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Abstract 
This dissertation explores the development of a capability for simulating the plasma dynamics of Langmuir probes 

(LP) in complex plasmas where the velocity distributions are non-equilibrium and the electron energy spectrum is 

non-Maxwellian with respect to laboratory and space experiments. The results of this investigation are interpreted 

to give recommendations for design and use of LPs. This work is conducted using computational techniques to 

create the exact plasma conditions of the experimental testing environments. The investigations address the 

following topics: 

• development of a technique to model non-Maxwellian physics, 

• modification of a baseline-technique and optimization of it for this application, 

• creation of three-dimensional PIC code to include non-Maxwellian physics, 

• evaluation of effectiveness of enhanced PIC simulations, 

• demonstration of use of enhanced PIC code to conduct and simulate LP experiments in non-ideal 

conditions such as in the EP thruster. 

Major results can be summarized as follows: PROBEPIC (PIC code) is modified for interpreting data obtained 

using an electrostatic-probe in an ion-beam to implement OML (thick-sheath) and SL (thin-sheath) current-

collection theories. PROBEPIC was modified to model the non-Maxwellian plasmas, and test-cases are presented to 

validate the simulation against published empirical data. General equations for current-collection and I-V curves for 

cylindrical, planar and spherical LP in isotropic and anisotropic non-Maxwellian plasmas are examined. Distribution 

functions are introduced as a method of measuring the deviation from Maxwellian. Existing non-Maxwellian 

techniques (i.e., Druyvesteyn, bi-Maxwellian) were modified to model the environment around LP in an EP system. 

The EEDF has been investigated with LP to overcome some limitations of Druyvesteyn method. The EEDF 

changes from Druyvesteyn to bi-Maxwellian with decreasing pressure. Therefore, bi-Maxwellian method was also 

implemented in the system to obtain utmost results in modelling non-isotropic plasmas. This innovative model, 

which was then integrated into PROBEPIC, was used to simulate operation of LP in a series of validation and 

demonstration cases. The effective-Te, n, and Vp were obtained from the LP simulations, and I-V traces were 

created. The code can predict the high-energy ions, and experimental measurement of the EEDF, providing useful 

information for the development of a state-of-the-art new plasma and EP diagnostic capabilities.  
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 v    Velocity vector  [m /s]  

 V     Potential/Voltage  [V ]   

 Vbias     Bias voltage  [V ]  

 Vf     Floating potential  [V ]  (1V = 1×10−18 [eV])   

 
Vp     Plasma potential  [V ]  

 Vs     Sheath voltage  [V ]  

 W       Particle kinetic energy of orbital motion (Appendix); 
  
W ≡ W⊥ + W!   

 x     Coordinate variable 

 y      Coordinate variable 

 z     Coordinate variable 

Greek Symbols 

β      Coefficient dependent of 
 
rp λD  (CH-2) 

 βH     Fraction of hot electrons at the mid-plane (CH-2) 

Γ       Particle flux  [m
−2s−1 ]  ; Incomplete gamma function (CH-4) 
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 Γ i     Ion flux  [m
−2s−1 ]  

 Γe     Electron flux  [m
−2s−1 ]  

 Γr       Random flux  [m
−2s−1 ]  

γ      Coefficient dependent of 
 
rp λD  [m /s] (CH-2); Lorentz factor (Appendix) 

δ     Sheath thickness  [m]  

 δx     Infinitesimal distance  [m]  (CH-1)  

ε     Permittivity of free space, 8.854 × 10-12  [C
2 N.m2 ] or  [F m]   

 εo     Permittivity of vacuum, 8.854 × 10-12  [C
2 N.m2 ]  or  [F m]  

η      Non-dimensional probe bias; efficiency 

λ      Mean free path  [m]  

 λe     Mean free path of electron  [m]  

 λD     Debye length  [m]  

 λDe     Debye length (for electron)  [m]  

 λ i     Mean free path of ion  [m]  

 λ iz     Mean ionization distance  [m]  

Λ      Plasma parameter  [− ]  

 lnΛ      Coulomb logarithm  [− ]  

 νcoll      Collision frequency  [Hz]  

 νee      Electron-electron collision frequency  [Hz]  

 νen      Electron-neutral collision frequency  [Hz]  

 νei     Electron-ion collision frequency  [Hz]  

 νie     Ion-electron collision frequency  [Hz]  

 νii      Ion-ion collision frequency  [Hz]  

π      Mathematical constant, 3.14159  [− ]  

ρ      Charge density  [C m3 ]   

σ    Cross section of collision frequency  [m
−2 ]  (CH-1); reaction cross section  [m

−2 ]  (CH-3)  

 σC      Coulombic cross section  [m
−2 ]  

 σn      Cross section of neutral particles  [m
−2 ]  

 
τp      Time scale (plasma period)  [s]   

φ     Electric potential  [V ]  

 φs      Sheath potential  [V ]  

φ∞       Plasma potential  [V ]  

 ΦB      Magnetic flux  [Tm2 ]   

 ωc      Cyclotron (gyration) frequency  [Hz]   

 
ωp      Plasma frequency  [Hz]EQUATION CHAPTER 1 SECTION 1 
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 “Everything we see in the world is the 
creative work of women.” 

- Mustafa Kemal Atatürk 

 

 

 

 

Chapter 1  

Introduction and General Information 

The potential to generate power in significant quantities through thermonuclear fusion [1, 2] and the need to develop 

advanced electric propulsion (EP) thrusters for future space missions [3] are issues that are driving and dominating 

research in the field of plasma physics. The extreme conditions associated with these applications can cause mechanical 

degradation [4]. Due to the high costs associated with testing these systems over long periods of time, it is vitally 

important that on-board diagnostic systems, including plasma probes for measurement of the internal plasma 

environment, be integrated into systems to monitor equipment health and provide data to guide the design of future 

systems. 

 This dissertation explores the development of a capability for simulating the plasma dynamics of the Langmuir 

probe in complex plasmas where the velocity distributions are non-equilibrium and the electron energy spectrum is non-

Maxwellian with respect to laboratory and space experiments. The results of this investigation are interpreted to give 

recommendations for the design and use of Langmuir probes. This work is conducted using computational techniques in 

order to create the exact plasma conditions of the experimental testing environments. This chapter provides an 

introduction to Langmuir probes, the plasmas in which they are used, and models used to simulate plasma 

environments.  The motivation for the research in this dissertation is also provided. 

 In general, it is assumed that some quantity measured by the plasma diagnostic can be related back to a desired 

property in the plasma. For example, the slope of collected current with respect to bias voltage in the I-V characteristic 

of a Langmuir probe can be related to the electron temperature. A diverse range of diagnostic techniques has been 

developed to extract information about the flow. For example, the drift current can be measured with Faraday probes, 

the ion velocity can be visualized with laser induced fluorescence, the electron number density can be found with 

microwave interferometry, the plasma potential and electric fields can be measured with emissive probes (e.g., Langmuir 
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probes), the ion energy spectrum can be calculated with retarding potential analyzers, and ion charge states can be 

identified with  Ε × B probes [2, 5]. Many of these instruments can also be used to measure more than one measurement 

technique. However, to properly interpret the sensor measurements, a good understanding of plasma physics is essential.  

 Traditionally, in the diagnostic theory it is assumed that the probe interacts with an ideal plasma with a Maxwellian 

velocity distribution, i.e., when the plasma is in equilibrium [6], and the instrument does not significantly affect the 

properties of the plasma at the point where measurements are taken. In the reality, this assumption is not valid for probe 

diagnostics, and it is well acknowledged that some disturbance is unavoidable [7]. The theory for the plasma sheath on 

an immersed surface helps to identify and quantify some of the disturbances caused by the probe. The diagnostic 

techniques for some instruments take the plasma sheath into account in order to relate the measured properties to 

undisturbed plasma properties [7]. However, sheath theory is limited to the effects in the electrostatic or electromagnetic 

sheath within a few Debye lengths of the probe surface. Diagnostic theory does not account for the effects at longer 

range, since those effects are not well understood. 

  The diagnostics are interpreted by relating a directly measured property, such as collected current, to the desired 

plasma property [8]. The relation is often developed from elementary principles by making certain assumptions about 

the plasma. For the Langmuir probe example, the electrons are assumed to have a Maxwellian velocity distribution so 

that the logarithmic slope of the I-V characteristic is inversely proportional to the electron temperature [7]. These 

assumptions commonly include a Maxwellian distribution of electron velocities, the Boltzmann relation between electron 

density and plasma potential, and a lower temperature for ions than for electrons [7]. The measurements are assumed to 

accurately obtain the plasma properties, provided the plasma conditions meet the assumptions of the diagnostic theory. 

 The measurements are very simple and direct when the electron energy distribution (EED) is Maxwellian. The 

electron energy is characterized by a single scalar value,  Te . If a significant amount of additional high-energy electrons 

are present in the vicinity, the determination of  Te  becomes complicated however, and may not even be possible if the 

density of these additional components is very high. This may significantly alter the I-V curves and affect the 

determination of  Te  by distorting the electron retarding regions of the I-V curves, which then affect the measurements 

of the total density (e.g.,  ne  and  ni ).  

 The plasma is non-ideal and not in equilibrium in many cases, such as in the accelerator of an EP system or in a 

nozzle [7]. The deviation from the equilibrium limits the effectiveness and accuracy of applying a Maxwellian velocity 
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distribution in modeling the plasma environments, and it can lead to invalid engineering predictions and inaccurate 

analysis of empirical data [7]. To meet the diagnostic accuracy requirements for non-equilibrium plasma systems [8], it is 

essential that non-Maxwellian effects on plasma sensors and plasma models be accurately predicted; this is of particular 

importance for future EP systems.  

1.1    Electric Propulsion 

Electric propulsion (EP) refers to spacecraft propulsion systems that utilize electrical processes to accelerate a plasma 

propellant. EP thrusters use a variety of mechanisms to convert electrical power into thrust and provide superior specific 

impulse in comparison to chemical systems [9, 10]. Generally an EP device can be grouped into one of three main 

categories [11]: electrothermal, electrostatic, or electromagnetic. The electrothermal EP (e.g., resistojets and arcjets) uses 

electrical heaters or an electrical discharge to heat a working gas [11]. That gas is expanded through a nozzle as in a 

conventional rocket. The electrostatic EP first ionizes the propellant and then accelerates the charged particles via 

electric fields between one or more extraction and acceleration grids. Other electrostatic devices include Hall thrusters, 

field emission thrusters, and colloid thrusters [11]. Devices in this category accelerate positive charge particles or ions, so 

there is a need for an electron-emitting neutralizer to prevent a net charge buildup on the spacecraft [11]. The third 

category is the electromagnetic EP (e.g., Magnetoplasmadynamic (MPD) thrusters and pulsed plasma thrusters (PPT)) 

that use both electrical and magnetic fields to accelerate charged particles. In PPT concepts, a strong current is driven 

through surface material to create plasma that carries the current from anode to cathode. Other concepts may use 

alternative ionization schemes and they require applied electric fields to drive the plasma. The plasma is accelerated to 

generate thrust via the Lorentz force of the magnetic fields acting on the plasma current. 

 EP offers several benefits over conventional chemical rockets, but also suffers from a few drawbacks. The gains in 

using an EP system can outweigh the losses for long term or high-energy missions. One of the biggest advantages of EP 

devices is the high exhaust velocity and corresponding high specific impulse. Specific impulse 
 
Isp  is the ratio of 

thrust T to propellant weight flow rate as shown in equation (1.1). The weight flow rate is the product of the mass flow 

rate  !m  and standard gravity at the surface of the earth g .  

 
  
Isp =

T
!mg

  (1.1) 
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 EP devices have high
 
Isp  ranging from 500-2,000 second for arcjets, to 500-2,000 second for Hall thrusters, to 

3,000-10,000 second for ion thrusters. The chemical rockets, however, only range from 250-450 second 
 
Isp [12]. Table 

1.1 summarizes the typical performance parameters of various types of in-space propulsion with planned or 

demonstrated extremes included for comparison. The benefit of higher 
 
Isp  is demonstrated using the ideal rocket 

equation as in equation (1.2), which is derived from conservation of momentum for a system that is emitting mass [13]: 

 
 

m = mo exp − Δυ
gIsp

⎛

⎝
⎜

⎞

⎠
⎟ ,  (1.2) 

where  mo  is the initial total mass that undergoes a maneuver with a total change in velocity Δυ . Where m is the final 

mass after the maneuver, 
 
Isp  is the specific impulse and  g  is the gravitational constant. A spacecraft mission requires 

Δυ from orbital mechanics and a limited  mo , so a higher specific impulse translates into more final payload mass after 

maneuvering. One option for a launch vehicle is to increase the payload mass; an EP system requires less propellant 

mass, so the mission or operational lifetime could be extended. Another option is to eliminate the propellant mass saved 

by using the EP system and reduce the total mass allowing a less expensive launch vehicle to be used [12].  

 Many EP systems are capable of semi-independent control of propellant flow and electrical systems, which allows 

for throttling of the flow rate, operating voltage, and current to optimize performance at a desired thrust level. This is an 

improvement over solid rockets, which have no throttle control, and over liquid or hybrid rockets, which can only 

throttle the flow rate; using EP systems provides less restrictive launch windows than a mission using conventional 

rockets [12].  

 The robustness of the propulsive concept is another advantage of EP devices. The acceleration mechanism is not 

dependent on the particular propellant, so an EP device could operate on a variety of different propellants. This opens 

the possibility of in situ propellant resupply for long duration missions with volatile compounds. The two main 

drawbacks to using an EP device stem from the practical limit on the maximum current density that are sustained in an 

electrical arc or plasma current [12]. In electrothermal applications, this limits the rate of energy deposition, while in 

electrostatic and electromagnetic applications this limits the flow rate of accelerated exhaust. In both cases, EP systems 

produce much smaller thrust than chemical systems (e.g., thrust levels from EP devices range from a few  µN for ion 

thrusters to less than 10 N for arcjets, while the chemical rockets can achieve  1kN −1MN of thrust) [12]. 
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Table 1.1: Typical performance parameters of various in-space propulsion systems. 

Thruster Type Min Isp Max Isp 
Min 

Power 
Max 

Power 
Typical 

Efficiency References 

Units (sec.) (sec.) (kW) (kW) (Percent)  
Chemical Monopropellant 150 225 N/A N/A N/A [12] 
Chemical Bipropellant  300 450 N/A N/A N/A [12] 
Resistojet 150 700 0.5 1.5 80 [12, 14] 
Arcjet1 450 1,500  0.3 30 25-40 [12, 14, 15] 
PPT 1,000 1,500 0.001 200 8-13 [14] 
MPD 2,000 5,000 1 4,000 <50 [14] 
Gridded Ion2 2,800 2,000 0.2 10 55-60 [3, 14] 
Hall3 1,000 10 0.1 20 45-65 [16-18] 

 

  

 The robustness of the propulsive concept is another advantage of EP devices. The acceleration mechanism is not 

dependent on the particular propellant, so an EP device could operate on a variety of different propellants. This opens 

the possibility of in situ propellant resupply for long duration missions with volatile compounds. The two main 

drawbacks to using an EP device stem from the practical limit on the maximum current density that are sustained in an 

electrical arc or plasma current [12]. In electrothermal applications, this limits the rate of energy deposition, while in 

electrostatic and electromagnetic applications this limits the flow rate of accelerated exhaust. In both cases, EP systems 

produce much smaller thrust than chemical systems (e.g., thrust levels from EP devices range from a few  µN for ion 

thrusters to less than 10 N for arcjets, while the chemical rockets can achieve  1kN −1MN of thrust) [12].  

 EP systems require much longer firing time than chemical systems. An EP device must operate for months or 

years to achieve the full Δυ (see equation (1.2)) but a chemical rocket operates for only a few minutes to achieve this 

result [13]. This creates long term performance issues, lifetime concerns and failure for EP systems [13]. Currently, the 

station keeping and orbit transfers are within the range of thrust provided by EP devices. The orbit transfers take much 

longer than with a chemical system. Microsatellite formation flight and high precision station keeping maneuvers both 

benefit from engines producing small but highly repeatable thrust bits (e.g., The planned NASA Laser Interferometer 

Space Antenna (LISA) mission [19]), requiring  µN levels of thrust to maintain proper positioning of the component 

spacecraft. 

                                                             
1 Demonstrated maximum specific impulse and power are documented as 1,970sec. and 100kW respectively. 
2 Planned maximum specific impulse and power are documented as 14,000sec. and 100kW respectively. 
3 Demonstrated maximum specific impulse and power are documented as 2,000sec. and 20kW respectively. These values exclude Hall 
thrusters operating on liquid metal propellants, such as bismuth, which can dramatically increase the specific impulse attained.  
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 An EP device must operate for months or years, so the long duration life tests are carried out in vacuum chambers. 

It is necessary to understand how the actual performance deviates from the ideal performance by measuring changes in 

thrust, beam divergence, and efficiency over the lifetime of the device [20, 21]. The characterization of the wear and 

damage sustained during prolonged operation is also useful for identifying and addressing failure modes, as well as 

estimating the time to failure.  

 Research of the sputtering and deposition deals with the physical processes that erode material inside the thruster 

[22], and the transport and deposition of sputtered material and exhaust particles onto other spacecraft surfaces [23, 24]. 

Electromagnetic interference [24] is another concern because the charged particles in the exhaust plume interfere with 

signal transmission to and from the spacecraft. There is strong interest in developing high power EP systems; these 

systems are able to produce higher thrust levels and maintain the favorable 
 
Isp  and efficiency. In this area, the research is 

directed toward developing larger models of a device (monolithic approach) [25] or toward developing clusters of 

existing smaller models of a device [26-28]. The challenges for monolithic approach are related to fabrication and 

inadequate facilities for full scale testing. For the clustering approach, the challenges arise from operational difficulties 

because of the interaction between individual devices in a cluster.  

 Developing novel EP concepts is an active interest of researchers. New designs incorporate the hybrid systems, as 

in Hall/ion thrusters [29], or extend EP concepts to new design concepts as in micro-thruster and MEMS (thruster on a 

chip) concepts [30, 31]. Hybrid designs are able to move quickly to a prototype, since much of the fabrication and 

operation is obtained from existing designs. When the fabrication issues are resolved, these concepts may offer even 

more flexible scalability and control than existing EP systems. 

 The largest academic facility in the United States is the Large Vacuum Test Facility (LVTF)4 at the plasma 

dynamics and EP Laboratory (PEPL) at the University of Michigan [32]. Smaller facilities are significantly less expensive 

to build, maintain, and operate; therefore, the number of large facilities is very limited. Although the LVTF has a very 

high pumping rate of 240,000 liters per second of xenon, the facility still develops a measurable backpressure during 

operation of EP thrusters [33]. This residual background pressure is due to the finite pumping capacity and inevitable 

leaks and outgassing present in any vacuum facility.The interpretation of experimental measurements is very complicated 

as the secondary effects of the background gas. Collisions between accelerated particles and background particles in the 
                                                             
4 The Large Vacuum Test Facility (LVTF) is a cylindrical vessel 9m long, and 6m in diameters, which is the largest academic facility in 
the United States.  
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exhaust plume can increase beam divergence, broaden the energy distribution, and produce low energy charge exchange 

ions [33]. This affects measurements of current density and velocity distribution throughout the plume [33]. 

1.2    Plasma Diagnostics Background 

In our universe, 99 percent of the matter is in the form of plasma, which is the fourth state of matter after solid, liquid 

and gas [2, 34, 35].There are different types of plasmas, which are generated in the laboratories for different applications. 

These include gaseous discharge, arcs, laser produced plasma, as well as tokamak plasma [36]. These plasmas have 

various applications in different fields of research and this is the reason why plasma physics has become established as a 

major research field during the past few decades [2]. In plasma accelerator and EP research, diagnostics measure plasma 

properties in order to infer performance and operating characteristics. In material processing applications, diagnostics 

ensure that the desired plasma conditions are sustained in order to produce the desired surface treatment. For each of 

these examples, plasma diagnostics provide feedback and measurements that help guide the research or operation to 

achieve a desired goal. 

 In general, plasma is classified by two factors: electron number density and temperature (hot or cold [37, 38])5 [37-

40]. Electron number density refers to the number of molecules that have ionized (lost one or more electrons) relative to 

the number of neutral gas species. Plasma temperature, on the other hand, does not refer to whether a plasma feels hot 

or cold, but rather to the energy of the free electrons. If there are significantly more neutral gas molecules than ionized 

gas molecules, the plasma may be cold to the touch, but still have very energetic electrons and, therefore, a very high 

plasma temperature. Material probes such as the most common Langmuir probe can be inserted in the cold plasma [2]. 

However, in the hot plasma  (Te ≥ few keV) [2] the use of intrusive probes is limited to the extreme edge of the plasma 

 (Te ≤ 50eV) [2]. Non-contact or non-intrusive techniques [41-43] must be used to diagnose the other high-energy plasma 

regions (e.g., those encountered in magnetospheric and ionospheric plasmas [44-46] and in cold laboratory plasmas [47]).  

 Among all of the contact methods, electric probes, such as the Langmuir probe, are the most widely used plasma 

diagnostic tools [8]. Other methods include passive remote sensing methods, which detects radiation or particles emitted 

spontaneously by the plasma, such as studying plasma phenomena related to the sun [48]; active non-contact methods, 

                                                             
5 What is hot or cold plasma? Plasma is called hot when it approaches a state of local thermodynamic equilibrium (LTE), also referred 
to as thermal plasma. Plasma is called cold when the thermal motion of the ions is ignored. There is no force, the magnetic force is 
ignored, and only the electric force is considered to act on the particles. 
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where radiations or particles produced by external sources, such as the study of the absorption and scattering of 

electromagnetic radiation by the plasma [48]. Langmuir probing determines the properties of a plasma with excellent 

spatial resolution, enabling the reconstruction of the crossing point of the particle [49]. Additionally, this method 

successfully describes the plasma’s parameters in a variety of situations, such as low-pressure plasmas for material 

processing, edge plasmas in fusion devices, and ionospheric plasma [1, 46], and it aids the design of ion sources and new 

plasma chambers.  

The simplest application of a Langmuir Probe involves inserting the probe into the plasma region of interest and 

applying a voltage  V  with respect to the metallic chamber that contains the plasma. Several configurations are 

commonly used, including single, double, and triple probes [50-52]. These variations allow for simplifications in the 

control system or in the analysis of measurements. The bias voltage is typically swept at a specified frequency over a 

range that is comparable to the electron temperature [53] to determine the current-voltage (I-V) characteristic for the 

local plasma. The plasma parameters are extracted during a post-processing step, where software can be used to fit the I-

V characteristics [54]. This technique allows for faster electron temperature measurements than the typical swept probe 

while imposing less disturbance to the plasma and to other instruments [53]. This dissertation focuses on the single 

Langmuir probe theory and its implementation in the computational modeling.  

Several theoretical studies have been performed to understand the behavior of Langmuir probes. Irving Langmuir 

and H. Mott-Smith [55] pioneered both the experimental and theoretical interpretation of probe data. More advanced 

treatments resulted from a better understanding of plasma sheaths; the work of Bohm [55] in the late 1940s clarified the 

sheath phenomena. To include the proper potential distribution in the sheath, Allen [56] derived expansions for current 

collection including the effect of electron potential barriers; ions were assumed to be immobile or cold. Bernstein and 

Robinowitz [57] expanded Allen’s work by allowing for mono-energetic ions. Laframboise [58] completed the picture by 

including both thermal electrons and ions. All of the theoretical work assumes current collection in collisionless, 

quiescent plasma by an infinitely cylindrical probe and that the energy distribution is Maxwellian (i.e., ideal).  

When the EED is Maxwellian, the electrons and ions have Maxwellian velocity distributions, and the kinetic 

temperature of electrons is greater than the temperatures of ions or neutrals. The charged particles that reach the surface 

of the probe do not chemically react with the probe material, and they are always collected and contribute to the probe 

current. The plasma sheath thickness is small compared with the probe dimension, and thus edge effects may be 

neglected. The potential around the probe preserves the symmetry (spherical, cylindrical or planar), and the plasma 



 

 
9 

potential is a monotonically decreasing (or increasing) function between the sheath edge and the probe surface, requiring 

the particles to maintain some spatial local ordering and assuming nearly Maxwellian velocity distributions. However, if 

additional electron energy populations are present in significant quantities, the determination of electron temperature is 

more complicated and may not be possible to determine if the density of the additional component is sufficiently high 

[59, 60].  

1.2.1    Sheaths and Other Probe Disturbances 

The insertion of the probe into the plasma results in a perturbation in the vicinity of the instrument. This effect is usually 

observed over a distance of several Debye lengths6 [61] from the probe, influencing the charged particle trajectories in 

the sheath [34, 35, 61]. Thus, the introduction of probes can produce erroneous results due to unexpected differences 

between the physical geometry and the effective collecting area of the probe [62]. Farther from the probe, the collective 

shielding effect isolates the bulk plasma from the fields. The transition from bulk plasma through the sheath to a probe 

surface is shown schematically in Figure 1.1. Figure 1.1 shows the specific geometry to be considered, along with the 

behavior of the potential and electron and ion densities in the plasma sheath7 [61]. The bulk plasma regions are also 

shown, as well as in the transition (presheath [61])8 region between them. For a positive ion plasma, the electrons are the 

sole negative charge carriers and are more mobile than the ions. This leads to unequal fluxes to a surface at the same 

potential as the plasma, with more electrons than ions reaching the surface. If the surface is floating, it will accumulate a 

net negative charge that repels electrons and attracts ions until the net current is zero.  

 Sheaths comprise some of the most enduring and widely encountered problems in plasma physics. Langmuir and 

Tonks investigated sheaths in plasma arc and glow discharges in the late 1920’s [63], identifying the major features of the 

collisionless electrostatic sheath and obtaining analytical solutions for simple geometries. Bohm investigated the current 

collection of Langmuir probes in the late 1940’s, and established the broadly applicable Bohm criterion for the 

formation of a steady sheath [64]. The criterion has since been generalized for finite temperature ion distributions and 

arbitrary ion distributions. Bohm proposed that Debye shielding be divided into three phenomenologically different 

regions (Figure 1.1). Developments in the 1980’s and 1990’s produced a kinetic description of the sheath and presheath 

                                                             
6 What is “Debye length”? It is the distance over which the electric field associated with a charge in a plasma is shielded out. 
7 What is “plasma sheath”? It is the region where the transformation from the plasma state to the solid state takes place.  
8 The combined transition and adjacent plasma regions are often referred to as the “presheath”. 
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for application to the strongly flowing plasmas encountered in space environments and fusion plasmas [65-67]. Recently, 

much attention has been focused on developing a consistent method to span the interfaces between plasma, presheath, 

and sheath [68-71]. 

 An immersed probe can also affect the flow over longer length scales, since the flow either collides with the probe 

body or is diverted around the physical obstruction. This can potentially introduce flow features including compression 

regions upstream of the probe and rarefaction regions in the wake of the probe. Since experimental diagnostic probes 

are not perfectly absorbing, ions that collide with a probe surface can be neutralized and reflected back into the flow. 

The neutral gas diffuses away from the probe, extending the region that is perturbed by the probe. Charge exchange or 

momentum exchange collisions with the neutral gas also have an effect on the overall flow. 

 

 
 
 

 

Figure 1.1: Schematic of the variation of electrostatic potential φ (sheath potential  φs and plasma potential φ∞ ) and 

electron and ion densities ( ne and ni ) in the sheath, transition (presheath) and bulk plasma regions of a plasma near 
a wall; φ  is the negative of the potential [72]. Where The ∞  subscript indicates evaluation of the quantities in the 
bulk plasma region far from the wall (i.e., beyond the plasma sheath and presheath regions.) 

  

   



 

 
11 

1.3    Plasma Modeling and Simulation Background 

Experimental investigations will perturb the plasma under study. For example, the physical modification of the chamber 

to include diagnostic equipment has effects on the plasma generated. Plasma chemistry can be contaminated by 

techniques such as emissive probes or chamber deposition. Electrostatic probes can produce incorrect results because of 

the unexpected differences between the physical geometry and the effective collecting area of the probe [62]. Plasma 

modeling, on the other hand, allows the exploration of the underlying principles and behavior of an idealized version of 

the plasma, unperturbed by experimental intrusion. Furthermore, it allows for the analysis of phenomena that do not 

readily lend themselves to experimental scrutiny [73]. A further advantage is that parameters can be changed far more 

quickly and cheaply than in physical experimentation. 

 Models of plasma physics generally fall into five categories: analytical models, equivalent circuit models, fluid 

models, kinetic models and hybrid models [74, 75]. Brief description of these models are given below [74-78]:  

A. Analytical Models: Mathematical equations are used to describe the behavior and properties of a particular region 

of the plasma. Analytical models are constructed using an understanding of the physical mechanisms involved to 

formulate the appropriate equations. These are then used to further investigate the process or allow the extraction of 

meaningful information from experimental results [76, 77]. 

B. Equivalent Circuit Models: They use electrical components (e.g., resistors, capacitors, etc.) arranged into circuits 

to replicate the electrical properties of the plasma. Different degrees of complexity from whole systems to just sheath 

behavior can be simulated without a fundamental understanding of the mechanisms at work. This is also their key 

disadvantage as this simplistic approach means that they cannot provide any insight into those mechanisms [75, 77]. 

C. Fluid Models: The plasma is treated as a fluid and it is described by the transport equations, which govern 

continuity, momentum and energy conservation. These are derived from the full Boltzmann equation, and then the 

closure is made by assuming parameterization of the distribution function. Their biggest drawback is the need for the 

particle distribution functions to be either assumed or supplied [78]. 

D. Kinetic Models: The behavior of a plasma is simulated with individual particles rather than the assumed 

distributions of fluid models. The flows in many EP systems fall into the rarefied regime where collision and plasma 

length scale are similar to or larger than the size of the thruster. In these cases, the flow is not well represented by a 

continuum formulation, and instead, a molecular, kinetic approach must be undertaken.  
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 The most well-known example of a kinetic model is the PIC code [79]. The motion of both particle ions and 

electrons are tracked, from which the particle motion, potential and electric fields are calculated self consistently [77]. It 

is considered ideal, yet it comes at a far greater computational expense than other methods. 

E. Hybrid Models: Hybrid models represent a mix of two or more of the simulation methods [75, 77]. For example, 

the hybrid PIC model substitutes the particle electrons of the full PIC model with a fluid model. As only the ion motion 

needs to be tracked, far larger time steps can be taken offering a considerable computational saving. 

 Out of the all above methods, kinetic models are preferable, as the simulated plasma is based upon a finite number 

of individual particles rather than the assumed distributions of fluid models. This increased accuracy requires greater 

computational resources. One of the earliest and most widely used computational example of a kinetic model for 

simulating plasmas is the PIC method [79]. In this type of model the plasma is represented by a reduced number of 

macro-particles that obey the standard equations of motion and interact with discrete electric fields calculated on a 

computational grid. Macro-quantities such as number density, current density, etc., are calculated from the position, the 

velocity and the interactions of these particles. This method separates the particle motion from the calculation of fields 

and iterates to achieve a consistent solution. A full description of the PIC method is described in [79].  

 The PIC method is one of the earliest and most widely used computational techniques for simulating plasmas [79]. 

The main idea of the PIC code is to model the plasma using a set of super particles (i.e., a computational particle that 

represents many real particles), which are subject to either Newtonian or relativistic equations of motion and interact 

with discrete electric fields calculated on a computational grid. The fields in the code are calculated by solving Maxwell's 

equations using source terms derived from the particle positions and velocities. In the earlier research, the classical PIC 

procedure was applied to collisionless plasmas. When collisional effects are to be included, they are added via an explicit 

collision operator, which is commonly some type of Monte Carlo (MC) procedure. This technique also uses macro-

particles to simulate gases and incorporates probabilistic models to describe particle collisions [80]. This allows 

additional physical processes to be considered, including chemistry, ionization and recombination, and surface 

interactions. MC models can be combined with PIC models to add collisions and wall interactions to a plasma 

simulation. More in depth data can be obtained from the references [79]. 

In 1996, Keefer and Markusic presented a 2D/3V electrostatic probe PIC code called PROBEPIC [41]. This 

code was developed to simulate the behavior of a Langmuir probe in both quiescent and flowing plasmas in regimes for 

which no closed-form analytical solution exists. It was also able to expand on previous studies by simulating the 
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behavior of finite length probes [34, 41]. PROBEPIC is a 2D/3V PIC model, meaning that the electric field has two 

components and that the particles are free to move in three dimensions [34]. The computational domain [34] in 

PROBEPIC consists of a cylindrical region containing a cylindrical probe [34]. This region provides sufficient space for 

a plasma sheath, generated by the interaction of the plasma with the probe boundary material, to form around the probe. 

The program outputs I-V traces, which then can be compared to theoretical/experimental results. 

PROBEPIC was mainly used to simulate the plasmas that have the Maxwellian velocity distribution. The 

expression for this distribution is the product of three distribution functions for the velocity in each of the three 

principle spatial directions [72]. The distribution is uniform and isotropic in configuration space and is isotropic in 

velocity space, which means that the position and the velocity of a single particle are specified by providing its three 

coordinates  (x, y and z) and that the distributions of particles are isotropic. However, using the same model equations to 

simulate non-equilibrium plasmas would create large errors in the plasma diagnostics; this is complicated by the fact that 

all three probe geometries (i.e., cylindrical, planar and spherical) are equally suited for measuring the ionospheric electron 

temperature and density or for determining the distribution function in the presence of non-Maxwellian electrons [81]. 

This dissertation adapts PIC codes to allow for non-equilibrated plasma regions with non-Maxwellian velocity 

distributions. This method can be applied both in collisionless plasmas (regardless of sheath thickness) and in a number 

of situations in collisional plasmas [81], such as when evaluating the EEDF from the second derivative of I-V curve for 

low-pressure plasmas. With this greatly improved PIC code model, it is possible to accurately interpret probe data from 

measure of ionospheric electron temperature and ion and electron number densities on rockets and satellites in a 

laboratory environment.  

1.3    An Overview of Plasma Physics 

It has been said that 99 percent of the matter in the universe is in the plasma state in the form of an electrified gas with 

the atoms dissociated into positive ions and negative electrons [2, 82]. This estimate may not be very accurate, but it is 

certainly a reasonable one in view of the fact that stellar interiors and atmospheres, gaseous nebulae, and much of the 

interstellar hydrogen are plasmas. As soon as one leaves the earth’s atmosphere, one encounters the plasma comprising 

the Van Allen radiation belts [83] and the solar wind. However, in our everyday lives plasmas are limited to a few 

examples: the flash of a lightning bolt, the soft glow of the Aurora Borealis [84], the conducting gas inside a fluorescent 
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tube or neon sign, and the slight amount of ionization in a rocket exhaust. It seems that we live in the 1 percent of the 

universe where plasmas do not occur naturally [82].   

 The reason for this can be seen from the Saha equation [85], which tells us the amount of ionization to be expected 

in a gas in thermal equilibrium: 

 
 

ni

nn

≈ 2.4 ×1015 T3 2

ni

e−Ui kBT  (1.3) 

where  ni  is the density (number per  cm3 ) of ionized atoms and  nn is the density (number per  cm3 ) of neutral atoms,  T  

is the gas temperature in 
oK ,  kB is Boltzmann’s constant,  Ui  is the ionization energy of the gas−that is, energy required 

to remove the outermost electron from an atom [85]. As the temperature is raised, the degree of ionization stays low 

until  Ui  is a few times  kBT . Then the fractional ionization  ni nn  starts rising, and the gas is in a plasma state. For 

example, an ordinary air at a room temperature, nn ≈ 3×1025m−3 ,  T ≈ 300oK  and  Ui = 14.5eV (nitrogen), where 

 1eV = 1.6x10−19 J . Fractional ionization  ni (nn + ni ) ≈ ni nn predicted by equation (1.3) is very low  (ni nn ≈ 10−122 ) . As the 

temperature increases  nn  becomes less than  ni , and the plasma becomes fully ionized when  nn  is zero. This is the 

reason plasmas exist in astronomical bodies with temperatures of millions of degrees, but not much in our environment 

(1 percent) [85].  

 The plasma state is a gaseous mixture of positive ions and negative electrons. Any ionized gas is not a plasma; a 

plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective behavior [85]. The meaning of 

quasi-neutrality and collective behavior will be made clear later in this section. This section also introduces some 

fundamental physics of plasmas. A brief outline of the general properties of plasmas is presented. The knowledge of the 

general characteristics of the plasma is essential in the context of identifying various categories of plasmas and the 

changes occurring in them due to the changes in the input parameters related to plasma production and evolution.  

1.3.1    Concept of Temperature 

At thermal equilibrium, a gas has particles of all velocities, and the most probable distribution of those velocities is the 

Maxwellian distribution [86]. The one-dimensional Maxwellian distribution is given by [82] 

 
 
f (u)= Aexp − 1

2
mu2 kBT

⎛
⎝⎜

⎞
⎠⎟

, (1.4) 
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where  f  is the number of particles per cm3 with velocity between  u  and  u + du ,  mu2 2  is the kinetic energy,  kBT  is 

the product of the Boltzmann constant  kB [1.38 ×10−23m2 kg s−2 K−1 ]  and the temperature  T  (in this case there is only 

one temperature for all particles) [87]. A gas is partially characterized by the number of particles per unit volume, known 

as number density  n  per  cm3 . The coefficient  A  is defined as a function of density  n  by [82]   

 
 
A = n

m
2πkBT

⎛
⎝⎜

⎞
⎠⎟

1/2

, (1.5) 

Constant A is derived for a normalized one-dimensional Maxwellian distribution such that 
 

f̂ (u)du = 1
−∞

∞

∫  and then 

integrate as 
 
1 = A e−mu2 kBT

−∞

∞

∫ du = A 2πkBT m . The width of the distribution is characterized by the constant temperature 

 T . Knowing the velocity distribution of the particles within the given volume allows the density  n , or number of 

particles per  cm3 , to be derived as [82]  

 
 
n = f(u)du

−∞

∞
∫  , (1.6) 

and the average kinetic energy within the distribution can be defined by integrating over the velocities [82]: 

 

 

Eav =

1
2

mu2f(u)du
−∞

∞
∫

f(u)du
−∞

∞
∫

.  (1.7) 

In order to make evaluating this integral easier, the thermal velocity of the distribution can be defined as [82] 

 
 
υth = 2kBT m( )1 2  , (1.8) 

and then the normalized velocity is  y = u υth . We write equation (1.4) as 
 
f u( ) = A exp −u2 / υth

2( )  and equation (1.7), the 

average kinetic energy, can now be written in these new terms [82] 

 

 

Eav =

1
2

mAυth
3 exp −y2( )⎡

⎣
⎤
⎦−∞

∞
∫ y2dy

Aυth exp −y2( )dy
−∞

∞
∫

  (1.9) 

In equation (1.9), the integral in the numerator is integratable by parts [82] 

 
 

y exp −y2( )⎡
⎣

⎤
⎦ ydy = − 1

2
exp −y2( )⎡
⎣

⎤
⎦ y

⎡
⎣⎢

⎤
⎦⎥−∞

∞

− − 1
2

exp −y2( )−∞

∞
∫−∞

∞
∫   (1.10) 



 

 
16 

 
= 1

2
|−∞
∞ exp −y2( )dy   

After the integrals, the average kinetic energy can be written as [82] 

 
 
Eav =

1
2

mAυth
3

Aυth

= 1
4

mυth
2 = 1

2
kBT .  (1.11) 

A similar process can be explored in order to derive the average kinetic energy in three dimensions. The three-

dimensional Maxwellian distribution is defined as [82] 

 
 
f (u,υ, w )= A3 exp − 1

2
m u2 + υ2 + w2( ) kBT

⎡
⎣⎢

⎤
⎦⎥

  (1.12) 

where [82] 

 
 
A3 = n

m
2πkBT

⎛
⎝⎜

⎞
⎠⎟

3 2

  (1.13) 

Then the average electron kinetic energy is [82] 

 

 

Eav =
A3

1
2

m u2 + υ2 + w2( )exp − 1
2

m u2 + υ2 + w2( ) kBT
⎡
⎣⎢

⎤
⎦⎥
dudυdw

−∞

∞
∫∫∫

A3 exp − 1
2

m u2 + υ2 + w2( ) kBT
⎡
⎣⎢

⎤
⎦⎥−∞

∞
∫ dudυdw∫∫

  (1.14) 

Maxwellian distribution is isotropic, so each of the three terms in the numerator is the same as the others. Therefore, 

evaluating one of them would be enough, and this can be multiplied by three [82]: 

 

 

Eav =
3A3

1
2

m u2 + υ2 + w2( )du exp − 1
2

m υ2 + w2( ) kBT
⎡
⎣⎢

⎤
⎦⎥∫∫∫ dυdw

A3
1
2

m u2 + υ2 + w2( )du exp − 1
2

m υ2 + w2( ) kBT
⎡
⎣⎢

⎤
⎦⎥∫∫ dυdw∫

  (1.15) 

Finally, the general result is 

 
 
Eav =

3
2

kBT .  (1.16) 

for three degrees of freedom; it is the one-dimensional average kinetic energy times the number of degrees of freedom.  

In an ideal gas, number density and temperature determine the pressure: [87]. The average kinetic energy  Eav of a 

Maxwellian distribution is  k B
T 2 [88]. To avoid confusion regarding the number of dimensions, the energy 

corresponding to  kBT (rather than  Eav
) is used to denote the temperature. For example, if  p = nkBT , then 
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T = 1.602x10−19

1.38x10−23
≈ 11,600oK . (1.17) 

The conversion factor is  1eV = 11,600oK . In this case,  2eV plasma means that  kBT = 2eV  or  Eav = 3eV  in three dimensions.  

 The ions and the electrons have separate Maxwellian distributions with different temperatures. Each species has its 

own thermal equilibrium. In a magnetic field, the temperature can be different in different directions. Moreover, plasmas 

are often in a non-equilibrium state with different temperatures ( Te  and  Ti ) [85]. Such two-temperature plasmas are 

found in gas discharges. The solar plasma, however, is an isothermal plasma with  Te = Ti  [85]. When there is a magnetic 

field  B , even a single species (e.g., ions) can have two temperatures. This is because of the forces acting on an ion along 

 B  are different from those acting perpendicular to  B  due to the Lorentz force [85]. The components of velocity 

perpendicular to B  and parallel to B  may then belong to different Maxwellian distributions with temperatures (i.e., 

 T⊥ and 
  
T! ). 

 1.3.2    Ionization Processes 

Plasmas exist in an environment that provides for a large number of ionization processes of atoms. These can be 

photoionization by an intense source of ultraviolet radiation or collisional ionization by energetic electrons [85]. 

Photoionization is important in space plasmas where the electron and atom densities are low but a large number of 

ultraviolet (UV) photons may be present. Some of the most important causes of ion generation in a plasma are electron 

impact ionization of neutral atoms, electron impact ionization of an excited atom, and penning ionization by collision 

with an electronically excited atom according to [89] Table 1.2. In Table 1.2, where  hυ  is the energy associated with a 

photon, Atom* refers to the excited state, and the penning ionization is a type of ionization process involving reactions 

between neutral atoms or molecules [89].  

 Photoionization is especially important in space plasmas where the electron and atom densities are low but a large 

number of UV photons may be present. For high density plasmas, i.e.,  ne >  1017m−3 , the electron impact ionization of 

neutral atoms is the dominant process [89]. The mean ionization distance from electron impact ionization is determined 

according to [89, 90] 

 
 
λ iz = υs Ki Te( )ne , (1.18) 
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where  υs is the velocity of the sputtered atom,  ne is the density of electrons, and  Ki(Te ) is the ionization rate constant 

according to 

 
 
Ki Te( ) = Ko exp −Eo kBTe( ) , (1.19) 

where the constants  Ko  and  Eo  are material-dependent; values are available in [91-96]. The average distance an atom 

travels before going through an ionizing collision is calculated by equations (1.18) and (1.19). For example, enough 

electrical power should be applied to reach electron densities on the order of  1019m−3 , and the electron temperature 

should be at least a few  eV  in order to achieve an effective ionization of the deposited material in the sputtering 

processes [97]. In reality this corresponds to a power on the order of  kWcm−2 on the target surface. Usually, this much 

power cannot be applied continuously, as there is not enough cathode cooling (thermionic electron emission to the 

plasma) [98]. Instead, the power is applied in pulses with a low duty factor [97] (i.e., the ratio between pulse duration and 

the total cycle time).   

1.3.3    Collective Behavior of a Plasma 

A constraint of the kinetic theory of gases is that no net forces (e.g., electromagnetic forces) act upon the gas particles. 

The gas particles carry no net charge and they are neutral. The particles move in straight lines until they collide with each 

other at velocities with a distribution (gravitational forces are not a concern at this moment) [99]. In plasma, charged 

particles create long-range electromagnetic forces. This means that each plasma particle interacts with a large number of 

other particles. Therefore, plasmas show a simultaneous response of many particles to an external stimulus [85]. In this 

sense, plasmas show collective behavior, which means that the macroscopic result to an external stimulus is the 

cooperative response of many plasma particles. Wave processes or mutual shielding of plasma particles are good 

examples of collective behavior of plasmas.  

Table 1.2: Different elementary collision processes in the plasma volume [89]. 

Combinations   Processes 

A + e- → Ion + 2e-   (Collisional) 

A* + e- → Ion + 2e-   (Collisional) 

e- + A* → A + hv + e- (Photoionization) 

A + Atom* → Ion + e-+ A    (Penning) 
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At a given time, because of the long-range electrostatic attraction, there are enough electrons near the ions to 

establish neutrality. When there is a local charge variation, there will be impacts on the whole plasma, i.e., an affected 

charge distribution will evolve into a new charge distribution [99]. As the electron density is dynamically distorted by the 

presence of the ions, the charge balance is called quasi neutral [79], which is explained in the sub-section below. 

1.3.3.1 Quasi-Neutrality and Thermal Speed  

A plasma is a quasi-neutral   (ne ∼ ni ) gas consisting of electrons, ions and neutral particles exhibiting collective behavior 

[79]. Quasi-neutrality is defined as approximately equal numbers of negative and positive charges entering and exiting a 

system. At thermal equilibrium 
  
(Te ∼ Ti ≅ Ts ≡ 1 3ms υs

2 ) , the ratio of the thermal electron speed 
 
υthe

= (2kBTe πme )1/2 to 

the thermal ion speed 
 
υthi

= (2kBTe πmi )
1/2  is written as the square root of the mass ratio between electrons and ions 

 
(mp me = 1836) 9 [79] 

 
 

υthe

υthi

=
mi

me

⎛

⎝⎜
⎞

⎠⎟

1/2

≈ 42.9 ,  (1.20) 

where it is assumed that the ions are protons,  me =  9.11x10−31kg , and 
 
mp =  1.67x10−27kg  [79]. The higher electron 

mobility maintains the amount of electrons along their trajectories towards the ions, making it possible for them to 

escape the trapped orbits domain [79]. Due to the long-range electrostatic attraction, there are enough electrons near the 

ions. As the electron density is dynamically distorted by the presence of the ions, the charge balance is quasi neutral [79].  

1.3.3.2 Plasma (Langmuir) Frequency  

Debye shielding is one example for collective behavior of plasma. The second aspect of collective behavior is the time 

scale, after which the electrons establish a shielded equilibrium positions [85].  

 When the potential perturbation is small (i.e., 
  
eV ≪ kBTe ), the electron energy is not much changed from its 

electron thermal velocity 
 
υthe

≈ 2kBTe me( )1 2
. To have a new equilibrium, the electron must reach its new position at a 

                                                             
9 The rest mass of the proton divided by that of the electron.  
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typical distance  λDe
10[7]. This time is established as 

 
τ ≈ λDe υthe

. This reciprocal of the  response time [85] is called 

plasma frequency 
 
ωp , 

 
 
ωp =

ne2

εom
,  (1.21) 

which is the most fundamental time-scale in plasma physics [35]. There is a different plasma frequency for each species; 

the relatively high electron plasma frequency is determined by [35] 
 
ωpe = (e2ne εome )1 2 , where ωpe is the electron plasma 

frequency, εo is the permitivity of a vacuum and  ne  is the electron number density, me is the electron mass and  e  is the 

fundamental electron charge.  

 Plasma frequency corresponds to the typical electrostatic oscillation frequency of a given species in response to a 

small charge seperation. For example, a one dimensional situation where a slab consisting entirely of one charge species 

is displaced from its quasinetral position by an infinitesimal distance  δx . The resulting charge density which develops on 

the leading face of the slab is  σ = enδx . The x-directed electric field generated inside the slab is of magnitude 

 Ex = −σ εo . Newton’s law applied to an individual particle inside the slab yields 
 
m(d2δx dt2 ) = eEx = −mωp

2δx , giving 

 
δx = (δx)o cos(ωpt ) . Above the plasma frequency ωp, electromagnetic waves propagate through the plasma; below the 

plasma frequency, however, the electrons screen out the disturbance over a characteristic time (plasma period), 

 
τp = 1 ωp . Note that plasma oscillations will only be observed if the plasma system is studied over time periods τ longer 

that the plasma period 
 
τp and if the external actions change the system at a rate no faster than 

 
ωp . In the opposite case, 

system will no longer be refered to as a plasma. Likewise, if the characteristic length of a plasma L shorter than the 

distance 
 
υthτp  traveled by a typical plasma particle during a plasma period will not detect plasma behavior. Particle will 

exit the system before completing a plasma oscilation. This distance, which is the spatial equivalent to 
 
τp , is refered to 

as Debye length  λD . If the characteristic length of a plasma L sufficiently large ( i.e.,   L≫ λD ), then it behaves in a 

collective manner.  

                                                             

10  λDe
= (εoT

e
en

e
)1 2  is the electron Debye length. For example: 

 
λ

De
= 740 T

e
n

e
cm , where  ne  is in units of  cm−3  and  Te  is in volts. 
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1.3.3.3 Debye Length 

While reducing the size of the observed volume element down to the scale lengths where charge neutrality no longer 

holds and the local charge density  ρ = e(ni − ne )  is no longer zero, the presence of an electric potential that satisfies the 

Poisson’s equation for electron-proton plasma becomes resolved. Here,  e  is the elementary charge, ni is the ion number 

density and  ne  is the electron number density. The density of ions and electrons can still be modeled via the Boltzman’s 

law [34], 

 
 
ne(r )= no exp

eφ(r )
kBTe

⎛

⎝⎜
⎞

⎠⎟
. (1.22) 

By expanding (1.22) in a Taylor series and combining with the Poisson’s equation, one obtains [34] 

 
 
∇2φ = − ρ

εo

, (1.23) 

resulting in a differential spherical symmetric problem for the potential field φ  centered on an ion and with radius 

 r [34],  

 

 

∇2φ = d2φ
dx2

=
noe2

εokBTe

φ = 1

εokBTe noe2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

φ . (1.24) 

The solution of equation (1.24) is 

 
 

φ = e
4πεor

exp − r
εokBTe

noe2

⎛

⎝
⎜

⎞

⎠
⎟  . (1.25) 

By defining [34],  

 
 

λD =
εokBTe

noe2
  (1.26) 

as the characteristic Debye length λD , equation (1.25) can now be written as 

 
 
V = e

4πεor
exp − r

λD

⎛
⎝⎜

⎞
⎠⎟

.  (1.27) 

 This characteristic length scale  λD determines the distance over which the charge is effectively screened by 

surrounding charges. In a qualitative sense, charges may only detect or sense other charges within their Debye sphere; 

outside the Debye sphere, the potential generated by a charge falls off and effectively cannot be sensed. This 

phenomenon is collectively referred to as Debye screening or shielding, which is the ability of the plasma to shield out 
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externally applied electric fields [88]. The electric potentials can be produced by either local charges or by inserting 

electrodes inside the plasma. If an electric field is applied to a plasma by inserting two electrodes, these electrodes attract 

charge carriers of the opposite charge, and a non-neutral cloud of electrons and ions surrounds each electrode [88]. For a 

plasma with no thermal motion of the charge carriers, the electric potential would be shielded, and no electric field 

would occur inside the plasma. Equation (1.26) can also be written as 

 
 

λD =
εokBTe

noe2
=

noe2V
εokBTe

⎛

⎝
⎜

⎞

⎠
⎟

−1 2

≡
υthe

ωp

 , (1.28) 

the thickness of the region where the electric potential penetrates the plasma. As the potential increases, the potential 

difference reaches a few times the electron temperature. The Debye length  λD  is numerically related to the electron 

thermal velocity 
 
νthe

and to the plasma (Langmuir) frequency 
 
ωp . Te  is the electron temperature,  no  is the undisturbed 

plasma density [88]. When the density is increased,  λD  decreases as each layer of plasma contains more electrons.  λD  

increases with increasing  kBTe . Te  is important in the definition of   λD  because of the electrons, which are more mobile 

than the ions, generally do the shielding.  

1.3.3.4 The Plasma Parameter 

The plasma parameter Λ is referred to as the number of particles in a Debye sphere, a sphere whose radius is the Debye 

length [34]:  

 
 
Λ = n

4π
3
λD

3 = 1380 T3 2 n1 2 . (1.29) 

Substituting for  λD  yields 

 
 

Λ = 1

n

4π
3

εoTe

e2

⎛

⎝
⎜

⎞

⎠
⎟

3

.  (1.30) 

 The average distance between particles is defined as 

  rd ≡ n−1/3 , (1.31) 

and the distance of the closest approach  rc  is the distance at which the kinetic energy of the particle is fully converted 

into potential energy, i.e., no interaction occurs [34], 

 
 
rc ≡

e2

4πεoTe

,  (1.32) 
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which allows the plasma parameter to be rewritten as 

 
 
Λ = 1

6 π
rd
rc

⎛

⎝⎜
⎞

⎠⎟

3/2

.  (1.33)  

 When plasma parameter   Λ≪1 , the particles in the plasma are dominated by one another’s electrical fields, which 

is refered to as a strongly coupled plasma. If the Debye sphere is densely populated
  
Λ≫ 1( ) , the particle experiences the 

electrical influences of particles within its Debye sphere; this is referred to as weakly coupled plasma. As the 

temperatures are different, coupling states of electrons and ions are also different.  

1.3.3.5 Cyclotron Frequency 

Charged particles moving in a magnetic field tend to gyrate in a helical path, which is produced by the Lorentz force. For 

a particle of charge  q  and velocity  
!
υ  interacting with a magnetic field that is directed along the  z -axis, the force is 

given by [34]  

   
!
F = q

!
υ×
!
B .  (1.34) 

 This equation may be solved for each of three spatial components of the motion. The result is a harmonic 

oscillator characterized by a cyclotron frequency  ωc [34], 

 
 
ωc =

qB
m

. (1.35) 

1.3.3.6 The Larmor Radius 

The size of the orbit where the particles move in a magnetic field is given by the Larmor radius  rL [34]. This length may 

be driven by considering the forces acting on a charged particle in a magnetic field. Figure 1.2 shows the free body 

diagram of such a particle. As the result of applying Newton’s Second Law to the particle in the centripetal direction, the 

following equation [34] is obtained:   

 
 
Fc = qυ⊥

2 B =
mυ⊥

2

r
, (1.36) 

where r is the Larmor radius  rL and υ⊥ is the velocity component perpendicular to the magnetic field.  

 
 
r = rL =

mυ⊥

qB
=
υ⊥

ωc

.  (1.37) 
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Figure 1.2: Positively charged particle moving in a uniform vertical magnetic field [34]. 
 

 If an electric field is present in addition to the magnetic field, the motion of the particle will be perpendicular to the 

directions of both   
!
E  and   

!
B  and will have a velocity given by   

!
υ =
!
E ×
!
B B2  [7]. Equation (1.37) shows that the 

cyclotron frequency and Larmor radius are hence related.  

1.3.3.7 Collision Frequency 

The frequency of collisions  νcoll  is described as the average rate at which particles of two species collide [100]. In weakly 

ionized plasmas, generally the electrons will collide most frequently with neutral atoms and molecules; the electron-

neutral collision frequency  νen will dominate over the electron-ion collision frequency  νei [101-103]. Since the plasma 

parameter  lnΛ  depends as the inverse of the relaxation times between these two different classes of collision, generally a 

weakly ionized plasma requires only a moderate value of Λ  (usually about 10). Larger Λ  will tend to indicate that the 

ion-electron collision frequency  νie  is not insignificant relative to the neutral collision frequency [103]. 

 For elastic collisions, the cross section of the particles is given as  σn = πdo
2 ; where  do  is the effective radius of the 

neutral particle. Typically this cross section is of the order   ∼ 10−19m2  and the collision frequency is 
 
νen = σnnn υe [104]. 

Where  nn is the number density of the neutral collision partners and 
 
υe  is the average speed of the colliding electrons 

[104]. If the plasma is highly ionized and the Coulombic collisions dominate, then most of the collisions are small angle 

scattering collisions between all particles in a Debye sphere. The electron-ion collision frequency 
 
νei = neσC υe  governs 
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most of the character of the collisionality in the plasma; where  σC  is the Coulombic cross section [104]. The impact 

parameter is calculated with 
  
dC ∼ e2 4πεo me υe

2
 and the Coulombic cross section is given by 

  
σC = πdC

2 ∼ e4 16πεo
2me

2 υe

4
[104]. The Coulombic collision frequency is proportional to [104]  

 
  
νei = neσc υe ∼

nee4

16πεo
2me

2 υe
3   (1.38) 

If there is thermal equilibrium, then the following equations become applicable [104]:  

   νee ∼ νei   (1.39) 

 
  
νii ∼ me miνee   (1.40) 

 
  νie ∼ me mi( )νee   (1.41) 

1.3.3.8 Mean Free Path 

The mean free path is the average distance that a particle (e.g., an atom, a molecule, a photon) travels before a collision is 

expected, which modifies its direction or energy or other particle properties [104, 105]. It is defined as [104] 

 
 
λ =

υ
νcoll

= 1
σn

  (1.42) 

where υ  is the average speed of the species,  νcoll  is the collision frequency of interest, σ  is the cross section of the 

collision frequency,  n is the number density of the colliding species.  

 For fully ionized plasma, the dominant collision is the Coulombic long range scattering, which is shown as  νei . 

Then the mean free path is shown as [104] 

 
  
λ ∼

υe

νei

∼ 64πλD
Λ

ln Λ( )   (1.43) 

  lnΛ ≥∼ 10  and the mean free path λ  is very high compared to Debye length  λD [104]. 

1.3.4    Existence Regimes 

Plasmas are found in a huge parameter space, which covers seven orders of magnitude in temperature and twenty-five 

orders of magnitude in electron density [85]. Not all of the behavior of the plasma will be preserved with all scale of 
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changes. Plasma could possess energies we experience on an everyday basis to energies that demand a relativistic 

treatment [106]. Therefore, it is unlikely to expect a single physical model to adequately address all possible phenomena 

with equal validity across all ranges of these parameters. A typical definition for a plasma often offers the following 

conditions [101, 103, 107, 108]: 

• The number of charge carriers is sufficiently large to allow particles to interact with several other particles 

within their Debye sphere, which provides the collective behavior in plasmas. Equation (1.29) represents the 

number of particles within a Debye sphere, which may be written as  Λ≫ 1. Most common plasmas can be 

approximated well by assuming   ln(Λ)!  10. 

• The apparatus11 [107, 109] length is assumed to be much larger than Debye length,   λD ≪ L . This means that, 

on the macroscopic scale there is no significant charge separation, which means that the plasma is quasi-neutral 

[79]. Plasmas that do not satisfy this condition are somewhat referred to as non-neutral plasmas.  

Plasma sheaths are intrinsically non-neutral, and occur along the boundary surface in contact with the plasmas. Some 

plasma devices involve the application of an electric body force to accelerate the plasma flow. Then, the electric body 

force will be proportional to the net charge and therefore plasma possesses a net electric charge.  

 Another characteristic quantity in determining the nature of the plasma is the Knudsen number  Kn  and is defined 

as [101] 

 
 
Kn =

λ
L

 , (1.44) 

where λ  is mean free path and  L  is the characteristic length of the domain. In Langmuir probe diagnostics, this 

characteristic length is typically chosen to be the diameter of the probe. The Knudsen number is used to distinguish 

between the low density12 [110] and high density plasmas [101, 103]. When the Knudsen number is large, the mean free 

path is large compared to the overall length scale of interest. In this case, this means that the collisionality is not 

                                                             
11 What is an apparatus? Apparatus is the technical equipment needed for a particular laboratory activity. A number of important 
lengths are well defined for ionized gases including the dimensions of the apparatus (e.g., Langmuir probe apparatus for plasma 
diagnostics).  
12 By low density we mean plasmas with neutral gas number densities of approximately 1013 to 1016 molecules cm-3 (pressure between 
 ∼  0.1 to 103 Pa) which are weakly ionized between 10-6 to 10-1. 
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significant in the plasma, and sometimes a collisionless model is even appropriate (free molecular flow13 [111]). When 

the Knudsen number is small, the collisionality is strongly present in the plasma. When the Knudsen number is of order 

unity, then the region is referred to as the transitional region and it cannot be characterized properly by either low or 

high density assumptions [101, 103]. Table 1.3 gives approximate values for the boundaries between flow regimes. It is 

important to know what regime best describes the plume region plasma, as the validity of any probe theory depends on 

this heavily [112].  

 Figure 1.3 shows a schematic that maps some of plasma physics in a logarithmic scale for density and temperature. 

Typical examples are marked for astrophysical situations, some technical plasmas and the regime of control fusion. To 

supplement the overall picture of the vastness of these scales, some common parameters describing plasma behavior is 

listed in Table 1.4. 

1.3.5    Sheaths  

If quasi-neutral plasma (ne ≈ ni ) comes into contact with wall surfaces, it will generate a thin positive layer called a sheath. 

Quasi-neutral plasma floating in space has the same number of electrons as ions. However, the electron thermal velocity 

 
 
υthe

=
kBTe

me

 (1.45) 

is at least a hundred times larger than ion thermal velocity 

 
 
υthi

=
kBTi

mi

,  (1.46) 

because  me ≪mi  and Te ≥ Ti .  

Table 1.3: Knudsen numbers for various flow regimes [112]. 

Length Scales Flow Regimes 

 Kn > 10  Free-molecular flow 

 10 >Kn > .01  Transitional 

 1 >Kn > .01  Slip 

  Kn ≪ .01  Continuum 
 

 
                                                             
13 Free molecular flow describes the fluid dynamics of gas where the mean free path of the molecules is larger than the size of the 
chamber or of the object under test. Knudsen number, in this case, is used to describe how gas flows through a tube in free molecular 
flow. 
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Figure 1.3: Different kind of plasmas in astrophysics, solar physics and solid state physics, nuclear fusion, and for 
technical applications in a plot of electron temperature  Te versus electron density  ne [103, 113]. Degenerate, 
relativistic and nonrelativistic plasmas are also denoted on the picture.  

 

 If a plasma is held between two grounded walls separated by a length  l  with a potential  V = 0 , as shown in Figure 

1.4 (left), the electric potential  V is zero everywhere, as well as the electric field  (Ex = −∇V) , because there is no net 

charge density  ρ = e(ni − ne )  present. There is no force preventing the faster electrons from escaping to the wall. This 

results in a charge discrepancy, because the slower ions remain in the plasma bulk, creating a positive charge, as shown 

in Figure 1.4 (right). Thin (   s≪ l ) positive sheaths with   ni ≫ ne  form near the walls. This results in a potential  φ(x) being 

positive within the plasma and then falling to zero at the walls. This potential acts like a base for the electrons, confining 

most of them in the plasma. The ions, however, fall down the potential hill formed by the electric field pointing from 

the plasma to the wall. If the plasma potential 
 
φp  is on the order of a few electron temperatures  Te , most of the 

electrons will be confined to the plasma. The ions bombard the walls with a few times  kBTe (energy). 
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Table 1.4: Comparison of parameters for a wide variety of plasmas [103, 114]. 

Parameters n T L λD rL lnΛ ωp ωc 
Units (m-3) (eV) (m) (m) (m)  (Hz) (Hz) 
Gas Discharge 1016 1 1 10-15 - 10 1010 - 
Magnetic Fusion (Tokamak)  1020 104 10 10-15 10-5 20 1012 1012 
Inertial Fusion 1031 104 10-5 10-15 - 8 1018 - 
Ionosphere 1011 0.1 105 10-15 10-1 14 108 106 
Solar Wind (near earth) 107 10 1011  10 104 25 105 102 
Magnetosphere 104 10 108 1016 104 28 105 103 

 

 

 The sheaths appear where a plasma meets a solid such as a chamber wall, electrode, substrate, or probe. They arise 

in a plasma, as the electrons have a temperature at the same or greater order of magnitude as the ions, and they are much 

lighter [115]. They are faster than the ions by at least a factor of  (mi me )1 2 [79]. At the interface with a material surface, 

therefore, the electrons will fly out of the plasma, charging the surface potential as negative relative to the bulk plasma 

[115]. The sheath is comparable to the Debye length, but it varies to a certain extent depending on the applied bias 

voltage on the electrode. Sheaths control the collection of Langmuir probe current by affecting the dynamic of incoming 

charges via electromagnetic interaction. 

 

 
Figure 1.4: (Left) Initial electron densities and potential in the formation of a plasma sheath [7]; (right) densities, 
electrical field and potential after the formation of a sheath [7]. 
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1.3.6    Collisionless Sheath 

Disregarding the collisions, a few predictions can be made regarding the potential and ion velocity at the plasma-sheath 

interface. Let  x = 0 be the position of the plasma-sheath interface; the plasma bulk is at  x > 0 . Furthermore, the ions 

have a velocity υs at the interface. The assumptions are presented below:  

• No collisions, 

• Maxwellian electrons at temperature  kBTe , 

• Cold ions (Ti = 0) assumes the ions are stationary relative to the electrons, 

•  ne(0)= ni(0) at the plasma sheath interface, 

• No ionization in the sheath. 

The current density of ions entering the sheath at the edge of the plasma is given by  

 
 
Ji = 0.6neυi ≈

1
2

nse
kBTe

mi

 , (1.47) 

where  ns  plasma number density at the start of the presheath far from the boundary, which was considered to be the 

center of the plasma by Langmuir for his collisionless plasmas [116]. The convention of approximating the coefficient  

0.6 as 1/2  was made by Bohm in defining what is now called the Bohm current [64].  

 The ion energy conservation can be postulated as 

 
 

1
2

miυ
2(x)= 1

2
miυs

2 − eφ(x) .  (1.48) 

Because there is no ionization in the sheath, the continuity of the ion flux yields 

  ni(x)υ(x)= nisυs ,  (1.49) 

with  nis being the ion density at the sheath edge. Solving equation (1.48) for  υ(x)  and substituting into equation (1.49), 

one arrives at 

 
 

ni = nis 1− 2eφ
miυs

2

⎛

⎝
⎜

⎞

⎠
⎟

−1/2

.  (1.50) 

The electron density is given by the Boltzmann relationship 

 
 
ne(x)= nes exp

eφ(x)
kBTe

⎛

⎝⎜
⎞

⎠⎟
,  (1.51) 



 

 
31 

according to the assumptions  nes = nis ≡ ns  at the sheath edge. Substituting   ni  and  ne  into Poisson’s equation  

 
 

∂2φ
∂x2

= − ρ
εo

= − e
εo

(ni − ne ) ,  (1.52) 

one obtains 

 

 

d2φ
dx2

=
ens

εo

exp
eφ

kBTe

⎛

⎝⎜
⎞

⎠⎟
− 1− eφ

Es

⎛

⎝⎜
⎞

⎠⎟

−1/2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, (1.53) 

where  Es = 1 2miυs
2   is the initial ion energy. Equation (1.53) is the basic non-linear equation that describes the sheath 

potential and the ion and electron densities. Equation (1.53) can be integrated by multiplying it by  d
2φ dx2  and 

integrating over  x: 

 

 

dφ
dx

d
dx

dφ
dx

⎛
⎝⎜

⎞
⎠⎟

dx =
o

φ

∫
ens

εo

exp
eφ

kBTe

⎛

⎝⎜
⎞

⎠⎟
− 1− eφ

Es

⎛

⎝⎜
⎞

⎠⎟

−1/2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
dx

o

φ

∫ . (1.54) 

The  dx ’s cancel each other out, and one can integrate over  dφ . Corresponding to a field-free plasma, one can set 

 
φ 0( ) = 0  and 

 
dφ dx 0( ) = 0 :   

 

 

1
2

dφ
dx

⎛
⎝⎜

⎞
⎠⎟
=

ens

εo

kBTe exp
eφ

kBTe

⎛

⎝⎜
⎞

⎠⎟
− kBTe + 2Es 1− eφ

Es

⎛

⎝⎜
⎞

⎠⎟

1/2

− 2Es

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

.  (1.55) 

This can be integrated numerically. However, it is clear that the right hand side must be positive in order for a solution 

to exist. This means that, in the sheath region, the electron density must be less than the ion density [7] when the 

boundary is able to emit electrons. This can be a problem only for small φ . Equation (1.55) can be expanded to the 

second order in the Taylor series, and one obtains the inequality 

 
 

1
2

(eφ)2

kBTe

− 1
4

(eφ)2

Es

≥ 0 .  (1.56) 

Substituting  Es = miυs
2 2 , this becomes  

 
 

1
2

1
kBTe

− 1
2

1

miυs
2
≥ 0   (1.57) 

or  

 
 

υs ≥ υB =
kBTe

mi

⎛
⎝⎜

⎞
⎠⎟

. (1.58) 
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This is the Bohm sheath criterion, where  υB  is the Bohm velocity. A small electric field must exist inside a plasma in 

order for the ions to achieve this velocity. This region is much wider than the sheath, and is known as the presheath.   

1.4    Motivation and Overview 

Computational research in EP overlaps experimental investigations in almost every area. Lifetime issues are addressed by 

investigating sputtering and erosion processes in the thruster [117, 118]. Integration issues are considered through 

studies of deposition and implantation [119], plume backflow [120], and through plasma control to mitigate signal 

interference [121]. High-power cluster configurations are simulated to evaluate the performance, with near and far field 

studies to characterize the exhaust plume [122]. Preliminary modeling is already underway to characterize prototype 

MEMS (thruster on a chip) devices [123]. 

 A broader goal is to develop and refine computational models until they become sufficiently accurate to perform 

reliable assessment and characterization of EP devices. Meeting that goal would help streamline the design process for 

new devices and also enable more effective interpretation of experimental results. For example, a sufficiently robust 

computational model could be used to predict on orbit performance of a high power configuration from measurements 

made in small vacuum chambers where the pumping rate is too low. Experimental and computational researchers 

continually share results in EP, so it is desirable to have a clear understanding of how experimental measurements relate 

to undisturbed plasma conditions. EP devices produce highly non-equilibrium plasma flows. The most commonly used 

electromagnetic and electrostatic devices produce an exhaust plume consisting of high temperature electrons, high 

energy ions of various charge states formed in the thruster, high energy neutrals and low energy ions formed via charge 

exchange collisions, and low energy neutrals that diffuse out of the thruster without being ionized or accelerated [11, 34]. 

The plasma is low density, strongly flowing, and nearly collisionless as a whole [11].  

 This is markedly more complicated than the simple conditions of isothermal electrons14 [85] and cold-drifting ions 

[124] assumed in the theoretical analysis of some plasma probe measurement techniques. One important open question 

is how well the theoretical probe techniques perform for a more complex, realistic EP plasma flow. A computational 

setting is especially well suited to evaluating this question, since the plasma conditions can be specified explicitly and 
                                                             
14 Plasmas are often in a non-equilibrium state with different temperatures,  Te and Ti of electrons and ions. Such two temperature 
plasmas are typically found in gas discharges. The solar plasma (in the interior and photosphere), on the other hand, is a good example 
for the isothermal plasma with  Te = Ti . 
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probe measurements can be simulated and analyzed according to standard diagnostic techniques. By moving 

incrementally from the ideal plasma of the diagnostic theory to a realistic plasma, it is also possible to isolate the effects 

of each deviation from the ideal assumptions. 

 A second open question is how the insertion of a diagnostic probe disturbs the plasma flow, and whether that 

disturbance introduces a systematic error in the measurements the probe makes. In other words, it is not clear whether 

the disturbed conditions measured by the probe can be related back to the undisturbed plasma conditions. Again, a 

computational setting is ideal for investigating these effects since the undisturbed conditions are known explicitly as 

inputs. The remainder of this dissertation describes the development and use of computational models to help address 

these open questions. 

 This dissertation focuses on the advances made regarding the theoretical capability for simulating the operation of 

electrostatic probes, specifically Langmuir probes. Although many plasma diagnostic methods have been developed 

since the original work of Irving Langmuir [125], the Langmuir probe is still one of the most powerful plasma diagnostic 

tools due to its simplicity, low cost, adaptability, ability to determine the fundamental characteristics of a plasma (namely, 

the ion number density  ni , electron number density  ne , electron temperature  Te , EEDF, plasma potential 
 
Vp  or 

floating potential  Vf ) with excellent spatial (of or relating to space) resolution, and simple theory of probe data 

interpretation [41].  

The purpose of this dissertation is to introduce a PIC code, PROBEPIC. PROBEPIC was initially written to 

elucidate the beam-probe interaction and provide systematic techniques for legitimately interpreting experimental data. 

The benefits of PROBEPIC were constrained by its inability to model the operation of Langmuir probes in non-

Maxwellian plasmas. However, the tool presented in this dissertation can now be used to evaluate the design of 

Langmuir probes to ensure proper response in non-equilibrium plasmas, as well as to assess the plasma conditions for 

Langmuir probe data with I-V characteristics that stray from the expected equilibrium results. This means that 

PROBEPIC is not only capable of simulating the existing Langmuir probe measurements to recreate the conditions and 

analyze the experimental data, but also capable of conducting, simulating and analyzing own probe 

measurements/experiments in both Maxwellian and non-Maxwellian plasma environments. I am compelled to use the 

term experiments because the PIC method, which uses computational particles to represent real electrons and ions, gets 

as close to reality as we can expect to on a computer. We are not simply numerically integrating a set of differential 
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equations; the PIC method introduces experimental realities such as statistical deviations. For example, the effect of 

probe dimensions or specific plasma conditions may be explored.  

PROBEPIC can be used to provide better diagnostic capabilities, which can aid in the development of improved 

EP and other non-equilibrium plasma systems. Modeling using the described updated PROBEPIC model can also 

facilitate the efficient and cost effective design simulation and evaluation of diverse Langmuir probe geometries under 

diverse conditions. The modeling also allows for the evaluation of experimental data from Langmuir probes of known 

geometry when the probe data departs from anticipated current-voltage (I-V) characteristics. 

1.5    Dissertation Organization 

This dissertation is arranged as a linear sequence that starts with a review of experimental and numerical research related 

to EP. Chapter 2 introduces the current state of the art and the Langmuir probe theory including analytical techniques 

that have previously been developed to grapple with the difficult task of interpreting experimental Langmuir probe data. 

A description of the Maxwellian distribution is presented in sections 2.7; this is necessary because Langmuir probe 

theory was originally created based on the assumptions using Maxwell’s equations. The collisionless plasma presents 

itself based on these equations, and the I-V curves can be fitted directly to obtain the temperatures and densities of both 

electron components without resorting to techniques that attempt to derive the plasma distribution from the current by 

taking derivatives. Following this, section 2.8 introduces non-Maxwellian distribution; this is because this work presents 

the formulas for and examples of Langmuir probe current collection in such non-Maxwellian plasmas, and shows when 

the electron energy distribution can be derived from measurements of the first and second derivatives in the retarding 

region of the I-V curves. 

 Chapter 3 focuses on numerical methods used to model the flow of plasma. The kinetic and fluid methods are 

briefly reviewed. The particles are treated kinetically, and their trajectories are followed as they move within a 

computational grid. All charged particles experience electric and magnetic forces according to Maxwell's equations, and 

electrons also experience electron-neutral and Coulomb collisional forces. Various other collision processes are also 

modeled. The simulation is nominally explicit (as opposed to implicit); that is, most quantities that affect the motion of a 

given particle are sampled from the previous time-step. This chapter also describes the various facets of the PIC and MC 

simulation kinetic models in detail establishing a theoretical framework for the algorithms used in PROBEPIC.  
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 The Probe PIC computational code is used extensively to perform simulations of the plasma flow field around a 

cylindrical geometry that represents a Langmuir probe.  The results are presented and discussed in Chapter 4. The 

computational code is profiled and high-resolution multi-grid method is implemented to solve the PIC model, which 

increased the modeling accuracy. As Langmuir probes are used in space, ionosphere, and in a wide variety of industrial 

or laboratory plasma devices, probe theories have been developed for very different operation regimes. This is done by 

implementations of the theoretical approaches that were described previously to evaluate the general validity of 

PROBEPIC output. This is done by classifying the given plasma conditions and probe properties in comparison with 

the existing probe theories as well as by empirical arguments regarding the reliability of the theoretical and the measured 

probe characteristics.  

 The dissertation is concluded in Chapter 5 with a review and summary of the results and new contributions of this 

work. This includes the results of the application of PROBEPIC to several problems and summarizes the present study. 

Finally, a few recommendations for future work in this area are outlined. 

EQUATION CHAPTER (NEXT) SECTION 1
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Chapter 2  

Electrostatic Probes – The Langmuir Probe 

The simplest form of electrostatic probe used for measuring the properties of plasma is a Langmuir Probe. The 

technique was developed by Langmuir and Mott-Smith in 1924 [125]. They discovered that many fundamental plasma 

parameters can be determined by placing a small conducting probe into the plasma and the current to the probe as a 

function of the difference between the probe and plasma potentials can be observed [125], i.e., the electron temperature 

and the electron number density are measured by a single Langmuir probe, and the theoretical form of the Langmuir 

characteristics are shown in Figure 2.1. A variable biasing voltage is applied on the electrode, which may be positive or 

negative with respect to the plasma [79].  

 Although Langmuir probe is a very simple device, it may have a rather complicated theory. This is because probe 

acts as a boundary and the equations governing the plasma motion change its characteristics. Due to the quasi-neutral 

behavior of plasma [79] a sheath is formed around the probe, which can sustain a large electric field. The characteristics 

of the Langmuir probe can be easily understood by plotting the I-V curve. Here I is the current flowing in the probe 

when a biasing voltage V is applied to it with respect to the plasma [88] or the body of the vessel containing plasma [2].  

   
 
Figure 2.1: (Left) Schematic diagram of single probe measurement [126] and (right) theoretical form of the 
Langmuir characteristics: a) ion-saturation region, b) exponential region, c) electron-saturation region,  Vf  

floating potential, 
 
Vp  plasma potential. The increase in the probe current in the electron saturation region is 

due to sheath expansion effects and depends on the probe shape [127]. 
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 Probe configurations can be broken down into three broad groups defined by the shape of the probe tip. These are 

cylindrical [128-135], spherical [131, 136] and planar [62, 131, 135, 137-142], as shown in Figure 2.2. The cylindrical 

probe is a straight piece of wire typically made from tantalum or similar materials such as molybdenum, which are 

chosen for their high melting points and mechanical strength; tungsten and graphite are also popular choices. In 

contrast, the planar probe is a flat conductor that is typically single-sided, with the rest of the probe being insulated with 

a simple glass sleeve or coaxial cables built into the sleeve. 

 The choice of probe depends largely on what characteristics of the plasma are of principal interest. For example, 

the planar probes, while sensitive to plasma flow, are not of use in measuring the electron saturation current, as the 

current recorded depends on the probe geometry [143]. The regimes in which the probe will operate and the properties 

of the plasma that are of interest will decide the choice of probe shape selected. By carefully considering the voltage to 

be applied, the sheath size can be estimated and an appropriate probe size can be chosen; that way, the plasma will not 

be perturbed more than necessary [62]. Whether or not the plasma is collisional, along with the type of probe chosen, 

determines the probe theory, which in turn frames the interpretation of the results. 

 

Figure 2.2: An illustration of different types of collecting Langmuir probes with radius 
 
rp ; a) spherical, b) 

cylindrical and c) planar geometries [47] . 
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2.1    Basic Theory of Operation 

The simple approach to the probe theory [125] may be listed under the following assumptions: 

• A Maxwell-Boltzmann electron velocity distribution is assumed, 

• Plasma perturbations by the probe can be neglected, 

• Every particle entering the sheath is collected by the probe. 

Under these conditions, the total current I in the electron retarding region of the I-V curve (i.e., below the plasma 

potential) is given by 

 
 

I = −Ii + Ies exp −
Vp − Vbias

Te

⎛

⎝
⎜

⎞

⎠
⎟ , (2.1) 

where  Ii  is the constant ion current; the negative sign indicates positive ion collection. Ies  is the saturation electron 

current, which decreases exponentially with sheath voltage ( Vsh < 0 , where 
 
Vsh = Vp − Vbias ).  

 For an ideal probe, whose sheath expands with sheath voltage and whose sheath area remains constant, the 

collection area of the probe does not change throughout the I-V characteristics. The electron and ion saturation currents 

are determined by the ideal probe theory by  

 
 
Ies =

1
4

enoApυe   (2.2) 

 
 
Iis = −ensApυB .  (2.3) 

Ap is referred to as the probe surface area, no as the plasma density (no = ne = ni), and ns  as the sheath edge density, 

which is approximately 0.61 times no [7].  υe  is the mean electron speed, which is equal to  (8eTe πme )1 2  15 [7], and  υB
16  

is the Bohm velocity determined by [7] 

 
 
υB =

eTe

mi

, (2.4) 

                                                             
15 For example: 

 
υe = 6.7 × 107 Te cm s , where  Te is in volts and  ne  is in units of  cm−3 .  

16 For example: 
 
υB = 9.8 × 105 Te AR cm s , where  AR is reduced mass (amu). 
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which is valid for    Ti ≪ Te ..  mi  is the ion mass, and  Te  is given in  eV . The sheath edge is the point where the ions 

reach  υB  after they gain energy in the presheath.  ne  is less than  ni  within the sheath region for the positive charge to 

exist; the ion must gain energy in the presheath for the current flux to be balanced.  

 According to equation (2.1), the total current collected by the probe is a combination of ion and electron current. 

For 
 
Vbias < Vp , the ion current to the probe is constant  (Ies =  Ii ) . When  (Vsh > 0)  (i.e., the bias voltage is more than the 

plasma potential), the electron current is not an exponential function of voltage; it begins to saturate. The current above 

 
Vp , however, is determined by equation (2.2).  

 Equations (2.2) and (2.3) are true for an ideal planar probe whose sheath width varies as a function of bias; 

collection area is constant. For plasma diagnostics, cylindrical probes are usually preferred; their construction is simple, 

and they cause insignificant plasma perturbation compared with the planar probes [144]. At large voltages, the planar 

sheath cannot keep its shape and takes on a hemispherical shape [144]; the results are not ideal. For cylindrical probes, 

however, the collection area is a function of sheath voltage. As the collection area grows with bias, the current does not 

saturate as it does in the ideal planar case. Instead, it increases with a square-root dependence on  Vsh . The effective 

collection area of a cylindrical probe is 

 

 

Aeff = Ap 1+
dsh

rp
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, (2.5) 

 where 
 
Ap  is the probe surface area, 

 
rp  is the probe radius, and  dsh  is the sheath width given by Child’s law [7], 

 
 
dsh =

2
3

λD

2Vsh

Te

⎛

⎝⎜
⎞

⎠⎟

3/4

,  (2.6) 

 where  λD  is given as
  
εoTe ens( )1 2

, and  ns  is sheath edge density.  

 The sheath expands with  Vsh . As the sheath changes, it shields out the high electric field from reaching the quasi-

neutral bulk plasma. Equations (2.2) and (2.3) are modified for sheath expansion associated with cylindrical probes. 

 For higher negative biases where the ion current is saturated, equation (2.6) becomes valid; an approximate value 

for the incomplete ion saturation is obtained when equation (2.6) is used with equation (2.5) and substituted into 

equation (2.3). A more valid equation can be illustrated with the following formula [145, 146], 
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.  (2.7) 

The term in the square brackets of equation (2.7) is a correction factor for the saturation ion current. The values a and b 

depend on the ratio of 
 
rp λD . For cylindrical probes, with 

 
rp λD < 3 , a and b can be approximated by about 1.13 and 

0.5, respectively [144].  

 Equation (2.7) presents the OML ion current to a cylindrical probe in a collisionless, Maxwellian plasma. OML 

theory was developed by Langmuir and Mott-Smith [147] for cylindrical probes; the ions entering the sheath with a 

particular angular momentum may actually miss the probe even though they are attracted to it. The effects of collisions 

are ignored; a sheath is generally considered collisionless if the sheath thickness, 
 
Δdsh =  dsh − rp , is less than the mean 

free path of either ions  λ i  or electrons  λe . This model is extended [145] to provide a numerical solution for the ion 

collection in collisionless sheaths. This theory is known [144, 148, 149] to overestimate the ion densities by providing an 

upper limit to the collected ion current in the low-pressure regime. 

The electron collection is not affected by collisions in the same way; the fast electrons and the electron current 

collection are present near the plasma potential, where the sheath is small. Thus, they suffer less from sheath expansion 

effects. The equation for the electron saturation is determined by 

 

 

Ie = eneAp
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, (2.8) 

where the terms in brackets represent a correction factor for the sheath expansion, and the coefficients β  and γ  

depend on the ratio 
 
rp λD . According to [150], as long as the probe potential is below  40V  (positive or negative), 

collisionless theory is valid for electron current measurements over a wide range of densities [144, 148, 149]. To 

accurately determine the ion currents from collisionless theory, the pressure must be below 2.67  Pa  and a sufficiently 

high plasma density should be present. For all other cases, collisional effects must be used for accurate results.  
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2.2    I-V Characteristic 

By varying the bias voltage of the probe, different current values can be measured. According to Mott-Smith and 

Langmuir [125], the floating potential, plasma potential, plasma density and electron temperature could all be measured 

from the I-V curve consisting of a voltage sweep from negative to positive potentials. A typical trace of the current-

voltage (I-V) characteristics of plasma measured with the use of a Langmuir Probe is shown in Figure 2.3 illustrating the 

typical, somewhat idealized, experimental I-V characteristic for a Langmuir probe. Here negative, or electron, current to 

the probe is plotted against V, the probe voltage with respect to an arbitrary reference point. The potential 
 
Vp  is the 

local zero, or plasma potential. For potentials greater than 
 
Vp , the probe attracts electrons; probe potentials less than 

 
Vp  repel electrons. Ions having opposite charge, are repelled when 

 
V > Vp , and attracted when 

 
V < Vp . The qualitative 

behavior of this curve can be explained as follows. 

 

 

 

 
Figure 2.3: Ideal (undisturbed by the probe [151]) current-voltage (I-V) characteristic for a cylindrical Langmuir 
probe, showing how the probe current varies with probe potential 

 
Vp [152]. Electron saturation (right) current 

occurs when the probe is positively biased, and Ion saturation current (left) occurs in the case of negative 
biasing [79]. The amount of biasing voltage for which the probe current is zero, is known as floating potential 

 Vf . The probe current increases in between ion and electron saturation current due to Maxwellian distribution 
in the plasma.  
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 The graph is segmented into three regions [153, 154]. According to Figure 2.3, when the probe potential V is 

above the plasma potential 
 
Vp  in region (C-D), the collected electron current reaches a saturated level and the ions are 

repelled, whereas the opposite occurs in region (A-B). By evaluating the slope of the electron I-V characteristic in region 

(A-B), the electron temperature  Te  is obtained, and by measuring the ion saturation current  Iis  or electron saturation 

current  Ies  and using the  Te  measurement, the density can be computed [153].  

 Although there is no exact analytical theory to determine the I-V characteristic for an arbitrary plasma condition, 

there are some simplifying assumptions that can make the problem more manageable. These are two approximate 

solutions for two limiting cases: a very thin sheath [155] and a very thick sheath [156]  plasma condition. For thin sheaths 

(
  
λD ≪ rp , where  λD is the Debye length and 

 
rp  is the probe radius), space charge-limited current collection is assumed; 

that is, any particles crossing the sheath are collected, and the resulting I-V characteristic has very sharp knees; see Figure 

2.3 at points (B and C). On the other hand, for very thick sheaths 
  
(λD ≫ rp ) , OML current collection is assumed, which 

is the most relevant theory for analyzing the probe I-V characteristics. The OML current is collected by the probe when 

none of the undisturbed particles (at infinity) that are capable of reaching the probe on the basis of energy 

considerations are excluded by the intervening barriers of effective potentials. The influence of the sheath is neglected, 

and particle orbits are calculated using the space-charge-free electric field of the probe. The orbits intercepting the probe 

contribute to the current. The I-V characteristic in the OML does not have the sharp knee at points (B and C); rather, 

there is a very smooth change from positive to negative curvature.  

 Region (A-B) is considered to be for values of the potential  V < Vf , where  Vf  is the floating potential. This occurs 

when the bias voltage is negative and induces a current of positive ions. Due to the large masses and low mobility of the 

ions in the plasma, the current is measured to be small and negative. Ion saturation occurs rapidly as  V  is reduced 

below  Vf  between points A and B in Figure 2.3. The I-V curve will exhibit a plateau, and the current measured here is 

referred to as  Iis , which is a characteristic ion saturation current that does not increase when further negative voltage is 

applied [131, 154].  
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, (2.9) 

where  ni  is the ion density, mi is the ion mass, and 
 
Ap  is the surface area of the probe. 
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Region (B-C) involves values of  Vf  and 
 
Vp . As 

 
V = Vp , the electrons and ions diffuse to the probe as if they were 

unaffected by its presence. This local zero 
 
(V = Vp )  is characterized by the lack of a plasma sheath. On either side of this 

point, the difference in voltage introduces electric forces, creating a boundary region known as the plasma sheath, where 

charge neutrality does not exist. When there is no plasma sheath, the charged particles can migrate to the probe freely 

due to their thermal velocities. It is assumed that the probe current 
 
Ip  does not interrupt the plasma equilibrium, and 

 
rp  

is considered to be less than the electron mean free path [153]. 

 
 
Ip =

1
4

Apneυav ,  (2.10) 

where  n  is the electron density in the immediate vicinity of the probe surface when 
 
V < Vp . 

 
Ap  is the surface area of 

the probe,  e  is the electron charge, and  υav  is average electron speed.  n  can be determined by 
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where  kB  is Boltzmann’s constant,  Te   is electron temperature, 
 
Vp  is plasma potential (space potential), and V is probe 

potential. The average electron speed can be calculated by  

 
 
υav =

8kBTe

πm
⎛
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⎞
⎠⎟
=

8kBTeV

πm
⎛
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⎞
⎠⎟
= 6.7x105 TeV ms−1   (2.12) 

Taking the natural logarithm of equation (2.11) and using equation (2.10), the following formulas can be calculated: 

 
 
ln Ip = ln Ips −

Vp

TeV

− V
TeV

,  (2.13) 

 
 
Ips =

1
4

Aneeυav ,  (2.14) 

where 
 
Ips  is the probe current when 

 
V = Vp , and it is calculated by using equation (2.3). Then, the slope of 

 
lnIp  versus 

probe potential  V  is determined by 

 
 

d ln Ip

dV
= 1

TeV

. (2.15) 

 As the potential is decreased from the plasma potential, the electrons are continually repelled as per the Boltzmann 

relation for the electron density  ne  [131, 143]. The reference potential is taken to be at such a value that the electron 
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density ne equals the undisturbed plasma density no. Starting at the plasma potential, electrons are initially attracted to the 

positive potential of the probe, and they will form a sheath around it to screen out the electric field. As the sheath is 

established, a negative space charge gathers around the probe. The electrons are repelled by electrostatic interactions as 

the probe potential is reduced to lower than the plasma potential. The positive ions are attracted to the negative sheath 

formed around the probe to preserve the electrical neutrality of the plasma, and some electrons are permitted to reach 

the probe by the effect of electrostatic interactions. In this region, the electron current is retarded; this region is called 

the electron retardation region (A-B in Figure 2.3). The theory for a probe in an ideal plasma indicates that the current in 

the region (A-B) would vary linearly with the probe voltage. However, the current varies exponentially in reality. The 

electron retardation continues until the potential is sufficient to reduce the electron current to a small fraction of its 

saturation value. The flow of positive ions and electrons will be equal to each other, yielding a net current of zero. The 

potential occurring here is referred to as  Vf  [157], 
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, (2.16) 

where  mi  is the mass of the ion and me is the electron mass. 
 
Vp  is the apparent potential of the bulk region of the 

plasma and the potential against which the bias to the probe is applied. The geometry of the probe and the nature of the 

plasma will determine how it is calculated. For example, in the case of a cylindrical probe in a collisionless plasma, the 

plasma potential can be found by taking the first derivative of the electron current and calculating where the maximum 

occurs [158]. 

In Region (C-D), the probe potential is higher than the plasma potential, and the electron current cannot increase 

any further. Because of a positive potential bias, the electrons are accelerated towards the probe and the positive ions are 

repelled. As the bias voltage is increased, space charge limited electron current will take place, and electron saturation 

will occur. Further increases in voltage will not increase the electron current. The current in this section is equal to the 

electron saturation current. The slope of the curve 
 
lnIp  versus  V  is calculated when 

 
Iis <<  Ip , and the following 

formula is used: 
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 There may be some concerns about its accuracy [131, 154] due to the sensitivity of the resulting value to the geometry 
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of the probe tip. Therefore, the probe geometry should be determined according to the size and shape of the sheath, 

which also affects the current collected in this region. 

 As a result, there are two points of asymmetry between saturation ion and saturation electron collection aside from 

the obvious one of the mass difference, which causes the disparity in the absolute magnitude of the currents. The first 

point is that the ion and electron temperatures are usually unequal (different than the ideal theory), and it turns out that 

sheath formation is considerably different when the colder species is collected than when the hotter species is collected. 

The second point is that when there is a magnetic field, the motion of the electrons is much more affected by the field 

than the motion of the ions [88]. These two points, which were neglected in the original theory of Langmuir, are 

responsible for making difficult the simple and straightforward application of probes as originally proposed by 

Langmuir. It is also evident that the formation of the sheaths plays an important role in the probe theory.   

2.3    Enhancements to the Basic Theory 

The Langmuir probe current models presented in section 2.1 add significantly to the understanding of probe behavior. 

However, they are valid for non-drifting, unmagnetized, and collisionless plasma that is being probed with an ideal 

sensor. The accuracy of the plasma parameters derived from a Langmuir probe is uncertain unless all the non-ideal 

factors are applied correctly. This section presents an overview of the complications involved with understanding 

Langmuir probe measurements. For detailed theory, see references [8, 44, 154, 159, 160].  

A. Additional Current Sources: The contributions of other current sources to a probe must be identified and 

removed before calculating the terms in section 2.1 to determine plasma parameters (e.g., photoelectron current). This is 

a result of exposure of the probe surface to UV radiation, which affects the I-V curve in the ion saturation and the 

electron retardation region as a constant offset [161]. The electron saturation region is affected until the applied probe 

potentials are large enough to attract all of the photoelectrons back to the surface [161]. 

Another type of charging is the result of two objects constructed of insulating material that charge each other as 

they are rubbed asymmetrically. The sign of charge does not depend on the difference in work function, and it is also 

correlated with the nature of rubbing experienced by the piece of material [162, 163], which is commonly referred to as 

frictional charging and is also known as triboelectric charging. This is an important mechanism for Langmuir probes in 

dusty environments. 
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B. Mesothermal Plasma: This type of plasma occurs when the thermal speed of ions is less than the spacecraft 

speed and the electron thermal speed is higher than the spacecraft speed [164], which affects the ion saturation region of 

the spacecraft in a sweeping motion because the ions are largely collected in the direction of satellite’s motion (ram 

direction). At orbital velocities, this condition creates a rarefied wake region behind the probe [165], changing the 

collected ion current as the projected area of the probe in the ram direction changes [165].  

C. Magnetized Plasma: This is a result of an ambient magnetic field that is strong enough to alter particle 

trajectories, giving them different velocities parallel and across the field lines [166]. Magnetized plasmas are anisotropic, 

and they respond differently to forces parallel and perpendicular to the direction of the magnetic field [145]. This affects 

the collected current as the orientation of the probe changes with respect to the local magnetic field [145]. 

D. Collisional Plasma: For this type of plasma, there are two limiting cases [72, 152, 167]: OML current collection 

(known as thick sheath theory) and SL current collection (also known as thin sheath theory) [43, 72, 152, 168]. If the 

mean free path of the particles  h  is less than the sheath extent, the equation of motion for particles within the sheath is 

different from the free-fall collisionless equations used to drive OML current collection equations, which affects the 

potential profile within the sheath. The collected current increases as the orbital motion of the particles are disrupted. 

When  h  is smaller than sheath size but larger than the probe radius 
 
rp , the increase in collected thermal current can be 

approximated by 
 
h rp [8]. When the mean free path is not very much larger than  rp, the particle velocity distribution at a 

distance of  h  from the probe surface will have its collisional region further away from the probe. The plasma in this 

area close to the probe surface can be calculated carefully using a numerical approach, e.g., PIC simulation [152]. 

2.4    Instrument Implementation Issues 

In reality, for precise Langmuir probe measurements, it is essential to overcome the limitations of the design by 

removing the sources of implementation error [44]: contamination of the probe surface, poor positioning of the probe, 

insufficiently uniform collector surface material, electronics not resolving the I-V characteristics, non-uniformity of the 

work function on the probe surface, and magnetically induced potential gradient due to movements of the space vehicle 

[44]. There are several ways to implement an electrical probe, and each of which has certain advantages in deriving a 
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particular plasma property. However, designing a probe to measure the space environment behaving in an expected way 

is not easy for researchers [8, 44]. 

Selecting an appropriate size for the probe is important to ensure its functioning in the desired regime, i.e., thin 

sheath or thick sheath [43, 72, 152, 168]. Irregular functioning leads to hysteresis in the I-V curve as the probe sweeps up 

and down, which affects  Te  measurements [169, 170]. This may be caused by inherent irregular functioning of the metal 

surface of the probe because of the non-uniform coating of the probe with inert metals or alloys such as gold, titanium 

nitride [171], rhenium, or molybdenum [44]. Another approach is to make the probe uniformly dirty by water or alcohol 

based carbon coatings. Surface contamination due to adsorption of impurities also imparts an insulating patchiness to 

the probe even if the potential of the underlying metallic probe is highly uniform. This happens when a probe is cleaned, 

sealed in an airtight container, and released only when the spacecraft reaches space or when an inflight cleaning method 

is employed, e.g., internal heating to boil off the contaminants [172] or applying high potentials for short periods of time 

[173, 174]. 

If the probe collects additional electron current by operating in the electron saturation region, the spacecraft 

surface closes the loop by collecting additional ions and fewer electrons. As the ion current is more than an order of 

magnitude smaller than the electron current, the surface area of the spacecraft has to be much larger than that of the 

Langmuir probe in order to prevent the floating potential of the spacecraft from varying significantly. If the area ratio of 

spacecraft surface to probe surface is not on the order of 1,000 or greater, then the spacecraft floating potential will 

change significantly during probe operation [175].  

In the case of a sweeping Langmuir probe, a drifting spacecraft potential will lead to oscillations in the spacecraft 

ground potential as the probe performs its sweep from negative to positive potential and then back to negative potential. 

When one designs a probe, a large enough ratio of spacecraft surface area to probe area should be carefully considered. 

The area of the probe also determines the magnitude of current collected, which in turn affects the sensitivity of the 

electronics used. The performance of electrical printed circuit boards varies with the board temperature. To account for 

these variations, an accurate calibration is required over the expected temperature ranges. The calibration efforts become 

more difficult for probes that have small surface areas and are expecting to measure currents in picoAmperes. Such an 

instrument must be designed in a way to eliminate board leakage currents to critical measurement circuits. More 

information regarding probe implementation can be obtained from the reference [53].  
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2.5    Theoretical Approaches  

When formulating theoretical models of current collection in plasma, the laws of motion for individual particles quickly 

grow beyond what is manageable for analysis: i.e., no closed form solutions exist [176]. Thus a practical theoretical 

description requires assumptions to be made. Two different sets of analytical approximations [72, 152, 167] are used to 

describe plasma/probe interactions. In both cases, probe current collection and sheath-boundary conditions are 

uniform, isotropic, collisionless, of single ion species, unmagnetized, and in steady state [125]. Two regimes exist to 

describe the plasma surrounding the probe: the SL current collection regime, also known as thin sheath, and the OML 

regime, also known as thick sheath [43, 72, 152, 168]. Both regimes are illustrated in Figure 2.4. 

2.5.1    Thin Sheath: Space Charge Limited Current  

The physical situation is clarified by Figure 2.4. Suppose that the velocity distribution is essentially Maxwellian at the 

edge of the sheath. This situation applies, for instance, to the part for the saturation electron current (I-V Characteristic 

in section 2.2), since in most plasmas  Te >> Ti  , and the collection of the hotter species does not require a large drift 

velocity at the edge of the sheath. Suppose that the Debye length  λD  is much smaller than probe radius 
 
rp  and that the 

probe is much smaller than the mean free paths λ  (mean distance traveled between collisions by a moving particle) for 

electrons and ions ( λe and  λ i , respectively) in the plasma [8, 177]. This corresponds to low-pressure  (< 1Torr )  

conditions. 

 It also is assumed that the electron and ion densities are equal (assumption of quasi-neutrality), that Maxwellian 

velocity distributions are present far from the probe, that there is no drift velocity associated with the plasma and that 

the probe is not emitting electrons [8, 43]. The calculation of the ion and electron fluxes is required to determine the 

current collected by the probe [8, 43]. An I-V trace can then be produced from the electron temperature  Te  and the 

Maxwellian velocity distribution, and the plasma electron density and floating potential can be determined [8, 43, 178]. 
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Figure 2.4: Geometry associated with electron attraction: Thick (right) versus thin (left) sheathed probes, where rs is 
sheath radius, 

 
rp  is probe radius and  P  is the impact parameter (i.e., subscript  e  refers to effective probe radius and  s  

to sheath radius) [155].  
  

 To calculate the electron density, the local velocity distribution function is used. Integrating this function over the 

relevant electron velocities yields [154] 

 
 
ne = no m 2πkBTe( )1/2

exp −1 2mυ2 + eV(x)( ) kBTe( )dυ−∞

υc∫ , (2.18) 

 
 
υc = 2e V(x)− V(xp )⎡

⎣
⎤
⎦ me , (2.19) 

where υc is the critical velocity (below this velocity, the electrons will not reach the probe),  V(x)  is the potential at an 

arbitrary point in the plasma, 
 
V(xp )  is the potential at the probe surface,  kB  is Boltzmann’s constant, me  is the electron 

mass,  ne  is the electron density,  no  is the undisturbed plasma density, and  Te  is the electron temperature. In equation 

(2.18),  x  is taken to be zero at the probe surface. The integration and simplification of equation (2.18) gives the 

Boltzmann relation for  ne , 

 
 
ne(x)= no exp eV(x) kBTe( ) .  (2.20) 

The calculation of the ion and electron fluxes is required to determine the current collected by the probe [179]. Equation 

(2.20) also applies to ions because of the quasi-neutrality assumption. Considering the assumption that the ion 

temperature is low enough such that the kinetic energy of the ions far from the probe is zero, the ion flux is calculated as 

[180] 

 
 
Γ i(x)= ni(x)υi(x)= no exp eV(xs ) kBTe( ) −2eV(xs ) mi( )1/2

.  (2.21) 

For the electrons, the flux is given by the random flux [180], 
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Γe = 1 4( )neυe , (2.22) 

where  υe  is the mean electron speed. Using the Maxwellian relationship for the mean electron speed [180], which is  

 
 
υe = 8kBTe πme( )1/2

,  (2.23) 

and the electron flux is calculated by [180] 

 
 
Γe = 1 4( )no exp eV(xp ) kBTe( ) 8kBTe πme( )1/2

.  (2.24) 

The total current is given by [180]   

 
I = e − 1 4( )Apno exp eV(xp ) kBTe( ) 8kBTe πme( )1/2

+ Asno exp eV(xs ) kBTe( ) −2V(xs ) mi( )1/2⎡
⎣⎢

⎤
⎦⎥

,  (2.25) 

where 
 
Ap  and  As  are the probe and sheath areas, and  V(xs )  and 

 
V(xp ) are the potentials at the edge of the sheath and 

at the probe [180]. Assuming that the plasma potential is much greater than the probe potential, the result is [180] 

  Vs = −kBTe 2e . (2.26) 

After substituting this into equation (2.25) and assuming that 
 
Ap ≈  As , the total current to the probe is [180] reduced to 

equation (2.27), 

 
 
I = −eAp − 1 4( )no 8kBTe πm( )1/2

exp eV(xp ) kBTe( )− no kBTe mi( )1/2
exp 1 2( )⎡

⎣⎢
⎤
⎦⎥

  (2.27) 

From this equation, the electron and ion saturation currents are found by [180] 

 
 
Ies = − 1 4( )eApnoυe ,  (2.28) 

 
 
Iis = eAp exp 1 2( )noυi = 0.61eApnoυi .  (2.29) 

The total current is simply given by [180] 

 
 
I = Ies exp eV(xp ) kBTe( ) + Iis . (2.30) 

The electron temperature  Te  can be calculated by solving for the slope of equation (2.18) in the exponential region 

after the ion current has been subtracted. One can calculate the plasma density using equation (2.20), and by setting 

equation (2.27) equal to zero, one can determine the floating potential (the point at which the applied probe potential 

results in no probe current [180]). Thin sheath theory makes the implicit assumption that the ion temperature  Ti  is 

much less than the electron temperature [181]. However, finding the electron temperature is not limited to equation 
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(2.27) or to whether or not the model follows thin sheath theory; it can be obtained from the I-V trace [182]. 

Incremental increases in probe potential and corresponding small increases in current associated with points in the I-V 

characteristic are often referred to as the electron saturation potential and current. 

2.5.2    Thick Sheath: Orbital Motion Limited (OML) Current 

In the opposite limit of a thick sheath (known as OML [34, 78]), the probe’s effective radius  Pe  is greater than the probe 

radius 
 
rp . Consequently, not all particles entering the sheath will hit the probe because of the possibility of orbital 

motions [177]. The laws of conservation of energy and angular momentum concern only the initial and final values of 

energy and angular momentum. 

 The effective radius of the probe increases with the applied voltage due to particle orbit motion. Collection of 

individual particles is dependent on their impact parameter  P , which determines the orbital motion of particles around 

the curved probe surface [8, 177]. The number of electrons absorbed by the probe is determined solely by energy and 

angular momentum [8, 177]. It has been shown that the probe current (at a constant temperature) is proportional to the 

plasma density [8, 177]. Referring to Figure 2.4, the conservation of energy and angular momentum for the electrons 

gives [177] 

  1 2mυo
2 = 1 2mυr

2 − eVr = −eVo ,  (2.31) 

  Pυo = rυr ,  (2.32) 

where  eV ≤ 0 , and  r  is the distance of closest approach to the probe of radius 
 
rp [177].  

 
 
1 2mυr

2 = 1 2mυo
2 1+ Vr Vo( ) ,  (2.33) 

 
 
P = r υr υo( ) = r 1+ Vr Vo( )1/2

.  (2.34) 

The effective probe radius is shown as  Pe (see Figure 2.4).  

For mono-energetic particles, the flux to a probe of length 
  
lp [177] is given by 

 
  
Γ = 2πrplp 1+ Vr Vo( )1/2

Γr ,  (2.35) 
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where  Γr  is the random flux of ions of such energy. However, this result is extended to energy distributions that are 

Maxwellian at some large distance  r = s  from the probe, where  s  is the sheath edge. The random flux  Γr    is then given 

by [177] 

 
 
Γr = n kBTi 2πm( )1/2

. (2.36) 

Because the sheath radius s for OML was taken to be infinite, the density has to be so low that the sheath is much larger 

than the probe [177]. 

The current supplied to the probe by electrons in a differential velocity range  dυ is given by [183] 

 
  
dI = 2πrplpe 1+ Vr Vo( )1/2

υ π( )dn ,  (2.37) 

where  (υ π)dn  is the flux of electrons moving perpendicular to the probe. Those moving parallel to the probe are not 

collected. Assuming a Maxwellian distribution of velocities, the differential number density  dn  is the number of 

electrons with velocity υ  and is calculated by [183] 

 
 
dn = no m 2πkBTe( )exp −mυ2 2kBTe( )2πυdυ .  (2.38) 

 After integrating equation (2.37), the electron current collected by the probe is determined by [177] 
 

 
  
Ie = 2πnorplpe kBTe 2πm( )1/2

2 η π( ) + exp η( )erfc η( )⎡
⎣

⎤
⎦ , (2.39) 

where η   is the non-dimensional probe bias, which is defined as 

  η= eVr kBTe .  (2.40) 

For values of  η≥ 2 , the electron current collected by the probe gives more accurate results, calculated by [177] 

 
  
Ie = 2πnorplpe kBTe 2πm( )1/2

2 π 1+ eVr kBTe( )1/2
.  (2.41) 

 The probe voltage appears only once in the square root term. Therefore, the square of the I-V curve in the electron 

saturation region should be a straight line. Using this plot,  no  is determined from the slope, and  Te  is determined from 

the intercept with the current axis [183]. Then, the ion collection is calculated by [177] 

 
  
Ii = 2πnorplpe kBTi 2πmi( )1/2

2 π 1+ eVr kBTi( )1/2
.  (2.42) 
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If the equation for ion collection is applied, the only quantity that can be obtained from OML theory is the plasma 

density [152]. If the plasma potential is known, then the plasma density is derived from the slope of the square of the ion 

current versus the probe bias voltage [152]. 

2.6    Ideal Plasma Simulations  

The approach of the PIC method is to simulate the plasma utilizing a set of super particles, which are subject to 

Newtonian or relativistic equations of motion, where the fields are calculated by solving Maxwell's equations using the 

source terms derived from the particle positions and velocities [184]. PROBEPIC was based on these same principles; an 

algorithm was used to generate random speeds, which after many calls produced a Maxwellian distribution [152]. The 

Langmuir/Mott-Smith theory [125] was the first to describe OML current collection. OML is the first approximation of 

the theory that explains the thick sheath limit [8, 152, 185], i.e., where the Debye length is much larger than the probe 

radius.  

 A considerable amount of research has been conducted in this area since the establishment of this theory, and 

several computer codes have been created to simulate Langmuir probes with well-defined geometries (e.g., planar, 

cylindrical or spherical, as illustrated in Figure 2.1) under ideal plasma conditions (Maxwellian plasmas) [43, 180, 186]. 

This theory also had an important impact on the understanding of plasma regimes that did not correspond to the OML 

limit. The complexity of the probe theory was demonstrated by the wide range of probe research [43, 72, 131, 152, 180, 

185, 186]. Experimental results often deviate from the ideal I-V characteristic curve [185]. To accurately model 

experimental measurements, researchers have applied modern computational tools to simulate the interaction of a 

Langmuir probe with plasma [79, 185, 187]. Using PIC coupled with MC techniques, predicting the probe characteristic 

curve to some degree of accuracy has been made possible [152, 184, 185, 188]. The first version of the PIC probe 

simulation code (PROBEPIC) [72, 152] is a notable example of such a tool. PROBEPIC surpasses the work of previous 

approaches by simulating the behavior of finite length probes [187]. This tool was used to conduct a parametric study on 

the Langmuir probe and to interpret available experimental data [185].  
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2.7  Maxwellian Distribution  

2.7.1 Maxwell Distribution of Speeds  

To describe the distribution of particle speeds without caring for the orientation of motion, Maxwell distribution of 

particle speeds 
 
υ = v  is given by 

 
 
fM(υ)= 4πυ2n

m
2πkBT

⎛
⎝⎜

⎞
⎠⎟

3 2

exp − mυ2

2kBT

⎛

⎝⎜
⎞

⎠⎟
.  (2.43) 

The additional factor  4πυ
2  arises from the fact that the volume element in three-dimensional velocity space is a thin 

sheet on the surface of a sphere [85]. Hence, for  υ << υT  the distribution of speeds rises like  υ
2  because of the 

increasing number of combinations of  υx ,
 
υy and υz that lead to the same speed 

 
υ = (υ2

x + υ2
y + υ2

z )1/2 . The characteristic 

velocity is most probable speed of the gas. For larger speeds, the Maxwellian distribution of speeds decays because the 

exponential decreases much more rapidly than the growth of the spherical surface in velocity space.  

2.7.2 Moments of the Distribution Function 

The mean thermal speed of a gas is defined as the first moment of the distribution of speeds 

 
 
υth =

1
n

fM(υ)dυ =
8kBT
πm

⎛
⎝⎜

⎞
⎠⎟

1 2

0

∞

∫ ,  (2.44) 

where  υth  is thermal speed, which is 13 percent larger than  υT , characteristic velocity. The mean kinetic energy of a gas 

is defined by the second moment of the distribution of speeds, 

 
  
εkin = 1

n
m
2

fM(υ)
0

∞

∫ υ2dυ = 3
2

kBT .  (2.45) 

To eliminate the confusion between the mean kinetic energy and temperature in plasma physics, it is good to convert 

temperature units into energy units by the relation,   ε = k
B
T   (1eV = 11,600oK ) . 
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2.7.3 Distribution of Particle Energies 

For many calculations we need the particle distribution function on an energy scale,   ε = 1/ 2mυ2 . For this purpose, it is 

necessary to perform a transformation from speed to energy, which conserves the number of particles in a certain 

velocity and energy interval, respectively,   fM(ε)dε = FM(ε) . With   dε = mυdυ , the following equation is obtained [81]: 

 
  

FM(ε)= n
2

π
1

kBT( )3 2
ε1 2 exp − ε

kBT

⎛
⎝⎜

⎞
⎠⎟

. (2.46) 

 For gas discharges, the terminology EEDF and electron energy probability function (EEPF) [81] are used. For a 

Maxwellian, the EEDF 
  F(ε) [81, 88]can be identified with   FM(ε)  , but in most gas discharges   F(ε)  is non-Maxwellian 

distribution. EEPF is defined as 

 
  g(ε)= ε−1 2F(ε)  . (2.47) 

In a semilog plot,   log[g(ε)]  versus  ε , we obtain a straight line when the distribution is Maxwellian. The EEPF is the 

immediate result from evaluating the second derivative of a Langmuir probe characteristic. The particle density can be 

obtained from the integral of the EEDF 

 
  
ne = FM(ε)dε

o

∞
∫   (2.48) 

and the effective temperature 

 
  

3
2

kBTe =
1
ne

εFM(ε)dε
o

∞
∫ .  (2.49) 

2.8  Non-Maxwellian Distribution 

A Langmuir probe is usually employed under the assumption that the electron velocity distribution is Maxwellian, which 

makes the calculations simple enough to handle routinely. However, in non-Maxwellian electron velocity distributions, 

electrons are not in energy equilibrium with ions or neutral particles, and the electron temperatures are much higher than 

the ion and neutral temperatures [34]. Hence, conventional analysis and the use of a Maxwellian EEDF are not effective 

methods for the study of non-equilibrium plasma phenomena [189].  

 The EEDF in low-pressure discharges is generally non-Maxwellian, and the electron temperature is usually thought 

of as an effective electron temperature corresponding to the mean electron energy determined from the EEDF [81]. In 
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some cases, non-Maxwellian effects can be ignored when inferring plasma parameters from the probe characteristics and 

assuming a departure of the actual EEDF from a Maxwellian distribution only for the small number of electrons with 

energies higher than the energy of the inelastic threshold [81, 190]. This is not always the case, as the EEDF in low-

pressure discharges is not Maxwellian even in the low energy range [54, 81, 112, 191].  

 There are two methods for obtaining the plasma parameters from Langmuir probe measurements. The first of 

these methods is based on EEDF integrals [158], and the second method employs a fluid model for the modified ion 

flux [192]. The approach taken in this dissertation uses the EEDF integrals [186], where the EEDF is measured by a 

double differentiation of the I-V characteristics according to the Druyvesteyn formula, which is considered more 

accurate for non-equilibrium distributions [186, 193]. For comparison, numerical methods are used to construct 

simulated probe data that would be obtained by a cylindrical probe in plasma with a two-temperature Maxwellian 

distribution (detailed in Section 2.8.2). This comparison is important because the distributions transition from a 

Druyvesteyn to a two-temperature Maxwellian distribution at certain values of pressure [7, 194]. For example, in argon 

discharges, the EEDF shows a two-temperature Maxwellian structure at low pressures (circa 1mTorr ) and becomes 

Druyvesteyn-like at higher pressures (above  10mTorr ). Therefore, to reproduce the I-V characteristics, it is important to 

implement the two-temperature distribution, which could potentially be used as an alternative to the Druyvesteyn 

distribution when fitting experimental data. As a test case in the present work, the EEDF integral method is applied to 

experimental data from a plasma device that has a two-temperature electron distribution, and the results of the methods 

are then compared to the available experimental data [195]. 

2.8.1    Druyvesteyn Method  

The Druyvesteyn distribution was derived for the EEDF in gas discharges in which the electron temperature is much 

greater than the ion and neutral temperature. This is the primary distinction between the Druyvesteyn and Maxwellian 

distributions [112, 193]. The Druyvesteyn EEDF is based on hard sphere collisions between electrons of energy  ε  and 

stationary neutrals in an electric field Ε . The amount of kinetic energy lost by an electron in one collision [112, 193] is  

   Δε = −2meε mi , (2.50) 
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where  ε  is the energy,  me  is the electron mass and mi is ion mass. The expression for energy loss in equation (2.50) is 

expanded to characterize the total energy loss for all electrons per unit volume and per unit time, based on the mean free 

path λ and electron velocity  υe [193]. 

 
  
F(ε) 2me mi( )ε υ λ( ) = F(ε) 2me mi( ) ε λ( ) 2ε me ,  (2.51) 

where 
  F(ε)  is the EEDF. For the Druyvesteyn distribution [193] equate equation (2.51) with the energy taken from the 

electric field Ε , and introduce the current density 
  J(ε) , which is the number of electrons passing through per unit area 

 (Ampere/ m2 ) perpendicular to the electric field, 

 
  
J(ε)εE = F(ε) 2me mi( ) ε λ( ) 2ε me .  (2.52) 

The mobility equation used for the electric current density [193] is  

 

  

J(ε)eE =
−λ 3 2ε me ∂F(ε) ∂x −λeE 3 2ε me ∂F(ε) ∂ε

+ λeE 3me me 2εF(ε)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  (2.53) 

The energy distribution is independent of the position  x , and so the first term on the right of equation (102) equates to 

zero. Accordingly, equations (2.52) and (2.53) give an expression for
  F(ε) that is found from the solution to the 

differential equation [193]: 

 
  
dF(ε) dε = F(ε) 1 2ε − 6meε miλ

2e2E2( ) .  (2.54) 

Using an undetermined coefficient α , an expression for
  F(ε) is found from the solution to equation (2.54): 

 
  
F(ε)= α ε exp 3meε

2 miλ
2e2E2⎡⎣ ⎤⎦ . (2.55) 

Druyvesteyn [193] simplified this equation, leaving in terms for the average energy and eliminating the electric field. 

 
  
F(ε)= α ε exp −0.55 ε2 ε

2( )⎡
⎣⎢

⎤
⎦⎥

. (2.56) 

Equation (2.56) can be written in terms of the electron temperature and number density by substituting 

  
Te = 2 3 ε = εF(ε)dε

o

∞
∫  and 

  
ne = F(ε)dε

o

∞
∫  (as in basic kinetic theory [196]) as follows: 

 
  
F(ε)= α ε exp −0.243 ε kBTe( )2⎡

⎣⎢
⎤
⎦⎥

.  (2.57) 

A specific expression for the Druyvesteyn EED can then be written as [197] 
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fD(ε)= 0.5648ne ε kBTe( )3/2( )exp −0.243 ε kBTe( )2⎡

⎣⎢
⎤
⎦⎥

.  (2.58) 

The Maxwellian energy distribution and the Druyvesteyn distribution have different powers of energy in the exponential 

argument:  ε  in the former and   ε
2  in the latter. Figure 2.5 is a graphical comparison of the Maxwellian and Druyvesteyn 

distributions. 

 The Druyvesteyn distribution is specific to electrons interacting with neutrals of comparatively low energy, where 

electron-neutral collisions behave as hard-sphere collisions [7]. Therefore, it is possible that a Druyvesteyn distribution 

may be found in low energy plasmas. However, the electric field must be high enough that the electron temperature 

remains significantly higher than the ion temperature. This is a condition that exists in electrostatic thrusters, where the 

ratio of electron temperature to ion temperature is typically 10 or more [34]. 

2.8.2    Two-Temperature Maxwellian Method  

The two-temperature Maxwellian (bi-Maxwellian) is an anisotropic distribution model depending on physical orientation. 

This method has an unstable and non-equilibrium velocity distribution where there is temperature anisotropy, meaning 

that the temperature characterizing the movement of the particles in one direction is different from that in another 

direction [198]. The coordinate system usually used consists of the parallel and perpendicular velocities with respect to a 

background magnetic field. A stable two-dimensional distribution (i.e., one that is Maxwellian in both the parallel and 

perpendicular directions) is independent of the direction [198]. 

 

Figure 2.5: Comparison of Maxwellian and Druyvesteyn distributions, plotted for  Te = 1eV . 
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  In many laboratory plasmas, the electrons are confined by a positive plasma potential 
 
Vp . Electrons with energy 

below 
 
eVp  may be confined for many periods of self-collision, and the distribution function for these electrons will 

become nearly Maxwellian [199]. Electrons with energy above 
 
eVp  will have a shorter confinement time and will not 

have equilibrated. Thus, their energy distribution will be determined by the mechanism that created them (e.g., secondary 

emission from the chamber surfaces) [199]. The slope of the combined distributions is likely to be discontinuous at 

energy 
 
−eVp , where 

 
Vp  is the plasma potential and q is the absolute value of the charge [199]. For these reasons, the 

methods of analysis are tested using a two-temperature distribution [199]: 

 

  

f (υ) = n m 2πT1( )3 2
exp −mυ2 2T1( ) , 1 2( )mυ2 < εt

f (υ) =
n m 2πT2( )3 2

exp((−mυ2 2T2 )

+ εt T2 + εt T1 )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, 1 2( )mυ2 ≥ εt

 (2.59) 

where  ϵt  is the energy at which the slope of the distribution changes. As a consequence of the small number of particles 

in the high-temperature tail of the velocity distribution, the number density is negligibly larger than n. The corresponding 

speed distribution  (ρ(υ)) is [199] 

  ρ(υ)= 4πυ2f(υ) .  (2.60) 

The temperatures associated with the two-temperature distribution are most easily found from the slopes of a 

semi-logarithmic plot of  f (υ)= ρ(υ)/ 4πυ2  [199]. In all cases, the recovered distribution function is nearly identical to the 

starting distribution [199]. For the EEDF and for the electron density distribution affected by the ambipolar potential, 

one can obtain [200] 

 

  

f (ε)= A
1−βH( )exp eV − ε⎡⎣ ⎤⎦/ kBT1{ }

+βH exp eV − ε⎡⎣ ⎤⎦/ kBT2{ }
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,  (2.61) 

where  T1  and  T2  represent the temperature of low and high energy electrons of the bi-Maxwellian distribution 

corresponding to the different velocity distributions that occur along two different axis in the plasma. Non-Maxwellian 

distribution functions do not represent electrons of the same temperature. Instead, these are represented by their average 

energy 
 
ε , which can be obtained by the total energy divided by the electron density ( 3/ 2kBTeff  can be used for non-
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Maxwellian plasmas) [201]. In the above equation,  ε  is the electron kinetic energy,  βH  is the fraction of hot electrons at 

the mid-plane,  βH = N2 No , and  A  is the normalization constant,  A = (me 2πkBTe )3/2 [201];  N2  is the density 

distribution of hot electrons. From this, the electron number density [200] is found using 

 

  

Ne(x)= A ε1/2f(ε)
o

∞
∫ dε

No 1−βH( )exp eV kBT1( )
+ NoβH exp eV kBT2( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  (2.62) 

Figure 2.6 illustrates the comparison of the Druyvesteyn and two-temperature Maxwellian distributions. The two-

temperature Maxwellian method was implemented similar to the Druyvesteyn distribution by deriving the integral 

distribution formula. Note that, depending on the electrons’ energy, two different values could be assigned to the 

variable in the code [200]. 

2.8.3    Significance of Non-Maxwellian Distributions: Empirical Data 

Experiments involving non-equilibrium distributions have been conducted in a vacuum test facility [202, 203]. For these 

experiments, argon was used for the majority of testing, and a Langmuir probe was used to collect data to determine the 

EEDF. The results were used to compare non-Maxwellian to Maxwellian distributions for non-equilibrium plasma 

applications. Results from the Langmuir probe experiment are presented for the Druyvesteyn method for the non-

Maxwellian distribution [202]. As the distribution functions obtained from a single I-V curve [202] were not clear 

enough to make a comparison with Maxwellian and non-Maxwellian distributions, the EEDF was obtained to preserve 

important features in the curve. 

 Figure 2.7 [202] (also Table 2.1) summarizes the results of the analysis considering three variables (ne, Te and Vp) 

for two cases, where Case 2 has higher electron temperature  (Te = 3.9eV)  and number density  (1.7x1016m−3 )  but lower 

plasma potential (20.2V) compared with Case 1 ( ne = 1.6x1016m−3 ,  Te = 3.7eV , 
 
Vp = 21.2V ). Exemplifying the non-

Maxwellian nature of the plasmas, the results show that, for both cases, the Druyvesteyn distribution provides a better 

description of the EEDF than the Maxwellian distribution. The Druyvesteyn distribution places more weight on higher 

electron energies than the Maxwellian; the reason for the discrepancy in electron temperature is that Langmuir theory 

[43, 72, 152] assumes a Maxwellian distribution. The average energy, which is directly proportional to the temperature 
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for a Druyvesteyn distribution, is slightly higher than that of the Maxwellian distribution. Langmuir theory might have 

provided more accurate electron temperatures if it were derived again assuming a Druyvesteyn distribution [41, 196]. 

 

 

Figure 2.6: The comparison of Druyvesteyn (left) and two-temperature Maxwellian (right) velocity distributions 
during the particle injection (distributions are normalized to one). 
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Figure 2.7: EEDF on Axis for Case 1 (top):  ne = 1.6x1016m−3 ,  Te = 3.7eV,

 
Vp = 21.2V ; EEDF on Axis for Case 2 

(bottom):  ne = 1.7x1016m−3 ,  Te = 3.9eV,
 
Vp = 20.2V [202]. Distributions are averaged. 

 
 

 

Table 2.1: Case analysis for plasmas of different characteristics. 

Variables Case 1 Case 2 

ne  [m-3] 1.6x1016 1.7x1016 
Te  [eV] 3.7 3.9 
Vp   [V] 21.2 20.2 
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Chapter 3  

Numerical Methods 

There are two fundamental types of numerical approaches for modeling the gas and plasma flows: (1) continuum or 

fluid methods, and (2) kinetic methods. The choice of method for modeling a specific thruster should be dictated by the 

physical characteristics of the flow in the device, and by the level of accuracy required from the simulation. There is a 

wide range of plasma conditions, which means that different methods and computer codes must be developed for each 

of these conditions. The most important numerical methods that are employed are reviewed in this chapter. 

3.1   Review of the Continuum/Fluid Methods 

The gas or plasma may be considered as continuum or fluid when length scales associated with the most important 

physical phenomena (e.g., spatial gradients of flow properties, distance between collisions, charge separation distance) 

are small in comparison to the size of the plasma environment. In general, these conditions are encountered in the 

relatively high-density devices such as resistojets and arcjets [204-207]. Continuum methods are usually based on a set of 

partial differential equations describing conservation of mass (or charge), momentum, and energy. For example, the 

viscous flow encountered in a resistojet may be modelled using the following equation set (often referred to as the 

Navier-Stokes equations) [208, 209]: 

 Continuity:     
 

∂ρ
∂t

+
∂ρuj

∂xj

= SC   (3.1) 

   Momentum:  
 

∂ρui

∂t
+
∂ρuiuj

∂xj

= ∂p
∂xi

+
∂τik

∂xk

+ρFi + SMi
   (3.2) 

 Energy:         
 

∂ρe
∂t

+
∂ρuje

∂xj

= ∂p
∂t

+ ∂
∂xk

ujτjk − qk
⎡
⎣

⎤
⎦ +ρFiui + SE ,  (3.3) 

where ρ is the mass density,  ui  is a velocity component,  p  is the pressure,  e is the total specific internal energy,  τik  and 

 
τjk are shear stress tensors,  qk is the heat flux vector,  Fi  is an external body force, and  SC , 

 
SMi

, and  SE  are source 

terms caused by chemical reactions in the mass, momentum, and energy equations, respectively.  
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 First order models for the shear stress and heat flux vector use temperature dependent transport coefficients (e.g., 

viscosity and thermal conductivity). For plasma flows, additional equations supplement the above set. These additional 

equations are highly specific to the particular plasma environment. In general, it is necessary to include an additional set 

of conservation equations for the electrons and to add terms to the heavy particle momentum equation to account for 

the electromagnetic fields and friction with the electrons. These types of equation can be solved using a wide variety of 

numerical approaches. In finite difference formulations, each partial derivative is evaluated to some order using Taylor 

expansions. In finite volume formulations, the integral forms of the conservation equations are solved. The issues 

regarding these formulations are discussed in a variety of texts [208, 209]. 

3.2   Review of the Kinetic Methods 

The flows in many EP systems fall into the rarefied regime in which collision and plasma length scales are similar to or 

even larger than the size of the thruster. In such cases, the flow is not well represented by a continuum formulation, and 

instead, a molecular, kinetic approach must be undertaken. Let us discuss separately the numerical simulation of rarefied 

gas-dynamic and plasma-dynamic effects. 

3.2.1   Gas Dynamics 

The rarefied flow regime is defined to exist for Knudsen numbers above 0.01 [80]. The continuum approach fails under 

rarefied conditions because there is an insufficient rate of collisions to maintain the velocity distribution functions 

anywhere near to the small departures from the Maxwellian equilibrium form implicitly assumed in continuum 

formulations. While the Boltzmann equation of dilute gas dynamics should is solved under high Knudsen number 

conditions, this turns out to be a formidable mathematical and computational task. The Direct MC  (DMC) [80] method 

is a highly successful numerical technique for simulating rarefied gas flow. 

 In the Direct Simulation MC (DSMC) technique, a large number of model particles are simulated. Each model 

particle represents a much larger number of real atoms or molecules. The model particles possess unique velocity 

components. A key aspect of the DSMC technique is that particle motion is decoupled from particle collisions. This is 

only reasonable if the time step employed in the simulation is significantly smaller than the mean time between 

collisions. During the each iteration of the DSMC algorithm, all the particles are first moved according to the product of 
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the time step and their individual velocity vectors. Any interactions between the particles and boundaries are then 

processed. The particles are next collected into cells for computation of collisions. Within each cell, the positions of the 

particles are ignored. The particles are paired up at random and collision probabilities are computed for each pair to 

determine whether a collision will take place. This statistical approach is only accurate when the size of the 

computational cell is of the order of a mean free path.  

 The collision probability is proportional to the product of the collision cross section and the relative velocity of the 

colliding particles. Many different types of collision phenomena can be simulated using the DSMC technique including 

momentum exchange, charge exchange, internal energy exchange, and chemical reactions. Average flow properties such 

as density, velocity, and pressure are obtained by time averaging of the particle properties. Unsteady flows may be 

simulated by averaging over small periods of time, or by ensemble averaging. A related method, the MC collision 

technique [210], is also often used in EP simulations. This approach is useful in hybrid particle-fluid simulations to 

determine the effects of collisions of electrons (modeled as a fluid) on the heavy species that are represented as particles. 

3.2.2   Plasma Dynamics 

Plasma cannot be described accurately by a continuum formulation under high Knudsen number conditions. For EP 

devices, the most important behavior to simulate is the plasma dynamic effects on the momentum of the heavy ions 

since these are the main source of thrust. The PIC method [79] is a particle technique for simulating plasmas. In most 

EP systems, ions are treated as particles using PIC and the electrons are treated using a continuum, fluid approach. This 

approach is usually justified, because the time scales associated with the much lighter electrons are orders of magnitude 

smaller than those for the heavy ions. Even if the velocity distribution function of the electrons is not Maxwellian, it is 

usually compact allowing meaningful interpretation of continuum quantities such as temperature and pressure.  

 Plasma physics has been described as the art of approximation, and this is an important aspect of applying the PIC 

method to simulate the special plasma environment such as inside the EP thruster. In this assumption charge quasi-

neutrality is employed. This approach allows the spatial distribution of the ions to give the spatial distribution of the 

electrons. This is a good assumption provided the Debye length is much smaller than the length scale of the thruster. 

For a typical plasma environment, electron temperature of several electron volts, the assumption of quasi-neutrality is 

good down to plasma densities of about  1014 m−3 , which is much lower than the values encountered in most EP 

thrusters (see values listed in Table 1.1) except for the inter-grid regions of ion thrusters. A variety of approximations of 
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the electron momentum and energy equations are invoked for different types of plasmas of EP thrusters. The electric 

field is usually obtained from spatial differentiation of the plasma potential that in turn is derived from the electron 

momentum equation. This field is used to change the velocity vector of each ion particle in the PIC simulation according 

to Newton's 2nd Law: 

 
  
mi

d
!
υ

dt
= qi

!
E   (3.4) 

where  mi  is the ion mass,  
!
υ  is the velocity vector,  qi  is the ion charge, and   

!
E  is the electric field. The steps in the PIC 

algorithm are to obtain the plasma density from the spatial distribution of the ions, calculate the electric field, accelerate 

the ions, and finally move the ions. The MC calculation of collisions is very easily introduced into the PIC algorithm 

after the movement step. The following sections employ the PIC and MC collision techniques for simulating the plasma 

dynamics [211], and establishes a theoretical framework for the algorithms used in PROBEPIC, which is an enhanced 

simulation code for modeling both Maxwellian and non-Maxwellian plasma dynamics.  

3.3   The Particle-In-Cell (PIC) Technique 

Methods for adapting PIC kinetic plasma calculations are highly valuable in the study of multiple-length scale quandaries 

[188]. Usually, multiple-length scale problems include small regions with increased gradients embedded in large systems. 

For these conditions, computational efficiency can be achieved most successfully by focusing attention on the regions of 

interest. PIC simulations are well suited to such systems and contain three main components: particles, grids and 

boundaries. PIC codes track the motion of both ions and electrons (neutral particles can be included in the simulation 

when applicable), from which the particle motion, potential, and electric fields are calculated self-consistently [79]. The 

method simulates the motion of plasma particles and calculates all macro-quantities (such as number density and current 

density) from the positions and the velocities of these particles [79].  

 In PIC, instead of solving equations of motion and Maxwellian equations (e.g., Coulomb’s law, Poisson’s equation) 

in continuous space and time, the physical volume is divided into cells by lines that run parallel to the boundaries. The 

intersections of these lines define a set of points called mesh points or grid points. In these points, the charge fields are 

calculated and are moved relative to the particles associated with these points [79]. The space coordinates of the charge 

fields are continuous, and they can occupy positions anywhere within the mesh. The local charge density is simply the 

number of particles in an individual cell divided by the volume of the same cell. Particles are shielded from other 
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particles beyond the Debye length, which determines the grid spacing [79]. The general concept is illustrated in Figure 

3.1. 

 Mesh points are also used in standard numerical solutions of differential equations. The details of close encounters 

of particles are not important. The electrical field is not obtained by summing the contributions of all particles, but 

rather it is obtained by calculating the local charge density, potential and then the electrical field. The mesh sets the lower 

limit of the spatial resolution of particle-particle and particle-field interactions [79]. It is ideal to keep the length of 

individual spatial cells smaller than the Debye length. If a spatial cell is larger, then the effects are not seen in the 

calculated electrical fields [79]. 

3.1.1   Iteration Steps in the Simulation 

A PIC program contains some modules that are used to move the particles through the phase space. These modules 

include the particle mover, the charge weighter, the field solver, and the force weighter [79]. A typical run is divided into 

several periods and may include thousands of time steps. The order of these modules in the PIC code is shown in Figure 

3.2. Once initial conditions, particle positions and velocities are read by the system, the particles are weighted to a 

computational grid at time  t  to determine the charge density and other particle moments. Next, the electric potential 

and field are calculated on the grid. Then, both electric and (pre-computed) magnetic fields are weighted back to the 

particles, which are time-stepped forward to  t +1  according to a leapfrog scheme [79]. Then, the cycle begins again. 

Convergence of the simulation is determined by the rate at which the parameters of interest change. 

 The size of the time step is chosen based on the physical phenomena of interest. If the interest is in the small mass 

particles, a shorter time step may be required because the plasma frequency is larger than for plasma with heavier 

particles, which allows a longer time step for a shorter simulation time. Thus, the choice of numerical method is very 

important because it has a substantial impact on the time required to run the simulation. Computer memory is another 

important consideration when choosing the numerical method; for example, high-order methods (e.g., Runge-Kutta) 

require more memory [79]. More information regarding the PIC technique can be found in [79]. 
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Figure 3.1: A view of the objects in a typical PIC code [72, 152]. 

 
  
 

  

 

 

Figure 3.2: A typical cycle within a single time step  (dt )  in a PIC particle simulation program. 
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3.1.2   Boundary and Initial Conditions 

General considerations at the beginning of the simulation process include the size of the computational domain, the 

number of grid points, the number of particles and the positions of objects (conductors, insulators, etc.) relative to the 

boundaries [79]. The size of the computational domain must be large enough to encompass the interaction that is to be 

observed. As the perturbations of the plasma result in electron oscillations on the order of a Debye length [212], the grid 

must contain at least two grid points per Debye length to resolve these oscillations.  

 The number of particles in a simulation determines its statistical accuracy. The influence of the self-force (resulting 

from the charge weighting) can be excluded progressively as more particles are added to the system. To obtain 

acceptable results, ten or more particles should be introduced for each computational grid cell (e.g., a 10x10 

computational grid would require 1,000 or more particles). Increasing the number of heavy super-particles results in an 

increase in the frequency of collisions.  

 Objects should not be placed near the boundaries. If current collection on an electrode is being simulated, the 

electrode should not be placed near a computational boundary where particles are introduced (fluxed across) to the 

system [213]. Instead, the electrode should be placed near the center of the computational domain so that the particles 

can have a chance to thermalize and so that the effects of the (non-physical) computational boundary have time to relax. 

 The boundary conditions determine how the plasma interacts with its surroundings, and they include particle 

fluxing across boundaries of the computational domain, surface interactions or material interactions between the plasma 

and objects in the computational domain, and electromagnetic field boundary conditions [79]. Initializing a PIC code 

involves careful determination of the initial distribution function for each species,   fα(!x,
!
ν,
!
t = 0) , including any initial 

perturbation, as well as distributing the particles throughout the computational domain to initiate the simulation.  

3.2   Addition of the Monte Carlo (MC) Technique to PIC Codes 

The MC method is a technique that involves using random numbers and probability to solve problems. Through the MC 

method, many approximate solutions for a variety of mathematical problems can be performed via statistical sampling 

experiments on a computer. The method applies to problems with absolutely no probabilistic content, as well as to those 

with inherent probabilistic structure [214]. 
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 PIC codes involve deterministic classical mechanics, which generally move all particles simultaneously using the 

same time step. The part left to chance is usually limited to choosing the initial velocities and positions and the injected 

particles. The objective of a simulation is to seek collective effects due to self and applied fields. The  Δt  values of the 

time steps are most commonly uniform, but some exceptions include multi-scale codes [215] (moving the slower 

particles less frequently than the faster particles, as well as allowing a non-uniform grid) and electron sub-cycling [216] 

(moving the electrons more frequently than the ions).  

 In orbit averaging [217], the particles are all advanced at small time steps (allowing for resolution of good cyclotron 

orbits), but the fields are advanced less frequently, using averaged orbit data. Because the number of calculations per 

particle is not reduced, the gain in speed comes from reducing the number of particles required, as the averaged 

contribution of each particle can substitute for many conventionally handled particles.  

 As MC codes are probabilistic in nature, they mostly seek collisional effects in relatively weak electric fields. For 

example, a given charged particle is known by its (total) kinetic energy E and its velocity relative to some target particles. 

This information produces a collision frequency  (νcoll = ntarσ(Ε )υrel )  and a probability that a collision will occur. Where σ  

is reaction cross section,  ntar  is the number density of target particles and  υrel  is the velocity relative to target particles.  

There are several PIC-MCC code applications, and more information regarding this technique can be obtained from 

[210]. 

 In the simulation, electron diffusion across magnetic field lines occurs primarily through a series of large-angle 

collisions. Because electrons are much faster than neutrals, the MCC method is appropriate for electron-neutral 

scattering. The MCC method may also be used to model ion-neutral scattering, electron-ion and electron-electron 

scattering.  

3.3   PROBEPIC Simulation Code 

PROBEPIC is a notable example of a PIC simulation code, and it has expanded on the work of previous treatments [72, 

152]. The PROBEPIC [72, 152] code was originally created to investigate the OML current collection theory describing 

the thick sheath limit in a plasma with a Maxwell-Boltzmann particle velocity distribution. PROBEPIC simulates the 

kinetic processes of ions and electrons in the vicinity of finite length Langmuir probes [152]. This code was later updated 

to improve its accuracy and operation by exploiting the capabilities of modern computers [152]. It can now be used to 
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simulate the space charge limited electron emitting sheaths, as it accurately addresses the loss of plasma electrons to the 

boundary and the velocity distribution of the emitted electrons [185]. Currently, the most recent version of PROBEPIC 

can produce I-V characteristics for both OML current collection (thick sheath theory) and SL current collection (thin 

sheath theory) [185]. 

 PROBEPIC was originally developed to simulate plasmas that have a Maxwellian velocity distribution [72, 152]. 

The distribution is uniform and isotropic in configuration space and also isotropic in velocity space, which means that 

the position and the velocity of a single particle are designated by its three coordinates,  x ,  y and  z . However, the energy 

distribution of a plasma is not always described by the Maxwellian distribution theory. Using the same equations to 

simulate non-Maxwellian plasmas creates enormous errors in the plasma diagnostics; this is complicated by the fact that 

all probe geometries used are not equally suited to characterizing the properties of non-equilibrium plasmas [202, 218], 

such as ionospheric electron temperature and density, or for determining the distribution function in the presence of 

non-Maxwellian background electrons.  

 PROBEPIC is a 2D/3V PIC code that designates that the electric field has two components, radial and axial, and 

that the particles are free to move in three dimensions [152]; 2D represents the physical space and 3D represents the 

velocity space. PROBEPIC uses a standard leapfrog mover [72, 79, 152], which moves the particles in Cartesian 

coordinates, and the new particle position is transformed back into cylindrical coordinates. The field solver, charge 

weighting, etc. are carried out in cylindrical coordinates. This technique was implemented to avoid the singularity at  r = 0  

[72, 79, 152, 185].  The computational domain in PROBEPIC consists of a cylindrical region containing a cylindrical 

Langmuir probe, as shown in Figure 3.3. 

 The probe consists of a cylindrical conducting wire partially covered by an alumina insulator [72, 152, 158]. The 

computational domain provides enough room for a plasma sheath to naturally form around the probe, which means that 

the plasma sheath is generated by the interaction of the plasma with the boundary material. In PROBEPIC, it is 

surmised that the plasma is axisymmetric, permitting the calculation only for the fields in the  r  and  z  directions on the 

half plane [152]. The computational grid plane can be divided into two sections: interior grid points and surface grid 

points. Here, the interior grid points lie within the plasma, probe conductor and insulator, whereas the surface grid 

points lie at the edges of the computational domain and on the surface of the conductor and the insulator of the probe 

[219]. 
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Figure 3.3: Schematic of the computational domain layout in PROBEPIC. 

 

 During a cycle, the region is divided by a suitably sized grid. According to the physical parameters of the plasma, 

the grid is then loaded with a proper distribution of super-particles, each of which represents a set number of real 

particles. The next step involves the assignment of the charge densities to the grid, where a weighting is used to 

distribute a proportion of each particle’s charge to the surrounding grid points. The interpolation used for this depends 

on the system’s tolerance to numerical noise and on the accuracy required versus considerations for the time required and 

computational resources available. Although the nearest grid point method [112] is computationally efficient, it does not 

yield satisfactory macroscopic results for PROBEPIC. Therefore, first order linear particle weighting is used. This allows 

the particle’s charge to be distributed not only to one adjacent grid-point, but also to its two nearest neighbors [34, 41, 

112]. 

 Next, the field equations are integrated across the grid using an appropriate method. For a one-dimensional 

electrostatic model without magnetic fields, the Poisson equation solved in finite-difference form is sufficient. However, 

for higher dimensions with electromagnetic fields, the use of the full set of Maxwell's equations is required [34, 112]. 

PROBEPIC makes direct use of the Gaussian (normal) distribution to eliminate the need for any transformation [34], 

yielding a simple, intuitive algorithm. The electric field boundary conditions used for the various surfaces in PROBEPIC 

are further explained by Aktas [34]. The fields are then applied back onto each particle using the same weighting scheme 

used to distribute charges to the grid points, and the equations of motion are integrated to determine the force on each 

particle [34, 112]. 

 The particles are moved in Cartesian coordinates, and the new particle position is subsequently transformed back 

into cylindrical coordinates, as the calculations in some modules (the field solver, charge weighter, etc.) are carried out in 
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cylindrical coordinates. Finally, the particle mover updates the position and velocity of each super-particle given its 

previous state and the electric field intensity at the particle position. The whole process is then repeated for another 

time-step [34, 112]. In PROBEPIC, the electron time-step  (dte )  and the ion time-step  (dt i )  are defined separately [34]. 

The electron time-step is much smaller than the ion-time-step because of the high mean electron velocity. 

 The modules were developed independent of any particular problem, and the simulation code uses physics in the 

form of boundary conditions. These conditions are dependent upon the size of the computational domain, the number 

of grid-points, the number of particles and the positions of objects relative to the boundaries [34, 41, 112]. The initial 

plasma parameters in PROBEPIC (e.g., temperature and number density) are set in a subprogram [34] and are user-

defined conditions, where quantities such as a plasma frequency and Debye length are calculated for use in later 

subroutines. The computational grid of PROBEPIC involves the assignment of particle position, charge density, radial 

and axial electric field intensity, and electrostatic potential for each grid point [34]. PROBEPIC uses a non-uniform grid 

[34], and its density is increased in the vicinity of the probe to resolve the field within the sheath region [34]. The grid 

dimensions are also set in a subprogram [34], and this information is then used to set the  x  and  y  coordinates of the 

grid-points. To flux particles into the computational domain, PROBEPIC determines how many particles enter the 

computational domain in a given time step, as well as the angular and speed distribution of these particles [34, 41]. 

 PROBEPIC includes a (pseudo) random number generator (an important element of any PIC/MC simulations 

[34]), which is used to calculate random particle speeds. This type of generator is well suited for massively parallel 

simulations on graphics processing unit (GPU) that performs rapid mathematical calculations. An algorithm inside the 

code allows one to send it an array of any size, which upon return will be filled with random uniform deviates. 

PROBEPIC can store many values for later use rather than calculating them each time they are needed. The algorithm 

generates random particle speeds for particles in a quiescent plasma according to the Boltzmann H-theorem, 

reproducing a Maxwellian distribution over many calls. A mathematical description of the generation of a set of random 

speeds with a Maxwellian distribution is given in [41]. 

EQUATION CHAPTER (NEXT) SECTION 1
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Chapter 4  

Simulations and Results 

4.1   Implementation of Theoretical Approaches 

There are several practical considerations to make when trying to apply the simple Langmuir probe (LP) theory to 

experimental data. When any of the classical LP assumptions are violated or when the experimental setup is flawed, 

departures from the nominal probe characteristic occur. To make the problem more tractable, some approximate 

solutions were proposed for the two limiting cases [72] (see Section 2.5). These include the thin sheath case, where the 

plasma-sheath boundary can be identified from the plasma side as a point of electric field singularity [72], and the thick 

sheath case, where the boundary is defined as the point of vanishing electric field [152].  

 Both of these approximations are reasonable for many plasma systems. For example, thicker sheaths tend to 

induce more distortions in particle trajectories, as their shape tends to be more affected by surrounding objects, and 

incoming particles have more possibilities for crossing isopotential surfaces that are not parallel to the surface at the 

point of impact [220]. In that case, sheath distortions would be most significant in low density, high temperature plasmas 

[220]; therefore, the thin sheath approximation would be the less applicable case. On the contrary, the thin sheath 

approximation would be the most accurate for high density, low temperature plasmas [220]. The aim of this section is to 

extend the simulation to enable the production of I-V traces that describe both regimes. 

4.1.1   PROBEPIC for the Thin Sheath Theory 

For a very thin sheath, where the Debye length is smaller than the probe radius, space-charge limited current collection 

is assumed, where any charged particles crossing the sheath are collected [72, 152]. As the name suggests, the thin sheath 

model assumes that the sheath thickness is much smaller than the characteristic length scale of other surrounding 

structures. In that case, the change in position as a particle crosses the sheath is negligible, and the only effect of the 

sheath’s electric field is to accelerate particles in the direction perpendicular to the surface at the point of impact [220]. 

To enable the modeling of the SL current collection, the PROBEPIC code was modified to allow the adjustment of the 

simulation parameters listed in Table 4.1. The updated PROBEPIC enables the user to specify a range of probe voltages 
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over which the I-V characteristic will be determined without further user intervention. The code also was modified so 

that multi-core parallel processing could be exploited, improving the efficiency 20-fold. 

 PROBEPIC was created on the original assumption that a particle was considered to hit and be collected by the 

probe only when it fell exactly in a cell on the probe [152]. When this occurs, probe current is generated. However, with 

this assumption, the high-speed electrons and ions that have trajectories intersecting the probe but not falling precisely 

in a probe cell at the end of a time-step do not contribute to the probe current. This issue was resolved by extending the 

particle trajectory in a straight line to determine whether it intersects with the cylinder representing the probe during a 

given time step. A screen shot from the PROBEPIC animation window showing the electron and ion trajectories, the 

locations where the particles are injected, and where they hit the probe is presented in Figure 4.1. The figure shows the 

Langmuir probe in full domain, illustrating the ion and electron trajectories: purple dots are for the electrons, and green 

dots are for the ions. The new particles that are injected into the domain and the particles that hit the probe are also 

shown. Note that only a few of the approximately 224,000 particles in the simulation are shown in this picture. 

   

Table 4.1 Probepic user-controlled input parameters. 

Parameters Desscription and Units 

0.1 
Percent of particles displayed in animation; 0.1,...,100.0; 0.0 
means NO animation 

0.0035 Probe radius [m] 
57.142 Probe Aspect Ratio [length/radius] 
3 Number of cells per probe radius 
112,000 Initial number of ions in domain 
5.6 Number of injected ions from BACK at each time step 
5.6 Number of injected ions from FRONT at each time step 
112,000 Number of injected ions from SIDE at each time step 
112,000 Initial number of electrons in domain 
14 Number of injected electrons from BACK at each time step 
14 Number of injected electrons from FRONT at each time step 
22.4 Number of injected electrons from SIDE at each time step 
0.5 Temperature, T [eV] 
1 x1015 Number density [cm-3] 
1.67 x10-27 Mass of ion [kg] 
1.602 x10-19 Charge of ion [C] 
9.11E-31 Mass of electron [kg] 
-1.60 x10-19 Charge of electron [C] 
0.009 Plasma frequency [sec] 
0.0 Plasma potential [V] 
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Figure 4.1: PROPEPIC screenshot for full domain, showing the electron and ion trajectories, the locations 
where the particles are injected, and where they hit the probe. Green represents the ion trajectories, and purple 
represents electron trajectories.  

   

 In thin sheath theory, a Langmuir probe is characterized by a high ratio of probe radius to Debye length [72, 152]. 

This means that, to more closely approximate the thin sheath properties, one can either increase the probe radius or 

decrease the Debye length. According to Chen, the ratio of probe radius to Debye length 
 
(rp λD )  should be greater than 

10:1 to ensure the collection of charged particles entering the sheath [8, 181, 183]. Initially the ratio was adjusted by 

decreasing the Debye length and keeping the probe radius fixed. This  it led to slightly flatter electron saturation regions 

[8, 221], as expected for the thin sheath case [8, 221]. However, it was difficult to obtain a sufficiently small Debye 

length, as the probe radius was already very small. Also, a higher  T n  ratio increased the super-particle counts in the 

domain, resulting in longer simulation runtimes. For these reasons, attempts to approximate thin sheath properties by 

decreasing the Debye length alone were abandoned. Subsequently, the ratio was altered by varying the probe radius. 

 For larger probe sizes, a greater computational domain and more super-particles were required, increasing the 

runtime. Figure 4.2 shows the simulation results for a probe radius of 3.5mm and a domain radius of 7mm (roughly 

equivalent to 10s over the probe surface [8, 221]). The probe length was then reduced to 2mm to reduce computational 

domain volume. A careful coalescing process conserves the particle and mesh charge and current densities as well as the 

particle energy [222] to ensure the proper calculation of the Ε  field.  Accordingly, the number of the particles was scaled 
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proportionally to the change in domain volume, and the grid cell counts were scaled proportionally to the change of 

domain radius. 

 As Figure 4.2 shows, when the domain was adjusted to new probe sizes, the measured current was still much 

greater than that predicted by thin sheath theory. This was found to be due in part to the disabling of the insulator 

interaction in the original PROBEPIC code. Neglecting this process did not impact the PROBEPIC modeling for thick 

sheath case, as the probe radii were sufficiently small. However, when modeling thin sheath cases, disregarding this 

interaction means that particles can freely travel through the insulator and hit the probe conductor from the back, 

leading to a higher current than expected. In theory, this problem could be resolved by simply changing the velocity of 

particles when they are in the insulator volume. However, if the new velocity is not high enough to allow the particles to 

leave the insulator, they could become trapped within it. This may cause them to jump back and forth endlessly, never 

being able to leave the computational domain. To avoid this situation, particles were always moved to the surface of the 

insulator volume following a collision. In an effort to more accurately reproduce the theoretical results, the electrical 

field grid was aligned with the probe, and the effects of varying the grid size were investigated. It was found that making 

the number grid cells too high decreased the accuracy, as the number of particles in each cell was too low for statistical 

accuracy. However, by halving the cell size, the accuracy was increased (Figure 4.2). By lowering the temperature to 

 0.5eV ,  Vf  increased to approximately  −2V . As shown in Figure 4.3, the simulated results are in good agreement with 

those obtained theoretically. 
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Figure 4.2: I-V trace for the thin sheath case: comparison of the results before and after the author added the 

insulator interaction. 
  
Te = 1 eV, n = 1015m−3 , rp = 3.5 mm, lp = 2mm . 
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Figure 4.3: I-V trace for the thin sheath case: comparison of theoretical and simulation results for a large-probe 

size. 
  
Te = 0.5eV, n = 1015m−3 , rp = 3.5mm, lp =  2mm . 

  

 These results demonstrate the importance of the accurate determination of the simulation grid size. The grid cell 

width is generally chosen to be of the order of the Debye length [210, 223]. By setting the cell width equal to the Debye 

length, short-range particle interactions are reduced. However if the cells are made much larger than the Debye length, 

important electric field gradients can be overlooked because the fields are determined only at the grid points. 

Furthermore, as the cell widths define the particle size, values larger than the Debye length lead to unphysical particles. 

A very high grid density might provide the closest fit to the theoretical data. However, this high grid density requires 

more particles, and therefore is more computationally demanding. 

4.1.2   PROBEPIC for the Thick Sheath Theory 

For a very thick sheath, where the Debye length is larger than the probe radius, OML current collection is assumed. The 

OML current is the current collected by the probe when none of the undisturbed particles that are capable of reaching 

the probe (on the basis of energy considerations) are excluded by the intervening barriers of effective potentials [72, 

152]. OML theory neglects the influence of the sheath, and instead particle orbits are simply computed using the space-

charge free electric field of the probe [72, 152].  

 To observe what effects the changes made to PROBEPIC (particularly re-enabling the insulator collision) have on 

the simulation of thick sheath case, for which it was initially designed, a run with the small probe geometry was 

conducted. Initially, the same grid and domain size as used in the large probe scenario was applied. However, because 

the smaller probe occupied less of the domain volume, the overall super-particle density was low. This resulted in 
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smaller current measurements than expected. Accordingly, the domain and grid sizes were updated in the subsequent 

run based on the small-probe state [152]. The accuracy of the updated PROBEPIC was evaluated by comparing the new 

results with those obtained from the original PROBEPIC simulations and the analytical results. Figure 4.4 reports the 

updated simulation results in an I-V characteristic plot for the thick sheath case. 

 When the probe potential is less than the plasma potential, the PROBEPIC results show good agreement with the 

Langmuir theory. On the other hand, the PROBEPIC results diverge from the expected theoretical results in the 

electron saturation region (voltages above the plasma potential [152]). This is because Langmuir theory always produces 

the maximum current that could potentially occur (because an ideal, infinite-length probe is assumed) [72, 152, 187]. The 

probe aspect ratio may produce a significant difference in the I-V characteristic [104]. In addition, the sharp infinite-

length probe tips on the conductors produce an intense electric field in the vicinity of the tip, which creates a large 

difference between infinite- and finite-length probes [152]. Note that, because both probe types exhibit an OML current-

collection case, the resulting I-V characteristic does not have a sharp knee when the probe potential is equal to the 

plasma potential (as would be expected in the SL regime [152]). Rather, a very smooth curve [156] from positive to 

negative is evident, as is expected [152]. The code modifications also resulted in simulated currents that more closely 

approximate those predicted analytically in the electron saturation region of the I-V characteristic, which is the region 

that demonstrates the largest departure from theory. 

4.2 Langmuir Probes in Non-Maxwellian Plasmas 

This section presents probe simulations for non-equilibrium plasmas and the electron energy spectrum. This includes the 

modification of existing non-Maxwellian modeling techniques (e.g., the Druyvesteyn procedure) to improve the ability to 

model non-equilibrium plasma. The resulting enhanced software is used to simulate the operation of Langmuir probes in 

a series of validation and demonstration cases. The results of these simulations are compared with available experimental 

data to assess the effectiveness of the enhanced simulation tool. 
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Figure 4.4: I-V trace for the thick sheath case: comparison of the results obtained for the small probe state. The 

conditions used for testing are 
  
Te = 0.5eV, n = 1015m−3 , rp = 0.3125mm,  and lp = 2.87mm . For PROBEPIC 

(theoretical [152] and simulation), a finite-length probe is used, whereas the probe length is infinite for OML 
theory [152, 155] . 

4.2.1   Application of the Druyvesteyn Method 

Before applying the new method, a test was conducted to compare the Maxwellian particle distribution from 

PROBEPIC with a theoretical Maxwell-Boltzmann distribution. The aim of this was to confirm that the updated code 

was functioning correctly. To make a comparison, a test simulation was created, and a thick sheath plasma simulation 

was used as an initial reference point. This was done because OML theory, introduced by Langmuir for particles that 

have a Maxwellian distribution, is the most common experimental analysis approach. Then, the current was derived for a 

Maxwellian EEDF to verify that the code was error-free [185]. After determining the relevant theory for OML, the 

electron temperature was extracted from the slope of the I-V curve at retarding voltages in logarithmic coordinates (less 

than the plasma potential). This retarded part of the curve weakly depends on the probe geometry but more strongly 

depends on the plasma parameters [200]. The electron density is extracted from the high voltage part of this curve using 

OML theory [131]: 

 
 
IOML = Apne kBT 2πm 2 π( ) π + exp(η)Erfc(η)( ) ,  (4.1) 

where  η= eV kBT  and 

 
 
Io = A = Apne kBT 2πm ,  (4.2) 
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where 
 
Ap  is the probe area. More information regarding the implementation of OML theory in PROBEPIC can be 

found in [185]. To compare the particle distribution with the theoretical Maxwell-Boltzmann distribution, the current 

was derived using the Maxwellian EEDF, 

   F(ε) = n 2 k BT( )3 2( ) ε exp −ε k BT( ) .  (4.3) 

 These comparisons confirmed that the updated version of PROBEPIC properly simulates equilibrium plasmas, as 

demonstrated in Ref [185]. A sample of raw Langmuir probe data for a non-equilibrium plasma is shown in Figure 4.5, 

which is the result of an experiment conducted in the vacuum test facility with argon gas using a cathode that was part of 

a Hall thruster on a U.S. spacecraft [202]. The experimental data were recorded via LabVIEW using a data acquisition 

system. The most apparent feature of the curve is that it lacks a well-defined knee. Determination of the plasma 

potential is not easy as there is no distinct knee in the raw I-V curve. Therefore, it is necessary to examine the first and 

second derivative for the plasma potential. In the ideal case, the plasma potential corresponds to the absolute maximum 

of the derivative. As this curve is not ideal the first derivative does not have the absolute minimum and second 

derivatives do not have a zero. 

 

 

Figure 4.5: A sample of raw data collected during testing. Experimental I-V characteristic: Plasma potential 

 
Vp = 21.05V,ne = 1.8 − 2.3x1016m−3 ,  Te = 4.0 − 4.1eV,  Ti = 0.4 − 0.41eV,  mi = 6.62x10−26kg  for argon [202].  
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 The PROBEPIC simulation code requires input parameters to specify the probe geometry and the plasma 

parameters. The appropriate probe theory is chosen once the initial conditions and plasma environment are determined. 

Determining the appropriate theory helps to identify the correct set of plasma parameters. Then, the geometry, test 

conditions, and the method are determined for this particular theory. The Druyvesteyn method was found to be the 

most appropriate procedure and was subsequently used to determine the plasma parameters, which were then used as 

the input for PROBEPIC. The EEDF was derived using the Druyvesteyn equation, 

 
  
F(ε)= 2 2m e3Io( ) eV d2 I dV2( ) ,  (4.4) 

and then the experimental EEDF was fitted to a theoretical Druyvesteyn distribution.  

 Each PROBEPIC simulation is initialized with a distribution of particles in the phase space. The velocity of every 

particle is determined via a random (MC procedure [210]) process that is constrained to result in the appropriate velocity 

distribution, whether it is equilibrium or non-equilibrium. The same constrained distribution is used to randomly select 

the velocity of each particle injected during the simulation. To implement the non-equilibrium plasma model, the 

PROBEPIC code was extended to accommodate the non-Maxwellian velocity distribution. PROBEPIC requires the 

integral EEDF to be calculated. This is normally done by the Druyvesteyn method (equation (2.48)). The PROBEPIC 

code requires the integral EEDF to be calculated as  

 
  

F(ε)dε
o

ε
∫ = n 1− Γ 3 4,0.243ε2 kBT( )2( )⎡

⎣⎢
⎤
⎦⎥

 , (4.5) 

where   Γ(ε, z)  is the incomplete gamma-function [224, 225], and the limiting values of this integral are 0 for   ε = 0 and 1 

for  ε = ∞ . The functions (i.e., limiting values) are defined to eliminate error in the distribution function. The limiting 

values of the distribution function should be calculated numerically; otherwise, an error in the distribution function 

could drastically affect the calculations in the code. The distribution model was applied to all particles in the initial 

configuration space and all particles injected during the simulation process. The results were compared with the theory 

to ensure that the theoretical Druyvesteyn and simulated particle distributions were in agreement. Figure 4.6 shows a 

comparison between theory and simulation, with 3.5x105 super particles. Due to the high electron density and high 

number of super particles, the program works several orders of magnitude slower than simulations that have less than 

2x105 super particles.  
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Figure 4.6: A comparison of the Maxwellian and Druyvesteyn distributions in a PROBEPIC simulation. 

 

 In Figure 4.7, I-V characteristics of the experimentally measured and simulated data are compared. The 

comparison of the I-V curves highlights some differences, such as discrepancies at high voltages. At negative voltages, 

the current is low and these data are in good agreement, with some minor differences. These slight differences at 

negative voltages appear to be due to the change in distributions; in this case, the distribution becomes Druyvesteyn. 

This is expected, because the velocity distribution of electrons in weakly ionized plasmas often deviate from Maxwellian 

to Druyvesteyn [193], where the collision frequency is velocity dependent but the mean free path length of electrons is 

constant [226]. This also confirms that the deviation from a Maxwellian distribution can be large enough that using a 

Maxwellian function for all plasma modeling is not a justified approximation.  

 For non-Maxwellian distribution functions, ions and electrons are not represented by the same temperature. Thus, 

for an accurate fit to the experimental measurements, the temperatures of the ions and the electrons should be 

determined separately. For non-thermal plasmas, the electron temperature is greater than the ion temperature; hence, 

 Ti = 0.1Te  [34, 41, 227] has been applied to these simulations. A decrease in the ion temperature results in a decrease in 

the ionic current. However, the electron current dominates at higher voltages, and a change in the ion temperature does 

not significantly alter the current, but it should improve the results at retarding voltages where the ion current 

dominates. There are several reasons for current change at high voltages, including chemical reactions inside the plasma, 

the impact of a modified electron population (i.e., electrons having different temperatures and density ratios) such as a 

non-Maxwellian electron population, and dependence on probe geometry. To test this hypothesis, experimental and 

theoretical curves were compared for two types of probe geometries, cylindrical and spherical, and the differences are 

seen in Figure 4.8. The finite length probe [228] could also be the reason for this current change. To test this, several 
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simulations of a probe with different aspect ratios 
  
(ln rp )  in the range of 5 to 150 (5, 10, 50 for short probe and 100 and 

above for long probe) were performed. Small probe aspect ratios yield different I-V characteristics, especially at voltages 

less than the plasma potential [229] (see Figure 4.8 right). 

 Small (short) probes reach electron saturation faster than longer probes. Ion-ion and ion-atom collisions, as well as 

the effect of a finite length probe, significantly affect ion orbital motion and tend to destroy it. As a result, the ion 

current to the probe under such conditions corresponds to radial ion motion rather than to orbital motion. This is more 

readily observed at voltages less than the plasma potential where the ions are more dominant. As the retarding current 

region of the I-V curve acts like an energy analyzer and carries information about the electron distribution function 

(EDF), choosing the right size and geometry of a probe is very important [230]. For a Maxwellian plasma, geometries 

such as cylindrical, spherical and planar are suitable for the measurement of  Te  [41]. However, the electron saturation 

regions differ appreciably with collector geometry. The electron saturation region of the cylindrical probe is nearly 

independent of  Te , whereas this region is highly temperature-dependent for the planar and spherical probes [41], 

highlighting the practical advantage of the cylindrical probe. 

 

 

Figure 4.7: Graph (left) compares the results of the thick sheath plasma simulation with the theory: Maxwellian 

distribution.
 
Vp = 21.05V,  ne = 1.0x1015m−3 ,  Te = 2eV,

 
rp = 0.00003125m,

  
lp = 0.00287m,   lins = 0.004305m. Graph(rightcompares 

I-V relationships for different distributions.  ne = 1.8 − 2.3x1016m−3 ,  Te = 4.0 − 4.1eV,  Ti = 0.4 − 0.41eV,  

 mi = 6.62x10−26kg for argon. The vertical line represents the plasma potential. 
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Figure 4.8: Left: comparisons of OML theory for spherical and cylindrical geometries with experimental [202] 
measurements. The simulation was conducted for Druyvesteyn distribution. Right: comparison of the results 

for aspect ratios of 100 and 10.
 
Vp = 16.6V,  ne = 6.5− 7.0x1016m−3 ,  Te = 2.9eV,  Ti = 0.29eV,  mi = 6.62x10−26kg for 

argon, 
  
lp = 0.002m,

 
rp = 44.45µm . 

4.2.2   Application of the Bi-Maxwellian Method 

In addition to Druyvesteyn’s method, another distribution, called bi-Maxwellian, was implemented in the simulation 

code. This distribution was used as an alternative to the Druyvesteyn in an attempt to more closely replicate the 

experimental data [202]. The probe geometry used in this experiment is cylindrical because these data are more directly 

related to the distribution of energies projected onto the plane perpendicular to the probe axis. This method has the 

advantage of being a good alternative for precisely testing the PROBEPIC code [200]. First, the EEDF is determined 

using Druyvesteyn’s method. Next, the EEDF is applied to the bi-Maxwellian distribution to extract the plasma 

parameters (e.g., two densities, two temperatures) [200]. When the two curves are in agreement, the correct 

implementation of the new distribution is verified. 

 As indicated earlier in Section 2.8.2, electron velocity distributions can be of different types for different electron 

energy ranges. For example, an electron distribution can be bi-Maxwellian at low electron energies and Maxwellian at 

high-electron energies. PROBEPIC simulations result in different I-V curves when the distribution transitions between 

Maxwellian and bi-Maxwellian. For a particular reference point, the results of the simulation using a Maxwellian 

distribution were compared with simple OML theory. When the results prove that both OML theory and the 

Maxwellian distribution demonstrate different behaviors at small voltages, where the contribution of high-energy 

electrons is important, the non-Maxwellian distribution is shown to be the more accurate model. Figure 4.9 shows the 
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simulation results for a bi-Maxwellian (two-temperature) distribution; both curves are in good agreement, verifying that 

the new distribution was correctly implemented.  

 The PROBEPIC simulation results in very different I-V curves when transitioning between Maxwellian and bi-

Maxwellian simulations [194]. Both OML theory and the Maxwellian distribution produced incorrect behavior at small 

voltages. For these cases, the Debye length is similar to the probe radius, and there may be sheath effects influencing the 

currents in this region [231]. However, there is an important contribution of high-energy electrons in the region, and the 

distribution method used is non-Maxwellian. 

 An additional experiment is illustrated in Figure 4.10. This experiment was conducted with a cylindrical probe in a 

vacuum test facility consisting of a stainless steel vacuum chamber. The plasma source used for this experiment is the 

Busek BHT-1500 [232], which flew in space as part of the first successful Hall thruster demonstration on a U.S. 

spacecraft. The reported data (Figure 4.10) are digitized to obtain the current-voltage characteristic associated with the 

plasma. Note that the plasma parameters are obtained with an estimated error of 10 percent [202, 203], which induces 

differences in I-V curves. However, the simulated results still show good agreement with the experimental data (Figure 

4.10). 

 

 
 
Figure 4.9: Comparison of experiment [202] and simulation using a two-temperature distribution. The other 
curves are for OML theory and simulation for the Maxwellian distribution. The dashed vertical line 

corresponds to plasma potential. 
 
Vp = 16.6V,  ne = 6.5− 7.0x1016m−3 ,  Te = 2.9eV,  Ti = 0.1TeeV,  mi = 6.62x10−26kg  

for argon. Temperature of high-energy electrons:  Th = 6.0eV ; energy of transitioning from low energy 

distribution to high:   εt = 4.0eV . As the distributions transition from one point to another, the graph appears to 
look different than the others. The vertical line represents plasma potential. 
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 An additional experiment is illustrated in Figure 4.10. This experiment was conducted with a cylindrical probe in a 

vacuum test facility consisting of a stainless steel vacuum chamber. The plasma source used for this experiment is the 

Busek BHT-1500 [232], which flew in space as part of the first successful Hall thruster demonstration on a U.S. 

spacecraft. The reported data (Figure 4.10) are digitized to obtain the current-voltage characteristic associated with the 

plasma. Note that the plasma parameters are obtained with an estimated error of 10 percent [202, 203], which induces 

differences in I-V curves. However, the simulated results still show good agreement with the experimental data ( Figure 

4.10).  

 In the electron saturation region where the maximum is reached for the flux of electrons to the probe, the sheath 

continues to grow as the probe voltage is increased while the flux remains constant. The electron current increases with 

increasing sheath surface area. Because the current varies in the electron saturation region for spherical and cylindrical 

probes, the electron saturation current can be complex at first. With a spherical probe, no knee in the voltage-current 

characteristic is observed, but for a cylindrical probe, the knee is often rounded-off, providing a smooth transition to the 

electron saturation region [43]. Also, the theoretical cylinder yields a much closer approximation than the theoretical 

sphere. 

 The probe voltage is given with respect to the facility ground, and the plasma is at the plasma potential. When the 

probe voltage is well below the plasma potential, only the highest energy electrons reach the probe. As the probe voltage 

approaches the plasma potential, additional lower energy electrons are collected. A low probe voltage with respect to 

ground corresponds to a high electron energy with respect to the plasma. Therefore, a change of variables is necessary to 

express the EED with respect to the plasma potential. This also changes the reference voltage of the probe from the 

facility ground to the plasma potential. The Druyvesteyn equation, given in equation (2.53), is applied with the second 

derivative of the probe current with respect to the probe voltage. The data are also plotted on a logarithmic scale (Figure 

4.11, right) to better visualize the plasma potential. 
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Figure 4.10: Experimental data [232] obtained using a cylindrical probe, showing probe current as a function of 

voltage. 
 
Vp = 16.6V, ne = 6.5− 7.0x1016m−3 , Te = 2.85− 3.0eV, Ti = 0.3eV, mi = 6.62x10−26kg for argon. 

 

 

 

 
 
Figure 4.11: Comparison of computer simulations with experimental data. The vertical line represents the 
plasma potential. The figure on the right is plotted with a logarithmic scale. 

 
Vp = 16.6V,  ne = 6.5x1016m−3 ,  Te = 2.9eV ,  Ti = 0.29eV,  mi = 6.62x10−26kg  for argon. The vertical line represents 

the plasma potential.  
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“Victory is for those who can say "Victory is 
mine". Success is for those who can begin 

saying "I will succeed" and say "I have 
succeeded" in the end.” 
- Mustafa Kemal Atatürk 

 
 
 
 

Chapter 5  

Conclusions and Recommendations 

5.1 Conclusions 

Although the Langmuir probe technique for in situ measurement of plasma parameters has been around for eight 

decades, deriving the parameters with accuracy from the data acquired by a Langmuir probe immersed in space plasma is 

still a challenging task. This dissertation demonstrated that, although the vast majority of I-V characteristics can be fitted 

very well using the original Langmuir probe theory for an isotropic plasma with uniform temperature and density 

(isotropic), the use of non-Maxwellian distributions in such methods does not work.  

 This dissertation created a new, more powerful, more physically correct and more general PROBEPIC code for 

simulating plasma dynamics in both the SL and OML current collection regimes. For the thin sheath theory, good 

agreement between the simulated results and those derived analytically was obtained. The implementation of 

PROBEPIC for thick sheath theory was also successful, although a disparity was observed between the PROBEPIC 

models with a finite length probe and Langmuir probe theory with infinite length probe, which was expected [152] and 

demonstrates the need for general diagnostic applications of Langmuir probes. This results from the ideal state and 

infinite probe length assumed in Langmuir probe theory. The results of the implementations of both cases, SL and OML 

current collection methods, show good agreement with equilibrium Langmuir probe theory and provide validation for 

using particle simulations to accurately model Langmuir probes.  

 After expansion of the model to include non-Maxwellian distribution methods (i.e., Druyvesteyn and bi-

Maxwellian methods), Langmuir probe theory associated with non-equilibrium plasmas [42, 46] was implemented into 

the PROBEPIC code. The EEDF is obtained using Druyvesteyn and bi-Maxwellian procedures, and parameters such as 

electron temperature, plasma density and plasma potential are also obtained. The dependence of EEDF and other 
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parameters is examined. Three test cases were presented to establish an algorithm through which the described PIC code 

can be used to analyze experimental data. Through this approach, important parameters of non-equilibrium plasmas can 

be obtained, and theoretical I-V traces can be created for comparison with experimental traces. The plasma conditions 

are determined when the experimental and theoretical I-V characteristics agree within a desired level of accuracy.   

 The results show that EEDF is not necessarily Maxwellian everywhere in the plasma. Considerable differences in 

electron density and temperature are observed, and these values differ dramatically in many cases. According to these 

results, the EEDF is best described by the Druyvesteyn distribution because its validity is independent of the sheath size 

and its determination of the EEDF provides a more detailed description of the plasma. However, results also show that 

the EEDF changes from one distribution to another at different levels of gas pressure (e.g., EEDF is Druyvesteyn-like 

when the pressure
 
Pargon = 0.3Torr and becomes bi-Maxwellian when the pressure 

 
Pargon = 0.03Torr ).  

 Three distribution techniques, Maxwellian, bi-Maxwellian and Druyvesteyn methods, were carefully implemented 

in PROBEPIC. As a result of this procedure, we can determine the energy levels even at the points where two 

distributions transition [179]. Another reason for including bi-Maxwellian method in PROBEPIC is that, this method 

can be used as a reference distribution to be able to confirm whether the correct method is applied for the plasma 

condition. Methods for finding the electron distribution function and the electron density were compared for a 

cylindrical probe. The reference method for analyzing the probe data is to assume that these data are derived from the 

sum of bi-Maxwellian distributions and to find the two temperatures and densities that fit the data. Both I-V curves were 

in good agreement for the test case, verifying that the new distribution was correctly implemented and that 

Druyvesteyn’s analysis for the speed distribution agrees with the bi-Maxwellian analysis. 

 This dissertation also introduced and demonstrated that three probe geometries are not equally suitable for the 

measurement of electron temperature. Distinct methods for deriving temperature tend to yield different temperature 

values when the velocity distribution is non-Maxwellian. Distinct techniques or instrument types also lead to different 

plasma probe results. Therefore, for anisotropic distributions, not all probe geometries are equally suited for measuring 

the electron temperature and density or for determining the distribution function in the presence of non-Maxwellian 

background electrons. To test this hypothesis, the experimental curve was compared with the theory for spherical and 

cylindrical geometries, and the differences were illustrated.  

 Langmuir probes are widely used for plasma diagnostics. Their small size and relatively simple theory of operation 

make them indispensable tools. Expanding the capabilities of PROBEPIC to simulate Langmuir probes within the non-
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Maxwellian plasmas greatly enhances the utility of this software tool, allowing the exploration of the underlying 

principles and behavior of an idealized version of the plasma unperturbed by experimental intrusion. Furthermore, the 

plasma parameters can be changed far more quickly and cheaply than in a physical experimental setup. This capability 

directly aids in diagnostic efforts using Langmuir probes.  

 The physical regimes created in the EP thrusters indicate that enhance numerical methods are required for accurate 

numerical simulation. It is concluded that numerical simulations can be expected to play a more prominent role in the 

design and evolution of future EP thrusters. This work provides an opportunity to expand the code to produce 

simulations of the entire plasma inside EP devices, providing insight to help make them more efficient and increasing 

their performance, as well as enabling the identification of the life-limiting factors of these devices.   

5.2 Recommendations 

The possibilities for PROBEPIC’s future applications are virtually limitless. The purpose of this work was to verify 

accurate modeling of the physical processes; to this end, widely used, robust algorithms were employed. We now have a 

code that apparently models reality, to the first and second order, quite well.  

  Further work should include modeling different plasma experiments and developing PROBEPIC as a diagnostic 

aid for both evaluating experimental data and simulating realistic plasmas to conduct virtual experiments, e.g., space 

environment plasmas. With additional work, the tool could be expanded to provide simulations of the gas and plasma 

flows in various EP thrusters, thereby aiding in the enhancement of these high-performance devices.   

 PROBEPIC should also implement other electrostatic probes, e.g., Faraday cups and retarding potential analyzers, 

to simulate plasma diagnostics to provide insight to improving conventional designs. This would provide user an 

interface to a variety of sensor hardware in order to create desired space and laboratory testing environment.   
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A.1   Single Charged Particle Motion 

Plasma transport can be described as [88]: 

• single particle motion gives the step size 

• collision frequency tells us how often steps are taken. 

If the magnetic field geometry is not optimized carefully, particles have trajectories causing them to leave the system 

without collisions; high-energy particles are the most susceptible and damaging. The charged particles move freely along 

a constant magnetic field, but any velocity perpendicular to the field causes them to orbit around the field lines. When 

the magnetic field strength isn’t constant, it changes parallel velocity of the charged particle and it is velocity along field 

line to change. Finally, a force perpendicular to the field lines will cause the particle to move perpendicular to both the 

force and the magnetic field lines [88]. 

 The Lorentz force describes the forces on a charged particle moving in the presence of an electric field and 

magnetic field [88]: 

 
  
!
F = q

!
E +
!
υ×
!
B( ) ,  (A.1)  

where   
!
F is the force on the particle,  q is the charge on the particle,   

!
E is the electric field,  

!
υ is the velocity of the particle, 

and   
!
B  is the magnetic field. Newton’s second law of motion is another fundamental equation as shown below [88]:  

 
  

!
F = m

d
!
υ

dt
,  (A.2) 

where   
!
F is force on the particle,  m  is mass of the particle, and  t  is time, and 

!
υ  is velocity of the particle. The equation 

of motion for a charged particle  q , under the action of the Lorentz force   
!
F  due to electric   

!
E  and magnetic induction 

  
!
B  fields can be written as in the following form [88]:  

 
  

d!p
dt

=
!
F = q

!
E +
!
υ×
!
B( ) ,  (A.3) 

where   
!p  represents the momentum of particle. This equation is relativistically correct if we take 

   
!p = γm

!
υ ,  (A.4) 

where  m  is the rest mass of the particle and γ  is the Lorentz factor defined by  

 
 
γ = 1− υ2

c2

⎛

⎝⎜
⎞

⎠⎟

−1 2

 , (A.5) 
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where  c  is the speed of light in vacuum [88]. In relativistic case, (A.3) can be written in the form of [88] 

 
  
γm d
!
υ

dt
+ q

!
υ
c2

⎛
⎝⎜

⎞
⎠⎟
!
υ⋅
!
E( ) = q

!
E +
!
υ×
!
B( ) .  (A.6) 

Note that the time rate of change of the total relativistic energy  ( U = γmc2 )  is given by 
  
dU dt = q

!
υ⋅
!
E( )  and that 

  
d!p dt = d U

!
υ c2( ) dt ;  the term υ

2 c2  is negligible compared to unity. For   υ
2 c2 ≪1 ,   γ ! 1  and  m  can be considered 

constant (independent of υ ), so that (A.6) is reduced to the following nonrelativistic expression [88, 233]: 

 
  
m

d
!
υ

dt
= q
!
E +
!
υ×
!
B( ) .  (A.7) 

 If the velocity obtained from equation (A.7) does not satisfy the condition   υ
2 ≪ c2 , the corresponding result is not 

valid and the relativistic expression (A.6) is used instead of (A.7). Relativistic effects become important for highly 

energetic particles (e.g., a  1MeV  proton has a velocity of  1.4 ×107 m s , with   υ
2 c2 ! 0.002 ). It is assumed that the 

restriction   υ
2 ≪ c2 , implicit in equation (A.7), is not violated. Note that all radiation effects are also neglected [88].  

 Based on the given information above, we can consider series examples of different external magnetic and electric 

field configurations. These configurations [88, 233] are listed below.  

A.1.1   Case with   
!
E = const  and   

!
B = 0   

The equation of motion for a particle with mass m and charge q is [88] 

 
  
m

d
!
υ

dt
= q
!
E ,  (A.8) 

whose solution for the particle velocity [88] 

 
  

!
υ = q

m
t − to( ) !E +

!
υo ,  (A.9) 

which represents a uniformly accelerated particle motion along a constant  
!
Ε  field. The particles with charges of 

different sign move in opposite directions resulting in electric currents [88]: 

 
  

!
j = qe

!
υe + qp

!
υp  . (A.10) 
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A.1.2   Case with   
!
E = 0  and   

!
B = const  

Assume that   
!
Ε = !g = 0  and   

!
B  is constant. The equation of motion of a charged particle in a constant magnetic field is 

described by [88] 

 
  
m

d
!
υ

dt
= q
!
υ×
!
B ,  (A.11) 

which yields a condition of 

 
  

!
υ⋅ d
!
υ

dt
= 0 ⇒

!
υ = υ = const.   (A.12) 

i.e., constancy of the velocity vector intensity [88]. This means that the magnetic field does no work on the particle and 

charged particle does not gain any kinetic energy form the considered magnetic field [88].  

 Decomposing the velocity vector into two components [88], 

 
 
!
υ =
!
υ" +
!
υ⊥ ,  (A.13) 

in directions parallel and normal to   
!
B , the equation of motion (A.11) reduces to two equations for each of the velocity 

components [88]: 

 
  
m

d
!
υ⊥

dt
= q
!
υ⊥ ×

!
B and

d
!
υ"
dt

= 0 .  (A.14) 

Velocity component 
 
!
υ"  along   

!
B  remains constant in this case, i.e., unaffected by the presence of magnetic fields and its 

magnitude 
 
υ!  is simply prescribed as the initial condition [88]. If 

  
!
υ" = const. , the same must also be true for the 

magnitude of the normal component  
!
υ⊥ since 

  
!
υ2 ≡

!
υ"

2 +
!
υ⊥

2 = const.  as it is already obtained in equation (A.12). 

Therefore [88],  

 
  
!
υ⊥ ,
!
υ" ,υ ≡

!
υ⊥ ,
!
υ" = const.   (A.15) 

 To find the shape of the trajectory the particle moves along, we take the Cartesian geometry with
  
!
B = 0,0,B( ) , 

  
!
υ⊥ = (υx ,υy ,0)  and 

  
!
υ" = (0,0,υz )  and the equation (A.14) can be written as [88]: 

 
 
m

dυx

dt
= qBυy , m

dυx

dt
= qBυx , m

dυx

dt
= 0 .  (A.16) 

After some elementary rearrangements, we obtain the following set of equations: 
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m

d2υx

dt2
= −ωL

2υx , υx
2 + υy

2 = υ⊥
2 , υz = υ! ,  (A.17) 

where 
 
υ!  and υ⊥  are constants given as initial conditions. Three velocity components follow from equation (A.17); they 

are given as [88]: 

 

  

υx ≡
dx
dt

= υ⊥ cos(ωLt )

υy ≡
dy
dt

= −υ⊥ sin(ωLt )

υz ≡
dz
dt

= υ! ,

  (A.18) 

where 

 
 
ωL ≡ qB

m
  (A.19) 

is known as Larmor frequency (also referred to as gyro or cyclotron frequency; see section 1.3.3.5). The following 

equations yield the particle trajectory equation after one time integration [88, 233]: 

 

  

x − xo = rL sin(ωLt )

y − yo = rL cos(ωLt )

z − zo = υ!t
  (A.20) 

with  

 
 
rL ≡

υ⊥

ωL

,  (A.21) 

which is referred to as Larmor radius or gyroradius [88, 233] (also known as gyro-radius; see section 1.3.3.6). 

 The trajectory (A.20) is a helix along the  z axis (i.e., in the direction of   
!
B ) with the pitch angle α given by the 

relation  
  
υ⊥ = υ! tanα . The vector of gyration angular velocity   

!
ωL  follows directly from the equation (A.14) integrated 

over time: 

 
  
m

d
!
υ⊥

dt
dt = q

!
υ⊥ dt ×

!
B ⇒∫

!
υ⊥ =

!
ωL × !r⊥∫ ,  (A.22) 

where 

 
  

!
ωL ≡ − q

!
B

m
.  (A.23) 
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 The charged particle motion is therefore a superposition of gyration (with the gyration radius and gyration 

frequency  rL  and  ωL respectively) in a plane normal to magnetic field lines, and a uniform motion of the center of 

gyration, which is referred to as guiding center (GC), along the field lines. For GC, such charged particle motion is 

identified as the motion of its GC. According to equation (A.15), the positively charged particles gyrate about the 

magnetic field line in the clockwise direction while particles with a negative charge move in the opposite direction. 

A.1.3   Case with Constant   
!
E  and   

!
B  

Assume that both  
!
Ε  and   

!
B  are constant and non-zero. Then the dynamics of a charged particle is governed by the 

following equation [88]: 

 
  
m

d
!
υ

dt
= q
!
E + q

!
υ×
!
B ,  (A.24) 

which can be analyzed and solved in a way as done in Case A.1.2. We decompose  
!
υ and  

!
E as 

 
  
!
υ =
!
υ⊥ +

!
υ" ,

!
E =
!
E⊥ +

!
E" ,   (A.25)  

and substitute these into equation (A.24) and obtain two equations for propagations parallel and normal to the magnetic 

field [88]: 

 
  
m

d
!
υ"
dt

= q
!
E" , and m

d
!
υ⊥

dt
= q
!
E⊥ + q

!
υ⊥ ×

!
B .  (A.26) 

The equations (A.26) shows that the particle is accelerated along the magnetic field by the parallel component of the 

electric field in the same way as it happens in Case A.1.1 [88]: 

 
  

!
υ" =

q
m

t − to( ) !E" + !υo .  (A.27) 

 To solve the equation (A.11), we switch to a new frame of reference moving with some constant speed   
!
υE  in a 

direction normal to   
!
B , so that 

   
!
υ⊥ =

!
υE + !u⊥ ,  (A.28)  

where   
!u⊥  is the normal velocity component relative to the moving frame. The equation (A.26) now becomes [88]:  

 

 
  
m

d!u⊥

dt
+

d
!
υE

dt
⎛
⎝⎜

⎞
⎠⎟
= q
!
E⊥ + q

!
υE ×

!
B + q!u⊥ ×

!
B ,  (A.29) 
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where   d
!
υE dt = 0 ;  since  

!
υE has not been specified, we have first two terms on the right hand side of equation (A.29) 

cancel out [88, 233]: 

 
  
q
!
E⊥ + q

!
υE ×

!
B = 0 ⇒

!
υE =

!
E⊥ ×

!
B

B2
=
!
E ×
!
B

B2
.  (A.30) 

The remaining part of equation (A.29) is then written as: 

 
  
m

d!u⊥

dt
= q!u⊥ ×

!
B ,  (A.31) 

which is the same type of equation as (A.14) in Case A.1.2. The velocity component  
!u⊥ describes an orbiting motion with 

Larmor frequency  ωL  and Larmor radius  rL  around magnetic field lines as viewed in the frame of reference moving 

with a constant velocity   
!
υE . The particle velocity components in the rest frame are given by equations (A.27) and (A.28) 

indicating an accelerated GC motion along magnetic field lines with 
 
!
υ"  and a superimposed perpendicular drift motion 

with 

 
  

!
υE =

!
E ×
!
B

B2
.  (A.32) 

The drift, also called   
!
Ε ×
!
B  drift, is a charge independent and therefore induces no electric currents as both the positive 

and negative charges move in the same direction as seen in the equation (A.32) for   
!
υE  [88, 233]. 

A.1.4   Case with Constant   
!
F  and   

!
B  

If an additional constant external force   
!
F  acts on a charged particle moving in a constant magnetic field, then the 

equation of motion is written as [88]: 

 
  
m

d
!
υ

dt
=
!
F + q

!
υ×
!
B .  (A.33) 

Comparing this equation with the equation of motion (A.24) in Case A.1.3, the only divergence between them is the 

replacement of   q
!
E  by   

!
F . This means that all derivations performed in Case A.1.3 can be repeated here by taking   

!
F q  

instead of   
!
E  [88]. A charged particle spirals around magnetic field lines, and its GC velocity has two components 

describing an accelerated motion along the magnetic field lines due to 
  
!
F" , and a drift motion across the field lines with 

velocity   
!
υF  [88, 233]: 
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!
υF =

!
F⊥ ×

!
B

qB2
=
!
F ×
!
B

qB2
,  (A.34) 

whose orientation is a charge dependent [88]. This drift is also called force drift, and produces electric currents as 

charges with opposite signs drift in opposite directions. One of the interesting examples of a force drift is the 

gravitational drift occurring in the presence of a uniform gravitational field   
!g , when   

!
F = m!g . In this case, the 

gravitational drift velocity  
  
!
υg  follows from equation (A.34) as [88]: 

 
  

!
υg =

m!g ×
!
B

qB2
.  (A.35) 

In astrophysical plasmas, the drift contributes to the formation of ring currents among other things [233]. 

A.1.5   Case with   
!
E =
!
E(t)  and   

!
B = const  

By taking the uniform electric field from Case A.1.3 varies in time,   
!
E =
!
E t( ) , we can examine the effects on the plasma 

particle motions. If time variation is assumed small on the time scale of one gyration period  τL = 2π ωL  ( q > 0 ) [233], 

and only the first time derivative is retained in series expansions meaning that   d
!
E dt ≈ const. , then going back to the 

Case A.1.3 we can repeat the whole analytical procedure up to equation (A.29) [233]: 

 
  
m

d!u⊥

dt
+

d
!
υE

dt
⎛
⎝⎜

⎞
⎠⎟
= q
!
E⊥ + q

!
υE ×

!
B + q!u⊥ ×

!
B .  (A.36) 

The term   d
!
υE dt  remains in the equation and its presence represents the effects of a slowly time varying electric field. 

This is the same as in Case A.1.3, we go to a new coordinate system moving with drift velocity   
!
υE  given by the equation 

(A.30) 

 
  

!
υE =

!
E ×
!
B

B2
,  (A.37) 

which reduces equation (A.36) to: 

 
  
m

d!u⊥

dt
= −m

d
!
υE

dt
+ q!u⊥ +

!
B .  (A.38) 

This equation is equivalent to equation (A.33) with the external force   
!
F  given by: 

 
  

!
F = −m

d
!
υE

dt
,  (A.39) 



 

 
116 

which promotes an additional drift motion of the GC with the velocity   
!
υF ≡

!
υP  called the polarization drift shown as 

[233]: 

 
  

!
υP = − m

qB2

d
!
υE

dt
×
!
B = − m

qB2

d
dt

!
E⊥ ×

!
B

B2

⎛
⎝⎜

⎞
⎠⎟
×
!
B   (A.40) 

or 

 
  

!
υP = m

qB2

d
!
E⊥

dt
.  (A.41) 

The polarization drift   
!
υP  is charge sign dependent and therefore it induces electric currents in plasmas. The total drift 

velocity   
!
υD  is given by [233]: 

   
!
υD =

!
υP +

!
υE   (A.42) 

with the following ordering [233]: 

 

  

υP

υE

≡

m

qB2

d
!
E⊥

dt
!
E⊥ ×

!
B

B2

∼
τL

E⊥

dE⊥

dt
≪1 .  (A.43) 

A.1.6   Case with Non-Uniform Magnetic Field:   
!
B = (0,0,B(x))  

Consider a charged particle with q > 0 moving in a magnetic field with straight lines parallel to the  z - axis whose density 

varies in the  x - direction:   
!
B = B(x)êz . Let this  x - dependence be sufficiently weak as to allow the first order series 

expansion as an acceptable approximation [233]  

 
 
B x( ) = B 0( ) + x

dB
dx x=0

  (A.44) 

and  B(x)  changes over the distance of the gyration radius  rL  is small relative to  B(x) :   rLdB dx≪ B . We consider only 

the normal component of the particle velocity vector  
!
υ  as the parallel component remains unaffected by the   

!
B  field; 

we take 
  
!
υ" = 0  by the initial condition so that    

!
υ⋅
!
B = 0 .  The particle velocity has only two components: 

 
 
υx =

dx
dt

and υy =
dy
dt

,  (A.45) 
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and the vector equation of motion (A.11) can be expressed as a system of two scalar equations in the following way 

[233]: 

 

 

m
dυx

dt
= q B(0)+ x

dB
dx 0

⎛

⎝⎜
⎞

⎠⎟
dy
dt

m
dυy

dt
= −q B(0)+ x

dB
dx 0

⎛

⎝⎜
⎞

⎠⎟
dx
dt

.

  (A.46) 

 The trajectory of a particle motion described by the equation (A.46) that would be circular with the radius  rL  and 

the gyration period  τL  if the magnetic field were uniform:  dB dx = 0 . The presence of a weak magnetic field non-

uniformity  dB dx slightly modifies the trajectory in the sense that it is not a closed circle any more, and the particle 

position shifts by some  Δy  along the  y - axis after each gyration time  τL . This results into a drift motion along the  y - 

axis known as the magnetic gradient drift with speed   
!
υG = Δy τL . As the particle motion remains periodic in the  x - 

direction, we have: 

 
 
m

dυx

dt0

τL∫ dt = mυx(τL )− mυx(0) ≈ 0 ,  (A.47) 

which yields: 

 
 
B(0)

dy
dt

+ q
0

τL∫
dB
dx 0

x
dy
dt

= 0
0

τL∫   (A.48) 

or 

 
 
qB(0)Δy − πrL

2 dB
dx 0

= 0 ⇒ Δy =
πrL

2

B
dB
dx

 , (A.49) 

with the expressions (A.20) for  x(t )  and  y(t )  taken into account. The gradient drift velocity is now: 

 
  

!
υG ≡ Δy

τL

êy =
ωLrL

2

2B
dB
dx

êy =
mυ2

2qB2

dB
dx

êy ,  (A.50) 

or in a full vector form: 

 
  

!
υG = mυ2

2qB3

!
B ×∇B .  (A.51) 

 As the magnetic field gradient drift (A.51) depends on the sign of charge  q  it includes electric currents in the 

plasmas (e.g., in planetary magnetospheres [233]).  
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A.1.7   Case of Stationary   
!
B  Field with Curved and Parallel Field Lines 

A uniform and stationary magnetic field configuration studied in Case A.1.2 is modified in this section by adding a small 

curvature to its field lines that cause corrections to particle motion of the first order of smallness [233]: The curved 

magnetic field lines are parallel and uniformly distributed through any perpendicular plane. The magnetic field intensity 

 B  does not change in the direction along the magnetic field vector   
!
B = Bês .  

 The basic type of a plasma particle motion in this case is a gyration with its GC moving along slightly curved 

magnetic field lines with velocity 
  
!
υ" = υ"ês , which introduces a centrifugal force   

!
FC . This results into a force drift 

described in Case A.1.4 with the drift velocity [233]: 

 
  

!
υC =

!
FC ×
!
B

qB2
,  (A.52) 

which is referred to as the centrifugal drift. The explicit expression for the centrifugal force and the related drift follows 

from [233]: 

 
  

!
FC ≡ −m

d
!
υ"
dt

= −mυ"
dês

dt
= −mυ"

dês

ds
ds
dt

= −
mυ

"

2

B
d
!
B

ds
,  (A.53) 

where: 

 
  
υ! =

ds
dt

,  (A.54) 

while the derivative of the magnetic field along the curved filed line  s  can be written as: 

 
  

d
!
B

ds
(ê ⋅∇)

!
B = 1

B
(
!
B ⋅∇)

!
B .  (A.55) 

Equation (A.53) for the centrifugal force   
!
FC  then takes its final form: 

 
  

!
FC = −

mυ"
2

B2
(
!
B ⋅∇)

!
B ,  (A.56) 

while the centrifugal drift velocity equation (A.52) becomes: 

 
  

!
υC =

mυ"
2

qB4

!
B × (

!
B ⋅∇)

!
B⎡⎣ ⎤⎦ .  (A.57) 
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 Equation (A.57), the centrifugal drift   
!
υC , is charge dependent and therefore produces electric currents. These 

effects of curved magnetic fields are commonly present in the ring current formation mechanisms in the planetary 

magnetospheres. 

A.1.8   Stationary   
!
B  Field with Slightly Convergent Field Lines 

The magnetic field lines from Case A.1.2 are slightly convergent in this case and axially symmetric with respect to the  z - 

axis. It is more convenient to apply a cylindrical coordinate system  (êr , êθ , êz ) oriented along the axis of symmetry, so that 

the considered weakly convergent magnetic field   
!
B  is given by [233] 

 
  
!
B = (Br(r, z),0,Bz(r, z)) with Br(r, z) ≪ Bz(r, z) .  (A.58) 

 The positively charged particle motion in such a magnetic field configuration retains two basic properties from 

Case A.1.2, where the magnetic field is uniform [233]: The GC motion with velocity 
 
!
υ"  along a magnetic field line, it is 

the line of the axis of symmetry, i.e., the  z -axis, and a gyration with velocity  
!
υ⊥ about the same field line. The difference 

here is that the uniform   
!
B  field is considered in Case A.2.1 has no effect on 

 
!
υ"  while the magnetic field with slightly 

convergent field lines exerts a parallel force 
  
!
F"  along the  z - axis, which effects the GC velocity 

 
!
υ"  [233]: 

 
  
!
F" ≡ Fzêz = qBr

!
υ⊥ × êr .  (A.59) 

To calculate the radial magnetic field component  Br  we start from Gauss’ law: 

 
  
∇⋅
!
B = 1

r
∂
∂r

(rBr )+ ∂
∂z

Bz = 0 ⇒ ∂
∂r

(rBr )= −r
∂
∂z

Bz , (A.60) 

we then perform an integration over the coordinate  r  between  r = 0  and  r = rL  with conditions  ∂Bz ∂z ≈ const  and 

 Br(0,z)= 0 , which yields: 

 
 
rLBr(rL , z)= −

∂Bz

∂z
rdr

0

rL∫   (A.61) 

or 

 
 
Br(rL , z)= − 1

2
rL

∂Bz

∂z
.  (A.62) 

Taking equation (A.22) for the gyration velocity, i.e., [233]: 
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!
υ⊥ =

!
ωL × !rL = −ωLrLêz × êr = υ⊥êr × êz ,  (A.63) 

from the equation (A.59), we obtain the following expression for 
  
!
F"  [233]:  

 
  

!
F" = − 1

2
qrLυ⊥

∂Bz

∂z
(êr × êz )× êr = −

mυ⊥
2

2Bz

∂Bz

∂z
êz   (A.64)  

or 

 
  

!
F" ≈ −

W⊥

B
dB
dz

êz with W⊥ ≡ 1
2

mυ⊥
2 ,  (A.65) 

where  W⊥  is the particle kinetic energy of orbital motion, and with the assumption   Bz ≫ Br  equivalent to  B ≈ Bz  taken 

into account.  

 According to equation (A.65), the parallel force 
  
!
F"  is oriented in the direction of decreasing of the magnetic field 

intensity. This force tends to slow down and eventually to stop the GC motion toward the region with stronger magnetic 

field. The details of this process follow directly from the equation of motion under the action of the parallel force 

equation (A.65). Expressing the parallel acceleration term in equation (A.65) as [233]: 

 
  
m

d
!
υ"
dt

= m
d
!
υ"

dz
êz =

dW"
dz
!ez ,  (A.66) 

so that equation (A.65) reduces to: 

 
  

dW!
dz

= −
W⊥

B
dB
dz

  (A.67) 

or to: 

 
 

dW⊥

dz
=

W⊥

B
dB
dz

  (A.68) 

with the particle energy conservation law 
  
W ≡ W⊥ + W! = const  taken into account. Equation (A.68) is integrated, and it 

yields 

 
 
M ≡

W⊥(z)
B(z)

= const.   (A.69) 

The quantity M is the magnetic moment of the particle, and it remains constant within the applied approximation of 

weak divergence of magnetic field lines, and it is known as the first adiabatic invariant [233]. It is easy to show the 
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existence of another adiabatic invariant, the so called third adiabatic invariant, which is the magnetic flux  ΦB  through 

the surface encircled by the quasi-circular particle orbit [233]: 

 
 
ΦB ≡ πrL

2(z)B(z)= π
m2υ⊥

2 (z)

q2B(z)
= 2πM

m

q2
= const.   (A.70) 

 Constancy of both the particle energy  W and magnetic moment  M  determine the motion of the GC along the 

magnetic field [233]. If the considered charged particle with total energy 
  
W = W⊥ + W!   is moving with the velocity 

 
!
υ"  

toward stronger magnetic field, its parallel kinetic energy 
  
W!   is falling off due to the force 

  
!
F"  and eventually reaches 

zero at some location  z = zr  called the particle reflection point or the mirror point [233]: 

 
  
W!(zr )= W − MB(zr )= 0 .  (A.71) 

The particle velocity 
 
!
υ"  changes its orientation and the GC of the particle starts moving in the opposite direction 

toward the region of a weaker magnetic field. The location of the reflection point  zr  in a given magnetic field 

configuration depends on two constants [233] of motion specified as initial conditions: the kinetic energy  W  and the 

magnetic moment  M  of a moving particle.  

 From equation (A.71), we obtain the maximal magnetic field strength  Bmax ≡ B(zr )  a particle with given  W and  M  

prescribed at some initial position  z = zo , can reach before being bounced back into the domain of a weaker magnetic 

field. From [233] 

 
 
M =

W⊥(z)
B(z)

= W
B(z)

sin2 θ(zo ) ,  (A.72) 

we get 

 
 
Bmax =

B(zo )

sin2 θ(zo )
 , (A.73) 

where the pitch angle θ  is defined as: 

 
  
υ⊥ = tan(θ)υ! or υ⊥ = sin(θ)υ .  (A.74) 

 The same results for drift motions along the magnetic field are valid if the considered slightly divergent/convergent 

magnetic field topology based on Case A.1.2 is replaced by a similarly modified curved field from Case A.1.7. The 
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parallel motion of the GC takes place along a new curved coordinate  s - line taken to follow a chosen   
!
B  field line rather 

than along the  z - axis [233].  

 The above expressions remain as they are only with the coordinate  z  formally replaced by the coordinate  s . The 

curved magnetic field here introduces a transverse centrifugal drift   
!
υC  given by the equation (A.57). The described 

magnetic field topology and related charged particle motions are typically found in planetary magnetospheres and also in 

laboratory plasma trapping devices [233]. 
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A.2   PROBEPIC Source Code 

Since its first creation in 1996, several improvements on PROBEPIC algorithms have been already made in previous 

work. Those improvements were made throughout the system, which included adaptation of different velocity 

distributions (i.e., Maxwellian and non-Maxwellian) and temperature distributions (different ion and electron 

temperatures), improved code structure and script usage, handling complex geometries and materials (e.g., probe 

size/type, simulation domain, plasma model, etc.), use of maximal number of particles, code interface (input/output 

parameters), improved code execution (self-explanatory/user friendly parameter template) and simulation run time, and 

most importantly enhanced reliability.   

 There have been four versions of this simulation code: First version is created in 1996 by Keefer and Markusic. 

Version-2 through version-4 were created by the author in 2010 (OML/thick sheath theory), 2013 (SL/Thin sheath 

theory) and 2014 (modeling non-Maxwellian plasmas) respectively. Some of the sub-programs of PROBEPIC along with 

their functions are presented below. 

A.2.1   PROBEPIC.cpp 

“PROBEPIC.cpp” is the main program that drives all the sub-programs and functions, which are related to them. 

 

#ifdef __linux__ 
 #include "cpgplot.h" 
#else 
 #include ".\\PGPLOT\\cpgplot.h" 
#endif 
#include <time.h> 
#include <string.h> 
#include "lprobe60.h" 
#include "ngrid.hpp" 
#include "init.hpp" 
#include "ngrid.hpp" 
 
// temporary shouldnt be global 
FLOAT *random_num; 
long rancount; 
 
# include "random_number_v1.cpp" 
 
/* forward declarations functions after main()*/ 
void processCommandLine(int argc,char **argv, FLOAT &Voltage, int &duration); 
void *dwlmalloc(size_t n); 
void output_data(PARTICLEDEF particle1[],PARTICLEDEF particle2[],long  numpart1,long  numpart2,long count, 
PLASMA &pl, GEOMETRY &ge,INJECTIONBEAM &ib,BOUNDARY &bb); 
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void PGEX30(float xMax); 
void PGEX31(float tMax); 
void PGEX32(VGRID &grid,FLOAT radius); 
unsigned long locate(GRIDDEF_T *xx, unsigned long n, float x); 
void distrib(GRIDDEF_T *bins,unsigned long n,PARTICLEDEF *particle,unsigned long num_part, PLASMA &pl); 
 
/*  This is the main program for a two dimensional PIC simulation of a Langmuir probe.  */ 
int main(int argc, char **argv) { 
  int duration; 
  long  seed,idx,iter,i6; 
  long numelec=0; 
  long numion=0; 
FLOAT xPlot,yPlot,tMax; 
  VGRID iongrid; 
  VGRID grid; 
 
  char string_t[30]; 
  char string_elec[30];  
   
  // structs to be initalized 
  SUPERGLOBAL sg; 
  PLASMA pl; 
  GEOMETRY ge; 
  INJECTIONSETUP is; 
  INJECTIONBEAM  ib; 
  BOUNDARY bb; 
  LOCATION lo; 
  FIELDSOLVER fs; 
 
// set superglobal members here 
  sg.mgp1=74; 
  sg.mgp2=74; 
  sg.mgp=sg.mgp1*sg.mgp2; 
  sg.mpart=800000; 
  sg.V_TABLE_RES2=sg.mpart; 
 
    char Inputfile[120]="Input.dat";//default input filename 
    //if(--argc>0 && (*++argv)[0]=='-') 
    //sscanf(++argv[2],"-%s\n",Inputfile); 

 
     if(argc==4 && sscanf(argv[3],"%s\n",Inputfile)==0) { 
      printf("invalid entry for inputfile.  Using Input.dat\n"); 
      char Inputfile[120]="Input.dat";//default input filename 
     }else if (argc == 1) {  
        printf("Enter the filename with input data: "); 
        if ( scanf("%s",Inputfile)==0)  
        printf("invalid entry.  Using Input.dat\n"); 
     } 
    //Input file with most important parameters 
printf("argc %d ; argv : %s %s %s %s\n", argc, argv[0], argv[1],argv[2], argv[3]); 
 
   // set defaults for all structs. Reads from input file 
  newparam(sg,pl,ge,is,ib,bb,lo,Inputfile); 
  // set field solver structs 
  initfieldparam(sg,fs); 
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  // init old style members 
  // ngp_vert=ngp1; 
  //ngp_horiz=ngp2; 
   // large array initialization 
  FLOAT *v_table_e=(FLOAT *)dwlmalloc((sg.mpart+1)*sizeof(FLOAT)); 
  FLOAT *v_table_i=(FLOAT *)dwlmalloc((sg.mpart+1)*sizeof(FLOAT)); 
  PARTICLEDEF *electron=(PARTICLEDEF *)dwlmalloc(sg.mpart * sizeof(PARTICLEDEF)); 
  PARTICLEDEF *ion=(PARTICLEDEF *)dwlmalloc(sg.mpart * sizeof(PARTICLEDEF));   
// random num is currently global !! 
  random_num=(FLOAT *)dwlmalloc((NPTS+1)*sizeof(FLOAT));  
 
  /*   Initialize array of uniform random numbers  */ 
  seed=100; 
  random_number(seed); // void random_number(long int seed) 
 
  /*  Generate computational cells  */ 
  printf("main: Generate computational cells ...\n"); 
  gridgen(grid,sg,ge); 
  gridgen(iongrid,sg,ge);  
 
  printf("main:  DONE\n"); 
 
  /*  Generate look-up tables for ion and electron speeds  */ 
  printf("main: Generate look-up tables for %ld speeds...\n", sg.mpart); 
  // choose the distribution: distrib=1 - Maxwellian; distrib=0 - Druyv 
 
//set default 
 
  make_velocity_table(pl,v_table_e,v_table_i,sg.mpart); 
  printf("main: DONE\n"); 
 
  /*  Generate an initial uniform fill of the computational domain with electrons */ 
  printf("main: Generate an initial uniform fill of the computational domain with electrons..."); 
  rancount=0; 
  numelec=initialize(electron,is.superei_init,ib.supere_init,v_table_e,pl.m_elec,pl.q_elec,ge); 
  /*  Refresh array of uniform random numbers */ 
  seed=101; 
  random_number(seed); // void random_number(long int seed) 
 
  printf("main: Generate an initial uniform fill of the computational domain with ions..."); 
  rancount=0; 
  numion=initialize(ion,is.superii_init,ib.superi_init,v_table_i,pl.m_ion,pl.q_ion,ge); 
  printf("main: DONE\n"); 
 
  printf("main: initial number electrons ==>%ld   initial number ions ==>%ld\n",numelec,numion);           
   
  //--------- start plot stuff-------------------------------------------------------------------- 
   
  GRIDDEF_T bins[noBins]; 
  FLOAT min_val,max_val,delta,velocity,energy; 
  int max_bin; 
   //! minimum speed  
  min_val = 0.0; 
  //! get the maximum energy  
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  // Salim: here energy instead of velocity 
  max_val = 0.0; 
  for(idx=0;idx<numelec;idx++) { 
    energy= (pow(electron[idx].vx,2) +pow(electron[idx].vy,2) +pow(electron[idx].vz,2) )*pl.m_elec/2.0/pl.q_ion; 
    if (energy > max_val) max_val = energy; 
  } 
  // set the lower limit for each bin 
  delta = (max_val-min_val)/noBins;  //! mean # of points in a bin 
  for(idx=0;idx<noBins;idx++) { 
    bins[idx].r = min_val + idx*delta; //! the lower limit of the bin 
    bins[idx].v = 0.0;  //! shows how many data points fall in it 
  } 
  //! PUT v_table_e DATA IN BINS 
  distrib(bins,noBins,electron,numelec,pl); 
 
  //! get the bin with the maximum number of particles in it 
  max_bin = 0; 
  for(idx=0;idx<noBins;idx++) { 
    if (bins[idx].v > bins[max_bin].v) max_bin = idx; 
  } 
  //----------------------- plot sequence --------------------- 
  //! Call PGOPEN to initiate PGPLOT and open the output device; PGOPEN 
  //! will prompt the user to supply the device name and type. Always 
  //! check the return code from PGOPEN. 
    if(argc == 1) { 
 
    if(cpgopen("/ps") < 0) 
    exit(1); 
  } else { // if there are command line arguments, switch to console mode 
  // if(cpgbeg(0, "/NULL", 1, 1) != 1) 
    if(cpgbeg(0, "/NULL", 1, 1) != 1) 
    exit(1); 
  } 
  //if(cpgbeg(0, "/CGW", 1, 1) != 1)  exit(EXIT_FAILURE); 
  //!    /GW:   
  //!    /CGW:  
  //!    /GWD:  crash 
  //!    /CGWD: crash  
  //!if(PGBEG(0, "/WV", 1, 1) /= 1) STOP !UNIT, FILE, NXSUB, NYSUB 
  //!!CALL PGASK(1) ! FLAG=1(TRUE) : 'prompt state' of PGPLOT is set to ON 
  cpgbbuf(); //! Begin saving graphical output commands in an internal buffer; the 
  //! commands are held until a matching PGEBUF call  
  //cpgask(1); //! FLAG=1(FALSE) :prompt when plot befor plotting on another page 
 
  //check grid 
  PGEX32(grid,ge.radius); 
  cpgask(1); //! FLAG=0(FALSE) :do not prompt when plot befor plotting on another page 
 
  //cpgeras(); 
  cpgsubp(2, 1);  //! two adjacent panels 
  //! 
  //! Print information about device. 
  //!CALL PGEX0 
  //! 
  //! Call the drawing subroutines  
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  ////!     Set manually the color table to default values  
  //   cpgscr(0, 0.0, 0.0, 0.3); // changes color index 0 (background) to dark blue 
  //   cpgscr(0, 0.0, 0.0, 0.0); // changes color index 0 (background) to black  
  //cpgscr(5, 0.00, 1.00, 1.00); // cyan 
  //cpgscr(1, 1.00, 1.00, 1.00); // white 
  //cpgscr(3, 0.00, 1.00, 0.00); // green 
  //cpgscr(6, 1.00, 0.00, 1.00); // magenta 
  //cpgscr(14, 0.33, 0.33, 0.33); // dark gray 
  //!--------------------------------- 
  //! select Left Panel 
  cpgpanl(2, 1); 
  //cpgeras(); //! Erase all graphics from the current page or panel. 
 
  PGEX30(max_val); //! draw axes 
 
  //! draw graph of electron speed distribution 
  cpgsci(6);   //! magenta 
  for(idx=0;idx<noBins;idx++) { 
    xPlot = bins[idx].r; 
    yPlot = bins[idx].v/bins[max_bin].v; 
    cpgpt(1,&xPlot,&yPlot,17); // graphic symbol #17  
  } 
  //! draw text 
  cpgsci(1);  //! white 
  sprintf(string_t,"t = %f sec",0.0); 
  cpgptxt(2000000.0,0.65,0.0, 0.0,string_t); //! X, Y, ANGLE, FJUST, TEXT) 
 
  sprintf(string_elec,"No. electrons: %ld", numelec);  
  cpgptxt(2000000.0,0.50,0.0, 0.0,string_elec); //! X, Y, ANGLE, FJUST, TEXT) 
 
  //! flush any pending commands to the output device.  
  cpgupdt(); 
  //!------------------------------------------------------------------------------ 
  // for compaitbility need to get cmd-line args after plot input type 
  processCommandLine(argc,argv,bb.V,duration); 
 
/// This is added to provide a file with electron EEDF in simulation 
  FILE *EEDF; 
  char filename_eedf[200]; 
  sprintf(filename_eedf,"EEDF_%+06.2fV.dat.csv", bb.V); 
  EEDF=fopen(filename_eedf,"a"); 
 
  for(idx=0;idx<noBins;idx++) { 
    xPlot = bins[idx].r; 
    yPlot = bins[idx].v/bins[max_bin].v; 
    fprintf(EEDF,"%f  %f\n",xPlot, yPlot ); 
  } 
fclose(EEDF); 
 
  tMax=(FLOAT)duration; 
  iter = duration/(ib.dti*1000000.0); 
  printf("This simulation will perform %ld electron iterations\n",15*iter); 
  printf("The output file is: current_q100.dat.csv ('append' mode)\n"); 
  printf("The program may be stopped at any time by pressing <CTRL>C\n"); 
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  printf("\nProgress:"); 
 
  cpgask(1); //! FLAG=0(FALSE) :do not prompt when plot befor plotting on another page 
  // select Right Panel (ion/electron) 
  cpgpanl(1, 1); 
  //cpgeras(); // Erase all graphics from the current page or panel. 
  PGEX31(tMax); // draw axes 
  cpgsci(6); // magenta for electrons                 
  cpgptxt(tMax/3.0,73000.0,0.0, 0.0," electrons"); // X, Y, ANGLE, FJUST, TEXT) 
  cpgsci(3); // green for ions                 
  cpgptxt(tMax/3.0,75000.0,0.0, 0.0," ions"); // X, Y, ANGLE, FJUST, TEXT) 
  //!------------------ end plot init stuff -------------------------------------------------- 
 
  printf("main: LU decomposition of the difference matrix for the electric field solver...\n"); 
  make_LU(grid,sg,ge,fs); 
 
  for (idx = 1; idx <= iter; idx++) { 
    if (rancount > (NPTS - OUTPUT_FREQUENCY)) { 
      seed += 100; 
      random_number(seed); 
      rancount=0; 
    } 
    /* electron iteration */ 
    reset_grid(grid); 
    qweight(grid,ion,numion,ge); 
    memcpy(&iongrid[0][0],&grid[0][0],(sizeof(GRIDDEF))*sg.mgp); 
    for (i6=0;i6 < is.elec_iter;i6++) { 
      if (i6) 
        memcpy(&grid[0][0],&iongrid[0][0],(sizeof(GRIDDEF))*sg.mgp); 
 
      qweight(grid,electron,numelec,ge); 
      efield(grid,pl,ge,bb,fs); 
      fweight(grid,electron,numelec,ge); 
      numelec=inject(0, electron, numelec, v_table_e,sg,pl,ge,ib,is);  
      mover(electron,numelec,ib.dte); 
      numelec=boundary(0,electron,numelec,pl,ge,bb); 
      //printf("main:eloop numelec=%ld\n",numelec); 
    } 
    /* ion iteration */ 
    if (idx%1==0){ 
    fweight(grid,ion,numion,ge); 
    numion=inject(1, ion, numion, v_table_i,sg,pl,ge,ib,is);     
    mover(ion,numion,ib.dti*1.0); 
    numion=boundary(1, ion,numion,pl,ge,bb); 
 } 
    //!-------------------------------------------------------------------- 
    //! select Right Panel (ion/electron) 
    cpgpanl(2, 1); 
    //! restore world->screen transformation 
    cpgswin(0.0,tMax,10000.0,80000.0); //! Lab-report.pdf (page 12) 
    cpgslw(4); //! line width 
    cpgsci(6); //! magenta for electrons    
    xPlot=idx*ib.dti*1e6; 
    yPlot=(float)numelec; 
    cpgpt(1,&xPlot,&yPlot,-2); //! -1, -2  : a dot (diameter = current line width). 
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    cpgsci(3); //! green for ions   
    yPlot=(float)numion; 
    cpgpt(1,&xPlot,&yPlot,-2); //! -1, -2  : a dot (diameter = current line width). 
    cpgupdt(); //! display now ! 
    //!-------------------------------------------------------------------- 
 
    printf("\r%f %% electrons:%ld  ions:%ld",idx*100.0/iter,numelec,numion); 
    fflush(stdout); 
    if ( idx % OUTPUT_FREQUENCY == 1 ){ 
      printf("\n idx=%ld entering output _data\n",idx); 
      output_data(electron,ion,numelec,numion,idx,pl,ge,ib,bb); 
    } 
  } 
  // free up stuff */ 
 
  free(v_table_e); 
  free(v_table_i); 
  free(ion); 
  free(electron); 
  freefieldparam(fs); 
   
  return EXIT_SUCCESS; 
} 
//************** utility functions ********************************************/ 
//******* nb forward declarations before main *********************************/ 
 
void processCommandLine(int argc,char **argv, FLOAT &Voltage, int &duration ){ 
  // set defaults 
  Voltage=1.0f; 
  duration=1; 
  char Inputfile[120]="Input.dat";//default input filename 
 
  if( argc !=1  && argc != 4) { 
    printf("Usage: %s PROBEPOTENTIAL TIME Inputfile.dat \n", argv[0]); 
    exit(1); 
  }   
  if(argc == 1) { 
      printf("Enter V [V]: "); 
      if (scanf("%f",&Voltage)!=1)  
         printf("invalid entry.  Using 1 V.\n"); 
  
      printf("Enter the duration of the experiment [micro-sec]: "); 
      if ( scanf("%d",&duration)!=1)  
  printf("invalid entry.  Using 1 $\\mu$s\n"); 
 
  }else{ 
      char *endptr; 
    
      Voltage = strtod(argv[1], &endptr); 
      if(endptr == argv[1]) { 
  printf("invalid entry for the potential.  Using 1 V.\n"); 
  Voltage = 1.0; 
      }   
      duration = strtol(argv[2], &endptr, 10); 
      if(endptr == argv[2]) { 
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 printf("invalid entry for the simulation time.  Using 1 µs\n"); 
 duration=1.0; 
     } 
  }    
 printf("V: %f, duration: %d µs, Inputfile: %s \n", Voltage, duration, Inputfile); 
 return; 
} 
// Customized malloc - really needed ? 
void *dwlmalloc(size_t n) { 
  void*p = malloc(n); 
  if (NULL == p) { 
    fprintf(stderr,"dwlmalloc(): memory allocation failure\n"); 
    exit(1); 
  } 
  return p; 
} 
void output_data(PARTICLEDEF particle1[],PARTICLEDEF particle2[],long  numpart1,long  numpart2,long count,  
                 PLASMA &pl, GEOMETRY &ge,INJECTIONBEAM &ib,BOUNDARY &bb 
                ) { 
  long  idx; 
  FLOAT nde,ndi,tms; 
  FLOAT avecurrent,avecurre,avecurri;  
  char filename[200]; 
  FILE *currdata; 
   
  sprintf(filename,"current_%+06.2fV.dat.csv", bb.V); 
  currdata=fopen(filename,"a"); 
 
  avecurrent=bb.current/(OUTPUT_FREQUENCY*ib.dti); 
  avecurre=bb.curre/(OUTPUT_FREQUENCY*ib.dti); 
  avecurri=bb.curri/(OUTPUT_FREQUENCY*ib.dti); 
 
  /*    COMPUTE NUMBER DENSITY     */ 
         
  nde=ndi=0.0; 
 
  for (idx=0; idx < numpart1; idx++) 
    if (particle1[idx].r <= ge.radius) 
      nde += particle1[idx].m; 
  nde /= ((pl.m_elec)*(pi*ge.radius*ge.radius*ge.length)); 
 
  for(idx=0;idx < numpart2;idx++) 
    if(particle2[idx].r <= ge.radius) 
      ndi += particle2[idx].m; 
  ndi /= ((pl.m_ion)*(pi*ge.radius*ge.radius*ge.length)); 
     
  tms=count*ib.dti*1e6; 
  if (count==1) 
    fputs("   V, t[micro-sec],     ne,    ni,      nde,       ndi,        j,           je,           ji\n\n",currdata); 
 
  fprintf(currdata,"%f, %f, %ld, %ld, %e, %e, %e, %e, 
%le\n",bb.V,tms,numpart1,numpart2,nde,ndi,avecurrent,avecurre,avecurri); 
  fclose(currdata); 
  printf(" current: %f [mA]",avecurrent*1000.0); 
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  // if(tms > 2.2723e-02 ) { 
  // //if (tms >=0.007625 ) { 
  //   puts("\nexit for timing.  output_data.cpp"); 
  //   exit(0); 
  // } 
 
  bb.current=0.0; 
  bb.curri=0.0; 
  bb.curre=0.0; 
} 
void PGEX30(float xMax) {// bins 
//  int max_bin,i;  
      cpgenv(0.0,xMax,0.0,1.0,0,-2); 
 
// Draw first a grid at low brightness(14=dark gray) 
 
      cpgsci(14); // Dark Gray                 
   cpgbox("G",0.0,0,"G",0.0,0); // automatic 
 
// and then a frame and axes at full brightness.  
      cpgsci(5);  // cyan 
      cpgbox("ABCTSN",0.0,0,"ABCTSNV",0.0,0); // automatic 
 
// Call PGLAB to label the graph in a different color (3=green). 
      cpgsci(3); // green 
      cpgsci(1); // white 
      cpglab("velocity(W)","f(W) ","Velocity distribution during injection"); 
}; // PGEX30 
 
void PGEX31(float tMax) { 
      cpgenv (0.0,tMax,10000.0,80000.0,0,-2); // Lab-report.pdf (page 12) 
 
// Draw first a grid at low brightness(14=dark gray) 
      cpgsci(14); // Dark Gray                 
   cpgbox("G",0.0,0,"G",0.0,0); // automatic 
// and then a frame and axes at full brightness.  
      cpgsci(5);  // cyan 
      cpgbox("ABCTSN",0.0,0,"ABCTSNV",0.0,0); // automatic 
 
// Call PGLAB to label the graph in a different color (3=green). 
      cpgsci(3); // green 
      cpgsci(1); // white 
      cpglab("time[micro-sec]","no. of particles ","Particle no. during injection"); 
   // http://www.starlink.rl.ac.uk/star/docs/sc15.htx/node10.html 
}; 
//void PGEX32(GRIDDEF grid[ngp1+1][ngp2+1]) { 
//void PGEX32(GRIDDEF grid[ngp1][ngp2],FLOAT radius) { 
void PGEX32(VGRID &grid,FLOAT radius) { 
 // draw the grid 
 // (grid.x,grid.y) is the left-down corner of the cell 
 // grid[][0],grid[][1],...,grid[][ngp2-1] advances on OX 
 // grid[0][],grid[1][],...,grid[ngp1-1][] advances on OY 
 
 static float xPlot[4],yPlot[4]; 
 float minX,maxX,minY,maxY; 
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        long ngp_vert,ngp_horiz;  
 int nx,ny; 
          
        ngp_vert=grid.size(); 
        ngp_horiz=grid[0].size();    
    
 // determine the (x,y) limits 
 minX=maxX=grid[0][0].x;  
 minY=maxY=grid[0][0].y;  
 for(nx =0;nx<ngp_horiz;nx++) 
  for(ny=0;ny<ngp_vert;ny++) { 
   if (grid[ny][nx].x > maxX) maxX = grid[ny][nx].x; 
   if (grid[ny][nx].x < minX) minX = grid[ny][nx].x; 
   if (grid[ny][nx].y > maxY) maxY = grid[ny][nx].y; 
   if (grid[ny][nx].y < minY) minY = grid[ny][nx].y; 
  }; 
 maxX =0.0; 
 maxY =radius; 
 
      cpgsci(14); // Dark Gray                 
      cpgenv(minX,maxX,minY,maxY,  
       1, // the scales on Ox and Oy will be equal 
    0); // draw box and label it with coordinates 
   cpgbox("AP",0.0,0,"AP",0.0,0); // automatic 
 
   // draw the cells trigonometric-wise 
   cpgsci(1); // White                 
    for(nx =0;nx<ngp_horiz-1;nx++) 
  for(ny=0;ny<ngp_vert-1;ny++) { 
   xPlot[0]=grid[ny][nx].x;     yPlot[0]=grid[ny][nx].y;  
   xPlot[1]=grid[ny][nx+1].x;   yPlot[1]=grid[ny][nx+1].y;  
   xPlot[2]=grid[ny+1][nx+1].x; yPlot[2]=grid[ny+1][nx+1].y;  
   xPlot[3]=grid[ny+1][nx].x;   yPlot[3]=grid[ny+1][nx].y;  
   cpgline(4,xPlot,yPlot); 
  } 
        cpgsci(5); // cyan                
  cpgbox("G",0.0,0,"G",0.0,0); // automatic 
  cpgupdt(); // output the graph 
//// Draw first a grid at low brightness(14=dark gray) 
//      cpgsci(14); // Dark Gray                 
//   cpgbox("G",0.0,0,"G",0.0,0); // automatic 
//// and then a frame and axes at full brightness.  
//      cpgsci(5);  // cyan 
//      cpgbox("ABCTSN",0.0,0,"ABCTSNV",0.0,0); // automatic 
// 
//// Call PGLAB to label the graph in a different color (3=green). 
//      cpgsci(3); // green 
//      cpgsci(1); // white 
//      cpglab("time[sec]","no. of particles ","Particle no. during injection"); 
} 
unsigned long locate(GRIDDEF_T *xx, unsigned long n, float x) { 
  unsigned long ju,jm,jl; 
  int ascnd; 
 
  jl=0; 
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  ju=n+1; // n intervals, (n+1) division points 
  ascnd=(xx[n-1].r > xx[1].r); 
  while (ju-jl > 1) { 
    jm=(ju+jl) >> 1; 
    if ((x > xx[jm].r) == ascnd) 
      jl=jm; 
    else 
      ju=jm; 
  } 
  return jl; 
} 
void distrib(GRIDDEF_T *bins,unsigned long n,PARTICLEDEF *particle,unsigned long num_part,PLASMA &pl) 
{ 
  unsigned long i,pos; 
  float v; 
 
  // Empty bins 
  for(i=0;i<n;i++) 
    bins[i].v = 0.0; 
 
  // PUT DATA IN BINS 
  //Salim: note that input changed into energy 
  for(i=0;i<num_part;i++) { 
    v= (pow(particle[i].vx,2) +pow(particle[i].vy,2) +pow(particle[i].vz,2) )*pl.m_elec/2.0/pl.q_ion; 
    pos=locate(bins, n, v); 
    bins[pos].v ++; 
  } 
} 

A.2.2   grid.cpp 

The computational grid is a structure, which associates the following properties to each grid-point: position, charge 

density, radial and axial electric field intensity, and electrostatic potential. 

 

//#include "lprobe60.h" 
 
void gridgen(GRIDDEF array[ngp1][ngp2],GEOMETRY  &ge) { 
  long int count1,count2,cell1_count,cell6_count; 
  float index1,index2; 
 
  cell1_count=15,cell6_count=74; 
 
  index1=-1.0; 
  for (count1=0;count1 < cell1_count;count1++){ // rows 0...14 
    ++index1; 
    index2=-1.0; 
    for (count2=0;count2 < ngp_horiz;count2++){ 
      ++index2; 
      array[count1][count2].x=-ge.length+index2*ge.cell_width; 
      array[count1][count2].y=index1*ge.cell_height1; 
    } 
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  } 
  index2=-1.0; 
  for (count2=0;count2 < ngp_horiz;count2++){ 
    ++index2; 
    array[15][count2].x=-ge.length+index2*ge.cell_width; 
    array[15][count2].y= array[14][count2].y+ge.cell_height2; 
  } 
  index2=-1.0; 
  for (count2=0;count2 < ngp_horiz;count2++){ 
    ++index2; 
    array[16][count2].x=-ge.length+index2*ge.cell_width; 
    array[16][count2].y=array[15][count2].y+ge.cell_height3; 
  } 
  index2=-1.0; 
  for (count2=0;count2 < ngp_horiz;count2++){ 
    ++index2; 
    array[17][count2].x=-ge.length+index2*ge.cell_width; 
    array[17][count2].y=array[16][count2].y+ge.cell_height4; 
  } 
  index2=-1.0; 
  for (count2=0;count2 < ngp_horiz;count2++){ 
    ++index2; 
    array[18][count2].x=-ge.length+index2*ge.cell_width; 
    array[18][count2].y=array[17][count2].y+ge.cell_height5; 
  } 
  //cell_height6 = (radius - array[18][0].y)/(ngp_vert-18); 
  index1=0.0; 
  for (count1=19;count1 < cell6_count;count1++){ // rows 19...73 
    ++index1; 
    index2=-1.0; 
    for (count2=0;count2 < ngp_horiz;count2++) { 
      ++index2; 
      array[count1][count2].x=-ge.length+index2*ge.cell_width; 
      array[count1][count2].y=array[18][count2].y+index1*ge.cell_height6; 
    } 
  } 
  /* Clean-up grid for next time step */ 
  for (count1=0;count1 < ngp_vert;count1++){ 
    for (count2=0;count2 < ngp_horiz;count2++){ 
      array[count1][count2].q_dens=0.0; 
 array[count1][count2].Ex=0.0; 
      array[count1][count2].Ey=0.0; 
      //printf("%ld %ld %f %f\n",count1,count2,array[count1][count2].x,array[count1][count2].y); 
    } 
    //putchar('\n'); 
  } 
  //exit(0); 
} 
void reset_grid(GRIDDEF array[ngp1][ngp2]) { 
  long int count1,count2; 
  GRIDDEF*r; 
  for (count1 = 0; count1 < ngp_vert; count1++) { 
    r = array[count1]; 
    for (count2 = 0; count2 < ngp_horiz; count2++) 
      r[count2].q_dens=0.0; 
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  } 
} 
/* This function computes the elcetric field intensity at 
 the gridpoints using the updated source term and the  
 previously factored [A] matrix */ 
void efield(GRIDDEF array[ngp1][ngp2],PLASMA &pl, GEOMETRY &ge, BOUNDARY &bb, FIELDSOLVER 
&fs) { 
 
  long  j,k,count1; 
  FLOAT deltx,jmax,kmax; 
  char trans[]="N"; 
 
  fs.nrhs=1; 
  jmax=ngp_vert; 
  kmax=ngp_horiz; 
  deltx=ge.cell_width; 
 
  /* Zero out source term */ 
  count1=-1; 
  for(j=0;j<ngp_vert;j++){  
    for(k=0;k<ngp_horiz;k++){  
      count1++;  
      fs.b[count1]=0.0;  
    }  
  }  
  /* Update source term */ 
  count1=-1; 
 
  for(j=0;j<ngp_vert;j++){ 
    for(k=0;k<ngp_horiz;k++){ 
      count1++; 
      if(k==0 && j!=(jmax-1)){ 
 fs.b[count1]=-array[j][k].q_dens /EPS0 - pl.plasma_pot; 
      } 
      else if(j==(jmax-1) && k!=(kmax-1)){ 
 fs.b[count1]=-array[j][k].q_dens /EPS0 - pl.plasma_pot; 
      }                
      else if(j<=ge.jprobe && j>0 && k>=ge.kprobe){ 
 fs.b[count1]=-array[j][k].q_dens /EPS0 - bb.V; 
      } 
      else if(j<=ge.jprobe && j==0  && k>=ge.kprobe){ 
 fs.b[count1]=-array[j][k].q_dens /EPS0 - bb.V; 
      } 
      else if(j>ge.jprobe && k==(kmax-1)){ 
 fs.b[count1]=-array[j][k].q_dens /EPS0  - pl.plasma_pot; 
      } 
      else{ 
 fs.b[count1]=-array[j][k].q_dens /EPS0; 
      } 
    } 
  }   
  /* Call Lapack to solve [a]x=b */  
  /*printf("%ld   %d\n",t_count2,ldab);*/ 
 
 sgbtrs_(trans,&fs.n1,&fs.lower_width,&fs.upper_width,&fs.nrhs,fs.abd,&fs.ldab,fs.piv,fs.b,&fs.ldb,&fs.info); 
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  if (fs.info != 0){ 
    printf("Band Solver Failed, info==>%d\n",fs.info); 
    exit(1); 
  } 
  /* Put phi into grid (note:this is a waste, but for now....) */ 
  count1=-1; 
  for(j=0;j<ngp_vert;j++){ 
    for(k=0;k<ngp_horiz;k++){ 
      count1++; 
      array[j][k].phi=fs.b[count1]; 
    } 
  } 
  /* Determine electric field at all gridpoints */ 
  for(j=0;j<ngp_vert;j++){ 
    for(k=0;k<ngp_horiz;k++){ 
      if (k==0){ 
 array[j][k].Ex=1.0/(2.0*deltx)*(-3.0*array[j][0].phi+4.0*array[j][1].phi-array[j][2].phi); 
 array[j][k].Ey=0.0; 
      } 
      else if (j==ge.jprobe &&  k >= ge.kprobe){ 
 array[j][k].Ey=1.0/(2.0*deltx)*(-3.0*array[j][k].phi+4.0*array[j][k+1].phi-array[j][k+2].phi); 
 array[j][k].Ex=0.0; 
      } 
      else if (k==(ngp_horiz-1)){ 
 array[j][k].Ex=-1.0/(2.0*deltx)*(-3.0*array[j][ngp_horiz-1].phi+4.0*array[j][ngp_horiz-2].phi-array[j][ngp_horiz-
3].phi); 
 array[j][k].Ey=0.0; 
      } 
      else if(j==0){ 
 array[j][k].Ex=-(array[j][k-1].phi-array[j][k+1].phi)/(2.0*deltx); 
 array[j][k].Ey=0.0; 
      } 
      else if(j==(ngp_vert-1)){ 
 array[j][k].Ex=0.0; 
 array[j][k].Ey=array[j-1][k].phi/ge.cell_height6; 
      } 
      else 
 { 
   array[j][k].Ex=(array[j][k-1].phi-array[j][k+1].phi)/(2.0*deltx); 
   array[j][k].Ey=-((array[j+1][k].phi-array[j][k].phi)/(array[j+1][k].y-array[j][k].y))*(array[j][k].y-array[j-
1][k].y)/(array[j+1][k].y-array[j-1][k].y)  
     -((array[j][k].phi-array[j-1][k].phi)/(array[j][k].y-array[j-1][k].y))*(array[j+1][k].y-array[j][k].y)/(array[j+1][k].y-
array[j-1][k].y); 
 }    
    } 
  } 
} 
/* This function weights the field from the array */ 
 
void fweight(GRIDDEF array[ngp1][ngp2],PARTICLEDEF particle[],long  number,GEOMETRY ge) { 
  long int count1; 
  FLOAT dr,dr1,dr2,dz,dz1,dz2; 
  PARTICLEDEF*p; 
  GRIDDEF*a00,*a01,*a10,*a11; 
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  FLOAT den, n0, n1, n2, n3; 
 
  for (count1=0;count1 < number;count1++) { 
    p = particle+count1; 
    if (ge.radius < p->r) 
      p->Ey=p->Ex=0.0; 
    else if ((p->celly+1 < ngp1) && (p->cellx+1 < ngp2)) { 
      a00 = array[p->celly+0]+(p->cellx+0); 
      a10 = array[p->celly+1]+(p->cellx+0); 
      a01 = array[p->celly+0]+(p->cellx+1); 
      a11 = array[p->celly+1]+(p->cellx+1); 
      dr = a10->y*a10->y - a00->y*a00->y; 
      dr1 = p->r-a00->y; 
      dr2 = a10->y-p->r; 
      dz = a01->x-a00->x; 
      dz1 = p->x-a00->x; 
      dz2 = a01->x-p->x; 
      den = 2.0*dr*dz; 
      n0 = dr2*dz2*(2.0*a10->y+3.0*a00->y-p->r); 
      n1 = dr2*dz1*(2.0*a11->y+3.0*a00->y-p->r); 
      n2 = dr1*dz2*(3.0*a10->y+2.0*a00->y-p->r); 
      n3 = dr1*dz1*(3.0*a11->y+2.0*a01->y-p->r); 
      p->Ey=(a00->Ey*n0+a01->Ey*n1+a11->Ey*n3+a10->Ey*n2)/den; 
      p->Ex=(a00->Ex*n0+a01->Ex*n1+a11->Ex*n3+a10->Ex*n2)/den; 
    } else 
      printf("\nfweight: cellx=%lu celly=%lu \n",p->cellx,p->celly); 
  } 
} 
 unsigned long locatex(GRIDDEF xx[ngp1][ngp2], unsigned long n, float x); 
 unsigned long locatey(GRIDDEF xx[ngp1][ngp2], unsigned long n, float x); 
 
void qweight(GRIDDEF array[ngp1][ngp2],PARTICLEDEF particle[],long int number,GEOMETRY &ge) { 
  unsigned long positionx,positiony; 
  long int count1; 
  FLOAT dr,dr1,dr2,dz,dz1,dz2; 
  FLOAT den, n0,n1,n2,n3; 
 
  for(count1=0;count1 < number;count1++) { 
    PARTICLEDEF*p = particle+count1; 
    if (p->r <= ge.radius) { 
      ////Lambert, April 2013 uniform grid allows simplification, which is made elsewhere in the code. 
      positionx = (int)((p->x-(*array)->x)/ge.cell_width);// locatex(array,ngp2-1,p->x,&positionx); 
      positiony=locatey(array,ngp1-1,p->r); 
      if ((positionx+1) < ngp2 && (positiony+1) < ngp1) { // particle in domain cell ? 
 
 GRIDDEF 
   *a00 = array[positiony+0]+positionx+0, 
   *a10 = array[positiony+1]+positionx+0, 
   *a01 = array[positiony+0]+positionx+1, 
   *a11 = array[positiony+1]+positionx+1; 
 
 /*    SAVE CELL LOCATION FOR FORCE WEIGHT    */ 
 p->cellx=positionx; 
 p->celly=positiony; 
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 dr = a10->y*a10->y-a00->y*a00->y; 
 dr1 = p->r-a00->y; 
 dr2 = a10->y-p->r; 
 dz = a01->x-a00->x; 
 dz1 = p->x-a00->x; 
 dz2 = a01->x-p->x; 
 
 den = (2.0*dr*dz); 
 n0 = dr2*dz2*(2.0*a10->y+3.0*a00->y-p->r); 
 n1 = dr2*dz1*(2.0*a11->y+3.0*a00->y-p->r); 
 n2 = dr1*dz2*(3.0*a10->y+2.0*a00->y-p->r); 
 n3 = dr1*dz1*(3.0*a11->y+2.0*a01->y-p->r); 
 
 a00->q_dens += p->q*n0/den; 
 a01->q_dens += p->q*n1/den; 
 a10->q_dens += p->q*n2/den; 
 a11->q_dens += p->q*n3/den; 
      } else 
 printf("\nqweight: cellx=%lu celly=%lu \n",positionx,positiony); 
    } 
  } 
} 
/* delta x must be constant because .[xz] doesn't appear.  lambert, 2013 */ 
 
//#include "lprobe60.h" 
//#include "lapack.cpp" 
 
/* This function computes the LU decomposition of the band matrix generated 
 by differencing Poisson's Equation on the grid */ 
void make_LU(GRIDDEF array[ngp1][ngp2], SUPERGLOBAL &sg, GEOMETRY &ge,FIELDSOLVER &fs) { 
 
  const char*name; 
  int info; 
  long  i,j,k,jmax,kmax,count,counter1,counter2,counter3,counter4,counter5; 
  float ajm1ky, ajp0ky, ajp1ky; 
  float cell_width; 
  FILE *abddata,*abddata2; 
  //FIELDSOLVER fs; 
   
  // dereference  
  cell_width=ge.cell_width; 
 
  name = "abddata.dat"; 
  if (NULL == (abddata=fopen(name,"w+"))) { 
    fprintf(stderr,"cannot open LU file %s\n",name); 
    exit(1); 
  } 
  name = "abddata2.dat"; 
  if (NULL == (abddata2=fopen(name,"w+"))) { 
    fprintf(stderr,"cannot open LU file %s\n",name); 
    exit(1); 
  } 
  // initfieldparam(sg,fs); 
 
  /*   MAKE BANDS   */ 
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  jmax=ngp_vert; 
  kmax=ngp_horiz; 
  counter1=fs.upper_width-1; 
  counter2=0; 
  counter3=-1; 
  counter4=0; 
  counter5=0; 
 
  /*   ****   */ 
  /* Initialize all non-relevant positions to zero */ 
  for(i=0;i < ngp;i++) 
    fs.band1[i]=fs.band2[i]=fs.band3[i]=fs.band4[i]=fs.band5[i]=0.0; 
 
 for (j=0;j < jmax;j++){ 
    for(k=0;k < kmax;k++){ 
      ajm1ky = array[j-1][k].y; 
      ajp0ky = array[j+0][k].y; 
      ajp1ky = array[j+1][k].y; 
      if(counter1<(ngp-1)) 
 counter1++; 
      if(counter2<(ngp-1)) 
 counter2++; 
      counter4++;counter5++; 
 
      /*   y < r_probe      */ 
      if(j <= ge.jprobe){ 
 if (j==0 && k==1){ 
   counter4=0; 
 } 
 if(j==1  && k==0){ 
   counter5=0; 
 } 
 if( k < ge.kprobe){ 
   if(j==0){ /* Lower boundary */ 
     if(k==0) { 
       fs.band1[counter1]=0.0; 
       fs.band2[counter2]=0.0; 
       fs.band4[counter4]=0.0; 
       fs.band5[counter5]=0.0; 
     } 
     else { 
       fs.band1[counter1]=pi*cell_width; 
       fs.band2[counter2]=pi*ajp1ky*ajp1ky/(4.0*cell_width); 
       fs.band4[counter4]=pi*ajp1ky*ajp1ky/(4.0*cell_width); 
       fs.band5[counter5]=0.0; 
     } 
   } 
   else{ /* Rest to top of probe */ 
     if(k==0) { 
       fs.band1[counter1]=0.0; 
       fs.band2[counter2]=0.0; 
       fs.band4[counter4]=0.0; 
       fs.band5[counter5]=0.0; 
     } 
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     else{ 
       fs.band1[counter1]=2.0*pi*cell_width*(ajp0ky+(ajp1ky-ajp0ky)/2.0)/(ajp1ky-ajp0ky); 
       fs.band2[counter2]=pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) 
      -(ajp0ky-(ajp0ky-ajm1ky)/2.0)*(ajp0ky-(ajp0ky-ajm1ky)/2.0))/cell_width; 
       fs.band4[counter4]=pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) 
      -(ajp0ky-(ajp0ky-ajm1ky)/2.0)*(ajp0ky-(ajp0ky-ajm1ky)/2.0))/cell_width; 
       fs.band5[counter5]=2.0*pi*cell_width*(ajp0ky-(ajp0ky-ajm1ky)/2.0)/(ajp0ky-ajm1ky); 
     } 
   } 
 } 
 else { /* on and inside probe */ 
   fs.band1[counter1]=fs.band2[counter2]=fs.band4[counter4]=fs.band5[counter5]=0.0; 
 } 
      } 
      else if (j>ge.jprobe && j<(jmax-1)){ 
 if((k > 0) && (k < (kmax-1))){ 
   fs.band1[counter1]=2.0*pi*cell_width*(ajp0ky+(ajp1ky-ajp0ky)/2.0)/(ajp1ky-ajp0ky); 
   fs.band2[counter2]=pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) -(ajp0ky-(ajp0ky-
ajm1ky)/2.0)*(ajp0ky-(ajp0ky-ajm1ky)/2.0))/cell_width; 
   fs.band4[counter4]=pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) -(ajp0ky-(ajp0ky-
ajm1ky)/2.0)*(ajp0ky-(ajp0ky-ajm1ky)/2.0))/cell_width; 
   fs.band5[counter5]=2.0*pi*cell_width*(ajp0ky-(ajp0ky-ajm1ky)/2.0)/(ajp0ky-ajm1ky); 
 } 
 else if(k==0){ 
   fs.band1[counter1]=0.0; 
   fs.band2[counter2]=0.0; 
   fs.band4[counter4]=0.0; 
   fs.band5[counter5]=0.0; 
 } 
 else  { 
   fs.band1[counter1]=2.0*pi*( ajp0ky+(ajp1ky-ajp0ky)/2.0 )*cell_width/(ajp1ky-ajp0ky); 
   fs.band2[counter2]=0.0; 
   fs.band4[counter4]=pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) 
         -(ajp0ky-(ajp0ky-ajm1ky)/2.0)*(ajp0ky-(ajp0ky-ajm1ky)/2.0))/cell_width; 
   fs.band5[counter5]=2.0*pi*( array[j][ngp_horiz-1].y-(ajp0ky-ajm1ky)/2.0 )*cell_width/(ajp0ky-ajm1ky); 
 } 
      } 
      else{ 
 /*fs.band1[counter1]=0.0;*/ 
 fs.band2[counter2]=0.0; 
 fs.band4[counter4]=0.0; 
 fs.band5[counter5]=0.0; 
      } 
    } 
 } 
  /* Diagonal  */ 
  for (j=0;j < jmax;j++){ 
    /*   y < r_probe      */ 
    if(j <= ge.jprobe){ 
      for(k=0;k < kmax;k++){ 
 ajm1ky = array[j-1][k].y; 
 ajp0ky = array[j+0][k].y; 
 ajp1ky = array[j+1][k].y; 
 counter3++; 
 if(k >= 0 && (k < ge.kprobe)){ 
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   if(j==0){ 
     if(k==0){ 
       fs.band3[counter3]=-1.0; 
     } 
     else{ 
       fs.band3[counter3]=-pi*(cell_width+(ajp1ky-ajp0ky)*(ajp1ky-ajp0ky)/(2.0*cell_width)); 
     } 
   } 
   else { 
     if(k==0){ 
       fs.band3[counter3]=-1.0; 
     } 
     else{ 
       fs.band3[counter3]=-(2.0*pi*cell_width*(ajp0ky+(ajp1ky-ajp0ky)/2.0)/(ajp1ky-ajp0ky) + 
pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) -(ajp0ky-(ajp0ky-ajm1ky)/2.0)*(ajp0ky-(ajp0ky-
ajm1ky)/2.0))/cell_width + pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) -(ajp0ky-(ajp0ky-
ajm1ky)/2.0)*(ajp0ky-(ajp0ky-ajm1ky)/2.0))/cell_width + 2.0*pi*cell_width*(ajp0ky-(ajp0ky-ajm1ky)/2.0)/(ajp0ky-
ajm1ky)); 
     } 
   } 
 } 
 else{ 
   fs.band3[counter3]=-1.0; 
 } 
      } 
    } 
    /* y > r_probe */ 
    else if(j<(jmax-1)){ 
      for(k=0;k < kmax;k++){ 
 ajm1ky = array[j-1][k].y; 
 ajp0ky = array[j+0][k].y; 
 ajp1ky = array[j+1][k].y; 
 counter3++; 
 if(k > 0 && (k < (kmax-1)) && (j<(jmax-1))){ 
   fs.band3[counter3]=-(2.0*pi*cell_width*(ajp0ky+(ajp1ky-ajp0ky)/2.0)/(ajp1ky-ajp0ky) + 
pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) -(ajp0ky-(ajp0ky-ajm1ky)/2.0)*(ajp0ky-(ajp0ky-
ajm1ky)/2.0))/cell_width + pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) -(ajp0ky-(ajp0ky-
ajm1ky)/2.0)*(ajp0ky-(ajp0ky-ajm1ky)/2.0))/cell_width + 2.0*pi*cell_width*(ajp0ky-(ajp0ky-ajm1ky)/2.0)/(ajp0ky-
ajm1ky)); 
 } 
 else if(k==0){ 
   fs.band3[counter3]=-1.0; 
 } 
 else{ 
   fs.band3[counter3]=-(2.0*pi*cell_width*(ajp0ky+(ajp1ky-ajp0ky)/2.0)/(ajp1ky-ajp0ky) + 
pi*((ajp0ky+(ajp1ky-ajp0ky)/2.0)*(ajp0ky+(ajp1ky-ajp0ky)/2.0) -(ajp0ky-(ajp0ky-ajm1ky)/2.0)*(ajp0ky-(ajp0ky-
ajm1ky)/2.0))/cell_width + 2.0*pi*cell_width*(ajp0ky-(ajp0ky-ajm1ky)/2.0)/(ajp0ky-ajm1ky)); 
 } 
      } 
    } 
    else{ 
      for(k=0;k < kmax;k++){ 
 counter3++; 
 fs.band3[counter3]=-1.0; 
      } 
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    } 
  } 
  /*for(i=0;i<ngp;i++){ 
    printf("%ld %f %f %f %f %lf\n",i,fs.band1[i],fs.band2[i],fs.band3[i],fs.band4[i],fs.band5[i]); 
    }*/ 
 
  /* Form fs.band vector to be submitted to the fs.band solver */ 
  count=-1; 
  for(i=0;i<ngp;i++){ 
    for(j=1;j<=(2*fs.lower_width+fs.upper_width+1);j++){ 
      count++; 
      if(j==fs.lower_width+1)   fs.abd[count]=fs.band1[i]; 
      else if(j==(fs.lower_width+fs.upper_width)) fs.abd[count]=fs.band2[i]; 
      else if(j==(fs.lower_width+fs.upper_width+1)) fs.abd[count]=fs.band3[i]; 
      else if(j==(fs.lower_width+fs.upper_width+2)) fs.abd[count]=fs.band4[i]; 
      else if(j==(fs.lower_width+fs.upper_width+2+fs.lower_width-1)) fs.abd[count]=fs.band5[i]; 
      else fs.abd[count]=0.0; 
    } 
  } 
  printf("Going into LU factorization...\n"); 
 
  /* Call LAPACK subroutine to perform the LU factorization */ 
 
  sgbtrf_(&fs.m1,&fs.n1,&fs.lower_width,&fs.upper_width,fs.abd,&fs.ldab,fs.piv,&info); 
 
  if (info==0){ 
    puts("LU decomposition successful..."); 
  } 
  else{ 
    puts("LU decomposition failed..."); 
    exit(1); 
  } 
  fwrite(fs.abd,sizeof(float),count,abddata); 
  fclose(abddata); 
 
  fwrite(fs.piv,sizeof(int),ngp,abddata2); 
  fclose(abddata2); 
 
  //freefieldparam(fs); 
} 
unsigned long locatex(GRIDDEF xx[ngp1][ngp2], unsigned long n, float x) { 
  unsigned long ju,jm,jl; 
  int ascnd; 
 
  jl=0; 
  ju=n+1;// n intervals, (n+1) division points 
  ascnd=(xx[0][n-1].x > xx[0][1].x); 
 
  while (ju-jl > 1) { 
    jm=(ju+jl) >> 1; 
    if ((x > xx[0][jm].x) == ascnd) 
      jl=jm; 
    else 
      ju=jm; 
  } 
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  return jl; 
} 
inline unsigned long locatey(GRIDDEF xx[ngp1][ngp2], unsigned long n, float x) { 
  unsigned long ju,jm,jl; 
 
  jl=0; 
  ju=n+1;// n intervals, (n+1) division points 
  //ascnd=(xx[n-1][0].y > xx[1][0].y);  Lambert, 2013 April.  Always ascending 
  while (ju-jl > 1) { 
    jm=(ju+jl) >> 1; 
    ( x > xx[jm][0].y ? jl : ju)=jm; 
  } 
  return jl; 
} 
 

A.2.3   initialize.cpp 

The sub-program “initialize.cpp” loads a uniform distribution of computational particles to begin the simulation. The 

velocities of each species are set by randomly picking values from the velocity tables created in PROBEPIC. 

 

#include "init.hpp" 
#include <time.h> 
 
// temporary shouldnt be global 
extern FLOAT *random_num; 
extern long rancount; 
 
/*This function sets initial plasma conditions and computes plasma 
   parameters to be used throughout the rest of the simulation   */ 
int newparam(SUPERGLOBAL sg, PLASMA &pl, GEOMETRY &ge, INJECTIONSETUP &is,INJECTIONBEAM 
&ib,BOUNDARY &bb ,LOCATION &lo, char * Inputfile) { 
 
  FLOAT avveli,avvele,gammai,gammae; 
 
  FLOAT numiperstep_back,numiperstep_front, 
    numiperstep_side,numeperstep_back,numeperstep_front,numeperstep_side,fluxi_back,fluxi_front, 
    fluxi_side,fluxe_back,fluxe_front,fluxe_side,afront,aback,aside; 
 
//Logfile with system configuration 
char Logfile[70]="out.log"; 
FILE *logfile; 
 
 FILE *in; 
 
 /** _____________ Reading Input File _____________________________ **/ 
      char *line; 
      line = (char *) calloc(300,sizeof(char)); 
      in = fopen(Inputfile,"r"); 
      int scan=0; 
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      printf("________________________________________________ \n"); 
      printf("    Start reading input data from: %s\n\n",Inputfile); 
 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=scan=fscanf(in, "%s %d\n",line,&pl.distribution_type); 
      if (pl.distribution_type==1) 
        printf("  EEDF : Maxwellian distribution\n"); 
      else if (pl.distribution_type==0) 
        printf("  EEDF : Druyvesteyn distribution\n"); 
      else if (pl.distribution_type==2) 
        printf("  EEDF : Bi-MAxwellian distribution\n"); 
      else { 
        printf("  EEDF undefined. Choosing defaut= Maxwellian\n"); 
        pl.distribution_type=1; 
      } 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      printf("\n  ** Plasma parameters\n"); 
      scan=fscanf(in, "%s %f\n",line,&pl.T ); 
      printf("  Plasma temperature of electrons: %2.2f eV \n",pl.T); 
       
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&pl.T_i); 
      printf("  Plasma temperature of ions:      %2.2f eV \n",pl.T_i ); 
       
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&pl.n); 
      printf("  Plasma density:                  %3.1e m^-3 \n",pl.n ); 
 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&pl.m_ion ); 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&pl.q_ion ); 
       
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&pl.m_elec ); 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&pl.q_elec ); 
 
      printf("  Ion mass      %2.3e kg and charge %2.3e \n",pl.m_ion, pl.q_ion ); 
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      printf("  Electron mass %2.3e kg and charge %2.3e \n",pl.m_elec, pl.q_elec ); 
 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      printf("\n  ** Geometry\n"); 
      scan=fscanf(in, "%s %f\n",line,&ge.r_probe ); 
      printf("  Probe radius    %f\n",ge.r_probe ); 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&ge.l_probe); 
      printf("  Probe length    %f\n",ge.l_probe ); 
 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
 
      scan=fscanf(in, "%s %f\n",line,&pl.T_h); 
 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      if( fgets (line,299,in) == 0 ) {printf("Could not read file \"%s\"\n",Inputfile);fclose(in);return 1;} 
      scan=fscanf(in, "%s %f\n",line,&pl.E_t); 
      if (pl.distribution_type==2) 
      { 
      printf("\n  **Additional parameters for Bi-Maxwellian distribution\n"); 
      printf("  Temperature of warm electrons: %2.2f eV\n",pl.T_h); 
      printf("  Energy E_t :                   %2.2f eV\n", pl.E_t); 
      } 
      printf("\n  >>Finished reading input file\n"); 
      printf("________________________________________________ \n"); 
      fclose(in); 
      free(line); 
  /** ____________________________ Finished reading _____________________**/ 
  
  /*   NUMBER OF PARTICLES TO INJECT AT EACH TIME STEP     */ 
  /* 
  superii_init=40000; 
  superii_back=2; 
  superii_front=2; 
  superii_side=4; 
  superei_init=40000; 
  superei_back=5; 
  superei_front=5; 
  superei_side=8; */ 
 
  /*********************** PLASMA *********************************************************/ 
  // (all fields) 
  //pl.T=2.85; 
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  // pl.T_i=0.1*pl.T; // different temperature for ions 
  // pl.n=7.0e16; 
  // pl.m_ion=6.62e-26; //mass of argon atom 
  // pl.q_ion=1.6e-19; 
  // pl.m_elec=9.11e-31; 
  // pl.q_elec=-1.6e-19; 
  pl.plasma_pot=0.0; 
 
//parameters for two temperature distribution 
  //pl.T_h=2.9; // [eV] high energy electrons' temperature 
  //pl.E_t=3.0; // [eV] energy of distribution change from one to another 
  pl.normalize=sqrt(M_2_PI) * (sqrt(M_PI_2)   //normalization factor for the  
    *erff( sqrt(pl.E_t / pl.T) )            // two-temperature maxwell distribution 
    - sqrt(2*pl.E_t / pl.T) * exp(-pl.E_t / pl.T)) 
  + pow(pl.T_h/pl.T,1.5)/sqrt(M_PI)*exp(-pl.E_t/pl.T)* 
     (2*sqrt(pl.E_t/pl.T_h) + exp(pl.E_t/pl.T_h)*sqrt(M_PI)*(1-erff(sqrt(pl.E_t/pl.T_h))  )  ) ; 
 
  /*********************** GEOMETRY *******************************************************/ 
  //ge.r_probe=0.00004445; 
  //ge.l_probe=0.002; 
  ge.l_insul=1.5*ge.l_probe; 
  //The probe radius is equal to (two) cell_height1. 2.0 could be changed 
  float coefficient=ge.r_probe/0.00003125/2.0; 
   printf("init.cpp: coefficient %f", coefficient); 
  ge.radius=0.00395705*coefficient; 
  ge.length=4.0*ge.l_probe; 
  
  ge.cell_height1=0.00003125*coefficient; 
  ge.cell_height2=0.00003713*coefficient; 
  ge.cell_height3=0.00004301*coefficient; 
  ge.cell_height4=0.00004889*coefficient; 
  ge.cell_height5=0.00005477*coefficient; 
  ge.cell_height6=0.00006065*coefficient; 
 
  ge.cell_width=0.0000574; 
  //!******************************* 
  ge.cell_width = ge.length/(sg.mgp2-1); // ngp2=ngp_horiz 
  //!******************************* 
  ge.r_insul=ge.r_probe + ge.cell_height1; 
 
  /*  Parameteters needed for field solver    */ 
  ge.jprobe=(long)(ge.r_probe/ge.cell_height1); 
  ge.kprobe=((long)(ge.length-ge.l_probe-ge.l_insul)/ge.cell_width); 
 
  /*********************** INJECTION SETUP *******************************************************/ 
  // all of INJECTIONSETUP 
  //is.injsuperi; 
  //is.injsupere; 
  is.superii_init=20000;//40000 
  is.superii_back=1;//2 
  is.superii_front=1;//2 
  is.superii_side=2;//4 
 
  is.superei_init=100000;//40000 
  is.superei_back=5; //5 
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  is.superei_front=5;//5 
  is.superei_side=8;//8 
  // is.rancount; 
  is.elec_iter=15; 
 
  /*********************** INJECTION BEAM *******************************************************/ 
  /* injection Beam */ 
  ib.height=2.0 * ge.radius; 
  ib.width=2.0 * ge.radius; 
  ib.h=6.9*sqrt((pl.T*11588.7)/(pl.n*1.0e-6)) * 0.01; 
  ib.wpdt=0.009; 
  ib.wp=2.0*pi*9000.0*sqrt(pl.n*1.0e-6); // plasma frequency 
  ib.dt=ib.wpdt/ib.wp; 
  ib.dte=ib.dt; 
  ib.dti=15.0*ib.dte; 
 
  ib.sigmae=sqrt((boltz*pl.T*11588.7)/pl.m_elec); 
  ib.sigmai=sqrt((boltz*pl.T_i*11588.7)/pl.m_ion); 
  /* Boundary Fluxing Setup */ 
 
  afront=4.0* ge.radius * ge.radius;  
  aside=2.0 * ge.radius * ge.length; 
  aback=4.0 * ge.radius * ge.radius - pi*ge.r_insul*ge.r_insul; 
 
  avveli=sqrt((8.0*boltz*pl.T_i*11589.7)/(pi*pl.m_ion)); 
  avvele=sqrt((8.0*boltz*pl.T*11589.7)/(pi*pl.m_elec)); 
  gammai=pl.n*avveli/4.0; 
  gammae=pl.n*avvele/4.0; 
  fluxi_back=gammai*aback; 
  fluxe_back=gammae*aback; 
  fluxi_front=gammai*afront; 
  fluxe_front=gammae*afront; 
  fluxi_side=gammai*aside; 
  fluxe_side=gammae*aside;  
 
  numiperstep_back=fluxi_back*ib.dti; 
  numeperstep_back=fluxe_back*ib.dte; 
  numiperstep_front=fluxi_front*ib.dti; 
  numeperstep_front=fluxe_front*ib.dte; 
  numiperstep_side=fluxi_side*ib.dti; 
  numeperstep_side=fluxe_side*ib.dte; 
 
  ib.superi_back=numiperstep_back/((FLOAT)is.superii_back); 
  ib.supere_back=numeperstep_back/((FLOAT)is.superei_back); 
  ib.superi_front=numiperstep_front/((FLOAT)is.superii_front); 
  ib.supere_front=numeperstep_front/((FLOAT)is.superei_front); 
  ib.superi_side=numiperstep_side/((FLOAT)is.superii_side); 
  ib.supere_side=numeperstep_side/((FLOAT)is.superei_side); 
 
  /* Initial Loading Injection Setup */ 
  bb.VOLUME=ge.length*ib.height*ib.width - (pi* ge.r_probe * ge.r_probe * ge.l_probe) - (pi* ge.r_insul * ge.r_insul * 
ge.l_insul); 
 
  ib.superi_init=pl.n * ((pi* ge.radius * ge.radius * ge.length)-  
     (pi* ge.r_probe * ge.r_probe * ge.l_probe) - (pi* ge.r_insul * ge.r_insul * ge.l_insul)) / 
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((FLOAT)is.superii_init); 
 
  ib.supere_init=pl.n * ((pi* ge.radius * ge.radius * ge.length)-  
     (pi* ge.r_probe * ge.r_probe * ge.l_probe) - (pi* ge.r_insul * ge.r_insul * ge.l_insul)) / 
((FLOAT)is.superei_init); 
  // un-used 
  //injsuperi=superii_init; 
  //injsupere=superei_init; 
 
  bb.V=0.0; 
  bb.current=0.0; 
  bb.curri=0.0; 
  bb.curre=0.0; 
 
  // LOCATION UNUSED AT THE MO 
  lo.x=521288629; 
  lo.y=362436069; 
  lo.z=16163801; 
  lo.c=1; 
  lo.n2=1131199299; 
 
        sprintf(Logfile,"./PROBEPIC_Log_Te%1.1f_n%2.1e_Distr%d.log\0",pl.T,pl.n,pl.distribution_type); 
 
printf("\n  Writing logfile..."); 
 
  /** ____________________________ write logfile _____________________________ **/ 
    logfile = fopen(Logfile,"a"); 
 
fprintf(logfile,"***********************************************************************************************
*************************\n\n"); 
   
//get time 
time_t rawtime;  struct tm * timeinfo;  time ( &rawtime );  timeinfo = localtime ( &rawtime ); 
 
    fprintf(logfile," ** Logfile for PROBEPIC plasma simulation. Thick sheath case **\n"); 
    fprintf (logfile, "   Current local time and date: %s\n\n", asctime (timeinfo) ); 
 
     //Description: 
 
      if (pl.distribution_type==1) 
      fprintf(logfile," EEDF : Maxwellian distribution\n"); 
  else if (pl.distribution_type==0) 
       fprintf(logfile," EEDF : Druyvesteyn distribution\n"); 
  else if (pl.distribution_type==2) 
       fprintf(logfile," EEDF : Bi-MAxwellian distribution\n"); 
  else { 
       fprintf(logfile," EEDF undefined!! Choosing defaut= Maxwellian\n"); 
  } 
    fprintf(logfile,"\n ** Plasma parameters **\n"); 
    fprintf(logfile," Plasma temperature of electrons: %2.2f eV \n",pl.T); 
    fprintf(logfile," Plasma temperature of ions:      %2.2f eV \n",pl.T_i ); 
    fprintf(logfile," Plasma density:                  %2.2e m^-3 \n",pl.n ); 
        if (pl.distribution_type==2) 
    { 
    fprintf(logfile,"\n** Additional parameters for Bi-Maxwellian distribution\n"); 
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    fprintf(logfile," Temperature of warm electrons: %2.2f eV\n",pl.T_h); 
    fprintf(logfile," Energy E_t : %2.2f eV\n", pl.E_t); 
    } 
    fprintf(logfile,"\n** Particle types\n"); 
    fprintf(logfile," Ion mass      %3.3e kg and charge %3.3e \n",pl.m_ion, pl.q_ion ); 
    fprintf(logfile," Electron mass %3.3e kg and charge %3.3e \n",pl.m_elec, pl.q_elec ); 
 
    fprintf(logfile,"\n** Geometry\n"); 
    fprintf(logfile," Probe radius %f\n",ge.r_probe ); 
    fprintf(logfile," Probe length %f\n",ge.l_probe ); 
    fprintf(logfile," Aspect ratio: length/r %f \n",ge.l_probe/ge.r_probe ); 
     
    fprintf(logfile,"\n** Simulation domain\n"); 
    fprintf(logfile," Radius of the cell %f\n", ge.radius); 
    fprintf(logfile," Simulation cell radius divided by probe radius %f\n", ge.radius/ge.r_probe); 
    //checking cell dimensions 
    if (ge.r_probe>ge.radius||ge.l_probe>ge.radius) 
    fprintf(logfile,"WARNING!: Increase the radius of the cell. It is too small or the probe is too big!!\n"); 
    //checking cell dimensions 
    fprintf(logfile," Length of the cell %f\n",ge.length); 
    fprintf(logfile," Simulation cell length divided by probe length %f\n", ge.length/ge.l_probe); 
    if (ge.r_probe>ge.length||ge.l_probe>ge.length) 
    fprintf(logfile,"WARNING!: Increase the length of the cell. It is too small or the probe is too big!!\n"); 
 
    fprintf(logfile, "\n" ); 
    fprintf(logfile," Initial number of superions %ld and superelectrons %ld \n",is.superii_init,is.superei_init); 
    fprintf(logfile, " Average velocity of ions %2.3f ; of electrons %2.3e\n", avveli, avvele); 
    fprintf(logfile, " Plasma frequency %f ; Debey length %f\n", ib.wp, ib.h); 
        fprintf(logfile,"\n** Rescaled parameters:\n"); 
    fprintf(logfile, " Rescaled probe size: r_probe/Debey_length = %f\n", ge.r_probe / ib.h); 
    fprintf(logfile," Rescaled simulation domain radius: radius/Debey_length %f\n",ge.radius / ib.h); 
    fprintf(logfile," Rescaled cell height: grid height/Debey_length %f\n", ge.cell_height1 / ib.h); 
 
    printf("  Logfile written.\n"); 
    fclose(logfile); 
  /** ____________________________  <-- __________________________________ **/ 
} 
void initfieldparam(SUPERGLOBAL &sg, FIELDSOLVER &fs ){ 
 
 /*   FIELD SOLVER GLOBAL VARIABLES   */ 
  fs.test1=0; 
  fs.test2=0; 
  fs.test3=0; 
  fs.ldab=3*sg.mgp2+1; 
  fs.n1=sg.mgp; 
  fs.m1=sg.mgp; 
  fs.ldb=sg.mgp; 
  fs.upper_width=sg.mgp2; 
  fs.lower_width=sg.mgp2; 
  fs.info=0; 
  fs.nrhs=0; 
  fs.piv=(int *)malloc(sg.mgp*sizeof(int)); 
   
  fs.band1=(FLOAT*)malloc(sg.mgp*sizeof(FLOAT)); 
  fs.band2=(FLOAT*)malloc(sg.mgp*sizeof(FLOAT)); 
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  fs.band3=(FLOAT*)malloc(sg.mgp*sizeof(FLOAT)); 
  fs.band4=(FLOAT*)malloc(sg.mgp*sizeof(FLOAT)); 
  fs.band5=(FLOAT*)malloc(sg.mgp*sizeof(FLOAT)); 
 
  /*  Large array initialization  */ 
  fs.abd=(FLOAT *)malloc((2*fs.lower_width+fs.upper_width+2)*sg.mgp*sizeof(FLOAT)); 
  fs.b=(FLOAT *)malloc(sg.mgp*sizeof(FLOAT)); 
  fs.phi=(FLOAT *)malloc(sg.mgp*sizeof(FLOAT)); 
} 
void freefieldparam(FIELDSOLVER &fs){ 
  
  free(fs.band1); 
  free(fs.band2); 
  free(fs.band3); 
  free(fs.band4); 
  free(fs.band5); 
 
  /*  Large array initialization  */ 
  free(fs.piv); 
  free(fs.abd); 
  free(fs.b); 
  free(fs.phi); 
 
} 
long initialize(PARTICLEDEF particle[],long  init_num,FLOAT super_init,FLOAT *v_table,FLOAT m,FLOAT 
q,GEOMETRY &ge ) { 
  long idx,rannum; 
  FLOAT theta,phi,v,r; 
 
  for(idx=0;idx < init_num;idx++){ 
 
    theta=pi*random_num[rancount++]; 
    phi=2.0*pi*random_num[rancount++]; 
    rannum=((long)V_TABLE_RES*random_num[rancount++]); 
 
    v=v_table[rannum]; 
    rancount++; // nb only hear for compaitibility 
    r=ge.radius * sqrt(random_num[rancount++]); 
 
    particle[idx].x=-ge.length * random_num[rancount++]; 
 
    particle[idx].y = r*sin(theta); 
    particle[idx].z = r*cos(theta); 
    particle[idx].r = sqrt(particle[idx].y*particle[idx].y + particle[idx].z *particle[idx].z); 
    particle[idx].vx = v * sin(theta) *sin(phi); 
    particle[idx].vy = v * cos(theta); 
    particle[idx].vz = v * sin(theta) * cos(phi); 
    particle[idx].Ex = 0.0; 
    particle[idx].Ey = 0.0; 
    particle[idx].q = q * super_init; 
    particle[idx].m = m * super_init; 
  } 
  return init_num;  
} 
inline float erff(float x) { 
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  float erf = (float)gsl_sf_erf((double) x); 
  return erf; 
}; 
void make_velocity_table(PLASMA pl,FLOAT *v_table_e, FLOAT *v_table_i,long sz) { 
 
  int converge; 
  long  i,num_div,temp; 
  float  accuracy,prob_delta,p_calc,p_exact,delta_v,v,error; 
 
  /*  Initialize parameters  */ 
 
  num_div=sz; 
  prob_delta=1.0/((float)num_div); 
  accuracy=0.1*prob_delta;            /* 10 percent of spacing  */ 
  p_exact = 0.0; 
  v = 0.0; 
 
  /*  Electrons   */ 
  for (i=1; i < num_div; i++) { 
    temp = (long) v;    /* The next two lines set the numbers past the decimal point to zero.   */ 
    v = (float) temp;   /*  There is probably a more compact way to do this.                    */ 
    p_exact+=prob_delta; 
    if (p_exact > 1.0) p_exact = 1.0; // due to arithmetic round up, p_exact may exceed 1.0 
    delta_v = 1.0; 
    converge = 0; 
    do { 
  if (pl.distribution_type==1) { //Maxwellian 
       p_calc=sqrt(M_2_PI) * pow(pl.m_elec / (boltz * pl.T * 11588.7),1.5) 
 * (sqrt(M_PI_2) *  pow(boltz * pl.T *11588.7 / pl.m_elec,1.5) 
    *erff(sqrt(pl.m_elec / (2.0 * boltz * pl.T * 11588.7)) * v) 
    - boltz * pl.T * 11588.7 * v / pl.m_elec * exp(-pl.m_elec * v * v 
          / (2.0 * boltz * pl.T * 11588.7)));  
        } 
  else if (pl.distribution_type==0) //Druyvesteyn 
  { float en = pl.m_elec * v * v/2.0; 
  float kT=boltz * pl.T * 11588.7; 
  p_calc=1-0.8160489390982629*gsl_sf_gamma_inc(0.75, (0.243*en*en)/kT/kT); 
     //printf("probability1 %f or exact %f\n",p_calc, p_exact); 
   } 
    else if (pl.distribution_type==2) //Bi-Maxwellian 
   {    float en = pl.m_elec * v * v/2.0;  
   //rescale temperatures 
   float kT1=boltz * pl.T * 11588.7;float kT2=boltz * pl.T_h * 11588.7; 
   //rescale energy of switching between two temperatures 
   float et=pl.E_t*pl.q_ion; 
  if ( en < et ) 
   {//low energy part of distribution 
   p_calc = sqrt(M_2_PI) * (sqrt(M_PI_2)   //normalization factor for the distribution 
                      *erff( sqrt(en/kT1) ) 
     - sqrt(2*en/kT1) * exp(-en / kT1));  
   p_calc/=pl.normalize; 
   //printf("%lu. probability1 %.20f or error %f delta %f v %f \n", i,p_calc, error,en/et, v); 
   } 
  else if ( en > et || en == et ) 
   {   //high energy part of distribution 
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   p_calc= sqrt(M_2_PI) * (sqrt(M_PI_2)   //normalization factor for the distribution 
     *erff( sqrt(pl.E_t / pl.T) ) 
    - sqrt(2*pl.E_t / pl.T) * exp(-pl.E_t / pl.T))+ 
    pow(pl.T_h/pl.T,1.5)/sqrt(M_PI)*exp(-en/kT2-pl.E_t/pl.T)* 
    (-2*exp(pl.E_t/pl.T_h)*sqrt(en/kT2)+exp(en/kT2)* 
  (2*sqrt(pl.E_t/pl.T_h) + exp(pl.E_t/pl.T_h)*sqrt(M_PI)*(erff(sqrt(en/kT2))-erff(sqrt(pl.E_t/pl.T_h))  )  ) );  
   //normalize the distribution 
   p_calc/=pl.normalize;  
       //  printf("%lu. probability2 %.20f or error %f norm %f v %f \n", i,p_calc, 
error,pl.normalize/1.1827728497625067, v); 
   } 
   } 
  //NOTE: here another distributions could be implemented 
  //using the pattern "else if (distribution==n){p_calc = another distribution} 
    
      error = p_exact - p_calc; 
 
      if (fabs(error) < accuracy) 
 converge = 1; 
      else if (error > 0) 
 v+=delta_v; 
      else { 
 v-=delta_v; 
 delta_v*=1.0e-1; 
      } 
    } while(!converge); 
    v_table_e[i-1]=v; 
  } 
  v_table_e[num_div-1]= v_table_e[num_div-2] + v_table_e[num_div-2] - v_table_e[num_div-3];     /*  Avoid 
singularity v = infinity when p_exact = 1  */ 
 
  printf("Done creating electron velocity table...\n"); 
 
  /*  Reset parameters  */ 
  p_exact = 0.0; 
  v = 0.0; 
 
accuracy=prob_delta;  
  /*  Ions   */ 
  for (i=1; i < num_div; i++) { 
 
    temp = (long) v;    /* The next two lines set the numbers past the decimal point to zero.   */ 
    v = (float) temp;   /*  There is probably a more compact way to do this.                    */ 
    p_exact+=prob_delta; 
    if (p_exact > 1.0) p_exact = 1.0; // due to arithmetic round up, p_exact may exceed 1.0 
    delta_v = 1.0; 
    converge = 0; 
    do { 
  if (pl.distribution_type==1)  
  { //Maxwell distribution 
  p_calc=sqrt(M_2_PI) * pow((pl.m_ion ) / (boltz * pl.T_i * 11588.7),1.5) 
  * (sqrt(M_PI_2) *  pow(boltz * pl.T_i *11588.7 / (pl.m_ion ),1.5) 
    *erff(sqrt((pl.m_ion ) / (2.0 * boltz * pl.T_i * 11588.7))  * v) 
    - boltz * pl.T_i * 11588.7 * v / (pl.m_ion ) * exp(-(pl.m_ion ) * v * v 
            / (2.0 * boltz * pl.T_i * 11588.7))); } 
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  else if (pl.distribution_type==0) 
  { //Druyvesteyn distribution 
  float en = pl.m_ion * v * v/2.0; //rescale energy 
  float kT=boltz * pl.T_i * 11588.7;//rescale temperature to eV 
  p_calc=1-0.8160489390982629*gsl_sf_gamma_inc(0.75, (0.243*en*en)/kT/kT); 
   //printf("probability2 %f or exact %f\n",p_calc, p_exact);    
   } 
  else if (pl.distribution_type==2) { 
   //Maxwellian for ions 
  p_calc=sqrt(M_2_PI) * pow((pl.m_ion ) / (boltz * pl.T_i * 11588.7),1.5) 
  * (sqrt(M_PI_2) *  pow(boltz * pl.T_i *11588.7 / (pl.m_ion ),1.5) 
  *erff(sqrt((pl.m_ion ) / (2.0 * boltz * pl.T_i * 11588.7))  * v) 
  - boltz * pl.T_i * 11588.7 * v / (pl.m_ion ) * exp(-(pl.m_ion ) * v * v 
                  / (2.0 * boltz * pl.T_i * 11588.7))); } 
   
      error = p_exact - p_calc; 
 
      if (fabs(error) < accuracy) 
 converge = 1; 
      else if (error > 0) 
 v+=delta_v; 
      else { 
 v-=delta_v; 
 delta_v*=1.0e-1; 
      } 
    } while(!converge); 
    v_table_i[i-1]=v; 
  } 
  v_table_i[num_div-1]= v_table_i[num_div-2] + v_table_i[num_div-2] - v_table_i[num_div-3];     /*  Avoid singularity 
v = infinity when p_exact = 1  */ 
  printf("Done creating ion velocity table...\n"); 
} 
/*   This function moves the particles   */ 
void mover(PARTICLEDEF particle[],long  num_part,FLOAT timestep) { 
 
  long  idx; 
  FLOAT accelx,accelr, sintheta, costheta, art, qom; 
 
  for (idx=0; idx < num_part; idx++) { 
    qom = particle[idx].q / particle[idx].m; 
    accelx= qom * particle[idx].Ex; 
    accelr= qom * particle[idx].Ey; 
    sincosf(atan2f(particle[idx].y,particle[idx].z), &sintheta, &costheta); 
    particle[idx].vx += accelx * timestep; 
    art = accelr * timestep; 
    particle[idx].vy += art * sintheta; 
    particle[idx].vz += art * costheta; 
    particle[idx].x += particle[idx].vx * timestep; 
    particle[idx].y += particle[idx].vy * timestep; 
    particle[idx].z += particle[idx].vz * timestep; 
    particle[idx].r = hypotf(particle[idx].y, particle[idx].z); 
  } 
} 
/*   This function sorts out which particles have crossed a boundary,i.e. 
     the probe or extent of computational domain.  Particles crossing the 
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     probe boundary are counted as current   */ 
// iflag 0 -elections 1 ions 
long boundary (int iflag, PARTICLEDEF particle[],long num_part,PLASMA &pl, GEOMETRY &ge,BOUNDARY 
&bb) { 
  long  idx; 
  long  i2; 
  long  numtemp; 
  FLOAT r_part; 
  
  numtemp=num_part; 
  i2=-1; 
 
  for (idx=0;idx < numtemp;idx++){ 
    i2++; 
    r_part=particle[i2].r;  
     
    /* OUT OF COMPUTATIONAL DOMAIN */ 
    if (particle[i2].x >0.0 || particle[i2].x < -ge.length || 
 particle[i2].y >ge.radius || particle[i2].y < -ge.radius || 
 particle[i2].z >ge.radius || particle[i2].z < -ge.radius) { 
        --num_part; 
         particle[i2].x=particle[num_part].x; 
         particle[i2].y=particle[num_part].y; 
         particle[i2].z=particle[num_part].z; 
  particle[i2].r=particle[num_part].r; 
  particle[i2].vx=particle[num_part].vx; 
  particle[i2].vy=particle[num_part].vy; 
  particle[i2].vz=particle[num_part].vz; 
  particle[i2].q=particle[num_part].q; 
  particle[i2].m=particle[num_part].m; 
 
  --i2;  
    /* CONTACT WITH PROBE */ 
   } else if (r_part <= ge.r_probe &&  
              particle[i2].x >=-(ge.l_probe+ge.l_insul) &&  
              particle[i2].x <=-ge.l_insul) { 
        --num_part;   
 
        particle[i2].x=particle[num_part].x; 
        particle[i2].y=particle[num_part].y; 
        particle[i2].z=particle[num_part].z; 
        particle[i2].r=particle[num_part].r; 
        particle[i2].vx=particle[num_part].vx; 
        particle[i2].vy=particle[num_part].vy; 
        particle[i2].vz=particle[num_part].vz; 
        particle[i2].m=particle[num_part].m; 
        particle[i2].q=particle[num_part].q; 
 
        bb.current += particle[i2].q; 
   
        (iflag==1 ? bb.curri :bb.curre) +=particle[i2].q;  
        --i2; 
    } // end else  
  }// end for 
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  return num_part;  
} 
long inject(int iflag,  // [I] 0-elections, 1 -ions  
           PARTICLEDEF particle[], 
           long  num_part,  
           float *v_table, 
    SUPERGLOBAL &sg, 
    PLASMA &pl, 
    GEOMETRY ge,  
    INJECTIONBEAM &ib,  
           INJECTIONSETUP &is  
     ) { 
  long  i,rannum; 
  float theta,phi,v; 
  float m; 
  float q; 
 
  float super_back; 
  float super_front; 
  float super_side; 
  long  superinj_back; 
  long  superinj_front; 
  long  superinj_side; 
 
  // electons 
  if(iflag==0){ 
    m=pl.m_elec;    
    q=pl.q_elec; 
 
    super_back=ib.supere_back; 
    super_front=ib.supere_front; 
    super_side=ib.supere_side; 
     
    superinj_back=is.superei_back; 
    superinj_front=is.superei_front; 
    superinj_side=is.superei_side;      
    // ion 
  }else{ 
    m=pl.m_ion;    
    q=pl.q_ion; 
 
    super_back=ib.superi_back; 
    super_front=ib.superi_front; 
    super_side=ib.superi_side; 
     
    superinj_back=is.superii_back; 
    superinj_front=is.superii_front; 
    superinj_side=is.superii_side;      
 } 
  // NPTS; no. of elements of array 'random_num'  
  if (NPTS<rancount+5*superinj_front) rancount=0; //! make sure that 'racount' stays in [0..NPTS] 
 
  for(i=0;i < superinj_front;i++){ 
    /*     FRONT      */ 
    theta=acos(sqrt(1 - random_num[rancount])); 
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    rancount ++; 
    phi=2.0*pi*random_num[rancount];  
    rancount ++; 
    rannum=sg.mpart*random_num[rancount]; 
    rancount ++; 
    v=v_table[rannum]; 
    particle[num_part].x=-ge.length; 
    particle[num_part].y=ib.height * random_num[rancount] - ib.height / 2.0; 
    rancount ++; 
    particle[num_part].z=ib.width * random_num[rancount] - ib.width / 2.0; 
    rancount ++; 
    particle[num_part].r=sqrt(particle[num_part].y*particle[num_part].y + particle[num_part].z  
          * particle[num_part].z); 
    particle[num_part].vx=v * cos(theta); 
    particle[num_part].vy=v*sin(theta)*cos(phi); 
    particle[num_part].vz=v*sin(theta)*sin(phi); 
    particle[num_part].q= q * super_front; 
    particle[num_part].m= m * super_front; 
    particle[num_part].Ex=0.0; 
    particle[num_part].Ey=0.0; 
    num_part++; 
    if (num_part >= sg.mpart) { 
      printf("*** Too many particles injected: increase 'sg.mpart' in lprobe60.h ****"); 
      exit(1); 
    }; 
  } 
  // NPTS; no. of elements of array 'random_num'  
  if (NPTS<rancount+3) rancount=0; //! make sure that 'racount' stays in [0..NPTS] 
 
  for(i=0;i < superinj_back;i++){ 
    /*     BACK     */ 
    theta=acos(sqrt(1 - random_num[rancount])); 
    rancount ++; 
    phi=2.0*pi*random_num[rancount];  
    rancount ++; 
    rannum=sg.mpart*random_num[rancount]; 
    rancount ++; 
    v=v_table[rannum]; 
 
    do{ 
      // NPTS; no. of elements of array 'random_num'  
      if (NPTS<rancount+2) rancount=0; //! make sure that 'racount' stays in [0..NPTS] 
 
      particle[num_part].x=0.0; 
      particle[num_part].y=ib.height * random_num[rancount] - ib.height / 2.0; 
      rancount ++; 
      particle[num_part].z=ib.width * random_num[rancount] - ib.width / 2.0; 
      rancount ++; 
      particle[num_part].r=sqrt(particle[num_part].y*particle[num_part].y + particle[num_part].z  
     * particle[num_part].z); 
      particle[num_part].vx=-v * cos(theta); 
      particle[num_part].vy=v*sin(theta)*cos(phi); 
      particle[num_part].vz=v*sin(theta)*sin(phi); 
      particle[num_part].Ex=0.0; 
      particle[num_part].Ey=0.0; 
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      particle[num_part].q= q * super_back; 
      particle[num_part].m= m * super_back; 
    }while( particle[num_part].r <= ge.r_insul); 
    num_part++; 
    if (num_part >= sg.mpart) { 
      printf("*** Too many particles injected: increase 'sg.mpart' in lprobe60.h ****"); 
      exit(1); 
    }; 
  } 
  // NPTS; no. of elements of array 'random_num'  
  if (NPTS<rancount+20*superinj_side) rancount=0; // make sure that 'racount' stays in [0..NPTS] 
  for(i=0;i < superinj_side;i++){ 
    /*     BOTTOM  SIDE            */ 
    theta=acos(sqrt(1 - random_num[rancount])); 
    rancount ++; 
    phi=2.0*pi*random_num[rancount]; 
    rancount ++; 
    rannum=sg.mpart*random_num[rancount]; 
    rancount ++; 
    v=v_table[rannum]; 
    particle[num_part].x=-ge.length * random_num[rancount]; 
    rancount ++; 
    particle[num_part].y=-ge.radius; 
    particle[num_part].z=ib.width * random_num[rancount] - ib.width / 2.0; 
    rancount ++; 
    particle[num_part].r=sqrt(particle[num_part].y*particle[num_part].y + particle[num_part].z  
          * particle[num_part].z); 
    particle[num_part].vx=v * sin(theta) *sin(phi); 
    particle[num_part].vy=v * cos(theta); 
    particle[num_part].vz=v*sin(theta)*cos(phi); 
    particle[num_part].Ex=0.0; 
    particle[num_part].Ey=0.0; 
    particle[num_part].q= q * super_side; 
    particle[num_part].m= m * super_side; 
    num_part++; 
    if (num_part >= sg.mpart) { 
      printf("*** Too many particles injected: increase 'sg.mpart' in lprobe60.h ****"); 
      exit(1); 
    }; 
    /*     TOP    Side    */ 
    theta=acos(sqrt(1 - random_num[rancount])); 
    rancount ++; 
    phi=2.0*pi*random_num[rancount];  
    rancount ++; 
    rannum=sg.mpart*random_num[rancount]; 
    rancount ++; 
    v=v_table[rannum]; 
    particle[num_part].x=-ge.length * random_num[rancount]; 
    rancount ++; 
    particle[num_part].y=ge.radius; 
    particle[num_part].z=ib.width * random_num[rancount] - ib.width / 2.0; 
    rancount ++; 
    particle[num_part].r=sqrt(particle[num_part].y*particle[num_part].y + particle[num_part].z  
          * particle[num_part].z); 
    particle[num_part].vx=v * sin(theta) * sin(phi); 
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    particle[num_part].vy=-v * cos(theta); 
    particle[num_part].vz=v * sin(theta) * cos(phi); 
    particle[num_part].Ex=0.0; 
    particle[num_part].Ey=0.0; 
    particle[num_part].q= q * super_side; 
    particle[num_part].m= m * super_side; 
    (num_part)++; 
    if (num_part >= sg.mpart) { 
      printf("*** Too many particles injected: increase 'sg.mpart' in lprobe60.h ****"); 
      exit(1); 
    }; 
    /*     FRONT SIDE               */ 
    theta=acos(sqrt(1 - random_num[rancount])); 
    rancount ++; 
    phi=2.0*pi*random_num[rancount];  
    rancount ++; 
    rannum=sg.mpart*random_num[rancount]; 
    rancount ++; 
    v=v_table[rannum]; 
    particle[num_part].x=-ge.length * random_num[rancount]; 
    rancount ++; 
    particle[num_part].y=ib.height * random_num[rancount] - ib.height / 2.0; 
    rancount ++; 
    particle[num_part].z=ge.radius; 
    particle[num_part].r=sqrt(particle[num_part].y*particle[num_part].y + particle[num_part].z  
          * particle[num_part].z); 
    particle[num_part].vx=v * sin(theta) * cos(phi); 
    particle[num_part].vy=v * sin(theta) * sin(phi); 
    particle[num_part].vz=-v * cos(theta); 
    particle[num_part].Ex=0.0; 
    particle[num_part].Ey=0.0; 
    particle[num_part].q= q * super_side; 
    particle[num_part].m= m * super_side; 
    (num_part)++; 
    if (num_part >= sg.mpart) { 
      printf("*** Too many particles injected: increase 'sg.mpart' in lprobe60.h ****"); 
      exit(1); 
    }; 
    /*    BACK SIDE    */ 
    theta=acos(sqrt(1 - random_num[rancount])); 
    rancount ++; 
    phi=2.0*pi*random_num[rancount]; 
    rancount ++;  
    rannum=sg.mpart*random_num[rancount]; 
    rancount ++; 
    v=v_table[rannum]; 
    particle[num_part].x=-ge.length * random_num[rancount]; 
    rancount ++; 
    particle[num_part].y=ib.height * random_num[rancount] - ib.height / 2.0; 
    rancount ++; 
    particle[num_part].z=-ge.radius; 
    particle[num_part].r=sqrt(particle[num_part].y*particle[num_part].y + particle[num_part].z  
          * particle[num_part].z); 
    particle[num_part].vx=v * sin(theta) * cos(phi); 
    particle[num_part].vy=v * sin(theta) * sin(phi); 
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    particle[num_part].vz=v * cos(theta); 
    particle[num_part].Ex=0.0; 
    particle[num_part].Ey=0.0; 
    particle[num_part].q= q * super_side; 
    particle[num_part].m= m * super_side; 
    (num_part)++; 
    if (num_part >= sg.mpart) { 
      printf("*** Too many particles injected: increase 'numpart' in lprobe60.h ****"); 
      exit(1); 
    }; 
  } 
  return num_part;  
} 

A.2.4   init.cpp 

#ifndef INIT_H 
 #define INIT_H 
 
#include <gsl/gsl_sf_erf.h> 
#include <gsl/gsl_sf_gamma.h> 
#include "lprobe60.h" 
 
void sincosf(float x, float *sin, float *cos); 
 
int newparam(SUPERGLOBAL sg, PLASMA &pl, GEOMETRY &ge, INJECTIONSETUP 
&is,INJECTIONBEAM &ib,BOUNDARY &bb ,LOCATION &lo,char * Inputfile); 
void initfieldparam(SUPERGLOBAL &sg, FIELDSOLVER &fs ); 
void freefieldparam(FIELDSOLVER &fs); 
long initialize(PARTICLEDEF particle[],long  init_num,FLOAT super_init,FLOAT *v_table,FLOAT 
m,FLOAT q,GEOMETRY &ge ); 
void make_velocity_table(PLASMA pl,FLOAT *v_table_e, FLOAT *v_table_i,long sz); 
void mover(PARTICLEDEF particle[],long  num_part,FLOAT timestep); 
long boundary (int iflag, PARTICLEDEF particle[],long num_part,PLASMA &pl, GEOMETRY 
&ge,BOUNDARY &bb); 
long inject(int iflag, PARTICLEDEF particle[], long  num_part, float *v_table, SUPERGLOBAL &sg, 
PLASMA &pl, GEOMETRY ge, INJECTIONBEAM &ib, INJECTIONSETUP &is); 
 
#endif 

A.2.5   lprobe.h 

This is PROBEPIC’s header file that includes some of the codes overall design philosophy. Structures were used in the 

program for clarity. For example, particles (electrons, ions, etc.) are of the type PARTICLEDEF—which has the 

associated properties of position, velocity, charge, etc. 
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#ifndef LPROBE60_H 
 #define LPROBE60_H 
  
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <gsl/gsl_sf_erf.h> 
#include <vector> 
 
#define FLOAT float 
 
#define EPS0 8.85e-12 
#define EPSAlO3 10.44e-12 
#define pi M_PI 
  
//#define ngp1 74 
//#define ngp2 74 
//#define ngp (ngp1*ngp2) 
 
#define numpart 800000  
#define boltz 1.38e-23 
#define RAD 0.00378864 
#define NPTS 1000005 // ! # of data points 
#define V_TABLE_RES numpart 
 
#define noBins 100 
#define OUTPUT_FREQUENCY 100L 
 
// some thing to do with fortran C++ wrappers 
// won't compile on gcc-.4.7.3 unless present 
//void *__gxx_personality_v0; 
 
typedef unsigned long int unlong; 
 
/*  SUPERGLOBAL    */ 
typedef struct{ 
  long  mgp1; 
  long  mgp2; 
  long  mgp; 
  long  mpart; 
  long  V_TABLE_RES2;  
} SUPERGLOBAL; 
 
typedef struct { 
  float x,y,q_dens,Ey,Ex,phi; 
} GRIDDEF; 
 
typedef struct { 
  float x,y,z,r,vx,vy,vz,Ex,Ey,q,m; 
  unsigned long cellx,celly; 
} PARTICLEDEF; 
 
//--- BINS ------------- 
typedef struct { 
  float r,v; 
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}GRIDDEF_T; 
 
typedef std::vector<std::vector<GRIDDEF> > VGRID;  
 
//long int ngp_vert,ngp_horiz; 
 
/* SYSTEM GEOMETRY  */ 
typedef struct { 
  //  long  ngp_vert; 
  //long  ngp_horiz; 
  long jprobe; 
  long kprobe; 
  long jinsul; 
  long kinsul; 
 
  float cell_height1; 
  float cell_height2; 
  float cell_height3; 
  float cell_height4; 
  float cell_height5; 
  float cell_height6; 
  float cell_height; 
  float cell_width; 
  float r_probe; 
  float r_insul; 
  float l_probe; 
  float l_insul; 
  float radius; 
  float length; 
} GEOMETRY; 
 
/*  PLASMA PARAMETER  VARIABLES   */ 
typedef struct{ 
  int distribution_type; 
  float T; 
  float T_i; //ion temperature 
  float n; 
  float m_ion; 
  float q_ion; 
  float m_elec; 
  float q_elec; 
  float m_part; 
  float plasma_pot; 
      //parameters for two temperature distribution 
  float T_h; // [eV] high energy electrons' temperature 
  float E_t; // [eV] energy of distribution change from one to another 
  float normalize; //normalization factor for the distribution 
} PLASMA; 
 
/*  INJECTION SETUP  VARIABLES    */ 
typedef struct{ 
  long  injsuperi; 
  long  injsupere; 
  long  superii_init; 
  long  superii_back; 
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  long  superii_front; 
  long  superii_side; 
  long  superei_init; 
  long  superei_back; 
  long  superei_front; 
  long  superei_side; 
  long  elec_iter; 
} INJECTIONSETUP; 
 
typedef struct{ 
  float supere; 
  float superi; 
  float sigma; 
  float sigmae; 
  float sigmai; 
  float wpdt; 
  float h; 
  float wp; 
  float dt; 
 
  float superi_init; 
  float superi_back; 
  float superi_front; 
  float superi_side; 
  float supere_init; 
  float supere_back; 
  float supere_front; 
  float supere_side; 
 
  float height; 
  float width; 
  float dti; 
  float dte; 
 
  //float *random_num; 
  //float *v_table_i; 
  //float *v_table_e; 
} INJECTIONBEAM; 
  
/*  GRAPHICS  VARIABLES   */ 
typedef struct{ 
  long view; 
  long page; 
} GRAPHICS; 
 
/*  BOUNDARY  VARIABLES   */ 
typedef struct{ 
  float V; 
  float current; 
  float VOLUME; 
  float curri; 
  float curre; 
} BOUNDARY; 
 
/*  FIELD SOLVER  VARIABLES   */ 
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typedef struct { 
  int test1; 
  int test2; 
  int test3; 
  int ldab; 
  int n1; 
  int m1; 
  int ldb; 
  int upper_width; 
  int lower_width; 
  int info; 
  int nrhs; 
  int *piv; 
 
  float *band1; 
  float *band2; 
  float *band3; 
  float *band4; 
  float *band5; 
  float *abd; 
  float *b; 
  float *phi; 
 
} FIELDSOLVER; 
 
typedef struct{ 
  unsigned long x; 
  unsigned long y; 
  unsigned long z; 
  unsigned long c; 
  unsigned long n2; 
} LOCATION; 
 
#endif 

A.2.6   random_number_v1.cpp 

The generation of pseudo-random numbers is an important element of any PIC or PIC/Monte Carlo simulation. The 

quality of the random numbers plays a major role in the statistical accuracy of the simulation, which is determined by 

testing the generator on multiple platforms. 

 

//#define EXTERN extern 
//#include "lprobe60.h" 
 
/* Common Block Declarations */ 
struct klotz0_1_ { 
    FLOAT buff[607]; 
    long int ptr; 
}; 
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#define klotz0_1 (*(struct klotz0_1_ *) &klotz0_) 
#define min(a,b) (a<b)?a:b 
 
struct klotz1_1_ { 
    FLOAT xbuff[1024]; 
    long int first, xptr; 
}; 
//#define klotz1_1 (*(struct klotz1_1_ *) &klotz1_) 
 
/* Initialized data */ 
struct KLOTZ { 
    long int fill_1[1214]; 
    long int e_2; 
    } klotz0_ = { {0}, 0 }; 
 
//struct { 
//    FLOAT fill_1[1024]; 
//    long int e_2[2]; 
//    FLOAT e_3; 
//    } klotz1_ = { {0}, 0, 0, 0. }; 
 
int zufall_(long int n, FLOAT *a) 
//long int n; 
//FLOAT *a; 
{ 
    long int buffsz = 607; 
 
    long int left, aptr, bptr, aptr0, i, k, q; 
    FLOAT t; 
    long int nn, vl, qq, k273, k607, kptr; 
 
/* portable lagged Fibonacci series uniform random number */ 
/* generator with "lags" -273 und -607: */ 
/* W.P. Petersen, IPS, ETH Zuerich, 19 Mar. 92 */ 
 
    aptr = 0; 
    nn = n; 
 
L1: 
 
    if (nn <= 0) { 
 return 0; 
    } 
/* factor nn = q*607 + r */ 
 
    q = (nn - 1) / 607; 
    left = buffsz - klotz0_1.ptr; 
 
    if (q <= 1) { 
 
/* only one or fewer full segments */ 
 
 if (nn < left) { 
            kptr = klotz0_1.ptr; 
     for (i = 0; i < nn; ++i) { 
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  a[i + aptr] = klotz0_1.buff[kptr + i]; 
     } 
     klotz0_1.ptr += nn; 
     return 0; 
 } else { 
            kptr = klotz0_1.ptr; 
/*pragma _CRI ivdep*/ 
     for (i = 0; i < left; ++i) { 
  a[i + aptr] = klotz0_1.buff[kptr + i]; 
     } 
     klotz0_1.ptr = 0; 
     aptr += left; 
     nn -= left; 
/*  buff -> buff case */ 
     vl = 273; 
     k273 = 334; 
     k607 = 0; 
     for (k = 0; k < 3; ++k) { 
/*pragma _CRI ivdep*/ 
  for (i = 0; i < vl; ++i) { 
     t = klotz0_1.buff[k273+i]+klotz0_1.buff[k607+i]; 
     klotz0_1.buff[k607+i] = t - (FLOAT) ((long int) t); 
  } 
  k607 += vl; 
  k273 += vl; 
  vl = 167; 
  if (k == 0) { 
      k273 = 0; 
  } 
     } 
     goto L1; 
 } 
    } else { 
/* more than 1 full segment */ 
 
        kptr = klotz0_1.ptr; 
/*pragma _CRI ivdep*/ 
 for (i = 0; i < left; ++i) { 
     a[i + aptr] = klotz0_1.buff[kptr + i]; 
 } 
 nn -= left; 
 klotz0_1.ptr = 0; 
 aptr += left; 
 
/* buff -> a(aptr0) */ 
 
 vl = 273; 
 k273 = 334; 
 k607 = 0; 
 for (k = 0; k < 3; ++k) { 
     if (k == 0) { 
/*pragma _CRI ivdep*/ 
  for (i = 0; i < vl; ++i) { 
      t = klotz0_1.buff[k273+i]+klotz0_1.buff[k607+i]; 
      a[aptr + i] = t - (FLOAT) ((long int) t); 
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  } 
  k273 = aptr; 
  k607 += vl; 
  aptr += vl; 
  vl = 167; 
     } else { 
/*pragma _CRI ivdep*/ 
  for (i = 0; i < vl; ++i) { 
      t = a[k273 + i] + klotz0_1.buff[k607 + i]; 
      a[aptr + i] = t - (FLOAT) ((long int) t); 
  } 
  k607 += vl; 
  k273 += vl; 
  aptr += vl; 
     } 
 } 
 nn += -607; 
 
/* a(aptr-607) -> a(aptr) for last of the q-1 segments */ 
 
 aptr0 = aptr - 607; 
 vl = 607; 
 
 for (qq = 0; qq < q-2; ++qq) { 
     k273 = aptr0 + 334; 
/*pragma _CRI ivdep*/ 
     for (i = 0; i < vl; ++i) { 
  t = a[k273 + i] + a[aptr0 + i]; 
  a[aptr + i] = t - (FLOAT) ((long int) t); 
     } 
     nn += -607; 
     aptr += vl; 
     aptr0 += vl; 
 } 
 
/* a(aptr0) -> buff, last segment before residual */ 
 
 vl = 273; 
 k273 = aptr0 + 334; 
 k607 = aptr0; 
 bptr = 0; 
 for (k = 0; k < 3; ++k) { 
     if (k == 0) { 
/*pragma _CRI ivdep*/ 
  for (i = 0; i < vl; ++i) { 
      t = a[k273 + i] + a[k607 + i]; 
      klotz0_1.buff[bptr + i] = t - (FLOAT) ((long int) t); 
  } 
  k273 = 0; 
  k607 += vl; 
  bptr += vl; 
  vl = 167; 
     } else { 
/*pragma _CRI ivdep*/ 
  for (i = 0; i < vl; ++i) { 
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      t = klotz0_1.buff[k273 + i] + a[k607 + i]; 
      klotz0_1.buff[bptr + i] = t - (FLOAT) ((long int) t); 
  } 
  k607 += vl; 
  k273 += vl; 
  bptr += vl; 
     } 
 } 
 goto L1; 
    } 
} /* zufall_ */ 
long int zufalli_(long int  seed) 
//long int seed; 
{ 
    /* Initialized data */ 
 
    long int kl = 9373; 
    long int ij = 1802; 
 
    /* Local variables */ 
    long int i, j, k, l, m; 
    FLOAT s, t; 
    long int ii, jj; 
 
/*  generates initial seed buffer by linear congruential */ 
/*  method. Taken from Marsaglia, FSU report FSU-SCRI-87-50 */ 
/*  variable seed should be 0 < seed <31328 */ 
 
    if (seed != 0) { 
 ij = seed; 
    } 
    i = ij / 177 % 177 + 2; 
    j = ij % 177 + 2; 
    k = kl / 169 % 178 + 1; 
    l = kl % 169; 
    for (ii = 0; ii < 607; ++ii) { 
 s = 0.; 
 t = .5; 
 for (jj = 1; jj <= 24; ++jj) { 
     m = i * j % 179 * k % 179; 
     i = j; 
     j = k; 
     k = m; 
     l = (l * 53 + 1) % 169; 
     if (l * m % 64 >= 32) { 
  s += t; 
     } 
     t *= (FLOAT).5; 
 } 
 klotz0_1.buff[ii] = s; 
    } 
    return 0; 
} /* zufalli_ */ 
long int zufallsv_(FLOAT *svblk) 
//FLOAT *svblk; 
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{ 
    long int i; 
 
/*  saves common blocks klotz0, containing seeds and */ 
/*  polong inter to position in seed block. IMPORTANT: svblk must be */ 
/*  dimensioned at least 608 in driver. The entire contents */ 
/*  of klotz0 (polong inter in buff, and buff) must be saved. */ 
 
    /* Function Body */ 
    svblk[0] = (FLOAT) klotz0_1.ptr; 
/*pragma _CRI ivdep*/ 
    for (i = 0; i < 607; ++i) { 
 svblk[i + 1] = klotz0_1.buff[i]; 
    } 
    return 0; 
} /* zufallsv_ */ 
long int zufallrs_(FLOAT *svblk) 
//FLOAT *svblk; 
{ 
    long int i; 
 
/*  restores common block klotz0, containing seeds and pointer */ 
/*  to position in seed block. IMPORTANT: svblk must be */ 
/*  dimensioned at least 608 in driver. The entire contents */ 
/*  of klotz0 must be restored. */ 
 
    klotz0_1.ptr = (long int) svblk[0]; 
/*pragma _CRI ivdep*/ 
    for (i = 0; i < 607; ++i) { 
 klotz0_1.buff[i] = svblk[i + 1]; 
    } 
    return 0; 
} /* zufallrs_ */ 
void random_number(long int seed) 
{ 
//    extern long int fischet_(), zufalli_(), normalt_(), zufallt_(); 
 
    zufalli_(seed); 
    zufall_(NPTS,random_num); 
} 
 

A.2.7   output_data.cpp 

PROBEPIC is capable of producing both graphical and text output. The graphical output is very useful for debugging 

purpuses, while the text output provides the simulation results. 

 

//#include "lprobe60.h" 
 
void output_data( 
   PARTICLEDEF particle1[],PARTICLEDEF particle2[],long  numpart1,long  numpart2,long count, 
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PLASMA &pl, GEOMETRY &ge,INJECTIONBEAM &ib,BOUNDARY &bb) { 
  long  idx; 
  FLOAT nde,ndi,tms; 
  FLOAT avecurrent,avecurre,avecurri;  
  char filename[200]; 
  FILE *currdata; 
   
  sprintf(filename,"current_%+06.2fV.dat.csv", bb.V); 
  currdata=fopen(filename,"a"); 
 
  avecurrent=bb.current/(OUTPUT_FREQUENCY*ib.dti); 
  avecurre=bb.curre/(OUTPUT_FREQUENCY*ib.dti); 
  avecurri=bb.curri/(OUTPUT_FREQUENCY*ib.dti); 
 
  /*    COMPUTE NUMBER DENSITY     */ 
         
  nde=ndi=0.0; 
 
  for (idx=0; idx < numpart1; idx++) 
    if (particle1[idx].r <= ge.radius) 
      nde += particle1[idx].m; 
  nde /= ((pl.m_elec)*(pi*ge.radius*ge.radius*ge.length)); 
 
  for(idx=0;idx < numpart2;idx++) 
    if(particle2[idx].r <= ge.radius) 
      ndi += particle2[idx].m; 
  ndi /= ((pl.m_ion)*(pi*ge.radius*ge.radius*ge.length)); 
     
  tms=count*ib.dti*1e6; 
 
  if (count==1) 
    fputs("   V, t[micro-sec],     ne,    ni,      nde,       ndi,        j,           je,           ji\n\n",currdata); 
 
  fprintf(currdata,"%f, %f, %ld, %ld, %e, %e, %e, %e, 
%le\n",bb.V,tms,numpart1,numpart2,nde,ndi,avecurrent,avecurre,avecurri); 
  fclose(currdata); 
  printf(" current: %f [mA]",avecurrent*1000.0); 
 
  if(tms > 2.2723e-02 ) { 
  //if (tms >=0.007625 ) { 
    puts("\nexit for timing.  output_data.cpp"); 
    exit(0); 
  } 
  //t_count=0; 
 
  bb.current=0.0; 
  bb.curri=0.0; 
  bb.curre=0.0; 
}  
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