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ABSTRACT 

 

 Limb segment lengths (and, by extension, limb proportions) are widely studied 

postcranial features in biological anthropology due to the seemingly consistent phenotypic 

patterning among human and fossil hominin groups. This patterning, widely presumed to be the 

result of adaptation to thermoregulatory efficiency, has led to the assumption among biological 

anthropologists that limb proportions in humans are phenotypically stable unless long periods of 

extreme environmental conditions force adaptive change. Because these traits are considered 

stable, they have been used to inform multiple areas of anthropological inquiry, including 

investigations of phylogenetic relationships and fossil species identification, locomotor behavior 

and the evolution of bipedalism, and migration patterns.  

 The problem with this assumption is that phenotypic patterns may not accurately reflect 

evolutionary processes, and even if they do, there is no reason to expect phenotype to respond to 

natural selection solely. Investigations of phenotypic variation need to incorporate genetic 

variation and covariation to better understand the processes that produced observable patterns, 

including evolutionary processes. However, the incorporation of genetic parameters is often 

difficult given that knowledge of familial relationships are required. Therefore, the goal of this 

project is to use a quantitative genetics approach to estimate the genetic variance and covariance 

in limb segment lengths and then begin the task of identifying genes which may influence this 

normal variation. These tasks are accomplished using multiple large, pedigreed samples of 

primate species, including humans. Linkage analysis on a baboon sample, a well-accepted model 
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organism for humans, is used to identify regions of the genome which may influence limb 

segment variation.  

 The results presented here suggest that 1) while patterns of genetic and phenotypic 

variance and covariance across limb segments are broadly similar, there are differences in the 

details, and 2) while patterns of genetic and phenotypic variance and covariance within and 

among limb segments generally adhere to expectations set forth by developmental and 

evolutionary-based hypotheses, there are exceptions. Additionally, several genomic regions are 

identified which influence limb segment variation. Thus, biological anthropologists must use 

caution in their assumptions and interpretations regarding limb segment lengths and limb 

proportions in humans and other primates.  
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CHAPTER ONE  

INTRODUCTION 

 

 Despite the fact that biological anthropologists understand that the relationship between 

genotype and phenotype is almost never one-to-one, phenotype (i.e., observable characteristics) 

is frequently used – often out of sheer necessity – as a proxy for genotype (i.e., a combination of 

alleles). This is often done because genetic parameters are difficult to estimate, requiring 

knowledge of familial relationships to tease them apart. Phenotypic data, alternatively, are 

relatively easier to measure and study. However, myriad factors influence the ways in which 

genes are transcribed, translated, and transformed into phenotypes. Factors such as canalization 

(Waddington, 1942), developmental constraint (Maynard Smith et al., 1985), genetic 

assimilation (West-Eberhard, 2003), and morphological integration (Olson and Miller, 1958) 

confound the way in which phenotypic variation is produced from genetic variation. Thus, 

investigations of phenotypic variation need to incorporate analyses of genotypic, or genetic, 

variation to better understand the processes that produced observable patterns, including 

evolutionary processes.   

 The phenotypic patterns found in modern human limb proportions would particularly 

benefit from a better understanding of the underlying genetic variation that shapes these traits.  

Limb segment lengths (and, by extension, limb proportions) are widely studied postcranial 

features. Anthropological interest in limb proportions began early in the 20th century due to the 

observation that human body shape, including limb morphology, seems to adhere to the 

thermoregulatory expectations set forth by Bergmann (1847) and Allen (1877). These 
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expectations postulate that individuals in warmer climates will have longer, leaner bodies and 

limbs to dissipate heat, while individuals in colder climates will have shorter, wider bodies and 

limbs to maintain heat. The phenotypic patterns found in modern humans (Roberts, 1978; Ruff, 

1994, 2002) and fossil hominins (Jacobs, 1985; Ruff, 1991, 1993, 1994; Trinkaus, 1991; Ruff 

and Walker, 1993; Holliday, 1997, 1999) are typically thought to exhibit the predicted 

ecogeographic distribution of limb segment lengths and proportions.  

 The correlation between climate and limb patterning is much stronger in the Old World 

as compared to the New World (Auerbach, 2010; Jantz et al., 2010), suggesting that limb 

proportions take a long time to adapt to new climatic pressures (Holliday, 1997). Various forms 

of evidence support the idea of the stability of these traits over time. For instance, trait 

differences between geographically dispersed human populations appear early in fetal life 

(Schultz, 1923), migrant children who move to climatically different areas retain their ancestral 

limb proportions (Greulich, 1957; Froehlich, 1970; Martorell et al., 1988), and the relationship 

between intramembral proportions and geographic distributions of populations remains 

consistent over growth (Eleazer et al., 2010; Cowgill et al., 2012).  

 All these observations have led to the current operating assumption among biological 

anthropologists that limb proportions in humans are phenotypically stable unless long periods of 

extreme environmental conditions force adaptive change (Ruff 1994, 2002; Holliday, 1997). 

And, because limb proportions (and individual limb segments) are assumed to be stable across 

time, they have been used to inform multiple areas of anthropological inquiry: Investigations of 

phylogenetic relationships and fossil species identification (e.g., Jungers, 1982; Asfaw et al., 

1999), locomotor behavior and the evolution of bipedalism (e.g., Haeusler and McHenry, 2004; 
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Harcourt-Smith and Aiello, 2004), and migration patterns (e.g., Holliday, 1997; Temple et al., 

2008) are all predicated on the idea that limb proportions are phenotypically stable and thus 

useful in understanding various long-term evolutionary phenomena.  

 The problem with this assumption is that phenotypic patterns may not accurately reflect 

evolutionary processes, and even if they did, there is no reason to expect phenotype to respond to 

natural selection solely. Current research is finding, for example, that neutral evolutionary forces 

such as genetic drift may also play a role in human phenotypic variation (Betti et al., 2012; 

Roseman and Auerbach, 2015; Savell et al., in review). Therefore, the goal of this project is to 

use a quantitative genetics approach to estimate the genetic variance and covariance in limb 

segment lengths and then begin the task of identifying genes which may influence this normal 

variation. This goal will be accomplished using three approaches, two of which (numbers 2 and 

3) are under-utilized in anthropology but are common in biomedical approaches. 

 

1. The use of multiple primate taxa – Multiple primate species, both human and non-human, 

are used to infer how patterns may have changed over evolutionary time.  

 

2. The use of pedigreed samples – Rather than relying on patterns of phenotypic variation, 

the use of pedigreed samples allows the direct estimation of genetic variation because 

familial relationships are known. 

 

3. The use of linkage analysis – Linkage analysis relies on phenotypic, genotypic, and 

pedigree data to look for statistical associations between phenotypic and genetic 
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variation. The use of this approach will potentially allow precise areas of the genome that 

influence normal phenotypic variation to be identified.  

 

 This study is the first to use pedigree data to estimate genetic variation of limb segment 

length within and across multiple primate species and the first to use linkage analysis to identify 

genomic regions which may influence phenotypic variation in these traits. The use of the 

aforementioned approaches will be beneficial in describing the genetic variation and covariation 

of limb segment lengths, which may then be used to better investigate the evolutionary 

mechanisms leading to known patterns of human limb proportion variation.  

 Toward this end, this project asks whether variation in limb segment morphology follow 

the expectations of a “developmental perspective,” an “evolutionary perspective,” or aspects of 

both.  Hypotheses will be developed pertaining to each perspective. These hypotheses are based 

on an abundance of literature, to be subsequently discussed (see Limbs and Methodological 

Background, below). The purpose of this study is not to not to pick one perspective over the 

other, but to show the ways in which limb morphology does or does not adhere to the 

assumptions frequently made in anthropological literature. 

 

Structure of the Dissertation 

 The upcoming two chapters will provide essential background information for this study: 

Chapter Two, Limbs: Development, Patterns, and Anthropological Inquiry, discusses the wealth 

of literature pertaining to limbs. Limb development in humans is explored through the molecular 

and mechanical factors that influence limb development, followed by the effects of nutrition on 
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limb development and variation. From there, the patterns of limb variation in humans are 

described, first by defining the limb proportions of interest, then by describing the patterns of 

limb proportions seen across primates, and finally by elaborating on the ecogeographic 

patterning briefly described earlier. The chapter ends with a discussion on the applications of 

limb proportions in anthropology, namely phylogenetic relationships, the evolution of 

bipedalism, and migration patterns. Chapter Three, Methodological Background, is a technical 

chapter that dives into the quantitative genetic parameters used in this study. Specifically, the 

three main areas reviewed are genetic variance, morphological integration, and linkage analysis. 

Each section provides historical and theoretical background on method appropriateness. 

 The framework set up by Chapters Two and Three is then used in Chapter Four, Research 

Design: Hypotheses, Materials, and Methods, to lay out how the current study will be conducted. 

This chapter begins with laying out the specific hypotheses related to the developmental and 

evolutionary perspectives. It then discusses the samples, methods used for data preparation and 

screening, and the specific analyses conducted to explore genetic variance, morphological 

integration, and linkage analysis. Chapter Five, Results, presents a comprehensive report of the 

findings. Chapter Six, Discussion and Conclusions, explicitly assesses the results in light of the 

developmental and evolutionary perspective hypotheses. The chapter also discusses the 

implications of these results on anthropological research, as well as the limitations of the study 

and opportunities for future research.   
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CHAPTER TWO  

LIMBS: DEVELOPMENT, PATTERNS, AND ANTHROPOLOGICAL 

INQUIRY 

 

 This chapter begins with a focus on the roles of molecular, mechanical, and nutritional 

factors in shaping limb morphology, and then moves into a review of the patterns of limb 

proportion variation in hominins. From there, several areas of anthropological inquiry that rely 

heavily upon limb proportions, namely phylogenetic relationships, locomotor behavior, and 

migration patterns, are reviewed. 

 The way in which anthropologists understand the development and evolution of limbs is 

currently shifting. Until very recently, limb development was believed to be the result of 

gradients of morphogens (Schoenwolf et al., 2015); current research is showing that limb 

patterning is formed by much more complicated developmental processes, which are explored 

further below (Mariani et al., 2008; Towers and Tickle, 2009). Additionally, previous 

interpretations of the way in which limb proportion variation across humans emerged relied on 

pattern recognition, thus postulating explanatory evolutionary mechanisms without firm 

knowledge of the underlying genetic variation (e.g., Trinkaus, 1981; Ruff, 1991; Holliday, 

1997). Several authors are actively working on redressing this issue (e.g., Roseman and 

Auerbach, 2015; Savell et al., in review; this project). 

 Thus, many of the results reviewed here will likely be revised in the near future as 

evolutionary models are increasingly incorporated to understand limb morphology. 
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Limb Development in Humans 

 Molecular and Mechanical Factors in Development 

 Limb morphological development is a product of the interplay between genetically 

directed processes and environmental factors. Limb buds form during weeks four to eight after 

fertilization, with the upper limb forming slightly ahead of the lower limb. Normal limb 

development occurs in three axes simultaneously. The proximal-distal axis distinguishes the 

stylopod (i.e., humerus and femur), zeugopod (i.e., radius, ulna, tibia, and fibula), and autopod 

(i.e., carpals, metacarpals, tarsals, and metatarsals). The anterior-posterior axis specifies the 

pollex and hallux as the anterior side of each limb—these axes ultimately rotate to become the 

definitive medio-lateral axis for the autopod—and the dorsal-ventral axis identifies the palm of 

the hand and sole of the foot as the ventral side of each limb (Schoenwolf et al., 2015). This 

complex and critical spatial arrangement is made possible by multiple genes expressed at 

specific times during development in precise locations in the developing embryo; rather than 

classic models of limb development that advocate for patterning via morphogen gradients (e.g., 

as described in Schoenwolf et al., 2015), researchers now understand that, like other 

embryological structures, limb development is patterned by a four-dimensional interrelationship 

of genes, hormones, and factors (Bénazet and Zeller, 2009).  

 The exact specification of patterning in the developing limb bud is currently modeled as 

an interaction between direct specification, gradients, signal decay, and interactions between 

developmental factors (Towers et al., 2012). As this is a very active area of research, many 

developmental processes are subject to change; this section reflects our current understanding of 

molecular and mechanical factors that control limb development. Fibroblast growth factors 
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(FGFs) are secreted by the lateral plate mesoderm and cause a proliferation of cells that initiate 

limb formation. Tbx genes, which are transcriptional regulators that provide spatial and temporal 

expression (Showell et al., 2004), and retinoic acid (Stratford et al., 1996) work in conjunction 

with FGFs for limb initiation. The FGFs induce a thickening of the ectoderm at the distal tip of 

each limb bud known as the apical ectodermal ridge (AER). The AER is essential for limb 

outgrowth because it maintains proliferation of cells (i.e., is permissive) (Tanaka and Gann, 

1995) as well as serving a specification of structure formation (i.e., is instructive) (Mariani et al., 

2008; Towers and Tickle, 2009). These roles are temporally patterned, involving an interaction 

among FGFs and between the FGFs and retinoic acid (as well as Meis genes) (Towers and 

Tickle, 2009; Towers et al., 2012). A first wave of expression of Hoxd genes continues growth 

along the proximal-distal axis and triggers and maintains, along with FGFs (Yang and 

Niswander, 1995), the expression of a signaling molecule, or morphogen, known as Sonic 

hedgehog (Shh) (Tarchini and Duboule, 2006). A gradient of Shh forms the zone of polarizing 

activity (ZPA) on the posterior side of the limb bud, polarizing the limb into anterior and 

posterior sides (Riddle et al., 1993). The posterior location of Shh signaling causes anterior-

posterior asymmetry in the expression of the second wave of expression of Hoxd genes in the 

distal limb (Tarchini and Duboule, 2006). Therefore, both Shh and Hoxd are responsible for the 

anterior-posterior patterning of the limbs, in addition to antagonistic signaling by other genes 

(i.e., Wnt) and protein mediators (i.e., Gremlin). Wnt7a is one of these antagonistic genes, and it 

also is a primary instructional gene for setting the dorsal-ventral axis (Yang and Niswander, 

1995; Bui et al., 1997). As a result, FGFs, Shh, and Wnt7a are all intimately connected during 
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limb patterning and growth, making both anterio-posterior and dorsal-ventral patterning 

integrated processes (Towers and Tickle, 2009; Towers et al., 2012). 

 In addition to spatial patterning, genes play other roles in limb development. Genes 

encoding the Tbx5 and Tbx4 transcription factors are responsible for directing forelimb and 

hindlimb specificity, respectively (Ohuchi et al., 1998; Gilbert, 2013). Through work in 

specifying the proximal-distal axis, Hox genes stipulate whether a mesenchymal cell will become 

part of the stylopod, zeugopod, or autopod (Gilbert, 2013), though interactions between retinoic 

acid and Fgfs likely create a mutually suppressive gradient that, in turn, instructs the expression 

of Hox genes (Mariani et al., 2008; Mackem and Lewandoksi, 2011). Chondrogenesis, or 

cartilage development, is initiated by Bmp and Fgf induction of Sox9 expression, which regulates 

collagen production. Additionally, Indian hedgehog (Ihh), parathyroid hormone-related protein 

(PTHLH), and Fgf18 control chondrogenesis by promoting or delaying hypertrophy, or 

maturation, of the chondrocytes, which in turn contributes to the formation of bone boundaries 

(Schoenwolf et al., 2015). Wnts and the Gdf5 gene are also pivotal to joint formation 

(Schoenwolf et al., 2015). Once the cartilaginous model of the bone is placed, Ihh induces the 

development of the bony collar around the diaphysis, beginning a process known as primary 

ossification (see below) (Schoenwolf et al., 2015). 

 While molecular signaling plays an imperative role in the early formation of the limbs, 

mechanical forces play a key role in the development of normal long bone shape. Ossification of 

most limb bones begins in weeks seven to twelve of gestation (Schoenwolf et al., 2015). The 

differentiation of osteoblasts, the cells that deposit bone matrix, is a prime example of the 

interplay between genetic signaling and mechanical stimuli. The Runx2 and Osterix (i.e., Sp7) 
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genes are required for osteoblast differentiation from mesynchemal cells (Komori, 2010; 

Schoenwolf et al., 2015), but this does not occur until the cells are mechanically stimulated 

through involuntary fetal movement (Martin et al., 2015; Nowlan et al., 2007). 

Mechanical forces produced by involuntary and voluntary muscle movements in the 

fetus, furthermore, direct the order of ossification in limb bones (Carter and Beaupré, 2001; 

Nowlan et al., 2007). External mechanical forces may also affect this progression (Nowlan et al., 

2010). Once osteoblasts are differentiated, they may begin the task of ossifying the cartilage 

precursor known as the anlage. Primary ossification takes place as appositional deposition in the 

anlage, and subsequent ossification continues as endochondral ossification. Ossification even at 

this early stage requires the direction of involuntary and voluntary fetal movement and the 

mechanical forces it creates. Carter and colleagues (1996) discussed how mechanical stresses 

direct the ossification of long bones beginning in fetal life and continuing through primary 

growth. Because stresses are highest at the center of the anlage, this is where the primary 

ossification center begins to form. After this stage, greater stresses are found on both ends of the 

primary ossification center, causing endochondral bone formation to take over and begin 

extending the bone in both directions towards the epiphyseal ends. While the bone is extending 

in length, it also grows in breadth through endochondral ossification, primarily in the center of 

the bone where stresses remain high. The primary bone collar formed at the center of the bone 

continues to grow in breadth, and a medullary cavity is formed because stresses at the center of 

the bone are extremely low, allowing resorption to take place. As the bone continues to grow in 

length and produce a medullary cavity, secondary ossification centers begin to appear at the ends 

of the long bone, as these areas are now the ones experiencing the highest stresses. Forces tend to 
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decrease as the primary ossification center approaches the secondary ossification centers, 

allowing the ends of the bones to develop trabecular bone instead of cortical bone on their inner 

surfaces. 

Another area where mechanical forces are necessary in utero to produce normal skeletal 

shape is in the diarthroidal joints of the limbs. Fetal movement is again involved in producing 

joints of correct shape. The characteristic convex/concave shape that most joints attain is due to 

movement of the fetus in utero, and without such movements, joints develop incorrectly (Carter 

and Wong, 1988; Schoenwolf et al., 2015). It is obvious that while genetic processes produce the 

basic form that the skeleton will take, mechanical forces are necessary to produce a normal 

version of the skeleton that will be fully functional (Carter and Beaupré, 2001; Nowlan et al., 

2007). 

The importance of mechanics in bone development continues after birth. Several key 

features of human long bones, particularly in the lower limb, are produced in early childhood. A 

notable feature to develop during childhood is the femoral bicondylar angle, a hominin feature 

associated with habitual bipedal locomotion (Tardieu and Trinkaus, 1994). The bicondylar angle 

begins at zero degrees at birth and begins to increase by the age of one to two. A final, adult 

angle of about six to eight degrees is achieved between the ages of four and eight. This 

progression follows the development of walking and the attainment of a mature, bipedal gait. 

Individuals who never walk do not show signs of a bicondylar angle, indicating that the 

development of a normal bicondylar angle is dependent upon the mechanical forces that act upon 

the skeleton during locomotion (Tardieu and Trinkaus, 1994).  
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Another similar example of the importance of locomotion and the mechanical forces it 

produces may be found by looking at the subtrochanteric shape of the femur. Wescott (2006) 

demonstrated that the characteristic platymeria (defined as a medio-laterally broad and anterio-

posteriorly narrow shape) found in Native American groups develops in early childhood. 

Differences between Native Americans, and American Whites and Blacks are in place by the age 

of five, and, again, are hypothesized to be due to the adoption of bipedal locomotion in early 

childhood. Native Americans are purported to develop these medio-laterally broad femora 

because of their relatively short legs and relatively wide pelves, producing high medio-lateral 

stresses during locomotion (Wescott, 2006). 

In addition to effects on external morphology, mechanical loading likewise affects the 

ontogenetic changes that occur in cortical bone morphology, especially in the diaphysis. Bone 

adapts to its mechanical environment during life (Ruff, 2008a), and diaphyses are known to be 

the area of long bones in which mechanical strain has great impact (Larsen, 1997). Long bone 

robusticity is defined as the amount of bone in a cross-section when scaled by the appropriate 

body measure, typically body mass and length of the long bone (Ruff, 2008a). While genetic 

variation produces variation in robusticity across individuals, increased robusticity also comes 

from increased mechanical strain placed on the bone, leading to bone deposition. A clear 

example of this comes from a series of papers by Trinkaus, Ruff, and Churchill (1993, 1994a, 

1994b), which included analyses of bilateral asymmetry in young adult tennis players who had 

trained beginning as adolescents. While humeral length and articular breadths showed little 

asymmetry between sides, these individuals clearly show a bilateral difference in diaphyseal 
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robusticity, undoubtedly in response to a sport that encourages preferential loading on one side 

of the body. 

The fact that diaphyseal dimensions seem to be highly responsive to mechanical loading 

means that behavior and lifeways can be inferred in archaeological skeletal remains. For 

instance, Ruff (2006, 2008a) explained that increased robusticity in the limbs is associated with 

rough terrain and/or an increase in the amount of walking (i.e., increased mobility). Both factors 

would cause greater strain responses from the bone cells, leading to increased bone deposition 

(for a thorough explanation of bone functional adaptation, see Turner, 1998; Pearson and 

Lieberman, 2004; Robling et al., 2006). Subsistence strategies may also be inferred. There is a 

decrease in robusticity with the transition to agriculture, most likely due to a decrease in mobility 

relative to hunter-gatherers. These same conclusions regarding robusticity and lifeways have 

been reached by numerous authors (Bridges, 1989, 1995; Holliday, 2002; Weiss 2003; Stock and 

Pfeiffer, 2004; Stock, 2006; Higgins, 2014); more recent research, furthermore, may indicate an 

interaction between local loading effects on bone and systemic metabolic effects (Eleazer and 

Jankauskas, 2016). 

There are known differences in the response of adult and juvenile bone to mechanical 

loading (Pearson and Lieberman, 2004); the molecular and ontogenetic mechanical effects 

summarized in the preceding paragraphs are responsible for the morphological variation in limbs 

observed among adults, with only minor changes (barring traumatic or pathological processes) 

possible after primary growth ends. In juveniles, the periosteal surface is most responsive to 

mechanical loading, and this surface reacts to general growth hormones. In adolescents, the 

endosteal surface is most receptive, and acts in response to sex hormones (Ruff et al., 1994b). 



 

14 

 

The endosteal surface begins to resorb in later adulthood, and the periosteal surface again 

becomes more responsive (Pearson and Lieberman, 2004). This progression means that the effect 

that mechanical loading will have on cross-sectional shape and properties is dependent on the 

timing in which envelope is activated, presumably through genetic control (Ruff et al., 1994b). 

Martin and colleagues (2015) demonstrated through computer modeling that normal loading 

through primary growth and development followed by increases or decreases in loading during 

adulthood (i.e., after primary growth has ceased) will influence the cross-sectional properties 

differently than if the loading is increased or decreased during primary growth. These modeled 

patterns are also seen in living individuals. Bone strength gained as periosteal deposition during 

growth helps keep the skeleton strong despite bone loss on the endosteal surface during aging, 

making childhood known as the “window of opportunity” for optimizing bone health (Robling et 

al., 2014). And, finally, newer research using a mouse model has shown that greater differences 

are seen between mice with different genetic backgrounds than between mice with different 

degrees of functional loading on their limbs, regardless of genetic background, indicating that 

bone structure is strongly influenced by genetics which mitigate mechanical stimuli (Wallace et 

al., 2012). This evidence demonstrates that genetic constraints mediate mechanical loading, 

while mechanical loading likewise affects genetic expression. 

There are two anatomical regions of long bones where mechanical loading does not 

appear to play a significant role in shaping morphological variation. The first is in the external 

size and shape of articulations. While diaphyses respond to mechanical loading during growth 

and development, articular external dimensions do not correlate with mechanical loadings during 

growth (Ruff et al., 1991; Ruff et al., 1994b; Ruff, 2007). The final adult sizes of the 
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articulations obtained at the end of growth and development, particularly in the lower limb, are 

appropriately sized for adult body mass, indicating genetic canalization1 that will restrict the 

amount of possible morphological variance possible during development. Because long bone 

articulations are not sensitive to changes in mechanical loading, they are useful for estimating 

body mass in the archaeological record (Ruff, 1990; Auerbach and Ruff, 2004).  

 Another anatomical region in which biomechanical loading does not appear to play a 

significant role is in long bone length. Using the humerus and femur, Ruff (2003) looked at 

length proportions and strength proportions (i.e., cross-sectional properties) through development 

in humans. His results showed that upper to lower limb strength proportions change considerably 

once infants become primarily bipedal (i.e., the humerus shows a decrease in strength and the 

femur shows an increase in strength with the adoption of bipedality around one year of age), yet 

bone lengths show a log-linear increase with age independent of locomotor change, indicating 

that shifts in mechanical stimuli do not affect length. Similar results have been found in 

experimental animal studies (Lanyon, 1980; Biewener and Bertram, 1993). Trinkaus and 

colleagues (1994a) looked at bilateral asymmetry in the humerus and showed that the length of 

the humerus is less phenotypically variable than the diaphyseal breadth of the humerus, which is 

more phenotypically variable; however, the underlying mechanism creating that variability is 

unknown. Auerbach and Raxter (2008) showed that humeral and clavicular lengths are 

asymmetrical on opposite sides, while the breadths of the two bones are asymmetrical on the 

same side. This again supports the idea that mechanical forces influence the breadth of the 

cortices in long bone diaphyses since both bones on the same side are larger than the 

                                                 

 
1 Genetic canalization is the buffering of a developmental process against mutations, meaning that the same 

phenotype will be produced despite underlying genetic variation (Waddington, 1942; Hallgrímsson et al., 2002).  
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corresponding bones on the opposite side. One major conclusion may be drawn from these 

studies: variation in long bone lengths and diaphyseal dimensions are partially independent, 

possibly as a result of different sensitivities and responses to environmental (e.g., mechanical) 

stimuli. Other studies have proffered the idea that long bone lengths are more highly genetically 

canalized than other bone dimensions, though this has not been empirically demonstrated 

(Auerbach and Ruff, 2006; Cowgill and Hager, 2007). 

  

Nutrition 

 Nutrition and metabolism play a role in limb bone variation among human groups, in 

addition to genetics and mechanics. Anthropometric studies comparing generational groups 

within or between populations (collectively called secular change studies) have consistently 

shown that increased stature is associated with better nutrition and improved environmental 

conditions2 (Steegman, 1985, 1986, 1991; Steckel, 1987, 1995; Floud et al., 1990; Komlos, 1990, 

1994; Malina et al., 2004). Nutritional insufficiency is known to lead to a reduction in stature due 

to growth retardation (Hummert and Van Gerven, 1983; Jantz and Owsley, 1984; Eveleth and 

Tanner, 1990), so increased stature is presumably due to an increased capacity for bone 

production and maintenance during the growth period. Moreover, secular change studies in limb 

lengths specifically show that a change in nutritional status is correlated with changes in the 

length of the limbs more than the length of the torso, indicating that the fluctuations observed in 

                                                 

 
2 Improved environmental conditions means, primarily, a decrease in disease load and work intensity (see Steckel, 

1995). However, the focus here is on the role of nutrition rather than the complex interplay between nutrition and 

environmental load. For a detailed discussion, see Eleazer (2013). 
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stature due to nutrition are the result of lengthening or shortening of the legs (Tanner et al., 1982; 

Takamura et al., 1988; Malina et al., 2004, 2008; Cowgill et al., 2012). 

 Changes in long bone lengths from changes in nutrition do not occur evenly across sexes 

or across limbs. In the United States from 1800 to 1970, males showed greater secular change 

than females, the lower limb had more change than the upper limb, and distal segments were 

subject to more change than proximal segments (Meadows Jantz and Jantz, 1999). The 

differences between the upper and lower limb were echoed in a Japanese sample from 1961 to 

1986 (Takamura et al., 1988). In the latter study, arm length increased over time, as did standing 

height (used here as a proxy for leg length as sitting height did not change considerably over this 

time), but the increase in arm length was delayed by ten years as compared to the leg. Given 

what is known about development (see above), this indicates dissimilar sensitivities and/or 

responses in the limbs to the environmental effects that occurred between generations in 

Japanese populations. Arguably, the differences between limbs and limb segments reflect known 

dissimilarities in early development. Perhaps faster growth trajectories in the lower limb are 

more readily impacted by nutritional stress, or the limbs and limb segments have distinct 

developmental envelopes of time in which they are more sensitive to perturbations. For instance, 

the lower limb grows faster than the upper limb (Bareggi et al., 1996; Cowgill et al. 2012) and 

distal segments grow faster than proximal segments (Cameron et al., 1982; Cowgill et al., 2012). 

This may extend across primate taxa, as the difference between proximal and distal segments has 

also been noted in nonhuman primates, with distal segments showing growth restrictions in 

nutritionally stressed individuals (Fleagle et al., 1975). 
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 Differences in secular changes in long bones between males and females, as found in 

Meadows Jantz and Jantz (1999), bring up the interesting debate on the relative sensitivity of the 

sexes to environmental change. Some have argued that females are “buffered” against 

environmental insults (i.e., males are more sensitive to environmental stressors) (Stini, 1969; 

Wolański and Kasprzak, 1976; Stinson, 1985) and are therefore less likely to experience 

significant phenotypic responses to decreased nutrition. The hypothesized reason for this is that 

females have a greater physiological investment in reproduction and are therefore somehow 

protected against environmental fluctuations during growth (Stinson, 1985). Some empirical 

evidence supports the female buffering hypothesis (Stini, 1969; Wolański and Kasprzak, 1976; 

Dettwyler, 1992), but whether it acts throughout growth and development, only in the prenatal 

period, or at all, has yet to be determined (Stinson, 1985).  

 

Limb Variation in Humans 

While nutritional variation does have an effect on limb lengths and proportions, body 

proportions in general are considered fairly stable compared to other anthropometric measures 

(Ruff, 1994; Weaver and Steudel-Numbers, 2005; but see Roseman and Auerbach, 2015). A long 

research tradition in biological anthropology has explored variation in these proportions and 

developed a paradigm that links them to population differences ascribed to specific 

environmental factors, namely climate and population history. The following section reviews this 

history, though recent research (Betti et al., 2012; Roseman and Auerbach, 2015; Savell et al., in 

review) has provided significant revisions to this paradigm, as direct evolutionary models are 
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finally being applied to test long-held assumptions about the evolutionary forces that have 

shaped human limb variation. 

 

 

Patterns of Limb Proportions 

 When comparing relative body size and shape across populations or species, “few 

absolute measurements are of interest by themselves” (Schultz, 1929:245). Rather, the size of 

one measurement in relation to another, known as a relative measure, index, or proportion, is 

used to explain patterns and variation. Before discussing the patterns and variation found in limb 

morphology throughout the human species, a review of the relevant limb proportions used in 

anthropological research is warranted. Specifically, limb length proportions are discussed here. 

There is also a wealth of literature using indices and proportions in regards to postcranial 

robusticity (for reviews, see Ruff et al., 1993; Pearson, 2000), but that is not a focus here. 

 Intralimb proportions are those which compare the two segments within a single limb to 

understand how the proximal and distal elements relate to one another. As stated by Davenport 

(1933:333-4), “[f]or convenience in locomotion a division of the appendages is necessary. The 

two segments constitute a pair of levers placed along one axis… According to the type of 

locomotion, whether springing, running, climbing, walking, burrowing, or swimming, the 

relative length of these levers to give greatest efficiency will vary.” An appreciation and 

understanding of the wide variation in intralimb (and interlimb, discussed below) indices within 

primates is necessary as this variation is important for reconstructing locomotor behavior and 

phylogeny in fossil species (Jungers, 1985; Richmond et al., 2002). Intralimb indices are 
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calculated as the distal element relative to the proximal element; therefore, an index less than 100 

indicates that the distal element is shorter than proximal element, and, conversely, an index 

greater than 100 indicates that the distal element is longer than the proximal element. 

 The brachial index is defined as the quotient of the length of the radius divided by the 

length of the humerus multiplied by 100 (Schultz, 1929)3. The majority of adult primates have 

radii that are longer or nearly equal in length to the humerus. Notable exceptions are humans, 

which show the lowest brachial index of all primates, averaging about 75, and gorillas, which 

average about 80 (Schultz, 1930; Aiello and Dean, 1990). The longest radii are found in species 

that primarily use suspensory locomotion, such as gibbons, orangutans, and spider monkeys 

(Schultz, 1930; Buschang, 1982). Primate species do not show significant differences in brachial 

indices between males and females, although evidence suggests that humans are an exception: 

human females consistently show a slightly lower brachial index than males (Martin, 1928; 

Schultz, 1930; Aiello and Dean, 1990). 

 The crural index is defined as the quotient of the length of the tibia divided by the 

bicondylar length of the femur multiplied by 100 (Davenport, 1933). Monkeys have tibiae that 

are closer to the length of the femur than apes and humans, with the former displaying crural 

indices above 90 and the latter having values averaging about 85 (Schultz, 1930; Davenport, 

1933). Non-human primates do not show a significant difference in the crural index between 

males and females (Schultz, 1930). Humans show no differences between the sexes (Martin, 

1928; Schultz, 1930) or show that females have consistently smaller crural indices (Davenport, 

                                                 

 
3 It should be noted that while the majority of scholars use the radius in this equation, periodically the ulna is used 

(for example, Porter, 1999). While the radius and ulna are correlated in length, they are not isometrically scaled (i.e., 

while the size of both may change in the same direction, the proportion between the two bones is not constant). And, 

because the ulna is inherently a longer bone than the radius, using ulnar length will produce higher brachial indices. 
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1933). Based on his data, Schultz (1930) stated that the crural index is “more stable” than the 

brachial index because the range of values in each species are narrower for the crural index. 

Additionally, Trinkaus (1981) noted that there is less sexual dimorphism in humans in the crural 

index than the brachial index, although the exact reason for this is unknown (Holliday, 1995).  

 Interlimb indices are those that compare lengths between limbs, expressed as the upper 

limb element(s) relative to the lower limb element(s). Therefore, an interlimb index under 100 

indicates that the upper limb segment(s) is shorter than the lower limb segment(s), and an 

interlimb index over 100 indicates that the upper limb segment(s) is longer than the lower limb 

segment(s). There are two main interlimb indices, the first being the intermembral index. The 

intermembral index is the length of the upper limb divided by the length of the lower limb 

multiplied by 100. Schultz (1929) defined the intermembral index using limb lengths which 

include both hand length and foot height but noted that these measurements are not particularly 

useful on skeletal material; therefore, a more practical definition of the sum of the length of the 

humerus and radius divided by the sum of the length of the femur and tibia multiplied by 100 is 

given (Schultz, 1929, 1930). Monkeys typically have intermembral indices less than 100, while 

apes have intermembral indices over 100. Humans have the lowest intermembral index of all 

simians, with an upper limb only about 65% of the length of the lower limb (Schultz, 1930). The 

other main interlimb index is the humerofemoral index, which, as the name suggests, compares 

the length of the humerus to that of the femur. This proportion is frequently studied because 

humans differ from other apes in that the humerus in apes is longer than the femur but shorter 

than the radius, a fact which is made evident by looking at both the humerofemoral index and the 

brachial index (Aiello and Dean, 1990). Additionally, the humerofemoral index has become 
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quite important in the study of primate evolution as humeri and femora are available for several 

fossil species, allowing hypotheses to be made regarding positional behavior, modern human 

ancestry, and evolution. 

 Several other indices involving the limbs are useful primarily when studying living 

populations using anthropometric measurements. These indices include relative sitting height, 

defined as sitting height divided by stature, and relative limb length, defined as the length of 

either the upper limb or the lower limb divided by stature (Roberts, 1978). These indices are less 

practical when studying skeletal material because they require many bones to be present in order 

to accurately estimate height. Therefore, these limb indices are not a focus here. 

 Overall body proportions change allometrically during growth (Bogin, 1997) and limb 

proportions specifically are known to change throughout ontogeny. For example, the 

intermembral index is higher in human fetuses and infants, who have long arms relative to legs, 

than in adults, who have long legs relative to arms (Schultz, 1930). During growth and 

development, the brachial index increases in humans and gorillas and decreases in orangutans 

and chimpanzees, while the crural index stays the same in chimpanzees and shows a slight 

increase in humans and other large apes (Aiello and Dean, 1990). The different changes in these 

indices are due to the lower limb growing faster than the upper limb (Takamura et al., 1988; 

Bareggi et al., 1996; Cowgill et al., 2012) and the distal limb segments growing faster than the 

proximal limb segments (Davenport, 1933; Cameron et al., 1982; Cowgill et al., 2012). 

 However, while limb proportions change during growth, there is also some relative 

consistency. Differences between species in intermembral proportions develop prior to birth in 

non-human primates (Lumer, 1939; Schultz, 1973) and humans (Schultz, 1973; Buschang, 



 

23 

 

1982). Within humans, differences between geographically dispersed human populations begin 

early in fetal life (Schultz, 1923). Ruff (2003) has shown that human infant femoral/humeral 

length proportions are within 10% of adult proportions, which is caused by the characteristically 

long femur of humans that begins to develop prior to birth. And, while these proportions do 

change during growth, the relationship between intramembral proportions and geographic 

distributions of populations remains consistent over growth (Eleazer et al., 2010; Cowgill et al., 

2012). This consistency in limb proportions beginning in fetal life has supported the idea that 

“long bone length proportions are highly heritable” (Ruff 2003:338), have “strong genetic 

encoding” (Holliday, 1997:425), are “largely genetically controlled” (Holliday, 1999:563), and 

are “genetically determined” (Weaver and Steudel-Numbers, 2005:219). None of these authors 

tested a genetic model to determine whether these statements are supported. Nevertheless, the 

argument has consistently been made that limb proportion patterns are due to an underlying 

genetic process and are phenotypically constrained. Making genetic conclusions from phenotypic 

patterns is precarious; therefore, this project seeks to assess the genetic variance and covariance 

of limb segments to better understand human limb length and proportion variation. 

 

Ecogeographic Patterning 

 There is a long-standing tendency within anthropology of discussing limb proportions as 

if the genetic and evolutionary processes that produced the known patterns of variation can be 

deduced from phenotypic variability alone. This section reviews traditional anthropological 

arguments with regard to the ecogeographic patterning of human limb proportions. Arguments 
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made here are likely to be revised in the near future as evolutionary models are increasingly 

developed. 

 Anthropological interest in limb proportions began early in the 20th century and stems 

from the observation that human limb morphology seems to adhere to the often-cited “Allen’s 

Rule” (Allen, 1877). This “rule” and the corresponding “Bergmann’s Rule” (Bergmann, 1847) 

state that differences in body proportions between populations are due to thermoregulation, or 

the efficient regulation of heat dissipation from the body. Specifically, Allen’s rule observes that 

reduced limb lengths are often found in populations living in colder environments as compared 

to their counterparts in warmer environments, while Bergmann’s rule explains that populations 

in colder environments will have larger bodies with higher body mass compared to groups in 

warmer environments. A longer, leaner body and limbs increases the surface area to volume, 

allowing heat to dissipate more easily in a warm environment; conversely, a shorter, wider body 

and limbs decreases the surface area to volume, preventing heat dissipation from the body, which 

would be advantageous in a colder environment. Critics of such thermoregulatory justifications, 

such as Scholander (1955) and Steegmann (2007), argued that 1) other physiological 

mechanisms (i.e., vasoconstriction, fat layers, fur) are more effective at preventing and 

promoting heat loss, and 2) multiple exceptions to these rules exist. Mayr (1956) explained, 

however, that these rules are merely “empirical generalizations” that have statistical validity. 

Whether climate is the causative agent in producing phenotypic data that parallels climatic 

variation is unknown, but their correlation allows implications regarding adaptation to climate to 

be made. 
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 Ruff (1993) named the correlation between phenotypic variation and climatic variables 

the “thermoregulatory imperative.” Ruff developed the cylindrical model (Ruff, 1991, 1994), 

which models the body as a cylinder, where the surface area (computed from length [i.e., stature] 

and width [i.e., body breadth]) to volume (i.e., body mass) is minimized in cold climates to 

reduce heat loss and maximized in warm climates to facilitate heat loss. This model accurately 

describes variation in fossil species and modern humans (Ruff, 1991, 1994; Ruff and Walker, 

1993) (i.e., the patterns), but does not explain the evolutionary mechanisms underlying these 

patterns (i.e., the processes). 

 Numerous examples of non-human organisms adhering to Allen’s and Bergmann’s 

ecogeographic rules abound, such as birds (James, 1970; Graves, 1991) and mammals (for a 

review, see Ashton et al., 2000). Ashton and colleagues (2000) found that out of 78 out of 110 

species show a positive intraspecific4 correlation between size and latitude and 48 out of 64 

species show a negative intraspecific correlation between size and temperature, providing 

empirical support for the existence of clines in body size, thereby adhering to Bergmann’s rule. 

They did not, however, find evidence to support the idea that these clines exist to optimize 

surface area to volume ratios to enhance heat loss. Alternatively, in a test of Allen’s rule, Nudds 

and Oswald (2007) found that not only do closely related endothermic (i.e., warm blooded) 

species follow expected patterns but limb length is correlated with temperature during the coldest 

part of the breeding season, suggesting that heat conservation is the mechanism producing these 

clines. 

                                                 

 
4 Mayr (1956) warns that these rules should only be used to look at differences intraspecifically, but many studies 

look across species (e.g., Trinkaus, 1981; Holliday, 1999; Nudds and Oswald, 2007). How this impacts 

interpretations is unknown.  
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 Ruff’s “thermoregulatory imperative” has also been used to explain observed differences 

between fossil species. Trinkaus (1981) was an early advocate of climate as explanatory of 

differences among hominin groups. He looked at the limb proportions of Neandertals and early 

modern humans and found that while the intermembral and humerofemoral indices were similar 

between these two groups, the brachial and crural indices of the two species were different. 

Specifically, Neandertals exhibit low brachial and crural indices, indicating that their distal 

elements were relatively shorter (or distally abbreviated) compared to early modern humans. He 

attributed the difference to cold adaptations among Neandertals relative to early modern humans, 

and used this as support for the idea that early modern humans were more recent transplants into 

Europe, coming from Africa and bringing their warm-adapted limb proportions with them (i.e., 

evidence of gene flow). This idea has been supported by several other authors (Jacobs, 1985; 

Ruff, 1991, 2010; Holliday, 1997; Weaver, 2003). An alternative explanation for the difference 

in limb proportions between Neandertals and early modern humans is that Upper Paleolithic 

human populations were moving in and out of the area in response to climatic fluctuations, 

making them less likely to develop truly cold-adapted limb proportions, while Neandertals 

experienced a stable cold environment producing distally-abbreviated limbs (Jacobs, 1985). 

Either way, thermoregulation is touted as the reason for adaptive differences between these 

groups. The opposite body type, that of long limbs and a narrow body which would be 

advantageous in warmer environs, is found in Homo erectus (or ergaster) fossils from Africa 

(Ruff, 1991, 1993, 1994; Ruff and Walker, 1993; Potts, 1998). This warm-adapted body type is 

seen as further evidence of the Allen’s rule being applicable in fossil species. Again, it is 

important to note that these studies all use phenotypic patterns to support an adaptationist view 
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of limb proportions without testing the genetic processes that would give rise to the phenotypic 

variation. This is not to say that these studies are wrong. Instead, they should be viewed as 

limited in their ability to estimate the genetic variation in the samples, and the adaptationist 

mechanism should be understood as a hypothesis rather than a conclusion with genetic support. 

 Holliday’s research has similarly noted climatic adaptation as a source of variation, but it 

has also highlighted the importance of differential ancestry between groups. Holliday (1997) 

demonstrated that the limb proportions of early modern humans in Europe look more like that of 

modern Sub-Saharan Africans than later Mesolithic human groups, which look more like modern 

Europeans. Early modern humans also look different from the archaic humans that previously 

occupied the area, indicating that the early modern humans came from Africa and retained their 

long limbs through gene flow with their ancestral populations. Early modern humans then slowly 

adapted to the cold environment in their new home and developed shorter limbs by the 

Mesolithic, a condition that persists today in modern Europeans. This gene flow hypothesis 

coupled with thermoregulatory adaptation thus supports the idea that “long-term climatic 

selection is largely responsible for global variation in relative limb length” (Holliday and 

Falsetti, 1995). These studies are again based solely on phenotypic patterns without the addition 

of tested genetic models. 

 Besides climate and gene flow, another explanation that has been cited for differences 

between limb proportions in these fossil groups is mobility, or biomechanical advantage. Both 

Trinkaus (1981) and Porter (1999) claim that shorter distal elements in the lower limb would 

provide a biomechanical advantage for walking over rough terrain by lowering the moments of 

force about the knee; however, neither author provides any empirical support for this hypothesis. 
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In this argument, the shorter lower limbs of Neandertals would be advantageous if sheer 

mechanical power or walking over hilly terrain were necessary (Steudel-Numbers and Tilkens, 

2004; Weaver and Steudel-Numbers, 2005; Higgins and Ruff, 2011). Longer lower limbs, on the 

other hand, have been touted as more efficient in normal bipedal walking and running (Steudel-

Numbers and Tilkens, 2004; Steudel-Numbers, 2006; Stuedel-Numbers et al., 2007). Holliday 

and Falsetti (1995) attempted to test the idea that lower limb length is related to mobility, and 

found that the hypothesis that longer limbs provide greater mobility is not supported. 

Interestingly, though, they found that the hypothesis that lower limb length is associated with 

climate cannot be rejected.  

 Weaver and Steudel-Numbers (2005) suggested that variations in limb proportions are 

actually due to an interplay among all three factors. Population movement from Africa brought 

long-limbed Upper Paleolithic humans into the cold European environment of the Neandertals. 

Once there, selection would have acted against their long limbs for thermoregulatory efficiency, 

but this would have been mitigated by the “weaker but still consequential selection for energetic 

efficiency” in locomotion (Weaver and Steudel-Numbers, 2005:222). While a combination of 

factors likely did influence the observed pattern of limb proportion variation, the genetic 

mechanisms that produced phenotypic variation cannot be known from pattern recognition alone. 

 In modern humans, Old World populations exhibit the predicted ecogeographic 

distribution of limb lengths relative to torso length and of distal element relative to proximal 

element lengths (Roberts, 1978; Jacobs, 1985; Ruff, 1994; Holliday, 1997, 1999). Specifically, 

populations from lower latitudes (i.e., warmer environments) have relatively longer limbs, longer 

distal limb elements, narrower bodies, and lower body masses (Ruff, 1994, 2002a; Holliday, 
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1997). Clinal patterns are evident in humans who have colonized regions for millennia (as the 

Old World evidence shows), but these patterns can be confounded by effects of migration and 

colonization, as has been shown in the New World (Auerbach, 2010; Jantz et al., 2010).  

 Variation in the New World exhibits a mosaic, with limb proportions and pelvic widths 

showing different patterns. While pelvic breadths tend to be wide, suggestive of cold adaptation, 

limb proportions are more indicative of temperate environments (Jantz et al., 2010; Auerbach, 

2012). This evidence supports the idea that limbs and pelves are potentially subject to different 

evolutionary forces (Betti et al., 2012; Auerbach, 2012). Additionally, the upper and lower limbs 

show different patterns: the relative length of the lower limb is relatively correlated with climate, 

but the relative length of the upper limb is not (Jantz et al., 2010), and intralimb indices show 

different patterns (for example, a high brachial index coupled with a low crural index) 

(Auerbach, 2012). Although dealing with Old World fossil specimens, Trinkaus (1981) shows 

that the brachial index has a higher correlation with latitude (used as a proxy for climate) than 

the crual index, which has been interpreted to mean that the upper limb, free from locomotor 

constraints, is “more likely to track climatic differences than the lower limb” (Holliday, 

1995:165). This assumes that the upper limb is genetically independent of the lower limb, and it 

ascribes an evolutionary force (i.e., adaptation) and an evolutionary factor (i.e., climate) to the 

phenotypic patterns. 

 It has been argued that limb proportions take a long time to change. The fact that the New 

World phenotypic data does not correlate with climatic variables as well as Old World 

populations is interpreted to mean that limb proportions take a long time to adapt to climatic 

pressures (Holliday, 1997) (although not as long as the pelvis [Auerbach, 2012]). This is 
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evidenced not only by New World archaic skeletal and indigenous anthropometric data (as used 

by Auerbach [2012] and Jantz et al. [2010], respectively), but in modern juveniles. Martorell and 

colleagues (1988) showed that in migrant children who moved to climatically different areas, 

limb proportions remain consistent with those of their ancestral homeland populations, rather 

than adapting to those found in the new environment. This occurs despite an increase in stature. 

Other studies show similar findings (Greulich, 1957; Froehlich, 1970). 

 This suite of phenotypic clinal evidence has led to the current operating assumption 

among biological anthropologists that limb proportions in humans are phenotypically stable 

unless long periods of extreme environmental conditions force adaptive change (e.g., Ruff, 1994, 

2002a; Holliday, 1997). In this view, Allen’s rule applies to humans, as it accounts for the 

fundamental ecogeographic pattern of limb length proportions among hominins. Given the 

evidence that limb proportions are generally stable traits, humans have since tended to retain 

their ancestral proportions. Though extreme environmental conditions could still catalyze 

adaptive changes in limb proportions, it would likely take long periods of time to do so. This 

operating assumption is based purely on an adaptationist perspective without taking things such 

as genetic drift, gene flow, and conditional selection into account. 

 However, contrary to the assumption among biological anthropologists that limb 

proportions are stable traits is a suite of experimental data in nonhuman mammals. Experiments 

in rats (Lee et al., 1969; Risenfeld, 1973), pigs (Weaver and Ingram, 1969), rabbits (Ogle and 

Mills, 1933), and mice (Serrat et al., 2008) have shown that littermates raised in different 

environments produced differences in long bone lengths and, hence, proportions. For example, 

Serrat and colleagues (2008) raised mice in cold, moderate, and warm temperatures and found 



 

31 

 

that those raised in warm temperatures had significantly longer limbs than those in colder 

temperatures. Diet and activity level were higher in the cold-raised siblings, and as such cannot 

explain the differences. The research concluded that environmental temperature may regulate 

extremity growth by changing the temperature in and altering the growth rates of cartilage, the 

precursor to bone. While interesting, none of these studies on nonhuman species have tested to 

see if the observed changes are maintained over multiple generations (i.e., if evolution occurs). 

 Despite the limitations of previous studies, there has been a recent attempt at directly 

assessing the evolutionary forces influencing limb variation. While the previous studies were 

limited, the patterns they noted were important for setting up a foundation for this current 

research. Roseman and Auerbach (2015) found that distal limb segment lengths are shaped by 

both neutral evolutionary forces (genetic drift and potentially gene flow) and natural selection 

while the crural index is shaped primarily by population structure. In attempting to discern 

selection gradients in human limbs, Savell and colleagues (Savell et al., in review) have found 

that there are distinctions between the strength of selection and the actual responses to selection 

in the limbs. Moreover, selection on the tibia seems to be driving variation in all limb segments, 

likely because of the way in which the different limb segments covary (i.e., is a result of 

conditional evolution). Although focused on the autopods versus the other limb segments, a 

similar finding is echoed by Rolian (2009) who finds that the ability of a morphological trait to 

evolve is highly dependent on how strongly the traits covary. Therefore, an understanding of 

how these traits covary is important to accurately reconstruct evolutionary mechanisms for how 

limb proportion patterns emerged (Young and Hallgrímsson, 2005; Hallgrímsson et al., 2009; 

Young et al., 2010). This project contributes to this growing area of research by incorporating 
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genetic data to describe the genetic variance and covariance underlying limb segments in 

multiple primate groups. All these studies seek to better describe the evolutionary mechanisms 

that have shaped human limb proportion variation. 

 

Applications of Limb Proportions in Anthropology 

 Why do anthropologists care about limb proportions? Up to this point, this chapter has 

focused on the observable phenotypic patterns and the assumptions that are made about how 

those patterns emerged. If the current operating assumption that limb proportions are highly 

phenotypically stable traits is true, then limb proportions may be informative in other areas of 

research, including phylogenetic relationships and fossil identification, locomotor behavior and 

the evolution of bipedalism, and migration patterns. In fact, while not overtly stated, research in 

these areas is predicated on the assumption that limb proportions are phenotypically stable and 

thus useful in understanding various evolutionary phenomena. However, this could be seen as 

contradictory given that evolution is inherently about change. It is convenient to suppose that 

limbs are phenotypically stable when observed patterns do not change yet indicative of evolution 

when patterns do change; phenotypic stability, though, is itself a product of evolution (e.g., via 

stabilizing selection). Without an understanding of how limb segments are capable of evolving, 

however, it is precarious to link their variation to specific causal factors. In light of this caveat, 

the following sections describe the current state of research that uses limb proportions to 

understand phylogenetic relationships and fossil identification, locomotor behavior and the 

evolution of bipedalism, and migration patterns. 
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Phylogenetic Relationships and Fossil Identification  

 Limb proportions of fossil species are often hard to determine as many long bones are 

broken or missing; however, partial and nearly complete bones are used to estimate long bone 

length (e.g., Johanson et al., 1987; Asfaw et al., 1999; Haeusler and McHenry, 2004). While 

there are inevitably problems with various estimation techniques, the details are beyond the 

scope of this paper (for a detailed discussion, see Reno et al., 2005). Limb segment lengths from 

fossil specimens are often compared to known limb proportions of extant species to make 

inferences about phylogeny and locomotion, and new fossil specimens are compared to 

previously studied fossils for species identification. Examples of these are below. 

 The limb proportions of Australopithecus afarensis (ca. 3.2 Ma) were first explored by 

Jungers (1982) by looking at allometric relationships between AL 288-1 (“Lucy”), modern 

humans, and catarrhine primates (Old World monkeys, lesser apes, and great apes). Modern 

humans and AL 288-1 show a similarity in relative humerus length (i.e., near isometry), but a 

large disparity in femur length (i.e., humans have extreme positive allometry). By comparing the 

relative length of the femur of AL 288-1 to the crural index of humans and apes, Jungers 

concluded that the short femur of A. afarensis is indicative of an overall short lower limb very 

unlike modern humans. However, given that humeral length is within the range of modern 

humans, the humerofemoral index of AL 288-1 (ca. 85) is intermediate compared to other 

species. Based on the AL 288-1 radii, as well as other specimens (Kimbel and Delezene, 2009) 

A. afarensis is thought to have a brachial index of ca. 91 (Asfaw et al., 1999; Reno et al., 2005; 

Kimbel and Delezene, 2009), making it similar to extant apes rather than modern humans. These 

proportions suggest that the climbing capabilities of AL 288-1 were reduced, that bipedality was 
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kinematically very different and less efficient than in modern humans, and that humeral 

reduction occurred prior to femoral elongation in hominin evolution (Jungers, 1982; Kimbel and 

Delezene, 2009). 

 Two other species, Australopithecus africanus and Homo habilis, have traditionally been 

interpreted to have more ape-like limb proportions than A. afarensis. Rather than being based on 

limb bone lengths, A. africanus (ca. 2.8 Ma) proportions are based on joint measures because of 

a lack of skeletal material. Assuming that the relationship between joint size and limb lengths 

does not differ between these taxa (Richmond et al., 2002), the pattern of limb joint sizes found 

in A. africanus (larger upper limb joint sizes compared to lower limb joint sizes) indicates that 

this species had more ape-like limb length proportions (McHenry and Berger, 1998; Berger, 

2006). Similarly, few complete H. habilis limb bones are available for estimating limb 

proportions. Reconstructions of the H. habilis specimen OH-62 (ca. 1.8 Ma) indicate a 

humerofemoral index of about 95 (Johanson et al., 1987). Given that this is one of only a few H. 

habilis specimen where a humerofemoral index can be estimated, this specimen is often used as 

representative of the entire species. This estimation, however, is based on the assumption that the 

OH-62 femur was no longer than the AL 288-1 femur, which is uncertain, and on the assumption 

that reconstructions of the humerus are accurate, which is also questionable (Korey, 1990). 

 While some authors support the idea of more ape-like conditions of these taxa relative to 

A. afarensis (Hartwig-Scherer and Martin, 1991; McHenry and Berger, 1998; Green et al., 2007), 

other authors argue that there is no evidence of this if the specimens are reexamined while 

keeping the error rates of limb length reconstructions in mind (Asfaw et al., 1999; Reno et al., 

2005; Haeusler and McHenry, 2007). For the camp accepting an ape-like condition for these 
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species, there are vast implications for phylogeny. If A. afarensis is thought to be the direct 

ancestor of A. africanus and H. habilis, then there had to have been an evolutionary reversal of 

limb proportions (McHenry and Berger, 1998). Alternatively, this could be considered evidence 

that A. afarensis is not ancestral to the other two taxa. For those who reject traditional indices 

produced using potentially faulty methods, the progression from A. afarensis to A. africanus to 

A. habilis is seen as a slow progression moving in the direction of modern human limb 

proportions (Reno et al., 2005). 

 A few other specimens which are complete enough to estimate limb proportions support 

the idea of this progression toward modern proportions. The BOU-VP 12/1 specimen (or, the 

Bouri skeleton) also has fairly complete limb bones, and it possibly represents the species 

A. garhi (ca. 2.5 Ma). It has a human-like humerofemoral index and an ape-like brachial index 

(i.e., an elongated forearm). If this specimen is actually representative of A. garhi, it would mark 

the earliest appearance of femoral elongation in the fossil record (Asfaw et al., 1999). These 

authors also say that these proportions are evidence of femoral elongation prior to forearm 

shortening in early hominids (Asfaw et al., 1999). Following this and the suggestion given by 

Jungers (1982) above, perhaps modern human limb proportions arose first through a reduction in 

the humerus, followed by an elongation of the femur, and then a shortening of the forearm. 

These modern human limb proportions are seen in Homo erectus (ca. 1.5 Ma), as evidenced by 

KNM-WT 15000 (the “Turkana Boy”) (Walker and Leakey, 1993). This skeleton has the 
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relatively long femur and short radius, producing brachial and humerofemoral proportions that 

are indicative of modern humans5. 

 As compared to humans, and as discussed above, Neandertals show low brachial and 

crural indices due to their short distal segments, but a humerofemoral index very similar to 

humans (Trinkaus, 1981). Given that Neandertals and early modern humans overlapped 

temporally and geographically and that their limb proportions differed, limb proportions are used 

to identify species affiliation when a new specimen is found (e.g., Arsuaga et al., 2007; Shang et 

al., 2007). Furthermore, limb proportions, along with other skeletal morphology, have been used 

to assess the relative Neandertal to modern human admixture proportions. For example, Duarte 

and colleagues cite the low crural index found in LV1 (the “Lagar Velho child”) as evidence of 

admixture between early modern humans and Neandertals (Duarte et al., 1999). While this 

position has been critiqued (e.g., Tattersall and Schwartz, 1999), this example highlights how 

limb proportions have been used in paleoanthropological species identification. Similarly, the 

Dmanisi fossils have been identified as representing H. habilis, H. rudolfensis, H. erectus, a new 

species called H. georgicus, or a subspecies of H. erectus (Pontzer et al., 2010; Lordkipanidze et 

al., 2013; Schwartz et al., 2014). Analyses of the limbs show that the Dmanisi specimens have a 

humerofemoral index similar to modern humans and a crural index that is between Neandertals 

and early modern humans (Pontzer et al., 2010). Additionally, these fossils show a relatively 

long lower limb that is longer than both A. afarensis and H. habilis but shorter than Neandertals 

                                                 

 
5While previous work by Latimer and Ohman (2001) suggested that KNM-WT 15000 exhibited pathologies that 

would preclude it from being a useful reference for normal H. erectus skeletal morphology, recent work by Schiess 

and Haeusler (2013) determined that the specimen does not show signs of any congenital pathologies and belongs to 

a normal H. erectus youth.  



 

37 

 

and modern humans (Pontzer et al., 2010). This evidence firmly roots the Dmanisi fossils as 

early Homo specimens, but their exact taxonomic classification is still debated. 

 While grouping fossils with similar limb proportions into the same species categories is 

problematic, placing them into an evolutionary order is even more so. For example, without 

knowing the genetic covariance of the various limb segments and how they are capable of 

evolving, it is a stretch to say that humeral reduction occurred prior to femoral elongation in 

hominin evolution (Jungers, 1982; Kimbel and Delezene, 2009) or that femoral elongation 

occurred prior to forearm shortening in early hominids (Asfaw et al., 1999). These statements 

make assumptions about the genetic covariance structure of limb segments and about the 

independence of the limb segments from one another. 

 

Locomotor Behavior and the Evolution of Bipedalism 

 Differences in limb proportions across primates are known to be related to locomotor 

differences. For instance, primates that leap (e.g., lemurs and lorises) have longer hindlimbs and 

thus lower intermembral indices than suspensory species (e.g., gibbons and siamangs) that have 

longer forelimbs and thus higher intermembral indices. Quadrupedal species (e.g., baboons and 

gorillas) generally have intermediate indices due to forelimbs and hindlimbs of similar lengths 

(Jungers, 1985; Fleagle, 1999). These known indices coupled with locomotor styles are used in 

interpreting the fossil record to determine how extinct species may have moved as well as how 

the distinct locomotive behavior of modern humans, namely bipedalism, developed. 

 While the reason or reasons that hominins first became bipedal is unknown (for varying 

hypotheses, see Prost, 1980; Rodman and McHenry, 1980; Wheeler, 1991; Jablonski and 
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Chaplain, 1993; Hunt, 1994; Leonard and Robertson, 1995; Sylvester, 2006), bipedality has been 

shown to be more energetically efficient than quadrupedal locomotion (Rodman and McHenry, 

1980; Leonard and Robertson, 1995; Pontzer et al., 2009; but also see Jablonski and Chaplain, 

1993). In addition, the long legs indicative of the genus Homo have been shown to also be more 

efficient than a shorter lower limb, both in walking (Steudel-Numbers and Tilkens, 2004; 

Steudel-Numbers, 2006; but see also Kramer and Eck, 2000) and running (Steudel-Numbers et 

al., 2007).  

 The characteristic bipedal gait of modern humans is first definitively seen in Homo 

erectus. This hominin has the elongated lower limb with similar intra- and intermembral indices 

to modern humans (Walker and Leakey, 1993). Additionally, the similarity in locomotive 

repertoire between H. erectus and modern humans has been shown through bone strength 

proportions (i.e., comparisons of cortical thickness between the humerus and femur). These 

strength proportions suggest that H. erectus walked the same way as modern humans (Ruff, 

2008b). However, a similar analysis shows that H. habilis had different loading and locomotive 

patterns than humans (Ruff, 2009), despite showing an elongated lower limb (Haeusler and 

McHenry, 2004). The elongated lower limb of H. habilis is shown through both the femur 

(Haeusler and McHenry, 2004) and tibia (Susman and Stern, 1982). While lower limb 

morphology suggests that H. habilis was bipedal, upper limb morphology suggests that this 

species retained suspensory behaviors (Susman and Stern, 1982), which would explain the 

different strength proportion pattern (Ruff, 2009) and the ape-like intermembral index (Harcourt-

Smith and Aiello, 2004). 
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 The shorter hindlimb found in A. afarensis, combined with other morphological features 

of the pelvis, leg, and foot, has led to debate over the type of gait used by this species. Various 

suggestions include a bent hip, bent knee gait (Susman and Stern, 1982), a waddling gait (Berge, 

1994), and bipedality specialized for a slower transition to running and a smaller daily range 

(Kramer and Eck, 2000). Others argue that there are no differences in the bipedality between A. 

afarensis and Homo, and that the longer legs of the latter are due to thermoregulation, allometry, 

efficiency, or reorganization of the pelvis (Wolfpoff, 1983; McHenry, 1986; Lovejoy, 2005). 

 While the way in which bipedality evolved is still unclear, what is clear is that there was 

a diversity of limb proportions in early hominin species. This diversity may well reflect diversity 

in locomotor adaptations (Harcourt-Smith and Aiello, 2004). The patterns that are shown in the 

literature are interesting relationships, but without an understanding of the underlying genetic 

variation of these limb segments, the processes that produced these patterns are not known. And, 

linking changes in limb proportions to efficiency in locomotion is again assigning an 

adaptationist perspective to these traits. 

 

 

Migration patterns 

 Because they are considered stable traits that require an extremely long time to adapt to a 

climatically different environment, limb proportions are often used to infer modern human 

migration patterns (Holliday, 1997; Kurki et al., 2008; Temple et al., 2008; Auerbach, 2010). 

The migration of people is often used as an adequate explanation when individuals are found to 

have limb proportions that do not match with expected ecogeographic clines. For instance, 

Temple and colleagues (2008) looked at variation in limb proportions between the Jomon 
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(13,000-2,500 ybp) and Yayoi (2,500-1,700 ybp) of Japan. While both living in the temperate 

environment of the Japanese Islands, the two groups show differences in their limb proportions. 

Jomon people had elongated distal relative to proximal limb segment lengths as compared to the 

Yayoi people. In other words, the Jomon people had limb proportions that are expected for the 

environment in which they live, while the Yayoi people had proportions that resemble groups 

from colder environments. These authors suggest that the Yayoi people had limb proportions 

adapted for colder climates because they recently migrated to the Japanese Islands from 

Northeast Asia where their limb proportions would be much more typical. Additionally, evidence 

suggests that the Jomon people also migrated from a colder environment, but since they occupied 

Japan for a substantially longer period of time, their limb proportions adapted to the mild island 

climate. 

 Similar logic is applied when looking at limb proportion variation the New World. As 

previously mentioned, New World populations do not adhere to ecogeographic clines as well as 

Old World populations (Roberts, 1978; Auerbach, 2010; Jantz et al., 2010). Part of the 

justification for this is that New World populations have not been in their new environment long 

enough to have adapted to fit ecogeographic expectations. Analysis of Boas’s anthropometric 

data shows that “climate is not the principal variable causing spatial patterning of body 

proportions” and that other factors, such as settlement history, may be producing the observed 

patterns (Jantz, 2006:788). That settlement history is the migration of peoples into and within the 

Americas. 

 Finally, as discussed above, migration has been used to explain the difference between 

archaic and early modern humans in Europe (Holliday, 1997). While early modern humans in the 
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Mesolithic look more like modern humans in Europe, early modern humans in the early Upper 

Paleolithic look more like individuals from sub-Saharan Africa. This has been interpreted as 

evidence that populations moved from Africa into Europe, and after occupying the new 

environment for a sufficient length of time, their limb proportions adapted to fit ecogeographic 

expectations. 

 The weakness with these interpretations is that they again make assumptions about the 

way in which limb segments can evolve without knowing the underlying genetic variance and 

covariance of these traits. They additionally assume that limb segments (and hence, proportions) 

change primarily due to adaptation to climate rather than to other factors such as genetic drift, 

gene flow, or population replacement. Many of these studies have archaeological context to 

support their interpretations, but the lack of genetic data weakens their conclusions. 

 

Summary 

 There are many factors that influence limb segment lengths and limb proportions. Limb 

development is impacted by molecular signals, mechanical factors, and nutrition, and these 

features work in concert during growth and development to produce adult limb morphology. 

While there is undoubtedly an empirical pattern in humans that seems to show that variation in 

limb proportions is clinally distributed to match climatic variables (at least in the Old World), the 

evolutionary mechanisms by which these patterns developed is not well understood. The 

established body of literature has assumed an adaptationist explanation for limb variation; 

traditionally, climate has been the primary selective pressure purported to have made limb 

proportions adapt to fit ecogeographic expectations in fossil species and modern humans (e.g., 
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Roberts, 1978; Trinkaus, 1981; Ruff, 1991). Recent research has shown, however, that human 

body variation is “evolutionarily dynamic and population historically contingent” (Roseman and 

Auerbach, 2015:87). In other words, neutral forces of evolution (i.e., random genetic drift and 

gene flow) likely play as big of a role as natural selection in producing the variation seen in 

modern human limb proportions. Other researchers have also begun to use genetic and 

evolutionary models to discern the processes that may have contributed to the known patterns of 

human limb morphology (e.g., Betti et al., 2012; Savell et al., in review). 

 Differences among groups are due in large part to genetic variance among groups 

(Brommer, 2011). Therefore, a better understanding of the genetic variation in limb proportions 

and the integration between limb segments is needed to better explain the process leading to the 

known patterns in limb proportion variation. The next chapter will look at limb variation in a 

genetic framework. 
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CHAPTER THREE  

METHODOLOGICAL BACKGROUND 

 

 Phenotypic variation in limb morphology, both across human groups and among primate 

species, is due, at least in part, to genetic variation among these groups. Likewise, the differences 

seen among individuals of a population are partly due to genetic variation. These individual 

differences are the “materials for natural selection to act on and accumulate” (Darwin, [1859] 

2003:60), and are thus important to understand the evolution of traits.  

 Unlike qualitative traits such as albinism or ABO blood groups, limb segment lengths are 

quantitative traits that show continuous variation. Such “continuous traits” are influenced by 

multiple genes at many loci, thereby complicating simple Mendelian assessment of ratios of 

inheritance. For this reason, the unit of study must go beyond individual offspring, as would be 

informative in a simple Mendelian cross with a qualitative trait, and consider the population as a 

whole. Because quantitative traits must be measured rather than counted or classified, calculating 

inheritance requires more complex mathematical methods. Therefore, a quantitative genetics 

framework that is built upon population genetics principles is necessary to analyze continuous, 

complex traits such as limb morphologies.  

 Quantitative genetics finds its basis in the work of Fisher (1918), Haldane (1932), and 

Wright (1921). Quantitative genetic theory deduces the effects of Mendelian inheritance when 

applied simultaneously to entire populations and the segregation of genes at many loci (Falconer 

and Mackay, 1996). These deductions are based on the premises that 1) quantitative differences 

are inherited through genes, and 2) these genes follow Mendelian laws of transmission. 

Quantitative genetic theory also takes the properties of dominance, epistasis, pleiotropy, linkage, 
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and mutation into account, making it a comprehensive field of study. Therefore, quantitative 

genetics provides a robust theoretical framework for understanding evolutionary change.  

 This chapter reviews the various methods that will be used to assess limb morphology 

variation in humans and other primates. Specifically, the areas to be reviewed are 1) estimates of 

variance (i.e., heritability and evolvability), 2) estimates of covariation (i.e., morphological 

integration), and 3) linkage analysis.  

  

Estimates of Variance 

 Phenotypic variation can be partitioned into genetic and environmental components: 

𝑉𝑃 =  𝑉𝐺 +  𝑉𝐸      (3.1) 

where VP is the phenotypic variance, VG is the genetic variance, and VE is the environmental 

variance (Falconer and Mackay, 1996). This equation is a simplified version of reality because it 

assumes that there is neither genotype by environment covariance, nor an interaction between 

genotype and environment (Visscher et al., 2008). Genotype by environment covariance occurs 

when environmental conditions depend on genotype. An example is parents with high IQs 

providing an IQ-stimulating environment for their children. Here, environment is manifested as 

an IQ-stimulating setting and is dependent on the genotype of the parents, or IQ. When a 

covariation is present between genotype and environment, the term 2COVGE (which is twice the 

covariance of genotypic values and environmental deviations) is added to Equation 3.1 (Falconer 

and Mackay, 1996). A genotype by environment interaction is when different genotypes respond 

to environmental variation in different ways. An example of this is the interaction between 

stressful life events (i.e., environment), the polymorphism of the serotonin transporter gene (i.e., 
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genotype), and the effect of both on depression (Caspi et al., 2003; Visscher et al., 2008). When 

an interaction is present, the term VGE is added to Equation 3.1 (Falconer and Mackay, 1996). 

While the inclusion of covariance and interaction between genotype and environment in 

phenotypic partitioning would lead to a more accurate representation of reality in some cases, 

these terms are usually not included because they are difficult to estimate.  

 Genetic variance itself can be divided into additive genetic variance (sometimes called 

“breeding values” [Visscher et al., 2008]), dominance genetic variance (due to interactions 

between alleles at the same locus), and interactive or epistatic genetic effects (due to interactions 

between alleles at different loci). Therefore:  

𝑉𝐺 =  𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼      (3.2) 

and    

𝑉𝑃 =  𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼 +  𝑉𝐸                (3.3) 

where VA is the additive genetic variance, VD is the dominance genetic variance, and VI is the 

interactive genetic variance. Of these three, only additive genetic variance is responsible for the 

resemblance between related individuals, and as such, is estimated by looking at the phenotypic 

covariation between related individuals. However, it should also be acknowledged that the 

interactive genetic variance (VI) can impact the covariance between related individuals when 

epistasis is present in a trait; however, VI is typically small (Falconer and Mackay, 1996). 

 Environmental variance (VE), by definition, is any source of variation that is not due to 

genetics. Sources of environmental variance can include things such as variation in nutrition, 

climate, maternal effects, measurement error, and other “intangible” variation (Falconer and 

Mackay, 1996:135).  
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Heritability 

 While it is thought that Lush (1940) was the first to formally use the term “heritability” to 

describe the amount of variation in phenotypic traits that is due to heredity (Visscher et al., 

2008), the concept of heritability goes back to two of the founders of the modern evolutionary 

synthesis, Ronald Fisher (1918) and Sewall Wright (1920). In his classical paper that founded 

quantitative genetic theory, Fisher (1918) described the resemblance between relatives with 

correlation and regression coefficients. He gives an example showing the percentage of total 

variance in adult human stature that is due to genotypes, which is then divided into “essential 

genotypes” and “dominance deviations” (pp. 424). The percentage attributed to genotypes 

corresponds to broad-sense heritability, and the percentage attributed to “essential genotypes” 

corresponds to narrow-sense heritability. Both broad-sense and narrow-sense heritability are 

discussed further below. Wright (1920) first used h2 to represent the amount of variation in a 

phenotype that is due to genotype. His method, known as path analysis, estimates the relative 

importance of heredity, environment, and residual variation by using path coefficients. Each path 

coefficient measures the “importance of a given path of influence from cause to effect” (pp. 

329). In this method, the path coefficient h (which stands for heredity) is the correlation between 

genotype and phenotype, and h2 is the proportion of the overall phenotypic variation that is due 

to the path from genotype to phenotype (Visscher et al., 2008).  

 Partitioning phenotypic variance into components (Equations 3.1 and 3.3) allows the 

estimation of heritability. Heritability is a ratio of the amount of genetic variance relative to 

phenotypic variance for a given trait. Thus, heritability estimate values range between zero and 

one, and reflect the role of inherited variance in determining phenotypic variance (Falconer and 
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Mackay, 1996). Quantitative geneticists have two definitions of heritability. “Broad sense 

heritability” is defined as: 

𝐻2 =  𝑉𝐺  𝑉𝑃⁄       (3.4) 

and is a measure of how much of the total phenotypic variation in a population (VP) is explained 

by genetic variation (VG) (Falconer and Mackay, 1996). As shown in Equation 3.2, VG includes 

several sources of genetic variation, making broad sense heritability different than the extent that 

phenotypes are determined by the genes passed on from parents (because parents pass on genes, 

not genotypes). This portion of variance is defined as “narrow-sense heritability:” 

ℎ2 =  𝑉𝐴  𝑉𝑃⁄       (3.5) 

(Falconer and Mackay, 1996) and will henceforth be called just “heritability” or h2.  

 Heritability is a population-level estimate that requires pedigree information. Its values 

range from 0.0 to 1.0, with higher values indicating that much of the phenotypic variation in a 

trait is due to genetic variance (and the reverse for lower values). Though a high value means 

that a trait is relatively more influenced by the effects of genes rather than the environment in 

theory, the uniform environment typically encountered by pedigreed populations can artificially 

inflate the importance of genetic variance (Visscher et al., 2008). A further caveat is that 

heritability is population-specific and its estimation depends on the current genetic variation in a 

population under particular environmental conditions. Therefore, a change in either of these 

parameters—genetic variability or environmental factors—can lead to a different heritability 

estimate, meaning that estimates for one population should only be extrapolated to other 

populations with caution (Cheverud and Dittus, 1992; Falconer and Mackay, 1996; West-

Eberhard, 2003).  
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 However, given the fact that heritability is a dimensionless parameter that simply 

describes the importance of genetic factors in variation between individuals, it is nevertheless 

useful for comparing estimates made on the same trait across populations and different traits 

within a population. For example, body size exhibits similar heritability estimates not only across 

different populations, but also across multiple species, such that body size may be a trait that is 

universally robust to environmental insult (Visscher et al., 2008). Another more general example 

is the consistent pattern of low heritability estimates for fitness-related traits (e.g., fertility, 

number of offspring, life-history traits) compared to morphological traits (Cheverud and 

Buikstra, 1981; Mousseau and Roff, 1987; Falconer and Mackay, 1996; Visscher et al., 2008), a 

concept that is discussed further below.  

 Even though heritability is a widely used parameter, there are many misconceptions that 

plague its use. Visscher et al. (2008) lay out five common misconceptions that deserve further 

discussion here. First, heritability is not the proportion of a phenotype that is passed on to the 

next generation. This is untrue because it is genes that are passed on, not phenotypes, and the set 

of genes passed from parent to each offspring is unique. Second, high heritability does not imply 

genetic determinism; a high heritability simply means that much of the phenotypic variation in a 

population is attributable to genetic variation. While a high heritability estimate may mean that 

phenotype is a good predictor of genotype, it does not mean that genotype is a good predictor of 

phenotype because the environment can change and alter the phenotype. For example, secular 

change studies have shown that human stature has increased in many populations (Steegman, 

1985, 1986, 1991; Steckel, 1987, 1995; Floud et al., 1990; Komlos, 1990, 1994; Malina et al., 

2004) even with a commonly reported heritability value for stature of about 0.8 (Fisher, 1918; 
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Carmichael and McGue, 1996; Preece, 1996; Silventoinen et al., 2000, 2003; Macgregor et al., 

2006; Perola et al., 2007). The increase in stature is likely due to better nutrition and improved 

environmental conditions. Therefore, the environment allowed for a change in phenotype even 

though the majority of the variation in that phenotype is due to variation in genotype.  

 Third, a low heritability value does not imply that there is no additive genetic variance. It 

simply means that compared to all the observed phenotypic variation, only a small portion of 

phenotypic variation is due to genotypic variation. Additive genetic variance can still be high, 

but if phenotypic variance is extremely high then heritability will be low. This distinction is 

particularly important when dealing with the response to natural or artificial selection and will be 

discussed further (see Evolvability, below). Fourth, heritability is not informative about the 

nature of between-group differences. Heritability is population and environment specific; a 

change in the environment or in gene frequencies can change heritability estimates. Therefore, 

heritability is not a useful predictor about changes within a population over time or about 

differences between different populations. Finally, a high heritability estimate does not imply 

genes of large effect. There is no relationship between the number or the effect size of genes 

affecting a trait and the heritability estimate. For example, stature, with its high heritability 

estimate of 0.8 (Fisher, 1918; Carmichael and McGue, 1996; Preece, 1996; Silventoinen et al., 

2000, 2003; Macgregor et al., 2006; Perola et al., 2007), is influenced by numerous genetic loci 

that each individually only explain a small amount of genetic variance (Gudbjartsson et al., 2008; 

Lettre et al., 2008; Sanna et al., 2008; Weedon et al., 2008; Soranzo et al., 2009).  

 In regard to postcrania – the focus of this project – a significant amount of heritable 

variation has been found in the individual postcranial measurements of mice (Leamy, 1974), 
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horses (Dario et al., 2006), birds (Potti and Merino, 1994), and living (Cheverud and Dittus, 

1992) and skeletal (Cheverud and Buikstra, 1981, 1982; Hulsey et al., 2010) non-human 

primates. Genetic variation also appears to play a large role in postcranial variation in humans 

(Susanne, 1977; Byard et al., 1984; Devor et al., 1986a,b; Arya et al., 2002; Livshits et al., 2002). 

For example, Devor and colleagues (1986a,b) used path analysis to estimate the transmissibility 

(i.e., heritability) of cranial and postcranial measures in a living human sample. Postcranial 

measurements of length showed higher heritability than breadth or circumference measures, a 

pattern suggested by Osborne and DeGeorge (1959), and cranial estimates of heritability were 

intermediate. Specifically, the heritability of limb and limb segment length measurements ranged 

from 0.640 to 0.741. These estimates are comparable to other similar studies, as is the general 

trend that measurements of length have higher h2 estimates than other measurement types 

(Susanne, 1977; Kaur and Singh, 1981; Paganini-Hill et al., 1981; Byard et al., 1984). Despite 

the limitations (see Anthropometrics vs. Osteometrics in Research Design, below), all the human 

studies used anthropometric data, as skeletal data with associated pedigree data were not 

available. Within the limbs of skeletal primates, environmental variance increases while 

heritability decreases as one moves distally along the limb (Hallgrímsson et al., 2002). Given 

that development proceeds proximo-distally (see Limbs, above), variation is expected to 

accumulate in distal structures (Hallgrímsson et al., 2002; Young and Hallgrímsson, 2005).  
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Evolvability 

 Evolvability is defined as the ability of a population to respond to natural or artificial 

selection, which depends on the amount of additive genetic variation (VA) present in the 

population (Houle, 1992). Narrow-sense heritability is often used as a measure of the 

evolutionary potential of a population, but as will be shown below, this is problematic. A 

different measure of evolvability, e, is discussed here.  

 As mentioned previously, one of the misconceptions regarding heritability is that a low 

value implies little to no additive genetic variance. In reality, low heritability means that only a 

small portion of the overall phenotypic variance is due to additive genetic variance. If the 

environmental variance (VE in Equation 3.1) is very large as compared to the additive genetic 

variance, then heritability will be low. This distinction is particularly necessary to understand 

when discussing selection, as will be shown below.  

 The breeder’s equation is: 

𝑅 =  ℎ2 ∗  𝑆      (3.6) 

where R is the change in the mean phenotype between generations and S is the selection 

differential, or the difference in mean phenotype between parents selected for breeding and the 

overall mean in their generation (Lynch and Walsh, 1998). The response to selection (R) depends 

on the amount of genetic variation in the population, represented in Equation 3.6 by h2. If there is 

no additive genetic variance (i.e., h2 is zero), there will be no response to selection. Similarly, 

selection will reduce the amount of additive genetic variance, and, hence, heritability will 

decrease in the next generation (Konigsberg, 2000). The relationship between selection and 

heritability is described in Fisher’s Fundamental Theorem of Natural Selection (Fisher, 1930) as: 
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𝑅 =  𝑉𝐴  𝑊⁄        (3.7) 

where W is the mean fitness of the population. Fisher’s theorem, then, shows that rates of trait 

change due to selection are related to the additive genetic variance in fitness (Fisher, 1930; 

Konigsberg, 2000). Combined with the decrease in additive genetic variance over generations, 

this leads to a decreased rate of evolution in response to selection over time. As stated above, 

estimates of heritability for fitness traits are typically low as compared to morphological traits 

(Cheverud and Buikstra, 1981; Mousseau and Roff, 1987; Falconer and Mackay, 1996; Visscher 

et al., 2008). Therefore, the response to selection should be low for fitness traits. However, as an 

example, the number of eggs produced by farmed chickens has a high response to artificial 

selection (Preisinger and Flock, 2000), indicating that a large amount of additive genetic 

variation exists. This is unexpected given that clutch size is a fitness trait with low heritability, 

meaning that it should have a limited response to selection.  

 The observation that many fitness traits have large additive genetic variance relative to 

the trait mean led Houle (1992) to propose a new dimensionless statistic that would more 

accurately estimate the ability of populations to respond to selection. Evolvability can be thought 

of as the expected evolutionary response to selection in a single trait or among multiple traits 

relative to the strength of selection (Hansen and Houle, 2008; Hansen et al., 2011). To 

effectively estimate evolutionary potential, the evolvability estimate should be comparable 

across traits and species. Therefore, the way that additive genetic variation is scaled is important.  

 Given that evolvability is effectively the response to selection scaled to the strength of 

selection (Hansen et al., 2011), it is closely related to the Lande equation. The multivariate 

Lande Equation gives the expected change in a trait mean per generation and is: 
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∆𝑧 = 𝐺 ∗  𝛽      (3.8) 

where Δz is the response to selection, G is the additive genetic variance/covariance matrix, and β 

is the directional selection gradient (Lande, 1979). The univariate version of the Lande Equation 

is: 

𝑅 =  𝑉𝐴 ∗  𝛽      (3.9) 

where R is equivalent to the response to selection in Equation 3.6. Using this equation, 

evolvability is measured as: 

𝑒 =  𝑅  𝛽⁄ =  𝑉𝐴     (3.10) 

following Hansen and colleagues (2011).  

 The additive genetic variance must be standardized in order to allow comparison across 

traits or species. Typically this is done by dividing the additive genetic variance by the 

phenotypic variance, which yields heritability and the breeder’s equation seen in Equation 3.6. 

This variance-standardized measure of evolvability is inappropriate, as discussed above and in 

Houle (1992).  

 A more appropriate measure of evolvability is a mean-standardized one, such as: 

𝑒 =  𝑉𝐴  𝑚2⁄       (3.11) 

where m is the trait mean before selection, as suggested by Houle (1992) and Hansen and Houle 

(2008). Henceforth, this definition of e will be used when discussing evolvability. When using 

this mean-standardized statistic, fitness-related traits show higher levels of evolvability than 

morphological traits, opposite that seen in the pattern of heritability estimates. Therefore, fitness-

related traits do indeed have high levels of additive genetic variance, but they also have even 

higher levels of total phenotypic variance due to high levels of environmental variance. 
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Furthermore, using data from over 200 quantitative genetic animal studies, Houle (1992) showed 

that the correlation between heritability and evolvability is near zero. As there is no predictive 

power between heritability and evolvability, the two measures should not be used 

interchangeably (Hansen et al., 2011). The one exception given by these authors is that a large 

heritability typically implies a non-zero evolvability. While both h2 and e use additive genetic 

variance, the scale that is used to standardize that variance leads to very different conclusions.  

 Just like heritability, evolvability (e) is a population-level estimate that requires pedigree 

information. While estimates of e may seem quite small, they can have a large impact on 

quantitative traits. As described by Hansen and colleagues (Hansen et al., 2003b; Hansen et al., 

2011), an evolvability of 0.001 predicts that for traits under unit selection there will be a tenth of 

a percent change per generation (Hansen et al., 2011). With a selection strength of 1, this level of 

evolvability, which was the median for linear morphological traits (i.e., single dimension traits 

rather than areas or volumes) in the large study comparing h2 and e mentioned above (Houle, 

1992), would produce a 10% change in just under 100 generations and a doubling of the trait in 

700 generations (Hansen et al., 2011). Therefore, even seemingly small estimates of e are 

capable of producing significant changes.  

 Conditional evolvability is a closely related concept that takes the covariance of traits 

into account when estimating a trait’s response to selection. Traits that share some of their 

additive genetic variance (VA) through genetic covariance are not capable of evolving 

independently from one another. While most traits spend the majority of their time under 

stabilizing selection, as evidenced by the stability of organisms over time (Hansen, 1997; Hansen 

et al., 2003a), an environmental shift would cause some characters to experience directional 
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selection until they reached a new optimum; however, not all characters would be affected 

uniformly. In this situation, only the amount of VA in a trait that is not shared with other traits 

through covariance is available for adaptation in the trait. Unconditional evolvability (e) can be 

thought of as the upper limit of evolvability for a trait because it does not take character 

correlations into account. 

 Conditional evolvability is computed from the G matrix, which includes additive genetic 

variance and covariance estimates for a set of traits. This is the same G as in the multivariate 

Lande Equation (Equation 3.8, above). The conditional evolvability of a trait is equivalent to the 

inverse of the corresponding diagonal element of the inverse G matrix. Therefore:  

𝑐(𝑥𝑖) =  1  [𝐺−1]𝑖𝑖⁄      (3.12)  

where x is the ith trait and G-1 is the inverse G matrix (Hansen and Houle, 2008). Estimates of c 

are typically much smaller than e (Hansen et al., 2003a; Hansen and Houle, 2008). A low c 

relative to e indicates that a trait shares the majority of its variation with other traits. This type of 

trait would be constrained by evolution acting on other traits, and evolution acting on this trait 

would cause correlated responses in other traits (Hansen and Houle, 2008; Roseman et al., 2010).  

 There has been a surge in bioanthropological and related literature looking at the 

evolvability of human and non-human primate skeletal features, including the cranium (Marroig 

et al., 2009; Martínez-Abadías et al., 2009; Roseman et al., 2010), hands and feet (Rolian, 2009), 

pelvic girdle (Lewton, 2012), and limbs (Young et al., 2010; Villmoare et al., 2011). While most 

of these do not directly estimate e as defined above, they do evaluate the ability of a population 

to respond to selection via other statistical means. For instance, many of these studies analyze 

patterns of morphological integration (discussed further below) to determine the degree that traits 
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are able to independently evolve in a population. This is because genetic integration, which 

manifests as phenotypic covariance, impacts the amount of genetic variance available for the 

independent evolvability of traits (Young et al., 2010). Because estimating e and c requires 

pedigree information, the samples that can be used are limited. With the exception of Martínez-

Abadías et al. (2009) and Roseman et al. (2010), none of the abovementioned papers use 

pedigreed samples and are thus unable to estimate the additive genetic variance of the samples. 

 The phenotypic variance/covariance matrix has been shown to be a good proxy for the 

genetic variance/covariance matrix (Cheverud, 1988), allowing non-pedigreed samples to be 

used to explore evolvability by other means. While the phenotypic and genetic 

variance/covariance matrices are broadly similar, some authors caution against such substitutions 

(Willis et al., 1991; Lewton, 2012). The direct estimation of e using additive genetic variance 

from pedigreed samples is largely not done. Therefore, while various features of the human and 

non-human primate skeleton have been found to be evolvable, there is a need to formally 

quantify the evolvability and conditional evolvability of independent traits in primate limbs using 

pedigreed samples. This project seeks to accomplish this goal.  

 

Estimation of Covariation 

 The concept of evolvability is closely tied to the concept of morphological integration. 

While heritability and evolvability explore the genetic variation within a trait, morphological 

integration, like conditional evolvability, is an attempt to understand the covariation among 

traits. Phenotypic covariation occurs when traits are developmentally or functionally related 



 

57 

 

(Cheverud, 1982, 1996a) and can be the result of pleiotropic effects of genes acting on multiple 

traits (Cheverud, 1984, 2007; Hallgrímsson et al., 2002; Rolian, 2009; Young et al., 2010).  

 As originally conceptualized by Olson and Miller (1958), morphological integration is 

the process by which developmentally and/or functionally related parts interact to form an 

integrated organism with different parts that are capable of working together. In other words, 

morphological integration is “the summation of the totality of characters which, in their 

interdependency of form, produce an organism” (pp. v). These authors suggested the use of 

phenotypic correlation as a quantitative method of identifying sets of phenotypic traits that are 

more strongly integrated based on shared developmental pathways or functional purposes.  

 Modularity is a related concept that occurs when morphologically integrated sets of 

characters are relatively uncorrelated with other sets of characters (Wagner, 1996; Klingenberg, 

2008; Mitteroecker and Bookstein, 2008; Hallgrímsson et al., 2009). The idea of modularity, 

which gained traction in the last two decades, has helped explain the various levels of 

heterogeneity found in an organism, whether that be structural or functional, and is considered an 

essential feature of biological organization (West-Eberhard, 2003). Various types of modules 

have been described in the literature, including variational modules (Wagner and Altenberg, 

1996), functional modules (West-Eberhard, 2003) and developmental modules (Raff, 1996; 

Carroll et al., 2001).  Each of these describes a part of an organism that is integrated due to 

natural variation or a functional or developmental process and that is also relatively uncorrelated 

with other parts of the organism (Wagner et al., 2007). Therefore, for example, a set of 

characters that work together to perform a function can be integrated in a functional module that 

is relatively independent from other modules. While different classes of modules have been 
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cited, the central issue facing studies of modularity is that their level of organization must be 

defined. What unifies all modules is that they are context-independent (Schlosser and Wagner, 

2004). For an extensive overview of the evidence for and origins of modularity, see the review 

by Wagner and colleagues (2007). 

 The study of morphological integration in biological anthropology increased notably in 

the 1980s with Cheverud’s work on macaque and tamarin crania (Cheverud 1982, 1995, 1996b). 

As explained by Rolian and Willmore (2009), Cheverud’s work placed morphological 

integration in a quantitative genetics framework by relating the developmental and functional 

relationships among traits to the Lande Equation (Equations 3.8 and 3.9, above) and the 

evolution of genetic covariance structure. In addition, Cheverud established variance/covariance 

and correlation matrices as the method of identifying relationships among traits. These matrix-

based methods, such as analysis of eigenvalues (e.g., Pavličev et al., 2009), principal component 

and factor analysis (e.g., Ackermann and Cheverud, 2000), and matrix correlations (e.g., 

Cheverud, 1996b; Ackermann and Cheverud, 2000), allow the identification of patterns and 

magnitudes of integration in large datasets and the testing of observed data against theoretical 

matrices for hypothesis testing.  

  Based on the abundance of empirical observations made using matrix-based methods in 

a quantitative genetics framework, integration theory began to shift focus in the mid-1990s. The 

new focus became the way that integration itself can evolve, and, again, Cheverud played a 

pivotal role. In his 1996 paper (Cheverud, 1996a), he defines four types of integration that are 

ordered hierarchically. The first two types of integration – functional and developmental – are 

seen within individuals; they are the same types of integration as described by Olson and Miller 
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(1958). Functional integration arises when phenotypic traits work together to perform a function 

and the efficiency of that performance is dependent upon the way that the traits interact. 

Developmental integration occurs when traits are directed by the same developmental process or 

interact during development. It should be noted that functional and developmental integration are 

not mutually exclusive because functional integration in adult individuals is partly achieved 

through developmental integration (Cheverud, 1996a). Moving from the individual level to the 

population level, there are two other types of integration: genetic and evolutionary. Genetic 

integration occurs when a set of morphological traits are inherited together as a module, through 

a process such as pleiotropy or linkage disequilibrium (defined below), independently from other 

sets of traits. Evolutionary integration occurs when morphological traits co-evolve because they 

are either inherited together (through genetic integration) or because they are selected together 

(even when inherited independently). In this framework, individual integration leads to genetic 

integration that in turn leads to the coordinated response to evolution known as evolutionary 

integration.  

 Cheverud’s hierarchical framework points to the connection between morphological 

integration and evolvability. As traits become integrated at the population level and their 

response to selection becomes more coordinated through evolutionary integration, they are less 

capable of independently responding to selective pressures (i.e., their independent evolvability is 

reduced) (Rolian, 2009). Pleiotropic interactions between traits are either selected for or against 

depending on whether the covariation they produce at the phenotypic level increases or decreases 

fitness (Wagner, 1996; Wagner and Altenberg, 1996). If integration among traits is selected 

against, the process is known as parcellation (Wagner and Altenberg, 1996), and individual traits 
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become more independently evolvable. This may occur when traits that shared a common 

function or developmental basis are selected for specialization (Hallgrímsson et al., 2002). For an 

example of this, see Rolian (2009). 

 The hierarchical framework of morphological integration also highlights the importance 

of the underlying processes that produce integration among traits. This has led to a shift in focus 

from simply identifying patterns of integration to attempting to understand the processes 

(genetic, developmental, and functional) that create or contribute to the known patterns of 

covariation. In what is known as the Palimpsest Model6, Hallgrímsson and colleagues (2009) 

explain that while integration and modularity are often investigated through phenotypic 

covariation or correlation, little thought is typically given as to whether the observed patterns 

accurately represent integration. The Palimpsest Model of covariation structure suggests that 

covariation structure arises through covariance-generating developmental processes 

(Hallgrímsson et al., 2007). Several of these processes may act to influence covariation, making 

it difficult to unravel the underpinnings of the covariation structure. Therefore, the underlying 

processes of integration and modularity can be hard to decipher from phenotypic covariance 

data. In fact, the authors state that, while integration and modularity are aspects of developmental 

architecture (defined as the connections between genetic and phenotypic variation during 

development [Hallgrímsson et al., 2009]) that influence evolvability by structuring how genetic 

variation is translated into phenotypic variation, they are not equivalent in any way to observed 

patterns of covariation (Hallgrímsson et al., 2009). This is because covariance and correlation 

depend on the existence of variance to be detected, yet integration and modularity exist even in 

                                                 

 
6 A palimpsest is a velum scroll used in medieval times. The scroll would be reused, with the remnants of previous 

texts still visible. These various texts would accumulate over time, with newer text obliterating older text.  
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the absence of variance. The example given in this paper is a sample of clones raised under 

identical conditions and devoid of variation. These clones would exhibit no covariation structure, 

yet the developmental architecture would still be integrated in the same way as the parent 

population. Reintroduced variation would then be structured based on the integration and 

modularity of the developmental system. Therefore, these authors advocate a different definition 

of integration: the tendency of a developmental system to produce covariation.  

 Despite the limitations that the Palimpsest Model seems to posit on the study of 

integration, there are still viable methodological means to identify integration in samples. The 

scaled variance of eigenvalues shows how much variation is unequally distributed across 

principal components in a principle components analysis. As integration increases, more of the 

total variation is found in fewer principle components. Therefore, relative eigenvalue variance 

(following Pavličev et al., 2009) will be used here.  

 Studies looking at morphological integration in limbs support the idea that developmental 

factors play a role in limb variation. While evidence in avian datasets shows that integration is 

higher within limbs than between homologous elements (Van Valen, 1965; Wright, 1968; 

Magwene, 2001), the opposite appears true in primate datasets (Hallgrímsson et al., 2002; Young 

and Hallgrímsson, 2005). Specifically, when the limb girdle is removed from analysis, 

homologous elements of primates are more tightly integrated than elements within the individual 

limbs, signaling the similar developmental processes between homologous elements in the fore 

and hind limbs. However, evidence also suggests that functional factors impact the degree that 

limb elements are integrated. When a broader sample of mammals, including mice, gibbons, 

macaques, and bats, is analyzed, it becomes evident that the degree of integration between 
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homologous elements decreases with increased specialization and limb divergence (Young and 

Hallgrímsson, 2005). For example, the highly specialized forelimb of the bat shows much 

reduced integration with the homologous elements of the hind limb compared with the 

homologue integration found in the quadrupedal macaque. Selection for the increased functional 

specialization appears to reduce the common developmental factors between the limbs, leading 

to decreased covaration. This reduction in integration with increased specialization of the limbs 

can also be seen within primates. Young and colleagues demonstrate that apes and humans show 

lower levels of integration between limbs and higher levels of independent evolvability of the 

limbs than quadrupedal monkeys, arguably due to functionally divergent use of the limbs (Young 

et al., 2010). Similar results were also found in a large group of Strepsirrhine primates, with 

arboreal quadrupeds showing higher between limb integration than leapers (Villmoare et al., 

2011). 

 There are few publications on the morphological integration of human limbs. Young and 

colleagues (2010) compared humans to other primate species (discussed above), and found 

human limbs to be less integrated than quadrupedal monkeys. DeLeon and Auerbach (2007) 

compared multiple human groups and found that patterns of integration differ between groups 

based on subsistence strategy, with agriculturalists showing higher between-limb integration than 

hunter-gatherers. And, finally, Auerbach and DeLeon (2013) looked at integration among 

multiple dimensions (articulations, diaphyses, and lengths) within the long bones of human 

limbs. These results suggest that similar dimensions among homologous elements are more 

integrated than elements in the same limb and that the highest levels of integration are found in 

long bone lengths.  
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Linkage Analysis 

 The previous sections reviewed quantitative genetics approaches to understanding 

variation and covariation in quantitative traits. Heritability and evolvability require an 

understanding of the phenotypic variance and familial relationships (i.e., pedigree data) to 

partition variance, and morphological integration requires knowledge of the covariance structure. 

The final analysis employed in this project, linkage analysis, necessitates not only phenotypic 

and pedigree data, but also genotypic data. These additional data are used to look for correlations 

between phenotypic and genotypic variation with the goal of identifying genomic regions that 

may contribute to quantitative trait variation. This section describes how linkage analysis works 

and reviews pertinent literature on quantitative trait loci (defined below) related to skeletal 

morphology, specifically with regards to the limbs.  

 Genetic mapping has been a staple of disease and complex trait research for a century 

because it “allows one to find where a gene is without knowing what it is” (Lander and Schork, 

1994:2037). This is done by comparing the inheritance pattern of a trait to the inheritance pattern 

of chromosomal regions, and the goal is to create a graphical representation of the relative 

arrangement of genes on a chromosome. The first study to link a gene to a chromosomal location 

was Sturtevant’s work that mathematically connected sex-linked traits in Drosophila to a linear 

arrangement on a chromosome (Sturtevant, 1913; Lander and Schork, 1994). The subsequent 

combination of new methods such as recombinant DNA (the artificial blending of DNA 

sequences) and positional cloning (the isolation of partially overlapping DNA segments that 

move toward a candidate gene) allowed the identification of genes based solely on chromosomal 

location rather than biochemical function (Bender et al., 1983; Lander and Schork, 1994). These 
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early methods to gene mapping worked well for model organisms such as Drosophila but were 

unfeasible in humans.  

 A genetic marker is a segment of DNA with an identifiable physical location on a 

chromosome with a recognizable inheritance pattern (Rubicz et al., 2007). There are several 

requirements for ideal genetic markers. Marker loci should be highly polymorphic so that 

individuals have different alleles, abundant so as to thoroughly cover the genome, neutral to both 

the trait and fitness, and co-dominant (Falconer and Mackay, 1996). The limitation prior to the 

molecular biology revolution and DNA technological advancements that began in the 1980s, 

however, was that there were only a few known genes to serve as genetic markers throughout a 

genome. For example, while blood antigen proteins meet the requirements of being neutral and 

co-dominant, they are neither highly polymorphic nor abundant enough to cover the genome 

(Falconer and Mackay, 1996).  

 A breakthrough in genetic mapping came with the work of Botstein and colleagues (Petes 

and Botstein, 1977; Botstein et al., 1980) who discovered that recombinant DNA probes could be 

used to identify marker loci that are polymorphic in DNA sequence. The differing lengths of 

these marker loci could then be detected using restriction endonucleases that cleave the DNA at 

sequence-specific locations, known as restriction fragment length polymorphisms (RFLPs). The 

recognition of these naturally-occurring RFLP DNA sequence variants meant that many genetic 

markers could be identified, and, if well-spaced throughout the genome, any trait caused 

completely or partially by a major locus segregating in a pedigree could be mapped (Botstein et 

al., 1980).  



 

65 

 

 With the advent of polymerase chain reaction (PCR) (Saiki et al., 1985; Mullis et al., 

1986; Mullis and Faloona, 1987), the number of markers available for mapping increased 

significantly. Short tandem repeats (STRs), which are segments of the genome with repetitive  

di-, tri-, or tetra-nucleotide sequences, were subsequently found to be ideal candidates for gene 

markers (Weber and May, 1989; Pulst, 1999). STR loci are multiallelic (i.e., there are multiple 

differing alleles), increasing the chance that an individual will be heterozygous and parental 

alleles can be differentiated (Pulst, 1999). STRs are also widely distributed throughout the 

genome, easily detected through PCR followed by electrophoresis (a method of visualizing PCR 

product [i.e., amplified DNA]), and can be multiplexed, allowing multiple STRs to be detected 

simultaneously (Pulst, 1999).   

 STRs are currently the genetic marker of choice for linkage analysis. Linkage analysis is 

a type of statistical analysis with the goal of mapping a gene to a region of a chromosome. These 

genes influence the expression of phenotypic traits, such as diseases or other complex traits (such 

as limb segment lengths). Oftentimes, however, what are actually being mapped are not 

individual genes but quantitative trait loci (QTL). A QTL is a segment of a chromosome that 

influences the trait of interest and is not necessarily a single gene (Falconer and Mackay, 1996). 

If a significant statistical result is found between the phenotypic trait of interest and a genetic 

marker, this indicates that a QTL lies somewhere in the region of the genetic marker (i.e., there is 

something in that area of the chromosome, whether it be a gene or a regulatory element, that 

affects variation in the phenotype). It does not mean that the marker itself is influencing the trait, 

only that something in the area of the genome around the marker is correlated with the 

phenotype.  



 

66 

 

 The fact that QTLs can be located using genetic markers is based on the idea that genes 

on a chromosome can become “linked” during recombination. During meiosis, the process of 

cell replication and division that produces gametes (i.e., egg and sperm), genetic material is 

exchanged between homologous segments of chromosomes, a process known as crossing over or 

recombination (Bailey-Wilson and Wilson, 2011). Depending on how closely two genes are to 

one another on a chromosome will determine how often crossing over occurs between them. If 

syntenic loci (i.e., loci that are located on the same chromosome) are located far apart, they will 

have a high rate of recombination between them, typically about 50%. On the other hand, loci 

located very close to one another will have a much-reduced recombination rate, sometimes 

nearing zero if the loci are located next to each other. Recombination fractions that fall between 

zero and 1/2 indicate a level of linkage between the loci. This implies that the loci lie close 

enough to one another on a chromosome that they are sometimes transmitted together during 

crossing over and therefore do not recombine (Bailey-Wilson and Wilson, 2011)7. Genetic 

markers, therefore, can be especially useful in identifying QTLs if they are located near enough 

to each other to likely remain linked.  

 Linkage analysis requires pedigreed samples so that loci can be traced through 

generations to determine recombination rates. Classical linkage analysis involves offering a 

model that explains how phenotypes and genotypes in a pedigree are inherited. A hypothesized 

model that suggests a location for a trait locus near a genetic marker is compared to a null model 

                                                 

 
7 Linkage disequilibrium (LD, also known as gametic phase disequilibrium) is a closely related concept. It is the 

non-random association of alleles at different loci that is different than would be expected if they were independent, 

randomly segregating alleles, making it appear that loci are associated. LD is a broad concept, with genetic linkage 

being only one of the ways that it occurs. Other causes of LD include the intermixture of populations, chance in 

small populations, and selection (Falconer and Mackay, 1996). 
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that suggests no linkage between the trait locus and the marker locus (Lander and Schork, 1994). 

These models are then compared to the observed data to see which offers a better fit. The 

hypothesized model is either accepted or rejected based on the likelihood ratio or corresponding 

logarithm of odds (LOD) score. Historically, a LOD of 3 (corresponding to a 1,000:1 chance) 

indicates that there is linkage between the trait loci and the genetic marker and that the null 

model should be rejected (Lander and Schorck, 1994; Bailey-Wilson and Wilson, 2011). 

However, Lander and Kruglyak (1995) proposed a modification to the LOD score to correct for 

multiple comparisons that are done with more dense genetic maps. Their new method of 

calculating significance thresholds helped to limit the genome-wide probability of observing a 

false positive linkage to 5% and has become a standard used in linkage analysis (Lander and 

Kruglyak, 1995; Bailey-Wilson and Wilson, 2011).  

 Another early limitation to linkage analysis specific to humans was that crosses cannot be 

experimentally controlled, family sizes are small, and generation times are long (Bailey-Wilson 

and Wilson, 2011). In addition, much of the information about relatedness between individuals 

could not be used in nuclear families as many statistical methods used only pairs of related 

individuals (e.g., sib-pairs) to garner information (e.g., Hasemon and Elston, 1972; Amos et al., 

1989; Kruglyak and Lander, 1995; Risch and Zhang, 1995; Fulker and Cherny, 1996; Gu et al., 

1996; Gu and Rao, 1997). However, pair-based methods have much lower power to identify 

genes than other methods that use larger configurations of relatives (Todorov et al., 1997; 

Williams and Blangero, 1999a,b; Blangero et al., 2000), and statistical methods have been 

developed to identify QTLs using all relationships in nuclear families and extended pedigrees 
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(Goldgar, 1990; Schork, 1993; Amos, 1994; Almasy and Blangero, 1998; Blangero et al., 2000; 

Prat et al., 2000).  

 A successful method for identifying QTLs in extended pedigrees is known as variance 

component linkage analysis, and it is based on the classical quantitative genetic method of 

partitioning phenotypic variance (see Equation 3.1 above). Here, the quantitative phenotype is 

expressed as a linear function of the n QTLs that influence it: 

𝑦 =  𝜇 +  ∑ 𝛾𝑖

𝑛

𝑖=1

+ 𝑒 

     (3.13) 

where y is the phenotype, µ is the grand mean, γ is the effect of the ith QTL, and e is the random 

environmental deviation (Almasy and Blangero, 1998). Using this equation, phenotypic trait 

covariance and correlation between pairs of relatives can be derived, the latter of which includes 

a heritability term representing the total phenotypic variance due to the additive genetic 

contribution of the ith QTL (for detailed equations and explanations, see Almasy and Blangero, 

1998). Data from the pedigree are used to construct a covariance matrix for the pedigree, and a 

likelihood model is produced. The null hypothesis that additive genetic variance due to the ith 

QTL is equal to zero (i.e., there is no linkage) is tested against a model where the variance due to 

the ith QTL is estimated, and the difference between these is used to produce a LOD score 

(Almasy and Blangero, 1998). Variance component linkage analysis methods now exist for 

pedigrees of various sizes and complexities (Commuzie et al., 1997), and things such as 

pleiotropy (Almasy et al., 1997), genotype by environment interaction (Towne et al., 1997), and 

epistasis (Blangero et al., 2000) can be incorporated. For an in-depth review of variance 

component linkage analysis, see Blangero and colleagues (2007).  
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 There are other methods available for identifying QTLs that are often cited in the 

literature, one of which is interval mapping. Interval mapping does not require pedigreed data, as 

linkage analysis does, and is commonly used in experimental animals where test crosses can be 

controlled (Soller et al., 1979; Jansen, 1993). This method works by using estimated genetic 

maps and statistically testing for the presence of a QTL in intervals defined by the ordered pairs 

of genetic markers (Doerge, 2002). While powerful in its use of non-pedigreed samples, interval 

mapping, as defined by Lander and Botstein (1989), statistically tests for the presence of a single 

QTL in each interval, not allowing for interactions between multiple QTLs to be considered. 

Methods for testing for multiple QTLs exist, but are beyond the scope of this chapter (for a 

review, see Doerge, 2002). Another commonly used method for identifying QTLs are genome 

wide association studies (GWAS), which also do not require pedigree data (Hirschhorn and 

Daly, 2005). The most abundant genetic marker in the human genome is single nucleotide 

polymorphisms (SNPs) (Wang et al., 1998a; Brookes, 1999), and GWAS studies rely upon SNPs 

to look for associations. While interval mapping and GWAS methods have their place, linkage 

analysis methods have made a recent comeback as the dominant method for identifying genes of 

interest in disease and complex trait studies because of the distinct ability to incorporate familial 

data and identify variants with large effect size (Bailey-Wilson and Wilson, 2011). For a review 

on the relationship between linkage analysis and next-generation sequencing, see Bailey-Wilson 

and Wilson (2011), and for the relationship between linkage analysis and whole-genome 

sequencing, see Ott and colleagues (2015). 

 Many studies that have identified QTLs in the human genome are centered on diseases, 

such as diabetes (e.g., Duggirala et al., 1999), cardiovascular disease (e.g., Wang and Paigen, 
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2002), and obesity (e.g., Rankinen et al., 2006). However, there are also studies that identify 

QTLs that influence skeletal attributes in humans. Height is a classic quantitative trait that has 

been extensively studied using GWAS methods, and a multitude of QTLs have been found that 

each have a small effect on variation in human height (Weedon et al., 2007; Gudbjartsson et al., 

2008; Lettre et al., 2008; Sanna et al., 2008; Weedon et al., 2008; Soranzo et al., 2009). QTLs for 

skeletal attributes have been identified in humans for bone mineral density (Koller et al., 2000; 

Devoto et al., 2001; Ralston et al., 2005) and bone size (Koller et al., 2001; Deng et al., 2003). 

And, one study found a suggestive QTL associated with femur length in humans using linkage 

analysis on a cohort of twins (Chinappen-Horsley et al., 2008). 

 Animal models are frequently used to identify QTLs that influence skeletal attributes. 

This is because of the distinct lack of human skeletal samples that are associated with pedigree 

information and that have been adequately genotyped (discussed further in Research Design, 

below). Much work has been done to identify QTLs that influence skeletal attributes in mice, 

including such features as skeletal size (Christians et al., 2003), bone morphology (Drake et al., 

2001; Masinde et al., 2003; Klinenberg et al., 2004), bone mineral density (Klein et al., 1998; 

Ishimori et al., 2006; Leamy et al., 2013), and bone mechanical properties (Robling et al., 2003; 

Kesevan et al., 2006). Some of these same skeletal features have been studied in other model 

animals, including bone mineral density in baboons (Havill et al., 2005) and chickens (Rubin et 

al., 2007), and bone morphology in fish (Kimmel at al., 2005). QTLs specific to long bone length 

have been found in mice (Leamy et al., 2002; Kenney-Hunt et al., 2006, 2008; Norgard et al., 

2008, 2009; Pavličev et al., 2007), dogs (Chase et al., 2002; Carrier et al., 2005), and pigs (Mao 

et al., 2008); however, with the exception of Chinappen-Horsley and colleagues (2008), there is a 
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distinct lack of research that identifies QTLs that influence long bone length in humans and other 

primates. This project seeks to identify QTLs associated with long bone length in a model 

primate.  

 Considerable pleiotropy has been found between long bone lengths (Norgard et al., 2008, 

2009; Mao et al., 2008), between long bone length and organ weight (Leamy et al., 2002; 

Kenney-Hunt et al., 2006), and between long bone length and body size (Chase et al., 2002; 

Kenney-Hunt 2006, 2008; Pavličev et al., 2007) in non-primate animals. Pleiotropy and 

phenotypic correlation are measures that are relatively strongly correlated (Kenney-Hunt, 2008), 

providing support for the idea that pleiotropy is one way that morphological features coevolve. 

Therefore, this project also seeks to identify pleiotropy in lone bone lengths in a primate model.  

  

Summary 

 This chapter provides background on the various genetic approaches that are used in this 

study to understand variation and covariation in limb segment lengths. Limb segment lengths are 

complex traits that can be analyzed using the tenets of quantitative genetics to infer evolutionary 

change. By understanding the variance (i.e., heritability and evolvability) and covariance (i.e., 

morphological integration) of individual limb segments, the way that these traits are capable of 

evolving will be better understood. Additionally, identifying genomic regions (i.e., linkage 

analysis) that may impact the phenotypic variation of these traits provides another avenue of 

understanding the way that limb segments coevolve by potentially showing pleiotropic 

relationships between segments. Research that combines these various methodological 
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approaches is lacking in the literature, and this study could provide important insight into 

anthropological studies such as those reviewed in the previous chapter (see Limbs, above).  
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CHAPTER FOUR  

RESEARCH DESIGN: HYPOTHESES, MATERIALS, AND METHODS  

 

Hypotheses 

 The goal of this project is to use a quantitative genetics approach to estimate variance and 

covariance in limb segment lengths in humans and other primates using pedigreed samples and 

then begin the task of identifying genes which influence this normal genetic variation in primate 

limb bones. Pedigreed samples are by and large unused in previous research that has analyzed 

the variance and covariance of limb segments, and QTL analysis of primate limbs has not been 

done. The following hypotheses take into account findings from the literature discussed in the 

previous background chapters.  

 The way in which limb segments relate to one another will be explored here in two ways: 

1) through hypotheses based on a developmental perspective, i.e., based on the way in which 

limbs develop, and 2) through hypotheses based on an evolutionary perspective, i.e., based on 

the way in which limbs change over time across species. The purpose is not to pick one 

perspective over the other, but to show the ways in which limb morphology does or does not 

adhere to the assumptions frequently made in anthropological literature.  

 

Developmental Perspective Hypotheses 

 The Developmental Perspective is largely predicated by the notions that 1) limbs develop 

in a proximo-distal gradient (Tarchini and Duboule, 2006; Gilbert, 2013), 2) limb segment 

lengths are more genetically canalized than other limb features (Auerbach and Ruff, 2006; 
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Cowgill and Hager, 2007), and 3) homologous structures have similar developmental pathways 

(Hallgrímsson et al., 2002; Gilbert, 2013). These ideas give rise to the following hypotheses.  

 

1. While phenotypic variance increases from proximal to distal elements, heritability will 

decrease. – Environmental variance has been shown to accumulate in distal elements in 

primates (Hallgrímsson et al., 2002) due to the way in which limbs form in a proximo-

distal gradient (Tarchini and Duboule, 2006; Gilbert, 2013). Therefore, while phenotypic 

variance will increase due to increasing environmental variance, heritability will decrease 

because genetic variance plays a smaller role in overall phenotypic variance. 

 

2. Morphological integration will be higher among limb segment lengths and/or 

articulations and lower among diaphyseal measures. – This is based on research which 

indicates that 1) diaphyseal measures are more influenced by mechanical loading than 

other limb features (Larsen, 1997; Ruff, 2008a), 2) limb articulations are less responsive 

to mechanical  loading (Ruff et al., 1991), and 3) limb segment lengths are anecdotally 

considered to be more highly genetically canalized than other bone dimensions 

(Auerbach and Ruff, 2006; Cowgill and Hager, 2007).  

 

3. Proximal limb elements will shower higher morphological integration with one another 

than distal limb elements, and homologous elements will shower higher morphological 

integration than elements within the same limb. -  Homologous elements have similar 

developmental pathways, and molecular factors involved in limb development work in a 
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proximo-distal gradient (Tarchini and Duboule, 2006; Gilbert, 2013), allowing variation 

to accumulate in distal elements.  

 

4. Traits that show high morphological integration will have QTLs in the same genomic 

regions. – Pleiotropy, defined as a single gene or region contributing to multiple 

phenotypic traits, is a genetic mechanism which leads to positive genetic correlation and 

integration because changes in that single gene or region causes phenotypic changes in 

multiple traits (Cheverud, 1984, 2007; Hallgrímsson et al., 2002; Rolian, 2009; Young et 

al., 2010). It can be identified as multiple traits showing significant correlations with 

similar genomic regions.  

 

Evolutionary Perspective Hypotheses  

 The Evolutionary Perspective is driven largely by the ideas that 1) a major difference 

across primates is limb diversification from species that are quadrupeds to species that use 

suspension, leaping, or, as emphasized here, bipedalism, and 2) traits that evolve more 

independently share relatively less of their variation with other traits (Hansen and Houle, 2008). 

These factors lead to the following hypotheses.  

 

1. Evolvability will increase with limb diversification (i.e., as the upper and lower limbs 

evolve to perform different functions). – Evolvability will increase as the limbs become 

more independent of one another, allowing the limbs to evolve to perform different 

functions. Additionally, the expectation is that evolvability estimates will be comparable 
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across limb segments in quadrupedal non-human primates and more variable across the 

limb segments in the bipedal human sample.  

 

2. The difference between conditional evolvability and evolvability will decrease with limb 

diversification. – A trait that has low conditional evolvability relative to evolvability 

shares the majority of its variation with other traits, and evolution acting on this trait 

would cause correlated responses in other traits (Hansen and Houle, 2008; Roseman et 

al., 2010). Quadrupedal primates are expected to have low conditional evolvability 

relative to evolvability. A higher conditional evolvability relative to evolvability (i.e., a 

reduced difference between the two measures) means the trait is more able to evolve on 

its own. Therefore bipedal humans should show this latter pattern.  

 

3. Morphological integration will decrease with limb diversification. – As the upper and 

lower limbs evolve to perform different functions, integration between the limbs (i.e., 

between homologous elements) will decrease (Young and Hallgrímsson, 2005). This 

means that humans, which are bipedal, will show lower integration than the other primate 

samples, which are quadrupeds.  

 

Samples 

 A sample is defined here as a group of related individuals which meet the requirements 

listed below. This project includes four samples: a sample of skeletal tamarins, two samples of 
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baboons (one skeletal and one anthropometric), and a sample of anthropometric measurements 

from humans.  

 

Sample Requirements 

 Sample selection for this project was based on the presence of a 1) large number of 2) 

pedigreed, adult individuals, with 3) data available or capable of being collected on the limbs or 

their skeletal elements. A total of four primate samples met these criteria, detailed further below. 

Permission was obtained to use all samples and data (see Appendix I). 

 A final criterion was the ability to collect QTL data. The genotyping of a large enough 

number of markers for linkage analysis was beyond the scope of this project. Therefore, rather 

than attempt to genotype all samples undergoing phenotypic analysis, one of the samples – a 

baboon colony housed at the Texas Biomedical Research Institute (TBRI) – was selected because 

it has already been genotyped. These baboons serve as a model organism for humans because the 

approximately 300 STR markers typed by the TBRI all have homologues in the human genome 

(Rogers et al., 2000; Cox et al., 2006). This means that any findings on the TBRI Baboon sample 

relate directly to the human genome (e.g., Havill et al., 2005; Sherwood et al., 2008). While the 

TBRI sample is an excellent resource and is the sole sample for which QTLs can be potentially 

located, not all limb bones are available for analysis, making a complete analysis of all limb 

segments unfeasible. For this reason, a second baboon sample with complete limb data from the 

Primate Colony at Sukhumi is included.  
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Model Organisms 

 Baboons are Old World monkeys belonging to the taxonomic family Cercopithecidae. 

These primates have been shown to be ideal model organisms for humans for a number of 

reasons. Baboons share a variety of socio-ecological features with humans, including large 

populations and breeding units, wide geographic distribution, and extensive, terrestrial home 

ranges (Jolly, 2001; Kramer, 2005). These behavioral features influence genetic variation by 

maximizing gene flow and creating genetic heterogeneity within groups and increasing 

homogeneity between groups, similar to humans (Kramer, 2005). In addition, these primates 

share several biological features with humans, such as large body size, a long life span, and 

comparable hormonal changes throughout life (Brommage, 2001; Martin et al., 2003). The 

skeletal biology of baboons is also extremely similar to humans in that these primates show bone 

loss with age (Aufdemorte et al., 1993), undergo skeletal remodeling, and have similar 

microstructural and compositional properties (Wang et al., 1998b). For a more comprehensive 

discussion of the usefulness of baboons as a model organism for humans, see Havill et al. (2003). 

 Tamarins are New World monkeys belonging to the family Callitrichidae. They have a 

small body size and display quadrupedal locomotion in arboreal territories. While more distantly 

related to humans than baboons, tamarins have been used as model organisms because of their 

small body size, ease of maintenance, and breeding capabilities in captivity, including 

consistently producing twins (Gengozian, 1969). In fact, they have been called an excellent 

“bridge between the laboratory rodent and the larger primates that are more closely related” to 

humans (Gengozian, 1969:336). For these reasons, tamarins were also used in this study to see 

how a more distantly related primate compares to baboons and humans. 
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Sample Descriptions 

Tamarins (Saguinas oedipus) 

 The first sample consisted of 250 (136 males, 114 females) adult skeletal cotton-top 

tamarins, housed in the Department of Anthropology at the University of Tennessee. These 

tamarins were bred at the Marmoset Research Center, Oak Ridge Associated Universities’ 

(ORAU) colony, which was founded in 1961 with animals from South America (Gengozian, 

1969; Cheverud, 1995). Four hundred one animals were imported between 1961 and 1976, and 

an additional 50 animals were transferred from the Rush Presbyterian-St. Luke’s Medical Center 

colony in 1981 (Clapp & Tardiff, 1985; Cheverud et al., 1994). The colony consisted of these 

wild-caught founders and their laboratory-born offspring, and while a small but significant 

morphological difference was found in the crania of wild versus captive-born individuals 

(Cheverud, 1996b:22), it is not known if a similar difference is found in the long bones. This 

cotton-top tamarin collection has been used extensively to study cranial variation (Hutchison & 

Cheverud, 1995; Cheverud, 1996b; Ackermann & Cheverud, 2000), body weight (Cheverud et 

al., 1994), the genetic epidemiology of colon cancer (Cheverud et al., 1993), infant-care behavior 

(Tardif et al., 1990), and long bone asymmetry (Reeves et al., 2016). 

 Adult status was defined here as individuals with fused long bones. Tamarin long bones 

fuse between 0.75 and 2.0 years (Kohn et al., 1997). While ages were not available for all 

individuals in the sample, the age range for those with age available was 1.5-17.3 years (with the 

exception of one individual that was 0.76 years). The majority of these individuals come from 

one large, extended pedigree sample that is six generations deep, with the remaining individuals 

coming from several smaller pedigrees that are two to three generations deep. The total number 
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of pedigreed individuals is 435. Because this was a skeletal sample, all four limb segments could 

be measured: the maximum length of the humerus, radius, and tibia were measured, as well as 

the bicondylar length of the femur (see Skeletal Measurements, below). The right and left side 

elements were measured; however, only the right side elements were used in this study since it 

has been shown that tamarins do not exhibit directional asymmetry (Reeves et al., 2016). All 

measures were taken in triplicate and averaged, and intraobserver measurement error was small 

(see Intraobserver Error, below). 

 

Sukhumi Baboons (Papio hamadryas spp.) 

 The second sample consisted of anthropometric measurements on 214 (75 males, 139 

females) sedated live adult baboons that were collected from the Primate Colony at Sukhumi in 

the former U.S.S.R. (O’Rourke, 1980). The colony began in 1927 with the arrival of four 

monkeys, including two hamadryas baboons, from Africa to the Black Sea coastal city of 

Sukhumi at what was a part of the Institute of Experimental Endocrinology in Moscow. The 

original mission of the Institute was to breed non-human primates for research, but as research 

opportunities increased at the Institute, breeding became secondary to research (O’Rourke, 1980; 

Lapin & Fridman, 1965). The center became known as the Institute of Experimental Pathology 

and Therapy in 1957, and extensive medical and behavioral research took place there until the 

fall of the Soviet Union in 1991. While the Institute is still in existence, the majority of the 

scientists and primates have moved to a newer facility in Russia. 

 The data from these baboons were collected in 1977, and all animals were sedated with 

ketamine hydrochloride prior to data collection. The original data set consisted of 1,125 animals; 
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however, only those individuals that were greater than or equal to 96 months (eight years) were 

used here, reducing the sample size to 214. This was done to ensure that only individuals that 

had reached skeletal maturity were used, as baboons reach morphometric maturity between six 

and seven years of age (O’Rourke, 1980). These baboons are part of several large, extended 

pedigrees that are five to seven generations deep and contain over 1,200 individuals. 

Measurements were available for all four limb segments (i.e., upper arm, forearm, thigh, and 

leg), which were used here as approximations of the maximum lengths of the humerus, radius, 

and tibia, and the bicondylar length of the femur. 

 The phenotype and pedigree data were obtained from Dr. Michael Crawford with 

permission from Dr. Dennis O’Rourke. All data were in paper form, datasheets were scanned, 

and data were transcribed into electronic format in Excel. The electronic data were then checked 

for transcription accuracy. 

 

Mennonites (Homo sapiens) 

 The third sample consisted of anthropometric measurements from 410 adult Mennonite 

human individuals (208 males, 202 females) from Kansas and Nebraska. Although the sample is 

comprised of individuals from three different communities, all stem from one large founding 

community and are thus genetically related individuals. A large congregation of Alexanderwohl 

Mennonites immigrated to New York City in 1874 and continued on to Lincoln, Nebraska. The 

congregation then split into three major branches: 1) a group settled west of Lincoln in present-

day Henderson, Nebraska, 2) a group moved south and settled in Goessel, Kansas, and 3) a group 

settled near Inman, Kansas and became known as the Meridian Mennonites (Crawford & Rogers, 
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1982; Devor et al., 1986a). The original data set consisted of 34 anthropometrics on 1,197 

individuals from Henderson (n = 537), Goessel (n = 573), and Meridian (n = 87). These data 

were collected in the early 1980s (Crawford & Rogers, 1982) and have been used to study the 

transmissibility of anthropometric variation (Devor et al., 1986a,b), biological aging, and 

longevity (Crawford et al., 2000; Crawford, 2005). 

 The portion of the larger sample used in this study are those individuals that are a part of 

nuclear families, thus meeting the criteria for inclusion. The sample of 410 included 237 

individuals from Henderson, 135 from Goessel, and 38 from Meridian. The pedigrees in this 

sample were not as complex as those in the other samples: there were 117 small nuclear family 

pedigrees, each two to three generations deep. Of the 34 anthropometric measurements taken on 

this population, measures of the limbs were included, which could be used to calculate all four 

limb segments (see Limb Segment Calculations, below). As with the Sukhumi Baboons, the limb 

segment lengths were used here as approximations of the maximum lengths of the humerus, 

radius, and tibia, and the bicondylar length of the femur. 

 The Mennonite phenotype data were obtained from Dr. Michael Crawford in paper form. 

All datasheets were scanned and data were transcribed into electronic format in Excel. The 

electronic data were then checked for transcription accuracy. The pedigree information was in 

electronic format in Excel. It was assembled by Dr. Ravi Duggirala and made available by Dr. 

Michael Crawford. 
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TBRI Baboons (Papio hamadryas ssp.) 

 The fourth and final sample was skeletal measurements from 479 (140 males, 339 

females) adult baboons from the Havill Osteology Laboratory at the TBRI in San Antonio, 

Texas. The Southwest National Primate Research Center (SNPRC), which is housed at the TBRI, 

is home to the largest captive colony of baboons in the world (about 1,600 animals), and a large 

segment of those individuals are part of the largest pedigreed population of baboons in the world 

(about 1,200 animals) (SNPRC website). The majority of the animals are olive baboons (Papio 

hamadyras anubis), and there are also yellow baboons (P. h. cynocephalus) and hybrids between 

these two subspecies (Rogers et al., 2000).  

 This sample had the most complex pedigree, and two different pedigrees were used. The 

first, containing 4,686 individuals spanning six generations, was the larger of the two pedigrees 

and contained all 479 measured individuals. This larger pedigree was used in the heritability, 

evolvability, and morphological integration analyses (see Analyses, below) since only pedigree 

and phenotype data were needed. The second pedigree, containing 2,426 individuals spanning 

six generations, only contained 468 of the measured individuals; however, this smaller pedigree 

is associated with genotype data. Therefore, the smaller pedigree was used in the linkage analysis 

(see Analyses, below) since pedigree, phenotype, and genotype data were all needed. Of the 

2,426 individuals in the smaller pedigree, 2,044 individuals have been genotyped at all (or nearly 

all) of the 284 autosomal STR markers and 25 X-linked STR markers and placed in the whole 

baboon genome map at 1000:1 odds. Additionally, these STRs have been mapped to homologous 

locations in the human genome (Rogers et al., 2000; Cox et al., 2006; SNPRC website). This 

attribute makes the TBRI Baboons an invaluable resource for studying the genetic and 
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environmental effects on baboon phenotypes and for localizing QTLs which impact human 

phenotypic variation. The TBRI Baboons have been used to study such complex diseases as 

osteoporosis (Havill et al., 2005; Havill, 2007), cardiovascular disease (Kammerer et al., 2002; 

Vinson et al., 2005), and diabetes (Quinn et al., 2012), as well as morphological attributes such 

as the craniofacial complex (Sherwood et al., 2008), dental morphology (Hlusko & Mahaney, 

2009), brain size and structure (Rogers et al., 2007), and femoral cross-sections (Hansen et al., 

2009). 

 The bones measured for this project came from individuals that died naturally or were 

culled from the pedigreed colony. Once deceased, the right humerus and left and right femora 

were collected at necropsy, wrapped in saline-soaked gauze, and stored in large, -80o C freezers. 

Therefore, there was a large amount of preparatory work that came before osteological 

measurements could be obtained. The bones had to be thawed and unwrapped, and then the 

adhering soft tissue had to be removed with scalpels to allow the bone to be properly measured. 

After measuring, the bones had to be re-wrapped in new saline-soaked gauze and placed back in 

the freezer. Data collection occurred during two month-long trips to the TBRI, one in the 

summer of 2009 and one in the summer of 2011. 

 Adult status was defined here as any individual with fused long bones, with fusion 

typically occurring by eight years of age (Leigh, 2009). The age range for the baboons was 6.93 

to 33.27 years, with only three individuals being younger than eight years. The right humerus 

was available for the majority of individuals; however, individuals differed on whether the right 

femur, the left femur, or both femora were available for study. All available bones were 

measured. For this study, whichever side was available was used, and one side was randomly 
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selected in cases where both the right and left femur were measured (see Side Randomization, 

below). In addition to the maximum length of the humerus and bicondylar length of the femur, 

measurements of the proximal and distal articulations, diaphyses, and muscle attachments were 

taken (see Skeletal Measurements, below). All measures were taken twice and averaged, and 

intraobserver error was small (see Intraobserver Error, below). 

 

Measurements 

Skeletal Measurements 

 For the Tamarin and TBRI Baboon skeletal samples, the measurements that were taken 

included the maximum length of the humerus, radius, and tibia, and the bicondylar length of the 

femur (following Hallgrímsson et al., 2002). These measurements follow Buikstra and Ubelaker 

(1994:80-83) and are described below. 

1) Humerus Maximum Length – “direct distance from the most superior point on the 

head of the humerus to the most inferior point on the trochlea. Humerus shaft should 

be positioned parallel to the long axis of the osteometric board.” 

2) Radius Maximum Length – “distance from the most proximally positioned point on 

the head of the radius to the tip of the styloid process without regard for the long axis 

of the bone.”  

3) Femur Bicondylar Length – “distance from the most superior point on the head to a 

plane drawn along the inferior surfaces of the distal condyles.”  

4) Tibia Length – “distance from the superior articular surface of the lateral condyle to 

the tip of the medial malleolus.” 
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 Additional measurements of the articulations, diaphysis, and muscular attachments 

(Buikstra and Ubelaker, 1994; Ruff, 2002b) were also taken on the TBRI Baboons in order to 

further explore long bone morphology (for sample data collection sheets, see Appendix II). See 

Table 18 for a list of all TBRI Baboon skeletal measurements as well as citations for 

measurement definitions. All measurements were taken on both the right and left sides, when 

available. 

 

Anthropometric Measurements 

 For the anthropometric data sets (Mennonites and Sukhumi Baboons), limb segments 

(either measured or calculated, see Limb Segment Calculations in the Mennonites, below) were 

used as approximations of the maximum lengths of the humerus, radius/ulna, and tibia and the 

bicondylar length of the femur. To distinguish the fact that these measurements were 

anthropometric rather than skeletal, they are hereafter referred to as arm, forearm, thigh, and leg 

lengths. 

 The Sukhumi Baboon data were collected following definitions found in Schultz (1929) 

and Gavan (1953). The measurement definitions are as follows: 

1) Upper Arm Length (referred to simply as Arm Length hereafter) – the distance from the 

most superior point on the humerus to radiale when the arm is extended across the chest 

(Gavan, 1953:96; O’Rourke, 1980:37).  

                                                 

 
8 All Tables and Figures are in Appendix IV.  
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2) Forearm Length – the distance “from the most distal point on the ulnar styloid process to 

the most proximal point on the olecranon process” when the arm is in the supine position 

across the chest (Gavan, 1953:96; O’Rourke, 1980:37)9.  

3) Thigh Length – the distance from “trochanterion summum to femorale parallel to the long 

axis of the femur” (Schultz, 1929:235; O’Rourke, 1980:36). 

4) Leg Length – the distance between tibiale and sphyrion parallel to the long axis of the 

tibia (Schultz, 1929:236; O’Rourke, 1980:37).  

 

 The Mennonite data were collected following definitions found in Montagu (1960). The 

measurement definitions are as follows:  

1) Total Upper Extremity Length (used to calculate Forearm Length, see Limb Segment 

Calculations in the Mennonites, below) – “From acromiale to dactylion, i.e. the tip of 

the middle finger” (Montagu, 1960:9).  

2) Upper Arm Length (referred to simply as Arm Length hereafter) – “From acromiale 

to radiale when the arm is hanging down and the palm facing forward” (Montagu, 

1960:9).  

3) Maximum Hand Length (used to calculate Forearm Length, see Limb Segment 

Calculations in the Mennonites, below) – “The distance from the mid-point of a line 

connecting the styloid processes of radius and ulna to the most anterior projection of 

the skin of the middle finger” (Montagu, 1960:13).  

                                                 

 
9
 It should be noted that the Sukhumi forearm length approximates maximum ulnar length rather than maximal 

radial length. The extent to which this will influence results is unknown.  
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4) Trochanterion Height (used to calculate Thigh Length, see Limb Segment 

Calculations in the Mennonites, below) – “From the superior surface of the greater 

trochanter of the femur to the floor” (Montagu 1960:11). 

5) Tibiale Height (referred to as Leg Length hereafter) – “From the superior surface of 

the medial condyle of the tibia to the floor” (Montagu, 1960:11)10. 

 

Anthropometrics vs. Osteometrics 

 The commensurability of skeletal and anthropometric data is potentially complicated by 

the presence of soft tissue in the latter. Most discussion on this topic has focused on comparisons 

of heritability estimates from skeletal and anthropometric measurements of cranial dimensions 

with the general conclusion being that one cannot be a proxy for the other (see Carson, 2006 for 

a review); however, studies have shown that “bony” craniofacial measurements (i.e., those where 

skeletal features are more palpable) have a higher heritability than those that include more soft 

tissue (Nakata et al., 1974; Susanne, 1975), indicating that “bony” measures may be preferable to 

use when anthropometric data are needed. In the postcranial skeleton, it has been shown that 

socioeconomic and nutritional status can influence heritability estimates (Arya et al., 2002), 

indicating that genetic and environmental influences have an impact on both soft tissue and bone 

(Carson, 2006); however, there is a general consensus (Clark, 1956; Vandenberg, 1962; Leamy, 

1974; Devor et al., 1986a,b; with exceptions being Susanne, 1977; Arya et al., 2002) that length 

measures in the postcrania have higher heritabilities than measures of girth or breadth. Schultz 

                                                 

 
10

 While the measurement definition from Montagu (1960) states that Tibiale Height is measured to the floor, 

personal communication with Dr. Laurine Rogers, one of the original data collectors, indicates that this 

measurement was actually taken to the inferior point of the medial malleolus. Therefore, this measurement is 

roughly equivalent to the length of the tibia and is used here as its proxy.  
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(1929), in his descriptions on taking anthropometric measurements on human fetuses and 

primates, states that the measures for leg length and forearm length are “practically identical” to 

the lengths of the tibia and radius, respectively, while the measures of the thigh and arm surpass 

the length of the femur and humerus “by a small amount” because of soft tissue (Schultz, 

1929:236-238). All this supports the idea that the length measurements of the postcrania used in 

this study are the most preferable when anthropometric data are analyzed. While this issue will 

likely introduce some imprecision, the lack of available pedigreed skeletal human populations 

that include postcrania of known provenience makes this issue unavoidable. 

 

Data Preparation and Screening 

Limb Segment Calculations in the Mennonites 

 The Mennonite data were collected following standard anthropometric definitions found 

in Montague’s (1960) volume, A Handbook of Anthropometry (Dr. Laurine Rogers, personal 

communication. Dr. Rogers is one of the original data collectors). While there were 35 

anthropometric measurements taken on the Mennonite individuals, a few of the limb segments 

were not directly measured and had to be calculated. 

 For the upper limb, the measurements of Upper Limb Length, Upper Arm Length, and 

Right and Left Hand Lengths were available in the original data set, but Forearm Length was not. 

Therefore, Forearm Length was calculated as: 

 Forearm Length = Upper Limb Length – Upper Arm Length – Right Hand Length 

This calculation produced brachial index averages (after outlier removal, see Outlier Detection, 

below) of 80.29 (range of 69.10-92.88) and 78.29 (range of 66.35-91.43) for males and females, 
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respectively. These averages fall within the normal range of human variation (Schultz, 1930; 

Holliday, 1995; Auerbach, 2007), and therefore provided support for the calculated measure of 

Forearm Length. 

 For the lower limb, the measurements of Trochanteric Height and Leg Length were 

available in the original data set. While Leg Length is equivalent to the maximum length of the 

tibia, there was no Foot Height measurement available that could also be subtracted from 

Trochanteric Height to provide an accurate estimation of Thigh Length. Therefore, a more 

complicated estimation procedure was used. 

 Summary statistics and correlation coefficients from military personnel collected for the 

1988 Anthropometric Survey of U.S. Army Personnel (Gordon et al., 1988) were used to estimate 

Foot Height for the Mennonite individuals. Regression equations were produced for males and 

females separately using the standard deviations of Trochanteric Height and Lateral Malleolus 

Height (equivalent to foot height and used in place of Medial Malleolus Height, which was not 

available) and the covariance between these two variables. For males, the regression equation 

used was: 

 Lateral Malleolus Height = 0.03882 * Trochanteric Height + 31.03 

For females, the regression equation used was: 

 Lateral Malleolus Height = 0.03343 * Trochanteric Height + 31.80 

For further details on these calculations, see Appendix III. 

 After estimating Lateral Malleolus Height for the Mennonite males and females, Thigh 

Length was calculated as follows: 

 Thigh Length = Trochanteric Height – Leg Length – Lateral Malleolus Height 
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This calculation produced crural index averages (after outlier removal, see Outlier Detection, 

below) of 87.22 (range of 76.56-98.25) and 83.03 (range of 72.10-96.13) for males and females, 

respectively. These averages again fall within the normal range of human variation (Schultz, 

1930; Davenport, 1933; Holliday, 1995; Auerbach, 2007), and therefore provided support for the 

calculated measures of Lateral Malleolus Height and Thigh Length.  

 

Outlier Detection 

 Outlier detection and removal was performed prior to all statistical analyses. Multivariate 

outlier detection was used for the Tamarins, Sukhumi Baboons, and Mennonites as these samples 

had all four limb segments available. Males and females were treated separately, as were the 

upper and lower limbs. For each of the three samples, outliers for the four data subsets (male 

upper limb, male lower limb, female upper limb, and female lower limb) were detected using a 

robust Mahalanobis D2, which was produced after running a principal components analysis in 

NCSS (Hintze, 2006). While this method identifies more data points as outliers than other 

methods, it was selected because robust statistics are useful with a wide array of data 

distributions.  

 In addition to this method, the lower limb measurements from an additional Mennonite 

individual were removed. These measurements produced a crural index over 100, which was 

deemed biologically inappropriate. 

 Sample sizes decreased once outliers were removed, and some individuals who 

previously had complete data now had incomplete data. The new sample sizes were 239 
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Tamarins (129 males, 110 females), 204 Sukhumi Baboons (72 males, 132 females), and 398 

Mennonites (201 males, 197 females). 

 Because only two of the four limb segments, which did not belong to the same limb, were 

available for the TBRI Baboons, and because a multitude of other morphometric traits were 

included, a different approach was taken to outlier detection in this sample. A univariate 

approach known as the Outlier Labeling Rule (Tukey, 1977; Hoaglin et al., 1986; Hoaglin et al., 

1987) was used on each individual trait. This rule uses the following equation to identify outliers: 

(𝑄3 − 𝑄1) ∗ 2.2 = 𝑔     (4.1) 

where Q1 and Q3 are the first and third quartiles, respectively. The product g was then added to 

Q3 and Q1 to produce upper and lower bounds. Any points falling outside of this range were 

considered outliers and removed from the data set. Males and females were analyzed separately. 

Using the Outlier Labeling Rule, only 16 data points were removed from the data set; however, 

the overall number of individuals did not decrease.  

 

Side Randomization and Trait Reduction in TBRI Baboons 

 An abundance of data were collected on the TBRI Baboons since bone preparation was 

so time intensive; however, not all data that were collected were used for this study. The first 

step in data reduction was to select one femur to use for individuals (n = 104) in which both 

femora were available for study. Paired t-tests were run in SPSS (IBM Corp., 2012) to check for 

significant differences between measurements from the left and right femora. Six of the 15 

femoral measurements (50% AP Diameter, 25% AP Diameter, 75% AP Diameter, Articular 

Breadth, Lateral Condyle Breadth, and Lateral Condyle Depth) were significantly different at the 
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p = 0.05 level (see Table 2). The mean differences between sides for these traits ranged from 

0.09 mm to 0.28 mm. Therefore, these differences were deemed to be biologically insignificant, 

and it was determined that the right and left side femora could be used interchangeably. Half 

those individuals with both femora present were selected to use the left femur (26 males and 26 

females), and the other half were selected to use the right femur (26 males and 26 females). 

 The second step in data reduction for the TBRI Baboons was to reduce the number of 

traits to analyze. Given the fact that many of the measurements were redundant and measured 

similar things (for example, the trochlear breadth and capitular breadth of the distal humerus 

were measured, as well as the distal articular breadth, which is the combination of these two 

measurements), the number of traits was reduced. Reduction was done in such a way to provide 

comparable measurements for the humerus and femur. The final suite of traits selected for 

analysis was comprised of five measurements from each bone, including: 1) a length 

measurement (Humerus Maximum Length and Femur Bicondylar Length), 2) a diaphyseal 

measurement (the average of anterio-posterior diameter and medio-lateral diameter at 50% of 

length for both the humerus and femur, which are called Humerus 50% Diameter Average and 

Femur 50% Diameter Average), 3) a proximal articulation (Humerus Head Length and Femur 

Head Diameter), 4) a distal articulation (Humerus Distal Articular Breadth and Femur Articular 

Breadth), and 5) a muscle attachment (Humerus Epicondylar Breadth and Femur Bicondylar 

Breadth). 
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Summary Statistics 

 Summary statistics, including mean, standard deviation, and range, were calculated 

independently for males and females separately and combined for all four samples and can be 

found in Tables 3 through 6.  

 

Intraobserver Measurement Error 

 Intraobserver measurement error was calculated following White (2000) on the Tamarins 

and TBRI Baboons since these two samples were personally measured rather than transcribed 

from previously-collected data. The Tamarin skeletons were measured in triplicate over a short 

amount of time, and average intraobserver measurement error ranged between 0.009% and 

0.015% (see Table 7).  

 The TBRI Baboons were measured twice, sometimes with a great length of time between 

successive measurements. For this reason, multiple intraobserver measurement errors are 

reported to show consistency in measuring across time. As shown in Table 8, average 

intraobserver error rates are given for those individuals measured twice in 2009, those measured 

once in 2009 and once in 2011, and those measured twice in 2011. Additionally, there is an 

overall average intraobserver error rate which was produced by looking at all individuals 

simultaneously. This error rate ranges between 0.071% and 0.915%. 
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Analyses 

Genetic Variance  

 Both heritability and evolvability analyses, which look at the genetic variation in a 

sample, make use of pedigree and phenotype data. Pedigrees were formatted using Excel version 

14 (2010) such that each individual had a separate row in the data file. Each line consisted of that 

individual’s unique identification (ID) number, Father’s unique ID number, and Mother’s unique 

ID number. An unknown parent was coded as a 0, including the parents of founding individuals. 

For subsequent analyses to run properly, the pedigree had to be ordered so that no offspring were 

listed before their parents. The “OrderPed” command in the MasterBayes package (Hadfield, 

2012) in R (R Core Team, 2014, version 3.1.2) was used to sort the pedigrees in this manner. 

Phenotype files were also formatted in Excel, again with each individual having a separate row. 

Each line included the individual ID number, sex (coded as either M/F or 1/2), and all 

phenotypes of interest. Individuals with unknown sex were not allowed, and missing phenotypic 

data were coded as NA.  

 Analyses were performed using the MCMCglmm package (Hadfield, 2010), also 

available in R, which uses a Markov Chain Monte Carlo (MCMC) Bayesian approach to work 

with generalized linear mixed models. This method requires the establishment of a prior 

distribution based on the data that the algorithm moves through in order to produce a posterior 

distribution. Pertinent results, such as heritability or evolvability, are then estimated from the 

posterior distribution. The MCMCglmm package uses an inverse-Wishart distribution for 

establishing priors, which incorporates V, variance, and nu, a belief parameter, both of which 

must be larger than 0 to establish proper priors (Hadfield, 2014). The belief parameter tells the 
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algorithm how much attention to give the prior distribution when creating the posterior 

distribution. 

 The MCMC portion of the analysis samples the posterior distribution, moving 

stochastically through the parameter space of the distribution (Hadfield, 2014). The Markov 

Chain determines what gets sampled from the distribution, while the Monte Carlo determines 

how the chain moves through parameter space. After initializing, the chain must decide where to 

go next in the parameter space. It will move to a new space and compare the new parameters 

located here (namely the mean and variance) to the old parameters at the previous location. If the 

new parameters have a higher posterior probability, then the chain moves to the new location. If 

the new parameters have a lower posterior probability, then the chain may or may not move to 

the new location. Each of these moves through parameter space is one iteration, and these 

iterations can be used together to generate an approximation of the posterior distribution 

(Hadfield, 2014). The goal of the chain is to reach the highest possible posterior probability.   

 The beginning iterations can have a strong dependence on the starting parameters, which 

then diminishes as the iterations continue. This is known as the Markov chain converging, and in 

order to only store iterations which are not dependent on the beginning parameters, a “burn-in” 

period is used. This is the number of iterations that are discarded before iterations are stored for 

later use. Autocorrelation in the chain reduces with an increase in the number of iterations, and 

autocorrelation between stored iterations is reduced by saving a portion of the total number of 

iterations, a process known as “thinning.” For example, one in every 10 iterations may be stored 

for later use. 
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 A multivariate model was run for each of the four samples with each limb segment as a 

dependent variable and sex as a fixed effect. The models also included V, nu, pedigree 

information, specifications for total number of iterations, burn-in period, and thinning interval, 

and the prior. Priors were established for both the random effect and the residual in each model 

with a belief parameter equivalent to the number of traits (nu = 4 for the Tamarins, Sukhumi 

Baboons, and Mennonites, and nu = 2 for the TBRI Baboons) and the assumption that a large 

portion of variation found in each trait was under genetic control (V = the trait phenotypic 

variance divided by 2). This set up is typical of analyses where large amounts of data are 

available relative to the complexity of the model (Wilson et al., 2009a,b). Each sample was 

initially run with 700,000 total iterations, a burn-in of 200,000 iterations, and a thinning interval 

of 50 iterations and checked for autocorrelation using the “autocorr” command. A reasonable 

goal is have autocorrelation less than 0.1 in 1,000 to 2,000 stored iterations (Hadfield, 2014). 

Each sample showed different levels of autocorrelation in the first run. For example, Mennonite 

autocorrelation was below the 0.1 threshold with the thinning interval of 50, while the other three 

samples had high autocorrelation at this thinning interval. Therefore, all four models were run a 

second time to: 1) reduce autocorrelation to an acceptable level, and 2) provide consistency in 

iteration sampling among the samples. The final model for each of the four samples had a run 

length of 900,000 iterations, a burn-in of 200,000 iterations, and a thinning interval of 350 

iterations. This provided 2,000 stored iterations for each model with an autocorrelation below 

0.1.  

 Posterior distributions were used to generate pertinent results. The posterior distribution 

of the genetic variance for each of the four samples can be thought of as a k-trait by k-trait by i-
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sample array of output values from the MCMCglmm run. Each k x k slice of the i-length array is 

an estimated variance-covariance matrix for each stored iteration of the Markov chain, and i is 

equal to the number of stored iterations. For the Sukhumi Baboon, Mennonite, and Tamarin 

samples, this would be 2000 individual 4 x 4 matrices because there are four limb segments and 

2000 stored iterations, and the TBRI Baboon sample would be 2000 2 x 2 matrices. So, for 

example, the posterior distribution of genetic variance for Humerus Length in the Tamarin 

sample is comprised of 2000 individual estimates, one from each MCMC iteration, each found in 

the same on-diagonal cell of all the 4 x 4 matrices. A similar k x k x i array is also available for 

the environmental variance, which is all variance that is not explained by the genetic variance. 

The element-wise sum of the genetic variance array and the environmental variance array 

produces the phenotypic variance array. A similar set up of posterior distributions for the means 

are also produced after the MCMCglmm run.  

 These arrays can be manipulated to produce relevant results within a sample, as described 

below. For each element in the array, whether an estimate of the mean or of the variance, a point 

estimate can be generated using the “posterior.mode” command. This is the estimate at the 

highest point on a plot of the posterior distribution. The command “HPDinterval” provides a 

95% credibility interval for any estimate. The 95% credibility intervals for two estimates within a 

sample can be subtracted from one another to see if the estimates are statistically different. If the 

resulting interval crosses zero, then the posterior distributions for the two estimates are not 

different; however, if the resulting interval does not cross zero, then the posterior distributions 

for the two estimates are different.   
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 The following matrices were then created for each sample: 1) a phenotypic VCV matrix, 

2) a genetic VCV matrix, and 3) an environmental VCV matrix. The values on the diagonal of 

the genetic VCV matrix are the additive genetic variance of the trait. The environmental VCV 

matrix is all variance that cannot be explained by the genetic VCV. And, as mentioned earlier, the 

combination of the genetic and environmental variance produces the phenotypic variance. All 

three of these matrices included corresponding matrices of high and low credibility interval 

matrices and a matrix of standard error. Additionally, each of these three matrices was produced 

in the form of a correlation matrix with the same corresponding interval and standard error 

matrices. Genetic correlation is the proportion of variance that two traits share because of 

common genetic causes, while environmental correlation is the proportion of variance that two 

traits share due to common environmental effects.  

  

Heritability 

Narrow-sense heritability is calculated as: 

ℎ2 =  𝑉𝐴  𝑉𝑃⁄       (4.2) 

where VA is the additive genetic variance and VP is the phenotypic variance11. Therefore, 

heritability was calculated here as the posterior distribution of the genetic variance for the trait 

divided by the sum of the posterior distribution of the genetic variance for the trait and the 

posterior distribution of the environmental variance of the trait. A point estimate (posterior.mode) 

and credibility interval (HPDinterval) can then be produced from this calculation. The credibility 

                                                 

 
11 This equation is the same as Equation 3.5, above.  
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intervals for two different traits can then be subtracted from one on another, as described above, 

to test whether they are different from one another.  

 

Evolvability 

Evolvability is calculated as:  

𝑒 =  𝑉𝐴  𝑚2⁄        (4.3) 

where VA is the additive genetic variance and m2 is the squared trait mean12. Therefore, 

evolvability was calculated here as the posterior distribution of the genetic variance for the trait 

divided by the squared posterior distribution of the mean of the trait. As before, a point estimate 

and credibility interval can be produced and tested for significance against other traits.  

 

Conditional Evolvability 

Conditional evolvability is calculated as: 

𝑐 =  1  [𝐺−1]⁄        (4.4) 

where G-1 is the inverse G matrix13. Therefore, conditional evolvability was calculated here as 

the 1 divided by the posterior distribution of the diagonal element of the inverse G matrix. As 

before, a point estimate and credibility interval can be produced and tested for significance 

against other traits. 

 

 

 

                                                 

 
12 This equation is the same as Equation 3.11, above.  
13 This equation is the same as Equation 3.12, above.  
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Integration 

Not to be confused with the measures of integration discussed below, this measure of integration 

looks at the relationship between evolvability and conditional evolvability to see how closely 

related the two measures are. It is calculated as: 

𝑖 = 1 −  (𝑐  𝑒⁄ )      (4.5) 

Therefore, i was calculated as 1 minus the quotient of the posterior distribution of c divided by 

the posterior distribution of e. A point estimate and credibility interval can be produced and 

tested for significance against other traits.  

 

Intra-Sample Comparisons 

 The phenotypic variance, genetic variance, heritability, evolvability, and conditional 

evolvability estimates for each limb segment within a sample were compared to test whether they 

were significantly different from one another. Additionally, phenotypic correlation and genetic 

correlation between pairs of limb segments were compared within each sample. If zero was 

included in the resulting interval produced from the difference between the credibility intervals 

of two traits, then the estimates for the two traits are not significantly different from one another.  

 

Inter-Sample Comparisons 

 Similar comparisons were done to look for significance between the different samples. 

Because each of the individual Markov chains were well-mixed (i.e., the autocorrelation was 

brought down to acceptable levels), the four models may be compared. Phenotypic correlation, 

genetic correlation, heritability, evolvability, and conditional evolvability estimates were 
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compared the same way as in the intra-species comparisons. The genetic variance comparisons 

differed in that the inter-sample comparisons used the results of the genetic correlation matrices 

to make comparisons. 

 

Morphological Integration 

 The morphological integration analyses, which look at the covariation in a sample, differ 

from the heritability and evolvability analyses in that they only require knowledge of phenotype 

data. Therefore, pedigree information was unnecessary for this segment of the analyses. 

Morphological integration was explored in two different ways. The first was to look at within-

bone integration within the humerus and femur using the TBRI Baboons because multiple 

dimensions were available for only these two bones. The second method of exploring 

morphological integration was to look for integration across all four limb elements using the 

other three samples. 

 

Within-Bone Morphological Integration  

 The within-bone integration analysis of the TBRI Baboon sample was divided into three 

separate analyses: 1) humerus only, 2) femur only, and 3) humerus and femur combined. The 

methodology outlined by Magwene (2001) was followed to test for within-bone integration in 

these three separate analyses. In this method, the relationship between two variables can be 

thought of as an edge. The Edge Exclusion Deviance determines whether an edge can be 

eliminated from a model because there is no significant relationship between those two variables. 

Edge Exclusion Deviance was calculated as: 
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−𝑁 ∗ 𝑙𝑛 (1 −  (𝜌𝑖𝑗∗{𝐾})
2

)     (4.6) 

where N was the sample size and ρij*{K} was the partial correlation coefficient between the two 

variables with all other variables held constant. Partial correlation coefficients were calculated in 

SPSS (IBM Corp, 2012). Any edge with a deviance less than 3.84, which corresponds to a 5% 

point on the χ2-distribution with 1 degree of freedom, was discarded. For those edges that were 

not eliminated from the model, an Edge Strength was calculated, which can be interpreted as an 

indicator of the copredictability among traits. Edge Strength was calculated as: 

−0.5 ∗ 𝑙𝑛 (1 − (𝜌𝑖𝑗∗{𝐾})
2

)     (4.7) 

where ρij*{K} again represented the partial correlation between the two variables with all other 

variables held constant. A higher Edge Strength indicates a higher amount of morphological 

integration between the two traits. 

 To further test these within-bone integration patterns and provide verification for the 

Magwene (2001) methodology, Mantel (1967) tests were used to test for the significance of the 

correlation between correlation matrices and model matrices. For each of the three analyses (i.e., 

humerus only, femur only, and humerus and femur combined), correlation matrices for the five 

humerus and/or five femur measurements were produced using the PopTools add-in in Excel 

(Hood, 2011). Then, the humerus and femur were each divided into four different categories for 

analysis, including 1) length, 2) articulations, 3) diaphysis, and 4) muscle attachment. These four 

categories of measurements were then used to create multiple model matrices for the bones 

individually and combined. The models are listed below.  
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Model 1 – Lengths integrated 

Model 2 – Articulations integrated 

Model 3 – Diaphyses integrated 

Model 4 – Muscle Attachments integrated 

Model 5 – Lengths and Articulations integrated 

Model 6 – Lengths and Diaphyses integrated 

Model 7 – Lengths and Muscle Attachments integrated 

Model 8 – Articulations and Diaphyses integrated 

Model 9 – Articulations and Muscle Attachments integrated 

Model 10 – Diaphyses and Muscle Attachments integrated 

 

Models 1, 3, and 4 were only possible in the humerus and femur combined analysis, because 

there was only one measurement applicable to these categories in the humerus only and femur 

only analyses. 

 A sample model is shown in Table 9. A 1 indicates integration between the two 

measures, while a 0 indicates no integration. This example is a femoral model for integration 

between the proximal and distal articulations (or the Femur Head Diameter and Femur Distal 

Articular Breadth) and the muscle attachment (or the Femur Bicondylar Breadth), which 

corresponds to Model 9 listed above. 

 Mantel tests with 1000 iterations, performed in Pop-Tools (Hood, 2011), were used to 

compare the original correlation matrices with the various model matrices. A p-value was 

calculated for each model by determining the number of iterations with correlations higher than 
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the original correlation between the two matrices and dividing by 1000. The null hypothesis of 

no relationship between the two matrices was rejected when the p-value was less than 0.05. 

 Only individuals without missing data were used in the within-bone morphological 

integration analyses, so sample sizes were again reduced. Three separate data sets were used: 1) 

a humerus only sample size of 417 individuals (124 males, 293 females), 2) a femur only sample 

size of 344 individuals (111 males, 233 females), and 3) a combined humerus and femur sample 

size of 320 individuals (104 males, 216 females).  

 

Morphological Integration Across Four Limb Segments 

 The second method of exploring morphological integration was to look for integration 

across all four limb elements using the Tamarin, Sukhumi Baboon, and Mennonite samples 

following the protocol set out by Pavličev et al. (2009). For each sample, correlation matrices 

were produced for the upper limb elements, the lower limb elements, the proximal limb 

elements, the distal limb elements, and all four elements. The relative eigenvalue variance of 

each matrix was calculated as: 

𝑉𝑟𝑒𝑙(𝜆) = 𝑉(𝜆)  (𝑛 − 1)⁄      (4.8) 

where V14 is variance, λ is the eigenvalues, and n is the number of traits. Relative eigenvalue 

variance is used to explain the overall integration of each correlation matrix. It has a range of 

zero to one, and a higher number indicates more integration. Correlation matrices, eigenvalues, 

and relative eigenvalue variances were calculated in R using the posterior distributions from the 

models created for the genetic variance analyses. Point estimates and credibility intervals were 

                                                 

 
14 Following Pavličev et al., (2009), variance is normalized by the number of traits (n) rather than n-1. In practice, 

this means using the population variance rather than the sample variance for calculations.   
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created using the posterior.mode and HPDinterval commands as described above. Because the 

eigenvalue variances were produced using the correlation matrix, rather than a 

variance/covariance matrix, and because each model was well-mixed, the results could be 

directly compared across samples. This was done by comparing the credibility intervals and 

seeing if zero is included in the resulting interval (with a zero meaning that the two estimates are 

not significantly different).   

  

Linkage Analysis 

 Linkage analysis required the use of phenotype and pedigree data, as well as genotype 

data. This portion of the analyses was performed solely on the TBRI Baboons as it was the only 

sample with genotype data available. The phenotype file was formatted in Excel with each of the 

468 measured individuals having a separate row. Each row consisted of the individual’s unique 

identification number (ID), age, sex, and all ten of the humerus and femur traits. Age and sex 

were known for all individuals, and cells with missing data were left blank. The pedigree file, 

consisting of 2,426 individuals, was available through the TBRI server (details below) and 

included the individual’s unique ID number, father’s unique ID number, mother’s unique ID 

number, and sex. Unknown parents, such as the parents of founders, were left blank. 

 Genotype data on 284 autosomal STRs and 25 X-linked STRs for 2,044 individuals in the 

pedigree were also previously formatted and available through the TBRI server (details below). 

Using the pedigree and allele frequencies, SOLAR (discussed below) creates Identity-By-

Descent (IBD) matrices for each marker. These matrices contain a value for every pair of 

individuals in the pedigree, with each value being the probability that those two individuals share 
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an allele based on how closely related they are. A maximum likelihood estimation procedure is 

used to impute marker genotypes for individuals who have not been typed. The IBD files for 

each marker and a map of all markers on a single chromosome are then used to create Multipoint 

Identity-By-Descent (MIBD) files for each chromosome. The MIBD method used by SOLAR is 

useful in pedigrees of extensive size and complexity and is described in depth in Almasy & 

Blangero (1998). This method is an extension of the method by Fulker et al. (1995) which 

calculated multipoint identity-by-descent in sibships only. The allele frequencies, IBD files, map 

files, and MIBD files were previously generated and available on the TBRI server (details 

below). 

 All linkage analyses were run using the software SOLAR (Almasy & Blangero, 1998), 

version 7. SOLAR stands for Sequential Oligogenic Linkage Analysis Routines and is capable of 

working with large, complex pedigree data. SOLAR was accessed remotely through the TBRI 

server, with permission, using SSH Secure Shell Client version 3.2.9 (SSH Communications 

Security Corp., 2003). 

 Prior to linkage analyses, the data were checked for appropriate distribution and 

covariates were screened for significance. The variance components approach used in SOLAR is 

sensitive to non-normality, particularly high kurtosis, as this leads to biased parameter estimates 

and an increased false positive rate (Göring et al., 2001). Kurtosis of 0.8 or lower is desired, and 

if higher than that, data transformation is recommended. Therefore, an inverse normalization 

procedure was used to normalize all of the data. The “inormalize” procedure in SOLAR is a 

rank-based normalization method allows the variable to be normally distributed (with a mean of 

0 and a standard deviation of 1).  Even after inormalization, two traits (Femur Head Diameter 
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and Femur 50% Diameter Average) retained high kurtosis. For these two traits, the residuals 

from the inormalized data were inormalized to further reduce kurtosis and diminish the effects of 

skewed data (following Sherwood et al., 2008).  

 Covariates were screened for significance using two different methods, and covariates 

that were not significant were removed from subsequent analyses. The covariates that were 

screened were age, sex, age*sex (testing for an interaction between age and sex), age2 (testing for 

a non-linear curve between age and the trait), and age2*sex (testing for a non-linear curve 

between age and trait in each sex). The first method of screening was to use the polygenic screen 

function, which dropped one of the five covariates at a time, testing for a significant change in 

the model. If no change was found, then the covariate was considered non-significant and could 

be removed from further analyses. In this method, there were always at least four covariates in 

the model. The second method, the BayesAvg procedure, used a Bayesian approach and tested 

all possible combinations of covariates. Therefore, there was anywhere from one to five 

covariates in the model. The best combination of covariates was determined by the model with 

the lowest Bayesian Information Criterion (BIC). These two methods produced the same 

combination of covariates for six of the ten traits. For the other four traits, the covariates selected 

by the Bayesian method were used since more combinations of covariates were tested. 

 Once distribution issues were resolved and significant covariates were determined, 

linkage analyses were performed. The variance decomposition approach utilized in SOLAR 

specifies the expected genetic covariances between random relatives as a function of the identity 

by descent relationships at a given locus (Almasy & Blangero, 1998). The covariance matrix for 

the pedigree is then modeled as the sum of the additive genetic covariance due to the QTL, the 
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additive genetic covariance due to loci other than the QTL, and the variance due to 

environmental factors (Havill et al., 2005; Sherwood et al., 2008). Each of the ten traits was run 

in a univariate multipoint linkage to test for evidence of linkage between individual trait 

phenotypic variation and the 309 STR loci. All ten univariate linkage analyses were performed 

using the “multipoint” command in SOLAR. The hypothesis of linkage was tested at four-

centimorgan (cM)15 intervals by comparing the likelihood of a model in which the genetic 

variance due to the QTL was zero (i.e., a restricted model where there is no linkage) to the 

likelihood of a model in which the genetic variance due to the QTL was estimated (i.e., did not 

equal zero). A LOD score, calculated as the difference of the two ln likelihoods divided by ln 10 

(Ott 1999), was produced every four cM, and areas with a LOD greater than 0.5 were rescanned 

every one cM. 

 The LOD score, or logarithm of odds, was developed by Morton (1955) and is used to 

compare the likelihood that a trait and marker are actually linked versus seeing the same data 

purely by chance. A LOD of three indicates 1000 to one odds that the observed linkage did not 

occur by chance. For the baboon pedigree, a LOD score associated with a genome-wide p-value 

of 0.05 was used. This LOD score, based on pedigree complexity and the finite marker locus 

density in the baboon linkage map, is a modification of Feingold et al. (1993) that was previously 

calculated and used in other studies utilizing the same baboon pedigree and marker maps (e.g., 

Sherwood et al., 2008). Based on these previous calculations, a LOD of 2.75 or greater was 

considered significant and corresponds to a false positive result once in 20 genome-wide linkage 

                                                 

 
15 Named in 1919 by Haldane (1919), a centimorgan (cM) is a unit of chromosome length, with one cM 

corresponding to a 1% chance that a marker at a genetic locus will be separated from another locus due to crossing 

over during meiosis. In humans, 1 cM is equivalent to approximately one million base pairs (Lodish et al., 2004).  
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scans. Additionally, a LOD score of 1.5 was used as “suggestive” evidence of linkage, which is a 

result that would be expected to occur once in a genome-wide linkage scan (Lander & Kruglyak, 

1995). While suggestive linkages may often be wrong, they are “worth reporting – if 

accompanied by an appropriate warning label about their tenuous nature” (Lander & Kruglyak, 

1995:244). 

 String plots showing LOD scores for all chromosomes were produced for each of the ten 

univariate linkage analyses. SOLAR requires an X window system to produce graphics. The 

program Xming (Harrison, 2007), available as a free download, provided the appropriate X-

based graphical user interface for producing plots. The TBRI server and Xming were connected 

using an alternative remote access program called PuTTY (Tatham, 2011), also available as a 

free download. Once the plots were created using PuTTY and Xming and saved as postscript 

(.ps) files to the TBRI server, they were transferred from the server to the PC using SSH. Adobe 

Acrobat XI (Adobe Systems Inc., 2012) was then used to open the postscript files and save them 

as either PDF or JPEG files. 

 Genomic areas in which significant LOD scores were found were then further analyzed to 

look for candidate genes influencing phenotypic variation. This was done using a few websites. 

First, the SNPRC Baboon to Human Comparative Maps website (SNPRC CompMaps website) 

was used to identify the STR markers which surround the region with the significant LOD score. 

While the chromosome numbers used by SNPRC are the orthologous human chromosome 

numbers, the locations of the LOD scores are based on the baboon maps. Each chromosome 

comparative map gives the location (in cM) of the STR loci on the baboon chromosome, as well 
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as the corresponding human location (Marshfield Position) and the base pairs (bps) where the 

STR physically lies on the human chromosome. 

 Once the range of bps of interest was determined, the next website used was the 

University of California, Santa Cruz (UCSC) Genome Browser (Kent et al., 2002; Karolchik et 

al., 2014). This website allowed the genes within the region of interest to be determined. An 

introductory tutorial useful for understanding basic search and display options in the UCSC 

Genome Browser is available from Open Helix (Open Helix website). Searching used the 

Genome Reference Consortium (GRC) h37/hg19 assembly from February 2009, the most recent 

reference assembly available. This assembly is highly accurate, with less than one error per 

10,000 bases, and highly contiguous, with the only gaps being those where current technology 

cannot reliably sequence (UCSC Genome Browser website). Results were found in the UCSC 

Genes track based on data from multiple sources, including the National Center for 

Biotechnology Information (NCBI) RNA reference sequence collection (known as RefSeq), the 

National Institutes of Health genetic sequence database (known as GenBank), and others. The 

function of the genes was noted in the annotation section of each entry (Karlochik et al., 2014).  

 

Protein Networks 

 After compiling a list of known genes from a region of interest, the coding genes (i.e., 

proteins) were further analyzed using a program called STRING version 10 (Szklarczyk et al., 

2015), which stands for Search Tool for the Retrieval of Interacting Genes/Proteins. This 

program is a database of known and predicted protein interactions with evidence for gene 

interaction coming from genomic context, high-throughput experiments, coexpression of 
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proteins, and previously published literature (Jensen et al., 2009). Each list of genes was 

analyzed under the “multiple names” tab after setting the organism to Homo sapiens. The 

resulting pictures of protein interactions were visually analyzed for interesting connections. 

Additionally, proteins from each of the areas of interest were run a second time through 

STRING, this time including a list of proteins that are known to be involved in limb or bone 

formation (see Results, below), the majority of which are described previously (see Limbs, 

above). While this list is not exhaustive, those included are the major proteins involved in limb 

and bone formation. The resulting protein interactions were again visually analyzed for notable 

connections. 
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CHAPTER FIVE  

RESULTS 

 

Genetic Variance Analyses 

 The results of the genetic variance analyses (previously described, see Research Design, 

above), using the MCMCglmm package (Hadfield, 2010) in R (R Core Team, 2014) are 

described below. These results will be used to respond to Developmental Perspective Hypothesis 

1 and Evolutionary Perspective Hypotheses 1 and 216. For each sample, phenotypic, genetic, and 

environmental variance/covariance (VCV) matrices are provided, as well as phenotypic, genetic, 

and environmental correlation matrices. For all matrices (Tables 10 – 15, 17 – 22, 24 – 29, and 

31 – 36), the variance/covariance/correlation estimates are in bold, the standard error of the 

estimate is in parentheses, and the 95% credibility interval for the estimate is below. 

Additionally, a table is available for each sample (Tables 16, 23, 30, and 37) showing the results 

of the heritability, evolvability, and conditional evolvability estimates.  

 To compare limb segment values within and across samples, many independent tests 

were performed, as described in the previous chapter. The results of these comparisons are found 

in seven tables (Tables 38 through 44). Table 38 shows the results of the intra-sample 

comparisons for phenotypic variance, which looks at the phenotypic variance across limb 

segments (i.e., compares the phenotypic variance of the humerus and the radius within one 

sample, as well as all other comparisons of the limb segments). (Inter-sample comparisons of 

phenotypic variance were not possible as the phenotypic correlation values would be used to 

                                                 

 
16 All formal responses to hypotheses are included in the Discussion and Conclusions chapter, below.  
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compare across samples, and all on-diagonal phenotypic correlation values are 1). Table 39 

shows the intra- and inter-sample comparisons for phenotypic correlation. For the intra-sample 

comparisons, the correlation between two limb segments is compared to the correlations from all 

other pairs of limb segments (for example, the correlation between the humerus and femur was 

compared to the correlation between the humerus and radius, as well as all other limb 

combinations). The inter-sample comparisons compare the correlation between the same two 

limb segments across samples (for example, the correlation between the humerus and femur in 

the Tamarins was compared to the same phenotypic correlation in the other three samples). Table 

40 shows the results of the intra- and inter-sample comparisons for genetic variance. Intra-

sample comparisons look at the genetic variance across limb segments (similar to the phenotypic 

variance comparisons), while inter-sample comparisons look at differences in genetic variance 

for a single limb segment in two different samples using values from the genetic correlation 

tables. Table 41 shows intra- and inter-sample comparisons for genetic correlation, which is 

similar to the Table 39 showing the intra- and inter-sample comparisons for phenotypic 

correlation. Tables 42, 43, and 44 show the intra- and inter-sample comparisons for heritability, 

evolvability, and conditional evolvability, respectively. For all three of these tables, intra-species 

comparisons look at the estimates across limb segments, while inter-sample comparisons looked 

at differences in estimates for a single limb segment in two different samples. The results in 

these tables should be used to aid in interpreting the tables for each individual sample. 

 For ease of interpretation in Tables 38 through 44, all four samples use the abbreviations 

of H (humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are 

called the arm, forearm, thigh, and leg for the Sukhumi Baboons and Mennonites throughout the 
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text. There are also many gray cells in these tables, which indicate comparisons that are either 1) 

redundant, 2) self-comparisons in intra-sample comparisons (e.g., humerus and humerus in the 

Tamarins), 3) not done (e.g., comparing the humerus of one sample to the tibia of another 

sample), or 4) not possible (because the TBRI Baboon sample is limited to two limb segments). 

 

Intra-Sample Comparisons 

Tamarins 

 Tables 10, 11, and 12 are the phenotypic, genetic, and environmental VCV matrices for 

the Tamarins, respectively, and Tables 13, 14, and 15 are the corresponding correlation matrices. 

Heritability (h2), evolvability (e), conditional evolvability (c), and integration (i) estimates, along 

with 95% credibility intervals for each, are found in Table 16.  The posterior distributions for h2, 

e, and c for each of the four limb segments are found in Figures 1, 2, and 3, respectively. All of 

these figures show good, even distributions of the posterior estimates produced by the 

MCMCglmm model.  

 Phenotypic variances for the Tamarin limb segments, found on the diagonal of Table 10, 

range from 2.772 to 5.167. Table 38, which shows the results of the intra- and inter-sample 

comparisons for phenotypic variance, indicates that all but one of the phenotypic variance 

comparisons within the Tamarins are significant (i.e., the interval resulting from the difference 

between the two credibility intervals did not include zero), the exception being the comparison 

between the humerus phenotypic variance and the radius phenotypic variance. The elements of 

the upper limb have a reduced phenotypic variance compared to elements of the lower limb. 

Within the lower limb, the tibia has more phenotypic variance than the femur. The phenotypic 
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correlation comparisons, shown in Tables 13 and 39, indicate that the phenotypic correlation 

between the humerus and radius (corrp = 0.861) is significantly different from that of the 

humerus and femur (corrp = 0.788), the humerus and tibia (corrp = 0.812), and the radius and 

femur (corrp = 0.794). Additionally, the phenotypic correlation of the femur and tibia (corrp = 

0.874) is significantly different from the same three limb combinations. This means that the 

elements of the upper limb have a higher correlation with each other than the humerus does with 

either of the lower limb elements, and the elements of the lower limb have a higher correlation 

with each other than the femur does with either element of the upper limb.  

 Additive genetic variances for the Tamarin limb segments, found on the diagonal of 

Table 11, range from 1.276 to 2.431. Table 40, which shows the results of the intra- and inter-

sample comparisons for additive genetic variance, indicates that several of the genetic variance 

comparisons within the Tamarins are significant. The comparisons between the humerus (σg
2 = 

1.276) and femur (σg
2 = 2.284), between the radius (σg

2 = 1.282) and femur, between the 

humerus and tibia (σg
2 = 2.431), and between the radius and tibia are all significantly different 

from one another. This means that homologous elements and non-homologous elements in 

different limbs show different levels of additive genetic variance, but additive genetic variance 

for limb segments found within the same limb are not significantly different from one another. 

However, when the genetic correlations of these limb segments are compared to one another, 

there is no significant difference found between any of them (Table 14). Additionally, there are 

no significant differences between any of the pairs of genetic correlations (i.e., off-diagonal 

values, Table 41) for the Tamarins, results which are much different than the phenotypic 

correlation comparisons described above.   
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 Despite the significant differences found in the phenotypic variances and correlations and 

additive genetic variances of the Tamarin limb segments, Tables 42, 43, and 44 show that none 

of the heritability (ranging from 0.445 to 0.527, as seen in Table 16), evolvability (ranging from 

0.000519 to 0.000616), conditional evolvability (ranging from 0.000101 to 0.000129), or i 

estimates17 (ranging from 0.773 to 0.832) are significantly different from one another within the 

Tamarin sample.  

  

Sukhumi Baboons 

 Tables 17, 18, and 19 are the phenotypic, genetic, and environmental VCV matrices for 

the Sukhumi Baboons, respectively. Tables 20, 21, and 22 are the corresponding correlation 

matrices. Heritability (h2), evolvability (e), conditional evolvability (c), and integration (i) 

estimates, along with 95% credibility intervals for each, are found in Table 23.  The posterior 

distributions for h2, e, and c for each of the four limb segments are found in Figures 4, 5, and 6, 

respectively. All of these figures again show good, even distributions of the posterior estimates 

produced by the MCMCglmm model.  

 Phenotypic variances for the Sukhumi Baboon limb segments, found on the diagonal of 

Table 17, range from 66.366 to 158.179. Table 38 shows that all but one of the phenotypic 

variance comparisons within the Sukhumi Baboons are significant, the exception being the 

comparison between the phenotypic variances of the arm and the forearm. The thigh has the 

highest level of phenotypic variance and the tibia has the lowest level of phenotypic variance, 

while the elements of the upper limb are in the middle. The phenotypic correlation comparisons 

                                                 

 
17 The results of the intra- and inter-sample comparisons for i are not shown as there are very few significant 

differences. These differences are noted in the text.  
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(Tables 20 and 39) show no significant differences between any pairs of limb segments, 

indicating that all pairs of limb segments are equally phenotypically correlated.  

 Additive genetic variances for the Sukhumi Baboon limb segments, found on the 

diagonal of Table 18, range from 39.868 to 102.449. Table 40 indicates that the only significant 

difference in additive genetic variance between the four limb segments is found between the 

thigh (σg
2 = 102.449) and leg (σg

2 = 39.868), mirroring the vast difference seen in these limb 

segments in the phenotypic variance. All other limb segment comparisons for additive genetic 

variance are not different from each other. This significant difference, however, is no longer 

significant when looking at the genetic correlations. Looking at Table 21, none of the limb 

segments (on-diagonal) are significantly different in their level of genetic correlation, nor are any 

of the pairs of genetic correlations (off-diagonal).  

 Looking at Tables 23 and 42 and 43, none of the heritability (ranging from 0.479 to 

0.602), evolvability (ranging from 0.00100 to 0.001628), or i (ranging from 0.515 to 0.646)  

comparisons are significantly different for the Sukhumi Baboons; however, when looking at 

Table 44, there are several conditional evolvability estimates that are significantly different in 

this sample. The conditional evolvability estimates for the arm (c = 0.000715) and forearm (c = 

0.000374), the arm and leg (c = 0.000390), and the thigh (c = 0.000639) and leg are significantly 

different. This means that limb segments within the same limb have significantly different 

conditional evolvability estimates, as do the non-homologous elements of the arm and leg. 

Homologous elements show non-significant conditional evolvability estimates, as do the non-

homologous elements of the forearm and thigh.  
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Mennonites 

 Tables 24, 25, and 26 are the phenotypic, genetic, and environmental VCV matrices for 

the Mennonites, respectively, and Tables 27, 28, and 29 are the corresponding correlation 

matrices. Heritability (h2), evolvability (e), conditional evolvability (c), and integration (i) 

estimates, along with 95% credibility intervals for each, are found in Table 30.  The posterior 

distributions for h2, e, and c for each of the four limb segments are found in Figures 7, 8, and 9, 

respectively. All of these figures again show good, even distributions of the posterior estimates 

produced by the MCMCglmm model.  

 Phenotypic variances for the Mennonite limb segments, found on the diagonal of Table 

24, range from 211.721 to 821.957. Table 38, shows that all but one of the phenotypic variance 

comparisons within the Mennonites are significant, the exception being the comparison between 

the arm phenotypic variance and the forearm phenotypic variance. The elements of the upper 

limb have a reduced phenotypic variance compared to elements of the lower limb, and within the 

lower limb, the thigh has much more phenotypic variance than the leg. The phenotypic 

correlation comparisons, shown in Tables 27 and 39 indicate that there are numerous limb 

combinations that have significantly different correlations from one another.  The phenotypic 

correlation between the elements of the upper limb (corrp = 0.249) is significantly lower than all 

of the inter-limb comparisons (with the exception of the correlation between the forearm and 

thigh). The phenotypic correlation of the elements of the lower limb (corrp = 0.344) is also lower 

than the same inter-limb comparisons but is higher than the correlation of the upper limb 

elements. The highest phenotypic correlations for this sample are the inter-limb combinations 

with the exception of the correlation between the forearm and thigh.  
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 Additive genetic variances for the Mennonite limb segments, found on the diagonal of 

Table 28, range from 106.778 to 541.050. Table 40 shows that several of the genetic variance 

comparisons within the Mennonites are significant. The comparisons between the arm (σg
2 = 

162.104) and forearm (σg
2 = 106.778), between the arm and thigh (σg

2 = 541.050), between the 

forearm and thigh, and between the leg (σg
2 = 154.188) and thigh are all significantly different 

from one another. This means that all elements have a significantly different genetic variance 

from the thigh, and the elements of the upper limb are also significantly different from one 

another.  When genetic correlations are considered, the only significant difference is between the 

forearm (corrg = 0.475) and thigh (corrg = 0.716) (Table 28). Additionally, Table 41 shows that 

the genetic correlation between the arm and forearm (corrg = 0.376) is significantly lower than 

the correlation between the arm and thigh (corrg = 0.694) and the correlation between the arm 

and leg (corrg = 0.592).  

 Looking at Tables 30 and 42, the heritability of the forearm (h2 = 0.475) and the thigh (h2 

= 0.716) are significantly different from one another. All other heritability comparisons are the 

same. Tables 30 and 43 show that the evolvability of the thigh (e = 0.002263) is significantly 

different from all other limb segments (arm e = 0.001463, forearm e = 0.001529, and leg e = 

0.000859). Finally, when looking at Tables 30 and 44, there are two conditional evolvability 

comparisons that are significantly different in the Mennonite sample. The forearm (c = 

0.000903) and thigh (c = 0.001234) are both significantly different from the leg (c = 0.000443). 

None of the i estimates are significantly different from one another.  
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TBRI Baboons 

 Tables 31, 32, and 33 are the phenotypic, genetic, and environmental VCV matrices for 

the TBRI Baboons, respectively. Tables 34, 35, and 36 are the corresponding correlation 

matrices. Heritability (h2), evolvability (e), conditional evolvability (c), and integration (i) 

estimates, along with 95% credibility intervals for each, are found in Table 37.  The posterior 

distributions for h2, e, and c for the two limb segments are found in Figures 10, 11, and 12, 

respectively. All of these figures again show good, even distributions of the posterior estimates 

produced by the MCMCglmm model.  

 Phenotypic variances for the TBRI limb segments, found on the diagonal of Table 31, are 

66.546 for the humerus and 99.099 for the femur. Table 38 shows that these two values are 

significantly different from one another. 

 Additive genetic variances for the TBRI Baboon limb segments, found on the diagonal of 

Table 32, are 39.818 for the humerus and 58.524 for the femur. Table 40 shows that comparison 

of these genetic variances is significant; however, the genetic correlation values for these limb 

segments (humerus corrg = 0.595, femur corrg = 0.649) are not significantly different (Table 35).  

 Despite the difference in additive genetic variance, Tables 37, 42, 43, and 44 show that 

the heritability (humerus h2 = 0.595, femur h2 = 0.649), evolvability (humerus e = 0.001064, 

femur e = 0.001260), and conditional evolvability (humerus c = 0.000359, femur c = 0.000410) 

comparisons for the TBRI Baboons are not significant, nor are the i estimates.  
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Inter-Sample Comparisons 

Tamarins vs. Sukhumi Baboons 

 While there are no differences in genetic variances (Table 40) or genetic correlations 

(Table 41) between the Tamarin and Sukhumi Baboon samples, all combinations of phenotypic 

correlations are significantly different (Table 39). The Tamarins show consistently higher levels 

of phenotypic correlation than the Sukhumi Baboons. There is a stark difference between the 

patterns seen in the phenotypic and genetic correlation data.  

 There are also no differences heritability estimates (Table 42) or i estimates between 

these samples. However, the evolvability (Table 43) of the humerus (Tamarin humerus e = 

0.000519, Table 16; Sukhumi Baboon arm e = 0.001330, Table 23) is significantly different 

between the two samples, as is the evolvability of the femur (Tamarin femur e = 0.000527, 

Sukhumi Baboon thigh e = 0.001628). The homologous proximal elements show different 

evolvability estimates while the homologous distal elements are not significantly different in 

their evolvability estimates. The conditional evolvability estimates (Table 44) for all four limb 

segments are significantly different from one another: 1) Tamarin humerus c = 0.000101, Table 

16; Sukhumi Baboon arm c = 0.000715, Table 23; 2) Tamarin radius c = 0.000129, Sukhumi 

Baboon forearm c = 0.000374; 3) Tamarin femur c = 0.000108, Sukhumi Baboon thigh c = 

0.000639; and 4) Tamarin tibia c = 0.000120, Sukhumi Baboon leg c = 0.000390. The Sukhumi 

Baboons have higher evolvability and conditional evolvability estimates than the Tamarins.  
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Tamarins vs. Mennonites 

 There are no differences between genetic variances (Table 40) between the Tamarin and 

the Mennonite samples. There are, however, significant differences between all of the 

phenotypic correlations (Table 39) and all but one of the genetic correlations (Table 41) (the 

exception being the correlation between the humerus and femur [i.e., the arm and thigh in the 

Mennonites]). The Tamarins have both higher levels of genetic correlation and phenotypic 

correlation than the Mennonites.  

 While there are no differences in heritability estimates (Table 42), the evolvability 

estimates (Table 43) of the humerus (Tamarin humerus e = 0.000519, Table 16; Mennonite arm e 

= 0.001463, Table 30), radius (Tamarin radius e = 0.000605, Mennonite forearm e = 0.001529), 

and femur (Tamarin femur e = 0.000527, Mennonite thigh e = 0.00263) are significantly 

different between the two groups. The conditional evolvability estimates (Table 44) for all four 

limb segments are also significantly different: 1) Tamarin humerus c = 0.000101, Table 16; 

Mennonite arm c = 0.000711, Table 30; 2) Tamarin radius c = 0.000129, Mennonite forearm c = 

0.000903; 3) Tamarin femur c = 0.000108, Mennonite thigh c = 0.001234; and 4) Tamarin tibia c  

= 0.000120, Mennonite leg c = 0.000443. The Mennonite sample shows both higher evolvability 

estimates and higher conditional evolvability estimates than the Tamarins. Additionally, the only 

significant differences in integration found among the samples are between these samples. The 

estimates for i for the humerus, radius, and tibia are significantly higher in the Tamarins than in 

the Mennonites (Tables 16 and 30).  

 

 



 

124 

 

Tamarins vs. TBRI Baboons 

 There are no differences between genetic variances (Table 40), genetic correlations 

(Table 41), or phenotypic correlations (Table 39) between the Tamarin and TBRI Baboon 

samples. 

 There is also no difference between heritability estimates (Table 42) and i estimates for 

these samples. Only two limb segments are comparable here, and both are significantly different 

in evolvability estimates (Table 43) between the two samples (Tamarin humerus e = 0.000519, 

Table 16; TBRI Baboon humerus e = 0.001064, Table 37; Tamarin femur e = 0.000527, TBRI 

Baboon femur e = 0.001260). Both limb segments are also significantly different in their 

conditional evolvability estimates (Table 44): Tamarin humerus c = 0.000101, Table 16; TBRI 

Baboon humerus c = 0.000359, Table 37; Tamarin femur c = 0.000108, TBRI Baboon femur c = 

0.000410. The TBRI Baboons have higher evolvability and conditional evolvability estimates 

than the Tamarins.  

 

Sukhumi Baboons vs. Mennonites 

 There are no differences in genetic variances (Table 40) between the Sukhumi Baboon 

and Mennonite samples. The only genetic correlation (Table 41) that is significantly different 

between the two samples is the correlation between the humerus and radius (i.e., the arm and 

forearm for both of these samples), with the Sukhumi Baboons having a higher correlation. The 

majority of the phenotypic correlations (Table 39) between these two samples are significantly 

different form one another, with the Sukhumi Baboons having higher correlations than the 

Mennonites.  
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 There are no differences in heritability estimates (Table 42), evolvability estimates (Table 

43), or i estimates between the Sukhumi Baboon and Mennonite samples. The conditional 

evolvability estimate (Table 44) of the radius differs for the two samples (Sukhumi Baboon 

forearm c = 0.000374, Table 23; Mennonite forearm c = 0.000903, Table 30).  

 

Sukhumi Baboons vs. TBRI Baboons 

 There are no differences in the genetic variances (Table 40) for the Sukhumi Baboons 

and TBRI Baboons. The genetic correlation (Table 41) between the humerus and femur differs 

between the two groups (Sukhumi Baboon arm and thigh corrg = 0.634, Table 21; TBRI Baboon 

humerus and femur corrg = 0.827, Table 35). Additionally, the phenotypic correlation between 

the two samples differs (Sukhumi Baboon arm and thigh corrp = 0.580, Table 20; TBRI Baboon 

humerus and femur corrp = 0.793, Table 34). The TBRI Baboon estimate is higher in both cases.  

 There are no differences in heritability estimates (Table 42), evolvability estimates (Table 

43), or i estimates between the Sukhumi Baboon and TBRI Baboon samples. However, the 

conditional evolvability estimates (Table 44) for both limb segments available for comparison 

here are significantly different between the samples (Sukhumi Baboon arm c = 0.000715, Table 

23; TBRI Baboon humerus c = 0.000359, Table 37; Sukhumi Baboon thigh c = 0.000639, TBRI 

Baboon femur c = 0.000410), with the Sukhumi Baboons showing higher estimates.  
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Mennonites vs. TBRI Baboons 

 There are no differences between the genetic variances (Table 40) or genetic correlations 

(Table 41) between the Mennonite and TBRI Baboon samples. However, the phenotypic 

correlation between the humerus and femur of each samples does differ (Mennonite arm and 

thigh corrp = 0.482, Table 27; TBRI Baboon humerus and femur corrp = 0.793, Table 34).  

 There are also no differences in heritability estimates (Table 42) or i estimates between 

the Mennonites and TBRI Baboons. There is a significant difference in the evolvability estimate 

(Table 43) of the femur between the two samples (Mennonite thigh e = 0.00263, Table 30; TBRI 

Baboon femur e = 0.001260, Table 37). Additionally, the conditional evolvability estimates 

(Table 44) of both the humerus (Mennonite arm c = 0.000711, Table 30; TBRI Baboon humerus 

c = 0.000359, Table 37) and femur (Mennonite thigh c = 0.001234, TBRI Baboon femur c = 

0.000410) are significantly different between the two samples. The Mennonites show 

consistently higher estimates for evolvability and conditional evolvability than the TBRI 

Baboons.  

 

Summary of Genetic Variance Results 

 Estimates of variance are not comparable across species. This is because phenotypic 

variance is tied to differences in size, meaning that larger limb elements will typically have 

larger variances. Therefore, larger species will have larger variances, a pattern that holds true 

here (Tables 10, 17, 24, and 31). Additionally, elements of the lower limb are more likely to have 

larger variances than elements of the upper limb simply because of their larger size. This pattern 

also holds true for all four of the samples here, with the exception of the leg in the Sukhumi 
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Baboons (Table 17). Another pattern seen in three of the four samples (and not possible in the 

TBRI Baboon sample) is that the phenotypic variances of the humerus and radius are not 

significantly different from one another (Table 38). This may be explained by the fact that the 

humerus and radius are similarly-sized elements in all these samples. This phenomenon of larger 

elements having larger phenotypic variances explains why the phenotypic correlation values 

were used when comparing across species (and, similarly, why genetic correlation values were 

used to compare across species [Table 41]).  

 When phenotypic correlation values are used, there are still many significant results 

(Table 39) indicating differences between the species. Eighteen of the 21 inter-sample 

comparisons are significant for phenotypic correlation. The general trend is that phenotypic 

correlation values between pairs of limb elements decrease from Tamarins to the baboon samples 

(Sukhumi Baboons and TBRI Baboons) and from the baboons to the Mennonites. The same 

trend of decreasing correlation values from Tamarins to baboons to Mennonites is seen for the 

genetic correlation values (Table 41). However, only seven of the 21 comparisons are significant 

for genetic correlation, the majority of those being between the Tamarin and Mennonite samples. 

These results show that while phenotypic data may be similar to genetic data, it does not exactly 

mirror it.  

 While not strictly comparable across species (see discussion in Methodological 

Background, above), heritability is a dimensionless ratio. Heritability estimates are quite uniform 

both within and across samples (Table 42). In fact, of all of the intra- and inter-sample 

comparisons, only one comparison shows a significant result: the comparison between the 

Mennonite forearm and thigh. This result highlights two things: 1) heritability is a relatively 
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uninformative ratio here, given that only one out of 21 comparisons is significant, and 2) the 

genetic variance of the Mennonite thigh is very high compared to the forearm given how large 

the phenotypic variance of the thigh is for this sample (See Tables 24, 25, and 30).  

 Evolvability estimates show less uniformity across samples (Table 43). Opposite the 

correlation results above, there is a general trend of evolvability estimates increasing from the 

Tamarins to the baboon samples to the Mennonites, although there is some overlap (Tables 16, 

23, 30, and 37). The majority of the intra-sample comparisons are insignificant. The exception 

here is the Mennonite thigh that is significantly different from all three of the other limb 

segments. All but one of the eight inter-sample significant results is found between the Tamarins 

and the other samples. The Tamarin humerus and femur has a significantly lower evolvability 

than all of the other samples, and the radius of the Tamarin is significantly lower evolvability 

than the Mennonite forearm. The only significant inter-sample comparison not associated with 

the Tamarins is the difference between the evolvability of the Mennonite thigh which is higher 

than the TBRI Baboon femur.  

 The most variable results are found in the conditional evolvability estimates (Table 44). 

Again, there is a general trend of conditional evolvability estimates increasing from the Tamarins 

to the baboon samples to the Mennonites (Tables 16, 23, 30, and 37). There are intra-sample 

differences within the Sukhumi baboons and the Mennonites. The Sukhumi baboons show that 

the conditional evolvability of the humerus and tibia are each significantly different from their 

non-homologous elements, while the Mennonites show that the conditional evolvability of the 

leg is different from the homologous element of the forearm and the intra-limb element of the 

femur. Fifteen of the 21 inter-sample conditional evolvability comparisons are significant. The 
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Tamarins differ from all other samples for all four limb elements – conditional evolvability 

estimates for this sample are lower than for the others. The TBRI Baboons also differ from all 

other samples for two limb elements available (i.e., humerus and femur), with estimates that are 

higher than the Tamarins and lower than the Sukhumi Baboons and Mennonites. The conditional 

evolvability of the radius differs for all three samples that it is available, with the Tamarins 

showing the lowest estimate and the Mennonites showing the highest. The Sukhumi Baboons 

and Mennonites are the most similar, with three of the four limb elements not being significantly 

different from one another.  

 The estimates of i, which look at the relationship between e and c, are almost entirely 

uniform across all four samples. The one exception is that the estimations of i for the Tamarin 

humerus, radius, and tibia are significantly higher than for the corresponding limb segments in 

the Mennonites.  

 These results demonstrate that phenotypic data alone do not fully describe how limb 

elements are related to one another or how they can change over time. Phenotypic correlation 

cannot predict how limb elements will respond to selection pressures, as seen in the differences 

between patterns of phenotypic correlation and patterns of genetic variance, heritability, 

evolvability, and conditional evolvability, both within and across samples. While phenotypic 

data help us understand patterns and hypothesize about evolutionary mechanisms, the addition of 

genetic data help us better understand those processes. 
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Morphological Integration 

Within-Bone Morphological Integration 

 The results of the within-bone morphological integration analyses using the TBRI 

Baboons are below. These results will be used to respond to Developmental Perspective 

Hypothesis 2.  

 Following the Magwene (2001) methodology, partial correlation coefficients (i.e., the 

correlation between two variables with all other variables held constant) for the humerus only, 

femur only, and humerus and femur combined were calculated and are given in Tables 45 

through 47. Using these partial correlations and the Edge Exclusion Deviance formula (see 

Research Design, above), the Edge Exclusion Deviances were calculated for the humerus only, 

femur only, and humerus and femur combined. Results are reported in Tables 48 through 50. In 

these tables, any edges that are below 3.84, corresponding to a 5% point on the χ2-distribution 

with one degree of freedom, have already been omitted. The results of humerus only and femur 

only Edge Exclusion Deviances (Tables 48 and 49, respectively) show that all sets of variables, 

with the exception of one in each matrix, have a statistically significant relationship. The 

humerus and femur combined model (Table 50) has many more blank cells, which represent 

combinations of variables that do not have a significant relationship and can therefore be 

removed from the model.  

 A strength was calculated for the edges which remained following the Edge Exclusion 

Deviance calculations using the Edge Strength formula (see Research Design, above). The Edge 

Strength provides a measure of the strength of the relationship between two variables, otherwise 

thought of the as the copredictability between the two traits. The results of the Edge Strength 
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calculations for the humerus only, femur only, and humerus and femur combined are given in 

Tables 51 through 53. To more easily visualize the differences in Edge Strengths that are 

represented in these matrices, the cells are given different colors based on the order of magnitude 

of the strength. An Edge Strength ranging from 0.001-0.009 is yellow, from 0.01-0.09 is orange, 

and from 0.1-0.9 is red. Blank white cells again represent combinations of variables which do not 

have a significant relationship.  

 The Edge Strength results show the following trends. The humerus itself is moderately 

integrated, with the majority of edges being orange (Table 51). The two yellow edges, 

representing the lowest level of strength, are between the Humerus Maximum Length and both 

the 50% Diaphysis Average and the Distal Articular Breadth. The femur itself is also moderately 

integrated, with the majority of the edges again being orange (Table 52). The two yellow edges 

are between the Femur Head Diameter and the 50% Diaphysis Average and between the Femur 

Bicondylar Length and the Bicondylar Breadth. The significant result within the femur is that the 

Articular Breadth and the Bicondylar Breadth are relatively highly integrated, showing an edge 

strength of 0.268. The model including both the humerus and femur (Table 53) again shows the 

relative high integration between the Articular Breadth and Bicondylar Breadth within the femur. 

Additionally, the combined model shows high integration between the Humerus Maximum 

Length and the Femur Bicondylar Length. Otherwise, integration between the other humerus and 

femur traits are low to moderate.  

 The second within-bone analysis was to perform Mantel tests comparing correlation 

matrices based on the data and model matrices based on various tests of integration. Correlation 

matrices for the humerus only, femur only, and humerus and femur combined are given in Tables 
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54 through 56. While the correlations between two traits within one bone (e.g., Humerus 

Maximum Length and Humerus 50% Diameter Average) should be the same in the matrix for 

the humerus only and the matrix for the humerus and femur combined, the numbers here differ 

slightly. This is due to the different samples sizes, which are the result of the inability to include 

individuals with missing data (see Research Design, above).  

 The correlation matrices in Tables 54 through 56 were compared to the seven model 

matrices for the humerus only and femur only analyses and the 10 model matrices for the 

humerus and femur combined analyses (see Research Design, above). The 10 different models 

are listed in Table 57. A p-value was calculated for each model by determining the number of 

iterations with correlations higher than the original correlation between the two matrices and 

dividing by 1000, and the null hypothesis of no relationship between the two matrices was 

rejected when the p-value was less than 0.05. 

 The Mantel tests resulted in only two significant models at the 0.05 level. The first is a 

model in the femur only data indicating integration between the articulations of the femur and 

the femoral muscle attachment, Femur Bicondylar Breadth. This is also reflected in the 

Magwene methodology as red cells in both the femur only and the humerus and femur combined 

Edge Strength results (Tables 52 and 53). The second significant model indicates integration 

between the Humerus Maximum Length and the Femur Bicondylar Length. This result also 

corresponds to the high Edge Strength found between these traits using the Magwene 

methodology (see Table 53). Table 58 summarizes the results of the Mantel tests and includes 

the original correlations between the correlation matrices and the various model matrices and the 

p-value associated with each model. Significant results are in bold.  
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Morphological Integration Across Four Limb Segments 

 The relative eigenvalue variance results, produced in R (R Core Team, 2014, version 

3.1.2) and following Pavličev et al. (2009), are presented here. These results will be used to 

respond to Developmental Perspective Hypothesis 3 and Evolutionary Perspective Hypothesis 3. 

Defined as the variance of the eigenvalues divided by one less than the number of traits, the 

relative eigenvalue variance is used here to explain the overall level of integration of a 

correlation matrix. The relative eigenvalue variance is given for five different matrices for three 

samples (Tamarins, Sukhumi Baboons, and Mennonites) to compare integration in the upper 

limb, the lower limb, the proximal elements, the distal elements, and all four elements. These 

results, along with 95% credibility intervals, can be seen in Table 59. Additionally, Table 60 

shows the results of the intra- and inter-sample comparisons for significance.  

 The levels of integration are higher for both of the non-human primates than they are for 

the humans. When comparing overall integration by looking at all four limb segments, the 

Tamarins (Vrelλ = 0.679) are significantly more integrated than the Sukhumi Baboons (Vrelλ = 

0.381), and both are significantly more integrated than the Mennonites (Vrelλ = 0.154). This 

pattern continues for the other four measures of integration (i.e., upper limb, lower limb, 

proximal elements, and distal elements), with the Tamarins consistently showing higher levels of 

integration than the Sukhumi Baboons and both samples showing significantly higher integration 

than the Mennonites. The one exception to this is that the Sukhumi Baboon proximal elements 

(Vrelλ = 0.337) are not significantly different than the Mennonite proximal elements (Vrelλ = 

0.196).  
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 Within the Tamarins, the integration of the proximal elements (Vrelλ = 0.621) is 

significantly lower than the integration of the distal elements, upper limb, and lower limb. These 

latter three measures of integration are not significantly different from one another, but they are 

all significantly higher than the overall level of integration (i.e., when all four limb segments are 

used) for the Tamarins. The Sukhumi Baboons show a much different pattern than the Tamarins: 

there are no significant differences across the five measures of integration for this sample. 

Within the Mennonite sample, homologous elements (i.e., proximal elements and distal 

elements) have significantly higher levels of integration than elements within the same limbs 

(i.e., upper limb and lower limb), while the two measures within each of these categories are not 

significantly different from one another.  

 

Summary of Morphological Integration Results 

 When looking within a single bone using the Magwene methodology, relatively low to 

moderate levels of integration are found within both the humerus and femur, as evidenced by the 

TBRI Baboons (Tables 51 and 52). A higher level of integration is found between the Bicondylar 

Breadth and Articular Breadth of the femur (Table 52). When looking across these two limb 

segments, the Humerus Maximum Length and the Femur Bicondylar Length show the highest 

level of integration (Table 53). These results are mirrored in the Mantel tests, as seen in Table 

58.  

 The Relative Eigenvalue Variance results, used to compare integration across all four 

limb segments in the Tamarins, Sukhumi Baboons, and Mennonites, show that the Tamarins and 

Sukhumi Baboons have higher levels of integration than the Mennonites, with the Tamarins 
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having the highest level overall. The pattern of integration within each species for the four 

additional measures of integration (i.e., upper limb, lower limb, proximal elements, and distal 

elements) is different for each species. These results can be seen in Tables 59 and 60.  

 

Linkage Analysis 

 The results of the 10 univariate multipoint linkage analyses run in SOLAR (Almasy & 

Blangero, 1998) are reported below. These results will be used to respond to Developmental 

Perspective Hypothesis 4. Each of these analyses was run to test for evidence of linkage between 

individual trait phenotypic variation and the 309 STR loci previously genotyped by TBRI 

personnel (see Research Design, above).  

 The final residual kurtosis and covariates used in the 10 models as well as the heritability 

associated with each model can be seen in Table 61. All traits (except two) are inormalized traits. 

The two exceptions, Femur 50% Diameter Average and Femur Head Diameter, are the 

inormalized residuals from the inormalized data (following Sherwood et al., 2008). These 

transformations ensure that residual kurtosis is kept below 0.8, as recommended by the SOLAR 

documentation (2013) (section 6.8.2). Sex is included as a significant covariate in all 10 traits, 

while age is included in six of the traits. The only other significant covariates used are age*sex in 

two traits and age2 in three traits.  

 All 10 phenotypic traits have at least one area of suggestive linkage (i.e., a LOD score of 

1.5 or higher), and one trait, Humerus Head Length, has an area of significant linkage (i.e., a 

LOD score of 2.75 or higher). All areas of suggestive and significant linkages are listed in Table 

5.53. Due to the fact that areas with LOD scores above 0.5 were rescanned and LOD scores were 



 

136 

 

calculated every 1 cM (see Research Design, above), there is typically a range of locations above 

the suggestive or significant threshold. The entire range of suggestive/significant LOD scores is 

given in the “location” column, while the “peak” column gives the position of the highest LOD 

score in the entire region. These highest LOD scores are reported in the final column. 

Additionally, the locations of the LOD scores are based on the Baboon chromosome maps, but 

the chromosome numbers used by SNPRC reflect the orthologous human chromosome numbers. 

Therefore, both the human and corresponding baboon chromosome numbers are given here. 

 The string plots for each of the 10 univariate linkage analyses can be seen in Figures 13 -

22. Each of these plots shows the LOD scores for the complete length of all 21 baboon 

chromosomes. The small tick marks on each of the straight lines representing the chromosomes 

show the locations of the STRs. Larger curves indicate higher LOD scores, and the chromosome 

with the highest LOD score for that trait has a LOD scale below.  

 The results of three of the traits are discussed in further detail here. Humerus Head 

Length (Figure 15) had the only significant LOD score, so it is included here. And, because limb 

segment lengths are the focus of the overall project, the areas with suggestive LOD scores for 

Humerus Maximum Length (Figure 13) and Femur Bicondylar Length (Figure 18) are also 

examined. It should be remembered throughout that the LOD scores associated with both 

Humerus Maximum Length and Femur Bicondylar Length are merely suggestive, not significant; 

therefore they may be wrong. However, as stated by Lander and Kruglyak (1995), they are 

“worth reporting.” Figure 23 shows the significant peak for Humerus Head Length found on 

human chromosome 11. Figure 24 shows the suggestive peak for Humerus Maximum Length on 
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human chromosome 12. There are two peaks with suggestive LOD score for Femur Bicondylar 

Length found on chromosome human 718 (Figure 25) and human chromosome 14 (Figure 26).  

 

Significant LOD Score Associated with Humerus Head Length 

 The region around the significant peak LOD score for Humerus Head Length was further 

analyzed to look for candidate genes which may influence phenotypic variation. The peak 

location associated with a LOD score of 3.7985 is location 46 on baboon chromosome 14 (see 

Table 62). As shown in the plot in Figure 23, this peak is between STR markers D11S4203 and 

D11S907. The SNPRC Baboon to Human Comparative Maps website (SNPRC CompMaps 

website) is used to determine the location of these STR loci in the human genome. These two 

STRs have corresponding locations on human chromosome 11 (using Marshfield Position) of 

45.94 cM and 42.55 cM, respectively. Figure 23 also shows a second peak, located at 62 cM and 

associated with a LOD score of 3.5410. This peak is between STR markers D11S904 and 

D11S1349, which have locations in the human genome at 33.57 cM and 18.26 cM. A map of the 

relative positions of the STRs on the baboon and human chromosomes can also be seen on the 

SNPRC website (SNPRC CompMaps website). A reduced version of these maps, focusing on 

only the locations of the STRs of interest on human chromosome 11/baboon chromosome 14, 

can be seen in Figure 27. While D11S907 is not shown on the SNPRC map, D11S4200, which is 

right next to it on Figure 23, is. Of significance in this map is that STRs D11S4200 and 

                                                 

 
18 Figure 25 is the plot associated with both human chromosome 7 and human chromosome 21. This is because 

human chromosomes 7 and 21 are combined into one chromosome (chromosome 3) in the baboon genome. 

However, the location of the suggestive peak is in the area that is orthologous to human chromosome 7. Similarly, 

human chromosomes 14 and 15 are combined to make baboon chromosome 7, but the location of the suggestive 

peak is in the area that is orthologous to human chromosome 14 and is shown in Figure 26. 
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D11S4203 are located next to one another in both species, as are D11S904 and D11S1349. 

Furthermore, there are nine STR loci occurring in the same order, although inverted on the 

human chromosome, which can be seen on the SNPRC maps. This further highlights the 

orthologous nature of the human genome as compared to the baboon genome and the utility of 

the baboon genome to look for candidate genes in the human genome.  

 The SNPRC website (SNPRC CompMaps website) also provides the physical location of 

the STRs on the human chromosome in base pairs (bps). D11S4203 is located between bps 

35,769,948 and 35,770,298 and D11S907 is located between bps 34,624,001 and 34,624,268. 

Therefore, the region of interest to look for candidate genes associated with the highest peak is 

between bps 34,624,001 and 35,770,298 on human chromosome 11. Similarly, D11S904 is 

located between bps 26,637,090 and 26,637,375 and D11S1349 is located between bps 

11,709,077 and 11,709,431. Therefore, the region of interest to look for candidate genes in the 

secondary peak is between bps 11,709,077 and 26,637,375 on human chromosome 11.  

 Genes within these regions of interest on human chromosome 11 were determined using 

the UCSC Genome Browser (UCSC Genome Browser website). Within these regions, there are 

nine genes that are listed in the UCSC Genes track associated with the highest peak and 98 genes 

associated with the secondary peak. When the Genome Browser returns results there is typically 

more than one entry for each gene, which can be due to different splice variants of the gene. 

Each entry is also color-coded: black entries are those which are well known and are in the 

Protein Data Bank, dark blue entries are transcripts which have been reviewed or validated by 

another source (such as RefSeq), and light blue entries are transcripts that are not found in 

RefSeq. Only one entry for each gene is used, with the darkest colored entry being selected. 
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 Table 63 lists the nine genes found on human chromosome 11 between bps 34,624,001 

and 35,770,298, in alphabetical order.  Each row lists the gene abbreviation, the unique search 

term given for the selected gene entry, the color of the selected gene entry, whether the gene is 

coding or noncoding, and the function of the gene. All but one of these genes are coding (i.e., 

produce proteins), and the one noncoding gene is for a microRNA. The functions are known for 

most of these nine genes, and they range from epithelial differentiation to muscle regeneration 

and from transcription repression to cell-cell interactions.  

 Determining the gene or genes that may be causing a significant LOD score on human 

chromosome 11 is not possible in this project, but there are two genes in the highest peak that 

would be candidates for further study. The first is CD44, which is located at bps 35,160,417 to 

35,253,949 on the p arm of chromosome 11. The protein produced by this gene is a cell-surface 

glycoprotein and it is involved in cell-cell interactions. Specifically, it is a receptor for 

hyaluronic acid, which is found in joint cavities (Schoenwolf et al., 2015). Alternatively, this 

protein can be a receptor for osteopontin, which, among other things, is involved with bone 

formation (Denhardt & Guo, 1993). In addition, one of the biological processes listed for CD44 

is a Wnt signaling pathway. Wnt genes are responsible for limb bud formation and dorsal-ventral 

patterning in the developing limb (Gilbert, 2013). These features make CD44 a candidate gene 

influencing variation in Humerus Head Length.  

 The second candidate gene associated with the highest peak on chromosome 11 is FJX1 

(full name is four jointed box 1). It is located at bps 35,639,735 to 35,642,421 on the p arm of 

chromosome 11. While the exact function of this gene is unknown in humans, the ortholog of 

this gene is known in mouse and Drosophila. In Drosophila, the protein is important in the 
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differentiation of legs and wings. Because this gene is closely related to genes that are known to 

be involved with limb development in other species, FJX1 is a candidate gene here.  

 Table 64 lists the 98 genes found on human chromosome 11 between bps 11,709,077 and 

26,637,375, the area of the second highest peak. While 79 of the genes are coding, 21 of the 

genes are noncoding. Noncoding genes may result in products such as endogenous retroviruses, 

noncoding RNAs (including ribosomal RNA or microRNAs), and pseudogenes. A majority of 

the genes have a function listed; however, 33 genes did not have a clear function described in the 

UCSC files. Most (19) of the 33 without functions are noncoding genes.  

 The functions of the genes listed in Table 64 are wide-ranging, from DNA activities, such 

as DNA repair and transcription activation, to cellular activities, such as metabolism, protein 

transport, apoptosis, and organelle biogenesis, to tissue production, such as myogenesis, and 

chondrogenesis. There are several genes involved with pain modulation, two that are specific to 

cochlear hair cell production, and a few that impact tumor susceptibility and suppression. Of 

specific interest to this project, there are several genes which are important for bone formation 

(CALCA, NELL1) or that have been implicated as influencing body height (TEAD1, PTH, 

SERGEF). 

 There are a few genes associated with the second highest peak on chromosome 11 which 

have functions that would make them candidates for further study. The first is DKK3 (dickkopf 

WNT signaling pathway inhibitor 3). This gene is located at bps 11,984,543 to 12,030,917 on the 

p arm of chromosome 11. A member of the dikkopf family, the protein encoded by this gene is 

involved with embryonic development due to its interactions in the Wnt signaling pathway. Wnt 

signaling is responsible for limb bud formation as well as dorsal-ventral patterning in the 
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developing limb (Gilbert, 2013). The DKK genes are local inhibitors of Wnt signaling, making 

them important for vertebrate development. Among other things DKK3 is implicated in limb 

development, making it a candidate gene here.  

 The second candidate gene is NELL1 (NEL-like protein 1). This gene is located at bps 

20,691,117 to 21,597,229 on the p arm of chromosome 11. The protein is involved in cell growth 

regulation and differentiation, and, specifically, it is involved with osteoblast cell differentiation 

and bone mineralization. Osteoblasts are the bone-forming cells which deposit matrix that is then 

mineralized. Because this gene is implicated in bone formation, it is a candidate gene for the 

Humerus Head Length phenotype.  

 There are several other genes that seem to be peripherally related to limb bone formation 

and could thus also be considered candidate genes. One of the functions of TEAD1 is organ size 

control, and it has also been implicated as contributing to body height, as have PTH and 

SERGEF. Finally, CALCA regulates bone ossification and bone resorption and has been 

associated with bone mineral density, as has INSC.  

 

Suggestive LOD Scores Associated with Limb Segment Lengths  

 The suggestive LOD score peak associated with the Humerus Maximum Length (Figure 

13 and Figure 24) was analyzed following the same protocol as above. As shown in Table 62, the 

highest suggestive LOD score on chromosome 12 was 1.7153 at location 42. Looking at Figure 

24, this falls between STR markers PHA11S2 and PHA11S3. These STRs are baboon specific 

and do not have an orthologous location in the humans genome. Therefore, the area of interest 

was widened to STR markers D12S364, which is located between bps 13,724,569 and 
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13,724,907 on human chromosome 12, and D12S85, which is located between bps 45,622,953 

and 45,623,129 on the same chromosome. Therefore, the region of interest for Human Maximum 

Length is between bps 13,724,569 and 45,622,953 on human chromosome 12.  

 The UCSC Genome Browser returned 153 genes in this region of chromosome 12, which 

are listed in Table 65. Of these, 121 are coding genes which produce proteins, while the 

remaining 32 are antisense, near coding, or noncoding genes. There are a variety of functions 

among the coding genes, and four in particular are considered candidate genes here. The first is 

MGP (matrix gla protein), located at bps 15,034,115 to 15,038,853 on the p arm of chromosome 

12. The protein produced by this gene associates with the organic matrix of bone and cartilage 

and is an inhibitor to bone formation. The second gene is PTHLH (parathyroid hormone-related 

protein), located at bps 28,111,017 to 28,124,916 on the p arm of chromosome 12. This protein 

regulates endochondral bone development and is required for skeletal homeostasis. Third, 

PTPRO (protein tyrosine phosphatase, receptor type, O) is located at bps 15,475,191 to 

15,751,265 on the p arm of chromosome 12. Its function is to regulate osteoclast production, 

cells which resorb bone tissue during bone growth and remodeling. And, finally, SOX5 (sex 

determining region Y-box 5) is located at bps 23,685,231 to 24,102,637 on the p arm of 

chromosome 12. This gene helps regulate embryonic development and plays a role in 

chondrogenesis.  

 The two suggestive LOD score peaks associated with Femur Bicondylar Length (Figure 

18) are located on chromosomes 7 and 14. On chromosome 7 (Figure 25), the peak is located 

between STRs D7S496 (located between bps 106,941,921 and 106,942,086) and D7S480 

(located between bps 120,752,256 and 120,752,501), making the area of interest located between 
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bps 106,941,921 and 120,752,501 on human chromosome 7. On chromosome 14 (Figure 26), the 

peak is located between STRs D14S66 (located between bps 56,120,368 and 56,120,628) and 

D14S277 (located between bps 72,097,057 and 72,097,415), making the area of interest located 

between bps 56,120,368 and 72,097,415 on human chromosome 14.  

 For chromosome 7, 69 genes were identified, 45 of which are coding genes (Table 66). 

Two of these, TFEC and WNT2, are considered candidate genes here. TFEC (transcription factor 

EC) is located at bps 115,575,202 to 115,670,867 on the q arm of chromosome 7, and it co-

regulates genes in osteoclasts. WNT2 (wingless-type MMTV integration site family member 2) 

is located at bps 116,916,686 to 116,963,343 on the q arm of chromosome 7. Wnts are known to 

control cell fate and patterning in embryogenesis. For chromosome 14, 143 genes were identified 

in the region of interest using the UCSC Genome Browser (Table 67). Of these, 101 are coding 

and two are identified as candidate genes. KIAA0586 is located at bps 58,894,103 to 59,015,549 

on the q arm of chromosome 14. It is important in SHH signaling, which is imperative for limb 

patterning during embryogenesis. And finally, SMOC1 (SPARC related modular calcium 

binding 1) is located at bps 70,346,114 to 70,499,083 on the q arm of chromosome 14. The 

protein created by this gene plays a critical role in limb development. Candidate genes for all 

three traits are listed in Table 68.  

 It should also be noted that the string plot for Humerus Maximum Length (Figure 13) 

shows a peak on chromosome 7 that looks strikingly similar to the peak in the same location of 

chromosome 7 for Femur Bicondylar Length (Figure 18). The maximum LOD score for this 

peak is 1.4737 at location 137 of chromosome 7, which is nearing the “suggestive” cutoff LOD 
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score of 1.5. This suggests that the length of both proximal bones may be influenced by the same 

area of the genome. 

 There are several other homologous traits that show similar patterns in their string plots. 

For instance, both Humerus Head Length and Femur Head Diameter show a small peak in the 

same location of baboon chromosome 20_22, and Femur Head Diameter shows a peak in the 

same area as the suggestive QTL for Humerus Head Length on chromosome 2q (Figures 15 and 

20). The suggestive QTLs for both Humerus 50% Diameter Average and Femur 50% Diameter 

Average are in the same area of chromosome 6 (Figures 14 and 19). Also of note is the fact that 

the only two traits with high morphological integration, aside from the limb segment lengths, 

were Femur Articular Breadth and Femur Bicondylar Breadth. These traits show similar peaks 

on chromosomes 2q, 7_21, and 14_15 (Figures 21 and 22). The majority of these do not even 

reach the level of a suggestive QTL, but an increased sample size may bring them up to the level 

of significance.  

 

Protein Networks 

 To look for connections among proteins within each region of interest, the lists of genes 

were reduced to only those that produce proteins (i.e., coding genes). This reduced the number of 

genes to 85 for Humerus Head Length, 120 for Humerus Maximum Length, and 146 (45 on 

chromosome 7 and 101 on chromosome 14) for Femur Bicondylar Length. These three lists of 

proteins were each run independently through STRING using the “multiple names” function. A 

few of the proteins in these lists were not found in the STRING database, reducing the number of 

proteins to 77 for Humerus Head Length, 115 for Humerus Maximum Length, and 137 for 
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Femur Bicondylar Length. These proteins are identified with an asterisk next to the gene 

abbreviation in Tables 63 through 67. Additionally, a few proteins were identified by different 

names in STRING, and those names are found in parentheses next to the gene abbreviation in the 

same tables. A second round of STRING analyses were performed by running each list of 

proteins separately through the database again, this time including the 35 known proteins 

involved in bone and limb development (Table 69). 

 The figures produced by STRING are circles (i.e., nodes) connected by lines. Each circle 

represents a different protein, while lines represent connections between them. The various 

colors of the protein circles do not mean anything and are simply used as a visual aid when 

comparing the figure to the list of included proteins on the website. The various sizes of the 

nodes reflect whether any structural information is known about the protein; if a structure is 

known for the protein, then a small image appears inside the node indicating that information. 

The different colors of the lines represent the type of evidence that is used to support an 

interaction between the proteins, and a legend is found in Table 70.  

 The protein network for Humerus Head Length is found in Figure 28. Candidate genes 

CD44 (light blue, left side) and DKK3 (yellow, bottom left) are not connected to any other 

proteins. NELL1 (light green, right side) is connected by text mining evidence to ANO5, while 

FJX1 (dark blue, right side) is connected by text mining evidence to TRIM44.  

 The second run for Humerus Head Length, which includes the list of known bone and 

limb development proteins, is found in Figure 29 (which has been cropped from a larger image). 

There is a messy web of interconnectivity where the known bone and limb proteins cluster, 

which is expected. The majority of the connections are due to text mining, databases, and 
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experiments. There are several proteins which were not connected in Figure 28 but are now 

connected to bone or limb proteins, including SOX6 and MYOD1. DKK3 and CD44, the two 

previously unconnected candidate genes, are now connected to other bone and limb genes, 

providing support for the idea that these genes may be involved in bone or limb development.  

 Figure 30 shows the protein network for Humerus Maximum Length. Candidate genes 

PTPRO (light green, right side) and MGP (light blue, left side) are not connected to any other 

proteins. SOX5 (dark blue, lower left side) is connected by text mining evidence to LRMP, 

ETNK1, and ATF71P. PTPLH (light blue, left side) is connected by text mining evidence to 

KIF21A and by text mining and database evidence to IAPP.  

 Figure 31 shows the second run for Humerus Maximum Length (which has also been 

cropped from a larger image). Several proteins which were not connected in Figure 30 are now 

connected via these bone and limb proteins, including KRAS, MGP, YAF2, DBX2, PRICKLE1, 

and TMTC1, indicating that these genes may be peripherally involved in bone or limb 

development.  

 The protein network for Femur Bicondylar Length is found in Figure 32.  

TFEC (yellow, center) is connected by text mining evidence to MAX and by text mining and 

experimental evidence to ING3. WNT2 (yellow, top left) is connected by text mining evidence to 

ST7 and CAPZA2 and by text mining and experimental evidence to MET. KIAA0586 (yellow, 

lower right side) is connected by text mining evidence to DACT1 and ARID4A. And, finally, 

SMOC1 (light blue, top) is not connected to any other proteins.  

 Figure 33 shows the second run for Femur Bicondylar Length (again, cropped from a 

larger image). Several new connections are made in this figure. OTX2, SIX6, and MET each 
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have multiple connections to the known bone and limb development proteins and may be 

involved in bone or limb development.  

  

Summary of Linkage Analysis and Protein Network Results  

 The results of the 10 univariate multipoint linkage analyses show that there are several 

suggestive LOD scores and one significant LOD score of interest to this project, including 

suggestive LOD scores for both Humerus Maximum Length and Femur Bicondylar Length. 

Additionally, there is a peak on the string plot for Humerus Maximum Length (Figure 13) on 

chromosome 7 that nearly reaches the level of a suggestive LOD score and that is located in the 

same area of a suggestive LOD score for Femur Bicondylar Length (Figure 18). These results 

suggest that the same area of chromosome 7 may be impacting the length of both the humerus 

and the femur.  

 In addition, there are genes within all of the examined regions (the significant region of 

chromosome 11 for Humerus Head Length, the suggestive region chromosome 12 for Humerus 

Maximum Length, and the suggestive regions on chromosomes 7 and 14 for Femur Bicondylar 

Length) that are good candidates for further study because they play some role in bone 

formation, limb development, or some other related function (Table 68). This indicates that 

variation found in the genome is indeed influencing variation found in phenotype.  

 Finally, the protein networks show that the candidate genes identified here are indeed 

associated with many proteins that are known to influence bone and limb development (Figures 

29, 31, and 33), thereby adding weight to the argument that these genes are good candidates 

which are likely influencing phenotypic variation in limb segment lengths.  
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CHAPTER SIX  

DISCUSSION AND CONCLUSIONS 

 

 This study set out to use a quantitative genetics approach to better estimate the variance 

and covariance in limb segment lengths in humans and other primates using pedigreed samples 

and then begin the task of identifying genes which influence this normal genetic variation in 

primate limb bones. The study’s results have important implications for how limb segment 

lengths and proportions are used in anthropological research.  

 This chapter will begin with responding to the hypotheses detailed in Research Design, 

above, using details from Results, also above. Following this there will be a discussion on the 

implications that these results have on current anthropological and related literature which was 

described in Limbs and Methodological Background, above. There will then be a discussion of 

the limitations to this study as well as a section on future research. 

 

Responding to the Hypotheses 

Developmental Perspective Hypotheses 

1. While phenotypic variance increases from proximal to distal elements, heritability will 

decrease.  

 Previous research has shown that environmental variance accumulates in distal elements 

in primates species (Hallgrímsson et al., 2002) arguably because of the way in which limbs form 

in a proximo-distal gradient (Tarchini and Duboule, 2006; Gilbert, 2013). Therefore, while 

phenotypic variance will increase due to increasing environmental variance, heritability will 
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decrease because genetic variance plays a smaller role in overall phenotypic variance. This is not 

supported by the results presented here.  

 Phenotypic variance does indeed increase from proximal (humerus/arm and femur/thigh) 

to distal (radius/forearm and tibia/leg) elements when looking at the Tamarin sample (Table 10); 

however, the same does not hold true for the other samples. Phenotypic variance decreases from 

proximal to distal elements in the Sukhumi Baboons (Table 17) and Mennonites (Table 24). The 

TBRI Baboons are not included here because that sample only has the proximal elements 

available. When looking at the heritability estimates presented in Tables 16, 23, and 30 for the 

Tamarin, Sukhumi Baboon, and Mennonite samples, respectively, it can be seen that heritability 

does not consistently decrease as expected from the proximal segments to distal segments. The 

Tamarins show a slight decrease in h2 from the humerus to radius but a slight increase from 

femur to tibia (Table 16). The Sukhumi Baboons actually show an increase in h2 from proximal 

to distal segments (Table 23). Finally, the Mennonites do show a decrease from proximal to 

distal segments (Table 30), as expected.  

 However, all results must be viewed while simultaneously looking at Tables 38 and 42 

which show the intra- and inter-sample comparisons for phenotypic variance and heritability, 

respectively. Given that these estimates have quite large credibility intervals generated from the 

posterior distributions of the MCMCglmm models, patterns seen in the estimates themselves are 

not all that informative. When the posterior distributions for phenotypic variance are compared 

within species, all three samples show that there is no significant difference between the humerus 

and radius. However, the difference between the femur and tibia is significantly different for all 

three samples. That still means that only the Tamarins show the expected increase in phenotypic 
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variance from proximal to distal segments, albeit only in the lower limb. When the posterior 

distributions for h2 are compared within and across species, there is only one significant 

difference – the Mennonite forearm has a significantly lower h2 than the Mennonite thigh. All 

other comparisons of limb segment heritability estimates are not significantly different. Given 

that the significant difference found in the Mennonites is between elements from different limbs, 

even this result does not support the hypothesis that h2 should decrease from proximal to distal 

segments.  

 There are a few explanations as to why this hypothesis is not supported by the analyses 

presented here. First, the paper that purported that phenotypic variance increases and heritability 

decreases from proximal to distal segments (i.e., Hallgrímsson et al., 2002) included the autopod, 

in addition to the stylopod and zeugopod, in the analysis. As a reminder, the stylopod makes up 

the proximal elements of the limbs (i.e., humerus and femur), the zeugopod makes up what have 

been referred to here as the distal elements of the limbs (i.e., radius, ulna, tibia, and fibula), and  

the autopod makes up the hands and feet (i.e., carpals, metacarpals, tarsals, and metatarsals). 

Hallgrímsson et al. (2002: Figure 719) do indeed show that environmental and phenotypic 

variance increase from stylopod to zeugopod to autopod; however, the majority of the increase 

seems to be in the autopod, which is not included in the current analysis. Second, the analysis in 

Hallgrímsson et al. (2002) uses skeletal data from a sample of Rhesus macaques (Macaca 

mulatta), similar to the skeletal data used here from the Tamarins. The Sukhumi Baboon and 

Mennonite data, on the other hand, are both anthropometric data. Therefore, it is perhaps not 

surprising that the Tamarin sample used here is the one that most closely adheres to their 

                                                 

 
19 Not shown here. 
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findings. The potential limitations of anthropometric versus osteometric data will be discussed 

further below, in Limitations.  

 

2. Morphological integration will be higher among limb segment lengths and/or 

articulations and lower among diaphyseal measures. 

 This hypothesis brings together several sources of information to make the claim that 

limb segment lengths and/or articulations should show higher levels of integration to one another 

than to diaphyseal measures. First, diaphyseal measures have been shown to be more influenced 

by mechanical loading than other limb features (Larsen, 1997; Ruff, 2008a). Second, limb 

articulations are less responsive to mechanical loading (Ruff et al., 1991) and show a degree of 

genetic canalization and/or are influenced by more general systemic factors such as nutrition 

(Ruff et al., 1994). Finally, variation in limb segment lengths appears independent from variation 

in diaphyseal dimensions (Ruff, 2003; Trinkaus et al., 2004; Auerbach and Raxter, 2008) and is 

anecdotally considered to be more highly genetically canalized than other bone dimensions 

(Auerbach and Ruff, 2006; Cowgill and Hager, 2007).  

 The within-bone morphological integration analyses show that this hypothesis is well 

supported. Table 53, which shows Edge Strengths for the TBRI Baboon humerus and femur 

indicates that the highest levels of morphological integration within the features of these two 

bones are found in two comparisons: 1) the Humerus Maximum Length and the Femur 

Bicondylar Length, and 2) the Femur Articular Breadth and the Femur Bicondylar Breadth. 

Mantel test results show the same two significant results.  
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 These within-bone morphological integration analyses support the hypothesis that long 

bone lengths are more highly integrated than other limb bone features since the two long bone 

lengths included are relatively highly integrated. Additionally, while only one articulation 

(Femur Articular Breadth) was included in a significant result, diaphyseal measures were not 

included in any. This supports the idea that diaphyseal measures, which are highly influenced by 

mechanical loading, are not tightly integrated with other limb features.  

 Of interest is the fact that Femur Bicondylar Breadth, a muscle attachment, was included 

in the significant result with Femur Articular Breadth. While muscle attachments would be 

considered less genetically canalized because their size may be dependent on activity and muscle 

size (Robb, 1998), the fact that it is highly integrated with Femur Articular Breadth is not 

surprising. Both these measures are taken at the distal end of the femur, not far from one another, 

and the breadth of the muscle attachment is partially dependent upon the breadth of the articular 

surface.  

 

3. Proximal limb elements will show higher morphological integration with one another 

than distal limb elements, and homologous elements will show higher morphological 

integration than elements within the same limb.  

 Homologous elements (i.e., the humerus/femur and the radius/tibia) have similar 

developmental pathways (Hallgrímsson et al., 2002; Gilbert, 2013), indicating that these 

structures should have higher levels of integration than elements within the same limb (Young et 

al., 2010). Additionally, molecular factors involved in limb development work in a proximo-

distal gradient (Tarchini and Duboule, 2006; Gilbert, 2013), which allows variation to 
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accumulate in distal elements. Therefore, proximal elements are expected to show higher levels 

of integration with one another than distal elements. The results of this study are split on whether 

they support his hypothesis. See Tables 59 and 60.  

 With regard to the proximal versus distal elements, all three samples show a similar, 

unexpected pattern: the proximal elements show a lower level of integration with one another 

than the distal elements show with one another. For the Tamarins and Sukhumi Baboons, the 

estimation of integration for the proximal elements is the lowest level of integration of any of the 

measures of integration (i.e., proximal elements, distal elements, upper limb, lower limb, all four 

limbs). The difference between these two non-human primate samples is that the difference 

between the proximal element integration is significantly lower than all other measures for the 

Tamarins, while the difference is not significant for the Sukhumi Baboons (in fact, none of the 

comparisons among the different measures of integration are significantly different for this 

sample). The Mennonite sample follows the same pattern of proximal elements showing lower 

levels of integration than the distal elements, although the difference between them is not 

significant. Therefore, for two of the samples (Sukhumi Baboons and Mennonites) the level of 

integration for the proximal elements is not significantly different than then level of integration 

for the distal elements. For the remaining sample, the Tamarins, the proximal elements show a 

significantly lower level of integration than the distal elements, which goes against the 

expectations of this hypothesis.  

 With regard to the homologous elements versus within-limb elements, the non-human 

primates show a different pattern than the human sample. The Tamarins and Sukhumi Baboons 

show that there is no significant difference between the integration levels of the upper limb, 
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lower limb, and distal elements, and the Sukhumi Baboons also show no difference between 

these three and the proximal elements. The Tamarins do show a significant difference between 

the proximal elements and the other three measures of integration, but as discussed before, the 

proximal elements have a lower level of integration than the other measures. Therefore, the non-

human primate samples do not adhere to the expectations of the hypothesis. The Mennonites, on 

the other hand, do support the expectations of the hypothesis. There are no significant differences 

in the level of integration between either the upper limb and the lower limb or the proximal 

elements and the distal elements; however, there are significant differences between homologous 

elements and within-limb elements with homologous elements showing significantly higher 

levels of integration than within-limb elements. Thus, while the non-human primate samples do 

not support the hypothesis, the human sample does.  

  

4. Traits that show high morphological integration will have QTLs in the same genomic 

regions. 

 Pleiotropy, defined as a single gene or region contributing to multiple phenotypic traits, is 

a genetic mechanism which leads to positive genetic correlation and integration because changes 

in that single gene or region causes phenotypic changes in multiple traits (Cheverud, 1984, 2007; 

Hallgrímsson et al., 2002; Rolian, 2009; Young et al., 2010). Pleiotropy can be identified as 

multiple traits showing significant correlations with similar genomic regions.  

 The results of the linkage analysis show that this hypothesis is well supported. In this 

study, there are two sets of individual traits which show high levels of integration in the within-

bone morphological integration analysis, as detailed in the Developmental Perspective 
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Hypothesis 2, above. The first set of traits, Humerus Maximum Length and Femur Bicondylar 

Length, do indeed have QTLs in the same genomic region. One of the two suggestive LOD 

scores for Femur Bicondylar Length is found on chromosome 7 between locations 134 and 159 

(Table 62). The Humerus Maximum Length shows a very similar peak in the same region of 

chromosome 7, with a maximum LOD score of 1.4737 at location 37. While this peak does not 

reach significance, or even the suggestive cutoff value, the string plots for the two traits (Figures 

13 and 18) are strikingly similar. The issue of non-significance in LOD scores will be discussed 

below.  

 The other set of traits which show a high level of within-bone morphological integration 

are Femur Articular Breadth and Femur Bicondylar Breadth. These traits show very similar 

peaks on three chromosomes: 2q, 7_21, and 14_15 (Figures 21 and 22). The only one of these 

QTLs to reach the level of suggestive significance is the peak on chromosome 2q for Femur 

Bicondylar Length, with a LOD score of 1.5137, but the similarities shown in the string plots 

suggests that similar genomic regions are influencing variation in these traits.  

 Many of the results reported for the linkage analyses do not reach the level of a 

suggestive LOD score, much less a significant LOD score. As described in Research Design, 

above, a LOD score is used to compare the likelihood that a trait and marker are actually linked 

versus seeing the same data purely by chance. Using a modification of Feingold et al. (1993), 

which takes pedigree complexity and finite marker locus density of the linkage map into account, 

a suggestive LOD score for this sample is 1.5 and a significant LOD score is 2.75 (following 

Sherwood et al., 2008). The significant LOD score is associated with a genome-wide p-value of 

0.5, while the suggestive LOD score provides a result that would be expected to occur once in a 
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genome-wide linkage scan. Therefore, not all of the suggestive LOD scores that are reported here 

are going to be results that eventually lead to the identification of candidate genes which 

influence phenotypic variation. Some of these will be associations that are produced purely by 

chance. However, these suggestive LOD scores are worthy of reporting as they are currently the 

most noteworthy sections of the genome that are associated with the known phenotypic variation. 

And, given that many of the candidate genes that were identified here connected directly to 

proteins that are known to be involved in limb development (Figures 29, 31, 33), this suggests 

that the LOD scores where these genes were found, while not significant, are picking up on areas 

of the genome that are associated with phenotypic variation in these traits.  

 Even more precarious than reporting suggestive LOD scores is the reporting of LOD 

scores which are nearing the level of being suggestive (for instance, the small peak on 

chromosome 7 for Humerus Maximum Length that is located in the same region as the 

suggestive peak for Femur Bicondylar Length, described above). The reporting of these peaks 

here is not meant to say that these peaks are definitively showing the areas of gene(s) which 

influence phenotypic variation. Rather, they are noted here as interesting areas which overlap 

areas that do reach the level of a suggestive LOD score in traits which are either highly 

integrated or homologous to the trait being discussed.  

 A LOD score may reach the level of significance by increasing the number of individuals 

included in the pedigree. If linkage does exist between the trait and the area of the genome where 

the (near) suggestive LOD score peak is located, then increasing the sample size will increase the 

strength of the relationship between the two.  
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Evolutionary Perspective Hypotheses 

1. Evolvability will increase with limb diversification (i.e., as the upper and lower limbs evolve 

to perform different functions).  

 Evolvability, or the expected evolutionary response to selection in a trait, is expected to 

increase across species to allow the limbs to evolve to perform different functions. Additionally, 

the expectation is that evolvability estimates will be comparable across limb segments in 

quadrupedal non-human primates and more variable across the limb segments in the bipedal 

human sample. This is because limbs that do not need to adapt to different functions (i.e., the 

limbs of quadrupeds) should show consistent levels of evolvability, while limbs that need to 

adapt to differing functions (i.e., limbs of bipeds) may need different levels of evolvability to 

allow limb segments to change. The results of this study are again split on whether they support 

this hypothesis.  

 With regard to whether evolvability increases with limb diversification, there are some 

interesting patterns which support the hypothesis (Tables 16, 23, 30, 37, and 43). Given that all 

the non-human primate samples are quadrupeds, the results are expected to show that the 

Tamarins, Sukhumi Baboons, and TBRI Baboons are very similar and all are significantly 

different from the Mennonites. This is only partially the case. The patterns of evolvability 

estimates do indeed show that they increase from the quadrupedal non-human primates to the 

bipedal humans; however, the differences are not significant across the board. The evolvability 

estimates for the Tamarins are significantly lower than the Mennonites for the humerus, radius, 

and femur, and the TBRI Baboons are significantly lower for the femur only.  However, none of 

the comparisons between the Sukhumi Baboon and Mennonite evolvability estimates are 

significantly different. In fact, the Sukhumi Baboons differ only from the Tamarin proximal 
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elements, which are significantly lower. Thus, the significant difference between the Tamarins 

and the Mennonites supports the hypothesis expectation of increasing evolvability with limb 

diversification, but the lack of significance between the Sukhumi Baboons and the Mennonites 

does not support the hypothesis.  

 With regard to the expectation that evolvability estimates should be more uniform in 

quadrupedal samples versus bipedal samples, the results do support the hypothesis. Intra-sample 

comparisons for the Tamarins, Sukhumi Baboons, and TBRI Baboons show that none of the 

evolvability estimates are significantly different within each sample. Alternatively, the 

Mennonites do show some significant differences in the intra-sample comparisons. The thigh has 

a higher level of evolvability than all of the other limb segments.  

 

2. The difference between conditional evolvability and evolvability will decrease with limb 

diversification. 

 A trait that has a low conditional evolvability relative to evolvability shares the majority 

of its variation with other traits, and evolution acting on this trait would cause correlated 

responses in other traits (Hansen and Houle, 2008; Roseman et al., 2010). Quadrupedal primates 

are expected to have low conditional evolvability relative to evolvability because all limbs are 

expected to be highly correlated. A higher conditional evolvability relative to evolvability (i.e., a 

reduced difference between the two measures) means the trait is more able to evolve on its own. 

Therefore, bipedal humans should show this latter pattern.  

 In these analyses, the difference between e and c is measured using a measure known as i 

(for integration, although this should not be confused with the other measures of integration 
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discussed here). As shown in Equation 4.5, i is calculated as the difference between 1 and the 

quotient of c and e. Therefore, as the difference between c and e decreases, i will decrease. If 

there is a large difference between c and e, then i will be closer to 1. Traits with i values closer to 

1 are less capable of evolving independently, while lower values of i indicate that the trait can 

evolve more independently because it is less correlated with other traits. For this hypothesis, 

then, the quadrupedal non-human primate samples are expected to have higher i values than the 

human sample. The results of the estimates of i in this study are again split on whether they 

support this hypothesis.  

 The i estimates for each sample are listed in Tables 16, 23, 30, and 37, and while there is 

no table showing the results of the intra- and inter-sample comparisons, the only significant 

results are noted in the Tamarins vs. Mennonites section in Results, above. The patterns of i 

estimates in the abovementioned tables do indeed show that the difference between evolvability 

and conditional evolvability decreases for limb segments from the non-human primate samples 

to the human sample. However, like so many other patterns seen in this study, not all of the 

results are significant. There are no significant differences found within any of the individual 

samples, indicating that all limb segments within each sample have the same level of 

independence to evolve. As for inter-sample comparisons, the only significant differences are 

found between the humerus, radius, and tibia of the Tamarins and the Mennonites. The Tamarins 

show significantly higher i estimates for these three limb segments compared to the Mennonites, 

which indicates that these traits are less capable of evolving independently in the Tamarins than 

the Mennonites. These significant results support the expectations of the hypothesis; however the 



 

160 

 

fact that neither of the quadrupedal baboon samples shows significant differences from the 

bipedal humans does not align with the hypothesis.  

 The fact that so few i estimates are significant is somewhat unexpected given that so 

many of the conditional evolvability estimates within and across samples are significantly 

different from one another (Table 44). As a reminder, c is a measure of evolvability that takes the 

covariance of traits into account when estimating a trait’s response to selection. As shown in the 

c results previously (see Results, above), the Tamarins show the lowest levels of c and the 

highest levels of phenotypic and genetic correlation across limb segments. Conversely, the 

Mennonites show the highest levels of c and the lowest levels of phenotypic and genetic 

correlation across limbs. The Sukhumi Baboons and TBRI Baboons fall in the middle. However, 

when the correlation between traits is not included and the upper limit of evolvability 

(unconditional evolvability, or e) is calculated, there is less of a difference between the samples 

(i.e., fewer significant differences), as seen in Table 43. Because i is a ratio c and e subtracted 

from 1, the large differences seen within and among samples in the estimates of c are tempered 

by the smaller differences seen within and among samples in the estimates of e.  

 

3. Morphological integration will decrease with limb diversification.  

 As the limbs evolve to perform different functions, integration between the limbs (i.e., 

between homologous elements) will decrease (Young and Hallgrímsson, 2005). This means that 

humans, which are bipedal, will show lower integration than the other primate samples, which 

are quadrupeds. The results from this study support this hypothesis.  
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 As shown in Tables 59 and 60, the Tamarins have the highest level of relative eigenvalue 

variance (i.e., morphological integration), the Mennonites have the lowest level of relative 

eigenvalue variance, and the Sukhumi Baboons have relative eigenvalue variance estimates in 

the middle. All of the comparisons across species are significantly different except for the 

comparison between the Sukhumi Baboon and Mennonite proximal elements which are not 

significantly different. These results show that the human sample has quite low levels of 

morphological integration for all measures of integration (i.e., upper limb, lower limb, proximal 

elements, distal elements, and all four elements), and specifically for the measures looking at 

homologous elements (i.e., proximal elements and distal elements). The one exception of non-

significance between the Sukhumi Baboon and Mennonite proximal elements does not fit with 

the expectations of hypothesis.  

 The patterns presented by the results of the relative eigenvalue variance analyses for 

morphological integration analysis accord well with the results shown in the previous hypothesis 

(Evolutionary Perspective Hypothesis 2) which looked at integration through the comparison of c 

and e using the measure i. Both sets of results indicate that the Tamarin limb segments are 

significantly more highly integrated and less capable of evolving independently of one another 

than the Mennonite limb segments. The Sukhumi Baboon limb segments show the same pattern 

in each set of analyses by having intermediate values of i and relative eigenvalue variance; 

however, while the difference between the Sukhumi Baboons and the other two samples is 

significant in the majority of the cases in the relative eigenvalue variance analyses, none of the 

comparisons of i are significant for this sample.  
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 One interesting observation regarding these data is the fact that the patterns presented 

here do not conform identically to previous research that looked at morphological integration in 

primate limbs (Young et al., 2010). While Young and colleagues did not use baboons and 

tamarins in their samples, they did include multiple species of both Old World and New World 

monkeys, which were also used here (i.e., baboons are Old World monkeys and tamarins are 

New World monkeys). In their analyses, the Old World monkeys have higher levels of 

morphological integration than the New World monkeys, which is opposite the pattern seen in 

this study (the Sukhumi Baboons, as Old World monkeys, have lower morphological integration 

than the Tamarins, the New World monkey sample). However, there is some overlap between 

the Old World and New World monkeys, and the larger point of their analyses is that humans 

and apes show much reduced levels of integration as compared to the quadrupedal monkeys. The 

specific results between the Young et al. (2010) paper and this study cannot be directly compared 

as the former used eigenvalue variance as the measure of integration rather than the relative 

eigenvalue variance used here.  

 

Implications for Anthropological Research 

Heritability is not the Same as Evolvability 

 The results of this study support the statement made by Hansen, Houle, and colleagues 

(Houle, 1992; Hansen et al., 2011) that heritability is not evolvability. These papers show that 

when looking at traits from over 200 quantitative genetic animal studies, the correlation between 

heritability and evolvability is near zero. The correlation between the heritability estimates and 

evolvability estimates presented in this study is 0.64. While this may seem like a fairly strong 



 

163 

 

correlation between heritability and evolvability, it is likely a result of the small number of data 

points included (only 14 estimates of each) and would decrease as more data were added.  

 Perhaps what is more important than the low correlation between heritability and 

evolvability is the lack of correspondence between the heritability and evolvability results. As 

shown in Tables 42 and 43, the pattern of significance within and between samples is very 

different. The only significant difference within the heritability estimates is that the Mennonite 

thigh has a significantly higher heritability than the Mennonite forearm. This is explained by the 

dramatically higher phenotypic and genetic variance found in the Mennonite thigh (both of 

which are four times higher than the same values for the forearm). The remaining comparisons of 

heritability are not significantly different from one another because, for these samples, as genetic 

variance increases, so does phenotypic variance. This is partly due to the fact that, as explained 

by Hansen and colleagues (2011), “scaling additive variance with phenotypic variance becomes 

akin to a rubber scale that gets stretched when measuring something large” (pp. 268). However, 

when genetic variance is scaled by the squared trait mean, as is done when estimating e, there are 

many more significant differences within and among the groups. The “rubber scale” of 

phenotypic variance is replaced with the squared trait mean as a way to scale the genetic variance 

seen in each trait.  

 This is not to say that heritability does not have a purpose. Given that heritability is 

population and environment specific it can be useful when used in specific situations. For 

example, heritability is useful as a predictor of response in artificial selection (following the 

breeder’s equation [Equation 3.6, above]). However, heritability is not a useful predictor of 

evolutionary potential in natural selection and is not meaningful when compared across 
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populations. Using heritability in these ways leads to dubious conclusions, such as the idea that 

life-history traits have low genetic variance when in fact they simply have very high phenotypic 

variance (as discussed in Methodological Background, above).  

 The evolvability results reported here align nicely with expectations following Hansen 

and colleagues (2011). That paper reports that the median e for linear traits in their database is 

0.001, which corresponds to a tenth of a percent change per generation for traits under unit 

selection or a 10% change in about 100 generations. Evolvability estimates in this study range 

from 0.000519 (Tamarin humerus) to 0.002263 (Mennonite thigh), which are slightly higher than 

the median reported above. However, given that lengths have been shown to be more highly 

heritable than other measures, such as measurements of breadth (Clark, 1956; Osborne and 

DeGeorge, 1959; Vandenberg, 1962; Leamy, 1974; Devor et al., 1986a,b; with exceptions being 

Susanne, 1977; Arya et al., 2002), it is not all that surprising that the e estimates here are slightly 

higher than reported by Hansen et al. (2011) which likely included measures other than just 

length.  

 The evolvability estimates presented here do indeed indicate that limb segment lengths in 

humans and other primates are capable of changing rather significantly if under directional 

selection to do so. They will not have changed as much as these evolvability estimates may 

suggest though, given than e is the upper limit of evolvability and must be tempered by the 

correlation between traits. Therefore, conditional evolvability estimates will show a more 

accurate representation of the ability of these limb segments to change through time.  
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Genetic Data Change the Phenotypic Story 

 The results of this study also support another important idea: phenotypic variance alone 

cannot predict how limb elements will respond to selection pressures. Many times, simply as a 

result of the type of specimens available in anthropological collections, studies rely solely upon 

patterns of phenotypic variance and correlation to make statements about the way in which 

populations or species are related, how they evolved, and where they migrated from (see Limbs, 

above). These studies use phenotype alone to postulate explanatory evolutionary mechanisms 

without firm knowledge of the underlying genetic variation (e.g., Trinkaus, 1981; Ruff, 1991; 

Holliday, 1997). As this study shows, such a jump from phenotypic patterns to genetic 

mechanisms is not always a good idea.  

 Cheverud demonstrated that the phenotypic variance/covariance matrix can be a good 

proxy for the genetic variance/covariance matrix (Cheverud, 1988). However, he noted that his 

method of multiplying the phenotypic covariance matrix by a factor equal to the average 

heritability of the traits "will certainly lead to errors in evolutionary inference in specific 

instances” (pp. 965). Some authors, in particular Willis and colleagues (1991), argue that the 

substitution of phenotypic correlations for genetic correlations is unreliable and should be 

approached with caution.  

 The results of this study support the idea that patterns of phenotypic variance and 

correlation do not exactly mirror genetic variance and correlation. As shown in Tables 38 and 40, 

the patterns of significant differences across limb segments within individual samples are not the 

same for phenotypic variance and genetic variance. There are many more significantly different 

phenotypic variance values than there are genetic variance values. Similarly, looking at Tables 
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39 and 41, there are many fewer significant intra- and inter-sample comparisons for genetic 

correlations than phenotypic correlations. If phenotypic values alone are used to explain the 

variation within and across species, the conclusion would be that many of the individual limb 

segments have differing levels of additive genetic variance and would thus potentially respond to 

directional selection at different rates that are tempered by many significant correlations between 

segments. However, if the more appropriate genetic values are used to explain variation within 

and across species, different conclusions about the response to directional selection would be 

drawn.  

 This is not to say that studies which are unable to estimate genetic parameters and 

substitute the phenotypic covariance matrix are useless. Estimating genetic parameters is a 

known difficulty in anthropological studies because of the need for pedigree information. There 

are many solid studies whose results are likely similar to what would be found if genetic data 

were available. Like many other issues in anthropology (i.e., small sample sizes, missing data, 

fragmented specimens, etc.), there are limits to what can be done, and many creative solutions 

have been implemented to work around those limits. But, the limitations must be acknowledged, 

and in cases where genetic data is lacking, results must be interpreted with an understanding that 

phenotype is not the whole story.  

 

The Fossil Record 

 Perhaps the area of anthropological research where the most speculation about the way in 

which limbs evolve is found is in reconstructing the fossil record. This is for a good reason – 

paleoanthropological samples are notoriously difficult to work with: the limitations of small 
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sample sizes, fragmented specimens, and lack of genetic data are very real. There are a few areas 

of paleoanthropological research which will be discussed here to see how results from this study 

may impact our understanding of the fossil record.  

 The first of these areas to be reviewed is the pattern of limb segments changes discussed 

in Phylogenetic Relationships and Fossil Identification in Limbs, above. According to various 

authors, humeral reduction occurred prior to femoral elongation in hominin evolution (Jungers, 

1982; Kimbel and Delezene, 2009), and femoral elongation occurred prior to forearm shortening 

in early hominids (Asfaw et al., 1999). Whether or not these claims are possible depends on the 

genetic correlation structure of these traits and, by extension, the conditional evolvability and i 

estimates of each limb segment.  

 Looking at the genetic correlations for the Tamarins (Table 14), Sukhumi Baboons 

(Table 21), and Mennonites (Table 30), there are some patterns that can be seen. The correlation 

between the femur and radius is the lowest of all genetic correlations for the Tamarins, indicating 

that perhaps these two limb segments would be the most likely to evolve independently. 

Likewise, the correlation between the humerus and radius is one of the highest, indicating that 

these two limb segments would be less likely to evolve independently. However, none of the 

genetic correlations for the Tamarins are significantly different from one another (Table 41). The 

same is true for the Sukhumi Baboons. For the Mennonites, the correlation between the humerus 

and radius is the lowest of all genetic correlations, and the correlation between humerus and 

femur is the highest. These two correlations are significantly different from one another, 

indicating that perhaps the humerus and radius are more likely to evolve independently than the 

humerus and femur because they share less genetic variance.  
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 Yet, when looking at the evolvability, conditional evolvability, and i results for the 

Tamarins (Table 16), Sukhumi Baboons (Table 23), and Mennonites (Table 30) as well as the 

comparisons between these (Tables 43 and 44), there is very little significance. While the radius 

shows the lowest i value within the Tamarin and Mennonites samples, indicating that it may have 

more of an ability to evolve independently than other limb segments, it is not significantly 

different within either sample. The Mennonite femur does have a significantly higher 

evolvability than the other three limb segments, suggesting that it has more of an ability to 

evolve, but the conditional evolvability of this limb segment is not significantly different from 

either the humerus or the radius, and the i estimate is not significant either. The Sukhumi 

Baboons do show a significantly different conditional evolvability for the humerus and radius, 

with the humerus having a greater ability to evolve, but the i estimates for these limb segments 

are not different from one another.  

 These results suggest that, when looking within individual samples, none of the limb 

segments are any more or less likely to evolve independently than any of the others. Any 

response to directional selection pressure for one limb segment to elongate or shorten would be 

met with correlated responses among the other limb segments. This is not to say that femoral 

elongation or humeral or forearm shortening could not happen, just that these events likely did 

not occur in isolation from other changes occurring at the same time in other limb segments.  

 However, as argued in Young and colleagues (2010), the combination of reduced 

integration and increased independent evolvability of the limbs across species shows the 

evolution of adaptations for functionally divergent limbs. The significant pattern of reduced 

morphological integration (as measured with relative eigenvalue variance) (Tables 59 and 60) 
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and increased evolvability and conditional evolvability (Tables 43 and 44) seen here across taxa 

supports this idea.  

 The evolution of bipedalism is another area of the fossil record in which may gain insight 

from these results. The modern bipedal gait is often definitively attributed first to H. erectus (for 

a review, see Locomotor Behavior and the Evolution of Bipedalism in Limbs, above), some 

specimens of which possessed the long legs that are indicative of modern members of the genus 

Homo. The significantly high evolvability of the thigh in the Mennonite sample (Tables 30 and 

43) supports the idea that the lower limb was able to change as needed for limb diversification 

due to new functional demands (i.e., bipedalism). However, these results must be viewed in 

conjunction with the conditional evolvability and i results which show that a good portion of the 

genetic variance of the thigh is shared with other limb segments, and, therefore, the femur does 

not evolve independently. The morphological integration results show that, while limb elements 

are still integrated, the level of integration (as measured with relative eigenvalue variance) is 

much reduced as compared to the quadrupedal non-human primate samples. This suggests that 

while the limb segments of the Mennonites do share genetic variance across elements, they are 

more capable of evolving independently than quadrupeds. So, just as when discussing limb 

segment elongation and shortening as above, these results do not suggest that lower limb 

elongation in general, and femoral elongation specifically, did not occur – it very clearly did. 

What these results do suggest is that femoral elongation was tempered by the genetic variance 

that the femur shares with the other limb segments. The results of this study cannot assess 

whether locomotor efficiency was the adaptive cause of the shift to bipedalism in the genus 
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Homo, as suggested by several authors (Rodman and McHenry, 1980; Leonard and Robertson, 

1995; Pontzer, 2009). 

 Likewise, this study cannot determine if adaptations due to thermoregulation or 

mechanical loading were responsible for the distal limb shortening found in Neandertals (for a 

review, see Ecogeographic Patterning in Limbs, above). What this study can do is comment on 

the ability of distal limb elements to change independently of proximal limb elements. This 

independent change of the distal limb elements would require a higher conditional evolvability 

relative to evolvability (i.e., a lower i) in the distal elements than the proximal elements and 

decreased morphological integration within limbs. Unlike the non-human samples, the 

Mennonite sample does show a pattern of reduced estimates of i in the distal segment of each 

limb as compared to the proximal segment of the same limb (Table 30); however, these 

differences are not significant. As for the morphological integration expectations, the relative 

eigenvalue variance within limbs is significantly smaller than the relative eigenvalue variance of 

homologous elements in the Mennonites (Table 59). This suggests that the homologous distal 

elements would have been more likely than the elements within a limb to change together. Like 

all other scenarios discussed here, a change in the distal limb elements of Neandertals (or for that 

matter, early modern humans that may have adapted to a cold European climate, following 

Holliday [1997]) likely did not occur in isolation but in correlated response with the other limb 

segments.  

 All this discussion highlights the fact that researchers should use caution when 

interpreting differences across specimens in the fossil record and not automatically assign 

adaptation via natural selection as an explanation. While adaptation likely plays a large role in 
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many of the differences seen across species, some of the changes will be due to correlated 

responses from selection acting on another bone. It would probably make anthropological 

analyses much easier if each bone or trait acted independently and selection on that bone affected 

that bone alone, but such is not the case. Body plans in general, and primate limb morphologies 

specifically, are correlated structures that, because of developmental constraints and 

morphological integration, cannot change without altering multiple traits along the way.  

 

Clinical Applications of QTLs 

 One goal of this study was to begin to identify genes which are involved in the normal 

variation of limb segment morphology, most importantly limb segment length. This is important 

because genetic variation must be present in order for evolution to occur; thus, there must be 

genes which are involved in producing normal variation in limb segment length and other 

features. A better understanding of the genes involved in producing normal variation provides an 

avenue to deciphering how limb morphology evolves.  

 The first step in identifying genes which may be involved in producing variation in a 

phenotype such as limb segment length is to identify regions of the genome which may harbor 

these genes through the process of identifying quantitative trait loci. The QTLs that are identified 

may be of interest outside of the evolutionary anthropology/biology sphere if they are applicable 

in a clinical sense. The potential clinical significance of the QTLs identified in this study is 

discussed here.  

 There are several peaks for Humerus Maximum Length and Femur Bicondylar Length 

that correspond closely with areas of the genome which are known to contribute to limb 



 

172 

 

malformation when mutations are present. The best example is hypophosphatasia, a form of 

osteochondrodysplasia which involves abnormal bone or cartilage growth and leads to skeletal 

malformation, often manifesting as a form of short-limbed dwarfism. Hypophosphatasia presents 

with a wide range of lethal abnormalities, including poorly formed limb bones, and is known to 

be caused by various mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene 

located on the p arm of chromosome 1 (specifically 1p36.1-1p34) (Greenberg et al., 1990; Jones, 

2006). As seen in Figure 13, there are several non-significant peaks located on chromosome 1 for 

Humerus Maximum Length. One of these peaks, with a LOD score of 1.0592, is found at 

location 19, which resides between STR markers D1S548 and D1S2130. The location of these 

STRs in the human genome is between bps 7,365,332 and 41,590,405 on the p arm of 

chromosome 1. This corresponds specifically to 1p36.23-1p.34.2, almost exactly the same region 

known to influence hypophosphatasia.  

 There are several other patterns of malformation which have known mutations near a 

QTL that was identified here. First, Robinow syndrome presents with a variety of symptoms, 

including relatively short limbs. It is known to be caused by mutations in the ROR2 gene located 

on chromosome 9q22 (Afzal et al., 2000; Jones, 2006). As seen in Figure 18 there is a non-

significant peak on chromosome 9 for Femur Bicondylar Length. This peak has a LOD score of 

1.0873, is found at location 134, and is located between STR markers D9S934 and D9S1798. 

The corresponding bps are 120,135,476 to 128,212,507, which corresponds to location q33.1-

q33.3. Second, Shwachman-Diamond syndrome, another form of osteochondrodysplasia, is 

known to be caused by mutations in the gene SBDS located at chromosome 7q11 (Boocock et 

al., 2003; Jones, 2006). Both the femur and the humerus show a peak on chromosome 7 (the 
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QTL for Femur Bicondylar Length is suggestive while the QTL for Humerus Maximum Length 

is non-significant). This peak is previously described in Suggestive LOD Scores Associated with 

Limb Segment Lengths in Results, above, and resides at chromosome 7q22.3-1q31.31. While 

neither of the QTLs on chromosomes 9 or 7 exactly aligns with the known mutations associated 

with these syndromes, there are suggestive and non-significant peaks which are nearby.  

 While identifying correspondence between known mutations that cause limb 

malformation and the results found in this study is interesting, it does not necessarily provide 

new insight into areas of the genome which may contribute to different syndromes. There are 

multiple patterns of malformation which do not have known genes that influence the abnormal 

development that is seen in some individuals. For instance, femoral hypoplasia-unusual facies 

syndrome presents with abnormalities of the face, pelvis, spine, and limbs, and the cause of this 

syndrome is unknown (Franz and O’Rahilly, 1961; Jones, 2006). The same is true of numerous 

other skeletal malformations which involve the limbs, including, but not limited to, 

fibrochondrogenesis, Roberts syndrome, metatropic dysplasia, Schinzel-Giedion syndrome, short 

rib-polydactyly syndrome types 1 and II, and Peters’-Plus syndrome (all described in Jones, 

2006). The inheritance pattern of many of these syndromes is known (for example, autosomal 

recessive), but the specific gene(s) which, when mutated, may lead to these syndromes are 

unknown. The identification of new areas of the genome which are statistically associated 

(although not always significantly) with normal phenotypic variation in limb segment lengths 

may lead to new connections being made between these syndromes and possible responsible 

genes.  
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Limitations of the Study 

Osteometrics vs. Anthropometrics 

 One area of likely imprecision in the present study is the use and comparison of both 

osteometric and anthropometric data. The presence of soft tissue in anthropometric measures 

obviously increases those measurements, however slightly, over what they would be if the bone 

itself were being measured. Additionally, the way in which bones are held and measured cannot 

be precisely mimicked when the bones are being measured within the body. Therefore, the 

comparison of results from both data types likely introduces some error into the study that cannot 

be quantified.  

  Given that the anthropometric data used here (i.e., the Sukhumi Baboons and the 

Mennonites) were collected by other observers (as described in Samples in Research Design, 

above), it cannot be said with certainty how carefully the measurements were taken. However, it 

is assumed that the individuals that collected the data were well-trained in anthropometric 

procedures, were capable of correctly measuring the individuals following the measurement 

definitions, and exercised every precaution to minimize intraobserver measurement error. If 

these assumptions are true, then the data used here should be acceptable for these analyses even 

if caution is warranted when interpreting the results between the two datatypes.  

 Several precautions were used in this study to minimize the amount of imprecision that 

the problem of anthropometric and osteometric data would introduce. First, bicondylar length of 

the femur, rather than maximum length of the femur, was measured for both of the skeletal 

samples (i.e., the Tamarins and the TBRI Baboons) to more closely approximate the length that 

is measured in the anthropometric measurement of thigh length. Secondly, the use of two baboon 
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samples was done to not only make up for the missing limb segments in the TBRI Baboons, but 

also to serve as a comparison for the two types of data. As described in the Sukhumi Baboons vs. 

TBRI Baboons section in Results, above, the samples were not significantly different from one 

another in many regards. Estimates of genetic variance, heritability, evolvability, and i were the 

same between the samples. However, the TBRI Baboons had significantly higher estimates of 

genetic correlation and phenotypic correlation while the Sukhumi Baboons had significantly 

higher estimates of conditional evolvability. Whether these differences are due to inconsistencies 

in datatype or the fact that they are different populations of baboons with unique mixtures of 

subspecies is unknown. Despite these differences, the two samples did consistently seem to fall 

as intermediates between the Tamarins and the Mennonites.  

 One issue which could not be circumvented is that the forearm length of the Sukhumi 

Baboons was measured so that the length of the ulna, rather than the radius, was approximated. 

As noted in Limbs, above, while the lengths of the radius and ulna are correlated, they are not 

isometrically scaled (i.e., while the size of both may change in the same direction, the proportion 

between the two bones is not constant). Therefore, the forearm measure from the Sukhumi 

Baboon sample is known to be inaccurate compared to the other samples, but it is a problem that 

is unavoidable.  

 

Mennonite Limb Segments Calculations 

 Another area in which error was potentially introduced into the study was the way in 

which two limb segments were calculated from other anthropometric measurements in the 

Mennonite sample. As a reminder, Forearm Length was approximated by subtracting Upper Arm 
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Length and Right Hand Length from Upper Limb Length. While the results produced forearm 

measurements that, in conjunction with Upper Arm Length, produced brachial indices that fall 

within normal human ranges (see Limb Segment Calculations in the Mennonites in Research 

Design, above), the way in which Forearm Length was calculated may induce a negative 

estimation bias between Forearm Length and the other quantities, namely Upper Limb Length. 

However, without this approximation of the Forearm Length, the Mennonite sample would not 

have been useful for this study.  

 A more complicated route was taken to estimate Thigh Length for the Mennonite sample. 

The available anthropometrics included Trochanteric Height and Leg Length, but no measure of 

Foot Height to calculate Thigh Length in a similar fashion as Forearm Length. This is where the 

anthropometric data on U.S. Army Personnel (Gordon et al., 1988) were used to create 

regression equations (see Appendix III, below) to estimate Foot Height (i.e., Lateral Malleolus 

Height). Thigh Length was then approximated by subtracting Leg Length and Foot Height from 

Trochanteric Height. This method once again produced estimates which, in conjunction with Leg 

Length, produced crural indices that fall in normal human ranges (see Limb Segment 

Calculations in the Mennonites in Research Design, above). However, there are several potential 

issues with this methodology. First, there is again the possibility of negative estimation bias for 

Thigh Length as compared to Leg Length. Second, the regression equations were produced using 

trait averages, standard deviations, and correlations from a different sample (U.S. Army 

Personnel). It is unknown how closely the U.S. Army Personnel data aligns with the true values 

of the Mennonite individuals. Yet, despite these issues, the Mennonite data would not have been 

available for inclusion in this study without an estimation of Thigh Length.  
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 The Mennonite Thigh Length shows the highest estimate of phenotypic variance, genetic 

variance, heritability, evolvability, and conditional evolvability of all limb segments across all 

samples. It is also rather consistently reaches significance when in comparison with other limb 

segments, both within and across samples. Whether these results are due to the way in which 

Thigh Length was estimated or simply due to the fact that the human femur is highly variable 

and evolvable compared to other limb segments is unknown. Interpretations of the results 

pertaining to the Mennonites, therefore, warrant caution.  

 

Future Research 

 The primary goals of this study were to describe the genetic variance and morphological 

integration of individual limb segment lengths and to begin the task of identifying genomic 

regions which may play a role in producing that normal genetic variation. The results of this 

study provide some interesting insights but are far from conclusive. Future research could help to 

bring more of these results from interesting patterns to significant results.  

 One way in which to aid in this task would be to add the outliers that were removed from 

the analyses. Only a small percentage (about 4%) of all individuals were removed from analysis 

(for details, see Outlier Removal in Research Design, above), but these individuals may harbor 

helpful information. While outliers are typically removed so as to not skew results, they could be 

useful in this situation. Individuals with greater phenotypic variation may also have greater 

genetic variation, and this greater variation could lead to significance between samples for 

quantitative genetic measures. Additionally, the presence of greater genetic variation from outlier 

data in linkage analysis may increase likelihood of finding suggestive or significant QTLs.  
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 Another way to improve this study would be to increase sample sizes. While 1,353 

individuals across four samples may seem like an adequate sample size to accurately describe 

genetic variance, increased sample sizes will increase the accuracy with which genetic 

parameters are estimated. An increased sample size for the TBRI Baboons would also increase 

the accuracy and significance of QTLs. A large number of individuals is needed to detect QTLs 

given that many of the QTLs for quantitative traits, such as limb segment length, likely have very 

small effects on phenotypic variance. For example, some of the genome wide association studies 

looking for genomic variants for height used anywhere from 4,000 to over 30,000 individuals 

(Gudbjartsson et al., 2008; Lettre et al., 2008; Sanna et al., 2008; Weedon et al., 2008; Soranzo et 

al., 2009). However, increasing the sample size of the Sukhumi Baboons and Mennonites is not 

possible as those data were collected decades ago. Also, all the Tamarins that were available to 

measure were included here. All TBRI Baboons that met age requirements were included at the 

time of measurement, but additional specimens may have been added to the collection since then. 

Therefore, it may be possible to increase the sample size of the TBRI Baboons for future 

research.  

 

Conclusions 

 In conclusion, this study set out to describe the genetic variance and covariance in limb 

segment lengths in humans and other primates and then and begin the initial investigation into 

identifying genomic regions which are statistically associated with normal phenotypic variation 

in these traits. This study is noteworthy for several reasons: 1) Pedigreed samples were used to 

assess additive genetic variance, allowing direct estimation of evolvability and conditional 
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evolvability in these traits, 2) multiple primate samples, consisting of humans and non-humans, 

were used to identify differences between species which may help to explain evolutionary 

changes over time, and 3) linkage analysis was used to identify QTLs associated with limb 

segment lengths and other limb features. This approach, while limited in some of the technical 

details (discussed in Limitations of the Study, above), allowed the following overarching 

questions, to be answered.  

 

1. Does variation in limb segment morphology follow the expectations of a Developmental 

Perspective, an Evolutionary Perspective, or aspects of both?  

 The results of this study suggest that the limb morphology of humans and other primates 

largely adheres to expectations set forth from both a Developmental Perspective and an 

Evolutionary Perspective, but there are some details which do not fit as anticipated. The overall 

expectation and reality of each set of hypotheses is laid out below.  

 The Developmental Perspective was largely driven by the notions that 1) limbs develop 

in a proximo-distal gradient (Tarchini and Duboule, 2006; Gilbert, 2013), 2) limb segment 

lengths are more genetically canalized than other limb features (Auerbach and Ruff, 2006; 

Cowgill and Hager, 2007), and 3) homologous structures have similar developmental pathways 

(Hallgrímsson et al., 2002; Gilbert, 2013). These ideas led to hypotheses which supposed that 1) 

phenotypic variance should increase and heritability should decrease in a proximo-distal 

gradient, 2) limb segments lengths should be more highly integrated than other limb features, and 

3) proximal elements should show higher levels of morphological integration than distal 

elements while homologous structures should be more highly integrated than elements within the 
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same limb. Additionally, the proximal elements, with presumed high heritability and high 

morphological integration, should have QTLs in similar areas of the genome which are 

statistically associated with phenotypic variation.  

 There are aspects of each of these hypotheses that are supported by the results, as detailed 

above. Developmental Perspective Hypotheses 2 and 4 are supported by these results: limb 

segment lengths show higher levels of integration than do other limb features (most notably 

diaphyseal measures), and limb traits with high morphological integration have QTLs in similar 

genomic regions (most notably Humerus Maximum Length and Femur Bicondylar Length). 

Developmental Perspective Hypotheses 1 and 3 are more mixed in their adherence to 

expectations. While phenotypic variance does not increase from proximal to distal elements in 

the upper limb for the three samples analyzed, it does increase from the femur to the tibia in the 

Tamarin sample; however, the Sukhumi Baboons and Mennonites show a reduction in 

phenotypic variance from the femur to the tibia. And, none of the samples show the expected 

decrease in h2 from proximal to distal elements. Additionally, the expected higher integration in 

proximal elements as opposed to distal elements is not seen, and there is no difference between 

integration for homologous structures and within-limb structures for the non-human primates. 

The human sample does, however, show the expected pattern of higher integration between 

homologous structures than within-limb structures. The results of the Developmental Perspective 

Hypotheses suggest that, overall, limb morphology adheres to the expectations set forth using 

what is known about the way in which limbs develop. 

 The Evolutionary Perspective was driven largely by the ideas that 1) a major difference 

across primates is limb diversification from species that are quadrupeds to species that use 
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suspension, leaping, or, as emphasized here, bipedalism, and 2) traits that evolve more 

independently share relatively less of their variation with other traits (Hansen and Houle, 2008). 

These ideas led to hypotheses which postulated that with limb diversification comes 1) an 

increase in evolvability, 2) a reduction in the difference between conditional evolvability and 

evolvability, and 3) a decrease in morphological integration.  

 The expectations of these hypotheses are largely supported by the results, as detailed 

above. All three Evolutionary Perspective Hypotheses find support in these analyses. First, 

evolvability does indeed increase from the Tamarins, where it is uniform across limb segments, 

to the Mennonites, where the femur has higher evolvability than the other limb segments. The 

Sukhumi Baboons fit expectations with the pattern of evolvability (i.e., they are intermediate 

between the Tamarins and the Mennonites), but not in significance (i.e., they are not significantly 

different from the Mennonites). Second, there is a reduction in the difference between 

conditional evolvability and evolvability from the Tamarins to the Mennonites, indicating that 

quadrupedal non-human primate limb segments are less capable of evolving independently as 

compared to bipedal humans. Again, the baboon samples are not significantly different from the 

humans. Finally, morphological integration, as measured by relative eigenvalue variance, does 

indeed decrease from the Tamarins to the Sukhumi Baboons to the Mennonites. The results of 

the Evolutionary Perspective Hypotheses suggest that limb morphology in humans and other 

primates adheres well to the expectations set forth using what is known about the way in which 

limbs evolve. 
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2. How accurate is the current operating assumption used by biological anthropologists 

regarding limb segment lengths and proportions?  

 As discussed in Limbs, above, the current operating assumption among biological 

anthropologists regarding limb segment lengths (and by extension, limb proportions) is that limb 

proportions in humans are phenotypically stable unless long periods of extreme environmental 

conditions force adaptive change (e.g., Ruff, 1994; Holliday, 1997; Ruff, 2002). This assumption 

can be broken down into two different parts, each discussed in turn.  

 The first part of the current operating assumption among biological anthropologists 

regarding limb proportions is that they are phenotypically stable traits. A wealth of evidence in 

the literature supports this notion, including the geographic patterning of limb proportions across 

fossil species and modern humans (e.g., Roberts, 1978; Ruff, 1994; Ruff, 2002a), the disparity 

between Old World and New World data in adhering to thermoregulatory expectations (e.g., 

Auerbach, 2010; Jantz et al., 2010), and the consistency of ancestral limb proportions of migrant 

children in new climatic settings (e.g., Froehlich, 1970; Martorell et al., 1988). But do the results 

of this study support the idea that limb segment lengths (and limb proportions) are 

phenotypically stable traits? Overall, yes, they do. While evidence from the conditional 

evolvability, i, and relative eigenvalue variance estimates indicate that humans are much more 

capable of independently altering their limb segment lengths in response to directional selection 

(because of the combination of increased evolvability and decreased morphological integration), 

these changes must occur in conjunction with the underlying correlation structure between traits. 

 Additionally, while there is a significantly higher level of evolvability in the human 

sample as compared to the non-human primate samples, the rate of evolution that would occur 
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given these estimates is still slow. Recall that an e estimate of 0.001 leads to a 10% change in the 

trait in about 100 generations (Hansen et al., 2011); however, unconditional evolvability 

estimates (i.e., e) are the upper limit of evolutionary potential, and a more accurate reflection of 

the rate of evolution comes from using conditional evolvability estimates. These estimates are, 

again, tempered by the correlation structure between individual traits, and as the results show 

here, none of the limb segments are capable of altering completely independently. And, any 

change that could occur as a result of higher conditional evolvability estimates would be the 

result of direct selection on that trait to change.  

 This brings us to the second part of the assumption that biological anthropologists make 

regarding limb proportions: that differences in limb proportions are the direct result of adaptive 

responses. While this may very well be true in many cases, and phenotypic patterns in the 

literature strongly advocate for climate (e.g., Trinkaus, 1991; Ruff, 1994; Holliday, 1997) or 

increased mechanical efficiency (e.g., Trinkaus, 1991; Porter, 1999; Steudel-Numbers and 

Tilkens, 2004) as selective pressures, this part of the assumption should not be made without 

caution. The models purported in the literature accurately reflect the phenotypic patterns that are 

seen, but that does not mean that they inherently explain the processes (i.e., evolutionary 

mechanisms) which produced those patterns. As discussed above, the addition of genetic data 

adds a new dimension to the understanding of limb proportion variation and should be included 

in model building and analyses whenever possible. Newer research is beginning to explicitly 

investigate the evolutionary mechanisms that have produced the patterns of variation seen in 

modern human limb proportions (Betti et al., 2012; Roseman and Auerbach, 2015; Savell et al., 

in review). These results are suggesting that the evolutionary forces beyond selection (i.e., 
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random genetic drift and gene flow) have played a large role in producing the patterns of 

phenotypic variation that are seen in limb proportions in modern humans. The results of this 

study should aid in future work designed to continue unravelling these questions.  
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Appendix I: Permissions to use data. 

Mennonite Data: 
 

From: Crawford, Michael H [crawford@ku.edu] 

To: Hulsey, Brannon Irene [bjones32@utk.edu] 

Sent: Sunday, November 21, 2010 11:36 AM  

Subject: RE: letter of permission 

 
Dear Brannon, 
Here is the letter of information requested by your Office of Research and your Departmental Representative to 
the UT IRB.  
The data were collected from 1979 to 1981 in the Mennonite communities of Goessel and Meridien, Kansas and 
Henderson, Nebraska. This research was conducted as a result of a three-year grant from the National Institute of 
Aging (NIH). A total of 25 researchers from the University of Kansas and Cornell University collected an assortment 
of data concerning biological aging. I was the PI for the project and supervised the collection of anthropometric 
measurements by three graduate student assistants. Written informed consent was obtained from every volunteer 
in the study.  
You have my permission to further analyze the data that were collected in this field research for your Ph.D. 
dissertation. The participants maintain their anonymity because you were sent data sheets with identifying 
numbers but no names were listed. 
Do not hesitate to contact me if any questions arise concerning the data and/or the analyses. 
Michael H. Crawford, Ph.D. 
Professor of Anthropology 
University of Kansas 
Lawrence, KS 
crawford@ku.edu     
 

 

Sukhumi Baboon Data:  
 

From: Dennis H O'Rourke [dennis.orourke@anthro.utah.edu] 

To: Hulsey, Brannon Irene [bjones32@utk.edu] 

Sent: Tuesday, July 20, 2010 11:05 PM  

Subject: RE: 

 

Hi Brannon, 

  
Of course you can use my old dissertation data.  If it can be of help to you I'm happy for you to use 

it.  Let me know if I can help in anyway.  I no longer have a copy of the data, so glad to know Mike kept 
a version of it at Kansas. 
  
Cheers,  Dennis 
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Tamarin Data:
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TBRI Baboons: 
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Appendix II: TBRI Data Collection Sheets  

Baboon Specimen Number: ________________ 

 

Date: _____________________ 

 

HUMERUS 

 

 
 

NOTES:  

 

 

 

 

 

 

1. Maximum Length  __________________ 

2. 50% of Length _____________________ 

 AP Diameter __________________ 

 ML Diameter __________________ 

 Deltoid Tuberosity Present?     Y     N 

3. 40% of Length _____________________ 

 AP Diameter ___________________ 

 ML Diamter ____________________ 

4. Length of Head _____________________ 

5. Epicondylar Breadth _________________ 

6. Distal Articular Breadth ______________ 

 Trochlear Breadth _______________ 

 Capitular Breadth _______________ 

7. Olecranon Fossa Height _______________ 

   Breadth _____________ 
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Baboon Specimen Number: ________________ 

 

Date: _____________________ 

 

FEMUR 

 

 
 

NOTES:  

 

 

1. Maximum Length ______________________ 

2. Bicondylar Length _____________________ 

3. Midshaft Length ______________________ 

 AP Diameter _____________________ 

 ML Diameter _____________________ 

4. 25% of Length ________________________ 

 AP Diameter ______________________ 

 ML Diameter _____________________ 

5. 75% of Length ________________________ 

 AP Diameter _____________________ 

 ML Diameter ____________________ 

6. Maximum Head Diameter ______________ 

7. Bicondylar Breadth ____________________ 

8. Articular Breadth _____________________ 

9. Breadth of Medial Condyle _____________ 

  Lateral Condyle _____________ 

10. Articular Depth - Medial Condyle _______ 

   Lateral Condyle ________ 
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Appendix III: Mennonite Lateral Malleolus Height Regression Equations 

 

To calculate Lateral Malleolus Height for Males: 

 

Lateral Malleolus Height (LMH) 

 Average = 67.07 mm 

 Std. Dev. = 0.547  

Trochanteric Height (TH) 

 Average = 928.3 mm 

 Std. Dev. = 4.776 

Covariance between LMH and TH = 0.339 

 

cov(xy) = 0.339 * 4.776 * 0.547 = 0.8856 

var(x) = 4.7762 = 22.810 

b = cov(xy) / var(x) = 0.8856 / 22.810 = 0.03882 

a = ybar – b * xbar = 67.07 – 0.3882 * 928.3 = 31.03 

 

Therefore, the regression equation for males is: 

LMH = 0.03882 * TH + 31.03 

 

 

To calculate Lateral Malleolus Height for Females: 

 

Lateral Malleolus Height (LMH) 
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 Average = 60.6 mm 

 Std. Dev. = 0.53  

Trochanteric Height (TH) 

 Average = 861.6 mm 

 Std. Dev. = 4.52 

Covariance between LMH and TH = 0.285 

 

cov(xy) = 0.285 * 4.52 * 0.53 = 0.683 

var(x) = 4.522 = 20.43 

b = cov(xy) / var(x) = 0.683 / 20.43 = 0.03343 

a = ybar – b * xbar = 60.6 – 0.3343 * 861.6 = 31.80 

 

Therefore, the regression equation for females is: 

LMH = 0.03343 * TH + 31.80 
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Appendix IV: Tables and Figures 

Table 1 - TBRI Baboon skeletal measurements. 

Measurement Citation (alternative measurement name) 

Humerus Measurements 

Maximum Length Buikstra & Ubelaker, 1994:80, #40 

Anterio-posterior Diameter: Midshaft and 40% personal communication with B. Auerbach 

Medio-lateral Diameter: Midshaft and 40% personal communication with B. Auerbach 

Length of Head Buikstra & Ubelaker, 1994:80, #42 (vertical diameter of head) 

Epicondylar Breadth Buikstra & Ubelaker, 1994:80, #41 

Distal Articular Breadth Ruff, 2000:336 (HDML) 

Trochlear Breadth Ruff, 2002:336 (TRML) 

Capitular Breadth Ruff, 2002:336 (CPML) 

Olecranon Fossa Height personal communication with B. Auerbach 

Olecranon Fossa Breadth personal communication with B. Auerbach 

Femur Measurements 

Maximum Length Buikstra & Ubelaker, 1994:82, #60 

Bicondylar Length Buikstra & Ubelaker, 1994:82, #61 

Anterio-posterior Diameter: 25%, Midshaft, and 

75% 

Buikstra & Ubelaker, 1994:82, #66 

Medio-lateral Diameter: 75%, Midshaft, and 75% Buikstra & Ubelaker, 1994:82, #67 

Maximum Head Diameter Buikstra & Ubelaker, 1994:82, #63 

Bicondylar Breadth Buikstra & Ubelaker, 1994:82, #62 (epicondylar breadth) 

Articular Breadth Ruff, 2002:334 (FCML) 

Breadth of Medial Condyle Ruff, 2002:334 (MCML) 

Breadth of Lateral Condyle Ruff, 2002:334 (LCML) 

Articular Depth of Medial Condyle Ruff, 2002:334 (MCSI) 

Articular Depth of Lateral Condyle Ruff, 2002:334 (LCSI) 
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Table 2 - Paired t-tests for right and left TBRI Baboon femoral measurements. 

 Paired Differences    

    95% CI of the 

Difference 

   

Left side – Right side  Mean Std. Dev. Std. Error 

Mean 

Lower Upper t df Sig.  

(2-tailed) 

Maximum Length -0.131 1.713 0.170 -0.467  0.206 -0.771 101 .442 

Bicondylar Length  0.281 3.525 0.349 -0.411  0.974  0.806 101 .422 

50% AP Diameter  0.272 0.435 0.043  0.187  0.357  6.333 102 .000 

50% ML Diameter -0.045 0.331 0.033 -0.110  0.020 -1.383 101 .170 

25% AP Diameter  0.278 0.519 0.051  0.176  0.379  5.425 102 .000 

25% ML Diameter -0.057 0.583 0.057 -0.171  0.057 -0.988 102 .325 

75% AP Diameter  0.128 0.336 0.033  0.062  0.194  3.859 102 .000 

75% ML Diameter -0.052 0.322 0.032 -0.115  0.011 -1.630 102 .106 

Head Diameter  0.084 0.642 0.063 -0.041  0.210  1.330 102 .186 

Bicondylar Breadth  0.020 0.684 0.069 -0.117  0.156  0.284  98 .777 

Articular Breadth -0.147 0.503 0.058 -0.263 -0.031 -2.525  74 .014 

Medial Condyle Breadth -0.124 0.573 0.067 -0.257  0.009 -1.858  73 .067 

Lateral Condyle Breadth  0.088 0.405 0.040  0.008  0.168  2.191 100 .031 

Medial Condyle Depth  0.014 0.797 0.081 -0.147  0.174  0.170  96 .865 

Lateral Condyle Depth -0.314 0.966 0.095 -0.502 -0.126 -3.313 103 .001 
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Table 3 - Tamarin summary statistics. 

 Humerus Maximum 

Length 

Radius Maximum 

Length 

Femur Bicondylar 

Length 

Tibia Maximum 

Length 

Females - Sample Size 95 95 99 101 

     Mean 51.48 46.45 66.09 66.77 

     Standard Deviation 1.65 1.66 2.06 2.37 

     Range 47.47-54.90 42.83-49.87 61.29-70.87 61.97-71.68 

Males - Sample Size 116 116 115 117 

     Mean 50.55 45.86 65.27 66.30 

     Standard Deviation 1.53 1.65 2.00 2.13 

     Range 47.13-54.11 42.64-49.77 61.03-69.91 60.30-70.82 

Combined – Sample Size 211 211 214 218 

     Mean 50.97 46.13 65.65 66.52 

     Standard Deviation 1.65 1.68 2.06 2.26 

     Range 47.13-54.90 42.64-49.87 61.03-70.87 60.30-71.68 
All measurements are in mm.  
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Table 4 - Sukhumi Baboon summary statistics. 

 Arm Length Forearm Length Thigh Length Leg  Length 

Females - Sample Size 124 124 109 112 

     Mean 173.27 201.46 212.77 171.07 

     Standard Deviation 8.74 8.70 10.33 6.70 

     Range 152-192 183-220 189-235 154-187 

Males - Sample Size 65 65 60 66 

     Mean 202.49 236.42 250.38 201.08 

     Standard Deviation 10.92 9.54 13.00 8.11 

     Range 176-229 215-253 221-275 185-216 

Combined – Sample Size 189 189 169 178 

     Mean 183.32 213.48 226.12 182.20 

     Standard Deviation 16.86 18.91 21.30 16.23 

     Range 152-229 183-253 189-275 154-216 
All measurements are in mm.  
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Table 5 - Mennonite summary statistics. 

 Arm Length Forearm Length Thigh Length Leg  Length 

Females - Sample Size 180 180 186 186 

     Mean 308.24 240.92 463.63 383.96 

     Standard Deviation 14.84 14.08 28.27 18.22 

     Range 273-340 207-273 399.99-525.77 345-425 

Males - Sample Size 184 181 183 183 

     Mean 334.07 268.02 484.22 421.17 

     Standard Deviation 16.15 14.20 28.53 15.63 

     Range 285-368 233-304 423.46-549.94 382-457 

Combined – Sample Size 364 361 369 369 

     Mean 321.30 254.50 473.84 402.42 

     Standard Deviation 20.18 193.58 30.17 25.19 

     Range 285-368 207-304 399.99-549.94 345-457 
All measurements are in mm.  
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Table 6 - TBRI Baboon summary statistics. 

 Humerus Measurements 

Maximum Length 50% AP 

Diameter* 

50% ML 

Diameter* 

Head Length Distal Articular 

Breadth 

Epicondylar 

Breadth 

Females - Sample Size 308 318 318 324 323 333 

     Mean 190.99 15.33 14.64 22.71 26.52 36.13 

     St. Dev. 7.13 1.14 0.87 1.29 1.39 1.92 

     Range 169.50-220.50 12.01-18.61 12.66-17.43 18.57-26.93 22.79-31.15 31.00-42.00 

Males - Sample Size 132 133 133 134 135 139 

     Mean 223.81 18.98 17.86 27.44 32 44.23 

     St. Dev. 8.68 1.37 1.04 1.94 1.63 2.25 

     Range 203.00-240.50 15.42-22.83 15.27-20.49 22.70-34.29 28.66-37.24 39.50-52.25 

Combined – Sample Size 440 451 451 458 458 472 

     Mean 200.84 16.41 15.58 24.1 28.14 38.52 

     Standard Deviation 16.87 2.06 1.74 2.63 2.9 4.21 

     Range 169.50-240.50 12.01-22.83 12.66-20.49 18.57-34.29 22.79-37.24 31.00-52.52 

 Left Femur Measurements 

Bicondylar 

Length 

50% AP 

Diameter* 

50% ML 

Diameter* 

Head 

Diameter 

Articular 

Breadth 

Bicondylar 

Breadth 

Females - Sample Size 123 123 124 247 94 124 

     Mean 221.67 15.52 15.31 22.48 32.8 35.98 

     St. Dev. 8.68 0.90 0.89 0.91 1.49 1.81 

     Range 197.50-244.00 13.32-18.11 13.16-17.90 19.61-24.86 29.36-36.48 32.07-43.51 

Males - Sample Size 76 76 76 124 65 73 

     Mean 261.08 19.18 18.36 26.83 39.55 43.47 

     St. Dev. 11.09 1.46 1.37 1.23 1.96 2.19 

     Range 234.75-290.00 16.42-22.81 16.07-23.67 23.46-29.74 35.59-44.79 38.78-49.11 

Combined – Sample Size 199 199 200 371 159 197 

     Mean 236.72 16.92 16.47 23.94 35.56 38.76 
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Table 6 Continued. 

 Left Femur Measurements 

Bicondylar 

Length 

50% AP 

Diameter* 

50% ML 

Diameter* 

Head 

Diameter 

Articular 

Breadth 

Bicondylar 

Breadth 

     Standard Deviation 21.48 2.11 1.84 2.3 3.74 4.12 

     Range 197.50-290.00 13.32-22.81 13.16-23.67 19.61-29.74 29.36-44.79 32.07-49.11 

 Right Femur Measurements 

Bicondylar 

Length 

50% AP 

Diameter* 

50% ML 

Diameter* 

Head 

Diameter 

Articular 

Breadth 

Bicondylar 

Breadth 

Females - Sample Size 222 222 221 235 194 236 

     Mean 224.14 15.58 15.43 22.59 33.49 36.59 

     St. Dev. 8.58 0.89 0.87 0.91 1.53 1.64 

     Range 198.25-250.00 12.90-18.14 13.28-18.18 20.09-25.22 29.42-38.14 32.37-41.03 

Males - Sample Size 104 102 102 108 95 109 

     Mean 262.61 18.96 18.20 26.81 40.3 43.7 

     St. Dev. 10.68 1.21 1.06 1.38 1.94 1.98 

     Range 236.50-291.00 16.47-22.32 16.07-21.25 20.91-31.22 36.07-45.11 38.95-48.55 

Combined – Sample Size 326 324 323 343 289 345 

     Mean 236.41 16.64 16.31 23.92 35.73 38.84 

     Standard Deviation 20.22 1.86 1.59 2.24 3.61 3.75 

     Range 198.25-291.00 12.90-22.32 13.28-21.25 20.09-31.22 29.42-45.11 32.37-48.55 
All measurements are in mm.  

* The 50% AP and ML diameter measurements were averaged for analyses, but their separate summary statistics are presented here.  
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Table 7 - Tamarin average intraobserver measurement error rates. 

Measurement Maximum 

Humerus Length 

Maximum Radius 

Length 

Bicondylar Femur 

Length 

Maximum Tibia 

Length 

Average Error 0.009 0.016 0.015 0.015 

All error rates are from right side elements.  
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Table 8 - TBRI Baboon average intraobserver measurement error rates. 

 Humerus Measurements 

Maximum 

Length 

50% AP 

Diameter* 

50% ML 

Diameter* 

Head Length Distal 

Articular 

Breadth 

Epicondylar 

Breadth 

2009 0.145 0.584 1.301 1.013 0.820 1.111 

2009-2011 0.091 0.481 0.607 1.155 0.881 1.054 

2011 0.096 0.477 0.615 0.871 0.656 0.407 

Overall  0.100 0.490 0.692 0.915 0.696 0.548 

 Left Femur Measurements 

Bicondylar 

Length 

50% AP 

Diameter* 

50% ML 

Diameter* 

Head Diameter Articular 

Breadth 

Bicondylar 

Breadth 

2009 0.204 0.547 0.294 0.315 0.154 0.261 

2009-2011 0.074 0.371 0.234 0.872 0.398 0.462 

2011 0.048 0.453 0.313 0.424 0.235 0.453 

Overall  0.114 0.454 0.275 0.466 0.284 0.394 

 Right Femur Measurements 

Bicondylar 

Length 

50% AP 

Diameter* 

50% ML 

Diameter* 

Head Diameter Articular 

Breadth 

Bicondylar 

Breadth 

2009 0.748 0.487 0.465 0.683 0.261 0.775 

2009-2011 0.074 0.579 0.372 0.415 0.566 0.469 

2011 0.054 0.390 0.218 0.362 0.269 0.574 

Overall  0.071 0.414 0.242 0.374 0.305 0.567 

* The 50% AP and ML diameter measurements were averaged for analyses, but their separate intraobserver measurement errors are 

presented here.  
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Table 9 - Sample model for within-bone morphological integration analyses: Femur articulations and muscle attachment 

integrated. 

 Bicondylar 

Length 

50% Diameter 

Avg. 

Head Diameter Articular Breadth Bicondylar 

Breadth 

Bicondylar Length      

50% Diameter Avg. 0     

Head Diameter 0 0    

Articular Breadth 0 0 1   

Bicondylar Breadth 0 0 1 1  
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Table 10 - Phenotypic variance/covariance matrix for the Tamarins. 

 Humerus Radius Femur Tibia 

Humerus 2.772 (0.284) 

2.218-3.319 

   

Radius 2.424 (0.280) 

1.961-3.031 

3.126 (0.317) 

2.426-3.618 

  

Femur 2.749 (0.319) 

2.197-3.452 

2.883 (0.335) 

2.321-3.595 

4.530 (0.444) 

3.614-5.333 

 

Tibia 2.836 (0.347) 

2.426-3.765 

3.640 (0.367) 

2.595-3.995 

4.329 (0.447) 

3.338-5.068 

5.167 (0.515) 

4.269-6.272 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below.  

See Table 38 for statistically significant differences between limb segments. 

  

Table 11 - Genetic variance/covariance matrix for the Tamarins. 

 Humerus Radius Femur Tibia 

Humerus 1.276 (0.359) 

0.605-1.967 

   

Radius 1.143 (0.360) 

0.449-1.827 

1.282 (0.391) 

0.620-2.143 

  

Femur 1.164 (0.430) 

0.483-2.129 

1.400 (0.445) 

0.454-2.159 

2.284 (0.590) 

0.951-3.213 

 

Tibia 1.617 (0.473) 

0.485-2.284 

1.467 (0.494) 

0.593-2.473 

2.000 (0.617) 

0.790-3.158 

2.431 (0.701) 

1.184-3.876 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 40 for statistically significant differences between limb segments.  

 

Table 12 - Environmental variance/covariance matrix for the Tamarins. 

 Humerus Radius Femur Tibia 

Humerus 1.407 (0.302) 

0.923-2.079 

   

Radius 1.166 (0.302) 

0.770-1.930 

1.609 (0.332) 

1.096-2.378 

  

Femur 1.537 (0.356) 

0.839-2.192 

1.519 (0.371) 

0.851-2.306 

2.181 (0.486) 

1.406-3.291 

 

Tibia 1.549 (0.391) 

0.913-2.446 

1.730 (0.410) 

0.995-2.589 

2.146 (0.508) 

1.247-3.217 

2.548 (0.575) 

1.552-3.773 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 
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Table 13 - Phenotypic correlation matrix for the Tamarins. 

 Humerus Radius Femur Tibia 

Humerus 1  

 

   

Radius 0.861 (0.020) 

0.816-0.891 
1   

Femur 0.788 (0.027) 

0.743-0.847 

0.794 (0.027) 

0.734-0.840 
1  

Tibia 0.812 (0.026) 

0.753-0.853 

0.830 (0.023) 

0.775-0.863 

0.874 (0.018) 

0.824-0.894 
1 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 39 for statistically significant differences between correlation coefficients for pairs of 

limb segments. 

 

Table 14 - Genetic correlation matrix for the Tamarins. 

 Humerus Radius Femur Tibia 

Humerus 0.459 (0.107) 

0.248-0.663 

   

Radius 0.855 (0.058) 

0.721-0.928 

0.445 (0.106) 

0.235-0.644 

  

Femur 0.807 (0.083) 

0.599-0.895 

0.797 (0.085) 

0.593-0.889 

0.506 (0.109) 

0.275-0.704 

 

Tibia 0.812 (0.075) 

0.638-0.907 

0.840 (0.071) 

0.669-0.921 

0.874 (0.055) 

0.733-0.923 

0.527 (0.110) 

0.276-0.699 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 41 for statistically significant differences between correlation coefficients for pairs of 

limb segments.  
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Table 15 - Environmental correlation matrix for the Tamarins. 

 Humerus Radius Femur Tibia 

Humerus 0.540 (0.107) 

0.337-0.752 

   

Radius 0.883 (0.034) 

0.791-0.919 

0.555 (0.106) 

0.357-0.765 

  

Femur 0.798 (0.049) 

0.701-0.885 

0.801 (0.050) 

0.698-0.885 

0.494 (0.109) 

0.296-0.725 

 

Tibia 0.831 (0.047) 

0.713-0.900 

0.845 (0.041) 

0.750-0.906 

0.881 (0.033) 

0.804-0.929 

0.473 (0.110) 

0.301-0.724 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

 

Table 16 - Heritability, evolvability, and conditional evolvability estimates for the 

Tamarins. 

 Humerus Radius Femur Tibia 

Trait Mean 50.97 46.13 65.65 66.52 

Phenotypic Variance 2.772 3.126 4.530 5.167 

Additive Genetic variance 1.276 1.282 2.284 2.431 

Heritability (h2) 0.459 0.445 0.506 0.527 

h2 95% Credibility Interval 0.248-0.663 0.235-0.644 0.275-0.704 0.276-0.699 

Evolvability (e) 0.000519 0.000605 0.000527 0.000616 

e 95% Credibility Interval 0.000240-

0.000757 

0.000299-

0.000101 

0.000219-

0.000743 

0.000260-

0.000871 

Conditional Evolvability (c) 0.000101 0.000129 0.000108 0.000120 

c 95% Credibility Interval  0.000071-

0.000150 

0.000091-

0.000195 

0.000076-

0.000157 

0.000082-

0.000161 

Integration (i) 0.794 0.773 0.785 0.832 

i 95% Credibility Interval  0.594-0.888 0.612-0.889 0.591-0.883 0.644-0.898 
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Figure 1 - Posterior distributions of heritability estimates for the Tamarin limb 

segments. 
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Figure 2 - Posterior distributions of evolvability estimates for the Tamarin limb 

segments. 
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Figure 3 - Posterior distributions of conditional evolvability estimates for the 

Tamarin limb segments. 
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Table 17 - Phenotypic variance/covariance matrix for the Sukhumi Baboons. 

 Arm Forearm Thigh Leg 

Arm 113.738 (13.128) 

92.704-141.587 

   

Forearm 72.879 (10.422) 

52.849-93.347 

101.940 (11.345) 

85.144-127.935 

  

Thigh 81.991 (13.736) 

53.222-106.743 

82.828 (12.712) 

57.652-106.501 

158.179 (20.358) 

137.044-214.480 

 

Leg 52.665 (8.630) 

35.574-68.575 

56.854 (8.163) 

40.916-72.276 

68.517 (10.986) 

50.497-91.961 

66.366 (8.151) 

54.567-85.464 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 38 for statistically significant differences between limb segments.  

 

Table 18 - Genetic variance/covariance matrix for the Sukhumi Baboons. 

 Arm Forearm Thigh Leg 

Arm 57.311 (17.034) 

31.686-96.309 

   

Forearm 38.216 (14.449) 

14.307-69.412 

54.029 (14.726) 

33.184-88.963 

  

Thigh 46.666 (18.094) 

11.538-83.656 

55.855 (17.219) 

15.243-82.957 

102.449 (24.873) 

46.212-140.287 

 

Leg 30.397 (11.468) 

8.271-52.682 

34.638 (10.966) 

14.242-56.121 

41.515 (14.279) 

14.587-68.763 

39.868 (9.728) 

24.170-60.645 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 40 for statistically significant differences between limb segments.  

 

Table 19 - Environmental variance/covariance matrix for the Sukhumi Baboons. 

 Arm Forearm Thigh Leg 

Arm 54.608 (12.638) 

32.034-81.826 

   

Forearm 29.688 (10.330) 

12.602-51.643 

39.875 (10.212) 

25.667-65.423 

  

Thigh 36.817 (13.476) 

13.561-65.173 

31.205 (12.328) 

8.980-56.216 

70.099 (18.377) 

44.070-113.431 

 

Leg 18.690 (8.205) 

6.173-37.174 

22.278 (7.750) 

8.000-37.426 

27.499 (10.242) 

8.832-47.992 

28.191 (6.917) 

16.085-42.600 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 
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Table 20 - Phenotypic correlation matrix for the Sukhumi Baboons. 

 Arm Forearm Thigh Leg 

Arm 1 

 

   

Forearm 0.638 (0.045) 

0.555-0.728 
1   

Thigh 0.580 (0.057) 

0.457-0.677 

0.634 (0.050) 

0.508-0.706 
1  

Leg 0.580 (0.054) 

0.467-0.680 

0.650 (0.044) 

0.576-0.744 

0.659 (0.048) 

0.547-0.737 
1 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 39 for statistically significant differences between correlation coefficients for pairs of 

limb segments. 

 

Table 21 - Genetic correlation matrix for the Sukhumi Baboons. 

 Arm Forearm Thigh Leg 

Arm 0.479 (0.112) 

0.310-0.736 

   

Forearm 0.710 (0.101) 

0.442-0.811 

0.600 (0.104) 

0.366-0.765 

  

Thigh 0.634 (0.128) 

0.324-0.787 

0.661 (0.104) 

0.421-0.807 

0.552 (0.108) 

0.322-0.734 

 

Leg 0.627 (0.114) 

0.353-0.784 

0.728 (0.085) 

0.516-0.828 

0.725 (0.095) 

0.455-0.812 

0.602 (0.100) 

0.398-0.777 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 41 for statistically significant differences between correlation coefficients for pairs of 

limb segments.  
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Table 22 - Environmental correlation matrix for the Sukhumi Baboons. 

 Arm Forearm Thigh Leg 

Arm 0.521 (0.112) 

0.264-0.690 

   

Forearm 0.643 (0.099) 

0.420-0.782 

0.400 (0.104) 

0.235-0.634 

  

Thigh 0.608 (0.115) 

0.347-0.774 

0.581 (0.111) 

0.352-0.761 

0.448 (0.108) 

0.266-0.678 

 

Leg 0.543 (0.118) 

0.287-0.723 

0.645 (0.102) 

0.393-0.773 

0.669 (0.106) 

0.378-0.778 

0.398 (0.100) 

0.223-0.602 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

 

Table 23 - Heritability, evolvability, and conditional evolvability for the Sukhumi Baboons. 

 Arm Forearm Thigh Leg 

Trait Mean 183.32 213.48 226.12 182.20 

Phenotypic Variance 113.738 101.940 158.179 66.366 

Additive Genetic variance 57.311 54.029 102.449 39.868 

heritability (h2) 0.479 0.600 0.552 0.602 

h2 95% Credibility Interval 0.310-0.736 0.366-0.765 0.322-0.734 0.398-0.777 

Evolvability (e) 0.001330 0.001000 0.001628 0.001000 

e 95% Credibility Interval  0.000781-

0.002395 

0.000596-

0.001612 

0.000785-

0.002327 

0.000581-

0.001505 

Conditional Evolvability (c) 0.000715 0.000374 0.000639 0.000390 

c 95% Credibility Interval  0.000466-

0.001013 

0.000288-

0.000553 

0.000462-

0.000961 

0.000295-

0.000547 

Integration (i) 0.515 0.646 0.571 0.625 

i 95% Credibility Interval  0.252-0.714 0.394-0.779 0.301-0.749 0.376-0.766 
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Figure 4 - Posterior distributions of heritability estimates for the Sukhumi Baboon 

limb segments. 
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Figure 5 - Posterior distributions of evolvability estimates for the Sukhumi Baboon 

limb segments. 
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Figure 6 - Posterior distributions of conditional evolvability estimates for the Sukhumi 

Baboon limb segments. 
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Table 24 - Phenotypic variance/covariance matrix for the Mennonites. 

 Arm Forearm Thigh Leg 

Arm 244.357 (19.046) 

207.050-281.479 

   

Forearm 61.188 (13.009) 

33.347-83.602 

211.721 (16.175) 

184.766-248.217 

  

Thigh 210.123 (27.919) 

149.515-257.525 

119.694 (24.140) 

66.377-158.842 

821.957 (65.395) 

706.015-953.125 

 

Leg 135.630 (17.119) 

101.954-170.187 

126.286 (15.367) 

99.319-158.470 

177.759 (30.248) 

125.219-245.368 

309.497 (24.465) 

274.253-370.108 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 38 for statistically significant differences between limb segments.  

 

Table 25 - Genetic variance/covariance matrix for the Mennonites. 

 Arm Forearm Thigh Leg 

Arm 162.104 (24.749) 

110.850-205.327 

   

Forearm 35.414 (17.089) 

7.927-74.002 

106.778 (22.432) 

60.630-145.759 

  

Thigh 184.706 (35.266) 

133.443-270.165 

107.161 (33.072) 

41.304-169.355 

541.050 (87.728) 

421.342-753.439 

 

Leg 77.855 (23.027) 

46.139-136.917 

65.342 (21.672) 

29.717-1113.290 

165.219 (41.841) 

97.755-264.115 

154.188 (33.645) 

100.195-229.781 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 40 for statistically significant differences between limb segments.  

 

Table 26 - Environmental variance/covariance matrix for the Mennonites. 

 Arm Forearm Thigh Leg 

Arm 81.671 (16.867) 

52.481-118.318 

   

Forearm 15.895 (13.019) 

-8.232-42.453 

102.271 (18.872) 

77.780-150.753 

  

Thigh -5.805 (22.110) 

-39.926-45.743 

-5.349 (24.268) 

-40.280-54.336 

248.802 (55.422) 

149.063-355.872 

 

Leg 46.347 (17.102) 

13.240-79.817 

47.403 (18.046) 

22.522-93.373 

20.487 (28.609) 

-45.392-67.725 

152.834 (26.518) 

106.001-209.952 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 
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Table 27 - Phenotypic correlation matrix for the Mennonites. 

 Arm Forearm Thigh Leg 

Arm 1 

 

   

Forearm 0.249 (0.051) 

0.157-0.352 
1   

Thigh 0.482 (0.045) 

0.366-0.539 

0.261 (0.051) 

0.166-0.360 
1  

Leg 0.490 (0.043) 

0.390-0.559 

0.494 (0.041) 

0.403-0.561 

0.344 (0.048) 

0.261-0.447 
1 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 39 for statistically significant differences between correlation coefficients for pairs of 

limb segments. 

 

Table 28 - Genetic correlation matrix for the Mennonites. 

 Arm Forearm Thigh Leg 

Arm 0.665 (0.072) 

0.517-0.796 

   

Forearm 0.376 (0.118) 

0.100-0.553 

0.475 (0.088) 

0.311-0.653 

  

Thigh 0.694 (0.073) 

0.513-0.788 

0.457 (0.109) 

0.219-0.636 

0.716 (0.072) 

0.560-0.828 

 

Leg 0.592 (0.090) 

0.360-0.707 

0.567 (0.105) 

0.320-0.715 

0.560 (0.091) 

0.364-0.740 

0.480 (0.085) 

0.347-0.684 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 41 for statistically significant differences between correlation coefficients for pairs of 

limb segments. 
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Table 29 - Environmental correlation matrix for the Mennonites. 

 Arm Forearm Thigh Leg 

Arm 0.335 (0.072) 

0.204-0.483 

   

Forearm 0.179 (0.128) 

-0.078-0.416 

0.525 (0.088) 

0.347-0.689 

  

Thigh 0.068 (0.156) 

-0.289-0.309 

-0.037 (0.147) 

-0.268-0.306 

0.284 (0.072) 

0.172-0.440 

 

Leg 0.453 (0.109) 

0.177-0.600 

0.489 (0.098) 

0.241-0.614 

0.084 (0.142) 

-0.239-0.313 

0.520 (0.085) 

0.316-0.653 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

 

Table 30 - Heritability, evolvability, and conditional evolvability for the Mennonites. 

 Arm Forearm Thigh Leg 

Trait Mean 321.30 254.50 473.84 402.42 

Phenotypic Variance 244.357 211.721 821.957 309.497 

Additive Genetic variance 162.104 106.778 541.050 154.188 

heritability (h2) 0.665 0.475 0.716 0.480 

h2 95% Credibility Interval 0.517-0.796 0.311-0.653 0.560-0.828 0.347-0.684 

Evolvability (e) 0.001463 0.001529 0.002263 0.000859 

e 95% Credibility Interval  0.001018-

0.001859 

0.000850-

0.002049 

0.001787-

0.003197 

0.000544-

0.001273 

Conditional Evolvability (c) 0.000711 0.000903 0.001234 0.000443 

c 95% Credibility Interval  0.000469-

0.001016 

0.000548-

0.001334 

0.000668-

0.001656 

0.000282-

0.000659 

Integration (i) 0.513 0.350 0.562 0.505 

i 95% Credibility Interval  0.343-0.669 0.158-0.559 0.350-0.719 0.302-0.661 
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Figure 7 - Posterior distribution of heritability estimates for the Mennonite limb 

segments. 
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Figure 8 - Posterior distributions of evolvability estimates for the Mennonite limb 

segments. 
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Figure 9 - Posterior distribution of conditional evolvability estimates for the 

Mennonite limb segments. 
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Table 31 - Phenotypic variance/covariance matrix for the TBRI Baboons. 

 Humerus Femur 

Humerus 66.546 (4.998) 

58.893-77.984 

 

Femur 64.592 (5.522) 

55.208-76.722 

99.099 (5.522) 

87.000-115.100 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 38 for statistically significant differences between limb segments.  

 

Table 32 - Genetic variance/covariance matrix for the TBRI Baboons. 

 Humerus Femur 

Humerus 39.818 (7.491) 

25.311-55.056 

 

Femur 34.761 (8.621) 

23.608-57.693 

58.524 (10.892) 

41.528-83.660 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

See Table 40 for statistically significant differences between limb segments.  

 

Table 33 - Environmental variance/covariance matrix for the TBRI Baboons. 

 Humerus Femur 

Humerus 26.709 (5.419) 

17.786-38.327 

 

Femur 24.940 (6.133) 

12.670-35.863 

33.406 (7.799) 

23.161-53.016 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

 

Table 34 - Phenotypic correlation matrix for the TBRI Baboons. 

 Humerus Femur 

Humerus 1  

 

Femur 0.793 (0.020) 

0.751-0.828 
1 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 
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Table 35 - Genetic correlation matrix for the TBRI Baboons. 

 Humerus Femur 

Humerus 0.595 (0.086) 

0.423-0.758 

 

Femur 0.827 (0.042) 

0.725-0.886 

0.649 (0.083) 

0.467-0.785 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

 

Table 36 - Environmental correlation matrix for the TBRI Baboons. 

 Humerus Femur 

Humerus 0.405 (0.086) 

0.242-0.577 

 

Femur 0.770 (0.057) 

0.640-0.851 

0.351 (0.083) 

0.215-0.533 

Variance/covariance estimates are in bold, standard error of the estimate is in parentheses, and 

the 95% credibility interval for the estimate is below. 

 

Table 37 - Heritability, evolvability, and conditional evolvability for the TBRI Baboons. 

 Humerus Femur 

Trait Mean 200.84 236.52 

Phenotypic Variance 66.546 99.099 

Additive Genetic variance 39.818 58.524 

heritability (h2) 0.595 0.649 

h2 95% Credibility Interval 0.423-0.758 0.467-0.785 

Evolvability (e) 0.001064 0.001260 

e 95% Credibility Interval  0.000693-

0.001499 

0.000822-

0.001668 

Conditional Evolvability (c) 0.000359 0.000410 

c 95% Credibility Interval  0.000270-

0.000461 

0.000314-

0.000525 

Integration (i) 0.684 0.684 

i 95% Credibility Interval  0.526-0.785 0.526-0.785 
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Figure 10 - Posterior distribution of heritability estimates for the TBRI Baboons. 
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Figure 11 - Posterior distribution of evolvability estimates for the TBRI Baboons. 
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Figure 12 - Posterior distributions of conditional evolvability estimates for TBRI 

Baboons. 
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Table 38 - Intra-sample comparisons of phenotypic variance. 

 Tamarins Sukhumi Baboons Mennonites TBRI 

Baboons 

H R F T H R F T H R F T H F 

 H               

R               

F X X             

T X X X            

 H               

R               

F     X X         

T     X X X        

 H               

R               

F         X X     

T         X X X    

 H               

F             X  

An X indicates that the posterior distribution produced when comparing these two limb segments did not cross zero, meaning that the 

phenotypic variance estimates for these limb segments are statistically different. For ease of interpretation, all four samples use the 

abbreviations of H (humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are called the arm, forearm, 

thigh, and leg for the Sukhumi Baboons and Mennonites throughout the text. Gray cells indicate comparisons that are 1) redundant, 2) 

self-comparisons (e.g., H and H in Intra-Sample Comparisons), 3) not done (e.g., comparing the humerus of one sample to the tibia of 

another sample), or 4) not possible (because the TBRI Baboon sample is limited to two limb segments). 
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Table 39 - Intra- and inter-sample comparisons of phenotypic correlation. 

 Tamarins Sukhumi Baboons Mennonites TBRI 

HR HF HT RF RT FT HR HF HT RF RT FT HR HF HT RF RT FT HF 

 HR                    

HF X                   

HT X                   

RF X                   

RT                    

FT  X X X                

 HR X                   

HF  X                  

HT   X                 

RF    X                

RT     X               

FT      X              

 HR X      X             

HF  X           X       

HT   X          X       

RF    X      X    X X     

RT     X      X  X   X    

FT      X      X  X X  X   

 HF        X      X      

 

An X indicates that the posterior distribution produced when comparing these two correlations did not cross zero, meaning that the 

phenotypic correlation estimates are statistically different. For ease of interpretation, all four samples use the abbreviations of H 

(humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are called the arm, forearm, thigh, and leg for 

the Sukhumi Baboons and Mennonites throughout the text. Gray cells indicate comparisons that are 1) redundant, 2) self-comparisons 

(e.g., H and H in Intra-Sample Comparisons), 3) not done (e.g., comparing the humerus of one sample to the tibia of another sample), 

or 4) not possible (because the TBRI Baboon sample is limited to two limb segments). 
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Table 40 - Intra- and inter-sample comparisons of genetic variance. 

 Tamarins Sukhumi Baboons Mennonites TBRI 

Baboons 

H R F T H R F T H R F T H F 

 H               

R               

F X X             

T X X             

 H               

R               

F               

T       X        

 H               

R         X      

F         X X     

T           X    

 H               

F             X  

An X indicates that the posterior distribution produced when comparing these two limb segments did not cross zero, meaning that the 

genetic variance estimates for these limb segments are statistically different. Intra-sample comparisons use values from the VCV 

matrix, while inter-sample comparisons use values from the correlation matrix. For ease of interpretation, all four samples use the 

abbreviations of H (humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are called the arm, forearm, 

thigh, and leg for the Sukhumi Baboons and Mennonites throughout the text. Gray cells indicate comparisons that are 1) redundant, 2) 

self-comparisons (e.g., H and H in Intra-Sample Comparisons), 3) not done (e.g., comparing the humerus of one sample to the tibia of 

another sample), or 4) not possible (because the TBRI Baboon sample is limited to two limb segments). 
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Table 41 - Intra- and inter-sample comparisons of genetic correlation. 

 Tamarins Sukhumi Baboons Mennonites TBRI 

HR HF HT RF RT FT HR HF HT RF RT FT HR HF HT RF RT FT HF 

 HR                    

HF                    

HT                    

RF                    

RT                    

FT                    

 HR                    

HF                    

HT                    

RF                    

RT                    

FT                    

 HR X      X             

HF             X       

HT   X          X       

RF    X                

RT     X               

FT      X              

 HF        X            

 

An X indicates that the posterior distribution produced when comparing these two correlations did not cross zero, meaning that the 

genetic correlation estimates are statistically different. For ease of interpretation, all four samples use the abbreviations of H 

(humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are called the arm, forearm, thigh, and leg for 

the Sukhumi Baboons and Mennonites throughout the text. Gray cells indicate comparisons that are 1) redundant, 2) self-comparisons 

(e.g., H and H in Intra-Sample Comparisons), 3) not done (e.g., comparing the humerus of one sample to the tibia of another sample), 

or 4) not possible (because the TBRI Baboon sample is limited to two limb segments). 
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Table 42 - Intra- and inter-sample comparisons of heritability. 

 Tamarins Sukhumi Baboons Mennonites TBRI 

Baboons 

H R F T H R F T H R F T H F 

 H               

R               

F               

T               

 H               

R               

F               

T               

 H               

R               

F          X     

T               

 H               

F               

an X indicates that the posterior distribution produced when comparing these two limb segments did not cross zero, indicating that the 

heritability estimates for these limb segments are statistically different. For ease of interpretation, all four samples use the 

abbreviations of H (humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are called the arm, forearm, 

thigh, and leg for the Sukhumi Baboons and Mennonites throughout the text. Gray cells indicate comparisons that are 1) redundant, 2) 

self-comparisons (e.g., H and H in Intra-Sample Comparisons), 3) not done (e.g., comparing the humerus of one sample to the tibia of 

another sample), or 4) not possible (because the TBRI Baboon sample is limited to two limb segments).  
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Table 43 - Intra- and inter-sample comparisons of evolvability. 

 Tamarins Sukhumi Baboons Mennonites TBRI 

Baboons 

H R F T H R F T H R F T H F 

 H               

R               

F               

T               

 H X              

R               

F   X            

T               

 H X              

R  X             

F   X      X X     

T           X    

 H X              

F   X        X    

An X indicates that the posterior distribution produced when comparing these two limb segments did not cross zero, indicating that the 

evolvability estimates for these limb segments are statistically different. For ease of interpretation, all four samples use the 

abbreviations of H (humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are called the arm, forearm, 

thigh, and leg for the Sukhumi Baboons and Mennonites throughout the text. Gray cells indicate comparisons that are 1) redundant, 2) 

self-comparisons (e.g., H and H in Intra-Sample Comparisons), 3) not done (e.g., comparing the humerus of one sample to the tibia of 

another sample), or 4) not possible (because the TBRI Baboon sample is limited to two limb segments). 
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Table 44 - Intra- and inter-sample comparisons of conditional evolvability. 

 Tamarins Sukhumi Baboons Mennonites TBRI 

Baboons 

H R F T H R F T H R F T H F 

 H               

R               

F               

T               

 H X              

R  X   X          

F   X            

T    X X  X        

 H X              

R  X    X         

F   X            

T    X      X X    

 H X    X    X      

F   X    X    X    

An X indicates that the posterior distribution produced when comparing these two limb segments did not cross zero, indicating that the 

conditional evolvability estimates for these limb segments are statistically different. For ease of interpretation, all four samples use the 

abbreviations of H (humerus), R (radius), F (femur), and T (tibia) despite the fact that these limb segments are called the arm, forearm, 

thigh, and leg for the Sukhumi Baboons and Mennonites throughout the text. Gray cells indicate comparisons that are 1) redundant, 2) 

self-comparisons (e.g., H and H in Intra-Sample Comparisons), 3) not done (e.g., comparing the humerus of one sample to the tibia of 

another sample), or 4) not possible (because the TBRI Baboon sample is limited to two limb segments). 
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Table 45 - Partial correlation coefficients for the TBRI Baboon humerus only. 

 Maximum Length 50% Diameter 

Average 

Head Length Distal Articular 

Breadth 

Epicondylar 

Breadth 

Maximum Length      

50% Diameter 

Average 

0.101     

Head Length 0.304 0.231    

Distal Articular 

Breadth 

0.134 0.320 0.300   

Epicondylar 

Breadth 

0.369 0.270 0.045 0.318  

 

 

Table 46 - Partial correlation coefficients for the TBRI Baboon femur only. 

 Bicondylar Length 50% Diameter 

Average 

Head Diameter Articular Breadth Bicodylar Breadth 

Bicondylar 

Length 

     

50% Diameter 

Average 

0.198     

Head Diameter 0.331 0.122    

Articular Breadth 0.197 -0.020 0.236   

Bicondylar 

Breadth 

0.123 0.251 0.214 0.644  
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Table 47 - Partial correlation coefficients for the TBRI baboon humerus and femur combined. 

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular   

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50% 

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Max.  

Length 

          

H 50% 

Diameter 

Average 

0.015          

Head 

Length 

0.136 0.137         

Distal 

Articular  

Breadth 

-0.123 0.177 0.135        

Epicond. 

Breadth 

0.194 0.203 -0.063 0.254       

Bicond. 

Length 

0.760 -0.020 -0.150 0.160 -0.022      

F 50% 

Diameter 

Average 

-0.076 0.395 -0.085 -0.042 0.063 0.141     

Head 

Diameter 

0.044 -0.051 0.220 0.293 -0.067 0.126 0.152    

Articular 

Breadth 

-0.085 0.128 0.164 0.069 -0.124 0.232 -0.062 0.139   
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Table 47 Continued.  

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular   

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50% 

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Bicond. 

Breadth 

0.144 -0.029 0.193 0.119 0.290 -0.091 0.179 0.049 0.548  

 

 

 

Table 48 - Edge exclusion deviance for the TBRI Baboon humerus only. 

 Maximum Length 50% Diameter 

Average 

Head Length Distal Articular  

Breadth 

Epicondylar 

Breadth 

Maximum Length      

50% Diameter 

Average 

4.276     

Head Length 40.436 22.867    

Distal Articular 

Breadth 

7.556 45.049 39.328   

Epicondylar 

Breadth 

61.036 31.564  44.456  
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Table 49 - Edge exclusion deviance for the TBRI Baboon femur only. 

 Bicondylar Length 50% Diameter 

Average 

Head Diameter Articular Breadth Bicondylar Breadth 

Bicondylar 

Length 

     

50% Diameter 

Average 

13.758     

Head Diameter 39.918 5.159    

Articular Breadth 13.616  18.338   

Bicondylar 

Breadth 

5.244 22.385 16.126 184.278  
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Table 50 - Edge exclusion deviance for the TBRI Baboon humerus and femur combined. 

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular  

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50% 

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Max. 

Length 

          

H 50% 

Diameter 

Average 

          

Head 

Length 

5.974 6.063         

Distal 

Articular 

Breadth 

4.878 10.186 5.886        

Epicond. 

Breadth 

12.276 13.466  21.341       

Bicond. 

Length 

275.777  7.282 8.299       

F 50% 

Diameter 

Average 

 54.282    6.426     

Head 

Diameter 

  15.875 28.723  5.121 7.480    

Articular 

Breadth 

 5.286 8.725  4.959 17.705  6.243   
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Table 50 Continued.  

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular  

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50% 

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Bicond. 

Breadth 

4.186  12.147 4.564 28.111  10.421  114.275  

 

 

 

Table 51 - Edge strengths for the TBRI Baboon humerus only. 

 Maximum Length 50% Diameter 

Average 

Head Length Distal Articular 

Breadth 

Epicondylar 

Breadth 

Maximum Length      

50% Diameter 

Average 

0.005     

Head Length 0.048 0.027    

Distal Articular 

Breadth 

0.009 0.054 0.047   

Epicondylar 

Breadth 

0.073 0.038  0.053  

 

 

 

 



 

276 

 

Table 52 - Edge strengths for the TBRI Baboon femur only. 

 Bicondylar Length 50% Diameter 

Average 

Head Diameter Articular Breadth Bicondylar Breadth 

Bicondylar 

Length 

     

50% Diameter 

Average 

0.020     

Head Diameter 0.058 0.007    

Articular Breadth 0.020  0.029   

Bicondylar 

Breadth 

0.008 0.033 0.023 0.268  
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Table 53 - Edge strengths for the TBRI Baboon humerus and femur combined. 

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular  

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50%  

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Max. 

Length 

          

H 50% 

Diameter 

Average 

          

Head 

Length 

0.009 0.009         

Distal 

Articular 

Breadth 

0.008 0.016 0.009        

Epicond. 

Breadth 

0.019 0.021  0.033       

Bicond. 

Length 

0.431  0.011 0.013       

F 50% 

Diameter 

Average 

 0.085    0.010     

Head 

Diameter 

  0.025 0.045  0.008 0.012    

Articular 

Breadth 

 0.008 0.014  0.008 0.028  0.010   
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Table 53 Continued.  

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular  

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50%  

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Bicond. 

Breadth 

0.007  0.019 0.007 0.044  0.016  0.179  

 

 

 

Table 54 - Correlation matrix for the TBRI Baboon humerus only. 

 Maximum Length 50% Diameter 

Average 

Head Length Distal Articular 

Breadth 

Epicondylar 

Breadth 

Maximum Length 1     

50% Diameter 

Average 

0.829 1    

Head Length 0.845 0.842 1   

Distal Articular 

Breadth 

0.847 0.874 0.861 1  

Epicondylar 

Breadth 

0.866 0.861 0.828 0.877 1 
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Table 55 - Correlation matrix for the TBRI Baboon femur only. 

 Bicondylar Length 50% Diameter 

Average 

Head Diameter Articular Breadth Bicondylar Breadth 

Bicondylar 

Length 

1     

50% Diameter 

Average 

0.819 1    

Head Diameter 0.896 0.818 1   

Articular Breadth 0.896 0.819 0.912 1  

Bicondylar 

Breadth 

0.895 0.843 0.913 0.954 1 
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Table 56 - Correlation matrix for the TBRI Baboon humerus and femur combined. 

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular  

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50%  

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Max. 

Length 

1          

H 50% 

Diameter 

Average 

0.828 1         

Head 

Length 

0.836 0.839 1        

Distal 

Articular 

Breadth 

0.866 0.878 0.880 1       

Epicond. 

Breadth 

0.864 0.861 0.820 0.886 1      

Bicond. 

Length 

0.960 0.839 0.833 0.887 0.859 1     

F 50% 

Diameter 

Average 

0.806 0.866 0.783 0.832 0.821 0.829 1    

Head 

Diameter 

0.876 0.846 0.883 0.913 0.843 0.892 0.833 1   

Articular 

Breadth 

0.883 0.872 0.989 0.913 0.861 0.903 0.835 0.913 1  
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Table 56 Continued.  

 Max. 

Length 

H 50% 

Diameter 

Average 

Head 

Length 

Distal 

Articular  

Breadth 

Epicond. 

Breadth 

Bicond. 

Length 

 F 50%  

Diameter 

Average 

Head 

Diameter 

Articular 

Breadth 

Bicond. 

Breadth 

Bicond. 

Breadth 

0.889 0.879 0.902 0.921 0.897 0.895 0.856 0.910 0.956 1 

 

 

 

Table 57 - Ten models used to perform Mantel tests for integration. 

Model Number Integrated Traits 

1* Lengths 

2 Articulations 

3* Diaphyses 

4* Muscle Attachments 

5 Length & Articulations 

6 Length & Diaphysis 

7 Length & Muscle Attachment 

8 Articulations & Diaphysis 

9 Articulations & Muscle Attachment 

10 Diaphysis & Muscle Attachment 

*These models can only be tested on the humerus and femur combined analysis 
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Table 58 - Results of Mantel tests between correlation matrices and model matrices. 

 Model 1  Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10  

Humerus 

Correlation  0.163   -0.078 -0.479 0.269 0.238 0.089 0.154 

p-value  0.320   0.488 0.792 0.203 0.188 0.300 0.389 

Femur 

Correlation  0.261   0.355 -0.419 0.136 -0.384 0.716 -0.245 

p-value  0.221   0.306 0.696 0.513 0.697 0 0.640 

Humerus & Femur 

Correlation 0.367 0.318 -0.017 0.112 0.367 -0.162 0.258 0.010 0.340 -0.069 

p-value 0 0.072 0.540 0.215 0.094 0.791 0.130 0.463 0.097 0.608 
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Table 59 - Relative eigenvalue variance for the Tamarins, Sukhumi Baboons, and 

Mennonites with 95% credibility intervals. 

 Tamarins Sukhumi Baboons Mennonites 

Upper Limb 0.730 

(0.666-0.793) 

0.408 

(0.307-0.531) 

0.062 

(0.023-0.121) 

Lower Limb 0.764 

(0.679-0.800) 

0.435 

(0.289-0.530) 

0.118 

(0.063-0.194) 

Proximal Elements 0.621 

(0.551-0.717) 

0.337 

(0.207-0.456) 

0.196 

(0.132-0.289) 

Distal Elements 0.690 

(0.601-0.745) 

0.423 

(0.327-0.548) 

0.244 

(0.160-0.311) 

All Elements 0.679 

(0.618-0.733) 

0.381 

(0.296-0.468) 

0.154 

(0.119-0.202) 
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Table 60 - Intra- and inter-sample comparisons of relative eigenvalue variance. 

 Tamarins Sukhumi Baboons Mennonites 

A U L P D A U L P D A U L P D 

         A                

U X               

L X               

P X X X             

D X               

 A X               

U  X              

L   X             

P    X            

D     X           

 A X     X          

U  X     X    X     

L   X     X        

P    X        X X   

D     X     X X X X   

A = all four limb segments, U = upper limb segments, L = lower limb segments, P = proximal 

limb segments, D = distal limb segments.  

 

 

 

Table 61 - Residual kurtosis and significant covariates used in linkage analyses. 

Trait Kurtosis Covariates Heritability (p-value) 

Humerus Maximum Length 0.3133 sex 0.68 (6.6*10-14) 

Humerus 50% Diameter Average 0.3503 sex, age*sex, age2 0.73 (6.6*10-21) 

Humerus Head Length 0.3478 age, sex 0.75 (2.5*10-14) 

Humerus Distal Articular Breadth 0.5640 age, sex 0.74 (9.2*10-12) 

Humerus Epicondylar Breadth 0.5429 sex, age*sex, age2 0.61 (7.1*10-10) 

Femur Bicondylar Length 0.3074 sex, age2 0.92 (1.7*10-20) 

Femur 50% Diameter Average -0.1563 age, sex 0.78 (4.7*10-11) 

Femur Head Diameter -0.1532 age, sex 0.90 (2.2*10-15) 

Femur Articular Breadth 0.1816 age, sex 0.76 (7.3*10-12) 

Femur Bicondylar Breadth 0.0978 age, sex 0.71 (1.1*10-9) 
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Table 62 - Suggestive and significant LOD scores in linkage analyses. 

Trait Human Chr # Baboon Chr # Location (cM) Peak (cM) LOD score 

Humerus Maximum Length 12 11 30-51 42 1.7153 

 12 11 71-73 73 1.6231 

 12 11 79-85 83 1.5617 

Humerus 50% Diameter Average 6 4 51-67 56 2.6765 

Humerus Head Length 2q 12 65-71 67 2.0879 

 2q 12 143-146 146 1.8870 

 11 14 19-75 46 3.7985 

Humerus Distal Articular Breadth  2q 12 129-133 132 1.8174 

 19 19 103 103 1.5293 

Humerus Epicondylar Breadth 10 9 0-2 0 1.5743 

Femur Bicondylar Length 7_21 3 134-147 142 2.2739 

 7_21 3 154-159 157 1.5812 

 14_15 7 94-118 103 2.1954 

Femur 50% Diameter Average 6 4 61-69 64 1.7824 

 6 4 135-138 137 1.5973 

Femur Head Diameter 2p 13 30-50 41 2.5065 

Femur Articular Breadth 12 11 17-53 26 2.4012 

 12 11 65-73 67 1.8259 

Femur Bicondylar Breadth 2q 12 67 67 1.5137 

 20_22 10 79-81 79 1.5785 
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Figure 13 - String plot for Humerus Maximum Length.        
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Figure 14 - String plot for Humerus 50% Diameter Average. 
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Figure 15 - String plot for Humerus Head Length. 
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Figure 16 - String plot for Humerus Distal Articular Breadth. 
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Figure 17 - String plot for Humerus Epicondylar Breadth. 
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Figure 18 - String plot for Femur Bicondylar Length. 
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Figure 19 - String plot for Femur 50% Diameter Average. 
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Figure 20 - String plot for Femur Head Diameter. 
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Figure 21 - String plot for Femur Articular Breadth. 
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Figure 22 - String plot for Femur Bicondylar Breadth. 
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Figure 23 - Significant LOD score peak for Humerus Head Length on human chromosome 

11 (baboon chromosome 14). 
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Figure 24 - Suggestive LOD score for Humerus Maximum Length on human chromosome 

12 (baboon chromosome 11). 
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Figure 25 - Suggestive LOD score peak for Femur Bicondylar Length on human 

chromosome 7 (baboon chromosome 3). 
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Figure 26 - Suggestive LOD score peak for Femur Bicondylar Length on human 

chromosome 14 (baboon chromosome 7). 
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Figure 27 - Relative locations of STRs flanking the significant LOD score positions in 

human chromosome 11 and baboon chromosome 14. 
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Table 63 - Genes on chromosome 11 within are aof highest peak of significant LOD score for Humerus Head Length. 

Gene 

Abbreviation  

UCSC name Color Coding/Non Function (unknown if left blank) 

APIP uc001mvs.2 dark blue coding negative regulator of ischemic/hypoxic injury 

CD44 uc001mvu.3 black coding cell-cell interactions, Wnt signaling 

EHF uc009yke.2 dark blue coding transcription repressor involved in epithelial differentiation 

FJX1 uc001mwh.3 dark blue coding ortholog of Drosophila gene for limb and wing development 

MIR1343 uc021qfv.1 light blue noncoding microRNA 

PAMR1 uc001mwf.3 dark blue coding muscle regeneration  

PDHX uc001mvt.3 black coding pyruvate dehydrogenase complex 

SLC1A2 uc021qfx.1 dark blue coding transporter protein for clearing excitatory neurotransmitters 

TRIM44 uc001mwi.2 dark blue coding differentiation and maturation of neuronal cells 
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Table 64 - Genes on chromosome 11 within area of secondary peak of significant LOD score for Humerus Head Length. 

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

5S_rRNA uc021qeb.1 light blue noncoding  

7SK uc021qea.1 light blue noncoding  

ABCC8 uc001mnc.3 dark blue coding protein transport 

AK026905 uc001mke.3 light blue noncoding  

AK096475 uc001mmy.1 light blue noncoding  

AL833346* uc009ygt.3 light blue coding  

ANO3 uc001mqt.4 dark blue coding transmembrane transport 

ANO5 uc001mqi.2 dark blue coding transmembrane protein 

ARNTL uc001mkp.3 dark blue coding activates transcription  

BC045791 uc001mqu.1 light blue noncoding  

BTBD10 uc001mkz.3 dark blue coding  

C11orf58 uc001mmk.2 dark blue coding small acidic protein 

CALCA uc001mlw.1 black coding calcitonin, regulates ossification and bone resorption  

CALCB uc001mlx.1 dark blue coding neurotransmitter 

CCDC179 uc021qfb.1 dark blue coding  

COPB1 uc001mli.2 dark blue coding intracellular protein transport 

CSRP3 uc001mpk.3 black coding myogenesis 

CYP2R1 uc001mls.1 black coding converts vitamin D 

DBX1 uc021qey.1 dark blue coding central nervous system patterning 

DD413619 uc021qdw.1 light blue noncoding  

DKK3 uc001mjw.3 dark blue coding Wnt signaling, limb development 

ERV9 uc010rdq.1 light blue noncoding endogenous retrovirus 

FANCF uc001mql.1 black coding DNA repair protein 

FAR1 uc001mld.3 dark blue coding cellular lipid metabolism 

GAS2 uc001mqm.3 dark blue coding cellular apoptosis 

GTF2H1 uc001moi.2 black coding general transcription factor 

HPS5 uc001mod.1 dark blue coding organelle biogenesis 
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Table 64 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

HTATIP2 uc009yia.1 black coding tumor suppression 

IGSF22 uc009yht.2 dark blue coding immunoglobulin superfamily 

INSC uc001mly.4 black coding influences bone density 

JA429845 uc021qeq.1 light blue noncoding  

KCNC1 uc001mnk.4 dark blue coding potassium ion transport 

KCNJ11 uc001mnb.4 dark blue coding potassium channel 

LDHA uc001mok.3 black coding catalyzes final step of anaerobic glycolysis 

LDHAL6A uc001mop.1 dark blue coding carbohydrate metabolism 

LDHC uc001mon.4 dark blue coding sperm motility 

LOC100126784* uc010rdl.2 light blue coding  

LOC100506305 

(ENSG00000189332) uc001mkl.2 light blue noncoding  

LOC494141 uc009yhh.4 light blue coding mitochondrial carrier protein 

LUZP2 uc001mqs.3 dark blue coding leucine zipper protein 

Metazoa_SRP uc021qeg.1 light blue noncoding  

MICAL2 uc001mka.3 black coding  

MICALCL uc001mkg.1 dark blue coding spermatozoa production 

Mir_340 uc021qes.1 light blue noncoding  

MIR4486 uc021qeu.1 light blue noncoding microRNA involved in post-transcriptional gene regulation  

MRGPRX1 uc001mpg.3 dark blue coding pain modulation 

MRGPRX2 uc021qer.1 dark blue coding pain modulation 

MRGPRX3 uc001mnu.3 dark blue coding pain modulation 

MUC15 uc001mqw.3 dark blue coding   

MYOD1 uc001mni.3 dark blue  coding muscle cell differentiation and regeneration  

NAV2 uc010rdm.2 black coding neuronal and sensory organ development 

NAV2-AS4 uc021qet.1 light blue noncoding   

NAV2-AS5 uc031pzi.1 light blue noncoding  
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Table 64 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

NCR3LG1 uc001mmz.4 black coding natural killer cells, expressed on tumor cells 

NELL1 uc001mqe.3 dark blue coding osteoblast cell differentiation and terminal mineralization  

NUCB2 uc001mmw.3 dark blue coding calcium homeostasis 

OR7E14P* uc021qeh.1 light blue coding olfactory receptor 

OTOG uc031pzc.1 dark blue coding inner ear membranes 

PARVA uc001mki.4 dark blue coding  cell adhesion 

PDE3B uc001mln.3 black coding fat metabolism  

PIK3C2A uc010rcw.2 black coding intracellular messenger 

PLEKHA7 uc001mmo.3 dark blue coding zonula adherens biogenesis and maintenance  

PRMT3 uc001mqb.3 black coding protein methylation 

PSMA1 uc001mll.3 dark blue coding proteasome 

PTH uc001mlb.3 black coding 

parathyroid hormone, dissolves salts in bone, associated w adult 

height 

PTPN5 uc001mpf.4 black coding neuronal cell survival 

RASSF10* uc021qdz.1 dark blue coding  

RPS13 uc001mmp.3 dark blue coding ribosomal protein 

RRAS2 uc021qec.1 black  coding signal transducer 

SAA1 uc021qem.1 dark blue coding cholesterol homeostasis, expressed in response to inflammation 

SAA2 uc009yhj.3 dark blue coding  

SAA2-SAA4* uc021qel.1 dark blue coding fusion protein between two genes 

SAA3P uc001mnt.3 light blue noncoding  

SAA4 uc001mny.3 dark blue coding  

SAAL1 uc001mnq.3 dark blue coding  

SCARNA16 uc021qdy.1 light blue noncoding  

SERGEF uc001mnm.3 dark blue coding influences body height 

SLC17A6 uc001mqk.3 dark blue coding ion transport 

SLC6A5 uc001mqd.3 dark blue coding neurotransmitter transporter 
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Table 64 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

SnoMBII_202 uc021qef.1 light blue noncoding  

SNORD14 uc021qei.1 light blue noncoding  

SOX6 uc001mmg.3 dark blue coding sex determining region Y, required for normal chondrogenesis 

SPON1* uc001mle.3 black coding cell adhesion protein  

SPTY2D1 uc001moy.3 dark blue coding  

SPTY2D1-AS1 uc001mox.3 light blue noncoding  

SVIP uc001mqp.4 dark blue coding  

TEAD1 uc021qdx.1 black coding organ size control and tumor suppression, Body height 

TMEM86A uc001moz.1 dark blue coding  

TPH1 uc001mnp.2 black coding catalyzes the biosynthesis of serotonin  

TRNA uc021qfa.1 light blue noncoding  

TSG101 uc001mor.3 black coding tumor susceptibility gene 

TSH101* uc009yhs.2 light blue coding tumor susceptibility gene 

U7 uc021qee.1 light blue noncoding  

UCH1C* uc001mnf.3 black coding development of cochlear hair cells 

UEVLD uc010rde.3 black coding carbohydrate metabolism 

USH1C uc001mnd.3 black coding development of cochlear hair cells 

USP47 uc001mjr.3 dark blue coding  

ZDHHC13 uc001mpi.3 dark blue coding magnesium transport 
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Table 65 - Genes on chromosome 12 within area of suggestive LOD score for Humerus Maximum Length. 

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

7SK uc021qvo.1 light blue noncoding  

ABCC9 uc001rfh.3 dark blue coding muscular multi-drug resistance 

ABCD2 uc001rmb.2 dark blue coding protein transport 

ADAMTS20 uc010skx.2 dark blue coding tissue remodeling 

AEBP2 uc001ref.2 dark blue coding DNA-binding transcriptional repressor 

AK000807 uc001rie.1 light blue near coding  

AK094733 uc001rfu.1 light blue noncoding  

AK096233 uc001rnk.1 light blue near coding  

ALG10 uc001rlm.3 dark blue coding protein glycosylation  

ALG10B uc001rln.4 dark blue coding protein glycosylation 

AMN1 uc001rkq.4 dark blue coding  

ARHGDIB uc001rcq.1 black coding cell signaling, proliferation, cytoskeletal organization, and 

secretion 

ARNTL2 uc001rht.2 black coding partner of circadian and hypoxia factors 

ART4 uc001rcl.1 dark blue coding Dombrock blood group system antigens 

ASUN uc001rhk.4 dark blue coding regulator of the mitotic cell cycle and development 

ATF7IP uc001rby.4 black coding multifunctional nuclear protein 

AX746523 uc001riu.1 light blue antisense  

BC039477 uc001rkg.3 light blue noncoding  

BC040886 uc001rlq.3 light blue  noncoding  

BC041929 uc001rhc.3 light blue noncoding  

BC043511 uc001rhx.3 light blue antisense  

BC067269* uc001rcb.3 light blue coding  

BCAT1 uc001rgd.4 black coding catalyst 

BHLHE41 uc001rhb.3 dark blue coding control of circadian rhythm and cell differentiation 
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Table 65 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

BICD1 uc001rku.3 dark blue coding  transport between Golgi apparatus and endoplasmic reticulum 

C12orf39 uc001rfa.1 dark blue coding open reading frame 

C12orf40 uc001rmc.3 dark blue coding  open reading frame 

C12orf60 uc001rcj.4 dark blue coding open reading frame 

C12orf71 uc001rhq.3 dark blue coding open reading frame 

C12orf77 uc001rgf.3 dark blue coding open reading frame 

C2CD5 uc001rfq.3 dark blue coding protein transport 

CAPRIN2 uc001rjh.1 dark blue coding erythroblast differentiation  

CAPZA3 uc001rdy.3 dark blue coding morphogenesis of spermatids 

CASC1 uc001rgj.3 dark blue coding  cancer susceptibility candidate 1 

CCDC91 uc001rip.1 black  coding regulates membrane traffic  

CMAS uc001rfm.4 dark blue coding cell surface enzyme 

CNTN1 uc001rmm.2 black coding mediates cell surface interactions during nervous system 

development 

contactin1 uc001rmp.1 light blue noncoding  

CPNE8 uc001rls.1 dark blue coding regulates molecular events at cell membrane/cytoplasm interface 

DBX2 uc001rok.1 dark blue coding developing brain homeobox 

DD157417 uc021qwd.1 light blue anitsense  

DDX11 uc001rjt.1 dark blue coding DNA helicase involved in cellular proliferation  

DDX11-AS1 uc001rjq.2 light blue noncoding  

DENND5B uc001rki.1 dark blue coding promotes exchange of GDP to GTP 

DENND5B-AS1 uc031qgx.1 light blue noncoding  

DERA uc001rde.3 dark blue coding catalyst 

DERA uc010shx.1 light blue coding catalyst 

DKFZp434C0631 uc001rjy.3 light blue near coding  
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Table 65 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

DNM1L uc001rld.2 dark blue coding mediates mitochondrial and peroxisomal division 

EPS8 uc009zif.3 black coding regulates actin cytoskeleton dynamics and architecture 

ERGIC2 uc001riv.3 dark blue coding transport between endoplasmic reticulum and Golgi apparatus 

ERP27 uc001rco.3 black coding endoplasmic reticulum protein 

ETNK1 uc001rft.3 dark blue coding phosphatidylethanolamine synthesis pathway 

FAM60A uc001rkd.3 dark blue coding repressor of genes in TGF-beta signaling pathway 

FAR2 uc001ris.5 dark blue coding reduces fatty acids to fatty alcohols 

FGD4 uc001rkz.3 dark blue coding regulation of actin cytoskeleton and cell shape 

FGFR1OP2 uc001rhl.3 dark blue coding oncogene partner 

FLJ13224* uc001rkf.1 light blue coding  

GOLT1B uc009zit.2 light blue near coding Golgi transport 

GUCY2C uc001rcd.3 dark blue coding heat-stable enterotoxin receptor 

GXYLT1 uc001rms.4 dark blue coding xylosyltransferase 

GYS2 uc001rfb.3 dark blue coding liver protein involved in the synthesis of glycogen 

H2AFJ uc009zia.3 black coding core nucleosome component 

H3F3C uc001rkr.3 black coding core component of nuclesoome 

HIST4H4 uc001rcf.4 black coding core nucleosome component 

hsa-miR-3194-3p uc021qwk.1 light blue noncoding  

IAPP uc001rev.3 black coding induces apoptotic cell death 

IFLTD1 uc010sji.1 dark blue coding   

O8 uc010sjt.2 dark blue coding nuclear protein import 

IRAK4 uc001rnu.3 black coding innate immune response 

ITPR2 uc001rhg.3 dark blue coding mediates the release of intracellular calcium 

KCNJ8 uc001rff.4 dark blue coding potassium channel membrane protein 

KIAA1551 uc001rks.3 dark blue coding  
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Table 65 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

KIF21A uc001rly.3 dark blue coding microtubule dependent transport 

KLHL42 uc001rij.3 dark blue coding microtubule dynamics throughout mitosis 

KNU6-78P uc031qgy.1 light blue noncoding  

KRAS uc001rgp.1 black coding GTPase activity 

LDHB uc001rfd.3 black coding catalyzes conversion between lactate and pyruvate in glycolytic 

pathway 

LINC00477 uc001rgb.1 light blue noncoding  

LINC00941 uc001rjo.2 light blue noncoding  

LMO3 uc001rdj.2 dark blue coding oncogene expressed in the brain 

LOC100506393 uc021qvz.1 light blue noncoding  

LRMP uc001rgh.3 dark blue coding expressed in lymphoid cell lines and tissues 

LRRK2 uc001rmg.4 black coding phosphorylation of proteins 

LYRM5 uc001rgn.3 dark blue coding  

MED21 uc001rhp.2 dark blue coding transcriptional regulation of RNA polymerase II transcribed genes 

METTL20 uc009zjr.3 dark blue coding methyltransferase 

MGP uc021qvr.1 dark blue coding bone formation inhibitor, found in organic matrix of 

bone/cartilage 

MGST1 uc001rdf.3 dark blue coding cellular defense against electrophilic compounds 

Mir_720 uc021qwb.1 light blue noncoding  

MIR3974 uc021qvv.1 light blue noncoding microRNA involved in post-transcriptional gene expression 

regulation 

MIR4302 uc021qwe.1 light blue noncoding mircoRNA 

MIR920 uc021qwc.1 light blue noncoding microRNA 

MRPS35 uc001rih.3 dark blue coding encodes a mitochondrial ribosome protein 

MUC19 uc021qwn.1 light blue coding  

NELL2 uc001rof.3 dark blue coding neural cell growth and differentiation 
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Table 65 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

OVCH1 uc001rix.1 light blue coding  

OVCH1-AS1* uc031qgv.1 light blue coding  

OVOS2* uc010sjy.1 light blue coding proteinase inhibitor 

PDE3A uc021qwa.1 black coding platelet aggregation and cardiovascular function 

PDE6H uc001rcr.3 dark blue coding transmission and amplification of vision signal  

PDZRN4 uc010skn.2 dark blue coding  

PIK3C2G uc001rdt.3 black coding protein signaling pathway 

PKP2 uc001rlj.4 black coding plays a role in junctional plaques 

PLBD1 uc001rcc.1 dark blue coding phospholipase acting on phospholipids 

PLCZ1 uc021qvx.2 dark blue coding sperm protein that initiates embryonic development  

PLEKHA5 uc001reb.3 black coding mRNA associated with body height, weight, and BMI 

PLEKHA8P1 uc001rom.2 light blue coding  

PPFIBP1 uc001rib.2 dark blue coding mammary gland development 

PPHLN1 uc010skq.2 dark blue coding epithelial differentiation and barrier formation  

PRICKLE1 uc010skv.2 dark blue coding nuclear receptor 

PTHLH uc001rik.3 black coding parathyroid hormone family, regulates endochondral bone 

formation, mutations associated with brachydactyly type E2, 

inhibitor of osteoclastic bone resorption 

PTPRO uc001rcv.2 black coding regulation of osteoclast production, apical surface of polarized 

cells 

PUS7L uc009zkb.4 dark blue coding  

PYROXD1 uc001rew.3 dark blue coding oxidation-reduction process 

RACGAP1P uc001rol.3 light blue noncoding  

RASSF8 uc001rgx.3 black coding tumor suppressor protein 

RASSF8-AS1 uc001rgu.1 light blue  noncoding  

RECQL uc001rex.3 black coding helicase involved in DNA repair 
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Table 65 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

REP15 uc001rig.1 dark blue coding facilitates transferrin receptor recycling 

RERG uc001rcs.3 black coding inhibits cell proliferation and tumor formation  

RERGL uc001rdq.3 dark blue coding binds GDP/GTP 

RNY5 uc010slc.1 light blue noncoding  

SKP1P2* uc021qvt.1 light blue coding  

SLC15A5 uc021qvs.1 light blue coding peptide transport 

SLC2A13 uc010skm.2 dark blue coding glucose transport 

SLCO1A2 uc010siq.2 light blue coding cellular uptake of organic ions in the liver 

SLCO1B1 uc001req.4 dark blue coding liver-specific member of organic anion transporter family 

SLCO1B3 uc001rel.4 dark blue coding bile acid and bilirubin transport 

SLCO1B7 uc010sin.2 dark blue coding organic anion transporter family 

SLCO1C1 uc001rei.3 dark blue coding mediates uptake of thyroid hormones in the brain 

SMCO3 (C12orf69) uc001rck.1 dark blue coding membrane component 

SMOC2 uc010sjq.2 dark blue coding integral component of the membrane 

SNORA75 uc021qwj.1 light blue noncoding  

SOX5 uc001rfx.4 dark blue coding embryonic development and cell fate, perhaps chondrogenesis 

SSPN uc001rhd.3 dark blue coding structural component of muscle cells 

ST8SIA1 uc001rfo.4 dark blue coding cell adhesion protein in Golgi apparatus 

STK38L uc001rhr.3 dark blue coding regulation of structural processes in neuronal cells 

STRAP uc001rdc.4 dark blue coding kinase receptor protein 

SYT10 uc001rll.1 dark blue coding exocytosis of secretory vesicles 

TM7SF3 uc010sjl.2 dark blue coding integral component of membrane 

TMEM117 uc001rod.3 dark blue coding transmembrane protein 

TMTC1 uc021qwi.1 dark blue coding membrane protein 

TRNA_Lys uc021qwh.1 light blue noncoding  
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Table 65 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

TSPAN11 uc001rjp.3 dark blue coding integral component of the membrane 

TWF1 uc001rob.3 dark blue coding actin monomer-binding protein 

U5 uc021qwl.1 light blue noncoding  

U6 uc021qvu.1 light blue noncoding  

WBP11 uc001rci.3 dark blue coding WW domain binding protein 

Y_RNA uc021qvw.1 light blue noncoding  

YAF2 uc001rmv.3 black coding negative regulation of muscle-restricted genes 

YARS2 uc001rli.3 black coding mitochondrial protein that attaches tyrosine to tRNA 

ZCRB1 uc001rmz.3 black coding component of the U12 spliceosome 
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Table 66 - Genes on chromosome 7 within area of suggestive LOD score for Femur Bicondylar Length. 

Gene Abbreviation  UCSC name Color Coding/Non Function (unknown if left blank) 

5S_rRNA uc003vil.3 light blue  noncoding  

AK097428 uc003vhr.4 light blue noncoding  

ANKRD7 uc003vji.3 dark blue coding testis-specific protein 

ASZ1 uc003vjb.2 dark blue coding spermatogenesis 

BC022431 uc003vhh.1 light blue noncoding  

BC039665 uc003vhi.4 light blue noncoding  

BC040208 uc003vhn.1 light blue antisense  

BC043243 uc003vfz.3 light blue noncoding  

BCAP29 uc003vej.2 dark blue coding membrane protein transport from endoplasmic reticulum to 

Golgi 

BD495725 uc003vhq.1 light blue noncoding  

C7orf60 uc003vgo.1 dark blue coding open reading frame 

C7orf66 uc003vfo.3 dark blue coding open reading frame 

CAPZA2 uc003vil.3 dark blue coding actin capping protein  

CAV2 uc003vid.3 dark blue coding scaffolding protein in caveolar membranes 

CBLL1 uc003veq.3 dark blue coding plays a role in cell proliferation 

CFTR uc003vjd.3 black  coding chloride channel associated with cystic fibrosis 

CTTNPB2* uc003vjf.3 dark blue coding regulates the actin cytoskeleton 

DLD uc003vet.3 black coding functions as either a dehydrogenase or a protease 

DNAJB9 uc003vfn.3 black  coding regulates ATPase activity and protects against apoptosis 

DOCK4 uc003vfx.3 dark blue coding regulation of adherens junctions between cells 

DQ656011 uc003vic.1 light blue antisense  

DQ656015 uc003vhy.1 light blue near coding  

DUS4L uc003veh.4 dark blue coding catalyzes the synthesis of dihydrouridine 

EF070117 uc003vhs.1 light blue near coding  

 



 

314 

 

Table 66 Continued.  

Gene Abbreviation  UCSC 

name 

Color Coding/Non Function (unknown if left blank) 

EF070119 uc003vhu.1 light blue near coding  

EF070122 uc003vht.1 light blue near coding  

EIF3IP1* uc003vfp.1 light blue coding translation initiation  

FOXP2 uc003vgx.2 black coding development of speech and language regions of the brain  

GPR22 uc003vef.3 dark blue coding multi-pass membrane protein 

GPR85 uc010ljv.2 dark blue coding receptor that induces intracellular signaling cascade  

IFRD1 uc003vgj.3 dark blue coding transcriptional coactivator/repressor during embryonic 

development 

IMMP2L uc003vfq.2 dark blue coding directs mitochondrial proteins to the mitochondria 

ING3 uc003vjn.3 black coding tumor suppressor protein  

KCND2 uc003vjj.1 dark blue coding potassium channel in the brain  

LAMB1 uc003vew.2 dark blue coding noncollagenous component of basement membranes 

LAMB4 uc010ljo.1 dark blue coding mediates organization of cells during embryonic development 

LOC401397 

(ENSG00000214194) 

uc011kmt.2 light blue coding  

LRRN3 uc003vft.4 dark blue coding membrane protein 

LSMEM1 uc011kmq.2 dark blue coding membrane protein 

MDFIC uc003vhf.3 dark blue coding transcriptional regulation of viral genome expression  

MET uc011knf.2 black coding wound healing, organ regeneration, tissue remodeling 

Mir_548 uc022ajy.1 light blue noncoding  

Mir_875 uc022akb.1 light blue noncoding  

MIR3666 uc022ake.1 light blue noncoding microRNA 

NAA38 uc003vjg.3 dark blue coding component of the spliceosome 

NRCAM uc022aka.1 black coding neuronal cell adhesion molecule 

PNPLA8 uc003vff.2 dark blue coding cleaves fatty acids from membrane phospholipids 
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Table 66 Continued.  

Gene Abbreviation  UCSC name Color Coding/Non Function (unknown if left blank) 

PPP1R3A uc010ljy.1 dark blue coding regulation of glycogen metabolism and muscle contractility  

SLC26A3 uc003ver.2 dark blue coding intestinal chloride absorption  

SLC26A4 uc003vep.3 dark blue coding associated with Pendred syndrome, a form of deafness 

SLC26A4-AS1 uc003veo.3 light blue antisense  

SNORA25 uc022akh.1 light blue noncoding  

SnoU109 uc022ajx.1 light blue noncoding  

ST7 uc003vin.3 dark blue coding tumor suppression  

ST7-AS1* uc003vim.4 light blue coding  

ST7-AS2 uc003viu.3 light blue noncoding  

ST7OT2 uc003vit.3 light blue  noncoding  

ST7-OT3 uc003viy.1 light blue near coding  

ST7-OT4 uc003vip.1 light blue coding  

TES uc003vho.3 black coding tumor suppression  

TFEC uc003vhm.2 dark blue coding regulate expression of target genes, may co-regulate genes in 

osteoclasts 

THAP5 uc003vfl.3 dark blue coding regulates cell cycle 

TMEM168 uc003vgn.3 dark blue coding membrane protein 

TSPAN12 uc003vjk.3 dark blue coding cell surface protein that mediates signal transduction events 

U3 uc022ajz.1 light blue noncoding  

U7 uc022akl.1 light blue noncoding  

WNT2 uc003viz.3 dark blue coding signaling protein, regulation of cell fate and patterning during 

embryogenesis 

Y_RNA uc022akg.1 light blue noncoding  

ZNF277 uc003vge.2 dark blue coding transcriptional regulation  
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Table 67 - Genes on chromosome 14 within area of suggestive LOD score for Femur Bicondylar Length. 

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

5S_rRNA uc021rva.1 light blue noncoding  

ACTN1 uc001xkk.3 black coding anchors actin to a variety of intracellular structures 

ACTN1-AS1 uc031qpf.1 light blue noncoding  

ACTR10 uc001xdf.3 dark blue coding microtubule-based movement 

ADAM20 uc001xme.3 dark blue coding sperm maturation and fertilization  

ADAM20P1* uc021rvr.1 light blue coding metallopeptidase activity 

ADAM21 uc001xmd.3 dark blue coding sperm maturation and fertilization  

ADAM21P1* uc010ttg.2 light blue coding metallopeptidase activity 

AK055910 uc021rum.1 light blue near coding  

AK093892 uc001xmh.1 light blue noncoding  

AKAP5 uc001xhd.4 black coding regulation of postsynaptic events in cerebral cortex 

AP5M1 uc001xcv.3 dark blue coding protein complex involved in endosomal transport and cell death 

ARG2 uc001xjs.3 black coding catalyzes the hydrolysis of arginine 

ARID4A uc010apg.1 black coding ubiquitous nuclear protein regulating cell proliferation and 

transcriptional repression 

ATP6V1D uc001xjf.3 dark blue coding mediates acidification of eukaryotic intracellular organelles 

AX746582 uc001xji.1 light blue noncoding  

BC035195 uc001xev.1 light blue noncoding  

BC037850 uc001xci.3 light blue noncoding  

BC047625 uc001xeo.3 light blue noncoding  

BC050301 uc001xfm.3 light blue noncoding  

BC052775 uc001xib.3 light blue noncoding  

BC062762 uc021rvi.1 light blue near coding  

BX161428 uc001xil.3 light blue noncoding  

BX648502 uc031qov.1 light blue noncoding  
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Table 67 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

C14orf105 uc001xcy.2 dark blue coding open reading frame 

C14orf37 uc001xdc.3 dark blue coding open reading frame 

C14orf39 uc001xez.4 dark blue coding eye development 

CCDC175 uc021rtw.1 dark blue coding  

CCDC177 uc031qpg.1 dark blue coding  

CHURC1 uc001xhw.2 dark blue coding regulates FGF signaling during neural development  

CHURC1-FNTB 

(ENSG00000125954) 

uc010tso.2 black coding read-through transcription between neighboring genes 

COX16 uc001xmb.3 dark blue coding mitochondrial protein 

DAAM1 uc031qou.1 black coding scaffolding protein, regulates cell growth through stabilization of 

microtubules 

DACT1 uc001xdx.3 dark blue coding regulates signaling pathways during development 

DCAF5 uc001xkp.3 black coding substrate receptor 

DHRS7 uc001xes.3 light blue coding oxidation/reduction of steroids and retinoids 

DJ031130 uc010tsr.3 light blue antisense  

EIF2S1 uc001xjg.3 black coding catalyzes first regulated step of protein synthesis 

ERH uc001xlc.2 black coding plays a role in the cell cycle 

ESR2 uc001xha.1 black coding estrogen receptor and nuclear receptor transcription factor 

EXD2 uc001xky.3 dark blue coding exonuclease activity  

EXOC5 uc001xct.3 dark blue coding part of the exocyst complex 

FAM71D uc001xja.2 dark blue coding  

FLJ22447 uc021rtz.1 light blue noncoding  

FLJ31306 uc001xdl.3 light blue near coding  

FUT8 uc001xip.3 black coding fucosyltransferases, contributes to malignancy of cancer cells 

FUT8-AS1* uc001xim.4 light blue coding  
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Table 67 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

GALNT16 

(WBSCR17) 

uc001xlb.2 dark blue coding catalyzes oligosaccharide biosynthesis 

GPHB5* uc021rud.1 dark blue coding stimulates the thyroid 

GPHN uc001xiy.3 black coding involved in membrane protein-cytoskeleton interactions 

GPR135 uc010apj.3 dark blue coding receptor 

GPX2 uc021ruq.2 black coding protects against toxicity of ingested organic hydroperoxides 

HIF1A uc001xfq.2 black coding master regulator of hypoxia, involved in embryonic 

vascularization  

HIF1A-AS2 uc021ruc.1 light blue antisense  

HSPA2 uc001xhk.4 black coding stabilize preexisting proteins and mediate new polypeptide 

folding 

JA429503 uc021rug.1 light blue noncoding  

JB175233 uc021rtx.1 light blue noncoding  

JKAMP uc001xef.4 dark blue coding membrane protein  

KCNH5 uc001xfy.3 dark blue coding voltage-gated potassium channel 

KIAA0247 uc001xlk.3 dark blue coding membrane protein 

KIAA0586 uc010trr.2 dark blue coding ciliogenesis and sonic hedgehog (SHH) signaling 

KTN1 uc010trc.2 light blue coding membrane protein 

L3HYPDH uc001xee.1 dark blue coding metabolic activity 

LINC00238 uc001xiu.3 light blue noncoding  

LINC00520 uc010trd.2 light blue noncoding  

LINC00643 uc010apt.2q light blue noncoding  

LOC100289511* uc021rvk.1 light blue coding  

LOC100506321 uc021ruv.1 light blue antisense  

LOC145474 uc010ttl.2 light blue noncoding  

LRRC9 uc001xep.1 light blue noncoding  
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Table 67 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

MAP3K9 uc001xmm.3 black coding signal pathway to cellular responses evoked by environmental 

changes 

MAX uc001xif.2 black coding transcription regulator 

MED6 uc001xmf.3 dark blue coding  transcription mediator complex 

Metazoa_SRP uc021rvc.1 light blue noncoding  

Mir_548 uc021rtl.1 light blue noncoding  

Mir_548 uc021rtv.1 light blue noncoding  

Mir_548 uc021run.1 light blue noncoding  

Mir_625 uc021rux.1 light blue noncoding  

Mir_633 uc021rtq.1 light blue noncoding  

MIR4706 uc021ruu.1 light blue noncoding microRNA 

MIR4708 uc021ruw.1 light blue noncoding microRNA 

MNAT1 uc001xfd.3 black coding cell cycle control and RNA transcription 

MPP5 uc001xjd.4 black coding participates in the polarization of differentiating cells 

MTHFD1 uc001xhb.3 dark blue coding enzymatic activity 

NAA30 uc001xcx.4 dark blue coding subunit of N-terminal acetyltransferase C complex 

OTX2 uc031qor.1 dark blue coding transcription factor in brain, craniofacial, and sensory organ 

development 

OTX2-AS1 uc021rtn.1 light blue near coding  

PCNX uc001xmo.2 dark blue coding membrane protein  

PCNXL4 uc001xer.4 dark blue coding membrane protein 

PELI2 uc001xch.3 black coding protein ubiquitination  

PIGH uc001xjr.1 dark blue coding produces a protein that anchors proteins to the cell surface 

PLEK2 uc001xjh.1 black coding helps orchestrate cytoskeleton arrangement 

PLEKHD1 uc010ttf.1 dark blue coding  

PLEKHG3 uc001xhn.1 dark blue coding  
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Table 67 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

PLEKHH1 uc001xjl.1 dark blue coding  

PPM1A uc010apn.3 black coding negative regulator of cell stress response pathway 

PPP1R36 uc001xhl.1 dark blue coding inhibits phosphatse activity 

PPP2R5E uc001xgd.1 dark blue coding negative control of cell growth and division  

PRKCH uc010tsa.2 black coding  regulates keratinocyte differentiation  

PSMA3 uc001xdj.2 dark blue coding proteasome component 

RAB15 uc001xhz.2 dark blue coding GTPase family  

RAD51B uc001xkd.3 dark blue coding DNA repair by homologous recombination 

RDH11 uc001xjv.4 dark blue coding oxioreductive catalytic activity towards retinoids 

RDH12 uc001xjz.4 dark blue coding oxioredcutive catalytic activity towards retinoids 

RHOJ uc001xgb.2 dark blue coding regulates angiogenesis 

RNaseP_nuc uc021ruo.1 light blue noncoding  

RPL13AP3 uc010aos.3 light blue noncoding  

RTN1 uc001xek.2 dark blue coding neuroendocrine secretion  

SCARNA20 uc021rue.1 light blue noncoding  

SGPP1 uc001xgj.3 dark blue coding regulates diverse biologic processes 

SIPA1L1 uc001xmr.1 light blue coding  

SIX6 uc001xfa.4 dark blue coding eye development 

SLC10A1 uc001xlr.2 dark blue coding sodium/bile acid cotransporter  

SLC35F4 uc021rtp.1 dark blue coding solute carrier family  

SLC38A6 uc001xfg.2 dark blue coding solute carrier family  

SLC39A9 uc021rvg.1 dark blue coding solute carrier 

SLC8A3 uc001xly.3 dark blue coding sodium/calcium exchanger, maintains calcium homeostasis 

SMOC1 uc001xlt.2 dark blue coding ocular and limb development 

SNAPC1 uc001xft.3 dark blue coding required for transcription of RNA II and III snRNA genes 
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Table 67 Continued.  

Gene Abbreviation UCSC name Color Coding/Non Function (unknown if left blank) 

SNORD112 uc021rty.1 light blue noncoding  

SNORD56B uc001xmq.3 light blue noncoding  

SPTB uc001xht.3 black coding membrane organization and stability 

SRSF5 uc001xlo.3 dark blue coding pre-mRNA splicing factor 

SYNE2 uc001xgm.3 black coding tethers nucleus to cytoskeleton for structural integrity  

SYNJ2BP uc001xmc.4 black coding mitochondrial protein  

SYNJ2BP-COX16* uc021rvm.1 black coding read-through transcription between neighboring genes 

SYT16 uc001xfu.1 dark blue coding trafficking and exocytosis of secretory vescicles 

TEX21P uc021ruj.2 light blue noncoding  

TIMM9 uc010aph.3 dark blue coding mitochondrial intermembrane chaperone protein 

TMEM229B uc021rvb.1 dark blue coding transmembrane protein 

TMEM260 

(C14orf101) 

uc001xcm.3 dark blue coding transmembrane protein 

TMEM30B uc001xfl.3 dark blue coding transmembrane protein 

TOMM20L uc001xdr.1 dark blue coding mitochondrial membrane 

TRMT5 uc001xff.4 dark blue coding posttranscriptional modification of tRNAs 

TRNA_Lys uc021rts.1 light blue noncoding  

TTC9 uc001xmi.2 dark blue coding cancer cell invasion and metastasis 

U2 uc021rvp.1 light blue noncoding  

VTI1B uc001xjt.3 black coding mediates vesicle transport pathways 

WDR89 uc001xgi.4 dark blue coding  

ZBTB1 uc010aqg.3 dark blue coding transcriptional repressor 

ZBTB25 uc001xhf.3 dark blue coding transcriptional regulation  

ZFP36L1 uc001xki.2 black coding regulates response to growth factors 

ZFYVE26 uc001xka.2 dark blue coding abcission step of cytokinesis, double-strand DNA break repair 
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Table 68 - Candidate genes. 

Gene Abbreviation Chromosome Location (bps) Function  Trait 

DKK3 11 11,984,543 - 12,030,917 Wnt signaling, limb development humerus head length 

NELL1 11 20,691,117 - 21,597,229 osteoblast differentiation, bone 

mineralization 

humerus head length 

CD44 11 35,160,417 - 35,253,949 Wnt signaling, bone formation  humerus head length  

FJX1 11 35,639,735 - 35,642,421 limb development  humerus head length 

MGP 12 15,034,115 - 15,038,853 bone formation inhibitor max humerus length 

PTHLH 12 28,111,017 - 28,124,916 endochondral bone formation, skeletal 

homeostasis 

max humerus length 

PTPRO 12 15,475,191 - 15,751,265 osteoclast production  max humerus length 

SOX5 12 23,685,231 - 24,102,637 embryonic development, 

chondrogenesis 

max humerus length  

TFEC 7 115,575,202 - 115,670,867 osteoclast regulation  femur bicond length 

WNT2 7 116,916,686 - 116,963,343 patterning in embryogenesis femur bicond length 

KIAA0586 14 58,894,103 - 59,015,549 SHH signaling  femur bicond length 

SMOC1 14 70,346,114 - 70,499,083 limb development  femur bicond length  
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Table 69 - Major proteins known to be involved in limb or bone formation. 

Gene Abbreviation 

(Alt. Name) 

Location 

(chromosome:bps) 

Function 

Aldehyde Dehydrogenase1 

Family, Member A2 

ALDH1A2 

(RALDH2) 
chr15:58,245,622-

58,358,121 

catalyzes the synthesis of retinoic acid from 

retinaldehyde, which is necessary for limb bud 

formation  

Bone morphogenetic protein 2 BMP2 chr20:6,748,745-6,760,910 induces cartilage and bone formation 

Bone morphogenetic protein 3 BMP3 chr4:81,952,119-

81,978,685 

negatively regulates bone density 

Bone morphogenetic protein 4 BMP4 chr14:54,416,455-

54,421,270 

induces cartilage and bone formation, involved in 

limb formation  

Bone morphogenetic protein 5 BMP5 chr6:55,620,238-

55,740,375 

induces cartilage and bone formation  

Bone morphogenetic protein 6 BMP6 chr6:7,727,011-7,881,961 induces cartilage and bone formation 

Bone morphogenetic protein 7 BMP7 chr20:55,743,809-

55,841,707 

induces cartilage and bone formation, involved in 

calcium regulation and bone homeostasis 

Fibroblast growth factor 4 FGF4 chr11:69,587,797-

69,590,171 

bone morphogenesis and limb development  

Fibroblast growth factor 8 FGF8 chr10:103,529,887-

103,535,759 

required for limb development in embryogenesis 

Fibroblast growth factor 9 FGF9 chr13:22,245,215-

22,278,640 

regulation of embryonic development  

Fibroblast growth factor 17 FGF17 chr8:21900428-21906319 regulation of embryonic development 

Fibroblast growth factor 18 FGF18 chr5:170,846,667-

170,884,630 

required for normal ossification and bone 

development 

Frizzled-related Protein  FRZB chr2:183,698,005-

183,731,498 

limb skeletogenesis, regulates chondrocyte 

maturation and long bone development  

Growth differentiation factor 2 GDF2 

(BMP9) 

chr10:48,413,092-

48,416,853 

may be involved in bone formation  
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Table 69 Continued.  

Gene Abbreviation 

(Alt. Name) 

Location 

(chromosome:bps) 

Function 

Growth differentiation factor 5 GDF5 chr20:34,021,149-

34,026,027 

involved in bone and cartilage formation  

GLI family zinc finger 3 GLI3 

chr7:42,000,548-

42,276,618 

plays a role in limb development, repressor of SHH 

pathway (see below), specifies limb digit number and 

identity, restricts zone of PTHLH expression (see 

below) 

Gremlin 1 GREM1 chr15:33,010,205-

33,026,870 

plays a role in body patterning, relays SHH (see 

below) signal during limb bud outgrowth 

Heart and neural crest 

derivatives expressed  2 

HAND2 
chr4:174,447,652-

174,451,378 

important in limb development by acting as a 

regulator of SHH (see below) induction in the limb 

bud 

Homeobox D10 HOXD10 chr2:176,981,492-

176,984,670 

guides anterio-posterior positioning in the developing 

limb buds 

Homeobox D11 HOXD11 chr2:176,972,084-

176,974,316 

plays a role in forelimb morphogenesis 

Homeobox D12 HOXD12 chr2:176,964,530-

176,965,488 

involved in limb development  

Homeobox D13 HOXD13 chr2:176,957,532-

176,960,666 

plays a role in development of the autopod 

Indian Hedgehog IHH chr2:219,919,142-

219,925,238 

plays a role in bone growth and differentiation  

LIM Homeobox Transcription 

Factor 1, Alpha 

LMX1A chr1:165,171,104-

165,325,478 

aids in dorsoventral patterning of the limb 

Meis Homeobox 1 MEIS1 chr2:66,662,532-

66,799,891 

development of proximal limb structures  

Meis Homeobox 2 MEIS2 chr15:37,183,222-

37,392,341 

development of proximal limb structures 
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Table 69 Continued.  

Gene Abbreviation 

(Alt. Name) 

Location 

(chromosome:bps) 

Function 

Noggin NOG chr17:54,671,060-

54,672,951 

joint formation  

Parathyroid Hormone-like 

Hormone 

PTHLH chr12:28,111,017-

28,124,916 

regulates endochondral bone development, required 

for skeletal homeostasis 

Runt-related Transcription 

Factor 2 

RUNX2 chr6:45,296,054-

45,518,819 

osteoblast differentiation and bone morphogenesis 

Sonic Hedgehog SHH chr7:155,595,558-

155,604,967 

important in anterio-posterior limb axis patterning 

SRY Box 9 Sox9 chr17:70,117,161-

70,122,560 

chondrocyte differentiation  

Sp7 Transcription Factor SP7 (osterix) chr12:53,720,363-

53,729,538 

osteoblast differentiation and bone formation  

T-box 4 TBX4 chr17:59,533,807-

59,561,664 

regulates limb development, specifies limb identity, 

expressed only in developing hindlimb 

T-box 5 TBX5 chr12:114,791,735-

114,843,968 

plays a role in limb development, specifies limb 

identity, expressed in the developing forelimb 

Wingless-type MMTV 

Integration Site Family, 

Member 7A 

WNT7A 
chr3:13,860,082-

13,921,618 

sets the dorsal-ventral axis for the developing limb 

bud 

Gene locations are taken from the UCSC Genome Browser (Kent et al., 2002). Gene functions are taken from Kent et al., 2002 and 

Tickle et al., 2013. 
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Table 70 - Legend for line color in protein networks. 

Type of Evidence  Color  

Neighborhood Dark Green  

Gene Fusion Red 

Cooccurrence Dark Blue 

Coexpression  Black 

Experiments Pink 

Databases Light Blue 

Textmining Light Green  
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Figure 28 - Protein network for Humerus Head Length proteins. 
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Figure 29 - Protein network for Humerus Head Length proteins and proteins known to be 

involved in bone or limb development. (Cropped from larger image.) 
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Figure 30 - Protein network for Humerus Maximum Length proteins. 
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Figure 31 - Protein network for Humerus Maximum Length proteins and proteins known 

to be involved in bone or limb development. (Cropped from larger image.) 
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Figure 32 - Protein network for Femur Bicondylar Length proteins. 
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Figure 33 - Protein network for Femur Bicondylar Length proteins and proteins known to be involved in bone or limb 

development. (Cropped from larger image.)
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