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Dedication 

It was freshman orientation at Berea College and all the academic departments were 

gathered to help incoming students identify their academic interests.  While at the time my 

mathematical abilities were slim to none, ironically the first table I found myself standing next to 

was the Physics Department’s. Behind that table stood an incredibly polite and welcoming 

professor, whom after talking to for only a short time had “encouraged” me to have a go at a 

degree in physics.   That professor was Professor Amer Lahamer, and his table was the only table 

that I ended up visiting.  My freshman year of physics didn’t go so well.  I worked with all my might, 

and still received a C in introductory physics.  In time, Professor Lahamer showed me the 

underlying issue was that I didn’t know how to learn.  He always told his students to read the book 

no less than 3 times (cover to cover).   He said to me, “Matthew, you should work to know your 

material so well that when you are tested on it, there is [to some extent] no thinking involved in 

solving the problem, just ‘boom, boom, boom’”.   Now, for Dr. Lahamer’s students, “No thinking” 

and “boom, boom, boom” are phrases we will never forget.  What he meant was, you have to 

spend so much time with the material that you develop a sufficiently intimate understanding that 

upon seeing any question related to that material, the answer, in many respects, comes second 

nature.  Professor Lahamer taught me that I didn’t have to be a genius to learn and be successful 

in physics, I simply had to devote a great deal of time to practice it for many hours a day, every 

day.  Subsequently, Professor Lahamer also taught me the critical life-lesson of how to make 

sacrifices.  I gave up most of my extracurricular hobbies including the Bluegrass Band, and even 

most of my time with family and friends.  The turning point for me happened about the time that 

Professor Lahamer, who seeing me near the point of total exhaustion, confided in me that he was 

man of faith.  Professor Lahamer recognized the reason I was growing increasingly depressed 

originated from what seemed to me to be failure in school, which I had equated to meaning 

worthlessness in life.  Though he deeply loved physics, I could tell the origins of his hope were 
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rooted in his faith.  He encouraged me not to place my perceived value in how well I appeared to 

be doing in class, but rather to be rooted in my own faith, and always to maintain that vision.  From 

then on, I saw Professor Lahamer in a different light.  He had become much closer than a 

professor.  Not only was he teaching me the necessary academic concepts, but more importantly, 

he was developing my growth and maturity as a person.  It is because of Professor Lahamer that 

I have pursued my PhD.  It goes without saying that my dissertation is dedicated to the amazing 

man who has had such a profound influence on my life.    My story is only of one of a great many, 

though.  I’d like to leave with something Professor Lahamer always told me, “The list of things you 

don’t know when you are born is infinite, and the list of things you don’t know when you die still 

will be infinite”.  The point is, live humbly and with thankfulness.   
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Abstract 

How nanometer-scale proteins position accurately within micron-scale bacteria has 

intrigued both biologists and physicists alike.  A critical process requiring precise protein 

localization is cell division.  In most bacteria, cell division starts with the self-assembly of the FtsZ 

proteins into filaments that form a ring-like structure encircling the cell at its middle, the Z-ring.  

The Z-ring is a scaffold for additional proteins that synthesize the lateral cell wall which separates 

the two daughter cells.  If division planes are misplaced relative to bacterial chromosomes, also 

called nucleoids, daughter cells with incomplete genetic material can be produced.  In Escherichia 

coli, research carried out over the past several decades has determined two independent 

molecular mechanisms that are involved in the midcell placement of the division plane, the Min 

system, and the SlmA proteins. By combining quantitative image analysis, fluorescence 

microscopy, and molecular biology techniques, this work provides evidence for two additional 

mechanisms that coordinate Z-ring positioning with chromosome segregation in E. coli.   The first 

mechanism revealed itself in cells that had the Min system and the SlmA proteins removed.  In 

these cells, the Z-ring invariably localized at the center of the nucleoid.  Formation of Z-ring in this 

location depended on cell cycle dependent movement of the replication terminus region (Ter) to 

nucleoid middle, and on ZapA, ZapB, and MatP proteins. The second mechanism was revealed 

in cells where Z-rings were strongly misplaced relative to chromosomes. Interestingly, most of 

these cells were still viable. We determined that cells retained their viability because as much as 

1/3 of the chromosome moved across the closing division plane in the late stages of cytokinesis. 

Chromosome repositioning appears to rely on septal cell wall synthesis rather than on DNA 

translocase activity. Altogether this work demonstrates that E. coli harbors several partially 

redundant molecular systems, in addition to those known previously, that collectively guarantee 

accurate and robust placement of both cell division proteins and chromosomes.  
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Introduction 

In the history of the Earth, perhaps one of the most astounding events was the emergence 

of the first cellular life, which is likely to have most closely resembled modern bacteria.  It is 

estimated that about 700 million years following the formation of the earth the first prokaryotic life 

appeared (Mojzsis, Arrhenius et al. 1997).  From then on, bacteria have played diverse, vital roles 

in the evolution and proliferation of all subsequent forms of life, which can be demonstrated in 

four ways: (1) bacterial biodiversity, (2) biogeochemistry, (3) evolutionary history, and (4) bacterial 

symbiosis (O'Malley 2014).  

Today, there are an estimated 5 x 1030 prokaryote cells on the planet (Whitman, Coleman 

et al. 1998).  To put this number into perspective, there are approximately 1016 bacteria in a pick-

up truck-load of soil, which is ten thousand times greater than the number of stars in the Milky 

Way galaxy (Curtis and Sloan 2005).  Accordingly, the total biomass of bacteria is at least equal 

with the biomass of all plants (Singleton 2004).  More important than their sheer number however, 

the global chemistry of life is based on and regulated by bacterial metabolisms interacting with 

the Earth’s geochemistry (Falkowski, Fenchel et al. 2008). These biogeochemical cycles are 

themselves the products of evolution over the entire history of the Earth, in which microbes have 

not only themselves evolved but have had major evolutionary impacts on every other evolving 

lifeform. Not surprisingly, this impact is largely derived from the symbiosis between bacteria and 

other forms of life.  As an example, it is estimated that there are 10 times more bacterial cells on 

and within our bodies than there are human cells. Some of these bacteria are critical for our 

survival (Berg 1996).  Because bacteria play an integral role in the processes of life on Earth, it is 

crucial that we understand how they function, namely, how they grow and divide.  Accordingly, in 

this work we investigate two primary questions, 1. what physical and molecular mechanisms do 

modern bacteria use to influence the positioning of the proteins required for cell division, and 2. 
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how is cell division coordinated with other events in the cell cycle such as DNA replication and 

segregation. 

 

Cell division in early cells 

In modern cells, growth and division require the proper proteins to be localized at the right 

place within the cell at the right time.  Consequently, modern cells have evolved multiple molecular 

systems to regulate the spatial and temporal positioning of the proteins involved in cell division to 

prevent formation of DNA-less cells and cells with damaged DNA. Interestingly, even when these 

highly evolved division protein positioning systems are removed from modern bacteria, they 

remain viable (Bernhardt and de Boer 2005, Rodrigues and Harry 2012, Bailey, Bissichia et al. 

2014).  This finding could suggest that primordial division mechanisms remain operational even 

in modern cells.  Unlike modern bacteria, early primitive cells (or proto-cells) likely were much 

less complex, consisting of only an amphiphilic membrane enclosure harboring self-replicating 

genetic material (Chen and Walde 2010, Schrum, Zhu et al. 2010).  How these early proto-cells 

grew and divided remains unclear, though it is believed the process could be described 

predominantly by physical and chemical principles, such as the self-organizing properties of 

intracellular components and on interactions with their environment (Hanczyc and Szostak 2004).  

If so, perhaps the current biochemistry based description of cell division in modern bacteria should 

be expanded to include the underlying contributions of physics.  In this work, we study a strain of 

the modern bacterium E. coli which was found to proliferate in the absence of all known molecular 

cell division protein regulation systems.  We propose a positioning system that does not rely on 

an evolved molecular system but one that utilizes physical interactions between division proteins 

and DNA to not only regulate spatial positioning but also coordinate cell division with other critical 

events in the cell cycle, such as DNA replication and segregation.   

In the remainder of Chapter 1, I describe the current understanding of cell division in 

modern, wild-type E. coli and thereafter present a physical model that can account for the 
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positioning of cell division proteins that the organism could have inherited from its ancient 

ancestors.  

 

Cell division in the model bacterium Escherichia coli 

Historically, biological research has focused on a small fraction of the Earth’s biodiversity 

to understand the general principles governing life; accordingly, these select organism are 

referred to as “model organisms” (Hedges 2002).  Much of the current understanding about 

genetics, proteomics, development, and evolution results from studies of one of the most studied 

bacterial model organisms, Escherichia coli (Lee and Lee 2003).  Because of wealth of knowledge 

obtained already for E. coli, the relative ease with which E. coli can be cultured and genetically 

modified, and because bacteria are among the simplest living systems to study, we have chosen 

E. coli as a platform upon which we aim to build a more quantitative, physical understanding of 

cell division.   

Many of the proteins required for cell division have been identified only in the past couple 

decades (Singleton 2004).  In most bacteria, the main macromolecular structure that is 

responsible for coordinating cell division with other cellular processes, including replication and 

segregation of chromosomes, is the Z-ring (Bi and Lutkenhaus 1991, Margolin 2005, Adams and 

Errington 2009, de Boer 2010, Erickson, Anderson et al. 2010, Lutkenhaus, Pichoff et al. 2012).  

Z-ring formation is the first step in bacterial cytokinesis (cytokinesis, see Appendix Glossary) 

(Figure 1).  The Z-ring is organized by linear FtsZ filaments that in E. coli are anchored to the cell 

plasma membrane by FtsA and ZipA linker proteins (Chen, Bjornson et al. 2005, Loose and 

Mitchison 2014).  Once the Z-ring has formed from the bundling of these FtsZ filaments into a 

loose ring-like annulus around the middle of the cell, the Z-ring becomes a scaffold for over 30 

subsequent proteins that forms a macromolecular complex called the divisome (Liu, Persons et 

al. 2015). The divisome carries out septal (septum, see Appendix Glossary) cell wall synthesis 

that leads to the pinching off of one daughter cell from the other (binary fission) (Figure 1).  
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Figure 1. The E. coli cell cycle. Schematic (middle panel) and live cell images (right-most panel) 

showing the progression of bacterial cell growth from birth (0) until division (cytokinesis, 5).  The 

live cell images are from timelapse microscopy of two wild-type E. coli cells during one complete 

cell cycle.  Each frame is a composite of three individual images: a phase contrast image (grey) 

which defines the cell contour, a HupA-mCherry image (red) which shows the bacterial 

chromosome, and a ZipA-GFP image (green) which is a protein that helps secure the Z-ring to 

the cell membrane, and therefore represents the Z-ring and/or division plane.  Note, Td stands for 

doubling time, which for the cells shown here is approximately 120 minutes.  All scale bars are 

2μm.  Generally, cells grow throughout the cell cycle, exclusively along their long axis.  During 

elongation, the circular bacterial chromosome (shown in red in the schematic) replicates.  

Chromosome segregation occurs comcomitantly with replication.  The Z-ring (shown in green in 

the schematic) is the main macromolecular structure that defines the future division plane.  The 

Z-ring is composed of linear filaments of the protein FtsZ.  The Z-ring serves as a scaffold for at 

least 30 additional proteins that collectively synthesize the lateral cell wall, which 

compartmentalizes and delineates future daughter cells.           
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Remarkably, in wild-type E. coli this pinching off occurs very accurately in the middle of 

the mother cell between two separated daughter nucleoids (Trueba 1982, Den Blaauwen, 

Buddelmeijer et al. 1999, Männik, Wu et al. 2012) (Figure 1, right-most panel). In mutant cells, 

the inaccurate placement of the Z-ring relative to nucleoids can lead to cells lacking chromosomal 

DNA completely, i.e. minicells (Adler, Fisher et al. 1967) or to cells that have an incomplete set of 

genetic material, i.e. have guillotined nucleoids (Niki, Jaffe et al. 1991, Cook and Rothfield 1999, 

Hendricks, Szerlong et al. 2000).  More specifically, in this work we study how the mechanisms 

which influence Z-ring positioning realize such high spatial accuracy relative to the cell center.  

How do nanometer-sized FtsZ proteins recognize the center of a cell that is a few micrometers 

long while simultaneously providing faithful coordination between the divisome and the 

chromosome?   

At the beginning of this work, two molecular systems referred to as 1. the Min system and 

2. nucleoid occlusion were known to influence Z-ring positioning to achieve proper divisome – 

nucleoid coordination and were believed to be responsible for accurate cell division (Figure 1).  In 

the following sections, the Min system and Nucleoid Occlusion are briefly described.   The 

description has been adapted from our review article (Männik and Bailey 2015).  However, 

complete understanding of the Min system and Nucleoid Occlusion are not necessary to follow 

the implications of the results presented in this work.   

 

The Min system 

The three Min proteins, MinC, MinD, and MinE, form a well-understood geometric 

positioning system for the Z-ring in E. coli that defines the cell’s geometric middle and prevents 

polar septations (Lutkenhaus 2007, Shapiro, McAdams et al. 2009, Moseley and Nurse 2010, 

Lutkenhaus 2012). Fluorescent tagging of the Min proteins has shown that MinC, MinD, and MinE 

exhibit a remarkable oscillatory behavior in E. coli cells, moving back and forth between the two  
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poles with a typical oscillatory period from 30 seconds to 1 minute (Figure 2A) (Raskin and de 

Boer 1999).  Note, in Figure 2A, only the MinD protein (MinD-GFP) is shown; the oscillatory  

pattern of MinC is very similar to MinD, whereas MinE primarily labels the membrane.  Of these 

three proteins, only MinD and MinE are necessary to set up the oscillations while MinC, which 

follows and binds to MinD, is the sole inhibitor of Z-ring formation (Lutkenhaus 2007).  MinC 

binding to membrane-attached MinD activates its inhibitory function (Lutkenhaus 2012). Due to 

the oscillations, the destabilizing effect of MinC on Z-ring formation is the strongest at the cell 

poles, where the time-averaged concentration of MinD-bound MinC is the highest (Figure 2B).  

Consequently, the time averaged concentration minimum of MinC is at the cell center.   Ultimately, 

this negative regulation prevents minicelling at the poles. However, the Min system appears also 

to play a role in the precise localization of the Z-ring at midcell (Guberman, Fay et al. 2008).      

Extensive modelling has been carried out to capture the oscillatory behavior of the Min 

system based on continuum models and stochastic simulations (Meinhardt and de Boer 2001, 

Kruse 2002, Huang, Meir et al. 2003, Fange and Elf 2006, Kerr, Levine et al. 2006, Halatek and 

Frey 2012, Bonny, Fischer-Friedrich et al. 2013). Although different models introduce slight 

variations in reactions occurring between MinD and MinE, they all can be categorized in 

mathematical terms as reaction-diffusion systems that exhibit Turing instability (Turing 1952).  

Interestingly to physicists, the Min system in E. coli is the best studied example where the Turning 

instability mechanism leads to the formation of a dynamic pattern in a living organism. 

The Min system functions autonomously from the nucleoid as shown convincingly in in 

vitro reconstituted assays (in vitro, see Appendix Glossary) (Loose, Fischer-Friedrich et al. 2008, 

Ivanov and Mizuuchi 2010, Schweizer, Loose et al. 2011). The same conclusion also can be 

drawn based on experiments with cells that lack nucleoids but have a functioning Min system. 

Remarkably, in these cells the Z-ring also can be placed relatively accurately in the middle of the  

cell (Sun and Margolin 1998, Yu and Margolin 1999, Pazos, Casanova et al. 2014). Taking that 
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Figure 2.  The Min system prevents Z-ring formation at cell poles. The Min system is 

composed of three proteins MinC, MinD, and MinE that collectively exhibit a remarkable pole-to-

pole oscillatory behavior in E. coli.  (A) Timelapse montage of MinD-GFP fluorescence (strain 

JMBW2).  Each frame is taken at 6 second intervals; the oscillation period for the cell shown here 

is about 40s.  MinC, which is the component of the Min system that inhibits Z-ring formation, 

oscillates in essentially the same manner as MinD.  The yellow dotted lines are an approximate 

cell contour.  (B) Time-averaged MinD concentration from the cell shown in (A).  The concentration 

maximums at the cell poles defines inhibitory zones for Z-ring formation.  Scale bars in (A) and 

(B) are 2 μm.  (C) Line profile of the time averaged MinD-GFP fluorescence through the cell’s 

long axis (from panel B).  Shown are approximate regions of the cell where the Z-ring is inhibited 

(cell poles), and a central region where the Z-ring can form. 
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the two daughter chromosomes separate from each other approximately at mid-cell in normal 

growth conditions, the Min system alone is perhaps sufficient to coordinate chromosomes and 

cell division proteins in E. coli.  

While the Min system is not directly involved in coordinating the Z-ring and chromosomes, 

an indirect involvement is possible. In fact, several authors have pointed out that deletion of the 

Min system leads to a small defect in chromosome segregation and in the separation of daughter 

nucleoids in E. coli (Mulder, Elbouhali et al. 1990, Akerlund, Gullbrand et al. 2002, Di Ventura, 

Knecht et al. 2013, Jia, Keilberg et al. 2014).  Di Ventura et al. have proposed that MinD, which 

is a homolog of the chromosome partitioning protein ParA in the bacterium C. crescentus, binds 

to DNA. These authors propose that MinD oscillation and DNA binding provides a Brownian-

ratchet mechanism for DNA segregation and separation (Di Ventura, Knecht et al. 2013). Further 

experimental support to this interesting idea is still warranted. 

 

SlmA-mediated nucleoid occlusion 

The early discussion of coordination between cell division and chromosome 

replication/segregation centered on the idea of nucleoid occlusion (NO) (Hussain, Begg et al. 

1987, Mulder and Woldringh 1989, Woldringh, Mulder et al. 1990, Wu and Errington 2011). The 

idea of NO is based on observations that constrictions in dividing cells were excluded from the 

regions occupied by the nucleoids.  A major development in the understanding of NO came with 

the discovery of the Z-ring inhibiting, SlmA protein (Bernhardt and de Boer 2005). Cells that lacked 

both slmA and minCDE were not able to divide in rich medium and gave rise to filamentous cells, 

indicating a defect in cytokinesis. The same authors also observed that some Z-rings could 

localize over unsegregated nucleoids in ΔslmA ΔminCDE cells suggesting SlmA played a role in 

Z-ring positioning.   

Further work revealed that SlmA is a DNA-binding protein that inhbits Z-ring formation 

only when bound to specific repeating patterns of DNA bases, called SlmA binding sites (SBSs).  
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Two possible molecular mechanisms by which SlmA inhibits the formation of the Z-ring have been 

proposed. One model posits that SlmA causes depolymerization of FtsZ filaments (Figure 3A) 

(Cho, McManus et al. 2011, Tonthat, Arold et al. 2011, Cho and Bernhardt 2013, Du and 

Lutkenhaus 2014).  In an alternative model, it was proposed that DNA-bound SlmA does not 

depolymerize protofilaments but instead captures them and renders them incapable of Z-ring 

formation (Figure 3B) (Tonthat, Arold et al. 2011, Tonthat, Milam et al. 2013). 

One of the more interesting aspects of SlmA-mediated nucleoid occlusion is the 

distribution of locations where SlmA binds the chromosome.  SBSs are distributed throughout the 

chromosome except for a region around the replication terminus, which is the last region of the 

chromosome to replicate (Figure 3C) (Cho, McManus et al. 2011, Tonthat, Arold et al. 2011).  

Consequently, Z-rings are inhibited from forming until the chromosome is nearing the end of 

replication, which helps ensure that by the time the septal cell wall forms, and the mother cell 

undergoes cyctokinesis, each daughter cell inherits a complete chromosome. Furthermore, at 

later stages of the cell cycle, the replication terminus region is positioned approximately at midcell, 

in the vicinity of the membrane region where the Z-ring typically assembles.  In this way, SlmA 

influences both the spatial and temporal placement of the Z-ring.  

While characterization of SlmA at the molecular level has been extensive, understanding 

its role and function at the cellular level is still limited. How could SlmA that is bound to 

chromosomal DNA inhibit Z-ring formation at the cell membrane?   Models described in (Du and 

Lutkenhaus 2014) and (Tonthat, Milam et al. 2013), although different in their interaction 

mechanism between SlmA and FtsZ, both assume that DNA-bound SlmA comes into proximity 

of the cell membrane to influence the localization of the Z-ring. However, DNA-bound SlmA within  

the nucleoid makes only limited contacts with the membrane and therefore would interact   
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Figure 3. SlmA-mediated nucleoid occlusion.  SlmA is a DNA-binding protein that inhbits Z-
rings from forming over nucleoids.  When bound to specific sequences of DNA, called SlmA 
binding sites (SBSs), SlmA is thought to inhibit Z-ring formation via one of two mechanisms.  (A) 
Model 1 suggests that SlmA causes depolymerization of FtsZ filaments (Cho, McManus et al. 
2011, Tonthat, Arold et al. 2011, Cho and Bernhardt 2013, Du and Lutkenhaus 2014).  In Model 
2, it was proposed that DNA-bound SlmA does not depolymerize protofilaments but instead 
captures them and renders them incapable of Z-ring formation (Tonthat, Arold et al. 2011, 
Tonthat, Milam et al. 2013).  (B) SBSs are distributed throughout the chromosome except for the 
replication terminus region (Cho, McManus et al. 2011, Tonthat, Arold et al. 2011).  Binding sites 
on the circular chromosome are shown by orange lines.  Panels (A) and (B) are adapted from 
(Wu and Errington 2011). (C)  As shown in the schematic, the chromosomal terminus region is 
located near the cell center before cytokinesis starts.  Here, SlmA is shown in pairs of purple ovals 
(SlmA dimers).  The distribution of DNA-bound SlmA inhibits Z-rings from forming until the 
chromosome is nearing the end of replication.     
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infrequently with membrane-bound FtsZ. Transertional linkages (transertion, see Appendix 

Glossary) may help to facilitate these contacts (Tonthat, Milam et al. 2013) but the existing 

microscopy data indicates that SlmA is localized within the nucleoid rather than in the vicinity of 

the cell surface (Bernhardt and de Boer 2005).  Additionally, how effectively SlmA inhibits Z-ring 

formation in various growth conditions remains yet to be characterized.  Nevertheless, in cases 

where cell shape becomes aberrant (Männik, Wu et al. 2012) the Min system and NO can define 

different locations for the cell division plane. In conflicting cases, it appears that the NO 

mechanism dominates over the Min system (Männik, Wu et al. 2012). 

Although SlmA mediated NO has received the most attention recently, there is strong 

evidence that additional mechanisms beyond SlmA can lead to a NO effect in E. coli. It was 

observed that cell division proteins are positioned in accordance with NO in cells lacking SlmA. 

The NO effect was distinctly present even when the shapes and sizes of these cells were strongly 

perturbed (Männik, Wu et al. 2012).  It was also observed that a replication-inhibited and 

unsegregated nucleoid at mid-cell blocks Z-ring formation independent of the SlmA and SOS 

response (Cambridge, Blinkova et al. 2014). How these inhibitory effects of nucleoids are 

mediated at a molecular level is currently not known, but from these data it is clear that the SlmA-

related mechanism is not the only one that realizes NO in E. coli cells.  The combined influences 

of the Min system and SlmA-mediate nucleoid occlusion is illustrated in Figure 4.  

 

Z-ring localization in the absence of Min and SlmA 

During the discovery of the slmA gene, Bernhardt & de Boer made a very interesting 

observation that under certain conditions cells could still divide even in the absence of both of 

functional SlmA and Min (Bernhardt and de Boer 2005).  Strangely, E. coli grown in a nutrient 

poor medium versus a nutrient rich medium were viable, and even in a nutrient rich environment 

when FtsZ levels were artificially upregulated (Bernhardt and de Boer 2005).  If Min and SlmA are 

the only two active mechanisms regulating Z-ring placement, then by what mechanism do these 
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ΔslmA Δmin cells slowly growing in a minimal medium position their divisome?  Furthermore, an 

evolutionarily divergent gram-positive bacteria, Bacillus subtilis, was discovered to be able to grow 

and divide in the absence of both Min and NO (Rodrigues and Harry 2012) also.  While the Min 

system doesn’t operate in the same fashion as in E. coli (the inhibitory MinC protein gradient 

remains statically concentrated at the cell poles in B. subtilis, as opposed to oscillating as in E. 

coli), and though the mediator of NO is the “Noc” protein as opposed to SlmA, (Wu and Errington 

2004) the function of the two systems remains essentially the same.  This discovery suggests that 

the ability for a cell to divide in the absence of both Min and NO is not a peculiar oddity of E. coli, 

indicating that the mechanism, whatever it is, may be conserved across the evolutionary divide.  

These findings warrant revisiting the canonical model that the Min system and SlmA/Noc 

mediated nucleoid occlusion together are the sole factors coordinating the localization of cell 

division proteins in bacteria.  

 

An excluded volume based hypothesis to explain viability in ΔslmA Δmin E. coli 

If all molecular Z-ring positioning system were in fact removed, we hypothesized that 

perhaps the physical interactions between the bacteria’s chromosomal DNA and FtsZ, in 

particular between polymerized FtsZ filaments and DNA, could allow the chromosome to serve 

as a spatial template for Z-ring formation.  More specifically, FtsZ forms linear polymers, which 

are thought to have an average length of about 100 nm long (Chen, Bjornson et al. 2005).  If these 

FtsZ filaments have sufficiently strong excluded volume interactions with DNA, the presence of 

the bacterial chromosome will define a subcellular volume that is inaccessible to FtsZ filaments 

(Figure 5).  One location for the FtsZ filaments to pool is the space between partially or fully 

segregated chromosomes (Figure 5).  In this way, the bacterial chromosome could influence both 

the spatial and temporal localization of the Z-ring.  Since the Z-ring defines the location of the 

division plane, a Z-ring placed in between two fully segregated chromosomes would produce two  
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Figure 4.  Combined influence on Z-ring positioning from the Min system and SlmA-

mediated nucleoid occlusion.  The Min system inhibits Z-rings from forming at cell poles.  Z-

rings at cell poles which lead to the creation of a daughter cell with no chromosome (an anucleate 

cell), which is inviable.  SlmA prevents Z-rings from forming over all regions of the bacterial 

chromosome except for the replication terminus region.  As shown in the schematic, the terminus 

region is located near the cell center at later stages of the cell cycle before cytokinesis starts.  

Figure adapted from (Wu and Errington 2011). 

 

 

 

Figure 5. A physical mechanism to explain division plane placement in ΔslmA Δmin E. coli.  

We hypothesize that excluded volume interactions between FtsZ filaments and the bacterial, 

chromosomal DNA will define a subcellular volume (the nucleoid) that is inaccessible to FtsZ 

filaments (in essence, creating nucleoid and cytosolic phases).  Consequently, FtsZ filaments 

would be concentrated at one of two places, either at the cell poles, or the space between partially 

or fully segregated chromosomes.  In these locations where FtsZ filaments are concentrated, 

filaments can condense to form Z-rings.  
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daughter cells which inherited complete DNA copies, and therefore could explain the observed 

cell viability.  We refer to this mechanism as volume exclusion nucleoid occlusion (VENO).  Using 

equilibrium statistical mechanics, how effectively the bacterial chromosome expels FtsZ filaments 

can be estimated.  Through this estimation, the reasonableness of VENO as a cell division protein 

localization mechanism can be evaluated.  The remainder of the introduction develops this 

estimation. 

 

Origins of the FtsZ filament – DNA excluded volume interactions 

Excluded volume interactions between FtsZ filaments and the bacterial chromosome 

originates from two sources, the physical volume of the DNA (in other words, its “hard-sphere,” 

or perhaps more accurately its “hard-cylinder” volume), and its screened electrostatic charge 

which influences other charged species within the cell.  Electrostatic screening arises from the 

salty, and therefore ionic cytosol which shields other charged species such as proteins, lipids, 

and DNA.  In the model developed here, we completely neglect the effects of electrostratic 

screening, and consider excluded volume to arise exclusively from an objects physical volume.  

Accordingly, it should be stressed that our model is nothing more than an order of magnitude 

estimation, and should be interpreted within that context.  Nevertheless, the physical structure 

and organization of the bacterial DNA must be accounted for. 

 

Physical organization of the bacterial chromosome    

Though the average E. coli cell length is only a few micrometers (Cullum and Vicente 

1978), the circular bacterial chromosome, if stretched out, would measure about 1.6mm long, a 

little over the thickness of a dime (de Vries 2010).  Instead of coiling randomly inside the cell, the 

1.6mm chromosome is organized into a network of supercoiled branches or segments, known as 

plectonemes (see Figure 46 in the Appendix), each of which has a characteristic length of about 

160nm, 𝐿𝐵𝑟𝑎𝑛𝑐ℎ (Cunha, Woldringh et al. 2001).  This length is determined by the inherent stiffness 
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of the DNA polymer.  The diameter of the supercoiled branches is approximately 𝐷𝐵𝑟𝑎𝑛𝑐ℎ = 10nm 

(Cunha, Woldringh et al. 2001). Supercoiling in bacteria arises from the induced stress from 

opening the DNA double-helix during DNA replication and gene transcription (Woldringh 2002).  

The effect can be easily demonstrated by cutting and stretching a rubber band (about 3-4 times 

the rest length is good), fixing one end, and twisting the other (e.g., 20-30 times).  While 

maintaining the twist, allow the length of the stretched rubber band to relax until the band begins 

to coil back over itself.  The result is the formation of a supercoil.  Bacterial DNA is composed of 

approximately 𝑁𝐵𝑟𝑎𝑛𝑐ℎ = 4,000 of these supercoiled branches  (Woldringh 2002).  Interestingly, 

even though bacteria lack a nuclear envelope to contain the chromosome within, the plectonemic 

chromosome does not fill the interior volume of the cell, which for E. coli growing in nutrient poor 

conditions is about 0.6 – 0.7 μm3 (Kubitschek 1990).  Rather, the chromosome is compacted into 

a much smaller region, which depending upon the strain and the growth conditions can range 

from 0.08 μm3 (Odijk 1998) to 0.2 μm3 (Wang, Li et al. 2011); in this state, the chromosome is 

referred to as a nucleoid.  DNA supercoiling alone reportedly compacts the chromosome by a 

factor of about 10 when compared to a chromosome having no superhelicity (de Vries 2010).   

The theoretical work of Theo Odijk suggests that an even more significant contributor to 

the spatial organization of the nucleoid may originate from osmotic compaction. Compaction of 

supercoiled, negatively charged DNA is caused by negatively charged, cytosolic proteins through 

essentially the same mechanism as we hypothesize excludes a large fraction of the FtsZ filaments 

from within the nucleoid.  By balancing both the chemical potential and osmotic pressure between 

proteins located in the interior of the nucleoid and those proteins located in the cytosol, Odijk 

showed a phase separation between the cytosol (with a higher concentration of proteins) and the 

nucleoid (with a lower concentration of proteins) should exist (Figure 6A) (Odijk 1998).  Odijk’s 

work predicted a theoretical nucleoid volume of 0.068 μm3, along with protein volume fractions  
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Figure 6.  Estimation of the excluded volume effect on the concentration of FtsZ filaments 

within the nucleoid and cytosolic phases.  (A) The bacterial chromosome is organized as a 

network of supercoiled branches that are compacted into the nucleoid, which occupies about 30% 

of the cytosolic volume.  Odijk’s theoretical work predicted that a large component of 

chromosomal compaction arises from osmotic compaction by the many cytosolic inside the cell 

(Odijk 1998).  (B)  Building on Odijk’s model, we analyze the distribution of FtsZ filaments of 

certain lengths within the nucleoid and cytosolic phases.  We assume the FtsZ filaments are in 

chemical equilibrium between nucleoid and cytosolic phases.  (C) In our order of magnitude 

approximation, we find the ratio 𝑐𝐹𝑡𝑠𝑍𝑛
/𝑐𝐹𝑡𝑠𝑍𝑐

 exponentially decreases with incrasing FtsZ filament 

length.  In the approximation presented here, FtsZ monomers and short FtsZ filaments are poorly 

excluded, however 95% of filaments 100nm or longer are excluded from the nucleoid.  In vitro 

results suggest FtsZ filaments in vivo are approximately 100nm in length (Chen, Bjornson et al. 

2005).    
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within the nucleoid region, and in the surrounding cytosolic region of 0.06 and 0.166, respectively.  

Interestingly, these values agree well with that measured from bacterial cells (Odijk 1998). 

 

Adding FtsZ filaments to Odijk’s existing model 

To estimate how well the bacterial chromosome excludes FtsZ filaments, an extension to 

Odijk’s model was made to accommodate FtsZ filaments.  More specifically, the estimate’s 

objective is to express the equilibrium concentrations of FtsZ filaments inside the nucleoid relative 

to the concentration outside the nucleoid as a function of filament length.  We consider our system 

to be composed of a simplified bacterium of volume 𝑉, inside of which is a nucleoid of volume 𝑉𝑛 

possessing a corresponding cytosolic volume 𝑉𝑐 (which surrounds but does not contain the 

nucleoid volume) such that 𝑉 = 𝑉𝑛 + 𝑉𝑐.  In addition to the nucleoid, we consider only two different 

types of proteins, evenly dispersed globular (spherical) proteins having nucleoid and cytosolic 

concentrations 𝑐𝑝𝑛
 and 𝑐𝑝𝑐

, respectively, and FtsZ filaments (cylinders) which have nucleoid and 

cytosolic concentrations 𝑐𝐹𝑡𝑠𝑍𝑛
 and 𝑐𝐹𝑡𝑠𝑍𝑐

 (Figure 6B).  It should be mentioned that cytosolic 

proteins come in a variety of shapes, sizes, and net electric charge.  In this approximation, we 

assume all proteins are spherical, and have the same size.  Moreover, as previously mentioned, 

we completely neglect the effect of electric charge, assuming the ionic cytosol completely screens 

all electric charge.  Moreover, we assume all FtsZ cylinders have the same length 𝐿𝐹𝑡𝑠𝑍.   

The ratio of concentrations 𝑐𝐹𝑡𝑠𝑍𝑛
/𝑐𝐹𝑡𝑠𝑍𝑐

as a function of FtsZ filament length can be 

determinied by equating chemical potentials of the FtsZ filaments within the nucleoid and cytosolic 

volumes (𝜇𝐹𝑡𝑠𝑍𝑛𝑢𝑐𝑙𝑒𝑜𝑖𝑑
= 𝜇𝐹𝑡𝑠𝑍𝑐𝑦𝑡𝑜𝑠𝑜𝑙

).  We express the total FtsZ filament chemical potential as: 

𝜇𝐹𝑡𝑠𝑍𝑇𝑜𝑡𝑎𝑙
= 𝜇𝐹𝑡𝑠𝑍𝑠𝑜𝑙𝑢𝑡𝑒

+ 𝜇𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝜇𝐹𝑡𝑠𝑍−𝐷𝑁𝐴 

Here, we consider only leading order contributions to the chemical potential, therefore we neglect 

the FtsZ-FtsZ self-interaction term (see Appendix).  We consider FtsZ filaments as a dilute solute, 
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therefore the corresponding chemical potential, arising from the filament’s mixing entropy, can be 

expressed as: 

𝜇𝐹𝑡𝑠𝑍𝑠𝑜𝑙𝑢𝑡𝑒
= 𝜇ref + 𝑘𝐵𝑇 ∙ ln(𝑐𝐹𝑡𝑠𝑍) 

where 𝜇ref represents a convenient reference potential, and includes the solvation energy of the 

solvent.  In chemistry, the reference potential is usually defined when all molecular components 

are at a 1M concentration (Phillips, Kondev et al. 2012).   

The terms 𝜇𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 and 𝜇𝐹𝑡𝑠𝑍−𝐷𝑁𝐴 represent the excluded volume interaction 

contributions to the chemical potential.  Excluded volumes can be expressed using the second 

virial coefficients 𝐵𝑖−𝑗, where the subscripts 𝑖 and 𝑗 indicate the excluded volume is to be 

evaluated for the interaction of species 𝑖 with species 𝑗.  In this form, the interaction chemical 

potentials take the form: 

𝜇𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝑘𝐵𝑇 ∙
𝑁𝑝

𝑉
∙ 𝐵𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛  

𝜇𝐹𝑡𝑠𝑍−𝐷𝑁𝐴 = 𝑘𝐵𝑇 ∙
𝑁𝐵𝑟𝑎𝑛𝑐ℎ

𝑉
∙ 𝐵𝐹𝑡𝑠𝑍−𝐵𝑟𝑎𝑛𝑐ℎ  

Note that in the interaction between FtsZ and DNA, the quantities 𝑁 and 𝐵 have subscripts 

containing the reference for “branch”.  In this context, branch refers to the supercoiled DNA 

branches that compose the bacterial chromosome.  For the excluded volume between spherical 

cytosolic proteins and cylindrical FtsZ filaments, we use (see Figure 46 in the Appendix): 

𝐵𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝜋 ∙ 𝐸𝑒𝑥𝑐
2 ∙ 𝐿𝐹𝑡𝑠𝑍 

In other words, we assume the excluded volume is cylindrical, with length equal to the length of 

an FtsZ filament, and exlusion radius 𝐸𝑒𝑥𝑐 approximately equal to the sum of the FtsZ cylinder’s 

radius and spherical cytosolic protein’s radius (Odijk 1998).    Following Odijk’s model, we also 

treat supercoiled DNA branches as cylinders.  The approximate excluded volume between two 

cylinders oriented at an angle 𝜃 relative to their long axes goes as (see Figure 46 in the Appendix): 

𝐵𝑖−𝑗 =
𝜋

4
∙ (𝐷𝑖 + 𝐷𝑗) ∙ 𝐿𝑖 ∙ 𝐿𝑗 
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Where 𝐷 and 𝐿 represent the diameters and widths of cylinders 𝑖 and 𝑗 (see Appendix).   

With expressions for each 𝐵𝑖−𝑗, equating the total chemical potential between nucleoid 

and cytosolic volumes and solving for 𝑐𝐹𝑡𝑠𝑍𝑛
/𝑐𝐹𝑡𝑠𝑍𝑐

as a function of 𝐿𝐹𝑡𝑠𝑍 will reveal the equilibrium 

distribution of FtsZ filaments.  In leading order of 𝐿𝐹𝑡𝑠𝑍, the results of the approximation (explained 

in detail in the Appendix) reveals 𝑐𝐹𝑡𝑠𝑍𝑛
/𝑐𝐹𝑡𝑠𝑍𝑐

 depends exponentially on the filament length. 

𝑐𝐹𝑡𝑠𝑍𝑛

𝑐𝐹𝑡𝑠𝑍𝑐

=  𝑒
−

𝐿𝐹𝑡𝑠𝑍
ℒ𝐹𝑡𝑠𝑍 

The constant ℒ𝐹𝑡𝑠𝑍 describes the length of the filaments required to decrease the ratio 

𝑐𝐹𝑡𝑠𝑍𝑛
𝑐𝐹𝑡𝑠𝑍𝑐

⁄  by a factor of 1/𝑒 and provides a metric for how well supercoiled DNA can exclude 

filaments.  We estimate ℒ𝐹𝑡𝑠𝑍 to be 33nm, which at an average FtsZ filament length of ~100nm, 

suggests less than 5% of the filaments are expected to reside within the volume occupied by the 

nucleoid (Figure 6C).  Consequently, it does seem plausible that the bacterial nucleoid could 

serve as a spatial template for the positioning of the FtsZ filaments that compose the Z-ring 

(Figure 5).   

The remaining chapters describe both the methodology and the results of experiments 

designed to test the VENO hypothesis. Specifically, Chapter 1 describes the experimental 

methods and techniques used to generate the results presented in Chapters 2 and 3.  The results 

from Chapter 2 have been published in PLOS Genetics (Bailey, Bissichia et al. 2014), and the 

results presented in Chapter 3 have been submitted.  Chapter 4 presents outstanding questions 

raised as a consequence of the findings presented in Chapters 2 and 3.  Chapter 4 also presents 

preliminary results from experiments performed in attempts to address some of these questions.  

Following the conclusions, more technical information, such as details to the VENO derivation, a 

list of all strains used etc., is contained in the Appendix, along with a glossary of commonly used 

terms.  
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Chapter 1: Materials and Methods 

To study cell division in E. coli, we often desire to understand the functional role of a 

particular protein in the division process, or perhaps identify if a given protein has any 

consequences upon cell division at all.  The typical experimental methodology involves monitoring 

the protein(s) of interest in living cells by a technique known as fluorescent protein labeling.  In all 

experiments in this work, we label proteins of interest by fusing them with exogenous fluorescent 

proteins (originally from non-bacterial organisms).   Occasionally, in addition to constructing the 

protein fusion(s), other potentially-related genes are deleted from the chromosome.  We visualize 

fluorescent proteins as cells grow and divide using a fluorescence microscope, providing 

information about proteins’ spatial distribution or localization, dynamics, and association with 

other intercellular components such as DNA, the cell membrane, and/or other proteins.  

Fluorescent imaging of fusion proteins, often in the presence of other gene deletions, followed by 

digital image analysis enables us to quantitatively characterize the effects of a variety of proteins 

on the overall growth and division of the cells.  In this way, we reconstruct the mechanistic details 

of cell division.  Accordingly, the experimental workflow can be broken down into the following 

broad categories: 1. bacterial strain construction, 2. bacterial growth, 3. imaging, and 4. digital 

image analysis.  The transition from a qualitative to a quantitative description of cell biology is 

made possible in part by the creation of digital image analysis software.  Though in the 

experimental pipeline digital image analysis is the last process, I shall discuss it first due to its 

pivotal role in the scientific results presented in this work.  Our lab also fabricates microfluidic 

devices to manipulate bacteria physically and to dynamically control their growth environment (for 

nutrient and drug delivery purposes) during imaging.  I will describe briefly the production process 

of some of our first microfluidic chips and provide an illustration of how cells grow within the 

device. 
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Quantitative image analysis 

While the past couple of decades has witnessed the rapid development of fluorescence 

microscopy, digital image analysis has played a fundamental role in this development (Kenneth 

R, Wu et al. 2008).  The primary challenge to quantitatively analyzing microscope images is the 

identification of the objects of interest (foreground) from everything else (the background).  This 

task is called image segmentation (segmenting the foreground from the background), and before 

outlining the general concepts, it is important to understand the difference between the 

microscope image and its digitized representation.  The image created by the microscope (optical 

image) can be thought of as a continuous 2D function of two real space variables, 𝐼(𝑥, 𝑦), where 

𝐼 represents light intensity.  To generate a digital representation, the continuous optical image is 

sampled on a rectangular grid (commonly, as in our case, using a CCD camera) with grid 

elements (pixels) located at discrete positions (𝑚, 𝑛).  In addition to discretizing space, the camera 

also discretizes intensity values.  The result is the digital image, that is, a 2D matrix of integer 

intensity values as a function of discretized space 𝐼(𝑚, 𝑛).  Image segmentation and all other 

image manipulations are therefore numerically realized by applying one or more matrix operations 

to the digital image 𝐼(𝑚, 𝑛).      

  There are two common strategies for segmenting an image, thresholding and edge-

finding (Young, Gerbrands et al. 1998).  Thresholding is conceptually and computationally simple 

and decomposes the image into the foreground and background according to whether or not the 

intensity of each pixel is above or below a predefined intensity threshold 𝐼
Threshold

. 

𝐼(𝑚, 𝑛) = {
𝐹,    if 𝐼(𝑚, 𝑛) ≥ 𝐼Threshold

𝐵,    if 𝐼(𝑚, 𝑛) < 𝐼Threshold 
 

The result is the identification of the foreground objects (𝐹) and the objects belonging to the 

background (𝐵).  Thresholding is particularly useful for images containing objects of interest that 

have near uniform intensities against a background with a near uniform but differing intensity. 

(Kenneth R, Wu et al. 2008).  For bacteria imaged using a common technique called phase 
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contrast microscopy (described in more detail in the Imaging section below), bacteria appear as 

dark regions upon a light background, and thresholding can often successfully determine regions 

fully inside and fully outside a cell. A common limitation of thresholding, however, is the failure to 

generate smooth cell contours, which can be important for determining the relative location of 

objects, like proteins, within the bacterium.  To circumvent this limitation, some researchers have 

employed boundary-pixel interpolation strategies to better predict the smooth cell contour 

(Guberman, Fay et al. 2008).   

 Alternatively, segmentation can be performed by attempting to determine the cell contour, 

or in general object boundaries, directly.  Generally, these segmentation methods are referred to 

as “edge-finding”, and are more applicable when bacteria may not appear uniform in intensity 

against a contrasting background, or when several bacteria are in contact with one another in 

microscope images.  In an image, object edges correspond to those points where the intensity 

values abruptly change (Kenneth R, Wu et al. 2008).  Consequently, object edges can be 

approximated by computing the derivatives of the digital image intensity with respect to pixel 

location.  Several forms of derivative based edge detection algorithms exist that utilize first and/or 

second derivatives.  Instead of using the first derivative, our image analysis software uses a 

combination of two second derivatives, namely, the sum of the Laplacian of the image, and the 

second derivative in the gradient direction.  Defining 𝐼(𝑚, 𝑛)′′as this second derivative image: 

𝐼′′ = ∇2𝐼 +
𝐼𝑚𝑚𝐼𝑚

2 + 2𝐼𝑚𝑛𝐼𝑚𝐼𝑛 + 𝐼𝑛𝑛𝐼𝑛
2

𝐼𝑚
2 + 𝐼𝑛

2  

where, 

𝐼𝑚 =
𝜕𝐼

𝜕𝑚
, 𝐼𝑛 =

𝜕𝐼

𝜕𝑛
, 𝐼𝑚𝑚 =

𝜕2𝐼

𝜕𝑚2
, 𝐼𝑛𝑛 =

𝜕2𝐼

𝜕𝑛2
, 𝐼𝑚𝑛 = 𝐼𝑛𝑚 =

𝜕2𝐼

𝜕𝑚𝜕𝑛
 

In this case, the zero crossings of the sum of both second derivatives approximates the edges of 

objects of interest an order of magnitude more accurately than if either second derivative were 

used alone (Kempen, Ginkel et al. 2014). 
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 For our implementation of cell segmentation, a combination of thresholding and edge-

finding routines are used to create a binary image mask that outlines the cell of interest.  The 

product of the image mask with the original image is an image the same size as the original with 

all pixel values equal to zero except for the region defined by the mask, which assume the same 

intensity values as the original image.  The algorithm proceeds as follows:  

1. Compute the second derivative of the original fluorescence image (Figure 7A) in the 

gradient direction and the Laplacian of the image, and construct a new image from the 

sum of both derivatives (Figure 7B).  Specifically, we use the laplace_plus_dgg function 

from the DipImage library (Kempen, Ginkel et al. 2014). 

2. Construct a binary image where values less than zero in the derivative image are 

foreground (1) and values greater than zero are background (0) (Figure 7C).  Pixels 

belonging to the boundary between foreground and background pixels represent the 

edges of the objects of interest. 

3. Identify groups of pixels sharing the property of being foreground objects using the 

restriction that groups have a predefined size or pixel connectivity (Figure 7D).  This 

process is referred to as image “labeling”.  In the case of bacterial imaging, labeled images 

usually are sufficient to approximate what objects are cells and what objects are not.  

4. Select the particular group of pixels belonging to the object of interest from the labeled 

image and construct a new image where the selected pixel group becomes the sole 

foreground object (1) and everything else becomes the background (0) (Figure 7E).   

5. Usually, successive morphological image processing operations called dilations and 

erosions are applied to the resulting binary image, which will become an image mask, to 

smooth the foreground-background boundary from extraneous pixels so that the binary 

image foreground edge is geometrically more similar to the smooth contour of rod-shaped 

E. coli. 
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6. The smoothed binary image delineating the cell of interest, the mask, is then multiplied 

with the original image producing the final segmented image containing only the cell of 

interest (Figure 7F).  At this point, biologically relevant information can be extracted or 

measured from the segmented image. 

From the segmented image alone, many useful quantities can easily be determined.  If a 

cytosolic protein is being used, as in Figure 7A, from the total fluorescence from the cell, which is 

the sum of all intensities in image Figure 7F, one can approximate the cell volume (an analysis 

comparing daughter cell volumes, for example, is pertinent to results described in Chapter 2).  

Similarly, the apparent 2D cell area, or size of the nucleoid at various stages in the cell cycle, can 

be approximated by the number of pixels contained in the cell nucleoid mask when multiplied by 

the pixel area.  Moreover, the cell or nucleoid length can be approximated from the construction 

of a bounding rectangular box around the cell or nucleoid mask.   

For some digital image analyses, sufficient information about subcellular organization and 

dynamics can be obtained without the need of complete cell segmentation.  In this case, the 

fluorescence intensity of the objects of interest (such as fluorescent proteins) exclusively along 

the long axis of rod-shaped E. coli can be extracted and measured relative only to the long-axis 

cell edges (Figure 7G, H).  We employ one of two methods to extract intensity line profiles 

depending on whether cells in images are well isolated, typically in static images (a single time 

point), or whether cells are not isolated (closely neighboring or in physical contact with other 

neighboring cells), which is more common in timelapse imaging.   

In the case of well isolated cells, cell centers are measured from phase-contrast images 

(described in the Imaging section below) using the Cload function of the PSICIC software 

package, mentioned above (Guberman, Fay et al. 2008).  Cload is an implementation of a 

thresholding algorithm that separates foreground objects according to a user-defined cell edge or 

contour level.  Subsequently, Cload performs an interpolation procedure to smooth the resulting 

cell edge, to determine approximate cell contours and midlines of each cell.    
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Figure 7.  Quantitative image analysis. Cell segmentation (A) – (F). (A) Image of E. coli 

expressing a cytosolic green fluorescent protein.  The arrow indicates a cell of interest which will 

be segmented from the remainder of the image.  Notice that the cell of interest is touching a 

neighboring cell.  (B) Image constructed from the sum of the Laplacian and the second derivative 

in the gradient direction of image (A).  (C)  Binary image produced from image (B) by marking 

pixels with intensity less than to zero as foreground (1), and pixels with intensity greater than or 

equal to zero as background (0).  The boundary between foreground and background pixels 

defines potential cell edges.  (D) Image composed of pixels regions from (C) grouped by pixel 

connectivity and the number of pixels in the group – a “labeled” image.  Groups with a reasonable 

number of pixels likely represents a cell.  (E)  A binary image is constructed from the labeled 

image containing the group of pixels pertaining to the cell of interest.  This group becomes the 

only foreground object and all else becomes the background.  This image is the image mask.  (F) 

The result of multiplying the image mask (G) by the original image (A).  Intensity line profiles 

(G) – (H). (G) Composite image of ZipA-GFP (green), DAPI stained nucleoid (red) and phase 

contrast images (grey) of a ΔslmA Δmin E. coli cell with a distinctly off-center placed nucleoid. 

The white dashed line represents an approximate manual cell midline. The scale bar is 2 µm. (H) 

The intensity line profiles of each image plane (phase contrast, GFP, and DAPI) along the long 

axis of the cell for the cell shown in panel (G).  The cell edges are defined as the zero crossings 

of the second derivative of the phase-contrast image plane (intersection of vertical blue small-

dashed lines and phase-contrast profile [blue marker]).  The same procedure is used to find the 

edges of the nucleoid (not highlighted). 
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Technically, Cload does perform segmentation, but it utilizes the cell boundary to construct 

a more reproducible, and therefore systematic, cell midline.  As part of this work, an addition to 

the PSICIC software was made to automatically determine the contour level thresholds for each 

cell. We define the contour level threshold as the averaged intensity value of all inflection points 

that surround the cell.  The inflection points are calculated from the same laplace_plus_dgg 

function from the DipImage library that we use in our implementation of cell segmentation.  Midline 

coordinates are used to determine the geometrical center of the cell (the midpoint of the midline), 

relative to which we determined the positions of the fluorescent proteins of interest, and 

fluorescently labeled chromosome. The midline is used also to calculate the length of the cell. 

For non-isolated cells, Cload often fails to correctly segment cells which corresponds to 

inaccurate midlines. Consequently, we approximate the midline by manually drawing either a 

straight or segmented line along the long axis of the cell from which fluorescence intensity 

information is extracted.  Manually drawn line profiles are less systematically reproducible than 

fully automated profiles, however. To increase the reproducibility, all midlines (both Cload and 

manually generated) are broadened by constructing two additional parallel curves on each side 

of the midline.  The resulting broadened midline spans a total width of about 0.54μm. Along each 

of the five “midlines,” the fluorescence intensities are interpolated (using cubic spline).   The 

fluorescence intensities from each curve is averaged in the perpendicular direction to the midline 

to define an effective intensity line profile along the long axis of the cell. Averaging midlines in this 

way helps account for slight irregularities, particularly in manually drawn line profiles. 

Similarly to Cload, the location of fluorescent proteins of interest from manually drawn 

intensity line profiles, are measured relative to the cell center (measured from phase contrast 

images).  The coordinates of the manually drawn line profile are mapped to the same coordinates 

of the second derivative image (laplace_plus_dgg) from which the inflection points (defining the 

edges of the cell) are determined.  The particular coordinate of the inflection point is specified by 

interpolating linearly between the two coordinates in which the second derivative changes sign. 
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This procedure yields the coordinates of the outermost edges of the nucleoid with sub-pixel 

resolution (blue dots in Figure 7H).  The midpoint between both inflection points approximates the 

cell center.  To determine the location of fluorescent proteins, for example the ZipA-GFP labeled 

Z-ring, the intensity distribution along the entire broadened midline is plotted (Figure 7H). From 

this extended profile, a region containing an intensity maximum, which corresponds to a Z-ring in 

this example, is manually selected. The selected region is then fit to a Gaussian.  The distance 

between the center of the Gaussian and the cell center determines the distance ∆𝑋𝑍. The 

geometrical center of the nucleoid is found in essentially the same way as the cell center, however 

more care must be taken in this case since more inflection points may exist in the intensity 

distribution, especially when the nucleoid has started to segregate.  Intensity line profiles from 

either the automated Cload program or those that are manually drawn appear as that shown in 

(Figure 7H). 

All image analysis code is written in Matlab with the Image Analysis Toolbox and the publicly 

available DipImage Toolbox (http://www.diplib.org/).  For some intensity line profile analyses, the 

software package PSICIC is used, another publically available Matlab extension (Guberman, Fay 

et al. 2008).  In addition to Matlab, simpler image processing such as contrast and brightness 

adjustments were done using ImageJ software. 

  

Imaging 

 Following successful strain construction containing the fluorescent fusion proteins of 

interest and or gene deletions (described below), cells are imaged on our Nikon Ti-E inverted 

fluorescence microscope (Figure 8A).    We utilize two primary modes of imaging, one to ascertain 

the cell contour (transmitted light mode), and another to track the fluorescent proteins inside the 

cell relative to the cell contour (fluorescent light mode).  There are a number of transmitted light 

techniques, however we use the phase contrast technique which converts small changes in phase 

between light diffracted as it passes through the bacteria and light which does not pass through  
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Figure 8.  Imaging system.  (A) All imaging experiments presented here were performed on a 

computer controlled, Nikon Ti-E inverted fluorescence microscope.  Cells are imaged within a 

temperature controlled environment (In Vivo Scientic incubation chamber). Phase contrast and 

fluorescence images are captured with an Andor iXon DU897 CCD camera.  (B) Close up of the 

microscope stage.  For timelapse images, cells are imaged on an agarose dish.  Also shown 

(under the agarose dish) is the 100X, oil immersion phase contrast objective.  (C) Close up of the 

agarose dish.  To load bacteria, the agarose slab is first removed from the dish.  1μL of the cell 

culture is pipetted directly onto the coverslip and the agarose slab replaced, which spreads the 

cell culture uniformly across the surface of the coverslip.   
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the bacteria but around it into corresponding changes in amplitude.  In our system, bacteria 

appear dark against a lighter, gray background (cf. Figure 7G).  We use a 100X, oil immersion 

phase contrast objective which has a 1.40 numerical aperture (Figure 8B).   

In fluorescence mode, the microscope irradiates the bacteria with specific wavelengths of 

visible light, which are absorbed by fluorescent proteins, and subsequently separates the proteins’ 

emitted light.  Ideally, only the emitted light reaches the detector (eyepiece or CCD camera) 

leaving the fluorescent structures against a dark background (cf. Figure 7A, G).  A 200W Mercury 

lamp (an incoherent light source), attenuated by either ND4 or ND8 neutral density filters, is used 

to excite the fluorophores. The excitation filter, dichromatic mirror (beam splitter), and emission 

filter are contained in a single optical block called a filter cube.  Each fluorescent protein imaged 

requires a specific filter cube.  Specifically, we use Chroma 41004, 41001, and 31000v2 filter 

cubes to record mCherry (a red fluorescent protein), GFP, and DAPI images, respectively.  

Often, only a few tens of certain fluorescently-labeled proteins of interest are present 

within the cell, leaving the emitted light levels very low.  The most straightforward approach to 

improve the signal is to collect more light by taking longer exposures or by increasing excitation 

light intensity.  Unfortunately, either approach can increase phototoxicity, and kill cells.  

Alternatively, we capture images using an Andor iXon DU897, an electron multiplying CCD 

camera, which incorporates an on-chip multiplication gain register that permits single photon  

sensitivity with 96% quantum efficiency (Figure 8A).  Effectively, applying gain adjusts the number 

of photoelectrons that determine each gray level, which is particularly useful in low light (nearing 

single photon) acquisition conditions.  Furthermore, the camera is thermoelectrically cooled to 

reduce dark current (thermal electrons).    

In a typical timelapse measurement, between 10 and 20 locations (of size 55μm x 55μm) 

containing between 5-15 bacteria are chosen.  Phase contrast and fluorescence images are taken 

at each location in 8 minute intervals for 12-16 hours.  Images are recorded using Nikon’s NIS-

Elements software.  Throughout timelapse measurements, cells are maintained at a fixed 
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temperature.  We use an In Vivo Scientic incubation chamber which surrounds the microscope 

stage (Figure 8A).  

Another important characteristic of an imaging system is the point spread function (PSF).  

The PSF describes the response of an imaging system to a point source of light, which appears 

as an Airy diffraction pattern in the focal plane.  Knowing the PSF is useful in understanding the  

smallest object the microscope can resolve, and in our application is particularly useful when 

needing to deconvolute images.  Due to diffraction, images of bacteria tend to have blurred edges.  

The effect is far more exaggerated when imaging individual fluorescent proteins which are much 

smaller in size than the width of the microscope’s PSF.  Having a good approximation of the PSF 

of the microscope allows for much of the blurring to be removed following deconvolution.  We 

estimate the PSF of our microscope by measuring the widths of 4nm quantum dots (QDs), an 

approximate point emitter of light, (gift from Professor Alexei Sokolov).  Widths are determined 

from fitting fluorescent images of QDs with a two-dimensional, circular Gaussian and then 

extracting the width σ (Figure 9A).  Numerically, the microscope’s PSF is realized as a Gaussian 

whose σ matches that measured from QDs (Figure 9B) since the Gaussian is a good 

approximation of the central peak of the Airy function (which is a first order Bessel function of the 

first kind). For our microscope, we measure the fitted widths of 4nm QDs, having a 620nm 

emission wavelength, to be 1.06 pixels on average (each pixel is 107nm x 107nm).  Results of 

subsequent image deconvolution are shown in (Figure 9C, D).    

 

Microfluidic chips 

Traditionally, bacteria are imaged on a microscope slide, or small dish (Figure 8C), 

covered or filled with a nutrient rich medium made solid by the addition of a plant-based 

hydrogel named agar or agarose.  Imaging bacteria on agarose pads or dishes for extended 

periods of time leads to micro-colony formation.  The cell density continues to increase until the 

entire field of view is filled with cells oriented side-by-side or in some cases even on top of each   
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Figure 9.  Approximate PSF and image deconvolution. (A)  Histogram of 2D Gaussian-fitted 

widths of Quantum Dots imaged with our microscopy system (N=13, 𝜎=1.06 pixels).  (B)  2D heat 

map representation of Gaussian point spread function (PSF).  Red color represents higher 

fluorescence intensity, and blue colors represent lower fluorescence intensity.  (C) Example 

blurred image of E. coli nucleoids labeled with fluorescent HupA-mCherry.  (D) Same image as 

(C) following deconvolution with the PSF shown in (B) generated with Matlab’s deconvblind 

function. 
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other.  Consequently, image analysis becomes almost impossible.  Furthermore, with agarose 

slides or dishes there is no way to change the bacteria’s growth environment, such as the addition 

of a particular nutrient, or the addition of a drug.  To circumvent these limitations, we develop 

microfluidic devices based on the soft-lithography polydimethylsiloxane (PDMS), a transparent, 

bio-compatible silicone rubber (Figure 10A).   

The basic design of the first generation of chips follows (Wang, Robert et al. 2010). The 

microfluidic circuit consists of a central channel through which the bacterial culture flows (Figure 

10A, B).  This flow channel is approximately 6mm long x 200μm wide x 1.2 μm deep.  

Perpendicular to the central flow channel and on each side are about 300 dead end channels 

separated by 20μm.  These dead end side-channels are much smaller, and vary in lengths and 

widths (15μm – 20μm long x 0.5μm – 1.0μm wide x 1.2μm deep).  When bacteria are introduced 

into the flow channel at sufficiently high concentrations, bacteria migrate into the side pockets.  

The flow channel then can be flushed, eliminating all bacteria in the flow channel, leaving only 

those within the side-pockets for imaging.  Fresh media is flowed continuously through flow 

channel (about 5uL/hr) and nutrients diffuse into the bacteria-filled side pockets allowing cells 

grow and divide in a single file line for days.  As the cells within the pockets grow, they push on 

their neighbor cell.  In time, the only cell that isn’t expelled from the side pockets into the flow 

channel (and eventually exit the chip) is the mother cell at the very end of the dead end pocket.  

Accordingly, we refer to this chip design as the “mother machine”. 

The PDMS is patterned using a silicon master, which is fabricated at Oak Ridge National 

Laboratory’s Center for Nanophase Materials Science (CNMS) complex (Figure 10C).  The silicon 

chip is constructed in two steps.  First, the smaller bacterial pockets are constructed by electron-

beam lithography (JEOL JBX-9300FS).  An e-beam resist (ZEP520A), is spin-coated and baked.   

Upon e-beam exposure, the resist is broken down and later removed in a developing solution 

producing an e-beam mask.  Reactive ion etching (Oxford Plasmalab 100) is used to transfer the  
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Figure 10.  Microfluidic chip fabrication.  (A) Schematic of the mother machine design showing 
the dead end bacterial pockets.  (B) Silicon master fabrication. (B, i) Silicon substrate.  (B, ii) First 
the bacterial side-pockets are defined using e-beam lithography.  (B, iii) The flow channel is 
defined next using photolithography.   (B, iv) The final silicon mold.    Three-step PDMS chip 
construction.  (C, i) A positive-relief PDMS template is molded from the silicon master. (C, ii) The 
PDMS template is used to emboss the PDMS chip.  (C, iii) The PDMS chip is bonded to a 
microscope coverslip to complete the device.  (D) Image of the PDMS “mother-machine” 
microfluidic chip with entrance/exit and flow channel labeled.  Note the chip is bonded to a glass 
coverslip.  Tubing is inserted into the entrance and exit holes to bring and remove culture media. 
(E) Example of the mother-machine design with cells growing in single file within the side-pockets.  
The dashed white lines shows the side-pockets edges.  When fresh culture media is flowed 
through the flow channel, the device can keep cells alive for days.  Scale bar is 5μm.  I 
acknowledge the work of a former lab member Clayton Greer for the contribution of schematics. 
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pattern defined by the e-beam mask to the silicon (Figure 10C, ii).  The larger flow channels are 

constructed by photolithography as opposed to e-beam lithography followed by a similar reactive 

ion etching process (Figure 10C, iii).  Following the removal of the photo-resist (SU8), the silicon 

chip is ready to pattern PDMS (Figure 10C, iv).  A positive-relief PDMS template is patterned from 

the silicon master (Figure 10D, i).  The positive-relief PDMS template is then used to emboss the 

negative-relief PDMS chip (Figure 10D, ii).  Lastly, the negative-relief PDMS chip is bonded to 

microscope coverslip, which serves as the floor (or base) of the PDMS chip (Figure 10D, iii).  An 

example of the finished product, the PDMS chip with cells in it is shown in (Figure 10E). 

A detailed understand of the remaining sections of chapter 1 is not necessary to follow the 

results presented in chapters 2, 3, and 4, or the implications of these results.   Nevertheless, strain 

construction is an integral component of this work. Ideally, this information will convey an accurate 

but general understanding of how we construct bacterial strains.  

 

Bacterial strain construction 

Once a protein of interest has been identified, bacterial strain construction usually involves 

the fusion of that protein to a fluorescent protein (FFP).  Fusion proteins, also known as chimeric 

proteins, are constructed by removing the upstream gene’s stop codon and splicing it together 

with the downstream gene.  Translation of the connected genes produces a continuous 

polypeptide chain that allows each constituent protein to fold and function independently.  

Unstructured linker peptides are introduced between the protein of interest and the fluorescent 

protein to increase the likelihood that each protein will fold independently, and therefore retain 

their native functions.  Moreover, antibiotic resistance genes are included near the fluorescent 

protein but are not a component of the FFP.  The antibiotic resistance gene codes for a protein 

capable of allowing the bacteria to survive in the presence of a specific antibiotic.  Only bacteria 

that have successfully incorporated the antibiotic resistance gene can survive the antibiotic 
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treatment. Accordingly, antibiotic resistance confers selectivity to cells that have incorporated the 

FFP gene.     

 

λ Red Recombination 

In all organisms, the fundamental principle behind most genetic manipulation techniques 

is homologous recombination (homologous recombination, see Appendix Glossary). A specific 

strategy commonly used to achieve these genetic manipulations in E. coli follows the Datsenko 

and Wanner method (Datsenko and Wanner 2000), which incorporates linear segments of DNA 

into the bacterial chromosome using proteins from the λ Red bacterial virus.   

First, Polymerase Chain Reaction (PCR, see Appendix Glossary) is used to join a short 

segment of synthesized DNA (called primers), to each end of the exogenous DNA containing the 

FFP and antibiotic resistance genes (Figure 11A).  Primers are designed to share approximately 

30 nucleotides of homology with the chromosomal DNA in the bacterium located at either end of 

the target gene, and that gene’s neighboring DNA (the location where the exogenous construct 

is to be inserted in the chromosome).  The combined FFP and antibiotic resistance genes with 

homology extensions would be degraded quickly by exonucleases if released into the bacterial 

cytoplasm instead of recombining with the bacterial DNA as desired.   Incorporation of the FFP 

and antibiotic resistance genes into the bacterial chromosome (recombination) is accomplished 

by the bacteriophage (a bacterial virus) λ Red recombinase proteins that block the bacteria’s 

natural degradation of linear DNA.  The λ Red recombination system is contained in a specially 

designed plasmid (plasmid, see Appendix Glossary), pKD46, that allows the λ Red recombinase 

proteins to be synthesized only in the presence of the sugar arabinose.  The fusion protein can 

be engineered to include the full sequence of both original proteins, or only a portion of the protein 

of interest.  Often, as in the case of strains MB13 and MB17 (See Appendix List of strains), we 

fuse a fluorescent protein with a mutated version of the protein of interest to observe the effects 

of the mutation, or to test the particular functionality of the protein of interest.   
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Frequently, bacterial strain construction requires the deletion of one or more genes from 

the chromosome. Only one gene can be deleted at a time, however.  Typically, a gene of interest 

(e.g. gene B in Figure 11B) is replaced with antibiotic resistance gene.  The same strategy used 

to construct a FFP can be used to delete a gene (Datsenko and Wanner 2000).  As with the FFP 

insertion, the replacement of the gene of interest with the antibiotic resistance gene is verified first 

by the strain’s ability to grow in the presence of the antibiotic, but secondly by colony PCR followed 

by gel electrophoresis (gel electrophoresis, see Appendix Glossary) (Figure 12). 

If another genetic modification requiring selection by an antibiotic marker is needed, either 

an antibiotic resistance gene for a different antibiotic must be used, or the existing resistance 

gene must be removed.  To remove the resistance gene, sequences called FRT (for FLP 

recognition target) are inserted on both sides of the antibiotic resistance gene (Figure 11A).  An 

additional plasmid encoding an FLP recombinase protein acts on both FRT sequence repeats 

and removes the genetic material between FRT sites, as well as one of the FRT sequences.  Left 

behind is one FRT sequence in the place where previously antibiotic resistance was located.  This 

method can be used to remove any gene, or DNA region between FRT sites (Cherepanov and 

Wackernagel 1995). 

 

P1 transduction     

 In a typical experiment, tens of strains may need to be constructed.  Instead of recreating 

the genetic fusions or gene replacements each time, constructs already integrated into 

chromosomal DNA in one strain can be moved conveniently to another E. coli strain through a 

process called P1 transduction.  P1 is another bacteriophage which upon infection of a bacterium 

can package, in addition to its own genome, pieces of foreign, bacterial DNA into its capsid.  If 

this phage is used to infect another bacterium, referred to as the recipient or recipient strain, the 

phage can incorporate DNA pieces from the original chromosome, which can homologously 

recombine with the recipient bacterium’s chromosome (Thomason, Costantino et al. 2001).  As  
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Figure 11.  Genetic manipulation strategy.  (A) Strategy for constructing a fluorescent fusion 
protein (FFP) between a fluorescent protein and a protein of interest, using antibiotic resistance 
for selectivity. H1 and H2 refer to the homology extensions or regions.  P1 and P2 refer to priming 
sites.  (B) Datsenko and Wanner’s strategy for performing a gene deletion, or replacement of a 
gene of interest with an antibiotic resistance gene, which serves as a selectivity marker (Datsenko 
and Wanner 2000). 
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might be anticipated, the transduction of any gene from a donor to a host bacteria occurs 

infrequently. Consequently, selection is required.  Luckily, the P1 phage is capable of transferring  

fragments as large as 100kb from one bacterium to another.  The 100kb size limit is more than 

enough to permit the phage to transduce the FFP + antibiotic resistance gene.  Selection of the 

bacterium that integrated the gene of interest, or gene replacement, from the donor to the recipient 

strain is performed by growing the transduced bacteria on a medium containing the particular 

antibiotic specified by the resistance gene.  The majority of the bacterial strains in this work were 

produced using P1 transduction.  Strains containing FFPs, gene replacements with antibiotic 

resistance, and other modifications of interest were first acquired from other researchers, or from 

the Yale Stock Center (http://cgsc.biology.yale.edu/).  Subsequently, the P1 phage was used to 

infect those bacteria to make a solution containing phage particles capable of infecting a recipient 

strain, and transferring the gene of interest.  This phage solution is called a P1 lysate.   

When multiple genes are deleted from E. coli, growth can be severely limited, even when those 

genes, individually, are non-essential.  Consequently, the standard P1 transduction procedure 

required modification when our molecular biology collaborators encountered difficulty transducing 

fluorescent proteins into the ΔslmA Δmin background.  Part of the contribution of this work was 

the modification of the standard P1 transduction protocol (a procedure from the mid-1950s) 

(Thomason, Costantino et al. 2001) to include cells that were not capable of dividing in nutrient 

rich media.  The P1 transduction protocol, and the modification made as part of this work, are 

given in the Appendix. 

 

Verifying genetic modifications and checking for any negative effects of FFPs      

Most fluorescent proteins are composed of approximately a couple hundred amino acids 

(aa), whereas the protein of interest may be less than 100aa.  Whether or not the protein of 

interest is larger or smaller than the fluorescent protein, producing a FFP is no small modification  
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Figure 12.  Verifying gene incorporation and gene deletion.  Following PCR of a gene of 

interest (Polymerase Chain Reaction, see Appendix Glossary), and gel electrophoresis (gel 

electrophoresis, see Appendix Glossary), the gel is imaged under UV exposure.  The dark bands 

are DNA sequences of differing length.  The length of the DNA can be measure relative to a DNA 

“ladder,” or a series of DNA pieces of known length.  The DNA ladder is shown in the lane just to 

the left lane 1, and just to the right of lane 8.  The lengths of relevant pieces are written beside 

the ladder band.  As an example, the first lane contains DNA from a cell in which the slmA gene 

was replaced with the frt-kan-frt sequence.  The length of both frt-kan-frt and the slmA gene 

(shown in lane 3) are known.  Accordingly, the lengths as determined from the gel, can be 

compared to the known lengths to determine if the genetic modification resulted a genetic 

fragment of the desired length.  The method cannot be used to determine the actual gene 

sequences, however, only the number of base pairs of the gene of interest.  In lane 2, both the 

antibiotic resistance gene (kan) and slmA have been removed.  The result is a small, ~300bp 

sequence (a single frt sequence) of leftover or “scar” DNA.  Lanes 4 and 5 contain this same frt 

scar sequence following removal of the minC gene, shown in lane 6.  Similarly, lane 7 shows the 

result of replacing the matP protein with the frt-kan-frt kanamycin resistance gene, and lane 8 

shows the length of the native matP gene.  In this example, all the genetic modification are as 

expected.  
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to the original protein.  Consequently, it must be checked that the fluorescent modification doesn’t 

significantly influence the protein of interest’s native function.  Equally as important are the 

biological consequences of the overexpression of the FFP.   For all strains constructed which 

include a FFP, first the correct DNA sequence is verified.  This can be realized in several ways, 

however we typically use colony PCR to amplify the gene fusion followed by gel electrophoresis  

(Figure 12).    If the sequence length is correct, the strain is fluorescently imaged.  If the FFP is 

fluorescent, the localization of the protein is observed, and compared against either the protein’s 

known localization, or against its anticipated localization.  While the expression level of a protein 

can be approximated by Western Blotting, in all strains constructed here, no Western Blotting was 

performed.  Instead, fluorescent images of cells were scrutinized for inclusion bodies (FFP protein 

aggregates), which would indicate elevated levels of protein expression among other issues 

related to the proper folding of the FFP.  Often elevated expression of FFPs leads to an overall 

increase in cell lengths, or to slower doubling times relative to wild-type E. coli.  In most of the 

strains we use, the FFP protein replaces the native gene coding for the protein of interest, allowing 

the FFP to be produced at the native expression levels.  Additionally, overall morphological 

peculiarities reflect either non-biological expression levels, or the compromised function of the 

native protein. 

 

Bacterial growth 

 All strains used in this study were derivatives of E. coli K-12 (Bachmann 1972), into which 

the genetic modifications were made.  Descriptions of all strains and plasmids are given in Table 

5 (Appendix). The most used antibiotic resistance genes confer resistance to the antibiotics 

kanamycin (kan), ampicillin (amp), and chloramphenicol (cm).  Antibiotic resistance can be 

incorporated either into the chromosomal DNA, or into plasmid DNA.  Unlike chromosomal DNA, 

if the antibiotic resistance is incorporated into a plasmid, cells must be grown in the presence of 
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the antibiotic or else bacteria lose the plasmid.  During bacterial growth, one or more of these 

antibiotics are added directly to the growth media.   

All bacteria used in this work were grown in either nutrient rich media, or in one of two 

types of nutrient poor media.  Lysogeny broth (LB) (Bertani 2004) provides a nutrient rich 

environment supporting optimal bacterial growth.  The two nutrient poor media used, which result 

in slower cell growth, are made from supplementing M9 salts with magnesium sulfate and either 

0.5% glucose or 0.3% glycerol. Both LB and M9 media are commercially available from Fisher 

Science and Sigma-Aldrich.  All bacteria were grown and imaged at 28°C.   

Often, it is desirable to grow long cells that contain multiple nucleoid.  To achieve this, we 

incubate the strain with 20µg/mL cephalexin for approximately 2 hours.  Cephalexin is another 

antibiotic that inhibits the divisome protein FtsI, which is responsible for lateral cell wall synthesis 

and therefore cell constrictions (Pogliano, Pogliano et al. 1997).  For cells which lack a DNA label, 

4',6-diamidino-2-phenylindole (DAPI), a fluorescent compound which diffuses through the cell 

membrane and binds strongly to DNA, is used to fluorescently stain the nucleoid.  DAPI was 

added directly to liquid cultures at a concentration of 0.2μg/mL for 20-30 minutes prior to imaging.  

To control the expression of some FFPs, often FFP genes are placed under the control of the lac 

operator (a segment of DNA which regulates expression of the downstream gene(s)).  In the case 

of the lac operator, the presence of lactose initiates transcription of a group of genes which code 

for proteins that allow the cell to metabolize the sugar lactose.  Instead of controlling the 

expression of the lactose-metabolizing genes, the lac promoter can be hijacked to control the 

expression FFPs instead.  A common lactose mimic is the compound isopropyl β-D-1-

thiogalactopyranoside (IPTG), which in our case triggers transcription expression of ZipA-GFP, 

used to label the Z-ring.  IPTG is used in place of lactose because IPTG is non-hydrolyzable, 

meaning its concentration remains constant throughout the experiment.  For most strains, 40-

100μM IPTG was added directly to the liquid culture approximately 2 hours prior to imaging. 
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Cells were imaged on M9 agarose pads for still imaging.  For time lapse imaging, home-

made glass bottom dishes were used (cf. Figure 8C). Cells were pipetted onto number 1.5 glass 

coverslips on the bottom of the dish and covered with about a 1 cm thick slab of M9 agarose. No 

antibiotics were used in M9 agarose during imaging. Agar was supplemented with IPTG (10-40 

µM) for strains with ZipA-GFP constructs.   
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Chapter 2:  The Z-ring colocalizes with the Ter macrodomain through 

a linkage involving MatP, ZapB, and ZapA proteins – Evidence for a 

new division protein positioning system 

Cell division in ΔslmA Δmin E. coli had not been characterized before this work began. 

We hypothesized that if SlmA-mediated nucleoid occlusion and the Min system were the only two 

positioning systems in E. coli then the division planes in these double mutant cells should be 

randomly localized.  On the other hand, if the VENO mechanism played a prevalent role in 

positioning the division proteins in these cells, one would expect division planes to form near 

midcell in the inter-nucleoid space between separated nucleoids or near the cell poles.  If the Z-

ring formed in the space between two segregating nucleoids, cell division should lead to two 

daughter cells that inherited complete genomes, and are therefore viable.   

When we considered the placement of Z-rings relative to nucleoids ΔslmA Δmin E. coli in 

fast-growing LB medium, which produces cells which grow long (~50μm or longer) but fail to 

divide, we found many Z-rings that localized at regions where the corresponding nucleoid density 

was low (in the middle of two nucleoids or at the center of segregating nucleoids), or at the poles.  

This observation supported the VENO hypothesis.  However, against our expectations, when the 

same ΔslmA Δmin E. coli were grown in a nutrient poor environment, which support cell division 

and therefore viability, Z-rings preferentially formed over the centers of nucleoids even if those 

nucleoid displayed no apparent segregation.  In longer cells containing multiple nucleoids, Z-rings 

preferentially formed over nucleoids instead of at the space between nucleoids.  Further 

experiments revealed that the nucleoid-centric Z-ring localization arose because of a protein-

mediated linkage to the replication terminus region of the chromosome.  We identify three known 

proteins in this linkage, ZapA, ZapB, and MatP (though it is possible more are involved).  When 

either protein is removed, the Z-ring no longer colocalizes with the nucleoid-centric replication 
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terminus domain.   Interestingly, to our knowledge, this linkage is the only known mechanism to 

promote Z-ring positioning in E. coli.  

 

Z-rings localize at all nucleoid free areas in fast growth conditions as expected by VENO 

positioning 

To test the VENO hypothesis, we determined the placement of the Z-ring relative to the 

nucleoid and cell centers using the ΔslmA Δmin double mutant E. coli  containing a fluorescently 

labeled ZipA-GFP (TB86 CH151) and FtsZ-GFP (TB86 DR120) (Bernhardt and de Boer 2005). 

In these measurements, the nucleoid was stained with DAPI, which binds strongly to DNA and is 

fluorescent under UV exposure.   As a reference, the wild-type strain with the same labeling was 

also imaged.  We found ΔslmA Δmin cells to have a large number of rings, arcs, and patch-like 

accumulations of ZipA-GFP on their plasma membranes, some of which appeared as if 

overlapping nucleoids (Figure 13A, C). However, when we plotted fluorescence intensity line 

profiles from ZipA-GFP and DAPI (Figure 13B, D), we observed that essentially all accumulations 

of ZipA-GFP corresponded to local minima of the chromosomal distribution, in agreement with 

the phenomenological description of nucleoid occlusion predicted by the VENO mechanism 

(Figure 5).  In addition to the minima of the chromosomal distribution, ZipA-GFP also accumulated 

abundantly at cell poles.  Unfortunately, because ΔslmA Δmin cells grown in LB cannot divide, 

we could not test how accurately cells divide with respect to the cell center, or more generally 

gauge cell viability as a result of this Z-ring positioning system.   

 

ΔslmA Δmin cells divide at well-defined locations relative to cell poles 

To quantify the accuracy of division plane placement in ΔslmA Δmin E. coli, cells were 

grown in nutrient poor M9 medium.  We determined the relative volume fractions of two daughter 

cells that still adhered together by their poles after division following a method introduced by 

(Männik, Wu et al. 2012), and compiled these ratios into a histogram for a population of cells 
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 (Figure 14).  The digital image analysis procedure closely follows the cell segmentation 

procedure described in the Quantitative Image Analysis Section of Chapter 2.  To find this volume 

ratio, or equivalently the cell division ratio, we followed individual bacteria expressing a cytosolic 

GFP protein in time lapse movies until the cell-segmentation algorithm was able to separate one 

newly emerging daughter cell from the other.  For the two new cells, the summed pixel intensities 

inside the contours 𝐼𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 1
Σ and 𝐼𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 2

Σ  were calculated, followed by subtraction of the 

background.  We define the division ratio as: 

Division ratio ≡ 𝐼𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 1
Σ /(𝐼𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 1

Σ + 𝐼𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 2
Σ )  

Considering that the density of the cytosolic GFP is the same in both daughter cells right after 

division, it follows that the division ratio of the intensities equals the division ratio for the volumes.   

In this experiment, equal daughter cell volumes implies the mother cell positioned its 

division proteins accurately.  As a reference for cell division accuracy, we determined the volume 

fraction distributions for the wild-type E. coli (strain BW25113) (Figure 14A). To compare the 

division ratios of ΔslmA Δmin to cells which are known to divide at locations other than midcell, 

we also performed the same analysis on strain JW1165 which contains a minC deletion (Figure 

14B).  Cells with a deletion of any of the Min proteins often produce very small anucleate 

(anucleate, see Appendix Glossary) mini cells due to cell division at a pole.  As expected, the 

distribution of volume fractions for the wild-type strain consisted of a pronounced single peak at 

a value of 1/2, showing that upon division, the volume of each daughter cell is approximately 

equal. Note that all histograms are symmetric relative to 1/2 because both daughter cells are 

counted in these histograms. Also as expected, the distribution of volume fractions for the ΔminC 

strain showed in addition to the main peak at 1/2, distinct peaks at 1/4, 1/3, 2/3 and 3/4 values as 

well as broad peaks on the tails of the volume fraction histogram which indicated polar, minicelling 

divisions. Remarkably, the 1/4, 1/3, 2/3, 3/4 peaks arose because of underlying nucleoid structure. 

Peaks at 1/4 and 3/4 values correspond to divisions where a mother cell distributes one of its 
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Figure 13. Positioning of Z-rings relative to nucleoids in ΔslmA ΔminC E. coli grown in 
nutrient rich LB medium.  (A) A composite of ZipA-GFP (green), DAPI stained nucleoid (red) 
and phase contrast images (grey) of a ΔslmA Δmin cell grown in LB. (B) The intensity line profiles 
of each image plane along the long axis of the cell for the cell shown in panel A.  (C), (D) The 
same composite image and line profiles for a longer LB-grown ΔslmA Δmin cell. Scale bars are 
2µm. 
 

 

Figure 14.  Relative volume fractions and length distribution of daughter cells after 
division.  (A) Wild type (BW25113), (B) ΔminC (JW1165), (C) ΔslmA ΔminC (PB194) strains. 
Volume fractions are calculated as the ratio of one daughter cell’s volume to the sum of both 
daughters’ volumes. Red dashed lines in the histogram show fittings of different peaks with a 
Gaussian function. The centers of fitting lines are fixed to 1/4, 1/3, 1/2, 2/3 and 3/4 values. The 
insets in the histograms show fluorescent images of cells from the respective strains.  The arrow 
in the inset of panel (B) points to a minicelling division. (D) – (F) Length distributions for 

corresponding cells shown in (A) – (C).  All scale bars correspond to 2 m. 
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nucleoids to one daughter cell and three to the other. Smaller peaks at 1/3 and 2/3 values 

correspond to division of cells with three nucleoids.  

The volume fraction distribution for the ΔslmA ΔminC strain (PB194) showed, qualitatively 

similar to the minC strain, distinct peaks at 1/2, 1/4 and 3/4 positions with discernible peaks also 

at 1/3 and 2/3 values (Figure 14C). Gaussian fits to the peaks in the histogram showed that the 

majority of ΔslmA ΔminC cells divide at about midcell (75%) while 6.5% divided approximately at 

the quarter position, and 14% between the quarter and half-cell length from one of the poles. 

Interestingly, the frequency of central divisions for the ΔslmA ΔminC strain was higher than for 

the strain having only a minC deletion (50%) while the frequency of ΔminC cells dividing at a 

quarter (20%) and a third of the cell length from the poles (16%) was higher compared to the 

ΔslmA ΔminC strain. Additionally, the double mutant strain produced essentially no minicells 

(0.2% of total divisions), although they were noticeably present in the minC deletion strain (7% of 

total divisions).  

The presence of peaks at the 1/2, 1/4, and 3/4 positions indicates that, despite a lack of 

nucleoid occlusion factor SlmA in the double mutant strain, there remains a high level of 

coordination between nucleoids and the Z-rings in E. coli cells, which would be expected if VENO 

influenced Z-ring positioning. Comparison between ΔminC ΔslmA double mutants and ΔminC 

single mutant strains demonstrates that removal of SlmA suppresses minicell production and 

biases cell division towards the cell center.  While VENO would predict central cell divisions, 

VENO does not explain why there were so few minicell divisions in the ΔslmA ΔminC cells.    

 

The cell division plane shifts from midcell to quarter-cell with increasing cell length 

We hypothesized that because these 1/3 and 1/4 divisions contained more nucleoids than 

wild-type cells, these quarter and third divisions should occur in cells that are longer than wild-

type cells.  If true, perhaps an unknown event diverted cell division from the central division site 
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and cells continued to grow until division could later occur.  Characterizing the division ratio as a 

function of cell length could then help us identify the origins of the event.   

As expected, the length of the double mutant cells immediately following division, 

2.831.54 μm, was 18% longer than that of the BW25113 wild-type strain, 2.410.36 μm (Figure 

14D-F). The main factor contributing to the length difference was long cells making up about 10% 

of the ΔslmA ΔminC population, whose lengths were about twice that of the majority of the 

population. Interestingly, these longer double mutant cells divided with higher prevalence at 1/4 

and 3/4 positions compared to shorter cells. To quantify this tendency, we plotted the frequency 

of central divisions and the frequency of divisions at the quarter cell length from the poles as a 

function of mother cell length (Figure 15). In this analysis, central divisions were considered to be 

all divisions in which volume fractions were within 0.500.10. The divisions at quarter cell positions 

were considered when the corresponding volume fraction ratios were within 0.250.05. For the 

ΔslmA ΔminC cells, the frequency of cell divisions at the quarter cell length from the poles 

increased considerably as the cells reached a length of about 6 µm (Figure 15A). About 50% of 

cells longer than 6 m preferentially divided at the quarter-cell length from the poles, while a 

smaller fraction, about 25% of cells, divided at the cell center.  The data for the minC cells 

showed a very similar sharp transition of the cell division plane from the center to the quarter 

locations as the cell length reached about 5.2 m (Figure 15B).  A marked increase in the 

frequency of 1/4 divisions indicates that some positional signal guides the cell division plane from 

midcell to its quarter positions as the cells reach a relatively well-defined length.          

 

Z-rings localize to nucleoid centers in slow growth conditions which contradicts Z-ring 

positioning by VENO  

To probe the origins of the signal that directs Z-rings to quarter and third cell locations in 

ΔslmA Δmin E. coli, we observed the localization of the ZipA-GFP labeled Z-ring with the DAPI- 
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stained nucleoid.  While in ΔslmA Δmin cells in fast growth conditions the Z-rings accumulate in 

essentially all nucleoid-free areas, a very different localization pattern was observed when cells 

were grown in the nutrient poor M9 medium.  Representative cell images are shown in Figure 16.   

In a few cells, we noticed that the nucleoids were displaced noticeably from the cell center. 

Though one would expect VENO would tend to position the Z-ring on the side of cell opposite to 

the direction in which the nucleoid was displaced (where there was more nucleoid-free space), 

the Z-rings instead followed the centers of the nucleoids.  To quantify the tendency of the Z-ring 

to localize over the nucleoid center, we measured the distance between the Z-ring and cell center, 

ΔXz, as a function of the distance between the nucleoid center and the cell center, ΔXn, for all 

cells in a population of isolated cells having a single nucleoid (Figure 17A) using line profiles 

generated from Cload. To quantify the extent of co-localization between the nucleoid center and 

the Z-ring, we determined the standard deviations of distances between the Z-rings and nucleoid 

centers, 𝜎𝑋𝑍−𝑋𝑛
, and between the Z-rings and cell centers 𝜎Δ𝑋𝑧

.  We separated the data into two 

distinct groups – polar Z-rings and centrally located ones. The precision of central Z-ring 

placement relative to nucleoid centers 𝜎𝑋𝑍−𝑋𝑛
 = 66nm (Figure 17B) was more than two times 

higher than the positioning of Z-rings relative to cell centers 𝜎Δ𝑋𝑧
= 177nm in ΔslmA Δmin cells 

with ZipA-GFP label (Figure 18A).  We found very similar co-localization characteristics for central 

Z-rings (𝜎𝑋𝑍−𝑋𝑛
= 76nm, 𝜎Δ𝑋𝑧

= 196nm) in FtsZ-GFP labeled ΔslmA Δmin cells (Figure 17H, 18B), 

confirming that the co-localization effect is not related to a specific Z-ring label. The collection of 

distribution statistics for all measured strains can be found in Table 1.  Interestingly, for wild type 

cells (Figure 17D-F) co-localization between Z-rings and nucleoid centers (𝜎𝑋𝑍−𝑋𝑛
= 81nm) was 

somewhat lower than in ΔslmA Δmin cells (Ansari-Bradley test p=0.35; F-test p = 0.017), while 

the precision of Z-ring placement in the vicinity of the cell centers (𝜎Δ𝑋𝑧
= 118nm) was significantly 

higher when compared to ΔslmA Δmin cells (Ansari-Bradley test p=610-5; F-test p = 10-7). Similar 

 



50 
 

 

Figure 15.  Division frequency at the 1/4 and 1/2 cell positions with respect to mother cell 

length. (A) Data for the ΔslmA ΔminC double mutant strain (PB194); (B) ΔminC strain (JW1165). 

Cell lengths are binned at 0.25μm intervals. Arrows point to transition regions from centrally 

occurring divisions to divisions at cell quarters. The lengths of the mother cells are measured just 

before cell division. Note that only a few cells from both strains are longer than 8μm, limiting 

analysis for longer cells. 

 

 

Figure 16.  Fluorescent images of ΔslmA ΔminC E. coli grown in nutrient poor M9 media.  

Images of DAPI stained nucleoid and ZipA-GFP labelled Z-ring for slmA minC double mutant 

strain TB86 (left column) and wild-type strain JMBW5 (right column).  In the bottom row, the two 

fluorescent images are overlaid with phase contrast image. The scale bars are 2m.  
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Figure 17.  Localization of ZipA-GFP labeled Z-rings relative to cell center and the center 

of nucleoids.  The displacement of the nucleoid relative to the cell center is Xn, and the 

displacement of the ZipA-GFP labeled Z-ring is Xz. (A) Xz vs. Xn for ΔslmA Δmin cells (strain 

TB86) scaled by cell length L. Solid rectangles mark central and open rectangles mark polar Z-

rings. The solid line corresponds to Xz=Xn. (B) Corresponding distribution of distances between 

the Z-ring center and nucleoid center for the ΔslmA Δmin strain (data for central Z-rings are 

shown).  (C) Xz vs. Xn for the same ΔslmA Δmin cells that show a Z-ring over a compact 

nucleoid. (D) – (F) Corresponding plots to (A) – (C) for wild-type E. coli.  (G) – (I) Corresponding 

plots to (A) – (C) but for ΔslmA Δmin E. coli that have an FtsZ-GFP label instead of a ZipA-GFP 

label to observe the Z-ring (strain TB86 DR120). 
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values of 𝜎𝑋𝑍−𝑋𝑛
 and 𝜎Δ𝑋𝑧

 as in wild-type cells were found also for Δmin and ΔslmA single deletion 

strains (Figure 19; Table 1). 

Co-localization of the Z-ring to nucleoid centers was present already in the early stages of 

chromosomal replication before a distinct bi-lobed morphology (characteristic of visible 

chromosome segregation which occurs later in the cell cycle) appeared in nucleoid images 

(Figure 17C, F, and I). To distinguish bi-lobed nucleoids from compact nucleoids, we inspected 

intensity line profiles taken over DAPI stained nucleoids. We considered a nucleoid to be compact 

if its DAPI intensity line profile near the nucleoid center lacked any discernable dips (e.g. DAPI 

profile in Figure 7G, H).  In ΔslmA Δmin cells with a compact nucleoid, the level of co-localization 

between the nucleoid and the Z-ring, 𝜎𝑋𝑍−𝑋𝑛
= 74nm, was comparable to the value characterizing 

the whole cell population, 𝜎𝑋𝑍−𝑋𝑛
= 76nm (F-test, p=0.42; Ansari Bradley test p=0.83). Similar 

conclusion can be drawn also for the wild type cells where𝜎𝑋𝑍−𝑋𝑛
= 88nm (F-test, p=0.36; Ansari 

Bradley test p=0.91) and for Δmin and ΔslmA single deletion strains (Figure 19E, F; Table 1). 

These comparisons indicate that nucleoid centers and Z-rings can co-localize in early stages of 

replication when the nucleoid morphology is compact both in wild type cells and in cells where 

one or both of the known Z-ring positioning systems have been removed.  Importantly, whereas 

Z-ring formation over nucleoids containing significant nucleoid gaps would be consistent with 

positioning by VENO, Z-ring formation over compact nucleoids is not.  This observation suggests 

that even if VENO is present within these cells, another localization mechanism provides a more 

dominant influence on Z-ring placement.  Intriguingly, the preferred Z-ring position occurs over 

nucleoid centers and not away from nucleoids. 

The bias in localization of the Z-rings to the centers of nucleoids was even more visually 

striking in longer ΔslmA Δmin cells that had two or more well-separated nucleoids (Figure 20A). 

We found a strong preference for the Z-ring to position over the centers of nucleoids as 

compared to regions between fully segregated nucleoids (Figure 20B). We refer to the former as  
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Figure 18.  Displacements of Z-rings relative to the cell center, ΔXz. (A) for ΔslmA Δmin (strain 

TB86 with ZipA-GFP labeled Z-ring), (B) ΔslmA Δmin (strain TB86Dr120 with FtsZ-GFP labeled 

Z-ring), and (C) parental strain (strain JMBW5 ZipA-GFP labeled Z-ring).  Data are shown only 

for cells with a single nucleoid.  

 

 

Figure 19.  Localization of ZipA-GFP labeled Z-rings relative to cell center and the center 
of nucleoids for ΔminC (top row) and ΔslmA (bottom row) single deletion strains. (A), (B) 

Xz vs. Xn scaled by cell length L. Solid rectangles mark central and open rectangles mark polar 

Z-rings. The solid line corresponds to Xz=Xn. Data are shown only for cells with a single 
nucleoid. (C), (D) Distribution of distances between the Z-ring center and nucleoid center. Only 

data for central Z-rings are shown. (E), (F) Xz vs. Xn for cells that show a Z-ring over a compact 
nucleoid. 
 



54 
 

Table 1. Statistics describing co-localization of the Z-ring and the nucleoid center in 
different strains.  

Strain Name Genotype N 
𝜎𝑋𝑍

− 𝜎𝑋𝑛
 

(nm) 

𝜎Δ𝑋𝑍
 

(nm) 
𝑅2

 

JMBW5 
all 

Wild type 202 81 118 0.51 

JMBW5 
compact 
nucleoid 

Wild type 70 88 108 0.34 

MB21 
all 

ΔslmA 166 63 78 0.54 

MB21 
compact 
nucleoid 

ΔslmA 63 73 78 0.31 

MB22 
all 

ΔminC 135 72 110 0.74 

MB22 
compact 
nucleoid 

ΔminC 62 87 119 0.67 

TB86 ZipA 
all 

ΔslmA Δmin 127 66 177 0.84 

TB86 ZipA 
compact 
nucleoid 

ΔslmA Δmin 31 74 180 0.81 

TB86 ZipA 
compact 
nucleoid 

ΔslmA Δmin 74 95 178 0.84 

TB86 FtsZ 
all 

ΔslmA Δmin 188 76 196 0.84 

TB86 FtsZ 
compact 
nucleoid 

ΔslmA Δmin 55 81 195 0.82 

MB10 
all 

ΔslmAΔminΔmatP 123 151 200 0.40 

MB10 
compact 
nucleoid 

ΔslmAΔminΔmatP 50 230 230 0.04 

MB4 
all 

ΔslmAΔminΔzapB 218 222 262 0.27 

MB4 
compact 
nucleoid 

ΔslmAΔminΔzapB 51 344 352 0.11 

MB11 
all 

ΔslmAΔminΔzapA 145 203 211 0.07 

MB11 
compact 
nucleoid 

ΔslmAΔminΔzapA 50 280 275 0.01 

R2 is a dimensionless goodness of fit parameter for a model Xn=Xz. Note that for perfect co-
localization of nucleoid and the Z-ring centers, R2 approaches a value of one. R2 can also be 
negative; for R2<0 there is no meaningful evidence of co-localization in the data. 
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the new division sites (N) and the latter as the old division sites (O). The probability of finding a 

Z-ring over the center of nucleoids (N sites) was 981%, while the probability of finding a Z-ring 

in the inter-nucleoid space between fully segregated nucleoids (O sites) decreased to 598% 

(Figure 20C). Note that Z-rings can be present in both division sites at the same time. The 

tendency of the Z-rings to preferentially localize at 1/4 positions from the cell pole in longer cells, 

i.e. in new sites, is consistent with our earlier observation that in longer ΔslmA Δmin cells divisions 

occur preferentially at 1/4 positions from the cell pole (Figure 15). Taken together, the analysis of 

the placement of the Z-rings and nucleoid centers in multi-nucleoid ΔslmA Δmin cells further 

supports the hypothesis that a positional signal guides the Z-rings to the nucleoid centers, and 

not away from nucleoids as VENO predicts. 

  To determine if wild type cells would display the same behavior as multi-nucleoid ΔslmA 

Δmin cells we induced an elongated, multi-nucleoid cell morphology by treating cells with the 

antibiotic cephalexin. Cephalexin does not inhibit Z-ring assembly but prevents Z-ring constriction 

by inhibiting the downstream protein FtsI (PBP3). Interestingly, in elongated wild type cells the Z-

rings appeared essentially only at midcell even when new sites were present (Figure 20D-F).  Z-

rings in cephalexin treated ΔslmA ΔminC cells still showed a preference to the new division sites 

as did their untreated counterparts (Figure 21A-C). We also analyzed ΔslmA and ΔminC single 

deletion cells after cephalexin treatment. ΔslmA cells behaved as wild type cells (Figure 21D-F) 

while Z-rings in the ΔminC cells showed a preference to the new division sites as in ΔslmA Δmin 

cells (Figure 21G-I).  These comparisons show that the putative positioning signal only manifests 

itself when it is not conflicting the regulation due to the Min system. It is important to note that 

such conflict does not occur in wild type cells in normal growth conditions because in this case 

the nucleoid center and the concentration minimum for MinC coincide. As Figure 17D-F shows, 

the localization signal emanating from the nucleoid center is important in Z-ring localization in wild 

type cells under normal growth conditions, and apparently ruling out the VENO mechanism as 
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Figure 20.  Positioning of Z-rings relative to nucleoids in multi-nucleoid cells.  (A) A 

composite image of longer ΔslmA Δmin cell. ZipA-GFP (green), DAPI stained nucleoid (red), and 

phase contrast images (grey) have been overlaid. Scale bar is 2 m. (B) Nucleoid and ZipA-GFP 

density distributions along the long axis of the cell for the cell shown in panel (A).  The positions 

marked by “N” correspond to the new division sites at the centers of the nucleoids and the position 

marked by “O” to old division site between fully segregated nucleoids. (C) Frequency of Z-rings 

in the double mutant cells at the new and old replication sites. Only cells that have two or more 

distinct nucleoids have been analyzed. Error bars represent standard deviations over three 

independent measurements each involving about 50 cells. (D) – (F) the same for wild type cells 

that have been treated for 2 hours with 20 g/ml cephalexin.  



57 
 

 

 

Figure 21. Positioning of Z-rings relative to nucleoids in ΔslmA Δmin, ΔslmA, and ΔminC 

single deletion strains following cephalexin treatment. (A), (D), (G) Composite images of cells 

after cephalexin treatment. ZipA-GFP (green), DAPI stained nucleoid (red), and phase contrast 

images (grey) have been overlaid. Scale bar is 2 m. (B), (E), (H) Nucleoid and ZipA-GFP density 

distributions along the long axis of the cell for the cell shown in the adjacent left panel.  The 

positions marked by “N” correspond to the new division sites at the centers of the nucleoids and 

the position marked by “O” to old division site between fully segregated nucleoids. (C), (F), (I) 

Frequency of Z-rings in the double mutant cells at the new and old replication sites. Only cells 

that have two or more distinct nucleoids have been analyzed.  
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the dominant Z-ring positioning mechanism in these cells. 

 

Co-localization between the Ter macrodomain and the Z-ring 

If the positional signal is not VENO then what is its underlying molecular basis? Clues to 

the origin of the signal responsible for colocalization of Z-rings with nucleoid centers came from 

how the nucleoid is organized.  It has been argued that the E. coli chromosome is composed of 

six distinguishable regions.  Four of the six regions are thought to be structured, and are referred 

to as macro-domains (Ori, Left, Right, and Ter) along two additional non-structured (NS) regions 

(NS-left and NS-right) (Valens, Penaud et al. 2004).  Organization of the chromosome into these  

macrodomains is believed to impose restrictions on the permitted rearrangements to the linear-

order sequence of the chromosome (Dorman 2013).  Approximately at the time of Z-ring 

formation, the center of the nucleoid is known to be occupied by the Ter region of the chromosome 

(Wang, Possoz et al. 2005, Fisher, Bourniquel et al. 2013), which forms a well-defined unit – the 

Ter macrodomain (Niki, Yamaichi et al. 2000, Mercier, Petit et al. 2008). In E. coli, MatP is a 

dispensable protein that defines the Ter macrodomain by connecting 23 specific sites in a 

chromosomal region that spans about 800 kb (Mercier, Petit et al. 2008). Based on previous works 

(Wang, Possoz et al. 2005, Fisher, Bourniquel et al. 2013), it appeared plausible that the Z-rings 

might position over the Ter macrodomain. To investigate if this hypothesis was correct, we labeled 

the Ter region of the chromosome with a MatP-mCherry construct that was expressed from its 

endogenous matP locus and labeled the Z-ring with ZipA-GFP (Figure 22A–D). The 

measurements revealed a very strong correlation in the placement of the MatP-labeled Ter 

macrodomain and the Z-ring in ΔslmA Δmin cells (Figure 22E). Notably, the Z-ring co-localized 

with the MatP focus in all cases, even when the MatP focus was located at the nucleoid periphery 

close to the cell pole.  In wild-type cells, correlations were also strongly present although in a few 

cases (4 out of 166) the Z-ring could be observed to localize at the center of the cell when the 
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Figure 22.  Positioning of the Z-ring relative to the MatP-labeled Ter macrodomain.  (A) A 

composite of  ZipA-GFP (green), MatP-mCherry (red), and phase contrast image (grey) of ΔslmA 

Δmin cells (strain WD1). Scale bar is 2 m.  (B) The same for wild type strain (strain WD2), (C) 

ΔslmA, and (D) ΔminC strains.  (E) Location of ZipA-GFP labeled Z-ring (Xz) vs location MatP-

mCherry focus (XMatP) in ΔslmA Δmin cells scaled by the cell length L. Both locations are 

referenced relative to the cell center. Solid symbols correspond to locations near the center of the 

nucleoid and open squares to locations near the poles. The straight line corresponds to 

Xz=XMatP. Only cells with a single MatP focus are analyzed. (F) Xz vs XMatP for wild type cells, 

(G) ΔslmA, and (H) ΔminC cells. (I) Distribution of distances between the Z-ring and the MatP 

focus along the long axes of the cell for ΔslmA Δmin cells, (J) wild-type cells (note, in wild type 

cells the outliers beyond 0.3 µm have been left out), (K) ΔslmA, and (L) ΔminC E. coli. 
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MatP locus was close to the cell pole (Figure 22F). These events were also present in the ΔslmA 

single deletion strain but were absent from the ΔminC strain (Figure 22G, H) indicating that the 

Min system reduces correlations between the Z-ring and the Ter macrodomain.  The measured 

co-localization precision between the MatP-labeled Ter foci and Z-ring centers was Xz-XMatP = 56 

nm for ΔslmA Δmin (Figure 22I) and Xz-XMatP = 66 nm for wild type cells (Figure 22J). Similar 

values for Xz-XMatP also were found for ΔslmA and Δmin single deletion strains (Figure 22K, L).  

All the measurements of co-localization precision Xz-XMatP were close to our resolution limit and 

thus consistent with the hypothesis that the Ter macrodomain and Z-ring co-localize in E. coli 

unless prevented by the Min system.  Furthermore, these results demonstrate that the tendency 

for the Z-ring to associate with nucleoid centers is a result of the association between the Z-ring 

and Ter region of the chromosome.   

 

The Ter region arrives at the cell center before Z-ring formation 

Thus far, colocalization between the Z-ring and nucleoid centers appeared to arise 

because the chromosomal terminus somehow serves as a signal for Z-ring positioning. However, 

from static images we were unable to discern whether the Z-ring formed first at midcell and 

subsequently localized and stabilized the Ter, or if the Ter moved first to midcell and subsequently 

localized and stabilized the Z-ring.  Previously, it was argued that the Z-ring anchored the Ter 

macrodomain to the cell center through a MatP-mediated link in which the divisome related 

proteins ZapA and ZapB participate (Espeli, Borne et al. 2012). The co-localization data (Figure 

22) clearly supports the presence of this link, which we refer to for shorthand as the “Ter linkage”. 

The data also raise the possibility that the Ter macrodomain may be important in positioning and 

stabilizing the location of the divisome. If the Ter positioned and stabilized the Z-ring, there should 

be some time delay between the arrival of the Ter macrodomain at the cell center and the 

successive formation of the Z-ring. To test this hypothesis we followed the movement of 
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the Ter macrodomain and the Z-ring in ΔslmA Δmin and wild type cells using MatP-mCherry and 

ZipA-GFP labels.  Similar to an earlier report on wild type cells (Mercier, Petit et al. 2008, Espeli, 

Borne et al. 2012), in ΔslmA Δmin cells under slow growth conditions the Ter macrodomain moved 

from the cell pole to the center of the cell at the beginning of the cell cycle (Figure 23A, B).  During 

this movement, the Ter macrodomain either split into two distinct foci or displaced through the cell 

as a somewhat diffuse unit. The Ter region of the chromosome remained in the center of the 

nucleoid for the majority of the cell cycle before splitting into two foci during the late stage of 

cytokinesis. The Z-ring co-localized with the Ter macrodomain early in the cell cycle when the Ter 

region was positioned at the cell poles and during the majority of the cell cycle when the Ter 

region was localized as a single unit at midcell (Figure 23A, B).  However, our measurements 

showed that during the period in which the Ter macrodomain dislocated from the new pole to the 

cell center, the ZipA-GFP focus lagged behind the MatP-labeled Ter macrodomain. We measured 

the lag period to be (0.120.07)Td for ΔslmA Δmin cells (Figure 23C). The doubling time, Td, was 

about 120 min in these growth conditions.  In addition to the lag period, the accumulation of the 

Z-ring proteins and the Ter macrodomain in the center of the cell showed a different time-

dependent behavior (Figure 23D). Following the beginning of the cell cycle, the MatP-mCherry 

labeled Ter macrodomain arrived at the cell center not only with a shorter delay but also 

accumulated in the center of the cell on average more rapidly than the ZipA-GFP marker for the 

Z-ring (Figure 23D). We observed similar behavior for wild type cells (Figure 24) although the 

delay appeared smaller, (0.020.10) Td (Figure 24E).  

 Time lapse measurements of the Ter macrodomain and the Z-ring in longer (L > 6 µm) 

ΔslmA Δmin cells indicate why these cells prefer divisions at the ¼ positions from the cell poles 

(cf. Figure 14A) and preferentially show Z-rings at the new division sites (cf. Figure 20).  The 

measurements showed that a shift from the cell center to 1/4-positions occurred when the Ter 

region moved from the center of the cell to 1/4 positions from the cell poles (Figure 23E, F). This 
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Figure 23.  Arrival of the MatP foci and the Z-ring to midcell in ΔslmA Δmin E. coli.  (A) 
Kymograph (Kymograph, see Appendix, Glossary) of ZipA-GFP along the cell length as a function 
of time for a short ΔslmA Δmin cell (strain WD1). (B) Kymograph of MatP-mCherry labeled Ter 
region for the same cell. In the kymograph, blue corresponds to low and red to high intensity.  The 
dashed black line approximately marks midcell. (C) Histogram of time differences between the 
arrival of MatP (tMatP) and ZipA (tz) to midcell. The times are expressed in doubling times. N=19. 
(D) Accumulation of ZipA-GFP (blue triangles) and MatP-mCherry (red rectangles) at midcell as 
a function of time. Each curve represents the average from measurements of 15 cells. Error bars 
represent standard errors.  (E) Kymographs of ZipA-GFP and (F) MatP-mCherry in a long ΔslmA 
Δmin cell. 
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Figure 24.  Arrival of the MatP foci and the Z-ring to midcell in wild-type E. coli.  .  (A) 
Kymograph of ZipA-GFP along the cell length as a function of time for a wild-type cell (strain 
WD2). (B) Kymograph of MatP-mCherry labeled Ter region for the same cell. In the kymograph, 
blue corresponds to low and red to high intensity.  The dashed black line approximately marks 
midcell.  (C), (D), similar ZipA-GFP and MatP-mCherry kymographs for another wild-type cell.  (E) 
Histogram of time differences between the arrival of MatP (tMatP) and ZipA (tz) to midcell. The times 
are expressed in doubling times, N=25.  (F) Accumulation of ZipA-GFP (blue triangles) and MatP-
mCherry (red rectangles) at midcell as a function of time. Each curve represents the average from 
measurements of 11 cells. Error bars represent standard errors. 
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was shortly accompanied by an appearance of the Z-rings in the same locations. In some cases 

we observed that the Z-ring completely disappeared from the central location, while in other 

cases, as shown in Figure 23E, F, the Z-ring also persisted in the cell center and was able to 

complete division. Observations that the Z-ring follows the movement of the Ter macrodomain in 

a highly correlated manner for both single and multi-nucleoid ΔslmA Δmin cells are consistent 

with the hypothesis that the Ter macrodomain acts as a positional landmark for cell division 

proteins in these cells. 

 

Localization of the Z-ring in the absence of the putative Ter linkage 

The protein ZapA is recruited early to the Z-ring, and increases FtsZ protofilament 

association (Galli and Gerdes 2012).  The subsequent binding of ZapB to ZapA is believed to 

further stabilize the Z-ring (Galli and Gerdes 2012).  Moreover, Espeli and colleagues determined 

that MatP associated with the ZapB protein (Espeli, Borne et al. 2012), and therefore proposed a 

linkage between the Z-ring (FtsZ) and the chromosome via MatP, ZapB, and ZapA.  If the MatP-

ZapB-ZapA linkage is involved in the co-localization of the Ter macrodomain and the Z-ring in 

ΔslmA Δmin cells, then rendering the linkage dysfunctional by removal of any proteins of the 

linkage should make the placement of the Z-ring relative to the nucleoid center more random. To 

verify this prediction we constructed ΔslmA Δmin ΔmatP, ΔslmA Δmin ΔzapB, and ΔslmA Δmin 

ΔzapA triple deletion strains, which shall be referred to as triple deletion MatP, ZapB, and ZapA 

strains respectively.  The triple mutants were imaged using ZipA-GFP as a Z-ring label and DAPI 

as a stain for nucleoids (Figure 25A-C). Indeed, the distributions of distances between the central 

Z-ring and nucleoid centers (Figure 25D-F) were more than a factor of two wider after deletion of 

matP (𝜎𝑋𝑍−𝑋𝑛
= 150nm; p=1∙10-9), zapB (𝜎𝑋𝑍−𝑋𝑛

= 220nm; p=5∙10-18) and zapA (𝜎𝑋𝑍−𝑋𝑛
= 200nm; 

p=3∙10-11) from ΔslmA Δmin cells (𝜎𝑋𝑍−𝑋𝑛
= 66nm).  All p-values were calculated using a single  
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Figure 25.  Positioning of the Z-rings relative to the cell and nucleoid centers in triple 
deletion strains.  Composite of DAPI labelled nucleoid (red), ZipA-GFP (green) and phase 
contrast image in (A) ΔslmA Δmin ΔmatP, (B) ΔslmA Δmin ΔzapB and (C) ΔslmA Δmin ΔzapA 

cells. Scale bar is 2 µm. (D)-(F) Distribution of distances between the Z-ring center and nucleoid 
center for ΔslmA Δmin ΔmatP, ΔslmA Δmin ΔzapB, and ΔslmA Δmin ΔzapA cells, respectively. 

Displacement of Z-rings relative to the cell center, Xz, as a function of nucleoid displacement, 

Xn for ΔslmA Δmin ΔmatP (G), ΔslmA Δmin ΔzapB (H), and ΔslmA Δmin ΔzapA cells (I). All 
displacements are normalized by cell length L. Solid rectangles mark central and open rectangles 

polar Z-rings. The solid line corresponds to Xz=Xn. Data are shown only for cells with a single 

nucleoid.  Xz vs. Xn for central Z-rings over a single compact nucleoids in (J) ΔslmA Δmin 
ΔmatP, (K) ΔslmA Δmin ΔzapB, and (L) ΔslmA Δmin ΔzapA cells, respectively. 
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tailed Ansari-Bradley test. Note that the horizontal axes in Figure 25D-F spans a distance that is 

three times larger than in the corresponding graphs for ΔslmA Δmin and the wild-type cells (Figure 

17B, E). Wider Xz-Xn distributions for the triple deletion ZapA and ZapB strains compared to the 

triple deletion MatP strain are likely caused by irregular Z-ring patterns in the former two strains. 

ZapA and ZapB have been identified as bundling agents for the FtsZ protofilaments (Galli and 

Gerdes 2010, Buss, Coltharp et al. 2013). In the absence of these proteins aberrantly shaped Z-

rings can be present at the division site which leads to higher uncertainty in Z-ring positions. 

We also observed a significantly higher percentage of polar Z-rings (Figure 25G-I) and 

polar constrictions after deletion of matP, zapB, and zapA from ΔslmA Δmin background (Table 

2). Note that only a fraction of these polar Z-rings leads to polar constrictions. For example, in 

triple deletion MatP cells the frequency of polar Z-rings was 69% while the frequency of polar 

constrictions leading to minicelling divisions was 28%. Although the division planes were 

positioned much more randomly in triple deletion strains than in the ΔslmA Δmin strain, the cell 

length distributions were not significantly affected except for the MatP triple deletion strain which 

was longer (Figure 26). Constancy of cell length may indicate that the timing and duration of cell 

division are not affected by zapA and zapB deletions but may be affected by matP deletion. Taking 

that MatP is also involved in organizing the Ter region of chromosome (Niki, Yamaichi et al. 2000, 

Mercier, Petit et al. 2008), it is conceivable that its deletion could affect cell length more so than 

a deletion of ZapA or ZapB.  Altogether, these findings show that the Ter linkage most strongly 

affects the accuracy and precision of division plane placement but it appears not to affect the 

timing of cell division significantly. Consistent with the role of ZapB and MatP in the Ter linkage, 

we observed a drastic loss of co-localization between the Z-rings and MatP foci in ZapB triple 

deletion cells and in ΔslmA Δmin cells when the last 20 amino acids in the C-terminus of MatP 

were replaced by an mCherry fusion (matPΔC-mCherry) (Figure 27). The MatP C-terminal 

domain has been shown to be important for its interaction with ZapB (Espeli, Borne et al. 2012).   

While our data indicates that the Ter linkage determines the position of the Z-ring, it has been 
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Table 2. Frequency of polar Z-rings and minicelling divisions. 

Genotype 
% of minicelling 

divisions 
N 

% of 
polar Z-rings 

N 

Wild type 0 943 0 202 

slmA 0 670 0 166 

minC 7 1490 16 160 

slmA min 0.2 1326 14 155 

slmA min 

matP 
28 660 69 394 

slmA min 

zapB 
30 207 33 323 

slmA min 

zapA 
8 422 52 245 

 

shown that the linkage is required to stabilize the position of the Ter macrodomain (Espeli, Borne 

et al. 2012).  Our data do not contradict this finding. The MatP focus appeared more delocalized 

relative to the nucleoid center in the absence of the Ter link in triple deletion MatP and slmA Δmin 

matPΔC-mCherry strains compared to the ΔslmA Δmin and wild type strains (Figure 28). The Ter 

linkage thus appears to determine the position of the Z-ring and simultaneously stabilize the 

position of the Ter macrodomain relative to the cell center once the Z-ring has formed. 

In cells with compact nucleoids, representative of an early state of chromosome 

segregation, analysis of Z-ring positions relative to nucleoid-centers revealed essentially no co-

localization (Figure 25J-L). The corresponding 𝜎𝑋𝑍−𝑋𝑛
 values for MatP, ZapB, and ZapA triple 

deletion strains were about a factor of 1.5 larger (230 nm, 344 nm, 280 nm, respectively) than 

these values for the whole cell population. These differences were statistically significant in both 

the F-test and in the Ansari-Bradley test.  This evidence suggests that the Ter linkage is critical  

to the specific localization of the Z-ring with the chromosomal terminus at early states of 
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Figure 26.  Placement of constrictions for ZapA, ZapB, and MatP triple-deletion E. coli.  

Location of cell constriction in (A) ΔslmA ΔminC (strain PB194), (B) ΔslmA ΔminC ΔzapA (strain 

PB300), (C) ΔslmA ΔminC ΔzapB cells (strain PB299), and (D) ΔslmA ΔminC ΔmatP cells (strain 

PB301). Each constriction is measured relative to two different poles and contributes two values 

to a given histogram that are located symmetrically to 0.5. Note that the placement of 

constrictions, which are determined from phase contrast images, differ slightly from the final 

volume fractions (as shown in Figure 14). Constrictions appear closer to mid-cell than the division 

ratios. For example, constrictions that lead to partitioning of 1 nucleoid to one and 3 nucleoids to 

another daughter cell are centered at 0.29 in this plot instead of 0.25.  Distance distribution of 

visible constrictions in mother cells based on phase contrast images for corresponding (E) ΔslmA 

Δmin, (F) ΔslmA Δmin ΔmatP, (G) ΔslmA Δmin ΔzapB, and (H) ΔslmA Δmin ΔzapA E. coli. 

Distances shown are measured from each of the two cell poles. Note that xconstriction is somewhat 

smaller than the length of newborn daughter cells (Ldaughter).  
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chromosome segregation when the nucleoid morphology is compact. However, once the bi-lobed 

nucleoid morphology emerges in the triple deletion strains, co-localization between the Z-ring and 

nucleoid center appears, though much more weakly than in the ΔslmA Δmin and wild-type strain. 

Interestingly, the spatial distributions of those Z-rings that were not located at the poles 

still displayed a bias towards the cell center (Figure 25D-F). The locations of constrictions in the 

triple deletion strains, which we measured from phase contrast images, showed an overall 

positioning bias towards cell centers as well (Figure 26A-D). However, the corresponding 

distributions were significantly broader in triple deletion strains than in ΔslmA Δmin cells. The latter 

findings indicate that while triple deletion strains lack a mechanism to recognize centers of 

compact nucleoids, they still have a mechanism that can position Z-rings relative to cell center 

albeit with significantly lower precision and accuracy than the ΔslmA Δmin and wild-type strains. 

 

Discussion 

At the beginning of this work, the Min system and SlmA-mediated nucleoid occlusion were 

the only two identified molecular systems known to influence Z-ring positioning in E. coli (Margolin 

2005, Lutkenhaus 2007, Adams and Errington 2009, de Boer 2010). In fast growth conditions, Z-

rings form almost exclusively in the space between nucleoids, or at the center of a nucleoid which 

is in the process of segregating.  This localization pattern is consistent with that predicted by the 

VENO hypothesis.  A different localization pattern occurred when cells were grown in nutrient 

poor media.  Slow growing, viable ΔslmA Δmin remained capable of coordinating cell division and 

chromosome segregation with high fidelity. The majority of ΔslmA Δmin cells positioned their 

division planes accurately relative to nucleoids in slow growth conditions and produced essentially 

no minicells. In searching for the mechanism responsible for the localization of the Z-ring in these 

double mutant cells, we found that the Z-rings have a strong tendency to co-localize with the 

nucleoid centers as opposed to nucleoid free areas of the cell, which ruled out VENO as the   



70 
 

 

 

 

 

 

Figure 27.  Positioning of the Z-ring relative to the MatP-labeled Ter macrodomain in ΔslmA 
Δmin ΔzapB (top row) and ΔslmA Δmin matPΔC (bottom row) strains. (A), (B) A composite 

of ZipA-GFP (green), MatP-mCherry (red), and phase contrast image (grey). Scale bar is 2 m.  
(C), (D) Location of ZipA-GFP labeled Z-ring (ΔXz) vs location of MatP-mCherry focus (ΔXMatP). 
Both locations are referenced relative to the cell center. The straight line represents ΔXz=ΔXMatP. 
(E), (F) Distribution of distances between the Z-ring and the MatP focus along the cell length. 
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Figure 28.  Displacement of MatP relative to the nucleoid center.  Left column: 

Displacements of MatP-focus relative to cell center, ΔXMatP, as a function of nucleoid 

displacement from cell center, ΔXn. All displacements are normalized by cell length L. The solid 

line corresponds to ΔXMatP=ΔXn. Data are shown only for cells with a single nucleoid. Note that 

large scatter in ΔXMatP/L values in all strains is related to movement of Ter macrodomain from the 

nucleoid periphery to the center of the nucleoid early in the cell cycle. In ΔslmA Δmin matPΔC 

strain the movement of Ter macrodomain occurs before cell division and therefore in single 

nucleoid cells no MatP foci appear at the nucleoid periphery.  Right column: Distance between 

nucleoid center and center of MatP focus. Each histogram is compiled from the data on the left 

column but retaining only these data where ΔXMatP is less than 0.25 m from the nucleoid center. 

This selection eliminates spread caused by the cell cycle dependent movement of MatP focus 

from nucleoid periphery to nucleoid center.  
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dominating Z-ring positioning mechanism.     

Further investigation into the source of the nucleoid signal revealed nucleoid centers were 

occupied by the Ter region of the chromosome at the time of Z-ring formation, from which the 

signal originated.  The Ter region of the E. coli chromosome is organized by MatP proteins 

(Mercier, Petit et al. 2008).  MatP links the Ter macrodomain to the Z-ring through ZapB and ZapA 

proteins (Espeli, Borne et al. 2012). It was proposed earlier that the Z-ring acts as an anchor for 

the Ter macrodomain through this linkage (Espeli, Borne et al. 2012). Our time lapse 

measurements demonstrated a broader role of the Ter linkage. The MatP-decorated 

macrodomain arrived at the cell center a small fraction of the cell cycle before appreciable 

assembly of the Z-ring occurred in ΔslmA Δmin cells. This temporal relationship indicates that the 

Ter region of the chromosome, through the Ter linkage, localizes the cell division proteins in the 

early stage of cytokinesis. It is thus the Ter macrodomain that acts as an ‘anchor’ for cell division 

proteins during the formation of the divisome. However, the interactions between the Z-ring and 

the Ter macrodomain appear to stabilize the position of Ter macrodomain later in the cell cycle. 

During maturation of the divisome, especially when it becomes fixed to the cell wall, the divisome 

acts as a stabilizing element for the Ter macrodomain, holding it fixed in the cell center (Espeli, 

Borne et al. 2012). 

At this point, we do not understand why Z-rings localize differently depending on whether 

cells grow quickly or slowly.  However, we note that fast-growing ΔslmA Δmin E. coli have many 

more Z-rings than slowly growing cells.  If we could over-express FtsZ in slow-growth conditions, 

then perhaps we could generate a similar number of rings.  Assuming each chromosomal 

terminus possesses a colocalized Z-ring, where would the additional Z-rings localize?  It is 

possible that at this point the VENO mechanism would become more prevalent and encourage 

the remaining Z-rings to form at cell poles or at inter-nucleoid spaces in a similar way to the fast-

grown ΔslmA Δmin cells.  More work needs to be done to address this question, as well as the 

physiological difference between fast and slow grown ΔslmA Δmin E. coli in general. 
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A positive regulation mechanism for cell division 

The Ter linkage facilitates correct placement of the division plane relative to the 

chromosomes. Severing the linkage in ΔslmA Δmin cells leads to increased number of inviable, 

DNA-less minicells and less symmetric division of mother cells. Both outcomes limit the fitness of 

cells. Unlike the Min system and SlmA-mediated nucleoid occlusion, which are inhibitors of Z-ring 

formation, the Ter linkage represents the first system to promote Z-ring localization at a specific 

location in E. coli. The link guides cell division proteins to the location of the future division site 

and not away from the undesired locations in the cell as do the Min system and SlmA-mediated 

nucleoid occlusion. 

 The spatial Z-ring localization signal by the Ter linkage is dynamic and it is likely not very 

strong.  Time-lapse measurements show that the Ter linkage temporarily disassembles when the 

Ter region of the chromosome moves from the cell pole to its center. Also, the Ter region becomes 

disconnected from the divisome near the end of cytokinesis. The Ter linkage appears thus to 

provide a dynamic and reconfigurable connection, which biases assembly of cell division proteins 

towards the Ter region, but does not commit cells to division.  

 The Ter linkage and the Min system define two independent positioning systems for the 

divisome. The Min system is capable of positioning the Z-ring without any nucleoid in E. coli 

minicells albeit with somewhat lower precision than in wild type cells (Sun, Yu et al. 1998). The 

position defined by the Min system may, however, not always match the position defined by the 

Ter macrodomain. In these conflicting cases, the Min system has the dominant effect over the 

Ter linkage. Consistent with this idea, we observed in long cephalexin treated wild-type cells that 

Z-rings localized only at the cell center rather than at the locations of MatP foci. Also, in the Min+ 

cells we observed no appreciable accumulations of the ZipA-GFP reporter at the cell poles 

although this location is favored by the Ter linkage at the early stages of the cell cycle.  

 Unlike the Min system, the effect of SlmA on the Ter linkage was less pronounced. The 

only observed consequence of deleting slmA in our measurements was the decrease in polar Z-
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rings and minicelling divisions in the ΔslmA Δmin strain compared to the ΔminC strain. We 

hypothesize that SlmA removal, i.e. removal of the negative regulator, effectively strengthens the 

positive regulation due to the Ter linkage. The stronger regulation due to the Ter linkage then 

leads to more abundant Z-rings in the vicinity of the Ter region(s) of the chromosome, which 

sequester more efficiently the Z-ring related proteins from other regions of the cell including cell 

poles. As result, less polar Z-rings and minicelling divisions are present in the ΔslmA ΔminC than 

in the ΔminC cells. More work is needed to further test this hypothesis as well as to understand 

the exact mechanism of how SlmA regulates Z-ring assembly. 

   

Positive regulation mechanisms in other bacteria 

Evidence of positive control in localizing cell division proteins has been reported recently 

for several bacterial species including Streptomyces (Willemse, Borst et al. 2011), Myxococcus 

xanthus (Treuner-Lange, Aguiluz et al. 2013) and Bacillus subtilis (Moriya, Rashid et al. 2010, 

Rodrigues and Harry 2012). In Streptomyces the positive control appears to be achieved by a 

combination of SsgA and SsgB proteins (Willemse, Borst et al. 2011). In Myxococcus xanthus, 

the protein PomZ is shown to have a similar role (Treuner-Lange, Aguiluz et al. 2013). Although 

these proteins arrive before FtsZ in both organisms, it remains unclear which molecular 

mechanisms are responsible for their own localization. PomZ appears to localize over the 

nucleoid although it has not been determined if it is linked to any specific chromosomal region 

(Treuner-Lange, Aguiluz et al. 2013). Positioning of SsgA and SsgB relative to chromosome also 

is not clear yet.  

 A positive localization signal, or potentiaton as the authors refer to it, appears to be present 

also in B. subtilis (Moriya, Rashid et al. 2010). However, the mechanism seems to be very different 

in B. subtlis in which the positive signal was reported to appear during the assembly of the 

replichore, i.e. much earlier than in E. coli. Moreover, it was observed that “some factor” attracted 

Z-ring assembly to the oldest division site in B. subtilis outgrowing spores that lacked Min and 
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Noc proteins (Rodrigues and Harry 2012). This is contrary to our observation in E. coli, where we 

observe a bias of the Z-ring towards sites between newly segregating nucleoids. Taking that B. 

subtilis is evolutionarily divergent from E. coli, differences are expected. It remains to be 

determined how widespread the Ter linkage is among other bacteria. MatP is conserved in 

enterobacteria (Mercier, Petit et al. 2008), but taking its important functional role, structurally 

similar assemblies can be present more broadly. 

 

Additional mechanisms for localization of cell division proteins 

Deletion of any of the three proteins involved in the Ter linkage affects the midcell 

positioning of the Z-ring but does not lead to complete positioning randomness.  Accordingly, a 

mechanism responsible for the localization of cell division proteins must exist in addition to the 

MatP-ZapB-ZapA mediated Ter linkage in ΔslmA Δmin cells. The mechanism does not appear to 

link Z-rings to nucleoid centers at early stages of chromosome segregation when there is no 

discernable bi-lobed nucleoid structure (compact nucleoids). Interestingly, later in chromosome 

segregation when a distinct bi-lobed morphology appears, stronger correlations between the Z-

rings and nucleoid centers emerge. Two positioning mechanisms that link the nucleoid and 

divisome have been discussed in the past (Rabinovitch, Zaritsky et al. 2003, Zaritsky and 

Woldringh 2003) that can possibly explain such behavior.  Both mechanisms rely on the 

transertional linkages that connect bacterial DNA through transcribed RNA and simultaneously 

translated membrane proteins to the plasma membrane of the cell (Norris 1995). In one 

hypothesis transertional linkages create local membrane crowding (Zaritsky and Woldringh 2003) 

that prevents Z-ring formation in the vicinity of the nucleoid. In another hypothesis, mechanical 

tension produced by the transertional linkages due to chromosomal segregation acts as a 

(positive) signal to guide localization of cell division proteins (Rabinovitch, Zaritsky et al. 2003).  

Alternatively, a positioning mechanism not mediated by the nucleoid or transertional linkages but 
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by the division proteins themselves may properly position the nucleoids relative to the division 

plane.  Answers to this scientific question are devoted to the next chapter.  
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Chapter 3:  In the absence of all known Z-ring positioning systems, 

large-scale movement of DNA through the septal pore in Escherichia 

coli ensures cell viability – Chromosome movement relative to the 

divisome 

Remarkably, our previous studies demonstrated that despite the complete absence of all 

known Z-ring localization mechanisms, i.e. SlmA, positive regulation from the Ter region, and the 

Min system, E. coli remained viable in slow growth conditions (Bailey, Bissichia et al. 2014), 

though the resulting cells had a strong tendency to divide asymmetrically.  Viability of these cells 

alone implies some mechanism remains which is capable of coordinating the overall progression 

of cell division with the underlying chromosomes such that both daughters received complete 

chromosomes following cytokinesis.  We noted that this mechanism does not appear to link Z-

rings to nucleoid centers at early stages of chromosome segregation when there is no discernable 

bi-lobed nucleoid structure (compact nucleoids), though intriguingly later in chromosome 

segregation when a distinct bi-lobed morphology appears, stronger correlations between the Z-

rings and nucleoid centers emerge.   

In this chapter, which has been submitted for review, we present experimental results that 

demonstrate daughter cells remain viable in many cases because large fractions of the 

chromosome move through the closing division septum very late in the cell cycle.  Though we do 

know the origin of the force which drives large-scale chromosome movement, we show that this 

DNA movement is coupled to the cell’s ability to constrict. Accordingly, we hypothesize that cell 

constriction alone may be sufficient to coordinate cell division and chromosome partitioning.  If 

true, this hypothesis may have important implications on early bacteria, namely, that more 

elaborate and intricate cell division-chromosome partitioning mechanisms (evolved mechanisms) 

may not have been needed to produce viable progeny. 
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Z-rings localize over nucleoids when ZapA or ZapB is removed from ΔslmA Δmin cells. 

As previously shown, Z-ring placement in ΔslmA Δmin ΔmatP (triple deletion MatP), 

ΔslmA Δmin ΔzapA (triple deletion ZapA), and ΔslmA Δmin ΔzapB (triple deletion ZapB) strains 

had only a weak bias towards the nucleoid center (Bailey, Bissichia et al. 2014).  Accordingly, we 

first characterized the placement of the Z-ring in these three strains further. We use ZipA-GFP as 

a Z-ring label and DAPI to stain the nucleoids.  In accordance with the earlier report (Bailey, 

Bissichia et al. 2014), in ZapA (Figure 29A,B) and in ZapB (Figure 29C, B) triple deletion strains, 

Z-rings frequently localized over nucleoids instead of the inter-nucleoid regions or at locations 

over nucleoids that were not completely separated but nevertheless featured a minimum in the 

intensity line profile of the DAPI labeled nucleoid (cf. Figure 29D).  Note that this minimum is 

associated with a characteristic bilobed appearance of the nucleoid. We will refer to this minimum 

also as a “gap” between segregating nucleoids even though physically the two nucleoids may be 

in contact with each other or even linked by an unreplicated region.  For both ZapA and ZapB 

triple deletion cells, approximately 40% of Z-rings localized over nucleoids, which was about twice 

higher than the percentage of Z-rings localizing over nucleoids in either the wild-type or ΔslmA 

Δmin E. coli (Figure 29G).  Conversely, in the MatP triple deletion strain, Z-rings localized away 

from nucleoids at the cell poles or over nucleoid gaps (Figure 29E, F).  We found only 8% of Z-

rings localized over nucleoids without visible gaps but a large fraction of rings (56%) were found 

at the cell poles in this strain (Figure 29G).  Despite the lack of all known Z-ring positioning 

systems, Z-ring placement in the MatP triple deletion strain still was consistent with the 

phenomenological description of nucleoid occlusion.  

 We hypothesized that some of the gaps between nucleoids in the ZapA and ZapB triple 

deletion strains could have arisen not because of nucleoid segregation but because the closing 

division septum forced the two chromosomal masses apart.  To investigate this possibility, we 

treated each strain with cephalexin to produce long (10-15 μm), multi-nucleoid cells that lacked 
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Figure 29.  Differential nucleoid occlusion effect in ZapA and MatP triple deletion cells. 

Composite of ZipA-GFP (green), DAPI (red), and phase contrast images (gray) of a (A) ΔslmA 

ΔminC ΔzapA, (C) ΔslmA ΔminC ΔzapB, and (E) ΔslmA ΔminC ΔmatP cells.  (B), (D), and (F) 

The intensity line profiles along the long axis of the cell for the cells shown in (A), (C), and (E), 

respectively. (G) Frequency of Z-rings localized over the nucleoid gaps, over the nucleoids, and 

at the cell poles in different strains. Composite image of cephalexin-treated (H) ΔslmA ΔminC 

ΔzapA, (J) ΔslmA ΔminC ΔzapB and (L) ΔslmA ΔminC ΔmatP cells. (I), (K), and (M) The intensity 

line profiles along the long axis of the cell for the cells shown in (H), (J), and (L), respectively. (N) 

Frequency of Z-rings in different cellular locations for cephalexin treated cells. Scale bars on all 

images are 2μm.  
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constrictions (Figure 29H-M).   Consistent with this hypothesis, the percentage of ZapA and ZapB 

triple deletion cells with Z-rings localized over nucleoids rose from about 40% to 65% (Figure 

29N).  Interestingly, fewer Z-rings were positioned over the nucleoids in cephalexin treated ΔslmA 

Δmin (13%) and wild-type strains (~3%) as compared to the same cells without cephalexin 

treatment.  In the MatP triple deletion strain, the fraction of Z-rings over the nucleoids remained 

approximately constant (10%) but the frequency of polar rings decreased to 25%.  Assuming that 

in the MatP triple deletion strain Z-rings can localize everywhere but over the nucleoids, such a 

decrease in polar rings is expected because polar regions comprise a smaller fraction of the total 

cell volume in filamentous cells than in regularly sized cells.  Altogether the data from cephalexin-

treated cells further confirms that the nucleoid minimally influences Z-ring placement in ZapA and 

ZapB triple deletion strains, though intriguingly the NO effect remains in the MatP triple deletion 

strain even without SlmA.  

 

The majority of cells remain viable even when the division plane is misplaced relative to 

nucleoids.  

To determine the consequences of Z-ring localization over nucleoids in triple deletion 

ZapA and ZapB cells, we performed fluorescence time-lapse microscopy and followed the fates 

of these cells after division. Instead of labeling the nucleoid with DAPI, we used a chromosomal 

HupA-mCherry construct. It has been shown that HupA binds to DNA non-specifically and gives 

the same localization pattern as the DAPI label but allows for time-lapse imaging without adverse 

effects to cells (Männik, Wu et al. 2012, Fisher, Bourniquel et al. 2013).  Remarkably, the majority 

of ZapA and ZapB triple deletion cells were viable even though in many cases the Z-ring 

positioned asymmetrically relative to the nucleoid center and appeared at first sight to guillotine 

the nucleoids (Figure 30A).  Here, we consider a newborn cell to be viable if it is able to produce 

two new daughter cells with chromosomes after approximately doubling its size (Figure 30A, B).  

However, not all daughter cells produced in asymmetric division were viable despite inheriting at 
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least some chromosomal DNA (Figure 30C, D).  The inviable cells were always the smaller 

daughters of the two that resulted from the asymmetric division. The larger daughters from all 

asymmetric divisions grew robustly.  Among the smaller daughter cells, a clear distinction 

between viable and inviable cell populations could be made based on their change of 

chromosomal mass in time (Figure 30B, D) and by their elongation rate (Figure 30E, F). The 

inviable cells containing DNA material stopped growth immediately after division as did anucleate 

minicells containing no DNA material. On the other hand, the small, viable daughters grew with 

essentially the same mass-doubling times as the larger daughters with the exception of a group 

of ZapB triple deletion cells that showed slower rates (Figure 30G, H).  It was also clear the 

inviable cells that resulted from asymmetric division contained less DNA, and their chromosomal 

content was distinctly smaller than the cells that were capable of supporting growth based on 

estimates of the apparent, two-dimensional nucleoid area (Figure 31A-E, Figure 32A-D, Table 3) 

and fluorescence signal from the HupA-mCherry label (Figure 33A-E).  The inviable cells did not 

lyse during the 10 hour observation period and in this respect behaved as DNA-free mini (Sun, 

Yu et al. 1998) and maxicells (Pazos, Casanova et al. 2014), which show very limited growth but 

maintain some cellular functions such as membrane integrity.  The abrupt halting of growth and 

low DNA content in inviable cells implies that these cells failed to inherit complete chromosomes 

while the asymmetrically dividing cells that were viable and did grow likely received at least a full 

genetic complement of DNA. 

  

Large chromosome fractions move across the division plane in asymmetrically dividing 

cells. 

To better understand chromosomal dynamics during asymmetric divisions in ZapA and 

ZapB triple deletion cells, we analyzed positions of nucleoids and Z-rings from time-lapse images.   
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Figure 30.  Evidence for nucleoid guillotining in ZapA and ZapB triple deletion cells. (A) 

Time series of HupA-mCherry labelled nucleoids in ZapA triple deletion strain. A nucleoid from a 

small viable daughter cell resulting from an asymmetric division is indicated by a red box and is 

shown at three time points: at birth, at the middle of cell cycle, and when the nucleoids separate 

from each other.  (B) The area of the nucleoid as a function of time for this cell. (C) Nucleoid 

images of an inviable ZapA triple deletion cell (boxed) at its birth, two hours, and 6.5 hours later. 

We interpret this nucleoid as having been guillotined during the division. (D) The area of the 

nucleoid versus time for this cell. (E) Elongation rates for ZapA triple deletion cells that we 

considered to have a full complement of genes (hatched blue) and guillotined chromosomes (solid 

green). Both types of cells have resulted from asymmetric division and contain some 

chromosomal DNA. (F) The same for the ZapB triple deletion strain. (G) Mass doubling times 

(TMD = 2.75 ± 1.31 [hr]) for ZapA triple deletion cells of (E) that divided asymmetrically but were 

considered to have a full complement of genes (hatched blue) along with the TMD (2.65 ± 0.50 

[hr]) of the larger sister cell (red). (H) The same for the viable ZapB triple deletion cells from (F) 

from the asymmetric sister TMD = 5.17 ± 2.23 [hr] and for the larger sister TMD = 2.65 ± 0.49 [hr].  
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Figure 31.  Percentages of inviable divisions and nucleoid areas following cell division for 
ZapA, ZapB, and MatP triple deletion strains.  Histograms of nucleoid areas just following cell 
division for (A) ZapA triple deletion, (B) ZapB triple deletion, (C) wild-type (D) ΔslmA Δmin, and 
(E) MatP triple deletion E. coli.  The areas have been measured from time-lapse images. Both 
sister chromosomes of the division event are accounted.  Green solid bars correspond to nucleoid 
areas of inviable, and hatched blue bars to viable cells. 
 

 

Figure 32.  Comparison of nucleoid areas in inviable and viable ZapA and ZapB triple 
deletion cells and in wild type cells. (A) Comparison of nucleoid areas for inviable ZapA triple 
deletion cells (MB15, N=29) to wild type cells (strain MB2). The distributions have essentially no 
overlap. (B) Comparison of nucleoid areas in viable and inviable (N=29) cells both in ZapA triple 
deletion strain. This Figure shows a zoomed in region of Figure 31A, B.  (C) and (D) The same 
comparisons in ZapB triple deletion strain (strain MB16, N=30 inviable cells). 
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Table 3:  2D Areas of nucleoids measured just following cell division for viable and 
inviable triple-deletion E. coli  

Strain Viable [μm
2
] Inviable [μm

2
] 

WT 
(MB2) 

1.05 ± 0.21 
(N=372) 

NA 

ΔslmA Δmin 
(MB1) 

1.02 ±  0.30 
(N=343) 

0.45 ± 0.07 
(N=5) 

ΔslmA Δmin ΔmatP 
(MB14) 

1.18 ± 0.39 
(N=319) 

0.38 ± 0.10 
(N=5) 

ΔslmA Δmin ΔzapA 
(MB15) 

1.26 ± 0.54 
(N=273) 

0.39 ± 0.10 
(N=29) 

ΔslmA Δmin ΔzapB 
(MB16) 

1.05 ± 0.39 
(N=278) 

0.41 ± 0.12 
(N=30) 

*Means, standard deviation, and number of analyzed cells 
are indicated. The table is from Figure 30. 

 

  

Figure 33.  Comparison of integrated fluorescence intensities between inviable and viable 
cells for different strains.  HupA-mCherry fluorescence intensities are measured immediately 
after division of the mother cell. Solid green bars show integrated fluorescence intensities from 
inviable daughters and blue hatched bars from viable daughters. Frequencies of inviable cells are 
indicated for each strain (A) ΔslmA Δmin ΔzapA (strain MB15, Nviable=273, Ninviable=29), (B) ΔslmA 
Δmin ΔzapB (strain MB16, Nviable=278, Ninviable=30) , (C) Wild-type (strain MB2, Nviable=372, 
Ninviable=0), (D) ΔslmA Δmin (strain MB1, Nviable=343, Ninviable=5), and (E) ΔslmA Δmin ΔmatP (strain 
MB14, Nviable=319, Ninviable=5), respectively. The distributions from viable and inviable cells are 
distinctly different. 
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In this analysis, we examined cells whose Z-rings were positioned asymmetrically relative to the 

centers of chromosomes. There was no apparent nucleoid occlusion effect in these cells, which, 

if present, would have prevented Z-rings from forming and constricting over unsegregated 

nucleoids. In a typical asymmetric division event (Figure 34A, B, Figure 35), we observed first a 

small shoulder to emerge from one side of the nucleoid density profile at the location of the Z-

ring.  In time, the shoulder grew into a well-distinguishable peak in the profile that separated from 

the mother chromosome (Figure 34D).  The nucleoid mass, which eventually partitioned into the 

smaller daughter cell, underwent the most extensive growth within approximately a 30 minute 

interval.  The growth ceased about the time when the ZipA-GFP label dissociated from the 

septum. The growth of this cell resumed after a lag period (of about 1 hour) and gave rise to two 

new viable daughter cells.  

To quantify these division plane-induced chromosomal movements, we measured the 

chromosomal mass changes on both sides the division plane in time (Figure 34C, D).  The 

analysis (described in the Appendix) revealed the relative fraction of the smaller daughter’s 

chromosomal mass to that of the whole chromosome sharply increased in time just before the 

disappearance of the Z-ring (Figure 34E).  Once the division was completed, the fraction stayed 

constant. The change in the relative amount of DNA on the side of the smaller daughter cell 

indicates chromosomal DNA crossed the division plane during septum closure, i.e. translocated, 

from the larger daughter cell’s compartment. The change cannot be explained simply by 

replication and growth, because these processes would not have caused the fraction to change. 

Indeed, when we treated cells with cephalexin, which inhibits constrictions, cells grew and 

replicated their chromosomes but the fraction did not change even when Z-rings were positioned 

very close to nucleoid edges (Figure 40C).  We found very similar DNA movement across the 

septum also occurred in ZapB triple deletion cells (Figure 36) and that in both strains it was not 

dependent on whether the resulting daughter cells were viable or not. However, we observed 
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Figure 34.  The nucleoid translocates across the septum in asymmetrically dividing ZapA 
triple deletion cells. (A) Kymograph of ZipA-GFP (Z-ring label) for a triple deletion ZapA cell 
(strain MB15).  Blue corresponds to low and red to high intensity. Black areas are outside the cell. 
(B) Kymograph of HupA-mCherry labeled nucleoid for the same cell.  Overlaid black dots show 
locations of the Z-ring as determined from the data shown on panel (A).  (C) Schematic illustrating 
the chromosomal mass ratio calculation for the smaller daughter. Red represents the nucleoid, 
and the green vertical line represents the Z-ring.  𝐼1 and 𝐼2 indicates the integrated fluorescent 
intensities of the nucleoid label on either side of the cell division plane. (D) The intensity line 
profiles of the ZipA-GFP (green) and HupA-mCherry (red) at selected time points for the same 
cell. The septum is marked by dashed vertical line. (E) The fraction of the nucleoid material in 
smaller daughter side of the septum as a function of time (same cell). The vertical arrow shows 
the approximate time the ZipA-GFP ring disassembles.  (F) Distribution of division events showing 
translocation (filled circles) or no translocation (empty circles) a as a function of nucleid area and 
fraction of chromosomal material within the smaller daughter’s compartment immediately after 
cell division. (G) The population averaged normalized fraction of nucleoid material in the smaller 
daughter’s compartment of the septum as function of time for ZapA (MB15, N=12, circles) and 
ZapB (strain MB16, N=11, squares) triple deletion cells. Error bars represent s.e.m. 
 

 



87 
 

 

 

 

 

 

Figure 35.  Fluorescent images of nucleoids and Z-ring during the translocation process 
for the cell shown in Figure 34A, B, D, and E. Only frames with the largest chromosomal 
movement are shown. Left Panel: Overlay of HupA-mCherry (red) and ZipA-GFP (green) signals. 
Right Panel:  HupA-mCherry image only.  Scale bar is 1 μm. 
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clear chromosomal movement only for asymmetric divisions (final fraction ≤ 0.4) that produced 

small daughter cells (nucleoid area ≤ 0.8 m2) (Figure 34F). For such divisions, and restricting 

the following analysis only to viable cells, the translocating movement was observable within 

about a 30 min interval preceding the completion of division (Figure 34G). During this period the 

relative amount of chromosomal mass within the smaller daughter’s side increased on average 

about 30% relative to the larger daughter’s side. The change in the normalized fraction (i.e. curve 

in Figure 34G) can also be used to estimate the total fraction of DNA translocated during the 

division and the average translocation rate. The fraction of the total amount of DNA translocated 

to the total amount of chromosomal DNA contained within the smaller daughter at the end of 

division is equivalent to the difference between the normalized fraction at the beginning and end 

of translocation (for details see SI Appendix, Text). Thus, in both ZapA and ZapB triple deletion 

strains, about 30% of the chromosomal mass that ultimately ende up within the smaller daughter 

moved across the division plane just prior to division. Assuming smaller daughters inherited one 

full chromosome equivalent (4.6 Mb), we determine the population averaged translocation rate to 

be approximately 770 bp/s. It is possible that the daughters contained more than one genome 

equivalent of DNA at the time of division because cells growing in glucose minimal medium 

typically do. In this case, the actual rate is somewhat higher. In individual translocation curves, 

much more abrupt increases in chromosome content could be seen with the estimated rates as 

high as 3000 bp/s. In rare cases we could also observe retractions of chromosomes, which lead 

to complete (Figure 37) or partial removal of DNA from the compartment of the smaller daughter.  

Note that retraction events were excluded from analysis in Figure 34G. 
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Figure 36.  The nucleoid translocates across the septum in asymmetrically dividing ZapB 
triple deletion cells. (A) Kymograph of ZipA-GFP (Z-ring label) for a ΔslmA ΔminC ΔzapB cell 
(strain MB16).  Blue corresponds to low and red to high intensity. Black areas are outside the cell. 
Note this cell is viable (B) Kymograph of HupA-mCherry labeled nucleoid for the same cell.  
Overlaid black dots show locations of the Z-ring as determined from the data shown on panel (A).  
(C) The intensity line profiles of the ZipA-GFP (green) and HupA-mCherry (red) at selected time 
points for the same cell. The vertical dashed lines indicate the location of septum.  (D) The fraction 
of the nucleoid translocated across the septum relative to the total amount of nucleoid material 
within the cell as a function of time (same cell). The arrow represents the approximate time the 
ZipA-GFP ring disassembles.  (E) Distribution of division events showing translocation (filled 
circles) or no translocation (empty circles) as a function of nucleoid area and fraction of 
chromosomal material at the smaller daughter side right after cell division. 
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The Ter region translocates rapidly through the closing septum in late stages of 

cytokinesis.  

To further confirm the translocation process, we used time-lapse microscopy to monitor 

simultaneously the replication terminus region and divisome. To label the replication terminus 

region, we used MatP-mCherry expressed from its native promotor, and inducible ZipA-GFP as 

a divisome label (Bailey, Bissichia et al. 2014).  MatP binds specifically to 23 binding sites on the 

E. coli chromosome located at the replication terminus region within the Ter macrodomain, which 

spans 400kb in both direction from the dif site (Mercier, Petit et al. 2008, Dupaigne, Tonthat et al. 

2012).  While in wild type (Espeli, Borne et al. 2012) and slmA min cells the Ter macrodomain 

and Z-ring co-localize, in ZapA, ZapB, and MatP triple deletion cells no co-localization is present 

when the Ter linkage is absent (Bailey, Bissichia et al. 2014).  In many asymmetrically dividing 

ZapA and ZapB triple deletion cells, a single MatP-mCherry labelled Ter focus remains localized 

on one side of the closing septum (Figure 38A-C). Only in very late stages of cell division does 

the Ter focus split into two. During this splitting, one of the foci moves across the septum (Figure 

38C). Interestingly, in many cases we observed the MatP focus split and translocate across the 

divisome after the ZipA-GFP label had dissociated from the divisome (Figure 38D). However, on 

average the time difference between splitting of MatP focus (tMatP Split) and disassembly of ZipA 

decorated Z-ring (tZ) was zero for both ZapA (tMatP Split – tZ = 4 ± 23 min; p=0.96) and ZapB (tMatP 

Split – tZ = 6 ± 12 min; p=0.50) triple deletion cells.  Since ZipA is one of the two membrane anchors 

of FtsZ, the disappearance of ZipA and FtsZ from the septum can be expected to occur 

simultaneously. As perhaps expected, the Ter region appears to be the last region of the 

chromosome to be translocated across the closing septum and that this movement occurs just 

before the division septum closes. 

A notable feature of the Ter translocation is the distance it travels (Figure 38C).  We found 

the distance traveled by the Ter region that ended up in the smaller daughter to be 0.90 ± 0.30 

μm and 0.77 ± 0.29 μm for the ZapA and ZapB triple deletion E.coli, respectively (Figure 38E).  
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Figure 37.  Complete retraction of chromosomal DNA from the smaller daughter. (A) 
Kymograph of ZipA-GFP (Z-ring label) and (B) HupA-mCherry labeled nucleoid for a triple deletion 
ZapA cell (strain MB15).  Overlaid white dots show locations of the Z-ring as determined from the 
data shown on panel (A).  (C) The intensity line profiles of the ZipA-GFP (green) and HupA-
mCherry (red) at selected time points for the same cell. The septum is marked by dashed vertical 
line. (D) The fraction of the nucleoid material in the smaller daughter’s side of the septum as a 
function of time (same cell). 
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Figure 38.  The Ter region translocates across the closing septum just before completion 
of cytokinesis. (A) Distribution of ZipA-GFP along the cell length as a function of time for a ZapB 
triple deletion cell (strain MB16).  (B) Distribution of MatP-mCherry labeled replication terminus 
region for the same cell.  In the kymographs, blue corresponds to low and red to high intensity. 
The black data points in panel (B) shows the centroid of the ZipA-GFP signal shown in panel (A).  
(C) Positions of ZipA-GFP labelled Z-rings (green circles) and MatP-mCherry labeled terminus 
region (red triangles) as a function of time.  (D) Histogram of time differences between the splitting 
of the MatP focus (tMatP Split) and the disappearance of ZipA-GFP from midcell (tZ). (E) Histogram 
of the distances moved by the terminus region during translocation. In (D) and (E) ZapA triple 
deletion is represented by blue (N=17 in (D); N=16 in (E)) and ZapB triple deletion by red hatched 
bars (N=18 in (D); N=19 in (E)). 
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The distance travelled by the Ter focus is comparable to size of the fully replicated nucleoid in 

these growth conditions. Taking that the Ter region comprises about 20% of the nucleoid, its fast 

long-distance movement indicates very rapid changes in the whole chromosomal organization 

during the translocation process. 

 

FtsK is not required for DNA translocation but cell constriction is.   

What biological mechanism can generate such large-scale DNA translocation? E. coli like 

most other bacteria harbor the DNA pump FtsK, which can rapidly move DNA across the septum.  

Bacterial FtsK is a protein that localizes to the divisome late in the cell cycle and participates in 

coordinating cell division with the late stages of chromosome segregation (Sherratt, Arciszewska 

et al. 2010). In particular, the C-terminal domain is a double-stranded DNA pump (called a 

“translocase”) that pulls the replication terminus to the location of the divisome, where it is involved 

in the process of separating chromosomes that occasionally link together during the segregation 

process (Sherratt, Arciszewska et al. 2010).  Inside the cell, FtsK forms a hexameric assembly  

(Bisicchia, Steel et al. 2013) that can pump or translocate DNA at a rate of about 5 kb/s and stops 

when FtsK reaches a specific sequence of terminus DNA known as the dif site (Sherratt, 

Arciszewska et al. 2010).  Although thus far in E. coli FtsK has been shown to act only on a 400 

kb region around the dif site (Deghorain, Pages et al. 2011, Stouf, Meile et al. 2013) (9% of the 

full chromosome), its analog in B. subtilis SpoIIIE can translocate 75% of the mother genome into 

the forespore (Wu and Errington 1994).  Due to the structural similarity between FtsK and SpoIIIE, 

it is conceivable that FtsK is capable of acting on larger chromosomal regions than only in the 

immediate vicinity of the dif site. To determine if FtsK was responsible for the observed DNA 

translocation we introduced an FtsK-K997A mutation to both ZapA and ZapB triple deletion 

strains. The K997A substitution abolishes ATP binding and renders FtsK inactive in DNA pumping 

(Kennedy, Chevalier et al. 2008).  
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Figure 39. FtsK DNA-pumping activity is not required for observing translocation. (A) 

Composite of ZipA-GFP (green), DAPI (red), and phase contrast images (gray) of a ΔslmA ΔminC 

ΔzapB FtsK-K997A E. coli (strain MB38).  Scale bar is 5 μm.  (B)  Histograms of nucleoid areas 

just following cell division for the same strain. Green solid bars correspond to nucleoid areas of 

inviable and hatched blue bars to viable cells.   (C) Kymograph of ZipA-GFP (Z-ring label) and 

(D) Intensity line profiles for the cell shown in the kymographs (C) and (D).  (E) The intensity line 

profiles of the ZipA-GFP (green) and HupA-mCherry (red) at selected time points for the cell 

shown in (C) and (D). (F) The population averaged normalized fraction of nucleoid material in the 

smaller daughter’s side of the septum as function of time for a ΔslmA ΔminC ΔzapB FtsK-K997A 

(squares, N=10) and ΔslmA ΔminC ΔzapA FtsK-K997A cells (circles, strain MB40, N=10). Note 

that all smaller daughters resulting from these divisions are inviable.  
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The introduced mutation led to the frequent appearance of long (~10 μm or longer) cells 

that exhibited multiple constrictions resulting in very unequally and randomly sized septated 

chains of cells containing correspondingly unequally sized portions of DNA (Figure 39A).  Some 

cells in the chain were very small, <1 μm, in size yet still contained DNA material.  Time-lapse 

imaging of the ZapB triple deletion strain containing the FtsK-K997A mutation revealed that 

approximately 45% of cells resulting from divisions were inviable (Figure 39B). Unlike the triple 

deletions strains, the inviable cells in this strain were not exclusively small in size. Unlike smaller 

inviable cells, larger inviable cells typically did not stop their growth immediately after division but 

lysed later on.  This observation suggests that viability loss in these larger cells may not have 

resulted from the inheritance of an incomplete genome.    

Although the FtsK-K997A mutation in ZapA and ZapB triple deletion cells had a dramatic 

effect on cell morphology and viability, time lapse imaging showed they were still able to 

translocate DNA (Figure 39C-F). The translocated DNA amounts were almost indistinguishable 

for ZapA and ZapB triple deletion cells with the FtsK-K997A mutation (total fraction near 30%) 

from their triple deletion counterparts (Figure 39F). From this finding, we conclude that FtsK 

translocase activity is not required for observing rapid DNA movement across the closing septum 

even though FtsK may contribute to the process. We then hypothesized that perhaps the closing 

septum itself is responsible for the observed DNA movement by physically pushing chromosome 

masses apart during division.  To test this idea, we treated ZapA and ZapB triple deletion cells 

with cephalexin to inhibit septal cell wall growth and constriction formation but not assembly of 

the Z-ring (Pogliano, Pogliano et al. 1997).  We monitored cells with Z-rings located near the 

nucleoid periphery to see if nucleoid profiles revealed any DNA movements across the division 

plane.  Unlike the untreated triple deletion cells, no translocating behavior could be observed in 

these cells (Figure 40A-D). The fraction of chromosomal mass on either side of the Z-ring relative 

to the whole chromosomal mass remained essentially constant (Figure 40D), suggesting cells 
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Figure 40.  No DNA translocation is observed when septum constrictions are inhibited. (A) 
and (B) Kymographs of ZipA-GFP and HupA-mCherry, respectively, for a ΔslmA ΔminC ΔzapA 
cell treated with 50 ug/ml cephalexin to inhibit cell division. (C) Intensity line profiles for the cell 
shown in (A) and (B). Red traces correspond to HupA-mCherry and green traces to the ZipA-GFP 
signal. Vertical, dashed line points to the location of peripheral Z-ring.  (D) The population 
averaged normalized fraction of nucleoid material in the smaller daughter’s side of the septum as 
function of time for ΔslmA ΔminC ΔzapA (MB15, N=10) and ΔslmA ΔminC ΔzapB (MB16, N=12) 
cells. Error bars in (E) are s. e. m. 
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needed to form constrictions for DNA movement across the division plane to be observable.  

 

Discussion 

Removal of slmA and minC together with zapA or zapB from the E. coli genome results in 

cells where Z-rings and division planes frequently (40% occurrence) localize over unsegregated 

nucleoids. In these cells, once the Z-ring forms and matures there appears to be no feedback 

mechanism present to prevent the septum from constricting over underlying nucleoids.  

Interestingly, such divisions produce predominantly viable cells (in about 70% of occurrences).  

High viability of cells from such divisions can be explained by the observed movement of 

chromosomal DNA across the division plane during late stages of cytokinesis.  Such directed 

movement appears to rescue the chromosomes in all but in the most asymmetric divisions and 

provides each daughter cell with a complete set of genomic information.  

Our estimates suggest that about one third of the chromosome moves across the septum at 

an average rate of about 770 bp/s in asymmetric divisions.  FtsK is a known DNA pump in E. coli, 

which in vitro can translocate DNA at rates of 5000 bp/s.  Investigation of an FtsK ATPase mutant 

showed that DNA movement across the division plane can occur even when this DNA pump was 

disabled, although in the ZapB triple deletion which carried the additional FtsK-K997A mutation, 

the process appeared to be significantly affected. While FtsK mediates the translocation process 

and has a significant effect on cell viability, it may effectively pump DNA in E. coli only within the 

200 kb region flanking the dif-site in the replication terminus region as reported earlier (Deghorain, 

Pages et al. 2011, Stouf, Meile et al. 2013). 

 

The constricting division septum coupled with chromosome fluctuations may drive 

translocation  

   FtsK is the only known DNA pump in E. coli. How could the nucleoid translocation process 

occur in cells without this pump?  We hypothesize that the constricting division septum coupled 
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to thermal or non-equilibrium fluctuations in the nucleoid drive the process rather than some 

dedicated protein machinery (Figure 41).  This hypothesis is consistent with the finding that in 

cephalexin treated cells translocation is absent when there is no constriction formation. The timing 

of translocation is also indicative that the closing division septum is involved. Most of the 

translocation occurs in the last stages of cytokinesis when the constricted region is known to 

rapidly shrink (Reshes, Vanounou et al. 2008). How can constriction cause DNA movement then? 

As can be seen from time-lapse movies, the constriction physically/sterically separates 

chromosomal masses from a single chromosome to two daughter compartments. As a result of 

separation, a restoring force is created that tries to pull these separated chromosomal masses 

back together. The restoring force is entropic in nature and arises because chromosomal DNA is 

stretched in the constricted septal region. Of course, the force acts on both DNA masses and 

therefore could also lead to movement of DNA from the smaller daughter’s to the larger daughter’s 

compartment.  In a few cases we did indeed observe retractions of DNA. In these cases, the 

constriction formed over the periphery of the nucleoid capturing initially only a small fraction of 

the chromosome. Although retractions can be observed, the process clearly carries an entropic 

penalty because the DNA in the larger daughter’s compartment is more confined than if it were 

distributed between two daughters.  Accordingly, there should be an overall tendency for DNA to 

move towards the compartment of the smaller daughter cell rather than leaving it empty. It is not 

clear, however, if the resulting entropic force is of a sufficient magnitude to drive chromosomal 

movement at the observed time scale. Clearly, alternative scenarios cannot be ruled out at this 

stage. For example, it is possible that the release of cohesive tethers within the replicating 

chromosome leads to abrupt extrusions along the nucleoid edge (Joshi, Bourniquel et al. 2011) 

and that the nucleoid shape oscillates on the time scale of tens of seconds (Fisher, Bourniquel 

et al. 2013). It is possible that these fluctuations are captured by the closing septum. However, 

we did not observe similar extrusions in cephalexin treated cells but at this stage we cannot rule 
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Figure 41.  Cell constrictions alone may be sufficient to explain the observed DNA 

translocation.  (A)  Schematic of an asymmetric division plane constricting a portion of the 

chromosomal DNA.  If the majority of the chromosome is already within the smaller, asymmetric 

daughter then perhaps the closing septum could push/pull over the remainder of the chromosome.  

�⃗� represents the net force on the chromosome generated by the constricting septum.  (B) If the 

majority of the chromosome is on the side of the larger daughter cell, we expect cell division to 

produce an anucleate minicell.      
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out interfering effects of the cephalexin treatment to the release of cohesive tethers and non-

equilibrium fluctuations of the nucleoid.  

 

Nucleoid translocation in other bacteria 

Such large scale chromosomal movements have been described in sporulating B. subtilis 

where the translocation results from DNA pumping by SpoIIIE (Wu and Errington 1994). In 

vegetatively growing bacteria, no large scale chromosomal movements have been described yet. 

However, it has been hypothesized that nucleoid translocation is common in coccal bacteria that 

lack both the Min and nucleoid occlusion systems (Pinho, Kjos et al. 2013). Our work provides 

support for this hypothesis and implies that some bacterial species may use nucleoid 

translocation, either by a dedicated motor protein or by cell constriction alone, as a dominant 

mechanism to coordinate positioning of chromosomes and cell division proteins. 
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Chapter 4: Unanswered Questions and the Direction of Future 

Research 

Several questions have been produced as a result of this work, which can become 

research projects of their own.  With regards to the Ter linkage, while it is known that FtsZ binds 

ZapA, ZapA binds ZapB, and ZapB binds MatP, a physical model of the linkage’s structure has 

only recently been proposed.  This structure will be discussed here.  Still, an outstanding question 

is how the Ter linkage forms as a function of time.  In other words, in what order do the proteins 

assemble, in what stoichiometry do these proteins bind each other, and where in the cell does 

the Ter linkage form?     

A closely related question is to what extent does the Ter linkage influence Z-ring 

formation?  Does the Z-ring build, according to the current paradigm, primarily on the membrane 

independently of the Ter linkage and then once formed, and associated with ZapA and ZapB, 

connect to the underlying MatP-bound chromosomal terminus?  Or, does the MatP-bound 

terminus, decorated with ZapB, first bind ZapA and then recruit cytosolic FtsZ?  It is equally 

possible that both of these scenarios occur simultaneously, namely that the Z-ring forms from the 

membrane “down”, and from the cytosol near the terminus “up” toward the membrane, and 

realizes the connection by meeting in the middle.   

A different but equally interesting question is why do we not see VENO in slow growing 

ΔslmA ΔminC E. coli?  Similarly, why do we see nucleoid occlusion in ΔslmA ΔminC ΔmatP E. 

coli but not in the ΔslmA ΔminC ΔzapA or ΔslmA ΔminC ΔzapB strains?  Is it possible that a 

mechanism akin to our original VENO hypothesis is responsible for the exclusion of the Z-ring 

from the regions of the cell occupied by the nucleoid in ΔslmA ΔminC ΔmatP cells?   

With respect to large-scale chromosome rearrangement, the question of how the closing 

septum mechanistically translocates the DNA remains.  Is the force which seems to pull the DNA 
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into the asymmetrically dividing daughter cell purely entropic in nature, or are there other unknown 

pulling forces that arise from septal cell wall synthesis?      

Lastly, because in slow growth conditions neither the Min system, SlmA-mediated 

nucleoid occlusion, or the Ter linkage are strictly essential in E. coli, we are left with the 

fundamental question “What are the minimal requirements for coordination between divisome 

formation and chromosome replication/segregation?” 

Though we have yet to perform experiments on all these questions, we have begun 

experiments to understand the time-dependent formation of the Ter linkage, as well as to 

understand whether or not the Ter linkage influences Z-ring formation.  In addition to these 

preliminary results, I will present an argument regarding the apparent absence of VENO in slow 

growing ΔslmA Δmin E. coli, as well as the minimal requirements for coordination between 

divisome formation and chromosome replication/segregation. 

 

 How is the Ter linkage structurally and dynamically formed?     

Timelapse microscopy of fluorescently labeled ZapA, ZapB, and FtsZ showed that ZapA 

and ZapB are both recruited early to the Z-ring as both ZapA and ZapB colocalized with FtsZ from 

approximately the time the Z-ring formed at midcell (Galli and Gerdes 2010).  By forming 3D 

reconstructions of deconvoluted images, Galli and Gerdes were able to show that ZapB formed 

what appeared to be a ring-like structure inside the Z-ring, while ZapA, which also forms a ring-

like structure, has a diameter that is indistinguishable from that of the Z-ring.  Furthermore, they 

showed that ZapB colocalization to the Z-ring was lost when ZapA was removed (Galli and Gerdes 

2010).  Earlier in vitro studies showed that in the presence of ZapA, FtsZ formed large cable like 

structures (Low, Moncrieffe et al. 2004), and that similar in vitro studies showed that ZapB self-

assembled into similar large cable-like structures (Ebersbach, Galli et al. 2008).    Due to the 

ability of ZapA to colocalize with FtsZ and support the self-organization of ZapB ring-like structure, 

the model that emerged is one where ZapA and ZapB increase Z-ring stability by connecting 
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smaller clusters of FtsZ filaments (Galli and Gerdes 2012, Buss, Coltharp et al. 2013).  This idea 

was supported by observations of abnormal septa in cells lacking only ZapA or ZapB.  

Interestingly, removal of ZapA or ZapB did not affect the arrival of subsequent divisome proteins, 

nor did it stop cells diving in an otherwise wild-type manner (Buss, Coltharp et al. 2013).   

Nevertheless, despite the discovery that ZapB interacts with replication terminus binding protein 

MatP, and in the presence of ZapA localized at midcell (Espeli, Borne et al. 2012), a complete 

structure of the Ter-linkage was only recently proposed. 

 By using single-molecule based super-resolution imaging techniques (PALM and iPALM), 

Buss et al. quantified the spatial arrangement of FtsZ, ZapA, ZapB, and MatP and found together 

they form a large, multi-layered network which extends from the membrane to the Ter region of 

the chromosome. In addition to showing the Z-ring was composed of a heterogeneous and 

punctate arrangement of FtsZ clusters, which were displaced away from the cytoplasmic face of 

the inner membrane by approximately 13nm, they showed that ZapA adopted a similar 

heterogeneous, punctate clustered arrangement.  ZapB, on the other hand, was found to form a 

wider, larger, and more cohesive structure that was displaced about 40nm inside (toward the cell 

center) of the FtsZ and ZapA structure, consistent with previous live cell, fluorescence microscopy 

results (Galli and Gerdes 2010).  Interestingly, MatP was observed to form clusters of its own with 

an average diameter of approximately 100nm located a further 30nm inside the ZapB structure.  

With respect to the cell center, the MatP structure was displaced approximately 280nm radially 

outward (Buss, Coltharp et al. 2015).  A visual summary of their work is illustrated in Figure 42.   

Care must be given, however, to any subcellular structures determined from super 

resolution since the technique requires a cell’s internal substructures to be “fixed” in place, 

preserving them from decay or destruction.  Consequently, the process of fixing cells kills them.  

Images acquired in this way are only valid if the fixation method accurately captures the internal 

structures as they existed when the cell was alive.  Unfortunately, cell fixation can alter 

substructures and therefore introduce artifacts (Huang, Bates et al. 2009).  When possible, super-    
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Figure 42.  Schematic illustration of the multi-layered organization of the FtsZ-ZapA-ZapB-
MatP macrostructure in E. coli by (Buss, Coltharp et al. 2015). The FtsA (green) and ZipA 
(orange) proteins tether the punctate FtsZ (red) ring to the inner plasma membrane. ZapA (blue) 
is arranged similarly to FtsZ. Deviation of ZapA from FtsZ may result from interactions with ZapB 
or other membrane proteins. ZapB (grey) forms the structure that extends most into the cytosol, 
and associates with FtsZ indirectly through ZapA.  ZapB also associates with DNA-bound MatP 
(yellow).  Schematic adapted from (Buss, Coltharp et al. 2015). 
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resolution results should be substantiated with other independent experiments such as live cell 

microscopy, or immunofluorescence microscopy. 

Fortunately, recent live cell microscopy results seem to support the PALM and iPALM 

results.  Mannik et al. demonstrated that MatP can assume an extended, or elongated formation 

along the short axis of the cell at the location of the divisome (Mannik, Castillo et al. 2016).  Instead 

of creating a uniform, annular distribution, MatP was observed to make only limited attachments 

with the divisome, suggesting that the Ter linkage is only fully realized along certain subregions, 

or along certain arcs, of the divisome.  As expected, when ZapA or ZapB were removed, MatP 

elongation along the lateral direction markedly decreased (Mannik, Castillo et al. 2016).   

Despite the insight gained into the physical structure of the Ter linkage, the time-

dependent behavior of the Ter-linkage, namely how the network is constructed as a function of 

the cell cycle, is unknown.  Though the PALM technique offers enhanced spatial resolution, it is 

not a technique easily applicable to timelapse imaging.  A straightforward series of experiments 

to gain insight into the time-dependent behavior of the FtsZ-ZapA-ZapB-MatP network would be 

to label pairs of proteins, e.g., FtsZ – ZapA, ZapA – ZapB, and ZapB – MatP, and monitor their 

respective colocalization as a function of time.  Though the project remains in its infancy, we have 

begun such a series of experiments.  Thus far, we have constructed strain RH14 which is a wild-

type E. coli strain having ZapB-GFP and MatP-mCherry protein fusions.  From static images 

(Figure 43A-D), we find that whether MatP is located in the center of the nucleoid, or at the 

nucleoid periphery (indicative of an early stage of the cell cycle), ZapB and MatP were found to 

colocalize in every cell observed (N=105) (Figure 43E).  While the colocalization accuracy was 

approximately the same as the colocalization accuracy between ZipA and MatP (Figure 43F), 

interestingly no ZapB was found at midcell when MatP was located at a pole.  This observation 

differs from the colocalization pattern between ZipA-GFP and MatP-mCherry labels where 

occasionally Z-rings were found to localize at midcell when MatP was located at the nucleoid  
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Figure 43.  ZapB colocalizes with MatP even when MatP is located at the nucleoid 
periphery.  (A), (B) Composite of ZapB-GFP (green), MatP-mCherry (red), and phase contrast 
images (gray) of an otherwise wild-type E. coli (strain RH14) (C), (D) The intensity line profiles of 
the ZapB-GFP (green), MatP-mCherry (red), nucleoid-labeled by DAPI (blue), and phase 
constrast cell contour (black) for the cells in (A) and (B), respectively.  (E)  Displacements of ZapB-

GFP relative to the cell center, XZapB, as a function of the MatP-focus displacement from the cell 

center, XMatP. All displacements are normalized by cell length L. The solid line corresponds to 

XZapB=XMatP.  The circled data points represent cells which have MatP foci located at the 
nucleoid perihery for which ZapB is colocalized.  (F)  Histogram of distances between MatP-
mCherry and ZapB-GFP.  (G), (H) Composite of ZapB-GFP (green), MatP-mCherry (red), and 
phase contrast images (gray) of an otherwise wild-type E. coli treated with cephalexin (strain 
RH14).  (I), (J) The intensity line profiles of the ZapB-GFP (green), MatP-mCherry (red), nucleoid-
labeled by DAPI (blue), and phase constrast cell contour (black) for the cells in (G) and (H), 
respectively. The arrows represent small ZapB accumulations that colocalize with MatP-foci 
located away from the cell center.  All scale bars are 2μm. 
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periphery (Figure 17).  This observation suggest that ZapB may decorate MatP rather than the 

ZapA-bound Z-ring, at least at early stages of the cell cycle.  If so, then ZapB might build from the 

cytosol toward the membrane.  To test this idea further, we treated the RH14 strain with 

cephalexin to inhibit septal cell wall synthesis and prevent the formation of constrictions.  In wild-

type E. coli treated with cephalexin that are less than about 10μm long, usually only one Z-ring is 

present at midcell.  If we observed ZapB to accumulate with MatP which had split and moved to 

the centers of the replicated nucleoids while the Z-ring remained at the cell center, this observation 

would further indicate that ZapB decorates MatP even in the absence of the Z-ring.  This 

observation would provide further evidence that ZapB might build from the cytosol and connect 

later to the forming membrane-proximal Z-ring.  Though the majority of ZapB was found in the 

center of cephalexin-treated cells at the location of the Z-ring, essentially all MatP foci which had 

replicated and moved to the centers of sister nucleoids were accompanied by smaller 

accumulations of ZapB (Figure 43G-J).  Smaller ZapB accumulations at MatP foci relative to the 

ZapB accumulation at the central Z-ring is reasonable since each MatP focus is composed of 

about 40 MatP proteins for ZapB to bind to.  In comparison, a much larger number of Z-ring bound 

ZapA proteins are available to bind ZapB.  Taken together, these results suggest that ZapB can 

decorate MatP foci in the absence of the Z-ring, implying that the ZapB-bound terminus could 

serve as a Velcro-like cluster that, under DNA fluctuations which bring the DNA close to the 

membrane, can “stick” to the FtsZ-ZapA clusters composing the Z-ring. 

In addition to static images, we performed timelapse microscopy on the ZapB-GFP, MatP-

mCherry labeled wild-type E. coli.  As suggested by the static images, throughout the cell cycle, 

we observed ZapB colocalize with MatP.  At the beginning of the cell cycle, when MatP moved 

from the pole of the daughter cell to the cell center, ZapB followed (Figure 44).  In some cases, 

MatP was observed to move more diffusely from the pole to the cell center, often moving back 

toward the pole of the cell before settling in at midcell later in the cell cycle.  In these cases, ZapB  
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Figure 44.  ZapB colocalizes with MatP throughout the cell cycle.  (A) Kymograph of ZapB-
GFP and (B) MatP-mCherry for a wild-type E. coli cell (strain RH14).  Blue corresponds to low 
and red to high intensity. Black areas are outside the cell. Overlaid black dots show locations of 
ZapB-GFP as determined from the data shown on panel (A).  Note, after ZapB splits, only the 
lower branch is followed here.  (C) Kymograph of ZapB-GFP and (D) MatP-mCherry for another 
wild-type E. coli cell. 
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also adopted the same diffuse, and occasionally jumpy pattern (Figure 44A, B).  At the end of the 

cell cycle, when MatP replicated and split, ZapB was observed to split at approximately the same 

time (Figure 44A-D).  Though more analysis needs to be performed to characterize the timing 

between MatP-splitting and the subsequent ZapB-splitting, the preliminary results suggest that 

ZapB decorates MatP throughout the entire cell cycle, raising the possibility that the FtsZ-ZapA-

ZapB-MatP network may be partially present throughout the cell cycle.   

 

Why did we fail to see VENO in ΔslmA Δmin E. coli? 

 FtsZ filaments have not been directly observed diffusing through the cytosol.  However, in 

vitro, FtsZ monomers polymerize into filaments at a critical concentration between 0.5μM - 1μM 

(Adams and Errington 2009).  Interestingly, the estimated concentration of FtsZ in E. coli ranges 

between 4μM - 7μM, depending on the strain (Erickson, Anderson et al. 2010), suggesting FtsZ 

should exist as filaments in vivo (in vivo, see Appendix Glossary).  Nevertheless, it is possible 

that filaments do not exist inside bacteria.    Alternatively, even if filaments are present in vivo, it 

is possible that VENO is not sufficient to position Z-rings.  It is plausible that filaments are excluded 

from nucleoids, consistent with the estimation presented here, and yet filaments lack a signal that 

triggers their coordinated polymerization at one location.  If true, filaments, though expelled from 

the nucleoid, would diffuse through the surrounding cytosol without forming a Z-ring.      

 

What are the minimal requirements for divisome-chromosome coordination in bacteria? 

An overarching question, not only in our lab but throughout bacterial cell biology, is what 

are the minimum requirements for a system to provide sufficient coordination between cell division 

and chromosome segregation so that cell division produces two viable cells? The following 

argument has been presented in our review (Männik and Bailey 2015), and suggests that if cells 

are sufficiently large, perhaps no coordination is needed at all.   
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Remarkably, neither the Min system, SlmA-mediated nucleoid occlusion, nor the Ter 

linkage is strictly essential in E. coli.  Moreover, even though FtsK is essential, its DNA 

translocating domain  (C-terminal domain) is not (Sherratt, Arciszewska et al. 2010).  Is it possible 

that E. coli harbors some additional molecular system(s) that coordinates its divisome and 

chromosome, and this yet to be discovered system is indispensable?  As demonstrated 

particularly with the ΔslmA Δmin ΔmatP triple deletion E. coli strain, there is strong evidence that 

the NO effect can occur without SlmA.  Although the molecular bases of this mechanism remains 

unknown it could be an essential mechanism for some bacteria.  It is also possible that early 

protocells might have had mechanisms that provided some coordination between division planes 

and chromosomes but which were not specifically dedicated for the task. For example, in rod-

shaped bacteria cell membrane mechanics dictates that divisions which partition a mother cell 

into two equal halves are energetically more favorable than asymmetric divisions (Shlomovitz and 

Gov 2009).  Also, as we have observed in ΔslmA Δmin ΔzapA and ΔslmA Δmin ΔzapB E. coli, it 

is likely that chromosomes could be pushed mechanically away as the division septum closes 

preventing them from being guillotined.  Depending upon the rigidity of early bacteria’s cell wall, 

it is possible the chromosomes could have provided enough mechanical hindrance to prevent the 

septum from closing.  These mechanisms could still be present in modern E. coli even though 

their influence is overridden by the more efficient molecular systems such as Min, SlmA, and the 

Ter linkage. 

Alternatively, it is possible that there are no indispensable mechanisms that coordinate 

cell division and chromosome segregation in E. coli.  For propagation of a sizeable cell population, 

the ultimate limit appears to be that on average more than half of the nucleoids need to survive 

cell division undamaged, and emerge in newborn daughter cells (note that small cell populations  

can go extinct even when more than half of the nucleoids survive cell division). One way to fulfill 

this requirement in cells that lack any dedicated coordination mechanism between cell division 

and chromosomes is to increase cell size. If the division plane is placed randomly in the cell then 
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the probability to produce viable daughter cells increases as the cell size increases (Figure 45).  

Mutli-nucleoid cells are more likely to produce two viable daughters upon random placement of 

the division plane at the expense of losing some genetic material (Figure 45). However, in rod-

shaped bacteria, cells with two nucleoids also can give rise to a viable population when their sizes 

are sufficiently large. In the latter case, the assumption is that the physical size of the nucleoid 

does not depend on cell size, and nucleoids are also randomly placed in the cell before division.  

It also remains to be proven if viable populations can emerge in other cell geometries under these 

assumptions. Interestingly, as the cell division protein positioning systems are progressively 

deleted from E. coli, the cells become larger (longer) but remain viable in slow growth conditions 

(Bailey, Bissichia et al. 2014) in accordance with this hypothesis.  From this reasoning, we may 

predict early protocells were perhaps larger than present day bacteria.     

Although large cells can cope with random placement of division planes, at least in rod 

shapes, their fitness is very low because these cells lose a substantial amount of resources when 

they produce unviable cells or guillotined nucleoids.  Contrary to being essential for viable cell 

progeny, the mechanisms that coordinate cell division proteins and chromosomes are therefore 

essential for cellular fitness. These mechanisms are highly efficient in modern bacteria. The 

probability that wild type E. coli produces minicells has been estimated to be less than 0.03% 

(Niki, Jaffe et al. 1991).  This argument is supported further by findings that different bacterial 

species have evolved very different molecular mechanisms that coordinate divisomes and 

chromosomes (Monahan, Liew et al. 2014). 
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Figure 45.  Larger cell size mitigates the lack of spatial coordination between cell division 
machinery and genetic information from (Männik and Bailey 2015). (A) A small cell (left) 
requires sophisticated apparatus to coordinate cell division and chromosomes. (B) For larger cells 
(right) the requirements for coordination are much more relaxed. This applies even for multi-
nucleoid cells. Some of the genetic material of multi-nucleoid cell may become damaged during 
division but the daughter cells still may remain viable. Figure from (Männik and Bailey 2015). 
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Conclusion 

This dissertation set out to find a common physical mechanism for how cell division 

proteins could localize in modern bacterial cells, and perhaps in early protocells also.  Modern 

bacteria have developed a variety of different molecular systems that are involved in this 

positioning.  Our strategy consisted of removing known positioning systems and monitoring the 

subsequent effect on protein localization.  Originally, we hypothesized that excluded volume 

interactions between FtsZ filaments and supercoiled DNA branches would lead to FtsZ filament 

expulsion from the nucleoid (VENO).  Accordingly, the Z-ring should preferentially form away from 

the nucleoid, either at the cell poles or within the space between segregated nucleoids.  Though 

the VENO hypothesis failed to explain Z-ring positioning in slow growing ΔslmA Δmin E. coli, we 

found two additional molecular mechanisms that coordinate positioning of the chromosome and 

cell division proteins. 

The first mechanism revealed itself in cells having both the Min system and the SlmA 

proteins removed. In these cells, we showed that division planes colocalized with the centers of 

nucleoids.  Furthermore, we determined this nucleoid-centric signal originated from the Ter region 

of the chromosome, and identified the involvement of ZapA, ZapB, and MatP proteins.  Removal 

of either ZapA, ZapB, or MatP significantly affected the accuracy and precision with which the Z-

ring localized over nucleoid centers, and often lead to misplaced Z-rings.  It is possible, however, 

that additional proteins are present in the Ter linkage that have yet to be found.  Contrary to the 

Min system and SlmA proteins, the Ter linkage is the first positioning system for division proteins 

in E. coli that promotes, rather than inhibits, the placement of the division plane. 

The second mechanism was revealed in cells where Z-rings were strongly misplaced 

relative to chromosomes. Interestingly, most of these cells were still viable. We determined that 

cells retained their viability because as much as 1/3 of the chromosome moved across the closing 

division plane in the late stages of cytokinesis.  Consequently, this mechanism rescued most 
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sister chromosomes from being guillotined.  Chromosome repositioning appears to rely on septal 

cell wall synthesis rather than on DNA translocase activity.  Such large scale chromosomal 

movements during cell division has not been described previously in vegetatively growing bacteria 

(vegetative growth, see Appendix Glossary).  The second mechanism also challenges the 

commonly held view that coordination between division plane placement and chromosome 

segregation is realized primarily through the Min system and the bacterial nucleoid (either by 

nucleoid occlusion or the Ter linkage).  Lastly, this mechanism suggests that cell constriction 

alone may be sufficient to coordinate the positioning of chromosomes relative to the cell division 

proteins.  If true, constriction-mediated coordination may have been an important, if not a 

prevalent factor, for cell division in early bacteria that lacked dedicated coordination systems. 

This work has left us with several outstanding questions. Though we now know the Ter-

linkage promotes Z-ring localization at nucleoid centers, we still do not understand how the 

linkage dynamically forms.  Furthermore, though we know the divisome can reorganize large 

fractions of the chromosome, we do not have a mechanistic understanding of the process.  How 

can septal cell wall synthesis carry out directed movement of the chromosome so that 

asymmetrically dividing daughter cells inherit complete chromosomes versus guillotined ones?  

Despite these questions, this work has left us with a deeper understanding of the robustness of 

modern bacteria and the degree of redundancy they possess to achieve proper coordination 

between cell division protein placement and chromosome segregation.  
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Analytical evaluation of VENO as an FtsZ-filament positioning system in E. coli. 

To properly treat each of the 𝐵𝑖−𝑗 terms, we would need to accurately assess the 

electrostatic repulsion between species 𝑖 and 𝑗 when immersed in an environment with uniform 

permittivity 𝜖 and concentration of salts 𝑛𝑠.  Moreover, cytosolic proteins come in a variety of 

sizes, shapes, and net electric charge.  In this approximation, we neglect the effects of 

electrostatic screening and consider all cytosolic proteins as if they were spherical in shape, and 

have radii of approximately 1-2nm.  This radius applies only for relatively small proteins (10-30 

kDa) (Erickson 2009).  We treat FtsZ filaments, and DNA supercoils as cylinders, with physical 

dimensions taken from existing literature (Table 4, below).  Consequently, these results provide 

only an order of magnitude approximation, and the results should be interpreted within this 

context.   

Generally, the excluded volume between two cylinders of diameter 𝐷 with length 𝐿 

oriented at an angle 𝜃 with respect to their long axes can be approximated as 𝐵 = 2 ∙ 𝐷 ∙ 𝐿2 ∙ sin(𝜃) 

which is the volume of a parallelopiped composed of the two cylinders (Phillips, Kondev et al. 

2012).  Taking the average of sin(𝜃) over all available angles adds a factor of 𝜋/4 to the excluded 

volume leaving, 𝐵 =
1

2
𝜋 ∙ 𝐷 ∙ 𝐿2.  In the case 𝐿 ≫ 𝐷, this approximation is exact (Phillips, Kondev 

et al. 2012).   When the two cylinders have differing dimensions, the excluded volume becomes 

𝐵𝑖−𝑗 =
𝜋

4
∙ (𝐷𝑖 + 𝐷𝑗) ∙ 𝐿𝑖 ∙ 𝐿𝑗.  With reasonable estimations for the excluded volumes, we express 

the contribution to chemical potential from excluded volume interactions (Figure 46): 

𝜇𝐹𝑡𝑠𝑍−𝐷𝑁𝐴 = 𝑘𝐵𝑇 ∙
𝑁𝐵𝑟𝑎𝑛𝑐ℎ

𝑉
∙ 𝐵𝐹𝑡𝑠𝑍−𝐵𝑟𝑎𝑛𝑐ℎ  = 𝑘𝐵𝑇 ∙

𝑁𝐵𝑟𝑎𝑛𝑐ℎ

𝑉
∙

𝜋 ∙ (𝐷𝐹𝑡𝑠𝑍 + 𝐷𝐵𝑟𝑎𝑛𝑐ℎ) ∙ 𝐿𝐹𝑡𝑠𝑍 ∙ 𝐿𝐵𝑟𝑎𝑛𝑐ℎ

4
 

𝜇𝐹𝑡𝑠𝑍−𝐹𝑡𝑠𝑍 = 𝑘𝐵𝑇 ∙
𝐵𝐹𝑡𝑠𝑍−𝐹𝑡𝑠𝑍

𝑉
= 𝑘𝐵𝑇 ∙

𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍
2 ∙ 𝐷𝐹𝑡𝑠𝑍

2 ∙ 𝑉
 

To treat the interaction between a cylindrical FtsZ filaments and globular (spherical) cytosolic 

proteins, we use the approximation from Odijk, which assumes a cylindrical excluded volume of  
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Figure 46.  Estimating excluded volumes.  (A)  The bacterial chromosome is organized as a 

network of supercoiled branches, each of which is approximately 160nm long.  The diameter of 

the supercoiled branches is approximately 10nm.  Also shown are hypothetical FtsZ filaments, 

interacting with the supercoiled DNA branches.  𝐸 represents the exclusion radius (not drawn to 

scale).  Image adapted from (Woldringh 2002).  (B)  We approximate the excluded volume for the 

interaction between a spherical cytosolic protein and an FtsZ filament as the volume of a cylinder 

with exclusion radius equal to the sum of the protein radius and the FtsZ cylinder’s radius.  (C)  

The excluded volume for the interaction of FtsZ filaments and the supercoiled DNA branches is 

estimated as the area of a parallelepiped with dimensions 𝐷𝑖 + 𝐷𝑗, 𝐿𝑖, and 𝐿𝑗.  
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 the form 𝐵𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍 ∙ 𝐸𝑒𝑥𝑐
2  (Figure 46).  𝐸𝑒𝑥𝑐 represents the exclusion radius of a 

cytosolic protein due to the FtsZ filament.  We take 𝐸𝑒𝑥𝑐 to be 2.5 nm, which is slightly larger 

than the size of small, spherical proteins (Erickson 2009). 

𝜇𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝑘𝐵𝑇 ∙
𝑁𝑝

𝑉
∙ 𝐵𝐹𝑡𝑠𝑍−𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝑘𝐵𝑇 ∙

𝑁𝑝

𝑉
∙ 𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍 ∙ 𝐸𝑒𝑥𝑐

2  

Treating FtsZ filaments as a dilute solute immersed in a concentration of solvent molecules 

(water): 

𝜇𝐹𝑡𝑠𝑍 𝑠𝑜𝑙𝑢𝑡𝑒 = 𝜇ref + 𝑘𝐵𝑇 ∙ ln(𝑐𝐹𝑡𝑠𝑍) 

Where 𝜇ref represents the chemical potential at a convenient reference state, which is often 

taken when all molecular components are at a 1M concentration (Phillips, Kondev et al. 2012).  

This term also takes into consideration the solvation energy of the solvent molecules.  Equating 

chemical potentials for FtsZ filaments within each part of the intercellular volume (𝜇𝐹𝑡𝑠𝑍𝑛𝑢𝑐𝑙𝑒𝑜𝑖𝑑
=

𝜇𝐹𝑡𝑠𝑍𝑐𝑦𝑡𝑜𝑠𝑜𝑙
) gives: 

𝜇ref + 𝑘𝐵𝑇 ∙ ln(𝑐𝐹𝑡𝑠𝑍𝑛
) +

𝑁𝑝 ∙ 𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍 ∙ 𝐸𝑒𝑥𝑐
2

𝑉𝑛
+

𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍
2 ∙ 𝐷𝐹𝑡𝑠𝑍

2 ∙ 𝑉𝑛

+
𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍 ∙ (𝐷𝐹𝑡𝑠𝑍 + 𝐷𝐵𝑟𝑎𝑛𝑐ℎ) ∙ 𝐿𝐵𝑟𝑎𝑛𝑐ℎ ∙ 𝑁𝐵𝑟𝑎𝑛𝑐ℎ

4 ∙ 𝑉𝑛

= 𝜇ref + 𝑘𝐵𝑇 ∙ ln(𝑐𝐹𝑡𝑠𝑍𝑐
) +

𝑁𝑝 ∙ 𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍 ∙ 𝐸𝑒𝑥𝑐
2

𝑉𝑐
+

𝜋 ∙ 𝐿𝐹𝑡𝑠𝑍
2 ∙ 𝐷𝐹𝑡𝑠𝑍

2 ∙ 𝑉𝑐
 

The FtsZ filament-filament interactions contribute little to the total chemical potential, therefore 

we keep only leading order terms in 𝐿𝐹𝑡𝑠𝑍.  After introducing the following short hand notations, 

𝜖𝑒𝑥𝑐
2 ≡ 𝜋 ∙ 𝐸𝑒𝑥𝑐

2 ,  ℓ𝐷𝑁𝐴
2 ≡

𝜋∙(𝐷𝐹𝑡𝑠𝑍+𝐷𝐵𝑟𝑎𝑛𝑐ℎ)∙𝐿𝐵𝑟𝑎𝑛𝑐ℎ∙𝑁𝐵𝑟𝑎𝑛𝑐ℎ

4
 

We can rewrite the equality in leading order of 𝐿𝐹𝑡𝑠𝑍: 

ln(𝑐𝐹𝑡𝑠𝑍𝑛
) + 𝑐𝑝𝑛

∙ 𝐿𝐹𝑡𝑠𝑍 ∙ 𝜖𝑒𝑥𝑐
2 +

ℓ𝐷𝑁𝐴
2 ∙ 𝐿𝐹𝑡𝑠𝑍

𝑉𝑛
= ln(𝑐𝐹𝑡𝑠𝑍𝑐

) + 𝑐𝑝𝑐
∙ 𝐿𝐹𝑡𝑠𝑍 ∙ 𝜖𝑒𝑥𝑐

2  

ln (
𝑐𝐹𝑡𝑠𝑍𝑛

𝑐𝐹𝑡𝑠𝑍𝑐

) + 𝐿𝐹𝑡𝑠𝑍 ∙ (𝑐𝑝𝑛
− 𝑐𝑝𝑐

) ∙ 𝜖𝑒𝑥𝑐
2 + 𝐿𝐹𝑡𝑠𝑍 ∙ (

ℓ𝐷𝑁𝐴
2

𝑉𝑛
) = 0 
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ln (
𝑐𝐹𝑡𝑠𝑍𝑛

𝑐𝐹𝑡𝑠𝑍𝑐

) = −𝐿𝐹𝑡𝑠𝑍 ∙ ((
ℓ𝐷𝑁𝐴

2

𝑉𝑛
) − (𝑐𝑝𝑐

− 𝑐𝑝𝑛
) ∙ 𝜖𝑒𝑥𝑐

2 ) 

𝑐𝐹𝑡𝑠𝑍𝑛

𝑐𝐹𝑡𝑠𝑍𝑐

= 𝑒
−𝐿𝐹𝑡𝑠𝑍∙((

ℓ𝐷𝑁𝐴
2

𝑉𝑛
)−(𝑐𝑝𝑐−𝑐𝑝𝑛)∙𝜖𝑒𝑥𝑐

2 )

 

Defining 
1

ℒ𝐹𝑡𝑠𝑍
≡ (

ℓ𝐷𝑁𝐴
2

𝑉𝑛
) − (𝑐𝑝𝑐

− 𝑐𝑝𝑛
) ∙ 𝜖𝑒𝑥𝑐

2 : 

𝑐𝐹𝑡𝑠𝑍𝑛

𝑐𝐹𝑡𝑠𝑍𝑐

=  𝑒
−

𝐿𝐹𝑡𝑠𝑍
ℒ𝐹𝑡𝑠𝑍 

Table 4: Evaluation of decay constant for FtsZ filaments excluded from supercoiled DNA 

Constant Value Source 

𝐸𝑒𝑥𝑐 2.5 [nm] (Erickson 2009) 

𝑉𝑛 0.1 [μm3] (Odijk 1998, Wang, Li et al. 2011) 

𝑁𝐵𝑟𝑎𝑛𝑐ℎ 4,000 (Woldringh 2002) 

𝐿𝐵𝑟𝑎𝑛𝑐ℎ 158 [nm] (Cunha, Woldringh et al. 2001) 

𝐷𝐵𝑟𝑎𝑛𝑐ℎ 10 [nm] (Cunha, Woldringh et al. 2001) 

𝐷𝐹𝑡𝑠𝑍 2.5 [nm] (Erickson 2009) 

𝜙𝑝𝑐
 0.166 (Odijk 1998) 

𝜙𝑝𝑛
 0.06 (Odijk 1998) 

Evaluation of derived terms: 

𝜖𝑒𝑥𝑐
2 ≡ 𝜋 ∙ 𝐸𝑒𝑥𝑐

2 = 1.96 ∙ 10−5 [𝜇𝑚2] 

ℓ𝐷𝑁𝐴 ≡
𝜋 ∙ (0.0025𝜇𝑚 + 0.01𝜇𝑚) ∙ 0.158[𝜇𝑚] ∙ 4 ∙ 103

4
= 6.20[𝜇𝑚2] 

𝜙 ≡ Volume Fraction = 𝑐 ∙ 𝜐𝑒𝑥𝑐 

𝑐𝑝𝑐
=

𝜙𝑝𝑐

4
3 𝜋𝑅𝑒𝑥𝑐

3
=

0.166

4
3 𝜋(0.0025𝜇𝑚)3

=
0.166

6.54 ∙ 10−8
[𝜇𝑚]−3 = 2,538,226[𝜇𝑚]−3 

𝑐𝑝𝑛
=

𝜙𝑝𝑐

4
3 𝜋𝑅𝑒𝑥𝑐

3
=

0.06

4
3 𝜋(0.0025𝜇𝑚)3

=
0.06

6.54 ∙ 10−8
[𝜇𝑚]−3 = 917,431[𝜇𝑚]−3 

1

ℒ𝐹𝑡𝑠𝑍
≡ (

ℓ𝐷𝑁𝐴

𝑉𝑛
) − (𝑐𝑝𝑐

− 𝑐𝑝𝑛
) ∙ 𝜖𝑒𝑥𝑐

2  

=
6.20[𝜇𝑚2]

0.1[𝜇𝑚3]
− (2,538,226 [𝜇𝑚]−3 − 917,431 [𝜇𝑚]−3) ∙  1.96 ∙ 10−5 [𝜇𝑚2] 

∴ ℒ𝐹𝑡𝑠𝑍 = 0.0331 [𝜇𝑚] ~33 [𝑛𝑚] 
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Table 5. List of the strains and plasmids used in experiments.  

Strain Plasmid Genotype Source 

BW25113 

pKen1-

GFP2 
(2) 

wild type 
Keio collection parental strain (Baba, 
Ara et al. 2006)  

JW5641-1 - ΔslmA::frt-kan-frt 
 Keio collection knockout (Baba, Ara 
et al. 2006) 

JW1165 - ΔminC::frt-kan-frt 
Keio collection knockout (Baba, Ara 
et al. 2006) 

JW1165 

pKen1-

GFP2 
(2) 

ΔminC::frt-kan-frt 
Keio collection knockout (Baba, Ara 
et al. 2006)  

PB194 

pKen1-

GFP2 
(2) 

ΔslmA::frt-kan-frt 
ΔminC::frt 

This work: kanamycin resistance 
cassette is evicted from Keio 
collection knockout JW1165 and 
resulting strain is P1 transduced with 
lysate from JW5641-1. 

TB86(CH15
1)  

- 
ΔslmA::frt-kan-frt 
ΔminCDE::frt 
Plac-zipA-gfp-amp 

Gift from P. A. J. de Boer (Case 
Western Reserve University) 
(Bernhardt and de Boer 2005) 

TB86(DR12
0) 

- 
ΔslmA::frt-kan-frt 
ΔminCDE::frt 
Plac-gfp-T7tag-ftsZ 

Gift from P. A. J. de Boer (Case 
Western Reserve University) 
(Bernhardt and de Boer 2005) 

JMBW5 - Plac-zipA-gfp-amp 

This work: Inducible ZipA-GFP was 

P1 transduced from TB86(CH151) 
lysate to MG1655 strain. 

WD1 - 

ΔslmA::frt 
ΔminCDE::frt 
Plac-zipA-gfp-amp 
matP-mCherry-frt-
kan-frt 

This work: kanamycin resistance 
cassette is evicted from 

TB86(CH151). Resulting strain was 
P1 transduced with matP-mCherry-
frt-kan-frt from PB232 (1). 

WD2 - 
Plac-zipA-gfp-amp 
matP-mCherry-frt-
kan-frt 

This work:  JMBW5 was P1 
transduced with matP-mCherry  

MB1 - 

ΔminCDE::frt 
ΔslmA::frt 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work: E. coli TB86 was P1 
transduced with lysate from strain 
PB384 (1)  carrying hupA-mCherry-
frt-kan-frt. 

MB2 - 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work: E. coli MG1655 was P1 
transduced with lysate from TB86 to 
transfer inducible ZipA-GFP. The 
resulting strain was P1 transduced 
with lysate from strain PB384 (1)  
carrying hupA-mCherry-frt-kan-frt. 

 

  



134 
 

Table 5 continued. 

MB4 - 

ΔslmA::frt 
ΔminC::frt 
ΔzapB:: frt-kan-frt 
Plac-zipA-gfp-amp 

This work: kanamycin resistance 
cassette is evicted from PB194. The 
resulting strain is P1 transduced with 
frt-kan-frt lysate from Keio collection 
knockout JW3899-1 

MB10 - 

ΔslmA::frt 
ΔminC::frt 
ΔmatP::frt-kan-frt 
Plac-zipA-gfp-amp 

This work: kanamycin resistance 
cassette is evicted from PB194. The 
resulting strain is P1 transduced with 
frt-kan-frt lysate from Keio collection 
knockout JW0939-1  

MB11 - 

ΔslmA::frt 
ΔminC::frt 
ΔzapA::frt-kan-frt 
Plac-zipA-gfp-amp 

This work: kanamycin resistance 
cassette is evicted from PB194. The 
resulting strain is P1 transduced with 
frt-kan-frt lysate from Keio collection 
knockout JW2878-1 to replace zapA. 

MB14 - 

ΔminC::frt 
ΔslmA::frt 
ΔmatP::frt 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work: The kan cassette was 
evicted from MB10.  The resulting 
strain was P1 transduced with lysate 
from strain PB384 (1) carrying hupA-
mCherry-frt-kan-frt. 

MB15 - 

ΔminC::frt 
ΔslmA::frt 
ΔzapA::frt 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work: The kan cassette was 
evicted from MB11.  The resulting 
strain was P1 transduced with lysate 
from strain PB384 (1) carrying hupA-
mCherry-frt-kan-frt. 

MB16 - 

ΔminC::frt 
ΔslmA::frt 
ΔzapB::frt 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work: Keio collection BW25113 
was sequentially P1 transduced with 
lysates from JW1165, JW5641-1, 
and JW3899-1 to delete minC, slmA, 
and zapB, respectively.  The 
kanamycin cassette was evicted 
following each P1 transduction. The 
resulting strain was P1 transduced 
with a lysate from TB86 to transfer 
the inducible ZipA-GFP and the kan 
cassette evicted.  The resulting 
strain was P1 transduced with lysate 
from strain PB384 (1) carrying hupA-
mCherry-frt-kan-frt. 

MB21 - 
ΔslmA::frt 
Plac-zipA-gfp-amp 

This work: kanamycin resistance 
cassette is evicted from JW5641-1. 
The resulting strain is P1 transduced 

from TB86(CH151) lysate to 
transfer inducible ZipA-GFP.  
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Table 5 continued. 

MB22 - 
ΔminC::frt 
Plac-zipA-gfp-amp 

This work: kanamycin resistance 
cassette is evicted from JW1165. 
The resulting strain is P1 transduced 

from TB86(CH151) lysate to 
transfer inducible ZipA-GFP. 

MB25 - 

ΔslmA::frt 
Plac-zipA-gfp-amp 
ΔmatP-mCherry-frt-
kan-frt 

This work: MB21 was P1 transduced 
with matP-mCherry-frt-kan-frt from 
PB232 (1). 

MB26 - 

ΔminC::frt 
Plac-zipA-gfp-amp 
ΔmatP-mCherry-frt-
kan-frt 

This work: MB22 was P1 transduced 
with matP-mCherry-frt-kan-frt from 
PB232 (1). 

MB27 - 

ΔminC::frt 
ΔslmA::frt 
ΔzapA::frt 
Plac-zipA-gfp-amp 
matP-mCherry-frt-
kan-frt 

This work: The kan cassette was 
evicted from MB11.  The resulting 
strain was P1 transduced with matP-
mCherry-frt-kan-frt PB232 (1).  

MB38 - 

ΔminC::frt 
ΔslmA::frt 
ΔzapB::frt 
ΔftsK::ftsKATP—cm 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work: MB16 was P1 transduced 
with a lysate from FC1 (Kennedy, 
Chevalier et al. 2008) to transfer the 
K997A point mutation in FtsK. 

MB39 - 

ΔftsK::ftsKATP—cm 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work:  MB2 was P1 transduced 
with a lysate from FC1 to transfer 
the K997A point mutation in FtsK.   

MB40 - 

ΔminC::frt 
ΔslmA::frt 
ΔzapA::frt 
ΔftsK::ftsKATP—cm 
Plac-zipA-gfp-amp 
hupA-mCherry-frt-
kan-frt 

This work: MB15 was P1 transduced 
with a lysate from FC1 to transfer 
the K997A point mutation in FtsK. 

PB299 - 
ΔslmA::frt-kan-frt 
ΔminC::frt 
ΔzapB:: frt-cm-frt 

This work: PB194 is P1 transduced 
with frt-cm-frt lysate from HY1-32 
(Durand-Heredia, Yu et al. 2011). 

PB300 - 
ΔslmA::frt-kan-frt 
ΔminC::frt 
ΔzapA:: frt-cm-frt 

This work: PB194 is P1 transduced 
with frt-cm-frt lysate from HY1-31. 

PB301 - 
ΔslmA::frt-kan-frt 
ΔminC::frt 
ΔmatP:: frt-cm-frt 

This work: PB194 is P1 transduced 
with frt-cm-frt lysate from (Mercier, 
Petit et al. 2008). 
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Table 5 continued. 

RH14 

pEG3a 
 

PBAD::zap
B::gfp-
CmR 

matP-mCherry-frt-
kan-frt 

MG1655 transduced with lysate from 
PB232 (1), to transfer matP-
mCherry.  Strain contains plasmid 
pEG3a carrying the ZapB-GFP 
(inducible with 0.2% arabinose 
(Ebersbach, Galli et al. 2008). 

1. Strain is a generous gift from P. Bissichia and D. Sherratt from Oxford University. 

 

Quantifying DNA translocation rate 

To quantify the fraction of the nucleoid translocated across the septum in asymmetrically 

dividing daughter cells, we measure the total fluorescence intensity of the HupA-mCherry labeled-

DNA on both sides of the Z-ring/division plane as function of time.  In the main text Figures, we 

refer to the total intensity of the fluorescent signal from smaller daughter as 𝐼1 and from the larger 

daughter as 𝐼2. To measure 𝐼1 and 𝐼2 we segment the nucleoid(s) using the same edge detection 

algorithm described in the Quantitative Image Analysis of Chapter 2. If the nucleoids from 

daughters are sufficiently separated, the algorithm can distinguish each of the two separate 

nucleoids.  In this case 𝐼1 and 𝐼2 can be directly determined using binary image masks created 

for each nucleoid by summing all intensities in the masked area after background subtraction.  

However, the program is not able to distinguish individual nucleoids in the early stages of cell 

division. In this case, we use the position of the Z-ring to divide the image mask of the mother cell 

nucleoid into two regions, which correspond to two daughters. If the Z-ring is not present (because 

the signal is too weak or the Z-ring has already dissociated) then we use the minimum in the 

nucleoid density distribution to divide the image mask. To find the position of the Z-ring, we fit the 

line profile of ZipA-GFP along the long axes of the cell to a Gaussian. Similarly, to find the 

minimum in the nucleoid density distribution we fit line profiles of HupA-mCherry to a Gaussian 

minimum.  The maximum in ZipA-GFP intensity and minimum in HupA-mCherry intensity typically 

localize within a single pixel (107 nm). A perpendicular line crossing the longitudinal centerline of 

the cell at the position of the ZipA-GFP maximum (or HupA-mCherry minimum) then divides the 
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mask image to two regions from which intensities 𝐼1 and 𝐼2 are determined. Alternatively, instead 

of manipulating image masks, line profiles such as shown in Fig. 3C can be directly used to divide 

the cell into two regions and to find 𝐼1 and 𝐼2. This analysis yields very similar values to those 

described above but is less convenient to use once the cells have divided and moved away from 

each other. 

Because of diffraction broadening, intensity from the larger sister nucleoid (𝐼2) extends 

into the region containing the translocating nucleoid (𝐼1), and vice versa. Our modelling shows 

that typically the intensities that extends from the smaller daughter to the larger daughter is 

approximately equal to the intensity that extends from the larger daughter to the smaller. However, 

in cases of very asymmetrically positioned division planes, the fluorescence from the larger 

daughter can contribute to 𝐼1 more than the fluorescence from the smaller daughter contributes 

to 𝐼2, therefore introducing error into the analysis.  Moreover, the cell of interest usually grows 

within a colony where the position and fluorescence intensities of neighboring cells change. 

Fluorescence from the neighboring cells that reaches the cell of interest due to diffraction also 

introduces measurement errors. These errors can be largely circumvented by deconvolving the 

original HupA-mCherry image with the point spread function (PSF) of the microscope.  To 

deconvolute the image, we experimentally determined the width of the microscope’s PSF and 

then used this width to customize the PSF used in Matlab’s deconvblind function. The final width 

from the deconvblind function which results from 10 iterations generally matches the original width 

to within about 25%.  In situations where the two daughter nucleoids are well-separated from each 

other and from other cells, the analysis with and without deconvolution yield essentially identical 

results.    
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Total amount of DNA translocated during septum closure 

From the experimentally determined 𝐼1 and 𝐼2 values, we determine the fraction of the 

chromosome, 𝑓, that resides in the compartment of the smaller daughter. The fraction as a 

function of time is defined as: 

𝑓(𝑡) =
𝐼1(𝑡)

𝐼1(𝑡) + 𝐼2(𝑡)
 

The fraction does not change when the cell grows conformally, i.e., the nucleoid length and the 

cell length increase in time proportionally to their original length.  For conformally growing cells, 

any change in 𝑓 results from translocation. In Fig. 3F we normalize this fraction by the fraction 

that is present at the end of division 𝑓𝑓𝑖𝑛𝑎𝑙 and average it over the cell population < 𝑓(𝑡) 𝑓𝑓𝑖𝑛𝑎𝑙⁄ >. 

The normalized fraction curve allows us to determine what fraction of the chromosomal mass was 

translocated across the septum relative to the final amount of chromosomal mass in the smaller 

daughter immediately after cell division.  This translocated fraction is equivalent to the total 

change in the normalized translocation curve of Fig. 3F (the difference in the final fraction and the 

initial fraction value). It is easier to see the validity of this statement when the change in overall 

fluorescence intensity of the HupA-mCherry nucleoid label and any DNA replication during the 

translocation process can be neglected. In this case, the translocated amount of nucleoid as 

function of time is proportional to intensity, 𝐼𝑡𝑟𝑎𝑛𝑠, which is given as: 

𝐼𝑡𝑟𝑎𝑛𝑠(𝑡) = 𝐼1(𝑡) − 𝐼1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

Where 𝐼1,𝑖 is intensity of the HupA-mCherry signal in the smaller daughter’s compartment at the 

beginning of the translocation. The total intensity from the translocated portion of the chromosome 

is:  

𝐼𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙 = 𝐼1,𝑓𝑖𝑛𝑎𝑙 − 𝐼1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

where 𝐼1,𝑓𝑖𝑛𝑎𝑙 is the intensity of the HupA-mCherry signal in the smaller daughter’s compartment 

right after division. The latter can be written using the fraction 𝑓𝑓𝑖𝑛𝑎𝑙 as: 

𝐼𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑓𝑖𝑛𝑎𝑙 ∙ 𝐼𝑡𝑜𝑡,𝑓𝑖𝑛𝑎𝑙 − 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ 𝐼𝑡𝑜𝑡,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
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where 𝐼𝑡𝑜𝑡 = 𝐼1 + 𝐼2. Instead of using the intensity 𝐼𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙,which depends on imaging 

conditions, of more interest is the value 𝐼𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙 normalized by the intensity of HupA-mCherry 

at the end of translocation (𝐼𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙/𝐼1,𝑓𝑖𝑛𝑎𝑙). The normalized intensity corresponds to the 

fraction of the chromosome translocated during the division process. Assuming 𝐼𝑡𝑜𝑡,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

𝐼𝑡𝑜𝑡,𝑓𝑖𝑛𝑎𝑙 and making use of the definition of 𝑓 yields: 

𝐼𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙/𝐼1,𝑓𝑖𝑛𝑎𝑙 = 1 − 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙/𝑓𝑓𝑖𝑛𝑎𝑙 

 

The right hand side of this equation is the difference between the start and end points of the 

normalized translocation curve plotted in Fig. 3F.  Importantly, the same formula still applies even 

if the amounts of both HupA-mCherry and chromosomal DNA change during the translocation 

period. In this case, the translocated chromosomal amount, 𝐼𝑡𝑟𝑎𝑛𝑠, is given by: 

𝐼𝑡𝑟𝑎𝑛𝑠(𝑡) = 𝐼1(𝑡) − 𝐼1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ 𝐺(𝑡) 

Here, the term 𝐺(𝑡) accounts for any changes in the amount of fluorescent HupA-mCherry present 

within the cell as a function of time. 𝐺(𝑡) can be directly measured as the increase in total 

fluorescence intensity from the cell from the beginning of the translocation 𝐺(𝑡) =

𝐼𝑡𝑜𝑡(𝑡)/𝐼𝑡𝑜𝑡,𝑖𝑛𝑖𝑡𝑖𝑎𝑙.  

The intensity 𝐼1 in the smaller daughter’s side can be written in terms of this fraction as: 

𝐼1(𝑡) = 𝑓(𝑡) ∙ 𝐼𝑡𝑜𝑡(𝑡) = 𝑓(𝑡) ∙ 𝐺(𝑡) ∙ 𝐼𝑡𝑜𝑡,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝑓(𝑡)

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∙ 𝐺(𝑡) ∙ 𝐼1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

Substituting this equation into the formula for the intensity of the translocated chromosome gives: 

𝐼𝑡𝑟𝑎𝑛𝑠(𝑡) = 𝐼1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ 𝐺(𝑡) ∙ (
𝑓(𝑡)

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
− 1) 

The normalized translocation intensity is therefore given by: 

𝐼𝑡𝑟𝑎𝑛𝑠(𝑡)

𝐼1,𝑓𝑖𝑛𝑎𝑙
=

𝐼1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐼1,𝑓𝑖𝑛𝑎𝑙
∙ 𝐺(𝑡) ∙ (

𝑓(𝑡)

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
− 1) 

The final intensity right after translocation in the smaller daughter compartment is: 
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𝐼1,𝑓𝑖𝑛𝑎𝑙 = 𝐼1(𝑡𝑓𝑖𝑛𝑎𝑙) =
𝑓𝑓𝑖𝑛𝑎𝑙

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∙ 𝐺(𝑡𝑓𝑖𝑛𝑎𝑙) ∙ 𝐼1,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

Substituting this expression into the normalized translocation intensity gives: 

𝐼𝑡𝑟𝑎𝑛𝑠(𝑡)

𝐼1,𝑓𝑖𝑛𝑎𝑙
=

𝑓𝑓𝑖𝑛𝑎𝑙

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∙

𝐺(𝑡)

𝐺(𝑡𝑓𝑖𝑛𝑎𝑙)
∙ (

𝑓(𝑡)

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
− 1) =

𝐺(𝑡)

𝐺(𝑡𝑓𝑖𝑛𝑎𝑙)
∙ (

𝑓(𝑡) − 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑓𝑓𝑖𝑛𝑎𝑙
) 

The total amount of chromosome translocated in units of the final amount within the smaller 

daughter’s compartment is: 

 

𝐼𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙

𝐼1,𝑓𝑖𝑛𝑎𝑙
=

𝐺(𝑡𝑓𝑖𝑛𝑎𝑙)

𝐺(𝑡𝑓𝑖𝑛𝑎𝑙)
∙ (

𝑓𝑓𝑖𝑛𝑎𝑙 − 𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑓𝑓𝑖𝑛𝑎𝑙
) = (1 −

𝑓𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑓𝑓𝑖𝑛𝑎𝑙
) 

As can be seen, the change in fluorescence intensity of HupA-mCherry cancels from the total 

translocated fraction and consequently the result is the same when a constant intensity was 

assumed. Again, the right hand side of the last equation can be found as the difference between 

the start and end points of the normalized translocation curve plotted in Figure 33G. 
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P1 transduction procedure for M9-grown cells 

As part of this work, we contribute a P1 transduction procedure for cells that must be 

grown in nutrient poor M9 minimal medium, such as our double mutant ΔslmA, Δmin strains.  The 

standard P1 transduction procedure can be used for cells that are grown in nutrient rich LB 

medium but not for M9 medium, since the CaCl used to activate the P1 phage precipitates with 

the phosphates in the M9 salts before the phage can activate.  We found that a brief transfer of 

the cells to LB medium, just for a sufficient amount of time for the P1 phage to activate and infect 

its host did not lead to lysis of the M9-dependent strain.  Once the bacteria had been transduced, 

they were promptly placed back in M9-medium where they could proliferate.  Our procedure steps 

are as follows:      

1.  Grow an overnight of the recipient M9 strain. 

2.  Transfer pellet from the overnight M9 culture to equal amount of LB medium 

3.  Add 200uL of LB-transferred cells to four microfuge tubes. 

4.  Add 2uL of 1M CaCl2 to each tube. 

5.  Add 50uL LB to one tube (= negative control).  Add 1, 10, and 50uL P1 lysate to one of 

the remaining tubes (optimal volume may vary). 

6.  Incubate at 37C for 30 minutes (no shaking). 

7.  Add 100uL 1M Na-citrate (prevents superinfection) and 500 uL LB to each of the four 

tubes. 

8.  Incubate ~45 minutes (for transducing dominant antibiotic resistance). 

9.  Pellet cells:  8000RPM for 2 minutes. 

10.  Resuspend in 100uL M9 + 5mM citrate. 

11.  Plate on selective M9 medium.  Additional negative control:  plate P1 lysate alone. 
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Glossary  

1. Anucleate – Refers to a cell that upon division fails to inherit a chromosome.  A minicell 

is said to be anucleate. 

2. Bi-lobed – As nucleoids segregate, the replicated portions begin to separate from each 

other into two lobes. The unreplicated region connects these two lobes.  The resulting 

chromosomal distribution is said to be bi-lobed. 

3. Cephalexin – An antibiotic that inhibits septal cell wall synthesis (FtsI).  Cells treated with 

Cephalexin fail to divide but grow very long (50µm or longer).   

4. Constriction – Cell constriction and inward septum closure refer to the same process, 

characterized by visible invagination of the cell envelope in microscope images.  The 

septum and constriction can be used synonymously. 

5. Cytokinesis – the same as Septation, is the event when one cell completes division into 

two daughter cells. 

6. Dif site – The dif site is a 28 bp stretch of DNA located approximately at the center of the 

Ter macrodomain that is involved in separating chromosomes that occasionally link 

together during replication (called “dimerized” chromosomes.  

7. Division Plane – The location of cell division, called the division plane, is established by 

where the divisome forms. 

8. Divisome – Once the Z-ring has formed, the addition of the remaining 30 or so proteins 

to the Z-ring that allow the formation of the lateral cell wall, compose the macrostructure 

known as the divisome.  A “mature” Z-ring is equivalent to the divisome. 

9. DNA Translocation – The process of moving DNA material within the cell.  In many 

bacteria, DNA is known to translocate via the DNA pump FtsK.  It appears that another 

form of FtsK-independent translocation is coupled to cell constriction (septal cell wall 

synthesis). 
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10. Fluorescent Fusion Protein – Refers to the process of connecting two proteins, one 

which is under investigation, and another which fluoresces when exposed to incident 

light of a specific wavelength.  Fluorescence is measured with a fluorescence 

microscope. We synonymously refer to fluorescent fusion proteins as “labeled proteins”.  

In this context, the fluorescent portion of the protein fusion is the label.   

11. FtsK – A protein that localizes late to the divisome and helps coordinate late stages of 

cell division and chromosome segregation.  FtsK is a DNA translocase that is known to 

affect approximately 400 kbp of terminus DNA, and plays an important role in resolving 

chromosome “dimers” (two complete chromosomes in one large circular piece). 

12. FtsK-K997A – By mutating one amino acid, a lysine 997 to an alanine, FtsK can no 

longer bind ATP.  Without the ability to bind ATP, FtsK cannot pump DNA.  The FtsK-

K997A mutation, therefore removes FtsK translocase activity.    

13. FtsZ – a highly conserved, self-polymerizing protein that forms the macroscopic 

structure called the Z-ring that serves as a scaffold for approximately 30 additional 

proteins that are involved in building the lateral cell wall during cell division. 

14. Gel Electrophoresis – a technique used to determine to length of a sequence of DNA, 

usually following PCR.  Since DNA is charged, it moves when placed in a sufficiently 

strong electric field.  By placing the DNA in small wells created in an agarose gel, the 

DNA migrates through the electric field without spreading in a single lane (the gel is said 

to be anticonvective).  Ethidium Bromide is added to the gel, which binds to DNA and 

fluoresces under UV exposure.  The migration of DNA sequences can be compared to 

the migration of DNA of known length (which is simultaneously ran through the gel in a 

different well, or lane). 

15. Genome – typically used when speaking of a complete chromosome, where complete 

implies the chromosome has all the genes from the mother cell. 
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16. HupA – A protein that uniformly binds DNA and is capable of wrapping and stabilizing 

DNA like Histone in eukaryotic cells. For live cell imaging, we label HupA with a red 

fluorescent protein called mCherry. 

17. Homologous Recombination – The process whereby nucleotide sequences are 

exchanged between two similar or identical sequences of DNA. 

18. Immunofluorescence microscopy - A technique that uses special antibodies coupled to 

fluorescent dyes, which when conjugated to their target antigen allows visualization of 

the antibody distribution.  In this technique, the distribution of the antibody-bound antigen 

forms the subcellular structure of interest.  As an example, in E. coli, the antigen could 

be FtsZ. 

19. in vitro – An experiment or process performed outside the living organism in a test tube, 

petri dish, etc. 

20. in vivo – An experiment of process performed inside the living organism (which usually 

produces the most physiologically relevant results). 

21. Kymograph – A plot that represents spatial position on the y-axis over time (the x-axis).  

In the kymographs presented here, the spatial axis represents fluorescence intensities 

along the long axis of a particular E. coli cell.  Accordingly, we represent higher and 

lower intensities as a heat map.  Higher intensities are red, lower intensities are blue.  

Black represents regions of no fluorescence intensity, and/or regions outside the cell.   

22. Macrodomain - The E. coli chromosome is thought to be composed of six distinguishable 

regions.  Four of the six regions are thought to be structured, and are referred to as 

macro-domains (Ori, Left, Right, and Ter) along two additional non-structured (NS) 

regions (NS-left and NS-right).  Organization of the chromosome into these 

macrodomains is believed to impose restrictions on the permitted rearrangements to the 

linear-order sequence of the chromosome. 
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23. MatP – DNA binding protein that binds to 23 specific DNA sequences called matS sites 

that helps organize terminus DNA by binding with other DNA-bound MatP proteins and 

therefore forms bridges between matS sites. 

24. Min System – An oscillatory system composed of proteins MinC, MinD, and MinE that 

prevent Z-ring formation at cell poles. 

25. Minicell – Refers to a division event when the division plane is very asymmetrically 

placed so that one daughter is much smaller than the other, and the smaller daughter 

lacks a chromosome. 

26. Nucleoid – The chromosome is referred to as a nucleoid when we are speaking in terms 

of the chromosomes physiological state.  In bacteria, the chromosome is compacted by 

osmotic pressure from cytosolic proteins, supercoiling, and DNA binding proteins. 

27. Nucleoid/chromosome Segregation – As cells grow, the chromosome must be replicated 

to pass on heredity to all daughter cells.  Segregation refers to the process of separating 

the circular chromosome which is undergoing replication. 

28. Nucleoid Occlusion – Describes a phenomenological observation that Z-rings tend to 

form away from nucleoids as opposed to overtop them. 

29. Plasmid – Many bacteria, in addition to their chromosomal DNA, plasmid DNA.  A 

plasmid is a small DNA molecule within the cell (much smaller than the chromosome), 

which can independently replicate.  Plasmids contain genes which can be expressed in 

the same way as chromosomal DNA. 

30. Polymerase Chain Reaction (PCR) – a molecular biology technique used to 

exponentially amplify a segment of linear or circular DNA, to create thousands or millions 

of identical DNA sequences.  In our application, we wish to amplify a gene contained in 

either a plasmid or chromosomal DNA (called the template DNA).  To amplify exclusively 

the gene of interest, short DNA sequences (~30bp) called primers are synthesized to 

contain a complementary sequence to each end of the target gene.  The template DNA 
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and primers are combined in specific reaction buffer which also contains a DNA 

polymerase (an enzyme that synthesizes new DNA).  The reaction mixtures in then 

heated until the DNA melts (double stranded DNA becomes single stranded DNA).  The 

temperature is lowered until the primers can anneal to their complementary regions of 

the now single stranded DNA.  The temperature is then lowered further until the DNA 

polymerase can bind to short double stranded segments and begin synthesizing new 

double stranded DNA.  This heating and cooling cycle is performed between 30 – 34 

times. The result is the amplification of the DNA sequence of interest 2N times (N is the 

number of heating and cooling cycles). 

31. Replication Terminus Macrodomain – Approximately diametric to the Ori macrodomain, 

the replication terminus region, known as the Ter, is the last region of the chromosome 

to undergo replication and makes up about 20% of the total chromosome. 

32. Septation – the same as cytokinesis, is the event when one cell completes division into 

two daughter cells. 

33. Septum – Once the division plane has been established, and the cell begins to divide.  

The inward growth, or invagination, is referred to as the Septum. 

34. SlmA – A protein that binds to specific DNA sequences called slmA binding sites 

distributed throughout the chromosome except in the replication terminus region.  SlmA 

prevents Z-rings from forming over nucleoids. 

35. PALM/iPALM super resolution microscopy - PALM (2D) and iPALM (3D) is a form of 

microscopy that depends on image reconstruction of sparsely activated fluorescent 

molecules (either dyes or fluorescent fusion proteins/antibodies).  Each fluorophore can 

be resolved only to the Abbe diffraction limit, however if each fluorophore is properly 

fitted, its centroid coordinate can be recorded.  If properly stimulated, only a fraction of 

the fluorophores are excited, and in time either photo-bleach or reenter an “off” state.  

Repeating imaging acquisition for many cycles allows the centroids of a large number of 
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point emitting fluorophores to be recorded and a representation of the entire image can 

be subsequently reconstructed.  Typical resolution of this technique is 10nm, but 

ultimately depends on the number of fluorophores recorded during acquisition. 

36. Ter-linkage – A mechanism that promotes Z-ring positioning near the replication 

terminus DNA by way of a protein linkage involving ZapA, ZapB, and MatP proteins, 

though more proteins may be involved in the linkage than have been found at this point. 

37. Transertion – A hypothetical process where concurrent DNA transcription and 

membrane protein translation and insertion leads to membrane crowding in the region 

where the membrane protein is being inserted. 

38. Vegetative growth – The form of bacterial growth associated with favorable nutrients and 

environmental conditions, i.e., active growth and division.  When favorable conditions 

are not met, many bacteria halt vegetative growth and enter a quiescent phase. 

39. Wild-type – referring to a strain of bacteria that contains no gene deletions from its 

genome.  Wild-type strains still can possess protein labels, however. 

40. ZapA – A non-essential protein that localizes early to the Z-ring and is thought to help 

stabilize FtsZ filaments.  ZapA is also a necessary part of the Ter linkage. 

41. ZapB - A non-essential protein that also localizes early to the Z-ring and like ZapA is 

thought to help stabilize FtsZ filaments.  ZapB is known to bind to itself and form an 

extended ring-like structure that sits inside the Z-ring.  ZapB is a necessary part of the 

Ter linkage. 

42. ZipA – an essential cell division protein that binds FtsZ monomers and filaments and 

serves as a cytoplasmic membrane anchor for the Z ring.  We often use ZipA-GFP as a 

label for the Z-ring instead of FtsZ. 

43. Z-ring – Once FtsZ polymerizes into longer filaments, the bundling of these filaments into 

a loose annulus-like structure at mid-cell is called the Z-ring.  Te Z-ring is the scaffold for 

at least 30 other proteins, that once bind (either directly or indirectly) compose the 
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divisome.  As mentioned already, the divisome is capable of carrying out cell division.  

The Z-ring, by itself, is not capable of carrying out cell division. 
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