
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2016

Feedback-Directed Management of Performance and Power for Feedback-Directed Management of Performance and Power for

Emerging Computer Systems Emerging Computer Systems

Xing Fu
University of Tennessee - Knoxville, xfu1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Fu, Xing, "Feedback-Directed Management of Performance and Power for Emerging Computer Systems. "
PhD diss., University of Tennessee, 2016.
https://trace.tennessee.edu/utk_graddiss/3694

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3694&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Xing Fu entitled "Feedback-Directed

Management of Performance and Power for Emerging Computer Systems." I have examined the

final electronic copy of this dissertation for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a

major in Computer Engineering.

Xiaorui Wang, Major Professor

We have read this dissertation and recommend its acceptance:

Gregory D. Peterson, Seddik Djouadi, Mingjun Zhang

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Feedback-Directed Management of

Performance and Power for

Emerging Computer Systems

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Xing Fu

May 2016

c© by Xing Fu, 2016

All Rights Reserved.

ii

Dedicate to my family

iii

Acknowledgements

I appreciate my advisor Dr. Xiaorui Wang for his training preparing me well for

research and academic career. Thanks for his patience while I am overcoming personal

difficulties. I would like to express my sincere gratitude to Dr. Gregory Peterson

and Dr. Seddik M. Djouadi. I learned a lot from their courses and obtained their

recommendation letters when I applied for a faculty position of University of South

Alabama. This dissertation would not have been possible without Dr. Mingjun

Zhang’s generous support. His insightful feedback improved the quality of dissertation

significantly.

I am glad to have the opportunities to collaborate with Ming Chen, Yefu

Wang, Xiaodong Wang at University of Tennessee. My experience at a VMWare

core technology group will have profound impact on my career. I obtain deeper

understanding of computer system research by collaborating with reseachers from

almost all well-known labs in the related field.

iv

Abstract

Emerging computing systems face the critical management challenge of both per-

formance and power simultaneously. For example, distributed real-time embedded

systems such as cyber-physical systems need to reduce power consumption while

enforces CPU utilization bounds on multiple uniprocessors in order to meet end-to-

end deadlines. Data centers operators attempt to oversubscribe data center power

delivery networks to reduce throughput penalty during a power overload.

This dissertation presents latest development of a control framework which adopts

novel control theoretic approaches to address emerging computing systems including

multi-core real-time embedded systems, distributed real-time embedded systems,

and data centers. The dissertation leverages task migration and cache partitioning

mechanisms in multi-core systems to reduce power and energy consumption while

control CPU utilizations. We then present a control algorithm for simultaneous

temperature and utilization control for distributed real-time embedded systems.

Algorithms and optimizations are presented to extend state-of-the-art model pre-

dictive control technique to overcome technical challenges such as scalability. We

also adapt the parameter of a power controller widely adopted by IBM servers to

improve its performance significantly. A power capping algorithm for an entire data

center by shifting power between data center cooling systems and IT equipments is

proposed for improving performance. Finally, we present a hierarchical heuristic to

minimize energy consumption of Virtual Desktop Infrastructure without violating

its performance constraints. Both theoretic analysis, hardware, and simulation

v

experiments demonstrate that our control algorithms can achieve better performance

for those power-aware emerging computing systems compared to state-of-the-art

baselines. The control framework also found successful applications in other systems

such as cyber-physical surveillance systems. Results of feedback-directed management

of performance and power based on control frameworks reveal wide potential

applications in autonomic management in the era of cloud computing which consists

of enormous mobile embedded devices and data centers.

vi

Table of Contents

1 Introduction 1

2 Related Work 18

3 Task Consolidation in Multi-Core Real-Time Systems 26

3.1 System Architecture . 26

3.2 Core-level Utilization Control . 28

3.2.1 Task Model . 28

3.2.2 System Modeling . 29

3.2.3 Controller Design and Analysis 31

3.3 Processor-level Task Consolidation 32

3.4 System Implementation . 34

3.5 Evaluation . 37

4 Cache Partitioning in Multi-Core Real-Time Systems 43

4.1 Problem Formulation . 43

4.1.1 Task Model . 43

4.1.2 Problem Formulation . 44

4.2 Cache-Aware Utilization Control . 46

4.2.1 System Modeling . 46

4.2.2 Control Architecture . 49

4.3 MOMPC Controller Design . 52

vii

4.3.1 MOMPC Control . 52

4.3.2 Primary Optimizer . 53

4.3.3 Secondary Optimizer . 54

4.4 Simulation Environment . 55

4.5 Experimental Results . 58

5 Power-Aware Utilization Control for Distributed RT Systems 65

5.1 Probelm Formulation . 65

5.1.1 Task Model . 65

5.1.2 Problem Formulation . 67

5.2 End-to-End Utilization Control . 68

5.2.1 System Modeling . 68

5.2.2 Control Architecture . 70

5.3 Task Rate Adaptation Loop . 72

5.3.1 System Model . 72

5.3.2 Controller Design . 72

5.4 CPU Frequency Scaling Loop . 73

5.4.1 System Model . 73

5.4.2 Controller Design . 74

5.4.3 Control Analysis for Model Variation 75

5.4.4 Coordination Analysis . 76

5.5 System Implementation . 77

5.6 Empirical Results . 80

6 Temperature Control for Distributed Real-Time Systems 85

6.1 Coordinated Control Solution . 85

6.1.1 Task Model . 85

6.1.2 Control Architecture . 86

6.2 Utilization Control Loop . 88

6.2.1 System Modeling . 88

viii

6.2.2 Controller Design . 89

6.3 Thermal Controller based on DVFS 90

6.3.1 System Model . 90

6.3.2 Controller Design . 92

6.3.3 Control Analysis for Model Variation 93

6.4 Thermal Controller based on Rate Adaptation 95

6.4.1 System Model . 95

6.4.2 Controller Design . 96

6.4.3 Control Analysis for Model Variation 96

6.5 Coordination Analysis . 98

6.5.1 Coordinate Thermal Controller based on Rate Adaptation . . 98

6.5.2 Coordinate Thermal Controller based on DVFS 99

6.6 System Implementation . 100

6.6.1 Testbed and Workload . 100

6.6.2 Control Components . 101

6.6.3 Simulations and Workload . 103

6.7 Empirical Results . 104

7 Power Oversubscription in Data Centers 109

7.1 Background about Circuit Breaker 109

7.2 CB-Aware Adaptive Power Control 113

7.2.1 CB-Adaptive Control . 113

7.2.2 Temperature-aware CB-Adaptive 116

7.3 Discussion . 117

7.4 Implementation . 121

7.5 Evaluation Results . 123

7.6 Power Provisioning Analysis . 130

8 Data Center Level Power Control 133

8.1 System Architecture . 133

ix

8.2 The Outer Loop Power Controller . 135

8.2.1 System Modeling . 135

8.2.2 Controller design . 137

8.2.3 Server Inlet Temperature Constraint 139

8.2.4 Coordination Analysis . 140

8.3 Air-side Economizer . 140

8.3.1 Switched cooling system power controller 141

8.4 Evaluation . 143

8.4.1 Baselines . 143

8.4.2 Power Emergency . 145

8.4.3 Control Accuracy and Application Performance 147

8.4.4 Enforcement of Thermal Constraint 148

9 End-to-End Energy Management of Virtual Desktop Infrastructure150

9.1 Energy Management with Performance Guarantee 150

9.1.1 System Architecture . 150

9.1.2 Performance Model . 152

9.1.3 Optimization . 155

9.2 Evaluation Results . 157

9.2.1 Implementation . 157

9.2.2 Baseline . 159

9.2.3 Experimental results . 160

10 Conclusion 162

Bibliography 166

Vita 183

x

List of Tables

4.1 System model parameters in (4.6) for typical benchmarks. 56

7.1 Test bed circuit breaker at 40◦C . 111

7.2 Overload capacity . 120

7.3 Power provisioning . 132

8.1 Comparison of Baseline 1 and No-CRAC-Throttle 145

9.1 System Configuration . 158

xi

List of Figures

3.1 System architecture . 26

3.2 Typical runs of three solutions (Proposed, DVFS-Only, and No-Power-

Management) on the hardware testbed. The solutions are activated at

the 100th control period and handle a 20% execution time reduction

at the 200th control period. 37

3.3 Comparison among the three heuristics. 39

3.4 Comparison between the proposed solution and Dynamic core scaling. 40

4.1 Two-level utilization control architecture. 50

4.2 A typical run of the proposed cache-aware control solution. The

MOMPC controllers (primary optimizers) are activated at time 100 to

control utilizations and the secondary optimizers are enabled at time

200 for energy optimization. 58

4.3 The proposed cache-aware solution (i.e.,MOMPC) controls core uti-

lization to desired set points while saving more energy than MPC. . . 62

4.4 A typical run of the baseline Dynamic repartitioning (activated at time

150). 62

4.5 Typical runs of cache-aware control and DVFS-Only under workload

variations. 62

4.6 Comparison with DVFS-Only when power ratio varies (before workload

increases). 63

xii

4.7 Comparison with DVFS-Only when power ratio varies (after workload

increases). 63

5.1 Utilization control architecture . 70

5.2 CPU utilization control by frequency scaling under a workload increase

from 600s to 1200s. 80

5.3 CPU utilization control by frequency scaling under different set points. 81

5.4 Comparison of control accuracy between EUCON and the frequency

scaling loop. 82

5.5 Comparison of power consumption between EUCON and the frequency

scaling loop. 82

5.6 Infeasible utilization control by frequency scaling or EUCON separately. 84

5.7 Result of the coordinated utilization control solution. 84

6.1 Coordinated Control Architecture . 86

6.2 Model Prediction vs. Measurement 92

6.3 Thermal Controller . 103

6.4 Ad Hoc . 103

6.5 Comparison of thermal controller and Ad Hoc under different temper-

ature set points . 105

6.6 Thermal variation on a single processor (RTES1) 106

6.7 Thermal variations on all the four processors 106

6.8 Variations of task execution times on a single processor (RTES1) . . . 108

6.9 Comparison of system temperature under the coordinated control

solution and OPEN . 108

7.1 The trip curve of a typical circuit breaker. 111

7.2 Power CDF of a real Google data center from [46]. 118

7.3 A typical power delivery system of a data center. 119

7.4 Hardware test bed. 121

xiii

7.5 The comparison of CB-Adaptive and CB-Proactive with baselines. . . 126

7.6 The LINKPACK and SPECJBB performance comparison. 127

7.7 The SPEC CPU2006 int performance comparison. 128

7.8 The SPEC CPU2006 fp performance comparison. 128

7.9 The impact of temperature on NoControl and three CB-aware solutions.130

7.10 Impact of temperature on LINPACK performance. 130

8.1 System Architecture . 133

8.2 Diagram of a Data Center Cooling System 136

8.3 Diagram of a Data Center Cooling System with a Chiller Bypass via

Heat Exchanger Economizer Mode 141

8.4 Switch Control . 142

8.5 The Simulated Data Center in AirPak and Fluent 145

8.6 Typical runs of three solutions (Proposed solution, SHIP, and TAPO-

DC). 146

8.7 Data center power . 147

8.8 Comparison of three solutions under various data center power budget

reductions (Proposed solution, SHIP, and TAPO-DC). 148

8.9 Thermal threshold guarantee . 149

9.1 Integrated management architecture for virtual desktop infrastructure. 151

9.2 Validation of the performance model against measurement. 154

xiv

Chapter 1

Introduction

Traditionally, academic and industry focused on increasing CPU processor perfor-

mance by shrinking feature sizes and increasing transistor density. With the continued

scaling, power related issues now are first-priority design constraints of CPU design.

Moreover, the number of huge data centers grows rapidly to accommodate the demand

of cloud computing and supercomputing. The power related issues such as energy

efficiency and thermal management and power capping rise in various computing

systems from multi-core systems to data centers and are major hurdles on the road

to future computing system. In this dissertation, several integrated control solution

are proposed to effectively manage both power and performance by adopting novel

control-theoretic methodologies for various emerging computing systems.

Task Consolidation in Multi-Core Real-Time Systems

Multi-core processors have become a primary trend in the current processor

development due to well-known technological barriers such as the “Power Wall” and

“Instruction-level Parallelism Wall”. As a result, future high-performance real-time

embedded systems are anticipated to be equipped with multi-core processors, or even

many-core processors (i.e., processors with tens or hundreds of cores). However,

power consumption still remains the major constraint for the further throughput

improvement of multi-core processors. Therefore, new scheduling algorithms must

1

be developed to minimize power consumption while achieving the desired timeliness

guarantees for multi-core (and many-core) real-time embedded systems.

Although various power/energy-efficient scheduling algorithms have recently been

proposed for multi-core real-time embedded systems (e.g., [119]), existing studies

focus on open-loop solutions such as static speed scheduling and offline DVFS

(dynamic voltage and frequency scaling) configurations. While those open-loop

solutions can work effectively for traditional real-time embedded systems deployed

in closed execution environments, they may incur degraded performance in terms of

power/energy efficiency and real-time guarantees when applied to real-time embedded

systems that execute in open and unpredictable environments in which workloads (e.g.,

WCETs) are unknown and may vary significantly at runtime. Therefore, in order to

achieve runtime power optimization and real-time guarantees, novel online strategies

must be designed to dynamically respond to execution time variations for multi-core

real-time embedded systems running in unpredictable environments.

Recently, feedback control techniques have been demonstrated to be a valid tool

in providing timeliness guarantees for real-time embedded systems by adapting to

workload variations based on dynamic feedback. In particular, feedback-based CPU

utilization control [93] has been shown to be an effective way of providing real-time

guarantees for soft real-time systems. The goal of utilization control is to enforce

appropriate schedulable utilization bounds on all CPU cores in a real-time embedded

system, despite significant uncertainties in system workloads. As a result, utilization

control can guarantee all the real-time deadlines of the system without accurate

knowledge of the workload, such as task execution times. However, existing utilization

control algorithms are not designed to provide online power minimization for multi-

core real-time systems. A recent study [141] proposes a power-aware utilization

control approach that adopts DVFS to achieve utilization control and power efficiency.

While this solution can effectively reduce dynamic power consumption, it cannot

minimize static (leakage) power consumption because it does not minimize the number

of active CPU cores in response to workload variations. As chip feature sizes continue

2

to shrink, it becomes increasingly important to minimize leakage power since leakage

power consumption is becoming a major contributor to the total power consumption

of a multi-core processor [73].

To minimize the number of active CPU cores, it is necessary to migrate tasks

among the cores for consolidation. In traditional multiprocessor real-time systems,

tasks are often assigned to processors in a static way, at design time, due to the large

overheads of online task migrations. A key advantage of the shared L2 caches in

many multi-core real-time systems is that the overhead of migrating a task among

cores is less than 40 microseconds, which is sufficiently small in many real systems

[12][153]. This feature allows multi-core real-time systems to be more power-efficient

since the leakage power consumption can be minimized by dynamic task consolidation.

Although task migrations in multi-core processors may cause L1 cache misses, the

typical penalty of an L1 cache miss is only 10-30 CPU cycles. In contrast, in

traditional multiprocessor real-time systems, task migrations can be expensive by

having frequent L2 cache misses, whose penalty is approximately 100-300 CPU cycles

[12].

In this dissertation, we propose a novel online solution that integrates feedback

control with optimization strategies to minimize (both dynamic and leakage) power

consumption and guarantee timeliness for multi-core real-time embedded systems.

Our solution monitors the utilization of each CPU core in the system and dynamically

responds to execution time variations by conducting per-core DVFS and task

consolidation among the cores in a multi-core processor. In our solution, each CPU

core has a utilization controller that throttles the DVFS level of the core so that its

utilization stays slightly below the schedulable bound for minimized dynamic power

with real-time guarantees. To minimize leakage power, we dynamically consolidate

real-time tasks onto a few of the most power-efficient cores on a longer timescale by

utilizing the small overhead of migrating tasks among different cores within a multi-

core processor. The migration is subject to the schedulable utilization bounds of the

active cores. We then shut down unused CPU cores for minimized leakage power.

3

Cache-Aware Utilization Control for Energy Efficiency in Multi-Core

RT Systems

Despite a significant amount of existing work on power management for traditional

multi-processor real-time systems, existing power management algorithms are not

designed to sufficiently utilize the new features available in many multi-core proces-

sors, such as shared L2 caches and per-core DVFS (Dynamic Voltage and Frequency

Scaling), to effectively minimize processor energy consumption while providing real-

time guarantees. For example, most current power/energy management algorithms

assume that all the cores of a processor can only have a uniform DVFS level while per-

core DVFS is already available (e.g., AMD’s Independent Dynamic Core Technology)

to allow better power/energy efficiency. Intel’s new 48-core processor also features

per-tile DVFS with two cores within each tile. In addition, the current algorithms

are not designed to dynamically partition the shared L2 caches among the different

cores for better real-time performance and to conduct dynamic cache resizing to place

rarely accessed cache units into low-power modes for minimized cache leakage power

consumption. Therefore, novel power management algorithms are needed to utilize

the shared L2 caches and per-core DVFS for maximized energy savings.

The existing research on power-aware utilization control primarily relies on DVFS

by assuming that the task execution times can be adapted linearly with the CPU

frequency. While this assumption is valid for real-time tasks that are computation

intensive, memory-intensive tasks can have approximately 75% of their instructions

that are load or store [104, 60]. Consequently, when a processor core is running

memory-intensive tasks and the CPU frequency is set to the highest level, the

utilization can still be above the desired schedulable bound, resulting in undesired

deadline misses. In this case, the cache size partitioned to the core can be increased

to reduce the cache miss rate and cache access latency due to reduced main memory

access delay. As a result, the CPU utilization can be lowered for better real-time

performance. Similarly, if the utilization is lower than the bound, even when the

frequency is already throttled to the lowest level, the active cache size can be reduced

4

and rarely accessed cache units can be put into low-power modes to minimize cache

leakage power.

In this dissertation, we propose a two-level utilization control solution for energy

efficiency in multi-core real-time systems. At the core level, our solution utilizes both

per-core DVFS and dynamic L2 cache partitioning to address two (often conflicting)

optimization objectives: controlling the CPU utilization of each core to its desired

schedulable bound and minimizing the core energy consumption. Since the utilization

contributed by a periodic real-time task is determined by both its CPU frequency-

dependent and frequency-independent execution times [24], per-core DVFS and cache

partitioning can be used to adapt the frequency-dependent and independent portions,

respectively. A key challenge in our design is that traditional control theory, such as

PID (Proportional-Integral-Derivative) and MPC (Model Predictive Control), cannot

effectively handle multiple optimization objectives. Therefore, we propose a novel

utilization controller, based on advanced Multi-Objective MPC control theory [96][22],

to achieve both optimization objectives. At the processor level, a cache demand

arbitrator is proposed to coordinate the cache size demand from each core and conduct

dynamic cache resizing to minimize the leakage power consumption of the shared L2

caches.

Power-Aware Utilization Control for Distributed RT Systems

Traditional approaches to handling end-to-end real-time tasks, such as end-to-

end scheduling [129] and distributed priority ceiling [111], rely on schedulability

analysis, which requires a priori knowledge of the tasks’ Worst-Case Execution

Times (WCET). While such open-loop approaches work effectively in the closed

execution environments of traditional real-time systems, they may violate the desired

timing constraints or severely underutilize the system when task execution times

are highly unpredictable. In recent years, a new category of real-time applications

called Distributed Real-time Embedded (DRE) systems has been rapidly growing.

DRE systems commonly execute in open and unpredictable environments in which

workloads are unknown and vary significantly at runtime. Such systems include

5

data-driven systems whose execution is heavily influenced by volatile environments.

For example, task execution times in vision-based feedback control systems depend

on the content of live camera images of changing environments [62]. DRE systems

call for a paradigm shift from classical real-time computing that relies on accurate

characterization of workloads and platform.

Recently, feedback control techniques have shown a lot of promise in providing

real-time guarantees for DRE systems by adapting to workload variations based on

dynamic feedback. In particular, feedback-based CPU utilization control [93][144]

has been demonstrated to be an effective way of meeting the end-to-end deadlines for

soft DRE systems. The primary goal of utilization control is to enforce appropriate

schedulable utilization bounds (e.g., the Liu and Layland bound for RMS) on all the

processors in a DRE system, despite significant uncertainties in system workloads. In

the meantime, it tries to maximize the system utility by controlling CPU utilizations

to stay slightly below their schedulable bounds so that the processors can be utilized

to the maximum degree. Utilization control can also enhance system survivability by

providing overload protection against workload fluctuation [139].

However, previous research on CPU utilization control focuses exclusively on task

rate adaptation by assuming task rates can be continuously tuned within specified

ranges. While rate adaptation is an effective actuator for some DRE systems, it has

several limitations. First, it is often infeasible to achieve desired utilization set points

by rate adaptation alone [140]. For example, many DRE systems are configured

based on tasks’ WCETs. Consequently, even when all the tasks are running at their

highest rates, CPU utilizations are still way below the desired set points, resulting in

severely underutilized systems. In that case, CPU frequency scaling can be used for

power savings while still guaranteeing task schedulability. Second, many tasks in DRE

systems only support a few discrete rates. While optimization strategies [40][77] are

developed to handle discrete task rates, they rely on the common assumption that

task WCETs are known a priori and accurate, which makes them less applicable

to DRE systems running in unpredictable environments. Third, the model of task

6

rate in many applications could be complex and vary at runtime based on application

evolution [55][28]. As a result, the estimated task rate ranges are often inaccurate and

may change significantly online, which may lead to unexpected rate saturation and

even deadline misses when CPU utilizations are higher than the schedulable bounds

and can be lowered down only by rate adaptation. Finally, some DRE systems may

not allow rate adaptation for any tasks but their CPU utilizations still need to be

controlled. Therefore, it is important to explore complementary ways for effective

CPU utilization control.

In this paper, we propose to use Dynamic Voltage and Frequency Scaling (DVFS)

in conjunction with rate adaptation for utilization control. Since the CPU utilization

contributed by a real-time periodic task is determined by both its rate and its

execution time, CPU frequency scaling can be used to adapt task execution time

for power-efficient utilization control. The integration of DVFS in utilization control

introduces several new challenges. First, a centralized controller for simultaneous rate

adaptation and DVFS would have a Multi-Input-Multi-Output (MIMO) nonlinear

model. Therefore, multiple linear control loops are more preferable for acceptable

runtime overhead. Second, different control loops need to be carefully designed to

coordinate together for the desired control functions. Finally, the control accuracy

and global system stability of the coordinated control solution must be analytically

assured.

This dissertation presents a two-layer coordinated CPU utilization control archi-

tecture. The primary control loop uses DVFS to locally control the CPU utilization of

each processor. In the meantime, the secondary control loop adopts rate adaptation

to control the utilizations of all the processors at the cluster level on a finer timescale.

The rest of this chapter is organized as follows. We formulate the new CPU

utilization control problem in Section 5.1. Section 5.2 presents the system model and

control architecture. Section 5.3 briefly introduces the rate adaptation loop while

Section 5.4 provides the detailed design and analysis of the CPU frequency scaling

7

loop. Section 5.5 discusses the implementation of the control architecture in a real-

time middleware system. Section 5.6 presents our empirical results on a physical

testbed.

Coordinated Temperature and Utilization Control for Distributed Real-

Time Embedded Systems

A new class of real-time applications called distributed real-time embedded (DRE)

systems has been rapidly growing. DRE systems include wireless sensor networks

and cyber-physical systems. They commonly execute in open and unpredictable

environments, in which both workloads and system conditions are unknown and

may vary significantly at runtime. For example, task execution times in vision-

based surveillance systems depend on the content of live camera images of changing

environments [62]. Therefore, DRE applications commonly require runtime control

and guarantees of end-to-end timeliness for their proper operation.

However, existing work on utilization control can only provide timeliness guaran-

tees, while today’s DRE systems face an increasing probability of overheating and

even thermal failures, due to their continuously decreasing feature size and increasing

demand for computation capabilities. For example, recent studies show that 50% of

all electronics failures are related to overheating [152]. More specifically, the lifetime

of a processor can be approximately halved if it runs 10-15◦C higher than its normal

temperature range [134]. Furthermore, a 15◦C increase in temperature could double

the failure rate of a disk drive [10]. Therefore, thermal constraints also need to be

strictly enforced for DRE systems. Although some recent research has proposed

optimization algorithms based on task allocation and configurations of processor

voltage/frequency to achieve minimized system temperature and guaranteed real-

time performance [37, 135], those open-loop solutions cannot be directly applied to

DRE systems where workloads and system conditions may vary at runtime. While

some dynamic thermal managment (DTM) approaches have been proposed for general

computer systems (e.g., [30]), they cannot provide desired real-time guarantees for

8

DRE systems. Therefore, existing work can only provide either timeliness guarantees

or thermal control in an isolated manner.

Simultaneous thermal and utilization control is challenging because the desired

guarantees cannot be achieved by simply putting the two control loops together.

Without effective coordination, individual control solutions may conflict with each

other. For example, many thermal management methods rely on dynamic voltage

and frequency scaling (DVFS), which may significantly impact the execution times of

the real-time tasks running in the systems. As a result, the timeliness guarantees

provided by existing control solutions may be severely violated. In addition,

although each control loop can be proven to be stable individually, system stability

must be theoretically guaranteed for the entire system. Although previous work

has approached the coordination problem by forcing one control loop to run on

a significantly longer timescale than the other loop [142], both the thermal and

utilization control loops prefer to run on small timescales for DRE systems, because

both the thermal and timing constraints are critical and must be promptly enforced

upon any violations. Hence, a new kind of coordination methodology must be

designed and analyzed.

This dissertation proposes a novel coordinated thermal and utilization control

solution to provide simultaneous thermal and timeliness guarantees for DRE systems.

The thermal control loop locally controls the temperature of each processor, while

the utilization control loop provides end-to-end timeliness guarantees at the cluster

level.

Power Oversubscription in Data Centers

Server power consumption has become a first-order concern for modern enterprise

data centers. In order to amortize the non-recurring investments in the power supply

facility of a data center, it is preferable to operate the facility as close as possible to its

maximum capacity [46]. An additional pressure on facility operators is that upgrades

in power delivery systems are extremely expensive and often lag behind required

increases in hosted servers to support new business. Both of these reasons result in

9

pressure to load as many servers as possible on the branch circuits that supply power

to computer racks. Traditionally, branch circuits are provisioned conservatively based

on server nameplate power ratings, which results in significant waste of the branch

circuit’s power supply capacity.

A promising solution is to oversubscribe the branch circuit. This involves placing

more servers on it than it can support if all the servers use their maximum power

consumption at the same time. To prevent overload of the circuit, power capping

has been proposed to limit the aggregate server power to the branch circuit capacity.

This provides better performance when power demand is below the branch circuit

capacity and prevents undesired shutdowns by slowing down servers occasionally when

the power demand is over the branch circuit capacity. Server manufacturers have

responded by providing power capping as a standard feature to limit the power draw

to a user-defined limit (power cap) [64][67].

An important issue for all power capping solutions is to select an appropriate

power cap. In order to maximize the number of hosted servers in a data center,

a common practice is to set the server power cap as the rated current limit of the

branch circuit divided by the number of servers [64][57][46][113]. The main rationale

of this practice is that peak power should never exceed the branch circuit capacity,

otherwise the branch circuit’s circuit breaker (CB) might trip and cause undesired

server shutdowns, or even power outages. If the peak power becomes higher than

the cap at runtime due to workload increases, immediate actions (such as processor

throttling) are taken to maintain the power below the cap as soon as possible. Some

studies even suggest having a safety margin below the cap to avoid any instantaneous

power overloads [136].

We argue that this common practice is too conservative, even though power

capping is already a step ahead of traditional power provisioning based on nameplate

power ratings. This conservativeness can result in an unnecessarily low system

performance because even a small, short-lived power overload causes servers to slow

down in spite of the fact that the circuit breakers will not trip. If harmless power

10

overloads could be tolerated by power capping, then we can have higher performance,

as well as more hosted servers with the same circuit capacity. We systematically study

the tripping characteristics of a typical CB used in data centers. Our results on a

physical test bed show that instantaneous violations of the rated CB power limit are

not necessarily fatal because CBs are designed to sustain a certain amount of power

overload. Whether a CB trips or not depends primarily on the transient behaviors of

a power overload, such as the magnitude and time duration. The time interval for a

CB to sustain a power overload is determined by the magnitude of the overload and

normally, a higher magnitude leads to a shorter interval. Generally, a CB will trip

only when the duration of an overload is longer than the allowed time interval. The

allowed interval is also affected by the ambient temperature.

Based on those observations, we propose an adaptive power control strategy

that utilizes the tripping characteristics of the equipped CB to aggressively optimize

the system’s performance without causing the CB to trip. The power controller is

designed based on an advanced adaptive control theory for parameter tuning and to

adapt to variations in ambient temperature.

Data Center Level Power Control

Power consumed by data centers has become a serious concern in era of

Cloud computing. In addition to high electricity bills and negative environmental

implications, increased power consumption may lead to system failures caused by

power capacity overload or system overheating, as data centers increasingly deploy

more and more servers for a higher utilization of their power budget. The goal

of power control (also called power capping) is to have run-time measurement and

control of the power consumed by a data center, so that the servers can achieve

the highest system performance while keeping the power consumption below a given

power budget.

Wang et al [138] proposed Scalable HIerarchical Power control (SHIP) to prevent

system failures while allowing data centers to operate at peak efficiencies for a higher

return on investment. While only the server power consumption is capped in SHIP, in

11

this work, we propose to shift power between server racks and cooling systems (e.g.,

a set of Computer Room Air Conditioners (CRACs)) for further optimized system

performance within a desired power cap for an entire data center. We mainly focus

on the case that the total power consumption of the entire data center exceeds the

power distribution capacity of the facility, and thus we must throttle the power draw

of servers or/and cooling systems. This situation can be expected to occur soon as

many data centers rapidly deploy new servers, while their power distribution and

cooling systems have already approached the peak capacities [138][52][46]. Within

the foreseeable stringent power budget, if we give too much power to servers and too

little to the cooling systems, some servers may have overheating or even undesired

shutdowns. On the other side, if we allocate too much power to the cooling systems,

many servers have to be turned off while the data center is overcooled. Therefore, it

is challenging to have a globally optimal power allocation that maximizes the data

center’s performance.

The remainder of the chapter is organized as follows: we describe the system

architecture consisting of an inner power control loop and an outer power control

loop in Section 8.1 and the detail design of the outer power control in Section 8.2.

Further improvement of the outer power control loop based on air-side economizer

are presented in Section 8.3. We presents extensive large-scale simulations in Section

8.4.

End-to-End Energy Management of Virtual Desktop Infrastructure

Virtual infrastructure allows data center operators to reduce IT costs, including

electricity. Virtual machine consolidation increases the utilization of physical

infrastructure, making the data center more efficient and reducing its carbon

footprint. Closely following on the heels of server consolidation, enterprises are fast

adopting virtual desktop infrastructure (VDI) to replace and consolidate existing

physical desktops as well. In a VDI environment, a user’s operating system instance

and applications are run on a virtual machine hosted in the enterprise data center.

12

Users remotely control the virtual machines using thin clients such as stateless

hardware terminals, smartphones or tablet PCs.

In this work, we minimize energy consumption by manipulating various knobs

such as CPU DVFS levels and consolidating virtual machines. A key challenge is

to guarantee that performance will not be adversely affected, leading to undesired

violations of service level agreements. To address this challenge, we establish a

performance model which predicts end-to-end performance of VDI workloads, given

CPU DVFS levels and consolidation ratios etc. We select a collection of typical

applications used by VDI users, and define a relevant end-to-end performance metric.

We do this instead of adopting well-known CPU utilization or throughput metrics

because they don’t sufficiently reflect a user’s experience with interactive applications

(which is of prime importance in a VDI deployment).

The remainder of the paper is organized as follows. In Section 9.1 we describe end-

to-end energy management with performance guarantees. In Section 9.2, we present

details of the system implementations and experimental results.

Contributions

Specially, this dissertation has the following contributions.

For Power-Aware Utilization Control:

• We derive an analytic model that captures the system dynamics of the new

CPU utilization control problem.

• We design a two-layer coordinated control architecture and present detailed

coordination analysis.

• We implement our control architecture in a real-time middleware system.

• We present empirical results to demonstrate that our control solution out-

performs a state-of-the-art utilization controller that relies solely on rate

adaptation.

For Task Consolidation:

13

• We propose a control theoretic solution for timeliness guarantees that minimizes

both dynamic and leakage power consumption. Compared with traditional

open-loop solutions, our solution can achieve better power efficiency and real-

time performance when task execution times vary significantly at runtime in

unpredictable environments.

• We design a two-level power optimization architecture that analytically inte-

grates core-level utilization control with processor-level task consolidation to

eliminate the complexity of one-level hybrid model-predictive control. The

task consolidation problem is formulated as a bin-packing problem and several

solutions are comparatively studied.

• While the majority existing work relies solely on simulations for evaluation, we

present empirical results on a hardware multi-core testbed to demonstrate the

efficacy of our integrated solution with the Mibench benchmarks [60]. Extensive

simulation results also show that our solution can achieve more power savings

than state-of-the-art algorithms in many-core systems.

For Cache Partitioning:

• We derive an analytic model that captures the system dynamics of the new

cache-aware multi-core utilization control problem.

• We propose a two-level utilization control solution for energy efficiency that

includes a core-level utilization controller and a processor-level cache demand

arbitrator.

• We apply the recent advance in control theory, Multi-Objective MPC (MOMPC)

theory, to design the utilization controller for achieving the two (often conflict-

ing) optimization objectives.

• We present extensive experimental results (using the well-known Mibench [60]

benchmarks) to demonstrate that our solution outperforms two state-of-the-art

14

power management algorithms that do not consider L2 caches or per-core DVFS

by having more accurate utilization control and less energy consumption.

For Temperature Control:

• While most existing work relies on open-loop optimization to minimize power

and temperature for DRE systems with the assumption that task execution

times and system thermal condition do not change significantly at runtime, we

analytically model the temperature and CPU utilizations of a DRE system and

design a feedback control solution for dynamic thermal and real-time guarantees

for DRE systems running in unpredictable environments.

• While most existing closed-loop solutions provide either thermal or timeliness

guarantee in an isolated manner, our solution coordinates the thermal and

utilization control loops to provide simultaneous runtime guarantees. To our

best knowledge, our solution is the first one that adopts robust control theory as

a theoretical foundation such that both control loops can run on their respective

desired timescales for prompt control actions with guaranteed system stability.

• While most existing work assumes that the processors support DVFS for

thermal management, we design a task rate adaptation based thermal control

loop for legacy processors without DVFS support. Our solution can achieve

thermal guarantee for a heterogeneous cluster.

• While most existing work relies solely on simulations for evaluation, we present

empirical results on a physical testbed to demonstrate the efficacy of our control

solution and extensive simulations for a large-scale heterogeneous cluster.

For Power Oversubscription:

• We present a systematic study to investigate the tripping characteristics of a

typical CB used in many data centers. While previous solutions simply assume

that power can never exceed the CB’s capacity, to the best of our knowledge,

15

our work is the first that utilizes transient CB tripping behaviors to optimize

server performance or host additional servers. We also consider the impacts of

ambient temperature on transient CB behaviors.

• In contrast to most existing power capping solutions that rely on simplistic

heuristics, we use control theory to design an adaptive power controller that

precisely controls the transient response of power overload to follow the designed

CB trip curve. We also propose a proactive control solution to explore the

practical upper bound of power oversubscription.

• Our extensive hardware results with the SPEC CPU2006, SPECJBB, and

LINPACK benchmarks show that the proposed CB-aware power control

solutions achieve 38% better performance, on average, than a state-of-the-art

baseline that simply uses the CB capacity as the power cap without considering

the CB’s tripping characteristics.

• We conduct analyses to show that our adaptive power capping solutions allow

a server rack to host three times more servers than traditional static power

provisioning schemes and 54% more servers than the current power capping

practice widely used in the industry.

For Data Center Level Power Control,

Specifically, this work makes several major contributions:

• while previous power control solutions assume that a data center cooling system

always runs at its full capacity. Our work shifts power between a cooling system

and servers.

• we adopt a two-level control technique to design an outer cooling system power

controller and an inner server power controller. We present a systematic study

of a data center cooling system and formulate the controller as a nonlinear

constrained problem.

16

• our large-scale simulation results demonstrate the efficacy of the proposed

solution and show the advantages compared to baselines.

For End-to-End Energy Management:

• We derive an accurate performance model using a black-box modeling approach.

• Based on the model, we formulate an optimization problem to minimize the

energy consumption while guaranteeing performance, and transform it into a

canonical form which can be solved by standard optimization solvers. However,

no polynomial time solvers exist to obtain the optimal solution. To scale the

proposed solution in VDI deployments, which can have thousands of seats

(VMs), a two-step heuristic algorithm is designed to reduce the algorithmic

complexity significantly.

• We prototype the proposed solution and analyze the overhead of each com-

ponent of the implementation to ensure that the overall solution will not

introduce significant performance degradation or increased energy consumption.

Experimental results from a hardware test bed demonstrate the efficacy of

the proposed solution in terms of energy and performance. It significantly

outperforms the state-of-the-art baseline widely adopted in industry today.

The rest of this dissertation is organized as follows. Chapter 2 discusses the related

work. Chapter 3 presents Integrating Utilization Control with Task Consolidation for

Power Optimization in Multi-Core Real-Time Systems and 4 presents Cache-Aware

Utilization Control for Energy Efficiency in Multi-Core RT Systems, respectively.

Chapter 5 presents Power-Aware Utilization Control for Distributed RT Systems.

Chapter 6 presents Coordinated Temperature and Utilization Control for Distributed

Real-Time Embedded Systems. Chapter 7 presents Power Oversubscription in Data

Centers. Chapter 8 presents Data Center Level Power Control. Chapter 9 presents

End-to-End Energy Management of Virtual Desktop Infrastructure. Chapter 10

concludes the dissertation.

17

Chapter 2

Related Work

Power-Aware Utilization Control for Distributed RT Systems

A survey of feedback performance control in computing systems is presented in

[6]. Many projects that applied control theory to real-time scheduling and utilization

control are closely related to this paper. Steere et al. and Goel et al. developed

feedback-based schedulers [127][56] that guarantee desired progress rates for real-

time applications. Abeni et al. presented control analysis of a reservation-based

feedback scheduler [7]. Lu et al. developed a middleware service that adopts

feedback control scheduling algorithms to control CPU utilization and deadline miss

ratio [92]. Feedback control has also been applied to power control [82] and digital

control applications [33].

Various CPU utilization control algorithms (e.g., [92] [126][87][139]) have been

recently proposed to guarantee real-time deadlines. For example, Lu et al. designed

constrained MIMO utilization control algorithm for multiple processors that are

coupled due to end-to-end tasks [93]. Wang et al. proposed decentralized utilization

control algorithm for large-scale distributed real-time systems [144]. Yao et al.

developed an adaptive utilization control algorithm [151]. However, all those

algorithms assume that task rates can only be continuously tuned. Hybrid control

theory [77] and optimization strategies [40] are adopted to handle discrete task rates

18

based on the assumption that task WCETs are known a priori and accurate, which

makes them less applicable to DRE systems running in unpredictable environments.

In contrast to all the existing work that relies exclusively on rate adaptation, we

present a two-layer control architecture that uses both rate adaptation and DVFS for

power-efficient utilization control.

Energy-efficient real-time scheduling algorithms have been proposed [17, 149, 37,

116, 16]. Most existing work relies on detailed knowledge (e.g., WCETs) of workloads

to minimize the energy consumption or temperature, or maximize the system reward

in an open-loop manner. While they can effectively guarantee task schedulability in

closed environments without a feedback loop for adaptation to workload variations,

they may not be directly applied to DRE systems whose workloads may significantly

change at runtime. In contrast, we use DVFS as a knob to dynamically react to

unpredictable workload variations instead of minimizing the energy consumption of

the entire DRE system. To our best knowledge, our paper is the first effort that

adopts DVFS for end-to-end CPU utilization control.

Integrating Utilization Control with Task Consolidation for Power

Optimization in Multi-Core Real-Time Systems

Several projects have addressed the scheduling problems for multi-core real-time

embedded systems. Anderson et al. proposed a cache-aware scheduling technique

to avoid cache thrashing for real-time tasks on multi-core platforms [12]. Guan et

al. presented test conditions for non-preemptive EDF and fixed priority scheduling

[58]. However, these studies do not migrate tasks for power optimization. Sarkar et

al. studied the impact of task migrations on the WCETs of real-time tasks [117].

Their work focused on WCET analysis instead of real-time scheduling. In addition,

they assume non-shared L2 caches which can incur a much higher task migration

overhead. Chattopadhyay et al. studied the WCET analysis for a unified cache

multi-core processors [34]. All of these studies do not address the power optimization

problem in multi-core real-time systems. In contrast, we attempt to minimize the

19

power consumption of multi-core real-time systems in addition to providing real-time

guarantees.

Power management is an important problem for real-time embedded systems.

Multiple projects have studied real-time scheduling with power management for

uniprocessor systems (e.g., [75]). Aydin et al. considered the energy-aware

partitioning of real-time tasks for multiprocessor systems [18]. However, the power

models of [18] did not consider leakage power consumption. Chen et al. extended

the power models adopted in [18] and proposed a real-time scheduling method that

minimizes both dynamic and leakage energy consumption [36]. However, these studies

focus on multi-processor real-time systems where task migration can be expensive

due to state maintenance. Seo et al. studied energy efficient multi-core real-time

scheduling [119]. Their assumption is that all cores must run at the same frequency

(chip-wide DVFS). In contrast, we utilize the availability of per-core DVFS for further

power savings. As a result, the problem formulation is significantly different. All

the aforementioned studies assume that task execution times are known a priori.

While these studies can optimize the system power consumption when execution

times do not change dynamically, the optimality is not guaranteed under execution

time variations. Although much work on feedback control scheduling exists, to the

best of our knowledge, our work is the first one which integrates the utilization control

with DPM. Recently, [50] proposed to dynamically partition shared last-level caches of

multi-core processors to control the utilization while reduce the power consumption.

[50] is complementary to this work and can be integrated to further reduce the power

consumption while guarantee real-time.

Cache-Aware Utilization Control for Energy Efficiency in Multi-Core

RT Systems

In recent years, scheduling for multi-core real-time systems has received much

attention. Many multiprocessor scheduling algorithms (e.g., [43, 103]) can be applied

to multi-core processors. Bini et al. [25] proposed two abstractions to facilitate multi-

core adoption for real-time systems and the corresponding schedulability analysis.

20

Nelis et al. [103] studied slack reclamation schemes to reduce the power of a multi-

core real-time system. Block et al. [26] proposed an adaptive framework based on

feedback which controls each task instead of the utilization of the task system. Seo

et al. [119] studied energy efficient multi-core real-time scheduling using a chip-wide

DVFS. However, all these studies do not explicitly consider the impact of shared L2

caches.

Several cache-aware multi-core real-time scheduling algorithms have been recently

proposed. Anderson’s group proposed various open-loop cache-aware global schedul-

ing algorithms for multi-core real-time systems (e.g., [11]). Lakshmanan et al. [79]

studied partitioned fixed-priority preemptive scheduling. Bui et al. [31] optimized

the impact of cache partitioning on a multi-core real-time system. Guan et al. [59]

also studied cache-aware scheduling. Yan et al. [150], Li et al. [84] and Hardy et al.

[61] analyzed the impact of a shared L2 instruction cache on WCET estimation for

shared L2 cache multi-core systems. Paolieri et al. [106] used L2 cache partitioning

to solve the multi-core WCET problem. Suhendra et al. [128] proposed a similar

cache partitioning and locking approach. All the aforementioned studies are different

from ours because they do not address the power consumption of a shared L2 cache.

Coordinated Temperature and Utilization Control for Distributed Real-

Time Embedded Systems

Extensive work has been done to investigate power models of CPUs of computing

systems. Power models are closely related to thermal managements because

instantaneous temperatures are determined by instantaneous powers according to

physic laws of thermal dynamics. Power models have been approached in several

ways. [69] proposed a power model capturing architecture features of a processor.

[35] observed that the power consumption of a CPU increases linearly with its CPU

utilization under a particular workload pattern. [46] proposed a nonlinear power

model and a simplified linear power model relating CPU utilizations to powers.

In this dissertation, we try to explicitly control the processor temperatures for

DRE systems. Previous research on thermal management focuses mainly on general

21

computer systems. For example, Brooks et al. [30] propose a dynamic thermal

management scheme based on heuristics. Skadron et al. [122] present several DTM

schemes including a control-theoretic algorithm. Donald et al. [42] develop a control-

theoretic thermal management approach for multi-core processors. However, all the

aforementioned work cannot provide timeliness guarantees for real-time systems.

Several studies have proposed thermal management algorithms for real-time

systems. Bansal et al. [19][20] present online algorithms to solve real-time scheduling

problems while guaranteeing thermal constraints. Chen et al. [39][38] design real-

time scheduling algorithms with reactive CPU speed assignment and develop several

optimization algorithms to minimize the maximum system temperature in a static

way. Different from their work that relies on heuristics or optimizations, we propose

a coordinated solution based on control theory to provide simultaneous thermal and

timeliness guarantees despite various runtime thermal and execution time variations.

Most recently, [53] proposed a thermal controller which handles input constraints.

They use the linear power model which is similar to the linear power model in [46].

Our thermal controller based on rate adaptations use more accurate nonlinear model

to improve the control performance. In addition, the thermal model in [53] can not

capture transient process of temperature. One of disadvantages is that inevitable

long control period of thermal controller increase chance of thermal failure.

Control-theoretic techniques have been applied to many computing systems. For

example, various CPU utilization control algorithms (e.g., [92][93][144][139]) have

been recently proposed to guarantee real-time deadlines. However, those algorithms

cannot provide thermal guarantees. Recently, coordinated control solutions have been

proposed for power/energy management. For example, Raghavendra et al. [110]

propose a multi-layer controller for data center power management. Heo et al. [63]

study the incompatibilities problems of conflicting control systems and propose a

formal methodology to analyze conflicts. Another coordination strategy has been

proposed in [142] by forcing different control loops to run on different timescales. In

contrast, our solution is designed based on robust control theory to allow the thermal

22

and utilization control loops to run on their respective desired timescales for prompt

control actions and simultaneous guarantees.

Power Oversubscription in Data Centers

Recently, the power management issue has attracted a large amount of attention

from both academia and industry. For example, Meisner et al. [99] proposed a

PowerNap scheme to reduce the server’s idle power. Ahmad et al. [8] optimized the

idle and cooling power in a data center. However, these studies focus primarily on

power minimization instead of power provisioning.

Power provisioning is an important technique for data centers to avoid expensive

upgrade costs and to maximize the power infrastructure utilization; thus, it becomes

an important, practical issue in data center operation. Fan et al. [46] investigated

the workload characteristics of the data center and demonstrate the existence of a

great potential for oversubscription in the production data center. Lefurgy et al.

[81] proposed a control-theoretic approach to power provisioning and showed the

advantages of this method in terms of performance as compared with commercial ad

hoc solutions. Pelley et al [108] proposed a novel power router to make the flexible

power budget usable. Femal et al [47] investigated how to improve throughoutput

given a fixed power budget. Yet, each of these studies still does not answer the

question of how much power can be over-subscribed. Govindan et al. [57] adopted

statistical profiling-based techniques to power provisioning. They considered the

sustainable power budget; however, their soft fuse method is essentially an ad hoc

approach.

The control-theoretic approach is a promising adaptation mechanism in power

and thermal management. Donald et al.[41] proposed a PI-controller based solution

for multicore thermal management. Skadron et al. [120] designed a PID controller

approach for accurate and localized dynamic thermal management. Srikantaiah

et al [125] adopted a reinforced oscillation resistant controller for shared cache

management. Wang et al. [145] designed a model prediction controller. Those studies

focus on power and thermal management issues for individual computer systems.

23

None of them consider the adaptation of control parameters since there is no design

constraint on the settling times of controllers in those studies.

Power Capping in Data Centers

Ahmad et al. [8] proposed a hill climbing algorithm to minimize the total power

consumption of cooling and servers, however, it assumes fixed CRAC flow rates. In

contrast, our work enforces the power budget of a data center and configures the

cooling and server power consumption optimally to maximize performance. Huang

et al. [66] adjusts CRAC Output Temperature to reduce the power consumption of

a data center cooling system. Their assumption is that a higher server fan speed is

needed to remove the heat generated by a server since the CRAC Output Temperature

increase will increase a server inlet temperature. Their adjustment is very coarse

and they choose one CRAC output temperature among two based on the data center

utilization which leads to a moderate power reduction. In contrast, our cooling system

optimizer achieves more fine-grained control and adjusts CRAC flow rate as well. The

inner control loop will control the total power consumption of servers.

Some existing work [8] adopts an ad hoc approach to minimize the cooling power.

Specifically, CRACs are chosen to lower their output temperature step-by-step. It is

extremely difficult to determine the step size. If the step is selected to be too small,

it will take a long time for the proposed solution in [8] to settle. On the other hand, if

the the step is chosen to be too big and CRAC output temperatures are throttled too

aggressively, the servers may be overheating. In contrast, we formulate the following

optimization problem to adjust CRAC flow rate and output temperatures to minimize

the cooling power consumption based on the model derived in Subsection 8.2.1.

End-to-End Energy Management of VDI

Many have studied aspects of energy management for pieces of a VDI system,

such as networking [78][44], embedded and mobile devices [65][90][143] and data

centers [71][52] etc. However, all existing work tackled these separately, as isolated

components. An integrated solution for VDI energy management does not exist

in industry today. A challenge in extending existing work and applying it to VDI

24

energy management is that they enforce performance (such as CPU utilization [65]

or throughput) at the granularity of a server [78][52]. In contrast, a VDI deployment

requires integrated management of end-to-end energy and performance.

25

Chapter 3

Task Consolidation in Multi-Core

Real-Time Systems

3.1 System Architecture

In this section, we present our system architecture. As shown in Figure 3.1, our

system architecture features a task consolidation manager for the entire multi-core

processor and a utilization control loop for each core in the processor.

First, for every core, a utilization controller exists that controls the CPU utilization

of the core by scaling the core frequency. The controller is a Single-Input-Single-

Output (SISO) controller since the change of core frequency only affects the utilization

C4

CN-1UCL

C1UCL

CN

UCL

UCL

C2 UCL

Core
Utilization
Monitor

Frequency
Modulator

Core-level
Utilization
Controller

Multi-Core Processor
Power Measurement

TC

TC: Processor-level Task Consolidation
UCL: Utilization Control Loop

Frequency
Scaling

Controller Parameter Update

Ci: The ith Core
 Real-Time Tasks

C3UCL

Figure 3.1: System architecture

26

of the core. This control loop works as follows: (1) the utilization monitor on each core

sends the utilization of the core to the local controller; (2) the controller computes a

new CPU frequency and sends it to the frequency modulator on the core; and (3) the

frequency modulator then changes the core frequency using DVFS.

Second, the processor-level task consolidation manager dynamically allocates tasks

among the cores for task consolidation. It works as follows: (1) the task consolidation

manager monitors all the tasks {Ti|1 ≤ i ≤ m} and measures their CPU utilizations

at run-time; (2) the task consolidation manager computes an optimized new task

allocation for the cores and sends the task migration requests to the operating system.

The OS then redistributes the following releases (i.e., jobs) of the periodic tasks to

the cores to enforce the migration of the periodic tasks; and (3) the OS changes the

affinity of the tasks to the cores accordingly. The overhead of migrating a task among

cores is less than 40 μs which is sufficiently small in the majority of practical real-time

systems. The detailed overhead measurement results can be found in [153].

In a real system, similar to the power management unit implemented in POWER7

[146], our control architecture can be implemented in service processor firmware to

interact with the main processor and OS. Our solution can also be implemented in the

OS as a periodic task with the highest priority. It is important to note that without

effective integration, the processor-level task consolidation manager and the core-level

utilization control loops may conflict with each other. The task consolidation manager

may cause the core-level utilization control loop to be unstable, as it will change the

system models used by the utilization controllers. As a result, the utilization control

loops need to be configured with the proper controller parameters, according to task

migration.

27

3.2 Core-level Utilization Control

In this section, we model, design, and analyze the core-level utilization control loop.

3.2.1 Task Model

To maximize the throughput of a multi-core system, an application assigned to run

on multi-core processors typically consists of multiple tasks running in parallel; thus,

we adopt a commonly used independent periodic task model (e.g., in [12]). A system

is comprised of m periodic tasks {Ti|1 ≤ i ≤ m} executing on n cores {Ci|1 ≤ i ≤ n}
in a multi-core processor. Task Ti can be migrated among different cores. A core

may host one or more tasks. Each task Ti has a soft deadline that is equal to

its period. ri is the inverse of the period of task Ti. A well-known approach for

meeting the deadlines on a core is to ensure its CPU utilization remains below its

schedulable utilization bound (e.g., Liu and Layland bound for RMS scheduling)[89].

Note that our task model can be extended to support aperiodic tasks by using the

corresponding schedulable utilization bound. For example, a utilization bound has

been derived for systems with aperiodic tasks in [5]. Task rate adaptation can also

be used for utilization control in some real-time systems [93]. We focus on DVFS and

task migration for a more general solution since the rates of many real-time tasks

cannot be adapted.

Our task model has two important properties. First, while each task Ti has

an estimated execution time ci available at design time, a real-time task’s actual

execution time may differ from its estimation and vary at run-time due to two reasons:

core frequency scaling by the DVFS and workload uncertainties. Modeling such

uncertainties is important to systems operating in unpredictable environments. The

estimated execution time can be an approximate estimation and is not necessarily

the WCET. Second, the core frequency of each core Ci can be dynamically adjusted

on a per-core basis within a range [Fmin, Fmax]. This assumption is based on the fact

that more energy savings can be achieved with per-core DVFS when compared to

28

conventional chip-wide DVFS [74] and many today’s microprocessors already support

per-core DVFS (e.g., AMD Independent Dynamic Core Technology). Note that our

solution does not rely on WCET estimation, which is a key advantage of our solution,

because WCETs are often unavailable or mis estimated in real-time embedded systems

running in open execution environments. In contrast, a fundamental limitation of

open-loop power optimization solutions is that they may fail the optimization goal at

runtime when the actual execution times are significantly different from the WCETs

used in the optimization.

3.2.2 System Modeling

We first introduce the following notation. Ts, the control period, is selected such that

multiple jobs of each task may be released during a control period. The utilization

control loop is invoked every Ts seconds. ui(k) is the utilization of core Ci in the kth

control period, i.e., the fraction of time that Ci is not idle during the time interval

[(k − 1)Ts, kTs). Bi is the desired utilization set point (i.e., schedulable bound) on

Ci. Si(k) is the set of tasks located on core Ci in the kth control period. fi(k) is the

normalized CPU frequency (i.e., a value relative to the highest level Fmax) of core Ci

in the kth control period.

Following a control-theoretic methodology, we establish a dynamic model that

characterizes the relationship between the controlled variable ui(k) and the ma-

nipulated variables Si(k) and fi(k). As observed in [116], since the frequencies of

real microprocessors can be scaled only within limited ranges, the execution times

of computation-intensive tasks on core Ci can be approximately estimated to be

proportional to Ci’s relative core frequency∗. Therefore, when core Ci runs at fi(k),

the estimated execution time of task Ti on Ci in the kth control period can be modeled

∗In general, the execution times of tasks which have intensive memory access and I/O operations
may include frequency-independent parts that do not scale proportionally with the core frequency
[17]. We plan to model frequency-independent parts in our future work.

29

as ci/fi(k). The estimated CPU utilization of core Ci can be modeled as

bi(k) =

∑
Tj∈Si(k)

cjrj

fi(k)
(3.1)

We then define the estimated utilization change of Ci, Δbi(k), as

Δbi(k) =

∑
Tj∈Si(k+1)

cjrj

fi(k + 1)
−

∑
Tj∈Si(k)

cjrj

fi(k)
. (3.2)

Note Δbi(k) is based on the estimated execution time cj . Since the actual execution

times may differ from their estimation due to workload variations, we model the

actual utilization of Ci as the following difference equation

ui(k + 1) = ui(k) + giΔbi(k) (3.3)

where the utilization gain gi represents the ratio between the change to the actual

utilization and its estimation Δbi(k). For example, gi = 2 means that the actual

change to utilization is twice the estimated change. Also note that the exact value

of gi is unknown at design time due to the unpredictability of the tasks’ execution

times.

The system models (3.2) and (3.3) show the actual utilization determined by both

the frequency and task allocation. Since Si(k) contains a discrete number of tasks,

the system model introduces a significant challenge, which usually requires hybrid

model-predictive control [94]. In a model-predictive controller, the control problem is

translated to a constrained least-squares problem [93]. The hybrid model-predictive

control problem is translated to a mixed integer non-linear programming problem

(MINLP) and all existing MINLP solvers are not polynomial algorithms.

To address this challenge, we adopt an integrated optimization and control

approach. First, we determine the task allocation based on an optimization strategy

introduced in Section 3.3. The goal is to minimize the power consumption of the

30

multi-core system. Second, a feedback controller is designed for each core to achieve

the desired utilization. Based on our control architecture, the core-level utilization

control loop can be designed separately from the task migration optimization strategy.

As a result, model (3.3) can be simplified by having Si(k) in (3.2) as a constant Si.

This avoids designing a controller based on (3.2) to handle discrete changes of the

task allocation. As a result, model (3.3) becomes

ui(k + 1) = ui(k) + giΔdi(k)
∑
Tj∈Si

cjrj (3.4)

where Δdi(k) = 1/fi(k + 1)− 1/fi(k). The model cannot be directly used to design

the controller because the system gain gi is used to model the uncertainties in task

execution times and is unknown at design time. Therefore, we design the controller

based on an approximate system model of (3.4) with gi = 1. In a real system where

the task execution times differ from their estimations, the actual value of gi may not

equal 1. As a result, the closed-loop system may behave differently. However, we

show that a system controlled by a controller designed with gi = 1 can remain stable

when the variation of gi is within a certain range. This range is established using a

stability analysis of the closed-loop system by considering model variations.

3.2.3 Controller Design and Analysis

Because of our novel control architecture, the model (3.3) is simplified as the model

(3.4), and we can borrow the controller design in [141]. The Z-transform of the P

controller [141] is

C(z) =
1∑

Tj∈Si
cjrj

. (3.5)

The transfer function of the closed-loop system controlled by controller (3.5) is

G(z) = z−1. (3.6)

31

Algorithm 1 rt-MBS

q: an index of tasks not assigned to cores
n: the number of tasks not assigned to cores
A: the current assignment
Minimum-Bin-Slack (q)
begin
1: for all index i from q to n do
2: Get ith tasks not assigned to cores;
3: if ith tasks can be assigned to the core under A then
4: Add ith tasks into A;
5: Minimum-Bin-Slack(i + 1);
6: Remove ith tasks from A;
7: if No free space exists under the current optimal assignment then
8: Exit;
9: end if
10: end if
11: if A is better than the current optimal assignment then
12: Set A the current optimal assignment;
13: end if
14: end for
end

It is easy to prove that the controlled system is stable and has zero steady state errors

when gi = 1. When the designed P controller is used on a system with gi �= 1, the

system will remain stable when 0 < gi < 2, which means that the actual utilization

change cannot be twice the estimated utilization change. We have also proven that

the system can achieve zero steady state error when the system is stable.

3.3 Processor-level Task Consolidation

The design goal of the task consolidation algorithm is to determine a task

allocation Si(k) that can minimize power consumption P (k). Task consolidation and

idle core shutdown can lead to more power savings than when simply using DVFS

to lower core frequencies because as feature sizes decrease below 65 nm, the leakage

power consumption becomes a major contributor to the total power consumption of a

processor [73][130]. For example, in 23nm processors, the leakage power consumption

32

accounts for approximately 80% of the total power consumption. The problem for

dynamic task consolidation can be transformed to a bin packing problem. Since the

bin-packing problem is known to be NP-complete and so an optimal solution is not

suitable to be used online in multi-core and many-core systems with many tasks,

most existing work focuses on heuristics. Several suboptimal heuristics with different

complexities have been proposed. In this work, we evaluate and compare several

heuristics in terms of both overhead and solution quality. Note that for real-time

embedded systems, run-time overhead is often a more serious concern than solution

quality. High run-time overheads may impact the schedulibility of real-time tasks and

cause deadline misses.

We test First-Fit, Best-Fit, and an advanced bin packing heuristic rt-MBS based

on MBS (Minimum Bin Slack) [48]. To further reduce the overhead of First-Fit, we

design iFF (Incremental First-Fit). In this section, we will compare the overheads of

all heuristics theoretically. We evaluate four different heuristics presented in Section

3.3 in terms of both overhead and solution quality using realistic workloads.

First-Fit places each task, in succession, into the first core into which it fits. Best-

Fit places each task, in succession, into the most nearly full core in which it fits.

Incremental First-Fit has two arrays to hold the task allocation in the last control

period and task allocation in the current control period, respectively. Incremental

First-Fit also employ First-Fit to assign each task into a core in every control period.

However, in contrast to that First-Fit assign every task into a core by calling a system

call, Incremental First-Fit store the assignment of every task into a core in an array

instead of calling the system call immediately, then compare the new task allocation

with the task allocation in the last control period and only call the system call for

the task with changed core affinity. The key observation of iFF is that the order

in which tasks are packed into a core is irrelevant. What is important is the total

number of core and the total utilizations of each core are the same as First-Fit. The

system call overhead is up to 40 microseconds [153]. For every task, First-Fit needs

to call the system call once. For a large of number tasks, the overhead may be big.

33

Incremental First-Fit eliminates those unnecessary system calls and provide the same

solution quality as First-Fit.

MBS is bin-focused. In each step, MBS attempts to find a set of tasks (packing)

that makes the core as full as possible. Building a packing for each core is

implemented recursively. The detailed algorithm of applying MBS to processor-level

task consolidation is shown in Algorithm 1. The algorithm is invoked repeatedly

until all tasks are assigned. The procedure is invoked with q = 1 while the current

assignment and current optimal assignment are initialized to be null sets. Note that

the allocation in each step is subject to the utilization constraint, which is enforced

by line 3 of Algorithm 1. The utilization constraint is checked in each step when a

task is allocated to a core to guarantee the real-time executions of tasks.

We now analyze the complexity of the four heuristics. First-Fit and Best-Fit are

among the simplest heuristics. MBS, in the worst case, has the same complexity as

an exhaustive search. The complexity of Incremental First-Fit, First-Fit, Best-Fit,

and MBS is O(mlogm), O(mlogm), O(mlogm), and O(mu+1), respectively; where m

is the total number of tasks in the system and u is the maximum number of tasks that

can be placed in one core. The overhead of Incremental First-Fit is smaller than that

of First-Fit because of fewer system calls. The improved time complexity is archived

by using two more arrays with space complexity of O(m).

3.4 System Implementation

We first introduce the physical testbed used in our experiments. Next we introduce

our simulation environment.

Our testbed is an Intel Xeon X5365 Quad Core processor with an 8MB on-die

L2 cache and 1,333 MHz Front Side Bus. The processor supports four DVFS levels:

3GHz, 2.67GHz, 2.33GHz, and 2GHz. According to Intel, the processor has Core 0

and Core 1 fabricated on one die and Core 2 and Core 3 on a separate die. We must

change the DVFS levels of the 2 cores on each die in order to have a real impact

34

on the processor power consumption. Therefore, we use this processor to emulate a

dual-core processor that supports a per-core DVFS. The operating system is a Fedora

Core 7 with a Linux kernel 2.6.23 and a real-time-preempt kernel patch.

The default Linux kernel may migrate real-time tasks by itself, which can cause

deadline misses as the core utilizations are not guaranteed by the kernel during

migration. To disable task migration from the Linux kernel, we use a standard system

call sched setaffinity [27], which is a portable approach across different platforms.

The overhead of the system call for task migration among cores is less than 40 μs

which is acceptable in many real-time embedded systems. The detailed overhead

results are in [153].

We adopt the Mibench benchmarks [60] designed for embedded systems as our

tasks. Our experiments run a medium-sized workload comprised of 10 tasks to run

the Mibench benchmarks. Both cores initially have five periodic tasks with a total

utilization of 0.31. The task parameters such as periods are configured according

to a real real-time application [4]. The tasks on each core are scheduled by the

RMS algorithm [89]. Note that our solution can also be used with other scheduling

approaches, such as EDF, as long as the corresponding schedulable utilization bound

is adopted. We use RMS as an example in this dissertation because RMS usually

has a smaller runtime overhead in real systems. The deadline of each task Ti equals

its period, 1/ri. The utilization set point of every core is set to its RMS schedulable

utilization bound [89], i.e., Bi = m(21/m − 1), where m is the number of tasks on

Ci. Since the number of tasks may change according to the processor-level task

consolidation, the set point can be set to 0.69 which is the limit of Bi = m(21/m − 1)

when m → ∞. All tasks meet their deadlines if the desired utilization on every core

is enforced.

We now introduce the implementation details of each component in our system

architecture.

Utilization Monitor: The utilization monitor uses the /proc/stat file in Linux

to estimate the core utilization in each sampling period. The /proc/stat file records

35

the number of jiffies (usually 1ms - 10ms in Linux) when a core is in user mode, user

mode with low priority (nice), system mode, and when used by the idle task, since

the system starts. The utilization of each task can be calculated based on the number

of jiffies consumed by the task process in each control period.

Core-level Utilization Controller: The controller is implemented as a single-

thread process with the highest priority running on each core. With a control period

of 30 second, the controller periodically reads the core utilization, executes the control

algorithm presented in Section 3.2.3 to compute the desired core frequency, and sends

the new frequency to the frequency modulator on the core.

Frequency Modulator: We use Intel’s Enhanced SpeedStep Technology to

enforce the new CPU frequency. To the change core frequency, one needs to install the

cpufreq package and then use the root privilege to write the new frequency level into

the system file. A routine periodically checks this file and resets the core frequency

accordingly. The average overhead (i.e., transition latency) to change the frequency

in Intel processors is approximately 100μs.

Power Monitor: To measure the power consumption of the processor, an Agilent

34410A digital multimeter (DMM) is used with a Fluke i410 current probe to measure

the current running through the 12V power lines that power the processor. The probe

is clamped to the 12V lines and produces a voltage signal proportional to the current

running through the lines with a coefficient of 1mv/A. The resultant voltage signal

is then measured with the multi-meter. The accuracy of the probe is 1.5% of reading

+ 0.5A.

36

3.5 Evaluation

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Control period (30 sec)

C
o

re
 U

ti
liz

at
io

n Core 1 Core 2

(a) Core utilization (Proposed)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Control period (30 sec)

C
o

re
 U

ti
liz

at
io

n Core 1 Core 2

(b) Core utilization (DVFS-
Only)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Control period (30 sec)

C
o

re
 U

ti
liz

at
io

n Core 1 Core 2

(c) Core utilization (No-Power-
Management)

50

70

90

110

130

150

0 50 100 150 200 250 300

Control period (30 sec)

P
o

w
er

 (
W

at
t)

s

(d) Processor power consump-
tion (Proposed)

50

70

90

110

130

150

0 50 100 150 200 250 300

Control period (30 sec)

P
o

w
er

 (
W

at
t)

(e) Processor power consumption
(DVFS-Only)

50

70

90

110

130

150

0 50 100 150 200 250 300

Control period (30 sec)

P
o

w
er

 (
W

at
t)

(f) Processor power (No-Power-
Management)

Figure 3.2: Typical runs of three solutions (Proposed, DVFS-Only, and No-Power-
Management) on the hardware testbed. The solutions are activated at the 100th
control period and handle a 20% execution time reduction at the 200th control period.

In this section, we first compare four heuristics in Section 3.3, then present our

empirical results conducted on the hardware multi-core testbed.

Baselines

We use three baselines for comparison in this dissertation. Dynamic core scaling

is a state-of-the-art algorithm [119], which adjusts both the core frequencies and

number of active cores of a multi-core system to reduce the dynamic and leakage

power consumption by task migration. The fundamental difference between Dynamic

core scaling and the proposed solution is that the Dynamic core scaling makes a task

migration decision based on the WCET of the task to be migrated. For systems

operating in unpredictable environments, to guarantee the timeliness, the WCETs

have to be conservative. The actual execution time of the task to be migrated

is usually much smaller than the overestimated WCET. In contrast, the proposed

solution makes a task migration decision based on the average CPU utilization, which

can be easily monitored at runtime in a lightweight way. In addition, Dynamic core

scaling uses a chip-wide DVFS while the proposed solution uses a per-core DVFS,

37

which is already supported by many microprocessors. We demonstrate in Section 3.5

that the proposed solution outperforms Dynamic core scaling significantly in terms

of power savings. The second baseline, DVFS-Only, is the frequency scaling loop

proposed in [141]. It relies only on DVFS to throttle the core frequency to manage

the power consumption of a core, subject to the utilization constraints without

turning off any cores. DVFS-Only has a similar utilization controller design with the

proposed solution, but does not perform task consolidation. No-Power-Management

is a classical open-loop scheduling solution that partitions the tasks in a static way

[89] and the frequencies of all cores in a multi-core system are fixed to the maximum

frequency level. While No-Power-Management can initially guarantee the timeliness,

it may fail when task execution times change at runtime and waste energy when the

system is underutilized.

Comparison of Different Heuristics

A scalability requirement for a multi-core or many-core power optimization

heuristic is low run-time overhead. In this experiment, We evaluate four different

heuristics presented in Section 3.3 in terms of both overhead and performance by

simulations. Different workloads including 16 to 256 tasks are randomly generated to

stress test all heuristics. To estimate the overhead of the heuristics, we measure

the execution time of each heuristic on a 2.5-GHz Intel Core 2 Duo PC with

2-GByte RAM. To obtain high-resolution measurement, we use Windows API

QueryPerformanceCounter. We collect the average of multiple runs. As shown in

Figure 3.3a, the overhead of incremental First-Fit is smallest, while the overhead

of MBS is significantly higher than the others. Figure 3.3b shows that under

realistic workloads, the processor power consumption under all heuristics is very

close. According to the simulations, we adopt incremental First-Fit for online power

reduction in the following experiments because of its low overhead.

Empirical Results on Hardware Testbed

In this experiment, we first disable the proposed solution from the 1st to the

100th control period. As shown in Figure 3.2a, the initial utilizations of Core 1 and

38

0.1
1

10
100

1000
10000

100000

16 32 64 128 256
Number of Cores

O
ve

rh
ea

d
(M

ic
ro

se
c)

(lo
ga

rit
hm

ic
 s

ca
le

)

iFFD FFD BFD MBS

(a) The overhead of four optimization heuristics

0

50

100

150

200

16 32 64 128 256
Number of Cores

N
om

al
iz

ed
 P

ow
er

iFFD FFD BFD MBS

(b) Power consumptions using four optimization
heuristics

Figure 3.3: Comparison among the three heuristics.

Core 2 are both 0.31. Core utilizations are lower than the RMS bound, resulting

in an undesired underutilized system. We then enable the proposed solution at the

100th control period. As shown in Figure 3.2a, all tasks on Core 2 are migrated

to Core 1. Core 2 becomes idle and is then turned off. As shown in Figure 3.2d,

the power consumption of the CPU is consequently reduced by approximately 19%.

As shown in Figure 3.2a, at the 200th control period, the execution time of all the

tasks is suddenly decreased by 20%, resulting in a sharp drop of the utilization of

Core 1. This decrease is implemented by reducing the number of loop iterations in

the Mibench benchmarks. The proposed solution responds to the utilization drop by

dynamically decreasing the core frequency of the core. Since the settling time of the

utilization controller is just several control periods, the utilization converges quickly

to the RMS bound again. As shown in Figure 3.2d, the power consumption of the

CPU is further reduced by approximately 11%. The experiment demonstrates the

effectiveness of the proposed solution with uncertain task execution times.

We then examine the power efficiency of two baselines: DVFS-Only and No-Power-

Management. To make a fair comparison, we adopt the same workload and scenario

used for the proposed solution. For DVFS-Only, Figure 3.2b shows that at the 100

control period the utilization of all the cores increases because DVFS-Only throttles

the frequencies of both cores to the lowest levels. As a result, Figure 3.2e shows the

processor power drops at the 100th control period. However, the power consumption

39

is still much higher than that of the proposed solution. The reason is that DVFS-Only

cannot consolidate tasks to reduce the leakage power consumption of the processor. At

the 200th control period, even though the execution times of all the tasks are decreased

by 20%, DVFS-Only can only achieve very slightly further power savings because both

the cores are already at their lowest frequencies. This experiment demonstrates the

necessity of task consolidation. For No-Power-Management, as shown in Figure 3.2c,

at the 200th control period, the execution times of all tasks are decreased by 20%.

Since No-Power-Management does not decrease the core frequencies in response to the

lower workload, Figure 3.2f shows that the processor power is only slightly reduced

and is much higher than that of the proposed solution. Since all the three solutions do

not violate the RMS schedulable utilization bounds in their entire runs, no deadline

miss is observed in this experiment for any of the solutions.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sec)

C
o

re
 u

ti
liz

at
io

n

Core 1
Core 2
Core 3
Core 4

(a) Proposed solution (activated
at the 150s)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Time (sec)

C
o

re
 u

ti
liz

at
io

n Core 1
Core 2
Core 3
Core 4

(b) Dynamic core scaling (acti-
vated at 150s)

1

2

3

4

5

1 1.2 1.4 1.6 1.8
Inverse execution-time factor

N
om

al
iz

ed
 p

ow
er

Proposed Solution
Dynamic core scaling

(c) Power consumption under
different ietf

Figure 3.4: Comparison between the proposed solution and Dynamic core scaling.

Simulation Results

In this section, we first compare the proposed solution with Dynamic core scaling

on a quad-core system. We then test the effectiveness of the proposed solution in

many-core systems. We have also performed the evaluation of the proposed solution

in heterogeneous multi-core systems. The results are not presented due to space

limitations but can be found in [51].

40

Comparison with Dynamic Core Scaling

In this section, we compare the power efficiency of the proposed solution and Dynamic

core scaling in unpredictable environments. The WCETs of tasks often have to be

conservative in unpredictable environments as the actual execution time may vary

across in a wide range at runtime. The majority of the time, the actual execution

times can be much smaller than the pessimistic WCETs. The inverse execution-time

factor (ietf) denotes the ratio of the estimated execution time to the actual execution

time of a periodic task. The greater the ietf is, the more conservative the estimated

execution time of a task. For Dynamic core scaling, the ietf can be determined by

the predictability of the environment.

In the first experiment, we randomly generate a small scale task set including 5

tasks in a quad-core system. The ietf of the tasks is 1.5. Figure 3.4a shows that all

tasks are consolidated onto two cores (Cores 1 and 2) under the proposed solution.

In contrast, Figure 3.4b shows all tasks are consolidated onto three cores (Cores 1

to 3). The reason is that Dynamic core scaling relies on WCETs to decide whether

or not it migrates a task. Because of the overestimated WCETs (i.e., ietf=1.5),

Dynamic core scaling may prevent task migrations. Dynamic core scaling cannot make

task migration decisions based on actual execution times. Otherwise, schedulable

bounds may be violated after migrations and deadline misses occur. In contrast, the

proposed solution relies on the feedback of the average task CPU utilizations and

so tasks can be consolidated onto fewer cores. Note that when the actual execution

time of a task approaches the WCET, the proposed solution can still guarantee the

timeliness by dynamically enforcing the schedulable utilization bounds. Figure 3.4b

also shows that only Core 1 reaches the utilization bound under Dynamic core scaling

due to its assumption of chip-wide DVFS. If the workload is not perfectly balanced,

which is common in a real system, chip-wide DVFS cannot allow all cores to reach

the RMS bound at the same time, resulting in undesired underutilized systems and

unnecessarily more power consumption. In this experiment, after the activation at

41

150s, the normalized power consumption of the proposed solution is reduced from 8.01

to 3.106, while that of Dynamic core scaling is reduced from 8.01 to 3.587. Dynamic

core scaling consumes about 15.5% more power than the proposed solution. The

reason is that the proposed solution can consolidate tasks to reduce leakage power

and utilize per-core DVFS to save more dynamic power.

We then compare the normalized power consumption of the proposed solution and

Dynamic core scaling when the ietf varies from 1 to 1.8. Figure 3.4c shows when the

ietf is 1, which means the the actual execution times are equal to the WCETs, the

normalized power consumption of Dynamic core scaling is approximately the same as

that of the proposed solution. The slight difference is because Dynamic core scaling

does not utilize per-core DVFS. When the ietf increases from 1 to 1.2, the normalized

power consumption of Dynamic core scaling increases to approximately 15.5% more

than that of the proposed solution. The reason is that when the ietf is 1, both the

solutions consolidate tasks onto two cores. When the task WCETs increase to 1.2

times of the actual execution times (i.e., ietf=1.2), Dynamic core scaling uses three

core while the proposed solution still uses only two. When the ietf increases from

1.2 to 1.6, the difference between the two solutions only changes marginally because

Dynamic core scaling still utilizes three cores in this case. However, when the ietf

further increases to 1.8, Dynamic core scaling begins to use all four cores. As a result,

it consumes 39.6% more power than the proposed solution. Since both the proposed

solution and Dynamic core scaling can enforce the CPU utilization dynamically on

each core, the two solutions both achieve a zero deadline miss ratio in all runs. This

experiment demonstrates that the proposed solution significantly improves the power

efficiency of real-time systems in unpredictable environments.

42

Chapter 4

Cache Partitioning in Multi-Core

Real-Time Systems

4.1 Problem Formulation

In this section, we formulate the cache-aware utilization control problem for multi-

core real-time systems.

4.1.1 Task Model

A multi-core real-time system is comprised of n cores {Ci|1 ≤ i ≤ n} and mi

periodic tasks {Tij|1 ≤ j ≤ mi} executing on Ci. Each task Tij has a soft

deadline related to its period. We use partitioned scheduling to assign tasks to

the cores in a multi-core processor. The tasks on each core are scheduled with

rate-monotonic scheduling (RMS). Partitioning-based RMS transforms the multi-core

real-time scheduling problem into the uniprocessor scheduling problem. A well-known

approach to meeting task deadlines on a core is to keep the core utilization below its

schedulable utilization bound (e.g., Liu and Layland bound for RMS) [89]. A more

precise schedulability test (e.g., the hyperbolic bound [23]) can be used to improve

schedulability. Previous studies [5] also show that the Liu and Layland bound can be

43

replaced with the corresponding schedulable utilization bound to ensure timeliness

for systems with aperiodic tasks.

Our task model has three important properties. First, while each task Tij has an

estimated execution time cij available at design time. Second, the L2 caches can be

partitioned among the cores. The partition size for each core Ci may be dynamically

adjusted. Third, the CPU frequency of each core Ci may be dynamically adjusted

within a range [Fmin,i, Fmax,i]

4.1.2 Problem Formulation

Cache-aware power management for multi-core real-time systems can be formulated

as a dynamic constrained optimization problem. We first introduce some notation.

Ts, the control period, is selected so that multiple instances of each task are released

during a control period. ui(k) is the utilization of core Ci in the kth control period,

i.e., the fraction of time that Ci is not idle during time interval [(k − 1)Ts, kTs).

ui(k) is calculated according to the statistics generated by the operating systems.

Ui is the desired utilization set point of Ci. p(k) is the power consumption of the

processor and related to both the core frequencies and active L2 cache size. E(k)

is the energy consumption of the processor in the kth control period. Since the

core frequencies, active L2 cache size, and workload of the processor are all not

changed during a control period, p(k) can be approximated as a constant within each

control period. Consequently, E(k) = p(k)Ts. We assume that the processor has

homogeneous cores with two levels of caches and the L2 caches are shared among

the cores since mainstream multi-core processors adopt this architecture. We also

assume that the processor supports per-core DVFS as per-core DVFS leads to a better

processor energy efficiency than a chip-wide DVFS [74]. We further assume the cache

can be partitioned among tasks. The details of dynamic cache partitioning is beyond

the scope of this dissertation because various ways (e.g., software or hardware) have

already been designed to implement cache partitioning among tasks. Examples can

be found in [86][106][76][59][31]. si(k) is the L2 cache partition size of core Ci. fi(k)

44

is the relative core frequency (i.e., the core frequency relative to the highest level

Fmax,i) of core Ci.

Given a utilization set-point vector, U = [U1 . . . Un]
T , a frequency constraint

[Fmin,i, Fmax,i] for each core Ci, and the total L2 cache size S for the processor, the

control goal at the kth sampling point (time kTs) is to dynamically choose the cache

partition size {si(k)|1 ≤ i ≤ n} and core frequency {fi(k)|1 ≤ i ≤ n} to minimize

the difference between Ui and ui(k) for all the cores and to minimize the energy

consumption E(k) for the processor.

min
si(k)|1≤i≤n,fi(k)|1≤i≤n

n∑
i=1

[Ui − ui(k)]
2 (4.1)

min
si(k)|1≤i≤n,fi(k)|1≤i≤n

E(k) (4.2)

subject to

Fmin,i ≤ fi(k) ≤ Fmax,i (1 ≤ i ≤ n) (4.3)
n∑

i=1

si(k) ≤ S (4.4)

Note that the objective (4.2) is actually equivalent to the minimization of power

consumption because the power consumption during a control period can be

approximated as a constant and thus E(k) = p(k)Ts. Constraint (4.3) guarantees that

the CPU frequency of each core remains within its acceptable range. The frequency

range depends on specific processors. The above formulation can be extended to

add equality constraints among cores that have the same frequency (and voltage).

Constraint (4.4) ensures that the summed size of all the cache partitions does not

exceed the total available cache size on the processor. For each core, the optimization

formulation minimizes the difference between the core utilization and corresponding

set point by manipulating both partition size and core frequency while satisfying the

constraints. Control goal (4.1) actually may conflict with control goal (4.2) because

core frequencies throttled to the lowest levels and cache lines turned off are desired

45

to minimize the total power consumption p(k). In that case, memory accesses would

be very slow because most accesses will face cache misses and non-memory access

instructions would be executed at the lowest speed. Consequently, the task execution

times would be too long and core utilizations might exceed set points, leading to

deadline misses. Therefore, the two conflicting goals require resolution with advanced

control and optimization techniques.

4.2 Cache-Aware Utilization Control

In this section, we model the cache-aware utilization control problem for energy

efficiency in multi-core real-time system and present our two-level control architecture.

4.2.1 System Modeling

Following a control-theoretic methodology, we establish a dynamic model that

characterizes the relationship between the controlled variable ui(k) and manipulated

variables si(k), and fi(k) in the kth control period, by system identification. First,

we model the relationship between cij(k), the execution time of task Tij running

on core Ci, and the two manipulated variables, fi(k) and si(k). According to

previous research [24], cij(k) normally consists of frequency-dependent and frequency-

independent portions

cij(k) =
nij

fi(k)
+mij(k) (4.5)

where
nij

fi(k)
is the frequency-dependent portion andmij(k) is the frequency-independent

portion of Tij ’s execution time. The former scales with the core frequency but the

latter does not because some instructions deal with memory or other I/O devices

and their access speeds do not depend on core frequency. For processors whose FSB

(front-side bus) speed varies with DVFS, memory accesses delay can be modeled as the

frequency-dependent portion of the task execution time. We assume that the data and

program of real-time tasks are loaded into main memory. Disk or I/O device accesses

46

are not required during the execution. The assumption is valid for the majority

of embedded real-time systems as the memory footprints of those applications are

typically small. Intuitively, mij(k) is related to the cache size reserved for Tij because

of the strong correlation between the cache size of an application and the number of

cache misses it has. According to [31], the relationship between mij(k) and sij(k),

the cache size allocated to Tij on Ci, is modeled as

mij(k) =

⎧⎨
⎩

Aijsij(k) +Bij 0 ≤ sij(k) ≤Wij

Constant sij(k) > Wij

(4.6)

where Wij is the working set size (WSS) of task Tij . Aij and Bij are task-specific

parameters. All the parameters can be estimated using existing task profiling

techniques. Example parameters for the benchmarks used in our experiments are

listed in Table I in Section V. When sij(k) is smaller than the WSS Wij , increasing

the cache size of a task may lead to a reduced execution time [31]. When the allocated

cache size is greater than the WSS, allocating additional cache to a task does not

further decrease its cache miss rate. Although model (4.6) is an approximation of the

real system, our experiments show that the linear relationship is sufficiently accurate

for the benchmarks. When a workload is different from the benchmarks, it can be

proved that the proposed solution still achieves the control goal if the execution time

varies within a specific range.

For preemptive real-time task systems, we can establish the following relationship

between the total frequency-independent execution time of all the tasks on core Ci

and the total cache size si(k) assigned to Ci

mi(k) =

⎧⎪⎨
⎪⎩

∑
j

A
′
ijsi(k) +

∑
j

Bij 0 ≤ si(k) ≤Wi

Constant si(k) > Wi

(4.7)

where A
′
ij =

Aijsij(k)

si(k)
and Wi =

∑
j

Wij . (4.7) is derived by a sum of (4.6) across all

the tasks on core Ci. We assume that each task has its own cache partition. Note

47

that we do not need to reserve caches for every task on each core and divide si(k)

proportionally. In that case, the overhead that occurs because the cache content can

be invalidated by preempting tasks is taken into consideration. It depends on the

maximum number of times the task is preempted and the cache size the task is using.

So, we use the WCET model from [31] and derive a model similar to (4.7).

In multi-core systems, tasks on different cores may compete and interfere with

each other for shared resource (e.g., shared bus or caches) access. To avoid these

interferences, we adopt the cache partitioning method proposed in multiple studies

(e.g., [86]). The multi-core cache architecture in [86] simplifies the WCET analysis

of a real-time multi-core system. Without cache partitioning, unpredictable inter-

core interferences may occur and invalidate model (4.7). Based on this architecture,

a multi-core processor with shared L2 caches can be regarded as a multiprocessor

system with each processor having adjustable private L2 caches. Considering (4.5),

(4.6), and (4.7), we derive the following model for our system

bi(k) =

∑
j

nijrij

fi(k)
+
∑
j

A
′
ijrijsi(k) +

∑
j

Bijrij (4.8)

where bi(k) is the estimated utilization of core Ci and rij is the task rate of Tij

running on that core. An important observation is that system model (4.8) needs

to be transformed as bi(k) to be inversely related to the core frequency fi(k). From

system model (4.8), the estimated change of utilization, Δbi(k), for core Ci is modeled

as

Δbi(k) = di(k)
∑
j

nijrij +Δsi(k)
∑
j

A
′
ijrij (4.9)

where di(k) =
1

fi(k)
− 1

fi(k−1)
and Δsi(k) = si(k) − si(k − 1). Now Δbi(k) is a linear

function of di(k) and Δsi(k), which allows us to use di(k) as the manipulated variable

instead of using fi(k) directly. Note that Δbi(k) depends on the estimated values of

nij and A
′
ij . Their actual values may be different from the estimations due to workload

48

variations. A major contribution of our work is to propose a control solution to handle

this uncertainty.

The system model (4.9) represents a Multi-Input-Single-Output (MISO) system

because it has two manipulated variables, di(k) and Δsi(k), and one controlled

variable. Two manipulated variables can provide extra flexibility for controlling

both CPU-intensive and memory-bound tasks when compared with controlling the

same tasks with only one manipulated variable. The additional input variable has a

significant implication on the control solution design. We can achieve a certain output

with an infinite number of combinations of these two inputs, but not all of them can

satisfy the utilization control and power optimization goals. Therefore, we need to

determine which combination to use to fulfill our goals. The details are discussed in

Section 4.3.

From the system perspective, in multi-core environments that allow both DVFS

and cache partitioning/resizing, relying solely on one adaptation strategy may

unnecessarily reduce the system’s adaptation capability. Adapting one of them

can only adjust either the frequency-dependent or independent portion of the task

execution time within a range, but not both. Therefore, a novel control architecture

needs to be designed for utilization control and power management in multi-core

real-time systems by utilizing both adaptation strategies.

4.2.2 Control Architecture

We propose a novel two-level utilization control and power management architecture.

As shown in Figure 4.1, our control architecture features a core-level utilization

controller and processor-level cache demand arbitrator. As described in Section

4.1, constraint (4.4) enforces that the summation of si(k) should not exceed the

total processor cache size. Therefore, if the partition size of a core is increased,

the cache sizes of other cores may need to be reduced. Moreover, the utilization

of a core is related to its cache partition size according to system model (4.9).

49

C4
MUC1

Utilization
Monitor

Frequency
Modulator

Multi-Objective
MPC

Multi-Core Processor
Power Measurement

Processor-level
Cache Arbitrator

MUCi: Multi-Objectives Utilization Control Loop for i-th Core.

Cache Actuator

 Ci: i-th Core

MUC4MUC2

MUC3 MUCN-1

MUCN...

...
C2

Shared L2 Cache

C1 C3 CN...

Firmware on Service Processor

Multi-Core Processor

Real-Time Tasks

Figure 4.1: Two-level utilization control architecture.

The coupling between the cache size and core frequency for utilization control

raises new design challenges. Instead of designing a single processor-level utilization

controller, we adopt the two-level utilization control architecture based on the

following considerations.

First, a processor-level utilization controller may not scale well in future many-

core systems (i.e., systems with tens or hundreds of cores), because the number of

variables in the system model of the processor-level utilization controller increases

proportionally with the number of cores. As a result, the computational complexity

of the controller can increase significantly and thus be too expensive to control real-

time systems. In addition, whenever the number of cores changes, the system model

changes and the controller needs to be redesigned. Core-level controllers have better

scalability because the number of controlled and manipulated variables does not

increase with the number of cores. However, as a core-level controller determines

its own cache partition size locally and is unaware of other core’s cache demands,

it can not guarantee constraint (4.4). Therefore, a processor-level cache demand

arbitrator is needed to enforce the constraint by assigning a cache quota squota,i to

each core. The core-level local controller maintains its cache partition size below the

cache quota squota,i assigned by the arbitrator.

50

Second, as the feature size is shrinking to the nanometer scale, leakage power

becomes the dominant portion of the total power consumption of the entire processor.

The leakage power of a processor contains leakage power for both the cores and caches.

In this dissertation, we reduce the cache leakage power by resizing L2 caches at

runtime to turn off unused portions. Our solution can also be integrated with existing

task migration policies to migrate real-time tasks among the cores and turn off idle

cores to reduce the core leakage power. Note that task migration is complementary to

our solution and that detailed integration is beyond the scope of this proposal. Task

migration for power efficiency can be better supported with a core-level utilization

controller than with a processor-level utilization controller. The reason is that the

number of active cores may change at runtime and the system model of the processor-

level MPC controller needs to be rebuilt whenever the number of the active cores

changes. This may incur a large overhead to the system.

Our two-level utilization control architecture works as follows. First, the

processor-level cache demand arbitrator dynamically calculates a cache quota for

every core based on the real-time workloads running on them. It monitors the task

arrival, termination, and migration events, periodically, to collect the cache demand

of every core. The core-level utilization controller uses this cache quota to enforce

the constraint (4.4). Second, each core-level controller controls the utilization of the

corresponding core by scaling its frequency and resizing its cache partition. It is a

MISO controller that adopts advanced MPC theory to serve this multi-objectivity:

utilization control and power optimization. The core-level controller executes the

following steps at the end of every control period: (1) It collects the core utilization

from the utilization monitor on core Ci; (2) The controller then computes a new core

frequency fi(k) and a new cache partition size si(k), then sends the values to the

frequency modulator and cache actuator on Ci, respectively; and (3) The frequency

modulator and cache actuator change the core frequency and cache partition size

accordingly. In a real system, similar to the power management unit implemented in

51

POWER7, our control architecture can be implemented in service processor firmware

that manages the controlled multi-core processor.

4.3 MOMPC Controller Design

In this section, we present the formulation of the MOMPC controller and discuss the

controller design in detail.

4.3.1 MOMPC Control

Based on system model (4.9), a novel MISO controller needs to be designed to enforce

the utilization set points on all the cores and minimize power consumption of the

processor simultaneously. Traditional MPC control theory applied in earlier studies

on feedback control real-time scheduling (e.g., [93]) is not suitable for the problem

we formulate in Section 4.1. The reason is that traditional MPC theory can not

handle multiple control goals like the two we have in our problem. To solve our

control problem, we adopt a recent advance in control theory, Multi-Objective Model

Predictive Control (MOMPC) [96], which is being actively studied in the control

community [22]. One of the advantages of MOMPC is its capability of dealing with

multi-objective MIMO control problems with constraints on the plant and actuators.

This characteristic makes MOMPC suitable for our problem.

The basic idea of MOMPC control is to solve a hierarchy of optimization problems.

Specifically, multiple objectives are ranked according to their priorities since they may

conflict with each other and cannot be met simultaneously. In MOMPC control, the

most important objective is solved first. The solution is then used to impose equality

constraints when addressing the second optimization objective, and so on. Since

meeting the real-time constraints is always the first priority in real-time systems, we

select objective (4.1) as our primary control goal and objective (4.2) as our secondary

goal. To meet the two control goals, we have a primary optimizer and a secondary

optimizer. The primary optimizer is essentially a dynamic least square optimizer

52

designed to meet the control goal (4.1), just like the optimizer in traditional MPC

theory. Its control objective is to select a combination of core frequency fi(k) and

cache partition size si(k) that achieves only the control goal (4.1). When the system

is controlled into the stable state, the secondary optimizer adjusts the core frequency

fi(k) and cache size si(k) to achieve the control goal (4.2), i.e., minimizing the power

consumption of the processor. To avoid conflicting with the primary optimizer, the

secondary optimizer enforces an equality constraint to adjust the core frequency fi(k)

and cache size si(k), without impacting the core utilization ui(k).

4.3.2 Primary Optimizer

Following MOMPC control theory, we first design a controller for the primary

optimizer to achieve the control goal (4.1). The controller employs system model

(4.9) to minimize a cost function with constraints. The cost function to be minimized

by the controller for core Ci is

Vi(k) =
∑P

l=1 ‖ui(k + l − 1|k)− refi(k + l − 1|k)‖2

+‖xi(k|k)− xi(k − 1|k)‖2
(4.10)

subject to:

Fmin,i ≤ fi(k) ≤ Fmax,i

si(k) ≤ squota,i
(4.11)

where xi(k) =

⎡
⎣ di(k)

Δsi(k)

⎤
⎦. P is the prediction horizon used to predict the system

behavior over P control periods, P = 2 in our system. refi(k + l|k) is the reference

trajectory along which the utilization vector ui(k+l|k) should change from the current

utilization ui(k) to the utilization set point Ui. Note that the cache size si(k) for Ci

is bounded by squota,i to ensure constraint (4.4). We can easily transform the above

optimization problem into a standard constrained least-square problem that can be

solved by the controller using any standard least square solver. The transformation

53

is not presented due to space limitations, but the detailed steps can be found in

[96]. Although the outputs of the primary optimizer are unique, the outputs may

not be optimal in terms of energy efficiency. As explained in Section 4.2.1, multiple

combinations of core frequencies and cache sizes including the outputs of the primary

optimizer can satisfy the utilization set point.

4.3.3 Secondary Optimizer

The secondary optimizer uses a power model to achieve the desired control goal (4.2),

i.e., minimizing the power consumption of the processor. The power optimization

function that we have designed for our secondary optimizer is

pi(k) =Mifi(k)
3 +Nisi(k) + Li (4.12)

subject to

Fmin,i ≤ fi(k) ≤ Fmax,i

si(k) ≤ squota,i
(4.13)

where Mi, Ni, and Li are the power model parameters of the processor. The power

consumption of the processor includes the power consumed by the cores and caches.

The former has a dynamic power component Mifi(k)
3 that varies with core frequency

and a leakage power component Li, but for the latter, the dynamic power component

is negligible when compared with the leakage power component [100]. Thus, the cache

power consumption is approximated by Nisi(k) which varies with the cache partition

size of Ci. The power model parameters in (4.12) can be a function of processor

temperature, which can significantly impact the leakage power.

The secondary optimizer finds a combination of fi(k) and si(k) that minimizes

(4.12) while satisfying the constraints of (4.13). As previously discussed, the equality

constraint is imposed so that adjusting core frequency fi(k) and cache size si(k) does

not change core utilization ui(k) achieved by the primary optimizer. As both ui(k) and

pi(k) are functions of fi(k) and si(k), we can establish a relationship between them

54

and easily impose the equality constraints. We can transform the above formulation

into a standard nonlinear optimization problem with constraints and solve it using any

standard solver. The detailed transformation is not presented due to page limitations.

In our simulator, we implemented the secondary optimizer based on a Matlab solver.

The solver can find the optimal solution with a time complexity of O(n3).

We configure the control period of the secondary optimizer to be 50 times the

control period of the primary optimizer. We have proven that the configuration

guarantees the stability of the proposed control solution. The detailed proof is not

included due to space limitations.

4.4 Simulation Environment

Our simulation environment integrates the event-driven EUCON simulator (for real-

time task scheduling) used in previous studies [93] and a multi-core cache partitioning

system implemented by following the cache implementation of the cycle-accurate

SESC simulator [115], which is widely used in computer architecture research. The

multi-core processor simulated in our work is an Intel Xeon X5365 Quad Core

processor with an 8MB on-die shared L2 cache and 1333 MHz FSB. The processor

supports four DVFS levels: 3GHz, 2.67GHz, 2.33GHz, and 2GHz. All the parameters

in our power and utilization models are based on the data sheet from Intel or profiling

experiments conducted on the real processor. We have validated our models under

different DVFS levels and cache partition sizes with the real Intel processor and

original SESC simulator, respectively. The validations show that our models are

sufficiently accurate (with R2 ≥ 0.93) for the well-known Mibench [60] benchmark

suites designed for embedded systems. We only list the result of the first category

benchmarks of MiBench suite among all the six categories because other categories

are not designed to test real-time systems. [104]. Table I lists the benchmarks used

in our experiments and the corresponding parameters used in model (4.6). The unit

for the working set size (WSS) is the number of cache lines.

55

Table 4.1: System model parameters in (4.6) for typical benchmarks.

Benchmark WSS n11 A11 B11 R2

basicmath 2026 4.4e+7 -3.8e+7 3.8e+7 0.93
susan 886 4.05e+7 -9673 7.0e+6 0.99
bitcnts 445 7.64e+7 -1.7e+5 9.0e+7 0.99

The simulation environment implements a multi-core real-time system based on

the simulated processor and the cache-aware power management and utilization con-

trol architecture, which includes the utilization monitors, core frequency modulators,

cache partitioning/resizing actuators, and the processor-level cache arbitrator. The

periodic tasks on each core are scheduled by RMS. Similar to previous studies based

on the EUCON simulator, the multi-objective MPC controllers are implemented in

Matlab. Specifically, the primary optimizer of an MOMPC controller is implemented

based on the lsqlin least squares solver and the secondary optimizer is implemented

based on the fmincon constrained nonlinear multi-variable optimizer. In each

simulation, the simulator first opens a Matlab process and initializes the parameters.

At the end of each control period, the simulator collects the utilization of each

core from the utilization monitors, and calls the MOMPC controllers in Matlab.

The MOMPC controllers compute the control inputs, fi(k) and si(k), and return

them to the simulator. The simulator calls the frequency modulators and cache

partitioning/resizing actuators to enforce the control inputs. Note that the overhead

of the MOMPC controllers is sufficiently small because we adopt the core-level

controller design (discussed in Section 4.2). As a result, each MOMPC controller

only has one controlled variable and two manipulated variables. Note also that the

controllers can be implemented in service processor firmware in a real system and thus

its computation and power overheads will not significantly affect the main multi-core

processor. An MOMPC controller can also tolerate a considerable communication

delay, as long as the delay is short when compared with the control period [96].

56

Cache partitioning divides a shared cache into non-overlapping partitions for

independent use by real-time tasks. The benefit is that it eliminates the inter-

core interferences among real-time tasks caused by the shared cache and thus leads

to improved real-time performance [11], because the interferences may introduce

difficulties to the estimation of WCETs of real-time tasks. It is well known that

the WCET estimation for shared-cache multicores is still an open problem because

interferences exist. Given a k-associative cache (not necessarily a fully-associative

cache) with l cache sets, the cache can be divided based on associativity or based on

cache sets. Associativity-based partitioning assigns a certain number of ways (0 to

k) within each cache set to a partition while set-based partitioning assigns a certain

number of sets (0 to l) to a partition. The difference of the two approaches is the

partitioning granularity. In this work, we design the proposed control solution on

set-based partitioning because its granularity is fine-grained (l >> k).

Overhead Analysis: Our simulations take into consideration both time and

energy overheads of the proposed MOMPC controller, DVFS and cache partitioning.

We measure the execution times and energy consumption of both the primary

optimizer and the secondary optimizer of the proposed MOMPC controller by running

it on the simulated multi-core processor. The time overhead of the primary optimizer

is 0.8ms and its energy overhead is approximately 0.088J. The time overhead of the

secondary optimizer is 2.2ms and its its energy overhead is approximately 0.242J.

Although overheads of the secondary optimizer are higher than those of the primary

optimizer, the secondary optimizer is only invoked every 50 control periods. The total

time overhead of the proposed MOMPC controller is less than 2% of a control period.

Park et al. [107] presents an accurate modeling of the time and energy overheads

of DVFS techniques such as Intel’s SpeedStep Technology and AMD equivalent

PowerNow. The transition time is between 15.2 μs to 82.6 μs and its energy overhead

is from 0.1 mJ to 0.52 mJ. Therefore, the time overhead of DVFS is less than 0.6%

of the control period. To implement the cache partitioning in a chip, additional

circuits have to be added which will consume additional energy compared with

57

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Control period

C
o

re
 u

ti
liz

at
io

n
Core 1
Core 2
Core 3
Core 4

(a) Core utilization

-1

1

3

5

7

0 100 200 300
Control period

C
o

re
 e

n
er

g
y

(J
)

Core 1
Core 2
Core 3
Core 4

(b) Core energy con-
sumption

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 100 200 300
Control period

N
o

rm
al

iz
ed

 c
o

re
 f

re
q

Core 1 Core 2
Core 3 Core 4

(c) Core frequency

-0.2

-0.1

0.0

0.1

0.2

0.3

0 100 200 300
Control period

N
o

rm
al

iz
ed

 c
ac

h
e

si
ze

Core 1 Core 2
Core 3 Core 4

s

(d) Core cache size

Figure 4.2: A typical run of the proposed cache-aware control solution. The MOMPC
controllers (primary optimizers) are activated at time 100 to control utilizations and
the secondary optimizers are enabled at time 200 for energy optimization.

the processors without cache partitioning support. Studies on computer architeture

[86][76] have shown that the time overhead is 2% on average. The area for the circuits

implementating some cache partitioning technique is only 1.5% of the total area of

caches. Thus, the energy overhead of the cache partitioning is estimated to be 1.5%

of the energy consumption of caches. In our simulations, we deduct all the estimated

energy overheads related to the proposed control solution from the energy results.

4.5 Experimental Results

In this section, we first introduce two state-of-the-art baselines. We then evaluate our

proposed control architecture using the Mibench benchmarks and compare it with the

baselines.

Baselines

Our first baseline, referred to as Dynamic repartitioning [119], is a typical energy-

efficient scheduling algorithm for real-time tasks on a multi-core processor without

considering the frequency-independent component of task execution time and cache

power consumption. To achieve a low power consumption, Dynamic repartitioning

balances the dynamic utilization of all cores by migrating tasks among the cores. It

calls a repartitioning function whenever a task is completed or a new task period

starts. The function migrates a task Tm that lowers the chip-wide frequency after

58

migration, from the core with the highest dynamic utilization, Cmax, to the core with

the lowest dynamic utilization, Cmin. The migration process continues until the chip-

wide frequency level cannot be lowered further by task migration. The key differences

between Dynamic repartitioning and our solution are that 1) Dynamic repartitioning

assumes the task execution time scales inversely linearly with the core frequency and

2) all the cores in a processor are assumed to have a uniform DVFS level.

The second baseline, referred to as DVFS-Only, is the frequency scaling loop

proposed in [143]. DVFS-Only represents existing utilization control mechanisms

that assume the task execution time scales only with the CPU frequency and applies

DVFS for utilization control and power management.

We show that our proposed solution, which manipulates both frequency and cache

size, outperforms both baselines by consuming less power consumption.

Cache-Aware Utilization Control

In this experiment, we first evaluate the performance of our MOMPC controller.

We adopt two different task sets to conduct our experiments on the simulated quad-

core processor. The first task set includes two periodic tasks running basicmath

benchmarks with a total utilization of 0.6, while the second task set contains three

periodic tasks running a mix of basicmath and bitcnts benchmarks with a total

utilization of 0.45. The workloads for the first three cores are identical and they

execute the first task set. The workload for core 4 is different and it executes the

second task set. The task period of basicmath is 0.08 seconds while the task period

of bitcnts is 0.16 seconds. We initially assign an even cache quota to each core. We

also conduct a set of experiments to examine randomly generated workloads.

In our experiment, we activate our MOMPC controllers on all the cores at time

100 (i.e., the 100th control period) and enable the secondary optimizers at time 200.

Figure 4.2a shows that the utilizations of all cores are controlled accurately to their

RMS bounds (e.g., 0.69) after the MOMPC controllers are activated. As a result,

no deadline miss is observed. Figure 4.2b shows that the energy consumption in

every control period. The specific value of the control period is 0.16 seconds. The

59

energy consumption are reduced from time 100 to 200. After the secondary optimizers

are enabled on all the cores at time 200, the energy consumption is minimized:

from 6J to 4J for cores 1-3 and from 6J to 3.5J for core 4. The small spikes in

the energy consumption at the 200th and 250th control periods are caused by the

secondary optimizer. Figures 4.2c and 4.2d detail the behavior of the MOMPC

controllers by plotting the frequencies and cache partition sizes of the cores. From

time 100 to 200, the MOMPC controllers, without the secondary optimizers, does

not reduce the frequencies to the minimum level. As a result, the processor energy

consumption is not minimized. At time 200, the secondary optimizers are enabled

to achieve energy optimization by throttling the core frequencies. As a result, the

cache partition sizes are increased for all the cores and overall energy consumption is

reduced without affecting the core utilizations. This experiment clearly demonstrates

that the MOMPC controller can achieve better energy efficiency than a traditional

MPC controller that does not contain the secondary optimizer.

To test the robustness of the proposed MOMPC controller, we conduct a set of

experiments with different randomly generated workloads. For each workload, the

number of tasks on each core is increased from 2 to 6 (i.e., 8 to 24 tasks in total).

Figure 4.3a plots the average CPU utilizations of all the cores after the controllers

enter the steady state. Our MOMPC controllers successfully achieve the desired

utilization set points with zero steady state errors for all the workloads. Figure

3(b) shows that the MOMPC controllers achieve more energy savings than the MPC

controllers.

Comparison with Dynamic Repartitioning

In this experiment, we compare the proposed solution with the first baseline,

Dynamic repartitioning. To have a fair comparison, we adopt the same workload

used in Section 4.5. Figure 4.4a shows that after Dynamic repartitioning activates

at time 150, the utilizations of all the cores increase only slightly. None of the cores

achieve the desired utilization set points (e.g., 0.69). The reason is that Dynamic

repartitioning assumes that the execution times of tasks are inversely proportional

60

to the core frequencies, without considering the frequency-independent execution

times. In the workload we adopted, the frequency-independent execution times

(about 2.83e+7 CPU cycles) comparable to the frequency-dependent execution times

(about 4.4e+7 CPU cycles). As a result, Dynamic repartitioning fails to control

utilizations accurately, which can lead to power inefficiency, as shown later. Another

fundamental assumption of Dynamic repartitioning is chip-wide DVFS, which holds

true for certain multi-core processors. However, as microelectronic technologies

advance, per-core DVFS has been implemented and is expected to become the main-

stream configuration. Since the workload on each core is not perfectly balanced, the

cores cannot achieve their utilization set points simultaneously with chip-wide DVFS.

Figure 4.4b shows the energy consumption of each core. Since Dynamic

repartitioning reduces the frequencies of all the cores from the highest level to the

same level (with chip-wide DVFS) and does not manage the energy consumption of

the shared L2 caches, the energy savings of each core is approximately identical. Even

though no deadline is violated by Dynamic repartitioning, the energy consumption

of each core is only slightly reduced from 6J to 5.5J, which leads to unnecessarily

more energy consumption as the proposed cache-aware control can reduce energy

significantly. The first reason is that Dynamic repartitioning can not control

utilizations accurately. Since the proposed cache-aware control considers frequency-

independent execution times, both core frequencies and cache partitions can be

adjusted to achieve accurate utilization controls which translate to additional energy

savings. The second reason is that Dynamic repartitioning does not take advantage

of per-core DVFS, which is proven to be more energy efficient than chip-wide DVFS

[74]. This experiment demonstrates that the cache-aware control solution outperforms

Dynamic repartitioning in terms of energy efficiency.

Comparison with DVFS-Only

In this experiment, we compare the proposed solution with the second baseline:

DVFS-Only. We activate the solutions at time 100. The workload on each core

is configured to be identical and includes three periodic tasks. We simulate the

61

0.4

0.6

0.8

1

2 3 4 5 6
Number of tasks

C
or

e
U

til
iz

at
io

ns
Set point
MOMPC

(a) Core utilization

0

2

4

6

2 3 4 5 6
Number of tasks

C
or

e
en

er
gy

 (J
)

MPC MOMPC

(b) Core energy consumption

Figure 4.3: The proposed cache-aware solution (i.e.,MOMPC) controls core utilization
to desired set points while saving more energy than MPC.

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Control period

C
o

re
 u

ti
liz

at
io

n

Core 1 Core 2
Core 3 Core 4

(a) Core utilization

-1

1

3

5

7

0 100 200 300
Control period

C
o

re
 e

n
er

g
y

(J
)

Core 1 Core 2
Core 3 Core 4

(b) Core energy consumption

Figure 4.4: A typical run of the baseline Dynamic repartitioning (activated at time
150).

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Control period

C
o

re
 u

ti
liz

at
io

n

Core 1
Core 2
Core 3
Core 4

(a) Core utilization
(Cache-aware)

-1

1

3

5

7

0 100 200 300
Control period

C
o

re
 e

n
er

g
y

(J
)

Core 1 Core 2
Core 3 Core 4

s

(b) Core energy (Cache-
aware)

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Control period

C
o

re
 u

ti
liz

at
io

n

Core 1
Core 2
Core 3
Core 4

(c) Core utilization
(DVFS-Only)

-1

1

3

5

7

0 100 200 300
Control period

C
o

re
 e

n
er

g
y

(J
)

Core 1
Core 2
Core 3
Core 4

(d) Core energy (DVFS-
Only)

Figure 4.5: Typical runs of cache-aware control and DVFS-Only under workload
variations.

62

0

2

4

6

44% 35% 27% 18% 9%

Power ratio
C

o
re

 e
n

er
g

y
(J

)

Cache-aware DVFS-Only

Figure 4.6: Comparison with DVFS-Only
when power ratio varies (before workload
increases).

0

2

4

6

44% 35% 27% 18% 9%

Power ratio

C
o

re
 e

n
er

g
y

(J
)

Cache-aware DVFS-Only

Figure 4.7: Comparison with DVFS-Only
when power ratio varies (after workload
increases).

typical scenario of a real-time system with uncertain execution times by increasing

the frequency-dependent execution times of the tasks on all the cores by 100% at time

250. We compare the energy efficiency of the proposed solution and DVFS-Only in

such a scenario.

Figure 4.5a shows that under the proposed solution, after time 100, the utilizations

of all the cores are controlled to the set points (e.g., 0.69). Due to the workload

variation at time 250, the utilizations increase significantly. The proposed solution

successfully controls the utilizations back to the set points. The deadline miss rate

is 0.5% since the utilization bound approximately at time 250 is violated, creating

deadline misses. Figure 4.5b shows that before the proposed solution activates at time

100, the core energy consumption is high because the core frequencies are initially set

to the highest levels and the L2 caches are all turned on. From time 100 to 250, the

energy consumption is reduced significantly by the proposed solution. After time 250,

both the core frequencies and cache sizes are increased due to the workload increase,

resulting in an increased energy consumption.

Figure 4.5c shows a typical run of DVFS-Only in the same scenario under the same

workload. Note that although DVFS-Only also assumes the execution times of tasks

are inversely proportional to the core frequencies as Dynamic repartitioning, DVFS-

Only can control the utilizations to the set points accurately because DVFS-Only

relies on the feedback of the measured utilizations. When compared with the proposed

solution, the deadline miss ratio of DVFS-Only is zero because the peak utilization of

63

the proposed solution is 1 while the peak utilization of DVFS-Only is only 0.9. Figure

4.5d shows that from time 100 to 250, the energy consumption is approximately 4.3J,

which is much higher than 3.7J, the power consumption of the proposed solution

(shown in Figure 4.5b). The reason is that DVFS-Only does not turn off the caches

for energy savings. Thus, the energy consumption cannot be reduced significantly

by only throttling DVFS. After time 250, the energy consumption is approximately

5.1J while the power consumption of the proposed solution is about 4.3J. As the

frequency-dependent portion in the execution times increases, the gap of the energy

consumption of the two solutions narrows. On average, DVFS-Only consumes 20%

more energy per core than the proposed solution. This experiment demonstrates

that the proposed solution is more energy efficient than DVFS-Only under workload

variations.

To test the impact of the parameters in the power model on energy efficiency, we

define the power ratio of a core to be the ratio of the dynamic power consumption

when the core frequency is the maximum level to the cache power consumption of

the core when all the caches are turned on. We use the same scenario to increase

the workload at time 250. Figures 4.6 and 4.7 show the energy consumption of the

two solutions before and after time 250 (workload increase), respectively. Figure 4.6

shows that when the power ratio is lower, which means the percentage of leakage

power consumption is higher in the total power consumption, the gap between the

proposed solution and DVFS-Only widens because DVFS-Only can only adjust DVFS

to manage power consumption. The difference between the proposed solution and

DVFS-Only in Figure 4.6 is smaller than that in Figure 4.7. The reason is that when

the frequency-independent execution times become relatively smaller, the advantage

of the proposed cache-aware solution to dynamically resize caches for reduced leakage

power becomes smaller.

64

Chapter 5

Power-Aware Utilization Control

for Distributed RT Systems

5.1 Probelm Formulation

In this section, we formulate the new CPU utilization control problem for DRE

systems.

5.1.1 Task Model

We adopt an end-to-end task model [89] implemented by many DRE applications. A

system is comprised of m periodic tasks {Ti|1 ≤ i ≤ m} executing on n processors

{Pi|1 ≤ i ≤ n}. Task Ti is composed of a set of sub-tasks {Tij|1 ≤ j ≤ ni} which

may be located on different processors. A processor may host one or more sub-tasks

of a task. The release of subtasks is subject to precedence constraints, i.e., subtask

Tij(1 < j ≤ ni) cannot be released for execution until its predecessor subtask Tij−1 is

completed. All the subtasks of a task share the same rate. The rate of a task (and all

its subtasks) can be adjusted by changing the rate of its first subtask. If a non-greedy

synchronization protocol (e.g., release guard [129]) is used to enforce the precedence

constraints, every subtask are released periodically without jitter.

65

In our task model, each task Ti has a soft end-to-end deadline related to its

period. In an end-to-end scheduling approach [129], the deadline of an end-to-end

task is divided into subdeadlines of its subtasks. Hence the problem of meeting the

end-to-end deadline can be transformed to the problem of meeting the subdeadline

of each subtask. A well known approach for meeting the subdeadlines on a processor

is to ensure its utilization remains below its schedulable utilization bound [89].

Our task model has three important properties. First, while each subtask Tij has

an estimated execution time cij available at design time, its actual execution time

may be different from its estimation and vary at run-time due to two reasons: CPU

frequency scaling or workload uncertainties. Modeling such uncertainties is important

to DRE systems operating in unpredictable environments. Second, the rate of a task

Ti may be dynamically adjusted within a range [Rmin,i, Rmax,i]. This assumption is

based on the fact that the task rates in many applications (e.g., digital control [97],

sensor update, and multimedia [32]) can be dynamically adjusted without causing

system failure. A task running at a higher rate contributes a higher value to the

application at the cost of higher utilizations. Please note that our solution does not

rely on continuous task rates. For a task with only discrete rates, its continuous rate

value will be truncated to the highest discrete rate supported by the task that is

below the continuous value. The utilization difference resulted from the truncation

can be compensated by the frequency scaling loop. Third, the CPU frequency of

each processor Pi may be dynamically adjusted within a range [Fmin,i, Fmax,i]. This

assumption is based on the fact that many today’s processors are DVFS-enabled.

For processors that do not support DVFS, clock modulation can be used instead to

change CPU frequency [82]. The frequency ranges are assumed to be continuous

because a continuous value can be approximated by a series of discrete frequency

levels supported by a processor, as we explain in Section 5.5.

66

5.1.2 Problem Formulation

Utilization control can be formulated as a dynamic constrained optimization problem.

We first introduce some notation. Ts, the control period, is selected so that multiple

instances of each task may be released during a control period. ui(k) is the CPU

utilization of processor Pi in the kth control period, i.e., the fraction of time that Pi

is not idle during time interval [(k− 1)Ts, kTs). Bi is the desired utilization set point

on Pi. rj(k) is the invocation rate of task Tj in the (k + 1)th control period. fi(k) is

the relative CPU frequency (i.e., CPU frequency relative to the highest level Fmax,i)

of processor Pi in the (k + 1)th control period.

Given a utilization set-point vector, B = [B1 . . . Bn]
T , rate constraints [Rmin,j , Rmax,j]

for each task Tj , and frequency constraints [Fmin,i, Fmax,i] for each processor Pi, the

control goal at kth sampling point (time kTs) is to dynamically choose task rates

{rj(k)|1 ≤ j ≤ m} and CPU frequencies {fi(k)|1 ≤ i ≤ n} to minimize the difference

between Bi and ui(k) for all the processors:

min
{rj(k)|1≤j≤m,fi(k)|1≤i≤n}

n∑
i=1

(Bi − ui(k + 1))2 (5.1)

subject to constraints

Rmin,j ≤ rj(k) ≤ Rmax,j (1 ≤ j ≤ m) (5.2)

Fmin,i ≤ fi(k) ≤ Fmax,i (1 ≤ i ≤ n) (5.3)

The rate constraints ensure all tasks remain within their acceptable rate ranges.

The frequency constraints ensure all CPU frequencies remain within their acceptable

ranges. The optimization formulation minimizes the difference between the utilization

of each processor and its corresponding set point, by manipulating the rate of every

task and the frequency of every processor within their constraints. The design goal

is to ensure that all processors quickly converge to their utilization set points after

a workload variation, whenever it is feasible under the constraints. Therefore, to

67

guarantee end-to-end deadlines, a user only needs to specify the set point of each

processor to be a value below its schedulable utilization bound. Utilization control

algorithms can be used to meet all the end-to-end deadlines by enforcing the set points

of all the processors in a DRE system, when feasible under the rate constraints∗.

5.2 End-to-End Utilization Control

In this section, we model the end-to-end utilization control problem and present our

two-layer control architecture.

5.2.1 System Modeling

Following a control-theoretic methodology, we establish a dynamic model that char-

acterizes the relationship between the controlled variable u(k) and the manipulated

variables Δr(k) and Δf(k). We first model the utilization ui(k) of one processor Pi.

As observed in previous research [16][116], the execution times of tasks on Pi can

be approximately estimated to be a linear function of Pi’s relative CPU frequency†.

Therefore, the estimated execution time of task Tjl in the kth control period can be

modeled as cjl/fi(k). The estimated CPU utilization of processor Pi can be modeled

as:

bi(k) =

∑
Tjl∈Si

cjlrj(k)

fi(k)
(5.4)

where Si is the set of subtasks located at processor Pi.

We then define the estimated utilization change of Pi, Δbi(k), as:

Δbi(k) =

∑
Tjl∈Si

cjlrj(k)

fi(k)
−

∑
Tjl∈Si

cjlrj(k − 1)

fi(k − 1)
(5.5)

∗A system must apply admission control when its load exceeds the limit that can be handled
within the rate and frequency constraints.

†In general, the execution times of some tasks may include frequency-independent parts that do
not scale linearly with CPU frequency [17]. We plan to model frequency-independent parts in our
future work.

68

Note Δbi(k) is based on the estimated execution time cjl. Since the actual

execution times may be different from their estimation due to workload variations,

we model the actual utilization of Pi, ui(k), as the following difference equation.

ui(k + 1) = ui(k) + giΔbi(k) (5.6)

where the utilization gain gi represents the ratio between the change to the actual

utilization and its estimation Δbi(k). For example, gi = 2 means that the actual

change to utilization is twice the estimated change. Note that the exact value of gi

is unknown due to the unpredictability of subtasks’ execution times.

The system model (5.6) is nonlinear because of the definition of Δbi(k) in (5.5).

Therefore, we need linearization to simplify the controller design for acceptable

runtime overhead. There are two ways to linearize the system model. First, we

may assume that all the processors always run at their highest CPU frequency

and the utilizations are controlled by rate adaptation only. As a result, fi(k)

becomes 1 and the system model (5.6) becomes a linear model between Δbi(k) and

Δrj(k) = rj(k)−rj(k−1). Second, we can assume that the utilizations are controlled

by frequency scaling only. As a result, ri(k) is a constant and the model becomes a

linear model between Δbi(k) and Δdi(k) = 1/fi(k)− 1/fi(k − 1).

However, in a system that allows both rate adaptation and frequency scaling,

relying solely on one adaptation strategy may unnecessarily reduce the system’s

adaptation capability because both task rates and CPU frequencies can only be

adapated within limited ranges. Therefore, a novel control architecture needs to be

designed for utilizing both rate and frequency adapations to maximize the system’s

adaptation capability.

69

Model
Predictive
Controller

Distributed Real-Time System
(m tasks, n processors)

Utilization
Monitor

Rate
Modulator RM

UM UM

RM

Rate Adaptation Loop

Precedence Constraints

Subtask

Proportional
Controller

Frequency
Modulator

PC

FM

PC

FM

…P1 P2 Pn

Freq Adaptation Loop

Figure 5.1: Utilization control architecture

5.2.2 Control Architecture

In this dissertation, we propose a two-layer utilization control architecture, as shown

in Figure 5.1. To avoid having a nonlinear model, our control architecture features

two coordinated control loops running in different control periods.

First, the cluster-level rate adaptation loop dynamically controls the utilizations

of all the processors by adjusting task rates within their allowed ranges. Because

the rate change of a task affects the utilizations of all the processors where the task

has subtasks, this loop is a MIMO control loop, which works as follows: (1) the

utilization monitor on each processor Pi sends its utilization ui(k) in the last control

period to the Model Predictive Controller; (2) the controller computes a new rate

rj(k) for every task Tj and sends the new rates to the rate modulators; and (3) the

rate modulators change the task rates accordingly. Please note again that for a task

with only discrete rates, the rate modulator will truncate its continuous rate value to

the highest discrete rate supported by the task that is below the continuous value.

Second, on every processor Pi in the system, we have a local controller that controls

the utilization by scaling the CPU frequency of the processor. The controller is a

Single-Input-Single-Output (SISO) controller because the CPU frequency change of

Pi only affects the utilization of Pi. This loop works as follows: (1) the utilization

monitor on Pi sends its utilization ui(k) to the local controller; (2) the controller

70

computes a new CPU frequency fi(k) and sends it to the frequency modulator on Pi;

and (3) the frequency modulator changes the CPU frequency accordingly.

Clearly, without effective coordination, the two control loops may conflict with

each other because they are controlling the same varilable, i.e., CPU utilization. To

achieve the desired control function and system stability, one control loop, i.e., the

primary loop, needs to be configured with a control period that is longer than the

settling time of the other control loop, i.e., the secondary loop. As a result, the

secondary loop can always enter its steady state within one control period of the

primary control loop. The two control loops are thus decoupled and can be designed

independently. The impact of the primary loop on the secondary loop can be modeled

as variations in its system model, while the impact of the secondary loop on the

primary loop can be treated as system noise. As long as the two control loops are

stable individually, the whole system is stable.

In our design, we choose the task rate adaptation loop as the secondary control

loop for two reasons. First, the secondary loop reacts faster to utilization variations.

As a result, the secondary loop has the priority to increase the value of its manipulated

variable(s) when the actual utiliztaion is lower than the set point, especially at the

beginning of a system run. We assume that a higher task rate contributes a higher

system value to the application and system value is more important than power

efficientcy in our target real-time applications. Second, the secondary loop must

remain stable despite its model variation caused by the primary loop. The stability

of the rate adaptation loop is less sensitive based on our coordination analysis in

5.4.4.

In our control architecture, the rate adapation loop tries to achieve the desired

CPU utilization set points while maximizing the task rates. When it is infeasible to

control utilizations by rate adapation alone (e.g., due to rate saturation or discrete

task rates), the frequency scaling loop can help to achieve the desired set points on a

coarser timescale while reducing the power consumption of the processors. Since the

core of each control loop is its controller, we introduce the design and analysis of the

71

two controllers in the next two sections, respectively. The implementation details of

other components are provided in Section 5.5.

5.3 Task Rate Adaptation Loop

In this section, we briefly introduce the system model and design of the rate adapation

loop.

5.3.1 System Model

Based on the control architecture, we assume that the relative CPU frequency fi(k) =

1 for all the processors. The case when fi(k) �= 1 is analyzed in Section 5.4.4. Hence,

the estimated utilization change Δbi(k) in (5.5) becomes:

Δbi(k) =
∑
Tjl∈Si

cjlΔrj(k) (5.7)

where Δrj(k) = rj(k)− rj(k − 1).

Based on (5.6), a DRE system with m tasks and n processors is described by the

following MIMO dynamic model.

u(k) = u(k − 1) +GΔb(k − 1) (5.8)

where G is a diagonal matrix where gii = gi (1 ≤ i ≤ n) and gij = 0 (i �= j). Δb(k)

is a vector including the estimated utilization change (5.7) of each processor.

5.3.2 Controller Design

In this paper, we adopt the EUCON algorithm presented in our previous work [93] for

rate adapation. EUCON features an MPC controller that optimizes a cost function

defined over P control periods in the future, called the prediction horizon. The control

72

objective is to select control inputs in the following M control periods, called control

horizon, that minimizes the followng cost function while satisfying the constraints.

V (k) =
∑P

i=1 ‖u(k + i|k)− ref(k + i|k)‖2

+
∑M−1

i=0 ‖Δr(k + i|k)−Δr(k + i− 1|k)‖2 (5.9)

where P is the prediction horizon, andM is the control horizon. The first term in the

cost function represents the tracking error, i.e., the difference between the utilization

vector u(k+i|k) and a reference trajectory ref(k+i|k) defined in [93]. By minimizing

the tracking error, the closed-loop system will converge to the utilization set points

if the system is stable. The second term in the cost function represents the control

penalty. This control problem is subject to the rate constraints (5.2). The detailed

design and analysis of EUCON are available in [93].

Although the rate adaptation loop is proved to be stable in [93], in order for

the coordinated control architecture to be stable, the stability and settling time of

the rate adaptation loop need to be reexamined with the impact from the frequency

scaling loop. The detailed coordination analysis is presented in Section 5.4.4.

5.4 CPU Frequency Scaling Loop

In this section, we first model, design, and analyze the CPU frequency scaling loop.

We then analyze the coordination between the two control loops.

5.4.1 System Model

Based on our control architecture, the frequency adapation loop can be designed

separately from rate adaptation. As a result, model (5.6) can be simplified by having

ri(k) in (5.5) as a constant ri. This decouples different processors because, as discussed

in Section 5.2.1, processors are coupled to each other due to the fact that the rate

change of a task may affect the utilizations of all the processors where its subtasks are

73

located. The utilization of each processor can now be modeled individually because

the CPU frequency change Δdi(k) = 1/fi(k)− 1/fi(k − 1) only affects the execution

times of all the subtask on Pi. Specifically, the model of processor Pi is:

ui(k) = ui(k − 1) + giΔdi(k)
∑
Tjl∈Si

cjlrj (5.10)

The model cannot be directly used to design controller because the system gain

gi is used to model the uncertainties in task execution times and thus unknown at

design time. Therefore, we design the controller based on an approximate system

model, which is model (5.10) with gi = 1. In a real system where the task execution

times are different than their estimations, the actual value of gi may become different

than 1. As a result, the closed-loop system may behave differently. However, in

Section 5.4.3, we show that a system controlled by the controller designed with gi = 1

can remain stable as long as the variation of gi is within a certain range. This range

is established using stability analysis of the closed-loop system by considering the

model variations.

5.4.2 Controller Design

Following standard control theory [49], we design a Proportional (P) controller to

achieve desired control performance such as stability and zero steady state error.

We choose to use a P controller instead of a more sophisticated controller such as

a PID (Proportional-Integral-Derivative) controller because the actuator 1/fi(k) =

Δdi(k)+1/fi(k−1) already includes an integrator such that zero steady state error can

be achieved without resorting to an I (Integral) part. The D (Derivative) part is not

used because it may amplify the noise in utilization in unpredictable environments.

The Z-domain form of our P controller is:

C(z) =
1∑

Tjl∈Si
cjlrj

(5.11)

74

The transfer function of the closed-loop system controlled by controller (5.11) is:

G(z) = z−1 (5.12)

It is easy to prove that the controlled system is stable and has zero steady state

errors when gi = 1. The detailed proofs can be found in a standard control textbook

[49] and are skipped due to space limitations. The desired CPU frequency in the kth

control period is:

fi(k) =
fi(k − 1)

∑
Tjl∈Si

cjlrj

(Us − u(k))fi(k − 1) +
∑

Tjl∈Si
cjlrj

(5.13)

5.4.3 Control Analysis for Model Variation

In this subsection, we analyze the system stability when the designed P controller

is used on a system with gi �= 1. A fundamental benefit of the control-theoretic

approach is that it gives us theoretical confidence for system stability, even when the

controller is used in a different working condition.

The closed-loop transfer function for the real system is

G(z) =
gi

z − (1− gi)
(5.14)

The closed-loop system pole in (5.14) is 1 − gi. In order for the system to be

stable, the pole must be within the unit circle. Hence, the system will remain stable

as long as 0 < gi < 2. The result means that the actual utilization change cannot

be twice the estimated utilization change. Since the frequency scaling loop is the

outer loop of our two-layer control architecture, the difference between the actual

and estimated utilization changes is mainly caused by the differences between the

actual and estimated execution times. Therefore, it is preferable to use pessimistic

estimation on execution times such that the controlled system can be guarnateed

to be stable and the system oscillation can also be reduced. Please note that using

75

pessimistic estimated execution times does not result in underutilization of the CPU

as in systems that rely on traditional open-loop scheduling. This is because our

control architecture dynamically adjusts CPU frequencies and tasks rates based on

measured utilization rather than the estimated execution times. The downside of

using more pessimistic estimation on execution times is that it leads to a smaller

system gain, which may cause slower convergence to the set points. However, since it

is more important to guarantee system stability in a DRE system, it is still preferable

to overestimate task execution times.

We now analyze the steady state error of the controlled system when gi �= 1.

lim
z→1

(z − 1)U(z) = lim
z→1

(
giz

z − (1− gi)
Us

)
= Us (5.15)

Equation (5.15) means that we are guaranteed to achieve the desired CPU utilization

as long as the system is stable.

5.4.4 Coordination Analysis

We now analyze the coordination needed for the rate adaptation loop to work with

the frequency scaling loop. A major contribution of our paper is to demonstrate the

importance of coordinating different control loops.

First, we need to ensure that the stability of the rate adaptation loop will not be

affected when the frequency scaling loop changes the CPU frequency and so fi(k) �= 1.

Given a specific task set, the stability condition of the rate adaptation loop as a range

of gi (i.e., the ratio between the actual utilization change and the estimated change)

can be established by following the steps presented in [93]. For example, the stability

condition of the task set used in our experiments is that the actual change cannot

be 10 times the estimated change. Accordingly, we must guarantee that the relative

CPU frequency of each processor is not smaller than 0.1 because the rate adaptation

controller is designed with the assumption of fi(k) = 1. This constraint must be

enforced in the frequency scaling loop. One of the reasons for us to choose the rate

76

adaptation loop as the secondary loop in our control architecture is that it has a

larger stability range and thus is less sensitive to the impact of the primary loop.

Second, we need to analyze the settling time of the rate adaptation loop such

that we can determine the control period of the frequency scaling loop. Since settling

time has not been analyzed in [93], we now outline the general process of analyzing

the settling time of the rate adaptation loop when the actual utilization change is

different from the estimated change, i.e., gi �= 1. First, given a specific task set, we

derive the control inputs Δr(k) that minimize the cost function (5.9) based on the

system model (5.8) with gi = 1. The control inputs represent the control decision

based on the estimated system model. Second, we derive the closed-loop system model

by substituting the control inputs derived in the first step into the system model (5.8)

where gi �= 1. The analysis needs to consider a composite system consisting of the

dynamics of the original system and the controller. Finally, we calculate the dominant

pole (i.e., the pole with the largest magnitude) of the closed-loop system. According

to control theory, the dominant pole determines the system’s transient response such

as settling time.

Based on our analysis, the task set used in our experiments has a settling time of

5 control periods. The detailed derivation is not included due to space limitations.

The control period of the rate adaptation loop is selected to be 2 seconds to include

multiple instances of each task. Therefore, the control period of the frequency scaling

loop is set to 20 seconds.

5.5 System Implementation

Our testbed includes 4 Linux servers, called RTES1 to RTES4, to run the end-to-end

real-time tasks and a desktop machine to run the MPC controller. The 4 servers are

equipped with 2.4GHz AMD Athlon 64 3800+ processors with 1GB RAM and 512KB

L2 Cache. The controller machine is a Dell OptiPlex GX520 with 3.00GHz Intel

Pentium D Processor and 1GB RAM. All the machines are connected by a 100Mbps

77

internal Ethernet switch. The 4 servers run openSUSE Linux 11 with kernel 2.6.25

while the controller machine runs Windows XP.

We implement our control architecture in FC-ORB, an open-source real-time

Object Request Broker (ORB) middleware system [139]. FC-ORB supports end-

to-end real-time tasks based on the end-to-end scheduling framework [89]. FC-ORB

implements the release guard protocol to enforce the precedence constraints among

subtasks.

Our experiments run a medium-sized workload that comprises 12 end-to-end tasks

(with a total of 25 subtasks). The subtasks on each processor are scheduled by the

RMS algorithm [89]. Each task’s end-to-end deadline is di = ni/ri(k), where ni is

the number of subtasks in task Ti and ri(k) is the current rate of Ti. Each end-

to-end deadline is evenly divided into subdeadlines for its subtasks. The resultant

subdeadline of each subtask Tij equals its period, 1/ri(k). The utilization set point

of every processor is set to its RMS schedulable utilization bound [89], i.e., Bi =

ni(2
1/ni − 1), where ni is the number of subtasks on Pi. All (sub)tasks meet their

(sub)deadlines if the desired utilization on every processor is enforced.

We now introduce the implementation details of each component in our two-layer

control architecture.

Utilization Monitor: The utilization monitor uses the /proc/stat file in Linux

to estimate the CPU utilization in each sampling period. The /proc/stat file records

the number of jiffies (usually 10ms in Linux) when the CPU is in user mode, user

mode with low priority (nice), system mode, and when used by the idle task, since

the system starts. At the end of each control period, the utilization monitor reads

the counters, and estimates the CPU utilization as 1 minus the number of jiffies used

by the idle task in the last control period and then divided by the total number of

jiffies in the same period.

MPC Controller: The controller is implemented as a single-thread process

running separately on the controller machine. Each time its periodic timer fires,

the controller sends utilization requests to all the 4 application servers. The incoming

78

replies are handled asynchronously so that the controller can avoid being blocked by

an overloaded application server. After the controller collects the replies from all the

servers, it executes the control algorithm introduced in Section 5.3.2 to calculate the

new task rates. The controller then sends the tasks’ new rates to the rate modulators

on the servers for enforcement. If a server does not reply in an entire control period,

its utilization is treated as 100%, as the controller assumes this server is overloaded

with its (sub)tasks and so cannot respond. The control period of the rate adaptation

loop is 2 seconds.

Rate Modulator: A Rate Modulator is located on each processor. It receives

the new rates from the controller and then resets the timer interval of the first subtask

of each task whose invocation rate has been changed.

Proportional Controller: The controller is implemented as a single-thread

process running on each of the 4 servers. With a control period of 20 seconds, the

controller periodically reads the CPU utilization of the server, executes the control

algorithm presented in Section 5.4.2 to compute the desired CPU frequency, and sends

the new frequency to the frequency modulator on the server.

Frequency Modulator: We use AMD’s Cool’n’Quiet technology [9] to enforce

the new CPU frequency. AMD Athlon 64 3800+ microprocessor has 5 discrete

CPU frequency levels. To change CPU frequency, one needs to install the cpufreq

package and then use root privilege to write the new frequency level into the system

file /sys/devices/system/cpu/cpu0/cpufreq/scaling setspeed. A routine periodically

checks this file and resets the CPU frequency accordingly. The average overhead

(i.e., transition latency) to change frequency in AMD Athlon processors is about

100μs according to the AMD white paper report [9].

Since the new CPU frequency level periodically received from the proportional

controller could be any value that is not exactly one of the five supported frequency

levels. Therefore, the modulator code must locally resolve the output value of the

controller to a series of supported frequency levels to approximate the desired value.

For example, to approximate 2.89GHz during a control period, the modulator would

79

output the sequence 2.67, 3, 3, 2.67, 3, 3, etc on a smaller timescale. To do this, we

implement a first-order delta-sigma modulator, which is commonly used in analog-

to-digital signal conversion. The detailed algorithm of the first-order delta-sigma

modulator can be found in [82].

Power Monitor: The power consumption of each server is measured with a

WattsUp Pro power meter by plugging the server into the power meter, which is

connected to a standard 120V AC wall outlet. The WattsUp power meter has an

accuracy of ±1.5% of the measured value. To access power data, the data port of

each power meter is connected to a serial port of the data collection machine. The

power meter samples the power data every second and then sends the reading to the

data collection program through a system file /dev/ttyUSB0.

5.6 Empirical Results

In this section, we first test the frequency scaling loop itself. We then show that

the frequency scaling loop can effectively control utilizations when it is infeasible for

a rate adaptation controller to do so. Finally, we demonstrate the the coordinated

control solution outperforms the two single control loop solutions.

1 300 600 900 1200 1500 1800
0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

(a) CPU utilization

1.8

2

2.2

2.4

C
P

U
 f

re
q

 (
G

H
z)

1 300 600 900 1200 1500 1800
80

90

100

110

P
o

w
er

 (
W

at
t)

Time (sec)

Power
Freq

(b) CPU frequency and power consumption

Figure 5.2: CPU utilization control by frequency scaling under a workload increase
from 600s to 1200s.

80

Frequency Scaling Loop

In this experiment, we disable the rate adaptation loop to evaluate the perfor-

mance of the frequency scaling loop on server RTES1. As a common practice in real-

time systems that rely on open-loop scheduling algorithms, the workload of RTES1

is configured with carefully tuned initial task rates such that the server has a CPU

utilization of 0.72, which is its RMS bound. As shown in Figure 5.2a, at time 600s,

the execution times of all the tasks on RTES1 are suddenly increased by 8% to test

the system capability of handling workload fluctuations. The increase makes the CPU

utilization of RTES1 jump to 0.85, which is higher than the RMS bound and so may

cause undesired deadline misses. Figure 5.2b shows that the frequency scaling loop

responds to the utilization increase by dynamically increasing the CPU frequency of

the server processor from 2.15GHz to 2.23GHz. As a result, the utilization converges

to the RMS bound quickly. In contrast, An open-loop system without dynamic

feedback would have its utilization stay at 0.85. At time 1200s, the execution times

of workload are suddenly reduced by 7.4%, resulting in an underutilized system with

a utilization lower than the RMS bound. The frequency scaling loop then responds

by reducing the CPU frequency back to 2.15GHz for power savings.

(a) CPU utilization (b) Power consumption

Figure 5.3: CPU utilization control by frequency scaling under different set points.

To test the robustness of the controller, we conduct a set of experiments with

different utilization set points. Figure 5.3a plots the means and the standard

deviations of RTES1’s CPU utilization after the controller enters the steady state. We

81

can see that the frequency scaling loop can successfully achieve the desired utilization

set points. Figure 5.3b demonstrates that more power saving has been achieved when

we allow the system to have a utilization closer to its RMS schedulable bound, i.e.,

0.72.

Frequency Scaling vs. EUCON

1 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

RTES1
RTES3

RTES2
RTES4

(a) EUCON

1 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

RTES1
RTES3

RTES2
RTES4

(b) Frequency scaling

Figure 5.4: Comparison of control accuracy between EUCON and the frequency
scaling loop.

1 200 400 600 800 1000 1200
60

80

100

120

140

Time (sec)

P
o

w
er

 (
W

at
ts

)

RTES1
RTES3

RTES2
RTES4

(a) EUCON

1 200 400 600 800 1000 1200
60

80

100

120

140

Time (sec)

P
o

w
er

 (
W

at
ts

)

RTES1
RTES3

RTES2
RTES4

(b) Frequency scaling

Figure 5.5: Comparison of power consumption between EUCON and the frequency
scaling loop.

In this experiment, we show that rate adaptation may fail to control CPU

utilizations in some cases, while the frequency scaling loop can be used for utilization

control as an alternative way. We compare the frequency scaling loop with a baseline,

a start-of-the-art control algorithm called EUCON [93], which relies only on the rate

adaptation loop briefly introduced in Section 5.3. Figure 5.4a shows that EUCON fails

to achieve the desired set points (0.74 for RTES2 and 0.72 for the other three servers)

82

because the task rates saturate at the upper boundaries of their allowed ranges. As

a result, the system is underutilized with unnecessarily high power consumption,

as shown in Figure 5.5a. We then test the frequency scaling loop using the same

workload with the rate adaptation loop disabled. In the experiment, to highlight the

performance of the frequency scaling loop, we first let the system run in an open-loop

manner (with no controller activated). Therefore, the system initially cannot achieve

the desired CPU utilizations. At time 400s, we activate the frequency scaling loop.

Figure 5.4b shows that the CPU utilizations quickly converge to their desired set

points. As a result, all the servers achieve power savings (as shown in Figure 5.5b)

while still guaranteeing the end-to-end task schedulability.

Coordinated Utilization Control

Since both task rates and CPU frequencies can only be adapted within allowed

ranges, our coordinated control solution is designed to combine them based on control

theory for maximized adaptation capability. In this experimenet, we run the same

workload with all the tasks starting with lower initial rates. As a result, Figure 5.6a

shows that the utilizations controlled by the rate adaptation loop start from values

lower than those in Figure 5.4a. Similar to Figure 5.4a, the rate adaptation loop fails

to achieve the desired utilization set points (dashed lines in the figure) because tasks

are already running at their highest possible rates allowed by their ranges. In this

case, the CPU frequencies of the processors could be lowered for power savings. We

then examine the frequency scaling loop by running the same experiment in Section

5.6 with lower initial task rates. Figure 5.4b shows that the frequency scaling loop

fails to achieve the desired utilizations this time because the tasks are running at

lower rates. As a result, even when the processors are already running at their lowest

CPU frequencies, utilizations still cannot converge to the desired set points. In this

case, we could allow tasks to run at higher rates to contribute a higher value to the

system.

We now evaluate our coordinated control solution. To highlight the performance

of our solution, we first run the rate adaptation loop, which achieves the highest

83

rates for all the tasks, resulting in a high system value. At time 400s, we activate

the frequency scaling loop. Figure 5.7a shows that the coordinated control solution

successfully achieves the desired utilization set points. In the meantime, Figure 5.7b

demonstrates that servers RTES2, RTES3, RTES4 also receive considerable power

savings. Therefore, the coordinated control solution can effectively control CPU

utilizations to desired set points while achieving increased task rates and reduced

power consumption.

1 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

RTES1
RTES3

RTES2
RTES4

(a) Rate adaptation

1 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

Time (sec)
C

P
U

 u
ti

liz
at

io
n

RTES1
RTES3

RTES2
RTES4

(b) Frequency scaling

Figure 5.6: Infeasible utilization control by frequency scaling or EUCON separately.

1 200 400 600 800 1000 1200
0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

RTES1
RTES3

RTES2
RTES4

(a) CPU utilization

1 200 400 600 800 1000 1200
60

80

100

120

140

Time (sec)

P
o

w
er

 (
W

at
ts

)

RTES1
RTES3

RTES2
RTES4

(b) Power consumption

Figure 5.7: Result of the coordinated utilization control solution.

84

Chapter 6

Temperature Control for

Distributed Real-Time Systems

6.1 Coordinated Control Solution

In this section, we introduce our task model and the coordinated control architecture.

6.1.1 Task Model

We adopt an end-to-end task model [89] implemented by many DRE applications. A

system is comprised of m periodic tasks {Ti|1 ≤ i ≤ m} executing on n processors

{Pi|1 ≤ i ≤ n}. Task Ti is composed of a set of sub-tasks {Tij|1 ≤ j ≤ ni} which

may be located on different processors. A processor may host one or more sub-tasks

of a task. The release of subtasks is subject to precedence constraints, i.e., subtask

Tij(1 < j ≤ ni) cannot be released for execution until its predecessor subtask Tij−1 is

completed. All the subtasks of a task share the same rate. The rate of a task (and all

its subtasks) can be adjusted by changing the rate of its first subtask. If a non-greedy

synchronization protocol (e.g., release guard [129]) is used to enforce the precedence

constraints, every subtask are released periodically without jitter.

85

Legacy Processor

FM

T
M

Cluster Level Utilization Controller

TC

UM RM

T
M Thermal

Controller

UM RMRate
Modulator

Utilization
Monitor

Thermal
Controller

Thermal
Monitor

Frequency
Modulator

Processor 1 Processor N

Utilization
Set points

Figure 6.1: Coordinated Control Architecture

In our task model, each task Ti has a soft end-to-end deadline related to its

period. In an end-to-end scheduling approach [129], the deadline of an end-to-end

task is divided into subdeadlines of its subtasks. Hence the problem of meeting the

end-to-end deadline can be transformed to the problem of meeting the subdeadline

of each subtask. A well known approach for meeting the subdeadlines on a processor

is to ensure its utilization remains below its schedulable utilization bound [89].

Our task model has two properties. First, while each subtask Tij has an estimated

execution time cij available at design time. Second, the rate of a task Ti may be

dynamically adjusted within a range [Rmin,i, Rmax,i]. This assumption is based on the

fact that the task rates in many applications (e.g., digital control, sensor update, and

multimedia) can be dynamically adjusted without causing system failure. The rate

ranges are determined by the applications (e.g., the limited sampling frequency of a

sensor). A task running at a higher rate contributes a higher value to the application

at the cost of higher utilizations.

6.1.2 Control Architecture

As shown in Figure 6.1, our coordinated solution includes a cluster-level utilization

control loop and a thermal control loop on each processor. For processors with DVFS

supports, the thermal controller manipulate the CPU frequency. In contrast, for

legacy processors, the thermal controller manipulate the set points of the cluster-

level utilization controller and set points changes cause task rates changes.

86

The cluster-level utilization control loop dynamically controls the utilizations of

all the processors by adjusting task rates within their allowed ranges. Because the

rate change of a task affects the utilizations of all the processors where the task has

subtasks, this loop is a Multi-Input-Multi-Output (MIMO) control loop, which works

as follows: (1) the utilization monitor on each processor Pi sends its utilization ui(k)

in the last control period to the cluster-level controller; (2) the controller computes a

new rate rj(k) for every task Tj and sends the new rates to the rate modulators; and

(3) the rate modulators change the task rates accordingly.

On every processor Pi in the system, we have a local controller that controls the

processor temperature. Two thermal controllers for two kinds of processors are both

Single-Input-Single-Output (SISO) controllers because we assume the CPU frequency

change or task rates change of Pi only affects the temperature of Pi. This is usually

true because different processors in a DRE system may locate in different places. The

DVFS based thermal loop works as follows: (1) the thermal monitor on Pi sends its

temperature ti(k) to the local thermal controller; (2) the controller computes a new

DVFS level fi(k) and sends it to the frequency modulator on Pi; and (3) the frequency

modulator changes the processor DVFS accordingly. The rate adaptation based

thermal loop works as follows: (1) the thermal monitor on Pi sends its temperature

ti(k) to the local thermal controller; (2) the controller computes a new utilization

set point si(k) and sends it to cluster-level utilization controller; and (3) cluster-level

utilization controller changes rates of tasks on every processor accordingly.

It is clear that without effective coordination, the thermal control loops may

conflict with the utilization control loop. For example, the DVFS based thermal

control loop relies on DVFS to control processor temperature. DVFS can significantly

impact the execution times of the real-time tasks running in the systems and even

cause the execution times to vary outside their stability ranges. As a result, the

timeliness guarantees provided by the utilization control loop can be severely violated.

On the other side, the CPU utilization changes made by the cluster-level utilization

control loop may also impact the temperatures of multiple processors. Therefore,

87

the coordination of control loops must be considered. For legacy processors, we

decouple the rate adaptation loop and the utilization loop. For processors with DVFS

supports, the coordination is designed based on robust control theory to improve

control performance, i.e.a short settling time.

Since the core of the two control loops is a thermal controller based on DVFS, we

introduce its design and analysis in the next section.

6.2 Utilization Control Loop

In this section, we briefly introduce the system model and design of the cluster-level

utilization control loop.

6.2.1 System Modeling

We now establish a dynamic model that characterizes the relationship between the

controlled variable u(k) and the manipulated variable r(k). We first model the

utilization ui(k) of one processor Pi. The estimated utilization change Δbi(k) of

Pi in the kth control period can be modeled as a function of the execution times of

all the subtasks on Pi and their rate changes Δrj(k) = rj(k)− rj(k − 1).

Δbi(k) =
∑
Tjl∈Si

cjlΔrj(k) (6.1)

where Si is the set of subtasks located at processor Pi.

Δbi(k) is based on the estimated execution time cjl. Since the actual execution

times may be different from their estimation due to workload variations, we model

the actual utilization of Pi, ui(k), as the following difference equation.

ui(k + 1) = ui(k) + giΔbi(k) (6.2)

88

where the utilization gain gi represents the ratio between the change to the actual

utilization and its estimation Δbi(k). For example, gi = 2 means that the actual

change to utilization is twice the estimated change. Note that the exact value of gi

is unknown at design time due to the unpredictability of subtasks’ execution times.

Note that in (6.2), we assume that the relative CPU frequency of Pi is 1, which

means that the processor is running at its highest CPU frequency. However, since

the thermal controller on Pi may use DVFS to control the processor temperature, the

relative CPU frequency can become smaller than 1 at runtime. The impact of the

thermal controller on the utilization control loop is analyzed in Section 6.5. Based

on (6.2), a DRE system with m tasks and n processors is described by the following

MIMO dynamic model.

u(k) = u(k − 1) +GΔb(k − 1) (6.3)

where G is a diagonal matrix where gii = gi (1 ≤ i ≤ n) and gij = 0 (i �= j). Δb(k)

is a vector including the estimated utilization change (6.1) of each processor. The

relationship between the utilization and task rates is characterized as follows:

Δb(k) = FΔr(k) (6.4)

The subtask allocation matrix, F , is an n×m-order matrix, where fij = cjl if subtask

Tjl (the lth subtask of task Tj) is allocated to processor i, and fij = 0 if no subtask

of task Tj is allocated to processor i.

6.2.2 Controller Design

In this dissertation, we adopt the EUCON algorithm presented in our previous work

[93] for utilization control. EUCON features a Model Predictive Controller (MPC)

that optimizes a cost function defined over P control periods in the future, called the

prediction horizon. The control objective is to select control inputs in the following

89

M control periods, called control horizon, which minimizes the following cost function

while satisfying the constraints.

V (k) =
∑P

i=1 ‖u(k + i|k)− ref(k + i|k)‖2

+
∑M−1

i=0 ‖Δr(k + i|k)−Δr(k + i− 1|k)‖2 (6.5)

The first term in the cost function represents the tracking error, i.e., the difference

between the utilization vector u(k+i|k) and a reference trajectory ref(k+i|k) defined
in [93]. By minimizing the tracking error, the closed-loop system will converge to the

utilization set points if the system is stable. The second term in the cost function

represents the control penalty. This control problem is subject to the task rate

constraints . The detailed design and analysis of EUCON are available in [93].

Although the utilization control loop is proven to be stable in [93], in order for

the coordinated solution to be stable, the stability and utilization control loop need

to be reexamined with the impact from the thermal control loop. The coordination

analysis is presented in Section 6.5.

6.3 Thermal Controller based on DVFS

In this section, we model, design, and analyze the thermal control loop based on

DVFS.

6.3.1 System Model

We now model the temperature of a processor Pi. We first introduce some notation.

Ts is the control period. ti(k) is the temperature of Pi in the kth control period. fi(k)

is the DVFS level of Pi in the kth control period. di(k) is the difference between fi(k)

and fi(k − 1), i.e., di(k) = fi(k)− fi(k − 1). pi(k) is the power consumption of Pi in

the kth control period. The control goal is to guarantee that ti(k) converges to the

temperature set point in a finite settling time.

90

We use two steps to model the relationship between ti(k) and fi(k). In the first

step, we analytically model the relationship between ti(k) and pi(k). In the second

step, we model the relationship between pi(k) and fi(k).

First, since DVFS changes the frequency of the entire processor chip, we adopt a

chip-level thermal model called resistor-capacitor model (RC-model) [121] to model

the the processor temperature. To convert the thermal model in the continuous time

domain to a model in the discrete time domain, the sampling rate (i.e., control period

Ts) must be selected carefully to guarantee the precision of the discrete model. In

this dissertation, we select the sampling rate less than the thermal time constant in

the second-order circuits. Based on the model in [121], our thermal model is:

Δti(k) =
pi(k) · Ts

Ci
− ti(k) · Ts

Ri · Ci
(6.6)

where Δti(k) = ti(k+1)−ti(k). Ci and Ri are processor Pi’s thermal capacitance and

thermal resistance, respectively. Note that Ci and Ri are determined by the thermal

characteristics of the CPU packaging of Pi and the cooling system. The temperature

is related to the ambient temperature Ta. We can transform (6.6) to the following

difference equation:

ti(k + 1) = (1− Ts
RiCi

) · ti(k) + pi(k) · Ts
Ci

(6.7)

In the second step, we model the relationship between processor power consump-

tion pi(k) and fi(k). It is well-known that DVFS can allow cubic reductions in power

density relative to performance loss in a processor [122]. However, a cubic power

model may lead to high complexity for controller design and large runtime overhead.

On the other hand, real processors usually only provide a limited DVFS range. Within

the small range, previous studies [110, 136] have shown that the relationship between

power and DVFS level can be approximated with a linear function.

pi(k) = Aifi(k) +Bi (6.8)

91

1 100 200 300 400 500
30

34

38

42

46

50

Time (sec)

T
em

p
er

at
u

re
 (°

C
)

Measurement
Model

Figure 6.2: Model Prediction vs. Measurement

where Ai and Bi are generalized parameters that may vary for different processors.

To determine the values of Ai and Bi, we can use a standard approach to this

problem called system identification [148]. In this dissertation, we use a typical

real-time system CPU computation intensive workload presented in [139] for system

identification.

We now substitute (6.8) into (6.7) to establish relationship between ti(k) and

fi(k). The dynamic model of the system as a difference equation is:

ti(k) = (1 + Θi)ti(k − 1)−Θiti(k − 2) + Ψidi(k − 1) (6.9)

where Θi = (1− Ts

Ri·Ci
) and Ψi =

Ts

Ci
· Ai.

We then use a step-like signal to validate our system model (6.9) on our physical

testbed. Figure 6.2 demonstrates that the predicted output of the our model is

sufficiently close to the measured actual system output.

6.3.2 Controller Design

Following standard control theory [148], we design a Proportional (P) controller to

achieve desired control performance such as stability and zero steady state error. We

choose to use a P controller instead of a more sophisticated controller such as a PID

(Proportional-Integral-Derivative) controller because the actuator fi(k) = di(k) +

fi(k − 1) already includes an integrator such that zero steady state error can be

92

achieved without resorting to an I (Integral) part. The D (Derivative) part is not

used because it may amplify the noise in temperature introduced by measurement.

The Z-domain form of our P controller is:

C(z) =
1

Ψi
(6.10)

The transfer function of the closed-loop system controlled by controller (6.10) is:

T (z)

D(z)
=

z

z2 −Θiz +Θi

(6.11)

It is easy to prove that the controlled system is stable and has zero steady state

errors when the system model (6.9) is accurate. The detailed proofs can be found in

a standard control textbook [148] and are skipped due to space limitations.

6.3.3 Control Analysis for Model Variation

In this subsection, we analyze the system stability when the system model (6.9) varies

for different processors. A fundamental benefit of the control-theoretic approach is

that it gives us theoretical confidence for system stability, even when the controller

is used in a different working condition.

A different processor usually has different thermal resistance and capacitance Rj

and Cj, where Rj �= Ri and Cj �= Ci. Therefore, even though the designed P controller

in (6.10) is proven to be stable on the processor used to derive the nominal system

model (6.9) by system identification, the system stability when the controller is used

on a different processor must be theoretically reevaluated.

We now outline the detailed steps to analyze the stability when the system model

changes for different processors.

1. We first get the actual system model of a different processor by conducting

automated system identification on the processor. Since the value of Θi is

determined by the thermal resistance and capacitance Ri and Ci, Θi will be

93

different for a different processor. Therefore, the actual system model is in the

following format:

ti(k) = (1 + gΘi)ti(k − 1)− gΘiti(k − 2) + Ψidi(k − 1) (6.12)

where gΘi is the actual parameters that may be different from Θi in the nominal

model (6.9).

2. The controller function C(z) presented in (6.10) represents the control decision

made based on the nominal model (6.9). We then derive the closed-loop system

transfer function by plugging the controller into the actual system. The closed-

loop transfer function represents the system response when the controller is

applied to a system whose model is different from the one used to design the

controller. The closed-loop transfer function is:

T (z)

D(z)
=

z

z2 − gΘiz + gΘi

(6.13)

3. Finally, we derive the stability condition of the closed-loop system (6.13).

According to control theory, the closed-loop system is stable if all the poles of

(6.13) locate inside the unit circle in the complex space. The poles are calculated

as the roots of the denominator in (6.13), i.e., the following equation:

z2 − gΘiz + gΘi = 0 (6.14)

The stability condition of applying the controller designed based on the nominal

model (6.9) to a processor with a different system model can be stated as: if the roots

of (6.14) all locate inside the unit circle in the complex space, the controlled system

is stable. We have developed a script to analyze system stability automatically using

numerical methods.

94

6.4 Thermal Controller based on Rate Adaptation

In this section, we model, design, and analyze the thermal control loop based on rate

adaptation.

6.4.1 System Model

We now model the temperature of a processor Pi. We first introduce some notation in

addition to notation in Section 6.3.1. T ′
s is the control period. si(k) is the utilization

set point of Pi in the kth control period. dsi(k) is the difference between si(k) and

si(k − 1), i.e., dsi(k) = si(k)− si(k − 1).

We use two steps to model the relationship between ti(k) and si(k). In the first

step, we use the same the relationship between ti(k) and pi(k) as (6.7). In the second

step, we derive the relationship between pi(k) and si(k).

Based on [46], pi(k) and si(k) can be modeled as

pi(k) = Pidle + (Pbusy − Pidle)[2si(k)− si(k)
r] (6.15)

Where r is a constant.

However, a nonlinear power model may lead to high complexity for nonlinear

controller design, large runtime overhead and extreme difficulty of analysis of control

performance. On the other hand, utilization set point range is a subset of [0, 1] which

is very limited. Within the small range, we use the linearization method in nonlinear

systems theory to approximate with a linear function [72].

pi(k) = sia + (Pbusy − Pidle)(2− rsia
r−1)[s(k)− sia] (6.16)

where Pbusy, Pidle and r are parameters characterizing a power model of a server

that may vary for different processors. The values can be determined by real

measurements. sia is chosen between interval [0, 1] to make the approximation close

enough to the nonlinear model.

95

Let Ai = (Pbusy − Pidle)(2− rsia
r−1) and Bi = [1− (Pbusy − Pidle)(2− rsia

r−1)]sia.

(6.16) becomes the following:

pi(k) = Aisi(k) +Bi (6.17)

We now substitute (6.17) into (6.7) to establish relationship between ti(k) and

si(k). The dynamic model of the system as a difference equation is:

ti(k) = (1 + Θi)ti(k − 1)−Θiti(k − 2) + Ψidsi(k − 1) (6.18)

where Θi = (1− T ′
s

Ri·Ci
) and Ψi =

T ′
s

Ci
· Ai.

6.4.2 Controller Design

Since that (6.17) has the same form as (6.8), we apply methods of Section 6.3.2 and

Section 6.3.2. We design a Proportional (P) controller to achieve desired control

performance such as stability. The Z-domain form of our P controller is:

C(z) =
1

Ψi

(6.19)

To work together with the cluster-level utilization controller, the thermal controller

needs to constrain it control input. Detail analysis is in Section 6.5.1.

6.4.3 Control Analysis for Model Variation

In Section 6.3.3, we already have analyzed stability under thermal model parameters

variation for the thermal controller based on DVFS. The result can be extended to

thermal controller based on rate adaptation. In this section, we focus on a different

processor which has different Ai. Usually, different processor has different power

model parameters i.e. Pbusy and Pidle. Therefore, even though the designed P

controller in (6.19) is proven to be stable on the processor used to derive the nominal

96

system model (6.18), the system stability when the controller is used on a different

processor must be theoretically reevaluated.

We now outline the detailed steps to analyze the stability when the system model

changes for different processors.

1. Since that Bi is not in our dynamic model (6.18), the value of Θi is determined

by the Ai, Θi will be different for a different processor power model. Therefore,

the actual system model is in the following format:

ti(k) = (1 + Θi)ti(k − 1)−Θiti(k − 2) + gΨidsi(k − 1) (6.20)

where gΨi is the actual parameters that may be different from Ψi in the nominal

model (6.18).

2. We then derive the closed-loop system transfer function by plugging the

controller into the actual system. The closed-loop transfer function is:

T (z)

D(z)
=

gz

z2 − (1 + Θi − g)z +Θi
(6.21)

3. Finally, we derive the stability condition of the closed-loop system (6.21). The

closed-loop system is stable if all the poles of (6.21) locate inside the unit circle

in the complex space. The poles are calculated as the roots of the denominator

in (6.21), i.e., the following equation:

z2 − (1 + Θi − g)z +Θi = 0 (6.22)

The stability condition of applying the controller designed based on the nominal

model (6.18) to a processor with a different system model can be stated as: if the

roots of (6.22) all locate inside the unit circle in the complex space, the controlled

system is stable.

97

6.5 Coordination Analysis

6.5.1 Coordinate Thermal Controller based on Rate Adap-

tation

We now analyze the coordination needed for the thermal controller based on rate

adaptation and a cluster-level utilization controller to work together with global

stability. The analysis here and later, as well as the control architecture design in

Section 6.1 and our empirical and simulation results, demonstrates the importance of

coordinating different control loops, which is one of major contributions of our paper.

First, we need to ensure that the function of the cluster-level utilization controller

will not be affected when the thermal control loop changes the CPU utilization set

point. Given a specific task set, to guarantee timing, the set points of cluster-level

utilization controller need to be configured according to the number of subtasks on

each servers. The set points can be established by following formula presented in

[89]. The set points derived from [89] is a upper bound. Since the lowest task rates

of each tasks, a lower set points bound exists too. Accordingly, we must guarantee

that the manipulated variable of the thermal controller of each processor operates in

the range. This constraint must be enforced to guarantee timing and avoid control

input saturation.

Second, we need to analyze the settling time of the cluster-level utilization

controller in order to determine the control period of the thermal loop. Since settling

time has not been analyzed in [93], we now outline the general process of analyzing the

settling time of the cluster-level utilization controller. First, given a specific task set,

we derive the control inputs Δr(k) that minimize the cost function 6.5 based on the

system model 6.4 with gi = 1. The control inputs represent the control decision based

on the estimated system model. Second, we derive the closed-loop system model by

substituting the control inputs derived in the first step into the system model 6.4.

The analysis needs to consider a composite system consisting of the dynamics of the

98

original system and the controller. Finally, we calculate the dominant pole (i.e., the

pole with the largest magnitude) of the closed-loop system. According to control

theory, the dominant pole determines the system’s transient response such as settling

time. Based on our analysis, the task set used in our experiments has a settling

time of 17 control periods under the cluster-level utilization control. The detailed

derivation is not included due to space limitations. The control period of the rate

adaptation loop is selected to be 1 seconds to include multiple instances of each task,

resulting in a settling time of 17 seconds Therefore, the control period of the thermal

loop is set to 20 seconds, which is longer than the settling time of the the cluster-level

utilization loop.

6.5.2 Coordinate Thermal Controller based on DVFS

We now analyze the coordination needed for the utilization and thermal control loops

to work together. A major contribution of this dissertation is to demonstrate the

importance of a novel methodology for coordinating different control loops. Both

the utilization and thermal control loops have been proven to be stable in previous

sections. If both the two control loops are still stable under the impact from the other

loop, the entire system is stable.

The analysis of the impact of one loop on the other loop is similar to the stability

analysis of a control loop with an actual system model that is different from its

nominal model. If the actual model is known, we can analyze stability by examining

whether all the poles of the closed-loop system locate inside the unit circle in the

complex space. However, in a real DRE system, the actual system model may vary

significantly at runtime in an unpredictable way. Therefore, we adopt robust control

theory to derive the stability condition for a given DRE system. The differences or

errors between the actual system model and the nominal model are referred to as

uncertainty in robust control theory. The main advantage of robust control is that

uncertainty is considered explicitly in the stability analysis of a feedback control

99

system. This characteristic makes robust control well suitable for analyzing the

stability of a control loop when it is under the impact from another loop.

We have performed the above coordination analysis procedures for the DRE

system deployed on our testbed and evaluated in our experiments. Our results show

that both the two control loops are stable even under the impacts from each other, and

thus the entire DRE system is stable. If a system is found to be unstable, workload and

platform reconfigurations can be tuned to adjust the system for stability according

to derived robust stability conditions.

6.6 System Implementation

In this section, we introduce our hardware testbed, simulation, workload, and the

implementation details of the control loops.

6.6.1 Testbed and Workload

Our hardware testbed includes four Linux servers (RTES1 to RTES4) running end-

to-end real-time tasks and a desktop machine running the cluster level utilization

controller. Four servers are equipped with 2.4GHz AMD Athlon 64 3800+ processors

with 1GB RAM and 512KB L2 Cache. The desktop machine is a Dell OptiPlex

GX520 with 3.00GHz Intel Pentium D Processor and 1GB RAM. All machines are

connected by a 100Mbps Ethernet switch. The controller machine runs Windows XP

while all other servers run openSUSE 11 and the Linux kernel is 2.6.25 with real-time

support.

We implement our control architecture in FC-ORB, an open-source real-time

Object Request Broker (ORB) middleware system [139]. FC-ORB supports end-

to-end real-time tasks based on the end-to-end scheduling framework [89]. FC-ORB

implements the release guard protocol to enforce the precedence constraints among

subtasks.

100

We will evaluate our solution on legacy hardware platforms with no DVFS

support and a large scale cluster with 20 servers. Since hardware resources are not

available, we use simulation instead for the evaluations. Our simulation environment

is composed of an event driven simulator implemented with 2590 lines C++ code. The

simulator implements the cluster-level utilization controller and both type thermal

controllers.

Our hardware experiments run a medium-sized workload that comprises 12 end-to-

end tasks (with a total of 25 subtasks). The subtasks on each processor are scheduled

by the RMS algorithm [89]. Each task’s end-to-end deadline is di = ni/ri(k), where

ni is the number of subtasks in task Ti and ri(k) is the current rate of Ti. Each end-

to-end deadline is evenly divided into subdeadlines for its subtasks. The resultant

subdeadline of each subtask Tij equals its period, 1/ri(k). The initial utilization set

point of every processor is set to its RMS schedulable utilization bound [89], i.e.,

Bi = ni(2
1/ni − 1), where ni is the number of subtasks on Pi. All (sub)tasks meet

their (sub)deadlines if the desired utilization on every processor is enforced.

6.6.2 Control Components

We now introduce the implementation details of key components in the coordinated

solution.

Utilization Controller: The controller is implemented as a single-thread process

running separately on the desktop machine. Each time its periodic timer fires, the

controller sends utilization requests to all processors in the cluster. The incoming

replies are handled asynchronously so that the controller can avoid being blocked by

an overloaded processor. After the controller collects replies from all processors, it

executes the control algorithm introduced in Section 6.2 to compute new task rates.

The controller then sends the tasks’ new rates to the rate modulators on processors for

enforcement. If a processor does not reply in an entire control period, its utilization

is treated as 100%, as the controller assumes this processor is overloaded with its

101

(sub)tasks and so cannot respond. The control period of the utilization loop is 4

seconds.

Rate Modulator: A Rate Modulator is located on each processor. It receives

the new rates from the controller and then resets the timer interval of the first subtask

of each task whose invocation rate has been changed.

Temperature Monitor: AMD processors have built-in circuits to measure the

chip temperature. Two most common types of circuits are thermal diode and on-die

digital thermometers. The thermal diodes are normally placed close to the maximum

temperature spots (i.e., hot spots) of an AMD chip [83]. The thermal values can

be accessed via the Machine Specific Register (MSR) by user-mode applications. In

this dissertation, we use the utility functions from the lm-sensors project [88], which

provide a uniform user interface to monitor a wide range of processors.

Thermal Controller Based on DVFS: The controller is implemented as a

single-thread process running on each processor. With a control period of 4 seconds,

the controller periodically reads the temperature of the processor, executes the control

algorithm presented in Section 6.3.2 to compute the desired CPU frequency, and sends

the new frequency to the frequency modulator on the processor.

Since the new CPU frequency level periodically received from the proportional

controller could be any value that is not exactly one of the five supported frequency

levels. Therefore, the modulator code must locally resolve the output value of the

controller to a series of supported frequency levels to approximate the desired value.

For example, to approximate 2.89GHz during a control period, the modulator would

output the sequence 2.67, 3, 3, 2.67, 3, 3, etc on a smaller timescale. To do this, we

implement a first-order delta-sigma modulator, which is commonly used in analog-

to-digital signal conversion. The detailed algorithm of the first-order delta-sigma

modulator can be found in [82].

102

1 200 400 600 800 1000 1200
25

30

35

40

45

50

55

Time (sec)

T
em

p
er

at
u

re
 (°

C
)

Measurement
Set point

Figure 6.3: Thermal Controller

1 200 400 600 800 1000 1200
25

30

35

40

45

50

55

Time (sec)

T
em

p
er

at
u

re
 (°

C
)

Measurement
Set point

Figure 6.4: Ad Hoc

6.6.3 Simulations and Workload

We implement our control architecture in a home-grown event-driven simulator. In

our simulations, we consider a Pentium 4 processor with Northwood core. The

parameters of the thermal and power models are based on Intel Technical Documents

[68] and [53]. For the parameters in the power model 6.17, Ai = 38.6, Bi = 13.3

and CPU utilization range is [0, 1]. For the parameters in the thermal model 6.18,

Ri = 0.467, Ci = 295.7.

The synthetic real time applications are randomly generated using a Perl script

with each task set contains 4 or 20 tasks (with a total of 12 or 60 subtasks). The

controllability of the task set randomly generated is checked using algorithms in [140].

103

6.7 Empirical Results

In this section, we first evaluate the DVFS based thermal controller alone by

comparing it with a commonly used ad hoc solution. We then test the coordinated

DVFS based thermal controllers and an utilization controller in the case of thermal

variations and examine the coordinated solution under task execution time variations.

Finally, we test our coordinated solution in the case of a large-scale heterogeneous

cluster.

We use two baselines for comparison in this dissertation. OPEN is a typical open-

loop solution that configures the task rates and processor DVFS levels in a static

way. While OPEN can initially achieve the desired CPU utilizations and processor

temperatures, OPEN may fail when task execution times or system conditions

dynamically change at runtime. Ad Hoc represents a commonly used solution to

thermal control of a processor. When the current processor temperature is lower

than the set point, Ad Hoc will increase the processor’s DVFS level by one. When

the temperature is lower than the set point, Ad Hoc sets the DVFS level to the lowest

one to avoid overheating. A fundamental difference between Ad Hoc and our thermal

controller is that Ad Hoc simply raises the DVFS level by one step or sets it to

the lowest level, depending on whether the measured temperature is lower or higher

than the set point. In contrast, our thermal controller computes a fractional DVFS

level based on well-established control theory and uses the frequency modulator to

approximate this output with a series of discrete DVFS levels.

Thermal Controller

In this experiment, we disable the utilization control loop to evaluate the

performance of the thermal controller on RTES1. The temperature set point is

initially 45◦C in our experiment. Between time 400s and 800s, we reduce the set

point to 40◦C to emulate a thermal emergency event. As shown in Figure 6.3, under

our thermal controller, the measured processor temperature converges to the desired

level promptly after the set point is changed. Despite the measurement noise from

104

20
25
30
35
40
45
50

41 42 43 44 45
Set Point

T
em

p
er

at
u

re
 (

)

Set point
Thermal Controller
Ad Hoc

Figure 6.5: Comparison of thermal controller and Ad Hoc under different temperature
set points

the processor thermometer, the thermal controller allows the temperature to stay

very close to the set point by dynamically throttling the processor DVFS level. In

contrast, Figure 6.4 shows that Ad Hoc causes the processor temperature to oscillate

dramatically because Ad Hoc simply raises the DVFS level by one step or sets it to

the lowest level. As neither of the two temperature set points (i.e., 45◦C and 40◦C)

can be exactly achieved by the processor by staying at any of the several available

DVFS levels, Ad Hoc has to continuously throttle the processor DVFS level around a

set point. As a result, the average processor temperature under Ad Hoc cannot settle

to the set point, leading to a steady-state error, as shown in Figure 6.4.

Figure 6.5 compares the processor temperature achieved by the thermal controller

and Ad Hoc under different set points from 41◦C to 45◦C. The average temperatures

and the standard deviations are calculated based on the measured temperature

readings when the controllers enter their steady states. The thermal controller

has much smaller steady-state errors and also smaller deviations compared to Ad

Hoc. Note that the smaller steady-state errors can contribute to higher processor

frequencies and thus better system performance (e.g., higher task rates). In addition,

if the thermal controller is given an unreasonably high set point, the P controller

will saturate at the highest DVFS level and thus allow the system to run at its peak

performance. The experiments demonstrate that our thermal controller designed

105

based on control theory outperforms a commonly used thermal control solution by

having more accurate thermal control.

1 200 400 600 800 1000 1200 1400 1600
20

30

40

50

60

Time (sec)

T
em

p
er

at
u

re
 (°

C
)

RTES1
RTES3

RTES2
RTES4

(a) Temperatures of the four processors

1 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

RTES1
RTES3

RTES2
RTES4

(b) CPU utilizations of the four processors

Figure 6.6: Thermal variation on a single processor (RTES1)

1 200 400 600 800 1000 1200 1400 1600
20

30

40

50

60

Time (sec)

T
em

p
er

at
u

re
 (°

C
)

RTES1
RTES3

RTES2
RTES4

(a) Temperatures of the four processors

1 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

RTES1
RTES3

RTES2
RTES4

(b) CPU utilizations of the four processors

Figure 6.7: Thermal variations on all the four processors

Thermal Variations

In this experiment, we enable both the utilization controller and the DVFS based

thermal controller to examine the simultaneous thermal and timeliness guarantees in

two scenarios.

In the first scenario, the temperature set point of a single processor is changed

from 47◦C to 42◦C at 800s to emulate a local thermal emergency event. Although

the experiment in Section 6.7 has shown that our thermal controller can achieve the

desired new temperature set point by conducting DVFS, the lowered CPU frequency

may increase the execution times of the real-time tasks in the system and thus cause

deadline misses if there is no control for task timeliness. Figure 6.6a shows that the

thermal controller on RTES1 can precisely achieve the desired new temperature set

106

point by reducing the CPU frequency of RTES1. As a result, Figure 6.6b shows that

the CPU utilization of RTES1 rises to nearly 100% and so violates the schedulable

utilization bound. With effetive utilization control, the coordinated control solution

reduces the task rates to lower the CPU utilization of RTES1 to the desired set point.

Other processors in the system also have small utilization variations because rate

adaptation of a task affects all its subtasks running on multiple processors.

In the second scenario, the temperatures of all the processors are changed from

47◦C to 42◦C at 800s to emulate a global thermal emergency event. Figure 6.7a shows

that the thermal controllers on all the processors successfully lower their processor

temperatures to the new set point by reducing CPU frequencies of the processors. As

a result, Figure 6.7b shows that all the processors have significant increases of CPU

utilization. The coordinated control solution adjusts the rates of the end-to-end tasks

in the system at the cluster level to lower the CPU utilizations of all the processors to

the desired set point. The two experiments demonstrate that the coordinated control

solution can provide simultaneous thermal and timeliness guarantees when the system

has either a local or a global thermal emergency event.

Task Execution Time Variations

In this experiment, we examine the simultaneous thermal and timeliness guar-

antees when the execution times of the subtasks on RTES1 have a 25% of increase

at 600s. Unpredictable execution time increases may cause the system to violate its

utilization bounds, resulting in deadline misses. In addition, execution time variations

may also increase system temperature and cause thermal emergency if the processor

stays overloaded for a long time.

We first examine the performance of OPEN, which configures task rates and

processor DVFS levels in a static way. While OPEN can initially achieve the desired

utilizations and temperatures, Figure 6.8a shows the utilization of RTES1 increases

to 95% at 600s and stays above the utilization bound in the rest of the run. Figure

6.9 shows that the temperature of RTES1 is consequently higher than the desired

set point. Due to the lack of adaptation, OPEN may cause system malfunctions

107

and may even reduce the lifetime of the processor. In constrast, Figure 6.8b shows

that the coordinated solution can effectively control the increased CPU utilizaton

by conducting rate adapation. Figure 6.9 shows that the processor temperature

of RTES1 has an instantaneous increase at 620s in response to the execution

time increase at 600s. However, the coordinated solution immediately reduces the

temperature to the desired set point by throttling CPU frequency. This experiment

demonstrates that the coordinated control solution can provide simultaneous thermal

and timeliness guarantees when task execution times vary at runtime.

1 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n

RTES1
RTES3

RTES2
RTES4

(a) OPEN

1 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (sec)

C
P

U
 u

ti
liz

at
io

n
RTES1
RTES3

RTES2
RTES4

(b) Coordinated control solution

Figure 6.8: Variations of task execution times on a single processor (RTES1)

1 200 400 600 800 1000 1200
25

30

35

40

45

50

55

Time (sec)

T
em

p
er

at
u

re
 (°

C
)

OPEN
Coordinated solution
Set point

Figure 6.9: Comparison of system temperature under the coordinated control solution
and OPEN

108

Chapter 7

Power Oversubscription in Data

Centers

7.1 Background about Circuit Breaker

In a data center, groups of servers (racks) are powered from branch circuits. The

branch circuits connect back to a panel box that receives power from a Power

Distribution Unit (PDU). Inside the panel box there is a circuit breaker for each

branch circuit. The National Electric Code (NEC) [105], used in the United States,

limits the long-term power load on a circuit breaker to be 80% of the circuit

breaker rating. This 80% power load represents the cap of the current power

capping controllers used in industry. Therefore, a data center can, at least, safely

oversubscribe the circuit breaker by 25% without causing the CB to trip, according

to the above NEC rule. This can be a signficant benefit for data centers. For example,

the Environmental Protection Agency (EPA) estimated that the data center power

consumption has an annual increase of 9% [132]. In that case, the 25% increase

in power oversubscription from power capping with an increased power cap would

allow new data center construction costs, ranging in the hundreds of millions USD,

to be deferred for approximately three years. However, the power cap cannot be

simply raised in that way because if the power draw is not well controlled, unexpected

109

workload variations may lead to power spikes that could trip the CB. On the other

hand, if we can properly control the power draw based on the tripping characteristics

of the CB, a data center can even further oversubscribe the CB without causing

undesired shutdowns. Such controlled power oversubscription is an efficient way for

a data center to host additional servers without significantly upgrading the power

supply infrastructure. Therefore, safe power oversubscription is practical, low-risk,

and financially attractive for data centers.

Generally, the majority of circuit breakers have two types of trip time behaviors

which are specified in the UL489 standard. First, short-circuits (for example, over

500% of the rated load) cause the CB to trip within a few milliseconds. Second,

overload conditions for a less severe current draw can trip the circuit breaker on

a time scale from milliseconds to hours or even weeks, depending on the severity

of the overload. Only the overload condition is relevant in this dissertation since

practical uses of power oversubscription do not reach load levels sufficient to cause a

short-circuit trip condition. Also, note that other devices in the power infrastructure,

such as transformers and Uninterruptible Power Supplies (UPS), are also designed

to tolerate overloads since fluctuations are common in power systems. Therefore, as

long as the CB does not trip, power oversubscription should be safe for data centers.

We discuss the impacts of power oversubscription on other devices in Section 7.3. In

an overload condition (i.e., an oversubscription beyond 25% above the NEC rating),

the overload must be resolved before the trip time in the CB specification. For

example, circuit breakers based on UL489 available from the Rockwell Automation

exhibit trip times of more than 2 minutes when overloaded to 125% of the rated load

(oversubscription of 56%).

Figure 7.1 shows the trip curve of the Rockwell Allen-Bradley 1489-A Industrial

CB used in our experiments (at a temperature of 40◦C) [15]. Rockwell CBs are used

in many data centers. Their trip curves follow the UL489 standard and are similar

to Figure 7.1. This selected CB has a rated current of In = 1A. As shown in Figure

7.1, the trip curve of the CB is actually a band called the tolerance band. The area

110

3600

120

2

0.1

1 2 3 5 10 20
Tr

ip
 ti

m
e

(s
ec

)
Current normalized to rated current

Not Tripped

Tripped

Long-delay

Conventional
Tripping

Short Circuit

21

3

Tolerance Band

Figure 7.1: The trip curve of a typical circuit breaker.

Table 7.1: Test bed circuit breaker at 40◦C

Current(A) Measured trip time (sec)

slightly less than 1.35 ¿ 7200
1.42 193
1.55 80
1.67 56
6.8 ≈2
≈10 ¡1

above the band is the tripped area, which means that the CB will trip if the duration

of the CB current is longer than the specified trip time. The area below the band

is the not-tripped area. This band represents the area where it is uncertain if the

CB will trip. The lower and upper limits of the band are specified by the UL489

standard. The actual implementation is determined by the manufacturer [70]. The

CB has three types of trip time behaviors that are shown as different regions on

the tolerance band [15]. Region 1 is the long-delay tripping zone with the overload

current as (1In ≤ I ≤ 1.35In). In this region, the CB trip time is minutes to hours

to even days. Region 2 is the conventional tripping region (1.35In < I ≤ 10In).

Region 3 is the instantaneous tripping zone (I > 10In) that is designed to handle

short-circuits. Table 7.1 shows that the actual measurements of CB trip time on our

111

test bed for all three regions are consistent with the trip curve shown in Figure 7.1.

While previous power capping solutions conservatively treat all the regions as the

instantaneous tripping zone, a key contribution of our dissertation is to have different

strategies for the different regions. As a result, we can fully utilize the long-delay

tripping zone to safely boost server performance and host additional servers.

In order to fully utilize the long-delay tripping zone without tripping the CB, one

has to ensure that the overload current is reduced to In before the trip time specified

by the lower bound of the tolerance band. Based on this observation, we choose to

design a power controller based on feedback control theory because recent studies

(e.g., [81, 120, 136]) show that control theory can provide quantitative analyses and

guarantees for system stability and settling time (i.e., the time for the overload current

to return to In). A key difference between our work and existing studies is systematic

analysis of the controller settling time. As shown in Figure 7.1, the allowed settling

time increases whenever the overload current is reduced to a lower value. Therefore,

to fully utilize the long trip time that continues to increase at each step, we propose to

adopt adaptive control theory that can adjust the controller parameters based on the

varying requirements of the settling time. Unlike previous power capping solutions

that rely on a static power budget (e.g., 0.8In), our adaptive controller features a

dynamic power budget that varies in every control period based on the overload current

and its corresponding trip time. Ideally, the dynamic power budget can equal the

lower bound of the tolerance band, which can be regarded as the theoretical upper

bound of safe power oversubscription. In other words, power oversubscription is safe as

long as it is lower than the lower bound of the tolerance band. A major contribution of

our work is that we identify this theoretical upper bound and develop adaptive control

solutions to explore a practical upper bound of safe power oversubscription. Note

that the tripping behavior of the CB is also impacted by the ambient temperature.

The relationship between the overload current and temperature can be modeled and

handled in the proposed adaptive control framework, as discussed in detail in Section

7.2.2.

112

7.2 CB-Aware Adaptive Power Control

In this section, we first present the design and analysis of the proposed CB-Adaptive

control solution. We then introduce a method to calibrate CB-Adaptive according

to temperature fluctuations. Finally, we describe CB-Proactive to further improve

performance.

7.2.1 CB-Adaptive Control

CB-Adaptive is more than just a standalone controller. It is a control methodology

that adapts the parameters of existing power controllers to engineer their settling

times according to the trip curves of circuit breakers. CB-Adaptive can be applied to

controllers at different levels (e.g., server, rack and data center) and to different

control techniques (e.g., proportional-integral-derivative (PID), model predictive

control (MPC)), though the detailed steps to tune parameters can be different. In this

dissertation, as an example, we choose a state-of-the-art server-level power controller

[81] as a baseline to demonstrate the design of CB-Adaptive.

As introduced in [81], The controlled variable of the server-level power controller

is the power consumption of the server in the kth control period, i.e., p(k). The

manipulated variable is the level of the CPU Dynamic Voltage and Frequency Scaling

(DVFS), i.e., CPU frequency f(k). d(k) is the difference between f(k + 1) and f(k).

Specifically d(k) = f(k + 1)− f(k). The power model used in [81] is:

p(k + 1) = p(k) + Ad(k) (7.1)

where A is a parameter determined by specific server configurations and the

benchmark running on the server. Based on the power model, the controller designed

in [81] in the Z-domain form is:

C(z) =
1

A
(7.2)

113

In contrast to the original power controller which simply uses the rated current of

the circuit breaker as its power budget, the design goal of CB-Adaptive is to enforce

a dynamic power budget that varies in every control period, based on the breaker

trip curve, to guarantee that the circuit breaker does not trip if workloads vary. As

a result, the server can run at its maximum performance level.

We design CB-Adaptive by adapting the controller parameter A in every control

period according to the trip curve of the circuit breaker. Since the trip time is a

non-linear function of the magnitude of the power overload, to reduce complexity, we

use piecewise linear equations to approximate the trip curve. The Z-domain form of

our adaptive controller is:

C(z) =
1

A∗ (7.3)

where

A∗ =
A

1− k
√
0.02

(7.4)

where k =
⌊
settling time(sec)

T(sec)

⌋
> 0. settling time is set to the trip time of the circuit

breaker when power is p(k).

Example. Suppose A = 76 for a specific configuration of a server running

LINPACK. In one control period, the measured current is 1.53A. Since the current is

greater than the rated current of our CB (1A), based on Figure 7.1, the trip time is

about 80 seconds. The settling time of the proportional controller (7.2) is set to the

trip time by adapting the control parameter according to (7.4). Thus A∗ = 350.38.

In the next control period, the measured current may be reduced to 1.42A due to

DVFS throttling, the trip time becomes 190 seconds. Since the allowed settling time

is now longer than before, we set A∗ = 776.89. The key feature of CB-Adaptive is

continuously adjusting the control parameter to fully utilize the allowed interval for

optimized system performance.

We now consider the impacts of workload variations on the design of CB-Adaptive.

In production data centers, the workload of a server may differ from the benchmark

based on which we design the controller (7.3). To prevent the CB tripping when the

114

workload varies at runtime, it is necessary to analyze the impact of the different

workloads on the controller using control theory. Our analysis shows that the

controller parameter A in (7.2) needs to be changed by adding a safety margin. We

outline the main steps of the analysis as follows.

1. We test a wide range of workloads to determine the range of the parameter A

in (7.2) for the typical workload, such as SPECJBB, SPECCPU 2-cores in addition

to LINPACK, by conducting system identification. The dynamic model of the real

system is in the following format

p(k + 1) = p(k) + gAd(k) (7.5)

where the system gain g is used to model the variation between the real system model

(7.5) and the nominal model (7.1). For example, g = 1.5 means that the actual change

to the power consumption of the server is 1.5 times the estimated change in the event

of DVFS.

2. Based on the real model (7.5) that models workload variations, we derive the

controller parameter of CB-Adaptive as:

A∗
real =

gA

1− k
√
0.02

. (7.6)

The new transfer function of the adaptive controller is

Creal(z) = gC(z). (7.7)

3. The key difference between (7.6) and (7.4) is g. Based on step 2, we set the

safety margin as max{g} for the various workloads we will run on the servers. As long

as we run the workloads corresponding to the range of g, the safety margin guarantees

that the settling time of the adaptive controller (7.8) is less than or equal to the trip

time in spite of the workload variations and the circuit breaker will not trip. In case

the running workload is not corresponded to the range of g, the DVFS is decreased

115

quickly to prevent the circuit breaker from tripping when the power consumption of

the server is higher than the power budget.

Creal(z) = max {g}C(z). (7.8)

In addition to the settling time, we also need to check whether the adaptive

controller is stable. The stability range is 0 < g < 2, which is much wider than the

variation range of g observed in our extensive experiments with various workloads.

Therefore, for typical workloads such as SPECJBB, SPEC CPU2006 and LINPACK,

CB-Adaptive is guaranteed to be stable.

7.2.2 Temperature-aware CB-Adaptive

In Section 7.2.1, we assume that circuit breakers operate at their normial temperature

(40◦C). However, in a production data center, servers and circuit breakers may run

at different temperatures since the temperature distribution is not uniform. A typical

raised-floor data center is divided into hot aisles and cold aisles to improve the data

center cooling efficiency. Poor air recirculation at the ends of rows and top of racks

often causes server inlet temperatures to vary widely (from 15◦C to 45◦C) [8]. Since

airflow in a data center is not ideal and the CB trip time depends on temperature,

we calibrate the adaptive controller parameter as follows

A∗(TCB) =
A

1− k(TCB)
√
0.02

(7.9)

To determine k(TCB), we first calculate the rated current adjusted by temperature

according to (7.10) given the measured ambient temperature of the CB. Then we

calculate the normalized current with respect to the rated current specified for the

measured temperature. Based on the piece-wise equations which approximate the

trip curve, we calculate the trip time under the measured temperature as:

116

ITn = (C1TCB + C2) In (7.10)

where In is the rated current at the nominal temperature (normally 40◦C). C1 and

C2 are constants and specified in CB data sheets. ITn is the rated current adjusted by

temperature at T ◦C. TCB is the ambient temperature of the circuit breaker.

We assume that CB temperatures can be measured in real time. This is reasonable

since deployments of sensor networks in data centers are already used in practice [147].

Section 7.4 discusses CB temperature monitoring in detail.

Example. For the circuit breaker we used in the experiments, In = 1. Suppose

the ambient temperature of the CB is 10◦C. According to the CB manual [15],

C1 = −0.004167 and C2 = 1.167. Using (7.10), ITn = 1.125. When calculating k(TCB)

based on Figure 7.1, the measured current should be normalized with respect to ITn

instead of In.

7.3 Discussion

The proposed CB-aware power control solutions can have many potential applications

in data center power management. In this section, we discuss hosting additional

servers in a data center. First, we present our method based on proposed CB-aware

power control solutions. Then, we investigate whether it is safe to apply our method

in a data center.

The allowed number of servers hosted within a rack is determined by the power

consumption profile of the servers. Currently, the measured peak power consumption

of the servers is equal or less than the 80% of rated power capacity of the circuit

breaker according to the NEC requirement. In contrast, CB-Adaptive allows hosting

additional servers by configuring the measured peak power consumption of the servers

beyond 80% of the rated power capacity of the circuit breaker. As shown in Figure

7.2, Fan et al. [46] present the cumulative distribution functions (CDF) of the power

117

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Normalized Power

Rack
PDU

Cluster

Figure 7.2: Power CDF of a real Google data center from [46].

consumption of servers running a wide range of data center workloads in a real Google

data center. The highest power consumption of servers during most time is much

lower than the measured peak power. Suppose we configure the allowed peak power

consumption of servers as the 135% of rated power capacity of the circuit breaker.

According to the CDF, during most time, the power consumption of the servers may

be below 80% of rated power capacity of the circuit breaker. The time interval that

violates the 80% of rated power capacity of the circuit breaker is only on a scale of

minutes. Those short-term violations are allowed by NEC. Furthermore, CB-Adaptive

can guarantee that the circuit breaker will not trip and boost the performance of the

servers compared to the current conservative practice. Section 7.6 provides a detailed

quantitative analysis.

From Figure 7.2, which shows the power load behavior for racks, PDUs, and

clusters in a highly-optimized Google data center [46], we observe that among racks

(40 servers), PDUs (800 servers) and clusters (5000 servers), only racks occasionally

get close to 100% of the possible peak aggregate server power. Since branch circuits

directly feed the rack-level, we assume that branch circuits will see similar load

behavior. An important point is that load behavior varies considerably between

racks (branch circuits) and this is a key reason that the PDU and cluster-level load

behavior does not come close to the 100% peak power consumption possible [46]. In

fact, at the cluster level, only about 70% of the peak possible server power is observed.

118

If a data center is attempting to utilize its power infrastructure by hosting as

many servers as possible, it will likely experience overloads first at the branch circuit.

For this reason, we apply the CB-Adaptive method on the circuit breaker for each

branch circuit. The prior data suggests that different branch circuits will overload at

different times but not together. This means that we can focus effort on controlling

overloads at the branch circuit and that they will not transfer all the way to the

root of the power distribution system. On average, some branch circuits will need

additional overload capacity while others do not, so overloads will be rarely seen at

the PDU or cluster levels. In this case, only the circuit breaker and branch circuit

cable is relevant for determining the length of operation in overload.

In the unlikely case that a data center workload drives all CB-Adaptive branch

circuits to operate beyond 100% capacity, overloads will be experienced by higher-

levels in the facility and their overload times become relevant for consideration. In this

rare case, all components of the power delivery system of a data center are relevant

for determining the length of operation in overload. CB-Adaptive controllers would

need to be informed by a higher-level controller to determine the overload duration

time.

PDU
STS

U
PS

 1
U

PS
 2

Sw
itc

h

Power Grid

Transformer

Generator
PDU
STS

PDU
STS

Figure 7.3: A typical power delivery system of a data center.

Figure 7.3 shows a typical power delivery system of a data center. All the

components have an overload capacity in addition to their rated capacity. Although

power overloads beyond the rated capacity in a very long term might damage a

component, in many cases, tolerating short-term power overloads is necessary in

practice [131]. We now summarize typical overload capacities of the components

in Table 7.2. Note that all components can tolerate an overload higher than the value

119

listed in the table, but components generally tolerate a higher overload for a shorter

time interval.

Table 7.2: Overload capacity

Components Overload capacity normal-
ized to the rating

Time
(minutes)

Static Transfer
Switch

125% 60

Various cables 125% 3.5 to
110

UPS 125% 0.5
Generator 110% 60
Transformer 150% 30

Table 7.2 shows the overload capacities of all components. Static transfer switch

can tolerate large over currents. The limiting factor of the overload capacity is the

heat dissipation [123]. If over currents are too large, the heat generated by over

currents cannot be dissipated. Cables can tolerate overloads for a short period of time

[14] but overloading cables for long periods of time could damage their insulation.

Generators comply with electrical standards which allow a 10% or more overload

[101]. The overload capacities of transformers depend on ambient temperature, type

of insulation, size of transformer and method of cooling [131]. UPS can also tolerate

a short period of overload [13]. For example, certain models of data center level

UPSs from APC can tolerate 125% overload for 30s. This fact implies that a single

UPS basically can not tolerate much overload. However, Figure 7.3 shows that in a

normal state, each UPS only runs, at most, half of its capacity for fault tolerance. If

one UPS is down, the power load of the UPS shut down will be transferred to the

operating UPS. In the rare case where a UPS is down, it is not desirable to perform

the proposed power oversubscription solutions any longer. The servers have to run

at a lower power budget.

The most important contribution of our work is to provide a technically feasible

solution that allows a data center to gain the maximized return on existing

120

investments in their power supply facilities by safely accommodating the maximum

number of servers. It is important to note that our technique is not limited to

circuit breakers, because it can be applied to the component with the lowest tolerance

level in the power delivery system. As a result, safe power oversubscription can be

achieved. More importantly, our work offers insightful discussion on the technical

part of the power oversubscription problem and explores a practical upper bound for

power capping, revealing that a power overload is not necessarily fatal as commonly

assumed.

7.4 Implementation

In this section, we introduce our physical test bed and benchmarks, as well as the

implementation details of each component in the control loop.

Figure 7.4: Hardware test bed.

Our test bed uses a single server to represent the load on the branch circuit.

Note that CB-adaptive can also be integrated with exsiting branch circuit level or

data center level power controls. Recent proposals like SHIP [138] allow for control

of branch circuit power by monitoring and controlling the aggregate power of many

servers. A natural place for CB-adaptive is within such a control system. Details of

controlling multiple servers to realize an aggregate power are presented in the prior

work [138].

121

Our test bed shown in Figure 7.4 consists of a Rockwell Automation circuit

breaker, a heater to change the ambient temperature of the breaker, a thermostat,

a power meter and a Dell OptiPlex desktop with an AMD Athlon(tm) 64 X2

Dual Core Processor 4400+ with a 2MB on-die L2 cache and 800 MHz FSB. The

processor supports five DVFS levels: 2.3GHz, 2.2GHz, 2GHz, 1.8GHz, and 1GHz.

The operating system is a Fedora Core 8 with a Linux kernel 2.6.23 with real-time

patches. The circuit breaker model is a Rockwell Allen-Bradley 1489-A Industrial

circuit Breaker with a rated current of 1A. Rockwell circuit breakers are widely used

by data center operators.

We run the SPEC CPU2006 suite (V1.0) and High Performance Computing

LINPACK Benchmark (HPL) (V1.0a) as our workloads. For the SPEC CPU2006,

each performance measurement is the average of the four copies and is recorded as the

performance ratio, i.e., the relative speed of the processor to complete each benchmark

(compared to a reference Sun UltraSparc II machine at 296 MHz). The CPU2006

includes a collection of 29 benchmarks and is divided into CINT2006 and CFP2006,

each of which consist of integer and floating-point benchmarks, respectively. HPL is

a software package that solves a (random) dense linear system in double precision (64

bits) arithmetic. The problem size of HPL is configured to be 10, 000 × 10, 000 and

the block size is 64 in all experiments, unless otherwise noted.

The control loop consists of three components: temperature monitor and power

meter (sensor), adaptive controller (controller), and CPU frequency modulator

(actuator).

CB Temperature Monitor: Circuit breakers typically do not have built-in

thermal sensors, however the industry is rapidly adding temperature measurement

to data center products. For example, Arch Rock (Now Cisco)’s PhyNet Wireless

Sensor Network is being integrated into IBM’s Active Energy Manager [147]. These

inexpensive and low-power sensors can easily be added to the circuit breaker panel

to measure the temperature of a circuit breaker.

122

Power Meter: The power consumption of the server is measured with a WattsUp

Pro power meter which has an accuracy of ±1.5% of the measured value. To access

the power data, the data port of the power meter is connected to the USB port of

the desktop. A device file is then generated for a power reading on the Linux system.

The power meter samples the power data every 5 seconds and responds to requests

by writing all new readings after the last request to the system file. The controller

then reads the power data from the device file and conducts the control computation.

Adaptive Controller: The adaptive controller which implements CB-Adaptive

or CB-Proactive runs at the highest priority (real-time priority) to guarantee fast

response times. Otherwise, the controller process may be preempted by other

processes with a higher priority which may cause the circuit breaker to trip due to

improper control. The Linux system call sched setscheduler sets both the scheduling

policy and the associated parameters for the process identified by PID. A key

advantage of CB-Adaptive and CB-Proactive is their small overheads in terms of

time, space, and power consumption.

7.5 Evaluation Results

We first introduce the state-of-the-art baselines, then present our empirical results

conducted on the physical test bed.

Baselines

Our first baseline is NoControl. NoControl estimates the peak power consumption

of a server by measuring a high-power workload like SPECJBB over a few days. It

assumes the real peak power consumption will never exceed the estimation. Although

NoControl may run without any problems for weeks or months, it is risky because

unexpected workloads or high input rates may drive even higher power consumption

which cause the CB to trip. The second baseline, referred to as P-Control, is a

state-of-the-art power provisioning algorithm widely deployed in IBM servers [81]. P-

Control is briefly summarized as follows. 1) In each control period, the power meter

123

on each server sends the server power consumption in the last sampling period to

a propotional controller through its power management infrastructure [146]. 2) The

proportional controller calculates the CPU frequencies in the next control period. 3)

The calculated frequencies are enforced using a first-order delta-sigma modulator.

The third baseline is P-Control-CB. The only difference of P-Control-CB from P-

Control is that its power budget is set according to the upper limit of the long-delay

region.

A fundamental difference between P-Control and our solutions is that P-Control

assumes the power budget must be below the rated power of circuit breaker as soon

as possible, without considering the trip curve of the circuit breaker. Moreover,

P-Control adopts classical proportional control without adapting the gain of the

controller.

Power Capping Comparison

In this experiment set, we compare the NoControl, P-Control, P-Control-CB,

CB-Adaptive, and CB-Proactive under a power emergency in which the power

consumption of the server increases abruptly. To emulate the power emergency, we

launch a power hungry benchmark LINPACK in the middle of the experiment. Figure

7.5a shows that with NoControl, the power consumption increases from 83W to 125W

after LINPACK is launched in the 20th control period. Since the server draws a much

higher current than the upper-limit of the long-delay region, the circuit breaker trips

quickly, in approximately the 72th control period. Figure 7.5b shows that P-Control

controls the power consumption without tripping the circuit breaker within 3 control

periods to the set point which corresponds to the rated current of the circuit breaker.

Similar to P-Control, Figure 7.5b also shows the P-Control-CB controls the power

consumption within 3 control periods to the set point which corresponds to the upper-

limit of the long-delay region. In contrast, in Figure 7.5c, it takes approximately 70

control periods for CB-Adaptive to control the power consumption to the set point.

Within the time interval of the experiment, the power consumption is still higher than

the set point. The reason is that CB-Adaptive changes the CPU frequencies according

124

to the circuit breaker trip curve and the controller parameter is updated accordingly.

From the 20th control period to the 90th control period, the circuit breaker runs in

the conventional tripping zone. From the 90th control period on, the circuit breaker

runs in the Long-delay tripping zone. Since the trip time in this zone is on the scale of

days, the controller decreases the frequency slowly. Thus, the decrease of the power

consumption is not visible. As shown in Figure 7.5d, CB-Proactive further increases

the power consumption of the server by increasing the CPU DVFS level to the highest

level proactively when the CB enters the long-delay region. After the DVFS increase,

an abrupt power increase is observed at approximately the 90th control period.

Note that P-Control-CB controls the power consumption to the set point, which

is approximately 108W. Although the trip time corresponding to 108W is on the

scale of days, it is not infinite. Thus, P-Control-CB can not guarantee the circuit

breaker will not trip. Even within the short experiment time interval, CB-Adaptive

and CB-Proactive settle to 108W. They can guarantee the circuit breaker will never

trip by decreasing the power consumption according to the long-delay region. This

experiment set demonstrates that CB-Adaptive and CB-Proactive can oversubscribe

the circuit breaker without tripping it during a power emergency. NoControl and

P-Control-CB may cause the circuit breaker to trip during a power emergency.

Although P-Control will not cause the circuit breaker to trip like CB-Adaptive and

CB-Proactive, as we will show in the next experiment set, the performance penalty

incurred by the P-Control is large.

Performance Comparison

In this experiment set, we study the performance benefits of CB-Adaptive and

CB-Proactive by comparing them to P-Control. Although P-Control-CB is not a safe

power provisioning solution, we include it in the comparison to explain CB-Adaptive

and CB-Proactive. We first test solutions running a computation-intensive benchmark

LINPACK, then run all 29 benchmarks of SPEC CPU2006 to test the robustness of

the solutions under a wide range of workloads.

125

50

100

150

0 10 20 30 40 50 60 70 80 90 100
Control Period (5sec)

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n

(W
a
tt
)

NoControl Power Budget (Rated)
Long Delay Zone Upper Limit

(a) NoControl (CB trips in the 72th control period)

50

100

150

0 10 20 30 40 50 60 70 80 90 100
Control Period (5sec)

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n

(W
a
tt
)

P-Control-CB Long Delay Zone Upper Limit P-Control

(b) P-Control

50

100

150

0 10 20 30 40 50 60 70 80 90 100
Control Period (5sec)

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n

(W
a
tt
)

CB-Adaptive Power Budget (Rated)
Long Delay Zone Upper Limit

Converge to 80W

(c) CB-Adaptive

50

100

150

0 10 20 30 40 50 60 70 80 90 100

Control Period (5sec)

P
o
w
e
r
C
o
n
s
u
m
p
ti
o
n

(W
a
tt
)

CB-Proactive Power Budget (Rated)
Long Delay Zone Upper Limit

Converge to 80W

(d) CB-Proactive

Figure 7.5: The comparison of CB-Adaptive and CB-Proactive with baselines.

Figure 7.6 compares the LINPACK and SPECJBB performance of P-Control,

P-Control-CB, CB-Adaptive, and CB-Proactive. The performance of P-Control is

the lowest and is only 0.85 Gflops. P-Control-CB, CB-Adaptive, and CB-Proactive

outperform P-Control by 66.00%, 69.06 %, and 70.12 %, respectively. The relationship

between the performance and the power consumption is approximately 0.02 Gflops

per Watt. From the results, CB-Adaptive and CB-Proactive improve the performance

significantly as compared to the state-of-the-art P-Control. It is demonstrated that

the primary performance boost comes from the long-delay region because within the

time interval of the experiment the circuit breaker runs at the upper-limit of the long-

delay region, according to Figures 7.5b, 7.5c, and 7.5d. Although the performance of

P-Control-CB is comparable to CB-Adaptive and CB-Proactive, as shown in Section

7.5, it may trip the circuit breaker over the long-term and not safe. For CB-Adaptive

and CB-Proactive, their performance is impacted significantly by the long-delay

region of a circuit breaker. For different models of circuit breakers from different

manufacturers, the upper-limit of the long-delay region may vary. The larger the

upper-limit of the long-delay region is, the better the performance is. The slower

126

the decreases of the trip time with respect to the excess current in the conventional

tripping zone, the better the performance is.

2.1

2.8

3.5

1.4

1.6

1.8

 P
er

fo
rm

an
ce

 b
o

p
s)

00 P
er

fo
rm

an
ce

fl
o

p
s)

LINPACK SPECJBB

0

0.7

1.4

2.1

2.8

3.5

0.8

1.0

1.2

1.4

1.6

1.8

P-Control P-Control-CB CB-Adaptive CB-Proactive

S
P

E
C

JB
B

 P
er

fo
rm

an
ce

(

 b
o

p
s)

x
10

00
0

L
IN

P
A

C
K

 P
er

fo
rm

an
ce

(G
fl

o
p

s)

LINPACK SPECJBB

0

0.7

1.4

2.1

2.8

3.5

0.8

1.0

1.2

1.4

1.6

1.8

P-Control P-Control-CB CB-Adaptive CB-Proactive

S
P

E
C

JB
B

 P
er

fo
rm

an
ce

(

 b
o

p
s)

x
10

00
0

L
IN

P
A

C
K

 P
er

fo
rm

an
ce

(G
fl

o
p

s)

LINPACK SPECJBB

0

0.7

1.4

2.1

2.8

3.5

0.8

1.0

1.2

1.4

1.6

1.8

P-Control P-Control-CB CB-Adaptive CB-Proactive

S
P

E
C

JB
B

 P
er

fo
rm

an
ce

(

 b
o

p
s)

x
10

00
0

L
IN

P
A

C
K

 P
er

fo
rm

an
ce

(G
fl

o
p

s)

LINPACK SPECJBB

0

0.7

1.4

2.1

2.8

3.5

0.8

1.0

1.2

1.4

1.6

1.8

P-Control P-Control-CB CB-Adaptive CB-Proactive

S
P

E
C

JB
B

 P
er

fo
rm

an
ce

(

 b
o

p
s)

x
10

00
0

L
IN

P
A

C
K

 P
er

fo
rm

an
ce

(G
fl

o
p

s)

LINPACK SPECJBB

Figure 7.6: The LINKPACK and SPECJBB performance comparison.

We also test solutions by running the SPEC CPU2006 benchmark and study

its performance in terms of the base rate. We only test P-Control, CB-Adaptive

and CB-Proactive in this experiment because previous experiments have shown

that NoControl and P-Control may trip the circuit breaker. Figures 7.7 and 7.8

compare the CPU2006 performance of P-Control and CB-Adaptive. As shown, CB-

Adaptive achieves better performance than P-Control for all benchmarks since CB-

Adaptive can provision the server at a higher power budget safely as compared to

P-Control. The maximum performance improvement of CB-Adaptive is 49% over

P-Control with the benchmark hmmer while the minimum improvement is 29%

with the benchmark povray. The average improvement of CB-Adaptive is 38%.

This experiment set demonstrates that CB-Adaptive and CB-Proactive can boost

performance significantly during an overload condition for LINPACK and SPEC

CPU2006.

Temperature Awareness

While the previous experiments are conducted at a normal room temperature,

this experiment set studies the feasibility of incorporating the temperature into the

design of CB-Adaptive. We use a fan heater to heat the circuit breaker to emulate

non-uniform temperature within a data center. For each experiment, we monitor

the temperature of the circuit breaker to be approximately stable using a regular

thermostat. We first study the impact of the temperature on the circuit breaker

127

0

3

6

9

12

15

18

xa
lan

cb
mk

as
tar

omnetp
p

h26
4re

f

lib
quan

tum
sje

ng

hmmer

gobmk
mcf gcc

bzip
2

perl
ben

ch

SPEC2006 benchmarks (int)

Pe
rf

or
m

an
ce

 (B
as

e
R

at
io

)

P-Control CB-Adaptive
CB-Proactive

Figure 7.7: The SPEC CPU2006 int performance comparison.

0

3

6

9

12

15

18

sp
hinx3 wrf

lbm
tonto

Gem
sF

DTD

ca
lcu

lix

povra
y

so
plex

dea
lII

nam
d

les
lie

3d

ca
ctu

sA
DM

gro
mac

s

ze
usm

p
milc

gam
es

s

bwav
es

SPEC2006 benchmarks (fp)

Pe
rf

or
m

an
ce

 (B
as

e
R

at
io

)

P-Control CB-Adaptive
CB-Proactive

Figure 7.8: The SPEC CPU2006 fp performance comparison.

without any control. The actual rated current is not measurable. To examine the

impact, we measure the trip time instead of the actual rated current by running the

LINPACK benchmark on the two cores of the server. We vary the temperature from

21.7◦C to 34.8◦C. The temperature range is a subset of the normal temperature range

within a data center. We can not lower the temperature below the 21.7◦C without

a cooler due to our room temperature limit. The first four bars of Figure 7.9 show

that the temperature has a significant impact on the trip time of the circuit breaker.

For example, the trip time of the circuit breaker is 490 seconds at 21.7◦C while the

trip time at 34.8◦C is only 210 seconds. For each temperature, the trip time is an

average of several repeated experiments and the deviation is negligibly small. The

key feature of CB-Adaptive and CB-Proactive is an adaptive controller based on the

trip curve of the circuit breaker. Since the temperature impacts the circuit breaker,

it will also impact CB-Adaptive and CB-Proactive.

128

We configure P-Control-CB, CB-Adaptive, and CB-Proactive based on the

temperature of 10◦C because the low average operating temperature in some data

centers is 12◦C. Since the temperature distribution within a data center is non-

uniform [8], we also test the circuit breaker at a maximum temperature of approximate

45◦C. The last three bars of Figure 7.9 show that the circuit breaker still trips

even though all solutions can safely provision power at the configured temperature.

Since the controllers are configured to 10◦C, they assume that the circuit breaker’s

rated current, as adjusted by the temperature, is 1.1 A. However, the actual rated

current, adjusted by the temperature, at 45◦C is actually only 0.9 A. Since the

controllers operate according to an over-optimistic trip curve, the temperature-

blinded circuit breakers still trip. Because CB-Adaptive and CB-Proactive run at a

higher power budget than P-Control-CB, they trip more quickly than P-Control-CB.

This experiment demonstrates that it is necessary to adopt the temperature-aware

CB-Adaptive in real data center operating environments. The next experiment will

demonstrate that temperature-aware CB-Adaptive can prevent the circuit breaker to

trip and investigates its performance.

Impact of Temperature on Performance

In this experiment set, we study the performance of the temperature-aware CB-

Proactive presented in Section 7.2.2 under different temperatures and compare the

performance of P-Control, P-Control-CB, CB-Adaptive, and CB-Proactive. The

temperature-aware P-Control, CB-Proactive, and CB-Proactive guarantee the safety

of power provisioning under different temperatures. We present the results of

LINPACK because, as shown in Section 7.5, the results of SPEC 2006 are very

similar. Figure 7.10 shows that, as the temperature increases from 10◦C to 45◦C

which is the normal temperature range of a production data center, the performance

of the system decreases. The reason is that as the temperature increases, the rated

current adjusted by the temperature decreases. In other word, all the solutions suffer

from the lower power budget, thus performance decreases. However, Figure 7.10

shows that the performance degradation is modest even when the temperature range

129

is wide. For P-Control, when the temperature is 45◦C, the CPU DVFS is changed to

its lowest level but the circuit breaker still trips, resulting in no performance reading.

This experiment demonstrates that the temperature-aware CB-Proactive and CB-

Proactive presented in Section 7.2.2 can successfully conduct power capping for a

range of temperatures with only a modest performance degradation.

200

250

300

350

400

450

500

NoControl (21.7
)

NoControl (26.4
)

NoControl (31.6
)

NoControl (34.8
)

P-Control-CB (45)

CB-Adaptive (45)

CB-Proactive (45)

Temperature (degree Celsius)

Tr
ip

 T
im

e
(S

ec
)

Figure 7.9: The impact of temperature on NoControl and three CB-aware solutions.

0.8

1

1.2

1.4

1.6

1.8

2

P-C
ontro

l

P-C
ontro

l-C
B

CB-A
dap

tiv
e

CB-P
ro

ac
tiv

e

P-C
ontro

l

P-C
ontro

l-C
B

CB-A
dap

tiv
e

CB-P
ro

ac
tiv

e

P-C
ontro

l

P-C
ontro

l-C
B

CB-A
dap

tiv
e

CB-P
ro

ac
tiv

e

Pe
rf

or
m

an
ce

(G
flo

p)

10 C 20 C 45 C

Figure 7.10: Impact of temperature on LINPACK performance.

7.6 Power Provisioning Analysis

As discussed in Section 7.3, one of the potential applications of CB-Adaptive is hosting

additional servers. In this section, we quantitatively compare NoControl, P-Control,

and CB-Adaptive in terms of the maximum number of servers that can be hosted

within a data center. It is shown that CB-Adaptive can host many more servers than

NoControl and P-Control without a performance penalty for short-term overloads.

130

As shown by previous experiments, NoControl may trip a circuit breaker and is not

safe. In order to make NoControl safe, instead of estimating the power consumption of

a server running a fixed benchmark, we assume the power consumption is the server’s

nameplate power value. Thus, NoControl will never trip a circuit breaker since the

power consumption will never exceed its nameplate power value. For NoControl,

the number of servers within a rack is the branch circuit capacity multiplied by

80%, then divided by the nameplate power consumption. Since the nameplate power

consumption of a server is very conservative, the actual peak power consumption of

the server when running most power intensive benchmarks with 100% utilization is

much smaller than its name power value. For P-Control, the number of servers within

a rack is the branch circuit capacity multiplied with 80%, then divided by the actual

peak power consumption of the server running real data center workloads. For CB-

Adaptive, the number of servers calculation is based on the branch circuit capacity

multiplied by the oversubscription ratio (OSR).

OSR is related to the violation interval (i.e., the time during which the power

consumption of a rack is higher than the 80% rated power capacity of the circuit

breaker) and the cumulative distribution function (CDF) of a rack running real data

center workloads [46]. We define OSR as:

OSR =
0.8

cdf−1 (1− (violation time/24))
(7.11)

where cdf−1 is the inverse function of the CDF and the unit of violation interval

is 1 hour. A power CDF of a real data Google center [46] is shown in Figure 7.2.

Note although Figure 7.2 is based on 6 months of measurements, since server activity

correlates strongly with the hour of the day, we assume it is representative of a typical

24 hour period for our analysis.

Example. We now present an example to demonstrate the calculation of OSR.

Suppose the violation interval is 3 hours which conforms to the NEC requirement

[105]. Then the ratio of the violation interval to 24 hours is 12.5%. Given the

131

percentage, we look at the y-axis of Figure 7.2 and find the point on the x-axis

corresponding to the 87.5% (1-12.5%) on the y-axis. In this case, the value is 0.68.

Thus the actual peak power consumption of the rack is 0.8/0.68 = 1.175 which means

that the actual peak power consumption of the rack is 111%of the rated capacity.

OSR = 1.175. The number of servers within a rack is the branch circuit capacity

multiplied with OSR, then divided by the actual peak power consumption of the

server running real data center workloads.

For a data center configuration, the rated power capacity of each rack is about

2.5kW[46]. The nameplate power consumption of the hosted server is 251W.

The actual power consumption of the server when running most power intensive

benchmark with a 100% utilization is just 145W.

Table 7.3: Power provisioning

Items Number of servers

NoControl (80% branch circuit capacity) 7
NoControl 9

P-Control (80% branch circuit capacity) 13
P-Control 17

CB-Adaptive OSR = 1 17
CB-Adaptive OSR = 1.1 18
CB-Adaptive OSR = 1.175 20

Table 7.3 shows that CB-Adaptive with OSR = 1.175 can host 54% more servers

than the state-of-the-art P-Control (conforming to NEC) in each branch circuit and

about three times as many servers using NoControl (conforming to NEC).

132

Chapter 8

Data Center Level Power Control

8.1 System Architecture

In this section, we present our system architecture. As shown in Figure 8.1, our

system architecture features a two-level control loop which consists of an outer cooling

system power controller and an inner server power controller. The two-level control

loop enforces a data center power budget.

During a power emergency in which the power consumption of a data center

violates its power budget, a key observation is that it is not necessary to run CRACs

in a data center at their full capacity all the time. The design goal of the two-level

 A Data center

Server 1 Server 2 Server 3 Server 4

Server 5 Server 6 Server N

CRAC1

CRAC2

Data Center
Power Budget

Data Center Total Power (Cooling+Servers)Measurement

CRAC Flow Rates &
Output Temperatures

Nonlinear
Constrained
Optimization

Server Inlet
Temperature
Constraint

Cooling
Power Model

Th
e

O
ut

er
 L

oo
p

Po
w

er
 C

on
tro

lle
r

MPC Controller

Th
e

in
ne

r l
oo

p
po

w
er

 c
on

tro
lle

r

DVFS Levels

Server Power Cap

Figure 8.1: System Architecture

133

control is to configure the power consumption of CRACs and servers in a balanced

way which means servers run at a power budget as high as possible as long as the

temperature of servers do not violate the thermal thresholds.

The outer loop power controller works as follows. According to the current power

budget of data centers, it manipulats three knobs namely the power budget for servers,

CRAC flow rates and output temperatures to control the power consumption of a

data centers. The core of the controller is an optimization formulated in Section 8.2.

Cooling system enforces calculated CRAC flow rates and output temperatures and

the power cap for servers will be an input to the inner control loop.

The inner server power controller is a MPC server power controller in our previous

work [138]. Its control period is smaller compared to that of the outer loop to ensure

in every control period the outer loop, the inner loop has already entered into its

steady state. It controls the power of the servers by scaling the CPU frequency. The

controller is a Multiple-Input-Multiple-Output (MIMO) controller and every group

of servers which share the power supply has its own MIMO controller since the power

budget for servers can be shifted among them to make full utilization of the budget.

This control loop works as follows: (1) the power monitor on each server sends the

power measurement to the centralized power controller; (2) the controller collects all

power measurement and computes a new set of CPU frequencies and sends them to

the frequency modulator on servers; and (3) the frequency modulator then changes

the server frequency using DVFS.

The proposed MPC controller is guaranteed to control a power overload to a power

budget within its settling time quickly to avoid circuit breakers trip. As shown in [52],

generally, the majority of circuit breakers have two types of trip time behaviors which

are specified in the UL489 standard. First, short-circuits (for example, over 500% of

the rated load) cause the CB to trip within a few milliseconds which [138] assumes.

This assumption is pessimistic and will cause inferior performance of servers. Second,

overload conditions for a less severe current draw can trip the circuit breaker on a

time scale from milliseconds to hours or even weeks, depending on the severity of

134

the overload. The proposed MPC controller can be adapted to further boost server

performance which is orthogonal to the proposed solution in this work.

The two-level architecture reduces the complexity of the proposed solution while

enforce thermal constraints of server inlet temperatures. For inner server power

controller, the MIMO controller only a few number of state variables. As the number

of state variables increases, the algorithm complexity of MIMO controller increases

significantly. For the cooling system power controller, due to the thermal coupling

between servers, it is undesired to reduce the number of state variables. If we have

several optimizers instead of one central optimizer, the some heat transfer will be

ignored and thermal constraint cannot be guaranteed.

8.2 The Outer Loop Power Controller

In this section, we present the design of the outer cooling system power controller.

Our optimizer minimizes the difference between the power consumption of a data

center and a data center power budget by adjusting a power cap of servers, CRAC

flow rates, and CRAC output temperatures.

8.2.1 System Modeling

In order to design a controller, we must first establish the relationship between

the cooling system power consumption Pcooling and CRAC flow rates and CRAC

output temperatures. A data center cooling system consists of Chiller water loop and

Condensation water loop. As shown in Figure 8.2, the Chiller water loop represented

by red and blue lines is used to cool down the air in the computer room. The hot air

from hot aisles of racks is forced into the CRAC by blowers. Volume of air per minute

is defined as CRAC flow rate. The hot air exchanges heat with cold water within

CRAC, and then becomes cold air, finally is expelled to hot aisles. The temperature

of the cold air expelled is CRAC output temperature. In Condensation water loop

135

CRAC 1

CRAC 2

CRAC n

Chiller
Cooling
Tower

Hot Water

C
old W

ater

Hot Air

Figure 8.2: Diagram of a Data Center Cooling System

represented by black lines, hot water is circulated back to a chiller that exchanges the

heat by phase change from a compressor and produces cold chilled water. The chiller

expels its heat through a cooling tower to the outside environment.

Most existing work such as [8] adopts a simplified power model of a data center

cooling system, the cooling power PCooling is only determined by the server power

using the following PServer as follows.

PCooling =
PServer

COP
(8.1)

where COP is an thermal efficiency metric widely adopted by industries for measuring

the energy efficiency of a data center.

In constrast, we derive a more accurate power model based on [66] and

calculate cooling power based on server power, CRAC flow rate, and CRAC output

temperature. As shown in Figure 8.2, cooling power PCooling consists of three parts

which are CRAC power PCRAC , chiller power PChiller, and cooling tower power Ptower.

The system model is as follows.

PCooling = ψ (TCRACoutputTemp, Qi, Pserver) (8.2)

Based on the system model 8.2, the CRAC power, chiller power, and cooling tower

power can be expressed as follows.

PCRAC =

NCRAC∑
i=1

ϕi[Pserver + λ (PCooling + Pserver)]
α (8.3)

136

PChiller = λ (PCooling + Pserver) (8.4)

Ptower = 0.05 (Pcooling + Pserver) (8.5)

The system model 8.2 cannot be expressed explicitly using a formula. The detailed

derivation is not presented due to page limit.

8.2.2 Controller design

The goal is to minimize power consumption of a cooling system by reducing both

the CRAC output temperature and CRAC output temperatures without violating

thermal constraints of servers. A higher CRAC output temperature will reduce the

power consumption of the entire cooling system significantly. It is predicted [29] that

4-5% of data center cooling power could be reduced for every 1◦C increase in CRAC

output temperature. It will impact the temperature of whole computer room. As a

complementary, CRAC flow rate adjustment only impacts a certain zone within the

computer room. The lower flow rate will reduce the power consumption nonlinearly.

We need to set CRAC flow rates and output temperature to optimal levels.

CRAC Output Temperature adjustment needs to be coordinated with CRAC Flow

Rates Throttling. Since both of them will increase the server inlet temperature, we

need to increase CRAC output temperature to an optimal level which minimizes the

power consumption of a data center cooling system. If CRAC output temperature

is increased beyond the optimal level, there is not much room for CRAC flow rate

throttle and the power consumption of the cooling system is not minimized. Thus, it

is impossible to adjust CRAC flow rates and output temperature seperately.

We solve the following optimal control problem. In every control period, a dynamic

optimization problem is solved to obtain the minimum cooling power consumption.

The reduced amount of cooling power consumption at the kth control period is

137

denoted by ΔPCRAC(k). We shift ΔPCRAC(k) to the servers power budget. The

server power control loop will track the updated power budget by changing DVFS

levels of servers which is determined by the MPC Controller.

Min⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TCRACoutputTemp(k)

Qi(k), CAPserver(k)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{pp(k + 1)− Pdate center}2 (8.6)

where pp(k + 1) = Pcooling(k + 1) + CAPserver(k + 1).

where CAPserver is power budget for servers and CAPdatacenter is power budget

for a data center. The object function 8.13 is a function of three knobs. The detailed

relationship between Pcooling and TCRACoutputTemp,Qi
is derived in Section 8.2.1 and is

shown to be nonlinear. subject to sets of constraints:

Qi,min ≤ Qi(k) ≤ Qi,max, 1 ≤ i ≤ NCRAC (8.7)

Tlower ≤ TCRACoutputTemp(k) ≤ Tupper (8.8)

Pservers min ≤ CAPservers(k) ≤ Pservers max (8.9)

fj (Qi(k), TCRACoutputTemp(k)) ≤ T j
threshhold

1 ≤ j ≤ NServers, 1 ≤ i ≤ NCRAC

(8.10)

where T j
threshhold is the jth server inlet temperature limit. Reliability of a data

center will be affected if T j
threshhold is set too high. ASHRAE recommends 25◦C in

2005, 27◦C in 2011. However, existing studies show that recommendation of ASHRAE

is conservative. Rackable CloudRack C2 from SGI is designed to operate at 40◦C.

Servers designed to run at a higher temperature 45◦C is on the way according to IBM

Research[80]. Studies [133][54][109][118] also show that hardware reliability of data

center equipments such as data center network, disk drive, and DRAM is uncorrelated

with the temperature under a wide temperature range.

138

We will details the modeling of the temperature constraint in Subsection 8.2.3.

It is noted that in above problem formulation, both that subjuct function and the

thermal constraint 8.10 are nonlinear functions of three control knobs. We adopt

fmincon in Matlab to solve the problem.

8.2.3 Server Inlet Temperature Constraint

It is challenging to establish a relationship between the server inlet temperature and

CRAC flow rates and output temperature using an explicit equation. [102] adopted

machine learning based modeling of temperature coupling among servers, but the

model can only be presented by a large neural network. Majority data center thermal

modeling work such as [112] predict server inlet temperatures given fixed CRAC flow

rates and output temperatures. Quite recently, [154] derived a thermal dynamic model

based on thermodynamic to predict how CRAC flow rates and output temperatures

affects server inlet temperature. We derived our model based on [154]. The high-level

derivation steps are as follows and detailed mathematical calculation is not presented.

1. [154] established the relationship between temperature change and current

temperature and current CRAC flow rates and temperatures. First, let

temperature change equal to zero, thus Eqn 8.11 of current server inlet

temperature, CRAC flow rates and temperatures can be obtained.

NCRAC∑
i=1

A [TCRACoutputTemp − TinletTemp]Qi +B = 0 (8.11)

2. there are two unknown data center specific parameters A and B in Eqn 8.11.

To determine them, CFD software can be used offline to obtain the server inlet

temperature and corresponding TCRACoutputTemp and Qi. Based on results from

CFD, an linear equation array can be obtained. Using standard solver in Matlab

linsolve, the unknown parameter can be obtained.

139

3. after some transformation, the final system model can be represented as

following,

TinletTemp = fj (Qi, TCRACoutputTemp) (8.12)

8.2.4 Coordination Analysis

[The control period of cooling system power optimizer is configured according to the

settling time of the inner control loop.]

Whenever the power consumption of the entire data center exceeds the cap, we

try to lower both the cooling and server power.We propose to formulate this problem

as a mixed-integer nonlinear programming optimization problem. We believe that the

proposed CRAC-aware power capping solution can lead to higher overall performance

than existing solutions that cap only the server power (e.g., [138][110]).

8.3 Air-side Economizer

An air-side economizer [91] brings outside air into a data center and distributes it to

the servers and it bypasses some components of a cooling system presented in Figure

8.2, thus it can significantly lower the cooling system power consumption and it is

a powerful knob in addition to CRAC flow rates and CRAC output temperature.

However, there are different types of economizer modes. Two typical modes are air

conditioner bypass via direct fresh air and chiller bypass via heat exchanger mode. For

air conditioner bypass via direct fresh air, instead of being re-circulated and cooled,

the exhaust hot air from the servers is simply directed outside. If the outside air is

particularly cold, the economizer may mix it with the exhaust air so its temperature

and humidity fall within the desired range for the equipment. The disadavantage of

this mode is requiring modification of data center building shell which is not always

possible and incur high costs. A chiller bypass via heat exchanger economizer mode

140

CRAC 1

CRAC 2

CRAC n

Chiller

Cooling
Tower

Hot Water

C
old W

ater

Hot Air

Plate Heat
Exchanger

Air-side
Economizers

Figure 8.3: Diagram of a Data Center Cooling System with a Chiller Bypass via Heat
Exchanger Economizer Mode

uses the condenser water to indirectly cool the data center chilled water when the

outside air conditions are within specified set points. Pumps move the condenser

water through a plate-and-frame heat exchanger to cool the chilled water used in

CRAHs without mixing the two water streams as shown in Figure 8.3.

Because data centers must be cooled 24/7, 365 days per year, air-side economizers

may even make sense in hot climates, where they can take advantage of cooler evening

or winter air temperatures. For most regions of the United States, existing study

shows the number of hours per year with ideal conditions for an air-side economizer

is from 5000 to 8500 hours. For the hot region (coasts around Mexican Gulf), the

hour is from 3000-5000 hours. As an Intel research shown, a 10MW facility will save

2.87 million annually.

8.3.1 Switched cooling system power controller

To fully utilize of air-side economizer, We design a switched cooling system power

controller to extend the design presented in Section 8.2.2. As shown in Figure

8.4, it consists of two controllers switched based on the outside air quality such as

temperatures and humidity. One is exactly the same as the one presented Section

8.2.2 while the other one is as follows.

Min⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TCRACoutputTemp(k)

Qi(k), CAPserver(k)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{pp(k + 1)− Pdate center}2 (8.13)

141

Nonlinear
Constrained
Optimization

Server Inlet
Temperature
Constraint

Cooling
Model with

Economizers

Switched cooling system power controller

Nonlinear
Constrained
Optimization

Cooling
Model without
Economizers

Outside Air Cold?

Y N

Figure 8.4: Switch Control

where pp(k + 1) = P ∗
cooling(k + 1) + CAPserver(k + 1).

where CAPserver is power budget for servers and CAPdatacenter is power budget

for a data center. The object function 8.13 is a function of three knobs. The detailed

relationship between Pcooling and TCRACoutputTemp,Qi
is derived in Section 8.2.1 and is

shown to be nonlinear.

subject to sets of constraints:

Qi,min ≤ Qi(k) ≤ Qi,max, 1 ≤ i ≤ NCRAC (8.14)

Tlower ≤ TCRACoutputTemp(k) ≤ Tupper (8.15)

Pservers min ≤ CAPservers(k) ≤ Pservers max (8.16)

fj (Qi(k), TCRACoutputTemp(k)) ≤ T j
threshhold

1 ≤ j ≤ NServers, 1 ≤ i ≤ NCRAC

(8.17)

The difference between of the two controllers are the cooling power model is

different. Since we adopt a chiller bypass via heat exchanger economizer mode, the

controller design presented in Section 8.2.2 is still valid and only the power model

derivation in Section 8.2.1 needs modification to have a new model P ∗
cooling(k + 1). If

142

choosing air conditioner bypass via direct fresh air, the thermal modeling in Section

8.2.3 is not valid anymore.

8.4 Evaluation

We employ simulators and real-world traces to evaluate our techniques. We use

AirPAK and Fluent which are computational fluid dynamics simulators by Ansys Inc

to model cooling in a data center.

The data center’s parameters are configured according to the previous studies [8].

The data center (40’×12’×30’) consists of four rows of 1120 server blades with each

row containin seven 40U racks. For ease of configuration, we group four servers into

a 4U server block. As shown in Figure 8.5, the data center employs the standard

configuration of alternating hot and cold aisles to facilitate air flow and to avoid

mixing of hot air with cold air. Our servers are modeled after the state-of-the-

art servers (e.g, IBM Systems x3650 M2 or HP Proliant DL3xx series) with power

consumption of 100 W when idle, 300 W at 100% utilization, and 5 W in standby

mode. Because server power varies almost linearly with server utilization [30], a 40%-

utilized server consumes 100 + (300-100)× 0.4 = 180 W. Each server has a volumetric

flow rate of 0.068 m3/s. We model fan power as a function of server inlet temperature

as [66]. There are four CRAC units in the center, each of which pushes chilled air at

15oC into a raised floor plenum (1.5 ft. high) at a rate of 9000 ft3/min. The cool

air enters the cold aisles (inlets of servers) and hot air exits the hot aisles (outlets of

servers) to the CRAC exhaust vents.

The power budget for the entire data center is reduced by 15% from 460KW.

8.4.1 Baselines

Our first baseline, referred to as SHIP, is a control-theoretic data center level power

controller proposed in a recent paper [138]. SHIP represents state-of-the-art solution

143

that is designed, conservatively running cooling system at its maximum capacity, to

use per-core DVFS to control the power of a data center. We compare our controller

against SHIP to show that state-of-the-art data center power controller may fail to

have accurate power control under extreme scenario and moreover lead to degraded

application performance. The key component of SHIP is a rack-level control loop and

briefly summarized as follows. 1) The power monitor (e.g., a power meter) measures

the average value of the total power consumption of all the servers in the last control

period and sends the value to the controller. 2) The controller computes the new

CPU frequency level for the processors of each server, and then sends the level to the

CPU frequency modulator on each server. The detailed controller design is presented

in [137] 3) The CPU frequency modulator on each server changes the CPU frequency

(and voltage if using DVFS) of the processors accordingly.

A fundamental difference between SHIP and our controller is that SHIP simply

keeps flow rates and output temperature of all CRACs at highest levels. It only

throttles DVFS levels of servers to reduce data center power consumption. In

contrast, the proposed solution adopts various knobs including DVFS levels of servers,

flow rates and output temperatures of CRACs, and switches cooling system modes

depending on weather condition while enforce thermal constraint of server.

The second baseline, referred to as TAPO-DC, is a recently proposed thermal-

aware power management solution to to reduce data center level cooling power [66].

Given a power set point, TAPO-DC uses a simple binary dynamic control method

to choose CRAC output temperatures. When power consumption of servers is lower

than a threshold, a high output temperature is selected and power is shifted from

cooling system to servers. When power consumption of servers is higher than the

threshold, a low output temperature is selected and power is shifted from servers

to the cooling system. While TAPO-DC can work effectively to enforce the data

center power budget and shift power between cooling system and servers to boost

performance, TAPO-DC fails to achieve optimal application performance because it

144

X

Y

Z

 14.99

 19.36

 23.73

 28.10

 32.47

 36.84

 41.21

 45.58

 49.95

Temperature
 C

Figure 8.5: The Simulated Data Center in AirPak and Fluent

Server Block Power CRAC Power Data Center Power
Baseline 1 895 38000 413800

No-CRAC-Throttle 890 40000 413800

Table 8.1: Comparison of Baseline 1 and No-CRAC-Throttle

ignores the correlation between cooling system and servers, and only manipulates

CRAC output temperature in a coarse granularity.

8.4.2 Power Emergency

In this experiment, we test the proposed solution and compare it with two baselines

during a power emergency. As shown in Figure 8.6c, all servers in the data center

initially run at the maximum power consumption and accordingly the cooling system

is configured to maximum flow rates of four CRACs. The default output temperature

of four CRACs is set to a typical value in production data centers which is 10 degree

Celsius. At the 150th control period, the power budget is reduced by 10%. Figure

8.6c shows that the proposed solution reduce both servers and cooling system power

consumption to enforce the reduced power budget for the data center. The settling

time of the solution is just 1 control period. Figure 8.6f further shows it dynamically

increases the output temperature of CRACs and decreases flow rates of the cooling

system.

Figure 8.6a shows the performance of SHIP when the data center power budget

is reduced by 5%. During the emergency, SHIP only reduces servers’ power and the

145

0

200000

400000

600000

0 50 100 150 200 250 300

Control Period

Po
w

er
 (W

at
t)

Data Center Servers
Cooling System

(a) Power measurement (SHIP)

0

200000

400000

600000

0 50 100 150 200 250 300

Control Period

Po
w

er
 (W

at
t)

Data Center Servers
Cooling System

(b) Power measurement (TAPO-
DC)

0

200000

400000

600000

0 50 100 150 200 250 300

Control Period

Po
w

er
 (W

at
t)

Data Center Servers
Cooling System

(c) Power measurement (Pro-
posed solution)

0
2000
4000
6000
8000

10000
12000

0 50 100 150 200 250 300

Control Period

C
R

A
C

 F
lo

w
 R

at
e

(m
3 /m

in
)

0

5

10

15

20

C
R

A
C

 O
ut

pu
t

Te
m

pe
ra

tu
re

 (°
C

)

CRAC1 CRAC2
CRAC3 CRAC4
Output Temperature

(d) Cooling system configuration
(SHIP)

0
2000
4000
6000
8000

10000
12000

0 50 100 150 200 250 300

Control Period

C
R

A
C

 F
lo

w
 R

at
e

(m
3 /m

in
)

0

5

10

15

20

C
R

A
C

 O
ut

pu
t

Te
m

pe
ra

tu
re

 (°
C

)

CRAC1 CRAC2
CRAC3 CRAC4
Output Temperature

(e) Cooling system configuration
(TAPO-DC)

9200

9400

9600

9800

10000

10200

0 50 100 150 200 250 300

Control Period

C
R

A
C

 F
lo

w
 R

at
e

(m
3 /m

in
)

0

5

10

15

20

C
R

A
C

 O
ut

pu
t

Te
m

pe
ra

tu
re

 (°
C

)

CRAC1 CRAC2
CRAC3 CRAC4
Output Temperature

(f) Cooling system configuration
(Proposed solution)

Figure 8.6: Typical runs of three solutions (Proposed solution, SHIP, and TAPO-DC).

cooling system power is not changed. Figure 8.6d shows the flow rates and output

temperature remain constant. Since the servers’ power has been reduced, it is a waste

to conservatively remain the cooling system at its maximum capacity. Compared to

the proposed solution, none power is shifted from cooling system to servers which will

lead to suboptimal performance.

According to the design of TAPO-DC, if data center power reduction is below a

threshold which is 11% in our case, the output temperature will be selected to be

10 degree Celsius which is the same as the default value. If the data center power

budget had been reduced by 5% or 10% as above scenarios, TAPO-DC will behaves

exactly as SHIP since neither flow rates nor output temperature will be reduced to

shift power from the cooling system to servers. It suffers the same problem as SHIP.

Figure 8.6b shows the performance of TAPO-DC when the data center power budget

is reduced by 12%. Figure 8.6e reveals only the output temperature is increased from

10 degree Celsius to 11 degree Celsius while none flow rates are throttled. The reason

is that TAPO-DC does not take into account the correlation between servers and

cooling system and only adjusts the output temperature in a very coarse granularity.

146

400000

420000

440000

460000

480000

4% 6% 8% 10% 12%

Data Center Power Cut

Po
w

er
 (W

at
t)

SHIP TAPO-DC
Proposed solution Set point

Figure 8.7: Data center power

8.4.3 Control Accuracy and Application Performance

In this experiment, we reduce the data center power budget from 4% to 12% for all

three solutions. The purpose is to stress test them to investigate control accuracy

and compare application performance fairly.

Figure 8.7 compares the measured power consumption of the data center when

three solutions enter stable states. Both the proposed solution and TAPO-DC can

achieve accurate power control for a wide range of power reduction. In contrast, SHIP

fails to control power accurately beyond a threshold. The reason is that cooling system

power consumption accounts for a large part (around 50%) of total data center power

consumption. If cooling system power consumption is not adapted during power

emergency, only a small percentage reduction of data center power budget will induce

a large amount of server power budget cut. Since today’s servers are not energy-

proportionate, the dynamic power range of servers is small. As shown, when the data

center power cut is 10% and 12%, even when servers run at the lowest levels, the

power consumption of servers are still higher than desired. As a result, the power

cap cannot be enforced which may cause serious consequences such as power outage.

The figure demonstrates an important disadvantage of state-of-the-art power control

solution SHIP.

Figure 8.8a shows servers power consumption under three solutions. Since

higher power consumption of servers will lead to higher application performance.

Essentially, it compares the application performance. Even TAPO-DC is similar to the

proposed solution in term of the total data center power consumption. The proposed

147

100000

140000

180000

220000

260000

4% 6% 8% 10% 12%

Data Center Power Cut

Po
w

er
 (W

at
t)

SHIP
TAPO-DC
Proposed solution

(a) Servers power

100000

140000

180000

220000

260000

4% 6% 8% 10% 12%

Data Center Power Cut

Po
w

er
 (W

at
t)

SHIP
TAPO-DC
Proposed Solution

(b) Cooling system power

Figure 8.8: Comparison of three solutions under various data center power budget
reductions (Proposed solution, SHIP, and TAPO-DC).

solution constantly outperforms baselines in term of application performance. The

performance gain ranges from 4% to 18%. It also shows that TAPO-DC and SHIP

has the same application performance when the power cut is 4%, 6%, and 8%. The

reason is that TAPO-DC does not adjust output temperature at all when the data

center power reduction is below a threshold and TAPO-DC behaves exactly the same

as SHIP. The performance difference between TAPO-DC and the proposed solution

is attributed to two main factors. TAPO-DC ignores correlations and only adjusts

output temperature in a coarse granularity. Figure 8.8a shows clearly the reason of

application performance. Both SHIP and TAPO-DC consumes more cooling power

than the proposed solution. This experiment demonstrates that the proposed solution

archives optimal application performance by efficiently utilizing the cooling power and

configure the cooling and servers in a correlated way.

8.4.4 Enforcement of Thermal Constraint

In this experiment, we evaluate the temperature constraint of the proposed solution.

As shown in Figure 8.9, the measured maximium temperature within the data center

under the proposed solution are always below the thermal constraint. In constrast,

under SHIP and TAPO-DC, the maximium temperature is far below the threshold

and the servers are unnecesarily overcooled. As a results, cooling system power are

wasted for overcooling.

148

0

5

10

15

20

4% 6% 8% 10% 12%

Data Center Power Cut

Te
m

pe
ra

tu
re

 (°
C

)

HPCA
IGCC
Proposed
Thermal constraint

Figure 8.9: Thermal threshold guarantee

Moreover, the thermal constraint significantly impacts the application per-

formance. A higher CRAC output temperature will lead to better application

performance. The proposed solution can enforce the thermal threshold and can also

minimize the difference between the maximum predicted temperature within the data

center and the threshold to improve application performance.

149

Chapter 9

End-to-End Energy Management

of Virtual Desktop Infrastructure

9.1 Energy Management with Performance Guar-

antee

In this section, we first present the system architecture of E-cubed (End-to-End

Energy Management). We then present a model of end-to-end performance for a

VDI workload. Finally, we present a formulated optimization algorithm and heuristic

for large-scale deployments.

9.1.1 System Architecture

Figure 9.1 shows the E-cubed system architecture which works as follows. (1) Each

user remotely controls a virtual machine called a desktop VM via a thin client (such

as a smartphone or a tablet PC). In the data center, physical servers host all the

desktop VMs. The desktop VMs are responsible for workload execution while the thin

clients only render the display and transmit user input (from keyboards and mice)

using a virtual desktop communication protocol. A monitor periodically collects the

150

utilization of the desktop VMs and detects input events (such as key presses) to

determine the number of active desktop VMs. The number of active desktop VMs

changes over time due to idle periods during nights and holidays and long idle interval

in office hours [114]. The number of active desktop VMs and their associated physical

servers are sent to the E-cubed. (2) The core of E-cubed is a constraint nonlinear

optimizer that minimizes the end-to-end energy consumption by various knobs. They

include throttling CPU DVFS levels of the thin clients, throttling link rates and

shutting down any idle ports on the network switches, and decreasing hard disk

rotational speeds of the shared storage. Since energy consumption of servers accounts

for a large portion of all energy consumption, in this work, we focus on manipulating

server DVFS levels and consolidating desktop VMs. The work can be extended to

integrate all knobs in the future. A key challenge is to define the performance metrics

of a VDI deployment and model the relationship between the performance metrics,

CPU DVFS levels and VMs consolidate ratios (a.k.a the number of VMs hosted on a

single host). A performance model enforces a user-specified requirement. The detailed

derivation of the performance model is in Section 9.1.2. Moreover, the optimizer

takes into account hardware constraints such as making sure the CPU frequencies are

adjusted according to hardware specific ranges. (3) The optimizer throttles the CPU

DVFS levels of physical servers and consolidates desktop VMs by live VM migration

according to the output of the optimizer.

Active VDI user
monitor

Virtual Desktop Infrastructure

Thin Clients
Communication Protocol

End-to-End Energy Management with Performance Guarantee

CPU frequencies

VM Migration

Constrained
Nonlinear

Optimization

Performance
model

Hardware
config

Power
Model

Performance
requirement

Figure 9.1: Integrated management architecture for virtual desktop infrastructure.

151

9.1.2 Performance Model

We first introduce notations. Qi is the performance, fi is chip-wide CPU frequency∗,

and Ri is the number of desktop VMs hosted on the ith server. Nhost is the total

number of physical servers in a VDI deployment. NVM is the total number of active

desktop VMs. Si is the status of the ith physical server. If the ith server hosts

dekstop VMs, Si = 1. If the server is idle and powered off, Si = 0. QoS is a user-

specified performance requirement, which is a constant. fi,min, fi,max are minimum

and maximum frequencies of the ith physical server.

End-To-End Performance

View Planner is used to generate realistic VDI workloads by emulating user

operations. It performs a series of random operations of all applications of

the collection. Between operations, a random sleep interval emulates user think

time. Different operations emulate different users. We select a collection of

applications which represent typical workloads for most VDI deployments in a

production environment. The collection includes Adobe Reader, Word, Excel,

Outlook, PowerPoint, Video, Internet Explorer, and 7-ZIP. For each application, users

may perform various operations. For example, open a Word document, browse, edit,

finally save the document.

Because VDI users expect their VMs to be ”responsive”, the first priority

performance metric is response time of an operation. The end-to-end performance is

defined as a high percentile response time of all operations performed by a VDI user.

Usually, it is defined as the 95th percentile response times or the 98th percentile

response times. Since the response time measurement has variation, we take the

average to reduce its variation. Detailed analysis of the VDI performance definition

is out of scope of this paper.

∗Recent CPU models from both Intel and AMD support per-core DVFS throttling and per-tile
DVFS throttling. More fine grained DVFS throttling can be utilized in future work.

152

Black-box Approach

In order to have an effective E-cubed design, it is necessary to model the performance

of a VDI deployment, specifically, the closed-form mathematical relationship between

the 95th percentile latency of all VDI user operations and the actuators described

in Section 9.1.1. Since a virtual desktop infrastructure deployment is a complicated

computer system, a well-established physical equation based on a queuing system

is not available. To address the challenge, we select a black-box approach, namely

surface fitting.

We establish the performance model for a single physical server off-line by running

a typical VDI workload and varying CPU DVFS levels and consolidation ratios and

measuring the end-to-end performance. Based on the collected data, an accurate

model is derived by surface fitting the datapoints. View Planner can be used to

generate realistic VDI workloads by emulating user operations. It performs a series of

random operations of all applications of the collection. Between operations, a random

sleep interval emulates user think time. Different operations emulate different users.

CPU frequency is varied from the highest frequency to the lowest frequency, and the

consolidation ratio is increased until the performance is much lower than a specified

threshold. For clusters consisting of homogeneous servers, which is the most common

in production, the performance model for a single physical server holds for the other

identical servers. For clusters of heterogeneous servers, each type of server will need

its own model.

Performance measurement shows a strong nonlinear relationship between the end-

to-end performance and manipulated variables (CPU DVFS levels and consolidation

ratio). Beyond a certain threshold, performance degrades significantly as DVFS

level decreases and consolidation ratio increases. Some black-box techniques such

as system identification [95] and linear regression [85] cannot be applied because of

their assumption of linearity. Machine learning is a powerful approach [98] for deriving

a complex model. However, [98] adopts an artificial neural network to represent a

153

derived model, and an explicit mathematical formula is unavailable. The performance

model for the ith server can be expressed as follows.

Qi (fi, Ri) = Ki

(
a1
fi
+ a2

) (
b1Ri

2 + b2Ri + b3
)

(9.1)

Constant Ki denotes response time when only one desktop virtual machine runs

on the ith server and its CPU runs at the maximum frequency. The term
(

a1
fi
+ a2

)
represents response time inflation due to CPU frequency throttling, and equals to 1

when fi = fmax. The term
(
b1Ri

2 + b2Ri + b3
)
represents response time inflation due

to VM consolidation, and equals to 1 when Ri = 1. The coefficient of determination

R2 = 0.85.

Figure 9.2 shows the difference of predicted performance based on the model and

actual measurement. Configurations 1-8 are combinations of randomly-selected CPU

DVFS levels and randomly-selected consolidation ratios. Those configurations are

different from configurations used to establish the performance model as described

before. Small difference shown in Figure 9.2 shows the end-to-end performance model

(9.1) predicts accurately.

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Configuration

R
el

at
iv

e
er

ro
r w

.r.
t

m
ea

su
re

m
en

t (
%

)

Figure 9.2: Validation of the performance model against measurement.

It is possible that the performance model derived off-line does not hold in a

production environment in some scenarios. For example, hardware upgrade, physical

server replacement, users running applications which are not listed in the profiled

collection, or computer security compromises and resource exhaustion due to a

Denial-of-service attack. However, those scenarios can be detected by comparing

154

the predicted value based on the model and real-time performance measurement. If

the difference is abnormally large for a long interval, a change of a VDI deployment

has happened. For permanent changes such as hardware upgrade, recalibration of the

model is necessary during maintenance time. If a new application is introduced, the

model can be extended.

9.1.3 Optimization

The following optimization will be invoked when the total number of active desktop

VMs NVM is changed.

Optimal Algorithm

Cost function:

PV DI=

Nhost∑
i=1

Si

(
αif

βi
i +MiRi+Li

)
(9.2)

subject to:

Qi (fi, Ri) ≤ QoS

fi,min ≤ fi ≤ fi,max

Nhost∑
i=1

Ri = NVM

(9.3)

where αi, βi,Mi,Li are server-specific parameters. Those parameters can be

estimated using high dimensional fitting. The detail of power modeling is similar

to the performance modeling and is omitted.

In a VDI deployment, minimization of energy consumption is equivalent to

minimization of power consumption. Thus, the cost function to be minimized is

the power consumption. Since servers consume a majority part of the total power

consumption, we only minimize the power consumption of servers and the power

consumption of other components is constant.

155

The above optimization formulation cannot be solved using existing solvers

directly. We present high-level steps of tranforming the formulation to MINLP

(Mixed-Integer Nonlinear Programming). For the cost function (9.2), the relationship

between Si and Ri can be established using a signum function. Si = sgn (Ri). MINLP

requires the cost function to be a continuous function while a signum function is not

continuous at 0. To meet the requirement of MINLP, the signum function can be

approximated using a special continuous function such as tanh. A MINLP solver will

determine Ri and fi to minimize the cost function (9.2). Several constraints on Ri

and fi exist. The CPU frequency cannot be adjusted arbitrarily and has to be within

a range. VDI administrators may assign a VM to a physical server in a static way.

A VM must be assigned to only one physical server and all VMs must be assigned.

The details of the mathematical transformation is not presented here.

Scalable Algorithm

A key observation is that VM consolidation and idle physical server shutdown

can lead to significantly more energy savings than throttling DVFS levels. Idle

power consumption of a physical server accounts for more than 70% of total power

consumption [21]. Thus, we design a two-step heuristic to obtain a near optimal

solution to the optimization problem formulated in 9.1.3. In the first step, we

minimize idle server energy by consolidating VMs and run each active server at the

highest CPU DVFS level. In the second step, we further throttle DVFS levels.

The detailed huristic for a large-scale VDI deployment consisting of homogeneous

servers is shown in Algorithm 2. The 2nd step of Algorithm 2 solves the following

optimization problem. The optimization is a constrained nonlinear multivariable

which can be solved directly using fmincon in Matlab. Although no polynomial

solver exists for fmincon, the optimization is conducted on a single physical server

basis rather than on a cluster basis . Thus, the the huristic reduces the algorithm

156

Algorithm 2 Heuristic for large-scale VDI deployments

begin
1: The 1st step:
2: Calculate the number of desktop VMs per server according to the performance

model, and denote the number by R0.

3: Turn on
⌊
NV M

R0

⌋
physical servers which runs at the highest DVFS level;

4: if Q (fmax, R0) < QoS then
5: The 2nd step: Invoke a host-level optimization algorithm
6: end if
7: Actuators: shut-down idle physical servers, enforce fi.

end

complexity significantly and obtains a near optimal solution as the MINLP solver in

Section 9.1.3.

Pi = αif
βi

i +MiRi+Li (9.4)

subject to:

fi,min ≤ fi ≤ fi,max

Qi (fi, Ri) ≤ QoS
(9.5)

Where Ri is determined in the first step of Algorithm 2.

9.2 Evaluation Results

9.2.1 Implementation

In this section, we introduce our physical test bed, as well as the implementation

details of each component.

Our test bed consists of two physical servers. Host1 has an AMD Opteron 6128

12-core CPU 1.9GHz with 16Gb main memory. Host2 has two AMD Opteron 254

dual-core CPU 2.8GHz with 4Gb main memory. It is connected to a shared storage

157

Table 9.1: System Configuration

Server Cluster: 2 AMD servers vSphere
Fabric: 1 Gb Ethernet vCenter Enterprise

Shared Storage: Openfiler View Planner

Openfiler by Ethernet. The detailed hardware configuration is presented in Table 9.1.

The host1 processor supports five DVFS levels: 1.9GHz, 1.5GHz, 1.3GHz, 1GHz, and

800MHz. The virtual machine operating system is Windows 7. We run View Planner

V2.0 [3] to emulate VDI user operations, which run all the typical applications in

Section 9.1.2. The length of each run is approximately 4 hours.

CPU Frequency Control : we use Intel’s Enhanced Intel SpeedStep Technology

to enforce the new frequency. To change the CPU frequency, VMWare ESXi contains

a command line tool to determine the current frequency levels, frequency islands

information, and modify frequencies within allowable ranges. Some advanced servers

come with power management policy built in to the BIOS to manipulate CPU

frequencies. To avoid conflicts, BIOS power management policies needs to be disabled.

The average overhead (i.e., transition latency) for frequency change is approximately

100 μ. The CPU frequency calculated by the optimization algorithms is continuous

and physical CPUs only support discrete number of frequency levels. A delta sigma

converter is implemented to approximate a continuous frequency using discrete CPU

frequencies.

Performance Measurement: latencies of operations on the data center side

can be measured using CPU performance counters to obtain high-resolution timing

information. By default, virtual machines cannot access performance counters. For

newer releases of vSphere, virtual machines can have access by adding a flag to the

vmx configuration files. We develop a watermarking technique to accurately measure

the latency of the image transmission from the data center side to the client side.

An encoded time stamp is placed in a fixed region of the image. When a thin client

receives the frame, it reads and decodes the fixed region. The thin client and data

158

center must be synchronized using NTP (network time protocol) with a common time

source. More details can be found in [124].

VM migration: VMware vMotion can migrate running a virtual machine

from one host to another. Even infrequent migrations of large VMs between hosts

connected by a slow link may introduce significant overhead. By leveraging multiple

NICs and efficient memory propagation, the overhead can be significantly reduced.

Moreover, we can add host affinity rules to the optimization problem formulated in

Section 9.1.3 to avoid costly VM migrations.

Power Measurement: The power consumption of the server cluster is measured

with a WattsUp Pro power meter [45] by plugging servers into the power meter and

then connecting it to a standard 120-volt AC wall outlet. The WattsUp power meter

has an accuracy of 1.5% of the measured value and samples power data every second.

Its internal memory and can store 18 hours of power data. The USB port of the power

meter is connected to a desktop and a logger tool running on the desktop configures

the meter and reads power data.

9.2.2 Baseline

Our baseline is state-of-the-art power management in a virtualized environment [1][2].

It controls the utilization of CPU and main memory within a fixed range by powering

on and off hosts and migrating VMs but an end-to-end performance metric for

VDI deployments is not taken into consideration. Although it works well for CPU

and main memory intensive workloads, it could be conservative in term of energy

saving for a VDI deployment in addition to not providing an end-to-end performance

guarantee. The first reason is that a high utilization of vCPU and guest memory may

not necessarily lead to low end-to-end performance. Another reason is the default

maximum utilization is around 70% and a fixed safe margin of 30% exists. In contrast,

the proposed solution eliminates such a margin by solving an optimization problem.

159

At last, the proposed solution can further extend energy efficiency of the baseline by

throttling CPU DVFS levels.

9.2.3 Experimental results

The purpose of this experiment is to compare the proposed solution against the

baseline both in terms of energy efficiency and performance by varying the number

of VMs (virtual machines) hosted by the hardware test bed in Section 9.2.1. This

experiment demonstrates the main use case of the proposed solution in a production

environment. The maximum number of VMs is determined by available free physical

main memory within the cluster and represents no physical memory over-commitment

scenario. During the experiment, we configure View Planner with three iterations

which present a typical length of half a workday. Power consumption is measured at

an interval of one second during the run and energy consumption is calculated as an

integral of power with respect to time.

Figure 9.3a shows the measured energy consumption. When VDI workload is

light and the number of virtual machines is from 1 to 5, the maximum energy saving

is 3%. The modest saving is because when the number of VM is small, both the

proposed solution and baseline utilize only one host and shut down the idle one.

The proposed solution throttles DVFS levels aggressively to the lowest level and the

baseline configures the highest frequency in a static way. Although the frequencies

are very different, existing servers are non-power proportional and the power dynamic

range of DVFS is limited. When the VDI workload is high and the number of virtual

machines is larger than 5, the proposed solution outperforms the baseline by 11% and

24%. During a high workload, one host will accommodate 5 virtual machines and

other virtual machines are placed on another host. The baseline consolidates based on

utilization of vCPU and guest memory and will not consolidate all virtual machines

until the utilization is below a certain threshold. When multiple virtual machines are

powered on, utilization of vCPU and guest memory is very high due to the boot storm.

160

After the boot storm, the utilization does not decrease quickly, and is calculated

according to a weighting algorithm to avoid frequently shutting down and turning

on hosts. Thus, the baseline will power on two hosts and consolidate VMs based

on slowly-changing utilization. In contrast, based on the end-to-end performance

metric, the proposed solution consolidates VMs into a single host and shuts down

the idle host. Figure 9.3b shows the end-to-end performance. Currently the standard

requirement for VDI QoS is 1.5s. Both the proposed solution and baseline satisfy the

requirement. Compared to the baseline, the proposed solution achieves significant

energy savings while introducing a minimum performance penalty.

0.8

0.95

1.1

1.25

1.4

1.55

1 2 3 4 5 6 7

The number of VMs

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

The Proposed Solution
Baseline

(a) Comparison of normalized energy consumption

0.48

0.5

0.52

0.54

0.56

1 2 3 4 5 6 7

The number of VMs

E
nd

-to
-e

nd
 P

er
f (

se
c)

The Proposed Solution
Baseline

(b) Comparison of end-to-end performance

Figure 9.3: Comparison of energy savings and performance of the proposed solution
and the baseline.

161

Chapter 10

Conclusion

Existing power/energy-efficient scheduling algorithms focus heavily on open-loop

optimization solutions. As a result, they may have degraded run-time performance

in terms of power/energy efficiency and real-time guarantees when they are applied

to real-time embedded systems with uncertain execution times. In this dissertation,

I have presented a novel online solution that integrates core-level feedback control

with a processor-level optimization strategy to minimize both the dynamic and

leakage power consumption of a multi-core real-time embedded system. Our solution

monitors the utilization of each CPU core in the system and dynamically responds to

unpredictable execution time variations by conducting per-core DVFS. Our solution

then takes advantage of the small overhead of task migration in multi-core processors

with shared L2 caches to perform task consolidation on a longer timescale and shuts

down unused cores for maximized power savings. Both empirical results on a hardware

multi-core testbed with the Mibench benchmarks and simulation results in many-

core systems show that our solution provides the desired real-time guarantees while

achieving more power savings than state-of-the-art algorithms.

I have presented a two-level utilization control solution for energy efficiency

in multi-core real-time systems. At the core level, our solution addresses two

optimization objectives: controlling the CPU utilization of each core to its desired

162

schedulable bound and minimizing the core power consumption by adopting per-

core DVFS and dynamic L2 cache partitioning to adapt both the CPU frequency-

dependent and independent portions of the task execution times of the core. Since

traditional control theory cannot handle multiple optimization objectives, a novel

utilization controller is designed based on advanced MOMPC theory. At the processor

level, a cache demand arbitrator is proposed to coordinate the cache size demand

from each core and conduct dynamic cache resizing to minimize the leakage power

consumption of the shared L2 caches. The energy and time overheads of the proposed

control solution are analyzed and demonstrated to be sufficiently small. Extensive

experiments using the Mibench benchmarks show that our solution outperforms two

state-of-the-art power management algorithms that do not consider L2 caches or per-

core DVFS by having more accurate utilization control and less energy consumption.

I have presented a two-layer coordinated CPU utilization control architecture. The

primary control loop uses frequency scaling to locally control the CPU utilization

of each processor on a coarser timescale, while the secondary control loop adopts

rate adaptation to control the utilizations of all the processors in the system at the

cluster level. Both the two control loops are designed and coordinated based on well-

established control theory for theoretically guaranteed control accuracy and system

stability. Empirical results on a physical testbed demonstrate that our control solution

outperforms EUCON, a state-of-the-art utilization control algorithm, by having more

accurate control and less power consumption.

Today’s DRE systems face an increasing probability of overheating and even

thermal failures, due to their continuously decreasing feature size and increasing

demand for computation capabilities. As a result, their temperature must be

explicitly controlled for improved reliability. However, existing work provides either

real-time guarantees or thermal management in an isolated manner. In this disserta-

tion, I have presented a coordinated control solution that can provide simultaneous

thermal and timeliness guarantees for heterogeneous real-time embedded systems

running in unpredictable environments. The thermal control loop locally controls

163

the temperature of each processor, while the utilization control loop provides end-to-

end timeliness guarantees at the cluster level. A novel coordination analysis method

based on robust control theory has been proposed to coordinate the two control loops

for theoretically guaranteed global system stability. Empirical results on a physical

testbed and extensive simulations demonstrate the efficacy of our control solution.

While a variety of power capping solutions have been recently proposed, a

conservative assumption made by existing solutions is that peak power should never

exceed the rated CB capacity. In this dissertation, I systematically study the

tripping characteristics of a typical CB used in many data centers. I identify that

the theoretical upper bound of safe power oversubscription is the lower bound of

the tolerance band in the trip curve of the circuit breaker. I then propose two

adaptive power control strategies that utilize the tripping characteristics of the

CB to aggressively optimize the system performance without causing the CB to

trip. Furthermore, our control schemes can also adapt to the variation of ambient

temperature that is known to affect the CB tripping behaviors. Empirical results on

a physical test bed show that the proposed CB-aware power control solutions achieve

29% to 49% better SPEC CPU2006 performance than a state-of-the-art baseline.

The average SPEC CPU2006 performance improvement is 38%. In addition, our

solutions allow a data center to host three times more servers than traditional static

power provisioning schemes and 54% more servers than the current power capping

practice.

Virtual desktop infrastructure is a promising virtualization technology to reduce

enterprise IT expense. However, existing work cannot address the energy management

issue in the context of VDI. In this paper, I first derived an explicit VDI

performance model using surface fitting, then propose an optimization to aggressively

reduce system energy consumption while guaranteeing performance by utilizing the

performance model. Furthermore, a two-step heuristic is proposed to manage large-

scale VDI deployments. Empirical results on a hardware test bed show that for high

consolidation ratio scenarios the proposed solution achieves 11% - 24% better energy

164

efficiency than a baseline widely adopted in production. It also ensures that user

specified end-to-end performance requirements are met.

165

Bibliography

166

[1] Dynamic Optimization and Power Optimization in System Center 2012 .

technet.microsoft.com/en-us/library/gg675109.aspx. 159

[2] VMware Distributed Power Management Concepts and Use.

www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf.

159

[3] VMware View Planner Installation and User Guide.

communities.vmware.com/docs/DOC-15578. 158

[4] Tarek F. Abdelzaher, Ella M. Atkins, and Kang G. Shin. QoS negotiation

in real-time systems and its application to automated flight control. IEEE

Transactions on Computers, 49(11):1170–1183, 2000. 35

[5] Tarek F. Abdelzaher, Vivek Sharma, and Chenyang Lu. A utilization bound

for aperiodic tasks and priority driven scheduling. IEEE Transactions on

Computers, 53(3):334–350, 2004. 28, 43

[6] Tarek F. Abdelzaher, John Stankovic, Chenyang Lu, Ronghua Zhang, and Ying

Lu. Feedback performance control in software services. IEEE Control Systems,

23(3), 2003. 18

[7] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole. Analysis

of a reservation-based feedback scheduler. In RTSS, 2002. 18

[8] Faraz Ahmad and T. N. Vijaykumar. Joint optimization of idle and cooling

power in data centers while maintaining response time. In ASPLOS, 2010. 23,

24, 116, 129, 136, 143

[9] AMD. White Paper Publication 26094: BIOS and Kernel Developer’s Guide

for AMD Athlon 64 and AMD Opteron Processors, Revision 3.30. Advanced

Micro Devices, Inc., 2006. 79

167

technet.microsoft.com/en-us/library/gg675109.aspx
www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf
communities.vmware.com/docs/DOC-15578

[10] Dave Anderson, Jim Dykes, and Erik Riedel. More than an interface—SCSI

vs. ATA. In Proceedings of the 2nd USENIX Conference on File and Storage

Technologies (FAST), 2003. 8

[11] James Anderson, John Calandrino, and UmaMaheswari C. Devi. Real-time

scheduling on multicore platforms. In RTAS, 2006. 21, 57

[12] James H. Anderson, John M. Calandrino, and UmaMaheswari C. Devi. Real-

time scheduling on multicore platforms. In RTAS, 2006. 3, 19, 28

[13] APC. Experts speak on UPS output Watt, VA, and Power Factor ratings.

http://www.dcsarabia.com/whitepapers/12.pdf, 2002. 120

[14] Ralph Atkinson and H. W. Fisher. Current rating of electrical cables.

Transactions of the American Institute of Electrical Engineers, February 1913.

120

[15] Rockwell Automation. Rockwell Automation Inc Bulletin 1489 Circuit Breakers

Selection Guide, 2010. 110, 111, 117

[16] Hakan Aydi, Pedro Mej́ıa-Alvarez, Daniel Mossé, and Rami Melhem. Dynamic

and aggressive scheduling techniques for power-aware real-time systems. In

RTSS, 2001. 19, 68

[17] Hakan Aydin, Vinay Devadas, and Dakai Zhu. System-level energy management

for periodic real-time tasks. In RTSS, 2006. 19, 29, 68

[18] Hakan Aydin and Qi Yang. Energy-aware partitioning for multiprocessor real-

time systems. In IPDPS, 2003. 20

[19] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to

manage energy and temperature. In FOCS, 2004. 22

[20] Nikhil Bansal and Kirk Pruhs. Speed scaling to manage temperature. In STACS,

2005. 22

168

http://www.dcsarabia.com/whitepapers/12.pdf

[21] Luiz Andre Barroso and Urs Holzle. The Case for Energy-Proportional

Computing. IEEE Computer, 2007. 156

[22] Alberto Bemporad and David Munoz de la Pena. Multiobjective model

predictive control. Automatica, 2009. 5, 52

[23] Enrico Bini, Giorgio Buttazzo, and Giuseppe Buttazzo. Rate monotonic

analysis: The hyperbolic bound. IEEE Transactions on Computers, 2003. 43

[24] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. Speed modulation in

energy-aware real-time systems. In ECRTS, 2005. 5, 46

[25] Enrico Bini, Giorgio C. Buttazzo, and Marko Bertogna. The multi supply

function abstraction for multiprocessors. In RTCSA, 2009. 20

[26] A. Block et al. Adaptive multiprocessor real-time scheduling with feedback

control. In ECRTS, 2008. 21

[27] D. P. Bovet and M. Cesati. Understanding the Linux Kernel, 3rd edition.

O’Reilly Publishers, 2005. 35

[28] Scott A. Brandt and Gary J. Nutt. Flexible soft real-time processing in

middleware. In RTSS, 2004. 7

[29] Thomas Breen, Ed Walsh, Jeff Punch, Amip Shah, and Cullen Bash. From

chip to cooling tower data center modeling: Part i influence of server inlet

temperature and temperature rise across cabinet. In ITherm, 2010. 137

[30] D. Brooks and M. Martonosi. Dynamic thermal management for high-

performance microprocessors. In HPCA, 2001. 8, 22

[31] BD Bui et al. Impact of cache partitioning on multi-tasking real time embedded

systems. In RTCSA, 2008. 21, 44, 47, 48

169

[32] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni.

Elastic scheduling for flexible workload management. IEEE Transactions on

Computers, 51(3), 2002. 66

[33] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Arzen. Feedback-

feedforward scheduling of control tasks. Real-Time Systems, 23(1), 2002. 18

[34] Sudipta Chattopadhyay and Abhik Roychoudhury. Unified cache modeling for

wcet analysis and layout optimizations. In RTSS, 2009. 19

[35] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,

and Feng Zhao. Energy-aware server provisioning and load dispatching for

connection-intensive internet services. In NSDI, 2008. 21

[36] Jian-Jia Chen, Heng-Ruey Hsu, and Tei-Wei Kuo. Leakage-aware energy-

efficient scheduling of real-time tasks in multiprocessor systems. In RTAS, 2006.

20

[37] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On the minimization of the

instantaneous temperature for periodic real-time tasks. In RTAS, 2007. 8, 19

[38] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On the minimization of the

instantaneous temperature for periodic real-time tasks. In RTAS, 2007. 22

[39] Jian-Jia Chen, Shengquan Wang, and Lothar Thiele. Proactive speed scheduling

for frame-based real-time tasks under thermal constraints. In RTAS, 2009. 22

[40] Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos. Optimal discrete rate

adaptation for distributed real-time systems. In RTSS, 2007. 6, 18

[41] James Donald and Margaret Martonosi. Power efficiency for variation-tolerant

multicore processors. In ISLPED, 2006. 23

[42] James Donald and Margaret Martonosi. Techniques for multicore thermal

management:classification and new exploration. In ISCA, 2006. 22

170

[43] Arvind Easwaran and Bjorn Andersson. Resource sharing in global fixed-

priority preemptive multiprocessor scheduling. In RTSS, 2009. 20

[44] Wolfgang Eberle, Bruno Bougard, Sofie Pollin, and Francky Catthoor.

From myth to methodology: cross-layer design for energy-efficient wireless

communication. In DAC, 2005. 24

[45] Electronic Educational Devices Inc. Watts up pro power meter.

http://www.wattsupmeters.com. 159

[46] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning

for a warehouse-sized computer. In Proceedings of the 34th Annual International

Symposium on Computer Architecture (ISCA), 2007. xiii, 9, 10, 12, 21, 22, 23,

95, 117, 118, 131, 132

[47] M. Femal and V. Freeh. Safe overprovisioning: Using power limits to increase

aggregate throughput. In PACS, 2004. 23

[48] Krzysztof Fleszar and Khalil S. Hindi. New heuristics for one-dimensional bin-

packing. Computers & Operations Research, 2002. 33

[49] Gene F. Franklin, J. David Powell, and Michael Workman. Digital Control of

Dynamic Systems, 3rd edition. Addition-Wesley, 1997. 74, 75

[50] Xing Fu, Khairul Kabir, and Xiaorui Wang. Cache-aware utilization control for

energy efficiency in multi-core real-time systems. In ECRTS, 2011. 20

[51] Xing Fu and Xiaorui Wang. Utilization-controlled Task Consolidation

for Power Optimization in Multi-Core Real-Time Systems, Tech Report.

http://www.ece.utk.edu/∼xwang/papers/Multicore-RT.pdf, 2010. 40

[52] Xing Fu, Xiaorui Wang, and Charles Lefurgy. How much power oversubscription

is safe and allowed in data centers? In ICAC, 2011. 12, 24, 25, 134

171

http://www.wattsupmeters.com

[53] Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xenofon D.

Koutsoukos, and HonganWang. Feedback thermal control for real-time systems.

Technical Report WUCSE-2009-17, Washington University in St. Louis, 2009.

22, 103

[54] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding

network failures in data centers: Measurement, analysis, and implications. In

SIGCOMM, 2011. 138

[55] Steve Goddard and Xin Liu. A variable rate execution model. In ECRTS, 2004.

7

[56] Ashvin Goel, Jonathan Walpole, and Molly Shor. Real-rate scheduling. In

RTAS, 2004. 18

[57] Sriram Govindan et al. Statistical profiling-based techniques for effective power

provisioning in data centers. In EuroSys, 2009. 10, 23

[58] Nan Guan et al. New schedulability test conditions for non-preemptive

scheduling on multiprocessor platforms. In RTSS, 2008. 19

[59] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling and

analysis for multicores. In EMSOFT, 2009. 21, 44

[60] Matthew R. Guthaus et al. Mibench: A free, commercially representative

embedded benchmark suite. In WCC, 2001. 4, 14, 35, 55

[61] Damien Hardy et al. Using bypass to tighten wcet estimates for multi-core

processors with shared instruction caches. In RTSS, 2009. 21

[62] D. Henriksson and T. Olsson. Maximizing the use of computational resources

in multi-camera feedback control. In RTAS, 2004. 6, 8

172

[63] Jin Heo, Dan Henriksson, Xue Liu, and Tarek Abdelzaher. Integrating adaptive

components: An emerging challenge in performance-adaptive systems and a

server farm case-study. In RTSS, 2007. 22

[64] HP. Dynamic Power Capping TCO and Best Practices White Paper.

http://h71028.www7.hp.com/ERC/downloads/4AA2-3107ENW.pdf, 2008. 10

[65] Huang Huang, Gang Quan, Jeffrey Fan, and Meikang Qiu. Throughput

maximization for periodic real-time systems under the maximal temperature

constraint. In DAC, 2011. 24, 25

[66] Wei Huang, Malcolm Allen-Ware, et al. Tapo: Thermal-aware power

optimization techniques for servers and data centers. In IGCC, 2011. 24, 136,

143, 144

[67] IBM. IBM PowerExecutive Installation and User’s Guide, 2007. 10

[68] Intel. Intel Pentium 4 Processor in the 423-pin Package Thermal-Mechanical

Support Design Guide, Revision 1.0. Intel Corporation, 2001. 103

[69] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end

processors:methodology and empirical data. In Micro, 2003. 21

[70] Hemant Joshi. Residential, Commercial and Industrial Electrical Systems:

Equipment and selection. Tata McGraw-Hill, 2008. 111

[71] Dilip D. Kandlur and Tom W. Keller. Green data centers and hot chips. In

DAC, 2009. 24

[72] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 2002. 95

[73] Nam Sung Kim et al. Leakage current: Moore’s law meets static power.

Computer, December 2003. 3, 32

173

http://h71028.www7.hp.com/ERC/downloads/4AA2-3107ENW.pdf

[74] Wonyoung Kim, Meeta Gupta, Gu-Yeon Wei, and David Brooks. System

level analysis of fast, per-core DVFS using on-chip switching regulators. In

Proceedings of the 14th IEEE International Symposium on High-Performance

Computer Architecture (HPCA), 2008. 29, 44, 61

[75] Masaaki Kondo and Hiroshi Nakamura. Dynamic processor throttling for power

efficient computations. In PACS, 2004. 20

[76] Kotera et al. Power-Aware Dynamic Cache Partitioning for CMPs. In HIPEAC,

2008. 44, 58

[77] Xenofon Koutsoukos, Radhika Tekumalla, Balachandran Natarajan, and

Chenyang Lu. Hybrid supervisory utilization control of real-time systems. In

RTAS, 2005. 6, 18

[78] Jilong Kuang, Laxmi Bhuyan, and Raymond Klefstad. Traffic-aware power

optimization for network applications on multicore servers. In DAC, 2012. 24,

25

[79] Karthik Lakshmanan et al. Partitioned fixed-priority preemptive scheduling for

multi-core processors. In ECRTS, 2009. 21

[80] Charles Lefurgy, Malcolm Allen-Ware, et al. Energy efficient datacenters and

systems. In IISWC, 2011. 138

[81] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Server-level power

control. In Proceedings of the 4th IEEE International Conference on Autonomic

Computing (ICAC), 2007. 23, 112, 113, 123

[82] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Power capping: a prelude

to power shifting. Cluster Computing, 11(2), 2008. 18, 66, 80, 102

[83] Dong Li, Hung-Ching Chang, Hari K. Pyla, and Kirk W. Cameron. System-

level, thermal-aware, fully-loaded process scheduling. In IPDPS, 2008. 102

174

[84] Yan Li et al. Timing analysis of concurrent programs running on shared cache

multi-cores. In RTSS, 2009. 21

[85] Harold Lim, Aman Kansal, and Jie Liu. Power budgeting for virtualized data

centers. In USENIX, 2011. 153

[86] Jiang Lin et al. Gaining insights into multicore cache partitioning: Bridging

the gap between simulation and real systems. In HPCA, 2008. 44, 48, 58

[87] Suzhen Lin and G. Manimaran. Double-loop feedback-based scheduling

approach for distributed real-time systems. In HiPC, 2003. 18

[88] Linux hardware monitoring. http://www.lm-sensors.org, 2012. 102

[89] Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000. 28, 35, 38, 43, 65, 66,

78, 85, 86, 98, 100, 101

[90] Shaobo Liu, Qing Wu, and Qinru Qiu. An adaptive scheduling and

voltage/frequency selection algorithm for real-time energy harvesting systems.

In DAC, 2009. 24

[91] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui

Wang, Manish Marwah, and Chris Hyser. Renewable and cooling aware

workload management for sustainable data centers. In SIGMETRICS, 2012.

140

[92] Chenyang Lu, Xiaorui Wang, and Christopher Gill. Feedback control real-time

scheduling in ORB middleware. In RTAS, 2003. 18, 22

[93] Chenyang Lu, Xiaorui Wang, and Xenofon Koutsoukos. Feedback utilization

control in distributed real-time systems with end-to-end tasks. IEEE

Transactions on Parallel and Distributed Systems, 16(6), 2005. 2, 6, 18, 22,

28, 30, 52, 55, 72, 73, 76, 77, 82, 89, 90, 98

175

[94] Jan Lunze and Francoise Lamnabhi-Lagarrigue. Handbook of Hybrid Systems

Control: Theory, Tools, Applications. Cambridge University Press, 2009. 30

[95] Kai Ma, Xue Li, Ming Chen, and Xiaorui Wang. Scalable power control for

many-core architectures running multi-threaded applications. In ISCA, 2011.

153

[96] Jan M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

5, 52, 54, 56

[97] Pau Marti, Gerhard Fohler, Pep Fuertes, and Krithi Ramamritham. Improving

quality-of-control using flexible timing constraints: metric and scheduling. In

RTSS, 2002. 66

[98] J.F. Martinez and E. Ipek. Dynamic multicore resource management: A

machine learning approach. In Micro, 2009. 153

[99] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: Eliminating server idle

power. In ASPLOS, 2009. 23

[100] Ke Meng, Russ Joseph, Robert P. Dick, and Li Shang. Multi-optimization

power management for chip multiprocessors. In PACT, 2008. 54

[101] Mitsubishi. Mitsubishi diesel generator technical specifications.

http://powercare.com.au/catalog/i32.html, 2012. 120

[102] J. Moore, J. Chase, and P. Ranganathan. Weatherman: Automated, online,

and predictive thermal mapping and management for data centers. In ICAC,

2006. 139

[103] Vincent Nelis and Joel Goossens. Mora: an energy-aware slack reclamation

scheme for scheduling sporadic real-time tasks upon multiprocessor platforms.

In RTCSA, 2009. 20, 21

176

http://powercare.com.au/catalog/i32.html

[104] Fadia Nemer, Hugues Casse, Pascal Sainrat, Jean-Paul Bahsoun, and

Marianne De Michiel. Papabench: a free real-time benchmark. In WCET,

2006. 4, 55

[105] NFPA. National Fire Protection Association National Electrical Code. NFPA,

2008. 109, 131

[106] Marco Paolieri et al. Hardware support for wcet analysis of hard real-time

multicore systems. In ISCA, 2009. 21, 44

[107] Jaehyun Park et al. Accurate modeling and calculation of delay and

energy overheads of dynamic voltage scaling in modern high-performance

microprocessors. In ISLPED, 2010. 57

[108] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch, and Jack

Underwood. Power routing: Dynamic power provisioning in the data center. In

ASPLOS, 2010. 23

[109] E. Pinheiro, W.-D.Weber, and L. A. Barroso. Failure trends in a large disk

drive population. In FAST, 2007. 138

[110] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui

Wang, and Xiaoyun Zhu. No power struggles: Coordinated multi-level power

management for the data center. In Proceedings of the 13th International

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2008. 22, 91, 140

[111] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-time

synchronization protocols for multiprocessors. In RTAS, 1988. 5

[112] L. Ramos and R. Bianchini. C-oracle: Predictive thermal management for data

centers. In HPCA, 2007. 139

177

[113] Parthasarathy Ranganathan, Phil Leech, David Irwin, and Jeffrey S. Chase.

Ensemble-level power management for dense blade servers. In Proceedings of

the 33rd International Symposium on Computer Architecture (ISCA), 2006. 10

[114] Joshua Reich, Michel Goraczko, Aman Kansal, and Jitu Padhye. Sleepless in

seattle no longer. In USENIX, 2010. 151

[115] Jose Renau et al. SESC simulator, January 2005. http://sesc.sourceforge.net.

55

[116] Saowanee Saewong and Ragunathan (Raj) Rajkumar. Practical voltage-scaling

for fixed-priority RT-systems. In RTAS, 2003. 19, 29, 68

[117] Abhik Sarkar, Frank Mueller, Harini Ramaprasad, and Sibin Mohan. Push-

assisted migration of real-time tasks in multi-core processors. In LCTES, 2009.

19

[118] B. Schroeder, E. Pinheiro, and W.-D.Weber. Dram errors in the wild: A large-

scale field study. In SIGMETRICS, 2009. 138

[119] Euiseong Seo, Jinkyu Jeong, Seonyeong Park, and Joonwon Lee. Energy

Efficient Scheduling of Real-Time Tasks on Multicore Processors. IEEE

Transactions on Parallel and Distributed Systems, November 2008. 2, 20, 21,

37, 58

[120] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theoretic techniques and

thermal-rc modeling for accurate and localized dynamic thermal management.

In HPCA, 2002. 23, 112

[121] Kevin Skadron, Tarek Abdelzaher, and Mircea R. Stan. Control-theoretic

techniques and thermal-RC modeling for accurate and localized dynamic

thermal management. In HPCA, 2002. 91

178

[122] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang,

Sivakumar Velusamy, and David Tarjan. Temperature-aware microarchitecture:

Modeling and implementation. ACM Transactions on Architecture and Code

Optimization, 1(1), 2004. 22, 91

[123] AEG Power Solutions. AEG Static Transfer Switch Technical Specifications,

2012. 120

[124] Lawrence Spracklen, Banit Agrawal, Rishi Bidarkar, and Hari Sivaraman.

Comprehensive User Experience Monitoring. VMware Technical Journal, 2012.

159

[125] Shekhar Srikantaiah, Mahmut Kandemir, and Qian Wang. Sharp control:

Controlled shared cache management in chip multiprocessors. In MICRO, 2009.

23

[126] John A. Stankovic, Tian He, Tarek Abdelzaher, Mike Marley, Gang Tao, Sang

Son, and Chenyang Lu. Feedback control scheduling in distributed real-time

systems. In RTSS, 2001. 18

[127] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu,

and Jonathan Walpole. A feedback-driven proportion allocator for real-rate

scheduling. In OSDI, 1999. 18

[128] Vivy Suhendra and Tulika Mitra. Exploring locking & partitioning for

predictable shared caches on multi-cores. In DAC, 2008. 21

[129] Jun Sun and Jane Liu. Synchronization protocols in distributed real-time

systems. In ICDCS, 1996. 5, 65, 66, 85, 86

[130] Xiaoyong Tang, Hai Zhou, and Prith Banerjee. Leakage power optimization

with dual-vth library in high-level synthesis. In DAC, 2005. 32

179

[131] S. Tenbohlen et al. Assessment of overload capacity of power transformers

by on-line monitoring systems. In Power Engineering Society Winter Meeting,

2001. 119, 120

[132] United States Environmental Protection Agency. Report to congress on server

and data center energy efficiency, 2007. 109

[133] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud

computing hardware reliability. In SoCC, 2010. 138

[134] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur. Thermal

performance challenges from silicon to systems. Intel Technology Journal, 23(3),

2000. 8

[135] Shengquan Wang and Riccardo Bettati. Reactive speed control in temperature-

constrained real-time systems. Real-Time Systems Journal, 39(1-3), 2008. 8

[136] Xiaorui Wang and Ming Chen. Cluster-level feedback power control for

performance optimization. In Proceedings of the 14th IEEE International

Symposium on High-Performance Computer Architecture (HPCA), 2008. 10,

91, 112

[137] Xiaorui Wang, Ming Chen, and Xing Fu. MIMO Power Control for High-

Density Servers in an Enclosure. IEEE Transactions on Parallel and Distributed

Systems, October 2010. 144

[138] Xiaorui Wang, Ming Chen, Charles Lefurgy, and TomW. Keller. SHIP: Scalable

Hierarchical Power Control for Large-Scale Data Centers. In PACT, 2009. 11,

12, 121, 134, 140, 143

[139] Xiaorui Wang, Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos. FC-

ORB: A robust distributed real-time embedded middleware with end-to-end

utilization control. Journal of Systems and Software, Special Issue on Dynamic

180

Resource Management in Distributed Real-Time Systems, 80(7), 2007. 6, 18,

22, 78, 92, 100

[140] Xiaorui Wang, Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos. On

controllability and feasibility of utilization control in distributed real-time

systems. In ECRTS, 2007. 6, 103

[141] Xiaorui Wang, Xing Fu, Xue Liu, and Zonghua Gu. Power-aware cpu utilization

control for distributed real-time systems. In RTAS, 2009. 2, 31, 38

[142] Xiaorui Wang, Xing Fu, Xue Liu, and Zonghua Gu. Power-aware cpu utilization

control for distributed real-time systems. In RTAS, 2009. 9, 22

[143] Xiaorui Wang, Xing Fu, Xue Liu, and Zonghua Gu. Power-aware CPU

utilization control for distributed real-time systems. In RTAS, 2009. 24, 59

[144] Xiaorui Wang, Dong Jia, Chenyang Lu, and Xenofon Koutsoukos. DEUCON:

Decentralized end-to-end utilization control for distributed real-time systems.

IEEE Transactions on Parallel and Distributed Systems, 18(7), 2007. 6, 18, 22

[145] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained power control

for chip multiprocessors with online model estimation. In ISCA, 2009. 23

[146] M. Ware et al. Architecting for power management: The IBM POWER7

approach. In HPCA, 2008. 27, 124

[147] Business Wire. IBM to Support Arch Rock’s PhyNet Wireless Sensor Network

in Active Energy Manager, 2010. 117, 122

[148] Gene F. Franklin. J. David Powell. Michael L. Workman. Digital Control of

Dynamic Systems (3rd Edition). Prentice Hall, Upper Saddle River, New Jersey,

1997. 92, 93

[149] Ruibin Xu, Rami Melhem, and Daniel Moss. Energy-aware scheduling for

streaming applications on chip multiprocessors. In RTSS, 2007. 19

181

[150] J. Yan and W. Zhang. WCET analysis for multi-core processors with shared

L2 instruction caches. In RTAS, 2008. 21

[151] Jianguo Yao, Xue Liu, Mingxuan Yuan, and Zonghua Gu. Online adaptive

utilization control for real-time embedded multiprocessor systems. In

CODES+ISSS, 2008. 18

[152] L.-T. Yeh and R. C. Chu. Thermal Management of Microelectronic Equipment:

Heat Transfer Theory, Analysis Methods, and Design Practices. ASME Press,

2002. 8

[153] Yuanfang Zhang, Christopher Gill, and Chenyang Lu. Real-time performance

and middleware for multiprocessor and multicore linux platforms. In RTCSA,

2009. 3, 27, 33, 35

[154] Rongliang Zhou, Zhikui Wang, Cullen E. Bash, Alan McReynolds, Christopher

Hoover, Rocky Shih, Niru Kumari, and Ratnesh K. Sharma. A holistic and

optimal approach for data center cooling management. In ACC, 2011. 139

182

Vita

Xing Fu was born in Beijing China. He received the M.S. degree in Telecommunication

and Information System in 2008, B.S. in Telecommunication Engineering in 2005,

all from Beijing University of Posts and Telecommunications, China. He worked

in Power-Aware Computer Systems Lab at University of Tennessee as a graduate

research and teaching assistant from 2008 to 2012. He worked at VMWare a global

leader in cloud infrastructure at Palo Alto, CA from 2012 to 2015 while continue to

work on his dissertation.

183

	Feedback-Directed Management of Performance and Power for Emerging Computer Systems
	Recommended Citation

	Title
	Dedication
	Acknowledgements
	Abstract
	Table of Contents
	Nomenclature
	1 Introduction
	2 Related Work
	3 Task Consolidation in Multi-Core Real-Time Systems
	3.1 System Architecture
	3.2 Core-level Utilization Control
	3.2.1 Task Model
	3.2.2 System Modeling
	3.2.3 Controller Design and Analysis

	3.3 Processor-level Task Consolidation
	3.4 System Implementation
	3.5 Evaluation

	4 Cache Partitioning in Multi-Core Real-Time Systems
	4.1 Problem Formulation
	4.1.1 Task Model
	4.1.2 Problem Formulation

	4.2 Cache-Aware Utilization Control
	4.2.1 System Modeling
	4.2.2 Control Architecture

	4.3 MOMPC Controller Design
	4.3.1 MOMPC Control
	4.3.2 Primary Optimizer
	4.3.3 Secondary Optimizer

	4.4 Simulation Environment
	4.5 Experimental Results

	5 Power-Aware Utilization Control for Distributed RT Systems
	5.1 Probelm Formulation
	5.1.1 Task Model
	5.1.2 Problem Formulation

	5.2 End-to-End Utilization Control
	5.2.1 System Modeling
	5.2.2 Control Architecture

	5.3 Task Rate Adaptation Loop
	5.3.1 System Model
	5.3.2 Controller Design

	5.4 CPU Frequency Scaling Loop
	5.4.1 System Model
	5.4.2 Controller Design
	5.4.3 Control Analysis for Model Variation
	5.4.4 Coordination Analysis

	5.5 System Implementation
	5.6 Empirical Results

	6 Temperature Control for Distributed Real-Time Systems
	6.1 Coordinated Control Solution
	6.1.1 Task Model
	6.1.2 Control Architecture

	6.2 Utilization Control Loop
	6.2.1 System Modeling
	6.2.2 Controller Design

	6.3 Thermal Controller based on DVFS
	6.3.1 System Model
	6.3.2 Controller Design
	6.3.3 Control Analysis for Model Variation

	6.4 Thermal Controller based on Rate Adaptation
	6.4.1 System Model
	6.4.2 Controller Design
	6.4.3 Control Analysis for Model Variation

	6.5 Coordination Analysis
	6.5.1 Coordinate Thermal Controller based on Rate Adaptation
	6.5.2 Coordinate Thermal Controller based on DVFS

	6.6 System Implementation
	6.6.1 Testbed and Workload
	6.6.2 Control Components
	6.6.3 Simulations and Workload

	6.7 Empirical Results

	7 Power Oversubscription in Data Centers
	7.1 Background about Circuit Breaker
	7.2 CB-Aware Adaptive Power Control
	7.2.1 CB-Adaptive Control
	7.2.2 Temperature-aware CB-Adaptive

	7.3 Discussion
	7.4 Implementation
	7.5 Evaluation Results
	7.6 Power Provisioning Analysis

	8 Data Center Level Power Control
	8.1 System Architecture
	8.2 The Outer Loop Power Controller
	8.2.1 System Modeling
	8.2.2 Controller design
	8.2.3 Server Inlet Temperature Constraint
	8.2.4 Coordination Analysis

	8.3 Air-side Economizer
	8.3.1 Switched cooling system power controller

	8.4 Evaluation
	8.4.1 Baselines
	8.4.2 Power Emergency
	8.4.3 Control Accuracy and Application Performance
	8.4.4 Enforcement of Thermal Constraint

	9 End-to-End Energy Management of Virtual Desktop Infrastructure
	9.1 Energy Management with Performance Guarantee
	9.1.1 System Architecture
	9.1.2 Performance Model
	9.1.3 Optimization

	9.2 Evaluation Results
	9.2.1 Implementation
	9.2.2 Baseline
	9.2.3 Experimental results

	10 Conclusion
	Bibliography
	Vita

