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Abstract 
 

 

The focus of this dissertation is on the development of computational models to 

elucidate the underlying physics of single- and multi- component polymeric fluids in 

equilibrium and non-equilibrium settings. 

I have utilized a combination of a dissipative particle dynamics methodology and an 

entanglement network analysis algorithm, the so-called “Z1” code, to examine the 

relaxation mechanisms, their corresponding time scales and single chain dynamics of 

moderately entangled, linear, monodisperse polymer melts undergoing simple shear flow.  

In so doing, not only the fidelity of the DPD methodology for entangled polymeric melts 

at equilibrium and under flow has been examined for the first time, but also, the intricate 

relationship between single chain dynamics and chain relaxation mechanisms are 

elaborated. Specifically, it is shown that three main time scales, τR (Rouse), τd 

(disengagement), and τrot (rotation) are the dominant relaxation mechanisms at three 

distinct flow regimes.  

In turn, the molecular origin of shear banding in unidirectional flow of entangled 

polymeric melts is investigated for the first time. It is revealed that the temporal evolution 

of shear banding is a very sensitive function of the time scale over which the deformation 

rate is imposed. It is demonstrated that the stress overshoot locally inhomogeneous chain 

deformation and thus spatially inhomogeneous chain disentanglement. Furthermore, the 

localized jump in entanglement density results in a considerable jump in first normal stress 
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and viscosity leading to the incipient shear banding. The stability of the incipient shear 

banded structures is studied via interfacial stability analyses. 

Finally, we applied a 3D self-consistent-field theory simulations to determine the 

equilibrium morphologies formed by ABC triblock copolymer melts confined between two 

parallel plates. The main goal is the determination of conditions under which the 

perpendicular lamella and cylinder is stabilized; since these structures play a central role 

in many nanotechnology applications. To this end, the chain architecture, surface energy, 

and film thickness are varied to find the rational process conditions to stabilize the 

aforementioned morphologies. Specifically, it is shown that the perpendicular lamella and 

cylinder morphology is stabilized if both confined walls attract the middle block and the 

surface energy is large.    
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Chapter 1                                                                                                         

Introduction 

 

Both experimental and theoretical research in fluid dynamics and rheology have 

played a significant role in the advancement of science, engineering, and their 

technological applications in the past several decades. Two broad classes of fluids: 

Newtonian and non-Newtonian liquids are of paramount interest to fluid dynamics 

researchers due to their wide applications in polymer processing industry, petroleum 

industry, food industry, and pharmaceutical industry, and in biological processes.     

Non-Newtonian fluids, commonly classified as complex fluids (fluids whose 

microstructural evolution under a variety of flow situations is nontrivial) behave 

significantly different from simple fluids. For instance, non-Newtonian fluids have a shear-

rate-dependent viscosity as opposed to the constant Newtonian viscosity. Examples include 

fiber suspension, gels, emulsions, colloids, surfactants, liquid crystalline polymers, and 

polymer liquids. In addition, many of the interesting flow phenomena that are absent in 

Newtonian flows such as rod-climbing, extrudate swell, tubeless siphon, and shear 

thickening occur in polymeric flows and have been discussed at length in different standard 

text books on the subject (Bird and Larson [1, 2]). The suggested common point in all of 

the related work is that the interesting behavior exhibited by complex fluids can be 

attributed to the intricate dependence of macroscopic rheological properties on the flow-

induced microstructure evolution. Therefore, studying the non-linear flow-microstructure 

coupling and the corresponding macroscopic rheological response as well as 
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morphological development is vital to further develop a knowledge-based design and 

processing of complex fluids that determine the quality of the end product.    

This dissertation focuses on three major parts: 

1) To establish a comprehensive understanding of the rheological behavior of 

linear polymer chains in entangled polymeric melts at equilibrium and in unidirectional 

shear flow via Dissipative Particle Dynamics (DPD) method. 

2) To investigate the molecular mechanism of shear banding, a non-linear flow 

phenomenon that occurs in high-molecular weight polymeric flows. 

3) To provide process strategies to direct desired self-assemblies in 

nanolithography, namely perpendicular lamella and cylinders required by the semi-

conductor industry via Self-Consistent-Field Theory (SCFT).  

The progress toward these goals will be presented in the following chapters of this 

dissertation.   

 

1.1 Accurate Modeling of Highly Entangled Polymeric Flows  

 

As mentioned earlier, under external forces, the microstructure of a complex fluid 

significantly changes from its equilibrium configuration. This property allows one to tailor 

materials for specific applications. This is of particular interest to both the polymer 

processing industry and rheology community as well as to bio-related applications that are 

based on naturally occurring macromolecules, such as DNA, etc. 

Polymers, in general, are large macromolecules composed of repeating structural 

units. Depending on the flow type (shear or extensional or a combination of both) and flow 
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strength, the polymer molecules stretch and orient and thereby undergo a large number of 

conformational changes. These conformational changes of the polymer chains/molecules 

within a fluid element at the microscopic level contribute on average to the macroscopic 

quantities such as the stress experienced by that fluid element under flow. Numerous 

experimental techniques have been used to determine the microstructural information of a 

molecule. Specifically, fluorescence video microscopy allows direct observation of 

molecular configuration changes in the flow. Optical methods such as birefringence and 

light scattering provide information about mean orientation and conformation of the 

molecules. Nuclear magnetic resonance (NMR) and neutron scattering methods provide 

information regarding the conformational distribution function.  

In contrast to Newtonian fluids, the stress in polymeric fluids depends on the history 

of flow deformation and these fluids exhibit a spectrum of relaxation times. Hence, 

polymeric fluids are viscoelastic in nature with a fading memory. This means that once 

they are perturbed by flow from their original equilibrium configuration, they tend to relax 

to the original configuration. Thus, they are partly elastic and the time scale associated with 

the macromolecular configurational changes is closely related to the longest time constant 

in the relaxation spectrum, which corresponds to the polymeric chain end-to-end motion. 

Depending on the polymer concentration, these fluids can be classified into 3 categories – 

dilute solutions, concentrated solution, and melt. Dilute solutions find application in 

polymer-induced turbulent drag reduction, DNA separation, etc.. Concentrated solutions 

and melts are used in a variety of polymer processing operations such as coating, molding, 

extrusion, etc.  
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Polymer molecules move independently in dilute solutions, however in highly 

concentrated solutions and melts, their dynamics are inter-molecularly dependent due to 

the presence of “entanglement” (Entanglement is considered as the topological constraints 

from surrounding chains which restricts the polymer chain motion). It has proven to be a 

difficult challenge for rheologists to model the realistic motion of polymer chain and 

predict the flow rheological response in entangled fluids. Only very few molecular-based 

constitutive models describing the stress-strain relationship are currently available to allow 

one to perform continuum-level flow simulations under varied flow kinematic conditions. 

Therefore, accurate flow simulations are essential tools to model and predict the fluid 

rheological behavior correctly.         

Continuum level models are frequently used, but are among the less descriptive 

computational methods to model polymeric fluids. These models are based on continuum 

mechanics, network (e.g., Geisekus model) and kinetic theories (e.g., Oldroyd-B model for 

dilute solution and reptation model for entangled melts and concentrated solutions). They 

are useful in qualitative prediction of the flow behavior, however, they are not perfect in 

quantitative prediction at high flow strength which typically occurs in processing settings. 

In what follows, we focus on the entangled polymeric melts dynamics.  

The novel idea of reptation by de Gennes [3], that an entangled polymer chain 

experiences snake-like diffusion through contorted tubes formed by the surrounding chain-

like molecules, was translated into an elegant theory (tube theory) and a corresponding 

constitutive equation by Doi and Edwards a decade later [4]. The original tube theory is 

largely in agreement with experiments on linear viscoelasticity; however, it demonstrated 
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certain discrepancies with experimental observations including excessive shear thinning, 

no overshoot in the first normal stress, and incorrect scalings of viscosity and stress 

relaxation moduli. Therefore, tube theory was extensively refined over the next three 

decades. Improvements included its prediction of experimental measurements where 

contour-length fluctuation, chain stretching, and convective constraint release (CCR) were 

incorporated into the original theory [5, 6]. Today Rolie–Poly [7], one of the most advanced 

tube-based theory models, is viewed as the most accurate description of entangled 

polymeric liquid micro-structural and dynamical response to external stimuli. This is 

despite the fact that several key concepts in the theory including the tube field, precise 

definition of an entanglement and its contribution to stress, and statistical behavior of the 

chain at different length scales, specifically, on the tube diameter length scale, remain open 

questions. Overall, the major problem associated with the above constitutive equations has 

been the use of a closure approximation and other approximations based on physical 

arguments to obtain a closed-form constitutive equation. Also, there is no exact analytic 

solution for the configurational probability distribution function in the kinetic theory 

models, thus making it impossible to accurately determine the interplay between the fluid 

microstructure and bulk flow behavior. 

To overcome the limitation of continuum-level models, particle-based mesoscale flow 

simulations are primary candidates. They offer guideline and/or insights for better process 

control and design which result in improved product quality and cost-effective operations. 

They also allow the elucidation of the underlying mechanisms of several flow phenomena 

such as nucleation, shear banding, wall-slip, etc.. More importantly, they provide the 



 
6 

configurational probability distribution function which is absent in kinetic theory models, 

thus making it impossible to determine the interplay between the fluid microstructure and 

bulk flow behavior. Hence, developing memory and CPU efficient algorithms could pave 

the way to accurate predictions of flow phenomena and the underlying mechanisms. The 

most detailed description of polymer molecules is the atomistic level description, i.e., 

molecular dynamics (MD) simulation, which forms the lowest level of the multi-scale 

modeling pyramid. It is useful only for simulations of short time and length scales; thus, a 

tremendous amount of computational resources is required to model realistic polymers. In 

order to capture the larger scale phenomena while maintaining a computationally feasible 

scheme, coarse-grained modeling is a viable alternative. Following this approach, the 

polymer molecule can be modeled as a Kramers chain (freely jointed bead-rod chain) or 

bead spring chain where the spring force-law is derived based on a force-extension 

relationship at equilibrium. Brownian dynamics (BD) and DPD are coarse-grained 

simulation techniques that allow accurate prediction of the fluid microstructure and flow 

behavior correctly and are consistent with experimental observations. In a BD simulation, 

the solvent degrees of freedom are removed completely, but their effect is taken into 

account through long-range dynamic correlations in the stochastic displacements of the 

beads. BD allows accurate representation of polymer solution dynamics, however, the 

computational cost of exploiting such a method in highly entangled solutions should be 

considered. For colloidal suspensions, the advanced “accelerated BD” algorithm that 

utilizes the Ewald sum technique developed by Brady and co-workers [8, 9] scales as 

O(NlogN) where N is the total number of particles in a simulation box. In other recent 
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studies, an efficient BD algorithm [10, 11] of a semi-dilute polymer solution demonstrated 

the CPU time scales as O(N1.8) and at best as O(NlogN). On the other hand, DPD scales 

linearly with system size, thus the simulation computational cost is considerably reduced. 

Specifically, DPD can be applied to polymer melt systems while the most efficient BD 

models have been developed for dilute and semi-dilute solutions. To this end, we have 

developed and applied parallel DPD to entangled linear polymer melt flows to investigate 

single chain dynamics, mechanisms involved in stress relaxation and flow-induced chain 

network dynamics. DPD is completely discussed in the following chapter and some of the 

major properties of the entangled fluids are briefly discussed in the following subsections.   

 

1.1.1 Shear Rate Dependent Viscosity  

 

As the shear rate is increased, the viscosity of certain type of fluids called pseudo-

plastic (shear-thinning) fluids decreases, while it increases for another class of fluids 

dubbed dilatant or shear-thickening fluids; most polymeric fluids are shear thinning. The 

Shear-thinning property in polymeric melts is associated with the chain alignment in the 

direction of the flow streamlines, and this in turn reduces the friction between different 

layers. Examples of shear-thinning fluids include molten high density polyethylene, poly-

acrylamide in water, etc. At low shear rates, the viscosity of viscoelastic fluids approaches 

a constant value, defined as zero shear viscosity. In general, viscosity η scales with the 

non-dimensional shear rate (Weissenburg number, Wi) as Wi-β (β is a positive value). When 

the power-law exponent magnitude becomes larger than 1, rapid shear thinning is observed. 
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In fact, this phenomenon leads to a non-monotonic shear stress versus shear rate flow 

curve. This non-linear behavior is completely discussed in Chapter 3.    

 

 1.1.2 Relaxation Time Scales and Mechanisms 

 

Unlike dilute solutions where their dynamics can be described by the Rouse or Zimm 

model [12, 13] and the corresponding time scale of the chain motion is the Rouse time τR, 

the relaxation in the entangled polymeric fluids is more complicated. Thus, single molecule 

visualization experiments have been utilized to study relaxation mechanisms of individual 

chains in entangled polymeric fluids. Specifically, Robertson and Smith [14] have found 

three distinct time scales in their experiments. The shortest time scale corresponded to the 

Rouse time, the longest one was associated with the disengagement time of tube-based 

theories, and the intermediate time scale was speculated to be a second reptative process. 

The primary limitation of these experiments is that the small number of molecules can be 

effectively tracked. To date, only a few Non-Equilibrium Molecular Dynamics (NEMD) 

simulations [15, 16] of moderately entangled polyethylene liquids have shown the 

remarkable dynamical response at high strain rates, i.e. the existence of chain rotation and 

retraction cycles which gives rise to a characteristic time scale that is much larger than the 

reptation time scale of the liquid. In Chapter 2, we have thoroughly investigated the chain 

dynamics and it is shown that three major relaxation mechanisms and three distinct flow 

regimes exists. 
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1.1.3 Flow-induced Chain Disentanglement  

 

Chain dynamics in concentrated solutions and melts is commonly compared to 

polymer dynamics in a fixed network. Though all the polymer chains move simultaneously, 

it can be argued based on the reptation concept that one-dimensional diffusion along the 

tube is the dominant mode of motion. That is an arbitrary test chain gradually disengages 

from the tube-like region around its backbone made by topological constraints. As shear 

rate increases, the number of entanglements per chain decreases. This is mainly due to the 

flow alignment of the chains as well as the onset of chain stretch. When the flow enters the 

nonlinear viscoelastic regime, the polymer liquid experiences a substantial decrease in the 

entanglement density, which leads to the occurrence of chain rotation/retraction cycle. The 

chain end-to-end probability distribution function widens with increasing shear rate, 

confirming the existence of large configurational diversity in viscoelastic fluids. The 

disentanglement behavior is fully discussed in Chapter 2.   

 

1.2 Flow Phenomenon: “Shear Banding” 

 

The broad and complicated relaxation spectrum in entangled polymeric fluids give rise 

to several interesting flow phenomena which are absent in Newtonian flows such as shear 

banding, wall-slip, rod-climbing, etc. [2, 17].   
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1.2.1 Shear Banding  

 

In simple shear flow, fluid velocity is in one direction (e.g. x), and depends linearly on 

the coordinate in the orthogonal direction: Vx = γ̇y . In this case γ̇ is the shear rate, and this 

is considered to be one of the simplest rheology experiments to perform. The simple shear 

data are used routinely to calibrate and verify theories of polymer dynamics; including tube 

theories or constitutive equations derived from them. In practice, a simple shear is obtained 

in couette or cone-and-plate geometries (in the limit of small gap). However, generally 

there is no guarantee that the liquid will flow with a uniform velocity profile—sometimes 

it can shear band, i.e., separate into fast and slow flowing regions (large and small shear 

rates, respectively) as shown in Figure 1-1. In Chapters 3 and 4 of this dissertation, the 

molecular origin and mechanism leading to shear banding is discussed. Two primary 

concepts related to the formation of shear banded structures are elucidated in the following 

subsections.     

 

 

 

 

Figure 1-1. Schematic presentation of shear banding in unidirectional flow. 
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1.2.2 Stress Relaxation   

 

Unlike Newtonian liquids, stress relaxation is a common occurrence in viscoelastic 

liquids. Upon start-up or step-strain experiments, above a critical shear rate, stress-

overshoot appears due to the affine deformation of the chains at strains around 2. Prior to 

the stress-overshoot, chains are stretched and oriented with respect to the flow direction. 

In turn, the stresses (shear stress and first normal stress) in the viscoelastic fluids start to 

decay until shear viscosity and normal stress attain a steady value. This is due to the 

previously mentioned fading memory-like behavior that determines the viscoelastic 

property of the polymeric fluids. The decay time is comparable to the material relaxation 

time. Moreover, the polymer chains mainly relax their stress in two steps; in the first step, 

tension is relaxed by segmental stretch relaxation, a very fast process; and in the second 

step, chains relax their orientation. 

 

1.2.3 Interfacial Stability of Viscoelastic Stratified Flows 

 

Superposed layers of viscoelastic fluids flowing down an inclined plane or in pressure 

or drag driven channels are prone to interfacial instability even in the limit of zero Reynolds 

number (Re). Interfacial instabilities manifest themselves in the form of long, intermediate, 

and short-wavelength travelling waves at the interface of adjacent layers. These interfacial 

waves are similar in nature to surface waves on a body of water. They can occur at 

vanishingly small Reynolds numbers and are due to viscosity, density, and elasticity 
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differences in the respective layers. In the limit of vanishing Re and negligible interfacial 

tension, the parameter space that determines the interfacial stability of stratified flows 

consists of viscosity, elasticity and depth ratio (the ratio between the height of more viscous 

to less viscous layer). Specifically, in this class of flows two general roles exist: [18-21] 

(1) when the less viscous fluid is thin compared to the more viscous fluid, the interface is 

stable, i.e. the so-called “thin layer effect” [20]; and (2) when the more elastic layer is the 

majority component, elasticity stratification is stabilizing [18]. Therefore, one has to 

determine the relative importance of viscosity and elasticity stratification on the overall 

stability of the interface. If the interface is stable with respect to interfacial perturbations, 

then a smooth multilayer flow will coexist. Otherwise, perturbations grow leading to 

interfacial mixing and generally loss of desired properties.  

 

 1.3 Self-assembly of Block Copolymers 

 

Polymers formed by linking together N monomers of one chemical type are referred 

to as homopolymers, where N is the polymerization index or degree of polymerization. A 

polymer that is produced by linking two or more chemically distinct monomers is referred 

to as a copolymer. For example, SBR (styrene-butadiene rubber) is an important synthetic 

rubber material that is produced by a mixture of styrene monomers and 1,3-butadiene 

monomers. Such polymers are classified as random or statistical copolymer because there 

is a statistical distribution associated with the sequence of styrene and butadiene monomers 

incorporated into the polymer chain.  A second important type of copolymer is a block 
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polymer (BP) in which monomers of a given type are grouped into polymerized sequences 

or “block”, along a polymer chain such as [PS-P2VP-PEO]3 (poly (styrene-2vinylpyridine-

ethylene oxide).  

Generally, size and shape of domains and the overall morphology of BPs can be 

controlled by judiciously manipulating the molecular weight and composition of the 

blocks. To this end, BPs with length scales ranging from 5–100 nm [22] allow the creation 

of well-controlled nanostructures that can target a wide range of applications—from 

nanofabrication [23-26] to membranes [27-29] to photonic crystals [30-32] and organic 

photovoltaics.   

Among the plethora of BP applications, one that is rapidly approaching 

commercialization is microelectronic manufacturing. Traditional optical nanolithography 

with 30 nm feature size, cannot meet the growing demand for smaller feature sizes with 

increased surface/volume ratio. This technology gap is driving the need for a viable 

alternative. Highly controllable, uniform, and inexpensive templates based on block 

copolymers (BCPs) present such an alternative [33]. Moreover, there is a similar impetus 

in the magnetic recording industry to make smaller, denser, and more regular patterns 

leading to enhanced quality with increased information storage density. 

An impressive array of experimental research [34-37], including pioneering studies by 

Nealey [38-40] and Ross et al.[41, 42], has shown that directed self-assembly techniques 

can be used to create the required morphologies with long-range lateral order for 

microelectronic and magnetic recording applications. Specifically, external fields such as 

electric and hydrodynamic, patterned substrates, and confinement, as well as epitaxy and 
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solvent annealing, have been successfully used to manipulate the size and orientation of 

nanodomains [43-51].  

In addition, rational design of self-assembled structures considering the large 

parameter space involved with BP thin films is a critical step in translating bench-top 

synthesis protocols to large-scale fabrication techniques. To this end, simulation tools such 

as SCFT, Monte Carlo (MC) simulations and DPD have been extensively used to examine 

bulk morphology development as a function of individual block properties, i.e., to examine 

a morphology phase diagram.  

 

1.3.1 Macrophase and Microphase Separation 

 

When two homopolymers, e.g. A and B, are blended in the melt state or cast from 

common solvent, their chemical differences are normally sufficient to induce a liquid-

liquid phase separation. This is a macrophase separation because, given sufficient time, the 

emerging A-rich and B-rich phases will coarsen to macroscopic length scales. The driving 

force for the phase coarsening is the interfacial free energy associated with the interfaces 

separating two phases. In contrast to a blend of two homopolymers, a pure molten block 

copolymer fluid such as AB diblock copolymer or ABC triblock copolymer cannot exhibit 

macrophase separation. Such a fluid is a one component system in which the chemical 

bonds linking dissimilar blocks prevent A and B segments of the same copolymer from 

being separated over macroscopic distances. However, in such fluids an ordering 

phenomenon known as microphase separation is possible. At a local ~ 1nm level, the 
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dissimilar blocks in a copolymer melt are driven to phase separate by the same microscopic 

interactions that produce macrophase separation in an A-B homopolymer alloy. However, 

unlike the homopolymer blend, A-rich and B-rich domains created by local phase 

separation of a copolymer melt cannot coarsen to length scales exceeding the extended 

chain length of a copolymer, ~ 100-1000 nm, since this would cleave the bonds connecting 

the blocks. Thus, BCPs segregate into microphases.   

 

1.3.2 Phase Diagram  

 

As with any thermodynamic system, there is a competition between entropy and 

enthalpy, which derives the minimization of a free energy. At high temperatures when 

entropy dominates, the polymer melt is highly disordered and the distribution of A and B 

even fluctuates around mean zero. Below a certain transition temperature the polymer melt 

orders. The ordering results in the formation of a periodic distribution of A and B blocks 

(for example in the case of AB diblock copolymer), and many exotic geometries have been 

observed in experiments. Below the transition temperature, however, the monomer 

segments will segregate and form regular, periodic structures. That is, the A and B 

segments of each copolymer chain will come together and display macroscopic order. 

Some of the common shapes that have been observed experimentally are lines (lamellar), 

hexagonal cylinders, and stacked balls (body centered cubic, BCC). Each geometry 

possesses different physical characteristics, and thus the ability to readily switch between 

the phases could allow fabrication of materials with tunable properties. The various phases 
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of a block copolymer melt can be succinctly described by a phase diagram. The two 

parameters that define the phase diagram in the case of AB diblocks are the Flory 

parameter, which is a measure of the strength of interactions between monomers (alike and 

different) and the bulk volume fraction of monomer A. The typical phase diagram for 

diblock copolymer melt is shown in Figure 1-2. 

 

 

1.3.3 Confinement Effect 

One of the techniques to direct the block copolymer self-assembly is to confine the 

block copolymer solution or melt. In general, the geometrical constraint induces enthalpic 

(interaction with surface) and entropic (the block segments can either bridge or loop or 

exhibit a mixture of both) effects. Examples include the regular patterns formed by BCPs 

used in optoelectronics device fabrication when the BCP solution is spun cast on the 

Figure 1-2. Bulk phase diagram of diblock copolymer melt [22]. 
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substrate or in chip fabrication while the BCP is confined in a well. Film thickness and 

surface chemistry both influence the morphology as well as its orientation. The 

confinement effect is fully studied in Chapters 4 and 5.  
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Chapter 2  

Flow-Microstructure Coupling in Entangled Polymeric Melts 

 

 

This Chapter is based on the submitted manuscript. 

 

“Elucidating the Flow-Microstructure Coupling in Highly Entangled Polymer Melts: Part 

I. Single Chain Dynamics in Shear Flows,” M. Mohagheghi and B. Khomami, Journal of 

Rheology, Revision submitted on 26-Feb-2016, JOR-15-280R.  

 

 

2.1 Introduction 

Accurate modeling and simulation of flow-microstructure coupling in entangled 

polymeric fluids is of great interest to many fields of science and engineering. Despite 

decades of investigation, a number of uncertainties regarding the essential physics required 

to make hi-fidelity predictions of flow dynamics in this class of fluids still exist. In fact, 

quantitative description of fast flows of entangled polymeric fluids even in relatively 

simple flow kinematics has proven to be a difficult challenge for rheologists. 

The basic foundation for modeling of entangled polymer melts originates from an idea 

proposed by de Gennes [3], that an entangled polymer chain experiences snake-like 

diffusion through contorted tubes formed by the surrounding chain-like molecules. The 

physical constraints of these tubes mandate that chain motion parallel to the polymer 

backbone be greater than the motion perpendicular to it. This novel physical picture was 

translated into an elegant theory and a corresponding constitutive equation by Doi and 
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Edwards a decade later [4]. The original tube theory predictions are largely in agreement 

with experiments in the linear viscoelastic regime, however, at intermediate to high strain 

rates, a number of important discrepancies exist with experimental observations and 

theoretical predictions in unidirectional shear flow. These include excessive shear thinning, 

no overshoot in first normal stress, and incorrect scaling of viscosity and stress relaxation 

moduli with molecular weight. The failure of the original Doi-Edwards model to 

quantitatively describe the fluid response at high strain rates is mainly due to the fact that 

all of the relevant physical processes have not been self-consistently included in the 

constitutive equation.  Therefore, tube theory based models of entangled polymeric fluids 

have been extensively refined over the past three decades to improve their prediction of 

rheological measurements particularly at high strain rates, i.e., contour-length fluctuation 

and CCR have been incorporated into the original “tube theory” —see Ref. [5, 52] for a 

current state of the art of  reptation theory based models.  

Despite tube theory’s notable success, several key concepts including the tube field, 

precise definition of an entanglement and its contribution to stress remain open questions. 

To this end, single molecule visualization experiments have been utilized to study 

relaxation mechanisms of individual chains in entangled polymeric fluids. Specifically, 

Robertson and Smith [14] used optical tweezers to measure the intermolecular forces acting 

on a single DNA chain by the surrounding entangled molecules, and found three distinct 

timescales: the short timescale was determined as close to the theoretical value of the Rouse 

time, the long timescale was associated with the disengagement time of reptation theory, 
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and the intermediate timescale was speculated to be a second reptative process that was 

correlated with the dynamics of the effective reptation of tube under shear.  

Despite the numerous successes of single-chain microscopy to date, experimentation 

alone cannot resolve all of the outstanding issues that perplex rheologists at high Wi. The 

primary limitation of these experiments is the small number of molecules that can be 

effectively tracked simultaneously, which is especially true of dense polymer melts. 

Atomistic or coarse-grained mesoscopic simulation of entangled polymeric liquids offers 

a complementary perspective of individual chain dynamics under flow. In particular, slip-

link simulations [53, 54] with full-chain spatial coupling have been successful in accurately 

predicting the linear and nonlinear shear rheology as well as single-chain dynamics of 

fluids composed of entangled polymeric chains. However, the accuracy of the predictions, 

particularly for very fast flows, strongly depends on the assumed constraint renewal/release 

frequency. Moreover, recent atomistic NEMD simulations [15, 16] of moderately-

entangled polyethylene liquids have shown that a remarkable dynamical response occurs 

at high strain rates in shear flows; i.e., the polymeric liquid experiences a dramatic decrease 

in the number of chain entanglements, which leads to a network of highly-stretched chains 

that form effective tube-like structures through which neighboring chains experience 

anisotropic diffusion. This ultimately leads to chain rotation and retraction cycles, which 

give rise to characteristic timescales that are much longer than the reptation time of the 

liquid. 

Motivated by these exciting new findings particularly in regard to existence and 

magnitude of a third scale, we have performed detailed analysis of flow-microstructure 
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coupling in planar Couette flow of monodisperse entangled polymer melts with equilibrium 

entanglement densities of 13, 17 and 27 via DPD simulations.  The main objective of this 

study is twofold: 1) to demonstrate the fidelity and computational efficiency of DPD in 

simulating flow of entangled polymeric melts, and 2) to elucidate the intricate coupling 

between single chain dynamics and relaxation mechanisms, i.e., distinct time scales, in 

shear flows of entangled polymeric fluids.   

 

2.2        Methodology 

 

DPD is a general mesoscopic simulation method, wherein the fluid is represented by 

a set of discrete coarse-grained particles that carry momentum and move according to 

Newton’s law of motion. Hoogerbrugge and Koelman [55] originally developed DPD as a 

generalization of lattice gas automata method for the simulation of fluid motion. In their 

DPD algorithm, all particles were allowed to move freely and all particle-particle 

interactions were taken into consideration to ensure conservation of momentum and mass. 

On the other hand, energy is not conserved in DPD, thus this technique is generally used 

to simulate isothermal conditions. Also in the first generation DPD algorithms, a clear 

connection between the system temperature and model parameters was not established. 

This shortcoming was remedied by Espanol and Warren [56] who derived the Fokker-

Planck equation that corresponded to the original DPD equations [55]. Specifically, the 

equilibrium solution of the aforementioned Fokker-Planck equation was used to 

demonstrate that the Gibbs canonical ensemble is realized only through proper enforcement 
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of the fluctuation-dissipation theorem. This in turn resulted in a clear description of 

temperature (see below for more detail). 

For polymeric liquids, the thermodynamic and hydrodynamics interaction of a 

polymer chain with its surrounding is explicitly accounted for via a detailed force balance 

on each particle in the chain. Specifically, the fluid is represented by a set of N particles of 

mass m located in a 3D periodic simulation box. These coarse-grained particles interact 

with each other within a cut-off distance rc, through conservative FC, random FR, and 

dissipative FD forces.  

The conservative force is independent of dissipative and random forces and it takes 

the form,  

 

                                                                                                                               

where i jij ij ij ij ij ij r r r ,   r r ,   e r /r      . The variable aij describes the repulsion between 

particles i and j, and thus produces excluded volume interactions. The dissipative and 

random forces are expressed as,  

 

                                                                                 

 

with γ and σ the friction parameter and amplitude of thermal noise, respectively. 

ij i j v v v   , ζij(t) is a Gaussian random variable with < ζij(t) > = 0 and < ζij(t) ζkl(t
') > = (δik 

δjl + δil δjk) δ(t-t'); D and R are weighting functions. Evidently, the dissipative force slows 

particles by decreasing their kinetic energy. This decrease is in turn compensated by the 
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random forces that arises as a consequence of thermal fluctuations. Hence, the force 

parameters are related as shown below.  

                                    σ2 = 2γ𝑘𝐵T            ,          ωD = (ωR)2                                  (2.3) 

Where , has the same functionality as the conservative force weighting 

function.  

The Velocity-Verlet algorithm [57] is used to advance particle positions and velocities 

in time. Specifically,   

ri(t + ∆t) = ri(t) + ∆tVi(t) +
1

2
(∆t)2fi(t), 

Vĩ(t + ∆t) = Vi(t) + λ∆tfi(t), 

fi(t + ∆t) = fi(r(t + ∆t), ṽ(t + ∆t)), 

                          Vi(t + ∆t) = Vi(t) +
1

2
∆t(fi(t) + fi(t + ∆t)).                              (2.4) 

 

The adjustable parameter λ is used in the second step of the algorithm to predict the 

mid-step velocity ṽ and the actual velocity is corrected afterwards in the last step. In this 

algorithm (compared to Euler-type approach used in DPD), the force is still updated once 

per iteration (after the second step), thus there is virtually no increase in computational cost 

while stability and accuracy are enhanced. All physical measurements that depend on 

coordinate differences are also taken after the second step; the temperature is measured 

after the last step. Motivated by the original Verlet algorithm [57], we have chosen λ = 0.5. 

This parameter choice allows for good control of the system temperature, i.e., temperature 

deviation from its specified value is < 3% with the noise amplitude σ = 3 and Δt = 0.012.  

ijR

c

r
(1 )

r
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2.2.1 Polymer Chain Model 

 

The beads of a linear polymer chain are connected via harmonic springs

, i.e., where the sum is performed for all particles j to which particle i 

is connected. req is the equilibrium bond length and is chosen to correspond closely to the 

first maximum of the radial distribution function. The spring constant k=2aij, is set in order 

to satisfy the topological constraint explained in detail in the next section. Moreover, a 

small bending potential [58] was added between three consecutive beads to increase the 

entanglement density. The bending potential is taken as Ubend = Kb (1 + cosθ). The 

bending constant Kb = 2.0 and θ is the angle between the three consecutive beads. This type 

of potential results in an attractive force between the neighboring beads and a repulsive 

force between beads with distance 2 along the backbone. 

 

2.2.2 Topological constraint 

 

Chain crossings must be prevented in the entangled systems to ensure topological 

constraints are met. There are three predominant methods for enforcing this constraint in 

mesoscopic simulations. Specifically, Kumar and Larson [59] prevented the passage of two 

springs through each other by incorporating a spring-spring repulsion force into BD 

simulations of flexible polymers, thus the topological integrity of polymer molecules were 

maintained. Padding and Briels [60] introduced the uncrossability constraint through the 

TWENTANGLEMENT calculations into a coarse-grained DPD model to avoid unphysical 

bond crossings. The central idea of TWENTANGLEMENT algorithm is to consider the 

S

i eq ij ij

j

F k(r r )e 
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bonds as elastic bands which can get entangled, the bond crossing or ‘entanglement’ is 

being explicitly detected via a geometrical examination. Thereafter, bond crossing is 

prevented by introducing an attractive force between the connected beads pushing back the 

entangled bonds to their respective sides. It is also possible to prevent chain crossing by 

tuning the conservative force and enforcing a simple geometric constraint. This 

computationally efficient and highly accurate method was developed by Nikunen et al. [61] 

and verified at equilibrium. Specifically, they have shown that if the geometric constraint, 

                                                      √2 rmin >  Lmax                                               (2.5) 

is satisfied, bonds cannot cross each other. rmin and Lmax refer respectively to the diameter 

of each bead and the longest distance between the center of mass of connected beads. The 

aforementioned geometrical condition can be met if a proper level of coarse graining is 

complemented by a reasonable description of bond stretching (choice of spring constant, 

k).  

 We have used the methodology of Nikunen et al. [61] at both equilibrium and under 

simple shear flow. First, we demonstrate the effect of aij and k on Eq. (2.5) at equilibrium 

in Figure 2-1 and report the rmin and Lmax values in Table 2-1, the aij and the spring constant 

are varied while keeping the ratio constant, k/aij = 2. Our results are consistent with 

Nikunen at al.. Secondly, we investigate the flow effect on rmin and Lmax values with aij = 

200 and k = 400. The summary rmin and Lmax values as a function of Wi are shown in Table 

2-2 in DPD units. Moreover, rmin and Lmax are taken respectively from the radial distribution 

function and bond-length distribution as labeled in Figure 2-1 and 2-2. 
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Figure 2-1. (a) Radial distribution function in the case of N = 250 at different amplitudes 

of conservative force, a. The arrow shows the distance rmin. (b) Probability distribution 

function of bond-length (L) for different values of a. The arrow shows Lmax. 
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Lmax 

b) 

Figure 2-2. (a) Radial distribution function for N = 250 at different Wi. The arrow shows the 

distance rmin. (b) Probability distribution function of bond-length (L) for different shear rates. 

The arrow shows Lmax. In these simulations, aij = 200. 
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 It should be mentioned that we chose an operative criterion over which rmin and Lmax 

values are determined. The operative criterion for both equilibrium and non-equilibrium 

settings in our calculations is 3%. 

 

2.2.3 Simulation Details and Units 

 

Mass m, length rc are chosen as the base units and are set to one. Rather than specifying 

the time unit, as Groot [62] and Hoogerbrugge [55], we have chosen to work with energy 

units such that kBT = 1.  

The aforementioned DPD simulation algorithm has been used to study entangled 

polymeric melts at equilibrium and in planar Couette flow in conjunction with Lees-

Edwards boundary condition. The fidelity of DPD in predicting correct behavior and 

scaling at equilibrium and under shear flow is examined first. In turn, the flow-

a                                                 50  100 150   200 

k 100 200 300   400 

rmin 0.58 0.69 0.75  0.771 

Lmax   1.11 1.07 1.062   1.05 

Wi                                                Equilibrium 1 30 100   1000 

rmin 0.771 0.77 0.77 0.77   0.76 

 Lmax 1.05 1.05 1.05 1.05  1.054 

Table 2-1. The examined parameters at equilibrium for N=250. 

Table 2-2. rmin and Lmax at various Wi and Equilibrium with aij = 200 for N= 250. 
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microstructure coupling of entangled polymeric fluids is extensively studied with a 

particular focus on single chain dynamics and relaxation mechanisms. Specifically, we 

have focused our attention on moderately entangled systems, i.e., N = 200, 250 and 400 

beads per chain with 1250, 705 and 1374 chains respectively in a canonical ensemble 

(NVT). The corresponding average entanglement densities at equilibrium for the 

aforementioned systems are: <Zk> = 13 (N=200), 17 (N=250) and 27 (N=400). 

Entanglement or topological constraint made by surrounding chains is considered here as 

the persistent contact between the primitive paths of neighboring chains. It should be noted 

that the entanglement network analysis was carried out using the Z1 code developed by 

Kröger et al. [63-65].We have focused our attention on these entanglements densities as 

they are close to the lower range of experimental entanglement densities. 

Various simulation box sizes were used to avoid box size artifact and to study the 

effect of finite box size on the flow-microstructure coupling. However, most of the results 

reported in this thesis are from a simulation box with an aspect ratio of 2:1:1 with a larger 

dimension in the flow direction, x. Normal dimensions to the flow direction are twice the 

average equilibrium chain end-to-end distance; this box size is sufficient to avoid box size 

effect. The Velocity-Verlet algorithm [57] is used to integrate the equations of motion and 

the stress tensor is calculated based on the generalized formulation developed by 

Thompson et al. [66] where many-body potential is also considered in the stress equation. 

To achieve steady state velocities, shear and first normal stresses, simulations up to 10 

times the disengagement time of the system have been performed. Considering the large 

size of the simulation box, accurate temporal ensemble averages were obtained over 0.1 τd. 
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In what follows, the disengagement time of the system, at equilibrium as well as under 

flow conditions are shown respectively as τd0 and τd. The force parameter amplitudes as 

well as other DPD simulation specifications are summarized in Table 2-3.   

 

 

 

 

2.3 Results and Discussions  

Although DPD has been used to simulate entangled polymeric fluids, its application 

has been limited to equilibrium settings. To this end, the first goal of this chapter is to 

demonstrate the fidelity and computational efficiency of DPD in modeling flow of 

entangled polymeric melts. Henceforth, the chains response to the flow, the intricate flow-

microstructure coupling and existing characteristic time scales are extensively examined. 

The execution time of DPD algorithm (wall-time) is demonstrated in Figure 2-3 as a 

function of number of beads per chain. The tests were performed on an “intel Xeon E5530” 

in a cube box with sides equal to twice the chain end to end distance, i.e L = 2Ree = 2bN1/2. 

The execution time is expressed in unit of s/τ and scales as N1.4941. The scaling is consistent 

Quantity Value Unit 

Δt 0.012 √mrc
2 kT⁄  

a 200.0 kT rc⁄  

σ 3.0 (kT3m rc
2⁄ )1/4 

γ 4.5 (mkT rc
2⁄ )1/2 

ρ  1.0 rc
−3 

k (spring constant) 400.0 kT rc
2⁄  

V (N=200) : box volume 100.0 × 50.0 × 50.0 rc
3 

V (N=250) : box volume 100.0 × 42.0 × 42.0 rc
3 

V (N=400) : box volume 130.0 × 65.0 × 65.0 rc
3 

Table 2-3. Simulation parameters and specifications. 
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with a particle based model. The execution time should scale linearly with the total number 

of particles in the box while the number density is kept the same. Hence CPU-time 

increases with time ~ L3 ~ N1.5. This scaling is commonly observed in NEMD and DPD 

simulations, however, in our implementation, DPD calculations are at least order of 

magnitude faster than NEMD simulations (the comparison between the two methods is 

based on NEMD simulations of an entangled polyethylene melt, i.e., C700H1402). Moreover, 

the computational speedup gained from parallelization is shown in the inset of Figure 2-3 

for N=250. It is clear that the performance improvement made by MPI (Message Passing 

Interface) programming makes the simulation times manageable.  

 

 

Figure 2-3.Execution time vs number of beads per chain. The execution time is reported in 

second per DPD time unit, τ. The computational speedup as a function of number of cores is 

shown in the inset, demonstrating the performance improvement via strong parallelization. 
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2.3.1 Equilibrium Scaling  

Here, we briefly report the result of equilibrium simulations of entangled polymer 

melts and in turn compare them with reptation theory, as well as, existing simulation results 

and experimental observations.  

Radius of Gyration: It is defined as Rg
2 =

1

N
∑ (r⃗i − r⃗cm)N

i=1

2
, where r⃗cm =

1

N
∑ r⃗i

N
i=1 . In a 

polymer melt, one would expect < Rg > α N1/2. As shown in Figure 2-4, the proper scaling 

behavior is reproduced. Previous studies using both realistic soft potentials [67] and hard 

potentials exhibit the same scaling [68]. 

 

 

Figure 2-4. Predicted radius of gyration and longest relaxation time as a function of chain 

length at equilibrium. The radius of gyration shows the effective exponent of 0.5. The  

τd0 N3⁄   holds the scaling of 0.3 and the cross-over occurs at around N = 400 (Zk =27). 
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Relaxation Time: The longest relaxation time of the system at equilibrium or the 

disengagement time depends on the molecular weight, and the Doi-Edwards tube model 

predicts the scaling of τd0 α N3. This prediction assumes only one mechanism for the 

relaxation, i.e., one dimensional diffusion along the primitive path. On the other hand, τd0 

α N3.4 has been observed in the entangled regime in both experimental [69, 70]and 

computational [71] studies. The major reason for a larger exponent than 3 for finite N is 

contour-length fluctuation which is not accounted for in the original DE model. 

To examine our simulation scaling behavior, we have measured the unit end-to-end 

auto-correlation function and fit it with an exponential function, i.e. < u⃗⃗(t). u⃗⃗(0) > α a exp(-

t/τd0). In the Doi-Edwards tube model, the time correlation of end-to-end vector is given 

by the sum of a series of odd exponential terms. Consistent with our findings, Nafar et al. 

[16] have shown that if the auto-correlation function is fitted by either one, two or three 

exponential terms, the predicted disengagement time is unchanged. Here, calculated results 

of τd0 are depicted in Figure 2-4 versus N. The effective exponent for τd0 is 3.3 from N=100 

to 250 (τd0 α N3.3). However, a deviation from this exponent is observed at N=400. This 

crossover behavior has also been observed in other studies [70, 71] and it is attributed  to 

the fact that at considerable entanglement density, contour-length fluctuation (a very fast 

mechanism) becomes less important, thus crossover occurs and the DE exponent of 3 is 

finally realized. It should be noted that in our simulation, the entanglement density at which 

the crossover occurs is 27; this cross over in experimental studies is observed when N/Ne 

~ O(102). 
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Diffusion: The motion of the polymer chain center-of-mass is described by a diffusion 

coefficient as,  

                                         D = lim
t→∞

1

6t
< (r⃗cm(t) − r⃗cm(0))2  >                                (2.6) 

 

The scaling of D with molecular weight has been extensively studied [68, 72]. Our 

results, depicted in Figure 2-5 demonstrate the scaling of D α N-2.069. This scaling is 

consistent with the simulations results of Kremer and coworkers [68, 73] as well as Padding 

and Briels [74] and Nikunen et al. [61]. Moreover, Pearson et al. [72] have experimentally 

demonstrated that over a broad range MW, i.e., 600 to 12000 (g/mol),  D = 1.65 MW
−1.98.  

Overall, the correct scaling behavior at equilibrium confirm that excluded volume 

interaction and hydrodynamic correlations are accurately included in our DPD simulation 

algorithm.  

Figure 2-5. Diffusion coefficient as a function of chain length. The 

proper scaling limit is reached and the values are reported in the DPD 

units. 
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2.4 Simple Shear Flow  

Although theories for chain liquids perform well at low field strength, their 

descriptions of the rheological behavior tend to break down once the field strength drives 

the fluid substantially into the nonlinear viscoelastic regime [2, 6, 75]. Unfortunately, 

procedures used to substantially reduce the number of degrees of freedom of the molecular-

mesoscopic scale description, result in characteristic evolution equations for variables such 

as the conformation tensor or the extra stress tensor which change on macroscopic length 

and time scales but ignore the atomistic/mesoscopic-scale dynamics. This readily explains 

why these bulk-averaged theories often break down in the nonlinear viscoelastic regime 

where the timescales of the flow can become smaller than those associated with the time 

evolution of the macroscopic variables. Fortunately, recent united atom NEMD simulations 

of entangled (approximately ten kinks per chain at equilibrium determined based on 

Kröger’s Z1 code) polymeric melts [15, 16], namely, C400H802 has provided significant new 

insight into flow-microstructure coupling of this class of fluids in simple shear, including 

a very intriguing new chain relaxation mechanism at high deformation rates, i.e., 

rotation/retraction dubbed “vorticity excursions”. To this end, we have performed 

extensive DPD simulations of plane Couette flow of moderately entangled linear polymeric 

melts, i.e., with 200, 250 and 400 beads per chain, with equilibrium entanglements densities 

(kinks per chain determined via the Z1 code) of 13, 17 and 26 kinks per chain, respectively. 

The simulation results are in turn used to critically examine single chain dynamics and 

flow-microstructure coupling of moderately entangled polymeric melts in simple shear 
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flow. Moreover, our simulation technique allows examination of shear banding in this class 

of fluids which is the subject of the following chapter.   

As noted earlier the disengagement time of the system, τd, is calculated by using the 

autocorrelation function of unit end-to-end vector. At equilibrium this time correlation 

function is equal to 1 at t = 0 and it gradually decays monotonically to zero at sufficiently 

long time. However, in simple shear flow of the N=250 fluid, at Wi > 10 the end-to-end 

autocorrelation function initially decreases, becomes negative, and in turn goes through a 

sequence of oscillations before returning to zero in ~ two time periods of the oscillation 

cycle (see Figure 2-6 on polymer relaxation behavior at different Wi). The aforementioned 

negative value is a clear indication of vorticity excursions. Hence, to analyze these 

autocorrelation functions, we have employed a single exponential function with an 

embedded cosine dependence to fit the disengagement and vorticity excursion time scales, 

i.e., 

                                  < u⃗⃗(t). u⃗⃗(0) > α c exp(-t/τd) cos(-2πt/τrot)                                (2.7) 

The disengagement time and the rotation/retraction time scales as a function Wi for all 

of the entangled melts studied are displayed in Figure 2-7. For Wi ≤ 10, this time scale does 

not change substantially from its equilibrium value. However, for Wi > 10, all systems 

show an evident drop. The drop in τd (see Fig. 2-7) follows a power-law behavior with 

slope of -0.66, -0.64 and -0.65 for N = 200, 250 and 400 beads, respectively. NEMD 

simulation of Nafar et al. [76] for a polymer melt with a lower entanglement density (10 

kinks per chain at equilibrium) also show a power-law behavior but with a slope of -0.73. 

The reduction in the rotation/retraction time scale shown in Figure 2-8 also obeys a power-
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law behavior with slopes of -0.69 (N=200), -0.72 (N=250), -0.69 (N=400), -0.78 (NEMD 

[76]). The minor difference between NEMD and DPD simulations results for the 

aforementioned time scales is largely due the fact that the polymer chains used in the DPD 

simulations have a slight bending potential (to enhance entanglement density), thus their 

decorrelation times are longer than the flexible chains used in the NEMD simulations.  

 

 

The ratio of rotation/retraction relaxation time to the disengagement time is shown in 

Figure 2-9. The largest value (~10) is observed at Wi < 100 and the ratio decreases 

gradually to ~5 as the flow strength is increased. The Wi at which chain rotation/retraction 

Figure 2-6. Autocorrelation function of unit end-to-end vector vs time at different 

Wi along with their fits for N =250. The fit for Wi = 0.1 is the summation of three 

exponential and the ones for Wi = 30 follows the equation 2.8. The autocorrelation 

function for Wi =10000 is shown in the inset. 



 
38 

begins to occur is a function of the chain length and consequently the number of 

entanglements per chain. This is a direct consequence of the variation of number 

entanglements with Wi. Specifically, the entanglement density decreases as the flow 

strength is enhanced (see Figure 2-10). The onset of the rapid decrease in entanglement 

density is commensurate with the onset of vorticity excursion. At this Wi (O(10)) a network 

of highly-stretched chains give rise to dilated tube-like structures through which chains 

experience rotation/retraction. 

 

 

 

 

Figure 2-7. The longest relaxation time of dense melts with N = 200, 250 

and 400 beads/chain as a function of Wi. 
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Figure 2-8. The rotational timescale of dense melts with N = 200, 250 and 400 

beads/chain as a function of Wi. 

 

Figure 2-9. Ratios of the rotation to the disengagement times for 

the melt of entangled systems, N = 200, 250 and 400 beads/chain 

as a function of Wi. 
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Evidently, the Wi at which rotation/retraction begins to occur progressively increases as 

the number of entanglements per chains is increased. To this end, the interconnection 

between flow induced disentanglement and onset of rotation/retraction cycle is further 

scrutinized via examination of single chain dynamics and the entangled network topology. 

The ensemble average number of entanglements per chain < Zk > as a function of Wi is 

depicted in Figure 2-10 (the entanglement density at Wi=1 and equilibrium are identical). 

As the shear rate is progressively increased, the flow enters the nonlinear viscoelastic 

regime (Wi >10), and < Zk > decreases slightly in response to the flow field. This is mainly 

due to the flow alignment of the chains as well as onset of chain stretch (See Figure 2-11 

and 2-12 for the chain orientation angle and its mean fractional extension as a function of 

Wi). Simultaneously, the rotation/retraction frequency increases as the network becomes 

less entangled and ultimately loses its structure at very large Wi.  

Figure 2-10. Average number of entanglements per chain as a 

function of Wi for different chain length, N = 200, 250 and 400 

beads/chain. 
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Figure 2-12. Mean fractional extension as a function of Wi for 

different chain length, N= 200, 250 and 400 beads/chain. 

Figure 2-11. Average orientation angle vs Wi for different chain length, 

N = 200, 250 and 400 beads/chain. 
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As mentioned earlier, entanglement or the persistent contact between the primitive 

paths of neighboring chains was detected by Z1 code. Z1 code determines the shortest path 

between the two ends of a chain via an optimization process while passing through the 

obstacles made by surrounding chains. Thus, the three dimensional primitive path <L> and 

the number of contacts or in their (Kröger et al.) terminology “kinks” <Zk> along this path 

is identified. In turn, the number of kinks per chain is related to the theoretical expression, 

<Z> = <L>2 / R2 in a non-trivial manner. At equilibrium, Everaers [77] has offered an 

explanation for the factor of two difference between <Zk> and <Z>, i.e., <Zk> ≈ 2 <Z>. 

Although our primitive path analyses at equilibrium are consistent with Everaers’ finding, 

the entanglement density cannot be determined based on <Z> = <L>2 / R2 in non-

equilibrium settings since the assumptions under which this relation is derived breaks 

down, i.e., the chains primitive paths do not obey Gaussian statistics. Therefore, we have 

used <Zk> as a measure of the entanglement density in our simulations. 

Figure 2-11 demonstrates the orientation angle of end-to-end vector with respect to the 

flow direction (in the flow-gradient plane) θ as a function of Wi. The orientation angle is 

calculated from the order tensor S =
1

2
< 3u⃗⃗ u⃗⃗ − I > where u⃗⃗ denotes the chain unit end-

to-end vector. Specifically, θ is defined as the angle formed between the flow direction and 

the eigenvector corresponding to the largest eigenvalue of the order tensor.  At Wi > 10, 

the steep drop in the orientation angle from its limiting equilibrium value of 45º indicates 

significant chain alignment. As also evidenced from Figure 2-13 in which the single chain 

orientation angel at Wi =100 for N=250 is shown, the chain rotation and retraction is 

cyclical. During a typical cycle, the chain retracts from a highly stretched configuration to 
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a packed coil structure while the chain orientation angle is remained constant. At the 

minimum point of the period (as the chain begin to assume a coil structure), the orientation 

of the chain flips quickly as the chain ends pass each other at an instant, after which the 

chain quickly expands once more to a highly stretched configuration.  Overall, the chain 

rotation/retraction cycle exists at Wi > 10 where the chain network is still moderately 

entangled, i.e., the rotation relaxation mechanism plays a significant role in the topological 

rearrangement even at moderate Wi. 

 

 

The mean extension <X>/L where L is the contour length and <X> is the mean end-to-

end distance projected along the flow direction is shown in Figure 2-12. The onset of chain 

stretch occurs at Wi > 10 which roughly corresponds to a Rouse based Weissenburg 

Figure 2-13. Chain orientation angle and fractional extensions a function 

of time for N =250 beads/chain at Wi = 100. 
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number, WiR > 0.5 where the Rouse time is estimated as follows: τR =
τd

3 < Z >⁄  (see 

Figure 2-14-(a,b)).At large Wi > 1000, chains have stretched on average 30% of their 

contour length and at a very high Wi= 10,000, the average chain extension exceeds 40% 

(<X>/L > 0.4; see Figure 2-12). 

 

 

 

The co-existence of aligned and extended chains with collapsed chains resulting from 

the rotation/retraction cycle indicates tube dilation. The length scale of dilated tubes can 

be examined via monitoring the average tube diameter, a, as a function of Wi (see Figure 

2-15). To this end, the Kuhn length, b, of chains of various length, i.e., N=250 and 400 is 

computed based on the length along the backbone of the chain where orientation correlation 

is lost, i.e., the persistence length, P where b=2P. Persistent length is commonly determined 

a) b) 

Figure 2-14. (a) The Kuhn length normalized by its equilibrium value, b0 as a 

function of Wi. (b) The chain end-to-end distance normalized by the equilibrium 

value as a function of Wi. 
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via the expression, < ú(s). ú(0) > = exp (−s/p)  where s is the distance between the two 

points on the chain contour and ú(s) is the tangent vector at position s along the chain. 

Following this procedure, b is determined to be 3.435 and 3.396 (rc) for N = 250 and 400 

beads/chain, respectively. The discrepancy between the calculated Kuhn length is ~ 1% 

showing the uncertainty in the computation of this quantity. In turn, the average tube 

diameter, d is related to the Kuhn step. Specifically, it is assumed to be twice the Kuhn 

length. The tube diameter starts growing substantially at Wi ≥ 100 for N= 250 and 

eventually reaches ~8 Kuhn length at Wi=10,000. Hence, at very large strain rates, the 

characteristic motion of the chains becomes essentially that of single chain in a theta 

solvent. It should also be noted that onset of significant increase in the tube diameter for 

N=400 is delayed to Wi ≥ 1000. Clearly, the onset condition is a strong function of 

entanglement density as a function of Wi.  

A clear connection between individual chain dynamics and macroscopic response of the 

fluid, namely, stress exists. For example, the steady shear stress versus Wi (see Figure 2-

16) can be divided into three distinct regions each with their own dominant chain dynamics. 

Specifically, the initial increase in the stress from its equilibrium value in region I where γ̇ 

≤ 𝜏𝑑
−1 corresponding to Wi<10, is predominantly due to the rapid chain flow alignment. 

Clearly in this regime the dominant chain relaxation mechanism is reptation as 

corroborated by the Gaussian distribution function of magnitude of end-to-end vector as 

depicted in Figure 2-17. As deformation rate increases, and one enters regime II,  𝜏𝑑
−1 ≤ γ̇ 

≤ 𝜏𝑅
−1, traditionally referred to as the CCR regime, significant chain orientation, and onset 

of chain extension gives rise to flow induced chain disentanglement leading to dilated tubes 
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in which vorticity excursions are executed by the chains. As shown by earlier continuum 

level computational studies [78-81] as well as our molecular investigation, in the CCR 

regime the complex chain dynamics described in details above give rise to nearly constant 

stress. As expected the probability distribution function of end-to-end vector in this regime 

significantly widens as a result of multitude of configuration that exist during a vorticity 

excursion cycle with a commensurate broadening of the relaxation spectrum.  In region III, 

i.e., γ̇ ≥ τR
−1 chain stretch is enhanced considerably and vorticity excursions occur at a much 

higher frequency leading to further widening of the end-to-end distribution function and 

appearance of a peak for highly stretched chains (Wi ≥ 1000). Simultaneously, a peak 

corresponding to chain sizes smaller than the equilibrium Rg of the molecule appear 

indicating the existence of highly compact configuration. The observations of the two 

peaks in the probability distribution function are a clear signature of rapid vorticity 

excursions. This also emphasizes that the entanglement network has essentially been 

destroyed (see Figure 2-10) and the chain dynamics is very similar to that of a single chain 

in a theta solvent.  

 

 

 

 

 

 



 
47 

 

Figure 2-16. Steady shear stress as a function of Weissenburg 

number, Wi. Rouse time, τR is estimated via τd⁄τR= 3<Z>.1000, 

N=400. Time is scaled by the disengagement time at the applied 

shear rate. This figure appeared in a previous publication [113]. It 

has been also included to facilitate the discussion. 

Figure 2-15. Tube diameter, a versus Wi calculated via formulae d = < 

L >/< Zk > for N=250 and 400 beads/chain. 
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2.4 Conclusion  

Overall, our DPD results presented in this part are in great consistency with NEMD 

simulations of Nafar et al. [16] and Baig et al. [15]. This is for the first time that DPD 

fidelity under steady flow in the entangled regimes (<Zk> ≥ 13) has been gauged. In 

addition, the detailed single chain dynamics and relaxation mechanisms in the polymer 

melt with varying flow strength has been scrutinized. Thus, the flow-microstructure 

coupling is now clear. It has been shown that three different flow regions exist along their 

relaxation mechanism. For weak flows in the proximity of linear viscoelastic regime, γ̇ ≤ 

Figure 2-17. The probability distribution of magnitude of end-to-end vector 

vs Ree at various Wi values for N = 250 beads/chain. 
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𝜏𝑑
−1, the reptation is the dominant relaxation mechanism. As Wi increases, at 𝜏𝑑

−1 ≤ γ̇ ≤ 

𝜏𝑅
−1 , the flow enters the non-linear viscoelastic regime, significant chain alignment and the 

onset of chain extension lead to the flow-induced chain disentanglement. Moreover, as the 

chain disentanglement occurs, the tubes are dilated and thus vorticity excursion, i.e. 

significant segment reorientation can be performed, however, the tumbling frequency is 

small. The relaxation spectrum becomes broad as various mentioned chain dynamics are 

available. The last region, 𝜏𝑅
−1 ≤ γ̇, appears at large Wi where the entanglement network 

essentially collapses, chains don’t experience the resistance from the surroundings and the 

shear flow becomes similar to the dilute polymer solution in theta solvent. Both stretch and 

orientation take place effectively, thus the Rouse-like relaxation mechanism is more 

realistic. The configuration diversity observed in the flow confirms that the chain motion 

is free.  

The realization of relation between single chain dynamics and relaxation mechanisms 

as well as existence of various regimes in the entangled polymers under flow equips us to 

investigate the inhomogeneous shear banding phenomenon with resolution. The shear 

banding molecular investigation is fully discussed in Chapters 3 and 4.   
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Chapter 3  

Molecularly Universal Criterion for Shear Banding: Formation of Local 

Inhomogeneity Mechanism   

 

This Chapter is based on the submitted papers. 

 

“Elucidating the Flow-Microstructure Coupling in Highly Entangled Polymer Melts: Part 

II. Molecular Mechanism of Shear Banding,” M. Mohagheghi and B. Khomami, Journal 

of Rheology, invited paper, JOR-15-327-SB.  

“Molecularly Based Criteria for shear Banding in Transient Entangled Polymeric Fluids,” 

M. Mohagheghi, B. Khomami, PRE, Revision submitted on 23-Feb-2016, LM15163.   

 

 3.1    Introduction  

 

In this chapter, the second in a series of articles describing the flow physics of highly 

entangled polymeric melts, hi-fidelity DPD simulations described and benchmarked 

thoroughly in our preceding chapter is used to analyze the “formation of localized 

inhomogeneity”, the prerequisite for “shear banding” phenomenon. Our primary goal is to 

gain insight into the physical origin of shear banding in entangled polymeric fluids by 

investigation the molecular processes that lead to this intriguing phenomenon. To this end, 

fundamental understanding of flow microstructure coupling described in the preceding 

chapter [82] is an essential first step in establishing the intricate relationship between flow 

induced chain disentanglement, chain relaxation mechanisms and formation of local 

inhomogeneities, believe to be a key ingredient for development of shear banded structures. 
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To achieve this objective, extensive analysis including evaluating the free energy of the 

system has been performed.  

In the former chapter, we elucidated the flow-microstructure coupling in polymeric 

fluids with average entanglement densities <Zk> ≥ 13 and demonstrated that three prevalent 

relaxation mechanisms, namely, reptation, vorticity excursion, and Rouse are the 

predominant mechanism of macromolecular relaxation in the three distinct flow regimes.  

Specifically, it was demonstrated that in relatively weak flows, γ̇ ≤ 𝜏𝑑
−1, reptation is the 

dominant relaxation mechanism. As Wi (𝑊𝑖 =  γ̇τd) increases, i.e., τd
−1 ≤ γ̇ ≤ τR

−1 , and the 

flow enters the non-linear viscoelastic regime, significant chain alignment and the onset of 

chain stretch lead to the flow-induced chain disentanglement. Moreover, as the chain 

disentanglement occurs, the “tubes” are dilated enabling efficient vorticity excursion, 

allowing significant chain segmental reorientation to occur, although the frequency 

associated with these excursions is small. This additional relaxation mechanism leads to 

significant broadening of the relaxation spectrum in this region. The last region, 𝜏𝑅
−1 ≤ γ̇, 

appears at large Wi where the entanglement network is nearly collapsed; hence, chains 

don’t experience significant constraints from the surrounding chains and the flow becomes 

similar to a semi dilute/dilute solution in theta solvent. Both stretch and orientation take 

place effectively, thus Rouse-like chain dynamics is dominant.  

In the present and following chapter, we have conducted a thorough study of the shear 

banding phenomenology in entangled polymer melts. Specifically in this chapter, we have 

performed a series of step-strain simulations with different entanglement densities <Z> ≥ 

17 as well as start-up simulations at a specific shear rate (N=250 at Wi=30) by adjusting 
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the time taken for the deformation rate to achieve its steady value. Basically, three different 

ramp-time were chosen to examine the importance of chain stretch and orientational 

relaxation on the onset of shear banding.  To this end, the intricate relation between chain 

segmental stretch, stress and orientation relaxation, presence of stress overshoot and 

formation of local inhomogeneities in the entanglement network and shear banding is 

identified. Specifically, our detailed analyses have revealed that if chain orientation has 

ample time to relax before the stress reaches its steady state value, inhomogeneities would 

not occur and shear banding is obviated. 

In turn, in the following chapter, we elucidate the consecutive steps leading to shear 

banding, i.e. the development of spatially inhomogeneous chain disentanglement as a result 

of local inhomogeneous deformation. Moreover, an explanation for the stability of steady 

and transient shear banded flows is proposed based on the well-known interfacial stability 

mechanism of stratified polymeric fluids. Overall, these studies (presented in Chapters 3 

and 4) have provided a clear picture of shear banding and have paved the way for a more 

comprehensive understanding of shear banding in inhomogeneous shear flows such as flow 

of polymer melts in tubes and capillaries.  

To place into context our work in this vast area of research, a brief overview of the 

pertinent experimental and theoretical studies is provided in the next section.  

 

3.2   Background  

 

In 1979, Doi and Edwards predicted the possibility of flow instability in the steady 

shear flow of entangled polymeric melts modeled with their original tube-based 
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constitutive equation. In the original tube-model, a stress maximum appears at the shear 

rate in the vicinity of the inverse of the reptation time, τd
−1 and the subsequent decreases in 

the shear stress value lead to a non-monotonic relation between shear stress and shear rate. 

They suggested that the non-monotonic behavior of the shear stress flow curve will lead to 

an inhomogeneous deformation state where bands with distinct deformation rates could 

coexist.  

Shear banding in complex fluids was first observed in worm-like micelles [83-85]. 

Specifically, Cates demonstrated that the predictions of analysis are consistent with shear 

banding observed in wormlike surfactant solutions [83, 86, 87]. Specifically, he 

demonstrated that his proposed constitutive equation for worm-like micelles leads to a flow 

instability in the region of non-monotonic shear stress shear rate regime that evolves into 

a shear banded flow [85] at stresses and shear rates observed experimentally.  

Experimental results of entangled polymer solutions showed discrepancies with the 

DE theory specifically in large deformation rates and in response to a step strain. Osaki and 

Kurata [88] and Vrentas and Graessley [89] observed stress relaxation occurring much 

faster than the one predicted by DE theory in the entangled polymers Z ≥ 60, later this 

anomalous relaxation was called “type C” relaxation [88, 89]. On the other hand, in 1983, 

Marrucci and Grizzuti (MG) [90] analyzed the possibility of formation of 

inhomogeneities/instabilities via a free energy analysis derived based on the Doi-Edwards 

tube-model to explain the discrepancy between the stress measurements by experiments 

[88, 89] and DE prediction. They showed that an inflection point in the free energy exists 

and will likely result in an elastic instability. They qualitatively argued that the 
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aforementioned instability will persist unless significant orientation relaxation occurs. 

Further, they suggested that on some relatively small length scale, this elastic instability 

would cause inhomogeneous deformation leading to shear banding. Morrison and Larson 

[91] assessed MG theory by using monodisperse and bi-disperse Polystyrene solutions at 

different concentrations and pointed out that MG theory is qualitatively correct in the 

prediction of strain inhomogeneities. Later, Venerus and coworkers [92, 93] studied step 

strain experiments and concluded that many of the anomalous “type C” responses could be 

explained by experimental conditions such as wall slip, imperfect step strain history or 

transducer compliance; however, a number of observed anomalous responses could not be 

described by experimental conditions and may be caused by some other factors not clearly 

identifiable from their experiments.  

Eventually, in 2006, Tapadia and Wang [94] witnessed the existence of shear banding 

in entangled polymeric fluids by flow visualizations in a cone-and–plate rheometer via 

Particle Tracking Velocimetry (PTV). Specifically, they observed that upon step-strain 

start-up, the steady velocity profile was non-linear in the gap between the cone and plate 

when the fluid was sheared in the stress plateau region. Further, numerous experiments 

also showed the existence of this inhomogeneous behavior in different types of flows in 

well entangled polymeric fluids (molecular weight Mw ~ 1 − 2 × 106 g/mol) and DNA 

solutions with number of entanglement Z ≥ 40 [95-101]. Examples include, steady and 

transient shear band formation and velocity recoil during start-up [94, 96, 99, 102], 

transient shear banding in large amplitude oscillatory shear (LAOS) [98, 103], 

inhomogeneous response including negative velocity recoil after step strain performed at 



 
55 

high shear rates [95, 104]. Tapadia and Wang ascribed shear banding to “cohesive failure” 

or “elastic yielding”. On the other hand, Sui and McKenna [105] argued that the 

aforementioned non-linear behavior is a flow instability and is caused by surface distortion, 

either by edge fracture or elastic spiral ripples in the free surface. It should be noted that 

the meniscus in Wang’s cone-and-plate experiments was wrapped with transparent film to 

avoid the edge fracture.  

The most prevalent yet highly controversial theoretical basis offered to rationalize the 

occurrence of shear banding in entangled polymeric fluids is the non-monotonic 

constitutive relation between shear stress and shear rate as originally proposed by Doi and 

Edwards. However, the same criterion i.e., “mechanical instability” defined by the negative 

slope of shear stress constitutive relation, cannot explain the occurrence of transient shear 

banding on the monotonic part of the curve. Therefore, Olmsted et al., have carried out 

continuum level stability simulations of worm-like micelles and polymer solutions [106-

110] to find an explanation for the inhomogeneous behavior of the flow.  In the context of 

transient shear banding in polymer solutions, they have utilized the diffusive Rolie-Poly 

model [7, 106] and demonstrated that these fluids are dynamically unstable, i.e., the 

instantaneous constitutive curve at any transient time is non-monotonic. This does not 

imply a direct connection to a steady state non-monotonic flow curve. In worm-like 

micelles [108] where the diffusive Johnson-Segalman model was used with the two-fluid 

approach coupled to concentration, shear banding was only observed in the negative slope 

region of shear stress versus shear rate, i.e., a “mechanical instability”. However, they have 

also suggested that the shear-induced demixing (SID) instability broadens the instability 
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window to the regions where the flow is monotonic and, that can render the flow to be 

inhomogeneous. On the other hand, Cromer et al. [111] have demonstrated that steady 

shear banding with a realistic monotonic constitutive curve can be realized only if a proper 

coupling of polymer stress to polymer concentration is enforced. Though nearly identical 

stress constitutive relation is used in the aforementioned linear stability analyses, there are 

apparent discrepancies between their conclusions. This is due to the fact that the results are 

very sensitive to the assumed rate of CCR and there is no consensus yet on precise CCR 

implementation. Also, the choice of local perturbations defined in the form of stress 

gradient, noisy initial conditions or concentration fluctuations affect the calculations and 

result. Thus, linear stability predictions based on the most advanced constitutive equations 

are not conclusive and require additional molecular level information before accurately 

addressing flow instability and shear banding in the entangled polymeric flows. To this 

end, development of atomistic or coarse-grained simulation models is essential in 

determining the critical condition for the onset of shear banding. 

In fact, a recent study by Cao and Likhtman [112] has demonstrated the utility of 

NEMD simulations in predicting shear banding in planar Couette flow of entangled mono-

disperse polymeric melts, modeled as bead-spring chains.  The fluid on average has ten 

entanglement per chain at equilibrium and shows a non-monotonic relation between shear 

stress and shear rate. Both transient and steady shear banding were observed in the 

simulations and each corresponds respectively to the monotonic and non-monotonic parts 

of the flow curve.  
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Although to date shear banding in entangled polymeric melts has been documented in 

two molecular simulation including our recent work [113] and in many experiments, the 

molecular origin of this intriguing phenomenon is not fully understood. To this end, our 

main goal in this study is to elucidate the molecular origin of inhomogeneities in this class 

of fluids and its relation to shear banding. Motivated by MG theory, the effect of 

deformation rate ramp-time on segmental/stress and orientation relaxation and formation 

of local inhomogeneities in the entangled network and its relation to shear banding has 

been thoroughly examined.  

 

3.3 Simulation Technique 

 

The simulation methodology employed in this study, DPD, the details of the 

simulation technique, i.e., specification of forces, box size, etc. is identical to the previous 

chapter. Therefore, we refer the reader to Section 2.2 of Chapter 2 for more details.  

 

3.4   Results and Discussion 

 

In what follows, the molecular origin of shear banding is discussed, starting with the 

formation of local inhomogeneities in the entanglement network. Further, in Chapter 4, the 

evolution of local inhomogeneity to the incipient shear banded flow structure is elucidated.  
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3.4.1 Continuum Observation of Shear Banding Existence 

 

The shear stress and viscosity as a function of Wi for the chain lengths of N=250 and 

400 are depicted in Figure 3-1-(a,b). Both shear stress versus shear rate flow curves are 

non-monotonic due to the rapid shear thinning of viscosity with power law exponents Wi-

1.042 (N=250) and Wi-1.028 (N=400). The temporal evolution of the shear stress for a step-

strain start up protocol for the aforementioned monodisperse polymer melt with chain 

length N = 250 (roughly equivalent to C750H1502) and 400 (roughly equivalent to C1200H2402)  

as a function of strain or equivalently time at different shear rates for step is shown in 

Figure 3-2. No stress overshoot is observed for Wi < 10. At higher Wi ≥10 a stress overshoot 

is observed at two strain units (γ ~ 2.0) consistent with theoretical prediction of DE 

constitutive model. The time taken for the stress to decline from its maximum transient 

value to its steady state dubbed “stress relaxation regime” is roughly one disengagement 

time, τd. It should be noted that τd refers to the disengagement time at the given shear rate 

and not the equilibrium disengagement time, τd0.  

Steady shear banding has been observed at Wi ∈ [30, 50] and Wi ∈ [40, 60] for N=250 

and 400 respectively. Moreover, transient shear banding occurs at Wi= 100 (N=250), 500 

and 1000 (N=400). Prototypical shear banded flow structures are shown in Figure 3-3(a-c) 

at different Wi and chain lengths. Figure 4-3(a,b) and 3(c) depict steady and transient shear 

banding respectively. Analogous characteristics during the first disengagement time is 

observed for both cases, namely, linear velocity profile at the stress overshoot, followed by 

emergence of local velocity perturbations at t ~ 0.4 τd. These disturbances are amplified  
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Figure 3-1. (a) Steady shear stress and (b) viscosity as a function of Wi for different 

chain length, i.e. N=250 and 400 beads per chain. Rouse relaxation time, τR is 

determined via τR =  
τd

3Z
. Part (a) of this figure appeared in a previous publication 

[113]. It has been also included to facilitate the discussion.  
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Figure 3-2. Shear stress evolution as a function of strain for different chain length 

and Wi. No stress-overshoot emerges for Wi=1, N=250 shown in the inset. 
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Figure 3-3. Shear stress and velocity profile temporal evolution for (a) steady shear banding at 

Wi=30, N=250, (b) steady shear banding at Wi=40, N=400 and (c) transient shear banding at 

Wi=1000, N=400. Time is scaled by the disengagement time at the applied shear rate.Part (a) of 

this figure appeared in a previous publication [113]. It has been also included to facilitate the 

discussion. 
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and lead to the incipient shear banded flow structure at t ~ 0.6 τd. Both incipient structures 

continue to evolve, i.e., the thickness of the fast and slow band change until either a steady 

shear banded structure is realized at ~5 τd or the banded velocity profile returns to its 

homogeneous linear form after ~ 3 τd.  

 

3.4.2 Free - Energy Analysis 

 

Up to this point, we have shown that the incipient banded structures always form in 

the stress relaxation regime. Moreover, the banded flow structures are realized after 

localized disturbances have sufficiently evolved in time. Hence, understanding the 

molecular mechanism that leads to the formation of localized inhomogeneities in the 

velocity gradient direction in the stress relaxation regime is an important first step in 

development of a molecular mechanism for shear banding in this class of fluids. To this 

end, motivated by prior analyses of MG [114] we have examined the temporal evolution 

of the free energy of the system under a step-strain start-up protocol. Specifically, the 

Helmholtz free energy change per unit volume is calculated via the formulae,  

 

                                                    ∆A =  −
1

2
 (Q + Q+): σ                                      (3.1) 

 

Where (Q + Q+)/2 is a strain tensor and σ is the stress tensor. The temporal evolution of 

the system free energy expressed in kT units as a function of strain is depicted in Figure 3-

4. Evidently, the free energy has a positive curvature at small values of γ (up to γ ~ 2.0) 
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presumably due to the fact that the chains are almost affinely deformed in this region. A 

negative curvature emerges for γ > 2.0; hence, an inflection point at γ ~ 2.0 where the 

maximum transient stress is observed exists. The inflection point in the free energy 

suggests the possibility of an instability manifested in form of local inhomogeneities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Molecularly based Criteria for Formation of Localized Inhomogeneity  

 

To understand the molecular of origin of formation of local inhomogeneity, individual 

chain dynamics during the stress relaxation process has been extensively examined. 

Overall, the chains relax their stress in two steps; in the first step, tension is relaxed by 

Figure 3-4. Free energy change per unit volume for different 

chain length and Wi. 
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segmental stretch relaxation, a very fast process; in the second step, chains relax their 

orientation. Specifically, the flow-induced anisotropic segmental configuration observed 

in stretched and flow aligned chains is relaxed to isotropic equilibrium like chain structures 

(coil) via a rotation/retraction cycle, composed of various folded configurations as depicted 

in Figure 3-5. As the shear rate increases, Wi > 10, the entanglement density drops leading  

 

to tube dilation which in turn enables the aforementioned rotation/retraction cycle that is 

the predominate chain orientation relaxation mechanism. However the rotation time scale 

is much longer than the reptation time scale, i.e., an order of magnitude larger than τd, 

especially at smaller Wi (Please refer to Figure 2-8, 9 and 2-14 in the former chapter). 

Therefore, based on these observations, we propose that the large discrepancy between the 

Figure 3-5. Configuration snapshots of a randomly chosen single 

chain at various incremental times at Wi = 40, N=400. 
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segmental stress/stretch (fast) and segmental orientation relaxation time (slow particularly 

compared to the time for the deformation rate to reach its steady state value) scales leads 

to local inhomogeneity in the entanglement network. Specifically, the combination of flow 

induced chain disentanglement and insufficient time for orientation relaxation leads to 

inhomogeneous entanglement density and a commensurate local variation in fluid 

properties in the velocity gradient direction that cause a flow transition, i.e., formation of 

deformation inhomogeneity that leads to the incipient shear banded flow structure. The 

effect of local inhomogeneity on the spatially inhomogeneous chain deformation is fully 

discussed in the next chapter.    

To elucidate the aforementioned molecular mechanism for formation of local 

inhomogeneities, the chain orientation relaxation is examined via the primitive path 

segmental orientation distribution function (see Figure 3-6). To quantify the segments that 

possess isotropic or anisotropic orientation, the following procedure has been used. 

Fraction of chain segments holding orientation angle (with respect to the flow direction) 

between -5<θ> and 5<θ> are considered to be the flow-induced anisotropic fraction, λ, of 

the chain segments. Here, < θ > is the average orientation angle at the applied shear rate. 

The orientation angle criteria has been defined as ±5<θ> to take into consideration the 

relative isotropy at each shear rate since the chains are more aligned as the shear rate 

increases (see Figure 2-10 of the former chapter). Hence, this relative measure of 

orientation angle has been used to differentiate between isotropic and anisotropic 

configurations at different flow strength. Specifically, this particular choice was motivated 

by the ratio of the isotropic orientation angle at equilibrium, 45º to the average orientation 
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angle at Wi =10, <θ>|Wi=10 ~ 9º. The <θ> at Wi =10 was chosen since at Wi > 10, chain 

alignment is significantly enhanced and orientation relaxation plays a central role in the 

chain overall relaxation process. On the other hand, the (1-λ) fraction with orientation angle 

larger than 5<θ> and smaller than -5<θ>, compose the isotropic fraction of the chain 

segments. Hence, the fraction (1-λ is evaluated by calculating the area under the primitive 

path segmental orientation distribution function for orientation angles larger than 5<θ> and 

smaller than -5<θ>). As Wi increases, chains are generally more aligned and thus λ would 

increase slightly. However, the increase in anisotropic fraction, λ does not imply that 

orientation relaxation is less effective. In fact, the local minimum in the anisotropic fraction 

manifested by the negative orientation angle grows as Wi is enhanced. The negative 

maximum appears as a consequence of existence of a large number of folded configurations 

resulting from the rotation/retraction cycle depicted in Figure 3-5-(b, c, e). Hence, more 

chains experience the rotation/retraction cycle with increasing Wi. In conclusion, If 

orientation relaxation occurs significantly, i.e., frequently at the given shear rate such as 

N=250, Wi=1000, the homogenous deformation will be preserved. Otherwise, if a large 

fraction of sub-chains are still anisotropic and orientation hasn’t relaxed sufficiently during 

the stress relaxation period, inhomogeneity forms. 

 

3.4.4 Formation of Localized Inhomogeneity: Mathematical Description 

 

As discussed earlier, the negative curvature in the free energy suggests formation of 

local inhomogeneities. To quantitatively determine the criteria for formation of local 

inhomogeneities in the flow, one must consider both the chain relaxation and the system 
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free energy. As suggested by MG [114], this can be done by utilizing the following simple 

expression: 

 

λ
d2(∆F)

dγ2
|γ + (1 − λ)

d2(∆F)

dγ2
|0 < 0     

 

The first term in this expression is the contribution of the anisotropic chain segments 

to the overall balance. The magnitude of this term determines whether local 

inhomogeneities are likely to occur as 
2

γ2

d A
|

dγ
 is the negative free energy curvature. The 

second term signifies the isotropic contribution as  
2

02

d A
|

dγ
  is the large positive free energy 

curvature at the origin. Hence, if a very large anisotropic fraction, λ exists, the above 

expression becomes negative and local inhomogeneous chain deformation will occur. 

Otherwise, the expression becomes positive, thus no inhomogeneity and shear banding 

would exist. The values of free energy curvatures as well as λ fraction for different chain 

length and Wi are reported in Table 3-1. The aforementioned analysis is consistent with the 

aforementioned proposed mechanism, namely, during stress relaxation if orientation 

relaxation occurs locally due the low frequency of the retraction/rotation cycle, local 

inhomogeneity a prerequisite for shear banding is created. Otherwise, homogenous shear 

prevails.   

 

 

(3.2) 



 
68 

 

 

 

 

 

 

 

 

 

Step-strain  γ 
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|
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 λ 

Equation 

–(3.2) sign 

Shear 

banding 

Wi = 10, N=250 2.0 0.09 - 0.04    0.6 > 0 No 
Wi = 30, N=250 2.05 0.092 - 0.06    0.62 < 0 Yes 
Wi=1000,N=250 4.5 0.1 - 0.07    0.57 > 0 No 
Wi = 40, N=400 2.04 0.08 - 0.06    0.56 <0 Yes 

Table 3-1.Calculated free energy curvatures at the origin and strain unit γ corresponding to 

stress overshoot as well as anisotropic fraction λ obtained from the area under the figure 3-6 

curves for different step-strain simulations. Shear banding exists if equation-(3.2) becomes 

negative.  

Figure 3-6. Primitive path segmental orientation distribution 

function at various Wi and chain length 
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3.4.5 Effect of Deformation Ramping Rate on Shear Banding Occurrence 

 

The inflection point corresponding to the stress-overshoot indicates the possibility of 

inhomogeneity; if the orientation relaxation occurs at a slow rate, i.e. only a few chain 

segments could relax their orientation prior to the steady state, thus local inhomogeneity 

originates. Motivated by this postulate, we have performed number of simulations by 

varying the time taken for the deformation rate to achieve its steady value to give 

orientation enough time to relax. The following results demonstrate the interrelation 

between chain orientation relaxation, presence of stress overshoot and formation of shear 

banded flow structure and corroborate the aforementioned mechanism discussed in 

preceding sub-sections.  

Four different start-up simulations at Wi =30 are studied, step-strain start-up and three 

others are identified by the time over which the shear rate is ramped up to reach its final 

steady value; ramp-time = 2, 10 and 20 τd , i.e. it will take 2, 10 and 20 disengagement 

time to reach the final shear rate. Figure 3-7-(a,b) shows the shear stress evolution and free 

energy change per unit volume as a function of strain (time) for different ramp-times. The 

step-strain start-up shows a clear stress-overshoot. As the rate of ramping is decreased, the 

stress-overshoot is diminished and eventually, at ramp-time = 20 τd, it becomes negligible. 

As expected, the stress overshoot (the corresponding inflection point) appears at 

approximately 2 strain units and the steady stress value is identical for all cases. However, 

their corresponding velocity profiles shown in the inset at different times are significantly 

different for various ramp-times. Shear banding is observed for step-strain and fast start-
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up (ramp-time=2 τd), while the linear velocity profile is maintained at all times for slow 

rate ramping, i.e. ramp-time = 10 and 20 τd. This finding clearly indicates that the temporal 

evolution of the velocity profile is a very sensitive function of the time scale over which 

the deformation rate is increased from zero to a given steady state value. Thus, shear 

banding is not a unique response of the flow at a specific shear rate even when the shear 

rate is in the region where the steady shear stress is a slight decreasing function of shear 

rate; rather its existence depends on the relaxation behavior of the entangled network. Our 

findings are in excellent agreement with Wang and coworkers’ observations of 

monodisperse entangled DNA (Z=60) [115] and high molecular weight poly-disperse Poly-

Butadiene solutions [116]. They have shown in both studies that shear banding can be 

eliminated if the shear rate is ramped up gradually, i.e. increasing the ramp-time. In the 

monodisperse entangled DNA experiment [115], the ramp-time = 12.82 τd0  where shear 

banding is prohibited, τd0 is the terminal relaxation time.    

As the ramping rate decreases, the rotational time scale is reduced from 10.62 (step-

strain) to 10.1 (ramp-time = 2 τd), 9.6 (ramp-time = 10 τd) and 7.4 (ramp-time = 20 τd). 

Therefore, the rotational frequency increases and orientation relaxation occurs more 

significantly before reaching the steady state. Also, we can express the characteristic 

behavior with a dimension-less number defined as r = τrot/ ramp-time = 5.05 (ramp-time 

= 2 τd), 0.96 (ramp-time = 10 τd) and 0.37 (ramp-time = 20 τd). If r > 1, local 

inhomogeneity exists, otherwise, orientation finds sufficient time to relax prior to the 

steady state, chains disentanglement occurs globally and homogeneous shear prevails. 

Moreover, the primitive path segmental orientation distribution function is depicted in 
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Figure 3-8. The isotropic fraction, (1-λ) increases as the ramp-time increases indicating 

that rotation takes place more effectively. On the other hand, in the anisotropic faction of 

the distribution function, the global maximum associated with the positive orientation 

angle declines and the local maximum corresponding to negative orientation angle grows 

as the ramp-time increases. As mentioned in earlier in sub-section 3.4.3, the positive 

maximum specifies the fraction of the chains segments that are well-oriented and stretched 

in the direction of the flow, while the negative maximum defines the chains segments with 

orientation along the vorticity direction leading to the formation of folded configuration. 

Thus, the significant drop of the positive maximum and considerable grow of negative 

maximum in the anisotropic fraction reveals that rotation cycle is accessible by more chains 

if the ramp-time is increased. The values of λ and free energy curvature for different start-

up simulations are shown in Table 3-2 and their values fulfill the equation 3.2. Ultimately, 

as the ramp-time increases from step-strain to 20 τd, the flow-induced chain 

disentanglement occurs at a commensurate time scale as the rotation/retraction (see Figure 

3-9-a) process leading to homogenous chain entanglement density distribution, i.e. 

homogenous chain deformation along the velocity gradient direction shown in Figure 3-9-

b.  
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Figure 3-7. (a) Shear stress evolution as a function of strain and velocity profiles 

at various strain units shown in the figure inset and (b) free energy vs strain for 

different ramp-time simulations. 

a) 

b) 
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Figure 3-8. Primitive path segmental orientation distribution at 

various ramp times. 

Figure 3-9. Average number of entanglements (a) as a function of time and (b) along the velocity 

gradient direction Y, at different ramp times. Y is scaled by the simulation box length, H. 
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In this section, we have elaborated the effect of rate of ramp up on the formation of 

local inhomogeneity and shear banding. The molecular level results show that no shear 

banding has been observed for the slow ramping, ramp-time = 10, 20 dτ , however shear 

banded structures emerge for the case of fast start-up simulations, step-strain and ramp-

time = 2 dτ . The mechanism is as follows, if the chains segments have enough time to relax 

their orientation at the same time scale of stretch relaxation, rotation takes place globally, 

thus no inhomogeneity would arise. Otherwise, inhomogeneous deformation and further 

locally inhomogeneous entanglement density will exist along the velocity gradient 

direction leading to shear banding.   

 

3.5 Conclusion 

 

Motivated by the MG [114] postulate, we have investigated the stress relaxation and 

free energy analysis in details. Thus, step-strain and start-up simulations in entangled 

Start-up ( Wi =30) γ 
2

02

d A
|

d
 

2

2

d A
|

d



 λ 

Equation -1 

sign 

Shear 

banding 

Step-strain 2.05 0.091 - 0.06 0.62 < 0 Yes 

Ramp-speed=2 d  2.1 0.051 - 0.039 0.585 < 0 Yes 

Ramp-speed=1 d   2.1 0.0246 - 0.015 0.521 > 0 No 

Ramp-speed=20 d   2.2 0.015 - 0.006 0.591 > 0 No 

Table 3-2. Calculated free energy curvatures at the origin and strain unit γ corresponding to 

stress overshoot as well as anisotropic fraction λ obtained from the area under the figure 3-8 

curves for different start-up simulations. Shear banding exists if equation-(3.2) becomes 

negative. 
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polymer melts with different entanglement densities and ramp-times were performed. It is 

shown that the stress overshoot corresponds to the inflection point in the free energy 

suggesting the possibility of inhomogeneity. By further analyzing the stress relaxation 

process, it becomes discernible that orientation relaxation characteristic is the cause for the 

formation of local inhomogeneity. If rotation/retraction cycle occurs frequently, i.e. chains 

segments relax their orientation at the same time scale as stretch relaxation, no 

inhomogeneity would exist. Otherwise, local inhomogeneous chain deformation and 

disentanglement forms when rotation time scale is large and orientation does not relax 

sufficiently prior to the steady state.  

In addition, the effect of deformation rate ramp-time on the stress overshoot and shear 

banding occurrence corroborate our proposed mechanism. As the ramp-time is increased, 

not only the stretch relaxation is delayed, so is the stress-overshoot diminished and shear 

banding disappeared. Primarily, with increasing the ramp-time, the chains segments have 

enough time to relax their orientation before reaching the steady state, rotation takes place 

globally and thus no inhomogeneity would arise. 

Overall, the creation of local inhomogeneity formation, prerequisite for the formation 

of shear banding has shown to be a function of chain relaxation behavior over time (after 

stress-overshoot, prior to the steady state). Our findings are in perfect agreement with 

various step-strain and start-up experiments and consistent with MG postulate [114].  
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Chapter 4  

Molecular Processes Leading to shear Banding  

 

This Chapter is based on the published and submitted papers. 

 

“Molecular Processes Leading to shear Banding in Well Entangled Polymeric Melts,” M. 

Mohagheghi and B. Khomami, ACS Macro Lett. 4, 684-688 (2015). 

“Elucidating the Flow-Microstructure Coupling in Highly Entangled Polymer Melts: Part 

II. Molecular Mechanism of shear Banding,” M. Mohagheghi and B. Khomami, Journal 

of Rheology, invited paper, JOR-15-327-SB. 

 

4.1    Introduction  

 

In this chapter, we report simulation results that describe the progression to 

macroscopic shear banding in well-entangled polymer melts. Specifically, during stress 

relaxation in a typical start-up setting, spatially inhomogeneous chain disentanglement in 

the velocity gradient direction acts as an intermediate step between a stress overshoot and 

the development of a banded velocity profile. We have performed hi-fidelity coarse-grained 

DPD simulations as described in Chapter 2 in a broad range of system sizes (various box 

sizes) and two entanglement densities, <Z> = 17 and 27, to determine the critical conditions 

for occurrence of both transient and steady shear banding. The development of spatially 

inhomogeneous chain disentanglement as a result of local inhomogeneous chain 

deformation and the stability of steady and transient shear banded flows based on the well-

known interfacial stability mechanism of stratified polymeric fluids are elucidated. 
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Overall, the progression to shear banding in highly entangled polymeric fluids based 

on the one to one correspondence between flow-induced micro-structural evolution and 

fluid rheological properties is elaborated specifically in section 4.3. 

 

4.2 Local Process of Inhomogeneity Formation: Number of Entanglement Gradient 

 

Here, we discuss the local process for the formation of local inhomogeneity and further 

in the following section explain its evolution to the incipient shear banded structure.  

The local perturbations are observed for the first time at t = 0.4 τd (see velocity profiles 

in the inset of Figure 4-1-(a)). In order to study the origin of this perturbations, we have 

investigated the entanglement network behavior at the step-strain (shear banding is present) 

and slow (ramp-time= 20 τd) start-up (shear banding is absent) of Wi=30 over 0.25 τd ≤ t ≤ 

0.4 τd where the stress-overshoot occurs at t = 0.2 τd. Various number of equal sub-volumes 

has been examined. Here the three main regions labeled as lower, middle and upper regions 

are discussed since they provide more meaningful statistical and physical results. 

Chains primitive path movements in the upper and lower regions of the box are less 

restricted and their disengagement from the original tube is much faster as compared to the 

chains in the middle region. This point is evident from the primitive chain center of mass 

diffusion coefficient, DG = 5510, 4910 and 8137 (
rc

2

τd
⁄ ) respectively in the lower, middle 

and upper regions (in step-strain experiment). As shown by Doi and Edwards DG ∝  
kTa2

N2ξ
 

when the tube diameter gets larger, the chain diffusivity is enhanced. Also, chain 

disengagement can be triggered by “higher kinetic energy” in the boundary regions. Thus, 
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the chains in the boundary regions relax their orientation faster and “the chain 

disentanglement rate” is larger in the aforementioned regions while chains in the middle 

cannot relax their orientation as rapidly as the higher kinetic energy region. Hence, the 

local criterion for the formation of inhomogeneity is provided at a time after stress 

overshoot when the chains in the two adjacent regions disengage and relax their orientation 

on a different time scale, therefore inhomogeneity forms in deformation and a 

commensurate interface between the two aforementioned regions is created. To determine 

the location of inhomogeneity or the interface, we have looked at the number of 

entanglement points (different from number of entanglement per chain; time averaged over 

0.25 τd ≤ t ≤ 0.4 τd) over the X-Z and X-Y plane. The number of entanglement points in 

each cell is counted. It is clear from the X-Y contour shown in Figure 4-1(b) that 

asymmetry in the entanglement distribution exists at y = 8 and 32 rc (box length in y 

dimension is 42.0 rc). These two positions correspond to the locations in Figure 4-1(a) 

velocity profile inset at t = 0.4 τd where velocity perturbations are observed. The 

entanglement distribution for ramp-time = 20 τd is shown in Figure 4-1(c) averaged over 

3 < γ < 5. The gradient of entanglement along the y direction in the case of ramp-time = 20 

τd is smaller than the step-strain case as the dense contour lines suggest. The data points in 

Figure 4-1(b,c) indicate the position and level of each contour. We have checked various 

points in the vicinity of asymmetry in the entanglement distribution, the 
∆Z

∆Y
 for the case of 

step-strain is larger than 3 and for the case of slow start-up (ramp-time = 20 τd) is smaller 

than 2. This point indicates that discontinuity in the number of entanglement needs to reach 
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a critical value, for inhomogeneity in deformation and a commensurate interface to form. 

The critical value based on our observation is three.      

The X-Z entanglement contours for different regions (upper, lower and middle) of the 

box show similar behavior (see Figure 4-2). However, the number of entanglements is 

different in each region. Overall, the number of entanglements in the core of each region 

is highest and disengagement occurs from the tube ends. The orientation relaxation occurs 

at a higher rate in regions close to the boundaries and thus a discontinuity in chain 

disentanglement appears in the adjacent high and low kinetic energy regions and an 

interface between them is formed. Eventually, the lower and upper regions form the fast 

bands and the middle region becomes the slow band. If we consider the position of the 

interface at y = δ (the distance from the center of the box), δ is not randomly determined. 

Instead it is located between the boundaries and middle of the box and the location is a 

function of chain length (viscosity and elasticity), and shear rate in the stress relaxation 

regime. The interface is eventually stabilized when the viscous and elastic forces are 

balanced. It should be mentioned that in the entanglement network analysis (Figures 4-

1and 4-2), the central box and along the adjacent boxes are considered to clearly count the 

number of entanglement points, the central box dimension is100 × 42 × 42 (rc
3).  
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a) 

b) 

c) 

Figure 4-1. (a) Stress and velocity profiles of step-strain at Wi = 30, (b) Step-strain entanglement 

distribution in X-Y plane, (c) Contour plot of number of entanglements at ramp-speed =20 τd. 

The dashed lines indicate the interface between the adjacent regions. 
∆Z

∆Y
 > 3 and < 2 for step strain 

and ramp-speed =20 τd. 
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b) a) 

c) 

Figure 4-2. Number of entanglement points in the X-Z plane in (a) lower region (future fast band) 

(b) middle region (future slow band) (c) upper region (future fast band). 
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In summary, we have postulated in the preceding chapter a universal molecular 

criterion for the formation of local inhomogeneities in transient shear flows that relies on 

the large discrepancy between the stress and orientation time scale. In addition, the local 

process for the formation of shear bands is discussed as the different “chain 

disentanglement rate” between adjacent regions being large enough (here 3) as a result of 

different relaxation processes. Overall, if the orientation and stress relaxation is largely 

different, the orientation relaxation occurs “locally” and not globally accessible by all 

chains, thus the chain disentanglement rate becomes different in the adjacent regions, hence 

an interface and consequently inhomogeneous deformation is observed.    

 

4.3 Inhomogeneous Chain Deformation and Disentanglement    

 

In what follows, the molecular processes by which local inhomogeneities (discussed 

in the preceding chapter) created as a consequence of slow orientation relaxation in step-

strain start of a planar shear flow evolve into shear banded flows is elucidated. To this end, 

spatially inhomogeneous chain deformation along the velocity gradient direction, i.e., the 

average chain extension and orientation angle with respect to the flow direction for three 

different Wi and chain length (N=250 Wi=30, N=400 Wi=40, N=400 Wi=1000), is carefully 

examined (see Figure 4-3). Evidently, locally inhomogeneous deformation of the entangled 

network of chains occurs specifically in the vicinity of the stress overshoot t ≥ 0.2 τd and 

before t ≤ 0.4 τd. Chain extension and alignment are more pronounced in the regions (close 

to the simulation box boundaries) that will eventually be occupied by fast flows (higher 

shear rates). The growth of the aforementioned spatial inhomogeneity leads to development 
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of significant inhomogeneous flow induced chain disentanglement along the velocity 

gradient direction as shown in Figure 4-4.  

It should be noted that the averages depicted in this figure were constructed prior to 

observation of the incipient shear banded flow structure. Clearly, the topological 

characteristic of the entangled network along the velocity gradient direction is considerably 

different in absence of shear banding, i.e., homogeneous flow-induced disentanglement is 

observed in the velocity gradient direction (see results for N=250 at Wi=10 and 1000). A 

detailed examination of the chain entanglement density distribution function shown in 

Figures 4-5 further confirms this fact. Specifically, It is shown (Figure 4-5-(a-d) for N=400 

at Wi=40) that the entanglement distribution function in the regions that eventually become 

slow and fast bands are distinct. This spatial inhomogeneity in the entanglement density 

distribution function and its average is observed at t ~ 0.3 τd (stress overshoot at t = 0.18 

τd), but long before the incipient shear banded structure is observed at t ~ 0.5 τd. Overall, 

the aforementioned analysis clearly underscores the fact that spatially inhomogeneous 

flow-induced chain disentanglement occurs before shear banding is observed. Moreover, 

it is shown that the less entangled chains populate the faster velocity band, and the more 

entangled chains are within the slower band. 
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Figure 4-3. Plots of normalized chain end-to-end distance and orientation angle vs velocity 

gradient direction, Y for a) steady shear banding at Wi=30, N=250, b) steady shear banding 

at Wi=40, N=400 and c) transient shear banding at Wi=1000, N=400. L is the chain contour 

length and θ0 is the orientation angle at equilibrium, i.e. 45º. 
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It is a well-known fact in theories of flowing polymeric melts that entanglement 

density determines the viscoelastic characteristics of the fluid. To this end, it is not 

surprising to see that the aforementioned localized jump in entanglement density results in 

a pronounced jump in the first normal stress N1, and localized differences in viscosity 

along the velocity gradient direction.  Figure 4-6 depicts prototypical temporal evolution 

of first normal stress in the aforementioned regions and its difference between the less 

elastic (slow band) and more elastic (fast band) bands for steady and transient shear banded 

flows. In general, due to the increased alignment of the chains in the shear direction during 

start-up, first normal stress rises in both regions. Moreover, based on a polymer chain 

configurational analysis, the chains with less entanglement are more aligned in the shear 

direction as compared to more entangled chains. Hence, the jump across the interface, i.e., 

Figure 4-4. Average entanglement density as a function of 

velocity gradient direction, Y at various Wi and chain length. 

Y is normalized by the box side size, H. 
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ΔN1 and the associated viscosity difference grows as a function of time before it reaches 

its steady state value. Specifically, after the stress overshoot, at around t = 0.4 τd, the 

localized jump in the entanglement density gives rise to a significant ΔN1 and 

commensurate perturbations in the velocity profile. ΔN1 is 13% and 33% of the average 

first normal stress (N1̅̅ ̅̅ ) for N=250 and 400 beads respectively, and 10%× N1̅̅ ̅̅  for the 

transient shear banding case. The aforementioned localized non-uniform viscosity and 

elasticity difference give rise to a stratified shear flow or in the other words, the incipient 

shear banded flow. 

Overall, the molecular mechanism leading to shear banding in entangled polymeric 

fluids can be summarized as followed. The inflection point in free energy at the point of 

maximum transient stress along with the slow orientation relaxation in a prototypical step-

strain startup setting derives locally inhomogeneous chain deformation which in turn gives 

rise to the spatially inhomogeneous flow-induced chain disentanglement and a 

commensurate localized jump in normal stress and viscosity in the velocity gradient 

direction that leads to the incipient “stratified flow/ banded flow”. 
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Figure 4-5. (a−d) Entanglement probability distribution function at 

different times for Wi = 40, N=400. The red and dashed blue lines, 

respectively, show the regions of the flow that are eventually occupied by 

the slow and fast bands; ΔZ = ⟨Z⟩slow band − ⟨Z⟩fast band. 
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Figure 4-6. Temporal evolution of first normal stress for (a) steady shear banding at Wi=30, 

N=250, (b) steady shear banding at Wi=40, N=400 and (c) transient shear banding at Wi=1000, 

N=400. In the case of transient shear banding (c), the difference between the first normal stress 

in the slow and fast bands disappears at the steady state and hold its outmost value during the 

stress relaxation as shown by arrows. Time is normalized by the disengagement time at the 

applied shear rate. Time is scaled by the disengagement time at the applied shear rate. 
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 4.4 Stability of Shear Banded Structures  

 

Here, we propose a rationale for evolution of the incipient shear banded flow to a 

steady banded flow or to a linear velocity profile (transient shear banding) based on 

interfacial stability of stratified viscoelastic fluids. Specifically, we examine the interfacial 

stability of the incipient shear banded flow. To this end, we propose that if the stratified 

viscoelastic polymeric flow is stable to the interfacial disturbances, the bands will evolve 

and “steady shear banding” is realized. On the other hand, if the incipient banded flow 

structure is unstable, then interfacial perturbations grow in time leading to interfacial 

mixing of the adjacent layers. Thus, the localized jump in the entanglement density and 

fluid rheological properties gradually disappear (refer to Figure 4-6-(c)) and the stratified 

flow will revert to a linear velocity profile.  

Assuming hydrodynamic modes are supported in our molecular simulations, in the 

limit of vanishing Reynolds number (Re) and negligible interfacial tension, the parameter 

space that determines the interfacial stability of stratified flow are stratification of viscosity 

and elasticity as well as the depth ratio. Specifically, in this class of flows two general role 

exists [18-20]: (1) when the less viscous fluid is thin, the interface is stable, the so called 

“thin layer effect” [20], and (2) when more elastic layer is the majority component, 

elasticity stratification is stabilizing [18]. Hence, one has to determine the relative 

importance of viscosity and elastic stratification to the overall stability of the interface. 

Fortunately, Su and Khomami [18, 117] have already performed a comprehensive 

continuum level study of the interfacial stability of stratified polymeric melts. Specifically, 

they have demonstrated that for depth ratios (ε = dmore viscous /dless viscous) larger than 0.5 and 
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elasticity ratios (L = N1more elastic/N1less elastic) of order one, the viscosity ratio (R = ηmore viscous 

/ηless viscous ) should be larger than ~6 for the interface to be stable (for more detail, see figure 

2-b in reference 113). Otherwise, the incipient stratified flow is short-lived and it returns 

to homogenous flow. Our observation of a steady and transient shear banded structure 

evolution is fully consistent with the aforementioned interfacial stability analysis; see Table 

4-1 for values of ε, L and R.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step-strain 
Depth ratio, 

ε 

Elasticity ratio, 

EL 

Viscosity 

ratio, R 

Shear 

banding 

Wi=30 , N=250 0.8 <ε< 1 1.17 < EL < 1.3 9.5 < R < 13 Steady 

Wi=40 , N=400 1 <ε< 1.8 1.3 < EL < 1.6 11 < R < 43 Steady 

Wi=1000 , 

N=400 
 0.6 <ε< 0.66 1.06 < EL < 1.1 3.3 < R < 6.13 Transient 

Table 4-1. Depth, elasticity and viscosity ratios between the slow and fast bands for different 

step-strain simulations. The ratios are defined as ε = dmore viscous /dless viscous , EL = 

N1more elastic/N1less elastic and R = ηmore viscous /ηless viscous. Results are consistent with 

interfacial stability analysis. 
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Chapter 5  

Elucidating the Morphological Complexities of Linear Symmetric Triblock Polymer 

Thin Films 

 

This Chapter is based on the published paper. 

 

“Elucidating the Morphological Complexities of Linear Symmetric Triblock Polymers 

Confined between Two Parallel Plates: A Self-Consistent Field Theoretic Approach,” M. 

Mohagheghi and B. Khomami, Macromolecular theory and Simulation 24, 556-565 

(2015). Featured on front cover.   

 

 5.1    Introduction 

 

BCPs consist of two or more chemically distinct polymer chains (blocks) linked by a 

covalent bond. This class of soft material readily self-assembles into ordered structures 

with length scales ranging from 5–100 nm [22].
 
Size and shape of domains and the 

overall structural morphology can be controlled by judiciously manipulating the molecular 

weight and composition of the blocks. This set of attractive properties has led to 

widespread use of BCPs in many applications including membrane [27-29], photonic 

crystal [30-32], and several nanofabrication [23-26] applications. 

Among the plethora of BCP applications, one that is rapidly approaching 

commercialization is microelectronic manufacturing. Traditional optical nanolithography, 

i.e., 30 nm feature size, cannot meet the growing demand for smaller feature sizes with 

increased surface/volume ratio. This technology gap is driving the need for a viable 
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technological alternative. Highly controllable, uniform, and inexpensive templates based 

on BCPs present such an alternative [33]. There is similar impetus in the magnetic 

recording industry to make smaller, denser, and more regular patterns leading to enhanced 

quality with increased information storage density. 

Development of rational design and optimization strategies to guide specific self-

assembled structures based on individual block properties is a critical step in translating 

bench-top synthesis protocols to large-scale fabrication techniques. To this end, simulation 

tools such as SCFT, MC, DDFT and DPD have been extensively used to examine bulk 

morphology development as a function of individual block properties. In addition, the 

influence of confinement on the morphology development of BCPs has been the topic of 

many studies [118-127]. In particular, the interplay between bulk and surface effects has 

been advantageously used to guide morphology development. However, due to the 

computational cost and large parameter space influencing the triblock phase behavior, most 

of the aforementioned studies have been limited to diblock copolymers, or two-dimensional 

[123-125] calculations for triblock  polymers in limited range of surface energy. To this 

end, only a few systematic detailed studies have considered the effect of confinement on 

the morphology development of triblock copolymers.  

In contrast to diblock systems, the phase behavior of ABC triblock terpolymers is 

much more complex and the parameter space is larger. In general, the parameters are: 1) 

ABN, ACN, BCN, fA, fB where IJ is the Flory–Huggins interaction parameter between 

the monomers of type I and J, N is the degree of polymerization, and fI is the volume 
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fraction of type I segments in the system; 2) film thickness, d, and 3) HI is the interaction 

between top and bottom surfaces and component I.  

To date,  Chen and Fredrickson [128] have applied SCFT and strong segregation limit 

studies (SSL) to investigate the formation of microphases in thin films of cylinder-forming 

ABC triblock copolymer melts and have shown that the shape and orientation of minor A 

and C domains can be manipulated by adjusting the wall potentials and film thickness. 

Ludwigs et al. [127]  have also used SCFT to model a system of compositionally 

asymmetric triblock terpolymers forming core-shell gyroid structure in the bulk phase. 

Specifically, they observed morphological transition via tuning the interaction parameters 

between the polymer components and the surfaces at different film thicknesses. Moreover, 

Pickett and Balazs [125] applied a two dimensional mean field to determine the equilibrium 

orientation of lamellar planes when triblock copolymer melts were confined between two 

plates. They considered two wall potentials, neutral and a very repulsive polymer-surface 

interaction. Their findings indicate that the perpendicular lamella morphology is achieved 

at the two extreme values of surface energy.         

In the present chapter, we have utilized a three dimensional SCFT approach to model 

symmetric ABC triblock terpolymers confined between two parallel rigid walls. 

Specifically, extensive simulations have been performed over a broad range of film 

thickness and surface energy in which walls have identical interactions and are attractive 

to the middle block, while the interaction parameters between the blocks are taken to be 

the same, i.e., AB = AC = BC = . Moreover, the relative stability of parallel and 

perpendicular lamella and cylindrical morphology as well as the phase diagram of the 
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aforementioned triblock system is discussed based on a minimum free energy calculation. 

It is shown that the L┴ and parallel cylinders, C|| are the stable morphologies over a wide 

range of surface interaction and film thickness. Also, at well-defined film thicknesses and 

strong surface interaction, metastable structures C|| (parallel cylinder) and PL (perforated 

lamella) coexist, however, perpendicular lamella and cylinder L┴ and C┴  form the stable 

morphologies. Specifically, to provide a more comprehensive picture of lamella 

orientation, relevant morphologies formed in diblock thin films are also shown for 

comparison purposes. In addition, the comparison between simulated triblock equilibrium 

morphologies and experimental observations is discussed in great details.  

Overall, we have demonstrated the influence of film thickness and surface interaction 

to direct the perpendicular lamella and cylindrical morphology. Thus, a through rationale 

for realization of this highly sought after structure is provided herein. 

The remainder of this chapter is organized as follows. In the following section, we 

discuss the SCFT numerical approach. In turn, the results of triblock copolymer lamella 

and cylindrical thin films are presented.   

 

 5.2    Self-Consistent-Field Theory   

 

In our computations, we have applied SCFT in real-space following the procedure 

developed by Drolet and Fredrickson [129, 130] as a screening tool for the self-assembly 

of ABC linear triblock polymer thin films. In what follows, system parameters, governing 

equations, and the numerical implementation of SCFT are briefly discussed. If nC is the 

number of polymer chains, V is the volume of the system, each polymer is built of N 
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monomers of type K=A,B,C, and each monomer occupies a volume of 1/0, then the 

dimensionless segment density of type K monomers is given by, 

 

∅�̂�(r)=
N

ρ0

∑ ∫ ds δ(r-r
α
(s))θ

K
(s)

1

0

nc

α=1                                                          

 

where  is the chain index, 0  s  1 is the contour parameter along the polymer chain 

scaled by N, the A block belongs to 0  s <fA, the B block corresponds to fA  s < fA + fB, 

and the C block corresponds to  fA + fB  s 1, and  

θK = {
1 
0

 

The total segment density in the bulk of the system equals 0 and vanishes on the 

confining walls. Therefore, we assume that dimensionless segment density rises from zero 

to the bulk value of one from each wall within a healing distance () which should be much 

smaller than Rg. Here 𝑅𝑔 =  √
𝑁𝑎2

6
 is the unperturbed radius of gyration for an ideal 

Gaussian chain with N segments. Hence, the dimensionless total segment density is 

constrained to 

 

∅0(r) = ∑ ∅K̂(r)K = ∅0(Z)                                                

 

if s belongs to block K; 

otherwise. 

 

 

 

 

 

(5.1) 

(5.2) 
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Previous studies of diblock copolymer thin films show that the detailed shape of 0 

and wall potential WWK and their change over the healing distance () do not affect the 

qualitative behavior of the system. Specific forms of 0 and WWK adopted along with the 

film thickness are discussed below. 

In mean field theory, each chain has independent statistics in an average chemical 

potential fields, K(r), conjugate to average densities, K(r), of block species K. The free 

energy per chain in units of kBT is given by 

 

F

nckBT
=  − ln

Q

V
+  

1

V
 ∫ dr ×  [∑ (∑

KMN

2M≠K ∅M −  ωK +  WWK + P)K ∅K −  P∅0] −

                                                       ∑ ∑ (
MKN

2
fMfK)M≠KK  

 

Where Q is the partition function of a single chain in the chemical potential field K and is 

defined as Q = ∫ drq(r, 1). The end-segment distribution q(r,s) shows the probability that 

a segment with contour length s is located at position r. Choosing the flexible Gaussian 

chain model and 𝑅𝑔 as the length unit, the distribution q(r,s) satisfies the modified diffusion 

equation 

 

∂q(r,s)

∂s
=  ∇2q(r, s) − θK(s)ωK(r)q(r, s)  ;    q(r,0) = 1                        

 

With the Dirichlet boundary condition at the confining walls where q = 0. Furthermore, qC, 

the so-called complementary propagator satisfies an equation identical to Eq. 5.4 (with the 

(5.3) 

(5.4) 
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right side of the equation multiplied by -1 and the initial condition qC (r,1) = 1 for all r and 

vanishes at the confining walls. WWK is the block K-surface interaction, assumed to be 

short ranged. KM is the Flory-Huggins interaction parameter between segments K and M, 

showing the incompatibility between blocks of the chain. Minimizing the free energy with 

respect to densities and chemical potential fields leads to the following SCFT equations: 

 

∑ 
KM

∅K =  ωKK≠M − WWK − P(r)                                         

∅K(r) =  
V

Q
 ∫ dsq(r, s)qC(r, s)θK(s)

1

0
                                      

 

P(r) is the Lagrange multiplier, i.e., 

 

∑ ∅K(r)K = ∅0(Z)                                                                                            

 

The numerical implementation of the SCFT is realized as follows. The system is 

divided to 𝑚 × 𝑚 × 𝑛 lattice sites with grid size, ∆𝑥 = 0.2 𝑅𝑔, on each side and the total 

number of chain segments is N=100. As mentioned earlier, the specific form of 0 and 

WWK do not play a significant role in the qualitative behavior of the system; therefore, for 

simplicity, we use the following 

    𝑊𝑊𝐾 =  {
𝐻𝐾

0
   

    ∅0(𝑍) =  {
0
1

   

(5.6) 

(5.5) 

on the adjacent lattice sites next to the wall; 

otherwise. 

 

on the confining walls; 

otherwise. 

 

 

 

 

 

 

(5.7) 
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For a given HK, fK, and MK, we solve the self-consistent equations (5.4–5.7) with the 

procedure explained further. Specifically, we start by generating random initial chemical 

potential fields K at every point of the grid. Then for a given K, we set the effective 

pressure P and solve the modified diffusion equation by the Alternate Direction Implicit 

(ADI) method for both q and qC with the periodic boundary conditions in x and y directions 

and Dirichlet boundary condition on the confining walls, q = qC = 0. In turn, the density 

profile is obtained through integration of equation 6 and the chemical potential fields K 

are updated via the steepest descent algorithm until self-consistency is achieved. In all 

simulations, the surface interaction HK is homogenous on the confining walls and favors 

the middle block (B segments). The strength of wall potential HB varies between zero in 

the case of neutral walls to -35.0 and HA = HC = 0 for all runs. It should also be noted that 

extensive simulations were also performed with a smaller lattice cell size, i.e. Δx=0.15 Rg; 

the results of these simulations were identical to those obtained with cell size, Δx=0.2 Rg. 

Moreover, the box’s size in x and y dimensions are optimized, thus the free energy does 

not change if the size of these sides gets larger, i.e. 
∂F

∂L
= 0, L = box size in x and y 

directions. However, the film thickness is a simulation variable affecting the free energy; 

clearly, the optimal film thickness can be determined from the minima of free energy 

diagram vs film thickness.        
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5.3    Parameter Selection  

 

Our overall aim in this study is to provide rational design strategies for the 

development of perpendicular lamellae and cylindrical morphologies in confined triblock 

systems.  It is a well-known fact that the phase diagram of BCPs is sensitive to the relative 

order of Flory’s χij parameters. However, the experimental data for the interaction 

parameter is very limited, particularly for triblock systems. Moreover, theoretical 

estimations via different methods including group contribution, random phase 

approximation (RPA) and Z-effect deviate from the relatively scarce experimental data 

[131]. Thus, the complications associated with obtaining reliable predictions of Flory 

parameters over a broad range of chemistries significantly hinders quantitative comparison 

between experiments and the theory for the most industrially relevant systems (for detailed 

discussion, see reference 44).To this end, we have chosen Flory parameters in the 

intermediate segregation limit with equal order (χijN=35) to mimic a broad range of 

chemistries. The choice of surface energies and their relative affinity to each block have 

also been motivated by the available experimental data. The specific parameters chosen for 

the diblock and triblock simulations along with prototypical experimental findings are 

described in the following sections.   

 

5.4    ABC Triblock Copolymer Bulk Phase Self-assembly 

 

Clearly, the triblock terpolymer phase segregation is richer that the diblock melt since 

its degrees of freedom is larger i.e., bulk degrees of freedom for linear ABC is 5 and 2 for 

diblocks. The linear ABC terpolymer phase diagram is shown in Figure 5-1 for various 
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volume fractions of the middle block where the end blocks hold identical volume fractions, 

fA = fC. Two cases for the interaction parameters are considered; (a) all Florry-Huggins 

interactions are the same, AB = BC = AC and (b) the repulsion between the middle-end 

segments is stronger than the end-end blocks, i.e. AB = BC and AB / AC = 3. If all 

interaction parameters are identical, i.e. AB N= BC N= AC N =35, the morphology formed 

mainly depends on copolymer compositions. As shown in Figure 5-1, with volume fraction 

of the middle block fB increasing, the following ordered morphologies appear successively: 

LAM        Tetragonal cylinders (TET2)        Spherical domains. However, in case (b) where 

AB N= BC N = 60 and AC N= 20, the interaction energy plays a significant role in 

determining the equilibrium morphology and more complex structures including 

perforated lamella (PL) and netwrorks are formed. Clearly, the phase segregation of 

triblock terpolymer melt is rich, however, we only focus on the case where lamella and 

cylindrical structure forms and further explore the influence of confinement on the triblock 

copolymer morphology. Here, ABN= BCN= ACN= 35, in the case of lamella structure fB 

= 2fA = 2fC = 0.5, and for cylindrical morphology, fB =0.62 and fA = fC = 0.19. Other MC 

[132], SCFT [133-135]  and experimental studies[136, 137] also predict the formation of 

lamella and cylinder structure for similar set of parameters.  
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Figure 5-1.  Bulk phase diagram of linear ABC triblock terpolymer 

melt as a function of middle block volume fraction and interaction 

parameters while keeping the end blocks’ volume fractions identical, 

f
A
 = f

C
. In the case 

AB
 /

AC
 = 1, 

AB
 N= 

BC
 N= 

AC 
N =35 and when  


AB

 /
AC

 = 3, 
AB

N = 
BC

N = 60 and 
AC

N =20. The red, green and blue 

colors are assigned to A, B and C blocks, respectively. 
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5.5   ABC Triblock Lamella Thin Film Morphology 

 

The middle block in triblock terpolymers are prone to exhibit a mixture of bridging 

and looping configurations. Hence, in confined systems with neutral surfaces, the middle 

block when placed adjacent to the surface cannot effectively bridge due to unfavorable 

entropic effects. The end blocks on the other hand, hold broader segment distribution close 

to the surface compared to the middle block, thus they lose less entropy[138]. Therefore, 

from an entropic point of view, end blocks prefer to be adjacent to the substrate surface(s) 

thus leading to parallel orientation in the lamella case. Motivated by these facts, we 

hypothesize that if the middle block B is chosen such that it has the lowest surface energy, 

this will lead to displacement of the end blocks, A or C from the wall region, thus 

facilitating formation of perpendicularly orientated lamella.  

In order to explore the influence of confinement on the morphology development, the 

triblock polymers are confined in a channel with rigid parallel wall. The repeating stripes 

of A, B and C segments can either orient parallel or perpendicular to the walls. We consider 

the case in which both walls have identical interactions to each block. In turn, the film 

thickness is varied and the stable morphology is determined based on the free energy 

calculation. Furthermore, the surface energy interval is divided in to two parts, (a) -15 ≤ 

HB ≤ 0 where wall interaction to the middle block is either neutral or weak discussed in 

sub-section 5.5.2 and (b) strong surface interaction -35 ≤ HB ≤ -20 presented in sub-section 

5.5.3.  
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5.5.1   AB diblock lamella Thin Film Morphology 

 

A limited number of AB diblock morphologies are shown in this section to facilitate 

the comparison between triblock and diblock thin film equilibrium configurations. 

Specifically, the simulations target common experimental settings where the sample is 

localized between two rigid plates or when the copolymer is spun cast onto a solid substrate 

(top surface is exposed to air). The SCFT system specifications as well as prototypical 

experimental conditions are summarized in Tables 5-1 and 5-2, respectively. In particular, 

three cases were considered: a) two neutral surfaces (HA= HB= 0), b) homogenous surfaces 

where both walls attract the B block and are neutral to A segments, (HA= 0, HB=-2), and c) 

heterogeneous surfaces, where the bottom surface interaction to the B segments is attractive 

(HB= -2) and the top surface is neutral to both blocks. The perpendicular lamella is 

stabilized over a wide range of film thickness, when both surfaces are neutral (see Figure 

5-2-(a)). This result is consistent with experimental observation of the symmetric PS-

PMMA thin films [139] that has been annealed on ITO substrate. XTEM images reveal 

that PS-PMMA assembles into perpendicular lamella when spun cast onto neutral 

substrates (either ITO glass or random copolymer P(S-r-MMA) anchored substrate). For 

the case of homogeneous surfaces, both perpendicular and parallel orientations exist at 

different film thicknesses. Symmetric parallel layers where the B block coats both surfaces 

is the stable morphology only for film thicknesses that are integral multipliers of lamella 

period (see Fig5-2-(b)). However, the parallel morphology is the preferred orientation over 

the entire film thickness in case c, i.e., heterogeneous surfaces, even for a very small value 

of surface energy, HB= -2. Identical result has been found in the cross-section TEM Images 
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of PS-PMMA films [140] on the silicon wafer substrate coated with native-oxide layer 

while air forms the neutral surface at the other interface. The strong interaction between 

the polar block, PMMA and the substrate directs the parallel orientation. In summary, any 

surface interaction destabilizes the perpendicular orientation in diblock thin films. Though 

the neutral substrate can be created experimentally by adjusting either the surface 

chemistry of the substrate or by carefully tuning the properties of the copolymer 

components A and B, it is a costly task. Hence, an alternative solution to realize a lateral 

pattern is to exploit ABC triblocks thin films. In the next section, we show if the middle 

block B is chosen appropriately, the perpendicular orientation can be stabilized.  

 

 

 

 

a) c) b) 

Figure 5-2. Equilibrium lamellar morphology of AB diblock 

copolymer melt confined between (a) two neutral substrates, (b) two 

homogenous surfaces: both surfaces prefer B segments, (c) 

Heterogeneous surfaces: bottom substrate favors B block while top 

surface is neutral to both blocks. A and B blocks are depicted by red 

and blue colors, respectively. 
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 It is worth noting that the film thicknesses reported in Table 5-2 correspond to the 

optimal film thickness of each morphology. In the other words, we gradually increase the 

film thickness until the minimum free energy does not change, thus the free energy become 

independent of the film thickness and the reported morphologies are stable. 

 

 

 

 

Table 5-2.Summary of parameters used for thin film SCFT calculations 

of AB diblocks. Effective film thicknesses (d) used for parallel and 

perpendicular orientations; correspond to optimal film thicknesses. 

substrate f
A
 χN d 

(R
g
) 

Δx  Δs Lamella 

orientation 

Neutral 0.5 25 8 0.2 0.005 ┴ 

Homogeneous 0.5 25 8 0.2 0.005 || 

Heterogeneous 0.5 25 6 0.2 0.005 || 

       

  

 

Table 5-1. Molecular Parameters for Prototypical Diblock Experiments. (a,bData 

taken from references 139 and 140, respectively.) 

Polymer MW 

(g/mol) 

fPS Substrate d 

(nm) 

Lamella 

orientation 

PS-

PMMA
a
 

__ 0.5 ITO glass < 300 ┴ 

PS-

PMMA
b
 

25000-

26000 

0.52 Siox 135, 

375 
|| 

 



 
106 

5.5.2   Directed Self-assembly with Weak Surface Interaction 

 

-15 ≤ HB ≤ 0: The relative stability of parallel and perpendicular morphologies as 

shown in Figure 5-3 are examined as a function of film thickness based on the excess free 

energy calculation, i.e., the energy costs to deviate from the bulk behavior (excess free 

energy = 
(F−FB)d

nkBT
 ). Unlike study by Pickett and Balazs [125] where they set the potentials 

to only change in one direction; either normal or parallel to the walls, we start initially from 

three dimensional chemical potential fields corresponding to lamella morphology and 

calculate the free energy until convergence is achieved. Thus, based on the calculated free 

energy, relative stability of parallel to perpendicular morphology is evaluated. Figure 5-3 

depicts the minimum free energy for the aforementioned microphases as a function of film 

thickness d with neutral walls; film thickness varies from 0.5L0 to 2L0 and for films with 

less than 0.5L0 thickness, disorder morphologies exist. The dashed parabolas correspond 

to parallel orientated films with confinement dimension equal to 0.5, 1, 1.5, and 2 times 

the bulk lamellar period. The solid horizontal line corresponds to the perpendicular 

orientation, which has a lower energy than the parallel cases. It should be noted that even 

if we start from random initial conditions at different film thicknesses, the perpendicular 

morphology is the stable structure with the same free energy as shown in Figure 5-3. Thus, 

we conclude that for neutral walls, the vertically oriented films form the stable structures 

and parallel configurations are the metastable morphologies at film thicknesses equal to 

integer or half-integer multipliers of bulk lamella period, i.e. 0.5, 1, 1.5 and 2 L0. This result 

is similar to diblocks where perpendicular orientation is the stable morphology at all film 
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thicknesses for neutral walls. Identical to our finding, Müller et al. [141] have 

experimentally shown that the lamella exhibits an orientation perpendicular to the substrate 

over a broad range of film thicknesses, i.e., 0.01L0 to 4L0 when the symmetric P(pMS-b-

Sd8-b-pMS) with χN=29 is spun coated onto the neutral Si(100) surfaces. On the other 

hand, when the attractive surface-middle block interaction, HB is progressively increased 

from 0 to -15, the curves corresponding to the parallel phase energy move upward, while, 

the energy associated with the perpendicular morphology does not change significantly. 

Hence, the minimum free energy difference between parallel and perpendicular 

orientations, i.e., 𝜀 = 𝑚𝑖𝑛 ( 
(𝐹


−𝐹)𝑑

𝑛𝑘𝐵𝑇
) also marked in Figure 5-3, grows as a function of 

surface interaction (see Figure 5-4). Therefore, the relative stability of perpendicularly 

oriented films is enhanced by preferential surface interaction. This finding is in 

contradiction to diblock structures where the perpendicular orientation is only stable for 

integer multipliers of L0 for homogeneous surfaces as mentioned in the AB diblock section, 

case (b). In this range of wall potential, lamella morphologies with a wetting B-layer close 

to the wall do not provide stable structures. This is due to the fact that the surface interaction 

in this region cannot overcome the unfavorable entropic effects required for the looping 

configuration of the B block. 
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Figure 5-4. Minimum energy difference (ε) vs. wall potential 

(|HB|). 

 

ε 

 

Figure 5-3. Excess free energy per unit area as a function of 

film thickness (d) for neutral wall. solid line: Perpendicular 

morphology, dashed curves: Parallel morphologies with 0.5, 

1, 1.5,2 lamella layers from left to right respectively. 
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5.5.3   Directed Self-assembly with Strong Surface Interaction 

 

 

-35 ≤ HB ≤ -20: When the surface interaction is strong, surface wetting by the middle 

block is expected at all film thicknesses and a host of stable and metastable morphologies 

are observed as will be discussed shortly. We start from random initial chemical potential 

fields and various morphologies including parallel cylinders, perforated lamella and 

perpendicular lamella are obtained as a function of film thickness. 

Parallel cylinders, C||: The B block forms a thin confined layer near the walls at d < 

3.2 Rg and minor A and C segments form cylinders oriented parallel with respect to the 

walls in the center of the film. The C|| density profile and free energy of this configuration 

are shown in Figure 5-5-(a) and as a solid line in Figure 5-6, respectively. In addition, 

parallel cylinders in the matrix of the middle block also exist in the vicinity of d = 8.0 Rg 

as shown in Figure 5-5-(b). However, in the case of d > 3.2 Rg, this is a metastable 

morphology with its free energy slightly larger than the perpendicular lamella.   

Perpendicular Lamella, L┴: As the film thickness increases, d > 3.2 Rg, the 

perpendicular lamella is the stable morphology. As shown in Figure 5-5-(c), the middle 

block B wets both surfaces and connects the two end caps of B and C segments and all the 

three vertical stripes of A, B and C blocks create the perpendicular lamella in the center of 

the film. This result is consistent with Elbs et al. [142] experimental observations in which 

they showed that P(S-b-2VP-b-tBMA) terpolymers form perpendicular lamella near the 

free surface and the middle block, i.e., P2VP coats the Siox substrate due to its strong 

interaction with the surface. The corresponding free energy of this morphology as a 
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function of film thickness is shown in Figure 5-6 as dashed line. Our findings are not 

consistent with those of Pickett and Balazs with strong surface interaction at large film 

thicknesses. Their specific choice of initial potential fields, slightly different volume 

fractions and two dimensional nature of their calculations is the main cause of the 

inconsistency. 

 

 

 

Perforated lamella, PL: This metastable configuration appears at d > 3.2 Rg. As 

demonstrated in Figure 5-5-(d), parallel layers are in the bulk and the B block wets both 

the top and bottom walls. A perforated layer occurs close to the walls in which one of the 

end blocks segregates into regions with elliptic cross sections and the other end forms the 

d ≤ 3.2R
g
 

a) 
b) 

d) c) 

e) 

d > 3.2R
g
 

Figure 5-5. Density profile of triblock films. (a) C
||
 morphology in which Red-blue domains 

represent A-C repeated morphology at d < 3.2 R
g
, (b) Metastable C

||
 at larger film thicknesses, 

(c) Stable perpendicular morphology showing the presence of all three A-B-C components in 

the middle of the film, (d) Metastable PL with parallel configuration in the bulk, (e) density 

profile for the A segments (regions where C
A
 > 0.7). A, B and C blocks are depicted by red, 

green and blue respectively. 
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matrix, to better visualize this morphology, the density profile of the A segment (regions 

where concentration of A is more than 70%) is shown in Figure 5-5-(e).  

 

 

 

The equilibrium morphologies of linear ABC triblock polymers have been discussed 

in earlier sections. In summary, the phase diagram for a linear triblock terpolymer melt is 

shown in Figure 5-7 as a function of film thickness and surface energy; along the stable 

structures, metastable morphologies are also depicted in the figure. The information for the 

aforementioned triblock experiments is briefly summarized in Table 5-3. Overall, it is 

shown that the perpendicular morphology is stable over a wide range of film thickness and 

Figure 5-6. Excess free energy per unit area as a function of film 

thickness, d for wall potential, H
B
= -20. solid curve: A and C blocks 

are present in the center of the film, dashed line: all three A-B-C 

blocks form perpendicular lamella in the center of the film. 
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surface energies if the wall potentials are chosen such that they attract the middle block. 

Only at small film thicknesses and strong surface interaction, the parallel cylinders is the 

stable configuration.  

 

5.6    ABC Tetragonal Cylinder Thin Film Morphology 

 

We now focus on the case where A and C blocks form cylinders in the matrix of middle 

B block, and the system is confined between two hard, flat parallel plates. We will first 

analyze the relative stability of parallel and perpendicular morphologies in the neutral wall 

case. Due to the broad practical applications of perpendicular morphology, we will then 

suggest a strategy to stabilize this orientation. 

When both substrates are neutral, there are two possible parallel arrangements, as 

shown in Figure 5-8-(a) and 5-8-(b).    

The parallel orientation is preferred to the perpendicular one due to the negative line 

tension between the A-B, B-C interfaces and the confining walls. We hypothesize that if 

wall potentials are chosen to prefer B segments, parallel morphology I is less favorable due 

to the high elastic energy cost. Therefore, only perpendicular morphology and parallel 

morphology II are formed. Hence, preferential wetting can stabilize the perpendicular 

orientation. We choose fA = fB = 0.19 and identical Flory–Huggins interactions between 

blocks AB N= BC N = AC N=35.0 to study the stability of the proposed morphologies. 
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Figure 5-7. Influence of confinement, surface field and film thickness on linear 

triblock terpolymer morphologies. Both walls attract the middle block B while 

the end blocks’ volume fractions are identical, f
A
 = f

C 
and interaction parameters 

are the same, 
AB

 N= 
BC

 N= 
AC 

N =35. The green rectangles demonstrate the 

metastable structures at certain film thicknesses 
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Table 5-3. Molecular Parameters for Prototypical Triblock Experiments. (a,bData taken from 

references 141 and 142, respectively.) 

Polymer MW 

(g/mol) 

fmiddle 

block 

d 

(nm) 

χN subst

rate 

Lamella 

orientation 

P(pMS-b-Sd8-b-

pMS)
 a
 

280000 0.51 0.54-216 29 Si ┴ 

P(S-b-2VP-b-

tBMA) 
b
 

110000 0.24 25 __ Sio2 ┴ 

 

Figure 5-8. (b) Arrangement II: Cylinders 

represents minor A and C domains have 

elliptical cross-sections. The system is 

translationally invariant in the y direction. n 

shows the number of layers along the z 

direction. In this arrangement, both minor 

blocks (A and C) occupy the same row. 

d n=2n=1

d

n=2

n=1

Figure 5-8. (a) Arrangement I: Cylinders 

represents minor A and C domains have elliptical 

cross sections. The system is translationally 

invariant in the y direction. n shows the number 

of layers in the z direction. In this arrangement, 

the same minor blocks (A or C) occupy the same 

row. 
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5.6.1 Directed Self-assembly with Neutral Wall 

 

The SCFT free energies for all the aforementioned morphologies are plotted in Figure 

5-9. The vertical axis corresponds to the excess free energy, the horizontal one is the film 

thickness in units of Rg. Parallel morphologies with various numbers of layers, and 

arrangements have lower free energies for a broad range of film thickness varying from 

2.4Rg to 8Rg. Next, we examine the condition leading to a stable perpendicular 

morphology. 

 

 

Figure 5-9. Excess free energy per unit area as a function of 

film thickness (d) for the neutral wall. solid line: 

Perpendicular morphology, dashed curves: Parallel 

morphologies labeled with the number of layers and type of 

arrangement. 
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5.6.2 Directed Self-assembly with Strong Surface Interaction 

If the wall potentials are chosen such that the walls are in contact only with B 

segments, the parallel morphology II can be excluded and hence, the perpendicular 

morphology becomes stable for a broad range of film thicknesses. Figure 5-10 shows the 

free energy as a function of film thickness for HB = -35.0 and HA = HC = 0.  

These findings are consistent with an earlier study by Chen and Fredrickson [128]. It 

should be noted that the in-plane pattern of the film (XY plane) is tetragonal; in diblock 

thin films, a hexagonal pattern is observed [121], however.  We also emphasize that the 

cylindrical morphologies associated with the lowest free energy have elliptical cross 

sections.  

 

Figure 5-10. Excess free energy per unit area as a function of film 

thickness (d) for strong wall potential, HB= -35.0. solid line: 

Perpendicular morphology, dashed curves: Parallel morphologies 

labeled with the number of layers and type of arrangement. 
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5.7 Conclusion  

 

Using 3D self-consistent theory, extensive calculations have performed on the self-

assembly of symmetric triblock terpolymer melts confined between two parallel plates with 

homogeneous surfaces. The aforementioned results reveal that if wall potentials are strong 

and attractive to the middle block, perpendicular orientation is stabilized for both lamella 

and cylindrical structures for a wide range of film thickness. The observed metastable 

structures in the case of stable lamella morphology (perforated lamella, parallel cylinders) 

are not accessible in the bulk morphology of these systems. In fact, we identified this 

deviation from the bulk structure, both in the vicinity of surfaces and in the thin films of 

copolymers as a result of confinement effects. Also, in the case of triblock copolymer 

melts, the targeted perpendicular morphology is stabilized and can be controlled over long 

length scales by judicious manipulation of surface energy and film thickness. However, in 

the case of diblocks, the perpendicular morphology is destabilized in the presence of any 

surface interaction. This result shows that triblock copolymers are better candidate than 

diblocks for nano-lithographic fabrication. Overall, our findings demonstrate that the 

rational design of desired structures is viable through the proper choice of chain 

architecture, surface energy and film thickness.            
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Chapter 6                                                                                                           

Conclusions 

 

 

6.1 Entangled Polymeric Flow Behavior and Shear Banding Mechanism  

 

Before the completion of this thesis, a number of important issues were subject of 

intense debate in the rheology community, namely precise determination of flow-

microstructure coupling and occurrence of shear banding in flow of entangled polymeric 

fluids. In this work, I have developed a mesoscpic level, DPD simulation technique that 

allows high fidelity simulations of polymeric melts in a prototypical unidirectional flow 

(flow between two parallel plates), which has served as a paradigm for investigation of 

hydrodynamics and flow transitions in the complex fluids. The principal findings of this 

work can be used by both academic and industrial scientists/engineers to rationally design 

polymer processing operations. The aforementioned simulation technique has been used to 

elucidate the chain relaxation mechanism, flow-microstructure coupling, flow-induced 

chain disentanglement and shear banding in entangled polymeric fluids.  It has been shown 

that vorticity excursion plays a significant role in orientational relaxation of 

macromolecules and the entangled network dynamics of these class of fluids. Also, the 

onset of shear banding depends on the shape of time-dependent rheological response 

function as well as flow relaxation behavior and is independent of fluid’s constitutive law 

and internal state variables which has been traditionally believed to be the mechanism that 

gives rise to this phenomenon. Specifically, for the very first time, large scale DPD 

simulations (1374 chains corresponding to 549600 interacting beads) have been used to 
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investigate the molecular origin of the non-linear flow response of entangled polymeric 

fluids under flow conditions.  

It has been shown through flow-microstructure coupling that 3 different regimes exists 

in the aforementioned class of flows. In weak flows or in the linear regime where shear 

rate is γ̇ ≤ τd
−1 , reptation is the dominant relaxation mechanism. Beyond the linear regime, 

i.e., the non-linear viscoelastic regime,  τd
−1 ≤ γ̇ ≤ τR

−1 , a variety of structural, rheological 

and topological properties are found to display significant deviations from their 

corresponding equilibrium behaviors; e.g., non-Gaussian shape of the probability 

distribution function P(|R|) of the magnitude |R| of the chain end-to-end vector, shear-

thinning behavior of viscosity, and the rapid drop in the number of entanglements per 

chain. In fact, significant chain alignment and the onset of chain extension lead to flow-

induced chain disentanglement and a commensurate tube dilation that leads to onset of 

vorticity excursion. Particularly, the shear thinning behavior and the notable decrease in 

the entanglement density with flow strength coincides with the onset of vorticity excursion, 

i.e. rotation/retraction cycle. Moreover, the wide (non-Gaussian) end-to-end distribution of 

polymer chain results from the broad configurationl diversity emerging from the structures 

in the rotation/retraction process. In the retraction/rotation cycle, the flow-induced aligned 

chain retracts from a stretched anisotropic configuration to an equilibrium-like structure 

(coil) and expands once more to assume a stretched configuration. In this regime, stress 

becomes nearly constant due to what is commonly referred to as convective constraint 

release, CCR. The third region appears at very large Wi where the entanglement network 

collapses and chains do not experience much resistance. In this regime, a peak 



 
120 

corresponding to chain sizes smaller than the equilibrium Rg of the polymer molecule 

appears in the chain end-to-end probability distribution function which indicates the 

existence of highly compact configuration. In addition, another peak corresponding to 

highly stretched structures exists in the chain end-to-end probability distribution function. 

The observation of two peaks in the probability distribution function is a clear hallmark of 

rapid vorticity excursions. Thus, the flow behaves similar to a semi-dilute polymer solution 

under theta solvent conditions, hence Rouse dynamics is the dominant chain relaxation 

mechanism.  Therefore, 3 main relaxation time scales exists in the entangled liquids, Rouse 

time τR, reptation τd, and rotation (orientation) time scale τrot. The results of this study have 

provided the details of flow-microstructure coupling and the commensurate chain 

relaxation mechanism needed in modern tube constitutive models to rationally include 

CCR in macroscale.    

In turn, the aforementioned DPD methodology was used to study non-linear 

phenomenon of shear banding. Specifically, steady shear banding was observed in the 

τd
−1 ≤ γ̇ ≤ τR

−1, where the shear stress is a slightly decreasing function of shear rate. 

However, transient shear banding was observed at γ̇ > τR
−1, where the flow curve is an 

increasing function of shear rate. In addition, excessive shear thinning behavior of viscosity 

of highly entangled polymeric liquids gives rise to a non-monotonic flow curve. The stress-

overshoot that appears in start-up flows at 2 strain units for Wi > 10 has been shown to 

correspond to the inflection point in the free energy calculated via Doi-Edwards expression. 

It should be noted that the inflection point in the free energy indicates the possibility of 

strain rate inhomogeneity in the flow.  
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After the stress overshoot, i.e. during the stress relaxation regime (where the stress 

decays to its steady state value), chains mainly relax their stress in two steps; in the first 

step, tension is relaxed by segmental stretch relaxation, a very fast process; in the second 

step, chains relax their orientation which is a very slow process, i.e. an order of magnitude 

longer timescale is associated with the orientation relaxation mechanism than stretch 

relaxation. Specifically, the flow-induced anisotropic segmental configuration observed in 

stretched and flow aligned chains is relaxed to isotropic equilibrium-like chain structures 

(coil) via a rotation/retraction cycle, composed of various folded, half-dumbbell and dumb-

bell configurations. It is shown that large discrepancy between the segmental stress/stretch 

(fast) and segmental orientation relaxation time scales (slow particularly compared to the 

time for the deformation rate to reach its steady state value) leads to local inhomogeneity 

in the entanglement network. Specifically, the combination of flow induced chain 

disentanglement and insufficient time for orientation relaxation leads to inhomogeneous 

entanglement density and a commensurate local variations in fluid properties in the 

velocity gradient direction that cause a flow transition, i.e., formation of deformation 

inhomogeneity. Hence, locally inhomogeneous chain deformation, which in turn gives rise 

to spatially inhomogeneous flow-induced chain disentanglement and a commensurate 

localized jump in normal stress and viscosity in the velocity gradient direction leads to the 

incipient “stratified flow/ banded flow”. 

To further scrutinize the aforementioned molecular criterion for creation of local 

inhomogeneities, the time scale for ramping up the deformation rate from zero to its steady 

state value was adjusted such that chain stretch is delayed and orientation relaxation has 
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sufficient time to occur, hence, obviating the formation of the incipient shear banded 

structure. Indeed, as deformation rate ramp-time is increased from 2 to 10, and finally to 

20 dτ , the stress-over shoot diminishes, velocity profile changes from a banded flow to a 

linear velocity profile and the retraction/rotation time scale is reduced from 10.1 to 9.2, and 

7.4 dτ , respectively. Thus, the ratio between the retraction/rotation time scale to 

deformation rate ramp-times of 2, 10 and 20 dτ , i.e., rot

ra me
r

mp

τ

ti
  is decreased from 5.05 to 

0.96, and 0.37, respectively. This decline in the ratio clearly shows that retraction/rotation 

cycle becomes more frequent and occurs globally prior to the system reaching its steady 

state value; hence, the main driving force for the formation of “local inhomogeneity” is 

suppressed and shear banding is eliminated. Hence, shear banding is not a unique response 

of entangled polymeric fluids to a specific shear rate, rather, it depends on the relaxation 

behavior of entangled network that is intimately related to r. 

The stability of shear banded structures is rationalized based on interfacial stability 

analysis of stratified viscoelastic flows. When the stratified viscoelastic polymeric flow is 

stable to the interfacial disturbances, the bands will evolve and “steady shear banding” is 

realized. On the other hand, if the incipient banded flow structure is unstable, then 

interfacial perturbations grow in time leading to interfacial mixing of the adjacent layers. 

The stability of interface is determined based on the elasticity, viscosity and depth ratio. 

Specifically, it has been demonstrated that for depth ratios (ε = dmore viscous /dless viscous) larger 

than 0.5 and elasticity ratios (EL = N1more elastic /N1less elastic) of order one, the viscosity ratio 

(R = ηmore viscous /ηless viscous) should be larger than ~6 for the interface to be stable and thus 

the shear banded structure becomes steady. 
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6.2 Block Copolymer Directed Self-assembly 

 

Using SCFT based simulations, it has been shown that there are a variety of 3-

dimensional morphologies that can be produced from the self-assembly of triblock ABC 

terpolymer melts in bulk that possess the desired characteristics for potential application in 

nanolithography. The targeted morphologies were perpendicular lamella and cylinders, 

composed of two easily degradable blocks formed within a surrounding non-degradable 

matrix phase. The orientation and shape of morphologies can be tuned via varying the 

volume fraction of block polymer distinct segments, the interaction energy between the 

blocks, film thickness and surface energy between the blocks and the wall/surface. As a 

general guideline, the perpendicular morphology is stable in both lamella and cylindrical 

case if the surface interaction between the wall and the middle block, B is attractive and 

large. In this case, the strong surface energy between the block and the wall will 

compensate the entropic penalty for the loop configuration of the middle block. The middle 

block forms the matrix, wets the surface and the end blocks, A and C will form 

perpendicular morphologies. However, there are some exceptions to this general rule.  

The perpendicular lamella self-assembly where A and C are the minor blocks with 

volume fraction of fA = fC = 0.25, is stable for neutral walls due to the negative line tension 

between the surface and the interface of A-B and B-C block copolymer microphases. The 

perpendicular orientation remains the stable morphology at intermediate surface 

interaction (walls attracts the middle block and are neutral to the end blocks). On the other 

hand, the parallel orientation becomes metastable at film thicknesses commensurate to the 

lamella bulk period. The aforementioned result for ABC triblock copolymer self-assembly 
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is in contrast with diblock copolymer melt confined between two plates. The perpendicular 

orientation is destabilized at integer multiplier of lamella period in the presence of any wall 

potential. Therefore, there is a clear advantage in utilizing the ABC triblock terpolymer 

melt to fabricate lithographic patterns.    

Complicated morphologies including tetragonal horizontal cylinder and perforated 

lamella exist when surface interaction becomes large. At small film thickness, the 

tetragonal horizontal cylinder is the stable morphology. As the film thickness increases, 

the perpendicular morphology becomes stable and cylindrical and/or perforated lamella are 

the metastable structures. Overall, the perpendicular lamella occupies the majority of phase 

diagram if the walls attract the middle block and the volume fraction of end blocks are 

identical and equal to 0.25.  

The parallel tetragonal cylinder is stable at all film thicknesses in the presence of 

neutral walls and identical end block volume fraction fA = fC = 0.19. The perpendicular 

cylinder becomes the stable morphology at large surface interaction where the middle 

block loops, forms a layer close to the substrates and the A and C blocks self-assemble into 

perpendicular cylinders in the matrix of B block.   

Overall, triblock ABC can provide richer and more tunable structures due to their 

larger parameter space. Hence, they possess distinct advantage over diblocks as candidates 

for template production needed for a variety of applications.  
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