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Abstract

Kinetic Monte Carlo algorithms have become an increasingly popular means to

simulate stochastic processes since their inception in the 1960’s. One area of particular

interest is their use in simulations of crystal growth and evolution in which atoms are

deposited on, or hop between, predefined lattice locations with rates depending on a

crystal’s configuration. Two such applications are heteroepitaxial thin films and grain

boundary migration. Heteroepitaxial growth involves depositing one material onto

another with a different lattice spacing. This misfit leads to long-range elastic stresses

that affect the behavior of the film. Grain boundary migration, on the other hand,

describes how the interface between oriented crystals evolves under a driving force. In

ideal grain growth, migration is driven by curvature of the grain boundaries in which

the boundaries move towards their center of curvature. This results in a reduction of

the total grain boundary surface area of the system, and therefore the total energy of

the system. We consider both applications here. Specifically, we extend the analysis of

an Energy Localization Approximation applied to Kinetic Monte Carlo simulations

of two-dimensional film growth to a three-dimensional setting. We also propose a

Kinetic Monte Carlo model for grain boundary migration in the case of arbitrarily

oriented face-centered cubic crystals.
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Chapter 1

Introduction

The overarching theme of the work presented here is the use of Kinetic Monte Carlo

(KMC) in the simulation of crystal growth and evolution. In Chapter 2, we consider

the growth and evolution of a heteroepitaxial thin film. This work focuses on the

analysis of an Energy Localization Method first proposed by Schulze and Smereka

that is used in KMC simulations of heteroepitaxial growth ([22]-[24]). In Chapter 3,

we consider the motion of grain boundaries driven by curvature for arbitrarily oriented

face-centered cubic (FCC) crystals. A KMC model for grain boundary migration is

introduced and a discussion of numerical results is provided.

While Monte Carlo (MC) generically refers to algorithms designed to solve

problems through the use of random numbers, KMC specifically refers to algorithms

designed to simulate the evolution of systems dynamically from state to state. At

an atomistic level, Molecular Dynamics (MD) simulations are widely used because

of their ability to accurately represent a physical system. In MD simulations, a

set of initial conditions on the positions and velocities of particles in the system

are prescribed, as well as an interaction potential that describes the forces between

particles. The evolution of the system in time is then governed by the classical

laws of mechanics, which must be solved via integration at every step. A major

limitation is that sufficiently small time steps (∼10−15 s) corresponding to vibrational
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frequencies are necessary to accurately integrate the laws of motion [30]. As a result,

MD simulations are typically limited to processes that take place on time scales less

than a microsecond. In the case of grain boundary migration, experiments have shown

that total collapse may occur on the order of seconds [19].

Voter [30] describes an infrequent-event system as a system in which the dynamics

is characterized by occasional transitions from one state to another, with long periods

of inactivity between transitions. For many solid-state atomic systems, the system

spends most of its time randomly oscillating about a local minimizer of the potential

energy. After many vibrational periods, the system may overcome an energy barrier

and transition from one energy basin to another. Rates can be assigned to each

possible escape out of the current basin to an adjacent basin that characterize the

probability of transitioning from the current state to an adjacent state. Since the

system tends to stay in a particular basin for a long period of time when compared

to the time of a vibrational period, the system loses memory of how it got to that

state. Hence, the rates do not depend on what states preceded the current state.

Then, the state-to-state dynamics correspond to a Markov chain since the transition

probabilities depend only on the current configuration and do not consider the steps

taken to get there. Since the transition between states depends only on the known

rates, a stochastic process can be used in lieu of finding the trajectory of all particles

in the system.

One of the benefits of KMC is that rather than following the trajectory of particles

through vibrational periods, only diffusive jumps from state to state are considered.

As a result, long-time dynamics are achievable on scales much longer than those

realized via MD simulations. KMC models typically fall under the umbrella of

discrete-space, continuous-time Markov processes in which a system passes through

a sequence of states {xtk ∈ X} drawn from a model dependent state-space X at

transition times {0 < t1 < · · · < tk < · · · } [21]. One can view the sequence {xtk} as a

Markov chain that is associated with a Poisson process with rate Q(t) that generates

a sequence of waiting times {∆tk} for periods between transitions. The goal, then,
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is to produce samples of these sequences from all possible transitions as efficiently as

possible.

We shall now describe a general application of KMC to simulating crystal growth

and evolution. We will concern ourselves with only rejection-free algorithms in which

all moves sampled from a list of accessible states are accepted. One must first initialize

the time t0 = 0 and state xt0 from the model dependent state-space. A common way

to represent the state-space is with a set of occupation arrays in which sites are either

occupied or unoccupied (typically denoted by 1’s and 0’s). Next, one must form an

ordered list of all possible transitions from the current state and assign rates to these

transitions. Once the rates rij for all transitions from the current state Xi to any

state Xj that can be realized are known, one calculates the partial sums

Sj =

j∑
k=1

rik

for j = 1, . . . , Ni, where Ni is the total number of states that can be reached from

Xi. Furthermore, one defines

Q =
∑
Xj

rij =

Ni∑
k=1

rik, (1.1)

which is the rate for the overall process at the current time step. One then chooses

a uniform random number u ∈ (0, 1] and selects the event J to carry out by finding

the J for which SJ−1 < uQ ≤ SJ . Once an event is selected, the event is carried out

and the state is updated such that Xi → XJ .

The next step is to update the time. This requires knowledge of the cumulative

distribution function for the time of first escape from the current state, which is the

same as the waiting time. We recall that the k-th arrival time in a Poisson process

3



with rate λ has the gamma probability density function

fk(t) = λk
tk−1

(k − 1)!
e−λt

for t ≥ 0. It follows that f 1(t) = λe−λt. Let T be the waiting time until the first

event occurs. Then, for t ≥ 0,

P (T ≤ t) =

∫ t

0

λe−λs ds = 1− e−λt.

As previously mentioned, the rate for the overall process at the current time step

is given by (1.1). Hence, P (T ≤ t) = 1 − e−Qt. One then selects a new uniform

random number u′ ∈ [0, 1) and computes the waiting time

∆t = − ln(1− u′)
Q

= − ln(ũ′)

Q
,

where 1 − u′ = ũ′ ∈ (0, 1] is a uniform random number. We note that the same

average time scale can be obtained with ∆t = 1/Q since

∫ 1

0

ln(ũ′) dũ′ = −1.

The time is incremented by ∆t and the process is repeated until the evolution of the

system is complete.
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Chapter 2

Heteroepitaxial Thin Films

2.1 Introduction

This work concerns heteroepitaxial thin films—thin layers of crystalline material

that have been deposited on a crystalline substrate. Such films are used in a wide

variety of applications, including the fabrication of semiconductors, which has lead

to the production of high-brightness light-emitting diodes, lasers, and high-frequency

transistors [3]. Since the two species will typically have a lattice mismatch, the

behavior of the film is heavily influenced by long-range elastic stresses ([11], [25]).

At the atomistic level, KMC is an effective way of simulating the growth and

evolution of such films ([12], [14], [20], [22]-[24]). KMC simulates both a crystal’s

evolution toward equilibrium and the influence of nonequilibrium processes, such as

deposition. It does this via a Markov Chain model, where potential configuration

changes are assigned rates. The rates themselves can be deduced from experiments,

calculated from energy landscape calculations and transition state theory, or given

by empirical models. When elastic forces are absent, a typical model is to assume

single-atom moves to neighboring lattice sites with a rate that scales exponentially

with the number of nearest neighbors. For an atom i, this rate is

ri = ke−γni/(kBT ),
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where ni is the total number of nearest neighbor bonds with atom i, γ is the bond

energy, kBT is the thermal energy, and k is a scaling factor. While far from the

most accurate approach, these “bond counting” models offer heuristic insight into a

system’s behavior while being significantly faster and easier to implement than more

fundamental approaches. The introduction of elastic interactions into these models

substantially increases the complexity of KMC, however, and until recently it was

not possible to do three-dimensional simulations on practical length and time scales.

One of the key ideas that made these simulations possible was the use of an Energy

Localization Approximation ([23],[24]).

Orr et al. [17], Lam et al. [12], and Lung et al. [14] proposed a modification

to the simple bond counting model that takes into effect the elastic contribution

to the energy of the system that is associated with a displacement field for each

configuration. The model that is used for the rates in the particular KMC simulations

mentioned above adopts this approach and is a hybrid model that combines a nearest-,

next-nearest, and third-nearest neighbor bond-counting scheme with an elastic model

based on a network of springs obeying Hooke’s law. In terms of the hopping rate,

this amounts to an additional term, ∆W , that measures the elastic contribution to

the energy barrier when atom i hops:

ri = ke−(γni+∆W )/(kBT ),

where ni is the sum of nearest-, next-nearest, and third-nearest neighbor bonds. The

elastic contribution to the energy barrier is modeled as the difference in the total

elastic energy with and without the atom for which the rate is being calculated.

If one were to fully implement this model, it would involve a prohibitively high

computational complexity.

The essence of the Energy Localization Approximation is to do a local calculation

centered on the atom in question. Intuitively, it seems that this might be promising,

as we are only changing the network of interacting springs at a single lattice site.
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Nevertheless, elastic forces are notoriously long-ranged, with Green’s tensors that

decay like one over distance. So it is somewhat surprising that the accuracy of

this method turns out to scale significantly better than this. Schulze and Smereka

[22] were able to show that for the case of a substrate occupying the entire half-

plane y < 0 that is completely covered by a small-amplitude film of uniform height

outside some radius R, the error between the exact energy barrier and localization

approximation scales like one over the distance squared. This assessment is made by

analyzing the analogous problem in the context of linear elasticity, where a small-slope

approximation resulting from assumptions on the small-amplitude film plays a key

role in determining the scaling behavior. It is shown through the analysis that this

scaling is due to a fortunate cancellation of boundary terms in what would otherwise

be the largest contributor to the error. A more intuitive approach in which a simple

truncation of the energy integrals using exact displacement fields was considered as

well. They showed that the error for this truncation approximation decays much

slower and scales like one over the distance. Furthermore, the error scales linearly

with the thickness of the film. The work in this dissertation is specifically concerned

with characterizing the accuracy of the localization approximation, extending the

work of Schulze and Smereka to a three-dimensional setting.

2.2 Analysis of Energy Localization in a Three-

Dimensional Setting

For the theorems that follow, we consider a system in which a substrate occupying the

entire half-space z < 0 is completely covered by a small-amplitude film 0 ≤ z ≤ h(x, y)

of uniform height H for x2 + y2 > R2 (see Figure 2.1). The displacement of the film,

u, is measured relative to a reference configuration where a flat film sitting atop the

substrate is in mechanical equilibrium. With this choice, it can be shown that the

7



Figure 2.1: Vertical cross section of an isolated island sitting on an unbounded and
otherwise flat film on a flat substrate (gray).

vertical lattice spacing, aL, of the film in equilibrium is

aL = af + asα1
2λ

λ+ 2µ
, (2.1)

where af is the natural lattice spacing of the film, as is the lattice spacing of the

substrate, α1 is the scaled misfit given below, and λ and µ are the Lamé constants

[20].

Appealing to linear elasticity theory, the elastic energy density of an isotropic

material is given by

w =
1

2

(
λ+

2

3
µ

)( 3∑
k=1

Ekk

)2

+ µ
3∑

i,j=1

(
Eij −

1

3
δij

3∑
k=1

Ekk

)2

,

where E is the strain tensor defined as the sum of an intrinsic, or stress-free, strain

E and a relative strain Ẽ [5]. Here, we have

Eij = Eij + Ẽij,

8



where

Ẽij =
1

2
(∂iuj + ∂jui) and E =


−α1 0 0

0 −α1 0

0 0 −α2

 θ(z);

and we use the strain parameters

α1 =
af − as
as

and α2 =
af − aL
as

,

and the Heaviside function

θ(z) =

 0 if z < 0,

1 if z > 0.

The diagonal entries of E correspond to extensional strains [27]. Namely, Eii measures

the relative elongation of the lattice spacing of the film with respect to the lattice

spacing of the substrate parallel to the xi-coordinate axis. We see from the strain

parameters that if the film has a larger lattice parameter than the substrate, then

the epitaxial film is in compressive strain as a result of the misfit. The off-diagonal

entires, Eij, correspond to shearing strains that measure the increase in the angle

between two adjacent bonds parallel to the xi- and xj-coordinate axes [6]. We note

that there are no shearing strains that result from the misfit. Then, expanded out,

the energy density is

w =

(
λ

2
+ µ

)[
(∂1u1)2 + (∂2u2)2 + (∂3u3)2

]
+λ [(∂1u1)(∂2u2) + (∂1u1)(∂3u3) + (∂2u2)(∂3u3)]

+
µ

2

[
(∂1u2)2 + (∂2u1)2 + (∂1u3)2 + (∂3u1)2 + (∂2u3)2 + (∂3u2)2

]
+µ [(∂1u2)(∂2u1) + (∂1u3)(∂3u1) + (∂2u3)(∂3u2)]

−λ (2α1 + α2) [∂1u1 + ∂2u2 + ∂3u3] θ(z)− 2µ [α1(∂1u1 + ∂2u2) + α2∂3u3] θ(z)

+

[
λ

2
(2α1 + α2)2 + µ(2α2

1 + α2
2)

]
θ(z).

9



We note that the stress tensor, T, is defined through

Tij =
∂w

∂jui
.

Like the strain tensor, the stress tensor can be written as the sum of an intrinsic

stress T and a relative stress T̃. Namely,

Tij = T ij + T̃ij,

where

T̃ij = 2µẼij + λδijẼkk (2.2)

and

T =


−σ1 0 0

0 −σ1 0

0 0 −σ2

 θ(z), (2.3)

where

σ1 = 2 (λ+ µ)α1 + λα2,

σ2 = (λ+ 2µ)α2 + 2λα1. (2.4)

We point out the use of the Einstein summation convention used in (2.2) where a

subscript appearing twice (k in this case) is summed from 1 to 3. The energy density

can then be written as

w =
3∑

i,j=1

[
µ

2
(∂iuj)(∂iuj + ∂jui) +

λ

2
(∂iui)(∂juj) + T ij∂iuj

]
+
[
α1σ1 +

α2

2
σ2

]
θ(z). (2.5)

Noting that

Tij = 2µEij + λδijEkk,

10



the energy density can be compactly written as

w =
1

2

3∑
i,j=1

EijTij.

We denote the union of the film and substrate by Ω. The boundary between the

film and vacuum is denoted by ∂Ω. Then, the equations of equilibrium maintain that

for i ∈ {1, 2, 3},

3∑
j=1

∂jTij = 0 for x ∈ Ω,

3∑
j=1

Tijnj = 0 for x ∈ ∂Ω.

As Schulze and Smereka [22] originally pointed out, the film/substrate interface may

introduce a singularity in the first equation due to the stress-free strain. Namely, T 33

has a jump discontinuity at the interface between the film and substrate provided

that σ2 6= 0. However, it follows from (2.4), the strain parameters, and (2.1) that

σ2 = 0. Written more conveniently in vector notation, we then obtain

µ∆u + (λ+ µ)∇(∇ · u) = 0 for x ∈ Ω, (2.6)

T̃n = −Tn for x ∈ ∂Ω, (2.7)

u → 0 as |x| → ∞. (2.8)

2.2.1 Energy Localization Approximation

We recall that the focus of Schulze and Smereka was on the ability to efficiently

approximate the elastic correction to the energy barrier, denoted ∆W , when

transitioning from one state to another. Their model (adopted from [12], [14], and

11



[17]) for this was

∆W = W (with atom i)−W (without atom i),

where W is the total elastic energy stored in the configuration. Here, we extend

their results by showing that the Energy Localization Approximation scales with the

increase in dimension. While the model is applied to discrete simulations in practice,

the utility of this approximation is shown using the continuum limit of the discrete

model.

The total elastic energy stored in an arbitrary configuration is the integral of

the energy density over the domain. Namely, for a displacement field u satisfying

(2.6)-(2.8),

W (u; Ω) =

∫
Ω

w dx. (2.9)

In practice, this is not feasible to calculate. Rather, we consider approximations to

the total elastic energy over finite regions Ωρ ⊂ Ω. Let Ωρ = {Ω ∩ {|x| < ρ}}. Then,

the elastic correction over an unbounded domain is

∆W = lim
ρ→∞

[
W (u; Ωρ)−W (um; Ωm

ρ )
]
, (2.10)

where Ωm
ρ is the same domain except that it has been modified locally and um is the

corresponding displacement field (see Figure 2.2).

For the Energy Localization Approximation, we constrain the solution on the

modified domain (umL ) to agree with the solution on the original domain along the

boundary of the truncated domain below the surface. Namely,

umL = u for x ∈ Γρ.

12



(a) Original Domain (b) Modified Domain

Figure 2.2: (a) Vertical cross section of the union of the film and substrate (gray),
with the truncated domain highlighted in a darker shade of gray. (b) Vertical cross
section after the removal of a chunk of material meant to characterize removing an
atom in the continuum analogue.

Then, the approximation to the displacement field on the modified domain is

umL =

 umL if |x| < ρ,

u if |x| = ρ.

The corresponding Energy Localization Approximation to the elastic correction to

the energy barrier is

∆WL = W (u; Ωρ)−W (umL ; Ωm
ρ ), (2.11)

which leads us to our first theorem.

Theorem 1 - Energy Localization Approximation. Suppose that h(x, y) is a

compactly supported function whose support includes (0, 0). Further, suppose that

h(x, y) is modified by a localized change centered at (0, 0). Then,

∆W −∆WL = O(ε/ρ3) as ρ→∞,

where ∆W and ∆WL are defined by (2.10) and (2.11) respectively, and ε is a small

parameter that characterizes the film profile.

13



We recall that the original result in the two-dimensional setting showed that the

error scales like one over the distance squared [22]. As we see, the error here scales

by an additional factor of 1/ρ when compared to the original two-dimensional result.

To gain more appreciation for the Energy Localization Approximation, Schulze and

Smereka compared this result with that of an Energy Truncation Approximation.

For the truncated approximation, they integrated the exact displacement field on the

modified domain over the same truncated domain. Then, the Energy Truncation

Approximation to the elastic correction to the energy barrier is

∆WT = W (u; Ωρ)−W (um; Ωm
ρ ). (2.12)

While this may intuitively seem like a better approximation, they showed that this

was not the case. Furthermore, in contrast to Theorem 1, the result for the Energy

Truncation Approximation does not scale with dimension. Namely,

Theorem 2 - Nonlocality of the Energy Density. Under the same hypotheses of

Theorem 1,

∆W −∆WT = O(εH/ρ) as ρ→∞,

where ∆W and ∆WT are defined by (2.10) and (2.12) respectively.

This result is the same as in the two-dimensional setting and further demonstrates

the utility of the Energy Localization Approximation as a means of computing the

elastic correction to the energy barrier. We prove each of these results in the next

section.
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2.2.2 Proof of Theorems

Let u be a displacement field satisfying (2.6)-(2.8). We begin by noting that (2.5)

can be written in vector notation as

w = µ
(
∇ · Ẽu− u ·

(
∇ · Ẽ

))
+
λ

2
(∇ · u)2 +∇ ·Tu + α1σ1θ(z).

Furthermore,

∇ · Ẽ =
1

2
(∆u +∇(∇ · u))

and

(∇ · u)2 = ∇ · (∇ · u)u− u · ∇(∇ · u).

Then, recalling (2.2) and (2.6), the elastic energy density can be written in divergence

form as

w = ∇ ·
(
µẼu +

λ

2
(∇ · u)u + Tu

)
− 1

2
u · (µ∆u + (λ+ µ)∇(∇ · u)) + α1σ1θ(z)

= ∇ ·
(
µẼu +

λ

2
(∇ · u)u + Tu

)
+ α1σ1θ(z)

= ∇ ·
(

1

2
T̃u + Tu

)
+ α1σ1θ(z).

Inserting the above divergence form into (2.9) on a finite subdomain Ωρ ⊆ Ω, the

total elastic energy can be written as a boundary integral:

W (u; Ωρ) =

∫
∂Ωρ

(
1

2
T̃u + Tu

)
· n dS + α1σ1|Ωf ∩ Ωρ|,

where Ωf denotes the film. Similarly,

W (um; Ωm
ρ ) =

∫
∂Ωmρ

(
1

2
T̃mum + Tum

)
· n dS + α1σ1|Ωm

f ∩ Ωm
ρ |.
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Recalling (2.7) and taking the limit as ρ → ∞, (2.10) gives the exact correction to

the energy barrier:

∆W =
1

2

∫
∂Ω

u ·Tn dS − 1

2

∫
∂Ωm

um ·Tn dS + α1σ1|Ω\Ωm|.

Likewise, using (2.11) and (2.12), we find the Energy Localization Approximation

and Energy Truncation Approximation, respectively, of the correction to the energy

barrier:

∆WL =
1

2

∫
Γ

u ·Tn dS − 1

2

∫
Γm

umL ·Tn dS + α1σ1|Ω\Ωm|+

1

2

∫
Γρ

u ·
(
T̃− T̃m

L

)
n dS,

∆WT =
1

2

∫
Γ

u ·Tn dS − 1

2

∫
Γm

um ·Tn dS + α1σ1|Ω\Ωm|+

1

2

∫
Γρ

(
u · T̃− um · T̃m

)
n dS +

∫
Γρ

(u− um) ·Tn dS,

where the boundaries ∂Ωρ = Γ ∪ Γρ and ∂Ωm
ρ = Γm ∪ Γρ have been decomposed into

surface and subsurface components (see Figure 2.2). The corresponding errors of each

approximation are then:

EL =
1

2

∫
∂Ω\Γ

u ·Tn dS − 1

2

∫
∂Ωm\Γm

um ·Tn dS +

1

2

∫
Γm

(umL − um) ·Tn dS − 1

2

∫
Γρ

u ·
(
T̃− T̃m

L

)
n dS, (2.13)

and

ET =
1

2

∫
∂Ω\Γ

u ·Tn dS − 1

2

∫
∂Ωm\Γm

um ·Tn dS +∫
Γρ

(um − u) ·Tn dS − 1

2

∫
Γρ

(
u · T̃− um · T̃m

)
n dS. (2.14)
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Approximate Evaluation of Error Formulas

In order to compare the two approximations, we aim to find asymptotic expressions

for the errors given by (2.13) and (2.14) in terms of 1/ρ. As a reminder, we take a

film profile H + h(x, y), where h(x, y) = 0 for x2 + y2 > R2. In addition, we take h,

hx, and hy to be O(ε) for x2 + y2 < R2. We note that the normal along the surface

of the film is

n =
(−hx(x, y),−hy(x, y), 1)T√

1 + h2
x(x, y) + h2

y(x, y)
∼ e3 − hx(x, y)e1 − hy(x, y)e2.

Then, to leading order, n ∼ e3. Hence, we approximate the film/vacuum interface

as flat when applying the boundary conditions given in (2.7). At this point, it

is convenient to translate the film/substrate medium such that the film/vacuum

interface is at z = 0. Then, it follows from (2.3) that

T =


−σ1 0 0

0 −σ1 0

0 0 0

 θ(z +H). (2.15)

Furthermore, it follows from the boundary condition (2.7) that

T̃e3 = −σ1 (hx(x, y)e1 + hy(x, y)e2) at z = 0.

The resulting problem for the half-space is then

µ∆u + (λ+ µ)∇ (∇ · u) = 0 for z < 0,

T̃e3 = −σ1 (hx(x, y)e1 + hy(x, y)e2) at z = 0,

u → 0 as |x| → ∞. (2.16)
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The solution to the above half-space problem can be obtained by following the

derivation by Landau and Lifshitz [13]:

u = σ1

∫ ∫
x′2+y′2≤R2

f(x− x′, y − y′, z)h(x′, y′) dx′dy′ (2.17)

where

f =
1

4πµ


x
r3

(
λ+2µ
λ+µ
− 3z2

r2

)
y
r3

(
λ+2µ
λ+µ
− 3z2

r2

)
z
r3

(
λ

λ+µ
− 3z2

r2

)

 =
∂

∂x
Ge1 +

∂

∂y
Ge2,

r =
√
x2 + y2 + z2, and G is the Green’s tensor (see Appendix A) for

µ∆u + (λ+ µ)∇ (∇ · u) = 0 for z < 0,

T̃e3 = −σ1(hx(x, y)δ(x, y)e1 + hy(x, y)δ(x, y)e2) at z = 0,

u → 0 as |x| → ∞.

Similarly, we obtain um with h(x, y) replaced by hm(x, y).

At this point, we aim to derive asymptotic expressions for each of the integrals

appearing in (2.13) and (2.14). Namely, we show that

I1 =
1

2

∫
∂Ω\Γ

u ·Tn dS = 0,

I2 =
1

2

∫
∂Ωm\Γm

um ·Tn dS = 0,

I3 =
1

2

∫
Γρ

(u · T̃− um · T̃m)n dS = O(ε2/ρ3), (2.18)

I4 =

∫
Γρ

(um − u) ·Tn dS = O(εH/ρ), (2.19)

I5 =
1

2

∫
Γρ

u · (T̃− T̃m
L )n dS = O(ε2/ρ3), (2.20)
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and

I6 =
1

2

∫
Γm

(umL − um) ·Tn dS = O(ε/ρ3). (2.21)

We recall that the film/vacuum interface is flat for |x| > R. Hence, for ρ > R,

I1 = I2 = 0 since Tn = 0 (owing to σ2 = 0). Using this fact, and equations (2.18)

and (2.19), we establish Theorem 2:

ET = O(εH/ρ).

It follows from equations (2.20) and (2.21) that

EL = O(ε/ρ3),

which establishes Theorem 1.

Derivation of Error Estimates

In this section, we establish the estimates provided in the previous section.

Proof of Eq. 2.18. Recall that

I3 =
1

2

∫
Γρ

(u · T̃− um · T̃m)n dS.

Furthermore, we recall (2.17) and its analogue

um = σ1

∫ ∫
x′2+y′2≤R2

f(x− x′, y − y′, z)hm(x′, y′) dx′dy′.

We need to evaluate u and T̃ on the lower hemisphere of radius ρ centered at

x = (0, 0, 0). We begin by converting each of the integrals to polar coordinates:

u = σ1

∫ 2π

0

∫ R

0

f(x− s cos β, y − s sin β, z)h(s cos β, s sin β)s dsdβ
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and

um = σ1

∫ 2π

0

∫ R

0

f(x− s cos β, y − s sin β, z)hm(s cos β, s sin β)s dsdβ.

Let (x, y, z) = ρ(sinϕ cos θ, sinϕ sin θ, cosϕ) and substitute this into the integrals

above. Then, by writing the integrand as a Taylor series in s and expanding in terms

of 1/ρ, we obtain

u
∣∣|x|=ρ = O(ε/ρ2) and um

∣∣|x|=ρ = O(ε/ρ2), (2.22)

where we have used the fact that h(x, y) = O(ε). Similarly, we obtain

T̃
∣∣|x|=ρ = O(ε/ρ3) and T̃m

∣∣|x|=ρ = O(ε/ρ3). (2.23)

Since the area of Γρ is proportional to ρ2, combining (2.22) and (2.23) in the expression

for I3 yields (2.18).

Proof of Eq. 2.19. Recall that

I4 =

∫
Γρ

(um − u) ·Tn dS.

We note that Tn = 0 in the substrate. So, the only contribution to I4 is when Γρ

coincides with the film. Furthermore, for ρ � H, the area of Γρ coinciding with the

film is proportional to ρH. Combining this with (2.22) yields (2.19).

Proof of Eq. 2.20. Recall that

I5 =
1

2

∫
Γρ

u · (T̃− T̃m
L )n dS.
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Let v = u− umL . Then, the integral can be rewritten as

1

2

∫
Γρ

u · (T̂v)n dS, (2.24)

where the operator T̂ is defined through

(T̂ v)ij = µ(∂ivj + ∂jvi) + λδij∂kvk.

We now need to estimate T̂v. Let h̃ = h−hm. We note that v satisfies the system

µ∆v + (λ+ µ)∇ (∇ · v) = 0 for z < 0 and |x| < ρ,

(T̂v)e3 = −σ1(h̃x(x, y)e1 + h̃y(x, y)e2)

at z = 0 and x2 + y2 < ρ2,

v = 0 for z < 0 and |x| = ρ. (2.25)

Let x = ρx′, v′ = v(ρx′) and h̃′(x′, y′) = h̃(ρx′, ρy′). Then, the system given by

(2.25) can be transformed into the following system:

µ∆′v′ + (λ+ µ)∇′(∇′ · v′) = 0 for z′ < 0 and |x′| < 1,

(T̂′v′)e3 = −σ1(h̃′x′(x
′, y′)e1 + h̃′y′(x

′, y′)e2)

at z′ = 0 and x′2 + y′2 < 1,

v′ = 0 for z′ < 0 and |x′| = 1. (2.26)

For ρ > R, the solution to this problem can be written as

v′ = σ1

∫ ∫
s2+t2≤(R/ρ)2

f1(x′ − s, y′ − t, z′)h̃′(s, t) dsdt,

where

f1 =
∂

∂x
G1e1 +

∂

∂y
G1e2,
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G1 is the Green’s tensor for (2.26), and we have used the fact that h̃ is supported on

the disc of radius R.

Since

T̂v = ρ−1 T̂′v′,

we have

T̂v =
σ1

ρ

∫ ∫
s2+t2≤(R/ρ)2

T̂′f1(x′ − s, y′ − t, z)h̃′(s, t) dsdt = O(ε/ρ3).

We note that T̂′f1(x′ − s, y′ − t, z) = O(1) and h̃′(s, t) = O(ε). Hence, the integrand

is O(ε). Combining this with (2.22) and (2.24) gives (2.20).

Proof of Eq. 2.21. Recall that

I6 =
1

2

∫
Γm

(umL − um) ·Tn dS.

For ρ > R, we can use (2.15) and the leading order approximation of the normal to

rewrite I6 as

I6 =
σ1

2

∫ ∫
x2+y2≤R2

(umL (x, y, 0)−um(x, y, 0))·(hmx (x, y)e1+hmy (x, y)e2) dxdy. (2.27)

Let w = umL − um and ũ = u − um. We recall that umL (|x| = ρ) = u(|x| = ρ).

Then, since umL and um satisfy the first two equations of (2.16) on Ωρ, with h replaced

by hm, w satisfies the following system:

µ∆w + (λ+ µ)∇ (∇ ·w) = 0 for z < 0 and |x| < ρ,

(T̂w)e3 = 0 at z = 0 and |x| ≤ ρ,

w = ũ at z < 0 and |x| = ρ. (2.28)
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We note that ũ satisfies (2.16) with h replaced by h̃. Then, appealing to (2.17),

we find

ũ = σ1

∫ ∫
x′2+y′2≤R2

f(x− x′, y − y′, z)h̃(x′, y′) dx′dy′.

We need to evaluate ũ on the lower hemisphere of radius ρ centered at x = (0, 0, 0).

We begin by converting the above integral to polar coordinates:

ũ = σ1

∫ 2π

0

∫ R

0

f(x− s cos β, y − s sin β, z)h̃(s cos β, s sin β)s dsdβ.

Let (x, y, z) = ρ(sinϕ cos θ, sinϕ sin θ, cosϕ) and substitute this into the integral

above. Then, writing the integrand as a Taylor series in s and expanding in terms of

1/ρ, we have

ũ
∣∣|x|=ρ = σ1

∞∑
n=0

dn+1
2
e−1∑

i=0

n−2i∑
j=0

(
n−2i
j

) ∫ 2π

0
an(β)(cos β)j(sin β)n−2i−j dβ

ρn+2
bnij(ϕ, θ)

+ σ1

∞∑
n=1

dn
2
e−1∑
i=0

n−1−2i∑
j=0

(
n−1−2i

j

) ∫ 2π

0
an(β)(cos β)j+1(sin β)n−1−2i−j dβ

ρn+2
cnij(ϕ, θ)

+ σ1

∞∑
n=1

dn
2
e−1∑
i=0

n−1−2i∑
j=0

(
n−1−2i

j

) ∫ 2π

0
an(β)(cos β)j(sin β)n−2i−j dβ

ρn+2
dnij(ϕ, θ)

where an(β) =
∫ R

0
h̃(s cos β, s sin β)sn+1 ds,

bnij(ϕ, θ) =
(−1)i+1

∏2i−1
k=0 (n− k)

4πn!µ(λ+ µ)



(cos θ)j+1(sin θ)n−2i−j(sinϕ)n+1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n+1−i
k=0 (1 + 2k)− (λ+ 2µ)

∏n−i
k=0(1 + 2k)

)
(cos θ)j(sin θ)n−2i−j+1(sinϕ)n+1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n+1−i
k=0 (1 + 2k)− (λ+ 2µ)

∏n−i
k=0(1 + 2k)

)
(cos θ)j(sin θ)n−2i−j(sinϕ)n−2i cosϕ

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n+1−i
k=0 (1 + 2k)− λ

∏n−i
k=0(1 + 2k)

)
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for n ∈ [0,∞), i ∈ [0, dn+1
2
e − 1] and j ∈ [0, n− 2i],

cnij(ϕ, θ) =
(−1)i

∏2i−1
k=0 (n− 1− k)

4π(n− 1)!µ(λ+ µ)



(cos θ)j(sin θ)n−1−2i−j(sinϕ)n−1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n−i
k=0(1 + 2k)− λ

∏n−1−i
k=0 (1 + 2k)

)

0

0


for n ∈ [1,∞), i ∈ [0, dn

2
e − 1] and j ∈ [0, n− 1− 2i],

dnij(ϕ, θ) =
(−1)i

∏2i−1
k=0 (n− 1− k)

4π(n− 1)!µ(λ+ µ)



0

(cos θ)j(sin θ)n−1−2i−j(sinϕ)n−1−2i

2i·i! ·(
(λ+ µ)(cosϕ)2

∏n−i
k=0(1 + 2k)− λ

∏n−1−i
k=0 (1 + 2k)

)

0


for n ∈ [1,∞), i ∈ [0, dn

2
e − 1] and j ∈ [0, n− 1− 2i].

Define

Bnij =

(
n− 2i

j

)∫ 2π

0

an(β)(cos β)j(sin β)n−2i−j dβ,

Cnij =

(
n− 1− 2i

j

)∫ 2π

0

an(β)(cos β)j+1(sin β)n−1−2i−j dβ, and

Dnij =

(
n− 1− 2i

j

)∫ 2π

0

an(β)(cos β)j(sin β)n−2i−j dβ.

We can now write the solution of (2.28) as

w = σ1

∞∑
n=0

dn+1
2
e−1∑

i=0

n−2i∑
j=0

Bnijw
1
nij

(
x
ρ

)
ρn+2

+ σ1

∞∑
n=1

dn
2
e−1∑
i=0

n−1−2i∑
j=0

Cnijw2
nij

(
x
ρ

)
+Dnijw

3
nij

(
x
ρ

)
ρn+2

 , (2.29)
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where wk
nij satisfies (2.28) except that the subsurface boundary condition is replaced

by

wk
nij =


bnij if k = 1

cnij if k = 2

dnij if k = 3

for |x| = ρ and z < 0. (2.30)

We note that the only term in (2.29) corresponding to 1/ρ2 in the expansion of

the solution is B000w
1
000(x/ρ). We recall from (2.27) that

I6 =
σ1

2

∫ ∫
x2+y2≤R2

w(x, y, 0) · (hmx (x, y)e1 + hmy (x, y)e2) dxdy.

Since w1
000(x, y, z) is a solution to (2.28) with the boundary condition replaced by

(2.30), so too is w̃1
000(x, y, z) where

w̃1
000(x, y, z) =


− 1w1

000(−x,−y, z)

− 2w1
000(−x,−y, z)

3w1
000(−x,−y, z)


and lw1

000 denotes the l-th component of w1
000. Provided the solution is unique, it

follows that 1w1
000(0, 0, 0) = 0 and 2w1

000(0, 0, 0) = 0. Therefore, e1 ·w1
000(0, 0, 0) = 0

and e2 ·w1
000(0, 0, 0) = 0. It then follows from (2.29) that

e1 ·w(0, 0, 0) = O(1/ρ3)

and

e2 ·w(0, 0, 0) = O(1/ρ3).

Furthermore, differentiating (2.29), we find that

∂x((e1 + e2) ·w)(0, 0, 0) = O(1/ρ3)
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and

∂y((e1 + e2) ·w)(0, 0, 0) = O(1/ρ3).

Therefore, we conclude that

(e1 + e2) ·w(x, y, 0) = O(1/ρ3) provided x2 + y2 = O(1).

Substituting this last result into (2.27) and using the fact that both hx = O(ε) and

hy = O(ε), we obtain (2.21).

2.3 Summary

A common issue one must deal with in the simulation of heteroepitaxial growth

using KMC is the long-range nature of the elastic interactions. Schulze and Smereka

previously considered a local approximation technique that was observed to yield

highly accurate approximations of the energy barrier for adatom diffusion in numerical

computations on a two-dimensional lattice. Using a continuum analogue of the

discrete model, they were able to explain these results and derive estimates for the

error as a function of the size of the local region.

In this current work, we have extended those previous results to a three-

dimensional lattice. As one may expect, we have shown that the error scales by a

factor of one over the size of the box in the localized approximation when transitioning

from a two-dimensional to a three-dimensional lattice. By comparing this result to

a more intuitive Energy Truncation Approximation, we have further demonstrated

the high accuracy of the Energy Localization Approximation and its utility in KMC

simulations of heteroepitaxial growth.
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Chapter 3

Grain Boundary Migration Driven

By Curvature

3.1 Introduction

A perfect crystal is one in which the atoms of a crystalline material follow an ordered

packing determined by unit cell parameters (see Figure 3.3 for a FCC crystal).

The regular patterns within most crystalline materials, however, are interrupted by

crystallographic defects. One such planar defect is a grain boundary, which is the

 

Figure 3.1: High resolution electron microscopy (HREM) observation of Au island
grain shrinkage atop a Ge substrate [19].
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interface between two grains, or oriented crystals, in a polycrystalline material.

Crystal defects within a metal affect many properties of the metal. Grain size

has been shown to affect the strength of metals, known as the Hall-Petch relation

([9], [18]), as well as the electrical and thermal conductivity [16]. Since grain size

is largely controlled by grain boundary migration, there is considerable interest in

understanding the mechanisms of grain boundary migration in order to optimize

processes such as the annealing and forging of metals [31].

In the absence of external driving forces, grain boundary migration is driven by the

curvature of the grain boundaries (see Figure 3.1). The motion of grain boundaries

under the effect of curvature can be modeled by the relation

vn = −dR
dt
∝ κ,

where vn is the normal growth velocity of the boundary, R is the radius of the grain,

and κ is the local curvature of the grain ([4],[10]). Then, in the case of a spherical

grain, one has the parabolic growth law

R2(t) = R2
0 −Mt, (3.1)

where M is a mobility constant that may depend on the misorientation at a grain

boundary ([2], [4]). Experiments, however, show that the predicted n = 2 growth law

is a lower bound and the actual observed value lies somewhere between n = 2 and

n = 4 for many metals ([1], [7]).

One of the more commonly used discrete models for grain boundary migration is

the Potts model. In the Potts model, a regular lattice is subdivided into regions by

numerating the lattice with spins corresponding to orientations (see Figure 3.2). The

q-state Potts model is a generalization of the Ising model (corresponding to q = 2),

which is where the term spin originates as it was originally used to study phase

transitions in magnetic materials. The Hamiltonian of the given system is based on
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Figure 3.2: Sample microstructure on a triangular lattice showing the boundaries
of five grains represented by spin numbers [26].

interaction pairs and is given by

H =
1

2

∑
(i,j)

Jqi,qj ,

where qk is the state of the grain at site k and Jqi,qj is the interaction energy between

sites i and j. To simplify the model, typically only nearest neighbors and possibly

next-nearest neighbors are considered in the Hamiltonian. In simulations regarding

grain growth of an isotropic material, a typical choice for the interaction energy is

Jqi,qj = J(1−δqi,qj) ([1], [28]). Then, only interfacial energies between unlike neighbors

contribute to the total energy of the system and the Hamiltonian simplifies to

H =
J

2

∑
(i,j)

(1− δqi,qj).

This Hamiltonian measures the excess free energy of the system and is reduced as

the system moves towards a perfect crystal. Using the Hamiltonian, grain growth

is simulated using a Monte Carlo method in which steps are accepted based on

Boltzmann statistics.

Whereas the Potts model is a coarse-grained model, we propose an atomistic KMC

model for the case of arbitrarily oriented FCC crystals. The lattice of a FCC crystal

is easily constructed from the repetition of the FCC unit cell, which is a cube with
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Figure 3.3: Unit cell of a FCC crystal, where a is the lattice spacing and dotted
lines denote nearest neighbors on the faces. Each atom has 12 nearest neighbors and
6 next-nearest neighbors.

atoms at each of the corners as well as the center of each of the faces (see Figure 3.3).

Based on the result given by (3.1), we will track the surface area of a spherical grain

embedded inside a second grain as it shrinks. In order to do this, we will need to

estimate the radius of the embedded grain at each time step. One way to do this is to

consider how many atoms lie in a unit cell. We first normalize the lattice by setting

a =
√

2 so that next-nearest neighbors are two units apart and each of the lattice

locations correspond to integer triples in an array. Then, the volume of the unit cell is

eight cubic units. We notice that each of the eight corner atoms contribute one-eighth

of an atom to the unit cell. Likewise, each of the six atoms on the faces contribute

one-half of an atom. Since the unit cell contains four atoms and has a volume of eight

cubic units, we find that there is half an atom per cubic unit. Knowing this, we can

count the number of atoms in the grain and multiply by two to get the volume of the

grain. Then, we use the volume of a sphere to estimate the radius.

In Section 3.2, we propose the model and discuss how it is similar to, and differs

from, a typical bond-counting KMC model. In Section 3.3, we discuss some of the

limitations of our model. In Section 3.4, we discuss how the model is implemented in

C++. In Section 3.5, we give some results and make comparisons to MD simulations.

Finally, we sum up the results in Section 3.6 and provide evidence as to why we expect

the model to be able to capture the parabolic law given by (3.1).
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3.2 KMC Model

The model proposed here maintains a close analogy with standard bond-counting

KMC models for single grain surface diffusion. As with any KMC model, the state-

space must first be defined (Section 3.2.1). Then, rules must be implemented for how

atoms are allowed to hop from one site to another (Section 3.2.2). Lastly, the rates

at which these transitions occur must be provided (Section 3.2.3).

3.2.1 State-space

As previously mentioned, our model is able to simulate the evolution of arbitrarily

oriented FCC crystals. In order to test the theoretical parabolic growth law given

by (3.1), we will consider the case of a spherical grain embedded inside a second

grain. To this end, we have developed a KMC model that works with the two lattices

simultaneously. While the embedded grain must completely lie inside the second

grain, it is allowed to undergo a coordinate transformation via an arbitrary rotation

and displacement. For each of the two FCC orientations, we define the lattices as all

integer-valued linear combinations of three basis vectors

xijk = ia + jb + kc,

where a = a√
2
i + a√

2
j, b = a√

2
i − a√

2
j, c = a√

2
j + a√

2
k, and a is the lattice spacing.

Furthermore, we define an occupation array Iαijk for each of the two lattices α ∈ {1, 2}

that indicates whether or not an atom is present at a given site (i, j, k) of a lattice.

It is typical to use 0’s to denote an unoccupied site and 1’s to denote an occupied

site. At each step, the possible configurations that the current state may transition

to must be known. For this, we create a list of rules for what moves are allowed.
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3.2.2 Allowed Transitions

While it is clear that an already occupied site cannot be occupied by a second atom,

we further define a “forbidden zone” to ensure the physically reasonable assumption

that no two atoms on any grain come too close to one another. That is, a lattice site

will be considered unoccupiable, i.e. in a “forbidden zone” that cannot be hopped

into, if any of its neighbors within a given distance (dxx′ < df ) on another lattice are

currently occupied. Here, dxx′ is the distance between the site x and any occupied

site x′ on another lattice, df is the specified forbidden zone. Allowed transitions in

our multi-grain model satisfy all of the following:

1. Fully coordinated atoms with respect to an atom’s own lattice are not allowed

to move. By fully coordinated we mean that all 12 of its nearest neighbor sites

are occupied.

2. Only single atom moves to unoccupied sites are allowed.

3. Moves are either to nearest neighbor sites on the atom’s current lattice or to sites

within an “admissible zone” (dxx′ < da) on another lattice that have an occupied

neighbor. Here, da is the specified admissible zone. Furthermore, requiring the

site to have an occupied neighbor ensures that the site is connected to another

grain. This rule ensures the physically reasonable assumption that atoms can

hop from one grain to another as long as the target site is within a reasonable

distance.

4. The destination site cannot be in the forbidden zone defined above, i.e. even

though a destination on the current lattice may be unoccupied, it may be too

close to an occupied site on another lattice.

These rules are rather restrictive and leave room only for a relatively small number

of allowed transitions in the vicinity of grain boundaries. For motion of grain

boundaries to be possible upon initialization, we further introduce a sufficiently large
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gap (vacancies) between grain boundaries. As the system evolves, these vacancies

either become frozen or migrate to the center of the embedded grain.

3.2.3 Transitional Rates

To complete the model, we have to assume rates for the allowed transitions defined

in the previous section. This is done in a way that is analogous to the simplest bond-

counting KMC models. In the case of two grains, the rates depend exponentially on

the number of occupied nearest neighbor sites on an atom’s own lattice, Nα, and the

number of occupied nearest neighbor sites on the second lattice, Nβ. An occupied

site on the second lattice is considered a nearest neighbor if it is no more than a bond

length away. This exponential factor is then multiplied by the number of accessible

sites on both lattices, Mαβ. We note here that diffusive moves along a boundary and

transitional moves across the boundary are not distinguished. That is, each move is

equally probabilistic. Then, the hopping rate associated with an atom is given by

r = kMαβe−N
α·Eα−Nβ ·Eβ , (3.2)

where Eα, Eβ are bond-strength parameters and k is a parameter that determines

the overall timescale for hops to take place. In the case of a homogeneous material,

we set Eα = Eβ. It is clear from (3.2) that atoms tend to move to increase their

coordination, which is consistent with the fact that atoms naturally move to a more

stable state. As a result, atoms tend to move from convex surfaces to concave surfaces

and the grain growth kinetics are driven by curvature.

3.3 Limitations

Since we are considering an atomistic model with a structured lattice, there are several

defect features that we will not be able to capture that can be recreated in other

models such as MD and phase-field models. One such imperfection in a crystal is
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the creation and distribution of dislocations, which are line defects where the crystal

structure is broken. Since each lattice is fixed in our model, it is not possible to break

the crystal structure and form a dislocation. An important consideration as a result

of the formation of dislocations in a crystal is elastic deformations. Furthermore, the

fixed lattice structure does not allow for the irregular packing of atoms near grain

boundaries, which also is a cause for elastic deformations. Unlike our treatment of

heteroepitaxial thin films (see Chapter 2), transitional rates in the current model

do not take into account elastic effects. While it is accepted that grain boundary

migration leads to a reduction in the overall energy of a polycrystalline system, there

is both theoretical [4] and numerical [29] evidence that the overall energy of the system

can be reduced via grain rotation as well. Since our model only allows for single atom

moves from one fixed lattice to another, it is impossible for our model to replicate

these results.

3.4 Implementation

As previously mentioned, the code implementing the KMC algorithm given in

Section 3.2 was written in C++. Furthermore, we currently consider the case of

a spherical grain embedded inside a second grain. In order to create the occupation

arrays Iαijk, each grain is stored in a cubic lattice by checkering the lattice via parity:

Lα ≡ {(i, j, k) ∈ Iαijk | (i+ j + k) mod 2 = (i′ + j′ + k′) mod 2},

where Lα is the FCC lattice of grain α ∈ {1, 2} and (i′, j′, k′) is the center of the

lattice. We hold the inner grain fixed and rotate the outer grain with respect to each

of the principal axes. We first rotate about the x-axis, then the y-axis, and finally

the z-axis. An alternative would be to declare a rotational axis first and then rotate

about it. Along with arbitrary rotations, we allow the grains to be translated so that

they do not necessarily coincide.
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To initialize the grains, we first sweep through each lattice searching for sites

that are within the radius of the outer grain and lie on the checkerboard previously

created. Any site that is within the radius of the outer grain and has the same parity

as the central site is set to −1. All other sites are set to −2 and are unaccessible at all

times. We further note here that we have chosen to use a free surface at the boundary

of the outer grain. Next, we search through the lattice of the inner grain looking for

sites that are within the radius of the inner grain. Rather than following the typical

numbering of setting occupied sites to 1 and unoccupied sites to 0, we number the

occupied sites starting with 0 and leave all unoccupied sites as −1 meaning that they

are accessible as long as a transition to this site does not violate any of the rules in

Section 3.2.2. Then, we search through the lattice of the outer grain looking for sites

that are within the radius of the outer grain, outside the radius of the inner grain plus

the gap, and aren’t within the forbidden zone. These sites are numbered, continuing

on from the sites numbered in the inner grain. One reason for numbering the sites

this way is that we will be storing certain information about each of the atoms, which

we can easily look up by number.

Once the occupied sites are numbered, the lattice coordinates (i, j, k) of the atoms

are stored. Furthermore, we record which grain the atom is in (0 for inner grain and

1 for outer grain). Next, we count the number of nearest neighbors of each atom in

their own grain and store this number. Furthermore, we count the number of nearest

neighbors of each atom in the second grain and store this number. Along with these

counts, we create an inverse list that lists each atom according to the number of

nearest neighbors that it has on each lattice. The row number in this list is stored for

each atom. This list is particularly useful when choosing an atom to hop. We then

count the number of accessible sites to each atom on both lattices according to the

rules in Section 3.2.2 and store this number.

To evolve the system, we first create a list of partial sums, Si with 0 ≤ i ≤ 156,

that is calculated by multiplying the hopping rate corresponding to an atom with m

nearest neighbors on its own lattice and n nearest neighbors on the second lattice
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by the total number of accessible moves for atoms with those neighbor counts. This

quantity is added to the previous sum Si−1 to obtain Si, where S0 ≡ 0. We note that

i = 13m+ n+ 1, where 0 ≤ m ≤ 11 and 0 ≤ n ≤ 12. By design, atoms that are fully

occupied with respect to its own lattice cannot hop. So, the list of partial sums is a

vector of length 157.

Next, we choose a uniformly distributed random number, u, on [0, 1) and find the

first i such that uS156 < Si. We then choose the corresponding atom in column i− 1

of the inverse list whose row is the first row corresponding to k = 0 if

M#0 ≥
uS156 − Si−1

r̃i−1

,

or the (k + 1)-st row corresponding to k ≥ 1 such that

k−1∑
j=0

M#j <
uS156 − Si−1

r̃i−1

≤
k∑
j=0

M#j,

where M#j denotes the number of accessible sites to the atom in row j of column

i− 1 and r̃i−1 denotes the hopping rate for an atom with m nearest neighbors on its

own lattice and n nearest neighbors on the second lattice such that i− 1 = 13m+ n.

The transition that the selected atom makes is chosen analogously. We find the

first l > 0 such that

l ≥ uS156 − Si−1

r̃i−1

if k = 0, or

l ≥ uS156 − Si−1

r̃i−1

−
k−1∑
j=0

M#j.

if k ≥ 1. Since 0 < l ≤ M#k, we cycle through the available transitions for the

selected atom, #k, and choose the l-th possible transition.

Once an atom and transition are selected, we do a search for which atoms need an

updated count of accessible sites and nearest neighbors on the second lattice. This

is done by searching a cubic volume around the atom’s old location that extends a
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Figure 3.4: Upper-bound on search radius for localized change in nearest neighbor
and accessible site counts once a transition has taken place.

distance of 2da + a in any of the principal directions, where we are using a =
√

2

and da = s · a for some scalar s > 0. Both lattices are swept inside this volume and

all atoms that are contained within it are stored in a list. This distance of 2da + a

is an upper-bound that is observed in simulations (see Figure 3.4). We then update

information on all the atoms that lost a neighbor on its own lattice as a result of

the hop. After that, we update information about the atom that hopped and then

information about all the atoms on the new lattice that gained a neighbor. Finally,

we fully redo the search for accessible sites and nearest neighbors on the second lattice

for each atom that was placed in the list above.

We note that this last update is not optimal and is rather inefficient. In fact, the

majority of the CPU time is consumed here. We have found that >90% of the CPU

time is just from this repeated search over the evolution of the system. For the choice

of da = a, this means possibly updating information for ∼300 atoms, although there

are only sparse changes. This is in contrast to a standard KMC model for single grain

surface diffusion in which at most 24 sites require updates.
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3.5 Results

We now present some simulations showing quantitative and qualitative agreement

with theoretical predictions (see (3.1)), MD simulations, and experimental observa-

tions. For each simulation, the following parameters must be specified: radius of

the inner grain (R0), rotation about the x-axis (θx), rotation about the y-axis (θy),

rotation about the z-axis (θz), gap size (dg), forbidden zone (df ), admissible zone (da),

intra-grain bond strength (γ1), inter-grain bond strength (γ2), and the displacement

of the center of the inner grain relative to the center of the outer grain (D). In the

case of a homogeneous material, we assume that the intra-grain bond strength and

inter-grain bond strength are equivalent.

For the results that follow, we hold the following parameters fixed unless stated

otherwise: R0 = 12, θx = π/6, θy = π/9, θz = 11π/18, D = 〈0, 0, 0〉, γ1 = 5123/615,

and γ2 = 5123/615. We note that the bond strengths have been chosen to be

consistent with gold [8]. This leaves us with the parameters dg, df , and da. Since

our model only allows nearest neighbor moves on an atom’s own lattice, we restrict
√

2 < da < 2, where the upper-bound is the distance between next-nearest neighbors.

If one considers the Lennard-Jones potential to model the interaction between a pair

of atoms, the overall energy of the system is increased as the spacing between atoms

decreases. For this reason, we keep the forbidden zone df close to, but slightly less

than, a bond length. Also, the gap size dg is kept close to the forbidden zone. If the

gap size is too small, either no moves are possible or the action is driven by local hot

spots where relatively few moves are allowed.

3.5.1 Parabolic Law

We first show that with suitable choices of parameters, the theoretical parabolic law

can be recovered. We recall that the bond length is scaled such that a =
√

2, and we

set dg = df = 9
10

√
2, da = 7

5

√
2. Furthermore, we set γ2 = 0. That is, the grains do

not feel each other. As we see in Figure 3.5, the surface area of the grain decreases
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Figure 3.5: Plot of surface area vs. time showing parabolic growth law.

Figure 3.6: Snapshots of grain evolution showing that the grain maintains a spherical
shape and facets during shrinkage. Snapshots were created using the Visual Molecular
Dynamics (VMD) program. Only surface atoms are displayed.
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linearly with time up until it nearly disappears. Furthermore, we see in Figure 3.6

that the grain maintains its shape and facets as it shrinks, which is in qualitative

agreement with Radetic at al. [19]. From an atomistic viewpoint, planar regions are

energetically preferred and steps are expected, as the most likely places for atoms to

leave a grain are at the boundaries of incomplete planes [15]. As we see in the next

section, the parabolic growth law breaks down once the inter-grain bond strength is

turned on.

3.5.2 Non-parabolic Behavior

Radetic et al. [19] showed that in experiments of shrinking island grains in thin films

of gold, there are long periods of inactivity followed by rapid periods of parabolic

behavior correlated with the sudden motion of steps along facets or the elimination

of entire facets. Implementing a MD simulation, they were able to reproduce these

lab results for cylindrical grains (see Figure 3.7). We find similar results for suitable

parameters. By turning the inter-grain bond strength on and keeping the remaining

parameters the same as in Section 3.5.1, we see in Figure 3.8 that the parabolic growth

law starts to break down. Furthermore, we see in Figure 3.9 that the behavior breaks

down even more as we decrease the gap size to dg = 4
5

√
2. Namely, we start to see

Figure 3.7: Experimental (left) and MD (right) plots of surface area vs. time for
cylindrical Au grains showing non-parabolic growth.
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Figure 3.8: Plot of surface area vs. time showing how the parabolic growth law
begins to break down.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  2  4  6  8  10  12  14  16  18  20

G
ra

in
 S

u
rf

a
ce

 A
re

a
 [

n
m

2
]

Time [s]

Figure 3.9: Plot of surface area vs. time showing non-parabolic growth.
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periods of little to no activity followed by rapid movements as in Figure 3.7. These

faster events correspond to the movement of facets, which is consistent with the

observations of Radetic et al. [19].

3.6 Summary

As we have seen, both parabolic and non-parabolic behavior can be captured with

our model for suitable choices of the parameters of the model. As we discuss in

Chapter 4, we are interested in the relationship between the gap size, forbidden zone,

and admissible zone. Specifically, we would like to know whether or not we can predict

the behavior of shrinkage rates based on the choice of these parameters.

Here, we offer an explanation as to why we might expect to reproduce the parabolic

law with the choice of parameters in Section 3.5.1. We note that the shrinkage of

a grain, and therefore the motion of the grain boundary, is a result of inter-grain

moves in which an atom hops from one grain lattice to the other. So, we ignore

diffusive moves for the moment and focus solely on the available moves in an initial

configuration for which an atom hops from one lattice to the other. Specifically, we

track the total number of possible moves from the inner grain to the outer grain minus

the total number of possible moves from the outer grain to the inner grain.

In Figure 3.10, we consider the difference in inter-grain moves for atoms with six

nearest neighbors on its own lattice. Since the results of Section 3.5.1 are dependent

on the inter-grain bond strength being set to zero, inter-grain neighbors are a non-

factor and we only consider neighbors on an atom’s own lattice. As we see, the

dependence of inter-grain moves on radius is roughly linear, and this is consistent

among all 12 possible coordinations. We note that the radius here corresponds to

normalized distances in which a =
√

2. Furthermore, we ignore fully coordinated

atoms, that is atoms with 12 nearest neighbors on its own lattice, since they are not

allowed to move according to the rules established in Section 3.2.2.
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Figure 3.10: Plot of the difference in inter-grain moves vs. radius for atoms with 6
nearest neighbors on its own lattice.

We recall that in order to select a move, we select a uniformly distributed random

number on [0, S12), where S12 is the total rate of all possible transitions from the

current configuration to another state. We note that the sum here runs to 12, as

opposed to 156 from before, since there are only 12 possible coordinations for which

moves are allowed. Furthermore, we note that for the overall process of atoms hopping

from the inner grain to the outer grain,

S12 =
11∑
j=0

r̃j · M̃j,

where r̃j is the hopping rate for a single available move of an atom with j nearest

neighbors on its own lattice and M̃j is the difference in the total number of inter-

grain moves from the inner grain to the outer grain available to atoms with j nearest

neighbors on its own lattice. Since the rates r̃j are constant and M̃j ∼ R, we see that

S12 ∼ R.

Let’s consider the ratio ∆R/∆t for each inter-grain move from the inner grain to

the outer grain. Since ∆t = 1/S12 for each move, we have that 1/∆t ∼ R. We now
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consider ∆R. We know that

R =
3

√
3V

4π

for a sphere. Then,

∆R =
3

√
3Vf
4π
− 3

√
3Vi
4π

, (3.3)

where Vi is the initial volume and Vf is the final volume of the inner grain after one

atom has hopped from the lattice of the inner grain to the outer grain. As previously

mentioned, there is half an atom per unit volume. Then, V = 2NA, where NA is the

number of atoms on the inner grain. It follows from (3.3) that

∆R =
3

√
3

2π

(
3
√
NA − 1− 3

√
NA

)
.

Furthermore, 3
√
NA − 1 ∼ 3

√
NA −N−2/3

A /3. Then, to leading order,

∆R ∼ −N−2/3
A ∼ −V −2/3

i ∼ −R−2.

Therefore,
∆R

∆t
∼ − R

R2
= − 1

R
.

That is, we recover the same scaling as the curvature of the grain.
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Chapter 4

Summary and Future Directions

We have considered two applications of KMC algorithms to simulations of crystal

growth and evolution in this dissertation. First, we provided an analysis of an

Energy Localization Approximation applied to three-dimensional KMC simulations

of heteroepitaxial growth (Chapter 2). We were able to further emphasize the results

of Schulze and Smereka [22] by showing that while the error scales by a factor of

one over the distance in the localized approximation of heteroepitaxial thin film

growth for the case of an isolated island sitting on an unbounded and otherwise

flat film on a flat substrate, a more intuitive Energy Truncation Approximation does

not. Second, we proposed a KMC model for grain boundary migration driven by

curvature for arbitrarily oriented FCC grains (Chapter 3). We compared simulation

results with theoretical results and MD simulations, showing that our simulations

compare favorably for suitable choices of parameters.

While we were able to show that our KMC model for grain boundary migration

demonstrates growth kinetics observed in experiments and MD simulations, as well

as predicted theoretically, there is still work to be done. First and foremost, we would

like to better understand under what conditions the parabolic behavior breaks down.

That is, can we predict the growth kinetics based on our choices of parameters? If

so, are there physically reasonable parameters for which the parabolic law breaks
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down? It would also be of interest to see if there is a relationship between the growth

kinetics and misorientation as mentioned by Cahn and Taylor [4] and observed by

Aust and Rutter [2]. As we mentioned at the end of Section 3.4, our local search

for updates of accessible sites and nearest neighbor counts is inefficient and rather

costly. Since these updates are non-sequential, one could speed up the search via

parallelization. Otherwise, further investigation might be able to reduce the search

radius by considering the relationship between the gap size, admissible zone, and

forbidden zone as these are the three crucial parameters for determining allowed

transitions.
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Appendix A

Derivation of (2.17)

We derive the solution to (2.16) by following the derivation provided by Landau and

Lifshitz [13]. We begin by recalling (2.16):

µ∆u + (λ+ µ)∇ (∇ · u) = 0 for z < 0, (A.1)

T̃e3 = −σ1 (hx(x, y)e1 + hy(x, y)e2) at z = 0, (A.2)

u → 0 as |x| → ∞.

We will seek a solution

u = f +∇φ, (A.3)

where φ is some scalar function and the vector f is harmonic. That is,

∆f = 0.

Substituting (A.3) in (A.1), we obtain the following equation for φ:

∆φ = − λ+ µ

λ+ 2µ
∇ · f . (A.4)
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Let f = 〈f1, f2, f3〉 and write the functions f1 and f2 as the z-derivative of some

functions g1 and g2:

f1 =
∂g1

∂z
, f2 =

∂g2

∂z
. (A.5)

Since f is harmonic, we can choose the functions g1 and g2 to be harmonic:

∆g1 = 0, ∆g2 = 0.

Substituting (A.5) in (A.4), we have

∆φ = − λ+ µ

λ+ 2µ

∂

∂z

(
∂g1

∂x
+
∂g2

∂y
+ f3

)
.

Since g1, g2 and f3 are harmonic, it is easy to verify that a function φ that satisfies

this equation can be written as

φ = − (λ+ µ)z

2(λ+ 2µ)

(
∂g1

∂x
+
∂g2

∂y
+ f3

)
+ ψ, (A.6)

where ψ is another harmonic function. It follows from (A.3), (A.5) and (A.6) that the

problem of finding the displacement field u reduces to that of finding the harmonic

functions g1, g2, f3 and ψ.

We now turn our attention to the boundary conditions which must be satisfied at

the free surface. It follows from (A.2) that
T̃13 = −σ1hx(x, y),

T̃23 = −σ1hy(x, y),

T̃33 = 0.
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It follows that
[
∂2g1
∂z2

]
z=0

+
[
∂
∂x

{
µ

λ+2µ
f3 − λ+µ

λ+2µ

(
∂g1
∂x

+ ∂g2
∂y

)
+ 2∂ψ

∂z

}]
z=0

= −σ1hx
µ
,[

∂2g2
∂z2

]
z=0

+
[
∂
∂y

{
µ

λ+2µ
f3 − λ+µ

λ+2µ

(
∂g1
∂x

+ ∂g2
∂y

)
+ 2∂ψ

∂z

}]
z=0

= −σ1hy
µ
,

(A.7)

and [
∂

∂z

{
f3 −

(
∂g1

∂x
+
∂g2

∂y

)
+ 2

∂ψ

∂z

}]
z=0

= 0. (A.8)

We note that the conditions (A.7) and (A.8) on g1, g2, f3 and ψ do not

uniquely determine them. Therefore, we can impose an additional condition on these

quantities. A convenient choice is to set

µ

λ+ 2µ
f3 −

λ+ µ

λ+ 2µ

(
∂g1

∂x
+
∂g2

∂y

)
+ 2

∂ψ

∂z
= 0. (A.9)

With this choice, the boundary conditions given by (A.7) reduce to


[
∂2g1
∂z2

]
z=0

= −σ1hx
µ
,[

∂2g2
∂z2

]
z=0

= −σ1hy
µ
.

(A.10)

Then, equations (A.8)-(A.10) uniquely determine the functions g1, g2, f3 and ψ.

At this point, we aim to find the Green’s tensor for the equations of equilibrium

of a semi-infinite medium. To this end, we consider the case in which the free surface

of the medium is subjected to a concentrated force F. That is, the force is applied

to an area so small that it can be regarded as a point. Then, the surface forces are

given by P = Fδ(x)δ(y), with the origin being the point of application of the force.

Using the method of images, it is easy to show that a harmonic function in the

lower half-space that tends to zero at infinity with a prescribed Neumann boundary

condition is given by the formula

g(x, y, z) = − 1

2π

∫ ∞
−∞

∫ ∞
−∞

∂g

∂ν
(x′, y′, 0)

dx′dy′

r′
,
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where r′ =
√

(x− x′)2 + (y − y′)2 + z2 and ∂
∂ν

denotes the normal derivative. Since

all of the quantities in braces in (A.8) are harmonic, it follows that

f3 −
(
∂g1

∂x
+
∂g2

∂y

)
+ 2

∂ψ

∂z
= 0. (A.11)

Furthermore, it follows from (A.10) that

∂g1

∂z
= − 1

2π

∫ ∞
−∞

∫ ∞
−∞
−σ1hx(x

′, y′)δ(x′)δ(y′)

µr′
dx′dy′ =

σ1hx(0, 0)

2πµr
,

∂g2

∂z
= − 1

2π

∫ ∞
−∞

∫ ∞
−∞
−σ1hy(x

′, y′)δ(x′)δ(y′)

µr′
dx′dy′ =

σ1hy(0, 0)

2πµr
, (A.12)

where r =
√
x2 + y2 + z2.

In order to find φ, we need ∂g1
∂x

and ∂g2
∂y

. It follows from (A.12) that

∂2g1

∂x∂z
= −σ1hx(0, 0)

2πµ

x

r3
,

∂2g2

∂y∂z
= −σ1hy(0, 0)

2πµ

y

r3
.

We now integrate both equations over z from −∞ to z to obtain

∂g1

∂x
= −σ1hx(0, 0)

2πµ

x

r(r − z)
,

∂g2

∂y
= −σ1hy(0, 0)

2πµ

y

r(r − z)
. (A.13)

It follows from (A.9), (A.11) and (A.13) that

f3 =
µ

λ+ µ

(
∂g1

∂x
+
∂g2

∂y

)
= − σ1

2π(λ+ µ)r(r − z)
(hx(0, 0)x+ hy(0, 0)y) (A.14)

and
∂ψ

∂z
= − λσ1

4πµ(λ+ µ)r(r − z)
(hx(0, 0)x+ hy(0, 0)y) . (A.15)
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The only two remaining quantities to find are ∂ψ
∂x

and ∂ψ
∂y

. To this end, we integrate

(A.15) to find

ψ = − λσ1

4πµ(λ+ µ)

(
hx(0, 0)x

r − z
+
hy(0, 0)y

r − z

)
.

Then,

∂ψ

∂x
=

λσ1

4πµ(λ+ µ)

(
hx(0, 0)x2 + hy(0, 0)xy

r(r − z)2
− hx(0, 0)

r − z

)
∂ψ

∂y
=

λσ1

4πµ(λ+ µ)

(
hx(0, 0)xy + hy(0, 0)y2

r(r − z)2
− hy(0, 0)

r − z

)
. (A.16)

We now combine (A.3), (A.5), (A.6), (A.12), (A.13), (A.14), (A.15) and (A.16) to

find the solution for the case of a point force:

u1 = − σ1
4πµ

[
hx(0, 0)

−λ+2µ
λ+µ

r+z

r(r−z) + (hx(0, 0)x+ hy(0, 0)y)
[r(− λ

λ+µ
r+2z)−z2]x

r3(r−z)2

]
,

u2 = − σ1
4πµ

[
hy(0, 0)

−λ+2µ
λ+µ

r+z

r(r−z) + (hx(0, 0)x+ hy(0, 0)y)
[r(− λ

λ+µ
r+2z)−z2]y

r3(r−z)2

]
,

u3 = − σ1
4πµ

[
(hx(0, 0)x+ hy(0, 0)y)

(
µ

(λ+µ)r(r−z) −
z
r3

)]
,

where u = 〈u1, u2, u3〉. It follows that the solution to (2.16) is

ui =

∫ ∞
−∞

∫ ∞
−∞

Gik(x− x′, y − y′, z)Pk(x′, y′)dx′dy′,

where each component is summed over k, G is the Green’s tensor given by

G =
1

4πµ


−λ+2µ
λ+µ

r+z

r(r−z) +
[r(− λ

λ+µ
r+2z)−z2]x2

r3(r−z)2
[r(− λ

λ+µ
r+2z)−z2]xy

r3(r−z)2 0

[r(− λ
λ+µ

r+2z)−z2]xy
r3(r−z)2

−λ+2µ
λ+µ

r+z

r(r−z) +
[r(− λ

λ+µ
r+2z)−z2]y2

r3(r−z)2 0

x
(

µ
(λ+µ)r(r−z) −

z
r3

)
y
(

µ
(λ+µ)r(r−z) −

z
r3

)
0

 ,
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and P is the force distribution given by

P =


−σ1hx(x, y)

−σ1hy(x, y)

0

 .

Integrating by parts and using the compact support of h, we have

u = σ1

∫ ∫
x′2+y′2≤R2

f(x− x′, y − y′, z)h(x′, y′) dx′dy′,

where f = ∂
∂x
Ge1 + ∂

∂y
Ge2.
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