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ABSTRACT 

Ecologists have long sought to understand the processes that lead to the riotous diversity in 

communities of organisms that inhabit disparate climates and landscapes. Such a diversity of 

traits leads to a diversity of interactions among species in natural communities, which in turn 

generates a diversity of potential responses to ongoing global change. In this dissertation, I do 

three things: I explore the forces that structure plant communities and the ecosystem functions 

that they mediate, I describe patterns of variation among communities, species, and individual 

organisms across environmental contexts, and I disentangle the direct effects of global change 

from the indirect, cascading effects that result from disruptions of species interactions. I 

accomplish these goals through the synthesis of global data, the development of statistical and 

mathematical models, and the manipulation of global change drivers in field experiments. In the 

first chapter, I present a globe-spanning meta-analysis of plant functional trait patterns along 

elevational gradients. This meta-analysis shows that the plant traits that drive ecosystem function 

follow predictable trends with elevation due to climate filtering, and that much of this variation is 

at the level of the individual organism. In the second chapter, I present simulated data sets and 

illustrative experimental case studies that quantify how important individual-level variation is for 

explaining patterns in nature. In the third chapter, I present results from intensive plant sampling 

across a wide range of mountain environments; even in these harsh environments where only the 

hardiest species can survive, individual-level variation is so high that it makes predictions based 

on species identity nearly impossible. The fourth and fifth chapters consist of experimental 

evidence that ongoing human-caused global change is affecting montane plant communities, that 

species interactions mediate many of these effects, and that variation in the abiotic environment 

causes variation in both species interactions and in global change response. I demonstrate this 

through an experiment that combines nitrogen fertilization with removal of a dominant plant 

species in a montane meadow, and an experiment replicated at low and high elevations crossing 

dominant species removal with simulation of global warming. 
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INTRODUCTION  

Themes and key questions  
Climate change and species losses threaten all ecosystems, and montane systems are 

especially at risk (Engler et al. 2011; Rangwala & Miller 2012; Pepin et al. 2015). Global change 

is affecting communities and ecosystems in mountains directly by changing the rates of physical 

processes, and indirectly by altering the functional composition of high-altitude plant 

communities. As the optimal temperature range for many plants moves to higher elevations with 

warming (Chen et al. 2011; Beckage et al. 2008), plant communities at different sites, and 

individuals with different traits within each plant community, are responding to warming at 

different rates (Saavedra et al. 2013; Alexander et al. 2015). Warming temperatures may 

increase environmental stress in some communities and decrease it in others—this shifting stress 

will likely lead to shifting dominance patterns (Gilman et al. 2010; Grassein et al. 2014; 

Michalet et al. 2014). Importantly, sensitivity to both warming and dominant species loss may be 

predictable from plant trait distributions (Suding et al. 2008). The leaf traits that drive carbon 

flux rates and predict responses to global change exhibit consistent patterns along climate 

gradients worldwide (Dubuis et al. 2013; Venn et al. 2011; Kunstler et al. 2016). Thus, plant 

functional traits link plant community ecology (Kraft et al. 2015, Ehrlén et al. 2015) and 

projections for future carbon sequestration potential (Sakschewski et al. 2015). The research 

presented here takes advantage of this trait-based link to explore the factors driving plant 

community composition and ecosystem functioning across biomes. 

The research presented in this dissertation addresses the following key questions: 

Are there general patterns of plant trait variation along elevational gradients across 

different biomes, and does this variation follow the patterns predicted by the leaf economics 

spectrum? What role does intraspecific variability play in the variation observed along 

elevational gradients? I present a meta-analysis in Chapter I that addresses these questions. 

Under what conditions is it necessary to incorporate intraspecific variability into ecological 

studies? What are the consequences of ignoring intraspecific trait variation for ecological 

inference? In Chapter II, I present a simulation paired with several empirical case studies to 

illustrate how important intraspecific variation is for ecological inference. 

How is functional trait variation partitioned within and among plant species along a climate 

gradient in a mountainous region? How well do functional traits alone predict species 

composition along this gradient? In Chapter III, I present observational data and a statistical 

model that attempts to predict species distributions from the relationship between plant traits and 

climate. 

Are the effects of a dominant plant species on the plant community and on carbon cycling 

contingent on soil resource availability? Do soil resource availability and dominant plant 

species interact to determine the structure and function of the plant community? I conducted an 

experiment to explore interactions between species loss and nitrogen deposition, which I present 

in Chapter IV. 

What effect does increased temperature have on the interactions between dominant plant 

species and other members of the community? How do these effects differ across the different 

climates associated with different elevations, and across multiple mountain ranges? In my fifth 
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chapter, I present results from a multifactorial global change experiment replicated at low and 

high elevations.  

My dissertation research focuses on a number of issues that both advance the field of 

community ecology and predict how global climate change will affect the structure and function 

of montane plant communities, both directly and through indirect trait-mediated effects. I present 

a meta-analysis, a simulation, a statistical model, and two field experiments, all of which inform 

one another. The research that is described here is grounded in a functional trait approach, 

extending that approach to incorporate individual-level variation. The theoretical, observational, 

and experimental results I present can be applied to inform models, to predict changes in 

mountain biodiversity and ecosystem functioning, and to test important theoretical questions 

dealing with sources of variation among organisms and how that variation affects ecosystems. 

The functional trait approach. It is crucial to forecast biodiversity and ecosystem services 

under future environmental conditions. The fields of species distribution modeling (SDM; 

Araújo & Guisan 2006; Araújo & Peterson 2012) and ecosystem modeling have developed 

rapidly over the past few decades. However, a functional trait-based approach (Wright et al. 

2004; Shipley et al. 2006a) has the potential to simultaneously refine ecosystem models and 

improve the utility and predictive power of SDMs (Guisan & Thuiller 2005; Stahl et al. 2014; 

Violle et al. 2014), uniting these two fields. If relationships are known between organismal traits, 

species identity and ecosystem function, we can use these forecasts to predict future ecosystem 

function.  

Individual-level variation. In addition to the relationship between species identity and 

ecosystem properties, the functional trait approach allows individual-level variation to be 

incorporated into ecological models, improving our ability to determine the consequences of 

biotic and abiotic filters on community composition and ecosystem functioning. The observation 

that different species solve the problems presented by nature in different ways is what first 

spurred ecology to go beyond mere descriptive natural history (Warming 1909). Ecologists are 

increasingly recognizing what an important role variation among individuals within species 

plays—in some cases, the magnitude of intraspecific variation can dwarf variation among 

species. Incorporating functional traits, especially variation in traits among individuals, into the 

study of natural communities contributes to a synthesis of community ecology, biogeography, 

and ecosystem ecology (Weiher et al. 2011; Shipley et al. 2016). 

Experiments that inform models. To date, few ecological studies have explicitly incorporated 

manipulative experiments into models (Diamond et al. 2012). Part of the reason for this is that 

manipulative experiments are necessarily focused on a relatively small spatial and temporal 

extent. Now with increased opportunities for international collaboration, it is possible to 

coordinate networks of manipulative ecological experiments that run simultaneously at 

macroecological scales (Nogués-Bravo & Rahbek 2011; Fraser et al. 2013; Borer et al. 2014). 

Data from such experiments are more suitable for larger-scale modeling approaches (Dukes et al. 

2014), especially in community ecology. The work presented here incorporates plant community 

responses from a manipulative experiment and projections of species assemblages generated 

using functional traits into a unified research framework. 

Predicting changes in mountain biodiversity. The research presented here consists of 

manipulative experiments conducted along elevational gradients in montane systems around the 

world. Mountains and alpine systems can be seen as a test bed for biodiversity research, and 
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present unique challenges for ecological modeling (Carlson et al. 2013). Drivers of community 

assembly change with increasing elevation, caused both by decreasing temperature and changes 

in plant-plant interactions. While competitive interactions shape community structure at lower, 

warmer elevations, neutral or even positive interactions may dominate at higher elevations 

(Callaway et al. 2002). Different syndromes of plant functional traits prevail at low and high 

elevations, due to both the varying abiotic conditions and competitive environments. At a 

community level, these differences in average trait values lead to differences in ecosystem 

properties associated with the cycling of carbon and other nutrients (Suding et al. 2008). 

In addition, montane systems are especially susceptible to global change (Engler et al. 2011). 

Rapidly shifting species ranges along elevational gradients due to climate change (Beckage et al. 

2008) will cause unprecedented biological communities to assemble. It is critical to predict how 

these changing communities will drive changes in ecosystem properties. A functional trait-based 

approach, as is proposed here, will be instrumental in achieving this goal (Violle et al. 2014). 

Testing community assembly theories. The research presented here tests ecological theory 

about the ways in which functional tradeoffs in plants structure communities along 

environmental gradients. The inclusion of root traits captures more variation in plant resource-

use strategies and enables more accurate predictions of community composition and ecosystem 

properties relative to previous work (Freschet et al. 2010). The experimental response data I 

present allows more robust inferences about mechanisms, isolating biotic and abiotic factors that 

were previously lumped together in more correlative approaches. Finally, explicitly comparing 

intraspecific variation in traits along elevational gradients provides support for the stress-gradient 

hypothesis (Bertness & Callaway 1994; Maestre et al. 2009) and the importance of intraspecific 

variation for ecosystem functioning (Crutsinger et al. 2006; Siefert et al. 2015).  

Chapter summaries 
Chapter I of this dissertation is a meta-analysis that has been published in the journal 

Functional Ecology. For this meta-analysis, I drew upon existing work published in the literature 

to demonstrate that key functional traits show consistent patterns of variation with elevation. 

Along elevational gradients around the globe and across a stunning variety of plant taxa, leaf 

mass:area (LMA) tends to increase with elevation, as does leaf nitrogen content measured on a 

per-area basis. However, leaf nitrogen content measured per unit mass (Nmass) is as likely to 

increase with elevation as to decrease. These three traits are easily measured indices of whole-

plant properties, including life history strategy, competitive ability, and per capita contribution to 

carbon cycling in ecosystems. This meta-analysis provides evidence that environmental filtering 

along elevational gradients determines the functional composition of plant communities: in 

particular, I show that variation within a single species along elevational gradients is equal in 

magnitude to variation measured at the community level across many species, spanning the same 

amount of difference in elevation. Changes in traits linked to life history have predictable 

consequences for the way plants interact with one another and the way that they contribute to the 

functioning of ecosystems. Because of these linkages, I hoped to be able to predict species 

distributions across the landscape based on traits (Chapter III) and to predict how species 

respond to increased temperature, dominant species loss, and changes in nitrogen availability 

across plant communities that vary greatly in their trait composition (Chapters IV & V). 
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The second chapter of this dissertation builds upon the meta-analysis that I present in Chapter 

I. Chapter II is a comparison of different ways of analyzing trait variation within and among 

species and populations; it has been published in the journal Oikos. While our current 

understanding of the way organisms interact with their environment is increasingly based on 

individual traits, many ecological studies still base their inference on species identity. To 

demonstrate that in many cases, this leads to incorrect inference or poor estimation of effect 

sizes, I simulated a large amount of trait data across many genotypes within different species. I 

fit two types of linear models to the simulated datasets: a non-nested linear model including only 

species as the fixed effect term, and a nested mixed model including a random effect term for 

genotype identity in addition to the species term. I varied the parameters of the simulation to 

encompass a wide range of heritability values, number of genotype markers, and absolute value 

of trait differences. The two types of statistical analysis differed in their ability to capture the true 

source of variation among individuals: the linear model tended to overestimate the proportion of 

variation attributed to species rather than genotype, as well as tending to lead to an incorrect 

inference, as I observed from the distribution of p-values. In addition to the simulated datasets, I 

present three case studies from Eucalyptus, Populus, and Picea common-garden experiments that 

further demonstrate my point. Fitting non-nested linear models to these datasets leads to a 

different inference about the source of trait variation among individuals across multiple 

populations. A key assumption of the functional trait-based approach has historically been that 

intraspecific variation in traits can be largely ignored (Shipley et al. 2016); my analysis of both 

simulated and experimental data highlights flaws in this assumption and informs the 

experimental and observational field methods and analytical techniques I use in Chapters III, IV, 

& V. 

Chapter III, along with the following two chapters, presents results from studies conducted in 

the field. This work has not yet been published elsewhere. In the third chapter, I present a dataset 

consisting of plant community composition, plant functional trait composition, and 

environmental variables collected at 14 sites in Colorado, USA during the summer of 2015. 

Building upon the results of the preceding two chapters, I first demonstrate the large role played 

by intraspecific variation in shaping differences within and among plant communities in the 

region—in some cases greater than the role of species turnover across sites. Next, I set out to 

achieve an important goal of trait-based ecology: to use functional traits in a predictive 

framework. While much work exists on correlating functional traits to environmental conditions, 

few researchers have attempted to make predictions of species relative abundances based solely 

upon environmental conditions at a particular site. However, even if the precise mechanistic link 

between functional traits and environment is not known, it may be possible to parameterize a 

statistical model that can predict community structure from climate using functional trait data. I 

constructed just such a model, modified from an existing model known as Traitspace (Laughlin 

& Laughlin 2013). However, the statistical model did a relatively poor job of predicting species 

abundance based on functional traits. The most likely explanation for this disconnect is the large 

magnitude of intraspecific variation—ubiquitous in natural communities as my previous chapters 

show. However, changes in trait distributions in natural communities as a result of human-caused 

global change may still have important consequences for ecosystem functioning, as the following 

two chapters demonstrate. 
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In my fourth chapter, I present results from a manipulative experiment that crosses removal 

of a dominant grass species with addition of two different forms of nitrogen fertilizer to the soil. 

I show four years of community and ecosystem response to these global change treatments, 

which were established in 2012 in a montane meadow in Colorado, USA. This study addresses 

questions about the abiotic and biotic processes that structure plant communities: I ask whether 

environmental filtering drives communities toward an optimal distribution of functional traits 

across species, and whether this is dependent on the presence of a competitively dominant 

species, on the availability of a limiting resource, or both. In addition, the results from this study 

can be applied to make predictions about how plant communities and the ecosystem services 

they render will respond to drivers of global change, namely loss of foundation species and 

anthropogenic nitrogen deposition. After four years of species removal and nitrogen fertilization, 

I found that the functional trait makeup of the plant community was relatively resilient to the 

perturbation that occurred when the most abundant species, fescue, was lost. The leaf and root 

traits of fescue were at one extreme of the distribution of traits within the plant community, 

potentially indicating that competitive dominance results when a species possesses traits 

conferring higher relative fitness. Because of this, the remaining community cannot fully replace 

the functional role of the lost species. However, the remaining community showed resilience by 

convergence of its mean trait value on the value of the fescue-dominated community. This 

phenomenon was not dependent on whether or not additional nitrogen was added to the soil. In 

fact, the plant community was highly resistant to change under both organic and inorganic 

nitrogen addition. Nitrogen addition had impacts primarily on carbon cycling properties, causing 

both increased aboveground plant biomass and a temporary increase in soil carbon efflux.  

While experiments that factorially manipulate multiple global change drivers in the field are 

rare enough, multifactorial experimental manipulations conducted in parallel at multiple field 

sites are rarer still. In my fifth chapter, I address this critical shortfall, presenting results from an 

experiment in which I simultaneously simulated both dominant species loss and anthropogenic 

warming at both a low-elevation and high-elevation site in Colorado, USA. I present results from 

the third field season of experimental manipulation. In 2013, I removed the dominant plant 

species from half the experimental plots at each elevation, then crossed the removal treatment 

with a warming treatment by placing hexagonal open-top warming chambers on half the plots. 

The warming chambers simulate approximately 2° C of growing-season warming. After the third 

year of manipulation, both warming and dominant species loss have affected the plant 

community and ecosystem-level carbon cycling both individually and in interaction with one 

another. Furthermore, these effects differ depending upon the elevation, and the effect of 

dominant species removal tends to be stronger than the effect of warming. Removing the 

dominant species causes the remaining community to become dominated by individuals that 

have faster-growing but less durable leaves and roots; this effect propagates through the plant 

community to have important consequences for carbon cycling. I present data collected at the 

peak growing season of 2015 showing that dominant species removal reduces the rate of carbon 

uptake by living biomass in plant communities across both sites; future work in this system will 

provide more insights into the long-term effects of warming and removal on carbon storage and 

turnover at low and high elevation. 

This global change experiment conducted at two elevations provides important data to inform 

predictions and parameterize models that simulate community and ecosystem responses to 
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ongoing global change. However, the results I present here in my fifth chapter, from a single site, 

are not adequate to allow broader inference about how the impacts of global change will differ 

by elevation in mountain ranges around the globe. The results from Chapter V represent 

preliminary data from a globally distributed network of experimental sites, at all of which an 

identical experiment has been established. I will contribute the results of the warming-by-

removal experiment to a dataset being compiled by a global network of collaborators. In the 

future, my collaborators and I will be able to determine whether there are globally consistent 

elevation-dependent patterns in the response of communities and ecosystems to warming and to 

dominant species loss.  

Study system 
All of the fieldwork described here took place at and around the Rocky Mountain Biological 

Laboratory, located at the site of an abandoned mining settlement 10 km north of Crested Butte 

in western Colorado, USA (38° 57' N, 107° 0' W). The study sites are located in treeless areas 

along an elevational gradient spanning over 1000 m, including sagebrush grassland, montane 

meadow, and subalpine meadow habitats (Figure 1). Mean annual temperature decreases steeply 

with elevation, and precipitation increases with elevation. Warming experiments involving both 

active (Harte & Shaw 1995; Saleska et al. 1999) and passive designs (unpublished), as well as 

removals of plant species and functional groups (Cross & Harte 2007) are ongoing at nearby 

sites or have been conducted in the past. In addition, Bryant and others did an extensive survey 

of plant and microbial diversity (Bryant et al. 2008) along an elevational gradient including some 

of the sites for the work proposed here; plant functional traits and ecosystem-level properties 

have been measured along the same gradient (Brian Enquist, unpublished data).  

Chapter III uses plant trait data collected from fourteen sites in the region to fit a statistical 

model to predict species relative abundances; these sites are located between 2480 and 3560 m 

above sea level. Chapter IV presents results from an experiment in which I removed a dominant 

plant species and added organic and inorganic N fertilizer to the soil; this site, Maxfield 

Meadow, is 2910 m above sea level. In Chapter V, I present results from an experimental 

manipulation crossing warming with species removal and conducted at two sites: Almont 

Triangle, 2740 m above sea level, and Cinnamon Mountain, 3460 m above sea level. The 

experiment I describe in Chapter V is embedded within a global network of experimental sites, 

all of which are paired and located at a high and low elevation. However, I am not presenting 

data from the other experimental sites in the network.  
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Figure 1. Satellite image of Colorado showing location of study region within yellow rectangle 

(left), and elevation-shaded map of study region with locations of study sites. Experimental sites 

are indicated with labels.  
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CHAPTER I 

CONVERGENT EFFECTS OF ELEVATION ON 

FUNCTIONAL LEAF TRAITS WITHIN AND 

AMONG SPECIES 
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Abstract  
1. Spatial variation in filters imposed by the abiotic environment causes variation in 

functional traits within and among plant species. This is abundantly clear for plant species along 

elevational gradients, where parallel abiotic selection pressures give rise to predictable variation 

in leaf phenotypes among ecosystems. Understanding the factors responsible for such patterns 

may provide insight into the current and future drivers of biodiversity, local community 

structure, and ecosystem function. 

2. In order to explore patterns in trait variation along elevational gradients, we conducted a 

meta-analysis of published observational studies that measured three key leaf functional traits: 

leaf mass-area ratio (LMA), leaf nitrogen content per unit mass (Nmass), and N content per unit 

area (Narea). Importantly, these traits are associated with axes of variation in both competition for 

resources and stress tolerance. We used global climate data sets to model mean annual 

temperature (MAT) as a function of elevation for all study sites. To examine whether there may 

be evidence for a genetic basis underlying the trait variation, we conducted a review of published 

results from common garden experiments that measured the same leaf traits. 

3. Within studies, LMA and Narea tended to decrease with MAT along elevation gradients, 

while Nmass did not vary systematically with MAT. Correlations among pairs of traits varied 

significantly with MAT: LMA was most strongly correlated with Nmass and Narea at sites at high 

elevation with relatively lower MAT. The strengths of the relationships were equal or greater 

within species relative to the relationships among species, suggesting parallel evolutionary 

dynamics along elevational gradients among disparate biomes. Evidence from common garden 

studies suggests that there is an underlying genetic basis to the functional trait variation that we 

documented along elevational gradients. 

4. Taken together, these results indicate that environmental filtering both selects locally 

adapted genotypes within plant species and constrains species to elevational ranges based on the 

range of potential leaf trait values. If individual phenotypes are filtered from populations in the 

same way that species are filtered from regional species pools, changing climate may affect both 

the species and functional trait composition of plant communities.  
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Introduction 
 

Understanding variation in functional traits among organisms enables ecologists to make 

predictions about community structure (McGill et al. 2006), to describe factors influencing the 

geographic ranges of species (Kelly 2003; Westoby & Wright 2006), and to infer why processes 

like nutrient cycling and plant productivity vary among systems (Díaz & Cabido 2001). In most 

ecosystems, the environment can act as a selective filter on plant species along abiotic gradients. 

This process, often referred to as abiotic filtering, mediates the assembly of plant communities so 

that species with similar functions tend to co-occur more often than would be expected by 

chance (Keddy 1992; Weiher, Clarke & Keddy 1998; Kraft, Valencia & Ackerly 2008; Swenson 

& Enquist 2009). For instance, to cope with abiotic gradients across elevations, plants in 

disparate taxa have evolved parallel morphological and physiological traits at high and low 

elevations (Clausen, Keck & Hiesey 1940; Ackerly & Reich 1999; Swenson & Enquist 2007). 

Despite the apparent ubiquity of variation in plant functional traits with elevation, and the 

growing literature documenting patterns along single elevational gradients, global-scale analyses 

are needed to show repeated elevational gradients in form and function within and among species 

across systems that may point to universal underlying mechanisms (Poorter et al. 2009; Körner 

2012). To assess whether such patterns in form and function are similar, both within and among 

species and across disparate systems, we conducted a meta-analysis that focused on a few key 

leaf functional traits from the leaf economics spectrum (Reich, Walters & Ellsworth 1997; 

Wright et al. 2004, 2005). 

Key functional traits along elevational gradients 

A global spectrum of morphological and chemical leaf traits, often referred to as the leaf 

economics spectrum, spans a continuum of plant life forms and life histories (Reich, Walters & 

Ellsworth 1997; Wright et al. 2004, 2005). Generally speaking, fast-growing species with a 

resource-acquisitive life strategy tend to have short-lived leaves, while slow-growing, 

conservative species invest more resources into thick, durable leaves. Leaf mass:area ratio 

(LMA) and leaf nitrogen (N) content per mass (Nmass) and per area (Narea) are correlated with 

relative growth rate and serve as cornerstones of this trait spectrum. Species exhibiting the 

acquisitive syndrome tend to have lower LMA, higher Nmass, and lower Narea than conservative 

species (Shipley et al. 2006a). A principal component analysis of the GLOPNET database, 

including plant trait values from a variety of ecoregions and growth forms, showed that roughly 

three-quarters of trait variation was loaded onto a single axis which differentiated acquisitive 

species from conservative species, including significant loadings on LMA and Nmass (Wright et 

al. 2004). The GLOPNET analysis suggests that easily measured traits on which a number of 

researchers have collected data can provide ecologically relevant information on plants’ life 

strategies and their contribution to ecosystem functioning. 

The trade-off between competitiveness for limiting resources and stress tolerance mediates 

the assembly of at least some plant communities and may be responsible for functional trait 

gradients observed along latitudinal (Stott & Loehle 1998) and elevational gradients around the 

globe (Cornwell & Ackerly 2009; Körner 2012). Of course, the plants are not responding to 

latitude or elevation directly, but are instead responding to a suite of factors that covary with 

latitude and elevation. For instance, as elevation increases, temperature and atmospheric pressure 
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decrease, and clear-sky solar radiation increases, although mountain ranges around the world 

exhibit different trends of moisture, growing season length, and cloudiness (Körner 2007). 

Despite the variability in elevation-climate relationships, it may be that at lower elevations, 

conditions tend to favour acquisitive species that can take advantage of high resource levels, 

since higher temperature stimulates microbial activity and increases resource availability (Raich 

& Schlesinger 1992). Conversely, at higher elevations, harsh environmental conditions and lower 

resource availability promote stress-tolerant species that invest more carbon on a per-leaf basis 

(Körner et al. 1989, Körner 2012). Therefore, we expect individual plants at higher elevations to 

have increased LMA, increased Narea, and decreased Nmass relative to low-elevation individuals. 

Variation in plant functional traits along elevational gradients, whether caused by phenotypic 

plasticity or genetic divergence, may influence how communities and ecosystems respond to 

global change. The resource conservation-acquisition trade-off, for which LMA and leaf N may 

represent useful proxies, is critical in predicting the responses of plant species to changing 

environmental conditions (Suding et al. 2008; Bardgett & Wardle 2010; Reu et al. 2011). Spatial 

variation in plant traits along elevational gradients may parallel trends associated with on-going 

and projected anthropogenic climate warming (Dunne et al. 2004; Fukami & Wardle 2005), 

which is predicted to affect the functional trait composition of plant communities (Suding et al. 

2008). The degree to which genetic variation and phenotypic plasticity are responsible for 

variation in plant traits will influence the responses of plants to climate change: phenotypic 

plasticity will allow short-term responses to abiotic changes, while genetic variation may permit 

evolutionary responses to abiotic changes. 

Based on predictions made by leaf economics spectrum theory, LMA and Narea should 

increase with elevation and that Nmass should decrease, and that the mechanisms contributing to 

these patterns would include phenotypic plasticity, genetic divergence within a species, and 

changing species composition along gradients of elevation. We hypothesized that intraspecific 

and interspecific variation would contribute roughly equally to elevational patterns in functional 

traits, because particular species and functional trait compositions are ultimately the result of 

filtering processes acting on individuals (Lavorel & Garnier 2002). We further hypothesized that 

parallel evolution, the independent evolution of similar phenotypes in response to similar 

selective pressures, is largely responsible for parallel trait patterns along elevational gradients. 

Previous studies have documented parallel evolution in a variety of organisms both within and 

across species (Schluter & McPhail 1992); parallel genetic changes in different populations often 

gives rise to parallel changes in interspecific interactions and ecosystem properties (Fussmann, 

Loreau & Abrams 2007; Harmon et al. 2009; Agrawal et al. 2013). The role of parallel genetic 

divergence relative to phenotypic plasticity in causing patterns of trait variation that are similar 

across plant functional types and biomes can be determined using common garden experiments, 

reciprocal transplants, or hybridization studies (Clausen, Keck & Hiesey 1940; Whitham et al. 

2006).  

Using a meta-analysis approach (Borenstein et al. 2009) we assessed (a) whether general 

patterns of variation exist in key plant functional traits along elevational gradients. Trait values 

that vary consistently with elevation would suggest that abiotic factors associated with elevation 

represent a selective gradient to which plants respond consistently. In addition, we asked (b) 

whether variation within species was greater than variation across species assemblages. Finally, 

we conducted a qualitative review of experimental common garden studies to test the hypothesis 



12 

 

(c) that genetic divergence explains a significant proportion of intraspecific variation in 

important plant functional traits.  

Materials and methods 

Trait selection 

We selected three leaf functional traits for analysis based on the availability of data and their 

significant association with the resource conservation-acquisition tradeoff axis. LMA, Nmass, and 

Narea are relatively easy to measure (Pérez-Harguindeguy et al. 2013) and are associated with 

plant resource acquisitiveness and stress-tolerance (Grime 1977; Shipley et al. 2006a; Poorter et 

al. 2008, 2009), composite traits that are difficult or impossible to measure (Wright et al. 2004, 

2005). While natural selection does not operate at the level of traits or even trait syndromes, 

functional trait approaches provide insight into selective processes occurring at the individual-

fitness level that scale up to higher levels of organisation (Violle et al. 2007).  LMA is the 

product of leaf thickness and density, increasing with the proportion of leaf biomass that consists 

of cell wall (Niinemets 2001; Poorter et al. 2009). Leaf N content corresponds to the amount of 

protein and other secondary compounds present within the leaf, which are necessary for 

photosynthesis and growth (Wright et al. 2004). Leaves with high LMA are more tolerant of 

abiotic stress including cold temperatures (Poorter et al. 2009). However, high-elevation plants 

that have high LMA due to increased leaf tissue thickness experience constraints on their 

maximum photosynthetic rate per unit area due to diffusion and shading constraints in the 

interior of the leaf (Körner & Diemer 1987; Poorter et al. 2009). Therefore, high-LMA leaves are 

constrained to have low N content per unit mass and long lifespans to repay leaf construction 

costs (Reich, Walters & Ellsworth 1997). For these reasons, we selected studies where LMA, 

Nmass, or Narea were sampled along elevational gradients for the meta-analysis. 

Literature search 

In March 2012, we conducted a literature search on Web of Knowledge and Google Scholar, 

using combinations of the search terms plant, trait, altitude, and elevation. After screening the 

initial list of over 10,000 articles generated by our database searches and retaining only studies 

that measured plant functional traits at multiple elevations, we selected additional literature from 

parent and child citations, i.e., articles that cited or were cited by articles on the reduced list. For 

each published study, we recorded the identities of the focal species, the traits measured, whether 

variation was examined within or among species, the number and elevations of sites sampled, the 

mean latitude of the gradient, the number of individuals sampled at each site, and the plant 

functional types represented in the study: angiosperm tree, conifer, fern, forb, graminoid, 

legume, or shrub. In addition, we extracted the raw trait data where possible.  

We modelled mean annual temperature (MAT) at all the study sites by georeferencing all site 

coordinates, extracting elevation and temperature data from the SRTM (Jarvis et al. 2008) and 

Bioclim (Hijmans et al. 2005) datasets over a rectangular area spanning 1° × 1° at 0.5’ 

resolution, then generating functions relating elevation and MAT (McCain & Colwell 2011). We 

analysed 46 independent regressions of LMA on MAT modelled as a function of elevation using 

data extracted from 29 papers, 39 regressions of Nmass (23 papers), and 29 regressions of Narea (16 

papers; see Appendix 1). Our analysis was global in scope, including study sites distributed 
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across a wide range of latitudes and both hemispheres (see Figure 5, given as an appendix to this 

chapter). 

We conducted an additional literature search using the terms common garden, genetic, plant, 

trait, leaf nitrogen, and leaf area. We compiled a second database of studies in which plants from 

a single species collected at multiple sites along an elevational or latitudinal gradient were grown 

under controlled environmental conditions in a common garden, and where the investigators 

measured LMA, Nmass, and Narea. This database included the focal species, the traits measured, 

the number of sites sampled, and the statistical technique used to test the hypothesis that 

populations at different elevations vary genetically (see Appendix 2).  

Meta-analysis of trait-elevation relationships 

For each study, we obtained the correlation coefficient, Pearson’s r, of the trait regressed on 

MAT along the elevational gradient and used it to calculate the effect size for that study. The 

effect that each study estimated was a correlation or relationship between MAT and a leaf trait. 

The Pearson’s r is a standardized estimate of the strength of that relationship. When transformed 

to an effect size z, it can be compared among studies, and the mean effect size among many 

studies can be estimated.If necessary, we extracted raw elevation and mean trait values from 

tables or scatter plots using GetData Graph Digitizer 2.24 software (Fedorov 2008) and 

calculated r from the raw data. We calculated degrees of freedom from the number of sampling 

sites along the elevational gradient, instead of treating each sampled individual as independent. 

Averaging trait values at each site in this way ignores variation within a site, avoiding inflation 

of degrees of freedom at the expense of increasing the absolute value of the effect size estimate. 

We calculated the variance around each effect size estimate using the formula , where 

ni is the number of sites sampled in study i (Zar 1999).   

We transformed effect sizes using Fisher’s r-to-z transformation, , to ensure 

that the distribution of effect sizes approximated a normal (DeCoster 2004), and conducted a 

random effects meta-analysis on the transformed correlation coefficients (Field 2001). A random 

effects meta-analysis assumes that the true effect size differs among studies and weights each 

effect size with a parameter accounting for variance across effect sizes (see Appendix 3). We 

back-transformed all mean effect sizes to r values for ease of interpretation.  

We also investigated trends in the pairwise relationships among all three trait pairs using a 

moving-window regression analysis (Loader 1999). The pairwise data included all studies within 

the meta-analysis that measured two or more traits at each site (16 studies for LMA:Narea, 19 for 

LMA:Nmass, and 15 for Nmass:Narea). We sorted data points by modelled MAT and we calculated 

the correlation coefficient r between the two traits at each point within a surrounding bandwidth 

of 10 data points. The moving-window regressions used estimated mean annual temperature 

values as a predictor instead of elevation so that we could compare elevational gradients across 

all latitudes. We fit linear and quadratic regression models to the moving-window coefficients 

for each trait pair and selected the best model using Akaike’s Information Criterion (AIC).  

Sources of variation in effect size 

We constructed generalized linear models with plant functional type, latitude, elevational 

range, minimum elevation, and type of variation (within or among species) as predictors, then 

used a stepwise model selection procedure based on AIC to find the best reduced models. We 
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conducted Z-tests for effect size heterogeneity (Borenstein et al. 2009) to compare the weighted 

mean effect sizes among groups of studies. Finally, we assessed publication bias using a number 

of tests. We found only limited evidence for publication bias in favour of positive results in 

LMA studies, and no evidence for bias in Nmass or Narea studies (See Appendix 4). All analyses 

were done using R 2.14.1 (R Development Core Team 2011), including the packages meta 

(Schwarzer 2012) and raster (Hijmans & van Etten 2013). 

Review of experimental studies 

We did not conduct a quantitative meta-analysis of the common garden and reciprocal 

transplant studies due to low availability of published data. Instead, we determined whether each 

study reported significant genetic effects across elevations, using mean square values from 

analyses of variance or correlation coefficients from linear regressions. We used a vote-counting 

approach (DeCoster 2004) to qualitatively assess the genetic basis of variation in LMA, Nmass, 

and Narea across elevations. 

Results 
Overall, we found that (a) LMA and leaf N content varied with mean annual temperature 

along elevational gradients in similar fashion among plant species, (b) both intraspecific and 

interspecific variation in these traits are of similar magnitude across disparate and extensive 

elevational gradients and (c) much intraspecific variation in leaf traits along elevational gradients 

may be explained by convergent evolution. 

Meta-analysis of trait-temperature relationships 

Across 46 elevational gradients spanning a total of over 4800 meters, the mean effect of 

modelled MAT on LMA was negative (mean r = -0.51, 95% CI = [-0.30, -0.68], P = 1×10
-6

, 

Figure 2a). For Nmass, the mean effect size did not differ significantly from zero (P = 0.84, Figure 

2b). On average for each gradient, there was a significantly negative relationship between Narea 

and MAT (mean r = -0.55, 95% CI = [-0.40, -0.67], P < 1×10
-6

, Figure 2c). The absolute trait 

values showed only weak trends with MAT when compared among all gradients (Figure 6, given 

as an appendix to this chapter).  

The strengths of the correlations among each of the three trait pairs changed significantly 

with increasing mean annual temperature, as revealed by moving-window regression analyses 

(Figure 3). A change in the magnitude or direction of pairwise trait relationships across different 

environments represents strong evidence for environmental filtering across elevations. A 

quadratic least-squares regression model fit the pairwise trait correlation data best for all three 

pairs. At sites with lower mean annual temperature, generally corresponding to high elevations, 

LMA and Narea tended to be positively correlated, but the positive relationship decreased with 

increasing temperature (R
2
 = 0.77, P < 1×10

-6
, Figure 3a). Conversely, at sites with relatively 

lower temperatures, LMA and Nmass tended to be negatively correlated, but the correlation tended 

to approach zero as temperature increased (R
2
 = 0.24, P < 1×10

-6
, Figure 3b). The relationship 

between Nmass:Narea correlation and mean annual temperature tended to be most positive at 

intermediate temperature (R
2
 = 0.39, P < 1x10

-6
, Figure 3c).  
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Figure 2. Effect-size plots for (a) LMA, (b) Nmass, and (c) Narea. Points represent Pearson’s r 

values from each independent regression of trait on modelled mean annual temperature with 

asymmetrical 95% confidence intervals. Within-species studies are circular points with light-

shaded confidence bars, and among-species studies are square points with dark-shaded 

confidence intervals. The large points at left shows the weighted mean effect size with 95% 

confidence bar from a random-effects meta-analysis of within-species studies, among-species 

studies, and overall (diamond point with black-shaded confidence bar; LMA, n =46, r = 0.51; 

Nmass, n = 39, r = 0.03, Narea, n = 29, r = 0.55). 
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Figure 3. Moving-window regression plots for (a) LMA:Narea (R
2
 = 0.77), (b) LMA:Nmass (R

2
 = 

0.24), and (c) Nmass:Narea (R
2
 = 0.39). Points represent the correlation coefficient between the two 

traits at a particular site and the ten surrounding data points, sorted by estimated mean annual 

temperature. A quadratic trendline was fit to each pairwise comparison. 
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Sources of variation in effect size 

Studies that measured variation in LMA within species had a significantly more negative 

mean effect size than did studies that measured community-level variation (Z = 2.35, P = 0.02). 

For Nmass, there was no significant difference between intraspecific and interspecific studies, 

neither of which had an overall mean effect size different from zero (Z = 0.52, P = 0.60). Mean 

effect sizes for Narea within species and among species were both significantly negative (P < 

1x10
-6

, P = 1x10
-6

) and did not differ from one another (Z = 0.31, P = 0.95). 

Plant functional types varied in their average trait response to decreasing MAT with 

increasing elevation. LMA decreased with increasing MAT in forbs (mean r = -0.47, 95% CI = [-

0.24, -0.65], P = 0.002) and angiosperm trees (mean r = -0.74, 95% CI = [-0.44, -0.90], P = 

0.0001), with no significant trend in conifers (P = 0.81). Narea was negatively correlated with 

MAT in forbs (mean r = -0.46, 95% CI = [-0.27, -0.62], P = 2×10
-5

) and angiosperm trees (mean 

r = -0.65, 95% CI = [-0.46, -0.79], P < 1×10
-6

); as before, conifers showed no trend. No 

individual functional type showed a significant relationship between MAT and Nmass.
 
 

Model selection did not show a consistent effect of any one factor in determining variation in 

effect size across the three traits (see Table 1). For LMA, type of variation (within-species versus 

among-species) explained the most variation in effect size in the best models, with within-

species studies having a more negative mean effect size. For Nmass, plant functional type was 

retained as a significant predictor in the best models because conifers tended to have a weaker 

relationship between Nmass and MAT, while other functional groups tended to have greater Nmass 

at sites with lower MAT at higher elevations. Finally, for Narea, only gradient length was retained 

as a significant predictor in the best models, indicating that studies conducted over a wider range 

of elevations tended to have larger absolute effect sizes, as expected. 

Review of experimental studies 

In a majority of the common garden studies we reviewed, genetic divergence among 

populations from different elevations or latitudes was a significant driver of variation (Figure 4). 

Of 17 studies measuring LMA, 13 (76%) showed significant genetic effects. Of 12 studies 

measuring Nmass, 9 (75%) showed genetic effects, and 4 of 5 (80%) studies measuring Narea 

showed these effects.  

The most salient results of our meta-analysis are (a) general patterns emerge with elevation in 

leaf economic traits due to consistent abiotic gradients associated with elevation; (b) trait 

variation within plant species is equal to or greater than community-level variation, supporting 

the view that plant community composition is the result of a hierarchy of processes acting on 

individuals (Sundqvist, Sanders & Wardle 2013); (c) a significant proportion of the variation 

observed in the field is driven by genetic effects, consistent with our expectation that parallel 

evolutionary processes and phenotypic plasticity act in concert to produce functionally 

meaningful patterns in plant traits. 

Across many taxa and systems, LMA was positively associated with elevation; previous 

studies have found that LMA increases with elevation in alpine plants (Körner et al. 1989) and 

trees (Körner 2012). Furthermore,  LMA varies significantly with light, temperature, CO2 

concentration, and nutrient stress across plant taxa (Poorter et al. 2009), all variables that change 

with elevation above sea level. Although some functional groups responded positively to 

elevation (forbs, angiosperm trees) and others did not respond (conifers), no functional group  
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Figure 4. Bar plot showing the proportion of studies that found a significant genetic basis to 

variation along an elevational or latitudinal gradient from the quantitative reviews of common 

garden experiments measuring each of the three traits (LMA, 13/17 studies; Nmass, 9/12 studies; 

Narea, 4/5 studies). 
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declined significantly in LMA as elevation increased. Similarly, the meta-analysis of Poorter et 

al. (2009) found that plant functional groups differed in their plasticity with respect to 

environmental gradients. We found significantly positive trends in LMA not only among 

populations of the same species, but among species assemblages at different elevations along a 

gradient. Increased leaf density that often accompanies increased LMA is associated with a 

higher percentage of biomass in N-poor cell walls (Craine 2009; Poorter et al. 2009). 

Nonetheless, Narea increased with LMA as expected. The lack of response in Nmass, contrary to 

our hypothesis, suggests that variation in Nmass is limited by physiological constraints that vary 

independently of elevation. Coupled with an increase in LMA and Narea with elevation, constant 

Nmass leads to higher C:N ratios in leaf tissue. Elevated C:N ratios in leaves should, in turn, 

influence foliar herbivory, decomposition, nutrient cycling, and transpiration, ultimately feeding 

back into plant community structure (Bardgett & Wardle 2010). Our pairwise correlation 

analysis showed that at  sites with relatively lower mean annual temperature ( at high elevations), 

LMA and Narea were more positively correlated and LMA and Nmass were more negatively 

correlated, although the trend was relatively weaker for LMA:Nmass. The tightness of the 

relationship among traits tends to change along with their absolute values, providing additional 

support for the hypothesis that the strength of environmental filters changes along environmental 

gradients.   

Discussion 
We found that Nmass was as likely to decrease with elevation as increase, which may be 

explained by biological constraints on the range of leaf N content within a species or local 

community coupled with different optimum N concentrations in different environmental 

contexts. Although N content in plant tissue is often closely linked with soil N availability, 

which shows no global trend with elevation (Körner 2007), developmental constraints on high-

elevation plants may decouple Nmass and Narea from soil N content (Körner 1989), contributing to 

the trends observed here. In particular, constraints on tissue formation in high-elevation plants 

may inhibit the dilution of N and other nutrients in leaf tissue (Körner 1989), leading to higher 

observed Narea values and higher metabolic activity per leaf area at high elevations, regardless 

of the degree of soil nutrient limitation. Belowground functional traits, such as specific root 

length or root nutrient content, show similar patterns due to similar constraints on tissue 

formation and growth resulting from stressful environments at high elevations (Körner & 

Renhardt 1987, Álvarez-Uria & Körner 2011). Unfortunately, sufficient data do not yet exist to 

conduct a meta-analysis for belowground traits. 

While the overall relationship between elevation and Nmass was not negative as we predicted, 

we found that at least two traits, LMA and Narea, that are associated with plant life-history 

strategies (Wright et al. 2004) varied predictably with elevation. This finding lends support to the 

hypothesis that selection imposed by the environment on linked traits leads to trait convergence 

along similar environmental gradients. Specifically, selective pressures associated with harsher 

environmental conditions at higher elevations promote leaf trait syndromes associated with 

superior stress tolerance but inferior competitiveness; this supports the hypothesis that the role of 

environmental filtering in community assembly increases with elevation (Callaway et al. 2002). 

However, in many cases, LMA and leaf N content do not fully capture the syndrome of 

responses exhibited by high-elevation plants; for example, due to colder temperatures and shorter 
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growing seasons at higher elevations, tissue formation is highly constrained (Körner et al. 1989). 

As a result, leaf size tends to decrease with elevation (Körner, Bannister & Mark 1986; 

Kouwenberg et al. 2007; Bresson et al. 2011), causing allometric responses in leaf 

morphological traits including LMA. Although abiotic constraints at high elevations may explain 

some of the variation we observed without invoking adaptation, our review of common-garden 

studies provides additional support for the existence of adaptive trade-offs along elevational 

gradients. 

In our meta-analysis, population-level variation equalled or exceeded community-level 

variation along elevational gradients, suggesting a consistent selective effect of environmental 

factors associated with elevation across multiple levels of organisation. The composition of a 

plant assemblage is the result of a hierarchy of filters that select species and traits from a regional 

pool over both ecological and evolutionary time, comprising both abiotic filters and biotic 

interactions (Lavorel & Garnier 2002). Intraspecific variability enables plants to pass through 

abiotic filters across a wider range of elevations (Jung et al. 2010). Intraspecific variation was 

equal to or greater than interspecific variation, suggesting that the filter imposed by elevation on 

individual plants may dictate the composition of local communities found along elevational 

gradients, and that intraspecific variation is an important driver of community structure and 

ecosystem function.  

In general, the consistent responses we observed can be explained by a combination of 

phenotypic plasticity and genetic variation. Our qualitative review of common garden studies 

using plants from multiple sites along elevational and latitudinal gradients showed that genetic 

divergence often explains a significant amount of variation in our three functionally important 

leaf traits, LMA, Nmass, and Narea. Genetic variation is essential for plants to adapt to long-term 

climate change. Phenotypic plasticity is the most important mechanism by which plants can react 

to short-term environmental changes (Agrawal 2001; Matesanz, Gianoli & Valladares 2010), but 

if the magnitude of change is severe enough, plastic responses will be insufficient to cope with 

change (Valladares, Gianoli & Gómez 2007). Unless the reaction norm evolves to fit the new 

environmental conditions, the species will suffer long-term fitness consequences or become 

locally extinct (Sultan 2000). It is important to note that plasticity is itself a trait under genetic 

control (Schlichting & Pigliucci 1993) and that evolution by natural selection may lead to 

increased plasticity for important plant functional traits in variable environments and in a 

changing climate (Agrawal 2001; Matesanz et al. 2010). 

With climate change, plants are being forced to evolve, move, be plastic, or go locally extinct 

(Bellard et al. 2012). For example, movement toward mountaintops and toward the poles is 

taking place, resulting in the reshuffling of plant genotypes, species, and communities on the 

landscape (Parmesan & Yohe 2003; Beckage et al. 2008; Lenoir et al. 2008; but see Crimmins et 

al. 2011). Global patterns of plant functional traits with elevation may be useful as a space-for-

time substitution to provide insights into the responses of plant species and communities to 

temporal change caused by humans (Dunne et al. 2004; Fukami & Wardle 2005). Plant taxa that 

show relatively higher levels of genetic and phenotypic variation along elevational gradients may 

have a higher capacity to respond to global change, in addition to expected uphill or poleward 

dispersal (Beckage et al. 2008; Rapp et al. 2012). Physiological changes driven by both genetic 

divergence and phenotypic plasticity may contribute to the overall response of plant communities 

to the selective agent of climate change (Bellard et al. 2012), just as they determine the ability of 
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plants to pass through existing environmental filters. Regardless of the mechanism, our results 

indicate that different locally adapted ecotypes, and different species within assemblages, are 

associated with changes in the abiotic environment along elevational gradients. Our results speak 

to the paramount role of abiotic filtering in community assembly, with potential implications for 

changing community structure and ecosystem function on a warming planet. 
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Appendix 3: Equations 

The following equations were used to calculate the mean and standard error of the effect size 

for each trait. Here, 𝑘 = the number of studies in the meta-analysis for the trait, 𝑛𝑖 = the sample 

size of study i, and 𝑟𝑖 = the correlation between elevation and the trait estimated in study i. We 

used Fisher’s transformation (Eq. 1) to estimate the effect size 𝑧𝑖 from each study. The variance 

𝑣𝑖 of each effect size is inversely proportional to sample size (Eq. 2). 𝑧𝑓𝑖𝑥𝑒𝑑 is the mean effect 

size from the fixed effect model (Eq. 3), estimated using the inverse-variance weights, (𝑛𝑖 − 3). 

𝑧𝑓𝑖𝑥𝑒𝑑 is used to estimate the heterogeneity parameter Q (Eq. 4). The effect size weights from the 

fixed-effect model are also used to calculate the constant c (Eq. 5). Q, k, and c are used to 

estimate 𝜏2, the parameter that accounts for variance in effect size across studies (Eq. 6). 

Random-effect weights 𝑤𝑖
∗are proportional to sample size and are additionally weighted with the 

𝜏2 parameter (Eq. 7). Finally, 𝑧, the mean effect size from the random-effects model, is 

estimated using the random-effects weights (Eq. 8), as well as its standard error 𝑆𝐸(𝑧̅) (Eq. 9).  

 

Equation 1.  

Equation 2.  

Equation 3.  

Equation 4.  

Equation 5.  

Equation 6.  

Equation 7.  

Equation 8.  
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Equation 9.  
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Appendix 4: Assessment of publication bias 

We used the rank-correlation method (Begg & Mazumdar 1994) and Egger’s linear 

regression test (Egger 1997) to test for publication bias; a disproportionate number of small 

studies with large positive effect would indicate that some non-significant results were withheld 

from publication. Rank correlation tests detected no significant asymmetry in funnel plots of 

study size versus effect size, indicating no significant publication bias for any trait (P > 0.05 in 

all cases). However, Egger’s tests indicated a significant increase in variance of effect sizes as 

the standardized effect size increased for LMA (P = 0.01), but not for Nmass or Narea (P > 0.05). 

Therefore, one of two commonly used tests for publication bias in meta-analyses provided 

evidence that some investigators measuring LMA along an elevational gradient may have found 

no relationship with elevation and not published their results; the findings here should be 

considered in this light. 
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Table 1. Model selection criteria for models exploring sources of variation in effect size for three 

functional traits. 

LMA 

predictors ΔAIC 

variation type, minimum elevation, latitude 0 

variation type, minimum elevation, elevation range 0.39 

variation type, minimum elevation 0.44 

leaf Nmass 

predictors ΔAIC 

latitude, minimum elevation, PFT, variation type 0 

latitude, minimum elevation, PFT 0.03 

latitude, minimum elevation, variation type 1.11 

leaf Narea 

predictors ΔAIC 

elevation range 0 

elevation range, latitude 0.96 

elevation range, variation type 1.01 

 

  



31 

 

Figure 5. Study sites where one or more elevational gradients included in the meta-analysis were 

sampled for (a) LMA, (b) Nmass, and (c) Narea. 
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Figure 6. Meta-regression plots for (a) LMA, (b) Nmass, and (c) Narea. Grey lines represent least-

squares regression fits for each study, grey points represent raw site mean data from the 

individual studies, and bold black lines represent a least-squares meta-regression fit for all 

studies combined. A small but significant amount of variation was explained by modeled mean 

annual temperature in Nmass (R
2
 = 0.04) and Narea (R

2
 = 0.10). 
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CHAPTER II 

ACCOUNTING FOR THE NESTED NATURE OF 

GENETIC VARIATION ACROSS LEVELS OF 

ORGANIZATION IMPROVES OUR 

UNDERSTANDING OF BIODIVERSITY AND 

COMMUNITY ECOLOGY 
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Abstract 
Recent work has demonstrated that the presence or abundance of specific genotypes, 

populations, species and phylogenetic clades may influence community and ecosystem 

properties such as resilience or productivity. Many ecological studies, however, use simple linear 

models to test for such relationships, including species identity as the predictor variable and 

some measured trait or function as the response variable without accounting for the nestedness of 

genetic variation across levels of organization. This omission may lead to incorrect inference 

about which source of variation influences community and ecosystem properties. Here, we 

explicitly compare this common approach to alternative ways of modeling variation in trait data, 

using simulated trait data and empirical results of common-garden trials using multiple levels of 

genetic variation within Eucalyptus, Populus, and Picea. We show that: (1) when nested 

variation is ignored, an incorrect conclusion of species effect is drawn in up to 20% of cases; (2) 

overestimation of the species effect increases—up to 60% in some scenarios—as the nested term 

explains more of the variation; and (3) the sample sizes needed to overcome these potential 

problems associated with aggregating nested hierarchical variation may be impractically large. In 

common-garden trials, incorporating nested models increased explanatory power twofold for 

mammal browsing rate in Eucalyptus, threefold for leaf area in Populus, and tenfold for branch 

number in Picea. Thoroughly measuring intraspecific variation and characterizing hierarchical 

genetic variation beyond the species level has implications for developing more robust theory in 

community ecology, managing invaded natural systems, and improving inference in biodiversity-

ecosystem functioning research. 

Introduction 
Biodiversity is inherently nested. Genetic variation is differentially expressed within sub-

populations and populations, within and among species, and, most broadly, across phylogenetic 

clades. At any level of biological organization, this variation may be expressed in traits that may 

in turn influence community structure or ecosystem properties. For example, two recent 

experimental studies showed that population-level genetic differentiation drives community 

structure in natural arthropod communities (Barbour et al. 2009), and that trait variation among 

species and phylogenetic clades influence a diversity-stability relationship in the overall 

accumulation of plant biomass in artificial communities (Cadotte et al. 2012). Understanding the 
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relationship between genetic diversity, species diversity, and ecosystem properties has been 

fundamental to basic research linking ecological and evolutionary disciplines for decades 

(Tilman et al. 1997; Hooper et al. 2005; Fargione et al. 2007), including the growing field of 

community and ecosystem genetics (Whitham et al. 2006; Hughes et al. 2008; Genung et al. 

2012; Bailey et al. 2014). Recently, studies in eco-evolutionary dynamics have shown 

experimentally that genotype changes in response to selective environmental pressures often 

have ecosystem consequences (Turcotte et al. 2013; Hiltunen & Becks 2014). This knowledge is 

critical for predicting the consequences of climate change (Singer & Thomas 1996; Savolainen et 

al. 2007; Visser 2008), assessing the effects of exotic species (Hobbs & Huenneke 1992; Levine 

& D'Antonio 1999; Levine et al. 2003; Fargione & Tilman 2005), and boosting food production, 

among other ecosystem services (Hoehn et al. 2008; Feld et al. 2009; de Bello et al. 2010; 

Cardinale et al. 2012). Correct inference regarding the source of genetic and trait variation, and 

its consequences, is critical for making predictions grounded in theory about how biodiversity 

changes will affect ecosystem functioning. 

 Accounting for the nested nature of biodiversity (e.g., that genotypes are nested within 

populations, populations exist within species, and species are nested within phylogenies) is rarely 

undertaken in studies measuring the functional consequences of biodiversity (but see Cook-

Patton et al. 2011; Schöb et al. 2015). Without considering variation in a trait at a lower level 

(e.g., genotype), estimates of differences at a higher level (e.g., species) may potentially be 

inflated.  Similarly, examining trait differences among phylogenetic clades without accounting 

for variation among species would yield similarly increased estimates of effect size. In both 

cases, this is simply because only considering higher-order variation (i.e., species or 

phylogenetic clade, respectively) means that much of the variation among individuals is assigned 

incorrectly, either to higher-level differences or to residual variation (i.e., variation among 

species may simply be due to variation among genotypes or populations and not reflect true 

differences among species).  Despite the potential for inflated effect sizes and incorrect 

inference, estimates of differences in traits or functions among populations, or species, in a range 

of contexts routinely do not account for the nested nature of biodiversity. For example, many 

landmark studies in biodiversity-ecosystem functioning relationships have treated species 

richness as synonymous with diversity, neglecting any genotypically driven or within-species 

variation (e.g., Tilman et al. 1997; Caliman et al. 2013; Isbell et al. 2013). One alternative in 

biodiversity-ecosystem functioning experiments is to manipulate genotype identity or diversity 

within species, as several recent experimental studies have done (Hiltunen & Becks 2014; 

Rudman et al. 2015). However, this labor-intensive approach is admittedly prohibitive in some 

systems. In such cases, we recommend either indirectly addressing intraspecific variation with a 

functional trait approach (Díaz et al. 2007) or, at the minimum, explicitly stating that taking into 

account variation at lower levels could change the magnitude or significance of the findings. 

Trait distributions of different species within an assemblage can overlap greatly; therefore, 

genotypic variation within species may represent the bulk of variation in traits that drives 

variation in ecosystem function (Crutsinger et al. 2006, 2014). Unfortunately, variation between 

genotypes is not captured in an aggregated estimate of species-level variation. Appropriate 

aggregation requires much larger sample sizes than would be expected from sampling a single 

distribution. Hence, stratifying trait samples only at the species level may lead to an increased 

chance of the investigator concluding that there is an effect of species identity on a response trait 
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or ecosystem process. In many cases, the result is more properly attributed to variation at the 

within-species genetic level. If sampled individuals are only binned by species, the uneven 

sampling of variation at levels lower than species can lead to Type I error where trait variation is 

attributed solely to species identity. This phenomenon is not merely statistical nuance – this 

misleading and incorrect inference may have profound effects on how we interpret ecological 

patterns and how theory is developed. For example, Schöb et al. (2015) found that for barley 

plants and associated weed species that were planted in monoculture and mixture, the effect on 

overall productivity of increasing genotypic variation in barley was qualitatively different than 

the effect of increasing species richness of associated weeds. This result is different from what 

one would predict from a non-nested model. It suggests, as do other similar studies (e.g., Pante et 

al. 2015), that aggregating or averaging out intraspecific variation can lead investigators to 

overlook critical processes that structure natural systems. 

An approach that goes beyond a narrow focus on species identity has important implications 

for extending the scope and power of numerous fields of ecological research. For example, in 

invasion biology, genetically based trait variation can explain variation in the success of invasive 

species (Lindholm et al. 2005; Roman & Darling 2007), as well as variation in the ability of 

resident communities to resist invaders (Crutsinger et al. 2008). More generally for community 

ecology, the inclusion of genetically based intraspecific variation is vital for increasing our 

understanding of the forces driving species coexistence. For example, individual-level trait 

diversity is necessary for species coexistence in temperate forests (Clark 2010), and underlies the 

relationship between environmental stress and the net balance between competition and 

facilitation among tree species (Coyle et al. 2014). Predictions of species responses to ongoing 

global change may also be made more accurate by incorporating genotypic and phenotypic trait 

variation within species, which has been shown in the context of trait variation within a single 

species (Anderson & Gezon 2015) as well as across species at the landscape level (Fitzpatrick & 

Keller 2015). Finally, meta-analyses (Cardinale et al. 2012) and reviews (Hooper et al. 2005) in 

the biodiversity-ecosystem functioning field have synthesized studies assessing the consequences 

of changes to biodiversity. However, diversity metrics that are partitioned more finely than at the 

species level have been largely neglected in the studies that are synthesized in these meta-

analyses. If the published studies from which estimates of effect size in these meta-analyses are 

derived fail to account for the nested nature of biodiversity, the grand-mean effect size estimates 

may be inflated or incorrect (Borenstein et al. 2009). 

Using simulated trait data and three empirical examples as case studies, we examine how 

inferences drawn from models including nested hierarchical variation differ from those drawn 

using models that do not incorporate this variation. We show that: (1) when hierarchically nested 

variation is ignored and only one level of variation, such as the species level, is considered, an 

incorrect conclusion of a species identity effect where one does not exist is drawn in up to 20% 

of cases (i.e., Type I error); (2) overestimation of the proportion of variation explained by species 

identity increases up to 60% under some scenarios; and (3) the sample sizes needed to overcome 

these potential problems associated with aggregating nested hierarchical variation may be too 

large to feasibly achieve, demonstrating the importance of partitioning variation among 

individuals at multiple levels of diversity. Such potentially high rates of type I error and inflated 

effect size suggest that taking the hierarchically nested nature of biodiversity into account is an 
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important step in biodiversity research and should be considered in future theoretical and 

empirical studies.  

Simulated data sets 

Generation of simulated data 

 Our goal was to determine the statistical effect of nesting compared to an approach without 

nesting when a genetic hierarchy (i.e., genotypes nested within species) exists and is available to 

incorporate into ecological field or laboratory studies. Specifically, we examined variation in 

genotypes when comparing trait means in a system in which some variation in a continuous 

quantitative trait is due to among-genotype differences within a species and some is due to 

among-species differences. The hierarchical levels simulated need not necessarily be limited to 

genotype nested within species; our results could equally apply to any other level of genetic 

hierarchy, such as species nested within phylogenetic clades.  

We simulated trait data as follows. First, we generated an allele matrix M with variable 

numbers of binary  loci with a value of either 1 or -1 that together represent a simulated genotype 

for each individual within a species. In each replicate simulation, M is an m × n matrix, where m 

is the number of individuals in the simulated population and n is the number of genetic loci. The 

total additive genetic variation G for each individual was calculated by taking the cross product 

of the transposed matrix containing allele values and a vector with length m of normally 

distributed random variables U representing variation across genotypes: 

. This results in a vector of length m. Each individual was assigned 

a phenotype or trait value Y by adding a normally distributed environmental noise term V (also a 

vector of length m) to its genotype value: . In this way, 

individuals of the same genotype may have differing phenotypes. For each replicate simulation 

run, we generated a new allele matrix M and vectors U and V. The heritability value H
2
 

represents the proportion of variation in the trait value due to variation in the genotype (i.e., 

broad-sense heritability). The simulation procedure is outlined in Figure 7. 

All simulations consisted of two species. The parameters that were varied across simulations 

included the standard deviation σg of the genotype value, the mean trait value μs for each species, 

the heritability H
2
, the number of individuals, and the number of binary loci. We simulated 100 

datasets for each combination of parameters, including 10, 50, and 100 individuals per species; 1, 

2, and 3 loci (yielding 2, 4, and 8 possible genotypes per species); heritability values H
2
 = {0, 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; species means μ1 = 0 and μ2 = {0, 0.1, 0.25, 0.5, 1, 2, 5, 

10}; and genotype standard deviation σg = {0.1, 0.25, 0.5, 1, 2, 5, 10}. In addition, to assess the 

influence of increasing the number of loci per individual while heritability is held constant, we 

conducted an additional simulation with 10 datasets for each of the following combinations of 

parameters: 100 individuals per species; each possible number of loci from 1 to 10; H
2
 = 0.5; 

species means μ1 = 0 and μ2 = {0, 1, 5, 10}; and genotype standard deviation σg = {0.1, 1, 5, 10}. 

Data were simulated in the R 3.0.1 statistical programming language (R Core Team 2013).  

We were additionally interested in assessing the sample size needed to appropriately 

aggregate trait differences at the species level while assuming different magnitudes of genotype-

level variation. We considered the specific case in which two species had identical mean trait  
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Figure 7. Diagram outlining the procedure we used to generate simulated trait data, including 

generating sets of alleles for each individual and drawing trait values from hierarchically nested 

normal distributions. 



39 

 

values, but each species consisted of eight genotypes that differed in trait means, with heritability 

H
2
 = 0.5, and genotype standard deviation σg = {0.1, 0.25, 0.5, 1, 2, 5, 10}. The more appropriate 

(i.e., larger) the sample size, the closer to zero the difference in estimated species means, |μ1- μ2|, 

should be.  We conducted this separate simulation with larger variation of sample sizes (10
1
, 10

2
, 

10
3
, 10

4
, and 10

5
 individuals per species). We generated 100 replicate datasets for each of the 

above combinations of sample size and genotype standard deviation. For each replicated dataset, 

we calculated the observed difference between the species-level sample means and compared 

them to the expected difference of zero, assuming a normal distribution, N(0, σg),  to estimate the 

standard error of the difference between means across datasets. The sample size simulation was 

carried out in the MATLAB v8.4 programming language (MathWorks, Natick, MA, USA, 

2014). 

Statistical analysis of simulated data 

 We used two different approaches to statistically model the variation in trait means within 

each data set: (1) non-nested linear models with the trait as response variable and species as a 

categorical fixed effect, a common method of analyzing trait data across a broad range of studies 

and sub-disciplines, and (2) nested mixed models with the trait as response variable, species as a 

categorical fixed effect, and genotype as a categorical random effect nested within species. It is 

important to note that we did not explicitly use species or genotype diversity as an effect in either 

model; we concerned ourselves only with the way individuals were binned when statistically 

modelling variation in trait values. The models were fit using the R language (R Core Team 

2013); in particular, mixed models were fit with the lmer function in the lme4 package (Bates et 

al. 2015) using the restricted maximum likelihood method. 

The coefficient of determination (R
2
) and Akaike’s Information Criterion (AIC) were 

calculated for both types of model. We calculated the R
2
 for nested mixed models using a 

variance decomposition technique (Nakagawa & Schielzeth 2013); we partitioned the total 

variance estimated by the model into the variance of the random effects and of the fixed effects, 

and the residual variance. The R
2
 value is decomposed into two components: the marginal R

2
, or 

the percent variation explained by fixed effects, is the variance of the fixed effects divided by the 

total variance (fixed + random + residual variance). The conditional R
2
, accounting for both 

fixed and random effects, is the sum of the fixed and random effect variance divided by the total 

variance term. We compared the estimates of the proportion of variation explained by species in 

non-nested models and nested mixed models by subtracting the marginal R
2
 of the mixed model 

from the R
2
 value of the non-nested model. We calculated the variance components with the 

rsquared.GLMM function in the MuMIn package (Kamil Bartoń 2015). For both the non-nested 

and the mixed nested models, we calculated the p-value using a likelihood ratio test, comparing 

the full fitted model with a model only fitting an intercept for the non-nested models, and a 

model fitting the intercept and the random effect for the nested models (lmtest package; Achim 

Zeileis & Torsten Hothorn 2002). 

We quantified how each parameter of the simulation influenced (1) the R
2 

value associated 

with the species term in each model type, (2) the difference in AIC scores (hereafter ΔAIC) 

between the nested and non-nested models, and (3) the proportion of times that each model 

included a species coefficient significantly different from zero at α = 0.05. Scripts from all of our 

analyses are included as supplementary information. 
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Influence of variance in parameters on inference drawn from simulated datasets 

Fitting both non-nested and nested mixed models to our simulated datasets revealed that non-

nested models uniformly overestimate the proportion of variation explained by species (ΔR
2
, the 

R
2
 of the non-nested model subtracted from the marginal R

2
 of the nested model) if genotype-

level variation is ignored, with overestimates of marginal R
2
 ranging from 0 to 0.62. 

Overestimates of species-level variation decreased with increasing sample size and increased 

with heritability (Figure 8a), although ΔR
2
 values varied most at the lowest sample size of 10 

individuals, occasionally exceeding 0.6 in some simulation runs (Figure 14, see chapter 

appendix). In addition, overestimates were highest when the variance in genotype means was 

similar to the difference between species means (i.e., both very small or both very large; Figure 

8b). When either variance parameter was much larger than the other, the non-nested model 

estimated the proportion of variation due to species accurately, even at high heritability values 

(Table 2; Figure 14, see chapter appendix).  

In addition, despite the increased number of parameters required to model variation by genotype 

and the penalty assessed for model complexity by Akaike’s Information Criterion, model 

selection most often chose the more complex model incorporating genotype; ΔAIC between non-

nested and nested models was positive 83% of the time and increased with heritability (Figure 9). 

The ΔAIC increased with increasing sample sizes from 10 to 100 individuals, but did not 

systematically change with the absolute difference in species means or the among-genotype 

standard deviation (Table 2; Figure 15 in chapter appendix). This indicates that a nested model is 

a more parsimonious fit to the data regardless of the differences in trait values. 

Regardless of the actual proportion of variation explained, many studies draw biological 

inferences solely from the p-value of a null-hypothesis significance test. When the trait variation 

is modeled using only the fixed factor of species, an investigator would draw a different 

inference compared to the nested mixed model. When we evaluated the statistical significance of 

the likelihood ratio of each model fit at α = 0.05, a significant effect of species on the trait mean 

was found much more often in the non-nested model than the nested model (44% of cases versus 

27%, respectively, for all parameter combinations). As heritability increased, the proportion of 

discrepancies in null hypothesis rejection between the non-nested and nested mixed model 

increased, ranging from 14% at H
2
 = 0 to 20% at H

2
 = 0.9 (Figure 10a). As before, the 

discrepancies among models were most frequent when the species and genotype-level variance 

terms were either both small or both large; both statistical techniques generally agreed when one 

variance term was much larger than the other (Figure 10b and c). Finally, increasing sample size 

tended to cause models to support opposing inference more often, as increased statistical power 

meant that p-values for the non-nested model were more likely to drop below the significance 

threshold, all else being held constant (Table 2; Figure 16 in chapter appendix). 
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Table 2. Effect of variation in simulation parameters on explanatory power and parsimony of 

nested mixed versus non-nested models. 

Parameter 

Effect on 

ΔR
2
 

Effect on 

ΔAIC 

Population sample size n negative positive 

Heritability H
2
 positive positive 

Genotype variance σg variable none 

Species mean difference μ1 - μ2 unimodal none 

Number of loci negative unimodal 
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Figure 8. Mean differences between the R
2
 value of the non-nested model and the marginal R

2
 

value of the species effect in the nested mixed model (y-axis) for different combinations of 

parameters in the simulated data. In panel (a) at top, the heritability parameter is on the x-axis, 

and each line shows the mean ΔR
2
 value at each combination of heritability and sample size 

(colored labels associated with each line). In panel (b) at bottom, the preset difference between 

species means is on the x-axis, and each line shows the mean ΔR
2
 value at each combination of 

species mean difference and among-genotype variance (colored labels associated with each line). 
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Figure 9. Boxplots showing information criteria versus heritability. As the heritability parameter 

(x-axis) of simulated trait data sets increased, there was a corresponding increase in the ΔAIC 

value (y-axis) comparing the nested mixed model to the non-nested linear model, indicating that 

the nested mixed model is more superior as heritability increases. 
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Figure 10. Discrepancy among models considering α = 0.05 significance threshold from 

simulation results. Bars are shaded based on the proportion of simulation outcomes. White-

shaded bars indicate that neither model rejected the null hypothesis that species means are 

equivalent, grey shading indicates that both rejected this hypothesis, and black indicates that only 

the non-nested model rejected this hypothesis. The proportion of simulations in which both 

models reached the same conclusion decreased as the heritability parameter increased (a), was 

lowest at intermediate among-genotype variance (b), and was lowest at intermediate among-

species trait mean differences (c). 
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The previous datasets were generated from simulated genotypes with few loci (1, 2, or 3); the 

additional simulations we ran with number of loci ranging from 1 to 10 showed that increasing 

the number of loci decreased the effect of accounting for nested variation on ecological inference 

(Table 2; Figure 11). Increasing the number of loci had little effect on the model selection 

criteria at low numbers of loci: across all combinations of parameter values, median ΔAIC was 

highest (1153.9) with 3 loci. At higher numbers of loci, median ΔAIC steadily decreased: the 

median value with 10 loci was 75.1 (Figure 11a). While this difference is still large enough to 

signify that a nested mixed model is more parsimonious than a non-nested linear model, the 

increase in explanatory power may not be great enough to justify the additional effort in some 

cases, as both the ΔR
2
 value and proportion of false positive results both approached zero as 

number of loci increased (Figure 11b and c). Finally, our simulation of observed difference in 

sample means with increasing sample size showed the pattern that as sample size increased, the 

effect size associated with species decreased (Figure 12). The absolute value of the mean effect 

size decreased despite no change in true difference in sample means as sample size increased. In 

our particular example, the spuriously high observed difference in species-level means was 

present even at relatively high levels of within-genotype variance, and did not disappear until 

impractically large sample sizes were assumed (Figure 12).  

Empirical data sets 

Common-garden studies 

We used data from three previously conducted common-garden studies to illustrate similar 

patterns to the ones we observed in simulated datasets. Each data set represents different levels 

of hierarchically nested biological variation (for the first, family nested within species, and for 

the second two, genotype nested within locality), illustrating that the nestedness of variation— 

and potential pitfalls for inference—are independent of the particular level examined. The first, 

established in Tasmania, was a controlled cross trial of multiple Eucalyptus species in three 

clades within the subgenus Symphyomyrtus, with a total of 332 individuals measured across 85 

families nested within 16 cross types (Gorman et al. 2014). The second study consisted of 

genotypes of cottonwood (Populus angustifolia) distributed in the arid Southwestern United 

States, with a total of 74 individuals measured across 37 genotypes nested within six localities 

along an elevation gradient (Whitham et al. 2006 and references therein). See the above two 

references for specific methods.  Finally, in the third study, which consists of previously 

unpublished data, seeds from 10 red spruce (Picea rubens) genotypes from 6 different 

mountaintop populations were collected in Great Smoky Mountains National Park (TN/NC, 

USA). The seeds were cold-stratified, germinated, and potted in a randomized single-block 

design in a greenhouse. After one year, the seedlings were measured for a number of properties 

relating to plant architecture. Here, we present one response variable from each set of trials: level 

of mammal browsing from the Eucalyptus trials, leaf area measurements from the Populus trials, 

and number of branches from the Picea trials. Each of the traits we selected represents an easily 

measured property of a plant; the traits were chosen to demonstrate patterns of variation similar 

to those observed in the simulated data. 
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Figure 11. Effect of increasing the number of loci, displayed on the x-axis in all three panels, on 

(a) ΔAIC comparing the non-nested linear model and nested mixed model; (b) ΔR
2
 comparing 

the two models; and (c) discrepancy between the two models considering the α = 0.05 

significance threshold. As in Figure 10, white-shaded bars indicate that neither model rejected 

the null hypothesis that species means are equivalent, grey shading indicates that both rejected 

this hypothesis, and black indicates that only the non-nested model rejected this hypothesis. The 

ΔAIC value was highest at 3 loci, but the ΔR
2
 and the proportion of discrepancies both decreased 

with increasing numbers of loci. 
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Figure 12. Absolute value of observed difference in species means plotted on the y-axis against 

the logarithm of sample size on the x-axis. Each of the simulated datasets was drawn from a 

distribution with a mean of zero, so the expected μ1 – μ2 = 0. The width of the shaded region 

around each line is the standard error of the difference between means, and the color of each 

shaded region represents the value of σg, genotype-level standard deviation. 
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We analyzed each of the empirical data sets in the same way as the simulated data sets, 

modeling each one using a non-nested model with species or locality as a categorical fixed effect 

and a nested mixed model with family or genotype nested within species or locality (see above). 

We generated bootstrapped standard errors for each estimate of R
2
 by drawing with replacement 

from the trait values until reaching the original sample size, calculating the marginal and 

conditional R
2
 values, and repeating the procedure 9999 times (boot package; Angelo Canty & 

Brian Ripley 2015). 

Application of different statistical models: Eucalyptus 

A significant amount of variation in mammal browsing percentage in Eucalyptus spp. was 

explained by species in the non-nested ANOVA model. However, accounting for family in a 

mixed model reveals that the species term accounts for a relatively small proportion of the total 

variation explained by the nested mixed model (non-nested model R
2
 = 0.13, mixed-model 

conditional R
2
 = 0.28; Figure 13). This indicates an approximate twofold increase in explanatory 

power for the mammal browsing trait in Eucalyptus. Additionally, both the non-nested and the 

nested mixed model indicate that roughly the same proportion of variation is explained by the 

non-nested factor, species, across both models. Despite this, each model would lead to a different 

inference from a frequentist standpoint because the species effect was significant at α = 0.05 in 

the non-nested model but not in the nested mixed model (non-nested model, p = 0.00010; nested 

mixed model, p = 0.06). 

Application of different statistical models: Populus 

A significant proportion of variation in leaf area was explained by locality of origin in the 

Populus common-garden trial. When genotype was accounted for in a nested mixed model, the 

explanatory power increased roughly threefold relative to the non-nested model (non-nested 

model, R
2
 = 0.25; nested mixed model, conditional R

2
 = 0.70; Figure 13). As in the previous 

case, although the non-nested and nested mixed models both apportion a similar amount of 

variation to the outermost level – in this case locality – the locality effect was not significant at α 

= 0.05 in the nested mixed model (non-nested model, p = 0.0086; nested mixed model, p = 0.22).  

Application of different statistical models: Picea  

As in the previous examples, a significant proportion of variation was explained by locality 

of origin, but when genotype was also accounted for in a nested mixed model, explanatory power 

increased by an order of magnitude (non-nested model, R
2
 = 0.03; nested mixed model, R

2
 = 

0.24; Figure 13). However, both would lead to a similar qualitative inference, albeit stronger for 

the non-nested model (non-nested model, p = 2 × 10
-8

; nested mixed model, p = 0.02). These 

three empirical results collectively suggest that the non-nested model leads to an incorrect 

inference in a traditional null hypothesis significance testing framework, as is commonly 

employed. 
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Figure 13. Coefficient of determination (R
2
) values from case studies.  Values are calculated 

from Eucalyptus mammal browsing, Populus leaf area, and Picea branch number data sets, 

respectively. Black circles represent the non-nested model R
2
 values, grey circles represent the 

marginal R
2
 value of the nested mixed models, and grey triangles represent the conditional R

2
 

values of the nested mixed models. Error bars represent bootstrapped standard errors of the R
2
 

values. 
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Discussion and Implications 
Here we show that in a simulated system, a nested mixed model incorporating genotypic 

variation to partition variation in trait means is more appropriate than a non-nested model that 

does not nest other levels of genetic variation. The simulated system was constructed with no 

interactions among species or genotype and no environmental effects, which could either mask 

or amplify the biodiversity signal in natural systems. Specifically, the proportion of detected 

significant species effects was up to 20% greater in non-nested versus nested models. In other 

words, one would conclude that there are species effects when in fact those effects were related 

to lower-order levels of variation. Non-nested linear models resulted in effect sizes associated 

with the species term from 20% to 50% greater than the nested models; additionally, the model 

selection criterion showed that nested models were superior regardless of parameter values.  

The results of our simulations demonstrate the need to employ a nested approach. Even if 

data are not available to do so explicitly, the binning of individuals into species should be 

acknowledged as one choice among multiple ways of partitioning variation among individuals, 

instead of being regarded as synonymous with diversity itself. By the same reasoning, genotype 

identity should be acknowledged as an important basis for inference in its own right. We also 

show the utility of the nested approach for analyzing data in field experiments. When fitting 

nested and non-nested models to empirical data taken from Eucalyptus, Populus, and Picea 

common-garden trials, the nested and non-nested models performed similarly in terms of 

estimating the proportion of total variation due to species, but the likelihood ratio test showed 

that the non-nested models would erroneously conclude the species effect to be significant in two 

of the three cases. Whether the system is experimental, natural, or simulated, a hierarchical 

nesting approach should help reduce the false attribution of variation and improve our 

understanding of the sources of variation among species or among genotypes. One caveat to our 

findings is that adding additional parameters to a model – in this case by including an additional 

nested level of genetic variation – will raise the proportion of variation explained, potentially 

leading to overfitting (Ginzburg & Jensen 2004). However, in our study, analysis of AIC values 

showed that nested models are much more parsimonious despite the additional parameters, 

relaxing the above caveat. The conclusions we draw here on the importance of nesting apply not 

only to comparisons of intraspecific and interspecific trait variation, but to any system with 

hierarchically nested variation, including at the genotype, population, species, or phylogenetic 

level.  

Importantly, our conclusions on the importance of placing individuals in a properly nested 

hierarchy of bins are independent of the statistical approach chosen by the investigator (such as 

frequentist, Bayesian, or maximum-likelihood methods). Although we employ frequentist 

methods to support our point, neglecting to incorporate a particular level of variation into any 

type of statistical model will result in impoverished inference, regardless of the method. Along 

these lines, we found that a species effect may be incorrectly detected at relatively large sample 

sizes (Figure 12). As increasing sample size does not tend to decrease the incidence of Type I 

errors, this indicates that the most effective way to avoid such errors is to distinguish species-

level from genotype-level variation. The sample sizes required to alleviate the problem of falsely 

attributing a pattern to the higher nested level may be several orders of magnitude higher than 

what is feasible to collect in natural systems. Explicitly accounting for variation at different 
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nested levels of genetic variation would help solve this problem even at the relatively low sample 

sizes characteristic of most ecological studies. 

Our simulated datasets also showed cases in which incorporating nested genetic variation 

may not be as important to consider from a functional perspective. In the algorithm we used to 

generate trait values from genetic loci, increasing the number of loci means that more extreme 

trait values are possible within a species. This effectively yields a wider distribution of trait 

values around the mean, with a larger proportion of values concentrated in the tails of the 

distribution. However, if more extreme trait values, both positive and negative, are possible in 

both species, both the nested and non-nested models are less likely to detect a significant effect 

of intraspecific variation. As the effect of intraspecific genetic variation on phenotype decreases, 

accounting for nested genetic variation at levels below species may be less useful for 

characterizing the ecological function of a population as measured by its mean trait value (Figure 

11). However, in many cases the mean trait value may not be what drives community assembly 

or ecosystem function; instead, the variance in trait values or the extremes of the trait distribution 

may be more important (Violle et al. 2012). In those cases, other statistical methods than the 

ones we consider here may be more appropriate (e.g. Violle et al. 2012; Siefert et al. 2015). 

It is becoming increasingly clear that genotype identity can be as important as species 

identity for determining the outcome of ecological processes. In the field of biodiversity-

ecosystem function research, experimental and observational tests (Bailey et al. 2009; Latta et al. 

2011; Avolio & Smith 2013; Crawford & Rudgers 2013; Genung et al. 2013) have shown that 

genotypic diversity within foundational species may explain as much variation in important 

ecosystem functions as variation in species diversity, further emphasizing the importance of 

taking a nested approach. Similar techniques that account for identity and diversity of both 

species and genotypes have been recently applied in fields including invasion biology (Bossdorf 

et al. 2005; Dlugosch & Parker 2008; Kimbro et al. 2013) and sustainable agriculture (Newton et 

al. 2010; Tester & Langridge 2010). Analogous to the acknowledgement that sampling effects 

and genotypic effects can mechanistically explain many ecological patterns and therefore should 

be accounted for, hierarchically partitioning variation also significantly changes how we interpret 

data when nested genetic variation is taken into account.  

Accounting for nested levels of variation in functional traits and for the effects of different 

levels of diversity is important for theoretical and applied work. Historically, the approach has 

been more common in applied contexts such as production forestry (Jordan et al. 1993; Hartley 

2002). However, because nested genetic effects have often been neglected in basic biodiversity 

research, we should acknowledge that existing syntheses and estimates of biodiversity effect 

sizes in meta-analyses may not tell the whole story.  If the full range of variation at all levels 

were incorporated and nested properly, we might reach different conclusions about the 

mechanisms by which biodiversity influences ecosystem functioning and the strength of those 

effects, as our simple model suggests that effect sizes associated with non-nested models may be 

inflated by 20% or more.  

Our results clearly demonstrate the changes in interpretation of biological relationships that 

can result from incorporating nested, genetically based variation into studies of natural systems. 

However, we admit that some biological systems are more amenable to incorporating genetic 

variation into experimental or observational studies than others. We therefore strongly 

recommend that researchers take one of the following three approaches. First, if possible, genetic 
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variation should be quantified at the within- and among-population level and either 

experimentally manipulated or accounted for as a random effect in observational studies. If this 

is not possible, however, a promising alternative is to address intraspecific variation with a 

functional trait-based approach -- recent work has shown that intraspecific trait variability 

accounts for a large proportion of the variation in functional traits both within and among 

communities (Siefert et al. 2015), and that this variability has important consequences for both 

species abundance and species performance (Umaña et al. 2015). Finally, if neither of these 

approaches is tractable and intraspecific variability is neither quantified directly at the genetic 

level nor indirectly via functional traits, we feel that researchers should qualify their results with 

the explicit statement that variation at levels below species was assumed a priori not to affect the 

outcome of their study. 

As a discipline, it is important to recognize the importance of hierarchically nested genetic 

variation and incorporate it into analyses to advance ecological research, if we are to fully 

understand which of the many facets of diversity have important consequences for ecosystem 

function. Given the growing research emphasis linking ecology and evolutionary biology 

(Schoener 2011), it is crucial to ensure that quantitative or molecular genetic variation is 

accounted for. The approach demonstrated here is particularly important for studies that examine 

quantitative or molecular genetic divergence, as well as species mixture effects, as we 

demonstrate that incorporating a properly nested variance structure may dramatically affect the 

way the results are interpreted. From an applied perspective, it is possible that if managers take 

local adaptation and intraspecific trait variation into account when managing or restoring 

communities affected by anthropogenically driven species loss or gain (Zenni et al. 2014), the 

functional importance of variation within species may be as important as the presence or absence 

of particular species for the success of management and restoration efforts. Finally, our results 

suggest that the response of ecological communities and the ecosystem services they provide to 

species gains and losses are likely more subtle than we would expect by simply observing which 

species invade or are extirpated. Correctly determining the nature of the relationship between 

biodiversity and ecosystem functioning is critical for understanding the direct and indirect effects 

of losses in species diversity and genetic diversity in natural systems. 
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Figure 14. Overestimation of partial R
2
 associated with the species-level term when comparing 

linear models to nested models. A boxplot depicts the variation in ΔR
2
 for many combinations of 

parameter values. Within each panel, the heritability parameter is on the x-axis, and the 

overestimation value is on the y-axis. Proceeding from top to bottom on the page, the difference 

between species means increases. Proceeding from left to right, the among-genotype variance 

increases. Within each variance level, three sample size levels are shown, increasing from left to 

right. 
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Figure 15. ΔAIC values comparing linear models to nested models for many combinations of 

parameter values, arranged as in Figure 14. 
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Figure 16. Proportions of simulated cases in which the linear models and nested models agreed 

in detecting a significant effect of species-level variation; stacked-bar plots are arranged as in 

Figure 14. Here, light gray shading indicates that neither model detected a significant effect, dark 

gray shading indicates that both models detected a significant effect, green shading indicates that 

only the linear model detected a significant effect, and red shading indicates that only the nested 

model detected a significant effect (found in virtually no cases). 
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Abstract 

Questions: The holy grail of functional trait ecology is to predict community assembly at the 

local scale directly from functional traits. Predicting species abundances from functional traits 

given known environmental conditions should be possible if natural communities are structured 

by deterministic processes including environmental filtering from the regional species pool and 

niche differentiation. In this study, I asked how much intraspecific variation contributes to trait 

distributions observed within and among plant communities, and how well trait distributions 

resulting from environmental filtering and niche differentiation predict relative species 

abundances given climate. 

Location: West Elk Mountains, Colorado, USA 

Methods: I collected functional trait, species composition, and environmental data from 14 

observational sites along a broad climate gradient in Colorado, USA. I partitioned the variation 

within and among sites into intraspecific and interspecific components, and compared the results 

to values from a recent global meta-analysis. I also used these data to parameterize statistical 

models that can reproduce patterns associated with the processes of environmental filtering and 

niche differentiation. I fit two models to the data, one assuming that niche differentiation is equal 

across sites, and another assuming that it differs across sites. 

Results and Conclusion: I found that the models performed worse at predicting species 

relative abundance than a null model assuming equal abundance of all species. This may be due 

to intraspecific variation in functional traits, which in this study system was higher than the 

global averages documented in the meta-analysis. In particular, almost all root trait variation was 

within species, even across sites, indicating that belowground traits may not be useful for 

predicting species abundance. These results suggest that a greater focus be placed on measuring 

intraspecific trait variability and determining its consequences for community assembly and 

ecosystem properties. 

Introduction 
Community ecologists seek to describe the ways in which environmental conditions and 

interactions among organisms influence patterns of species distribution across space and time. 

Both the abiotic and biotic processes that structure communities are correlated with, and also 

possibly driven by, easily measured properties of organisms (Lavorel & Garnier 2002; Lavorel 

2013; Díaz et al. 2015). This key insight has led to a massive research effort aimed at linking 

functional traits to ecosystem function and community assembly. Here, functional traits are 

defined as any property of an organism that is correlated either with its niche or its fitness. The 

functional trait approach offers a way to deal with a bugbear of community ecologists: the fact 

that results of community ecology studies are often difficult to interpret or generalize. Because 

community assembly processes are so contingent on the specific local composition of the species 

pool and on small-scale environmental variation, hardly any two communities are the same 

(Lawton 1999; Ricklefs 2008). By measuring functional traits instead of focusing on species 

identity, ecologists can make quantitative comparisons among species assemblages (McGill et al. 
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2006; Webb et al. 2010). Furthermore, functional traits are not only correlated with climate but 

also with emergent ecosystem-level properties such as carbon turnover (de Deyn et al. 2008; 

Reichstein 2014). The ultimate goal of functional trait ecology, which has been described as the 

holy grail of the field (Lavorel & Garnier 2002), should be to predict variation and change in 

community composition and ecosystem function from functional traits. 

Despite its promise, the functional trait approach has drawn several key critiques (Violle et 

al. 2007). In particular, the correlational nature of many trait studies is problematic because the 

correlations between environment and traits are often examined in isolation, ignoring the 

processes that have generated the observed trait and species distributions. Too much effort is 

being focused on traits that are correlated with environment but do not matter for how species 

actually respond to environmental change or how they interact with one another (Messier et al. 

2010). However, some recent work has explicitly linked functional traits to unambiguous fitness 

metrics that drive community assembly, including growth and mortality of forest trees (Wright et 

al. 2010) and demographic parameters from a global dataset of plant species (Adler et al. 2014).  

In previous trait-based ecological studies, functional traits have often been used as proxies 

for species, but they should instead be thought of as ways to represent processes occurring at the 

organism level. Traits are poor proxies for species identity for three reasons: the 

multidimensional nature of traits (Albert et al. 2010), the strong relationship between traits and 

environmental conditions (Laughlin & Messier 2015), and high levels of intraspecific variability 

even in similar environments. Ecological outcomes such as herbivore damage can be predicted 

only when accounting for complex interactions of traits along multidimensional axes (Loranger 

et al. 2013). In addition, individual responses to environmental gradients are necessary to explain 

species distributions and diversity patterns, as has been shown for forest trees (Clark et al. 2011).  

The relationship between traits and fitness should be examined accounting for the trait-

environment interaction (McGill et al. 2006; Shipley et al. 2016). In addition, there has been too 

little attention paid to intraspecific variation in traits. For example, earlier trait-based assembly 

models such as MaxEnt (Shipley et al. 2006, 2011) are based solely on species means.  

In this study, I suggest new approaches to move the field of functional trait ecology forward 

in three key ways. First, I explicitly incorporate intraspecific variation into our statistical models, 

building on previous work (Laughlin & Laughlin 2013; D'Amen et al. 2015). Second, I 

quantified how much the variation in trait values within and among species contributes to 

observed species distributions. I accomplished this by putting traits into a predictive framework 

that incorporates both filtering (i.e., relative fitness differences) and niche-differentiation 

processes (HilleRisLambers et al. 2012) and includes variation in these processes along 

environmental gradients. Both relative fitness differences and stabilizing niche differences 

contribute to the realized abundance distribution at a given site. Finally, I used root morphology 

as a predictor, which has rarely been included in previous studies. Most of the traits considered 

for plants have been aboveground leaf and stem traits although it is increasingly recognized that 

root traits may be more important (Freschet et al. 2010, 2015; Bardgett et al. 2014). Addressing 

these issues is crucial to enable the functional trait-based approach to community ecology to 

fulfill its promise as a way to describe the linkages between environment and species and to 

predict future change in those linkages. 

I established plots at fourteen observational sites along a transect, where I collected data on 

relative species abundance and functional traits of the most abundant species. I used functional 
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trait, species abundance, and environmental data from these observational plots to ask a series of 

related questions:  

 How much does intraspecific variation contribute to trait distributions observed within 

and among plant communities? How does this differ aboveground and belowground, and 

what does this mean for the processes that drive community assembly? 

 How do environmental filtering and niche differentiation interact to structure plant 

communities across a landscape, and can we use the trait distributions resulting from 

these processes to predict relative species abundances given climate? 

Methods 

Site description 

The study region is in the West Elk range of the southern Rocky Mountains in Colorado, 

USA, in the vicinity of the Rocky Mountain Biological Laboratory. Elevations of the study sites 

range from 2450 to 3500 m above sea level. Mean annual temperatures, derived from the 

Worldclim dataset (Hijmans et al. 2005) range from -1.8 to 2.7 °C, and mean annual 

precipitation from 355 to 679 mm y
-1

. The study sites are located on an elevational gradient 

along which temperature decreases (Figure 17) and precipitation increases (Figure 18) with 

increasing elevation. In addition, due to more recent glaciation, soils are younger and have 

increased available phosphorus and decreased available nitrogen at higher elevation (Joshua 

Lynn, unpublished data); there tends to be decreased cattle grazing pressure at higher elevations 

as well. I selected open meadow sites without tree cover. At each of 14 study sites, I established 

a permanently marked 10 × 10 m plot. 

Data collection 

Plant community: In the summer of 2015, I measured the relative abundance of plant 

species at each site. I placed a 0.25 m
2
 quadrat at ten random locations in the 10 × 10 m plot, and 

visually estimated the aboveground cover of all vascular plant species within each quadrat, 

identifying them to species. Species with less than 10% relative cover were estimated to the 

nearest 1%, while species with over 10% were estimated to the nearest 5%. At each plot, both an 

early-season and peak-season relative abundance survey was done. I used the relative cover of 

the plant species to determine which plant species to collect for plant traits, as well as to validate 

model predictions of relative species abundances. 

Plant traits: In 2014 and 2015, I collected leaves and roots from at least five individuals of 

at least five of the most abundant species at each site within the marked plot. At a subset of sites, 

I collected leaves and roots from 10-20 individuals of 5-15 species. For most sites, there is plant 

trait information for the species that make up at least 80% of the aboveground plant cover within 

the sites. I measured plant height on the collected individuals, from the base to the tip of the 

topmost leaf blade.  

I collected at least three mature and fully expanded leaves from each individual that was 

sampled for leaf traits. I transported the leaves on moist paper towels and scanned them on an 

Epson flatbed scanner. I weighed the scanned leaf material, dried it for 48 hours at 60° C, then 

weighed it again. I pooled the dried leaf material with additional leaves that were collected for 

chemical analysis. 
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Figure 17. Gridded (0.5') mean temperature in the warmest three months in the study area. The 

black circles are the locations of the study sites. 
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Figure 18. Gridded (0.5') total precipitation of the warmest three months in the study area. The 

black circles are the locations of the study sites. 
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I collected two to four 3-cm diameter, 15-cm long soil cores from directly below the base of 

each plant that was sampled for root traits. I extracted as much fine root material as possible 

from the soil cores, washing the soil over a 2-mm sieve if necessary. I scanned 10 to 20 intact 

pieces of fine root from each individual on an Epson flatbed scanner after floating the root pieces 

in a transparent tray of water. I dried the root material for 48 hours at 60° C and weighed it. I 

pooled the dried root material with additional collected roots for chemical analysis. 

To measure nitrogen and phosphorus content by mass (total Kjeldahl N and P) of the dried 

tissue samples (both leaf and root), I first ground the tissue samples with a mortar and pestle. I 

weighed 75 mg, or as much as was available, of the ground sample and folded it into a piece of 

adhesive-free cigarette paper. I digested the sample for 5 h at 350° C in 5 mL H2SO4 in a 

Kjeldatherm digestion block (Gerhardt, Königswinter, Germany); in each digestion run I 

included a blank with no sample, and one sample of apple leaf standard with known N and P 

content. After the digests cooled, I added 45 mL deionized water to each one. I used a 

SmartChem 200 discrete analyser (Unity Scientific, Brookfield, CT, USA) to measure total 

Kjeldahl N and P, expressed as mg/g tissue.    

I measured the area of the scanned leaf images, and the total length of the scanned root 

images, with ImageJ software (version 1.45s; Schneider et al. 2012), using the IJRhizo macro 

(Pierret et al. 2013) to automatically trace all the roots in each image. I calculated LMA for each 

individual plant by summing the mass and area of each individual and dividing the dry mass by 

the scanned area. LDMC was calculated as the dry leaf mass divided by the leaf mass before 

drying. I calculated RML for each individual plant by dividing dry root mass by the total root 

length. 

Partitioning of intraspecific variability 

All analyses were conducted in R (version 3.2.3, R Core Team, https://www.r-project.org/), 

with packages listed where appropriate. To determine the contribution of intraspecific trait 

variation to total trait variation both within our study communities and among communities, I 

used variance partitioning equations (de Bello et al. 2011) identical to those used by Siefert et al. 

(2015). For each trait at each site, I calculated within-community intraspecific trait variability 

(wITV), the relative contribution of intraspecific trait variability to total within-site trait 

variability. Also, for each trait across all sites, I calculated among-community intraspecific trait 

variability (aITV), the log ratio of variance due to intraspecific trait variability to variance due to 

species turnover across sites. I report wITV as a proportion between 0 and 1, where higher values 

indicate greater contribution of intraspecific variability to the total, and I report aITV as the 

natural logarithm of a ratio, where a positive number indicates that intraspecific variability is 

relatively more important than species turnover across sites. I used ANOVA to compare wITV 

values among traits and sites, and I also compared the wITV and aITV values to the global 

distributions of values reported by Siefert et al. (2015). Unfortunately, no root traits were 

reported in the meta-analysis. 

Predictions of species abundances 

I used a model that mathematically represents assembly of local communities from a regional 

species pool through the selective processes of environmental filtering and niche differentiation. 

The model is modified from the Traitspace model (Laughlin et al. 2012). The model predicts 
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species abundances at locations with differing environmental conditions, using species traits to 

connect species identities with environmental conditions. The Traitspace model captures two key 

processes that contribute to patterns of species abundance at the landscape scale. First, in order 

for a species from the regional species pool to be able to establish at a particular site, it must 

possess traits that enable it to tolerate the environmental conditions at that site. Species with 

traits conferring higher fitness given a particular set of environmental conditions should have 

higher abundance. Second, in addition to these relative fitness differences, niche differentiation 

resulting from interactions among individuals is an additional filter that determines the species 

composition and abundance distribution at a given site. Biotic processes might contribute to 

increased trait dispersion both within and among species.   

I fit Traitspace models with two types of priors: uninformative priors and priors that used 

each species’ global range size as a prior estimate of its local abundance. Across both types of 

prior, we fit models with two structures of trait variance: one in which trait variance, and thus the 

strength of niche differentiation was assumed constant across sites, and one in which it was 

assumed to vary across sites. I fit these four variants of the Traitspace model to all 31 possible 

subsets of the five plant traits I measured, for a total of 124 model fits (Table 3 summarizes the 

different models that were fit.) For each of these model fits, we output predictions of relative 

species abundances at each of the study sites and compared them to the observed abundances.  

The model fitting process is described in detail below: 

First, we fit trait-by-environment regressions using trait and environmental data from each of 

the fourteen observational sites. For each trait, we combined all the individual measurements, 

without information on species, and fit a multiple quadratic regression model with environmental 

variables as predictors. Next, we calculated the trait distribution for each species across all sites 

where it occurred. We parameterized a set of multivariate normal distributions for each species. 

The distributions were fit with the mvnXII function in the mclust package in R (version 5.1; 

Fraley & Raftery 2002).  

For each of the study sites, we took the mean predicted value of each trait at that grid cell 

given the local environment and the parameters of our trait-by-environment regressions. In a 

subset of the model fits, we used the standard error of the residuals of the regression to estimate 

the baseline variation in each trait at each site, which assumes that the effect of processes that 

would cause spread in trait distributions is constant across sites. In another subset of model fits, 

to model variation in the strength of niche-differentiation processes across the landscape, we 

scaled the standard deviation of the residuals across sites by the standard deviation at each site. 

We took 9999 samples (which we found to be more than adequate to reach convergence) of each 

trait at each site, sampling from a normal distribution around the mean predicted value at each 

site, and with the scaled standard deviation described above. This allowed us to simultaneously 

account for environmental filtering and niche differentiation. The sampling distribution of traits 

at each site, , is independent of species.  

Next, we used the sampled trait data and the previously fit trait distributions for each species 

to calculate the likelihood, or the probability of each species being present given each trait 

sample. We applied Bayes' theorem to estimate the probability of each species given traits and   
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Table 3. Parameters varied across different Traitspace model fits. 

Factor Levels used in different model fits 

Prior information Uninformative prior 
Prior for each species proportional 

to its global range size 

Trait variance 
Variance of each trait assumed 

constant across sites 

Variance of each trait assumed to 

vary across site 

Traits used 
All 31 possible subsets of the following traits: leaf mass:area ratio, root 

mass:length ratio, height, leaf dry matter content, leaf N:P ratio 
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environment, or . In a subset of the models, we used a flat discrete prior, and in 

another subset of the models, I scaled the prior for each species by the global range size of that 

species, estimated from publicly available global occurrence data (see Appendix 1 for how these 

range sizes were estimated). Finally, I integrated out the traits using Monte Carlo integration to 

get the posterior predictions of relative species abundances, . The predictions were 

normalized to sum to 1, corresponding to the predicted proportion of aboveground cover of each 

species at each study site.  

I fit the models using all possible subsets of these five traits: plant height, leaf mass:area ratio 

(LMA; the ratio of dry mass to scanned leaf area), root mass:length ratio (RML; the ratio of root 

mass to root length), leaf dry matter content (LDMC; the ratio of dry leaf mass to wet leaf mass), 

and leaf tissue N:P ratio. The environmental variables included are mean temperature of the 

warmest quarter of the year, and total precipitation during the warmest quarter of the year; these 

variables are derived from the Bioclim dataset, a set of transformed, biologically relevant 

variables generated from the Worldclim dataset (Hijmans et al. 2005).  

I assessed model predictive accuracy using root mean squared error (RMSE). For each site, 

the root mean squared error is defined as , where �̂�𝑖 is the predicted 

relative abundance of each species i, and pi is the observed relative abundance. I compared the 

accuracy of model predictions with all the possible subsets of traits, with and without variation in 

niche-differentiation processes across the landscape, and with and without the incorporation of 

prior information on species range sizes (Table 1). In addition, I compared all these model 

predictions to a null model for which all 46 species in the dataset were assumed to have equal 

relative abundances at each site. 

Results 

Partitioning of intraspecific variability 

Within sites, intraspecific trait variation (wITV) varied widely but unpredictably for 

aboveground traits, with proportions of variation explained by intraspecific variation at a 

particular site ranging from under 0.2 to over 0.95. The magnitude of intraspecific variation 

across sites was unrelated to any climatic variable. Variation in root mass:length ratio within 

sites was uniformly dominated by within-species variation, with proportions ranging from 0.66 

to 0.96 (Figure 19). Among sites, root mass:length ratio, leaf N:P ratio, and leaf dry matter 

content had positive aITV values, indicating that intraspecific variability caused more variation 

in those traits among sites than did species turnover. LMA, root N:P ratio, and plant height had 

negative aITV values (Figure 19), demonstrating that species turnover among sites made up the 

majority of variation in LMA and plant height among sites, with intraspecific variation making 

up a smaller proportion. Taken together, these results indicate that LMA, root N:P ratio and plant 

height determine which species from the regional species pool pass through environmental filters 

and become established at each site, but that RML may be involved with niche differentiation 

among individuals.  
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Figure 19. Bar plots of intraspecific trait variability. The top panel shows a bar plot of the 

proportion of intraspecific variability (wITV) at each site for each of the four traits; the error bars 

represent standard error of the mean. A value of 0 would indicate no intraspecific variability. The 

bottom panel shows, for each trait, the log ratio of variation among sites due to intraspecific 

variability to variation among sites due to species turnover (aITV). A positive number means that 

intraspecific variability contributes more than species turnover, and 0 would mean the effects are 

of the same magnitude.  
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I also compared our wITV and aITV values to those recorded in a global meta-analysis and 

found that the values for intraspecific trait variability in this study were generally higher than the 

global medians in the meta-analysis (Siefert et al. 2015). The global median wITV values for 

LMA, plant height, and LDMC were all between 0.25 and 0.3, albeit with high variability among 

studies. In contrast, the mean wITV values were greater than 0.4 for all traits, indicating that the 

role of within-site intraspecific variability was greater than the global median in the study region. 

The three median aITV values were all negative in the global meta-analysis and ranged between 

-0.3 and -0.7, although none significantly differed from zero. In this study, the aITV values for 

LMA and plant height were more negative than the global median, but the aITV value for 

LDMC was positive. This result indicates that species vary more in their LMA and height among 

sites than the global median, but that differences in LDMC across sites are driven by individual-

level variation to a greater degree than is typical globally. 

Trait-by-environment regressions 

Across all sites, plant height had a unimodal relationship with both summer precipitation and 

summer temperature, while leaf mass:area ratio was highest at sites with high temperature and 

low precipitation. Leaf dry matter content was lowest at sites with intermediate temperature and 

precipitation, and leaf N:P ratio had a moderate peak at intermediate sites. As root mass:length 

ratio varied so widely within sites, there were no significant across-site relationships with 

climatic variables. Figure 20 shows regression plots with the trait value of each sampled 

individual plotted, each with a confidence band representing the standard error of the regression 

fits. 

Predictions of species abundances 

The performance of all models, whether incorporating variation in functional diversity 

among sites or not, whether incorporating information about global range sizes, and regardless of 

which traits were included, was remarkably poor (Figure 21). Model performance was not 

affected by the assumption of variable trait variances across sites, nor by the incorporation of 

prior information (Figure 21). In fact, essentially all models performed worse at predicting 

relative species abundances than a null model assuming equal species abundances across all 

sites: The RMSE of the null model was 0.056, and the lowest RMSE across all 124 model fits 

was also 0.056. The poor performance of trait-based models indicates that relative abundance 

distributions of species in the study region are not driven by the relationship between 

environment and species traits for the traits and environmental conditions that were considered. 

Figure 22 shows predicted versus observed abundance for each species at each of the fourteen 

study sites for one of the model runs; this individual fit, which assumed that trait variances are 

different across sites, incorporated prior information, and was fit with LMA, RML, and height 

data, is characteristic of most of the runs.  

In general, the models underpredicted the abundance of most of the common species and 

predicted that some species that were present but rare would be absent. In addition, the predicted 

species abundance distributions were much more even than the observed distributions: median 

Simpson’s evenness across sites was 0.14, but across all model runs median evenness across sites 

was 0.61 (between 0.46 and 0.92 in 95% of runs).  Globally, the models tended to underpredict 

the abundances of exotic species, including Bromopsis inermis (Leyss.) Holub and Achillea   
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Figure 20. Trait-by-environment scatterplots showing, from top to bottom, leaf mass:area ratio, 

root mass:length ratio, plant height, leaf dry matter content, and leaf N:P ratio plotted against 

mean summer temperature (left panels) and total summer precipitation (right panels). Each point 

represents a trait value for an individual plant at a particular site, ignoring species identity. 

Quadratic regression fits are plotted, along with a band representing the standard error of the fits. 
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Figure 21. Root mean squared errors (RMSE) of all model fits. Within each panel, RMSE is 

plotted against the number of traits used to fit the model. The top two panels show RMSE of 

models with a single trait variance value used across sites, and the bottom two panels show 

RMSE of models in which trait variance was allowed to vary across sites. The left two panels 

show RMSE of models with uninformative priors, and the right two panels show RMSE of 

models with informative priors based on species global range sizes. 
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Figure 22. Predicted versus observed relative abundance for all 14 study sites for one model fit. 

The model fit shown here assumes variation in trait spread across sites, incorporates prior 

information on species range sizes, and is fit with LMA, RML, and height data. Each point 

represents a species at a site. Elevations of each study site are labeled. The dotted line represents 

perfect correspondence between observed and predicted values, and the solid blue line represents 

the trend in deviation of the observed relative abundance values from the predicted values. 
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millefolium L. The models overpredicted the abundances of some species that were locally 

common at one or two sites, but not found elsewhere, including Poa spp. L., Valeriana 

occidentalis A. Heller, Alopecurus pratensis L. and Wyethia amplexicaulis (Nutt.) Nutt. When 

considering sites where species were present, the local abundance of grass species, including 

Poa, Elymus, and Festuca spp., tended to be underestimated.  

Discussion 
My results show that different traits are involved with different processes of community 

assembly, suggesting that root traits vary more among individuals within sites and might be 

involved with niche differentiation, while leaf traits are less variable within and among species 

and might be involved with filtering. The predictive model shows that the functional traits I 

measured are not correlated with species relative abundance across sites. Incorporating 

functional diversity to account for niche spread does not improve predictive accuracy at all. 

Overall, the poor performance of traits in predicting species distributions indicates that more than 

just trait-based filtering from the regional species pool determines which species establish at a 

site and what relative abundance they attain. Observed species distributions were much less even 

than modeled distributions, indicating that the model does not adequately account for the effects 

of competition and niche differentiation processes in local community assembly. The high level 

of intraspecific trait variability in our study system is a plausible explanation for the lack of 

predictive power of my models. In addition, a variety of other processes may be more important 

than trait-based filtering. Among these processes may be historical and biogeographic effects, 

effects of spatial scale, or the fact that functional traits may not capture the processes leading to 

community assembly patterns in the study region.  

Intraspecific variability 

It is notable that the intraspecific variation in root traits within sites was higher than for the 

leaf and height traits. This may indicate that there is greater competition among individuals, 

regardless of species, belowground that is driving niche differentiation (Westoby & Wright 

2006). Further, the high variability in root traits may mean that root traits are not very useful for 

predicting species abundances at a given site, because most of the variation is within species. 

Individual plants exhibit morphological plasticity in roots in response to environmental change, 

presumably to achieve optimal resource colimitation (Freschet et al. 2015). Adjustments in root 

mass:length ratio and root biomass allocation may explain most of the community-level variation 

in root morphology that I recorded.  

In comparison to the values from the global meta-analysis of Siefert et al. (2015), the wITV 

values from the study region were higher, while the aITV values for LMA and height were 

comparable. This shows that leaf dry matter content and root mass:length ratio are explained 

more by the individual variability than by species turnover across sites, but LMA and height are 

explained more by species turnover. The correlation of LMA and height with species turnover 

across sites appears to suggest that those traits would be the most useful for predicting species 

presence across the study sites. However, LMA and height are not useful for predicting relative 

abundance due to high intraspecific variability, which helps explain the poor model performance 

we observed. My results lend support to the calls for an increased appreciation of individual trait 

variability in ecology (Bolnick et al. 2011; Violle et al. 2012; Rosindell et al. 2015). They 
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suggest, confirming previous work, that intraspecific variation is a crucial driver of global 

change response (Siefert et al. 2014; Moran et al. 2016). The high intraspecific trait variability in 

this study system would suggest that species at a given site could approach functional 

equivalence (Hubbell 2005), making it difficult to predict which species should achieve the 

highest abundance at a given site from their traits alone. As my models failed to predict species 

dominance patterns, I observed a mismatch between predicted even distributions of species 

abundance and the observed distributions dominated by one or a few species at each site. I 

discuss potential reasons for this mismatch below. 

Biogeographic and scale effects 

One potential reason that my models failed to predict species relative abundance is that 

differences in relative abundance of species among sites separated by hundreds of meters of 

elevation is controlled by historical and biogeographic factors. These contingent historical events 

have interfered with the deterministic outcomes of filtering and niche differentiation. There may 

be dispersal barriers that prevent plants with appropriate traits from reaching optimal sites (Clark 

et al. 2002), especially due to topographic variation in the mountainous study region (Engler et 

al. 2009). In addition, species relative abundance may shift from year to year due to temporal 

stochasticity (Alonso et al. 2006). Another potential explanation for the mismatch between traits 

and environment is that I measured species composition at a single time point and attempted to 

correlate it with static measures of climate (mean annual temperature and precipitation). 

However, plant species relative abundance may respond more sensitively to climatic fluctuations 

at a rapid time scale (Fukami & Nakajima 2011), even leading to annual turnover in dominant 

species identity (Allan et al. 2011). Furthermore, coarse-scale measurements of climatic factors 

may not adequately account for microclimate heterogeneity, which may act as a strong 

determinant of relative abundance at the plot scale (Levin 1992).  

Mismatch between traits and community assembly processes 

A further reason for the poor performance of the trait-based models may be that while 

community assembly is driven by processes that are measurable by plant traits, I failed to 

measure the plant properties or environmental factors that are driving community assembly. 

Interestingly, the models tended to predict species distributions that were much more even than 

those I observed, predicting the presence of many species not found at particular study sites, 

even when both filtering and niche differentiation were accounted for (Figure 22). The 

underprediction of abundance of common species may indicate that the models do not capture 

processes that generate uneven abundance distributions. Instead, they inflate predicted 

abundance for species with trait values close to the site optimum but that are excluded for other 

unknown reasons. Ecologists that have modeled species abundance distributions both statistically 

(Magurran & Henderson 2003) and mechanistically (McGill et al. 2007) have disagreed on the 

appropriate way to model the process that generates diverse communities with many rare species. 

In addition, empirical studies have often failed to find significant functional differences among 

dominant and minor species (Walker et al. 1999), indicating that neutral processes may be more 

important for generating relative abundance distributions (Hubbell 2005) and that some of the 

observed correlation between species abundances and environmental conditions is a result of 

temporal fluctuation in abundance (Fukami & Nakajima 2011). 
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The species whose abundances were most underpredicted by the models included both of the 

most common non-native species in the study region. Exotic species tend to be able to colonize 

relatively extreme environments despite apparently lacking specialized adaptations for stress 

tolerance (Alexander et al. 2011). If the traits that confer abundance in exotic species are not 

related to climatic filtering (Levine et al. 2003), these community-level models will fail to 

predict their abundance accurately. 

In addition, although I included belowground traits in our model, which previous studies 

have not done, I did not include soil nutrient availability as a site-level predictor. Previous work 

has shown that filtering along steep gradients of nutrient availability can lead to species 

abundance distributions that correlate well with functional traits (Laughlin & Laughlin 2013). 

The elevational gradient is also characterized by a gradient in nutrient availability: low-elevation 

sites with older soils have a higher N:P ratio than high-elevation sites with younger soils (Joshua 

Lynn, unpublished data). It may be that this environmental filter is more important than climate 

variation in this system, and that leaf and root nutrient concentrations would do better at 

predicting relative abundances. Incorporating soil N availability might also improve the models’ 

ability to accurately predict legume abundance, which was significantly underpredicted by both 

models. 

Conclusion 

In order for functional trait ecology to fulfill its promise, traits must be used to predict, rather 

than solely describe (Laughlin et al. 2012; Violle et al. 2014). However, because trait 

distributions reflect the outcome of selective processes acting at the level of the individual 

organism, they may not be good predictors of species abundances within communities, especially 

when trait plasticity is high (Messier et al. 2010; Siefert et al. 2015). I recommend that future 

model development focus on accounting for individual variation and plasticity and its 

consequences for community assembly. In addition, I suggest that researchers measure root traits 

that capture tradeoffs in resource acquisition belowground, as this may be the hidden driver of 

species abundance in plant communities. 

  



74 

 

Appendices 

Appendix 1: Estimation of global range sizes 

Global range sizes were estimated using data from the GBIF database (http://www.gbif.org). 

I downloaded all georeferenced occurrence data for each of the species in the dataset on 19 

November 2015, and extracted species name, latitude, and longitude from the downloaded .txt 

files. I binned all the occurrence data into 1° longitude × 1° latitude bins. I counted the number 

of bins in which each species occurred, resulting in a relative estimate of range size for each 

single species in the dataset. This method is relatively robust to sampling effort within a species’ 

range, as it ignores the density of observations within a bin. However, it assumes that there are at 

least some records distributed evenly across each species’ range. For plants that were only 

identified to the genus level in the field, I used the mean range size for the other species in that 

genus. R code to process the .txt files that are publicly available on the GBIF website is available 

from the author upon request.  
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CHAPTER IV 

ABOVEGROUND RESILIENCE AND 

BELOWGROUND RESISTANCE: LOSS OF A 

DOMINANT GRASS SPECIES CAUSES NICHE 

FILLING BY MONTANE MEADOW PLANT 

SPECIES, WHILE NITROGEN FERTILIZATION 

AFFECTS CARBON CYCLING 
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Abstract 
1. Species differ in their traits and thus in their ability to tolerate environmental conditions 

and take up resources from the environment. In addition, theoretical and empirical work has 

repeatedly demonstrated that biotic interactions play a large role in structuring plant 

communities. Taking a functional trait approach could help us predict how interactions among 

species shape species abundance distributions and determine ecosystem processes. However, 

these trait-based predictions have not often been tested in multifactorial field experiments. 

2. Here, I aimed to test how resource availability and species dominance influence—

separately or together—the structure and function of a montane meadow plant community. 

Specifically, I added nitrogen to the soil (control, + organic N, + inorganic N) and removed the 

dominant species (control, - dominant species, - random biomass) in a fully factorial design. I 

hypothesized that traits related to plants’ ability to take up different forms of soil N would be 

related to species abundance distributions, resulting in interactive effects of dominant species 

loss and N fertilization on community structure and function. 

3. After four years of manipulation, the plant community in removal plots converged toward 

species whose leaf and root functional traits resembled those of the dominant species. Soil 

carbon efflux was at least 57% greater under both organic and inorganic nitrogen addition, and 

inorganic N addition increased aboveground biomass production by 58% relative to controls. 

Surprisingly, there were no interactive effects of N fertilization and dominant species loss on 

structure or function. 

4. The montane meadow community in this study was generally resistant to change. It 

responded little to soil N addition and, given the functional convergence I observed, the 

community seemed resilient to species loss. The magnitude of change may have been dampened 

by shifts in relative species abundance related to yearly fluctuations in climate. 

5. I experimentally manipulated multiple global change drivers, tested ecological niche 

theory, and united global-change ecology with a trait-based approach. My results indicate that 

the ability of species to compensate functionally for species loss confers resilience and maintains 

diversity in montane meadow communities. 

Introduction 
The structure of plant communities and the traits of the individuals that make them up are 

important predictors of ecosystem function (Lavorel 2013). For example, plants may differ in 

their ability to access the resource that most limits growth, which may lead to partitioning of the 

limiting resource into pools accessible by different mechanisms or at different times (Suding et 

al. 2004; Farrior et al. 2013). The species that is the best competitor for the most limiting 

resource has the potential to achieve the highest abundance within the community (Tilman 1977; 

Gilman et al. 2010). Unfortunately, it is not generally possible to directly measure the strength of 

interactions among individual plants in the field to determine how competitive dominance for a 

particular resource arises (Levine & HilleRisLambers 2009). However, measuring plant 

functional traits such as leaf and root morphology, plant size, and nutrient content captures 

variation among plants in life history, tolerance of varying environmental conditions, and 

resource uptake strategy (Violle et al. 2007; Bardgett et al. 2014; Reich 2014). Life history 

strategies, tolerance of variation in the environment, and rates of resource uptake determine the 
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outcome of processes such as environmental filtering (Pavoine et al. 2011; Stahl, Reu & Wirth 

2014) and interactions including competition for limiting resources (Freschet, Swart & 

Cornelissen 2015). Ultimately, the outcomes of such interactions contribute to shape abundance 

distributions of plant communities (Adler et al. 2014), with predictable effects on ecosystem 

functions such as productivity and carbon storage (Cornelissen et al. 2007; Reichstein 2014). In 

this study, I aim to test how resource availability and species dominance influence—separately 

or together—the structure and function of a montane meadow plant community. 

Theoretical and empirical work has repeatedly demonstrated that biotic interactions play a 

large role in structuring plant communities (Pigot & Tobias 2013; Wisz et al. 2013), whether 

they reinforce or undermine the role of environmental filtering. Differences in relative 

abundance within communities are often attributed to relative fitness differences, or a fitness 

hierarchy among species (HilleRisLambers et al. 2012). However, maintenance of diverse plant 

communities may not be possible without sufficient stabilizing niche differences among species. 

The net outcome of biotic interactions in communities often results in abundance distributions 

dominated by a few species. Small changes in the relative biomass of these abundant species 

tend to have large effects on ecosystem functioning (Grime 1998; Gaston & Fuller 2008; Umaña 

et al. 2015). However, the response of subordinate plant species to removal of competitively 

dominant plant species has rarely been assessed (Wardle et al. 1999; Díaz 2003; Wardle & 

Zackrisson 2005). To address this, I removed the most abundant plant species, Festuca thurberi 

Vasey (Thurber’s fescue), from a subset of experimental plots to test whether suppression by this 

species limits diversity and mediates ecosystem function in this system. Festuca thurberi is 

functionally distinct from all the other common species in the montane meadow community 

where I conducted this experiment, having much higher leaf mass:area ratio (LMA) and higher 

root mass:length ratio (RML) than any of the other common species (Figure 23).  

Recent work has also shown that the availability of multiple soil resources can promote 

coexistence in and determine the structure of plant communities (Harpole & Tilman 2007, 

Harpole & Suding 2011; Eskelinen & Harrison 2015). In particular, coexistence within diverse 

plant communities such as montane meadows may be possible because different species may be 

capable of exploiting different forms of soil nitrogen (N), which likely limits plant growth in the 

study region (Suding et al. 2005). Depending on root physiology and root microbiome, a given 

species might be better than others at accessing inorganic nitrogen or at cultivating symbiotic 

microbes that can break down organic N molecules in the soil (Cantarel et al. 2015). To test 

whether plant community structure and ecosystem function in montane meadows might be at 

least partly driven by partitioning among different forms of soil N, I added both organic and 

inorganic N fertilizer to a subset of plots annually. 

While many experimental and observational studies have focused either on the role of 

competitive interactions in structuring plant communities (Choler, Michalet & Callaway 2001; 

Callaway et al. 2002; Levine & HilleRisLambers 2009) or on the effects of varying soil resource 

availability on community and ecosystem processes (Suding et al. 2005, 2006; Baribault & Kobe 

2011), few studies have experimentally tested whether these two processes interact (Gundale et 

al. 2012; Wardle et al. 2013). To address this, the experimental setup consisted of dominant 

species removal (3 levels) crossed with N addition (3 levels). Differences in plant community 

response to the presence of a dominant species across levels of nitrogen fertilization would 

indicate that species dominance is related to the ability to most efficiently take up limiting soil 
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Figure 23. The ten most abundant plant species in the Maxfield Meadow plant community. 

Species are plotted with their leaf mass:area ratio on the x-axis and root mass:length ratio on the 

y-axis. The size of each point corresponds to the relative abundance of the plant species within 

the community in untreated plots in July 2015. Species codes are as follows: BROINE, 

Bromopsis inermis; ERISPE, Erigeron speciosus, FESTHU, Festuca thurberi; HELMUL, 

Heliomeris multiflora; HELQUI, Helianthella quinquenervis; LATLEU, Lathyrus leucanthus; 

OSMOCC, Osmorhiza occidentalis; POAPRA, Poa pratensis, POTGRA, Potentilla gracilis; 

VICAME, Vicia americana. 
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resources. However, if the community response to the dominant species does not depend on soil 

N addition, it would indicate that the processes that generate abundance distributions in the 

community are not dependent on traits that determine plants' ability to take up soil N. In addition 

to the ability to test predictions made by theory, experiments such as this that last multiple years 

and simulate multiple drivers of anthropogenic change are important to help generate predictions 

about how natural communities and the services they render are responding to ongoing global 

change (Mikkelsen et al. 2008; Rustad et al. 2008; Dukes et al. 2014). Specifically, in this study, 

I asked the following questions: 

 Do organic and inorganic N fertilization differ in their effects on plant species diversity, 

community-level functional trait composition, and C storage and turnover in a montane 

meadow? 

 Does the presence of a dominant tussock grass species, Festuca thurberi, affect the 

species diversity and functional trait composition of the remaining plant species in the 

community, and does this species drive C dynamics in the community? 

 Are the effects of the dominant grass species on the plant community and on C cycling 

contingent on soil N addition? Do soil N addition and dominant plant species interact to 

determine the structure and function of the plant community? 

Methods 

Site description 

In the summer of 2012, I established 36 permanent 1.5 × 1.5 m plots in Maxfield Meadow, a 

montane meadow in the West Elk Mountains near the Rocky Mountain Biological Laboratory in 

Gothic, Colorado, USA, at 2910 m above sea level. The site is subject to mild grazing by cattle 

during late summer and avalanche activity during the winter. The most abundant plant species 

found in the meadow is Festuca thurberi, a large, sturdy perennial tussock grass (Poaceae). 

Other abundant species include Helianthella quinquenervis (Hook.) A. Gray, Erigeron speciosus 

(Lindl.) DC., Heliomeris multiflora Nutt. (Asteraceae), and Bromopsis inermis (Leyss.) Holub 

(Poaceae).  

Study design and treatments 

I did a full factorial cross (n = 4) of N addition and dominant species removal over a three-

year period. The three levels of the N treatment were the addition of 10 g organic N m
-2

 y
-1

 (as 

21.7 g urea, CO(NH2)2), addition of 10 g inorganic N m
-2

 y
-1

 (as 29.4 g ammonium nitrate, 

NH4NO3), and no N addition. In 2013 and 2014, I watered all plots, including controls, as I 

fertilized them, but in 2015 I synchronized fertilization with a rain event. There were three levels 

of the species removal treatment: fescue removal, random biomass removal, and intact control 

plots. In the fescue removal treatment, I removed all aboveground biomass of the most abundant 

species (F. thurberi) within the 1.5 × 1.5 m plot. The random biomass removal plots control for 

any potential effects of removing aboveground plant biomass that are not specific to fescue. In 

the random biomass control plots, percentage fescue cover was recorded before removal, and an 

equivalent amount of vegetative cover was randomly selected from among all species in the plot, 

including fescue, and removed. In plots assigned to the intact control treatment, I removed no 

biomass. After removing and bagging aboveground fescue biomass, I applied a dilute mixture of 
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glyphosate herbicide to the clipped Festuca stem bases with a paintbrush to kill the belowground 

portion of the plant.  

Confirmation of the effectiveness of removal. Dry mass of removed vegetation did not differ 

between fescue removal and random removal plots (unpaired t-test: t17.6 = 1.235, p = 0.233). In 

addition, while removal treatments initially decreased vegetative cover, other species replaced 

Festuca. No Festuca was observed to have grown back in fescue removal plots. In fact, percent 

plant cover was significantly greater in Festuca removal plots by 2015, three years after the 

initiation of the experiment (147% versus 129% in peak season; p = 0.03; ΔAICc of best model = 

4.22 less than null model). 

Plant community structure and function 

Community composition and diversity. I measured all response variables within the central 

1 × 1 m area of each plot, including plant community composition, soil moisture, soil respiration, 

and leaf area index (LAI). I used percentage aboveground cover of each plant species, estimated 

visually (to within 1% if ≤10%, and to within 5% if greater), as a proxy for abundance in the 

plant community composition measurements. Composition was recorded once in June 2012 prior 

to fescue removal, twice after removal during the growing season of 2012, and twice during the 

growing seasons of 2013, 2014, and 2015.  

Plant functional trait composition. In 2015, I collected leaf samples from 10 individuals of 

each of the ten most common species at the site, from individuals not in the experimental plots 

but within 20 m of the plots. I also measured the heights of all individuals perpendicular to the 

ground from the base of the stem to the tip of the topmost leaf. From five of these individuals in 

each species, I also collected root samples. The plant tissue samples were used to measure LMA, 

RML, and leaf dry matter content (LDMC). 

I collected at least three mature and fully expanded leaves from each of the individuals that 

were sampled for leaf traits. I transported the leaves on moist paper towels and scanned them on 

an Epson flatbed scanner. I weighed the scanned leaf material, dried it for 48 hours at 60° C, and 

weighed it again. I saved the dried leaf material and pooled it with additional leaves that were 

collected for chemical analysis. 

I took two to four 3-cm diameter, 15-cm long soil cores from directly below the base of each 

individual plant that was sampled for root traits. I extracted as much fine root material as 

possible from the soil cores, washing the soil over a 2-mm sieve if necessary. I scanned 10 to 20 

intact pieces of fine root from each individual on an Epson flatbed scanner after floating the root 

pieces in a transparent tray of water. I dried the root material for 48 hours at 60° C and weighed 

it. I saved the dried root material and pooled it with additional collected roots for chemical 

analysis. 

To measure nitrogen and phosphorus content by mass (total Kjeldahl N and P) of the dried 

tissue samples (both leaf and root), I first ground the tissue samples with a mortar and pestle. I 

weighed 75 mg, or as much as was available, of the ground sample and folded it into a piece of 

adhesive-free cigarette paper. I digested the sample for 5 h at 350° C in 5 mL H2SO4 in a 

Kjeldatherm digestion block (Gerhardt, Königswinter, Germany); in each digestion run I 

included a blank with no sample, and one sample of apple leaf standard with known N and P 

content. After the digests cooled, I added 45 mL deionized water to each one. I used a 



81 

 

SmartChem 200 discrete analyser (Unity Scientific, Brookfield, CT, USA) to measure total 

Kjeldahl N and P, expressed as mg/g tissue.    

I measured the area of the scanned leaf images, and the total length of the scanned root 

images, with ImageJ software (Schneider, Rasband & Eliceiri 2012), using the IJRhizo macro 

(Pierret et al. 2013) to automatically trace all the roots in each image. I calculated LMA for each 

individual plant by summing the mass and area of each individual and dividing the dry mass by 

the scanned area. LDMC was calculated as the dry leaf mass divided by the leaf mass before 

drying. I calculated RML for each individual plant by dividing dry root mass by the total root 

length. 

Carbon storage and turnover 

I used a LI-6400 gas analyser (Li-Cor Corporation, Lincoln, NE, USA) to measure soil 

respiration three times during the growing season of 2012 and twice during 2013, 2014, and 

2015. Permanent PVC soil collars for respiration measurement were placed inside each plot near 

the edge of the central area. I measured LAI twice during 2013, 2014, and 2015. The LAI results 

presented here from 2015 were taken with an Apogee MQ-200 light sensor (Apogee Instruments, 

Logan, UT, USA). To confirm that LAI is a good proxy for standing aboveground plant biomass, 

I collected standing aboveground biomass from 6 sites in the region, including our study site. I 

selected these sites to capture most of the regional variation in LAI. At each site, I measured the 

leaf area index in 5 randomly selected plots 0.25 m
2
 in area, removed all aboveground plant 

biomass from the plots, dried the biomass for 48 h at 60° C, and weighed it. The biomass across 

sites varied approximately sevenfold; the mean biomass at a site was very closely correlated to 

the mean LAI at that site (R
2
 = 0.92). For all environmental response variables, I took 

measurements at multiple times during the growing season; however, I primarily present 

measurements from the peak of the growing season (mid-July) here, following standard practice. 

Data processing and analysis 

All analyses were conducted in R 3.2.3 (R Core Team 2015), with packages listed where 

appropriate. I excluded Festuca from the diversity metric calculation because it was physically 

removed from some of the plots, and I was interested in assessing the diversity of the remaining 

community. However, for the functional diversity, community-weighted trait mean, and 

community-weighted trait variance calculations, Festuca was included to investigate how the 

entire community's function changed with the removal of Festuca and whether communities 

where Festuca was removed would converge functionally on intact communities. Although there 

is a relatively large amount of turnover in plant species between the early growing season (early 

June) and the peak growing season (mid-July), I based all the following analyses on peak-season 

measurements (July); this follows standard practice. Finally, all analyses are based on data 

collected in 2015 except for the analysis of trait convergence through time. 

Calculation of diversity metrics. I calculated species diversity metrics for each treatment 

combination (Jost 2007). I converted Shannon's alpha diversity (H') to first-order effective 

species number (d1) using the formula . For a particular community, the effective 

species number is the number of species in a community of maximum evenness that would be 

required to attain an equivalent value of Shannon's diversity. I excluded Festuca from the 

calculations of effective species number.  
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I also calculated functional diversity by taking the mean trait value for all species in each plot 

for which trait data exist (10 species, comprising a median of 88% of the plant cover in each plot, 

and for over 50% in all plots). For each of these species, I used the trait values of LMA, RML, 

LDMC, leaf N:P ratio, root N:P ratio, and plant height. I calculated the pairwise Gower distance 

between each pair of species and used these distances to estimate an index of functional 

dispersion (FDisp) for each plot. For this calculation, I used the gowdis and fdisp functions in the 

FD package in R (Laliberté et al. 2014). 

Calculation of community-weighted trait means. I calculated community-weighted means 

(CWM) and community-weighted variances (CWV) for LMA, RML, LDMC, leaf N:P ratio, root 

N:P ratio, and plant height for each of the 36 experimental plots. In addition, I ran a principal 

components analysis on the six traits using the prcomp function in R, and calculated CWM and 

CWV for the first principal component axis. Community-weighted means are calculated by 

taking the mean trait value for the 10 species for which trait data exist and calculating a mean 

trait value for each of the 36 plots weighted by the relative cover of each plant species; variance 

is calculated in a similar way.  

Statistical analysis. I assessed the effect of the fertilization treatments, the removal 

treatments, and their interaction with a linear model (ANOVA). I visually examined all residual 

plots for normality to ensure that parametric analysis of untransformed data was appropriate. In 

each case, I fit the full model with both main effects and their interactions, then fit all possible 

subsets of that model and compared their AICc scores using the dredge function from 

the MuMIn package (Bartoń 2016). Models with an AICc value within 2 of the lowest value 

were considered to be the best models. As a post hoc test for differences among treatment means, 

I calculated the least-square means for each treatment combination and marginal least-square 

means for each single treatment, along with their standard errors and 95% confidence intervals 

using the lsmeans function from the lsmeans package (Lenth 2015). 

To determine whether variation in community structure was explained by the treatments, I 

ran 9999 iterations of a permutational analysis of variance (PERMANOVA; Anderson 2001) for 

both the early-season and peak-season time points. This test, implemented in the adonis function 

in the vegan R package (Oksanen et al. 2016), partitions variance in ecological community 

datasets similarly to a multivariate analysis of variance. 

In addition to comparing means across treatment groups for the 2015 growing season, I also 

investigated whether the plant community in plots where Festuca was removed converged 

functionally over time toward intact control plots where no species was removed. I took the 

median plot-level values of the six trait CWMs of each removal treatment group (intact control, 

Festuca removal, and random biomass removal), pooled across all fertilization treatments, for 

the peak growing seasons in each of the four years since treatments were established (2012-

2015), as well as the first principal components axis. I subtracted the median CWM value of the 

intact control group from the Festuca removal group and from the random removal group. For 

each of the two removal groups, I regressed the difference relative to the control against the 

number of years since treatments were established. A slope trending toward zero over time 

would indicate that the mean trait value of the community without Festuca is converging on the 

mean trait value of the community with Festuca, presumably because other species are 

increasing in relative abundance to fill the niche space left by the removal of Festuca. 
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Results 

Plant community structure and function 

Community composition and diversity. There was no significant difference in species 

diversity among any of the treatments in July 2015 (null model was selected by AICc). In 

addition, there was no significant response of community structure, as measured by turnover in 

species identity, to fertilization or removal (PERMANOVA; p > 0.1 for both fertilization and 

removal treatments). In contrast to the lack of response in community structure, functional 

diversity as measured by FDisp was 21% lower in Festuca removal plots relative to intact 

control plots (p =0.0001, R
2
 = 0.367, ΔAICc of best model = -11.42 less than null model; Figure 

24). However, functional diversity was not significantly lower in random biomass removal plots 

compared to intact control plots. There was no interactive effect of the treatments on species 

diversity or functional diversity. 

Plant functional trait composition. The functional composition of plant communities in 

July 2015 differed across removal treatments, but not fertilization treatments. Dominant species 

removal did not cause a change in the CWM of leaf mass:area ratio (Figure 25). Dominant 

species removal was retained as a predictor in all the best models for the CWM of root 

mass:length ratio (ΔAICc = -15.34; Figure 26), height (ΔAICc = -2.54; Figure 27), and leaf dry 

matter content (ΔAICc = -9.03; Figure 28). Removing Festuca caused the plant community to 

have a 23% lower mean root mass:length ratio (p = 2 × 10
-5

; R
2
 = 0.431), a 15% shorter mean 

height p = 0.02; R
2
 = 0.187), and a 20% lower leaf dry matter content (p = 0.001; R

2
 = 0.321). In 

all three cases, the coefficient associated with Festuca removal was of greater magnitude than 

the coefficient associated with random biomass removal, although the plant community also had 

lower mean root mass:length ratio, shorter mean height, and lower leaf dry matter content in 

random removal plots relative to intact controls. Removal and fertilization had no interactive 

effect on any trait mean. 

Paralleling the change in functional diversity, the variance in both root mass:length ratio and 

leaf dry matter content decreased in the absence of Festuca. CWV of root mass:length ratio 

decreased by 70% (p = 9 × 10
-6

; Figure 26), and variance in leaf dry matter content decreased by 

57% (p = 0.0002; Figure 28). However, as with the community-weighted means, the variances in 

root mass:length ratio and leaf dry matter content were also decreased in random removal plots 

but to a lesser degree (by 32% and 19%, respectively).  

The means and variances of root and leaf N:P ratios were also affected by removal of 

Festuca, but not by random biomass removal. Leaf N:P ratio was 4% lower when Festuca was 

removed, although this was a marginally significant difference (p = 0.7; R
2
 = 0.225; ΔAICc = 

4.23; Figure 29). The CWV of leaf N:P ratio was the same across all treatments. In contrast, the 

CWM of root N:P ratio was unchanged across treatments, but the CWV was 43% higher when 

Festuca was removed (p = 0.0007; R
2
 = 0.304; ΔAICc = 8.13; Figure 30). There was no 

interactive effect of treatments on any of the functional trait means. 

Despite these differences among removal treatments, it is important to note here that the 

differences in trait mean and variance were caused primarily by the removal of Festuca, not by 

differences in the trait composition of the subordinate community across treatments. When I 

compared CWM and CWV across treatments excluding Festuca from the calculations, there was 

no significant difference between the CWM or CWV of any trait between Festuca removal 
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Figure 24. Functional dispersion (on y-axis) by removal treatment (x-axis) in July 2015. The 

intact-community control is shown in dark blue, fescue removal treatment in white, and random 

removal treatment in light blue. Each point represents the value from a single experimental plot, 

and the horizontal bars are the median value from each removal treatment group, across all three 

fertilization treatment groups. Different letters indicate removal treatments that significantly 

differ from one another (post hoc comparison of least-square means across all levels of 

fertilization treatment). 
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Figure 25. Leaf mass:area ratio community-weighted means (top panel) and community-

weighted variances (bottom panel) across all 9 treatment combinations in July 2015.  
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Figure 26. Root mass:length ratio community-weighted means (top panel) and community-

weighted variances (bottom panel) across all 9 treatment combinations in July 2015. 
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Figure 27. Plant height community-weighted means (top panel) and community-weighted 

variances (bottom panel) across all 9 treatment combinations in July 2015. 
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Figure 28. Leaf dry matter content community-weighted means (top panel) and community-

weighted variances (bottom panel) across all 9 treatment combinations in July 2015. 
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Figure 29. Leaf nitrogen:phosphorus ratio community-weighted means (top panel) and 

community-weighted variances (bottom panel) across all 9 treatment combinations in July 2015. 
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Figure 30. Root nitrogen:phosphorus ratio community-weighted means (top panel) and 

community-weighted variances (bottom panel) across all 9 treatment combinations in July 2015. 
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plots and intact control plots, with the single exception of a marginally higher variance in root 

N:P ratio in the absence of Festuca. N addition had no effect on CWM or CWV in either case. I 

hypothesized that some of this lack of response was due to the fact that the remaining plant 

community had begun to converge toward the trait value of Festuca in the years since removal. 

Trait convergence: The community-weighted mean of the principal trait axis in Festuca 

removal plots increased relative to control plots from 2012, just after Festuca removal, to 2015, 

three years after removal (Figure 31; R
2
 = 0.96; p = 0.02). No significant trend in the 

community-weighted mean of random biomass removal plots was observed (Figure 31). The trait 

means for the control group were higher than the Festuca removal group in all cases, indicating 

that the community trait value in Festuca removal plots was converging on the pre-removal 

value. Five of the six individual traits also showed this pattern (Figure 32). The R
2
 value was 

greater than 0.87 for these five traits; the convergent trend was significant at α = 0.05 for LMA, 

RML, and LDMC, but only at α = 0.1 for height. In contrast, leaf N:P ratio showed no 

convergent trend over time. The three species that increased most over time in absolute cover 

with Festuca removal were Bromopsis inermis, which had the closest root mass:length ratio to 

Festuca, Heliomeris multiflora, which had the closest leaf mass:area ratio to Festuca, and 

Elymus glaucus Buckley (traits not measured), similar in growth habit to Bromopsis. I did not 

expect any significant trends over time in random biomass removal plots; however, the CWM of 

leaf dry matter content in random biomass removal plots increased over time relative to the 

control group (p = 0.04).  

Carbon storage and turnover 

Leaf area index. In July 2015, leaf area index, a reliable proxy for standing aboveground 

biomass in this study system, did not differ among species removal treatments, nor did species 

removal treatments interact with fertilization treatments to affect LAI (Figure 33). However, 

ammonium nitrate fertilization, but not urea fertilization, caused a significant increase in LAI 

(ΔAICc of fertilization-only model = -5.3; p = 0.0076, R
2 

= 0.247; Figure 33). Averaged across 

all levels of removal treatment, the least-square mean of leaf area index in unfertilized control 

plots was 2.38, with 95% CI [1.69, 3.07], compared to 3.75 [3.05, 4.44] with ammonium nitrate 

fertilization and 2.38 [1.68, 3.07] with urea fertilization. 

Soil respiration. Soil carbon efflux increased with the addition of both ammonium nitrate 

and urea fertilizer, but only in June 2015 shortly after fertilizer was added (Figure 34a); there 

were no significant differences among treatments in July 2015 (Figure 34b). In June, Soil 

respiration increased by 68% (p = 0.005) with ammonium nitrate addition relative to the control, 

and by 57% with urea addition relative to the control (p = 0.02; R
2
 = 0.369; Figure 34a). 

However, soil respiration did not vary with the presence or absence of Festuca after four 

growing seasons of removal, despite a moderate but nonsignificant pulse in the respiration rate 

shortly after removal in the Festuca removal plots but not the random biomass removal plots.  

Discussion 
After the fourth growing season since treatments were established, the effects of yearly organic 

and inorganic N addition and loss of the dominant grass species differed dramatically. Both 

species and functional diversity of the plant community were resistant to change in response to 

species loss and N addition. The remaining plant community demonstrated resilience to  



92 

 

 

Figure 31. Trait convergence of dominant-species removal plots and control plots since removal. 

The first principal components axis, encompassing 37% of trait variation, is shown. The 

difference in median value, relative to the control, of plot-level community-weighted trait mean 

for the fescue removal (open circles) and random removal treatments (filled circles) is plotted 

versus time. The trend line shows a significant convergent trend in the fescue removal treatment, 

in that the difference between these plots and the control plots approached zero over time. The 

random removal plots show no significant change over time. 
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Figure 32. Convergence of each individual trait mean between control plots and dominant-

species removal plots since removal. The difference in median value, relative to the control, of 

plot-level community-weighted trait mean for the fescue removal (open circles) and random 

removal treatments (filled circles) is plotted versus time. Solid trend lines represent significant 

changes in the mean of the fescue removal plots relative to the control, and the dashed trend line 

represents a significant change in the mean of the random biomass removal plots relative to the 

control. Nonsignificant trends are not shown. 
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Figure 33. Leaf area index (y-axis) by fertilization treatment (x-axis) in July 2015. Leaf area 

index is an easily measured variable closely correlated with standing aboveground plant biomass. 

The unfertilized control is shown in white, inorganic N fertilization in light green, and organic N 

fertilization in dark green. Each point represents the value from a single experimental plot, and 

the horizontal bars are the median value from each fertilization treatment group, across all three 

removal treatment groups. Here, different letters indicate significant differences among 

fertilization treatments (post hoc comparison of least-square means across all levels of removal 

treatment). 
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Figure 34. Soil C efflux (y-axis) by fertilization treatment (x-axis) in June 2015 (top panel) and 

July 2015 (bottom panel). Each point represents the value from a single experimental plot, and 

the horizontal bars are the median value from each fertilization treatment group, across all three 

removal treatment groups. Here, different letters indicate significant differences among 

fertilization treatments.  
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change—the increase in relative abundance of some species compensated for the loss of Festuca 

by increasing the relative dominance of species with higher LMA, RML, LDMC, and height and 

lower root N:P ratio, as evidenced by the significant change in the community-weighted mean of 

these traits over time since the initial removal event in 2012. While nitrogen fertilization did not 

affect the composition of the plant community, inorganic nitrogen fertilization promoted 

increases in aboveground biomass, and both forms of nitrogen increased soil respiration during 

the early part of the growing season. 

Changes in plant traits with Festuca removal show compensation 

Neither community-weighted mean nor variance of any trait differed among treatments in 

2015, other than the obvious change resulting from physically removing Festuca. The relatively 

high LMA, RML, leaf N:P ratio, and height of Festuca suggests that its high abundance is 

associated with high investment into structural tissue that is durable and can withstand stress 

(Wright et al. 2004), at the expense of achieving high short-term rates of carbon (C) gain in 

leaves (Poorter et al. 2009) or soil resource uptake in roots (Freschet et al. 2010; Bardgett et al. 

2014).  However, plant species with relatively high RML, LDMC, and height, and low root N:P 

ratio became more abundant in response to removal of Festuca, as shown by the increases in 

community-weighted means for those traits relative to the control. This likely illustrates a 

compensatory response by those subordinate species whose leaf and root traits were most similar 

to Festuca (McLaren & Turkington 2010). The response I observed suggests that it may be 

possible to predict which species might compensate for species loss based on trait similarity. The 

plant community that remained after Festuca removal demonstrated resilience by replacing both 

its aboveground biomass and its functional role (Smith & Knapp 2003; Craine et al. 2011).  

High leaf mass:area ratio and high root mass:length ratio indicate, for leaves and roots 

respectively, a tradeoff in favour of stress tolerance and durability over resource acquisition 

potential (Lind et al. 2013). This compensatory response may explain the lack of response in 

ecosystem process rates related to soil C cycling, as both the biomass and function of Festuca 

were replaced by other species. It is likely that there is a combination of traits that optimizes 

competitive ability within this plant community; one would expect the most abundant plant 

species to exhibit traits closest to that optimum (Gilman et al. 2010). When that species is lost 

from the community, the remaining species that are closer to the optimum value will increase in 

relative abundance. However, full convergence will probably not occur if Festuca is prevented 

from regeneration, since there are no species with such extreme values of LMA and RML in the 

community. The timeframe of this experiment was short relative to the lifespan of the plants in 

this system. For example, many Helianthella individuals have been censused in this meadow 

since 1973 and are still living (Inouye 2008). Therefore, this study only simulates the short-term 

phase of change by vegetative growth, which may not capture the magnitude or direction of 

long-term change (Sandel et al. 2010). Over the long term, recruitment from other locations 

might cause the mean trait value of the community to return closer to the optimum value. 

Nitrogen addition had moderate effects on carbon cycling processes belowground 

I found that inorganic N addition, but not organic N addition, led to increased aboveground 

plant biomass as measured by LAI, indicating that the plant community is at least partially 

limited by lack of soil N. This pattern is unsurprising given that N fertilization tends to increase 
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shoot:root biomass allocation ratio in natural communities (Li et al. 2010). Additionally, rates of 

soil respiration increased after adding both organic and inorganic forms of N, but this effect 

dissipated after several weeks. Neither form of N addition had any significant impact on the 

species composition of the plant community nor on functional trait composition. This striking 

lack of community response, especially in a region where the rate of anthropogenic N deposition 

is among the lowest in North America (Schwede & Lear 2014), may arise because there is no 

significant variation among the plant species in their ability to take up N. Therefore, no 

individual species was able to benefit disproportionately from N addition.  

I had initially hypothesized that organic and inorganic N would have positive effects on 

different plant species because plant community diversity may be maintained by partitioning of 

different sources of soil N (McKane et al. 2002; Chesson et al. 2004). However, the only 

difference observed in different forms of N fertilization was a greater blanket increase in 

aboveground biomass when inorganic N was added. One plausible set of explanations is that 

most plants in this system can take up inorganic N from the soil more readily, and that 

partitioning of soil N pools is not an important mechanism helping to maintain diversity in this 

plant community. Another possible explanation for the superior fertilization effect of ammonium 

nitrate relative to urea is that the urea tends to be rapidly nitrified and leached from the soil as 

nitrate ions. Therefore, the fertilization effect may primarily be due to ammonium fertilization. 

Lack of interaction may be due to legacy effects 

The effect of Festuca removal did not depend on N addition, or vice versa; that is, there were 

no interaction effects retained as predictors for any of the variables I measured. Perhaps there has 

been insufficient time for the loss of Festuca to have changed abiotic conditions in the plots or to 

have changed the microbial community. Results from a related project conducted in Summer 

2013 show that both living Festuca individuals and belowground legacy effects (Kostenko et al. 

2012) from dead Festuca individuals affect mycorrhizal communities on neighbouring 

Helianthella individuals similarly (Jeremiah Henning, unpublished data). Because the 

mycorrhizal community associated with a plant's roots is an important determinant of the rate at 

which that plant can take up soil resources such as N (Read & Pérez-Moreno 2003), the 

persistence of Festuca-associated mycorrhizae may explain the lack of interaction between 

removal and fertilization. As I plan to continue maintaining the experimental treatments and 

collecting data over the next several years, we hypothesize that such interactions may manifest 

themselves once the legacy effects of Festuca become more attenuated. 

Shifting dominance in time 

The study system is dominated by long-lived species that are adapted to deal with 

fluctuations in temperature, precipitation, herbivory, physical damage, and resource availability 

both within and among growing seasons. As a result of these fluctuations, grasses including 

Festuca are more dominant in drier years, while asters such as Helianthella have much greater 

cover and live aboveground biomass in wetter years. This has large impacts on year-to-year C 

storage in the system, because Festuca litter is much more recalcitrant and ties up C and N in 

undecomposed tissue for many years, as confirmed by a decomposition experiment at an 

adjacent site (Shaw & Harte 2001). However, in the wetter years, light becomes limiting, and the 

asters like Helianthella that are superior competitors for light are able to suppress Festuca and 
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prevent it from accumulating biomass. This plant community may maintain stability in the face 

of among-year changes because the bulk of the biomass shifts between two or more dominant 

species that achieve relative abundance peaks at different moisture levels (Allan et al. 2011; 

Dangles, Carpio & Woodward 2012). This storage effect arises from functional tradeoffs and 

may explain the coexistence of multiple dominant plant species within a community (Angert et 

al. 2009). Furthermore, the effects of yearly climate fluctuations are dampened by the large 

storehouse of biomass and nutrients belowground, especially in tap-rooted forbs such as 

Helianthella. Due to the resilience conferred by this storage effect, it is possible that only 

repeated extreme events would cause a regime shift (Biggs, Carpenter & Brock 2009) that would 

significantly change properties such as C cycling. 

In addition to temporal scale, spatial scale may obscure the effect of dominant species 

removal: it is not clear across what distance plant individuals interact with one another in this 

community. While 2-5 tussocks of Festuca were removed from each removal plot, it is possible 

that only a subset of plants within the 1 m
2
 plot were affected by these removals. Aggregating 

response variables at the plot scale may have obscured any effects. Finally, factors not 

manipulated here may be stronger drivers of structure and function relative to Festuca presence 

and N levels, namely temperature, snowmelt date, herbivory by cattle and pocket gophers 

(Cantor & Whitham 1989), and frequent avalanches in winter.  

Conclusion 

I experimentally manipulated multiple global change drivers, tested ecological niche theory, 

and united global-change ecology with a trait-based approach. This innovative approach 

indicated that shifts over time in relative abundance of plant species partly compensated for the 

loss of a dominant grass species. In addition, I found that chronic addition of soil N only had 

moderate effects on C cycling processes and that plant community structure was entirely 

unchanged in response to N addition. These results may indicate that the storage effect is of 

paramount importance in conferring resilience and maintaining diversity in montane meadow 

communities. Approaches such as this one, replicated across sites, would greatly improve global 

vegetation models by enabling them to incorporate the storage effect that confers resilience to 

plant communities by the rapidly shifting dominance of different plant species from year to year. 
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Appendices 

Table 4. Summary of statistical test results for models fit to each response variable, including coefficients of determination, 

information criteria, p-values, and least-square means (with 95% confidence intervals given in parentheses). 

        p-values 

Response variable Best model R
2
 ΔAICc 

ammonium 

nitrate urea 

fescue 

removal 

random 

removal 

Soil carbon efflux (June) 

Fertilization + 

Removal 0.369 6.1 0.0048 0.016 0.989 0.024 

Soil carbon efflux (July) null — — — — — — 

Leaf area index Fertilization 0.247 5.3 0.0076 0.993 — — 

Effective species number null — — — — — — 

Functional dispersion Removal 0.467 17.73 — — 7e-6 0.0035 

LMA mean null — — — — — — 

RML mean Removal 0.431 15.34 — — 0.00002 0.0059 

Height mean Removal 0.187 2.54 — — 0.022 0.023 

LDMC mean Removal 0.321 9.03 — — 0.00095 0.0032 

Leaf N:P mean Removal 0.225 4.23 — — 0.067 0.25 

Root N:P mean null — — — — — — 

PCA axis 1 mean Removal 0.388 12.77 — — 0.0003 0.0005 

LMA variance null — — — — — — 

RML variance Removal 0.455 16.91 — — 9e-6 0.023 

Height variance null — — — — — — 

LDMC variance Removal 0.349 10.51 — — 0.00023 0.17 

Leaf N:P variance null — — — — — — 

Root N:P variance Removal 0.304 8.13 — — 0.0007 0.017 

PCA axis 1 variance Removal 0.363 11.32 — — 0.0001 0.095 
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Table 4. Continued. 

  least-square means 

Response variable 

ammonium 

nitrate urea 

no 

fertilization fescue removal random removal no removal 

Soil carbon efflux (June) 

6.09 (4.92, 

7.26) 

5.69 (4.52, 

6.86) 

3.63 (2.46, 

4.80) — — — 

Soil carbon efflux (July) — — — — — — 

Leaf area index 

3.75 (3.05, 

4.44) 

2.38 (1.68, 

3.07) 

2.38 (1.69, 

3.07) — — — 

Effective species number — — — — — — 

Functional dispersion — — — 0.177 (0.153, 0.201) 0.214 (0.190, 0.238) 0.267 (0.243, 0.291) 

LMA mean — — — — — — 

RML mean — — — 

1.72e-5 (1.58e-5, 

1.86e-5) 

1.91e-5 (1.78e-5, 

2.05e-5) 

2.19e-5 (2.05e-5, 

2.33e-5) 

Height mean — — — 34.97 (31.27, 38.66) 35.00 (31.31, 38.69) 41.12 (37.42, 44.81) 

LDMC mean — — — 0.178 (0.160, 0.195) 0.183 (0.166, 0.201) 0.222 (0.205, 0.240) 

Leaf N:P mean — — — 

10.985 (10.629, 

11.341) 

11.743 (11.387, 

12.099) 

11.454 (11.098, 

11.810) 

Root N:P mean — — — — — — 

PCA axis 1 mean — — — 

-0.142 (-0.354, -

0.070) 

-0.111 (-0.323, 

0.101) 0.457 (0.245, 0.669) 

LMA variance — — — — — — 

RML variance — — — 

4.3e-11 (1.5e-11, 

7.0e-11) 

9.8e-11 (7.0e-11, 

1.25e-10) 

1.43e-10 (1.16e-10, 

1.71e-10) 

Height variance — — — — — — 

LDMC variance — — — 

0.0065 (0.0035, 

0.0094) 

0.0120 (0.0091, 

0.0150) 

0.0149 (0.0120, 

0.0178) 

Leaf N:P variance — — — — — — 

Root N:P variance — — — 

34.753 (30.702, 

38.804) 

31.375 (27.324, 

35.426) 

24.275 (20.224, 

28.325) 

PCA axis 1 variance — — — 1.535 (0.984, 2.086) 2.527 (1.976, 3.077) 3.185 (2.634, 3.736) 
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CHAPTER V 

DOMINANT SPECIES LOSS AFFECTS CARBON 

FLUXES IN WARMED MONTANE MEADOWS 

VIA CHANGES TO PLANT SPECIES TRAITS 
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Abstract 
Global climate change and loss of dominant species threaten many of the world's ecosystems. 

It is difficult to predict the indirect effects of environmental change that are mediated by changes 

in the functional trait composition of plant communities. To address this, I crossed experimental 

warming treatments with removal of dominant plant species. In contrast to many similar 

experiments conducted at single sites, the experiment was replicated at a high and a low 

elevation site that differ in their climate and the functional composition of their plant 

communities. After the third season of warming and species removal, neither warming nor 

dominant-species loss changed the trait composition of the remaining community. However, 

because the dominant species differed functionally from the remaining community, the loss of 

dominant species affected community-level functional trait means and variances and associated 

ecosystem processes. Warming increased soil carbon efflux only at the low-elevation site, while 

dominant-species removal increased efflux at the low site and decreased it at the high site. A 

structural equation model revealed that the functional trait composition of the plant community 

was the most important determinant of net ecosystem carbon exchange. In addition, there was a 

positive relationship between functional diversity and net ecosystem exchange, and loss of the 

dominant species tended to reduce the magnitude of net ecosystem exchange. Taken together, 

my results demonstrate that the indirect effects of climate change and species loss may be both 

considerable and context-dependent. 

Introduction 
Global climate change and loss of dominant species threaten many of the world's ecosystems, 

putting mountain ecosystems especially at risk (IPCC 2014). While the direct effects of human 

activity on the global climate system and nutrient cycles are well known, the indirect effects of 

climate change, through effects on plant communities and traits, can have a larger impact on 

ecosystem carbon (C) dynamics than the direct effects of climate (McMahon et al. 2011; Niu et 

al. 2013). Mountains are an ideal testbed for disentangling the direct and indirect effects of 

climate change and species loss on communities and ecosystems for three key reasons. First, 

mountain regions harbor high levels of biodiversity: temperature and other environmental factors 

vary widely with elevation over small spatial scales such that plant communities, plant trait 

compositions, and dominant plant species also differ greatly (Spehn & Körner 2005). Second, 

montane ecosystems may be under especially severe threat from global warming (Engler et al. 

2011; Gottfried et al. 2012). Third, spatial patterns along temperature gradients are similar to 

patterns observed with historical climate change through time (Blois et al. 2013; Elmendorf et al. 

2015). For these three reasons, mountains can act as powerful study systems to help us 

understand longer-term, larger-scale, community and ecosystem responses to environmental 

changes, especially when coupled with experimental manipulations (Fukami & Wardle 2005; 

Sundqvist et al. 2013). 

Because dominant plant species determine ecosystem properties, small relative changes in 

their abundance can have dramatic absolute effects on ecosystem function (Ellison et al. 2005; 

Gaston and Fuller 2008), often greater in magnitude than the vaunted relationship between 

biodiversity and ecosystem function (Winfree et al. 2015). In different environments, different 

traits confer competitive dominance on different species (Hillebrand et al. 2008; Gilman et al. 
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2010). If the dominant species is lost from a system, the consequence of that loss for community 

structure and ecosystem function depends on the traits of the lost species, the traits of the 

remaining species, and the baseline environmental conditions at the site (Emery & Gross 2007). 

While many hypotheses about the outcome of species loss from plant communities have been 

tested (Díaz et al. 2003; Selmants et al. 2012), few studies have tested how the effects of species 

loss vary among sites that differ in their environmental conditions and in the traits of the 

dominant species (Wardle & Zackrisson 2005). Fewer studies still have tested how these effects 

may be mediated by temperature (Alexander et al. 2015), although we expect climate warming to 

disrupt, or at least modify, interactions among species and the functions they mediate (Tylianakis 

et al. 2008; Michalet et al. 2014). To address this gap in our knowledge, I have experimentally 

increased temperature and removed the dominant plant species at a low- and high-elevation site. 

In particular, I asked three related questions: 

 How does simulated anthropogenic warming alter the species composition, functional 

trait composition, community-level thermal affinity, and carbon fluxes of montane 

meadow ecosystems? 

 How does the loss of dominant plant species affect the species composition and 

functional composition of the remaining community, and its associated carbon fluxes? Is 

this effect mediated by warming? 

 Are the magnitudes and directions of warming and dominant-species effects contingent 

on the baseline compositions and environmental conditions of meadow communities in 

warm low-elevation sites and cold high-elevation sites? 

I predicted that increased temperatures would have a greater effect on carbon flux at the 

high-elevation site, causing both increased biomass and faster rates of carbon uptake, because of 

the preexisting temperature limitation at that site and the strong filtering over time for species 

that can respond rapidly to take advantage of short-lived warm temperatures and pulses of 

resource availability. I also predicted that warmed temperatures would cause an increase in 

community thermal index of the plant community at both sites due to increases in relative 

abundance of species with warmer thermal affinities. Finally, I predicted that the loss of 

dominant plant species would have a greater effect on the species composition and carbon fluxes 

at the low-elevation site, where competition for resources may be more intense, but that the loss 

of the dominant species would be relatively unimportant for the remaining species at high 

elevation.  

Methods 
The experiment described here consists of a replicated warming × dominant-species removal 

treatment at both high and low elevations. This approach enabled me to determine whether the 

relative strengths of abiotic climate change and biotic species loss for determining community 

structure and function show the same pattern in both warm and cold environments. 

Site description 

The two sites at which I established the replicated warming × removal treatment are in the 

Gunnison Valley near Gothic, Colorado, USA. The low-elevation site, in the Almont Triangle 

land parcel just northeast of Almont, Colorado, is 2740 m above sea level in sagebrush steppe 

habitat. At the low-elevation site the most abundant species is Wyethia amplexicaulis, a perennial 
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aster with large leaves and wide rosettes. The high-elevation site is on Cinnamon Mountain at 

3460 m above sea level. Juncus drummondii, a perennial rush that grows in dense clumps 

intermixed with large amounts of standing dead biomass, dominates the high-elevation site. Both 

sites were selected to be relatively flat or on a shallow slope with a west-facing aspect to 

minimize confounding variation in topography and hydrology. 

Treatments 

The experiment is a 2 × 2 factorial design with two levels of warming (warmed and ambient) 

crossed with two levels of species removal (dominant species present and dominant species 

removed). There are 8 replicates of each treatment combination at each site, yielding 32 plots at 

each site for a total of 64 plots. 

Warming treatment: The warming treatment is achieved using an open-top warming chamber 

(OTC). The design of the OTCs is based on the chambers used by the International Tundra 

Experiment specifications (Molau & Molgaard 1996), with slightly adjusted dimensions. Each 

chamber consists of six translucent trapezoidal fiberglass panels of approximately 1 mm 

thickness attached to one another with cable ties. Together the panels form a hexagonal cone 

with sloping sides, about 50 cm high in profile, with a basal diameter of roughly 170 cm and an 

opening at the top of roughly 100 cm diameter. All plot-level response variables are recorded 

within a circle of 140 cm diameter at the center of the plot, which leaves a roughly 15 cm buffer 

between the measured area and the chamber base. The OTCs for warmed plots are installed in 

early spring and kept in the field for the duration of the growing season; I put them in the field in 

early June (later for the high-elevation site) and disassembled them in late September as plants 

senesced. 

To ensure that the warming treatment was effective, I placed iButton temperature loggers 

(Maxim Integrated Corp., San Jose, CA, USA) on pin flags 5 cm above the soil surface at the 

center of each plot. In order to prevent the temperature loggers from receiving direct sunlight, I 

made packets out of a layer of Mylar film around a layer of window screening material and 

sealed the loggers inside. Temperatures were recorded at 30 minute intervals. A subset of the air 

temperature loggers also had the capacity to record relative humidity at 30 minute intervals (n = 

4 per treatment combination per site). In addition, I buried temperature loggers 5 cm below the 

soil surface sealed inside plastic vials in a subset of plots (n = 2 per treatment combination per 

site). Soil temperatures were recorded at 60 minute intervals to minimize the need to disturb soil 

by digging up the loggers to download temperature values.  

The OTCs warmed the air temperature of experimental plots 5 cm above the soil at the low-

elevation site by 1.7° C, and at the high-elevation site by 1.8°C (Figure 35). The magnitude of 

daytime warming, between the hours of 6:00 and 21:00, was greater than nighttime warming 

(2.2° C versus 0.8° C at the low-elevation site, and 2.4° C versus 0.7° C at the high-elevation 

site). Soil temperature 5 cm below the surface was also warmed effectively by the OTCs (1.8° C 

at low elevation and 1.2° C at high elevation; Figure 36); this warming was greater during the 

day than at night (2.6° C versus 0.5° C at low elevation, and 1.3° C versus 1.0° C at high 

elevation). In addition to warming effects, it has been commonly noted that OTCs tend to alter 

the relative humidity as an artifact of the warming treatment. However, I did not find any such 

effect. I fit a linear mixed-effects model to the relative humidity data with site and warming 

treatment as fixed effects, and plot and measurement time as random effects. After controlling  
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Figure 35. Air temperature 5 cm above ground at low and high elevation sites in 2014 and 2015, 

averaged by hour. For each hour, red points represent the mean of warmed plots at each site in 

each year, and blue points represent the mean of ambient plots at each site in each year. 
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Figure 36. Soil temperature 5 cm above ground at low and high elevation sites in 2014 and 

2015, averaged by hour. For each hour, red points represent the mean of warmed plots at each 

site in each year, and blue points represent the mean of ambient plots at each site in each year. 
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for plot and measurement time, I found no significant difference in relative humidity between 

plots with and without OTCs at each site. 

Removal treatment: Crossed with the warming treatment, I established a dominant-species 

removal treatment. I removed dominant species over the entire 4 m
2
. Dominant species is defined 

here as the species that maintains the highest abundance over the longest time during the 

growing season, averaged over an entire site. This contrasts with other definitions of dominant 

species that explicitly refer to competitive interactions (Clements 1936). The individual plants 

were removed by first clipping all aboveground biomass at the base. The biomass was saved and 

weighed. Next, if necessary, I painted a small amount of diluted glyphosate herbicide onto the 

clipped stem bases to kill belowground biomass. All removed biomass was dried and weighed. I 

removed any regenerating stems of the dominant species twice during each growing season. In 

contrast to the removal experiment in the previous chapter, I did not implement a random 

biomass removal treatment. 

Across all removal events from 2013-2015, the total amount of dry aboveground biomass 

removed at the low-elevation site was 3.5 times greater than the amount removed at the high-

elevation site (unpaired t-test; p = 5 × 10
-5

). Therefore, there is the possibility of confounding the 

removal-by-site interaction effect with an effect of the amount of aboveground biomass 

removed. In addition, the removal treatment caused approximately a 10% decrease in 

aboveground plant cover in July 2015 as documented in the plant community measurements 

(ANOVA; p = 0.036). 

Species composition and functional composition 

To measure plant community composition, I estimated plant cover percentages as a proxy for 

abundance. Cover was estimated visually to the nearest 1% if ≤10%, and to the nearest 5% if 

>10%. I recorded plant community composition twice during each growing season.  

I measured functional traits during the growing seasons of 2014 and 2015. I collected leaf 

tissue from 10-20 individuals of each of the most common species at each site, from individuals 

that were not within the experimental plots but were within 20 m of at least one experimental 

plot. I measured heights of all individuals from which I collected leaf tissue, but I collected root 

cores from only a subset (5-10 individuals). I collected 20 leaf tissue samples and 10 root tissue 

samples from the most abundant species, and 10 leaf and 5 root samples from less abundant 

species. In total, I collected trait data for the species that make up at least 70% of the plant cover 

in all plots at peak biomass, and at least 80% of the plant cover in 95% of the plots. 

For each individual, I collected at least three mature and fully expanded leaves. I transported 

the leaves on moist paper towels and scanned them on an Epson flatbed scanner. I weighed the 

scanned leaf material, dried it for 48 hours at 60° C, and weighed it again. I saved the dried leaf 

material and pooled it with additional leaves that were collected for chemical analysis. 

For each individual, I also took two to four 3-cm diameter, 15-cm long soil cores from 

directly below the plant's base. I extracted as much fine root material as possible from the soil 

cores, washing the soil over a 2-mm sieve if necessary. I scanned 10 to 20 intact pieces of fine 

root from each individual on an Epson flatbed scanner after floating the root pieces in a 

transparent tray of water. I dried the root material for 48 hours at 60° C and weighed it. I saved 

the dried root material and pooled it with additional collected roots for chemical analysis. 
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I measured the area of the scanned leaf images, and the total length of the scanned root 

images, with ImageJ software (Schneider et al. 2012), using the IJRhizo macro (Pierret et al. 

2013) to automatically trace all the roots in each image. I calculated LMA for each individual 

plant by summing the mass and area of each individual dividing the dry mass by the scanned 

area. LDMC was calculated as the dry leaf mass divided by the leaf mass before drying. I 

calculated RML for each individual plant by dividing dry root mass by the total root length. 

Carbon fluxes 

I measured soil respiration twice per growing season at each plot using a LI-6400 gas 

analyzer (Li-Cor Corp., Lincoln, NE, USA). Soil respiration measurements entailed measuring 

the net CO2 efflux from the soil surface within the area of a PVC collar 10 cm in diameter 

permanently installed at the same location as the moisture rods. Additionally, I measured leaf 

area index at each plot using an Apogee MQ-200 PAR sensor (Apogee Instruments, Logan, UT, 

USA). I followed the same measurement protocols given in Chapter III, above.  

In addition, I measured net ecosystem carbon exchange (NEE) at all the experimental plots 

during July 2015. To do so, I temporarily removed the OTC if necessary. Next, I placed a LI-

7500 gas analyzer (Li-Cor Corp., Lincoln, NE, USA) on a tripod in the center of the plot, with 

the analyzer approximately 75 cm off the ground. The gas analyzer measures infrared absorption 

and converts it to CO2 concentration. I placed a cubical chamber made of translucent greenhouse 

plastic and PVC pipe measuring 1.73 m
3
, or 1.2 m on a side, over the plot. I measured CO2 

drawdown for 120 seconds, keeping air circulating inside the cube with small fans. I repeated 

this procedure with four light levels: (1) translucent plastic only, allowing approximately 80% of 

ambient light to penetrate; (2) a single layer of shade cloth, allowing approximately 50% light 

penetration; (3) two layers of shade cloth, allowing 20% light penetration; and (4) a black 

tarpaulin which effectively blocked all incoming light. I measured photosynthetically active 

radiation inside the chamber with an Apogee MQ-200 PAR sensor after each carbon flux 

measurement. Between successive measurements, I removed the chamber from the plot and 

allowed the air inside the cube to mix well. The data processing procedure is described below. 

Data processing and analysis 

All analyses were conducted in R 3.2.3 (R Core Team 2015), with packages listed where 

appropriate. I excluded the dominant species at each site (Wyethia and Juncus) from the diversity 

metric calculation because they were physically removed from some of the plots, and I was 

interested in assessing the diversity of the remaining community. However, for the functional 

diversity, community-weighted trait mean, and community-weighted trait variance calculations, I 

calculated the values for each plot both with and without the dominant species, to disentangle the 

contribution to community-level properties by the removal itself from the contribution by the 

response of the remaining species. Although there is a relatively large amount of turnover in 

plant species between the early growing season (early June) and the peak growing season (mid-

July), I based all the following analyses on peak-season measurements (July); this follows 

standard practice. Finally, all analyses are based on data collected in 2015, except for the 

community thermal index calculations over time. 

Calculation of diversity metrics. As in the previous chapter, I calculated species diversity 

metrics for each treatment combination (Jost 2007). I converted Shannon's alpha diversity (H') to 
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first-order effective species number (d1) using the formula . For a particular 

community, the effective species number is the number of species in a community of maximum 

evenness that would be required to attain an equivalent value of Shannon's diversity. I excluded 

the dominant species from the calculations of effective species number.  

I also calculated functional diversity by taking the mean trait value for all species in each plot 

for which I have trait data (I have trait data for 25 species across both sites, comprising a median 

of 87% of the plant cover in each plot, and for over 50% in all plots). For each of these species, I 

used the trait values of LMA, RML, LDMC, and plant height. I calculated the pairwise Gower 

distance between each pair of species and used these distances to estimate an index of functional 

dispersion (FDisp) for each plot. For this calculation, I used the gowdis and fdisp functions in the 

FD package in R (Laliberté et al. 2014). 

Community-weighted trait values. I calculated community-weighted means (CWM) and 

community-weighted variances (CWV) for LMA, RML, LDMC, and plant height for each of the 

64 experimental plots. The calculations are identical to those described in the previous chapter. 

Community-weighted means are calculated by taking the mean trait value for the 10 species for 

which I have trait data and calculating a mean trait value for each of the 36 plots weighted by the 

relative cover of each plant species; variance is calculated in a similar way. After calculating 

community-weighted trait means for each plot, I ran a principal components analysis on the 

matrix of trait means (64 plots by 4 trait means) to determine whether there was a single axis of 

trait variation that explained most of the variation among plots, and whether that variation was 

correlated with the treatments. This analysis, done using the prcomp function in R, revealed that 

approximately 43% of the variation among plots was explained by a single axis which was 

associated with increased LMA, LDMC, and height, and decreased RML.  

Calculation of community thermal index. I calculated an abundance-weighted thermal 

index for each of the experimental plots. To do so, I followed the procedure of Stuart-Smith et al. 

(2015). I downloaded global species range data for all available species across all experimental 

plots from the Global Biodiversity Information Facility database (http://www.gbif.org). 

Adequate records were available for most of the species; I had data for species comprising more 

than 80% of total aboveground cover in all but 3 of the 64 plots. I took the spatial location of 

each species occurrence and extracted the mean annual temperature for that site from the 

Worldclim database (Hijmans et al. 2005). I used the mean of the annual temperatures across all 

of the coordinates where a species occurred globally as its thermal index. For each experimental 

plot, I calculated the community-weighted thermal index (CTI) by taking the mean thermal index 

weighted by the relative aboveground cover of each species. This calculation was repeated for 

the community at peak biomass in 2013, 2014, and 2015. 

Processing of ecosystem carbon exchange data. I visually examined plots of CO2 

concentration versus time and removed poor-quality data points, i.e., those recorded when air in 

the chamber was not mixing properly. After this quality control procedure, I calculated the slope 

of concentration versus time for each of the four light levels for each plot. I then fit a linear 

regression to these four points and used the parameters of this regression to calculate NEE, as 

well as to partition NEE into two components: gross primary productivity (GPP) and ecosystem 

respiration (Re). Both NEE and GPP were estimated at a standardized photosynthetically active 

radiation level of 800 μmol m
-2

 s
-1

. Ecosystem respiration is defined as the net flux at 0 μmol m
-2
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s
-1

, while gross primary productivity is defined as GPP = NEE – Re; all fluxes are presented in 

mg C m
-2

 s
-1

.  

Statistical analysis. I fit linear models (ANOVAs) to each response variable separately, 

using study site, warming treatment, removal treatment, and their interactions as binary 

categorical variables. I examined plots of the residuals of the models to visually check that this 

parametric analysis was appropriate (Ghasemi & Zahediasl 2012). I used the dredge function in 

the MuMIn package in R (Bartoń 2016) to compare all possible submodels of the full model, and 

selected the model with the lowest AICc score as most parsimonious. Where necessary, I 

calculated partial R
2
 values for individual predictors by taking the difference in R

2
 values 

between the models with and without that predictor. 

In addition to these models that analyzed each response variable separately, I also fit a 

structural equation model (SEM) to examine the interactions among the experimental treatments, 

community-weighted trait means, functional diversity as measured by FDisp, aboveground plant 

biomass as measured by LAI, and net ecosystem carbon exchange. I fit an initial model based on 

my hypotheses about interactions among these variables, then used the Bayesian Information 

Criterion to remove parameters that contributed to model overfitting. By sequentially removing 

parameters, I found the most parsimonious model, then estimated the standardized path 

coefficients from that model as well as the percentages of variation explained for each response 

variable by all of the exogenous and endogenous variables. I fit the SEMs using the lavaan 

package in R (Rosseel 2012). 

Results 

Species composition and functional composition 

I found no significant effect of treatments on species diversity at either site. The effective 

species number was approximately 1 lower in high-elevation, warmed, intact-community plots 

relative to other treatment combinations, but this predictor was not retained in the most 

parsimonious model (Figure 37). In addition, there was no effect of warming or dominant species 

on functional diversity, although the FDisp values were 31% higher at the low-elevation site (p = 

1 × 10
-12

; Figure 38). 

Removal of the dominant species caused significant changes to all trait values in both 

communities. However, these changes can be largely attributed to the difference in trait values 

between the dominant species and the remainder of the communities. For example, removal of 

Wyethia caused the CWM of leaf mass:area ratio to be 18% lower at the low-elevation site, but 

removal of Juncus caused the CWM to be 18% higher at the high-elevation site (Figure 39). The 

first principal components axis, which takes the CWMs of all four traits at the plot level into 

account, decreased significantly in warmed plots with the dominant species present, but 

increased in warmed plots without dominant species at both sites (p = 0.01; Figure 40). This 

interaction effect indicates that warming tends to decrease LMA and plant height but increase 

RML of intact communities, but when the dominant species is absent, the opposite traits are 

favored.  
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Figure 37. Effective species number (exponential transformation of Shannon's diversity) across 

all treatment combinations. Higher values represent higher richness and evenness in the plant 

community; effective species number, analogous to effective population size, is defined as the 

richness of an ideal community with evenness 1 that would have the same Shannon's diversity as 

the experimental community. All data presented in this and in the following figures were 

collected during the peak growing season in the third year since treatments were established 

(July 2015). In all figures, the filled circles are plot-level values from intact plots, and the empty 

circles are plot-level values from removal plots. Blue circles are ambient plots, and red points are 

warmed plots. Results from the low-elevation and high-elevation sites are shown side-by-side. 

The median value across the eight plots within a particular treatment combination at each site is 

represented with a horizontal bar. Median values within the same removal treatment across 

warming treatments are connected with a line to highlight any interactions between the 

treatments. The dominant species at each site was not included in these calculations. 
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Figure 37. Continued.  
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Figure 38. Functional diversity across all treatment combinations, calculated using an 

abundance-weighted trait distance metric. Higher values indicate higher dispersion in trait space 

among the individuals in the plant community in a particular plot. See Figure 37 legend. The 

dominant species at each site was included in these calculations. 
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Figure 39. Plot-level community-weighted mean values for leaf mass:area ratio (a), leaf dry 

matter content (b), root mass:length ratio (c), and plant height (d) across all treatment 

combinations at both sites in July 2015. Any differences among treatments account for both the 

removal of the dominant species and the response of the subordinate species. See Figure 37 

legend. 
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Figure 40. The first principal components axis of the plot-level community-weighted trait means 

(including LMA, RML, LDMC, and height) for all treatment combinations at both sites, 

including the dominant species at each site. The axis explains 43% of the variation across the 

four traits. See Figure 37 legend.  
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The patterns in community-weighted means were typically not driven by responses of the 

subordinate community, as I showed by recalculating the means considering only the subordinate 

community (Figure 41). Neither mean LMA, mean height, mean LDMC, nor the mean value of 

the first principal components axis of the subordinate species responded to warming or removal. 

Removal was retained as a predictor in the model for RML (p = 0.13), indicating a non-

significant 8% decrease in RML when the dominant species is absent.  

Community-weighted variances (CWV) of traits were higher for LMA, RML, and plant 

height at the low-elevation site compared to the high elevation site (R
2
 > 0.5 in all cases; Figure 

42), but variance was higher at the high-elevation site for LDMC (R
2
 = 0.71). When including 

the dominant species in calculations, removal had significant effects on trait variance (Figure 

42). However, since no significant effects among treatment groups were observed when the 

dominant species was excluded from calculations (Figure 43), it appears that the subordinate 

community is not increasing or decreasing in trait variance in response to dominant species loss. 

This parallels the lack of treatment response in functional dispersion values. 

Community thermal index did not differ across treatment combinations, despite the 

hypothesis that increased temperatures would cause increases in the relative abundance of warm-

adapted species, increasing CTI (Figure 44). However, CTI has changed from year to year at 

each site, regardless of treatment (Figure 45). In particular, CTI decreased by almost 1° C from 

2013 to 2015 at the high-elevation site, while remaining relatively unchanged at the low-

elevation site (p = 2 × 10
-5

). 

Carbon fluxes 

Warming caused leaf area index at both sites to be higher relative to ambient plots (p = 0.02; 

Figure 46), indicating that aboveground plant biomass was also greater (for confirmation of this 

relationship, see Chapter IV). While leaf area index was 24% higher in warmed plots at the low-

elevation site, it was 227% higher in warmed plots at the high-elevation site. Plots without 

dominant species had 41% lower LAI at low elevation and 34% lower LAI at high elevation (p = 

0.0002), indicating that subordinate species have yet to fully compensate for the biomass lost 

from the system. 

Soil carbon efflux was 23% lower in warmed plots at the low-elevation site, but was 

unaffected by warming treatment at the high-elevation site (site × warming p = 0.005; Figure 

47). In addition, the removal of the dominant plant was associated with efflux that was higher by 

about 1 μmol C m
-2

 s
-1

 within each warming treatment at the low-elevation site, but lower by the 

same amount at the high-elevation site (site × removal p = 0.01; Figure 47). 

Net ecosystem exchange was significantly closer to zero when the dominant species was 

absent (p = 0.04; Figure 48), decreasing by 1.9 mg C m
-2

 s
-1

 at the low-elevation site, and by 0.3 

mg m
-2

 s
-1

 at the high-elevation site. Warmed plots did not differ in net ecosystem exchange from 

ambient-temperature plots, nor was there an effect of warming on the flux components gross 

primary production (Figure 49) and ecosystem respiration (Figure 50). Both component fluxes 

were lower in the absence of dominant species at both sites. In addition, ecosystem respiration 

was lower in warmed plots at both sites (p = 0.10; Figure 50). 
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Figure 41. Differences in subordinate-community trait means for leaf mass:area ratio (a), leaf 

dry matter content (b), root mass:length ratio (c), and plant height (d) across all treatment 

combinations. In contrast to the previous figures, these trait means only account for the response 

of the remaining plant community after removal of the dominant species; the dominant species 

was excluded from these trait mean calculations. See Figure 37 legend. 

  



118 

 

 

Figure 42. Plot-level community-weighted variance values for leaf mass:area ratio (a), leaf dry 

matter content (b), root mass:length ratio (c), and plant height (d) across all treatment 

combinations at both sites in July 2015. Any differences in variance among treatments account 

for both the removal of the dominant species and the response of the subordinate species. See 

Figure 37 legend. 
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Figure 43. Plot-level subordinate community-weighted variance values for leaf mass:area ratio 

(a), leaf dry matter content (b), root mass:length ratio (c), and plant height (d) across all 

treatment combinations at both sites in July 2015. Any differences among treatments only 

account for the response of the remaining community when the dominant species is removed; the 

dominant species was not included in these variance calculations. See Figure 37 legend. 
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Figure 44. Community thermal index (CTI) across all treatment combinations. The CTI value of 

a plot represents the abundance-weighted peak value of thermal niche across all the individual 

plants in the plot, as inferred from their global distribution data—higher CTIs characterize more 

warm-adapted communities. See Figure 37 legend. The dominant species at each site was 

included in these calculations. 
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Figure 45. Community-weighted thermal index (CTI) for all plots across both sites, 2013-2015. 

Median values within a treatment combination at a site are displayed as larger circles. Medians 

from the same treatment combination in multiple years are connected by lines. As in other 

figures, filled circles represent intact control plots, while empty circles represent dominant-

species removal plots. Blue circles represent ambient-temperature plots, and red circles represent 

warmed plots. 
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Figure 46. Leaf area index (LAI) at peak biomass in July 2015 for all treatment combinations. 

See Figure 37 legend. 
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Figure 47. Soil C efflux at peak biomass (July 2015) across all treatment combinations. See 

Figure 37 legend. 
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Figure 48. Net ecosystem exchange at peak biomass (July 2015) for all treatment combinations. 

See Figure 37 legend. 
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Figure 49. Gross primary production measured during July 2015 for all plots. See Figure 37 

legend. 
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Figure 50. Ecosystem respiration measured during July 2015 for all plots. See Figure 37 legend. 
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Structural equation model 

The path diagram for the structural equation model that was selected by the model selection 

procedure is given in Figure 51. In the model, 41% of the variation among plots in net ecosystem 

carbon exchange was explained by a combination of treatment variables, interactions among 

treatments, and endogenous variables including trait means and functional trait diversity. As 

more negative NEE values indicate a greater carbon sink, the model indicates that the largest 

effect on NEE is mediated by the functional composition of the plant community. In particular, 

plots with lower CWMs for LMA and RML were greater carbon sinks, as were plots with higher 

functional diversity. In addition, intact control plots were greater carbon sinks than removal 

plots; surprisingly, this effect does not appear to be mediated by differences in LAI among plots. 

Warming treatments and their interactions only had slight influence on NEE. In addition, 

although the low-elevation site had a higher CWM for leaf mass:area ratio when comparing the 

sites in isolation, once variation due to treatments is accounted for in the SEM, the relationship 

becomes negative. 

Discussion 
After the third season of experimental warming and dominant species removal at low and 

high elevation, I observed that both treatments have effects that are somewhat contingent on 

elevation. Neither warming nor dominant-species loss changed the trait composition of the 

remaining community. However, because the dominant species differed functionally from the 

remaining community, the loss of dominant species affected community-level functional trait 

means and variances and their associated ecosystem processes. In addition, warming increased 

soil carbon efflux only at the low-elevation site, while dominant-species removal increased 

efflux at the low site and decreased it at the high site; in general, species removal had a greater 

effect on carbon fluxes than experimental warming. The structural equation model revealed that 

the functional trait composition of the plant community was the most important determinant of 

net ecosystem carbon exchange. In addition, there was a positive relationship between functional 

diversity and net ecosystem exchange, and loss of the dominant species tended to reduce the 

magnitude of net ecosystem exchange. 

Site-level plant community differences drive global change responses 

The different effects of global change which I observed at each site may be due to differences 

in plant community characteristics between the two sites: first, the plant community at the low 

elevation site is composed of taller species with lower leaf mass:area ratio and lower leaf dry 

matter content than the high elevation site. Moreover, the trait diversity and the variance in trait 

values is generally higher at the low-elevation site; functional diversity has been shown to 

predict ecosystem responses better than trait means (Pakeman et al. 2011), especially at small 

spatial scales like that of this study (de Bello et al. 2013). In particular, the very low diversity in 

trait values at the high-elevation site indicates that the response of that community to both biotic 

and abiotic change may be more predictable, but the rapid growth favored at the high site may 

mean that those species are more responsive to change. This may indicate that there are more 

viable life strategies for plants at the low-elevation site (Adler et al. 2014).  

Environmental conditions at the two sites have shaped the traits of the dominant plants. The 

low-elevation site typically has no persistent snowpack in winter and a longer midsummer   
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Figure 51. Structural equation model path diagram showing the relationships between site, 

treatments and their interactions, community-weighted trait means of LMA and RML, functional 

diversity, leaf area index, and net ecosystem exchange. Thickness and color of arrows represent 

standardized path coefficients (red = negative effect causing greater carbon sink, black = positive 

effect causing smaller carbon sink). Treatments and sites are coded as 0 or 1: the high-

temperature, low-elevation site is coded as 1; warming treatment and removal treatment are 

coded as 1 while the corresponding controls are coded as 0. Treatment variables are shaded in 

gray. 

As more negative NEE values indicate a greater carbon sink, the model indicates that the 

predominant effects on NEE are that plots with lower CWMs for LMA and RML were greater 

carbon sinks, as were plots with higher functional diversity. In addition, intact control plots were 

greater carbon sinks than removal plots. Warming treatments and their interactions only had 

slight influence on NEE. In addition, although the low-elevation site had a higher CWM for leaf 

mass:area ratio when comparing the sites in isolation, once other variation is accounted for in the 

SEM, the relationship becomes negative. 
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drought than the high-elevation site. Precipitation variability has been shown to increase 

resilience in plant communities due to the number of different strategies for coping with water 

stress (Gherardi & Sala 2015). To cope with this stress, plant species may do one or more of 

three things: grow rapidly and photosynthesize more before the drought, build durable leaf tissue 

that can continue to gain carbon through the drought, or grow deep roots to tap into otherwise 

inaccessible water resources. The dominant species, Wyethia, seems to fall into the last category, 

and has higher RML, lower LMA, and is taller than most of the other plants at the low site.  

In contrast to the low site, the high-elevation site has a very short growing season whose 

length is governed by snowmelt date (Baptist & Choler 2008). Therefore, most plants there must 

have fast-growing, less durable leaves that provide a rapid return on carbon investment. The 

notable exception to this pattern is Juncus, the dominant plant species, which maintains some 

leaf tissue from year to year and has higher RML and LMA than most other species at the site. In 

addition, because the speed of leafing out is more responsive at the high site relative to the low, 

the effect of warming on leaf area index manifested itself more dramatically. I measured leaf 

area index in early July, which may record an increase in peak LAI at the low site, but a speeding 

up of leaf-out phenology at the high site (Inouye 2008). Therefore, because the plant 

communities are so different functionally between the two sites, and because the dominant 

species achieves its high abundance through very different mechanisms, the two sites respond 

differently to global change drivers.  

Changes in community thermal index driven by annual temperature fluctuations 

While the relative abundance of species with different functional traits in the plots did not 

change dramatically in response to the treatments, the relative abundance of the species year-to-

year is flexible, as shown by the changes in community thermal index driven by changes in 

species relative abundance. The CTI at the low-elevation site stayed stable, while the CTI at the 

high-elevation site decreased, paralleling a decrease in the mean annual temperature during three 

seasons of manipulation. The annual changes in mean annual temperature are greater than the 

chronic changes imposed by the experimental treatment (Lawson et al. 2015). This may indicate 

that we need very long-term experiments, spanning several decades, to determine the effects of 

chronic warming on these communities (Walker et al. 2006; Elmendorf et al. 2015). The high-

elevation site may have responded more to annual fluctuations because long-term environmental 

filtering has selected for species able to respond to a greater magnitude of temperature change 

from year to year (Adler et al. 2006). 

Trait-related properties drive size of carbon sink 

The structural equation model revealed that among plots, the most important measured 

drivers of carbon flux were the leaf and root characteristics of the plant community. Both within 

sites and among sites, the plots with lower LMA and lower RML were greater carbon sinks. In 

addition, plots where the dominant species was absent had a smaller net ecosystem exchange, 

although this was not mediated by any decrease in LAI in removal plots. This is perhaps because 

the plant species that dominates access to limiting resources in a community can attain the 

highest total rate of photosynthesis across all its biomass (Fauset et al. 2015). Furthermore, plots 

with higher functional diversity were greater carbon sinks, lending support to the body of work 

relating functional diversity to productivity (Díaz & Cabido 2001; Flynn et al. 2011). Finally, the 
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identity of the dominant species that was removed from each site was the most important driver 

of trait change (removal × site interaction), which in turn affected NEE, indicating that the 

ecosystem-level consequences of species loss are highly context-dependent (Wardle et al. 2011). 

In addition, this model shows that warming and interactions between warming and species loss 

had relatively small effects on community structure and ecosystem function, echoing the results I 

observed when examining response variables in isolation.  

Conclusion 

Our understanding of how species respond to changes in their environment is limited by the 

contingency inherent in ecological systems—an environmental driver may have opposite effects 

in systems occupied by species with different ways of coping with environmental change 

(Saavedra et al. 2013). For example, species in harsh environments tend to be more adaptable to 

abiotic change, while species in benign environments tend to withstand biotic stress from 

competitors more readily (Callaway et al. 2002). My factorial manipulation of warming and 

species loss at both low and high elevations allowed me to explore the relative importance of 

biotic and abiotic factors at different elevations, in addition to realistically simulating the 

multiple simultaneous drivers of global change that human-influenced ecosystems face. 

These results should be interpreted with some caution. I cannot currently say that the patterns 

among sites are driven by elevation (in the sense of mean annual temperature) because there are 

so many confounding variables across sites. In particular, the amount and quality of biomass 

removed was very different across sites. I also caution that although there may be significant 

intraspecific trait variation in these systems, in particular plasticity induced by the treatments, I 

do not currently have data to assess how much those processes are contributing to the observed 

patterns. Finally, it is possible that effect sizes may be somewhat underpredicted in ecological 

field experiments such as this because of the temporal and spatial scale of manipulation 

(Wolkovich et al. 2012). 

This study, conducted across multiple sites and simultaneously manipulating two global 

change factors, contributes to the newest generation of field experiments in global change 

ecology. I demonstrate that the response of montane meadow communities to increased 

temperature and to species loss is context-dependent. Both at the scale of experimental plots 

separated by a few dozen meters and of study sites separated by over 700 meters of elevation 

with disparate climates, the functional composition of the plant community was the key 

determinant of ecosystem function and of the magnitude of response to both abiotic and biotic 

change. These communities are remarkably resilient due to long-term community assembly 

processes that have taken place on the backdrop of harsh, fluctuating environmental conditions 

(Walker et al. 1999; Gherardi & Sala 2015). However, the fact that the responses are so 

dependent upon species with particular traits may mean that a longer period of change during 

which species change more dramatically in abundance or are replaced may cause a regime shift 

(Biggs et al. 2009). It remains to be seen, from future work in this experimental system and in 

others, whether these long-term shifts will compromise the provision of ecosystem services from 

mountain ecosystems.  
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CONCLUSION 
The research presented here connects community and ecosystem ecology, explores theory 

and applications dealing with variation among organisms and its consequences for how natural 

systems function, and predicts how anthropogenic global change will affect communities of 

species and the ecosystem processes they mediate. It is clear that processes of climatic filtering, 

biotic interactions, and random fluctuation have different importance in different climatic 

environments. This heterogeneity creates a landscape of diverse organisms forming diverse 

communities that in turn make disparate contributions to global cycles of matter and energy and 

have disparate responses to anthropogenic change. 

In Chapter I, I scoured existing literature and demonstrated that leaf traits related to plants' 

ability to tolerate environmental stress and to take up resources from their environment vary 

along temperature gradients, and that this variation is largely at the level of the individual 

organism. In Chapter II, I used simulations and case studies from experiments to show that this 

high level of individual variation must be accounted for in ecological studies. Chapter III uses 

community composition and functional trait data from a large number of field sites to 

demonstrate that individual variation in functional traits is a stumbling block that must be 

overcome in order to incorporate species traits into a process-based predictive model of species 

abundances. Finally, in Chapters IV and V, I use experimental field manipulations grounded in a 

trait ecology approach to explore the forces structuring natural communities and make 

predictions about their responses to global change. A factorial manipulation of dominant species 

presence and soil nitrogen level (Chapter IV) showed that a mountain meadow community has 

functional redundancy, allowing it to maintain functional stability when the dominant species is 

lost or when soil nitrogen levels increase. In Chapter V, I use an experiment manipulating both 

temperature and dominant species presence across two elevational sites to show that soil carbon 

dynamics are dependent on long-term ecological filters that have led to species with different 

functional roles dominating in different communities. In fact, these long-term filters have a 

greater impact on the plant community and associated function than the temporary perturbation 

of warming. 

In the future, I will continue working on these and related questions. I have begun to use 

large datasets that span space and time to explore relationships between environmental 

conditions, human activity, species traits, and ecosystem function. The data sources I am using 

include long-term national forest inventories, species composition inferred from historical 

records, species identity and trait data from the National Ecological Observatory Network 

(NEON), and results from long-term ecological field experiments. I am collaborating with 

researchers from the University of Notre Dame, the University of Copenhagen, and the National 

Forest Inventory of Norway on these projects, and I am beginning postdoctoral research at 

Michigan State University in Summer 2016. As a postdoctoral researcher, I will develop 

statistical and mathematical techniques to assimilate NEON data into predictive models. With 

these models, I will generate hypotheses about the forces structuring communities and 

ecosystems, as well as predictions of how communities and ecosystems will respond to ongoing 

global change.  
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