళఴ      Eq. A.2 

Ap = [Cd(II)]        Eq. A.3 
 
Since Eq. A.3 is linear, we have used it in conjunction with standard addition to 
determine the unknown [Cd(II)] in a solution. In the example below, initial 
concentrations of Cd(II) and Pb(II) were recovered through standard addition and 
the use of Eq. A.3 in the case of Cd(II).  

A 95/5 DMSO/H2O solution containing 1000 mg L-1 ketoprofen [0.05 M 
Et4NBF4, 10.0 mg L-1 Bi(III)] was spiked to 5.0 µg L-1 Pb(II) and 40.0 µg L-1 Cd(II), 
which were treated as [Pb(II)]initial and [Cd(II)]initial, respectively. Standard addition 
was performed with simultaneous spiking of both metals between each analysis 
to added concentrations of 10.0, 20.0, and 30.0 µg L-1 (Table A.2). The Cd peak 
area (Ap) was then individually transposed into Ap′ using Eq. A.2 and the data are 
given Table A.2. In other words, the calibration of the previous Cd(II) standards 
was used here to calculate Ap′. Plotting [Cd(II)]added vs. Ap′ produced a linear 
regression (Figure A.5, R2 = 0.999) which, through extrapolation, was used to 
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calculate [Cd(II)]initial. This calculation gave [Cd(II)]initial of 39.8 µg L-1 and an 
apparent recovery of 99.5%. The [Pb(II)]:[Cd(II)] ratios here were different from 
the previous calibration in Table A.1, but within the small range of the 
concentrations of both metal ions tested, the effects were negligible. 
 
 
Table A.2. Standard addition for Cd(II) and Pb(II) with 1000 mg L-1 ketoprofen in 95/5 DMSO/H2O 

[Cd(II)]added /  
µg L-1 

Ap (Cd Peak 
Area) / µVA 

Ap [Pb(II)]added /  
µg L-1 

Pb Peak 
Area/ µVA 

0.00 0.08011 51.23 0.00 0.01881 
10.0 0.1461 64.44 10.0 0.04954 
20.0 0.2306 77.00 20.0 0.08407 
30.0 0.3425 90.02 30.0 0.1195 

 
 
 

Standard addition of Pb(II) in this study also produced a linear regression 
(Figure A.6), yielding [Pb(II)]initial = 5.15 µg L-1 and an apparent recovery of 
97.1%. 
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Figure A.3. Simultaneous standard additions of Cd(II) (black) and Pb(II) (red) in an aqueous 
solution containing 1000 mg L-1 caffeine, 0.05 M Et4NBF4, and 2.5 mg L-1 Bi(III). 
 
 

  
Figure A.4. Calibration plot of Cd(II) in the presence of increasing Pb(II), 1000 mg L-1 ketoprofen, 
0.05 M Et4NBF4, and 10.0 mg L-1 Bi(III), in 95/5 DMSO/H2O. 
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Figure A.5. Linearized Cd(II) standard addition calibration, using Eq. A.3, through simultaneous 
standard additions of Cd(II) and Pb(II) in 95% DMSO containing 1000 mg L-1 ketoprofen, 0.05 M 
Et4NBF4, and 10.0 mg L-1 Bi(III). 
 

 
Figure A.6. Linear regression of Pb(II) through simultaneous standard additions of Cd(II) and 
Pb(II) in 95% DMSO containing 1000 mg L-1 ketoprofen, 0.05 M Et4NBF4, and 10.0 mg L-1 Bi(III).
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Appendix B 
 

Appendix B provided additional materials for Part 3. 
 
 

 
Figure B.1. Linear regression for the analysis of Pd(II), codeposited with Bi(III) (10 mg L-1) in 95% 
DMSO/5% water. 
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Figure B.2. Linear regression for the analysis of Pd(II) in aqueous solutions in the presence of 
1000 mg L-1 caffeine. No Bi(III) codeposition was used.  

 
 

 
Figure B.3. Analysis of Pd(II), codeposited with 10 mg L-1 Bi(III) in 95/5 DMSO/water in the 
presence of 1000 mg L-1 ketoprofen. 
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Figure B.4. Recovery of Pd(II) (original concentration of 20 µg L-1) through the standard addition 
method in an aqueous solution containing 1000 mg L-1 caffeine. No Bi(III) codeposition was used. 

 

 
Figure B.5. Recovery of Pd(II) (original concentration of 20 µg L-1) through the standard addition 
method in a 95/5 DMSO/water solution containing 1000 mg L-1 ketoprofen. The Pd(II) was 
codeposited using Bi(III).  
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Appendix C 
 

Appendix C provided additional materials for Part 4. 
 
 

  
Figure C.1. Voltammograms depicting the supporting electrolyte’s effect on the Hg(II) peak. The 
best electrolyte (0.01 M TBAP) was chosen through the comparison of the Hg(II) peak area at 
concentrations of 100 μg L-1. 
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Figure C.2. Voltammograms collected from preconcentration potential optimization studies.  
 
 

   
Figure C.3. Standard additions of Hg(II) in an aqueous solution containing 1000 mg L-1 caffeine.  
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Figure C.4. Standard additions of Hg(II) in an aqueous solution containing 1000 mg L-1 lactose. 
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Appendix D 
 

Appendix D provided additional materials for Part 7. 
 
D.1. Laboratory Generation of 1.35-L, ppb-ppm H2S Gas and Its Sensing  

Few reports of devices for generating ppb-ppm H2S gas, especially at a 
small volume of 1.35-L, have been reported in the literature. 

A 1.35-L glass chamber was made in the glass-blowing shop at the 
University of Tennessee. This volume was chosen to mimic the breath volume of 
an average human. With a closed top and open bottom, the chamber was 
designed to sit flat on a stir plate (Figure D.1, A). The chamber has one outlet for 
the generated gas (Figure D.1, E), one inlet used for nitrogen gas, followed by 
water (Figure D.1, D), and another inlet attached to a small, internal capillary 
used for bubbling nitrogen gas (Figure D.1, C). 
 Prior to generation of H2S gas, a small container is filled with 70 mL of HCl 
solution at pH 1. A loosely capped vial containing a NaHS solution and an upright 
stir bar is then placed, standing, in the container holding the acidic solution. The 
chamber (Figure D.1, A) is placed over top of these containers and sealed tightly 
to the stir plate using household Vaseline grease. This seal is strong enough to 
make the entire vessel water tight. To remove all oxygen and avoid the oxidation 
of S2- to S, reaction chamber A is flushed with nitrogen gas through hose D, and 
the acidic solution is bubbled through the internal capillary attached to hose C for 
10 min. The ultrapure DI water in container B is simultaneously bubbled with 
nitrogen gas as well. 
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 A sensor, previously dampened with 80 µL of 0.1 M NaOH, is placed on a 
wire mesh as the sensor stand (Figure D.1, F). A plastic micro pipette tip has 
been firmly attached and sealed to hose E and funnels the generated gas to a 
smaller area (roughly a 3 mm diameter) directly onto the surface of the sensor. 
This pipette tip is held so that it is in direct contact with the sensor. The nitrogen 
gas is clamped off at hose D and lowered to a very slow flow through hose C. 
The stir plate is then turned on at a high rate, knocking the vial of the NaHS 
solution into the HCl solution and forming H2S gas (Eq. 7.4). At this point the 
water (also bubbled with N2) of container B is allowed to slowly travel into the 
reaction chamber A via hose D using gravitational flow. As chamber A is filled 
with water, it pushes out the generated H2S gas through hose E onto the sensor 
at F. Direct contact between the pipette tip of hose E and the sensor at F forces 
the gas through the sensor, allowing for more interaction between Bi(III) and S2-. 
The acidity of solution in the container is enough that even when diluted to 1.35 L 
after mixing, the pH is still 3.  
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Figure D.1. The system to generate H2S gas. A: Reaction chamber; B: Water container; C: N2-
inlet hose; D: Water-inlet hose; E: Gas-outlet hose; F: Wire mesh as the sensor stand. 

 

 
Figure D.2. Volumes of 0, 50, 100, 200, 300, 500, and 1000 µL of Bi(NO3)3/acetone suspensions 
were deposited on the Prozorb squares. Note no spot development for the Prozorb containing no 
Bi.
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